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Abstract

The human visual system is capable of interpreting a remarkable variety of often subtle, learnt,
characteristic behaviours. For instance we can determine the gender of a distant walking figure
from their gait, interpret afacial expression as that of surprise, or identify suspiciousbehaviour in
the movements of an individual withinacar-park. Machine vision systemswishing to exploit such
behavioural knowledge have been limited by theinaccuraciesinherent in hand-crafted model s and

the absence of aunified framework for the perception of powerful behaviour models.

The research described in this thesi s attempts to address these limitations, using a statistical mod-
elling approach to provideaframework inwhich detailed behavioura knowledgeis acquired from
the observation of long image sequences. The core of the behaviour modelling framework is an
optimised sample-set representation of the probability density in a behaviour space defined by a
novel temporal pattern formation strategy.

This representation of behaviour is both concise and accurate and facilitates the recognition of ac-
tions or events and the assessment of behaviour typicality. Theinclusion of generative capabilities
is achieved via the addition of a learnt stochastic process model, thus facilitating the generation
of predictions and realistic sample behaviours. Experimenta results demonstrate the acquisition
of behaviour models and suggest a variety of possible applications, including automated visual
surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours

within animations, virtual worlds, and computer generated film sequences.

The utility of the behaviour modelling framework is further extended through the modelling of
object interaction. Two separate approaches are presented, and a technique is developed which,
using learnt model s of joint behaviour together with a stochastic tracking algorithm, can be used to
equip avirtual object with the ability to interact in anatural way. Experimental results demonstrate

the simulation of aplausiblevirtua partner during interaction between a user and the machine.
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Chapter 1

| ntroduction

The human visual system is capable of interpreting a remarkable variety of often subtle, learnt,
characteristic behaviours. For instance we can determine the gender of a distant walking figure
from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour
in the movements of an individual within a car-park. Machine vision systems wishing to exploit
such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted mod-
els and the absence of aunified framework for the perception of powerful behaviour models. The
research described in thisthesiswas motivated by adesire to address these limitationsand provide
aframework allowing the perception of effective models of characteristic object behavioursfrom

the continuous observation of long image sequences.

The perception of behaviour implies that behavioural knowledge is derived empiricaly, thus
favouring a low-level statistica modelling approach, where detailed behavioural knowledge
evolves as learning proceeds. A natural learning process should enable model acquisition with a
minimum of human intervention and should allow gradual adaptation, enabling model evolution
with occasiona changesin characteristic behaviour. Such a system would thus enabl e the acquisi-
tion of detailed behavioural knowledgefrom observation al one and, provided the resulting models

were both analytic and generative, would have awide range of applications.

Theanaysisof behaviourisfundamental to taskssuch asautomated visual surveillanceand gesture

recognitionwhich are concerned with theinterpretation of observed behaviours. Statistically based



behaviour model s allow these tasks to be approached without the need for apriori knowledge. At-
tentional control mechanisms which identify interesting incidents or actions can be implemented
from the assessment of behaviour typicality, and the recognition of events or gestures achieved
through the identification and semantic labelling of related classes of behaviour. Figure 1.1 illus-
trates an example of behaviour analysis. Using alearnt behaviour model, typicality assessment is
performed based on the entire history of each tracked pedestrian’slocation within the scene (illus-
trated by thewhite tragjectories). Whilst the behaviour of two of the observed pedestriansisjudged
to be typica (indicated by blue circles), the behaviour of the third - the individual loitering by a
chained bicycle - isjudged to be an atypical incident (indicated by ared triangl€).

Figure 1.1: Sample behaviour analysis- incident detection through typicality assessment.

The generation of behaviour from statistically based model s all ows the prediction or extrapol ation
of future behavioursaswell as the generation of realistic sample behaviours. Maximum likelihood
behaviour predictions and extrapolations can be used to increase the robustness of object track-
ing and to aid in occlusion reasoning, whilst stochastically generated predictions can be exploited
within stochasti ctracking algorithms. Both maximum likelihood and stochastically generated sam-
ple behaviourscan be appliedto virtual objectswithinanimationsor virtual worlds, thusincreasing
realism. Figure 1.2 illustratesan exampleof behaviour generation. Using alearnt behaviour model,
ashort sequence of extrapolated behaviour (illustrated by the unfilled contours) isgenerated during

the tracking of an exerciseroutine. Thismaximum likelihood extrapolationis based on a history of



recently observed object shape (illustrated by the filled contours), and could clearly be avaluable

aid to tracking.

Figure 1.2: Sample behaviour generation - extrapolation of an exercise routine.

1.1 Object behaviour modelling philosophy

Before discussing the approach to object behaviour modelling adopted within this research, it is
useful to consider the types of objects and behaviours which may be of interest, and to produce
a suitable definition of behaviour. Intuitively, objects (spatia entities) with measurable dynamic
characteristics which conform to some structured pattern may be seen as objects with interesting
behaviours. For instance, pedestrians have anumber of such characteristics, in particular their |o-
cation within a scene, the shape of their silhouette, and perhaps their texture or interaction. Many

other objects such as moving vehicles and flocks of birds share theseinteresting characteristics.

Theevolution of these characteristics can be considered from ashort-term point of view, relatingto
instantaneous changes, or alonger-term point of view, relating to (possibly entire) temporal histo-
ries. Thefollowing definitions, stated in order of increasi ng temporal extent, are presented in order
to clarify thisinterpretation of object behaviour and to provide a basis for the adopted modelling

approach:



¢ The state of a particular measurable object characteristicisthe current measurement of the
characteristic together with its first derivative, and can be represented as a situated vector

within the characteristic's measurement space.

¢ The behaviour of a particular measurable object characteristic is a (possibly entire) tem-
poral history of the characteristic's measurements, and can be represented as a continuous

trajectory within the characteristic's measurement space.

1.1.1 Adopted modelling approach

The first stage of the perceptual process involves identifying objects within the scene and gener-
ating feature vectors representing those characteristics which are of interest. Within thisresearch,
thisisachieved by employing existingtracking systemsdevel oped by Baumberg and Hogg [5, 4, 7]
to track moving objectswithinreal world scenes, resulting inframe by frame updatesto therelevant

characteristic for each uniquely labelled object.

The extended observation of object characteristics exhibiting interesting behaviours will define
probability distributions over the state spaces and behaviour spaces of the characteristics. It is
these distributions, defining the space of observed behaviours and their probabilities, which will
be acquired during model learning. Such distributions are likely to be complex in structure and
unsuitable for modelling using conventional parametric distributions. Instead, probability density
over state and behaviour spaces is modelled by the distribution of prototype vectors placed in an
unsupervised manner using a robust Vector Quantization algorithm. This technique provides the
desired natural learning process, resulting in arepresentation of probability density which is both

concise and accurate and which facilitates typicality assessment and attentional control.

The perception of behaviouristhusachieved by transforming sequencesof observed characteristics
into their state and behaviour spaceswherethey areused astraining datafor the unsupervisedlearn-
ing process. Although the state space associated with a particular characteristic is smply a vector
space describing measurements and their first derivatives, developing a representation describing
a behaviour space is non-trivial since the representation must encode spatio-temporal trajectories
of different lengths. A novel spatio-temporal trajectory representation is developed which utilises

the corresponding state density model and uses a tempora pattern formation strategy to encode



different length behaviour sequences.

The discrete nature of this probability density representation is beneficial to semantic labelling
and alows generative tasks to be performed using a transiti on-based prediction scheme. The pa
rameters of this probabilistic prediction scheme are derived during a further unsupervised learning
phase, resulting in a model where the production of both maximum likelihood and stochastically

generated predictions, extrapolations, and sample behavioursis possible.

1.2 Overview of thethess

Thisintroductory discussion hasidentified the need within computer visionfor aframework allow-
ing the perception of powerful object behaviour models from the observation of image sequences,
has provided a concise definition of object behaviour, and hasgiven abroad outline of the approach
adopted within this research to providing such a framework. Related research, describing tech-
niquesfor the characterisation of motions and behaviourswhich may be broadly considered as be-
haviour modelling, isreviewed in Chapter 2. The remainder of the thesis gives a detailed descrip-
tion of the original research undertaken, including relevant experimental results, with descriptions

of related techniquesincluded where relevant.

After an overview of the acquisition, pre-processing, and properties of the experimental data used
withinthisthesis, Chapter 3 describes arobust techniquefor the unsupervised learning of probabil -
ity density over state and behaviour spaces. Using this technique, models of characteristic object
states and behaviours are devel oped, where the model ling of object behavioursis achieved using a
novel spatio-temporal trajectory representation. Finally, typicality assessment and incident detec-

tion using these learnt state and behaviour models is demonstrated.

Since the model s devel oped in Chapter 3 are non-generative, Chapter 4 describesthe enhancement
of state and behaviour models to include generative capabilities viathe superimposition of alearnt
probabilistic prediction scheme. Using thistechnique, both maximum likelihood behaviour extrap-
olation and the stochastic generation of realistic sample behaviours are demonstrated. To further
demonstrate the utility of predictive models, the performance of both state-based and behaviour-

based predictorsis compared with alinear prediction scheme. Finaly, the similarities between the



enhanced models and Hidden Markov Models, commonly used for the recognition of gesture and

speech, are discussed.

Throughout the devel opment of the behaviour modelling framework, it is the behaviours of single
objectswhich are considered. To extend the utility of the framework, themodelling of object inter-
actionisinvestigatedin Chapter 5. Object interactionisa particul arly interesting form of behaviour
sinceit allows reasoning to be extended from individualsto groups of objects, whilst providing a
machine with the ahility to learn and use models of natural interaction may prove beneficia to the
provision of natural user-machine interaction. Two approaches to binary interaction modelling are
investigated. Thefirst approach considers the statistical co-occurrence of events within models of
the state or behaviour of individual objects, whil st the second approach attemptsto explicitly model
interaction as joint behaviour. This latter approach is used within a stochastic tracking algorithm
to demonstrate how a learnt joint behaviour model can be used to equip a virtual object with the

ability to interact in a natural way.

Finally, in Chapter 6, the thesisis summarised, some general conclusionsare drawn, and possibil-

ities for future research are discussed.



Chapter 2

M odelling object motions and

behaviours. A review

In recent years, many researchers have become interested in techniques allowing the characterisa-
tion of complex motionsand behaviours. This has coincided with ashiftin attention from theinter-
pretation of static imagesto the interpretation of image sequences. The analysis of object motions
and behavioursoffers to impart aricher understanding of adynamic world than that available from
theanalysisof static scenes. Thefocusof much of thisresearch has been the analysisof human be-
haviours, motivated by applications such as perceptua user-machine interfaces, automated visual
surveillance systems, and realistic virtual environments. Inthischapter, several current approaches
which may broadly be considered as modelling object motions and behaviours are reviewed, fo-
cusing on approaches from object tracking, automated visual surveillance, gesture recognition and
computer graphics. Reviews of techniques for motion-based recognition can also be found in the
survey paper of Cédras and Shah [19] or the introductory paper [82] to a collection of relevant pa-
pers edited by Shah and Jain [81]. The remainder of thisintroduction discusses some of the most

significant attributes by which the various approaches may be compared.

Model-based object recognition from static images has been based largely on shape information,
using a wide range of 2-D features such as edges, curves, and regions, and 3-D features, such as
surface patches and cylinders. As attention has moved to the interpretation of image seguences,

the relative importance of motion over shape when performing different tasks has been reflected



by the extent to which it has been included in the relevant models. At one end of this spectrum
are models which are essentialy shape based but include some simple motion information. For
example, the deformable 2-D contour models devel oped by Baumberg and Hogg [4] for tracking
articulated and non-rigid motion use the conventiona Point Distribution Model (PDM) of Cootes
et al. [22, 20] to represent shape variation, whilst assuming objects undergo uniform 2-D motion
with random accel eration and shape change. At the other extreme are models which include de-
tailed motion information. For example, Bobick and Davis[12] recognise actions using temporal
templates constructed from motion-energy and motion-history images which identify the location

and recency of motion.

Recognition based entirely on motion has been motivated by the ability of humans to recognise
many different kinds of motion. Our ability to perform recognition based purely on motion infor-
mation wasfirst demonstrated by Johansson’s pioneering work on Moving Light Displays(MLDs)
[49], where the trajectories of small reflective patches attached to the actor’s joints were shown to
be sufficient information for the recognition of walking. Such results also suggest that the recog-
nition of behaviour is feasible using only sparse view-based information. Thisis reflected within
the literature by the diverse set of features used within models, ranging from 2-D view-based fea-
tures such as optical flow and object silhouette, to explicit 3-D object representations. For example,
Black et al. [9] use parameterised model s of optical flow to recognisefacial expressionsand articu-
lated motions, whilst Hogg [41, 42], and later Rohr [76], use a set of cylindersto model the human

body with joint curves to model walking.

Hand-crafted models, such as those used by both Hogg and Rohr, embody both knowledge and
constraints which are a priori in nature in the sense that they are not derived empirically by the
system. The extent to which amodel is based on a priori knowledge and constraints often limits
its realism and utility due to implicit inaccuracies. All modelling frameworks introduce some a
priori constraints by virtue of the assumptionsand simplificationsthey make. For example, shape
descriptionsbased on B-splines, such as those used by Blake et al. [10], impose aconstraint on the
shape of each curve segment. Hand-crafted knowledgeis often inaccurate and failsto describe the
variationswhich are evident in real behaviour. Thistypeof a priori knowledgeisincreasingly be-
ing avoided by using statistical estimation techniques. For example, approachesbased onthe PDM

incorporate knowledge of variability which isderived from training data using a Principle Compo-



nents Analysis (PCA). Ideally, models should be acquired viaalearning scheme which allows the

continuous evolution of knowledgewith empirical evidence.

Whilst statistical estimation techniques improve the accuracy of knowledge, it isalso desirable to
maximise a model’s specificity and compactness. A highly specific model will include only valid
information, and a highly compact model will require a minimum of parameters to describe that
information. For example, one of the principal limitations of the PDM isits non-specificity when
model ling shapes which undergo complex non-rigid and articulated deformations. Thislimitation
is addressed by techniques such as the Hierarchical PDM proposed by Heap and Hogg [38] or the
use of Gaussian Mixture Models as proposed by Cootes and Taylor [21]. The similarities which
exist between these recently published methods and the research described in thisthesisisan in-
dication of theimportance of highly specific models as attempts are made to model more complex

objects and behaviours.

Since object motions and behaviours are spatio-temporal entities, the way temporal informationis
represented within amodel isof fundamental importance. One of the principal limitationsof many
of the methods discussed in this chapter isthe low order of the dynamics modelled. Whilst first or
second order dynamicsmay be sufficient to model relatively short-term effects, they will inevitably
fail to represent the dynamics of many real behaviours which are likely to involve a higher tem-
poral dependence - one of the novel aspects of the research described in thisthesisisto model the
entire temporal extent of variable length behaviours. Another important aspect of temporal infor-
mation representation is time-scale invariance. In many gesture recognition problems, time-scale
invariance is considered advantageous, since only the temporal ordering of the gesture isimpor-
tant, whilst in automated visua surveillance tasks the rate at which an action is performed isaso

important.

Since existing model s of object motionsand behaviours have been designed for specific tasks, they
generaly lack the range of analytic and generative capabilities required for a unified framework.
Thisislargely due to limitations in the modelling techniques employed. A wide variety of tech-
niques have been investigated, many of which have been adopted from other disciplines. For ex-
ample, many of the techniques originate from areas such as signal processing, pattern recognition,
and statistical modelling. In particular, thereis a high degree of correspondence between the prob-

lem of gesture recognition and that of continuous speech recognition. Thissimilarity has recently
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resulted in a number of attempts to apply techniques used in continuous speech recognition, such
as Dynamic Time Warping (DTW) (see, for example, Huang et al. [45]) or its successor, Hidden
Markov Modelling (HMM) (see Rabiner and Juang [68] or, for example, Huang et al. [49]), to

gesture recognition problems.

2.1 Object tracking

Central to the automated interpretation of image sequences isthe task of |ocating and tracking spe-
cific classes of object. For example, automated visual surveillance systemsrequire real-timeinfor-
mation about the location of the different classes of objects under observation in order to reason
about their behaviours and interactions, whilst most gesture recognition systems require detailed,
real-time, information about object pose in order to interpret behaviours. Rea image sequences
are typically subject to the presence of noise and background clutter, thus demanding models of
an object’s spatial characteristics, and increasingly its dynamics, to help locate possible model in-
stances within the scene. Models of motion and dynamics allow an object tracker to better predict
the expected |ocation and pose of the object in future time instants, thus improving performance.
The techniques used to model such information in a number of the key approaches are discussed

in this section.

The work by Hogg on tracking humans [41, 42] is typical of hand-crafted modelling approaches.
Hogg's WALKER model uses a set of cylinders to represent rigid body parts, with posture repre-
sented by parameterised joint angles. Walking is represented by a canonical walk cycle, modelled
by periodic functions of a single pose parameter which were precomputed by analysisof asingle
wak sequence. The space of possible walksis represented by a set of hand-crafted constraints on
factors such as the rate at which the pose parameter may vary and the overall speed of motion of
the body. In particular, individua walking styles are permitted by allowing each joint angle to be
advanced or retarded relative to the pose parameter. Rohr [76] uses a similar model, based on the

work of Hogg, where the joint curves were derived from medical motion studies of sixty males.

Many recent frameworks for tracking non-rigid and articulated objects are based on the PDM of
Cooteset al. [22, 20] whereamodel of shape variationisderived from astatistical analysisof train-
ing data. Thework of Baumberg and Hogg [5, 4] istypical of such approaches, using adeformable
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contour model to represent the shape variation of awalking human, whilst also demonstrating the
automatic acquisition of training data. A simple stochastic process models shape change, with an
additive, isotropic noise process associated with each shape parameter. Objects are assumed to
undergo uniform 2D motion with random acceleration, again modelled by an additive, isotropic
noise process. This approach is extended in recent work by Heap and Hogg, where specificity is
improved by representing shape using a number of smaller PDM s [38], and discontinuous shape
changes are handled by modelling transitions between these separate models [39]. These transi-

tions aso serve to provide a crude statistical model of the dynamics of the object.

Blake et al. [10] use learnt second order stochastic difference equations to model more complex
dynamics for contour tracking. In this approach, the matrix coefficients governing both the deter-
ministic dynamics, and the coupling into the system of the stochastic noise process, are learnt from
observation. Thislearning processinvolves maximum likelihood estimation of the parameters via
|east-squares minimisation. Thisapproach isextended by Reynard et al. [71] to decoupleclassand
dynamical variability, and by North and Blake [61] to improve the robustness of dynamics learnt
from noisy training data by using the Expectation-Maximisation (EM) a gorithm (see Dempster et
al. [25] or, for example, Ripley [74] or Huang et al. [45]) to perform maximum likelihood estima-

tion.

Recent work by Isard and Blake[47] attemptsto extend therange of motionswhich can bemodelled
using stochastic difference equations by allowing dynamics to be represented by multiple models.
Multiple models are supported naturally within the framework of their CONDENSATION tracking
algorithm [46], where the addition of probabilitiesgoverning the transition between modelsallows
automatic model switching to occur when appropriate. Aswell as allowing more complex dynam-
icsto bemodelled, therecognition of different classes of motionisfacilitated by virtueof themodel

switching.

Baumberg and Hogg a so model more complex dynamicsin their spatio-temporal model [6]. This
approach extends the approach of Blake and Isard to automatically learn dynamics which are con-
strained to be physically plausible, resultingintrained * vibration modes’ which are orthogonal and
can thusbetracked independently. Anobject is considered to be an elastically deformabl e physical
systemwith certain material properties, in the context of the Finite Element Method from engineer-

ing, and the set of vibration modes describing object dynamics (and implicitly defining physica
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properties of the system such as stiffness) are learnt from the analysis of training examples using

the method introduced by Blake and | sard.

A higher order model for predicting the shape and position of deformable contoursisinvestigated
by Xuand Hogg [90]. This method is based on the PDM parameterisation of Baumberg and Hogg
but uses a set of simple recurrent neural networks (see Elman [27] or, for example, Haykin [37])
to predict the value of each parameter in the next time-step - a multivariate time series prediction
approach. Each network modelstypical nonlinear dynamicsviathe cooperation between anumber
of setsof time delayed inputsand a set of exponential memory units, and istaught separately from
aset of training examples. Each set of inputs representsthe state of the contour at a particular time

instant by a set of shape parameters and a position within the image plane.

If an object exhibits continuous motion, it is possible to perform very crude tracking using tech-
niques based solely on motion, such as change detection, background subtraction, and optical flow.
For example, Baumberg and Hogg [5] use background subtraction to automatically acquire the
training data for their deformable contour model, whilst Niyogi and Adelson [60] build a spatio-
temporal model around the volume created in XY T space when change detection is applied toim-
age sequences of a person walking. In this latter approach, the canonica walk is modelled by a
smooth spatio-temporal surface generated by combining data from several image sequences. The
surface is parameterised by spatial position and scale, and temporal period and phase, thus exploit-
ing the periodicity of the gait. An individual walk is expressed as a combination of the canonical

walk and a deviation surface that is specific to the individual.

Yacoob and Davis [92] attempt to learn models of articulated motion based on optical flow. This
approach uses a parametric model of body part dynamics, the ‘ cardboard body’ model introduced
by Black et al. [9], where activity is described by the relative motion of anumber of planar patches
which are constrained to exhibit similar motion at given articulation points. Thismodel, whichiis
used to acquire training data, assumes that image flow is either constant, or satisfies constant ac-
celeration, over the small temporal windows over which model parameters are estimated. In order
to learn periodic, articulated activities such as walking, sequences of model parameters covering
one entire period of the activity are generated. These training sequences are then analysed using a

PCA to learn alow-dimensiona model of the complex dynamics underlying the activity.
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2.2 Automated visual surveillance

Thereisan increasing interest in visual surveillancein many aspects of modern life. For example,
the monitoring of business and residential properties, city centres, and car parks offers to address
the perceived increase in levels of violence and crime, whil st the monitoring of livestock offersto
improve animal welfare by analysing behaviour under different living conditions. In the future,
it will not be feasible for human operators to process the huge volume of information generated,
and thusthe automation of visual surveillancetasksisessentia. Central to the automation of these
tasksis the understanding of complex object behaviours, and thus model s of these behaviours are
fundamental. The techniques used to model such information in a number of the key approaches

are discussed in this section.

