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Abstract

An index structure is one of the access methods extensively utilized in the data-
base area. It defines how access to the data stored in pages on disk is made by permit-
ting the retrieval of stored objects through a defined key, that is an attribute of the
object. A multi-dimensional (dD) index defines several attributes non-concatenated
as its key. This work is devoted to the study of a range of multi-dimensional ac-
cess methods that could solve the problem of retrieving spatio-temporal objects in
object-oriented database applications. The study of some performance parameters
and the comparison of five extensions to the selected index method is also included.
After presenting a comparison between several dD indexing methods, the R_tree
structure was selected to index spatio-temporal objects by treating homogeneously
both spatial and temporal dimensions. An object-oriented development technique
named TDSO was utilized to specify and design the RTree class extensions and the
OTree class, which were implemented in C4++.

A novel approach to building dD indexes which attempts to improve the hit ratio
by accommodating spatio-temporal search operators within the indexing mechanism
is the first contribution. The development of a family of methods for indexing into
dD spatio-temporal data together with preliminary testing of these techniques is the
second contribution of the work. We also show a substantial improvement in terms
of reduction in wasted space through a redistribution policy and the achievement of
better hit ratios and fewer disk accesses in some range searches. In general, we have
provided support for the usefulness of the TDSO and object-oriented techniques,
which led to a very flexible scheme whereby the indexing structure was easily adapted

to our problem.
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Chapter 1

Introduction

An access method defines how the access to the data stored in pages on disk is made.
Indexing is one of the access methods extensively used in the database area. An
index permits the retrieval of objects stored in secondary memory through a defined
key which is an attribute of the object. A one-dimensional (1D) index defines a
key that identifies the object completely, called a primary key. A multi-dimensional
(dD) index defines several attributes non-concatenated as its key. Each attribute is
called a secondary key. Relational databases typically use the B_tree or a variant
called the B+ _tree [BM72], [BU77|, [ComT79], [Bes84] data structure to index and
cluster data within the tables supporting a particular database application. The
B_tree structure is the more commonly used 1D index giving the best performances
in this category of indexes. This structure has also been utilised as a dD index when
several index attribute values are concatenated to have one only value as the index
key for B_tree indexing.

The B_tree index has many very good characteristics, that are very desirable in

a multi-dimensional index [Fre93], such as :

1. the tree is always balanced;

2. worst-case single-object search, insertion (excluding overflow) and deletion (exclud-
ing underflow) require no more disk access than the height of the tree. Thus, the
access time for a single object is constant and predictable, for a given tree size;

3. overflow (split) and underflow (merge) propagate only upwards in the tree;
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4. high average leaf and branch node occupancies, more than 67%;
5. worst-case node occupancy near 50%;
6. the index size is always directly proportional to the quantity of indexed objects;

7. the method is fully dynamic, no reorganizations are required.

Object-oriented databases have been developed using B _trees to index their ob-
jects with a number of different strategies [BK89], [MS90], i.e. the hierarchical index
which indexes objects by using their object identifier concatenated with their class
number in the system.

We are interested in the study of a diversity of dD access methods that could
fulfill B_tree’s main characteristics and could solve the problem of retrieving spatio-

temporal objects in object-oriented database applications.

1.1 Motivation and research objectives

Originally, we were looking for a good index method to index multimedia, object-
oriented, and spatial objects to be used in the D/K model proposed by a colleague
in his PhD thesis [Mon93]. By studying the D/K model we realise that it specifies
spatial classes such as topological classes (SpChain, SpNode, and SpPolygon), spatial
object classes (SpatialObject, SpatialRepresentation, SpWindow, and Map), spatial
graph classes (directed and undirected), etc. Figures 1.1 and 1.2 show a summary
of this model, where the SpatialObject class has one attribute called representations
that refer to another class named SpatialRepresentation class. This means that
any spatial object in the system has to be reachable from the SpatialObject class
and has to have several representations based on scales, geometry, and position
attributes. This model was proposed to manage two spatial dimensions and it also
supports graphical objects. A graphical object has attributes as coordinates (a
sequence of points), a bounding box (mbr), and drawingDot (a drawing pattern).
The relationship between spatial and graphical objects is made by the geometry
defined for the SpatialObject class. This geometry is specified by a set of objects of
the GraphicalObject class. Thus, any spatial object has a point representation as
well as an mbr representation in the D/K model. In our approach, we take these
two representations as a base to develop our work where the spatial object shape
is approximated by a minimum bounding box, and the index structure does not
exactly evaluate a query, but only yields a set of candidates, that may fulfill the

query condition.
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Basic classes
Magnitude classes Collection Graphical
Character ArrayOf[X] Form (Image)
Date String / Text Point
Time SetOf[X] Rectangle
Integer ListOf[X] Paragraph
Float Dictionary[X,Y]
Association OrderedCollection Of[X]
D/K multimedia classes
Textual Graphical Image | Hypermedia
Text GraphicalPoint | Image Unit
Paragraph Line Link
Polygon Button
Window HyperNetwork

Figure 1.1: Basic and multimedia classes of the D/K model.

AN
SpatialGraph
nodes O relationship
o)
SpatialObject <]' SpatialRelationship
[scale | @2 |
connects
repBy
| SpatialRepresentation |
geometry
Graphical Object
| | ]
Point Line Polygon

Figure 1.2: D/K classes.
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Researchers working on graphic and on geographic applications have created
many dD index structures to be used in their research areas. One of them is the
quadtree [SW88], [Sam89], [FB74], that was specially created to manage raster data
in two dimensions (2D) with good performance. However, the D/K model supports
vector instead of raster representation and we focus our attention in spatial indexing
for vector data.

At the same time, researchers in the database area, working on non-standard
database applications as Geographic Information Systems (GIS), Computer Aided
Design (CAD) or Computer Aided Manufacturing (CAM), among others, have pro-
posed other index structures, such as : the R_tree [Gut84], the R* _tree [SRF87],
the cell tree [Gun89], [GBI1], the grid file [NHS84], etc. These data structures were
cataloged as dD access methods and they work mainly on vector data. They are
named multi-dimensional because they use several non concatenated index keys to
index and cluster data. These several index keys are data attributes pertaining to
real space or not depending on the application. In the case of pertaining to real
space, 1. e. geographic coordinates, the index structure is normally called a spatial
index [SW93], otherwise it is named a multi-criteria index.

Multi-dimensional access methods can be divided into multi-dimensional point
access methods (MPAM), and spatial access methods (SAM). MPAM works with
dD points that are indexed by regions of points where each region is stored in the
same data page. Example index structures representing MPAM are K-D-B tree, grid
file, and buddy tree. On the other hand, SAM organises spatial objects according to
spatial position and extension, normally indexed by the minimal bounding rectangle
(mbr). The spatial dimensions are basically space coordinates, 2D or 3D. Example
SAM structures are the spatial k-d tree, the R_tree, R™ _tree, and cell tree.

Non standard database applications may include a temporal domain together
with a spatial one. Spatio-temporal databases can be used for these kind of applica-
tions, and each time more people realise the advantages of having temporal data in
the database. Actually, CAD/CAM software includes a kind of temporal manage-
ment in its version manager. To deal with this combination of spatial and temporal
data, it is desirable to have specific access methods to obtain better system perfor-
mance. These access methods are called spatio-temporal, and two of them are the
RT _tree [XHLI0] and the TR*_tree [SK92]. A spatio-temporal object may change
its spatial location and/or shape at different time intervals. Therefore, the object
remains the same but its spatio-temporal state changes.

The two methods mentioned above are both based on the R_tree index. It is
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interesting because the R_tree is a generalization of the B_tree to higher dimensions.
Therefore, the R_tree is a dD access method which has the majority of the good
characteristics already defined for the B_tree. The only one that R_tree does not
maintain is that mentioned in point 2, where it requires more disk accesses than the
height of the tree for worst-case single-object search, insertion (without overflow),
and deletion (without underflow). This last characteristic is due to the presence of
overlapping regions in the non leaf nodes of the R_tree.

The approach of the work by X. Xu et al. in [XHL90] is to include temporal
attributes in the index key along with the spatial attributes. This is the approach
adopted in the thesis.

Databases and indexing are two areas narrowly related because the first one
mainly uses index structures to manage objects stored on disk. Object-oriented
databases (OODB) integrate concepts from the object-oriented approach with data-
base capabilities. To manage objects in OODB, an identifier is assigned to each
object in the database, named Objld which is used as the indexing key. There are
several kind of indexes in this area, but all of them are based on the B_tree. The
Objld is the primary key and requires a 1D index structure, although it is possible
to use a dD index if keys other than the Objld are included.

Spatial databases contain spatial objects and define spatial object location as its
index key, but this key is composed of many values normally representing X and Y
coordinate values. Therefore by nature, the spatial key is multi-dimensional and all
of the spatial indexes that use this index key are multi-dimensional too.

In the case of temporal databases, temporal objects have at least one temporal
attribute. If several time dimensions are considered like valid time and transaction
time, then a dD index is required to manage these dimensions separately. But if
only one time dimension, then the B_tree is the best 1D index method.

We are interested in the study of a diversity of dD access methods to decide
on a method which permits spatial, temporal, and spatio-temporal retrieval and
operations of spatial, temporal or spatio-temporal objects managed by following the
object-oriented approach as our first objective in this work.

After choosing the R _tree structure, we were interested to explore and test possi-
ble index class extensions to try to obtain better performances in retrieving spatial,

temporal, and spatio-temporal objects as our second objective.
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1.2 Problems and proposed solutions

In this section, we describe some problems related to spatio-temporal indexing. First
of all, we focus on the spatial object retrieval by an index method which attempts
to avoid the extra geometric calculus due to object shape. Secondly, we study the
spatio-temporal indexing problem by using a dD structure and treating both metrics
homogeneously. Finally, we deal with the problem of testing some of the solutions

we propose in this work.

1.2.1 Spatial indexing without extra geometric calculus

The spatial access methods present the general problem of retrieving spatial objects
yet avoiding the extra geometric calculus due to object shape. This problem is im-
possible to solve without object partitioning which we wish to avoid, because object
partitioning divides spatial objects into several pieces that are indexed separately.
For retrieving one or several spatial objects, more index searches must be performed
than those needed without object partitioning, with a corresponding larger search
time. Additionally, there is not a fixed number of pieces for partitioning a specific
spatial object making it impossible to calculate an average search time for spatial
objects.

We propose a new index structure named the O_tree, which defines two containers
to index spatial objects. One of them is the mbr and the other one is another mbr
built rotated 45 degrees in relation to the X-Y axes. These two containers form
an irreqular octagon that better defines the object shape in case of polygons, and
permits less extra geometric calculus in spatial queries. But, the original problem
persists because object shapes can take any a variety of forms. A good approach to
try to solve this problem is the TR*_tree where objects are partitioned in several
trapezoids and each of them are indexed separately. We do not follow up this

solution because of object partitioning.

1.2.2 Spatio-temporal indexing

We define a spatio-temporal object as an object that has at least one spatial and
one temporal property. It can be represented by a four tuple containing (Objld,
spatialAtt, temporalAtt, att), where Objld is the object identifier, spatialAtt is the
spatial location and/or shape, temporalAtt is the temporal property, and att repre-

sents other properties different from those spatial and temporal.
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The problem of indexing spatio-temporal objects is then a problem of defining
a dD index, because both spatial and temporal metrics of the object are multi-
dimensional. We propose the object-oriented R_tree extended with spatial, tem-
poral, and spatio-temporal search operators. In this extension, we consider three
groups of relationships among objects, namely: spatio-temporal, spatial, and tem-
poral. In spatio-temporal, we only consider the topological relationships among d
dimensional rectangles, where spatial and temporal dimensions are treated homo-
geneously. The d dimensions defined for these objects are internally represented
by using a unique format unifying data representation for homogeneous treatment.
We also consider multiple combinations of the defined search operators finding a
minimal set of them. A brief summary of this work is presented in [BRI7b].

To implement the R_tree index, we choose the object-oriented approach building
the RTree class in C4++. This class was formally specified and designed obtaining
five extensions, where each extension differs from the other in some aspect to the
implementation. These extensions were made to test which one performs best after
a comparison of its results. Because of the facilities of the object-oriented approach,
we built the O_tree, which is our proposed index method based also on the R _tree.
We call it the sixth extension, where we only modify some functions of the R_tree
original class, and delete all temporal and spatio- temporal functions only conserving
the spatial ones.

In order to solve the problem of choosing the best extension that we have, exper-
iments based on four different kind of data were designed. Real data was obtained
from some institutions, but we did not find appropriate data to run and test some of
the extensions. The real data available was preprocessed obtaining a compacted data
set, but was insufficiently demanding in terms of the quantity required to test the
extension fully. Therefore, we generated datasets for points uniformly distributed
in 2D and 3D space and in space-time, respectively. Several important parameters
were defined, in order to compare the extensions and make conclusions about which

is the best extension we had.

1.2.3 D/K spatio-temporal objects indexing

We extend the original D/K model to support two more classes of objects, temporal
and spatio-temporal, respectively. The original proposition about an integrated
index structure [Bes93], which supports multimedia, spatial, and object-oriented

information systems was changed to one supporting spatio-temporal objects too.
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Thus, each spatial object has several representations based on scales, geometry, and
position attributes. This latter attribute is represented by a point. It suggests the
need of a MPAM for indexing spatial objects in the D/K model. Nevertheless, this
model uses graphical objects too containing an mbr attribute used to represent the
geometry of the associated spatial object. As we say before, any spatial object
has a point representation as well as an mbr representation in the D/K model. In
conclusion, the choice of an indexing method was not trivial, but it had to be a
method that can support both point and spatial indexing. We found in the R_tree
a solution because its entries are written as coordinate intervals where a coordinate
point can be represented by an interval of zero length.

As we mentioned before, the D/K model follows the object-oriented approach,
therefore an index method is needed to treat object identifiers and another index
to support spatio-temporal objects. It suggests the use of an access method that
separates the spatio-temporal index itself from the data object file. Thus, the cell
tree cannot be used without modifying its conception, and the R_tree may be used

due to its good characteristics and its adequacy to this problem.

1.3 Organisation of the thesis

The rest of this work is presented as follows: Chapter 2 describes the principal
multi-dimensional access methods, highlighting the importance of object indexing
and discussing the main characteristics of each of the presented index structures. It
begins with some multi-dimensional point access methods, followed by those meth-
ods called spatial access methods, and finishing in a summary of both types of
multi-dimensional indexing methods, shown in a comparative table. It also includes
two spatio-temporal indexing methods, both based on the R _tree structure. A brief
summary of these structures is included in [BR97a].

The main spatio-temporal concepts used in spatio-temporal object-oriented data-
bases is specified in chapter 3. These concepts are presented beginning with the
more general object-oriented concepts related to objects, relationships, and object-
oriented databases. After that, is described spatial objects, and temporal ones.
Finishing with spatio-temporal objects, relationships, and indexing characteristics.
We also mention the approach to extending of the D/K model to support spatio-
temporal objects that will be appear in [BM98].

Chapter 4 presents an object-oriented formal model of the R_tree structure. At

the beginning, we include some design characteristics to better explain the bases of
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our formal model, and we finalize with the presentations of the requirements for the
RTree class extensions.

An object-oriented R_tree design and implementation is explained in chapter 5.
It contains the specification and implementation of the RTree class by using the
Object System Development Technique (TDSO) [Bes95]. It also specifies R_tree
extensions based on the original one which is extension 1, and we discuss in detail the
several possible spatio-temporal operators to support spatio-temporal relationships.
A paper where is presented the first four extensions is reported in [BMR96].

Chapter 6 contains a description of the kind of data that we use to test the
R _tree extensions, the experimental design, and a discussion of the results obtained.

The conclusions and future work of this thesis are described in chapter 7. A
brief summary of the main characteristics of some Object-Oriented Database Man-
agement Systems is presented in appendix A, including a comparative table. Ap-
pendix B contains the rest of the TDSO implementations corresponding to each
extension of the tree. Finally, some results obtained from the experiments, and a

description of the kind of files used to test extension 6, are included in appendix C.
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Multi-dimensional access methods

Access methods are data structures that determine how the access to the data stored
in pages on disk is made. One of these access methods is named indexing. In this
thesis we are concerned with data access based on multidimensional search criteria,
such as multidimensional point access methods (MPAM) and spatial access methods
(SAM). A MPAM partitions the data space into regions, such that all records in one
region are stored in the same data page. A SAM organises spatial objects according
to spatial position indexed by their minimal bounding rectangles (mbr). The main
structures that represent MPAM are K-D-B tree, grid file, and buddy tree; those
representing SAM are spatial k-d tree, R_tree, RT _tree, and cell tree. We summarize
the main characteristics of each access method and we present a table comparing the
main structures in terms of several properties such as nodes of the structures, order,
spatial technique, spatial object, insertion and deletion of data objects, handling of
objects, fragmentation.

An index permits the retrieval of objects stored in secondary memory through
a defined key which is an attribute of the object. This key may be either one
attribute that identifies the object completely (called the primary key), or sev-
eral attributes that, concatenated, form a primary key, or several attributes non-
concatenated (taken separately). In the last case, each attribute is called a secondary
key of the object. In this chapter, we are interested in those access methods that
permit object retrieval by secondary keys. These methods are known as multikey,

multiattribute, or multidimensional access methods as well.

10
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Our main objective is to study a variety of these methods to decide on a method
which permits spatial retrieval and operations on spatial and/or temporal objects.
Following the object-oriented approach, a spatial object must belong to a class of
spatial objects which has as its instances the whole of the objects that contain spatial
properties. By spatial properties we refer to geometrical (shape, position, and size)
and topological (adjacency, connectivity, and inclusion) properties, where we shall
assume the topological properties can be derived from the geometrical ones'. The
main retrieval operation of spatial objects is made by location in space, and the
majority of the spatial access methods take the position or some property related to
position, as the defined key. Some methods developed for indexing raster data (e.g.
quadtrees) may also be applied to vector representation, but do not consider these
here. We are also interested in temporal access methods for the mixed model, and
more specifically in methods that could treat objects varying in space and time. We
define a temporal object class which contains all time varying objects with temporal
attributes. These objects are mainly retrieved by the temporal attributes which are
used to index them. Temporal is a generic term implying some type of time support
in the database.

To build and present each access method, we use some real data shown in fig-
ure 2.1. The first column named Objld is the object identifier, the second one is
the minimal bounding rectangle (mbr) which actually covers that object, the third
one represents other data relevant to the application, and the last column indicates
the object’s centroid. This last column is needed to build only one of the indexing
methods mentioned below. Objects covered by mbr are parcels of land at Carora
city.

Section 2.1 below gives a description of some multidimensional point access meth-
ods basically summarized in terms of their main characteristics which are presented
in the cited bibliography of each method. Section 2.2 presents, in a similar manner,
concepts and data structures used in spatial access methods. Section 2.3 summa-
rizes in a comparative table the access methods named in the two previous sections
including a brief description of each property that is mentioned in the table. Two
main spatio-temporal access methods are presented in section 2.4. Finally, some
comments and conclusions are included here as well as a tabular comparative anal-

ysis.

!This ignores the issue that topological relationships based on geometrical may change with
geometric scale.
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Objld mbr Other data | Centroid
o1 318,124:374,195 66 346,159.5
02 287,124:318,147 73 302.5,135.5
03 326,117:382,188 66 354,152.5
04 | 252,151:282,175 73 267,163
05 287,147:345,220 66 316,183.5
06 305,147:454,215 50 379.5,181
O7 | 239,139:272,168 73 255.5,153.5
O8 | 481,127:535,194 50 508,160.5
09 | 454,127:481,147 60 467.5,137
010 | 522,327:540,341 50 531,334
O11 | 423,172:476,241 55 449.5,206.5
012 | 382,166:410,188 60 396,177
013 | 449,152:503,219 50 476,185.5
014 | 423,152:449,172 60 436,162
015 | 282,151:340,225 66 311,188
O16 | 391,198:444,266 55 417.5,232
O17 | 345,195:374,220 60 359.5,207.5
O18 | 507,194:535,215 50 521,204.5
019 | 418,176:473,244 55 445.5,210
020 | 391,176:418,198 60 404.5,187

Figure 2.1: Some real data of Carora city of Venezuela.

2.1 Multidimensional point access methods

The main characteristic of a multidimensional point access method (MPAM) is that
it partitions the data space into regions, such that all records in one region are stored
in the same data page. The division of the whole space into disjoint subregions is
normally made depending on the number of points in each subregion. As pointed

out by M. W. Freeston in [Fre89]:
7 (Grid files)”

‘...adopt a direct geometric representation of the data: the tuples of an
n-ary relation are represented as points in an n-dimensional hyperspace, the
dimensions of which are the domains of the n attributes. The problem is how
to allocate the tuples in this hyperspace to the set of disk blocks (or pages) in
the file. In geometric terms the obvious thing to do is to divide up the data
space into a set of hyper-rectangles or block regions, each of which corresponds
to a disk page. However, in order to maximize the storage efficiency of the
file, the number of such regions, and the positions of their boundaries, have
to be arranged so that each of the corresponding disk pages has a high data
occupancy.’

There are three important attributes for classifying MPAM according to T. Sellis
et al. in [SRF87], they are i) whether the position of the splitting hyperplane is
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fixed or not, ii) the splitting dimensionality, which can be only 1-dimension or all
d-dimensions as the quad/oct-trees, and iii) the locality of the hyperplane, which

can affect all the regions in the given direction or solely inside the region to be split.

2.1.1 K-D-B tree

This structure was presented by J. T. Robinson in [Rob81] as a large, dynamic,
multikey index based on a combination of the k-d trees [Ben75], and the B_trees.
The k-d tree is a multidimensional binary tree, where each level corresponds to a
dimension that is chosen cyclically among of the defined dimensions of the binary
tree.

It does not mention any spatial technique, but it defines a point as a value x;
in a set formed by the cartesian product of a list of domains, and a region as a
set of all points (o, x1,...,xx_1) satisfying min; < z; < max;, 0 <7 < K — 1.
The concept of mbr is not mentioned, but it is used in the structure by means of
region pages. Thus, region pages contain a collection of entries of the form: (region,
pageld), and point pages have entries of the form: (point, location), where pageld
is a page identifier, and location is a record identifier.

There are no overlapping regions because regions in the page are disjoint, and
their union is a region. The choice of the splitting dimension in a region page
depends on the cycle of partitioning which is a concept taken from k-d trees [Ben75].
In underflow conditions (i.e. when a page has less than the half of the maximum
number of entries), reorganization is not used in Robinson’s paper [Rob81], although
an outline algorithm for this purpose is given. There is no performance comparison
with other methods because the K-D-B tree is the first multidimensional structure
after the k-d trees of Bentley.

An example of this structure is presented in figure 2.2. It was built by following
the algorithms presented by J. T. Robinson, with a dimension of 2 (K=2), a region
page capacity (c) of 5, and a point page capacity (b) of 4. Figure 2.2 also shows both
region pages and point pages formats. Each page is identified by a number followed
by the height of this page, the current number of entries, a dimension identifier for
the last split in this page, and the corresponding entries. Symbols L and H mean
lowest and highest numbers in each dimension, respectively. When the page size
is fixed, region pages have less capacity than point pages, because entries in region
pages are longer than entries in point pages. This example shows a percentage of

occupancy per page of 76.71%
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Region pages of the tree
Number | Dimension
Page | Node of of the
Id. height entries last split Region node entries
P3 1 3 Y L.318:.1,151:P1 318,326:1,,151:75
T.,326:151,00:P4
Ps 1 5 Y 326,423:1,176:P2 | 326,423:176,188:P16
123,481,188 P12 | 326,391:188,215:P10
391,481:188,215:P15
P9 2 2 X L,326:.L,0:P3 326,481:1,,215:P8
481,H:L,,215:P17 326,H:215H:P13
P13 1 3 X 326,522:215,225:P6 326,522:225 H:P14
522,H:215 H:P11
P17 1 1 Y 481,H:L,215:P7
Point pages of the tree
Number | Dimension
Page | Node of of the
Id. height entries last split Point node entries
P1 0 4 Y 287,124:02 239,139:07 287,147:05
305,147:06
P2 0 3 X 326,117:03 382,166:012 | 449,152:013
P4 0 4 X 252,151:04 272,168:07 282,151:015
282,175:04
P5 0 2 Y 318,124:01 318,147:02
P6 0 4 X 454,215:06 503,219:013 345,220:05
374,220:017
P7 0 4 Y 481,127:08 481,147:09 507,194:018
535,194:08
P10 0 3 Y 345,195:017 374,195:01 382,188:03
P11 0 3 Y 522,327:010 | 540,341:010 | 535,215:018
P12 0 4 Y 454,127:09 423,152:014 | 423,172:011
449,172:014
P14 0 4 X 340,225:015 | 476,241:011 | 444,266:016
473,244:019
P15 0 3 X 410,188:012 | 391,198:016 | 418,198:020
P16 0 2 X 391,176:020 | 418,176:019

Figure 2.2: A 2-D-B tree with 5 entries/region page, and 4 entries/point page.
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2.1.2 Grid file

The grid file was first presented by J. Nievergelt et al. in [NHS84] as a multidi-
mensional, symmetric, and adaptable file structure for handling large amounts of
multidimensional data. It partitions a k-dimensional data space into k unidimen-
sional arrays called scales, each representing a single dimension. Scales are indices
of a k-dimensional dynamic array named the grid directory, and each element of
this directory is a pointer to a disk block called a bucket. Several directory cells
can share a bucket, and the region defined in this way is called a bucket region,
which has a rectangular shape. It supports the two-disk-access principle for single
point retrieval. Thus, an exact match search is made by searching in each scale
for the correct subindex for each dimension, without any disk accesses, after that,
subindices determine the correct directory cell where the bucket address is located.
A second access reads from disk the bucket containing the required information.

An extension of this structure presented by D. Hernéandez in [Her90] shows a grid
index that follows the same principles for the scales and directory, but the bucket
format is different. In this section, we use the grid index to show an example of a
grid file built from the data of figure 2.1, where bucket entries comprise a deletion
flag for that entry, an entry point, and the object reference. A bucket is composed of
a bucket identifier and a set of bucket entries. Buckets contain references to objects
which are stored on other file. This extension cannot support the two-disk-accesses
principle, but it can be used as a multiattribute index method. Figure 2.3 shows the
example mentioned above. A grid file was built in a similar manner to the previous
structure, but each point in the mbr of an object is indexed separately because
the grid index is not spatial. A highest value (HV) is used for each scale to make
algorithm shorter. The percentage of bucket occupancy is 76.92%.