One of the simplest visual surveillancetasksisthefiltering of alarm eventsfrom aperimeter intru-
sion detection system. Such a system consists of avariety of alarm deviceswhich, when triggered,
activate cameras viewing the scene to capture an image sequence spanning the alarm event. Rosin
and Ellis[77] describe a vision system for the analysis of these image sequences, discriminating
between alarms triggered by human intruders and fal se alarms caused by animals or other causes.
The classification of alarm eventsis based on hand-crafted knowledge about the scene and the ap-
pearance and dynamic behaviour of target objectswhich are tracked using background subtraction.
This knowledge is modelled using a classical frame-based structure where dynamic behaviour is
model led by the range of maximum speed and accel eration val uesexpected over asequence, whilst
other basic behavioural knowledge such as the expected location or time of day of an appearance

isincluded where relevant.

A more effective visual surveillance system must be capable of awider range of tasksthan simply
alarm event filtering. Such tasks may include incident detection and classification, the generation
of conceptual event descriptions, and the generation of warnings relating to predicted future inci-
dents. The VIEWS (Visud Inspection and Evaluation of Wide-area Scenes) project described by
Corrall and Hill [23] isan example of avisual surveillance system designed primarily for incident
detection and classification. The system relies on detailed hand-crafted knowledge of the scene,
the objects to be identified, and the specific events and behavioursto be recognised. Knowledge

of the scene layout is modelled using the spatia representati on described by Howarth and Buxton
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[44], wherethe sceneis partitionedinto semantically relevant regions. Simpleeventsare generated
when an object (identified by a model-based vehicle tracker) undergoes a state change based on
properties such as speed, region occupancy, or proximity to another object. Event and interaction
hi stories are maintained and matched against hand-crafted behaviour clauses to facilitate recogni-
tion. An alternative approach described by Howarth and Buxton [43] uses a combination of static
and dynamic Bayesian belief networksto model and eval uate behavioursunder attentional control.
This approach is extended by Buxton and Gong [17] to improve tracker robustness by modelling

constraints relating to object motion and size.

The delivery of natural language (or conceptual ) descripti onswithin automated visua surveillance
has been discussed by Nagel [59], where rel evant approaches from the road traffic domain are re-
viewed. The provision of a running commentary of sporting eventsisan application of such sys-
tems which has received much interest. For example, the VITRA (VIsua TRANg ator) project de-
scribed by Herzog and Wazinski [40] has been demonstrated on short sequences obtained from a
static camera viewing a football match. In thisdomain, incremental event recognition is required
since aretrospective description of behavioursisinadequate. The system usesahand-crafted scene
model and events are represented by course diagrams - directed graphs labelled with conditions,
as described by André et al. [1]. Incremental event recognitionis achieved as graph edges are tra-
versed, triggered by updatesto the configuration of objects within the scene. An extensionto this
system, enabling the recognition of intentionsusing a hand-crafted plan hierarchy detailing stereo-
typical tactics, is described by Retz-Schmidt [70].

A potentially more powerful approach than using hand-crafted knowledge is to introduce model
learning. The use of statistically-based models and learning techniques allows knowledge to be
acquired from observation in an unsupervised manner. A method for learning semantic scene par-
titioning, based on the spatial representation of Howarth and Buxton, is proposed by Fernyhough
et al. [29]. Thismethod usesan object tracker to gather instances of regions representing the accu-
mul ation of image pixels occupied by an object as it moves along its path. Regions are maintained
within adatabase, and thosewith ahigh degree of overlap are merged to generate afrequency distri-
bution identifying the most commonly used path. After learning, extraction of the most commonly
used paths, and removal of low frequency paths, resultsin the desired scene partitioning. Ferny-

hough et al. [28] al so demonstrate how event models can be generated from a statistical analysisof
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training data. The learnt spatial representation is augmented with temporal indexing information,
which, together with aqualitativenotion of proximity, isused to generate descriptionsof commonly

occurring binary object interactions.

Using statisticsacquired from observation, somevisual surveillancetasksmay be achieved without
the need for scene knowledge. Morrisand Hogg [57] present amethod for assessing the likelihood
of object trgjectories, based on the interactions between a moving object and other static objects
within the scene. Trajectories are characterised by sets of landmark points which identify inter-
actions (points of closest proximity) between the moving object and the closest static object. The
cumulative probability distribution of a set of descriptive measurements, made at each landmark
point, is calculated from training data, and used to assign a probability to each interactionin a se-
quence. Finally, trajectories are classified astypical or atypical by thresholding the weighted sum

of the lowest few probabilities, using wei ghts obtained during a supervised training phase.

In order to produce predictions of future behaviours, more detailed statistical models are required.
Gong and Buxton [34] have investigated modelling simple object motion characteristics from
which visual expectations can be generated to guide the perception process, using techniques com-
monly used for speech and gesture recognition (see Section 2.3). Initially, HMMs of fixed topol-
ogy, modelling discretised vehicle orientations and displ acements, are learnt from the observation
of asmall number of training sequences. Dueto the uniquenessof the maximum likelihood expec-
tations generated from these models, and the instahility of stochastically generated expectations,
Gong and Buxton instead propose the use of Augmented Hidden Markov Models (AHMMs), as
introduced by Rimey and Brown [73]. AHMMsallow model parameters to be modified during the
observation process to reflect current visual evidence. A modification gain determines the influ-
ence of the new visual evidence, whilst a decay gain ensures that changes dissipate as the visua

evidence for them weakens.

An extension to the HMM framework for modelling interacting processes, the Coupled Hidden
Markov Model (CHMM), hasrecently been applied to surveillancetasksby Oliver et al. [62]. The
CHMM framework, introduced by Brand et al. [14] for action recognition (see Section 2.3), allows
the hidden states of individual chainsto be coupled via matrices of conditiona probabilitiesmod-
elling causal influences between the processes. Oliver et al. usesmall CHMMswith unconstrained

structure to model anumber of simpleinteractive behaviourssuch asfollowing and meeting. Mod-
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els arelearnt from training sequences generated by synthetic agents designed to mimic simple hu-
man behaviours. Each training sequence correspondsto a pair of nearby pedestrians, and encodes
simple relative motion parameters which are invariant to both the absolute position and direction

of the agents and to the scene.

Another statistical approach, PCA, which is commonly used within object trackersin the form of
the PDM (see Section 2.1), has a so been applied to behaviour modelling tasks. Sumpter et al. [85]
describe an approach to modelling interactive animal behaviour where the PDM is extending to
include non-shape parameters governing the interaction, such as relative separation and velocity.
Theinclusion of these parameters requires that their influencein the model is correctly scaled, and

here an informati on-theoretic solution, the maximisation of eigen-entropy, is proposed.

2.3 Gesturerecognition

Research into the recognition of human actions, gestures, and facial expressions has provided per-
haps the richest set of spatio-tempora behaviour modelsto date. Thisisdue to the diverse set of
behavioursconsidered, their relative complexity, and the widerange of features availablefor recog-
nition. Much of thisresearch has been motivated by an interest in devel opingtechniquesto allow a
more natural form of interface between the user and the machi ne, utilising interactive spaces (such
as the Interactive Virtua Environments described by Pentland [63]) equipped with cameras and
microphones where such techniques can be devel oped and tested. A number of the key behaviour
modelling techniques, many of which are similar in spirit to the techniquesdescribed in thisthesis,

are discussed in this section.

The recognition of actions and gestures is often achieved by considering some abstraction of the
trgjectories traced in measurement space as a particular gesture is performed. For example, Na-
gayaet al. [58] propose the use of polygonal approximationsto pattern space trajectories for ges-
ture modelling. In thisapproach, a pattern space is defined i n which each point represents a unique
image. The continuous trajectories traced within this space by specific gestures are segmented at
points of maximum and minimum curvature, and the polygonal approximation defined in terms of
the rel ative distance and angle formed between these landmark points. Assuming that the object of

interest does not extend beyond the image boundary, and that the background is static, this repre-
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sentation of agesture is shown to be invariant to affine transformations of the object. Recognition
is achieved using dynamic programming to select the gesture model which best matches the input

sequence.

Bobick and Davis[12] aso model gesture without direct recognition of the object performing the
action. In their approach, a number of view-specific temporal templatesare used for gesture mod-
elling. Each template consistsof two components, a binary motion-energy image indicating where
motion has occurred within the image, and an integer-val ued motion-history image indicating the
recency of motion and thus encoding a history of the motion defining the gesture. The actions de-
scribed by these motion-history images are immediately visually apparent due to the images' mo-
tion blurred appearance. Temporal templatesfor each action are collected from avariety of viewing
angles and characterised by a set of statistical moment-based features, alowing recognition to be
achieved by matching based on the similarity between feature sets.

Since spatio-temporal trajectories are continuousmultivariate time series, neural networks provide
a natural modelling framework, allowing both recognition and prediction. Psarrou et al. [67] de-
velop aframework for the recognition of face sequences, based on a partially recurrent neural net-
work with exponential memory (see Elman [27] or, for example, Haykin [37]) and the eigenface
representation of Turk and Pentland [87]. For each face class (individual), a set of eigenface mod-
els are acquired, from fixed length image sequences of face movements, to represent the tempo-
ral face sub-space of that class. Trajectories formed by projecting successive image frames of a
face sequence into this temporal face sub-space are learnt by the neural network, and the temporal

changes over these trajectories used as a temporal face signature for recognition.

The recognition and prediction of human motion using neural networks has been investigated by
Bulpitt and Allinson [16, 15]. Using data acquired from the analysis of MLDs of actors perform-
ing different activities, anetwork incorporating two interacting Adaptive Resonance Theory (ART)
networks (see Carpenter and Grossberg [18] or, for example, Ripley [74]) isused to learn param-
eterised motion trajectories. The first ART network is used to distinguish between the different
instantaneous patterns in each sample of a motion sequence, whilst the second ART network is
used to learn the temporal rel ationship between these events, utilisingatemporal decay operator to
provide the network with memory. Recognition of a particul ar sequence or sub-sequenceis based

on classification of the pattern of activation on the output layer.
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Just as thefirst network in Bulpitt’s architecture distinguishesthe different instantaneous patterns
that form a trgjectory, so many other approaches use sequences of discrete states to represent a
trgjectory. For example, Bobick and Wilson [13] generate descriptions of a gesture and its vari-
ability based on sequences of configuration states. Initially, aprototypegesturetrajectory is gener-
ated by fitting aprincipal curveto noisy training trajectoriesin a configuration space, using atime-
collapsing technique to maintain temporal ordering. Fuzzy states are then generated by clustering
the vectors defining the prototype trajectory and fitting a single oriented Gaussian at each state to
define the local variability. Finally, recognition is achieved using a matching technique based on

dynamic programming.

Hidden Markov Models (HMMs) are a popular, state-based, probabilistic mechanism for describ-
ing thetemporal structure of time-varying processes, although they are generally limited by factors
such as the first-order process assumption and the local opti ma encountered when learning mod-
els with many free parameters. HMMs have been extensively used for speech recognition tasks
(see, for example, Huang et al. [45]), and have recently become popular for describing the tempo-
ral structure of actions and gestures. For example, Yamato et al. [93] use HMMs of unconstrained
topology to moded different tennisswings. Simpleregion-based features are derived for each train-
ing sequence image and a set of discrete observation symbols generated using Vector Quantization
(VQ) (see, for example, Linde et al. [54] Gray [35], or Gersho and Gray [33]). Inlearning the re-
sulting symbol sequences, Yamato et al. report that the globally optimal model is not alwaysfound.

HMMs with continuous observation distributions have aso been applied to gesture recognition.
Starner and Pentland [84] use HMMs of fixed topology to model American Sign Language from
relatively low resolution hand tracking. A single model is associated with each sign and contains
just four states with forward and skip transitions. The probability of observing a particular hand
configuration (position, orientation, and eccentricity of each hand’sbounding ellipse) at each state
ismodelled by asingle Gaussian. Sincethemodel containsno contextual information, aword level

grammar is used to increase recognition accuracy.

Since it may be advantageousto consider anumber of different sets of features concurrently when
recognising gestures, Wilson and Bobick [89] propose an extension to the HMM framework in
which multiplemodel s are maintained at each state. A normal joint distributionisused to model the

probability of observing a particular set of features from the multiple view-based representationsat
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each state, based on the distancefrom each observed feature to therel evant model sub-space. Small
HMMs with unconstrained topol ogy are used and the parameters of the multiple representations at

each state are estimated concurrently with the learning of HMM parameters.

One of the most attractive features of HMMs is their time-scal e invariance, alowing the recogni-
tion of asingle action performed at varying speeds. Such time-scale invariance in recognition can
also be achieved using the Dynamic Time Warping (DTW) a gorithm which, like HMM, has been
extensively used by the speech recognition community (see, for example, Huang et al. [45]). For
example, Darell and Pentland [24] represent gestures using sets of key-frames and use sequences
of normalised correlation scores and DTW to match gestures, whilst Gavrila and Davis [32] use

simplejoint-angle parameterised 3-D posetemplates and DTW to match gesturesin MLDs.

HMMs havea so been applied to problemsinvol ving multipleinteracting processes. Sincethe con-
ventional HMM framework assumes asingle process, Brand et al. [14] have recently introduced an
extended framework which they call Coupled Hidden Markov Models (CHMMSs), in which multi-
ple HMMs are coupled viamatrices of conditional probabilitieswhich reflect the causal influences
between processes which are neither independent nor wholly mutually determined. In experiments
based on therecognitionof T'ai Chi gestures, each gestureisrepresented by sequencesof 3-D hand
positions. Each hand is considered to be a separate process, and the gestural behaviour (an interac-
tion between the hands) is modelled by small CHMMs with unconstrained structure. An aterna-
tive approach, which obtains a much poorer classification accuracy, isto model the interaction as
asingle process using a singleHMM. Such modelling of interacting processes as joint behaviour
isaso used by Kakusho et al. for the recognition of social dancing [50], where a particul ar dance
ismodelled by a sequence of constituent figures, each characterised by coarse overall motions of

the pair.

Another statistical approach, PCA, which is commonly used within object trackers in the form of
the PDM (see Section 2.1), has aso been applied to gesture recognition. Yacoob and Davis[91]
learn models of activity and the variability in activity caused by natural variation and admissible
transformations(such astimescaling, differencesinviewingangle, and partia data). Activitiesare
tracked usingthe ' cardboard body’ model introduced by Black et al. [9], where activity isdescribed
by measurements on a number of planar patches, and the model islearnt from a PCA of anumber

of exemplar actions. Recognition is based on matching an observed sequence to model instances,
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allowing admissibl e transformations on the observation to minimise a matching error.

The periodic nature of many natural motions, particularly human activities such as walking, pro-
videsastrong cuefor recognition. Thisisreflected by anumber of approachesto action and gesture
recognition which analyse cyclic or near-periodic motions. For example, Polana and Nelson [66]
identify threedistinct categories of motion based on the extent of any spatial or temporal repetition.
Thefirst of these classes, temporal textures, comprises repetitive motions with indeterminate spa-
tial and temporal extent, such as the motion of leaves in the wind, which can be recognised from
the statistical properties of an optica flow field. The second class, activities, comprises periodic,
gpatially compact, motions such as walking which can be recognised from analysis of the period-
icity of low-level image motion (see Polana and Nelson [65]). Tracking isinitially performed by
identifying areas of motion, resulting in sequences consisting of activity at a constant position and
scale. By generating low resol ution flow magnitude templates, and deriving a periodicity measure
from a Fourier analysis of the motion magnitude sequence for each cell, the period of an action
can be established. Mean flow magnitude templates covering a single period are generated, and

recognition achieved by locating the nearest (bounded) ref erence templ ate.

Liu and Picard [55] present a method for locating regions of periodicity which is more robust than
the method of Polanaand Nel son and does not require optical flow computation. After frameaign-
ment (keeping the object of interest stationary), a robust periodicity measure is derived from a
Fourier analysis of theintensitiesof each image pixel over the sequence. This process can be con-
sidered as alow-level periodicity filter, resulting in a periodicity template which identifies image
regions in which periodic events occur, also giving a measure of the amount of periodic energy at
each pixel and the fundamental frequency of the behaviour. Using thistemplate, different periodic

actions can be located and classified.

One of the problems with the above approaches is that they only identify strictly periodic be-
haviours. Seitz and Dyer [80] describe an approach to the view-independent analysi sof behaviours
which repeat but are irregular - cyclic behaviours. Using an image matching procedure which is
invariant to affinetransformations, aset of functionsdescribing the combined length of theinstanta-
neous period, over different numbers of cyclesin the past and future, isestimated. Thesefunctions,
known as the period trace of the sequence, allow cyclic behavioursto be analysed, resultingin the

identification of irregular intervals and various characteristic features of the cyclic behaviour.
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2.4 Computer graphics

In recent years, increases in processor speed and advances in both hardware and software graph-
ics technology has made the rendering of fairly convincing animations and virtual environments
areality on moderately priced workstations. In order to further improve realism, it has become
necessary to equip the dynamic objects appearing in such graphics with more realistic motionsand
behaviours. For example, animated humans need to be able to walk, run, interact etc. in a con-
vincing manner, whilst autonomous characters in games and virtual environments can be made to
appear more intelligent using behaviour-based control systems. The techniquesused to model and
simulate such realistic motions and behavioursin a number of the key approaches are discussed in

this section.

Virtual humans, such as the Jack system of Badler et al. [3, 2], offer to provide both a substitute
for real humansin the domain of computer-based design, and realistic representations of ourselves
within virtual environments (and, in thefuture, realistic autonomous characters and virtual actors).
Such systemstypically employ motion and behaviour model s which are either based on predefined
motions or which utilise physically-based control strategies. Predefined motions are typically de-
rived from biomechanical or motion capture dataand are similar to the motion model used by Hogg
[42] in his pedestrian tracker (see Section 2.1). To increase movement variability and add ‘ person-
ality’ to such motions, Perlin [64] adds periodicnoiseto thejoint transformations. Physically-based
animation can lead to more general locomotion solutions, but requires powerful control strategies
such asthelimit cycle control proposed by Laszlo et al. [52] to maintain stability during inherently

unstable motions such as walking and running.

Autonomous creatures with realistic appearances, motions, and behaviours, have also been pro-
duced using hand-crafted physically-based models. For example, Tu and Terzopoul 0s[86] describe
autonomous physically-based fish models which employ perceptual, behavioural, and motor con-
trol systems. Behavioural modelling is achieved using an intention generator which issues inten-
tionsbased on theindividual’ shabits, current mental state, and incoming sensory information. Be-
haviour routines are executed to attend to the current intention, resulting in the execution of the
appropriate motor control routines. When generating such characters for interactive virtual envi-

ronments, Blumberg and Galyean [11] proposethat pure autonomy should not bethe ultimategoal -
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the ability to direct thebehaviour at multiplelevelsmay al so beimportant. Blumberg and Galyean's
virtual dog Slasisan autonomous creature which is also capabl e of responding to external control.
A layered behavioural system allowsexternal directivesto be applied at threelevels- motivational

task, and direct.

A more powerful approach than hand-crafting autonomous creatures is to use machine learning
and evolutionary techniques. For example, Grzeszczuk and Terzopoul os[36] describe atechnique
which allows creatures with highly deformable bodies to learn locomotion automatically. By re-
peatedly attempting to improve locomotion using different actions, and remembering energetically
efficient solutions, life-likelocomotion is eventually achieved. Finaly, the learnt, low-level, mus-
cle control functions are abstracted to produce compact, efficient, motor controllers and higher-
level motor tasks are learnt. Sims [83] describes a more general solution - the evolution of en-
tire creatures. In this approach, both the morphology and control systems of simple creatures are
evolved towards specific behaviours using genetic a gorithms. The genetic representation of a par-
ticular creature encodes a directed graph structure descri bing both ahierarchy of body partsand the
creature’s nervous system, whilst the fitness of a particular creature is assessed within a simulated

physical environment.

Aswell asthe behavioursof single objects, the self-organi sing behaviour of large groupsof objects
isaso of interest to the computer graphics community. The pioneering work of Reynolds[72] on
the simulation of flocking behaviours has enabled the animation of complex flocking sequences
without having to script the motion of each individua creature. Reynolds’ boids (bird-oids) em-
ploy a distributed behavioural model in which each boid is an independent, identical actor. The
behaviour of each individual isbased onits perception of local flock-mates and the opposing forces
of collision avoidance and an urge to join the flock. Although the behaviour of each individual is
hand-crafted and relatively simple, the behaviour of the entire flock appears natural, complex, and
unpredictable.



Chapter 3

L ear ning statistical behaviour models

After an overview of the acquisition, pre-processing, and properties of the experimental data used
within thisthesis, this chapter describes arobust technique for the unsupervised learning of proba
bility density over state and behaviour spaces. Using thistechnique, model s of characteristic object
states and behaviours are devel oped, where the model ling of object behavioursis achieved using a
novel spatio-temporal trajectory representation. Finally, typicality assessment and incident detec-

tion using these learnt state and behaviour models is demonstrated.

3.1 Experimental data acquisition, pre-processing, and properties

The research described in thisthesisassumes the avail ability of experimental data representing the
temporal evolution of particular behavioura characteristics. Thisraw dataisthe result of the ini-
tial stage of behaviour perception where objects of interest are identified and tracked withinimage
sequences. All experimental data used in thisresearch has been generated by employing existing
tracking systems to track moving objects within real world scenes viewed with static cameras. A
view-based approach to behavioura reasoning is adopted with two distinct object characteristics
being considered - abject location within the image plane and object silhouette shape. The use of
view-based data avoids both the need for three-dimensional trackers and the introduction of er-
rors associated with the transformation of coordinatesfrom theimage plane to aworld coordinate

system. The remainder of this section briefly identifies the techniques empl oyed within the object
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trackers, some properties of the raw data they generate, and the pre-processing applied to the raw
data.

3.1.1 Object location

Experimental location datais generated using an object tracker devel oped by Baumberg and Hogg
[4, 7] which is based on the Active Shape Models of Cooteset al. [22, 20] and acquired automati-
cally from observing long image sequences[5, 7]. Thissystem providesefficient real time tracking
of multiplearticulated non-rigid objectsin motion, and copes with moderate level sof occlusion. In
our experiments, pedestrians are tracked in outdoor scenes using a previously acquired pedestrian

shape model.

There is a one way flow of location data from the tracker consisting of frame by frame updates
to the position in the image plane of the centroid (X', y') of uniquely labelled objects. Since each
new object being tracked is allocated a uniqueidentifier, it is possibleto maintain a history of the
path taken by each object from frame to frame. For example, Figure 3.1 shows a typical outdoor
pedestrian scene, (8), and a set of smoothed, sub-sampled image plane traj ectoriesrepresenting the

motion of pedestrianswithinthe scene, (b).