2.1.3 Buddy tree

This structure was presented by B. Seeger and H. -P. Kriegel in [SK90] as a new
multidimensional access method supporting point as well as spatial data. It is a
combination of the R_tree and the grid file. Its main characteristic being that it
avoids the partitioning of empty data space. Its name was taken from its partitioning
and reorganization strategies based on a generalization of the buddy system, which
is obtained when a page is partitioned in two forming two new subregions of the
original one. In a buddy system, each page and its region have a unique buddy from

which it is split off.
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ScaeY
[<151 | <188 <195 |<215 | <y
Scae X

<318 P1 P3 | P3| P3 P3

<326 P4 P3 P3 P3 P3

<423 P5 P2 Po | P12 P6

<449 P5 | PI3 | P9 | PI2 | P6

<622 P5 | P10 P9 | P12 | P11

<HV P5 P8 | P8 | P8 | P7

Directory

Page Bucket entries
Id. Deletion flag, point, and object reference
PT | 0 | 287,124:02 | 0 | 287,147:05 | 0 | 305,147:06 239,139:07
P2 | 0 | 382,166:012 | 0 | 391,176:020 | 0 | 418,176:019
P3 | 0 | 252,151:04 | 0 | 282,175:04 | 0 | 272,168:07 282,151:015
P4 | 0 | 318,124:01 | 0 | 318,147:02
P5 | 0 | 326,117:03 | 0 | 481,127:08 | 0 | 454,127:09 481,147:09
P6 | 0 | 340,225:015 | 0 | 345,220:05 | 0 | 444,266:016 374,220:017
P7 | 0 | 522,327:010 | 0 | 540,341:010 | 0 | 535,215:018
P8 | 0 | 535,194:08
P9 | 0 | 382,183:03 | 0 | 410,188:012 | 0 | 507,194:018
P10 | 0 | 449,152:013 | 0 | 449,172:014
P11 | 0 | 454,215:06 | 0 | 476,241:011 | 0 | 503,219:013 473,244:019
P12 | 0 | 345,195:017 | 0 | 374,195:01 | 0 | 391,198:016 418,198:020
P13 | 0 | 423,152:014 | 0 | 423,172:011

Figure 2.3: A grid index with 4 entries/bucket.
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Insertions and deletions are restricted to exactly one directory path. The direc-
tory grows linearly with the number of file records. The data space is partitioned
into mbrs of the actual data, and the rectangles in directory pages are disjoint.
It does not allow overflow pages and it is not dependent on the sequence of data
insertions.

The nodes consist of a collection of entries where each entry is a tuple of R,
which is a k-dimensional rectangle and p; which is a pointer referring to a subtree or
to a data page. The rectangles in the directory nodes must be a regular B-partition
of the data space which is defined as follows: A B-rectangle of a k-dimensional
rectangle S is another k-dimensional rectangle R which is generated by successive
halving of S. For an arbitrary rectangle R C D, where D is the data space, there
exists a smallest B-rectangle of D such that # C B. The B-rectangle of R is
called the B-region of R, in short B(R). Thus, a set of k-dimensional rectangles
{R1,..., Ry}, k > 1, is called a B-partition of the data space D if and only if
B(R;)N B(R;) =0Vi,5 € {l,....k},i #J.

For merging two pages in the buddy tree, the regions of the pages must be

buddies, which is formalized as follows,

Let V = {Ry,..., R;} be a B-partition, k > 1, and let S,7T € V.S £ T.
The rectangles S, T are called buddies if and only if B(SUT)NB(R) =,
VRe V\{S T}

That is, two rectangles are buddies provided the B-region enclosing them does not
intersect with the B-region of any of two other rectangles.

For splitting a directory page, the B-partition of the buddy tree has to be a
regular B-partition. Thus, a B-partition V = {Ry,..., Ry}, k > 2 is called regular,
if and only if all B-rectangles B(R;),1 < ¢ < k can be represented as a kd-trie. A
kd-trie is a binary digital tree where the internal nodes contain an axis and two
subtree pointers, and the leaves have the rectangles of a B-partition.

The directory of the buddy tree is unbalanced and this property is the reason
why it guarantees a linear growth of the directory in the number of file records. A
buddy tree built with two dimensions, 5 entries/directory pages, and 4 entries/data
pages is shown in figure 2.4. Directory pages are also shown in the figure, where
each page has a page identifier, the actual number of entries in a page, and the
node height or page level. A directory page entry is composed of an mbr and a page
reference. Data pages are leaf nodes of the buddy tree. Figure 2.4 was obtained

through following the directions presented in the original paper describing the buddy
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tree [SK90]. Surprisingly, each time we have to split a node, the paper indicated
that the Y dimension should be used for splitting, so we probably obtained a special
case that is not very representative of the buddy tree shape for space partitioning.

The percentage of page occupancy is 69.41%.

2.2 Spatial access methods

Spatial access methods (SAM) are access methods for organizing multidimensional
spatial objects, like rectangles, polygons, etc. They are also known as methods
for rectangles too. According to T. Sellis et al. in [SRF87], we can classify these

methods into three categories such as

Methods that transform rectangles into points within a space of higher di-
mensionality. Examples: the k-d trees, and the grid file.

Methods that use space filling curves, to map a k-d space onto a 1-d space.
The idea is to transform k-dimensional objects to line segments using the z-
transformation.

Methods that divide the original space into appropriate subregions (overlap-
ping or disjoint). Examples: the R_tree, the RT _tree, and the cell tree.

2.2.1 Spatial k-d tree

The spatial k-d tree (sk-d tree) proposed by B. C. Ooi et al. in [OSDM91] is a
structure based on k-dimensional binary trees (k-d tree) presented by J. L. Bentley
in [Ben75]. According to its authors its main characteristics are that it uses object
bounding as a spatial technique that avoids both object duplication and object
division. Thus, it uses mbrs for indexing spatial objects. An mbr is defined as an
array of a single dimension containing the centroid, and extensions in each of the k
directions. It supports both intersection and containment search.

At each node, a discriminator value is chosen in one of the dimensions to partition
a k-dimensional space into two subspaces, the high (HISON) and the low (LOSON)

subspaces. It has two types of nodes, the internal nodes are of the form:
(discriminator, maxposon, disc — value, loson — ptr, mingrson, hison — ptr),

and leaf nodes are of the form:
(bound, min — range, max — range, page — ptr),

where
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P8
P11
P18 /’/ P3 \
P16 P4
P19 P7
P5 P1
P9 ,f// P15
P20 P12
P Pl P14
P2 Pe P10
Directory pages of the tree
Number
Page of Node
Id. entries height Directory node entries
P3 3 1 287,117:326,117:P1 | 287,124:481,127:P7
239,139:239,139:P4
P8 5 2 239,117:481,139:P3 252,147:481,166:P15
279,168:535,198:P9 340,215:535,244:P18
444,266:540,341:P11
P9 5 1 272,168:449,172:.06 | 282,175:418,176:02
382,188:410,188:P13 | 345,194:535,195:P17
391,198:418,198:P 20
P15 3 1 305,147:481,147:P10 | 252,151:282,151:P14
382,152:449,166:P12
P18 3 1 454,215:535,219:P5 340,220:374,225:P19
473,241:476,244:P16
Data pages of the tree
Number
Page of Node
Id. entries height Data node entries
P1 2 0 287,117:05 326,117:03
P2 3 0 282,175:04 418,176:019 | 391,176:020
P4 1 0 239,139:07
P5 3 0 454,215:06 503,219:013 | 535,215:018
P6 3 0 272,168:07 423,172:011 | 449,172:014
P7 4 0 287,124:02 318,124:01 481,127:08 454,127:09
P10 3 0 305,147:06 318,147:02 481,147:09
P11 3 0 522,327:010 | 540,341:010 | 444,266:016
P12 3 0 382,166:012 | 449,152:013 | 423,152:014
P13 2 0 382,188:03 410,188:012
P14 2 0 252,151:04 282,151:015
P16 2 0 476,241:011 | 473,244:019
P17 4 0 535,194:08 507,194:018 374,195:01 345,195:017
P19 3 0 345,220:05 374,220:017 | 340,225:015
P20 2 0 391,198:016 | 418,198:020

Figure 2.4: A buddy tree with 5 entries/directory page, and 4 entries/data page.
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discriminator indicates the dimension that is being partitioned.
divsc — value is the value that partitions the space.
maxroson is the maximum range value of the LOSON subspace.

mingrsony is the minimum range value of the HISON subspace along the dimension
specified by discremanator.

bound is the dimension.
man — range is the minimum value of objects in the data page.
mazx — range is the maximum values of objects in the data page.

page — ptr is the address of a page in which mbr and identifiers of the object are stored.

This tree is stored in a page tree which is not a binary tree, as is shown in
figure 2.5. Pages contain a page identifier, a page height indicator or level, and the
current number of entries in this page. Entries in index pages are both internal and
leaf nodes of the sk-d tree. The s2-d nodes are indicated by a node identifier, a node
flag to recognise if it is an internal or a leaf node, followed by either the internal
node format described above in the case of an internal node or the leaf node format
in the case of a leaf node flag. Data pages contain mbrs of each object and the
object reference. The page occupancy obtained was 79.49%.

The page tree was built following the splitting algorithm included in Ooi’s paper.
To split a page, the sk-d subtree that approximately splits the page in the middle
is chosen. The chosen sk-d subtree is moved to a new page and page entries are
updated. Thus, each page begins with an internal node as its root. It is very
difficult to obtain a balanced tree in this manner, and paging a binary tree is a

subject that requires research.

2.2.2 R_tree

This structure is based on the B_tree and it was first presented by A. Guttman
in [Gut84] for fast retrieval of data objects by their spatial location. It has similar
properties to the B_trees, specifically that the index is completely dynamic, balanced,
growing upwards only, and each tuple has a unique identifier. We summarise the

B_tree characteristics as follows:

1. the tree is always balanced;

2. worst-case single-object search, insertion (excluding overflow) and deletion (exclud-
ing underflow) require no more disk access than the height of the tree. Thus, the
access time for a single object is constant and predictable, for a given tree size;
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P2
Root i
T [ (= P
m | ——
N2)) (@10 (N%)
P1 / P7 P3 / P8 P4 / PS
o7 015 03 06 09 o11
04 05 o1 016 08 010
02 o12 o17 013 o018
020 o014 019
Index pages of the page tree
Number s2-d nodes
Page Page of Internal and leaf nodes are
Id. height entries mixed within an index page
P2 3 4 N3:F:X:331:345:N9:305:P6 N9:F:X:306.75:318:N1:282:N8
N1:T:Y:124:175:P1 N8:T:X:345:282:P7
P6 2 4 N5:F:X:423.5:454:N11:418:P9 | N11:F:Y:179:195:N2:147:N10
N2:T:Y:117:195:P3 N10:T:Y:147:266:P8
P9 1 3 N7:F:Y:196:219:N4:172:N6 N4:T:Y:127:219:P4
N6:T:X:418:540:P5
Data pages of the page tree
Number
Page Page of mbr and
Id. height entries object reference
P1 0 3 239,139:272,168:07 252,151:282,175:04
287,124:318,147:02
P3 0 3 326,117:382,188:03 318,124:374,195:01
382,166:410,188:012
P4 0 4 454,127:481,147:09 481,127:535,194:08
449,152:503,219:013 | 423,152:449,172:014
P5 0 4 423,172:476,241:011 | 522,327:540,341:010
507,194:535,215:018 | 418,176:473,244:019
P7 0 2 282,151:340,225:015 287,147:345,220:05
P8 0 4 305,147:454,215:06 391,198:444,266:016
345,195:374,220:017 | 391,176:418,198:020

Figure 2.5: A s2-d tree with 5 entries/index page, and 4 entries/data page.

A page identifier is named as P#, a node identifier as N#, and

an object identifier as O#.
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3. overflow and underflow (merge) propagate only upwards in the tree;

4. high average leaf and branch node occupancies, more than 67%;

5. worst-case node occupancy near 50%;

6. the index size is always directly proportional to the quantity of indexed objects;

7. the method is fully dynamic, no reorganizations are required.

The main different property of the R_tree with the B_tree is point 2, where the
worst-case single-object search insertion (excluding overflow) and deletion (excluding
underflow) require several disk access because overlapping regions.

The leaf nodes contain entries whose format is (R, tuple-identifier) where R is the
bounding box of the spatial object indexed R=(Ry, ..., R) where k is the number
of dimensions and R; is an interval [a,b] describing the extent of the object along
dimension j. When an object extends outward indefinitely, either one of the interval
boundaries or both may be infinity which is represented by a special character in
the tree. Non-leaf node entries have the format: (R, child-pointer) where the child-
pointer is the address of a lower node in the tree, and R covers all the rectangles in
the subtree.

Insertions and splitting are made as in the B_tree. A new entry is inserted in the
corresponding leaf node after finding it in the structure. The insertion algorithm
calls the splitting algorithm, when the leaf node is full. To split a full node normally
the middle of the node is chosen, leaving half of the entries in the original node, and
storing the rest of the entries in a new node, which is the brother on the right of the
old split node. Deletions are handled by searching the existing entry, and finding
the leaf node corresponding to the entry to be deleted. The deletion algorithm
contains the call to the merging algorithm which is named condensed tree in the
original paper. The condensing is made by re-insertion because the conditions for
merging nodes are different from the ones of the B_tree due to the spatial properties
of the objects included in the mbrs. Re-insertion means the remaining entries in a
node that underflows must be inserted again in the tree by following the insertion
algorithm. Then, the empty node can be deleted.

Finally, this structure uses the technique of overlapping regions in the non-leaf
nodes, and it only supports non-zero sized objects. An example is presented in
figure 2.6. Each node is stored in a page, that has a page identifier, the actual
number of entries, and the page level. Internal pages contain non-leaf node entries

and leaf pages store leaf node entries. The percentage of page occupancy obtained
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P9
Root
. / P8 \
P3 p
P7
P6 P4
P2 [ es
ot |
Internal pages of the page tree
Number Internal node entries
Page of Node
Id. entries height mbr and page reference
P3 4 1 239,124:449,175:P2 | 305,117:454,215:P1
282,147:503,225:P5 | 391,172:535,244.07
P8 2 1 345,195:444,266:P6 | 454,127:540,341:P4
P9 2 2 239,117:535,244:P3 | 345,127:540,341:P8
Leaf pages of the page tree
Number Leaf node entries
Page of Node
Id. entries height mbr and object reference
P1 3 0 318,124:374,195:01 326,117:382,188:03
305,147:454,215:06
P2 2 0 239,139:272,168:07 | 287,124:318,147:02
252,151:282,175:04 | 423,152:449,172:014
P4 3 0 481,127:535,194:08 454,127:481,147:09
522,327:540,341:010
P5 4 0 382,166:410,188:012 287,147:345,220:05
449,152:503,219:013 | 282,151:340,225:015
P6 2 0 345,195:374,220:017 | 391,198:444,266:016
P7 4 0 507,194:535,215:018 | 423,172:476,241:011
218,176:473,244:019 | 391,176:418,198:020

Figure 2.6: An R_tree with 5 entries/non-leaf page, and 4 entries/leaf page.

in the example of figure 2.6 was of 71.8%. Because objects do not extend outward,

there is no need to use the special character mentioned above.

2.2.3 RT_tree

The R*_tree structure is an improvement over the R_tree as well as an extension of
the K-D-B trees to cover non-zero sized objects. Its main characteristic is to avoid
overlapping rectangles in intermediate nodes, and the treatment of underflowing
nodes by re-insertion as well. The structure was first presented by T. Sellis, N.
Roussopoulos, and C. Faloutsos in [SRF87] for supporting special applications such
as CAD/CAM, computer vision and robotics, and expert database systems. It is
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a multidimensional index structure based on the storage and retrieval of rectangles
saved on pages in secondary storage. The mbr is used for handling more complex
objects such as circles, polygons, etc.

A leaf node entry of the structure has the following form (oid, mbr), where oid
is an object identifier, and mbr is the minimal bounding rectangle that covers the
object identified by oid. An intermediate node entry has a similar format which is
(p, mbr), where p is a pointer to a lower level node of the tree.

The structure has similar properties to the R_tree and the K-D-B tree in relation
to the balance of the tree. It differs from the R_tree in that two entries of an
intermediate node cannot overlap. To search and insert an mbr in the structure,
the R* _tree algorithm uses the same concepts used by B_trees. The main difference
is referred to as the split propagation that is made upwards and downwards in the
structure. This latter splitting strategy has the disadvantage that it permits tree
degeneration which enforces periodic reorganizations of the whole structure.

The deletion algorithm follows the same strategy as for the R_tree, but for the
R* _tree the deletion of several mbrs from leaf nodes is sometimes necessary be-
cause the insertion routine may introduce more than one copy for a newly inserted
rectangle.

The authors do not give in their paper details about the tree reorganization.
They claim that the RT _tree improves search performance compared with the R_tree,
especially in the case of point queries. Because the R+ _tree does not permit overlap-
ping regions, it starts to split the first overflowed leaf node by including the whole
space in the first internal node. This whole space is represented by special characters
named [ and H. L means the lowest value in this dimension and H is the highest
value in this dimension.

Figure 2.7 shows an example that was built using the same data as previous
structures. Similarly to the R_tree, internal pages contain internal node entries and
leaf pages include leaf node entries. A page is identified by a page indicator, and
additionally contains the actual number of entries and its height in the tree. The

structure resulted in a 67.44 percentage of page occupancy in the example shown.

2.2.4 Cell tree

The spatial access method more recently presented in the reviewed bibliography is
the cell tree which was created by O. Giinther and presented by him in [Gun89]. A

cell is a convex set of points which is the representation of the data objects in the
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Figure 2.7:

Root

P1| P4| P2

P10

Internal pages of the tree

Number Internal node entries
Page of Node
Id. entries height mbr and page reference
P3 2 1 L.L:287,0:P1 | 287,L:318,0:P4
318,1.:382,0:P2 | 382,1:423,1:P10
Ps 3 1 423,1:454,0:P7 | 454,1.481,1:P6
481,L:H,H:P5
P9 2 2 L.L:423,0:.P3 223,L:.0,0:P8
Leaf pages of the tree
Number Leaf node entries
Page of Node
Id. entries height mbr and object reference
P1 2 0 239,139:272,168:07 252,151:282,175:04
P2 4 0 287,147:345,220:05 305,147:454,215:06
318,124:374,195:01 | 326,117:382,188:03
P2 3 0 287,124:318,147:02 | 287,147:345,220:05
305,147:454,215:06
P5 3 0 481,127:535,194:08 522,327:540,341:010
449,152:503,219:013
P6 3 0 454,127:481,147:09 423,172:476,241:011
449,152:503,219:013
P7 3 0 423,172:476,241:011 | 449,152:503,219:013
423,152:449,172:014
P10 2 0 305,147:454,215:06 382,166:410,188:012

An R* _tree with 5 entries/intermediate page, and 4 entries/leaf page.
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tree. Thus, the cell tree uses cells instead of mbrs. This is a balanced tree structure
whose leaves contain cells, and whose interior nodes contain convex polyhedra. In
the author’s first paper, he presented the cell tree as ‘an object-oriented dynamic
index structure for geometric databases’. Later on, in another article [GB91], he
referred to the structure as ‘a new dynamic access method for spatial databases’. It
seems to us that both affirmations are right, and we take the cell tree as a SAM.

The nonstandard database applications where the cell tree can be used are similar
to those of the RT _tree. It is based on both the binary space partitioning (BSP)
tree, which is a binary tree representing a recursive subdivision of a given space into
subspaces by means of (k-1)-dimensional hyperplanes, and on the R_tree. The cells
are indexed based on its location in space. The tree is dynamic and it does not need
periodic reorganization.

A leaf node entry represents a cell by a tuple, (G, D, A), where (i is the geometry
of the cell including the identifier, D is the data object represented by a convex chain,
and A is a set of all attributes of D that may be required to answer a query in the
given application. An interior node contains entries of the form (ep, P, C') where ¢p
is the address of the descendant node, P is a convex, not necessarily bounded, k-
dimensional polyhedron called a partition, and C', named the container, is a convex
subset of P, which also contains each cell in the subtree.

It is a balanced tree, each tree node corresponds to exactly one disk page, and
has an order m for specifying the minimum number of entries in an interior node.
The clustering of the data objects depending on their location in space is an intrinsic
property of the cell tree. The use of the clipping technique permits the partitioning
of space into regions that do not overlap.

Insertions are made in a similar manner to B_trees because new cells are added
to the leaf nodes, that are split when they overflow. The splitting strategy only
propagates up the tree, but sometimes it is possible that there is no hyperplane that
splits a leaf node. In this case, the leaf node is stored using overflow nodes. Deletions
are treated like deletions in a B_tree as well. Condensing the tree eliminates empty
leaves and it only propagates up the tree. A cell tree with m = 1 where partitions
and containers are mbr is a special case of the Rt _tree.

Pages are identified by a page indicator, the current number of entries and the
page height. Additionally, leaf pages contain a page indicator to allow for overflow
pages, which are treated here as a single linked list of pages.

Figure 2.8 presents an example where mbrs are used as containers, m=2, and

partitions are made in rectangular shapes. It can be seen that the cell tree fragments
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objects. For example, the figure shows that object 6 is fragmented eight times, so
the O6 reference appears in six different leaf pages. It is important to highlight that
page 3 has an overflow page identified by page eleven. This situation is attained
because the splitting algorithm fails to find a hyperplane to split the page. The
author claims that this situation seldom arises. The page occupancy reached by the

example is 73.91%.

2.3 Properties of comparison and the compara-

tive table

Before presenting the comparative table between MPAM and SAM, we briefly de-
scribe each property of the table. Comments included in the table are taken from
each author’s paper for each structure. When a concept is not present in the re-
viewed article, the message "not referenced” is written in the appropriate column.

In table 2.1, under the property named general characteristics, we mention the
most relevant property of the structure, generally, based on other known structures
as B_trees or hash tables. Nodes mainly describe the types of nodes supported by
the hierarchical structure when relevant. These types are better shown in figures,
but we omit these figures here because we do not consider this level of detail. The
order is an important property because the majority of the proposed structures
follow the B_tree’s principles, considered by people as the best properties that an
access method should have [Fre93]. That is the reason why the majority of the
structures are based on the B_tree. The order defines the minimal and maximal
number of entries in a node. It is important to obtain node occupancy in average
and in worst-cases. An average node occupancy of more than 65% is considered
good.

In table 2.2, the next property is spatial object. It basically indicates the shape
used for treating the spatial object indexing. Rectilinear means the use of bounding
boxes associated with regions and spatial objects themselves. The majority of the
structures use mbrs parallel to the X-Y axes because this simplest shape of a possible
object container, but other shapes may be used as well. The use of mbrs leads to
minimum storage space, but precludes specific object retrieval because many objects
can fit in the same mbr. On the other hand, the use of a more complicated container
shape needs more space in each node because entries are longer, but increases the

precision of retrievals because the container shape is near the object shape.
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Root

'y P14

Ps \

LR

v P7 ,/ P15/ P10, P12 '\ P13

Overflow leaf page
P11

Internal pages of the tree

Number
Page of Node
Id. entries height Page reference and hyperplane
P2 3 1 P1:1,,1:287,11:239,139:287,225
D4:287,1,:318,11:287,124:318,225
P3:318,1,:382,11:318,177:382,225
Ps 2 2 P2.1.,1.:382,10:239,117:382,225
D9:382,1,:481,152:382,127:481,152
P16:382,152:481,1:382,152:418,266
P14:481,1:1,11:418,127:540,341
P9 1 1 P5:382,1.:481,152:382,127:481,152
Pi4a 1 1 P6:481,1:1,11:481,127:540,341
Pi6 5 1 P7:382,152:418,11:382,152:418,266
D15:418,152:423,:418,152:423,266
P10:423,152:481,172:423,152:481,172
D12:423,172:449,0:423,172:449,266
D13:449,172:481,1:449,172:481,244
Leaf pages of the tree
Overflow | Number Leaf node entries
Page page of Node
Id. Id. entries height mbr and object reference
P1 0 3 0 239,139:272,168:07 252,151:282,175:04
282,151:287,225:015
P3 P11 4 0 318,147:345,220:05 318,124:374,195:01
318,147:383,215:06 | 326,117:382,188:03
P4 0 4 0 287,124:318,147:02 287,147:318,220:05
305,147:318,215:06 | 287,151:318,225:015
P5 0 2 0 454,127:481,147:09 382,147:454,152:06
P6 0 4 0 481,127:535,194:08 522,327:540,341:010
481,152:503,219:013 | 507,194:535,215:018
P7 0 4 0 382,152:418,215:06 382,166:410,188:012
391,198:418,266:016 | 391,176:418,198:020
P10 0 3 0 423,152:454,172:06 423,152:449,172:014
449,152:481,172:013
P11 0 2 0 318,151:340,225:015 | 345,195:374,220:017
P12 0 4 0 423,172:449,215:06 423,172:449,241:011
423,176:449,244:019 | 423,198:444,266:016
P13 0 4 0 449,172:454,215:06 449,172:476,241:011
249.176:473,244:019 | 449,172:481,219:013
P15 0 3 0 418,152:423,215:06 418,198:423,266:016
418,176:423,244:019

Figure 2.8: A cell tree with 5 entries/interior page, and 4 entries/leaf page.
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Properties
General

structures | characteristics Nodes Order

K-D-B tree | Combination of Similar to the m: upper and
B_tree and k-d B_tree nodes. lower bound as
tree. in B_tree.

Grid file Adaptable and sym- | It is not a tree. The concept is
metric multikey file | The data buckets not present.
structure based on contain objects
hash tables. in the same grid

directory.

buddy tree | Combination of Each directory node m: upper and
grid file and R_tree. | contains a collection lower bound as
Avoid partitioning of mbr. in B_tree.
empty data space.

sk-d tree Generalisation of Two types of nodes, The concept is
k-d tree to spatial binary tree nodes not present.
case. It is not and page tree
balanced. nodes.

R_tree Generalisation of Each node corresponds | m: upper and
B_tree to higher to a bounding box. lower bound for
dimensions. Leaves contain the the number of

objects covered by a descendants of an

mbr. interior node.
m:lower,M:upper
m < %

R _tree Improvement of See R _tree. The concept is
R _tree with respect not present.
to search operators.

Cell tree Combination of Each node corresponds | m: minimum
BSP _tree and to a cell. Leaves number of
R*_tree. Data contain the cells entries in
object is represented | whose interior nodes an interior
as unions of convex | correspond to a hier- node.
point sets (cells). archy of nested

convex polyhedra.

Table 2.1: Comparative table. Part 1.
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The spatial technique shows the name of the known techniques used to ex-
tend a point indexing structure to a multidimensional one. These techniques are
transformation, clipping, and overlapping regions. The transformation technique
treats objects in a d-dimensional space as points in a 2-dimensional space. Thus,
a bidimensional rectangle described by (X1, Y1, X3, Y3) is represented as a point in
4D space. The second technique, clipping, partitions the d-dimensional data space
into pairwise disjoint subspaces. Thus, an object is partitioned into several disjoint
smaller objects so each smaller object is totally included in a subspace. Finally,
overlapping regions permit overlapping subspaces such that objects are totally in-
cluded in one of the subspaces. The first technique has the disadvantage that the
transformation must be chosen to preserve the spatial properties, and the third one
presents the problem of multiple path searches for retrieving a needed object.

The property named insertion and deletion of data objects summarizes
briefly how an entry insertion or deletion is made in the structure, and which level
of the structure is affected. In hierarchical structures, the new entry is normally
inserted in a leaf page, but to choose the appropriate leaf page, a descending path
search has to be done. Similarly, to delete an existing entry, the descending path
search is made to choose the leaf node containing the entry to be deleted. In non-
hierarchical structures, the place where the new entry must be inserted or where
the existing entry is lying, is chosen by using a function that transforms the key
value normally into an address value. This last method used in non-hierarchical
structures is better than the former one utilised in hierarchical structures, when the
value obtained after a transformation is unique for each key value in the application.

Table 2.3 shows the position of the splitting hyperplane that can be adapt-
able, when the position of the splitting either may be chosen according to conditions
on data values, or fired when whatever values are present in the structure, the point
of splitting is always the same. The advantage of the first of these splitting strategies
is that it tends to lead to a more compact index structure. The dimensionality
which can be in only 1-dimension or in all d-dimensions, indicates that the splitting
position may be put in one of the defined dimension at a particular time, or in the
defined d-dimension as whole. In the case of choosing 1-dimension, this selection
may be made cyclically by following a sequence of dimensions, or acyclically by se-
lecting the dimension based on some defined selection policy. The locality of the
hyperplane can affect all the regions in the given direction (called global), or solely
inside the region to be split (named local). The local strategy is generally preferred
because the effect of the splitting policy is restricted to the overflowed node.
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Properties
Spatial Insertion and
data deletion of
structures | object Technique data objects
K-D-B tree | Rectilinear. Not referenced. Combination of the
B_tree and k-d
tree algorithms.
Grid file Rectilinear. Transformation. Insert /delete
an entry in a
data bucket.
buddy tree | Rectilinear. It can be implemented | Reorganization re-
with either clipping, stricted to nodes
overlapping regions, in the search path.
or transformation.
sk-d tree Rectilinear. Overlapping regions. As in the k-d tree.

Rectilinear. Overlapping regions. Insertion/deletion
involves one leaf
entry.

Rectilinear. Clipping. Insertion/deletion may
involve more than one
leaf entry.

Cell tree Not rectilinear. | Clipping. Insertion/deletion
involve several leaves.
Table 2.2: Comparative table. Part 2.
Properties
Position of Locality
the splitting of the
structures | hyperplane dimensionality hyperplane
K-D-B tree | Adaptable. One dimension Local, called
(Not fixed) chosen brickwall
cyclically. methods.
Grid file Fixed. Always | One dimension. | Global, called
by halving. grid methods.
buddy tree | Fixed. One dimension. | Local.
sk-d tree Adaptable. One dimension Local.
chosen cyclically.
R_tree Adaptable. d-dimensional. Local.
R _tree Adaptable. d-dimensional. Local.
Cell tree Adaptable. d-dimensional. Local.

Table 2.3: Comparative table. Part 3.
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In table 2.4, the binary division indicates how the division into the nodes of
the structure is made. A division is balanced if it divides the region into subregions
with a similar number of objects into each one. This division can be based on either
a criterion for choosing the dimension of splitting or a criterion for positioning the
partition boundary or splitting hyper-plane.

The splits/merges propagation presents the direction followed when one of
the splitting/merging operations occurs, and in some cases, the number of nodes
involved in these operations. It is considered a good direction if only the father
nodes in the path from the root to a leaf node are involved, in the case of hierarchical
structures. For non-hierarchical structures, the propagation should only involve the
structure placed between the bucket containing the object and the structure used to
transform the key value. A propagation up and down a tree is normally considered
to be a poor propagation strategy.

Clustering describes if the structure imposes object clustering on disk pages,
and if so, how it does it. In this case, we are interested in clustering the objects by
proximity because the indexed objects are all spatial objects. Those structures that
do not cluster objects by proximity are generally considered no good for indexing
spatial objects. There are two cases where this point is not clear, so we mention them
as not referenced. Intrinsic means that the clustering is imposed by the indexing
method.

Another possible classification is showed by Frank and Barrera in [FB89], and
presented in table 2.5. The type of geometric data indicates if the access method
refers to isolated points or regions, so it defines if the method is a MPAM or a
SAM. To index spatial objects, SAMs are preferred over MPAMs. The handling
of objects can be cataloged as fragmenting, if the access method divides the ob-
ject assigning each fragment to a unique page, or non-fragmenting, if the structure
maintains the integrity of the objects and performs extra disk accesses. One of
the special requirements to index spatial objects is the non fragmentation of them,

because they are not spatially decomposable. As mentioned in [Fra91],

. objects are non-atomics (i.e., complex in the object-oriented sense)
but non spatially decomposable (in spatial pieces that still have the same

meaning).

The retrieval method takes into account the implementation of the mapping be-
tween spatial and disk spaces by following either a tree (hierarchical methods) or a

function (hashing methods). Both are normally seen as good access methods.
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Properties
Binary Splits/Merges

structures | division propagation Clustering

K-D-B tree | Balanced. Dimension Only up the tree. | Based on the lexico-
is fixed according to graphically order.
node dimension. Not by proximity.

Grid file Balanced according to Up the directory | Based on
a defined binary and the scales. proximity.
radix interval

buddy tree | Balanced and regular Only up the tree. | Not referenced.
(represented by a
k-d trie)

sk-d tree Balanced. Choosing the | Down the binary | Not referenced.
dimension of the long- tree and up the
est side of the subspace. | page tree.

R_tree Strict. The partition Only up the tree. | Not necessarily. Worst
boundary always lies case (no clustering):
halfway along the one disk access for
partition interval. each data object re-

trieved. Best case:
all data object whose
data intervals are
stored in the same R
or RT _tree node.

R _tree Balanced. See Up and down the | See R _tree.
cell tree. tree.

Cell tree Balanced. The parti- Only up the tree. | Intrinsic. Fach leaf

tion boundary can be
positioned anywhere,

according to arbitrary
balancing criteria.

node corresponds to
a convex partition
in space and all the
cells in that parti-
tion are actually
stored on the corres-
ponding disk pages.

Table 2.4: Comparative table. Part 4.
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Properties
Type of geometric | Handling Retrieval

structures | data of objects method
K-D-B tree | Point-oriented non-fragmenting | hierarchical
Grid file Point-oriented non-fragmenting | direct
buddy tree | Point-oriented fragmenting hierarchical
sk-d tree Region-oriented non-fragmenting | hierarchical
R_tree Region-oriented non-fragmenting | hierarchical
R* _tree Region-oriented fragmenting hierarchical
Cell tree Region-oriented fragmenting hierarchical

Table 2.5: Comparative table. Part 5.

Finally, table 2.6 presents the last three properties. Periodic reorganiza-
tion indicates if the structure needs reorganization of its nodes due to the split-
ting/merging strategies. The majority of the structures need not be reorganized
after an insertion or deletion, and this property is considered very good for an ac-
cess method, because that means a structure which preserves its properties among
entries insertions or deletions. The column labeled advantages shows the main
advantages presented by the structure highlighted by either its author or by others
researchers. In a similar manner, disadvantages presents the main disadvantages

referenced by researchers in the area.

2.4 Spatio-temporal access methods

These access methods are presented outside the comparison table because they are
not comparable with the previous ones. We include two access methods that are
proposed specifically to deal with spatio-temporal data objects. A spatio- temporal
data object is an object that may change its location and/or shape at different time
intervals. We only include here the RT _tree presented by X. Xu et al. in [XHL90]
and the TR*_tree proposed by R. Schneider and H. -P. Kriegel in [SK92].

2.4.1 The RT tree

This structure is proposed to deal with a collection of entities contained in images
and representing spatio-temporal data objects, which have spatial and temporal
attributes. An RT_tree of order M is a height balanced tree with the index data
objects in its leaf nodes containing entries (MBR, T, R), where the MBR is the

minimal bounding rectangle that completely covers the data object identifying its
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Properties
Periodic

structures reorganization | Advantages Disadvantages

K-D-B tree | Not required. Least complicated No cluster by proximity.
of the MPAM.

Grid file Not required. Only two disk access The directory does not expand
in exact match queries. at the same rate as the data.

buddy tree Not required. Avoid the empty space It is not balanced.
partitioning. It does
not depend on the order
of data insertion.
The best performances
in relation to others
MPAM and the R_tree.

sk-d tree Not required. Efficient searching in Complicated splitting strategy

case of intersections. of the page tree.

R_tree Not required. Least complicated Object intersection introduces

of the SAM. an ambiguity in its location.
Several search paths are
traversed in point search.
Fail in partitioning nested
object covers. Updating
by reinsertion causing
possible deadlock.

RT _tree It is required Fast computation Possible degeneration of the
because the of search operators. structure. Storage utiliza-
structure can Guarantees a short- tion may deteriorate. Inevi-
degenerate. est path search. table overlapping. Traversal

of unpredictable length dur-
ing insertion and deletion.
Nested object covers are not
supported. Fragmentation.

Cell tree Not required. Less disk accesses More storage space and CPU

than the others. time, use overflow records in
Point and range case of nested object covers,
searches are efficient. traversals of unpredictable
Guarantees a short- length during insertion and
est path search. deletion. Fragmentation.

Table 2.6: Comparative table. Part 6.
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Figure 2.9: The RT _tree. Example taken from X. Xu et al. reference.

spatial location and/or shape, T indicates the time interval from time Ti to Ts which
is the interval when the data object is at MBR, and R is the object reference in the
database. The nonleaf nodes contain entries of the same format, but the MBR is
calculated to cover all the MBR in its child node, and R is a reference to its child
node. All the leaf nodes are in the same level, the last one, and they are chained
together to permit sequential search. This structure allows MBRs to overlap in the
nonleaf nodes. Figure 2.9 presents an example of this structure. We do not present
the example by using the data of the last structures because this data does not
contain temporal information.

The insertion process is similar to the R_tree for the first image at a particular
time interval. When a new image comes at a different time interval, the insertion
process searches first the leaf node where the new entry is to be placed by checking
whether there is an entry with the same MBR and the same data. If there is one,
the time interval is expanded to contain the new entry; otherwise, checks are made
as to whether this node has enough room for a new entry. If not, the leaf node
is split following a splitting policy, otherwise the new entry is inserted there. The
deletion process is not mentioned in the paper, but it considers a reorganization
process to maintain the tree. The splitting strategy can be either based on a spatial
coverage minimizing the area of the MBR, or a time interval including overlapping
time intervals within the child node, or a semantic coverage based on the semantic
knowledge about the images. The first splitting strategy is normally preferred. It
treats spatial and temporal data separately, and no symmetrically favouring spatial
processing over the temporal one. This is basically, a spatial structure extended to

support time intervals.

2.4.2 The TR* _tree

To index polygonal objects, R. Schneider and H. -P. Kriegel in [SK91] have proposed
use of the decomposition approach, which handles complex polygonal objects by
decomposing them into a set of simple components as trapezoids by using the plane

sweep technique. This technique sends out for each vertex of a polygon, one or
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Figure 2.10: Example of the plane sweep technique.

two rays into the interior of the polygon to the first edge encountered, as shown in
figure 2.10. The set of trapezoids is indexed with an TR*_tree, which is derived from
the R_tree. Each leaf node contains a set of entries of the form (Oid, trapezoid),
where Oid is the object identifier assigned to the trapezoid, and trapezoid is a
component of the decomposed polygon identified by Oid. A non leaf node contains
a set of non leaf entries having the same format as the R_tree, that is (R,mbr)
where R is the reference of the child node, and mbr is the minimum bounding
rectangle of all rectangles in that child node.

This structure is extended by the authors in [SK92] to contain temporal informa-
tion as well as spatial. Thus, a time stamp t1 is added to the leaf entries, which now
have the following form (Oid, trapezoid, ti). To search an object, first a spatial
search is performed to find all the trapezoids that answer the spatial condition, and
secondly a temporal search is done over this set of trapezoids, to select a subset of
them fulfilling the temporal conditions.

Summarizing, this structure is similar to the R_tree in the non leaf nodes, and
changes the format of the leaf nodes to manage a set of trapezoids representing
decomposed polygonal objects. Because of the mentioned similarity, we can use
figure 2.9 that represents such a tree referred to the internal pages, and changing
the time intervals for time stamps. The leaf pages change its format to contain each
one of the trapezoids of the decomposed objects, and putting time stamps instead
of time intervals. As the previous structure, it is basically a spatial index extended

to support time stamps associated with the spatial information.

Summary

In general, the position of the object in space is the main key in retrieval operations.

Thus, SAMs are the more recently proposed access methods which emphasise the use
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of the location in space as the more important attribute in indexing objects. SAMs
attack the root problem of spatial objects indexing instead of extending a PAM with
spatial retrieval capacities. A large number of index structures have been proposed
for handling multidimensional point and spatial data. Quadtrees and octrees are
mainly used for raster representation and they are not included here.

Following the comparative table, the R_tree can be viewed as the simplest SAM
that can be improved by changing search operators and supporting nested object
covers by overflow leaf pages. In relation to the simplicity of the index structure,
the K-D-B tree is the simplest and cell tree is the more complicated. R_tree and
K-D-B trees are especially good because they maintain many advantages of B_trees
such as balancing and dynamicity, but the K-D-B tree does not cluster objects by
proximity. The cell tree can be very efficient because it stores cells of arbitrary shape
instead of mbrs and the rest of the attributes in its nodes without having the data
objects stored in a file apart from the index, but fragmentation and use of overflow
leaf pages may well deteriorate this efficiency.

The grid file structure handles efficiently a collection of d-dimensional data
records (d<10) where each dimension has a large and linearly ordered domain of
values. It supports access for each dimension separately, for each combination of
these dimensions taken from two, three, four, etc until d-dimensions, which means
that all the previous indexes are packed in this structure. Its main disadvantage is
that the directory grows large when the data distribution is non-uniform, thus its
use is highly recommended only for uniform data distribution.

The rest of the structures, excepting the sk-d tree, have simpler concepts and
they permit less complicated implementations. Among the better MPAMs, the
buddy tree properties may be seen as better than others, emphasizing the avoidance
of empty space partitioning, and the possibility of the use of any of the spatial
techniques (clipping, overlapping, or transformation).

In summary, structures based on grid files can be used to retrieve objects having
multiple keys, where each key value is a point. If distribution of values is uniform
then the scale-based grid file is recommended, otherwise the buddy tree is good.
For fast implementation, the K-D-B tree is recommended for point data and R_tree
for spatial data. If fast retrieval is needed because the number of disk accesses is
a crucial factor, then R+ _tree is recommended using mbrs or the cell tree may be
adopted by using object containers of an arbitrary shape. To have the possibility
of retrieving using multiple keys separately, the scale-based grid files are preferred.

If a low level of maintenance is needed, all the structures can be chosen except
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R+ _tree, due to possible structure degeneration. For avoiding fragmentation, it is
preferable to avoid grid file, R+ _tree, and cell tree. To have a structure designed
for paged memory, it is not recommended to choose those based on binary trees,
like sk-d trees. Finally, if data objects contain nested object covers, it is possible to
take buddy trees that can manage this type of objects without overflow pages. If
overflow pages do not matter, then sk-d trees or the cell tree can be used.

To handle spatio-temporal data objects, it is possible to use any of the mentioned
structures, but it is preferred to choose those that may easily be extended to include
temporal time intervals. In such a case, the RT _tree is preferred due to the simplic-
ity of its concepts. In the case of having complex polygonal objects, the solution
proposed by Schneider and Kriegel violates the requirements exposed by Frank in
[Fradl] referring to the non decomposition of spatial data objects, but it is a very
interesting proposition. Furthermore, these two index structures support temporal
data but favouring spatial processing over the temporal one. We are interested in
an access method that may treat both types of data symmetrically, and that can
favour one over the other when the application requires it. For reaching that goal,
we consider that the structure must be created based on both types of data, and
also permits separated searches under different application considerations. Thus,
we choose the R_tree where the R_tree nodes will contain d-dimensional rectangles
(hyper-rectangles), and searches will be supported by adding either d-dimensional,

spatial, and temporal operators.
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Spatio-temporal concepts in

0O0DB

A spatio-temporal object is an abstraction of an entity having an identifier, a spa-
tial location and shape, a temporal property, and some other characteristics that
describe it. This chapter deals with the description of this type of objects by pre-
senting a brief summary of the main concepts in object-oriented databases. The
main purpose of this chapter is to define object-oriented general concepts, and in-
troduce spatial, temporal, and spatio-temporal databases, including SQL extensions.
The chapter is organised as follows: Section 3.1 presents object-oriented objects,
their relationships, and their utilization in object-oriented databases (OODB). Sec-
tion 3.2 describes spatial objects and spatial databases that support the use of these
objects. Section 3.3 deals with temporal objects supported by temporal databases.
Section 3.4 contains the main concepts to index and query a spatio-temporal data-
base. Finally, section 3.5 summarizes a way ahead for indexing spatio-temporal

objects.

3.1 Object-oriented objects

The object-oriented approach is based on the concept of ontology [Bun77], where

i) the world is composed of things (entities)

40
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ii) the forms are properties of things
iii) things are grouped in systems
iv) each system, except the universe, interacts with other systems in at least one way

v) each thing changes and obeys laws.

An object, in the Ontologic sense, is any thing that can be known or represented
by a subject. An entity is a concrete object that has properties and behaviour,
represented by the state and the change in the state of its properties, respectively.
In this theory, the real world is an aggregation of objects that

a. have properties (attributes)

b. have relationships with one other

c. obey laws

d. have state which is transformable based on events

e. change.

In Computer Science, the object-oriented approach captures a portion of the real
world named an application domain, in terms of entities and treats these entities
or objects based on the concepts of encapsulation and extensibility. Encapsulation
provides a form of logical data independence by encapsulating both data (structure)
and programs (behaviour) of the object, and only permitting access to the object
throughout a defined object public interface, where is indicated their methods that
can be invoked by message passing. Whilst extensibility refers to the ability to ex-
tend an existing object by adding structure through inheritance and/or behaviour to
the original object interface. Extensibility can be reached in two ways: behavioural
extension and inheritance. The first way is supported by adding more programs
to the object, and the second one, by including new is-a relationships which are

described in the next subsection.

3.1.1 Object-oriented relationships

These are is-a and part-of relationships. The first one describes an object class which
is-a specialization of some other object class. The second one expresses an object
composed by other objects. According to Hughes in [Hug91], these two relation-
ships are supported by five abstraction concepts, such as: classification, identifica-

tion, aggregation, generalization, and specialization. Classification groups objects
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Figure 3.1: Object relationships.

with similar properties and behaviour into object types or classes. [dentification is
supported by an identifier associated to each object that identifies uniquely each of
them. Aggregation or composition represents the part-of relationship among objects
by a higher level aggregate object. Generalization represents a set of objects with
similar properties by a generic object. Specialization describes a set of objects with
similar characteristics by a particularised object. Both, generalization and special-
ization support the is-a relationship, and object inheritance. Figure 3.1 illustrates
these two relationships among objects. Fach spatial graph is a graph which is com-
posed of spatial objects, and spatial relationships. Graph class is a generalization
of the Spatial Graph class.

3.1.2 Object-oriented databases

An object-oriented database (OODB) is a database that integrates essential concepts
from object-orientation with capabilities of databases. The main concepts that have

to be supported by OODBs have been specified by M. Atkinson et al. in [ABD*89],

namely:

object identity (identification),
types or classes (classification),

inheritance (generalization/specialization),
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Basic classes

Magnitude classes Collection Graphical
Character ArrayOf[X] Form (Image)
Date String / Text Point
Time SetOf[X] Rectangle
Integer ListOf[X] Paragraph
Float Dictionary[X,Y]
Association OrderedCollection Of[X]
D/K multimedia classes
Textual Graphical Image | Hypermedia
Text GraphicalPoint | Image Unit
Paragraph Line Link
Polygon Button
Window HyperNetwork

Figure 3.2: Basic and multimedia classes of the D/K model.

complex objects which are built from simpler ones by applying constructors to them,
such as: tuples, sets, arrays, bags, lists;

encapsulation that provides a form of data independence by treating structure and
behaviour of the objects by using their operations;

overriding that permits the redefinition of operations resulting in a single name de-
noting a set of different programs; and

late binding that solves the problem of identifying which program with the same
name is needed at run-time.

To the best of our knowledge, there is not a unique and accepted object model
for representing object-oriented databases as in relational ones. Because of this,
W. Kim in [Kim90] defines OODB in relation to an object-oriented data model,
suggesting that this data model is defined before the system is designed.

In this work, we especially consider the D/K data model proposed by J. Montilva
in [Mon93], because one of the purposes is the definition of an indexing method that
could be used for supporting recovery and secondary storage management. This
model is an integration of some OODB, multimedia, and knowledge models. Fig-
ure 3.2 shows the basic and D/K multimedia classes of this model already explained
and defined by Montilva in his PhD thesis.

To support our indexing method, defined in the next chapter, three basic classes
that extend the D/K model basic classes are presented in figure 3.3. The HR class
refers to the hyper-rectangles used in the definition of the index entries. A hyper-

rectangle is a finite set of intervals, one for each defined dimension (DIM) in the
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Basic classes

Magnitude classes Collection Graphical
Character ArrayOf[X] Form (Image)
Date String / Text MPoint
Time SetOf[X] HR
Integer ListOf[X] Paragraph
Float Dictionary[X,Y]
Association OrderedCollectionOf[X]
Interval
HR | MPoint
2-DIM 2 2-DIM
[ Interval |} | Float |

Figure 3.3: Extension to the basic classes of the D/K model.

tree. This class generalises the Rectangle class of the D/K model. The Interval
class is a pair of real numbers that defines the minimum and maximum values of
the object interval. Finally, the MPoint is a multi-dimensional point composed of
d real numbers, one for each of the d dimensions already defined. MPoint is a
generalization to many dimensions of the Point class of the original model.
Querying an OODB depends on the data model used in the system. There are
two main attempts to standardise object-oriented models. The first one corresponds
to the Object Model Group (OMG), presented by W. Kim in [Kim95]. This exten-
sion is a superset of the structured query language (SQL), which uses keywords added
to the SQL commands to describe an object-oriented query. The second one is called
the ODMG-93 group that presents its standard model in [ADF*94]. Both groups
use a different extension of the standard commercial relational database language

named SQL. Querying command in SQL is as follows
select listOfAttributes
Jrom declarationOfRelations
where predicates
groupBy groupingSpecification
orderBy orderingSpecification

The SQL extension of the OMG is named OSQL, and that of the ODMG-93

is called OQL, each one is detailed in the given references. Both extensions are
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declarative languages as well as SQL, but the structures that they manipulate are
different from (and generally more complex) than the structures (i.e. tables) that
SQL manipulates. They have a SQL syntax including some special operators and
keywords to deal with object-oriented concepts not supported by SQL standard. As
examples of these operators and keywords, we find in OSQL the keyword atomic
meaning a bag of values, and distinct indicating a set of values, both are optionally
set in the select clause. In OQL, the keyword distinct has the same meaning as in
0OSQL, and additionally, we find the keyword struct referring to the construction of a
tuple of attributes. In particular, OQL supports object identity, complex structured
objects (sets, bags, lists, etc), subtype and supertype relationships, and the ability
to access operations (methods) as well as attributes by considering all of them (even
the query itself) as expressions. This last point, the ability to invoke object methods,
is particularly pertinent here because it permits the use of spatio-temporal operators

to deal with spatio-temporal relationships, which will be defined later in this chapter.

3.1.3 Indexing object-oriented objects

The main proposed and commercial OODBMSs use BT _trees as the indexing method,
as described in the following references [MS90], [WK90], [Kim90], [Deu90], [MS86],
[BK89].

The work that studies this problem extensively is that of E. Bertino and W.
Kim in [BK89], where it is shown that B* _trees can be used for the three types of
indexes considered in ORION system. A class-hierarchy index provides access to all
objects within a class hierarchy via some attribute, atl, say. The indexed attribute
(atl) will be inherited downwards at the class level by virtue of the specialisation
hierarchy so that all object instances will have a value for this attribute. Figure 3.4
illustrates a class-hierarchy index rooted at class A which has two subclasses. A
nested-attribute index is maintained on a class-composition hierarchy. The indexed
attribute, at?2 say, is inherited upwards at the object level by virtue of composition.
Each object instance will have a value for this attribute either directly or through
one of its components. A nested-attribute index on a composed attribute at2 is
shown in figure 3.5. Remembering that at2 is referenced by composition, so it is
also an attribute of class A and class B. Finally, the two-dimensional index is a
nested-attribute index augmented with a class-hierarchy index for each class in the
sequence of classes between the class and the class to which the indexed attribute

belongs. This situation is presented in figure 3.6. E. Bertino and W. Kim have
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Figure 3.5: Nested-attribute index on attribute at2.

studied performance levels for each type, and for queries as well as updates. A
particular result of this performance comparison is that nested-attribute (nested
index) is preferred over class-hierarchy (path index) or two-dimensional index (multi-
index) for the majority of queries.