(b)

Figure3.1: Samplelocationdata: (a) pedestrian dominated scene, and (b) pedestriantrajectories.

In experiments considering the location of tracked pedestrians, image plane motion is typically

slow and locally linear with respect to video frame rates whil st shape changeistypically rapid and
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non-linear. Thus, athough the tracker must operate at high frame rates to operate effectively, tra-
jectory data can be sub-sampled with little or no loss of information, greatly reducing the volume
of datato be processed. When processing live video streams, the tracker’s frame rate varies de-
pending on the number of objectsbeing tracked at any particular instant. Thus the capture time of
each new image frame must be recorded and aregularly sampled sequence obtai ned from piecewise

linear interpolation of the raw data.

Further pre-processing of raw dataaimsto reduce the presence of noise associated with thetracking
of spuriousobjectssuch as shadowsand reflections, and to constrain characteristic vectorsto lieap-
proximately within aunit hypercube, thus simplifying subsegquent stages of the perception process.
Noise due to the tracking of spurious objects can be minimised by rejecting objectswhich exist for
lessthan| frames (typically, | ~ 50), sinceimage evidence supporting the existence of such objects
istypicaly short-lived. The constraining of characteristic vectorsis simply a matter of transform-

ing image coordinates using a constant scaling factor such that each component of transformed
centroids (x = ex, y = &Y) lies approximately in theinterva [0, 1]. Theimage plane tragectory
of each tracked object is thus represented by an ordered set of characteristic vectorsC; € [0, 1]

C={Co, C1, ..., Cm}, (3.1)
where (m+1) > 1,

Ce = (X(1), y(1)), 3.2
and each characteristic vector lies approximately within a unit square.
In experiments considering the location of tracked pedestrians, sequences are generally simplein
naturewith no recurring subseguences. Dueto the variety of observed behaviourswithinacomplex

scene, the time needed to observe a representative sample of the behaviour populationislikely to

be large, perhaps as much as a number of days.

3.1.2 Object shape

For the generation of experimental shape data, thetracker described above was found to be unsuit-
able since it produces excessive smoothing of object silhouettes, resulting in the loss of required

shape detail. This problem occurs unless the entire set of principal componentsis utilised, and is
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duetothe shape model sub-space excluding thesefiner details. Instead, shape dataisgenerating us-
ing the silhouetteextraction method used by Baumberg and Hogg for thegeneration of training data
[5, 7]. Thissystem uses image differencing to locate moving objects and does not form a robust
tracker, being non object-specific, sensitive to background texture and lighting fluctuations, and
unsuitable for tracking occluded objects. In these experiments, individual swearing dark clothing

are tracked in uncluttered indoor scenes, resulting in the generation of data of sufficient quality.

Thereisaoneway flow of shape datafrom the tracker consisting of frame by frame updatesto the
position within the image plane of the n control points (X, yi), 1 <i < n, of aclosed uniform B-
spline approximation to the silhouette boundary of uniquely labelled objects. For example, Figure
3.2 showsanindividual performing an exerciseroutine, (a), and anumber of smoothed shapesfrom

a sequence representing the evolving silhouette boundary of the tracked individual, (b).

(b)

Figure3.2: Sampleshapedata: (a) exercise scene, and (b) some shapesfromthe exercise sequence.

Splinecontrol pointsare evenly spaced around thesilhouetteand are ordered rel ativeto aconsistent
point of reference which also definesthe object’sposition (X = X, Y =y; ). Themethod for thelo-
cation of thisreference point has been enhanced from [5, 7] to alow the top of an individual’ shead
to be more accurately located. This enhancement involveslocal adjustment of the reference point
such that it coincideswith thelocally highest part of the silhouette boundary. Figure 3.3 illustrates
shape representation, showing anumber of sampl e silhouetteboundarieswith circlesindicating the

corresponding spline control pointsand the reference pointsfilled.
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Figure 3.3: Shaperepresentation - silhouetteboundariesand corresponding spline control points.

In experiments considering the shape of tracked individual sperforming exerciseroutinesand inter-
actions, shape space motion istypically rapid and non-linear with respect to video frame rates. For
instance, when an individual being viewed head-on raisesan arm from the side of the body, thereis
arapid change in silhouette perimeter and shape asthe arm * separates’ from the body, resulting in
rapid non-linear motion of the spline control points. Thus the tracker needs to generate data at as
high aframe rate as possible to accurately define behaviour sequences, and temporal re-sampling
need only be performed to compensate for variation in the tracker’s frame rate whilst processing

live video streams.

In contrast to raw location data, raw shape data sequences do not contain noise due to the tracking
of spurious objects. Thisis due to both the careful choice of scene, and to the tracker’s rejection
of small motion regions. Further pre-processing of raw data is still needed to constrain charac-
teristic vectors to lie approximately within a unit hypercube to simplify subsequent stages of the
perception process. Again thisis simply a matter of transforming image coordinates using a con-
stant scaling factor such that each component of transformed control points (x = €x;, y; = &y)
lies approximately in the interval [0, 1]. The evolving silhouette boundary of each tracked object
is thus represented by an ordered set of characteristic vectors C; € [0, 1]°™

C={Cp, Cq, ..., Cn}, (3.3

where
Ci= (Xl(t)v yl(t)v XZ(t)v y2(t)v EREX Xn(t)v yn(t))v (3-4)

and each characteristic vector lies approximately within a unit hypercube.

In common with many natural behaviours, the shape sequences studied within thisthesis are gen-
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erally complex in nature with many recurring subsequences. Due to the wide variety of human
shapes and subtle differences in these behaviours, a truly representative sample of the behaviour
population can only be generated by observing many different individuals performing many ex-
amples of thebehaviour. It isinteresting to note that ‘joint angl €’ -based pose representations, such
as that used in Hogg's WALKER model [41, 42], are largely invariant to shape variation between
individuals, and thus only variation in behaviour would be represented in the corresponding data

sets.

3.1.3 State sequence approximation

The final stage of experimental data acquisition isthe generation of state sequences - ordered sets
of state vectorsrepresenting the evol ution of both abehavioural characteristic and itsinstantaneous
change. State vectors are used as the discrete unit from which behaviours are defined for anumber

of reasons;

¢ State space containsless ambiguity than characteristic space and thus state vector sequences
are less complex in nature, with less recurring subsequences, than the corresponding char-

acteristic vector sequences.

¢ Since state space represents instantaneoustemporal changesin the measured characteristics,
itisalogical starting point for the study of thelonger-term temporal evolution of these char-

acteristics.

¢ Theinstantaneoustemporal information held in state vectors allows both the approximation
of thetimeinterval between two state vectors (assuming linearity and constant accel eration),
and Hermite (cubic) interpol ation. These capabilitiesare shownto beinvaluableinachieving

behaviour generation using a transition-based prediction scheme (see Chapter 4).

Before ordered sets of state vectors are generated, some further pre-processing of datais required.
Duetoinaccuraciesinthetracking processes, characteristic vector sequenceswill be subject to high
frequency noise. Thisnoiseis assumed to originate from an additive, isotropic noise process with
zero mean and constant variance, and is minimised by smoothing sequences with averaging over

amoving tempora window of width w. To avoid data loss from the start and end of segquences,



29

smoothing starts after (w— 1)/2 frames and uses the maximum width window (up to w) centred
on each element of the sequence to generate a corresponding output, starting with the first element

and a window of unit width.

State vectorsFy € [0, 1]%9, where d isthe dimensionality of characteristic vectors (i.e. d = 2for lo-
cation dataand d = 2n for shape data), consist of a characteristic vector C; and itstransformed first

derivative C;, approximated by the difference in characteristic vectors between successive frames:
F = (Ct, )\Ct + H) R (35)

where

Ci=Ci—Ci_y, (3.6)

\ isascaling factor, and H € 09 isavector with all components equal to %

The translation of C; by H ensures that each component will lie approximately in the interval
[0, 1], whilst scaling ensures that the contribution of characteristic vector components and their
first derivatives are balanced when using the Euclidean distance as a measure of state vector dis-
similarity. Thus A is chosen to equalise the observed range of characteristic vector components
and their first derivatives over a sample data set. This scaling of differential components can be
viewed as a simplification of the use of the Mahalanobis distance (see, for example, Huang et al.
[45] or Ripley [74]) asadissimilarity measure. The Mahalanobisdistance (or generalised distance)

D(x, y) between vectors x and y with mvariablesis defined as

D(x,y) = \/(x—y) -1 (x—y)", (37)

where X isthe mx m covariance matrix of the sample data, and thusthe distancetakes into consid-
eration thevarianceand correlation of thevariables(i.e. differencesindirectionswithlessvariation

are given greater weighting).

The evolving behaviour of object characteristics is thus, after pre-processing, represented by or-
dered data sets ¥; of the form

F={F1, Fo, ..., Fm}, (3.8)

where each state vector F; lies approximately within a unit hypercube.
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3.2 Learning modelsof probability density

The extended observation of object characteristics exhibiting interesting behaviours will define
probability distributionsover the state and behaviour spaces! of the characteristics. Thesedistribu-
tionsare likely to be complex in structure and are thus unsui tablefor modelling using conventional
parametric distributions. In modelling probability density functionsover afeature space, thechoice

of modelling framework isinfluenced by the following aims:

¢ To enable model acquisition and gradual adaptation via an iterative, unsupervised learning

Process.

¢ To enable the estimation of local relative probability density, facilitating typicality assess-

ment and attentional control.

¢ To enable the association of semantics with related classes of behaviour, facilitating event

recognition.

¢ To enablethe prediction or extrapolation of future behavioursand the generation of realistic

sample behaviours.

¢ To form as concise and accurate a representation as possible.

Various methods exist for such density representation. For instance, maintaining frequency counts
over adiscretisation of thefeature space (as used by Fernyhough et al. to represent path usage[29]),
together with a transition-based prediction scheme, would fulfil thefirst four aims but would be ex-
tremely inefficient. Density representation using a mixture of situated Gaussians with parameters
estimated usingthe EM algorithm (see Dempster et al. [25] or, for example, Ripley [74] or Huang et
al. [45]) would provide an efficient solution, although the distribution of Gaussian centresislikely
to be sub-optimal for semantic labelling and transition-based prediction. Instead, Vector Quanti-
zation is used to place a set of prototype vectors whose point density approximates the probability
density of sample data, providing a representation in which the level of detail is proportional to

probability density.

1Referred to generically as feature spacesin this section.
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3.21 Vector Quantization

Vector Quantization (VQ) isa classical technique from signal processing, originally used for data
compression, which provides a method for modelling probability density functions by the distri-
bution of prototype vectors (see, for example, Linde et al. [54], Gray [35], or Gersho and Gray
[33]). Most VQ agorithms, such as the k-means algorithm commonly used in cluster analysis
(see, for example, Schalkoff [79], Haykin [37], or Ripley [74]), are unsuitable as they operatein a
batch training mode, only updating prototype positionsafter each observation of the entiretraining
set. Instead, an iterative algorithm based on the Competitive L earning paradigm (see, for example,
Rumelhart and Zipser [78] and Kohonen [51]) isused. The algorithm places a set of k prototypes
G € [0, 1]9, referred to as the codebook, over N iterations:

1. Randomly place the k prototypes within the unit hypercube [0, 1]9.
2. Select z(t), the current training vector, randomly from the distributi on to be model led?.

3. Find the prototype c;(t) whichis nearest to the current training vector z(t) by the Euclidean
metric:

|2(t) —¢j(t)] = min{[z(t) — G(1)[}- (3.9)

4. Update prototypesas follows:

G(t)y+a(t)|z(t) — gt if i=]
P L UELUICORLID) j 10
Gi(t) otherwise,
where a(t) isamonotonically non-increasing gain coefficient,
1-0.99(4 if 0<t<?}
a(t) = () -z (3.11)
0.01 if t>35,

referred to as the cooling schedule of the learning process.

5. Repeat steps 2-4 for N iterations.

2Sequential selection of vectors from ordered data sets was occasionally found to be detrimental to the learning pro-
cess due to the tendency of a sequenceto ‘drag’ a single prototype. Instead, random selection (without replacement)

from asmall buffer of sequentially selected vectorsis used.
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Kohonen [51] showsthat such an algorithmis a gradient descent procedure for the approximation

of an optimal VQ minimising the expected squared reconstruction error

E:/|z—cj|2p(z)dz, (3.12)

where p(z) isthe continuous probability density function underlying thetraining dataand dz isthe
volumedifferential infeature space. K ohonen also cites proof that, for such an optimal VQ, density
matching will obey the power law

d

P(c) O p(2)©7, (3.13)
where P(c) isthe prototype’ spoint density function. Thus, whend >> 2, the point density of proto-

types will, after learning, approximate the probability density of training data, and each prototype

will represent (in a nearest-neighbour sense) an approximately equal number of training vectors.

The cooling schedul e detailed in step 4 ischosen to give alarge initial gain which decreases gradu-
ally over thefirst half of thelearning process, allowing prototypesto moverapidly into roughly the
desired distribution. During the remainder of the learning process, the relatively small fixed gain

allowsfine tuning of the prototype distribution as the system reaches equilibrium.

The remaining model parameters must be determined experimentally. The number of iterations
required to achieve areasonabl e distributionis dependent on the number of prototypes, the dimen-
sionality of the feature space, and the attributes of the distribution being estimated, and, in our ex-
periments, istypically in the order of millionsof iterations. In cluster analysis, a‘natural number’
of prototypes can be determined by observing the reconstruction error for increasing numbers of
prototypes. In the estimation of dispersed distributions, such an analysisisonly useful in determin-
ing an absolute minimum number of prototypes; the number chosen is then essentially arbitrary,

more prototypes giving a more detail ed representation.

3.2.2 Improving prototypedistribution

Before the VQ algorithm described can be used to learn probability density representations, there

are three limitations which must be addressed in order to generate optimal representations:

1. Dynamically changing object characteristics sweep out continuous paths in the correspond-

ing feature spaces. These paths are sampled at regular time i nstantsto generate the ordered



33

sets of experimental data from which the probability density over each space is estimated.
When the speed at which aparticular path isswept out islow, the sampled vectorsaredensely
distributed, and when it is high, the vectors are sparsely distributed. This will result in a

higher probability density in areas where therate of movement along aparticular pathislow.

2. Thefinal distributionof prototypesisextremely sensitiveto their initial placement withinthe
feature space. For instance, prototypescan be ‘stranded’ in areas where they will never take
part in the competition, resulting in a sub-optimal distribution. Thisis a particular problem

in sparse distributions such as those to be modelled here.

3. From Equation 3.13 it can be seen that, for low dimensional feature spaces, the V Q approxi-
mation to the probability density of training datais highly non-linear (i.e. thedensity match-
ing is poor). In such low dimensional feature spaces, areas of high probability density will

be under-represented and areas of low probability density over-represented.

Thefirst of these limitations can be avoided by re-sampling the piecewise linear interpolant of the
experimental data such that adjacent vectorsin the resulting ordered set have a constant separation
A, and are thus evenly distributed along the path. Within this scheme, each new vector sampleis
generated using geometry to find the point of intersection between a hypersphere of radius A cen-
tred on the last sample and the next piecewise linear interpolant to cross this boundary. The value
of A is chosen to be approximately equal to the average distance between vectors in the origina
experimental data (or lessfor highly non-linear data). Unless otherwise stated, it is assumed here-
after that all data sets are modified in this manner prior to training. A solution to the remaining
two limitationsis described below, resulting in a robust VQ agorithm which is insensitive to the
initial placement of prototypesand in which density matching is approximately correct, regardless

of dimensionality.

3.2.2.1 Adding prototype sensitivity

A number of solutionsto the problem of sensitivity to initial prototype placement have been dis-
cussed in the literature. The simplest methodsinvolveinitialisation of prototype positionsfrom ei-
ther thefirst k training vectors, or, morerobustly, from k vectors chosen randomly from thetraining

set. Although generally successful, such approaches will not alow prototypes to relocate during
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adaptation over time-varying distributions, and do nothing to improve density matching. Rumel-
hart and Zipser [ 78] propose a better solution called |eaky |earning, in which prototypeslosing the
competition also move towardsthe current training vector, but by amuch smaller amount. Thisre-
sultsin stranded prototypes drifting towards the mean of the distribution. For sparse distributions,

however, this mechanism is inadequate since the mean of the distribution may be unpopulated.

Instead, inspired by thework of Bienenstock et al. [8] on adaptive sensitivity to stimuli in neurons,
an algorithmis devel oped which extendsV Q to incorporate a prototype sensitivity mechanism. By
allowing prototypesto automatically vary their sensitivity to input features, prototypeswhich are
winning too often can decrease their sensitivity and exclude themselves from the competition. In
thisway stranded prototypes become increasingly sensitiveto input features until they too begin to
compete, whilst the mechanism also allows exact density matching to be enforced. To distinguish
thisenhanced algorithm from the standard iterative VQ algorithm, it isreferred to as Altruistic Vec-
tor Quantization (AV Q). We became aware, very recently, of asimilar extension - the Conscience
Algorithm proposed by DeSieno [26].

Sensitivity to input features is realised by associating a sensitivity value S(t) with each prototype
Ci, and subtracting thisval ue from the Euclidean distance when finding the nearest prototypein step
3 of the standard VVQ agorithm. In thisway a prototypewith positive sensitivity ismore likely and
a prototype with negative sensitivity is lesslikely to win the competition. Thus Equation 3.9 now

becomes
|2(t) = ¢j(1)] = Si(t) = min{z(t) - Gi(t)| = S (V)] (3.14)
where §(0) = 0 and sensitivity values are updated on each iteration using
S(t+1) =IS(t) +A, (3.15)

where { is a damping coefficient defined as

. B
=1 TR (3.16)

and A; introduces sensitivity adjustments defined by

Ai{ B =] (3.17)

B .
1 otherwise,
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where B isaconstantin theinterval (0, 1) specifying the magnitude of adjustments. Thevalueof 3
should be small relative to distances within the feature space, but large enough to enabl e stranded

prototypesto ‘escape’ early in the learning process.

Theform of the sensitivity adjustmentsin Equation 3.17 ensuresthat, for correctly distributed pro-
totypes, the mean adjustment will be zero, thus enforcing exact density matching. The coefficient
C isrequired to damp dynamically shifting imbalances in sensitivity which are caused initially by
stranded prototypes but which tend to persist throughout learning, leading to excessive motion
of prototypes. The form of Equation 3.16 ensures that sensitivity values will tend to zero (since
0 < { < 1), and that S(t+ 1) < \/d, the largest possible separation within a d-dimensional unit
hypercube (since {v/d = v/d — (&)

3.2.2.2 Density matching - scalar case

Whilst extensive experiments on real data show the AVQ algorithm to be highly successful in re-
moving sensitivity to initial prototype placement (see, for example, Sections 3.3 and 3.4) and in
allowing prototype rel ocation during adaptation over time-varying distributions, the effect of this
approach on density matching needs to be more formally quantified.

In asimple experiment (adapted from those performed by Ritter [75]), asymptotic (k — ) density
matching has been demonstrated for both the standard VQ and AV Q algorithms, using a series of
Monte Carlo simulationson scalar data sampled from the simple ‘ramped’ distribution p(x) = 2x,
where 0 < x < 1. Thescalar casewas used since, asindicated by Ritter, the standard VQ a gorithm

isvery slow to reach equilibrium, particularly as the dimensionality of feature space increases.

The following experimental procedure was used for each simulation:

1. Divide the scalar feature space x into 10 histogram bins covering intervals [iA, (i + 1)4],
where0 <i< 10and A =0.1.

2. Initialisethek = 100 scal ar prototypesby sampling from auniform distributi on over the unit
interval [0, 1].

3. Using a static gain coefficient a(t) = 0.01, and a value of 3 = 0.001 for AVQ, perform



36

50,000,000 iterations of VQ/AVQ to allow the system to reach equilibrium, sampling train-

ing vectors from the distribution p(x) = 2x, where 0 < x < 1.

4. Assuming equilibrium has been reached, perform a further 50,000,000 iterations of

VQIAVQ, taking atotal of 50,000 ‘snapshots’ of the system at 1,000 iteration intervals.

5. Estimate the probability Q(i) of a prototype lying in each bin by summing the number of
prototypeswithin each bin over the 50,000 snapshotsand dividing these total s by 5,000,000.

For each algorithm, 10 independent simulations were performed and the mean Q(i) and standard
deviation o(i) of the probability of a prototype lying in each bin were calculated. The results of
this experiment are summarised in Table 3.1, including theoretical probabilitiesfor exact density
matching, P(i), and density matching obeying the power law given by Equation 3.13 for thed = 1
(scalar) case, D(i). Experimental resultsare al so displayed graphically in Figures 3.4 and 3.5 where
theerror barsrepresent +3a0(i). Thetheoretical probabilitieswere cal culated by integrating density

functions over each histogrambin, i.e.

(i+1)A
P(i) = /m p(x) dx, (3.18)
and
(i+1)A 1 1
D(i) = / “p(x)} dx, (3.19)
iA a
where
1
a= /o p(x)% dx. (3.20)
| i | Qiavot3olae | P || Qijot3clivg [ D) |
0 0.010000 £ 0.000000 | 0.01 0.050636 + 0.003042 | 0.046416
1 0.030000 £ 0.000000 | 0.03 0.075151 £ 0.010128 | 0.070545
2 0.050000 £ 0.000002 | 0.05 0.089974 £ 0.002815 | 0.083869
3 0.070001 £ 0.000008 | 0.07 0.096990 + 0.005214 | 0.093893
4 0.090004 £ 0.000015 | 0.09 0.104243 £ 0002265 | 0.102128
5 0.110003 + 0.000019 | 0.11 0.108463 £ 0.002109 | 0.109209
6 0.130000 £ 0.000018 | 0.13 0.112034 + 0.003484 | 0.115473
7 0.149996 + 0000033 | 0.15 0.116940 + 0.005545 | 0.121121
8 0.170001 £ 0.000026 | 0.17 0.120430 £ 0.003174 | 0.126286
9 0.189992 £ 0.000022 | 0.19 0.125136 £ 0.008817 | 0.131060

Table 3.1: Summary of density matching results.
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Figure 3.4: Density matching resultsfor AVQ.
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Figure 3.5: Density matching results for VQ.

Inspection of both the resultslisted in Table 3.1 and the shape of the graphsin Figures 3.4 and 3.5
clearly showsthat, whilst the performance of the standard V Q algorithmis consistent with the dis-
tortion predicted by Equation 3.13, the addition of the sensitivity mechanismin the AVQ algorithm

resultsin an almost exact density matching, at least for the scalar case. Experimental resultsin the
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remainder of thethesisfor AV Q over higher dimensional distributionsprovidevisually compelling

evidence that density matching may be invariant to dimensionality.