It is clear that the indexing problem in OODBMS is to maintain primary indexes
over the primary key of an object which is its Objld. In our case, we need to
consider secondary keys defined by the spatial location of a spatial object, and/or
by date in temporal objects. Not all objects in a OODB are spatial, temporal,
and/or spatio-temporal, so a primary index is needed to locate, to retrieve, and to

maintain objects in the system. Additionally, it is possible to include special indexes

ati

two-
dimensional
index

Figure 3.6: Two dimensional index.
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Figure 3.7: Primary and secondary indexes in an object base.

to support spatio-temporal access. If the spatial key and/or the temporal one are
considered secondary in a specific application, then objects cannot be clustered
by these keys because the main index clusters objects by class. That situation is
shown in figure 3.7. Conversely, if the spatio-temporal key is the primary key in the
application, spatio-temporal objects are then clustered by their location in space
and associated date. Clustering is a DB technique used to store a group of objects
physical close together on disk permitting a fast and an efficient retrieval operation.

In the case of the D/K model, the object identifier index is supported by using
a prefix B+_tree [Ram94], which is a special case of the B_tree that improves it for
cases having large prefixes within the keys. A prefix is a string forming the first
part of a compound word, i. e. D-OKIM and D-OLAN have as a prefix D-O. The
D/K model presents large prefixes within its Objld which is composed of the class
number and the instance number of the objects within its class. Thus, all of the
instances of a class are clustered on disk and the prefix stored on the index pages
of the BT _tree is the class number. Spatio-temporal keys will be treated in the next
sections.

The 1D search operations use two functions called exact match and range. The
exact match permits the retrieval of an object which completely matches the key of
search. The range search permits the retrieval of all objects whose Objld is in the
range of search. Examples of these two searches are Find the object associated with
this Objld (exact match), and Find the objects of class XX (range). These search
functions are used intensively by the query language of the OODBMS. A summary
of some OODBMS is included in appendix A where some interesting parameters are

defined and presented as tables.
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3.2 Spatial objects

The term spatial refers to space or relations of objects in space including both two
and three dimensions. According to D. J. Peuquet in [Peu85] ‘the term spatial data
applies to any data concerning phenomenon areally distributed in two-, three-, or
N-dimensions’. These dimensions are orthogonal and homogeneous. Further, she
points out, ‘geographic data, more specifically, are spatial data which normally refer
to data pertaining to the earth... the term ”geographic” data may also apply to
data pertaining to other planets and objects in space’. One of the main application
that uses spatial objects is geographic information systems (GIS), according to S.
A. Roberts et al. in [RGHH91], ‘a geographic information system (GIS) is an in-
formation system that stores spatially referenced data and that makes provision for
the spatial representation of data to be displayed graphically’. In GIS, space refers
to geographic space where geographic objects are related.

Spatial data can be categorized into several types. First, point data is the cate-
gory where each data element is associated with a single location in 2D or 3D space,
such as locations of cities in a map at appropriate scales. Second, line data is associ-
ated with a string of spatial coordinates representing isolated lines, elements of tree
structures, or elements of network structures. The third type is polygon data which
is associated with areas over a defined space. Polygons can be subdivided into: iso-
lated polygons (no point common to two or more polygons), adjacent polygons (at
least one boundary segment shared by two polygons), and nested polygons (one or
more polygons are placed inside other polygons). Fourth, some mizture of the above
types includes different line structures mixed with points or mixed with polygons.

In general, spatial models are considered to be linear in each spatial dimen-
sion, and space is regarded as discrete or continuous. Space can be bounded or
unbounded, but in the majority of GISs, a bound as well as a range is assumed. A
bound forms the boundaries or limits of a space. A range varies between this bound.
Normally, it is assumed a bounded space where a spatial range applies. Space can
also be absolute or relative, e.g. 52.622 latitude, and 6.18% longitude as absolute coor-
dinates, and -42 west as a relative coordinate. Space has a distance function, called

here location distance (LD(x,y)), satisfying the following properties:
i) LD(x,y)>0V x,y

ii) LD(x,x)=0V x

iii) LD(x,y)=LD(y,x) ¥ x,y

iv) LD(x,y)< LD(x,2)+LD(z,y) V x,y,z
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A.disjoint(B) A.meet(B) A.covers(B)

B.coveredBy(A)
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A.equal(B) A.overlap(B) A.contains(B)
A.intersect(B) B.inside(A)

Figure 3.8: Topological relationships among MBRs.

As pointed out by R. Snodgrass in [Sno92] "Information that is spatially inde-
terminate can be characterized as don’t know exactly where information”. Spatial
information can be indeterminate depending on system granularity. The spatial
system granularity can be set to one metre and all of the spatial location identifiers
have to be expressed in this unit. This system has both a physical and a logical
representation. The physical representation is expressed via a set of bits and the
logical one is the meaning of each bit pattern. In the majority of the systems, the
metre is the unit adopted, which is defined as the length of the path traveled by light
in vacuum during a time interval of 1/299,792,458 of a second [Sno92]. A physical
representation of 32 bits/dimension permits a granularity of one decimeter for two
dimensions and moving up to 64 bits reduces the granularity to a nanometer. This
physical representation is used to choose the type of the spatial location key for

implementation purposes, and we will use 32 bits per dimension.

3.2.1 Spatial relationships

Spatial entities are related by many relationships, such as: topological (disjointness,
containment, overlapping, coverage), directional (above or north, below or south,
left or east, right or west), and proximity (near, far, between).

Topological relationships have been treated in many references by M. Egen-
hofer [EF88], [Ege89], [EH90], [EF91]. The topological interactions are described
by Egenhofer and Herring in [EH90] and reproduced here in table 3.1, where the
object-oriented notation is used to call the operator or function, that represents the
associated relationship, i.e. if k.disjoint(m)=true, then objects k and m are disjoint.
The symbol b means the border of the spatial object and ¢ means its interior. Each
of these describes the intersection result cataloged as empty ({}) or non-empty (—=0).
Intersections are done between boundaries (bNb), interiors (iNi), and its combina-

tions. Figure 3.8 shows the graphic representation of these relationships.
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Relationships | bNb | iNi | bNi | iNb
k.disjoint(m) 0 0|0 0
k.contain(m) O |0 0 | -0
k.inside(m) O |0 -0 0
k.meet(m) -0 0|0 0
k.equal(m) -0 | -0 0 0
k.cover(m) -0 -0 0 | -0
k.coveredBy(m) | =0 | =0 | -0 |
k.overlap(m) ) | -0 ] =0 | -0

Table 3.1: Topological relationships among intervals (1D) and MBRs (2D).

Directional or positional relationships are mentioned by W. Kim, J. Garza, and
A. Keskin in [KGK93]. This set of relationships is presented in table 3.2, where
[xi,xs,yi,ys] represents the coordinates defining an mbr, and each part is referred to
as object.part. An object k is above another object m if k’s mbr intersects the big
mbr=[-00, 0o, m.ys, oo]. Similar assumptions are made for left, right, and below.
An object k is directly above another object m if k’s mbr intersects the mbr=[m.xi,
m.xs, m.ys, oo|. Directly on the left, on the right, and below are calculated in
a similar manner. An object £ is above and on the left of another object m if
k’s mbr intersects the mbr=[m.xs, oo, m.ys, oo]. The rest of the relationships are
determined in a related way. If we consider a bounded space, then oo is changed by

the maximum value and —oo by the minimum value in this dimension. Figure 3.9

presents the graphic representation of each directional relationship.

Relationships Calculation
k.above(m) k.yi > m.ys
k.left(m) k.xi > m.xs
k.below(m) kys < m.
k.right(m) ks < m.xi

Proximity relationships are also mentioned in [KGK93], and we only choose

k.directAbove(m)
k.directLeft(m)
k.directBelow(m)
k.directRight(m)
k.aboveLeft(m)
k.belowLeft(m)
k.belowRight(m)
k.aboveRight(m)

k.above(m)Am.x.cover(k.x)
k.left(m)Am.y.cover(k.y)
k.below(m)Am.x.cover(k.x)
k.right(m)Am.y.cover(k.y)
k.above(m)Ak.left(m)
k.below(m)Ak.left(m)
k.below(m)Ak.right(m)
k.above(m)Ak.right(m)

Table 3.2: Directional relationships among MBRs (2D).
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Figure 3.10: Proximity relationships among MBRs.

three of them, namely near, far, and between. The difficulty with these types of
spatial relationship is the definition of cutoff values that can be used for specifying
what is considered to be near and what is considered to be far. These relationships
are presented in table 3.3, where we interpret proximity relationships in terms of
equivalent topological relationships and where A is the specified unit to calculate
whether the mbr overlaps objects near to the search object. As a first approximation,
we calculate the new mbr p for the between operator as the mbr of m and j, but
this mbr is too big and the definition will be re-examined in the next chapter. In

figure 3.10, these relationships are illustrated graphically.

Relationships Calculation P

k.near(m) k.overlap(p) (Xim-A,Xsm+A,Yim-A,Ysm+A)

k.far(m) k.disjoint(p) (Xim-A,Xsm+A,Yim-A,Ysm+A)
k.between(m,j) | k.overlap(p) | (Min(Xim,Xij), Max(Xsm,Xsj), Min(Yim,Yij), Max(Ysm,Ysj))

Table 3.3: Proximity relationships among MBRs (2D).

3.2.2 Spatial databases

A spatial database is the term used to distinguish databases that contain spatial
data and retrieval operations. A spatial system uses a spatial model to treat spatial
objects. The most expanded application using spatial data is a GIS, and we choose

it for developing this subsection.
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In GIS, there are two types of representations for spatial data: vector and raster.
The main characteristic of the spatial entity is its location in space, and the relation-
ships between two spatial entities are generally very numerous and depend on our
perception of reality. Thus, the definitions of these entities and their relationships
tend to be inexact and context dependent. Nevertheless, there are several models
for representing geographic data as pointed out by R. Laurini and D. Thompson in
[LT92]. First, the traditional method, a map, which provides a convenient method
of spatial data storage and management. Second, two models for storing image
data in digital form; vector and tessellation models. Finally, the hybrid type which
contains characteristics of both vector and tessellation data models. Between vec-
tor data models we can find several other models as follows: spaghetti model (a
direct translation of the paper map), topological model which retains some spatial
relationship), GBF/DIME (geographic base file/dual independent map encoding),
and POLYVRT (polygon converter). Tessellation models are: grid and other reg-
ular tessellations (square, triangular and hexagonal meshes), nested tessellations
(recursive tessellation of the plane, the main example being the quadtree), irregular
tessellations (size, shape, and orientation of the cells is a reflection of those of the
data elements), scan-line models (raster) is a special case of the square mesh and
this is a format commonly used by mass digitizing devices, and peano-scan which is
a family of curves that permit the transformation from N-dimensional space to line
and vice versa. It is well known that both models can be used but we restrict our
work to the vector model based on POLYVRT.

We are interested in vector object-oriented models. One of these types is the D/K
model wherein is defined a group of classes that support spatial objects and spatial
relationships. Figure 3.11 shows the D/K spatial classes and figure 3.12 presents the
implementation of the basic, graph, and spatial classes of the D/K model already
defined by Montilva. We need not extend these classes because this model contains
all of the classes needed for supporting spatial objects. An application of this model
is presented by J. Montilva and I. Besembel in [MB96].

Similar to the OODBMS, in spatial databases there are some extended versions
of SQL to support spatial queries. One version is referred by W. Kim in [Kim95].
This extension emphasizes the use of two operations, the window operation and
the spatial join. A window operation combines a spatial selection with a nonspatial
selection. A spatial join involves more than one spatial attribute.

The data manipulation classifies a predicate as spatial if the condition involves at

least one of the spatial attributes or a spatial operation. Spatial functions apply to
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Spatial Object Spatial Graph
SpObject SpDigraph / SpUndirGraph
SpRepresentation SpArc / SpEdge
Spatial GraphicalObject SpPath / SpChain
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Figure 3.12: D/K classes implemented in a C++ library under UNIX platform.
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spatial attributes such as: area, perimeter, centroid, object_at, in_circle, nearest_to,
length, adjacent_to, intersect, in_-window. An example of a spatial query is Find all
the objects in_window.

There are some problems to extend the SQL to support spatial queries. As
pointed out by Kim, "The problem is that SQL is primarily a means to retrieve
from a tabular representation, while spatial applications often require retrieval from
a graphical representation”. Because of this difficulty, there is not a standard spatial

extension to SQL equivalent to OSQL for object databases.

3.2.3 Indexing spatial objects

The main requirements for spatial access methods presented by A. Frank in [Fra91]

are the following:

e The topological relations do not form a hierarchical structure. In our particular case,
we will support topological relationships throughout using topological operators, we
do not include these relationships in the access structure.

e [t must be based on a general spatial object. We use the SpatialObject class of the
D/K model, which is general.

e [t must avoid the arbitrary division of any object. We shall not divide any spatial
object, but we will permit overlapping at the level of the index nodes.

e Spatial objects are not spatially decomposable, and can have multiple representa-
tions. The SpatialObject class aforementioned supports multiple representations for
a given spatial object and it does not decompose it.

e Versions and historic data are necessary in some GIS applications. This point will
be treated in the next section.

In chapter 2, we studied several multi-dimensional access methods that can be
used for indexing spatial objects. Following the requirements mentioned above and
the comparative table of chapter 2, we choose the R_tree structure that will be
implemented based on the object-oriented approach. Taking advantage of this ap-
proach, we will extend the spatial structure for supporting temporal access too, as
we mentioned in the final section of chapter 2. In summary, the object-oriented
R _tree will contain several spatial search functions, such as: topological, directional,
and proximity. We will study in more detail these functions or operators in the next

chapter for implementation and optimization purposes.
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3.3 Temporal objects

Time is associated with objects in the majority of Information Systems. Time
models can be linear or branching. In the linear model, time passes from the past
to the future in an ordered manner as following a time line. Branching models
consider a time line from the past to the present, and several time lines from the
present to the future. The density of this line defines two types of model, discrete
or continuous. A discrete linear model considers the time line to be isomorphic to
natural numbers where each natural number is a unit of time (the smallest duration
of time that can be represented in this model). In continuous linear models, the
time line is isomorphic to real numbers where each real number corresponds to a
point in time.

Time can be bounded having a beginning and an end. As a metric, time has a
distance function that has the same four properties mentioned before for the space
domain, and it is called temporal distance (TD). Time may be absolute or relative,
e.g. 10:55 a.m. March 5th, 1996 or 11:50 a.m., respectively. Generally, time is
considered to have two dimensions, one for valid time and other for transaction
time. Valid time records the time a fact was true in reality, and transaction time
records the time the fact was first recorded in the system. The user-defined time
is also defined, which indicates that its values are only known by the user and not
considered by the system. The two first dimensions are not homogeneous and they
are considered to be orthogonal.

As mentioned by R. Snodgrass in [Sno92] "Information that is historically in-
determinate can be characterized as dont know exvactly when information”. This
indeterminacy applies only to valid time because transaction time is always deter-
minate. The granularity of the transaction time line is the smallest inter-transaction
time. For valid time, its time line granularity is set by the system. In the majority
of systems, the chosen unit is the second, which has many definitions as mentioned
in [Sno92]. The physical representation depends on the resolution needed and this
imposes a granularity and a range, e.g. 8 bytes permits both a resolution of seconds
and a range of 36 billion years, or a resolution of microseconds and a range of 17,400
years. Temporal systems need to support several calendars and transformation func-
tions between them. We will use a physical representation of 8 bytes for temporal
data.

A temporal object is an object-oriented object that has associated at least one

temporal property which is represented as temporal data in one or more of the tem-
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poral dimensions described above. For this kind of object, we study the relationships

between them in the next section.

3.3.1 Temporal relationships

The first reference to the use of some special temporal comparison operators is by
J. Allen in [AlI83], Navathe and Ahmed in [NAS8S] refer to these operators to be
used in a language interface that they propose. These operators, combined with
those presented by R. Barrera and K. Al-Taha in [BAT90], are shown in table 3.4.
As explained in previous tables, b indicates the border of the interval, and ¢ repre-
sents the interior. For the adjacent, follows, and precedes functions, it is necessary
to differentiate between inferior (bi), and superior border (bs). These temporal
relationships permit the representation of any relationship that may hold between
two intervals and they can be used as temporal operators or functions in temporal

queries. Figure 3.13 shows these relationships in a graphic manner.

Relationships | bOb | iNi | bNi | iNb b+ b
q.before(t) 0 0 0 0 q.bs <t.b;
g.after(t) 0 0 0 0 q.b; >t.bg
q.during(t) O | -0 -0 0

q.overlap(t) O | =0 =0 | -0
q.tMeet(t) = 1] 0 0
q.equal(t) =0 | =0 | 0 0
q.start(t) =0 | =0 0 | -0
q.finish(t) =0 | -0 =0 0

g.adjacent(t) | 0 0 0 0 |tb;—qb,=TUU

q.bi — t.bs =TU
q.follow(t) 0 0 0 0 q.b; — t.by, = TU
q.precede(t) 0 0 0 0 t.b; — q.by =TU

Table 3.4: Temporal relationships among intervals (1D). (TU: time unit)

The implementation of these relationships as functions is more straightforward
than for the corresponding spatial relationships, being one rather than two-dimensional.
We take advantage of this by developing a temporal indexing extension of the R_tree

as a base for building further dimensions.

3.3.2 Temporal databases

A temporal database models the dynamically changing world, tracing events and its

related data [Lan89]. An atemporal database is a snapshot of the lastest available
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Figure 3.13: Temporal relationships among intervals.

data. Temporal databases have many domains of applications, such as: business
planning, control processes, maintaining medical, sports and legal case histories,
business activities, scientific experiments, policy analysis, census, and so on. Early
work in this area mentioned some ideal requirements concerning historical objects,
events, time-stamps, and the use of more than one temporal dimension [Lan89],
[Ari87], [CR&T].

The two dimensions, valid time and transaction time, can be supported by tem-
poral database management systems (TDBMS). As defined by Snodgrass in [Kim95],

there are four database models:

1. A snapshot database model supports neither valid or transaction time.
2. A valid-time database model supports only valid time.
3. A transaction-time model supports only transaction time.

4. A bitemporal database model supports both valid and transaction time.

Temporal databases correspond to this last model because they need both valid
and transaction time. For our case, we first consider the historical database model by
providing a dimension of the multi-dimensional access method to contain valid time
values. In a second consideration, we include another dimension in the structure
to support transaction time. The inclusion of user-defined time is considered and
supported by most of the commercial DBMSs by providing a date-time domain that
can be associated with object attributes, which can be indexed explicitly by the
user.

The temporal data models can be categorised as event-oriented or time-based.
The event-oriented approachuses the concept of event as its fundamental information
from which any state of the database can be derived. It maintains an event database

that can be queried for any particular time. The answer is generated by using specific
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derivation rules which can obtain historical database states. One implementation
of this approach is presented by S. Soukeras and P. King in [SK94]. They consider
this approach better than the state-oriented one, due to the flexibility to expand
the view it provides at any time, by deriving states from events raising the semantic
level of the database and making it more straightforward to manipulate.

The time-based approach considers time as a separate dimension, similar to one-
dimensional space. The different models of this approach can be either point-based,
interval-based, or a mixed approach, as presented by R. Barrera and K. Al-Taha in
[BAT90]. Point-based models consider a dense, complete, unbounded, and real time
line. Points are used as its basic temporal objects. Each time interval consists of
an ordered pair of points. Interval-based models consider a linear and discrete time
line, and intervals are its primitives. It does not allow time points and it applies a
temporal logic based on temporal intervals and first-order predicate calculus. Tem-
poral logic operators allow specification of the time of validity of a fact either in the
past or in the future [Val96].

The third type of temporal model, which is the mized model, allows both time
points and intervals by considering time points as zero length intervals. This model
allows assertions over time intervals and it considers a linear and totally ordered
time. We choose this model to be used in our index method because we already
have the Interval class that can support time intervals.

According to Snodgrass in [Kim95], there are three approaches to incorporate
time-varying objects in an OODBMS. The first approach is to use the OO model
directly, and the user is charged with the task of managing the semantics of valid
time, which is normally thought of as linear. The main advantage of this approach
is that the user can specify the needed semantic of this time. The disadvantage
is that the specification of the schema and queries have no special tools to deal
with temporal information. The second approach is to tailor general features of the
object-oriented data model to support time. Finally, the third approach incorporates
time into the data model by providing special constructs to deal with time-varying
objects. This last approach is mostly used in supporting histories through valid
time, and versions through transaction time, as mentioned by L. Valet in [Val96].

In order to support temporal characteristics in the D/K model, we choose the
third approach and present here an extension based on the definition of specific tem-
poral objects, as illustrated in figure 3.14. The TemporalObject class provides the
main facilities to define temporal characteristics to object structure and behaviour.

The TemporalRepresentation class permits the use of several forms of the temporal
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Temporal Temporal Graph
TemporalObject TDigraph / TUndirGraph
Temporal Representation TArc / TEdge
TPath / TChain

Figure 3.14: Extension to the D/K classes to support temporal objects.

data, corresponding to calendars and transformation functions. Finally, the TDi-
graph class supports the concept of time map proposed by Dean and McDermott
in 1987 and mentioned by R. Barrera and K. Al-Taha in [BAT90]. A time map
”is a graph whose nodes refer to points or instances of time corresponding to the
beginning and ending of events”. Arcs are labeled with a lower and upper bound
of time, or time interval. A relation between any two points on the time map is
represented by a path between them. We do not go deeper into the definitions of
these classes because it is outside the objectives of this work.

Actual TDBMSs use extensions of two of the main query languages, namely SQL
and QUEL. The temporal SQL (TSQL) presented by S. Navathe and R. Ahmed in
[NASS], is the first extension of the SQL language to permit temporal analysis and
definition in temporal databases. A version called TOSQL is defined as the DML
for the temporal oriented data model presented by G. Ariav in [Ari86]. It is based
on the notion of atomicity of events and it supports object and time selection.

Over a dozen temporal object-oriented query languages have been proposed in
the bibliography as pointed out by Snodgrass in [Kim95]. The majority of them
are based in relational query languages such as SQL. In particular, the TOSQL and
TOOSQL are two representatives of SQL extensions that support temporal analysis.
In TOOSQL, the when clause is added to the select instruction, which permits the
use of temporal references in the query. An example of that type of queries is Find
all of the objects inserted in the database after dd-mm-yy (where ’after dd-mm-yy’

is the "when’ clause).

3.3.3 Object versioning

In OODB, there are two approaches for versioning, object versions and database
versions. In the object versions approach, versions may be defined either for an
object or for an existing version of an object. According to A. Bjornerstedt and C.
Hultén in [KL92], "an object version represents an identifiable state of an object.
Object versions are either totally ordered as a function of time, or partially ordered

in terms of a successor function”. Version control defines two types of relationships,
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the derived-from and the version-of. As pointed out by W. Kim in [Kim90], the
derived-from relationship is between a new version and an old version of the object
from which the new version was derived. The version-of relationship is between each
version of an object and an abstract object that represent the object. Versions of an
object form a digraph which represents the history of evolution of a versioned object.
Any number of new versions may be derived from any version at any time. Generally,
each version contains attributes that identify its version identifier, number, type,
time of creation, time of last modification, and a list of references to the version
identifiers of all versions directly derived from it. Additionally, users decide when
the new version of the object is needed and she/he decides if it is a new version or
a new object. Surrogates are used to identify each object version. In this approach,
some researchers consider two levels of version management: application-level, and
system-level. These levels are associated with the two time semantics called valid
time and transaction time, respectively.

In supporting transaction time, two models of versioning can be used. According
to Snodgrass, the extension versioning indicates versioned objects or their versioned
attributes, and schema versioning provides versioned definitions of the objects. In
this latter model, several schemes are stored in the database at different transaction
times, and it can be viewed as the evolution of the database schema, where two
types of management are possible. One of them permits all objects to be viewed
in all of the schemes by performing the appropriate transformation. The other one
associates objects with schemes allowing only objects defined in a particular schema
to be present in this schema.

In the database version approach, objects are not isolated in the database, and
a change of an object modifies the state of database. Additionally, the database
integrity must be maintained along the sequences of changes of states. A version
of an object is considered a modified state of the database and consequently, this
modified state is a version of the entire database, that is a database version. A
version of a database is created by derivation. To avoid object duplication a system
of stamps is used to recognise object versions in each database version.

In summary, the support for versions within databases immediately takes us on
to consider temporality. A database that supports time is more general that one
which supports versions, so we will develop the temporal management and use this

later for supporting versions.
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3.3.4 Indexing temporal objects

In this context, temporal indexes are involved. As pointed out by Snodgrass, the
majority of temporal index methods are based on BT _tree, and he reports only two
cases where R_trees are used. In these cases, the R_tree supports the two time
dimensions, valid and transaction, and the temporal key is expressed as intervals.
In our case, the access method will be used to index temporal objects by following
the mixed approach. It is the more appropriate because the hyper-rectangles used
for the index entries are defined as intervals. We also consider the point-based
approach by considering a point as an interval of zero length. As an initial step, we
only considered one time dimension corresponding to valid time. In a second step,
we include another dimension for transaction time. To use both dimensions, the
user or the query processor must use the same operator but including a parameter
to indicate which dimension is queried. More details will be shown in the next

chapter.

3.4 Spatio-temporal objects

Basically, we define a spatio-temporal object as an object-oriented object that has
at least one spatial and one temporal property. These properties are represented by
spatial and temporal data, respectively. It can be represented by a four-tuple (objld,
mbr, t, att) where objld is the object-oriented identifier assigned by the OODBMS
to that object, mbr is the bounding rectangle that indicates the spatial location
and shape of that object, t is the description of the temporal characteristics of that
object, and att is a set of other attributes that describes the object.

Recalling, an mbr in 2D is represented by four values corresponding to the lower
left corner of the rectangle specified by the two first values and the upper right
corner of the mbr formed by the two last values.

Following the paper of Seger and Shoshani in [SS88], the temporal characteristics
identified by t are composed of: granularity which says if the representation is ordinal
or calendar; life-span that contains two values represented as ordinal or calendar for
the start point and the end point; regularity that indicates a regular time sequence or
an irregular one; and type which can be constant, continuous, discrete or user defined.
However, only the life-span of t is considered, in our spatio-temporal index because
it is the specific temporal value that we need to express time. A time sequence is

defined by an ordered sequence formed by the temporal data values ¢ corresponding
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to a spatio-temporal object. Similarly to the time sequence, a spatial sequence can
be defined which is formed by the spatial component of the mbr corresponding to
a spatio-temporal object. The relationship between time and spatial sequences will
be defined more carefully in chapter 4.

As mentioned by R. Snodgrass in [Sno92], time and spatial models can be dis-
crete, continuous or dense, and ”in all three of these alternatives, two separate
space-filling objects cannot be located in the same point in space and time”.

A distance function where both spatial-distance and time-distance are involved
can be defined. For example, a spatio-temporal distance (LTD) can be defined
to be used in near-far spatio-temporal queries. With the distance functions, both
coincidence and neighbouring functions can be specified including a sufficiently close
parameter which depends on the application context. The main disadvantage of this

view is the homogeneous treatment of both spatial and time dimensions.

3.4.1 Spatio-temporal relationships

We consider three groups of relationships, namely: spatio-temporal, spatial, and
temporal. In the spatio-temporal, we only consider the topological relationships
among d-dimensional rectangles, called here hyper-rectangles, where spatial and
temporal dimensions are treated homogeneously. The d dimensions defined for
spatio-temporal objects are internally represented by using a unique format uni-
fying data representation for homogeneous treatment. Table 3.5 presents the same
relationships that have been shown in table 3.1, but here topological relationships

are considered for dD mbrs (hyper-rectangles).

Relationships | bNb | iNi | bNi | iNb
k.disjoint(m) 0 0|0 0
k.contain(m) O |0 0 | -0
k.inside(m) O |0 -0 0
k.meet(m) -0 0|0 0
k.equal(m) -0 | -0 0 0
k.cover(m) -0 -0 0 | -0
k.coveredBy(m) | =0 | =0 | -0 |
k.overlap(m =0 | =0 =0 | =0

Table 3.5: Topological relationships among minimum bounding hyper-rectangles

(MBHR).

Spatial and temporal relationships were already presented in the aforementioned

sections. Spatial operators treat only spatial data and temporal operators are only
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Figure 3.15: Extension to the D/K classes to support spatio-temporal objects.

applied on temporal data, respectively. It is possible to combine spatial and temporal
relationships to be used to answer spatio-temporal queries. These possibilities will

be treated in the next section.

3.4.2 Extension proposition for the D/K model to support

spatio-temporal objects

We follow the third approach mentioned by Snodgrass in [KGK93], to incorporate
time into the D/K model. We propose an extension that supports special constructs
to deal with time-varying objects. Figure 3.15 shows two new groups of object
classes or types, such as: spatio-temporal objects and graph. An object instance of
the STObject inherits spatial and temporal representation, but internally is stored
in a uniform manner by applying transformation functions to it. Thus, a STObject
has a unique representation, which unifies its representation. Figure 3.16 presents
the summary of the D/K model extension proposal by using an OMT diagram.
It indicates that a spatio-temporal graph is a graph composed of nodes which are
spatio-temporal objects and arcs (edges) that are spatio-temporal relationships other
than topological ones.

The internal specification of these new classes in the D/K model are outside this
work. We only include this example of extension here for showing how the D/K

model should support spatio-temporal objects.

3.4.3 Querying and indexing spatio-temporal objects

The object-oriented spatio-temporal query language (OOSTSQL) is an extension of
SQL proposed by Cheng and Gadia, and mentioned by Snodgrass in [Kim95]. There
is no other reference to a query language supporting spatio-temporal queries. In this
language, the select clause mentioned in sections 3.2.2 and 3.3.2 deals with spatial
and temporal attributes. These temporal data can be either valid or transaction
time.

Query processing of spatio-temporal objects consists of spatial query conditions
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Figure 3.16: Extension proposition of the D/K model to support temporal and
spatio-temporal classes.

and temporal query conditions, e.g. Which object overlaps a query region from time
tl to t27. Because the R_tree is an indexing method that can only retrieve object
identifiers, it is not possible to query it directly by the user. Thus, the operators
included in the R_tree class will only be used by the system through the query
optimizer and processor, which has to decompose a user query into a query plan to

be executed by the processor.

3.5 Concluding remarks

The definition of spatio-temporal objects takes us to a deeper study of the three kind
of objects, namely: object oriented, spatial, and temporal. By understanding their
characteristics and relationships, we realise that each kind can be treated alone or all
together. For each kind of object, we defined operators that support its relationships,
and we realised the multiple possibilities and advantages that the inclusion of these
operators gives to the R_tree class. However, it seems to us that there are too many
operators for that inclusion, so we will present in the next chapter, a deeper analysis
to try to get a minimal set of these operators.

The objective of the inclusion of the spatio-temporal operators is to improve

the performances of the index method by increasing the hit ratio of the retrieval
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operations. In this context, the proposed RTree class will permit the main retrievals
needed by the D/K query language, and will support spatial (topological, positional,
and proximity), temporal, and spatio-temporal operators in the context of MBRs.
The query processor of the DML may use these operators to retrieve a set of objects
that contains the answer of a specific query. Since the R_tree structure is built with
mbhr, the set of retrieved objects should be greater than the set of answering objects
for a given query. Special calculations are always needed, called computational
geometry, to exactly determine the set of answering objects from the given set of
retrieved objects.

Special attention was paid to the versioning of objects in OODB, because in both
of the mentioned approaches, time is chosen to order object versions. OODBMS
can support versioning without temporal analysis by storing the creation time of
the version. Additionally, users decide when the new version of the object is needed
and she/he decides if it is a new version or it is a new object. Surrogates are used
to identify each object version and this surrogate does not take into account its
creation time. The support of creation time means that the system also supports
transaction time. The R_tree index cannot support versioning without the indexing
of transaction time, and even with that, the definition of the D /K model of versioning
is needed. This model can be extension versioning or schema versioning. If the
extension versioning model is chosen, then the schema versioning may or may not be
supported. We think the support of both models of versioning is the best alternative
for the D/K model.

The R_tree class will support the two time dimensions that can be used in the
versioning model. We do not go further into this point because we consider it is
outside of the objective of this work. We hope that the D/K query language wisely
uses the available operators to improve data retrieval times. The next chapter will

present the minimal set of the operators to be included.
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R _tree formal model

Retrieving multidimensional data (spatial or multipoint) for supporting non-standard
database applications, such as Computer Aided Design (CAD)or Geographic Infor-
mation Systems (GIS), among others, has been treated in many references as men-
tioned in chapter 2. The R_tree structure [Gut84] is a generalization of the B_tree
[BM72] to higher dimensions. This chapter presents an object-oriented formal model
of this structure. At the beginning, we include some design characteristics to better
explain the bases of our formal model, and we finalize with the presentations of the
requirements for the RTree class extensions.

This chapter is organised as follows: section 4.1 presents the main concepts of
the R_tree structure as it was proposed by A. Guttman in [Gut84]. Section 4.2
shows the formal definitions to base the R_tree spatio-temporal extensions. An
object calculus based on those presented by D. Straube and M. Tamer in [ST90]
is shown in section 4.3. The illustration of the R_tree searches extended with the
spatial, temporal, and spatio-temporal cases is treated in section 4.4. Based on the
described formal model, section 4.5 presents the requirements of the RTree class
that will be designed and implemented in the next chapter, and finally, section 4.6

contains some concluding remarks.

66
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4.1 The R _tree structure

An R_tree is a height-balanced tree whose leaf nodes contain pointers to data objects.
The index is fully dynamic, where insertions and deletions may be intermixed with
searches without the need for periodic reorganization. According to A. Guttman in

[Gut84], an R_tree satisfies the following properties:

(1) Every leaf node contains between m and M index records unless it is the root.

(2) For each index record (I, tuple-identifier) in a leaf node, I is the smallest rectangle
that spatially contains the n-dimensional data object represented by the indicated
tuple.

(3) Every non-leaf node has between m and M children unless it is the root.

(4) For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle that
spatially contains the rectangles in the child node.

(5) The root node has at least two children unless it is a leaf.

(6) All leaves appear on the same level.

In the above, M is the maximum number of entries in one node and m < [M/2]
specifies the minimum number of entries in a node. As in the B_tree, m is named the
R _tree order. Each R_tree node is equivalent to a disk page called here a blob. M and
m depend on the blob size (blobSize). For a given blobSize, M is equal to the blobSize
divided by the length of the entries (entLength), i.e. M = [blobSize/entlength].
Figure 4.1 presents an R_tree with its overlapping regions.

Each leaf node contains a set of leaf entries, and branch nodes contain branch
entries. Leaf and branch entries within nodes have the following format: [hr, bn]
where hr is a d-dimensional bounding rectangle formed by d intervals of the form
[inf, sup] describing the minimum and maximum value in each dimension, and bn
is the blob identifier that refers to either the blob which contains the tuple identified
by hr, or the blob which contains a leaf or branch node of the R_tree. The minimum
bounding hyper-rectangle (mbhr) that covers the object is represented by hr. An
mbhr has its edges parallel to the axes of the data space. The difference between
a leaf and a branch node is indicated by an attribute value stored in the head of a
node that is called level, because it indicates the height of a node defined by the path
length from this node to a leaf node. Each node has a head and the rest of the node.
The head contains the six attribute values, current blob number indicating where
the node is stored (blobld), height of the node (level), current number of entries
(entries), current length of the node in bytes (length), blob number of the anterior
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Figure 4.1: An R_tree structure.

node (left), and blob number of the posterior node (right). The rest of a node is
composed of a set of entries. Figure 4.2 illustrates the node format corresponding

to either leaf or branch nodes.

blobld |level |entries [ength |left [right [entryl

entry

N head N\ rest /

hr bn
N——entry i L

Figure 4.2: Leaf and branch nodes format.

Both a node of the tree and an object in the object base are stored using the
same structure, that is the blob. We use this structure because the object base can
contain many different types of objects, especially those corresponding to multimedia
or image objects defined in the D/K model. The blob is managed in multimedia
systems, and it normally has a fixed length between 2KB and 4KB. To manage and
support blobs, the Blob class is used as an important class related to the RTree
class. The format of a blob is almost the same as for R_tree nodes. Figure 4.3 shows
the blob format used. A blob has a head and a tail. The head contains the following
attributes: the status of the blob (status), says if the blob is actually in use or not,
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the current number of objects (objNum), the current length in bytes (length), its
left brother blob (left), and its right brother blob (right). The tail contains a finite
set of objects. The internal behaviour of this class should be defined in the object
manager system, so we only use this class assuming that each indexed object has a

blob number associated, and this number is retrieved by using the R_tree index.

status |objNum flength [left [right

N head -\ tail 4

Figure 4.3: The blob format.

To insert a new entry in the R_tree, two steps have to be made. The first
is a search from the R_tree root node to the corresponding leaf node storing the
descendent route of nodes into a stack without the need of using a reference to the
father node into each child node. The second step is insertion of the new entry into
the node if there is enough room in it, otherwise the splitting function is invoked,
that moves half of the existing entries into a new node according to the splitting
policy adopted. The original paper proposes three splitting policies. One of them is
that of the minimal covering area for the two groups of entries, those that remain in
the split node (old node) and those that will be put into a new node. We choose to
make the new node a right brother of the existing node. A new entry is generated
to cover all of the entries of the new node, and this has to be inserted into the father
node of the old node which must, in turn, be split if already full. This process can
reach the root node provoking the growth of the R_tree, just as in the B_tree.

To delete an existing entry, it is also a two stage process. The first step is to
find the entry in a leaf node. If this entry does not exist, the process is finished,
otherwise the second step is an entry deletion. After a deletion, it is checked if the
leaf node is underflowed or not. Underflows are treated by re-insertion of the entries
remaining in the underflowed node until that node is empty at which point it can
be deleted. The corresponding covering entry in its father node has to be deleted
too by only following the second step. Obviously, this process can also reach the
root node provoking the shrinking of the R_tree.

These two main operations or functions of the R_tree permit the dynamic main-
tenance of the structure. To retrieve objects through this access method, at least
two other main functions are needed, the exact match search and the range search
functions. The first finds the object reference of the target object that matches the

multidimensional key given for searching. The second finds a set of object references
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that corresponds to those target objects which are contained in the multidimensional
search region.

In the following section, we present the R_tree extensions that expand the range
search function for several more specific range search functions depending on topo-

logical, directional, or proximity searches.

4.2 Formal definitions

Spatio-temporal queries require the support of spatio-temporal relationships among
spatio-temporal objects. These queries are treated by the query processor that
analyzes, optimises, and processes them. Normally, a query is transformed into a
query execution plan that contains a sequence of operations over a set of target
objects. The main idea is to use the most convenient set of operators to restrain the
search space of the target objects when the query processor executes a given query
plan. Thus, it is important that the index structure supports a set of specific search
operators in order to accelerate objects retrieval. With this aim, we define a formal
model to clarify and state the set of operators that extend our R_tree funcionalities.

All definitions in our model are based on the model proposed by D. Straube and
M. Tamer in [ST90], who define the following sets:

e a finite set of basic domains Dy, ..., D, where D =J_, D;;

e a countably infinite set A of symbols, called attributes;

a countably infinite set Qid of object identifiers;

a finite set CN defined by CN ={Interval, Hyper-rectangle, SpatialObject, Tempo-
ralObject, and STObject} class names;

a finite set MN of method names.

Straube and Tamer define three types of values:

Definition 4.1 (Values:) There are three types of values:
1. Every v € D is an atomic value for which there exists a textual representation
2. Fvery finite subset of Oid is a set value

3. Every element in P(A) x P(D) x P(Oid)* is a structural value

1P (X) denotes the powerset of X.
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We restrict our initial work to atomic values.
The symbol ¥ denotes the set of all values, 7 denotes the set of all integer values,

and R is the set of all real values.

Definition 4.2 (Objects:) An object is a triple o = (oid, cn, val) where oid €
Old, en € CN, and val € 9. O = Old x CN x 0 s the set of all objects. The
notation o.0id, o.cn, and o.val, denotes the object identifier, the class, and the value

of object o, respectively.

Definition 4.3 (Interval:) An interval is an object where o.cn=Interval and it
contains two atomic values € N denoted by inf and sup. It can be either open if it
does not contain their borders, denoted by OpInt = (inf, sup); or closed if it contains
their borders, denoted by Cloint = [inf, sup]. For both type of intervals, inf < sup
always. The notation o.inf and o.sup denote the inferior or minimum value and the
superior or maximum value of the interval, respectively. Int C O is the set of all

intervals.

Definition 4.4 (Hyper-rectangle:) A hyper-rectangle is an object where o.cn =
Hyper-rectangle and it contains an array of d intervals defining a multidimensional
rectangular region in a multidimensional space (hr). The notation o(dim) denotes
the closed interval in dimension dim that contains the extent of the hyper-rectangle

in this dimenston with 0 < dim < d. HR C O 1is the set of all hyper-rectangles.

Definition 4.5 (Spatial objects:) A spatial object is an object where o.cn = Spa-
tialObject and it contains the number of spatial dimensions, denoted by o.sd, and the
minimum bounding hyper-rectangle in the spatial dimensions that defines its spatial
location (0.sl). SO C O is the set of all spatial objects. The notation o.sl denotes
the minimum bounding hyper-rectangle formed in the spatial dimensions of o, and

0.ds denotes the spatial unit used in proximity spatial searches.

Definition 4.6 (Temporal object:) A temporal object is an object where o.cn =
TemporalObject and it contains the number of temporal dimensions (o.td), and the
minimum bounding hyper-rectangle in the temporal dimensions that defines its lo-
cation in time (o.tl). TO C O is the set of all temporal objects. The notation o.tl
denotes the minimum bounding hyper-rectangle formed in the temporal dimensions

of o, and o.dt denotes the time unit used in proximity temporal searches.

Definition 4.7 (Spatio-temporal object:) A spatio-temporal object is an object
where 0.en=STObject and it contains the number of dimensions (o.d=sd+td), and
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the minimum bounding hyper-rectangle in the spatio-temporal dimensions that de-
fines its location in space and time (o.stl). STO C O is the set of all spatio-temporal
objects. The notation o.stl denotes the minimum bounding hyper-rectangle formed

in the spatio-temporal dimensions of o.

The symbols ST denotes STO U SO U TO, SR denotes the set of all spatial
relationships between spatial objects, T'R denotes the set of all temporal relation-
ships between temporal objects, and ST R denotes the set of all spatio-temporal
relationships between spatio-temporal objects.

We define the following function mappings to be used on search operations.

Definition 4.8 (Boundary of an object:) Let p be a dD point represented by
p = (p1,p2,---,pa),p € RY, and an object o; € ST. The dD point p is in the
boundary of o;, p € b(o;) if for some dimension §, 1 <6 < d, ps = 0;,(8).inf or ps =
0;(6).sup, and for all other dimensions ¢, 1 < e < d, ¢ # 6, o;(e)inf < p. <

0;(g).sup.

Definition 4.9 (Interior of an object:) Let p be a dD point represented by p =
(p1,P2s--->pa),p € RE, and an object o; € ST. The dD point p is in the interior of
0i, p € 1(0;) if for all dimension &, 1 < § < d, o0;(6)anf < ps < 0;(§).sup.

Definition 4.10 (Spatio-temporal mbhr:) The minimum bounding hyper-rectangle
of a spatial and temporal object is a mapping mbhr from the set of spatial and tem-

poral objects STO to HR such that for all o; € STO, mbhr(o;) is the hyper-rectangle

that completely covers the object o; in all d dimensions with o;.01d.

Definition 4.11 (Spatial mbhr:) The minimum bounding hyper-rectangle com-
posed of spatial dimensions is a mapping mbr from the set of spatio-temporal objects
STO to HR such that for all o; € STO, mbr(o;) is the hyper-rectangle that com-

pletely covers the spatial dimensions of object o; in all sd dimensions with o;.0ud.

Definition 4.12 (Temporal mbhr:) The minimum bounding hyper-rectangle com-
posed of temporal dimensions is a mapping t from the set of spatio-temporal objects
STO to HR such that for all o; € STO, t(0;) is the hyper-rectangle that completely

covers the temporal dimensions of object o; in all td dimensions with o;.0ud.

For clarity, we use the following notations:

e The first and second dimensions representing spatial dimensions are denoted by X
and Y, respectively.
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e The first and second dimensions representing temporal dimensions are denoted by
T and T7T, respectively.

Example 4.1 e o(X).inf denotes the minimum value of the first interval represent-
ing X coordinate corresponding to the first spatial dimension.

e o(Y).sup denotes the maximum value of the second interval representing Y coordi-
nate corresponding to the second spatial dimension.

e o(T) denotes the first interval representing valid time corresponding to the first
temporal dimension.

o Ifo, € SO and 0;.sd =2, then
mbr(o;) = ([0;.sl(X).inf, 0;.s1(X).sup],[0.sL(Y).inf, 0;.sl(Y).sup]) with
0;.sl(X).inf < 0;.51(X).sup, and o;.sl(Y).inf < 0;.sl(Y).sup.

o Ifo, ¢ TO and o;.td = 1,
t(0;) = ([o, (T inf, 0;.t1(T).sup]) with o; (X ).inf < o, tl(T).sup.

o [fo, € STO and 0;.8d = 2,0;.td = 1,0;.d = td 4+ sd = 3, then
mbhr(o;) = (0;.stl(T), 0;.stl(X), 0;.5tl(Y)),
mbr(o;) = (0;.stl(X), 0;.stl(Y)), and
t(o;) = o;.stl(T).

The model presented by M. Egenhofer defines sixteen binary topological relation-
ships, that are complete and are the result of the comparison of two objects in terms
of their boundaries and interiors. The set of these relationships among intervals in
one-dimensional space and among mbhrs in 2D was shown in the last chapter.

We can now establish the relationship between one object o; and another o;,
or one object o; and a rectangle mbhr(o;); or a rectangle mbhr(o;) and another
mbhr(o;).

For each spatio-temporal relationship already shown in table 3.5, we define the

following: Let k, m be two spatio-temporal objects € STO.

o k.disjoint(m): Returns true if k and m are disjoint, otherwise returns false. k and
m are disjoint if
b(k)yNb(m) =0, i(k)Ni(m)
b(k)yni(m) =10, i(k) Nb(m)

0,
0

o k.contain(m): Returns true if k contains m, otherwise returns false. k contains m if
b(k)ynb(m) =10, i(k) Ni(m) = -0,
b(k)Ni(m) =10, i(k) Nnb(m) = -0

o k.inside(m): Returns true if k is inside m, otherwise returns false. k is inside m if
b(k)ynb(m) =10, i(k) Ni(m) = -0,
b(k)Ni(m)=-0, i(k)ynb(m)=10
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k.meet(m): Returns true if k meets m, otherwise returns false. k meets m if
b(k)nb(m) =0, i(k)ni(m) =0,
b(k)yni(m) =10, i(k)nb(m)=10

o k.equal(m): Returns true if k is equal to m, otherwise returns false. k is equal to m

0, i(k) NVi(m) =
b(k) Ni(m) = 0, i(k) N b(m) =0

o k.cover(m): Returns true if k covers m, otherwise returns false. k covers m if
b(k)Nb(m) =-0, i(k)ni(m)= -0,
b(k)Ni(m) =10, i(k) Nnb(m) = -0

o k.coveredBy(m): Returns true if k is covered by m, otherwise returns false. k is
covered by m if
b(k)Nb(m)==0, i(k)ni(m) =

0, i(k

-0,
b(k)Nni(m) =—0, i(k)Nnb(m) =10

e k.overlap(m): Returns true if k overlaps m, otherwise returns false. k overlaps m if
b(k)Nb(m) = =0, i(k) N i(m) = -0,
b(k) Ni(m) = =0, i(k) N b(m) = -0

For spatial objects so € SO, we define the topological relationships already
presented in table 3.1 with the prefix sl. Let &, m be two so € SO then

o k.slDisjoint(m): Returns true if k and m are disjoint, otherwise returns false. k and
m are spatially disjoint if
b(k)yNb(m) =0, i(k)Ni(m)
b(k)yni(m) =0, i(k) Nb(m)

o k.slContain(m): Returns true if k contains m, otherwise returns false. k spatially

0,
0

contains m if
b(k) N b(m) =0, i(k) Ni(m)
b(k) i(m) =0, i(k) N b(m)

e and similarly for the other topological operators.

—

—

0,
0

Others spatial relationships are the positional or directional relationships pre-

sented in table 3.2, and we define them as follows:

o k.above(m): Returns true if k is above m, otherwise returns false. k is above m if
k.sl(Y).anf > m.sl(Y).sup

o k.left(m): Returns true if k is on the left side of m, otherwise returns false. k is on
the left side of m if
k.sl(X).inf > m.sl(X).sup

o k.below(m): Returns true if k is below m, otherwise returns false. k is below m if
k.sl(Y).sup < m.sl(Y).inf
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k.right(m): Returns true if k is on the right side of m, otherwise returns false. k is
on the right side of m if
k.sl(X).sup < m.sl(X).nf

o k.directAbove(m): Returns true if k is directly above m, otherwise returns false. k

is directly above m if
k.above(m) A m.sl(X).cover(k.sl(X))

o k.directLeft(m): Returns true if k is directly on the left of m, otherwise returns false.
k is directly on the left side of m if
kleft(m) Am.sl(Y).cover(k.sl(Y))

o k.directBelow(m): Returns true if k is directly below m, otherwise returns false. k
is directly below m if

k.below(m) A m.sl(X).cover(k.sl(X))

o k.directRight(m): Returns true if k is directly on the right side of m, otherwise
returns false. k is directly on the right side of m if

k.right(m) A m.sl(Y).cover(k.sl(Y))

o k.aboveLeft(m): Returns true if k is above and on the left side of m, otherwise
returns false. k is above and on the left side of m if

k.above(m) A k.le ft(m)

o k.belowLeft(m): Returns true if k is below and on the left side of m, otherwise
returns false. k is below and on the left side of m if

k.below(m) A k.le ft(m)

o k.belowRight(m): Returns true if k is below and on the right side of m, otherwise
returns false. k is below and on the right side of m if
k.below(m) A k.right(m)

o k.aboveRight(m): Returns true if k is above and on the right side of m, otherwise
returns false. k is above and on the right side of m if
k.above(m) A k.right(m)

Also included in the RTree class are the specifications of the two variables used
in proximity queries named A. Examples of use of these two types of spatial queries
were also shown in the last chapter. We do not include special operators to deal
with nearest and farthest queries. Operator between will be calculated based on the
two given mbrs if they are disjoint. For two disjoint mbrs a new mbr is calculated,
named p, which is the rectangular region between m and j as shown in figure 4.4.
The new between region depends on the position of the two given mbrs, finding out
five possibilities of m, j spatial location. The between function is based on these
possibilities, all rotation or reflection allowed.

For spatial objects, we define the spatial proximity relationships already shown

in table 3.3. Let j, k&, m be three objects in SO, then k.near(m), k.far(m), and
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Figure 4.4: New definition of between region.

k.between(j, m) are calculated by using topological relationships k.slOverlap(p),
k.slDisjoint(p), and k.slOverlap(p), respectively; where p is a new mbr calculated as
follow:

e In case of near and far,

p = ([m.sl(X).inf — m.ds, m.sl(X).sup+ m.ds],
[m.sl(Y).inf —m.ds, m.sl(Y).sup + m.ds])

e In case of between, the new p depends on the directional relationship between m
and j.