The results of this experiment also identify considerably smaller error margins for the AVQ algo-
rithm, suggesting that equilibriumisreached much faster than for the standard V Q algorithm. This
isconfirmed by experimental observationsand hence, in later experimentswithrea data, the num-

ber of iterations used is approximately one order of magnitude less than used here.

3.3 Learning state models

Using therobust Altruistic Vector Quantization (AV Q) algorithm developedin Section 3.2, detailed
model sof state space probability density can belearnt in an unsupervised manner from the extended
observation of vectors from state training sets ;. The resulting state models comprise sets of u
state prototypes ai:

4=A{ag, az, ..., ay}. (3.22)

In this section, experimental results are presented to demonstrate the acquisition of such models
for the two distinct object characteristics detailed in Section 3.1 - object |ocation within theimage
plane and object silhouette shape. In the following section, the models presented here are used as
the basis for a spatio-temporal trgjectory representation defining a behaviour space within which

characteristic object behaviour can be modelled.

3.3.1 Experimental results- object location

State training sets fj'oc were generated from the 622 smoothed, sub-sampled pedestri an trajecto-
riesillustrated in Figure 3.1(b). Sub-sampling of the 2-dimensional characteristic vectors C; =
(X(t), y(t)) wasperformed at 0.5sintervalsand high frequency noisewas minimised by smoothing
over amoving window of widthw = 5. To minimise noise due to the tracking of spurious objects,
trgjectories existing for lessthan | = 50 frames were rejected. 4-dimensional state vectors F; were
generated using ascaling factor A = 10to scaledifferential components, and ordered data setswere
further re-sampled to improve density representation using a constant separation A = 0.02. After

pre-processing, training sets fj'oc comprised a total of 23,878 state vectors lying approximately
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withinaunit hypercube. Figure 3.6 showsscatter plotsof thistraining data projected onto both the
(x, y) plane, (8), and the (Ax+ 2, Ay+ 1) plane, (b).

@ (b)

Figure 3.6: State vector distribution - object location: (a) projection onto the position plane, and
(b) projection onto thefirst derivative plane.

@ (b)

Figure 3.7: State prototype distribution - object location: (a) projection onto the position plane,
and (b) projection onto the first derivative plane.

A set 4'° of 1,000 state prototypes was learnt from 2,000,000 iterations of AVQ over state vec-
tors from the training sets fj'oc. A constant B = 0.01 was used for sensitivity adjustmentsin the
AV Q algorithmtogether with the two-stage cooling schedul edescribed in Section 3.2.1. Figure 3.7
shows scatter plots of the resulting state prototypes projected onto both the (x, y) plane, (a), and
the (AX+ 3. Ay+ 1) plane, (b). Comparison with the scatter plots of training data clearly shows
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the results to be plausible and suggests that reasonable density matching is achieved.

Figure 3.8: Learnt state prototypes - object location.

In Figure 3.8, each of the 1,000 state prototypesisillustrated by asinglearrow, the position of which
represents the prototype’s (X, y) componentswhilst the size and direction represent the prototype’s
(AX+ 3, Ay+ 3) components scaled aby factor of 5. It isclear from this representation that pro-
totypes lie in the desired areas of the state space and that stranded prototypes have successfully
entered the competition.

Although theresults presented in Section 3.2.2.2 suggest that the AV Q algorithmis capabl e of pro-
ducing an almost exact density matching as the number of prototypestends to infinity, for highly
structured distributions within high dimensional spaces, the accuracy of density matching can be
expected to decrease as the ratio of training vectorsto prototypesincreases. Perhaps the simplest
method of assessing the accuracy of density matching within a feature space isto count the num-

ber of training vectors which are closest to each prototype by the Euclidean metric and to plot a
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frequency histogram of the results. For an exact density match, each prototype must represent an
equal amount of probability, and thus each prototypewill be closest to an equal number % of train-
ing vectors, where N is the size of the training data set and k is the number of prototypes. Asthe
accuracy of density matching decreases, it is reasonable to expect the distribution to become ap-

proximately normal with amean of } and an increasing standard deviation.
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Figure 3.9: Frequency histogramillustrating state prototype density matching - object location.

Figure 3.9 shows such a frequency histogram for the 1,000 state prototypes and 23,878 training
vectors used in thisexperiment. The mean of thisapproximately normal distributionis between 23
and 24, which is consistent with the expected val ue of 23.878, whilst the width of the distribution

suggests some inaccuracy in density matching.

3.3.2 Experimental results- object shape

The state training set F5'%¢ was generated from the single smoothed, sub-sampled shape se-
guence partialy illustrated in Figure 3.2(b). This exercise routine comprises four main ex-
ercises, each of which is repeated four times and then followed by a further four repeti-
tions of a ‘sub-exercise’. Sub-sampling of the 64-dimensional characteristic vectors C; =

(xq(t), ya(t), Xa(t), ya(t), ..., Xa2(t), ys(t)) (describing 32 control point B-splines) was per-
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formed at 0.02s intervals and high frequency noise was minimised by smoothing vectors over a
moving window of width w = 5. 128-dimensional state vectors F; were generated using a scal-
ing factor A = 10to sca e differential components, and the ordered data set was further re-sampled
to improve density representation using a constant separation A = 0.05. After pre-processing, the
training set "% comprised atotal of 5,933 state vectors lying approximatel y within aunit hyper-
cube. Figure 3.10 shows scatter plots of this training data projected onto both the (x;, i) planes,
(8), and the (A% + 3, Ayi + 3) planes, (b). ”

@ (b)

Figure 3.10: Sate vector distribution - object shape: (a) projection onto the position planes, and
(b) projection onto thefirst derivative planes.

@ (b)

Figure 3.11: State prototype distribution - object shape: (a) projection onto the position planes,
and (b) projection onto the first derivative planes.
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A set q9%¢ of 200 state prototypeswas learnt from 2,000,000 iterations of AVQ over state vectors
from thetraining set 7'¥¢, A constant 3 = 0.01 was used for sensitivity adjustmentsin the AVQ
algorithm together with the two-stage cooling schedule described in Section 3.2.1. Figure 3.11
shows scatter plots of the resulting state prototypes projected onto both the (x;, yi) planes, (&), and
the (A% + 3, AVi + 3) planes, (b). Comparison with the scatter plots of training dataclearly shows

the results to be plausible and suggests that reasonable density matching is achieved.

In Figure 3.13, each of the 200 state prototypesisillustrated by apair of overlapping silhouettes,
the upper spline representing the prototype’s (x;, yi) components whilst the lower spline has been
generated by subtracting theprototype’s(X;, i) vauesfromthe corresponding (Xi, yi ) components.
It is clear from thisrepresentation that prototypesliein the desired areas of the state space and that

stranded prototypes have successfully entered the competition.
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Figure 3.12: Frequency histogramillustrating state prototype density matching - object shape.

Finally, Figure 3.12 shows a frequency histogram illustrating density matching for the 200 proto-
types and 5,933 training vectors used in this experiment. The mean of this approximately normal
distributionis around 30, which is consistent with the expected value of 29.665, whilst the width

of the distribution suggests some inaccuracy in density matching.
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3.4 Learning behaviour models

To model probability density over the behaviour space of an object characteristic, abehaviour space
representation must be formed which encodes spatio-temporal trajectoriesof different lengths, and
inwhich similar trajectories are close together (and vice versa). In thissection, statetrajectory rep-
resentation is achieved usinganovel temporal pattern formation strategy which encodesthe evolv-
ing proximity of state vectors to the corresponding set of state prototypes, using a memory mech-
anism to maintain a history of close proximities. Thisstrategy resultsin arepresentation whichis
of fixed size, which encodes trajectories of different lengths whilst maintaining a similar level of
detail, and which ensures that the separation of any two pointsin the behaviour spaceis ameasure
of thedissimilarity of thetrajectoriesthey represent. In the remainder of this section, experimental
results are presented to demonstrate the acquisition of behaviour models for both object location

and object shape.

3.4.1 Temporal pattern formation

A common approach to sequence representation within the neural network literature is the use of
neurons such as the Leaky Integrators of Reiss and Taylor [69] or the neurons of Wang and Arbib
[88]. Such neuronsimplement asimplememory mechanism by allowing activation to decay slowly
over aperiod of time. Thisleaky characteristicis present i n biological neuronswhere electrical po-
tential on theneuron’ssurface decaysaccordingto atimeconstant. Typically, whenlearningsimple
sequences of discrete tokens, a single neuron is associated with each token, and each neuron’s ac-
tivation gives a measure of the elapsed time since the corresponding token was last seen. In this
way, the activation of the entire set of neurons at any given time instant forms an encoding of the

token sequence previously presented.

Whilst such an approach could be used to form a representation of state trgjectories, using state
prototype set 4 to define a discrete token al phabet, the representation woul d not possess the sense
of similarity required for a behaviour space, since the representation fails to capture any sense of
token similarity - two similar statetrajectories could giverise to entirely different token sequences
and would thusnot lie near one another withinthe behaviour space. Such discontinuitieswithinthe

behaviour spacewould negate the use of the Euclidean distance asadissimilarity measure resulting
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in an invalid probability density representation.

Instead, temporal pattern formation is achieved by considering the proximity of successive state
vectors from an ordered set F to the corresponding state prototype set 4, where unmodified data
setsare used to preserve the constant timeinterval between successive statevectors. The proximity
pi(t) of astate vector F; to a state prototype a; decreases linearly from one to zero as the distance
between them increases from zero to the maximum observed separation within the unit hypercube

state space:

pi(t) = 1 p('F‘JH"T") , (322)

where d is the dimensionality of the state space and p is a scaling factor chosen such that \/?a is

approximately equal to the maximum observed separation within state space.

If the proximity of successive state vectorsto aparticular state prototypeis observed over aperiod
of time, proximity maximawill occur at instants of closest proximity between the state trajectory
and the prototype, whilst the value of each maximum will encode the similarity between the proto-
type and the state trgjectory at thesetime instants. Applying a conditional decay operator to these
continuous valued proximity sequences allows a trace of these maximato be retained in asimilar

manner to the leaky neuron memory mechanism used in learning discrete token sequences:

) - { Pty i pi(t) > ya(t-1)

yz(t—1) otherwise,

(3.23)

whereyisacoefficient intheinterval (0, 1) which governstherate of decay and thusthe memory of
the representation. z(t) will mimic p;(t) unlessproximity values decrease at arate which isgreater
than the rate of decay duetoy. Thus, given aslow decay rate (high value of y), the value of z(t)

will retain atrace of proximity maxima.

Figure 3.14 illustratesthe results of applying aconditional decay operator with y= 0.99 to proxim-
ity sequences generated using a 500 frame sample from the experimental shape data set, a scaling
factor of p = 3.5, and four of the state prototypesillustrated in Figure 3.13.

Although the value of z(t) cannot be employed as a measure of the elapsed time since the last
proximity maximum (resulting in anon-reconstructiverepresentation), theevol ving pattern formed
over the entire set of prototypes does give atrajectory encoding with the properties outlined in the

introduction to this section. Thus, at each time instant, a behaviour vector G; € [0, 1]Y is formed
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Figure 3.14: Conditional decay operator applied to sample proximity data.

from the set of z(t) values associated with the state prototypes, where u is the cardinality of the
state prototype set and z(0) = O:

Gt = (z(t), 22(t), ..., Z(1)). (3.24)

Figure 3.15illustratesa sampl e behaviour vector generated from one of the experimental pedestrian
trajectoriesand the state prototypesillustratedin Figure 3.8, usingadecay coefficienty = 0.999and
ascaling factor p = 1.4. In thisrepresentation, each behaviour vector component isillustrated by
acoloured arrow. The arrow indicates which of the state prot otypes the component corresponds to
whilst the colour (and layering) represents the value of the component, red representing 1.0. Inthis

illustration, the behaviour represented by the trace of proximity maximaisimmediately apparent.

Since similar prototypeswill give riseto similar behaviour vector components, representations of
similar state trajectories will lie close to one another within the behaviour space and vice versa.
The relative value of maxima (and decayed maxima thereafter) associated with state prototypes
surrounding a point on the state trajectory aso allows the representation to partialy encode the

position of the point relative to the prototypes, resulting in a representation which is sensitive to
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Figure 3.15: Sample behaviour vector - object location.

minor differences between trajectories.

In simple sequences where the state trajectory passes each state prototype no more than once, any
length of behaviour can be represented up to a maximum defined by the number of prototypesand
the rate of decay duetoy. In more complex sequences, it is often necessary to use arelatively fast
decay rate (and thus reduced memory) to prevent the saturati on of behaviour vector components

which correspond to recurring state prototypes.

For slow decay rates relativeto a particular sequence length, decay is approximately linear, result-
ing in an equa discriminatory ability in both shorter and longer sequences. Thus, in such cases,
the representation can be considered to maintain asimilar level of detail, independent of sequence
length. However, for faster decay rates (or longer sequences), the ability to discriminate the ol dest
parts of trgjectories gradually diminishesor is entirely | ost.
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34.2 Method

Having devel oped abehaviour space representation, detail ed model sof probability density over ob-
ject behaviour space can be learnt in asimilar manner to object state models. For each unmodified
training set F, an ordered set of behaviour vectors G; € [0, 1]Y isgenerated from the corresponding
set 4 of u state prototypes and the m state vectors F:

G={Gy1, Gy, ..., Gm}. (3.25)

Thus, at each time instant, a behaviour vector is generated representing the partial trajectory in
state space of behaviour from the start of the sequence to the present (or, depending on decay rate
and sequence complexity, from some earlier time to the present). Using the AV Q a gorithm, mod-
els of characteristic object behaviours can be learnt in an unsupervised manner from the extended
observation of vectors from training sets Gj. The resulting models comprise sets of v behaviour
prototypes B;:

B={By, Bz, ..., Bv}- (3.26)

3.4.3 Experimental results- object location

Behaviour training sets G| were generated from the 622 unmodified state data sets #/°° and the
set 4'°° of 1,000 state prototypes generated in the experiment described in Section 3.3.1. The
pre-processing of raw pedestrian trajectories was performed using the parameter values given in
Section 3.3.1, and 1,000-dimensional behaviour vectors G; were generated using a scaling fac-
tor p = 1.4 to scale proximity values and a decay coefficient y = 0.999. y was chosen to give a
very slow decay rate relative to average sequence lengths so that behaviour vectors will encode
entire trajectories of varying lengths with a similar level of detail. Ordered data sets were fur-
ther re-sampled to improve density representation using a constant separation A = 0.15. After pre-
processing, training sets g}oc comprised atotal of 23,270 behaviour vectors lying approxi mately
within a unit hypercube.

A set B'°¢ of 1,000 behaviour prototypes was learnt from 2,000,000 iterations of AVQ over be-

haviour vectors from the training sets g}oc. A constant 3 = 0.01 was used for sensitivity adjust-

ments in the AVQ algorithm together with the two-stage cooling schedule described in Section
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Figure 3.16: Learnt behaviour prototypes- object location.



51

3.2.1. Figure 3.16 illustrates a sel ection of the resulting behaviour prototypes, using the represen-
tation introduced in Figure 3.15. It is clear from this representation that the prototypesillustrated

are plausible encodings of observed behaviours.

In order to further illustrate the results of the experiment, behaviour prototypeswere used to parti-
tion partial trajectoriesfrom theraw dataset. Withinthis scheme, behaviour vectorswere generated
asdescribed aboveand, on each iteration, the current smoothed, sub-sampled, partial trajectory was
allocated to the behaviour prototypewhich was closest, by the Euclidean metric, to the current be-
haviour vector. Figures 3.18 and 3.19 show the resulting partitioning of partial trajectories, where
each box correspondsto one of the learnt behaviour prototypes. It is clear from these results that
the region of behaviour space represented, in a nearest-neighbour sense, by each behaviour pro-
totype encodes a subset of self-similar trajectorieswhere similarity is based on an entire temporal
history. It can aso be seen that the more commonly occurring trajectories are represented by a
greater proportion of the behaviour prototypes, and that there isless variability evident in the tra-
jectories assigned to these prototypes, thus suggesting that density matching has, to some extent,

been achieved.

120
100 -
80

60 1

Frequency

20

0 — HWHHHHH . . . Hﬂﬂﬁm |
5 10 15 20 25 30 35
Number of training vectors

40

Figure 3.17: Frequency histogramillustrating behaviour prototype density matching - object |o-
cation.

Finally, Figure 3.17 shows a frequency histogram which further illustrates density matching for
the 1,000 behaviour prototypes and 23,270 training vectors used in this experiment. The mean of
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this approximately normal distributionisaround 23, which is consistent with the expected val ue of

23.27, whilst the width of the distribution suggests some inaccuracy in density matching.

3.4.4 Experimental results- object shape

The behaviour training set G'¥€ was generated from the unmodified state data set #3'%° and the
set 2%9%¢ of 200 state prototypes generated in the experiment described in Section 3.3.2. The pre-
processing of the raw shape sequence was performed using the parameter values given in Section
3.3.1, and 200-dimensional behaviour vectors G; were generated using ascaling factor p = 3.5t0
scale proximity values and a decay coefficient y = 0.999. y was chosen to give a relatively fast
decay raterelative to the length of the entire sequence, thus avoiding behaviour component satura-
tion during repeated exercise sub-sequences. Relativeto the length of each sub-sequence, y gives
aslow enough decay rate for atrace of an exerciseto be maintai ned throughout the four repetitions
of the following exercise sub-sequence. In thisway, behaviour vectors encode sufficient tempo-
ral information to disambiguate both the transitions between exercises and the repeated instances
of each exercise sub-sequence. The ordered data set was further re-sampled to improve density
representation using a constant separation A = 0.015. After pre-processing, thetraining set G

comprised atotal of 5,858 behaviour vectors lying approximately within a unit hypercube.

A set B2 of 400 behaviour prototypes was learnt from 2,000,000 iterations of AVQ over be-
haviour vectors from the training set G3%°, A constant B = 0.01 was used for sensitivity adjust-
ments in the AVQ algorithm together with the two-stage cooling schedule described in Section
3.2.1. Since no reasonable method could be found to illustrate either the behaviour prototypes or
their partitioning of theraw shape dataset, only density matching resultsare presented. Figure 3.20
shows a frequency histogram illustrating density matching for the 400 behaviour prototypes and
5,858 training vectors used in this experiment. The mean of this approximately normal distribu-
tion is around 15 which is consistent with the expected value of 14.645, whilst the width of the
distribution suggests little inaccuracy in density matching.
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Figure 3.20: Frequency histogram illustrating behaviour prototype density matching - object
shape.

3.5 Typicality assessment and incident detection

Having learnt models of probability density over the state and behaviour spaces of object charac-
teristicsexhibitinginteresting behaviours, the stati stical nature of these models can beimmediately
exploited to providetypicality assessment, where typicality is defined statistically. In addition, at-
tentional control mechanisms which identify interesting i ncidents can be implemented viathe de-
tection of sufficiently atypical behaviours. Using automatically acquired behaviour models to ap-
proach such tasks negates the need for a priori knowledge and could thus prove powerful within
the automated visual surveillance domain whereinherently inaccurate hand-crafted knowledge has
classically been employed (see Section 2.2). In thissection, an effectivetypicality measureisintro-
duced and experimental results are presented to demonstrate both a relative typicality partitioning
of entire pedestrian trajectories, and continuous typical ity assessment over the duration of a num-
ber of test trgjectories. Typicality assessment results are included for both the state and behaviour
models of pedestrian trajectories, and the advantages of employing the behaviour model for typi-

cality assessment are demonstrated.
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351 Local density estimation and prototype bounding

Since probability density has been modelled by the distribution of prototype vectors, typicality as-
sessment can be achieved from the estimation of local probability density at each prototype. As-
suming an exact density match has occurred, each prototypewill represent an equal amount % of
probability, where k is the number of prototypes. Thus, by estimating the volume v; within the
state or behaviour space which is represented (in a nearest-neighbour sense) by prototype ¢;, and
assuming probability density is constant within this region, an approximation to the local proba-
bility density p; is given by

pi=—. (3.27)

Unfortunately, even a simple hypercube-based estimate of v; isimpractical for high dimensional
spaces due to rapid underflow in the digital floating-point representation. Instead, typicality as-
sessment is achieved by considering the distribution of Euclidean distances between a prototype ¢;
and the sample vectors z; it represents, using the mean

Y11z —ail

- (3.28)

of each distributionasameasure of relative atypicalityin theregion surrounding the corresponding

prototype. Thusthe atypicality of afeature z(t) is given by
A=W, (3.29)

where
|z(t) — ¢ = min{jz(t) - ci[}. (3.30)

Since a humber of prototypeswill border unpopul ated areas of the distribution, it is necessary to
estimate the boundary of the region represented by each prototype such that outlying features can
be rejected. By again considering the distribution of Euclidean distances between a prototype and
the sample vectors it represents, a simple hyperspherical boundary is realised by estimating the

standard deviation

n 1

n 1z _cl2
GI¢ZJJJEL_@ (331)

of each distribution and rejecting features for which

|z(t) — cj| > uj + 30j, (3.32)
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under theweak assumption that the distribution of distancesisnormal. Rejected features are con-

sidered to have zero typicality.

Although atypicality values have no clear interpretation which would permit a sensible choice of
threshold for the discrimination of atypical features, a sufficiently principled classification can be
achieved if |; values are used to arrange prototypesin order of increasing probability density (de-
creasing atypicality). Since each prototype represents an approximately equal proportion of the
distribution, comparisons of the form f

j

where r; denotes the rank of the closest prototype ¢; and 1 < f < 100, can be used to ascertain
whether the feature lieswithin the f percent of the distributionwith least probability density, thus
providing an intuitive decision support mechanism. In addition, this ranking allows normalised
typicality values T € [0, 1] to be generated:

To1- HiTH (3.34)

T

wherer; = kandr, = 1.

If adaptivity isrequired, both p; and o; val ues can be updated during extended |earning using either
iterative update equations or moving temporal windows, whilst adjustmentsto prototype ordering

can be performed each time a ; value changes.

Finally, some post-processing of typicality sequencesisrequired to remove occasional zero-going
spikes. These spikes are partly due to inaccuracies in the bounding of prototypeswhich occasion-
aly resultsin small *holes’ within the distributionwhich cause features to be regj ected and assigned
atypicality T; = 0. Spikes also occur more frequently when atrajectory closely skirts the bound-
ary of the distribution, and thus continually moves in and out of the hyperspherical boundaries of
the outermost prototypes. Spikes can be minimised by median filtering typicality sequences over

amoving temporal window of width w.