We support temporal searches where more than one time dimension is involved
by applying topological operators to temporal objects in their temporal dimensions.
We also include those cases corresponding to temporal searches, where only one
dimension of an object is involved, and these relationships were already presented
in table 3.4. We define the following temporal operators (top) to be applied to only
one time dimension. Let ¢, ¢ be two temporal objects (to) € TO, and gtd an integer

gtp € I, 0 < gtd < td, that specifies the given time dimension,

o q.before(t, gtd): Returns true if q is before t in that gtd temporal dimension, other-
wise returns false. q is before t in gtd if
q.tl(gtd) < t.tl(gtd)

e q.after(t, gtd)): Returns trueif q is after t in that gtd temporal dimension, otherwise
returns false. q is after t in gtd if
q.tl(gtd) > t.tl(gtd)

e q.during(t, gtd): Returns true if q is during t in the given temporal dimension,
otherwise returns false. ¢ is during t in gtd if
b(q.tl(gtd)) N b(t.tl(gtd)) = 0, i(q.tl(gtd)) N i(t.tl(gtd)) = —0,
b(q.tl(gtd)) Ni(t.tl(gtd)) = =0, i(q.tl(gtd)) N b(t.tl(gtd)) =0

o q.tMeet(t, gtd): Returns true if q meets t is the given temporal dimension, otherwise
returns false. q meets t in gtd if
b(q.tl(gtd)) Nb(t.tl(gtd)) = =0, i(q.tl(gtd)) Ni(t.tl(gtd)) = 0,
b(q.tl(gtd)) Ni(t.tl(gtd)) = 0, i(q.tl(gtd)) Nb(t.tl(gtd)) =0

e ¢.tEqual(t, gtd): Returns true if q is equal to t in that gtd temporal dimension,
otherwise returns false. q is equal to t in gtd if
b(q.tl(gtd)) Nb(t.tl(gtd)) = =0, i(q.tl(gtd)) Ni(t.tl(gtd)) = —0,
b(g.tl(gtd)) ni(t.tl(gtd)) =0, i(q.ti(gtd)) Nb(t.tl(gtd)) =0
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q.start(t, gtd): Returns true if q and t start on the same point of gtd, otherwise
returns false. q and t start equally in gtd if

b(q.tl(gtd)) Nb(t.tl(gtd)) = =0, i(q.tl(gtd)) Ni(t.tl(gtd)) = —0,

b(q.tl(gtd)) Ni(t.tl(gtd)) =0, i(q.tl(gtd)) Nb(t.tl(gtd)) = —

e q.finish(t, gtd): Returns true if q and t finish on the same point of gtd, otherwise
returns false. q and t finish equally in gtd if
b(q.tl(gtd)) Nb(t.tl(gtd)) = =0, i(q.tl(gtd)) Ni(t.tl(gtd)) = —0,
b(q.tl(gtd)) Ni(t.tl(gtd)) = =0, i(q.tl(gtd)) N b(t.tl(gtd)) =0

e q.adjacent(t, gtd): Returns true if q is adjacent to t in gtd, otherwise returns false.
q is adjacent to t in gtd if
t.tl(gtd).inf — q.tl(gtd).sup = o.dt U q.tl(gtd).inf — t.tl(gtd).sup = o.dt

e q.follow(t, gtd): Returns true if q is follows t in gtd, otherwise returns false. q
follows t in gtd if
q.tl(gtd).inf — t.tl(gtd).sup = o.dt

o q.precede(t, gtd): Returns true if q is precedes t in gtd, otherwise returns false. q
precedes t in gtd if
t.tl(gtd).inf — q.tl(gtd).sup = o.dt

4.3 An object calculus

We also follow the object calculus proposed by M. Tamer, D. Straube, and R. Peters
in [TSP93].

A query is of the form {o (o)}, where o is an object variable denoting
some object in the database and % is a formula built from atoms. Atoms
represent the primitive query operations of the object model and return a
Boolean result. The legal atoms are as follows:

0;00; where:

— o; and o; are object variables or denotes an operation of the form
< 01---0, > .mlist where o1---0, are object variables, and <
010, > .mlist denotes a multioperation uses when the list of
method names is unimportant.

— 6 is one of the operators ==, €,0r =1,
abo; where:
— o0; is an object variable or denotes an operation of the form <
01+ -0, > .mlist where o1 - - -0, are object variables.

— ais the textual representation of an atomic value or a set of atomic
values.

— 6 is one of the operators =, €, 0or =13
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Formulas depend on the notion of free and bound variables. A variable
is said to be bound in a formula if it has been previously introduced using
a quantifier such as 3 or V. If the variable has not been introduced using a
quantifier it is free in the formula.

Formulas are defined as follows:

1. Every atom is a formula. All object variable in the atom are free in the
formula.

2. If ¥ and 1 are formulas, then i A 2, 11 V 1, and —py are also
formulas. Object variables are free or bound in 1y A b, ¥1 V 1P, and
—1p1 as they are free or bound in 1y or 1, depending on where they
occur.

3. If ¥ is a formula, then (3 0)(%) is a formula. Free occurrences of o in ¢
are bound to (3 o) in (3 0)(v).
) (¢

4. If 1 is a formula, then (V 0)(¢) is a formula. Free occurrences of o in

are bound to (V o) in (V o) (7).

5. Formulas may be enclosed in parenthesis. In the absence of parenthesis,
the decreasing order of precedence is €,=,=¢,==,4,V,—, A and V, in
that order.

A query is an object calculus expression of the form {o (o)} where o is
the only free variable in .

We are interested in spatial and/or temporal queries which involve objects in
ST and contain at least one spatial, temporal, or spatio-temporal relationship. The
kind of queries we study are expressed in object calculus as follows: {o / o R 1}
where 0 € ST, r € HR, and R € ST R. The query means Find all object o.0id such
that o stands in relation R with some given hyper-rectangle r.

In order to minimize the number of operators in the RTree class, a more detailed
study must be done. That is, to improve retrieval performances, it is necessary to
increment the hit ratio in searches by decreasing the number of disk accesses. This
means that search operators must be chosen wisely. We consider the use of the most
appropriate relationships between the mbhrs as a constraint for reducing the search
space when the query processor is required to execute a spatial and/or temporal
query. In the classical R_tree, the only two spatial search operators are match and
overlap meaning equality and overlapping of object mbrs. For example, if we have
the query {o / o overlaps r}, then we exploit the fact that o overlaps © = mbr(o)
overlaps mbr(x) and rejecting any o such that = (mbr(o) overlaps mbr(z)). Thus, the
condition mbr(o) overlaps mbr(x) is necessary but not sufficient because it is only
a one way implication. Using this constraint reduces the number of spatial objects

that have to be retrieved, but will nevertheless normally result in some false hits.
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In any other cases of range queries, the classical R_tree only provides the overlap
search operator.

The R_tree itself comprises a number of nodes such that if node P3 is a child
of node P9, then the corresponding entry in P9 covers all of the entries contained
in P3 as shown in figure 4.1. To search throughout the tree, we begin the search
at the root node by knowing that (P9 cover P3) and (P3 cover x) = (P9 cover x).
We make use of this transitivity and a more specific operator in the following way.
Assuming that we are trying to answer the query: {o / o cover x} then at some level
in the tree, if there is a node such that =((P9 overlaps x)A(P9 cover P3))= — (P3
overlaps x), we know we need not search any of the descendants of P9.

For each spatio-temporal operator, we classify as necessary or sufficient the corre-
sponding operator for two mbhrs, when the operation is needed for two d-dimensional
objects. The necessary column means that the retrieved set of objects after the rec-
ommended operation may contain some false hits, and the sufficient column says
that the retrieved set of objects does not contain false hits. Table 4.1 shows the
specific operator to be called if the spatio-temporal, spatial, and/or temporal query
among objects contains any of the operators mentioned above. In the case of spatial
queries, the operator used for two polygons is presented in the first column, and the
operator invoked for mbrs is shown on the right.

The spatial operators support queries of different types, such as region vs. region,
region vs. line, region vs. point, line vs. line, line vs. point, and point vs. point.
This support is based on the possibility of having the mbhr covering the different
types of geometrical objects mentioned before. That is, an mbhr can be a multi-
dimensional point, if all of its d intervals are intervals of zero length, or a multi-
dimensional line aligned with an axis, if one of its d intervals is an interval of length
different from zero, and the others are intervals of zero size. Lines which do not

align with an axis must be represented by an mbhr.

4.4 Extensions of the R_tree searches

The secondary storage access structure which we term RTree is intended to support
the following operations for a set B of blobs that contains the set 10 of indexed
objects, organised in a set F of entries composed of the mbhr(io) and bn(io), where

bn(io) is the blob number that contains io.

o Multidimensional searches: stop(RTree(10), a): Multidimensional queries are of
the form: {io/io R a} where i0o € STO, a € HR, and R is a binary relationship €
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d-dimensional mbhr (dD)
object Necessary Sufficient
disjoint #* disjoint
meet —disjoint -
cover cover -
inside inside -
overlap —disjoint -
MinSet_dD={disjoint,~disjoint,=,cover,inside
mbr (2D)
Polygons Necessary Sufficient
disjoint #* disjoint
meet —disjoint -
cover cover -
inside inside -
overlap —disjoint -
above left in Y -
below right in Y -
left left in X -
right right in X -
dAbove left in Y A —disjoint in X -
dBelow right in Y A —disjoint in X -
dLeft left in X A —disjoint in Y -
dRight right in X A —disjoint in Y -
aboveleft leftin X AY -
belowLeft right in Y A left in X -
aboveRight right in X A left in Y -
belowRight right in X AY -

MinSet2D={disjoint,~disjoint,=,cover,inside,l

eftD,rightD,—disjointD }

Time Interval (1D)
interval Necessary Sufficient
disjoint - left A right in T
before - right in T
after - left in T
meet - meet
start - start
finish - finish
adjacent - adjacent
precede - precede
follow - follow
during - during
overlap - —disjoint in T

MinSet1D={rightD,leftD,meet,=,start,finish,adjacent,precede,follow,during,~disjointD }

Table 4.1: Minimal set of operators for the R_tree index.
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STR that contains the topological relationships. Using the information of table 4.1,
this query is replaced with {io/mbhr(io) stop a}, where stop is the corresponding
operation in MinSet_dD = {disjoint, nDisjoint, match, cover, inside}. This query
returns a list of blob numbers where each bn € B and 10 € IO and this list contains
the indexed objects that possibly answer the query.

o Bidimensional searches: sop(RTree(10), b): Bidimensional queries are of the form:
{io/io R b} where io € SO, b€ HR, and R is a binary relationship € SR that con-
tains the topological, directional, and proximity relationships. Using the same ta-
ble, this query is replaced with {io/mbhr(io) sop b}, where sop is the corresponding
operation in MinSet2D={slDisjoint, slnDisjoint, sIMatch, slCover, sllnside, leftD,
rightD, nDisjointD}, and mbhr(io) is defined only in 2D. This query returns the list
of blob numbers that contains the indexed objects which possibly answer the query.

o Unidimensional searches: top(RTree(10), ¢): Unidimensional queries are of the
form: {io/io R ¢} where io € TO, ¢ € Int, and R is a binary relationship €
TR that contains the temporal relationships. Using the same table, this query
is replaced with {io/mbhr(io) top c}, where top is the corresponding operation in
MinSet1D={rightD, leftD, meet, tMatch, start, finish, adjacent, precede, follow,
during, nDisjointD}, and mbhr(io) is defined only in 1D. This query also returns
the list of blob numbers that contains the indexed objects which possibly answer
the query.

o Insert(RTree(10), e): Add e to whether the set of entries £, and the result is
RTree(10 U {io}).

o Delete(RTree(10), e): Delete e to the set of entries E, if e is in F and the result is
RTree(10 - {io}); otherwise RTree remains the same.

At the query language level, a given spatial and/or temporal query can be com-
plex in the sense that it can contain several parts and each of these parts can be
catalogued in one of the three kind of query defined above. A given query that calls
either a spatio-temporal operator or both spatial and temporal operators is named a
spatio-temporal query. To help in this task, we present in table 4.2 our suggested so-
lutions of operator uses. To simplify column identifiers, we use Xi to denote X.inf, Xs
to denote X.sup, and so on. The description of the proposed solution to each combi-
nation of spatial and temporal operators is joined with the classification of necessary
or sufficient, corresponding to the retrieved objects entirely satisfy the given query
or not. Spatio-temporal queries are either multidimensional query or a combina-
tion of a bidimensional and unidimensional queries. For example, {o/o disjoint a A
o precede b} = {o/mbhr(o) slDisjoint mbhr(a) A otl(T) precede b.tl(t)} where
o€ 10, a€ SO, and b € TO. This spatio-temporal query can be answered by us-
ing one multidimensional query as the form: {o/mbhr(o) disjoint mbhr(c)}, where

mbhr(c) = ([b.tU(T).inf, HT], mbhr(a)).
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Three proximity operators are also considered in this work as mentioned in the
last section. These three operators can be transformed into two of the topological
operators. Table 4.3 presents this transformation. The proximity measures, coinci-
dence and neighboring, treated by Roberts in [Rob95] will not be provided by the
index.

Combinations of topological, directional, proximity, and temporal operators are
possible. To combine directional and proximity, first the proximal operators are
transformed to topological, and the result combined with the directional operator.
The combination of directional and temporal operators cannot be solved by use of
a unique operator, thus it has to be solved separately, and then intersecting the list
of retrieved objects. Table 4.4 illustrates the other two cases of combination.

There must exist a query language and a query optimizer to translate user queries
to RTree class operators. In the following is presented some types of queries that
can be formulated by users, together with the RTree class operator(s), which can be

used to answer those queries, after the intervention of the query optimizer.

1. Queries when it is known exactly where and when

e Which objects are located at spatial location (sl) in this time interval (w)?
Expressed as: {io / mbhr(io) siMatch sl A io.tl(T) = w} = {io / mbhr(io) =
mbhr(c)}, where sl € HR with 2D, w € Int, i0o € 10, ¢ € HR, and
¢ = ([w.anf,w.supl, [sl.hr(X).inf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup)).
The RTree operator match is used for this query. Given an instance, rt, of the
RTree class and an instance, ¢, of the HR (i.e. hyper-rectangle) class, then
query is executed by calling rt.match(c). If the defined time dimension is zero,
then ¢ is as stated above. If the defined time dimension is 2, and the spatial
dimensions are zero and one, then

c = [sl.hr(X).anf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup], [w.in f, w.sup]).

o Which objects do not meet sl in this w? or Which objects are located outside
sl in this w?
Query: {io / mbhr(io) sIDisjoint sl A io.tl(T) = w} = {io / mbhr(io) disjoint
¢ V mbhr(io) disjoint d}, where sl € HR with 2D, w € Int, 0 € IO, c € HR,
and ¢ = ([w.inf — do.dt, HTY,
[sl.hr(X).anf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup]), and
d= ([LT,w.sup+ io.dt], [sl.hr(X).inf, sl.hr(X).sup],
[sl.hr(Y).inf, sl.hr(Y).sup]).
Answer will be in: rt.disjoint(c)A rt.disjoint(d).

e Which objects meet sl in this w?
Query: {io / mbhr(io) sINDisjoint sl A i0.tl(T) = w} = {io / mbhr(io) nDis-
joint ¢}, where sl € HR with 2D, w € Int, i0o € IO, ¢ € HR, and
¢ = ([w.anf,w.supl, [sl.hr(X).inf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup)).

Answer will be in: rt.nDisjoint(c).
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([X1,Xs],[Y1,Ys]) [T1,Ts] (S): sufficient
mbr t (N): necessary
disjoint disjoint mbhr=([T1,Ts],mbr) (S)
before disjoint mbhr=([Ti,HT],mbr) (S)
after disjoint mbhr=([LT,Ts],mbr) (S)
meet disjoint mbhr=([Ti+AT,Ts-AT],mbr) (N)
= disjoint mbhr=([Ti-AT,HT],mbr) V mbhr=([LT,Ts+AT],mbr) (N)
start disjoint mbhr=([LT,Ti],mbr) (N)
disjoint finish disjoint mbhr=([Ts,HT],mbr) (N)
adjacent disjoint mbhr=([Ti,Ts],mbr) (N)
precede disjoint mbhr=([Ti,HT],mbr) (N)
follow disjoint mbhr=([LT,Ts],mbr) (N)
during disjoint mbhr=([LT,Ti-AT],mbr) V mbhr=([Ts+AT,HT],mbr) (N)
overlap slDisjoint | mbr (N)
disjoint | slnDisjoint | mbr (N)
before —disjoint mbhr=([LT,Ti],mbr) (N)
after —disjoint mbhr=([Ts,HT],mbr) (N)
meet —disjoint mbhr=([Ti,Ts],mbr) (N)
= —disjoint mbhr=([Ti,Ts],mbr) (N)
start —disjoint mbhr=([T1,Ti],mbr) (N)
—disjoint finish —disjoint mbhr=([Ts,Ts],mbr) (N)
adjacent —disjoint mbhr=([Ti,Ts],mbr) (N)
precede —disjoint mbhr=([LT,Ti-AT],mbr) (N)
follow —disjoint mbhr=([Ts+AT HT],mbr) (N)
during —disjoint mbhr=([Ti,Ts],mbr) (N)
overlap —disjoint mbhr=([T1,Ts],mbr) (S)
disjoint sIMatch mbr (N)
before slMatch mbr (N)
after slMatch mbr (N)
meet slMatch mbr (N)
= = mbhr=([T1,Ts],mbr) (S)
start slMatch mbr (N)
= finish slMatch mbr (N)
adjacent siMatch mbr (N)
precede siMatch mbr (N)
follow slMatch mbr (N)
during slMatch mbr (N)
overlap siMatch mbr (N)
disjoint slCover mbr (N)
before cover mbhr=([T1,Ti],mbr) (N)
after cover mbhr=([Ts,Ts],mbr) (N)
meet slCover mbr (N)
= = mbhr=([Ti,Ts],mbr) (N)
start cover mbhr=([Ti,Ts],mbr) (N)
cover finish cover mbhr=([Ts,Ts],mbr) (N)
adjacent cover mbhr=([Ti-AT,Ti-AT],mbr) V mbhr=([Ts+AT,Ts+AT],mbr) (N)
precede cover mbhr=([Ti-AT,Ti-AT],mbr) (N)
follow cover mbhr=([Ts+AT,Ts+AT],mbr) (N)
during cover mbhr=([T1,Ts],mbr) (S)
overlap slCover mbr (N)
disjoint slInside mbr (N)
before inside mbhr=([LT,Ti+AT],mbr) (S)
after inside mbhr=([Ts-AT,HT],mbr) (S)
meet slInside mbr (N)
= inside mbhr=([Ti-AT,Ts+AT],mbr) (N)
start inside mbhr=([Ti-AT,HT],mbr) (N)
inside finish inside mbhr=([LT,Ts+AT],mbr) (N)
adjacent slInside mbr (N)
precede inside mbhr=([LT,Ti],mbr) (N)
follow inside mbhr=([Ts,HT],mbr) (N)
during inside mbhr=([Ti-AT,Ts+AT],mbr) (S)
overlap slInside mbr (N)

LT=lowest time value, HT=highest time value, and AT=time unit

Table 4.2: Combination of topological 2D and temporal 1D operators.
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([Xi,Xs],[Y1,Ys])

mbr (N): necessary

near —disjoint | mbr=(Xi-A, Xs+A, Yi-A, Ys+A) (N)

far digjoint | mbr=(Xi-A, Xs+A, Yi-A, Ys+A) (N)
between —disjoint | mbr=selon redefinition aforementioned (N)

A is the spatial unit

Table 4.3: Transformation of proximity to topological operators.

([X1,Xs],[Y1,Ys])

mbr (N): necessary
above above mbr (N)
below below mbr (N)
left left mbr (N)
right right mbr (N)
dAbove dAbove | mbr (N)
disjoint or |  dBelow dBelow mbr (N)
—disjoint dLeft dLeft mbr (N)
dRight dRight mbr (N)
aboveleft | aboveleft | mbr (N)
belowLeft | belowLeft | mbr (N)
aboveRight | aboveRight | mbr (N)
belowRight | belowRight | mbr (N)

Any other combination has not any sense

COMBINATION OF TOPOLOGICAL AND DIRECTIONAL OPERATORS.

([X1,Xs],[Y1,Ys]) [Ti,Ts]
mbr t
disjoint After transforming
before proximity operators
after to the corresponding
= topological ones,
start it is applied the
near finish same table for
far adjacent | the combination
between precede of topological
follow and temporal
during operators.
overlap

COMBINATION OF PROXIMITY AND TEMPORAL OPERATORS.

Table 4.4: Combination of topological, directional, proximity (2D), and temporal

1D operators.
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o Which objects cover sl during w? or Is sl covered by which objects during w?
Query: {io / mbhr(io) slCover sl A io.tl(T) during w} = {io / mbhr(io) cover
c}, where sl € HR with 2D, w € Int, io € IO, ¢ € HR, and
¢ = ([w.anf,w.supl, [sl.hr(X).inf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup)).

Answer will be in: rt.cover(c).

o Which objects are inside sl in this w? or Which objects are contained in sl in
this w?
Query: {io / mbhr(io) sllnside sl A io.tl(T) = w} = {io / mbhr(io) inside c},
where sl € HR with 2D, w € Int, w0 € IO, c € HR, and
c= ([wanf — dt,w.sup + dt], [sl.hr(X).anf, sl.hr(X).sup)],
[sl.hr(Y).inf, sl.hr(Y).sup]).

Answer will be in: rt.inside(c).

e Which objects overlap sl in this w? or Which objects intersect sl in this w?
Query: {io / mbhr(io) sINDisjoint sl A io.tl(T) = w} = {io / mbhr(io) nDis-
joint ¢}, where sl € HR with 2D, w € Int, i0o € IO, ¢ € HR, and
¢ = ([w.anf,w.supl, [sl.hr(X).inf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup)).

Answer will be in: rt.nDisjoint(c).

o Which objects were located at sl in 19967 Before use the operator, it must be
built the time interval, w=[19960101,19961231].
Query: {io/mbhr(io) siMatch sl A iotl(T) = w} = {io/mbhr(io) match c},
where sl € HR with 2D, w € Int, w0 € IO, c € HR, and
¢ = ([w.anf,w.sup], [sl.hr(X).inf, sl.hr(X).sup)],
[sl.hr(y).anf, sl.hr(Y).sup]).

Answer will be in: rt.match(c).

e The operators mentioned above can be used to restrict the object base to a
specific year. Which objects do not meet sl in 19XX? or Which objects are
located outside sl during 19XX? or Which objects meet sl after 19XX7 or
Which objects are covered by sl in 19XX7?, and so on.

e The operators can also be used to ask a larger period, for example Which
objects were located at sl from 1994 to today? In this case the time interval
must be built before any operator is used, for example, w=(19940101,today)
if the time granularity is days.

e Temporal operators can also be used. Which objects were located at sl before
19947 In this case, w=[19931231,19931231] if the time granularity is days.
Query: {io/mbhr(io) slinside sl N io.tl(T) before w} =
{io/mbhr(io) inside c}, where sl € HR with 2D, w € Int, io € 10, ¢ € HR,
and
c= ([LT,w.sup+ dt], [sl.hr(X).inf, sl.hr(X).sup],

[sl.hr(Y).inf, sl.hr(Y).sup]), where LT is the minimum time value in the tem-
poral domain of the attribute.
Answer will be in: rt.inside(c).

e Direction operators can also be used. Which objects were located above sl
after 19947 Here, w=[19950101, today] if the time granularity is days.
Query: {io/mbhr(io) above sl A io.tl(T) during w} =
{io/mbhr(io) rightD c(Y) A t(io) during c¢(1)}, where sl € HR with 2D,
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w € Int, 10 € 10, c € HR, and
¢ = ([w.anf,w.supl, [sl.hr(X).inf, sl.hr(X).sup], [sl.hr(Y).inf, sl.hr(Y).sup)).
Answer will be in: rt.rightD(c, Y) and rt.rightD(c, T).

2. Queries when it is known exactly where. Spatial queries answered by using bidi-
mensional search.

e Which objects are located at sl? or Which objects are located at sl now?
Query: {io/mbr(io) = sl} = {io/mbr(io) = sl}, where sl € HR with 2D,
to € 10.

Answer will be in: rt.slMatch(sl) and it must be choose the retrieved objects
with the largest time.

e For what date is the most recent object located at sl?
Query: {io/mbr(io) = sl} = {io/mbr(io) = sl}, where sl € HR with 2D,
to € 10.
Answer will be in: rt.slMatch(sl) and it must be choose the retrieved objects
with the smallest time.

e It can be used the aforementioned operators to ask the object base for an
specific location. Which objects are contained in sl now? or Which objects
have been contained in sl? or Which objects meet sl now? or Which objects
are covered by sl?, and so on.

e Direction operators can also be used. Which objects were located below of sl?
Query: {io/mbr(io) below sl} = {io/mbr(io) leftD sl(X)}, where sl € HR
with 2D, i0 € 10O.

Answer will be in: rt.leftD(sl, X).

e [t may be defined two length for expressing near distances and use them to
ask the object base. For example, A is used to define mbhr=(w, Xi-A, Xs+A,
Yi-A, Ys+A) to answer, Which objects are located near sl?

Query: {io/mbr(io) near sl} = {io/mbr(io) sIN Disjoint d}, where sl,d €
H R with 2D, io € 10, and

d= ([sl(X).inf —ds,sl(X).sup+ ds], [sl(Y).inf — ds, sl(Y).sup + ds]).
Answer will be in: rt.sINDisjoint(d).

e With the same d, it is possible to ask Which objects are located far away of
sl? rt.sIDisjoint(d)

3. Queries when it is known exactly when. Temporal queries answered by using unidi-
mensional search.

e Which are the existing objects at w?
Query: {io/t(i0) = w} = {io/t(io) = w}, where 10 € IO, and w € Int.
Answer will be: rt.equal(w).

e Which are the existing objects before w?
Query: {io/t(io) be fore w} = {io/t(io) leftDc(T)}, where io € 10, ¢ € HR,
w € Int,
¢ = ([w.inf,w.supl,[LS, HS],[LS, HS]), and LS, HS are the minimum and
the maximum space value in the spatial domain of the attribute, respectively.

Answer will be in: rt.leftD(c, T).
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e It can be used other unidimensional operators. For example, rt.rigthD(c, T).

e Which objects have been created at the beginning of w?
Query: {io/t(i0) start w} = {io/t(io) start w}, where to € IO, and w € Int.
Answer: rt.start(w).

4.5 R _tree class requirements

Presented below are the main requirements imposed by the spatio-temporal appli-

cations to the index structure. With each requirement, is included whether the

implementations can support it or not.

1.

10.

11.

12.

Spatial objects are characterized by a geometric component that determines shape
and position of the object in space. Temporal objects are those objects that include
at least one temporal domain assigned to an attribute.