SExperimental evidence indicates that the distribution of Euclidean distances between a prototype and the sample

vectorsit representsis often skewed in the direction of increasing distance.
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3.5.2 Experimental results- pedestrian trajectories

During a further learning phase, the distributions of Euclidean distances between the set 4'° of
1,000 state prototypes and the corresponding state vectors from the 622 state training sets fj'oc
(from the experiment described in Section 3.3.1) were estimated using iterative update equations
derived from Equations 3.28 and 3.31. Similarly, distributionswere estimated for the set B'°° of
1,000 behaviour prototypesand the corresponding behaviour vectorsfrom the 622 behaviour train-
ing sets G1°° (from the experiment described in Section 3.4.3).

Figures 3.21 and 3.22 illustrate the distribution of ; values for the state and behaviour models
respectively, where frequency graphs were generated by dividing the range of observed p; values
into 20 classes of equal width. Both distributionshave a similar skewed shapewhichisintuitively
appeding sinceit indicates that most states and behaviours are reasonably typical whilst very few
are highly typical or highly atypical.

To illustrate the types of pedestrian behaviours which correspond to different typicalities, the set
of 622 completetrgjectoriesillustrated in Figure 3.1(b) were partitioned into four classes based on
the atypicality of their final behaviour vector. Figure 3.23 illustratesthe results of this partitioning,
where trgjectorieswhich lie outside the behaviour distribution have not been shown. The changing

nature of trajectories over the four classes clearly shows a plausible typicality-based partitioning.

Finally, to demonstratethe continuoustypicality assessment of pedestrian trajectories, Figures 3.24
and 3.25illustratethe results of assessing three normal and three atypical trajectoriesfrom test data
sets captured soon after the training data. In each figure, tragjectories ((a), (c), and (€)) are rep-
resented by state vector sequences where each state vector isillustrated by a single arrow as per
the state prototypesin Figure 3.8, whilst the corresponding graphs ((b), (d), and (f)) illustrate nor-
malised state and behaviour typicality throughout each sequence. Typicality assessment was per-
formed using athreshold of 5%to reject atypical statesand behaviours, whilst spikeswere removed

from typicality sequences by median filtering over a window of widthw = 5.

In Figure 3.24, the normal test trajectories are seen to have reasonably high state and behaviour
typicalities over the entire duration of each trajectory. However, in Figure 3.25 the advantages of

behaviour typicality assessment over statetypicality assessment are clearly illustrated. Figure 3.25
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Figure 3.21: Sate atypicality distribution - object location.
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Figure 3.22: Behaviour atypicality distribution - object location.

(a) and (b) again show equal performance for both state and behaviour typicality assessment - both
models reject the unusually fast trajectory which actually corresponds to a tracked cyclist! Fig-
ure 3.25 (¢) and (d) show an atypical trgjectory which has two distinct phases, each of whichisa
part of atypical trajectory. Whilst state typicality only drops slightly during the inter-phase transi-
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(c) 30-50% typicality ranking (d) most typical 50%
Figure 3.23: Typicality-based pedestrian trajectory partitioning.

tion, behaviour typicality dropsto zero during the transition and remains at zero for the remainder
of the tragjectory. Similarly, Figure 3.25 (e) and (f) show an atypical trajectory with three distinct
phases, the middle phase being previously unseen whilst the first and last phases correspond to
the start and end of typical trajectories. Whilst both model s perform similarly during the first two
phases, state typicality recovers during thefinal phase whilst behaviour typicality remains at zero.
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3.6 Discussion

In thischapter, techniqueshave been devel oped all owing the acqui sition of model s of characteristic
object states and behavioursfrom the continuousobservati on of long image sequences, and exper-
imental results presented for two object characteristicswith distinctly different properties. Models
constitute an optimised sample-set representation of probability density, which is both highly spe-
cific and reasonably compact, and are learnt in an unsupervised manner using an extension to the
standard iterative VQ algorithm - dubbed Altruistic Vector Quantization (AVQ) - which provides
increased robustness and improved density matching (demonstrated experimentally for the scalar

case).

The representation of object behavioursover varying temporal intervalshas been achieved using a
novel temporal pattern formation strategy to encode sequences of state vectors. Using this repre-
sentation, simple, non-repeating, sequences of varying lengths can be encoded whilst maintaining
asimilar level of detail, whilst results presented in Chapter 4 will indicate that certain complex

sequences involving repeated sub-sequences may a so be encoded effectively.

By exploiting the statistical nature of behaviour models, a typicality measure has been derived
which allows both the continuous assessment of behaviour typicality and the implementation of
an attentional control mechanism through the identification of interesting (sufficiently atypical) in-
cidents. Such capabilities are particularly applicable within the visua surveillance domain, pro-
viding objective attention cues to a human operator which are based entirely on the frequency of

occurrence of previously observed behaviours.

Although not demonstrated within this thesis, the discrete nature of state and behaviour models
allows semantics to be associated with different classes of actions or behaviours, thus facilitating
event and gesture recognition as well as providing cues for higher-level reasoning systems. Such
semantic labelling could be achieved during a further supervised learning phase, using majority
voting to assign prototypelabels, and perhaps empl oying K ohonen’sL earning Vector Quantization

(LVQ) strategies [51] to derive near-optimal decision boundaries between classes.
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3.6.1 Dissmilarity metrics

Within the techniques devel oped in this chapter, the Euclidean distanceis used as a measure of the
dissimilarity between pointsin both state and behaviour spaces. When this dissimilarity metric is
applied to setsof B-spline control points, the resulting sense of shape dissimilarity is often contra-
intuitive. A better dissimilarity metric could be achieved either from the use of alandmark-based
shape representation (see, for example, Cootes et al. [22]), or by instead measuring the distance be-
tween corresponding points sampled densely over the parametric curves, as suggested by Baum-
berg [7]. Similarly, when using this dissimilarity metric within behaviour spaces defined by the
temporal pattern formation strategy, it is uncertain to how great an extent measured dissimilarities

emul ate the dissimilaritieswe perceive.

3.6.2 Temporal adaptation

Asstated in Chapter 1, anatural processfor the perception of behaviour modelsshould allow grad-
ual temporal adaptation, enabling model evolution with occasiona changes in characteristic be-
haviour. Using the techniques devel oped in this chapter, such temporal adaptation can be achieved
through extended learning, using a low gain coefficient in the AVQ agorithm and iteratively up-

dating prototype typicality values as proposed in Section 3.5.1.

Assuming changesin characteristic behaviour are slow and continuous, state prototypeswill adapt
smoothly to the changing state distribution. As state prototypes move, tempora proximity pat-
ternswill gradually ater, and behaviour prototypeswill adapt smoothly to the changing behaviour
distribution. Thus, as characteristic behaviour changes, both state and behaviour prototypes will
adapt, whilst changesin the probability density local to each prototypewill result in the evolution
of typicality values.

If changes in behaviour are more rapid or discontinuous, the sensitivity mechanism in the AVQ
algorithm will prevent the loss of stranded prototypes and will ensure that prototypes eventually
adapt to represent the modified distributions. An extreme case of such changes is encountered at
the start of the learning process when prototypes are randomly distributed. Experiments designed

to illustratethe concurrent acquisition of both state and behaviour models, using twice the number
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of iterationsin the AV Q agorithm, give comparabl e results to those presented within this chapter,

thus also demonstrating worst-case temporal adaptation.

3.6.3 Sef-OrganizingMaps

An interesting extension to the Vector Quantization and Competitive Learning paradigms is the
Self-Organizing Maps (SOMs) (or Topographic Mappings) of Kohonen [51]. In addition to pro-
ducing a quantization of feature space, these artificial neural networks undergo a self-organization
process which resultsin a network in which similarity relationships within feature space are pre-
served in the lattice structure of the prototypes. Self-organization is achieved by defining a tem-
porally shrinking neighbourhood rel ationship between prototypesand extending the VQ algorithm
described in Section 3.2.1 such that, on each iteration, the neighbours of the winning prototype are

also moved towards the current input vector.
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Figure 3.26: 2-dimensional SOM fitted to pedestrian shape data.
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It isconceivablethat theinformation provided by such aspatial ordering may be of vaueto higher-
level reasoning systems, whilst alow-dimensional parameterisation may be of usein, for example,
object tracking and gesturerecognition. Limited experiments have therefore been performed to in-
vestigatethefitting of both 1-dimensional (chain) and 2-dimensional (sheet) SOMsto experimental
shape data similar to that described in Section 3.1, using the standard SOM a gorithm as described
by Kohonen [51]. For example, Figure 3.26 illustrates the results of an experiment in which a 2-
dimensional map wasfitted to pedestrian shape data, and in which areasonable parameterisationis
achieved. Whilst experimental results were generally encouraging, the following factors severely

[imit the utility of the algorithm:

¢ Assuggested by thelimited theoretical density matching resultsfor the SOM algorithm (see,
for example, Ritter [75]), density matching is poor with areas of high probability density

under-represented and areas of low probability density over-represented.

¢ When mapsarefitted to distributi onswhich are discontinuousor which haveacomplex struc-
ture, the lattice may become *stretched’ across unpopul ated regions of feature space, result-
ing in asub-optimal distribution and discontinuitiesin the similarity relationshipsacross the
lattice.

¢ Thetendency of chaing/sheetsto form space-filling curves/surfaces when fitted to higher di-
mensional distributions distorts similarity relationships since similar features may map to

distinct locations on the | attice.

Whilst thefirst of these limitations may be addressed using the sensitivity mechanism described in
Section 3.2.2.1 (or by techniques such as minimum distortion encoding (L uttrell [56]) or nonlin-
ear weight adjustments (Zheng and Greenleaf [94])), the remaining limitationsare due to the fixed
topology, size, and dimensionality of thelattice. Perhapsthe most promising techniquefor the addi-
tion of spatial self-organization to behavioural modelsisthusthe* cell structure’ growing algorithm
described by Fritzke[31]. In thisapproach, both the topology and size of afixed-dimensional sim-
plex mesh are determined during learning via an iterative process of cell insertion and occasional
cell removal which resembles fractal growth. Results presented in [31] suggest that the algorithm
iscapableof providing an efficient representati on of compl ex, possibly discontinuous, distributions

whilst achieving reasonabl e density matching.



Chapter 4

Behaviour generation

This chapter describes the enhancement of the models developed in Chapter 3 to include genera
tive capabilitiesviathe superimposition of |earnt probabilistic prediction schemes. Using thistech-
nique, both maximum likelihood behaviour extrapol ation® and the stochasti c generation of realistic
sample behaviours are demonstrated. To further demonstrate the utility of predictive models, the
performance of both state-based and behaviour-based predi ctorsis compared with alinear predic-
tion scheme. Finally, the similarities between the enhanced models and Hidden Markov Models,

commonly used for the recognition of gesture and speech, are discussed.

4.1 Generating predictivemodels

The state and behaviour models developed in Chapter 3 are deficient in the sense that they do not
support the performance of generative tasks such as the prediction or extrapolation of future be-
havioursor the generation of realistic sample behaviours. In state models, thisdeficiency issimply
due to the presence of insufficient temporal information. In behaviour models, sufficient temporal
information exists but cannot be exploited due to the limited reconstructive capabilities of the be-
haviour representation. If it were possibleto reconstruct an approximation to the sequences repre-
sented by behaviour prototypes, then generative tasks coul d be achieved viasome form of sequence

matching process. Unfortunately, as stated in Section 3.4.1, such reconstructionisnot possible, al -

IThe term extrapolation refers to the generation of future behaviour over anumber of contiguoustime instants.
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though it is possible to obtain the state prototype associated with the most recent proximity maxi-
mum by finding the highest valued component of the behaviour prototype, and thus an estimate of

the current state can be obtained for each behaviour prototype.

Since both state and behaviour models are discrete representations, the addition of generative ca-
pabilitiescan be achieved during afurther learning phasein which therel ative probabilities of tran-
sitions between prototypes are estimated. Thus model prototypes are associated with the states of
a time-homogeneous finite Markov chain (see, for example, Lawler [53]), and the state vector as-
sociated with each prototype (i.e. the prototypeitself in state models and an estimate of the current

state in behaviour models) becomes the token associated with the corresponding chain state.

411 Markov chain acquisition

The Markov chain M superimposed on a set of state or behaviour prototypesis defined by the 4-
tuple
M=(E S mT), (4.1)
where
E={en, &, ..., &1} (4.2)

isthe set of chain states, each of which corresponds to a state or behaviour prototype except e, 1

which represents the end state,

S={aley). a(ey), ... (a0} (43

is the set of state vector tokens associated with the chain states,

T[:{T[lv T[z,,T[k},TﬁIP(aatSteprIO) (44)
defines theinitial state distribution, and finally,
Ti1 oo Tigs
T=| :+ - : , Tj=Plejastepr+1|eastepr) (4.5)
Ter - Tkt
isamatrix defining the state transition distribution. Thus, if the Markov chain is superimposed on
a set of state prototypes, then g — a; and a(e) = a;, whereas, if the chain is superimposed on a

set of behaviour prototypes, then g — [E. and each a(g) is an estimate of the current state.
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Theinitial state distribution 1t and state transition distribution 7" are estimated from training sets
F; or Gj during afurther learning phase by observing the closest prototype, in anearest neighbour
sense, to the current training vector at each timeinstant. Thus Ttis estimated from the relative fre-
guency of starting at each prototype, whilst 7 is estimated from the rel ative frequency of the tran-

sitions between prototypes, considering only transitions which cause state changes (i.e. 7 = 0).
T = {e, &, &, &, &)

025 % ) {alv 627 637 a4}

) 100 050 100 n = {1, 0, 0, 0}
! € €& & 0 1
Qs 2
025 o _ 0 1

T = 0 0

0 0

@ (b) (©

Figure4.1: Markov chain acquisition.
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The acquisition of Markov chainsisillustratedin Figure 4.1 using asimple example. Figure4.1(a)
depicts a 2-dimensional state space containing four prototypes. In this illustration, broken lines
delimit the Voronoi regions [35] about each prototype (corresponding to a nearest neighbour par-
titioning of state space) and the paths of four training sequences are shown. Figure 4.1(b) gives
a graphical representation of the Markov chain acquired from observing the paths the four train-
ing sequences trace through the state space, whilst Figure 4.1(c) enumerates the members of the

corresponding 4-tuple M.

4111 Typicality-based transition pruning

When acquiring initial state and state transition distributions from training data, atypical training
sequences may have a detrimental effect on the learnt prediction models. For instance, training
sequences which lie entirely outside the boundary of a particular state or behaviour distribution
will giveriseto transition noisein the form of misleading or apparently impossible transiti ons as
sequences cross the Voronoi regions of the bounding prototy pes, whilst transitions between proto-
types within areas of minimal probability density will be of little practical use since quantization

ismost coarse in these regions.
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Continuoustypicality assessment during the acquisition of Markov chainsallowstransitionswhich
occur when typicality is below agiven threshold percentage f to be rejected. Thus, with a suitable
choice of f, transitionsinvolving prototypes within areas of minimal probability density can be

effectively pruned whilst transition noiseis minimised.

4.1.1.2 Markovian property

The Markov chain defined by Equations 4.1-4.5 forms a first-order stochastic process description
since the state transition distribution is conditioned only on the current chain state, under the as-
sumption that there is no higher-order state dependency (the Markovian property). Clearly, when
such achainissuperimposed on aset of state prototypes, the acquired transitiondistributionfailsto
represent any higher-order temporal dependencieswhich exist withinthetraining data. If, however,
aMarkov chain is superimposed on a set of behaviour prototypes, then higher-order temporal de-
pendencies are successfully represented, since the activation of each behaviour prototype requires

that a particular history has been observed.

Thus, if temporal dependenciesare inherent in training sequences, a predictor based on abehaviour
model will encode these temporal dependencies withinitstransition structure and is consequently
more powerful than the corresponding state-based predictor. Since a higher-order process descrip-
tion (in which the transition distribution, represented as a tensor, is conditioned on a number of
previous states) can be expanded to form an equivalent Markov chain, a behaviour-based predic-
tor will closely resemble the predictor generated if a sufficiently high-order process description,

superimposed on the corresponding set of state prototypes, is expanded.

4.1.2 Generating maximum likelihood and stochastic extrapolations

Prediction, extrapolation, and the generation of sample behaviours are achieved by traversing a
Markov chain until the end state is reached, selecting either the most likely transition (maximum
likelihood extrapol ation) or sampling from the transition distribution (stochastic extrapol ation) on
each iteration. Maximum likelihood extrapolation is achieved by selecting each transition ran-
domly from the (generally singleton) set of transitions with equally maximal probability, whilst

stochastic extrapolation is achieved by selecting transitions via sampling (using a partitioning of
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unity) from thetransitiondistribution. Traversal of aMarkov chain resultsin an ordered set of state

vector tokens a( e, ) associated with the visited chain states:

Q = {a(s,). a(e,), ..., a(e,)}, (4.6)

where the time interval between successive state vectorsis initially unspecified and g, theinitial
chain state, is identified using the state or behaviour model when performing prediction or extrap-
olation and is selected from the initial state distribution when generating sample behaviours. Se-
lection from the initial state distribution is again achieved either by selecting randomly from the
(generally singleton) set of equally maximal probability start states or by basing the selection on
sampling (using a partitioning of unity) from theinitial state distribution. When performing pre-
diction or extrapolation, a(e,) is replaced by the current state vector F; to ensure a smooth join

between previous behaviour and the extrapol ation.

4121 State sequenceinterpolation

Sincethetimeinterval between successive statevectorsin Q isinitially unspecified, depending to
agresat extent on thelocal probability density within the corresponding state or behaviour model, a
regularly sampled extrapolation requires the interpolation of Q and the approximation of thetime
interval between successive state vectors. Assuming constant acceleration and a linear path be-
tween state vectors a(e, ) and a(e, ., ), the time interval &, can be approximated from the mean

speed and separation of the constituent characteristic vectors:
-2 |Cf+l B Cr|

~2. iy 47)
|Cry1| +[Crl

r

where & = 0if the denominator is 0.

A piecewiselinear interpolation of Q will fail to express the non-linear changes which may occur
between statevectorsseparated by largetimeintervals, and thusahigher-degree polynomial may be
more appropriate. Since statevectors can place four constraintson each polynomial, two endpoints
and two tangent vectors, a Hermite (cubic) interpolation is used. In an extension to the standard
Hermite curve definition (see, for example, Foley et al. [30]), both characteristic vectors and their

differentials areinterpolated. Thus each parametric curve segment

C(t)

5C(t)

Qr(t) = (4-8)
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is defined over theinterval 0 <t < 1 by

2 21 1 ][ ¢ |
2 t2 t 1 -3 3 -2 -1 Cii1
Qi(t)=TBE = R R CL)
32 2t 10 0O 0 1 0O & Cr
1 0 0 0 |[&Cu |

where B is the Hermite basis matrix, E is the Hermite geometry matrix, and the differentials of

characteristic vectors have been transformed into tangent vectors using a scaling factor o;.

A temporally regular extrapolation ? is thus produced by sampling the Hermite interpolant of Q
at regular time instants:
P= (Ft+17 Ft+27 (ERR) I:t+| )7 (410)

where the time interva between the start of each curve segment and the desired sampleinstant is
transformed into the curve’s unit time scale using a scaling factor a—lr, and successive state vectors

are reconstructed from the components of Q.

4.1.3 Improving behaviour-based prediction

When a Markov chain is superimposed on a set of behaviour prototypes, the estimates of current
state, obtained by finding the highest valued component of each behaviour prototype, are often
found to be rather poor when compared to the actual mean current state of the behaviours repre-
sented by each of the prototypes, thus adding to spatio-temporal inaccuracy within models. Fur-
ther, it is often found that the same state prototypeis associated with sequentia chain states, and
thus traversal of the chain resultsin sequencesin which adjacent state vector tokens may be iden-
tical. Whilst these identical state vectors do not affect the interpolation of sequences, since the
approximation of the time interval between identical vectors will yield a value of zero, their pres-
ence does indicate a loss of detail in the representation of extrapolations, thus further adding to

spatio-temporal inaccuracy within models.

To eliminate these additional spatio-temporal inaccuraci es, current state estimates are replaced dur-
ing the learning of the Markov chain distributions with the actual mean current state of the be-

haviours represented by each of the behaviour prototypes:

SR
ale) = L‘nl L (4.11)
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where the Fj are the current state vectors associ ated with the behavioursrepresented by behaviour
prototype[gi . If typicality-basedtransition pruningisbeing performed, then the current statevectors

associated with atypical behaviours are not included in this summation.

4.1.4 Stochastic behaviour perturbation

When using stochastic predictions or extrapolationsto aid in tracking or to produce realistic sam-
ple behaviours, it may be advantageous to perturb each state vector token using an additive noise
process associated with the corresponding chain state, thus better representing the variation in se-
guences represented by the underlying state or behaviour model. This technique would be of par-
ticular benefit if the predictor were being used within a stochastic tracking algorithm such as Isard
and Blake’'sCONDENSATION [46]. Theinclusionof noisemodelsextendsthe definition of Markov
chainsto the 5-tuple

M=(E, 5,1 T, N), (4.12)

effectively a Hidden Markov Model (see Section 4.4.1), where
N = {n17 N, ..., nk}7 (413)

and each n; isavector of noisemodel parameters. Traversal of such an enhanced chain thusresults

in an ordered set of perturbed state vector tokens:
Q= {a(ao) + Wig, a_(al) +Wig, oo, a(a| ) + W, } ) (4.14)

where each w; is sampled from the corresponding noise model n;.

If state prototypes are used as tokens within the chain, then rudimentary noise models can be gen-
erated by considering the distribution of Euclidean distances between each state prototype and the
sample vectors it represents, using the parameters estimated for typicality assessment in Section
3.5.2 to generate noise vectors whose magnitude is normally distributed (i.e. |wi| ~ N(Wi, Gy)).
Unfortunately, such i sotropic noise processes are probabl y inadequate, particularly for state spaces
such asthe shapemodel described in Section 3.3.2inwhich thedistribution of samplevectorsrepre-
sented by each state prototypeistypically elongated parallel to sampletrajectories. To resolvesuch
problems, more refined noise model s could be generated by estimating the parameters of multivari-
ate normal distributionswhich better represent the distri bution of sample vectors around each state

vector token a( & ), resulting in multivariate normally distributed noise vectorsw; ~ N (L, ;).
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415 Assessing predictor performance

As well as generating qualitative experimental results such as extrapolations and entirely hypo-
thetical sample behaviourswhich demonstratethe utility of predictivemodels, itisalso possibleto
generate quantitative experimental results which demonstrate predictor performance. The experi-
ment described here al ows state-based and behaviour-based predictorsto be assessed by observing

the deterioration in mean performance over time, using the linear prediction scheme:
Ciyt =Ci+ TG, (4.15)

to provide a standard comparison in which prediction is based entirely on the value of the current

state vector F;.

For each prediction scheme (linear, state-based, and behaviour-based), a set of root mean square
(RMYS) errorsis calculated to quantify the mean performance in predicting the value of the charac-
teristic vector on each future time instant:

2
S 1 |Cte1 = Cf 1l
ET _ \/ j l‘ +n I+T‘J : (416)

wheretheerror Er inpredicting T time stepsinto thefutureis averaged over predictionsgenerated
on every frame of every test sequence and C{, ; denotes the ground truth characteristic vector at
timet+ T asgiven by thetest data. State-based and behaviour-based predictionsare only generated
if the current state or behaviour fall swithin the bounds of the corresponding distribution, and errors

are only updated if both a prediction and the ground truth exi st for the particular T.

Unlike the linear prediction scheme, the predictive models developed in this chapter are non-
deterministicin nature, and thustheir mean performance should represent aprobabilisticweighting
of the errors given by al possible predictions. Unfortunately, itis not, in general, possible to enu-
merate the entire set of possible predictions from a particular chain state due to the possibility of
cycles within the transition structure. Instead, mean performance is calculated using Monte Carlo
simulation, generating a large number of stochastic predictions on each frame and alowing their

rel ative frequency to provide probabilistic weighting within the cal culation of RM S errors.
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4.2 Experimental results- object location

A 1,001-state Markov chain M°¢ was superimposed on the set 4'° of 1,000 state prototypes gen-
erated in the experiment described in Section 3.3.1, using state prototypes as the token set (i.e.

loc — gl°¢) Initial state and state transition distributionswere estimated from the 622 state train-
ing sets fj'oc, using atypicality threshold of 5% to minimise transition noise and prune transitions
involving atypical prototypes. A value of A = 0.01, half that used in Section 3.3.1, was used to
re-sampl e training sets as described in Section 3.2.2, thus reducing the tendency to omit transitions

associated with brief entry into a prototype’s VVoronoi region.

A 1,001-state Markov chain Méoc was superimposed on the set B'°° of 1,000 behaviour prototypes
generated inthe experiment described in Section 3.4.3, estimating the token set 5&0‘3 during learning
asdescribed in Section 4.1.3. Initial state and state transition distributionswere estimated from the
622 behaviour training sets g}oc, using a typicality threshold of 5% to minimise transition noise
and prunetransitionsinvolving atypical prototypes. A value of A = 0.075, half that usedin Section
3.4.3, was used to re-sampl e training sets as described in Section 3.2.2, thusreducing the tendency

to omit transitions associated with brief entry into a prototype’s Voronoi region.

421 Predictor performance

Using the learnt Markov chains M, and M, the experiment described in Section 4.1.5 was
performed to assess predi ctor performance, using test data sets captured soon after thetraining data.
In thisexperiment 50 stochasti ¢ predi ctionswere generated (without perturbation) on each frame to
account for the non-deterministic nature of the state-based and behaviour-based predictors. Since
the test data was captured primarily to evaluate typicality assessment, it containsahigh percentage
of ‘artificial’ behaviourswhich areinitially typical but rapidly become bizarre, and thus provides

arather exacting test of predictor performance.

Figure 4.2 illustrates mean predictor performance over aranget+ T, 1 < T < 30, of futuretime
instants, averaged over al stochastic predictionsfor all framesinthetest sets. Asexpected, graphs
indicate both that the mean performance of all predictors diminishesas thetimeinterval to the pre-

dictionincreases, and that thelinear predictor isgeneral ly less powerful, although graphsa so iden-
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Figure4.2: Location prediction errors.

tify two rather surprising characteristics.

Thefirst surprising characteristic is that the linear predi ction scheme actually has a superior mean
performance for predictionsof up to about T = 6 time instants. Thissuperior performanceis prob-
ably dueto two factors - firstly, the generally locally-linear nature of pedestrian trajectories which
will ensure reasonable accuracy for short-term linear predictions, and secondly, the quantization

errors which are inherent in the state-based and behaviour-based predictors.

The second surprising characteristic isthat the mean performance of the behaviour-based predictor
isonly marginally superior to that of the state-based predi ctor, although graphs appear to diverge
after about T = 25 time instants. The absence of distinctly superior performance in the behaviour-
based predictor suggests that the temporal evolution of pedestrian trajectoriesin the test data has
littledependence on past behaviour. Sinceasimilar result isobtainedif the experiment isperformed
ontrainingdata, itisreasonableto assumethat thisisan inherent characteristic of behaviourswithin

this scene.
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422 Maximum likelihood behaviour-based extrapolation

To demonstrate extrapol ation, the learnt behavi our-based predictor Méoc was used to generate max-
imum likelihood extrapolations during the evolution of three pedestrian trajectories selected from
the test data sets. Figure 4.3, Figure 4.4, and Figure 4.5 illustrate extrapolation at selected time
instants during each of the three sequences, where all equally maximal probability extrapolations
areillustrated and each extrapolationisterminated prematurely if apreviously visited chain stateis
reached, thus avoiding infinitecycles. In each figure, different aspects of the extrapolation process

areillustrated as follows:

Theentire current trajectory on which theextrapol ation dependsisillustrated by aset of small

unfilled circles joined with lines.

e The current state vector F; which replaces a(e,) isillustrated by an unfilled arrow.

The sets of state vector tokens generated from each traversal of the chain are illustrated by

filled arrows.

The extrapol ationsgenerated by sampling the Hermite interpolants of state vector token sets

at regular time instantsare illustrated by sets of small filled circles joined with lines.

It is clear from these experimental results that the behaviour-based Markov chain forms an effec-
tive encoding of the evolution of spatio-tempora behaviours. Extrapolated trajectories are both
spatially and temporally continuous and there is reasonabl e spatio-temporal continuity where ob-
served behaviour and extrapolations join. Trajectories follow plausible paths through the scene,
and temporal characteristics such as the apparent gradual i ncrease or decrease in speed as a pedes-
trian approaches or retreats rel ative to the camera are clearly visible, asillustrated in, for example,
Figure4.3(b) and Figure4.4(b). Itisalso revealing to observe the changes which occur in the max-
imum likelihood extrapol ations as trajectories progress and alternative future behaviours become
more appropriate. In particular, instability is sometimes evident around decision points, causing
extrapolationsto flit rapidly between alternate possible futures, asillustrated in Figure 4.3(a)—(d)
and Figure 4.4(a)—(c)).
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Figure4.3: Maximum likelihood |ocation extrapolation - trajectory 1.



79

(b)

@

(d)

(©)

(f)

- trajectory 2.

()

Figure4.4: Maximum likelihood |ocation extrapolation



@ (b)
(©) (d)
() (f)

Figure 4.5: Maximum likelihood location extrapolation - trajectory 3.
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4.2.3 Stochastic behaviour-based generation

To demonstrate the generation of realistic sample behaviours, stochastic extrapol ation and stochas-
tic selection of initial chain statesfrom the learnt behavi our-based predictor Méoc were used to pro-
duce a set of entirely hypothetical pedestrian trajectories. Figure 4.6 illustrates 504 hypothetical
trajectories generated in this way.

Although occasionally rather noisy, sample trgjectories are generally both spatially and temporally
continuous and exhibit plausible spatio-temporal characteristics. Comparison between the results
of thisexperiment and thetraining dataillustratedin Figure 3.1 suggeststhat the set of hypothetical

sequences forms a plausible random sampl e of pedestrian behaviour within the scene.

4.3 Experimental results- object shape

A 201-state Markov chain 25" was superimposed on the set 4573 of 200 state prototypes gen-
erated in the experiment described in Section 3.3.2, using state prototypes as the token set (i.e.
sShepe _ gshape |nitial state and state transition distributionswere estimated from the single state
training set #"¥¢, disregarding typicality-based transition rejection as the entire sequenceis con-
sidered to betypical. A value of A = 0.025, half that used in Section 3.3.2, was used to re-sample
training setsas described in Section 3.2.2, thusreducing the tendency to omit transitionsassociated

with brief entry into a prototype’s Voronoi region.

A 401-state Markov chain Mg‘ape was superimposed on the set B3¢ of 400 behaviour prototypes
generated in the experiment described in Section 3.4.4, estimating the token set Sghape during learn-
ing asdescribed in Section 4.1.3. Initia state and state transition distributionswere estimated from
the single behaviour training set G'¥*, again disregarding typicality-based transition rejection. A
valueof A = 0.0075, half that usedin Section 3.4.4, wasused to re-sampl e training sets as described
in Section 3.2.2, thus reducing the tendency to omit transitions associated with brief entry into a

prototype’s VVoronoi region.
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Figure4.6: Sample pedestrian trajectories generated from the behaviour-based predictor.
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431 Predictor performance

Using the learnt Markov chains M=% and M;‘ape, the experiment described in Section 4.1.5 was
performed to assess predictor performance, using training datadueto the absence of atest sequence.
In this experiment 50 stochastic predictions were generated (without perturbation) on each frame

to account for the non-deterministic nature of the state-based and behaviour-based predictors.

2.0

linear prediction —<—
state-based prediction -x---
189  pehaviour-based prediction -4--

1.6+
1.4+
1.2+

1.0

RMS error

0.8

0.6

Figure4.7: Shape predictionerrors.

Figure 4.7 illustrates mean predictor performance over aranget+ T, 1 < T < 30, of futuretime
instants, averaged over al stochastic predictions for all frames in the training set. As expected,
graphs indicate both that the mean performance of all predictors diminishes as the time interval
to the prediction increases, and that the linear predictor is less powerful than the state-based and
behaviour-based predictors. Unliketheresultsobtained in Section 4.2.1, linear prediction of object
shape has consistently inferior mean performance due to the highly non-linear nature of shape se-
quences. Alsosignificant intheseresultsisthe markedly superior mean performance of behaviour-
based prediction which is indicative of the temporal dependenciesinherent in the exercise routine

and illustrates the power of the behavioural representation.
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4.3.2 Maximum likelihood behaviour-based extrapolation

To demonstrate extrapolation, the learnt behaviour-based predictor Mg‘ape was used to generate
maximum likelihood extrapolations during the evolution of the exercise routine. Figure 4.8 and
Figure 4.9 illustrate extrapolation at selected time instants during the sequence, where each ex-
trapolation was chosen randomly from the (generally singleton) set of equally maximal probabil-
ity extrapolations. In each figure, recent behaviour isillustrated by a set of 12 filled contours, the
shade of which indicates recency, the lightest being the current shape. The first 12 frames of each
extrapolation areillustrated by a set of unfilled contours overlaying the recent behaviour, the shade
of which indicates the progression of behaviour, the lightest being the furthest advanced.

It is clear from these experimental results that the behaviour-based Markov chain forms an effec-
tive encoding of the evol ution of spatio-temporal behaviours. Extrapol ated sequencesare both spa
tially and temporally continuous and there is good spatio-temporal continuity where observed be-
haviour and extrapolations join. Even the relatively short-term extrapolations illustrated exhibit
highly non-linear changes in the positions of B-spline control points, particularly exemplified by
extrapolations such as those shown in Figure 4.8(a) and Figure 4.9(q), whilst temporal character-
istics such as accel erations and decel erations in arm movements are clearly evident, asillustrated
in, for example, Figure 4.8(b) and Figure 4.9(p). These experimental resultsthus clearly illustrate

the utility of behaviour-based models for the representati on of complex, non-linear dynamics.

Whilst extrapolations are clearly plausible continuations of recently observed behaviours, com-
parison with the evolving shape sequence indicates that |onger-term temporal dependencies have
been encoded within the structure of the Markov chain. At the start of the sequence, illustrated in
Figure 4.8(a), and in the transitions between the four exercises, illustrated in Figure 4.8(f), Figure
4.9(j), and Figure 4.9(0), the subsequent exercise is consistently predicted. Further, during each
repetition of an exercise or sub-exercise, the subsequent repetition or transition to a new exercise

or sub-exerciseis aso consistently predicted.
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Figure4.9: Maximum likelihood shape extrapolation (j)—(r).
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4.3.3 Stochastic state-based and behaviour-based generation

To demonstrate the generation of realistic sample behaviours, stochastic extrapol ation and stochas-
tic selection of initial chain states from both the learnt state-based predictor M5 and the learnt
behaviour-based predictor M;‘ape were used to producetwo entirely hypotheti cal shape sequences.
Figure 4.10 illustrates the sequence generated using the state-based predictor, whilst Figure 4.11
illustrates the sequence generated using the behaviour-based predictor. In each figure, sequences
areillustrated by a set of filled contours. Sequences start at the top-left corner of each figure, and
progressin atop-to-bottom, |eft-to-right order. Vertical layering of contourshas been used in these

illustrationssince it produces less occlusion of the arms than a horizontal 1ayering.

Although the sequence illustrated in Figure 4.10 is both spatialy and temporally continuous, it
identifies a number of weaknesses in the state-based predictor. Throughout the sequence, small
aberrations are evident (indicated by circles) which suggest instability in prediction due to spatio-
temporal ambiguities, whilst excessive periods of static behaviour demonstrate the state-based pre-
dictor’sfailure to encode the temporal extent of approximately static behaviours. The absence of
any encoding of longer-term temporal dependenciesisclearly illustrated by the apparently random
order inwhich the separate exercises and sub-exercisesare generated, and by thefailureto generate

the correct number of repetitions of each exercise and sub-exercise.

The sequenceillustrated in Figure 4.11 is both spatially and temporally continuousand clearly il-
lustrates the superior performance of the behaviour-based predictor. None of the aberrations or
excessive periods of static behaviour which were evident in the state-based sequence are present,
thus suggesting more stability in prediction and the ability to encode the temporal extent of approx-
imately static behaviours. Theencoding of longer-term temporal dependenciesisclearly illustrated
by thecorrect progressionfrom oneexercise or sub-exerciseto thenext, and by the generation of the
correct number of repetitionsof each exercise and sub-exercise. The encoding of theselonger-term
temporal dependenciesaso clearly indicatesthat the spatio-temporal behaviour representation de-
veloped in Section 3.4.1 is not restricted to the representation of simple, non-repeating sequences.
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Figure 4.10: Sample shape sequence generated from the state-based predictor.
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4.4 Discussion

In this chapter, techniques have been devel oped which allow the models of characteristic object
states and behaviours devel oped in Chapter 3 to be enhanced to include generative capabilitiesvia
the superimposition of Markov chains, the parameters of which are acquired automatically dur-
ing a further learning phase. Experimental results presented for two object characteristics with
distinctly different properties clearly illustrate the utility of enhanced models for the generation
of predictions, extrapolations, and realistic sample behaviours, and demonstrate the advantages
of behaviour-based predictorsin which tempora dependencies are encoded within the transition

structure of the Markov chain.

The generative capabilitiesdemonstrated within this chapter could clearly be exploited to increase
the robustness and efficiency of object tracking systems, and would be particularly effective if
used within a stochastic tracking a gorithm such as Isard and Blake's CONDENSATION [46], where
behaviour-based predictors with learnt noise models would provide a powerful stochastic predic-
tion mechanism. In addition, such generative capabilities could be exploited to enhance reasoning
during partial occlusions, and, since extrapolationsremain plausible and reasonably accurate over
extended periods of time, could be exploited to facilitate tracking over prolonged periods of com-

plete occlusion, such as when a pedestrian walks behind alarge vehicle.

The generation of entirely hypothetical sequences from learnt behaviour models could provide a
powerful mechanism for the automatic generation of realistic object behaviourswithin animations,
virtual worlds, or computer generated film sequences. In addition to the generation of isolated
characteristics, models describing a number of different characteristics, such as pedestrian loca-
tion, shape, and texture, could be probabilistically coupled, as described by Brand et al. [14], thus
allowing realistic behaviours of entire objectsto be generated.

Although not demonstrated within this thesis, the transition structure of behaviour-based predic-
tors can be exploited to yield detail s of the regularitiesinherent in certain behaviours. For instance,
through careful choice of the decay coefficient used in temporal pattern formation, the cyclic na
ture of behaviours such as the experimental shape sequenceisreplicated in the transition structure
of the corresponding behaviour-based predictor. Such structura information may be effective in

addressing problems such as the segmentation of gestures.
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44.1 A comparison with Hidden Markov Modelling

Hidden Markov Models (HMMs) are apopul ar mechanism for describing thetemporal structure of
time-varying processes. These models have been extensively used for continuous speech recogni-
tion tasks(see, for example, Huang et al. [45]) and haverecently become popular for describing the
temporal structureof actionsand gestures(see Section 2.3). HMMs are an extensionto the Markov
chain process description in which each state has an associated discrete or continuous observation
distribution which governs the production of observation tokens, and are thus doubly stochastic

processes in which the underlying stochastic process (the Markov chain) is hidden.

As described within the extensive body of HMM literature (see Rabiner and Juang [68] or, for ex-
ample, Huang et al. [45]), there are three key problemsin HMM use, commonly referred to as
the estimation, evaluation, and decoding problems. Given an instance of an HMM and a number
of sequences of observation tokens, estimation describes the process of adjusting model parame-
ters to maximise the conditional probability of observing the training sequences given a particular
model. Sincean analytic solutionto thistraining problemisnot known, iterative optimisationtech-
niques must be used, typically Baum-Welch re-estimation. Having trained an HMM, evaluation
describes the process of cal culating the probability of a particul ar sequence of observation tokens,
and is achieved using the Forward-Backward a gorithm. Finally, given a sequence of observation
tokens, decoding describes the process of finding a corresponding state sequencewhich isin some
sense optimal. 1f maximisation of state sequence probability is used as an optimality criterion, then

decoding is achieved using the Viterbi a gorithm.

Whilst the enhanced Markov chains devel oped in Section 4.1.4 for stochastic behaviour perturba-
tion are equivalent to Hidden Markov Models with noise model s defining the observation distri-
butions, attempts to directly acquire such models using iterative optimisation techniques are un-
likely to succeed. Aswidely reported withinthe HMM literature, local optima are frequently en-
countered by iterative optimisation techniques when learning HMMs with many free parameters,
and thus model topology and size are often highly constrained prior to training (see Section 2.3).
For example, Yamato et al. [93] report the existence of local optima when using even small 36-
state HMM s with unconstrai ned topol ogy to model individual tennisswings. Thus, dueto thevery
large number of free parameters, it is highly unlikely that iterative optimisation techniqueswould

yield near-optimal models such as the behaviour-based predictorsin which tempora dependencies
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are encoded within the transition structure. In addition to enabling the acquisition of such large
and near-optimal HMMss, the behaviour modelling approach presented within this thesis provides
significantly more efficient mechanisms for typicality assessment and behaviour recognition than

those provided by the Forward-Backward and Viterbi algorithms.

4.4.2 Temporal adaptation

As stated in Chapter 1, a natural process for the perception of powerful behaviour models should
allow gradual temporal adaptation, enabling model evolution with occasiona changesin charac-
teristic behaviour. In Section 3.6.2, extended learning and the adjustment of prototype typicality
val ueswas proposed asamechani sm through which thetemporal adaptation of model sof character-
istic object states and behaviours could be achieved. Since models have been enhanced to include
generative capabilities, tempora adaptation of enhanced modelswould also require the adjustment
of both Markov chain distributionsand noise model parameters during extended learning, using ei-

ther iterative update equations or moving temporal windows.



Chapter 5

Object interaction

Throughout the development of the behaviour modelling framework, it is the behaviours of sin-
gle objects which have been considered. To extend the utility of this framework, the modelling
of object interaction is also investigated. Object interaction is a particularly interesting form of
behaviour since it alows reasoning to be extended from individuals to groups of objects, whilst
providing amachine with the ability to learn and use model s of natural interaction may prove ben-
eficial to the provision of natural user-machineinteraction. This chapter describestwo approaches
to binary interaction modelling using the models developed in Chapter 3 and Chapter 4. Thefirst
approach considers the statistical co-occurrence of events within models of the state or behaviour
of individual objects, whilst the second approach attempts to explicitly model interaction as joint
behaviour. Thislatter approach is used within a stochastic tracking agorithm to demonstrate how
alearnt joint behaviour model can be used to equip a virtual object with the ability to interact in a

natural way.

5.1 Stateand behaviour co-occurrence

Thediscretenature of themodel sdevel opedin Chapter 3 allowsinteractiontypicality to be assessed
by considering the co-occurrence of events within models of the state or behaviour of individua
objects. Within this scheme, an event represents the activation of a particular state or behaviour

prototype by one of aset of concurrent objects, whereall pairs of concurrent objectsare considered

93



94

to beinteracting, regardless of proximity or other cues.

Event co-occurrence in a state or behaviour model with k prototypesis modelled by ak x k sym-

metric co-occurrence matrix

kK k
c=1 : . i |,Gji=Gi Gj=1, (5.1)
i Jii i;glu

Ge1o oo Gek
where the probabilities G ; are estimated during a further learning phase by observing the rela-
tivefrequency with which each combination of state or behaviour events occurs over synchronised

training sets.

The probability of an interaction which causes the co-occurrence of events A and B, corresponding
to the activation by concurrent objects of prototypes a0, and O, or prototypes Ba and By, is thus
given by

P(ANB) = Cap- (5.2)

Since the probability of asingle event occurring is given by

k
PA =5 Gajs (5.3)
=1
the conditional probability

_ P(AnB)

PIAB) = “pg
= f%b (5.4)

>i=1Cb,j

can aso be evaluated. Assuming good density matching has been achieved, each prototype will

represent an approximately equal amount of probability, and thus P(A) % and P(A|B) ~ kCyp.

5.1.1 Stateand behaviour dependence

In additionto the eval uation of event co-occurrence and conditional event occurrence probabilities,
ameasure of the extent to which events A and B are statistical ly dependent can a so be derived from
the co-occurrence matrix:

P(ANB)

A8 = Hame)
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= Cab (5.5)

K oKk x
Yi=1Gaj 2j=1GChij

where, assuming good density matching has been achieved, d(A, B) ~ k2Cy, p.

Asillustrated in Figure 5.1, the dependence measure d(A, B) can be used to classify interactions
into four distinct classest, of which thetwo fundamentally different classes of dependent eventsare
of particular interest. If events are negatively dependent, then the occurrence of one event reduces
the probability that the other event has occurred, thus implying weak mutual exclusivity. If, how-
ever, events are positively dependent, then the occurrence of one event increases the probability
that the other event has occurred, thusimplying reliance.