An object’s operation may be geometrical such as computation of distance or in-
tersection of polygons; or non-geometrical such as computation of the area of a
polygon, insertions, deletions, and so on.

. The type of expected queries are spatial, temporal, and spatio-temporal.

Spatial objects are associated with rectangular regions (mbhr) through their geo-
metric attributes such as location in space.

Objects should be saved in large binary blocks named blobs of long fixed size for an
object base, but blob size may vary from an object base to another.

The blob minimum occupancy should be guaranteed to be 50%, that is half of the
blob must be full.

. The maximum update time for the insertion or deletion of a single object has to be

logarithmic or better in the total number of indexed blobs.

. If the full key of any individual object is specified, the object can always be accessed

via direct path from directory to data blobs. The access time for one blob should be
constant and predictable for a given dimension in the index.

. The index structure should be balanced, multikey, data determined and spatial.

All of the index properties have to be preserved under insertion-deletion. It should
be fully dynamic.

The maximum size of the index should be directly proportional to the quantity of
the data.

The global order should be preserved. By clustering strategy, objects in nearby
blobs should be close in space. By buffering strategy, objects can be prefetched
before they are needed by exploiting knowledge about structural, positional and
inheritance relationships.
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13.

14.

15.
16.

17.

18.

19.

20.

The spatial distribution of the index regions at each level of the tree should corre-
spond as closely as possible to the spatial distribution at the next lower level, and
to that of the blobs.

The index structure should respect the spatial proximity of objects by distributing
objects physically on disk according to their location in space.

The representation of empty space should be minimized.

The index grows if new objects are inserted in the object base (OB). Growing on
demand. The insertion of a new object in a blob may cause an blob overflow. Blobs
are selected for splitting when they overflow, thus it is necessary for a new blob to
be used for selected objects belonging to the overflowing blob.

Splitting policies have to achieve symmetry in the d dimensions. Each key should
be treated as a secondary key. It should use an order partitioning different from
cyclic partitioning, which is a blind policy of partitioning that does not take into
account the particularities of the current indexed data.

The index shrinks if existing objects are deleted in the OB and the percentage of
deleted objects is great than a given percentage and the object base manager (OBM)
decides to do it. In other words shrinking is performed on demand.

Blobs are selected for merging when each one of the following conditions holds: two
of them are close, one of them underflows, and the sum of the objects in both blobs
is less or equal than the maximum number of objects in a blob.

Merging policies have to maintain index properties, and it should be done when the
percentage of occupancy in two close blobs permit them to be merged.

Some parameters of efficiency can be used for performance study. They are the

following:

1.

2.

3.

ex number of external storage accesses

ro number of retrieved objects (retrieved by the index as a possible answering

object)

ao number of answering objects (objects that really answer the query)
n number of objects

m number of blobs

A parameter proposed by Robinson [Rob81]. 0 < :% <1

A second parameter used by Nievergelt [NHS84]. 0 < 22 <1

The last parameter presented by Seeger [KSSS89] and called the hit ratio=

where ¢ is a constant defined in the mentioned reference.

ao
c.ex’
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4.6 Concluding remarks

The presentation of an object calculus to define the extensions of the R_tree structure
is one of the main contribution of this work.

We realize that the object-oriented approach allows us to have an extensible
R _tree class, which may contain whatever operator or function the applications
need, to improve the retrieval performances in a specific domain.

We have also demonstrated that mbrs are useful for defining a set of retrieved
objects containing the set of answering objects as a first step of object retrieval. We
show how to reduce the size of this set of retrieved objects, i.e. augment the hit
ratio, by focusing on the use of more specific search operators instead of using a
more complicated object shape container.

Finally, the presentation and formal definition of the minimal set of spatial,
temporal, and spatio-temporal operators, is the second main contribution of this

work.



Chapter 5

R _tree design and implementation

This chapter presents the object-oriented design and several implementations of this
structure. The design of the RTree class is made based on the Técnica de Desarrollo
de Sistemas de Objetos (TDSO) technique [Bes95], and the implementations were
done in the C++ language under the operating system Irix version 5.3 running on
a standalone Silicon Graphics machine.

TDSO is an object-oriented technique that integrates the concepts of the deduc-
tive method (MEDEE) [Duf88] and the object modeling technique (OMT) [RBP*91].
TDSO contains the main concepts to develop object-oriented software following a
step-by-step approach. It permits a formal specification of abstract data types
(ADT) and a structured design of software systems. The most important concept
in TDSO is the inclusion in the design step of the test cases specification. For that,
the function specification forms of TDSO contain the algorithm of the function, and
its test cases, both accompanied by the documentation needed for each variable,
function, and test case.

This chapter is organised as follows: Section 5.1 shows the principal forms of
TDSO and how they are used to specify the RTree class and its basic classes. The
five extensions made of the R_tree structure that expand the range search function
for several more specific range search functions depending on topological, directional,
or proximity searches, and a new structure called O _tree are described in section 5.2,

and finally, section 5.3 contains some concluding remarks.

90
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5.1 Specification of the R_tree classes

The specification of the object-oriented classes utilized to implement the R_tree in-
dex structure is presented in this section by following the TDSO technique presented
by the author of this thesis in [Bes95]. TDSO is a new technique to develop object-
oriented software. This technique supports data abstraction and object-oriented
concepts. It is based on the deductive method (MEDEE) proposed by J. Dufourd
in [Duf88], its extension proposed by I. Besembel in [Bes94], and the methodology
OMT proposed by Rumbaugh et al. in [RBP91]. Tt uses algebraic specification pro-
posed by Guttag in [Gut77] and [GHMT78], for each abstract data type (ADT). The
specification of an ADT is composed of syntactic specification that defines names,
domains, and ranges of each operation or function defined for this ADT; and sample
semantics that contain a non complete set of axioms specifying the behaviour of
a function in extreme or bounded cases. A correct implementation of an ADT must
satisfy its specification, but it can contain a larger set of operations than those speci-
fied for the ADT. An ADT can be implemented in several ways, each implementation
is composed of a structure and algorithms. The structure defines its data structure,
and the algorithms state how this data structure will be used and manipulated.

In TDSO, the class hierarchy associated to the is-a relationship is represented by
double arrows, and the composition hierarchy associated to the part-of relationship
is represented by single arrows. Figure 5.1 shows the composition hierarchy of the

R_tree index.

RTree
ListNode
RTreeNode

|EIeType | |DKOMError

Figure 5.1: TDSO diagram of the composition hierarchy of the R_tree index.

Interval

The specification of classes of a system in TDSO is presented in a form named the

Universe of the system, this specification is described in figure 5.2, corresponding to
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the R_tree system. It contains all types and classes used in the system in question.
The universe form shows a numeration of types and classes, and each of them is
documented in the third column of the form.

The R_tree structure can be formally specified as an ADT and implemented as
an object-oriented class. Figure 5.3 shows the seventeenth class of the universe,
the RTree class that has seven basic operations which are self documented in the
TDSO specification form. This form contains the date of the specification, the
number associated with the class, the set of related classes, and three columns
containing the list of each part of the specification, the specification itself, and the
documentation of each ADT operation. These operations conform to the minimal
set of operations needed to define the ADT. In the ADT implementation, this set can
be expanded depending on the language used, and on the needs of the application.

According to L. Valet in [Val96], object-oriented operations are categorized as
constructors, mutators, observers, and destructors. A constructor function creates
and initiates objects of that class. Mutators change the values stored in the object
promoting a change of the state of the object. Observers simply display or return the
value(s) stored in the object without changing any value at all. Finally, a destructor
destroys the object. Each documentation made in a TDSO specification form follows
this categorization for operations.

The rest of the classes mentioned in the universe of the R_tree index are presented
in the following figures.

Figure 5.4 shows the specification of the Interval class, which is the twelfth
class in the R_tree index universe. This class contains six basic operations, which
support the minimal set of operations for an ADT. Each valid interval object has
two values and the superior value has to be greater than or equal to the inferior one.
An emptylnterval is one whose two values are the same.

Figure 5.5 presents the HR (hyper-rectangle) class, the thirteenth class in the
R _tree index universe. This class is composed of an array of objects of the Interval
class. The size of the array depends on the number of dimensions defined in the
R_tree index. The dimensions used in these classes are assumed to be homogeneous.

Figure 5.6 describes the ninetieth class of the universe, the ListOf class, which is
a parameterized class because its elements can be of any type already defined in the
system. A parameterized class is a special kind of class that is defined to manage
a class of any other class or type of object. The required class is passed to the
parameterized class instead of the generic type T. This class will be implemented

using a C4++ template. In the C4++ language, a template permits definition of
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Apr.96
Universe R _tree index
1 | Character -Character: Type: Basic type.
2 | Integer -Integer: Type: Basic type.
3 | Float -Float: Type: Basic type.
4 | Pointer -Pointer: Type: Basic type.
5 | Cardinal: Integer+ -Cardinal: Type: Subset of Integer,
6 | String: ArrayOf Character | only positive values. Basic type.
7 | ListNode: struct -String: Type: Basic type.
item: Pointer -ListNode: Class: Generic list node.
to Character -List: Class: List descriptor.
prior: Pointer -ListOf[T]: Parameterized class:
to Character Define a list of elements of
next: Pointer any type already defined.
to Character -DKOMError: Class: Simple class to
endstruct manage errors in the index.
8 | List: struct -EleType: Class: Simple class to
n: Cardinal define the elements of a list of
pos: Cardinal RTreeNode numbers and its position
length: Cardinal into the RTreeNode father. It
head: Pointer simulate a stack containing the
to Character descending path of the tree.
ListOf[T] tail: Pointer -Interval: Class: Define a bounded
to Character interval of real numbers.
actual: Pointer -HR: Class: Define a hyper-rectangle
to Character of d-dimensions as an ArrayOf Interval.
endstruct -Blob: Class: Management of
10 | DKOMError: struct blobs that can contain objects of any
c: Cardinal class. It is used to store or retrieve
endstruct the R_tree nodes and the information
11 | EleType: struct of the R_tree object on disk.
pn: Cardinal -Entry: Class: Define the entries
po: Integer of the R_tree nodes.
endstruct -RTreeNode: Class: Define the nodes
12 | Interval that conform an R_tree index.
13 | HR -RTree: Class: Define the R_tree index.
14 | Blob -MPoint: Class: Define a
15 | Entry multi-dimensional point used
16 | RTreeNode in the multipoint R_tree.
17 | RTree -LeafEntry: Class: Define
18 | MPoint the leaf entries contained
19 | LeafEntry in leaf nodes.(multipoint only)

Figure 5.2: Universe of the R_tree index.
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Apr.96
Specification {17}Class RTree
Classes: Boolean, Entry, HR, Integer, ListOf

1 | Syntactic: -createRTree():
createRTree()—RTree, Constructor and initiator.
insert(RTree,Entry)—RTree, Create an empty R_tree.
delete(RTree,Entry)—RTree, (emptyRTree).
search(RTree,HR)— ListOf Integer, -insert(): Mutator.
cleanRTree(RTree)—RTree, Insert a new entry.
isEmpty(RTree)—Boolean, -delete(): Mutator.
destroyRTree(RTree)—. Delete an existing entry.

2 | Variables: -search(): Observer.
RTree: rt, emptyRTree Return a list of blobld
Entry: e corresponding to entries
HR: hr ListOf Integer: emptyList that answer the search.

3 | Sample semantics: -cleanRTree(): Mutator.
isEmpty(createRTree())=True Returns an empty R_tree.
isEmpty(insertEnt(createRTree(),e))=False -isEmpty(): Observer.
isEmpty(deleteEnt(createRTree(),e))=True Return true if the R_tree
search(createRTree(),hr)=emptyList is empty, otherwise false.
isEmpty(cleanRTree(rt))=True -destroyRTree(): De-
search(cleanRTree(rt),hr)=emptyList structor. Destroy the tree
delete(insert(createRTree(),e),e)=emptyRTree | after writing it on disk.

Figure 5.3: TDSO specification of the RTree class.

generic classes, which contain generalizable structure and behaviour for any type of
object indicated by T. Because C++ is not a complete object-oriented language, the
manner for supporting parameterized classes is by generation of code corresponding
to a duplication of the defined code of type T, but now with the specific type passed
as a template parameter.

Figure 5.7 illustrates the fourteenth class of the R_tree index universe, called the
Blob class. The specification required for the R _tree index only supports facilities for
reading and writing R_tree nodes, and RTree objects on disk. Others functionalities
of this class, such as package of objects for storage and retrieval, are not presented
here. The complete specification of this class is presented by M. Jorge in [Jor94], and
it implements the first version of the object storage manager for the D/K model.
Since the indexed objects, others than R_tree nodes and R_tree objects, can be
packaged into a blob (several indexed objects into a blob), the blob number (bn)
associated with each leaf entry in the R_tree index may be repeated. However, the

bn in branch nodes must be unique.
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Apr.96
Specification {12}Class Interval
Classes: Float, Boolean, Cardinal

1 | Syntactic: -createlnterval():
createlnterval()—Interval, Constructor e initiator.
change(Interval,Float,Boolean)—Interval, | Create an emptyInterval.
retrieve(Interval,Boolean )—Float, -change(): Mutator.
compare(Interval,Interval)—Boolean, If the second parameter
assign(Interval,Interval)—Interval, is true, inferior is changed,
extent(Interval)— Cardinal, otherwise superior changes.
isAPoint(Interval)—Boolean, -assign(): Mutator. Interval
isEmpty(Interval)—Boolean, assignment.
destroyInterval(Interval)—. -isEmpty(): Observer. Returns

2 | Variables: true if both values are null.
Interval: i, emptyList -retrieve(): Observer. If para-
Float: v meter is true, returns the inferior,
Boolean: f otherwise the superior value.

3 | Sample semantics: -compare(): Observer.
isAPoint(createlnterval())=True Return true if both intervals
isAPoint(change(createlnterval(),v,f))= satisfy the comparison operator.
if(v=0) True; else False -isAPoint(): Observer.
retrieve(createlnterval(),f)=0 Returns true if the interval
assign(createlnterval(),i)=i is a point, otherwise false.
assign(i,createlnterval())=emptylnterval | -extent(): Observer. Returns
extent(createlnterval())=0 the extent of the interval
retrieve(change(i,v,f),f)=v which is superior-inferior.
isEmpty(createlnterval())=True -destroyInterval():Destructor.

Destroy the interval.

Figure 5.4: TDSO specification of the Interval class.

Figure 5.8 presents the fifth class of the R_tree index universe, named the Entry
class. It permits the definition of the structure and behaviour of the entries of the
R _tree node. In this specification, only the minimal subset of the methods used to
express the behaviour of the class is shown.

Finally, the RTreeNode class, the sixteenth class of the R_tree index universe
is presented in figure 5.9. This RTreeNode specification is used for leaf and branch
nodes. These nodes are read and written on disk by using blobs as containers and
by calling readNode and writeNode methods.

The corresponding TDSO forms of the implementations of each extension of the
RTree class are presented in the following subsections. The TDSO implementation

forms of the support classes of the R_tree index are contained in appendix B.
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Apr.96
Specification {13}Class HR
Classes: Boolean, Cardinal, Interval

1 | Syntactic: -createHR(): Constructor
createHR()—HR, and initiator. Create an empty
change(HR,Interval,Cardinal ) =HR hyper-rectangle (emptyHR).
retrieve(HR,Cardinal )—Interval, -change(): Mutator. Interval
assign(HR,HR)—HR, in the given dimension
compare(HR,HR)—Boolean, is changed.
volume(HR)— Cardinal, -assign(): Mutator. Hyper-
isAPoint(HR)—Boolean, rectangle assignment.
destroyHR(HR)—. -retrieve(): Observer. Return the

2 | Variables: interval of the specified dimension.
HR: h, emptyHR -compare(): Observer. Return
Interval: i, emptylnterval true if both hyper-rectangles
Cardinal: d satisfy the comparison

3 | Sample semantics: operator,otherwise false.
isAPoint(createHR())=True -volume(): Observer. Return the
isAPoint(change(createHR(),i,d))= volume of the hyper-rectangle.
if(isEmpty(i)) True; else False Calculated as a 3D volume.
retrieve(createHR(),d)=emptyInterval | -isAPoint(): Observer. Return
volume(createHR())=0 true if the hyper-rectangle is
assign(createHR(),h)=h a point, otherwise false.
assign(h,createHR())=emptyHR -destroyHR(): Destructor.
retrieve(change(h,i,d),d)=i Destroy the hyper-rectangle.

Figure 5.5: TDSO specification of the HR (hyper-rectangle) class.

5.2 The R _tree extensions

As a first step, we study and implement the R_tree structure to augment our knowl-
edge and we found that, in the Guttman’s R_tree, it was possible to make some
changes to improve its performance.

The first change was the entry deletion problem, because Guttman’s paper pro-
poses use of reinsertion of some entries that were in the wrong place after an entry
deletion. Being in the wrong place means that these entries have to be moved to
another nodes according to the R_tree definition, sometimes resulting in an underfull
node which is solved by the merge process, similar to the same process in B_trees.
The reinsertion alternative, in our view, is not a good alternative because it may
cause a major restructuring of the tree followed by a larger entry deletion time. The
second change was the splitting policy, which we found possible to improve by de-

laying node splitting by using the same redistribution policy used in entry deletion.
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The third aspect was introduced after consideration as to whether it might be more
appropriate to use specific search operators rather than the very general operator
used by Guttman. We found an answer in Egenhofer’s topological operators [Fge89],
[EH90], [NHM92] and in the position operators. Finally, a new structure based on
the R_tree and called the octagon tree (O_tree) is described in the last subsection.
All of these extensions were implemented based on the specification done in the last

section.

5.2.1 The R _tree extension 1

As we mentioned before, this is the first implementation undertaken following Guttman’s
paper. It is basically the original R_tree but avoiding the reinsertion of entries in
the tree after a deletion of a node. In the deletion algorithm, we realize that the
policy of reinsertion proposed by the author provoked several possible insertions of
old R_tree entries again. In order to avoid this situation, a deletion operation was
implemented following a policy of redistribution of entries between the two possible
brothers of an underfull R_tree node. As a consequence of this, two references were
included in the head of a node, which are blobld of the anterior node (left brother)
and blobld of the posterior one (right brother). This policy was maintained for
the rest of the extensions. To delete an entry, two functions are provided that re-
distribute the entries between its left and/or right brother nodes. If the node has
only one brother, the redistribution is made with that node and this function is
called redistribution2. Otherwise, the redistribution function is invoked. Fig-
ure 5.10 illustrates the situation when the redistribution is made with three nodes,
and figure 5.11 shows the situation with two nodes. Empty space within nodes is
emphasized with hatching.

The redistribution function is used when the number of entries in the under-
flowed node and those of its brother nodes divided by 3 is greater than m. More
clearly, let nA be the number of entries of the underflowed node, nB the number of
entries of the left brother node, and nCB the number of entries of the right brother
node. If [(nA+ nB + nC)/3] > m, then the redistribution function is invoked
from the condenseTree function, otherwise a test is made to see if a node deletion
is required. If [(nA 4+ nB +nC)/2] < M, then the node deletion is done, otherwise
a redistribution among two nodes is done (redistribution2). This means that a
node deletion is done only in the case of the total number of entries among three

nodes being insufficient to satisfy the needs of having one of these nodes. After a
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redistribution of three nodes, the number of entries among these nodes is almost
the same. The consequences of a redistribution is the change of the mbhrs in the
corresponding entries of the father nodes.

The deletion function empties the underfull node by putting its entries into
both brother nodes, and then deletes this node changing the corresponding entries
in the father node. After a node deletion, the father node can be underfull and the
process may be restarted again, sometimes until reaching the root. In the case of a
root deletion, the R_tree shrinks in height and in width. Fach time a node changes
by one of these functions, the change is reflected on disk, that is each changed node
is written to disk.

The redistribution2 function is called either when [(nA+nB +nC)/2] > M,
or when the underflowed node only has one brother node, that can be the left or the
right one. After the redistribution2 function is executed, the number of entries
in the corresponding nodes is almost the same, and its corresponding entries in its
father node are updated.

If the underfull node only has one brother and [(nA + nb)/2] < M, then the
deletion2 function is called. This last function does the same basic operations as
the deletion function, but with only two nodes. It deletes the underflowed node
after passing its entries to its brother, and updating the corresponding entries in the
father node. After a node deletion, the father node can be underfull and the process
is repeated again at this level, with the possibility of reaching the root node.

The implementation of the R_tree extension 1 class is named RTreeExt1, and
it uses the same basic classes already specified in the above section. The implemen-

tation of these classes are described in appendix B.

5.2.2 The R _tree extension 2

Since a B_tree has similar conditions concerning redistribution during insertion and
deletion, we decided to make a second R_tree extension that supports these two
types of redistribution. This extension is based on extension 1, and it supports
redistribution during entry deletion as well as during the insertion of a new entry.
Thus, the main difference between both extensions is the insertion function, that
delays as much as possible a node splitting. Extension 2 splits an overflowed node
only if it is impossible to redistribute extra entries among brothers, and it merges
an underflowed node under similar conditions. The consequence is the delay of both

split and merge operations in the structure. When a new entry must be inserted
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in the structure, the search is made for a leaf node where the insertion must be
done. If the leaf node is full, its brother nodes are read, if any. If its brother nodes
have enough space to hold new entries, then the redistribution process is done. This
redistribution operation sums the number of the entries of the nodes involved in
the process, and this result is divided by the number of nodes involved, to give the
number of the entries that each node involved will contain. Figure 5.12 shows a
diagram of the situation where P is the parent node of nodes A, B, and C. The
overflowed node is A. If [(rA +nB + nC)/3] > m, then entries are redistributed,
and the process is similar to those described to extension 1, except that instead of
calling the deletion function, the splitNode function is called.

If node A has only one brother, which is the case when A is the node on the
extreme left or extreme right, then the calculation of the possible redistribution is
made with two nodes. This situation can be observed in figure 5.13 where the empty
space within each node is emphasized with small hatching.

The corresponding TDSO form to implement this extension is the same as ex-
tension 1, because the only difference is a new function, called overflow, that is
invoked from the insertEnt function. This function is charged to verify the split-
ting conditions, and its signature is overflow(RTreeNode, ListOf[EleType]). If a
node must be split, the splitNode function is called, otherwise the overflowed node
is passed to either redistribution or redistribution2 functions, according to the num-
ber of brothers of this node. The implementations of its basic classes remain the

same as those shown in appendix B.

5.2.3 The R _tree extension 3

The third implementation of the R_tree index specification is the RTreeExt3 class.
This class is based on the RTreeExtl class with the addition of the spatial and
temporal operators already described in chapter 3. The TDSO implementation form
of this extension and the corresponding basic classes are presented in appendix B.

This extension permits indexing of spatial objects with more than two dimen-
sions by indicating at the beginning the number of coordinates in nCoord, and
the position of the first coordinate in xDim. It is assumed that the Y coordinate
and the following ones, if any, are stored after xDim, that is the position of the Y
coordinate is xDim+1, the following is xDim—2, and so on.

It is also possible to use the index with temporal objects by establishing the

number of time dimensions in nTime, and the position of the first time dimension
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in timeDim. Once nTime and timeDim are fixed, it is also possible to set the
unit of time needed in timeUnit.

When these attributes are different to the system default values, it is established
that the R_tree index is a spatio-temporal index, and all the defined operators
are available. Thus, spatio-temporal queries can use the set of spatio-temporal
operators (stop), i.e. stop={disjoint, nDisjoint, match, inside, cover}. If
the query is only spatial, then only the set of spatial operators (sop) are available,
i.e. sop={slDisjoint, slnDisjoint, siMatch, slInside, slCover, leftD, rightD,
nDisjointD}. Finally, if the query is only temporal, then only the set of temporal
operators (top) may be used, i.e. top={leftD, rightD, during, equal, adjacent,

follow, precede, meet, start, finish, nDisjointD}.

5.2.4 The R _tree extension 4

This implementation is basically the same as extension 3, but it allows redistribution
of entries in case of insertion. Thus, this extension delays node splitting, and node
deletion processes as much as possible. The other operators provided are the same
as for extension 3.

The TDSO implementation form is similar to those of extension 3, except for the
inclusion of the overflow function. The rest of the classes are kept. Appendix B

contains the mentioned TDSO forms.

5.2.5 The multi-point R_tree

This implementation is based on extension 3, and permits a better use of the R_tree
leaf nodes when it is known that the application only treats multipoint data. That
is, if the data contains spatial location and/or time expressed as point values. This
is the case for the available REM data that will be explained in chapter 5.

In this extension, the format of leaf and branch nodes are different in the content
to the rest of the R_tree nodes. Branch nodes have the same format as described
in section one and illustrated in figure 4.2. The leaf node format is changed to that
shown in figure 5.14.

Both, leaf and branch nodes are stored in blobs, so the Blob class does not
change. The new TDSO diagram of the class and composition hierarchies is pre-
sented in figure 5.15, where three new classes are added. These classes support the
management of data points. We keep the R _tree index universe of figure 5.2, which

defines the relevant classes, and the new specification of the RTree class is shown
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in figure 5.16. We called this extension the multi-point R_tree (MRTree) class to
differentiate it from the previous class which is more general.

The TDSO specification of the class MPoint is presented in figure 5.17. This is
the eighteenth class of the R_tree universe, and it is composed of an array of Float
values. The size of this array depends on the number of dimensions defined for the
MRTree class. The MPoint class defines a point in d-dimensional space.

Figure 5.18 presents the TDSO specification of the LeafEntry class, which is
the nineteenth class of the R_tree universe. This class is similar to the Entry class,
except that the attribute hr is changed to mp pertaining to the MPoint class.

Leaf entries are only used in leaf nodes, so the new RTreeNode class is specified
in figure 5.19. The temporal approach that is supported by this extension is the
point model, where points in space and time are stored in leaf nodes. This extension
supports the same operators as extension 3.

For the implementation of the MRTree class, the insertion and deletion of in-
dexed objects are redefined to insert and delete leaf entries, because hyper-rectangles
are only permitted in branch nodes. The TDSO implementation forms of the
MRTree class and its basic classes, containing the structure and behaviour of the
class, and also a brief description of each variable and operation, are contained in

appendix B.