0.0 10

I I d(A, B)

~ 0000~

| 4

!

d(A,B)=0 0<d(A,B)<1 dA,B)=1 dA,B)>1
Events A and B are Events A and B are EventsA and B are Events A and B are
mutually exclusive negatively dependent independent positively dependent
since since since since
P(AnB)=0 P(A n B) < P(A)P(B) P(A n B) = P(A)P(B) P(A n B) > P(A)P(B)

Figure5.1: Interaction classification through event dependence.

Theclassificationillustratedin Figure5.1 providesausef ul mechanism for filtering interactionsand
for providing attentional control. For instance, the co-occurrence of mutually exclusive and neg-
atively dependent eventsis probably indicative of unusual behaviour which may merit further in-
vestigation, whil st the co-occurrence of positively dependent eventsis probably indicative of gen-

uinely interactive behaviours which can thus be selected for further analysis.

5.2 Modellingjoint behaviour

The techniques devel oped within Section 5.1 facilitate both the assessment of interaction typicality
and the identification of genuinely interactive behaviours. In addition, event co-occurrence could
be used to assess the probability of concurrent predictions from models of the state or behaviour

of individual objects, thus providing a mechanism for the extrapolation of future interactive be-

1In practice, the classification of mutually exclusive and independent events must tolerate a small margin of error.
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haviours. Unfortunately, event co-occurrence models are often inadequate since they provide a
representation of interactive behavioursin which thelevel of detail isproportional to thetypicality

of the individual behaviours, and not the typicality of the interaction.

A more effective representati on of binary interactive behaviourscan be achieved by considering the
joint (combined) behaviour of pairs of interacting objects, using the behaviour modelling frame-
work developed in Chapter 3 and Chapter 4 to provide a detailed representation which is both an-
alytic and generative. Within this scheme, candidate interactions could be filtered to yield a set
of genuinely interactive joint behaviours for training, e ther using proximity cues or using event
co-occurrence to select interactionsinvolving positively dependent events. In the experiments de-
scribed in this chapter, however, image sequences have been selected by hand, thus negating the
need for such filtering.

5.2.1 Joint behaviour representation

When modelling joint behaviour, raw interaction data consisting of ordered sets of characteristic
vectors must encode the evolving characteristics associated with both interacting objects. Since
the location within a scene at which an interactive behaviour occurs is probably of less relevance
than theinteractionitself, non-scene-specific representationsare probably appropriate. In addition,
many interactionsare typified not only by the evolution of aparticular object characteristic, but also
by the evolving spatial rel ationships between interacting objects, and thus such rel ationships must

also be encoded within characteristic vectors.

For the experimentsdescribed in thischapter, arelatively common human interaction has been used
- that of shaking hands. Since atypica handshake is arather brief and relatively simpleinterac-
tion, experiments are based on individual s performing exaggerated handshakes which comprise a
varying number of ‘shakes', thusintroducing a cyclic component within the behaviour, whilst the
observation of multiple handshake sequences introduces variation in handshake style. In these ex-
periments, individual sare viewed such that their interaction can be described in terms of the shape
of the left-hand and right-hand individual stogether with their separation and relative size. Shape
data is generated using the silhouette extraction method described in Section 3.1.2, and thusin-

dividualswere tracked in uncluttered indoor scenes wearing dark clothing. Figure 5.2 shows two
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individuals performing an exaggerated handshake, (), and a number of smoothed shapes from a

seguence representing their interaction, (b).

@ (b)

Figure 5.2: Sampleinteraction data: (a) handshake scene, and (b) some shapes from the hand-
shake sequence.

The evolution of a handshake interaction is thus represented by an ordered set of characteristic
vectorsC ¢ [0, 1)*+2:

C= {C07 C17 sy Cm}v (56)

where

Ce= (SH(1), S¥(v), d(t), s(t)). (5.7)

S- and SR are normalised shape vectors describing the silhouette boundaries of the |eft-hand and
right-hand individuals, transformed into actor centred coordinates and scaled by their respective
heights to enabl e the integration of data from different sequences whilst ensuring that all compo-
nents lie approximately intheinterval [0, 1]:

S(t) = (Xl(t)v yl(t)v X2(t)7 y2(t)v AR Xn(t)v yn(t))v (5-8)

where
X(t) = W% (5.9)
(e = M (510)
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(X, y)) are spline control points and h is the height of an individual’s silhouette boundary, both
provided by the tracker in image plane coordinates, and (X = X;, Y =Y ) isthe spline reference

point defining the individual’ s position.

Finally, d and s are components describing relative horizontal actor separation and rel ative actor
scale, defined as follows:

dt) = —XR(t)_XL(t), (5.11)

st = i (5.12)

5.2.2 Learningjoint behaviour models

Having developed a characteristic vector representation describing the evolution of the joint be-
haviour of interacting individual s, powerful models of interactive behaviour can be acquired from

observation using the framework devel oped in Chapter 3 and Chapter 4.

5.2.2.1 Experimental results - learning state models

State training sets fj‘ nt were generated from the 13 smoothed, sub-sampled handshake sequences,
one of which is partialy illustrated in Figure 5.2(b). Sub-sampling of the 130-dimensional char-
acteristic vectors C; (describing apair of 32 control point B-splines together with their separation
and relative size) was performed at 0.04s intervals and high frequency noise was minimised by
smoothing vectors over a moving window of width w = 5. 260-dimensional state vectors F; were
generated using a scaling factor A = 10 to scale differential components, and ordered data sets
were further re-sampled to improve density representation using aconstant separation A = 0.1. Af-
ter pre-processing, training sets fj‘”‘ comprised atotal of 4,407 state vectors lying approximately
within a unit hypercube. Figure 5.3 shows scatter plots of this training data projected onto both
the (X, yb), R, yR), and (d, s) planes, (a), and the (AX- + 3, Ak + 2), (AR + 3, AyR + 2), and
(Ad+ 3, As+ 1) planes, (b).

A set 4™ of 200 state prototypes was learnt from 2,000,000 iterations of AVQ over state vectors

from thetraining sets fj‘m, using aconstant 3 = 0.01 for sensitivity adjustments. Figure 5.4 shows
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scatter plotsof the resulting state prototypes projected onto both the (x-, y-), (xR, yR), and (d, s)
planes, (a), andthe (A% + 2, AVF+2), W&+, AR+ 1), and (Ad+ 3, A$ + 1) planes, (b). Com-
parison with the scatter plotsof training data clearly showsthe resultsto be plausibleand suggests

that reasonable density matching is achieved.

@ (b)

Figure5.3: Satevector distribution- object interaction: (a) projection onto the position (and spa-
tial relationship) planes, and (b) projection onto the first derivative planes.

(b)

Figure 5.4: State prototype distribution - object interaction: (a) projection onto the position (and
spatial relationship) planes, and (b) projection onto the first derivative planes.

In Figure5.5, each of the 200 state prototypesisillustrated by two overlapping pairs of silhouettes,
the upper splinesrepresenting the prototype’s (x-, y-), (X}, yR), and (d, s) componentswhilst the
lower splines have been generated by subtracting the prototype's (X, y-), (X}, yR), and (d, $)



Y O ) N ) ) ) O ) O ) B =) O ) O R ) 6 ) 6 ) G O
N N S e s e e e e S s S N e S

C 5 0 (o 60 ) O, 6, ) 6 60 ) o (L o O
e B e B e e B e e e B e e B e e e B g

o o R T T O e T O O, ) & T e O, T O R (L L T L T 3
e e e B e e e B e e B e e B e B e B e e B et B | m

s s s S S s e e e s S S e e e s 8

o S e S e R R e e e e R Rl e Ll L I

T S T O, B 6, O €, 6, € T ) T T 6 T L T 6 T m.
s I e P e e e e e Ny e S S M

TR AT QTR A TR TR IR A TR G TR (IR TR AR TR R LR SR R e E
S I = I e = e e Y s e A S e m

Ve s s I e e ey e e e e A ey e e A 2

T T O C) ) e B0 6, 6 0 ) O T ) O ) O T O, B T T

C ST R B, 6 & ) &) 6, ST i B 6, ) S & ) ) L T
s e e e e s e s e s e e s
S S (T 65T G T S 64, £, O T T € 6 T X L T 6
Iy s s e e s e S N I T



101

values from the corresponding (X, y-), (xR, yR), and (d, s) components. It isclear from thisrep-

resentation that prototypesliein the desired areas of the state space.

Figure 5.6 shows a frequency histogram illustrating density matching for the 200 state prototypes
and 4,407 state training vectors used in this experiment. The mean of this approximately normal
distributionis around 22, which is consistent with the expected value of 22.035, whilst the width

of the distribution suggests some inaccuracy in density matching.

40

301 —
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Number of training vectors

Figure5.6: Frequency histogramillustrating state prototype density matching - object interaction.

5.2.2.2 Experimental results - learning behaviour models

Behaviour training sets GI™ were generated from the 13 unmodified state data sets /™ and the
set 4™ of 200 state prototypes generated in the experiment described in Section 5.2.2.1. The pre-
processing of raw sequences was performed using the parameter values given in Section 5.2.2.1,
and 200-dimensional behaviour vectors G; were generated using a scaling factor p = 4.3to scale
proximity values and a decay coefficient y = 0.99. y was chosen to give a relatively fast decay
rate relative to the length of each sequence, thus avoiding behaviour component saturation during
repeated ‘shakes' . Ordered data sets were further re-sampl ed to improve density representation

using a constant separation A = 0.06. After pre-processing, training sets g}”‘ comprised atotal of
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4,973 behaviour vectors lying approximately within a unit hypercube.

A set B of 400 behaviour prototypeswas learnt from 2,000,000 iterations of AVQ over behaviour
vectors from thetraining sets g}”‘. A constant 3 = 0.01 was used for sensitivity adjustmentsin the
AV Q algorithmtogether with the two-stage cooling schedul edescribed in Section 3.2.1. Figure5.7
shows a frequency histogram illustrating density matching for the 400 behaviour prototypes and
4,973 training vectors used in this experiment. The mean of this approximately normal distribu-
tion is around 12 which is consistent with the expected value of 12.4325, whilst the width of the

distribution suggests little inaccuracy in density matching.
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Figure5.7: Frequency histogramillustrating behaviour prototype density matching - object inter-
action.

A 401-state Markov chain Mé”‘ was superimposed on the set 8™ of 400 behaviour prototypes, es-
timating the token set 53" during learning as described in Section 4.1.3. Initial state and statetran-
sition distributionswere estimated from the 13 behaviour training sets g}m, disregarding typicality-
based transition rejection as al training sequences were considered to be entirely typical. A value
of A = 0.03, half that used when learning behaviour prototypes, was used to re-sampl e training sets
as described in Section 3.2.2, thus reducing the tendency to omit transitions associated with brief

entry into a prototype’s Voronoi region.
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(d)

(©)

Figure 5.8: Maximum likelihood interaction extrapolation.
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To demonstrate behaviour extrapolation, the learnt behavi our-based predictor Mé”‘ was used to
generate maximum likelihood extrapol ationsduring the evol ution of handshaketrai ning sequences.
Figure 5.8 illustrates extrapol ation at selected time instants during the sequences, where each ex-
trapol ation was chosen randomly from the (generally singleton) set of equally maximal probability
extrapolations. In each figure, recent behaviour isillustrated by a set of 12 pairs of filled contours,
the shade of which indicatesrecency, the lightest being the current shape. Thefirst 6 frames of each
extrapolation are illustrated by a set of pairs of unfilled contours overlaying the recent behaviour,
the shade of which indicatesthe progression of behaviour, the lightest being the furthest advanced.
It is clear from these experimental results that the behaviour-based Markov chain forms an effec-
tive encoding of the evolution of spatio-temporal interactive behaviours. Extrapolated sequences
are both spatially and temporally continuous and there is good spatio-temporal continuity where

observed behaviour and extrapolationsjoin.

5.3 Interactingwith avirtual human

In recent years, many researchers have become interested in the devel opment of techniquesto al-
low amore natural form of interface between the user and the machine. In achieving this goal, it
isessential that the machineis ableto detect and recogni se a wide range of human movements and
gestures, and this has been a principal avenue of research, using a variety of spatio-tempora be-
haviour modelling techniques such as those reviewed in Section 2.3. An aternative approach to
the provision of natural user-machineinteraction isto provide the machine with the ability to learn
models of natural interaction from the observation of humans, and using these acquired models,
to equip a virtual human with the ability to interact in anatural way. As demonstrated in Section
5.2, the behaviour modelling framework devel oped in Chapter 3 and Chapter 4 allowsthe machine
to acquire models of interactive behavioursfrom the extended observation of interactions between
humans. Such models may al so be used to simul ate the evol ving shape of aplausiblepartner during

an interaction with a person.

As well as allowing prediction, extrapolation, and the generation of realistic sample behaviours,
behaviour-based Markov chains form a powerful representation of the space of learnt behaviours.

If such achainislearnt from afair sampleof an interaction population then any natural interaction



105

will follow one of the possible paths through the chain. A virtual human’s behaviour can therefore
be entirely defined by a behaviour-based Markov chain, where natural interaction withahumanis
achieved by providingresponses such that the resulting sequence of statevectorsformsavalid path
throughthe chain. Inthissection, two approachesto followingavalid path through aMarkov chain
are presented - a simple deterministic approach and a more robust approach utilising a stochastic
tracking algorithm. Since no behaviour recognition or typicality assessment is required in either

approach, the Markov chain isused in isolation from the behaviour model which it enhanced.

5.3.1 Propagating asingle hypothesis

One approach to simulating the evolving shape of a plausible partner during an interaction with a
person isto propagate a single interaction state hypothesis # through the Markov chain, using the
evolving shape of thetracked person to determinethe start state and state transitionswhen required.

An interaction state hypothesisis defined by the pair

where F; identifies the current state of the interaction and f; identifies the chain state towards
which interactionis proceeding. At each timeinstant, the transformed shape vector S(t), position
(XH(t), YH(t)) and height hH(t) of the human are extracted from the current image as described in
Section 3.1.2 and Section 5.2.1.

Within this scheme, start state and state transitions are chosen by assessing the extent to which a
candidate hypothesis #(t) is consistent with the current shape of the real human S, using an error

measure based on the Euclidean distance between shape vectors:
E(F. S7(t) = min{|s" (1) - (vl IS{(D) - s}, (514)

where SH(t) and SR(t) are extracted from the hypothetical interaction state vector F, and the min-
imisation also identifies the real human’s position (either |eft-hand or right-hand) within the inter-

action.

Interaction with avirtual human is achieved using the following algorithm:
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1. Select theinitia hypothesis # (0) from the set X; of al potential initial hypothesessuch that
the error E(Fo, S7(0)) is minimised. The potential hypotheses X are selected from valid

initial chain states where 11; # 0.
2. Produce the virtual human’s response SV (t) from the current hypothesis #(t).

3. Select the future hypothesis # (t + 1) from the set X;,1 of all potential future hypotheses
such that the error E(Fy, 1, SH(t+ 1)) isminimised. The potential hypotheses X; 1 are ex-
trapolationsat timet + 1 from the current hypothesis #(t).

4. Repeat steps 2—-3 until the end state is reached.

The virtual human’s response SV (t) is produced from hypothesis #(t) by scaling and translating
the shape vector which gaveriseto the maximumerror in Equation 5.14 (i.e. the shapevector which
was hot identified asbeing thereal human). Thistransformation isachieved by re-arranging Equa-
tions 5.11 and 5.12 to yield the height and position of the virtual human, substituting the val ues of
d(t) and s(t) from the current state vector hypothesis Fy, and thevaluesof XH(t) and h™(t) provided
by the tracker.

Within thisscheme, the chain state towardswhich interactionis proceeding (rather than the current
chain state) is stored within a hypothesis, thus ensuring that the selection of the fittest transition at
decision pointswithin the Markov chainisonly performed once, the decision being reflected inthe
stored successor state. This ensures that the interaction will precisely follow the interpolant of the
interaction state vectors associated with avalid chain state sequence, whilst eliminating the need to
assess When chain state membership changes. Extrapolation is achieved by sampling the Hermite
interpolant of the current state vector F, the state vector associated with successor chain state fi,
and, if required, the state vectors associated with successively selected chain states. Thusthe set
Xi41 will only contain multiplepotential hypotheseswhen adecision pointwithinthe Markov chain

isreached beforetimet + 1.

When propagating asingle state hypothesis, the selection of the start state and each successor state
permanently restricts the range of possible future behaviours. In the presence of noisy data or an
inaccurate or incomplete model, recovery from an undesirable sel ection is thusimpossible, result-
ing in an erroneous restriction of future behaviour which may cause the interaction to fail unless

the real human adopts an appropriately modified behaviour.
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5.3.2 Propagating multiple hypothesesvia CONDENSATION

A more robust form of interaction is achieved if multiple state hypotheses #4(t) are propagated
through the Markov chain. Within this scheme, stochastic hypothesis extrapolation allows pos-
sible aternative paths to be explored with alevel of detail proportional to their probability. Fur-
ther, weighted hypothesis re-sampling using a fitness function based on hypothesis error allows
unfit hypotheses to be pruned whilst reinforcing the level of detail around fit hypotheses. Using
alarge hypothesis set, this processis equivalent to the propagation of a conditional density repre-
sentation viathe CONDENSATION tracking algorithm of Isard and Blake[46], where, assuming the
behaviour-based Markov chain encodes high-order temporal dependencies, the propagated density

will be conditioned on an entire history of observation.

In this Bayesian approach to tracking an interaction from incomplete (partially occluded) ob-
servations, the point density of state vectors from the set of multiple hypotheses approximates
p(Fe | ST(t), ..., $4(0)), the conditional density describing the probability of interaction state

given an observation history, where
p(Fe | S(), ..., %(0) Op(S™(t) | Fp(Fe | S™(t 1), ..., S7(0)),  (5.19)

and where p(S™(t) | Fy) is afitness function measuring the likelihood of a state F; giving rise to
the observation SH(t), and p(F; | St — 1), ..., S7(0)) isthe prior density representing predic-
tionsfrom p(Fi_1 | S7(t—1), ..., $1(0)), the posterior density from the previoustime step. Isard
and Blake identify three phases over each discrete time-step of this conditional density propaga
tion process - deterministic drift and stochastic diffusion occur during the prediction step dueto the
deterministic and random components of stochastic models of dynamics, whilst reinforcement oc-
cursduring the multi plication of the likelihood and prior dueto influence of measurements. Within
the CONDENSATION agorithm, the posterior density is approximated by using the likelihood (fit-
ness function) to weight sampling from the prior - a random sampling method known as factored

sampling.

Interaction with avirtual human is achieved using a Gaussian likelihood function

()| R = ep - EE T, 516

based on the extent to which a hypothesisis consistent with the current shape of the real human,

where hypotheses are propagated using the following algori thm:
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1. Generate a set Xy of N hypotheses to represent the initial prior, where Xy is obtained under

sampling with replacement from theinitial state distribution Tt

2. For each #(t) € X;, usethe error E(Fy, SH(t)) to calculate the likelihood of the hypothesis
using Equation 5.16.

3. Userdlativelikelihood values to weight sampling from X;, the prior, resulting in aset 9; of
N hypotheses representing the posterior distribution.

4. Produce the virtual human's response SV (t) from the hypothesis #(t) € 9 with maximum
likelihood.

5. Generate anew set X; 1 of N hypothesesto represent the new prior, where each #(t+ 1) €
X1 isastochastic extrapolation at timet + 1 from #(t) € 9.

6. Repeat steps 2-5 until the interaction is compl ete.

The virtual human's response SY(t) is generated as described in the single hypothesis propaga-
tion approach. Since the behaviour-based Markov chains have not been extended to include noise
model s as described in Section 4.1.4, noiseisintroduced to thetimeinterval approximation (Equa-
tion 4.7) during the generation of stochastic extrapolations. Theinclusion of temporal noiseallows
model uncertainty to be represented and results in a more reasonable prior and thus more robust
tracking. Spatial noise is omitted since, without a reasonable noise model, perturbed shapes are
unlikely to appear natural. Temporal noiseis sampled from a uniform distribution over [— 13, 18]

and added to the approximated time interval .

The propagation of multiplehypothesesrepresenting aconditional density forms arobust statistical
approach to simulating the evolving shape of aplausiblepartner during an interaction withaperson.
The agorithm described does not fully realise this potential in one respect - the virtual human’s
response is generated from the hypothesis with maximum likelihood, and not that with maximum
a posteriori probability. Although the maximum likelihood and maximum a posteriori hypotheses
typically coincide, transient maximum likelihood hypotheses associated with local maximain the
posterior density will cause thevirtual human’sresponseto skip between states. Sincethe posterior
is represented by the #(t) € 9%, the maximum could be located (although rather expensively) by
cal culating the number of state vector hypothesesthat fall within a hypersphere of radius A centred
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on each individual state vector hypothesis, sel ecting the hypothesis corresponding to
max{|{74(t) : [F{ —Fi| <A, j#i}[}, (517)

where the value of A could be determined experimentally.

5.3.3 Experimental results

Due to the computational reguirements of the multiple hypothesis propagation algorithm, initial
experiments have been performed off-line. Attemptsto generate test data by capturing sequences
of asingle person performing a‘blind’ handshake produced generally poor resultsand it was soon
discovered that the behaviour exhibited was markedly different tothat exhibitedinreal interactions.
To compensate for thisinability to behave naturally in the absence of an interacting partner, test
sequences involving two individua swere captured and one of the individual swas masked before

object tracking was performed.

Interaction experiments were performed using the 401-state Markov chain Mém generated in the
experiment described in Section 5.2.2.2 and the multiple hypothesis propagation algorithm. A to-
tal of 500 hypotheses were propagated using avaue of o = 0.5in thelikelihood function. A large
number of prototypes, artificially high noise, and an artificially widelikelihood functionwerefound
to be necessary to compensate for inadequaciesin the behaviour model caused by the lack of suf-
ficiently representativetraining data. As noted by Isard and Blake [48] (in the context of robustly
tracking sudden movements), artificially high noise increases the extent of predicted hypothesis
clusters, thusrequiring more hypothesesto effectively popul ate these enlarged regions. In addition
to addressing temporal inaccuraciesviaartificia ly hightemporal noise, inadequate behavioural de-
scription can be partially addressed by allowing hypothesesto propagatethrough lesslikely pathsin
the Markov chain, thus relaxing temporal dependenciesto some extent. An artificially wide like-
lihood function and an increased number of hypotheses increases the probability of re-sampling
hypotheses on less likely paths, thus increasing the extent to which these less likely paths are tra-
versed.

Figure 5.9 showsa sel ection of frames from an interaction using the masked test sequence. In each
frame, the virtual human’s response is displayed as a black silhouette, clearly indicating the pro-

vision of aplausible (if rather spectral) interacting partner. Since the interaction is governed by a
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Figure5.9: Interactionwith a virtual human.
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stochastic algorithm, occasionally variation is evident in the response generated to the same test
sequence. Observation of the entire set of hypotheses during an interaction suggestsa distribution
with a mode at the maximum likelihood state and further transient modes describing aternative
paths from decision pointsin the chain. Thisdistribution gradually tails off along past and future
paths, whilst modes describing alternative paths tend to gradually diminish once the current shape

of the real human becomes sufficiently inconsistent with the hypotheses.

54 Summary

In this chapter, two approaches to binary interaction model ling using the behaviour models devel -
oped in Chapter 3and Chapter 4 have been presented - the model ling of event co-occurrence and the
modelling of joint behaviour. In addition, a technique has been demonstrated which alows learnt
models of natural human interaction to be used to equip avirtua human with the ability to interact
inanatural way. Whilst only binary interaction has been considered, both event co-occurrence and
joint behaviour modelling could easily be extended to incorporate any given number of interacting

objects, thus further extending the potential for reasoning over groups of objects.

Modelling the statistical co-occurrence of eventswithin model sof the state or behaviour of individ-
ual objectsallowsthetypicality of interactionsto be assessed and provides a mechanism by which
generative capabilitiescould berealised. Althoughthelevel of detail in such arepresentationisnot
proportional to thetypicality of an interaction, the assessment of event dependence providesause-
ful mechanism for thefiltering of candidate interactions, thus negating the need for less principled

filtering mechanisms based on cues such as object proximity.

The modelling of thejoint behaviour of pairs of interacting objects, using the behaviour modelsde-
veloped in Chapter 3 and Chapter 4, provides more detailed model s of binary interaction which are
both analytic and generative. Experimental results presented for arelatively simple human interac-
tionclearly illustratethat the behaviour model ling framework isequally applicableto themodelling

of such joint behaviours.

Interaction with avirtual object has been achieved using a stochastic tracking algorithm to propa-

gate multiple interaction state hypotheses, the density of which forms a representation of interac-
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tion state probability conditioned on an entire history of observation. Since this approach allows
an interaction to be robustly tracked when only one of the interacting objectsis observed, thetech-
nique could also be applied to tracking single occluded objects over image sequences. Experimen-
tal results presented for arelatively simple human interaction show the successful generation of a

plausiblevirtual partner.



Chapter 6

Conclusions

The research described in this thesis was motivated by a desire to provide a unified framework
allowing the perception of effective models of characteristic object behaviours from the contin-
uous observation of long image sequences. Using a low-level statistical modelling approach, a
behaviour modelling framework has been developed in which detailed behavioura knowledgeis

acquired from observation, where the resul ting behaviour model s are both analytic and generative.

In Chapter 3, the core of the behaviour modelling framework has been developed - a hierarchical
approach to behaviour modelling in which models of the probability density in behaviour space
are learnt using anovel temporal pattern formation strategy which utilisesmodel s of the probabil -
ity density in state space. Models constitute an optimised sample-set representation of probability
density which is both highly specific and reasonably compact, and are learnt in an unsupervised
manner using an extension to the standard iterative Vector Quantization algorithm. By exploiting
the statistical nature of behaviour models, atypicality measure has been derived which alowsboth
the continuousassessment of behaviour typicality and theimplementation of an attentional control

mechanism.

The utility of the behaviour modelling framework has been extended in chapter 4 viathe superim-
position of a Markov chain, the parameters of which are acquired automatically during a further
learning phase. The inclusion of generative capabilities via the addition of a stochastic process

model allows predictions, extrapolations and realistic sample behaviours to be generated. Since

113
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behaviour prototypes can encode entire temporal sequences, the superimposed Markov chains en-
code temporal dependencies within their transition structure and thus form an effective represen-

tation of the underlying dynamic processes.

Two approaches to modelling object interaction using the behaviour modelling framework have
been presented in Chapter 5. The first approach considers the statistical co-occurrence of events
within models of the state or behaviour of individual objects, which, via the assessment of event
dependence, provides a useful mechanism for filtering candidate interactions. In the second ap-
proach, the joint behaviour of pairs of interacting objects is modelled directly and atechniqueis
developed which, using learnt models of human interaction, enables a plausible virtual partner to

be simulated during interaction between a user and the machine.

6.1 Discussion

Underlying the research described in thisthesisis the beli ef that many useful tasksin machine vi-
sion and related disciplineswhich have previously been addressed using hand-crafted, often high-
level, knowledge can in fact be successfully addressed using detailed, low-level statistical be-
haviour models which have been acquired from observation alone. In addition to demonstrating
the acquisition of such models, the experimental results presented within this thesis provide some
evidence of thevalidity of thisbelief. For instance, the assessment of pedestrian trajectory typical -
ity has demonstrated the successful identification of interesting incidents - a task which has clas-
sicaly been approached within the automated visual surveillance domain by employing detailed

hand-crafted knowledge of a scene and the behaviours of objectswithinit.

In addition to removing dependence on costly and inherently inaccurate hand-crafted knowledge,
learnt behaviour models may, in the future, offer a mechanism by which a machine's perception
of its users and environment could be enhanced. For instance, experimental results demonstrating
the simulation of a plausible interactive partner using learnt models of natural human interaction
suggest that learnt behaviour models may be capable of providing the basis of anovel framework

within which a more natural form of user-machine interface could be devel oped.

In the future, it is possible to envisage the use of more detailed models of individuals and their
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behaviours, capable of much richer kinds of interaction - akind of Virtual Immortality?

6.2 Futureresearch

The behaviour modelling framework described within this thesis presents a number of possible
avenues for future research, many of which have been identified within the body of the thesis. In

thisfinal section, afew of the more promising avenues for future research are summarised.

A natura process for the perception of behaviour models should alow gradual temporal adapta
tion, enabling model evolution with occasional changes in characteristic behaviour. Although the
techniques devel oped within thisthesis are capabl e of such adaptivity, further research is required
to assess both its stability and its effectiveness over extended periods of time. In addition, many
behaviours which appear to change more frequently, such as the trajectories of pedestrians within
acity centre, arein fact dependent on atemporal context, and it would beinteresting to investigate

theinclusion of such dependencies within behaviour models.

Asindicated by experimental results presented within this thesis, the behaviour modelling frame-
work may be applicable to a wide range of tasks within machine vision and related disciplines.
Such tasks include event recognition and incident identification within automated visua surveil-
lance systems, increasing therobustnessand efficiency of object tracking systems, providing recog-
nition and segmentation within gestural interfaces, and the automatic generation of realistic object
behaviours within animations, virtual worlds, and computer generated film sequences. Further re-

search is clearly required to realise this potential over the range of possible applications.



References

[1]

[2]

(3]

[4]

(3]

6]

[7]

8]

E. André, G. Herzog, and T. Rist. On the Simultaneous Interpretation of Real World Image
Sequences and their Natural Language Description: The System SocceRr. In Proc. 8th Eu-
ropean Conference on Artificial Intelligence, pages 449-454, August 1988.

N. |I. Badler. Rea-Time Virtua Humans. In Proc. 5th Pacific Conference on Computer

Graphicsand Applications, October 1997.

N. I. Badler, C. B. Phillips, and B. L. Webber. Smulating Humans: Computer Graphics,

Animation, and Control. Oxford University Press, 1993.

A. Baumberg and D. Hogg. An Efficient Method for Contour Tracking using Active Shape
Models. In Proc. IEEE Wbrkshop on Motion of Non-rigid and Articul ated Objects, pages
194-199, November 1994.

A. Baumberg and D. Hogg. Learning Flexible Models from Image Sequences. In Proc. 3rd
European Conference on Computer Vision, volume 1, pages 299-308, May 1994.

A. Baumberg and D. Hogg. Generating Spatiotemporal Models from Examples. Image and
Vision Computing, 14(8):525-532, August 1996.

A. M. Baumberg. Learning Deformable Models for Tracking Human Motion. PhD thesis,
The University of Leeds, October 1995.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the Devel opment of Neuron
Selectivity; Orientation Specificity and Binocular Interaction in Visua Cortex. The Journal
of Neuroscience, 2(1):32-48, 1982.

116



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

117

M. J. Black, Y. Yacoob, and S. X. Ju. Recognizing Human Motion Using Parameterized M od-
els of Optica Flow. In M. Shah and R. Jain, editors, Motion-Based Recognition, volume 9
of Computational Imaging and Vision series, pages 245-269. Kluwer Academic Publishers,
1997.

A. Blake, M. A. Isard, and D. Reynard. Learning to Track the Visual Motion of Contours.
Artificial Intelligence, 78:101-134, 1995.

B. M. Blumberg and T. A. Galyean. Multi-Level Direction of Autonomous Creatures for
Real-Time Virtua Environments. In Proc. SGGRAPH 95, pages 47-54, August 1995.

A.F. Bobick and J. W. Davis. Action Recognition Using Tempora Templates. InM. Shahand
R. Jain, editors, Motion-Based Recognition, volume 9 of Computational Imaging and Vision
series, pages 125-146. Kluwer Academic Publishers, 1997.

A. F. Bobick and A. D. Wilson. A State-based Technique for the Summarization and Recog-
nition of Gesture. In Proc. 5th Inter national Conference on Computer Vision, pages 382—388,
June 1995.

M. Brand, N. Oliver, and A. Pentland. Coupled hidden Markov models for complex action
recognition. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 994—999, June 1997.

A. J. Bulpitt. A Multiple Adaptive Resonance Theory Architecture Applied To Motion Recog-
nition Tasks. PhD thesis, University of York, June 1994,

A. J. Bulpittand N. M. Allinson. Human Motion Recognition Using Co-operative ART Net-
works. In Proc. World Congress on Neural Networks, volume 3, pages 708—711, July 1993.

H. Buxton and S. Gong. Advanced Visua Surveillance using Bayesian Networks. In Proc.
| EEE Wbrkshop on Context-based Vision, pages 111-123, June 1995.

G. A. Carpenter and S. Grossberg. ART 2: self-organization of stable category recognition
codes for analog input patterns. Applied Optics, 26(23):4919-4930, 1987.

C. Cédras and M. Shah. Motion-based recognition: A survey. Image and Vision Computing,
13(2):129-155, March 1995.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

118

T.F. Cootesand C. J. Taylor. Active ShapeModels- * Smart Snakes'. In Proc. BritishMachine
Vision Conference, pages 266—275, September 1992.

T. F. Cootesand C. J. Taylor. A Mixture Model for Representing Shape Variation. In Proc.
British Machine Vision Conference, pages 110-119, September 1997.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training Models of Shape from Sets
of Examples. In Proc. British Machine Vision Conference, pages 9-18, September 1992.

D. R. Corral and A. G. Hill. Visua Surveillance. GEC Review, 8(1):15-27, 1992.

T. Darell and A. Pentland. Space-Time Gestures. In Proc. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 335-340, June 1993.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
viathe EM agorithm. Journal of the Royal Statistical Society. Series B, 39:1-38, 1977.

D. DeSieno. Adding a Conscience to Competitive Learning. In Proc. |EEE International

Conference on Neural Networks, volume 1, pages 117-124, 1988.
J. L. Elman. Finding Structure in Time. Cognitive Science, 14:179-211, 1990.

J. Fernyhough, A. G. Cohn, and D. C. Hogg. Building Qualitative Event Models Automat-
icaly from Visual Input. In Proc. 6th International Conference on Computer Vision, pages
350-355, 1998.

J. H. Fernyhough, A. G. Cohn, and D. C. Hogg. Generation of Semantic Regionsfrom Image
Sequences. In Proc. 4th European Conference on Computer Vision, volume 2, pages 475—
484, 1996.

J.D. Foley, A.van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principlesand
Practice. Addison-Wesley, second edition, 1990.

B. Fritzke. Growing Cell Structures- A Self-Organizing Network for Unsupervised and Su-
pervised Learning. Neural Networks, 7(9):1441-1460, 1994.

D. M. Gavrilaand L. S. Davis. Towards 3-D model-based tracking and recognition of human
movement: a multi-view approach. In Proc. International Workshop on Automatic Face and

Gesture Recognition, pages 272-277, 1995.



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[45]

119

A. Gershoand R. M. Gray. Vector Quantizationand Sgnal Compression. Kluwer Academic
Publishers, 1992.

S. Gong and H. Buxton. On the Visua Expectations of Moving Objects. In Neumann B.,
editor, Proc. 10th European Conference on Artificial Intelligence, pages 781-784. John Wiley
& Sons, 1992.

R. M. Gray. Vector Quantization. |IEEE ASSP Magazine, 1(2):4-29, April 1984.

Grzeszczuk and D. Terzopoulos. Automated Learning of Muscle-Actuated Locomotion
Through Control Abstraction. In Proc. SGGRAPH 95, pages 63—70, August 1995.

S. Haykin. Neural Networks - A Comprehensive Foundation. Macmillan College Publishing
Company, 1994.

T. Heap and D. Hogg. Improving Specificity in PDMs using a Hierarchical Approach. In
Proc. British Machine Vision Conference, pages 8089, September 1997.

T.Heapand D. Hogg. Wormholesin Shape Space: Tracking through Discontinuous Changes
in Shape. In Proc. 6th International Conference on Computer Vision, pages 344—349, 1998.

G. Herzog and P. Wazinski. VIsual TRAnslator: Linking Perceptions and Natural Language
Descriptions. Artificial Intelligence Review, 8:175-187, 1994.

D. Hogg. Model-Based Vision: A Program to See a Walking Person. Image and Vision
Computing, 1(1):5-20, 1983.

D. C. Hogg. Interpreting Images of a Known Moving Object. PhD thesis, University of Sus-
sex, January 1984.

R. Howarth and H. Buxton. Selectiveattentionin dynamic vision. In Proc. 13th Inter national

Joint Conference on Artificial Intelligence, pages 1579-1584, August 1993.

R. J. Howarth and H. Buxton. Analogical representation of space and time. Image and Vision
Computing, 10(7):467-478, September 1992.

X. D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov Models for Speech Recognition,

volume 7 of Edinburgh Information Technology series. Edinburgh University Press, 1990.



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

120

M. Isard and A. Blake. Contour Tracking by Stochastic Propagation of Conditional Den-
sity. In Proc. 4th European Conference on Computer Vision, volume 1, pages 343-356, April
1996.

M. Isard and A. Blake. A mixed-state CONDENSATION tracker with automatic model -

switching. In Proc. 6th International Conference on Computer Vision, pages 107-112, 1998.

M. Isard and A. Blake. ICONDENSATION: Unifying Low-Level and High-Level Trackingin
a Stochastic Framework. In Proc. 5th European Conference on Computer Vision, volume 1,
pages 893-908, June 1998.

G. Johansson. Visua perception of biological motion and amaodel for itsanalysis. Perception
& Psychophysics, 14(2):201-211, 1973.

K. Kakusho, N. Babaguchi, and T. Kitahashi. Recognition of Socia Dancing from Auditory
and Visual Information. In Proc. 2nd Inter national Conference on Automatic Face and Ges-

ture Recognition, pages 289-294, October 1996.

T. Kohonen. The Self-Organizing Map. Proceedingsof the |EEE, 78(9):1464—1480, Septem-
ber 1990.

J. Laszlo, M. van de Panne, and E. Fiume. Limit Cycle Control And Its Application To The
Animation Of Balancing And Walking. In Proc. SGGRAPH 96, pages 155-162, August
1996.

G. F. Lawler. Introduction to Stochastic Processes. Chapman & Hall, 1995.

Y. Linde, A. Buzo, and R. M. Gray. An Algorithmfor Vector Quantizer Design. |EEE Trans-
actions on Communications, COM-28(1):84-95, January 1980.

F. Liuand R. W. Picard. Finding Periodicity in Space and Time. In Proc. 6th International
Conference on Computer Vision, pages 376383, 1998.

S. P. Luittrell. Code Vector Density in Topographic Mappings. Scalar Case. |EEE Transac-
tionson Neural Networks, 2(4):427-436, July 1991.

R.J. Morrisand D. C. Hogg. Statistical Models of Object Interaction. In Proc. IEEE Work-
shop on Visual Surveillance, pages 81-85, January 1998.



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

121

S. Nagaya, S. Seki, and R. Oka. A Theoretical Consideration of Pattern Space Trajectory for
Gesture Spotting Recognition. In Proc. 2nd Inter national Conference on Automatic Face and

Gesture Recognition, pages 72—77, October 1996.

H.-H. Nagel. From image sequences towards conceptual descriptions. Image and Vision
Computing, 6(2):59-74, May 1988.

S. A. Niyogi and E. H. Adelson. Analyzing gait with spatiotemporal surfaces. In Proc. IEEE
Workshop on Motion of Non-rigid and Articulated Objects, pages 64—69, November 1994.

B. North and A. Blake. Using Expectation-Maximisation to Learn Dynamical Models from
Visual Data. In Proc. British Machine Vision Conference, pages 669-678, September 1997.

N. Oliver, B. Rosario, and A. Pentland. Statistical modeling of human interactions. In Proc.
|EEE Workshop on the Inter pretation of Visual Motion, June 1998.

A. Pentland. Machine Understanding of Human Motion. Technical Report 350, MIT Media
Laboratory Perceptual Computing Section, September 1995.

K. Perlin. Real Time Responsive Animation with Persondity. IEEE Transactionson Visual-
ization and Computer Graphics, 1(1):5-15, March 1995.

R. Polanaand R. Nelson. Low Level Recognition of Human Motion. In Proc. |EEE Workshop
on Motion of Non-rigid and Articulated Objects, pages 77-82, November 1994.

R. Polanaand R. Nelson. Temporal Textureand Activity Recognition. InM. ShahandR. Jain,
editors, Motion-Based Recognition, volume 9 of Computational Imaging and Vision series,
pages 87-124. Kluwer Academic Publishers, 1997.

A. Psarrou, S. Gong, and H. Buxton. Modelling Spatio-Temporal Trgjectories and Face Sig-
natures on Partially Recurrent Neural Networks. In Proc. IEEE International Conference on
Neural Networks, volume 5, pages 22262231, November 1995.

L. R. Rabiner and B. H. Juang. An Introduction to Hidden Markov Models. |EEE ASSP
Magazine, 3:4-16, January 1986.

M. Reissand J. G. Taylor. Storing Tempora Sequences. Neural Networks, 4:773—787,1991.



[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

122

G. Retz-Schmidt. A REPLAI of SOCCER: Recognizing Intentionsin the Domain of Soccer
Games. In Proc. 8th European Conference on Artificial Intelligence, pages 455457, August
1988.

D. Reynard, A. Wildenberg, A. Blake, and J. Marchant. Learning Dynamics of Complex
Motions from Image Sequences. In Proc. 4th European Conference on Computer Vision,
volume 1, pages 357—368, 1996.

C. W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioural Model. Computer
Graphics, 21(4):25-34, July 1987.

R. D. Rimey and C. M. Brown. Controlling Eye Movements with Hidden Markov Models.
International Journal of Computer Vision, 7(1):47-66, November 1991.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

H. Ritter. Asymptotic Level Density for a Class of Vector Quantization Processes. |EEE
Transactionson Neural Networks, 2(1):173-175, January 1991.

K. Rohr. Towards Model-Based Recognition of Human Movements in Image Sequences.
CVGIP: Image Understanding, 59(1):94-115, January 1994.

P. L. Rosinand T. Ellis. Detecting and Classifying Intruders in Image Sequences. In Proc.
British Machine Vision Conference, pages 293—300, September 1991.

D. E. Rumelhart and D. Zipser. Feature Discovery by Competitive Learning. Cognitive Sci-
ence, 9:75-112, 1985.

R. Schalkoff. Pattern Recognition: Statistical, Sructural and Neural Approaches. John Wi-
ley & Sons, 1992.

S. M. Seitzand C. R. Dyer. Cyclic Motion AnalysisUsing the Period Trace. In M. Shah and
R. Jain, editors, Motion-Based Recognition, volume 9 of Computational Imaging and Vision
series, pages 61-85. Kluwer Academic Publishers, 1997.

M. Shah and R. Jain, editors. Motion-Based Recognition, volume 9 of Computational Imag-
ing and Vision series. Kluwer Academic Publishers, 1997.



[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

123

M. Shah and R. Jain. Visua Recognition of Activities, Gestures, Facial Expressions and
Speech: An Introduction and a Perspective. In M. Shah and R. Jain, editors, Motion-Based
Recognition, volume 9 of Computational Imaging and Vision series, pages 1-14. Kluwer
Academic Publishers, 1997.

K. Sims. Evolving Virtual Creatures. In Proc. SGGRAPH 94, pages 15-22, July 1994.

T. Starner and A. Pentland. Visual Recognition of American Sign Language Using Hidden
Markov Models. In Proc. International Workshop on Automatic Face and Gesture Recogni-

tion, pages 189-194, 1995.

N. Sumpter, R. D. Boyle, and R. D. Tillett. Modelling Collective Animal Behaviour using
Extended Point DistributionModels. In Proc. British Machine Vision Conference, pages 242—
251, September 1997.

X. TuandD. Terzopoulos. Artificial Fishes: Physics, Locomotion, Perception, Behaviour. In
Proc. SSGGRAPH 94, pages 43-49, July 1994.

M. Turk and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience,

3(1):71-96, 1991.

D.Wangand M. A. Arbib. Complex Temporal Sequence L earning Based on Short-term Mem-
ory. Proceedings of the |IEEE, 78(9):1536-1542, September 1990.

A. Wilson and A. Bobick. Learning Visual Behaviour for Gesture Analysis. In Proc. IEEE
International Symposium on Computer Vision, pages 229234, 1995.

L.-Q. Xu and D. Hogg. Neura Networks in Human Motion Tracking - An Experimental
Study. In Proc. British Machine Vision Conference, pages 405414, September 1996.

Y. Yacoob and M. J. Black. Parameterized Modeling and Recognition of Activities. In Proc.

6th International Conference on Computer Vision, pages 120-127, 1998.

Y. Yacoob and L. Davis. Learned Temporal Models of Image Motion. In Proc. 6th Interna-

tional Conference on Computer Vision, pages 446453, 1998.

J. Yamato, J. Ohya, and K. Ishii. Recognizing Human Action in Time-Sequential Images
using Hidden Markov Model. In Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 379-385, June 1992.



124

[94] Y. Zheng and J. F. Greenleaf. The Effect of Concave and Convex Weight Adjustments on
Self-Organizing Maps. |EEE Transactionson Neural Networks, 7(1):87-96, January 1996.