5.2.6 The O _tree

In order to reduce the hit ratio of searches of the indexed polygonal objects, Roberts
proposes a new spatial indexing method, called the O _tree. This tree is an extension
of the R_tree structure in 2D, where the mbr of the R_tree entries are replaced by
two mbrs, which together define an 8-sided polygon (octagon).

The first mbr is defined as normal; parallel to the X-Y axes. The second one
is defined parallel to the X-Y axes rotated through 45°. An O_tree entry contains
these two mbrs defined as follows: let (X,Y)EP where P is the set of points defining
the polygonal object. The first mbr, mbry : [ Xi, Xs, Y, Ys], is calculated with

Xie=minp(X); Xs =maxp(X); Y =minp(Y);Ys = maxp(Y)
and the second one, mbry : [, Cy, C3, C4] is calculated with
Ci =minp(X +Y);Cy = maxp(X +Y);Cs = minp(Y — X); Cy = maxp(Y — X)
FEach C; is the value where the sides of mbry (extended if necessary) intersect the
Y-axis.

Figure 5.20 illustrates the two mbrs over a polygonal object, which is shown in
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grey. The C; values used to store mbry are also shown.

The structure composed by these two mbrs is called a tight-bounding octagon
(tbo) and they are included in an O_tree entry with the blob number of the indexed
object. To calculate the new tho that encloses two or more thos, we use the same
formula utilized to calculate the mbr that encloses two or more mbrs. That is, given
two tbos:

thoy : [Xiy, Xs1,Y41,Ys1,Cr1,Caq, Csp, Cyy], and
tboy : [Xig, X 39, Y13, Y9, Ca, Usg, Csa, Cys]
the tbo enclosing both tbos is given by:
[min(Xiy, Xig), max(X sy, Xsg), min(Yig, Vi), max(Ysy,Yss),
min(Ciy, C12), max(Cay, Caz), min(Csy, Csz), max(Cyr, Caa)]

This formula is used to form a new tbo in branch nodes, when a new entry is
inserted in the O_tree. Also needed is a new condition to test if two tbos intersect,
which is used in searches. Thus, two thos intersect if both their pairs of mbrs overlap.
In testing for coverage, as used in exact match queries, it is only needed to test the
first mbr coverage, because the second mbr is superfluous in this test.

The OTree class is specified similarly to the RTree class. We do not need to
change anything in the TDSO specification, so figure 5.3 describes it. The HR class
is utilized with double the number of dimensions, and the rest of the basic classes
remain the same, except for the RTreeNode class, where the maxHDb function is
replaced by the maxTbo function.

The TDSO implementation form of the OTree class is also similar to those of
the RTreeExt3 class, that is described in appendix B.

5.3 Concluding remarks

The design of object-oriented classes allows multiple implementations supporting an
ADT. Object-oriented languages are powerful tools that permit code reutilization
and system extensibility as their main advantages used in this work. The R_tree
implementations reuse the basic classes such as Interval, HR, and Entry, and
these classes were extended over the course of the implementation to cover the needs
of each new extension made.

We have shown that the object-oriented approach allows us to have an extensible
R _tree class, which may contain whatever operator or function the applications need,
to improve the retrieval performances in a specific domain.

Finally, the O_tree uses an octagon container instead of a rectangle, but we can-
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not avoid the use of the necessary computational geometry which is always needed

to obtain the set of answering objects.
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Apr.96
Specification {9}Class ListOf[T]
Classes: Cardinal, T

1 | Syntactic: -createList(): Constructor.
createlist()—ListOf, Create an empty list
insert(ListOf, T)— List Of, of element of type T.
delete(ListOf)—ListOf, -insert(): Mutator. Insert a new
actual(ListOf)—=T, element before the actual element.
next(ListOf)—T, -delete(): Mutator. Delete
prior(ListOf)—T, the actual element, if any;
cleanList(ListOf )— List Of, otherwise emptyList.
numList(ListOf)—Cardinal, -actual(): Observer. Return
destroyList(ListOf)—. the actual element, if any;

2 | Variables: otherwise emptyT.
ListOf: 1, emptyList -next(): Observer. Return
T: t, emptyT the next element (after

3 | Sample semantics: the actual) and move actual to
numList(createList())=0 it, if any; otherwise emptyT.
numList(insert(createList(),t))=1 -prior(): Observer. Return
actual(insert(createList(),t))=t the prior element (before
next(insert(createlist(),t))=emptyT the actual) and move actual to
prior(insert(createlist(),t))=emptyT it, if any; otherwise emptyT.
actual(createList())=emptyT -cleanList(): Mutator.
numList(cleanList(1))=0 Delete all nodes into the
delete(cleanList(l))= emptyList list and return emptyList.

delete(insert(createList(),t))=emptyList | -numList(): Observer.

Return the current number

of elements into the list.

An empty list has zero elements.
-destroyList(): Destructor.
Clean the list before destroying it.

Figure 5.6: TDSO specification of the ListOf class.
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Specification {14}Class Blob
Classes: Character, Boolean, Cardinal, String

Syntactic:

createBlob()—Blob,
getNew(Blob,Cardinal )—Cardinal,
assign(Blob,Blob)—Blob,
readBlob(Blob,Cardinal,Cardinal)—Blob,

writeBlob(Blob,Cardinal,Cardinal)—Boolean,

status(Blob,Character)—Blob,
objNum(Blob,Character)—Blob,
length(Blob,Cardinal)—Blob,
left(Blob,Cardinal)—Blob,
right(Blob,Cardinal)—Blob,
tail(Blob,String)—Blob,
gStatus(Blob)—Character,
gObjNum(Blob)—Character,
gLength(Blob)—Cardinal,
gLeft(Blob)—Cardinal,
gRight(Blob)—Cardinal,
gTail(Blob))—String,
destroyBlob(Blob)—.

Variables:

Blob: b, emptyBlob; Character: ch, on
Cardinal: ¢, bld, 1; String: s, emptyString
Sample semantics:
gStatus(createBlob())=0
gObjNum(createBlob())=0
gLength(createBlob())=0
gLeft(createBlob())=0
gRight(createBlob())=0
gTail(createBlob())=emptyString
readBlob(createBlob(),c,0)=emptyBlob
writeBlob(createBlob(),c,0)=False
gStatus(status(b,ch))=ch
gObjNum(objNum(b,on))=on
gLength(length(b,1))=I
gLeft(left(b,bld))=bld
gRigth(right(b,bld))=bld
gTail(tail(b,s))=s
assign(createBlob(),b)=b
assign(b,createBlob())=emptyBlob

-createBlob(): Constructor
and initiator. Create an
empty blob in main
memory (emptyBlob).
-getNew(): Observer.
Obtain a new blob number
from disk.

-assign(): Mutator.
Change the first blob
values.

-readBlob(): Mutator.
Read the blob

content from disk.
-writeBlob(): Mutator.
Write the blob

content on disk.

-status(): Mutator. Change
the status of the blob.
-objNum(): Mutator.
Change its number of the
contained objects.
-length(): Mutator. Change
its current length in bytes.
-left(): Mutator. Change
the blob number on its left.
-right(): Mutator.

Change the blob number
on its right.

-tail(): Mutator. Change
the tail of the blob.
-gStatus(),gObjNum(),
gLength(),gLeft(),
gRight(),gTail():
Observers. Return

each value of the

attributes of a blob.
-destroyBlob():
Destructor. Destroy the
blob in main memory.

Figure 5.7: TDSO specification of the Blob class.
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Apr.96
Specification {15}Class Entry
Classes: Boolean, Cardinal, Interval, HR
1 | Syntactic: -createEntry(): Constructor.
createEntry()—Entry, Create an empty entry
hr(Entry,HR)— Entry, (emptyEntry).
bn(Entry,Cardinal)—Entry, -hr(): Mutator. Change the
assign(Entry,Entry)—Entry, value of the hyper-rectangle
compare(Entry,Entry)—Boolean, of the entry.
compareHR(Entry,HR)—Cardinal, -bn(): Mutator. Change the
comparelnt(Entry,Interval)—Cardinal, | value of the blob number of
gHr(Entry)—HR, the entry.
dBn(Entry)—Cardinal, -assign(): Mutator. Change the
destroyEntry(Entry)—. values of the first entry.
2 | Variables: -gHr(): Observer. Return
Entry: e, emptyEntry the value of the hyper-rectangle
HR: h, emptyHR of the entry.
Cardinal: bld -compare(): Observer. Return
3 | Sample semantics: true if both entries
gHr(createEntry())=emptyHR satisfy the comparison.
gBn(createEntry())=0 -compareHR(): Observer. Return
gHr(hr(e,h))=h the blob number if both hyper-
gBn(bn(e,bld))=bld rectangles satisfy the comparison.
assign(createEntry(),e)=e -comparelnt(): Observer. Return
assign(e,createEntry())=emptyEntry | the blob number if the interval in
dimension d satisfy the comparison
with the given interval.
-gBn(): Observer. Return the
blob number of the entry.
-destroyEntry(): Destructor.

Figure 5.8: TDSO specification of the Entry class.
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Apr.96

Specification {16}Class RTreeNode
Classes: Boolean, Cardinal, Character, HR, Entry

1 | Syntactic:

createRTreeNode()—RTreeNode,
insert(RTreeNode,Entry,Cardinal)—RTreeNode,
delete(RTreeNode,Cardinal)—RTreeNode,
maxHb(RTreeNode)—HR,
assign(RTreeNode,RTreeNode)—RTreeNode,
readNode(RTreeNode,Cardinal)—RTreeNode,
writeNode(RTreeNode)—RTreeNode,
destroyRTreeNode(RTreeNode)—.

2 | Variables:

RTreeNode: rtn

HR: h

Entry: e ; Cardinal: p

3 | Sample semantics:
maxHb(createRTreeNode())=emptyHR
assign(createRTreeNode(),rtn)=rtn
assign(rtn,createRTreeNode())=emptyRTreeNode
readNode(rtn,0)=emptyRTreeNode
writeNode(createRTreeNode())=
emptyRTreeNode
delete(insert(createRTreeNode(),e,p),p)=
emptyRTreeNode

-createRTreeNode():
Constructor e initiator.
Create an empty R_tree
node (emptyRTreeNode).
-insert(): Mutator.
Insert a new

entry in the

indicated position.
-delete(): Mutator.
Delete the indicated
entry.

-maxHDb(): Observer.
Return the hyper-
rectangle of all the
entries into the node.
-assign(): Mutator.
Change the first node

by the second one.
-readNode(): Mutator.
Read from disk the node
which is stored in the
indicated blob number,
if its blobId#0.
-writeNode(): Mutator.
Write the node on disk,
if its blobId#0.
-destroyRTreeNode():
Destructor. Write the

R _tree node on disk

before destroying it.

Figure 5.9: TDSO specification of the RTreeNode class.
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Figure 5.10: Three nodes redistribution of entries in case of deletion.
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Figure 5.11: Two nodes redistribution of entries in case of deletion.
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Figure 5.12: Three nodes redistribution of entries in case of insertion.
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Figure 5.13: Two nodes redistribution of entries in case of insertion.
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Figure 5.14: Leaf nodes format for point data.
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|EIeType | |DKOMError

Figure 5.15: New TDSO diagram for the composition hierarchy.

Interval

Apr.96
Specification {17}Class MRTree
Classes: Boolean, Entry, HR, Integer, ListOf

1 | Syntactic: -createMRTree():
createMRTree()—MRTree, Constructor and initiator.
insert(MRTree,LeafEntry)—+MRTree, Create an empty R_tree.
delete(MRTree,LeafEntry)—+MRTree, -insert(): Mutator.
match(MRTree,MPoint)—Integer, Insert a new leaf entry.
search(MRTree,HR)— ListOf Integer, -delete(): Mutator.
cleanMRTree(MRTree)—MRTree, Delete an existing
isEmpty(MRTree)—Boolean, leaf entry.
destroyMRTree(MRTree)—. -match(): Observer.

2 | Variables: Return the blob number
MRTree: mrt, emptyMRTree of this point.
LeafEntry: e -search(): Observer.
HR: hr ; MPoint: mp Return a list of blobld

3 | Sample semantics: corresponding to entries
isEmpty(createMRTree())=True that answer the search.
isEmpty(insertEnt(createMRTree(),e))=False -cleanMRTree():
isEmpty(deleteEnt(createMRTree(),e))=True Mutator. Returns
search(createMRTree(),hr)=emptyList an empty R _tree.
isEmpty(cleanMRTree(mrt))=True -isEmpty(): Observer.
search(cleanMRTree(mrt),hr)=emptyList Return true if the R_tree
match(cleanMRTree(mrt),mp)=0 is empty, otherwise false.
match(createMRTree(),mp)=0 -destroyMRTree():
delete(insert(createMRTree(),e),e)=emptyMRTree | Destructor. Destroy

the R_tree.

Figure 5.16: TDSO specification of the MRTree class.
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Specification {18}Class MPoint
Classes: Float, Boolean, Cardinal

1 | Syntactic:

createMPoint()—MPoint,
change(MPoint,Float,Cardinal)—MPoint,
retrieve(MPoint,Cardinal )—Float,
compare( MPoint, MPoint)— Boolean,
assign(MPoint,MPoint)—MPoint,
destroyMPoint(MPoint)—.

2 | Variables:

MPoint: i, emptyMPoint

Float: v

Cardinal: d

3 | Sample semantics:
retrieve(createMPoint(),d)=0
assign(createMPoint(),i)=i
assign(i,createMPoint())=emptyMPoint
retrieve(change(i,v,d),d)=v

-createMPoint():
Constructor. Create an
empty dD point.

-change(): Mutator. The
float value in the specified
dimension is changed.
-assign(): Mutator.
Multi-point assignment.
-retrieve(): Observer.
Return the float value

of the specified dimension.
-compare(): Observer.
Return true if both dD points
satisfy the comparison operator.
-destroyMPoint(): De-

structor. Destroy the interval.

Figure 5.17: TDSO specification of the MPoint class.
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Specification {19}Class LeafEntry

Classes: Boolean, Cardinal, MPoint

Syntactic:

createlLeafEntry()— LeafEntry,
mp(LeafEntry,MPoint)— LeafEntry,
bn(LeafEntry,Cardinal )— LeafEntry,
assign(LeafEntry,LeafEntry)— LeafEntry,
compare(LeafEntry,LeafEntry)—Boolean,
compareMp(LeafEntry, MPoint)—Cardinal,
gMp(LeafEntry)—MPoint,
gBn(LeafEntry)—Cardinal,
destroyLeafEntry(LeafEntry)—.
Variables:

LeafEntry: le, emptyLeafEntry

MPoint: m, emptyMPoint

Cardinal: bld

Sample semantics:
gMp(createLeafEntry())=emptyMPoint
gBn(createlLeafEntry())=0
gMp(mp(le,m))=m

gBn(bn(le,bld))=bld
assign(createLeafEntry(),le)=le
assign(le,createLeafEntry())=emptyLeafEntry

-createLeafEntry():
Constructor. Create an
empty leaf entry.

-mp(): Mutator. Change
the mpoint value

of the leaf entry.

-bn(): Mutator. Change
the blob number

of the leaf entry.
-assign(): Mutator.

Leaf entry assignment.
-compare(): Observer.
Return true if both entries
satisfy the comparison.
-compareMp(): Observer.
Return the blob number if
both multi-point values
satisfy the comparison.
-gMp(): Observer. Return
the multi-point value.
-gBn(): Observer.
Return the blob number.
-destroyLeafEntry():
Destructor.

Figure 5.18: TDSO specification of the LeafEntry class.
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Apr.96

Specification {20}Class RTreeNode
Classes: Boolean, Cardinal, Character, MPoint, HR, LeafEntry, Entry

1 | Syntactic:

createRTreeNode()—RTreeNode,
insLeaf(RTreeNode,LeafEntry,Cardinal )—
RTreeNode,
insert(RTreeNode,Entry,Cardinal)—RTreeNode,
delete(RTreeNode,Cardinal)—RTreeNode,
maxHb(RTreeNode)—HR,
assign(RTreeNode,RTreeNode)—RTreeNode,
readNode(RTreeNode,Cardinal)—RTreeNode,
writeNode(RTreeNode)—RTreeNode,
destroyRTreeNode(RTreeNode)—.

2 | Variables:

RTreeNode: rtn, emptyRTreeNode

HR: h, emptyHR

Entry: e

3 | Sample semantics:
maxHb(createRTreeNode())=emptyHR
assign(createRTreeNode(),rtn)=rtn
assign(rtn,createRTreeNode())=emptyRTreeNode
writeNode(createRTreeNode())=emptyRTreeNode
readNode(rtn,0)=emptyRTreeNode

-createRTreeNode():
Constructor. Create

an empty node.
-insLeaf():

Mutator.

Insert a new

leaf entry in the
indicated position.
-insert(): Mutator.
Insert a new entry in
the given position.
-delete(): Mutator.
Delete the

indicated entry.
-maxHDb(): Observer.
Return the mbhr

of the RTreeNode.
-assign(): Mutator.
RTreeNode assignment.
-readNode(): Mutator.
Read from the node
which is stored in the
indicated blob number,
if its blobld#0
-writeNode():
Mutator. Write the
node on disk.
-destroyRTreeNode():
Destructor. Write

the node on disk
before destroying it.

Figure 5.19: New TDSO specification of the RTreeNode class.
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Figure 5.20: Two mbrs over a polygonal object.



Chapter 6

Test of the R_tree extensions

In order to compare the R_tree extensions, experiments based on four different kinds
of data were designed. The first dataset comprised randomly generated mbrs in 2D,
uniformly distributed in space. For the second dataset, we used real data from
the Radioactivity Environmental Monitoring (REM) database containing spatio-
temporal points. The third dataset comprised polygonal real data containing the
counties of the UK and the wards of the West Yorkshire county. For the last data
set, spatio-temporal data uniformly distributed in space and time were generated
as mbhrs in 3D, but for lack of time, we only used this three times, once to test
extension 1, second to test extension 3, and the other to test extension 4.

The experiments were limited in a number of range, partly due to lack of real
datasets of sufficient size. Future work will extend the experiments by looking at
clustering datasets and also spatio-temporal polygonal data. Most of the conclusions
in this chapter are based on simulated spatial data.

This chapter describes the main characteristics of the data used, how they were
generated (where appropriate), what sort of data they contain, how the experiments
were carried out, what kind of transformations were made to obtain the required

data, and the analysis of the results obtained.
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6.1 Spatial data

This section describes the type of data that we used to test the R_tree extensions
in 2D. The spatial data used was expressed either by the two coordinates of a mbr
or by the four coordinates of a tho. The mbrs were utilised for the extensions 1 to
4, and the tbos for the O _tree.

6.1.1 Data uniformly distributed in space

The first step for testing the extensions of the R_tree structure required mbrs in 2D.
Because the data of the Carora city (mentioned in chapter 2) was not available to
us at that time, we decided to generate a file containing mbrs for objects uniformly
distributed in space with their height and width also uniformly distributed. We
followed similar ideas as used in simulation to generate data, by using a uniform
function that first generates a pseudo-random number uniformly distributed over
the interval [0, 1) and later transforms it into a numberthat follows a uniform distri-
bution over a different interval. In this case, we use a uniform distribution between
0 and 800 for generating the centroid of the mbr, a uniform distribution between 1
and 100 to generate the width of the rectangle, and finally, a uniform distribution
between 10 and 100 to generate the height of the rectangle.

Figure 6.1 illustrates the TDSO form of the implementation of this program,
called MBRCreation, and the uniform function that it uses. Each time the pro-
gram is executed, it generates the same data because we do not use different seed
values and the uniform function uses the same pseudo-random number sequence
generated by one of the available C++ library functions named drand/8(). The
C++ library function returns a non- negative double-precision floating point value
uniformly distributed over the interval [0.0, 1.0) using the linear congruential algo-
rithm and 48-bit integer arithmetic. The linear congruential formula gives X, 11 =
(wX,, +¢) mod m with n > 0, where m = 2% w = (273673163155)s, and ¢ = (13)s.
The value returned by drand48() is computed by first generating the next 48-bit X
in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (left most) bits of Xi and
transformed into the returned value. The program can be used for generating the
required number of mbrs uniformly distributed in the space described above. An

example of the data obtained is also presented in this figure.



Chapter 6

117

Test of the R_tree extensions

May.96

Implementation MBRCreation
Classes: Float, Integer, Entry

nrec=Read from the keyboard
mbrFile=File

[ xc=uniform(0,300)
yc=uniform(0,800)
xa=uniform(1,100)
yl=uniform(10,100)
mbrRec=(xc-xa/2, yc-yl/2, xc+xa/2,
yve+yl/2i+1)

Write mbrRec in mbrFile

] i=0,nrec

-nrec: Integer: Number of
mbr that will be generated.
-mbrFile: String: File where
are stored the generated data.
-xc,yc: Float: Centroid

of a mbr.

-xa,yl: Float: Width and
large of a mbr.

-mbrRec: Entry: mbr

and number of the record

in the file.

nrec=2, mbrFile='s2D.mbr’

mbrRec=(299.182 335.162 647.292 697.485 1)

Create two mbrs following
the defined distribution.

mbrRec=(253.683 256.226 677.859 740.427 2)

May.96
Implementation uniform(Float: a, b): Float
Classes: Float

1 | return (a+(b-a)*drand48()) -drand48(): C++ library
function that generates
pseudo-random numbers
using the linear
congruential algorithm

and 48-bit integer arithmetic.

Figure 6.1: TDSO implementation of the MBRCreation program.

6.1.2 Polygonal data

In order to test the efficacy of the O_tree described in the last chapter, some files
from Manchester Computing Center were obtained: one containing the segments of
the wards of the West Yorkshire county of the U.K. and the other containing the
segments of the counties of the U.K.

These real data were stored following the format shown in figure 6.2. Fach
record file contains the information about a segment, beginning with the names of
two polygons, to identify the polygon on the left, and the polygon on the right of
this segment. These names are codes defining each division of either a county or
the country. After that appears the first point of the segment given as an absolute
value, and followed by a set of points expressed in relative coordinates, where each is

associated with its predecessor. To calculate a new absolute coordinate based on its
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predecessor, the current absolute coordinate is added to the next relative coordinate
value. In the example shown below, the second absolute coordinate is 39956 41295.
An example of these records is the following, Z03BPAP Z08CZAU 39951 41301 6
-6 10-136 -85-5... 5-72-32-4 /. Polygons pertaining to the West Yorkshire

county began with Z08, and the corresponding ascii file is shown in appendix C.

Left Right Absolute | Set of relative coordinates
segment | segment | coordinates X and Y in relation to
identifier | identifier | X and Y its predecessor.

Figure 6.2: Format of each segment of polygonal data files.

These files were processed by a program called tbo that calculates the tight
bounding octagon (tbo) of each polygon in the file. A tbo contains the two coordi-
nates used for the two mbrs, as mentioned in chapter 4. The corresponding TDSO
implementation of the tbo program is presented in figure 6.3. The identification of
each polygon is made by its code (name), and it can appear several times in the
file. Files can have polygon names of other counties which are its neighbours, those

neighbour polygons are not included in the output files.

6.2 Spatio-temporal data

The term spatio-temporal data is used for data that includes time values related to
the 2D mbr. The implemented R_tree extensions three, four, and five support many
dimensions in space and time, however we have not tested it with more than two

dimensions in geographic space and one dimension in time.

6.2.1 Interval data uniformly distributed in space and time

Due to the lack of real spatio-temporal data expressed as intervals, we decided to
generate a set by using the MBHRCreation program that generates the file named
st3D.mbhr. This program is basically the MBRCreation program shown in the
last section to generate spatial data. The spatio-temporal intervals generated by the
program are uniformly distributed in space and time. It uses the same function and
distributions for generating mbrs, and generates time intervals between 01/01/1990
and 31/12/1995. The extent of the time intervals is also uniformly distributed in
[0,364]. Figure 6.4 presents the TDSO implementation of the program and one

example of the generated minimum bounding hyper-rectangles (mbhrs).
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6.2.2 Point data

The REM databank contains environmental monitoring data collected after the
nuclear accident of Chernobyl city in the USSR. These data correspond to sev-
eral readings of ground-deposited CS-137 at various spatial and temporal locations.
Roberts presents in [Rob95] a preliminary analysis of the data that highlights its
main characteristics.

Firstly, the data is not uniformly distributed either in space or in time. This
non-uniformity is because some monitors are at fixed locations and provide readings
regularly spaced in time, and others are mobile and take readings at those locations
considered to be most significant data at that time. Second, data values for location
are expressed in absolute coordinates as latitude and longitude. Third, some read-
ings have a date where the data values were taken, and these values are expressed in
absolute time as day, month, and year. Finally, location-time data values correspond
to spatio-temporal points.

For this application, the spatio-temporal access method will take location and
time values as real numbers having a granularity of meters and microseconds, respec-
tively. The problem of different scales is left to the spatio-temporal query language,
as is the problem of having only relative values. The index only supports absolute
values.

The data provided by this application is used to test the R_tree extension 5 that
was defined in the last chapter. This data has the format presented in figure 6.5,
a code determining the administrative district for Europe (NUTS code), the name
of the district (locality), the code of the sample type that describes how the sample
was obtained, a reference to the source of the data, the date of the sample on which
the measurement was taken, the nuclide whose concentration is being measured
(nuclide), the measurement value, the units of measurement, degrees latitude, and
degrees longitude. An example of the records is the following, 11, SCHLESWIG-
HOLSTEIN, A112D, DWDO, 29-apr-1986, [-131, 0.000, BQ/M3, 54.434, 9.514.

6.3 Experimental design

Each of the first four extensions were prepared for execution on the same platform
varying the same experimental parameters, that is: blob size (512, 1024, and 2048)
and number of objects (1000, 2770, 5000, and 10000). We choose 2770 because this

is the maximum file size for the REM databank available for evaluating extension
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5. The multi-dimensional point R_tree (extension 5) was tested with the same blob
sizes, and the number of objects in (1000, 2770), due to the quantity of available
data. The last extension, the O_tree, was only tested with the polygonal data files
which were processed by the tbo program creating the .tbo testing files. All of the
extensions were implemented on C4++ on a UNIX platform, and tested on the same

standalone Silicon Graphics machine.

6.3.1 Parameters

The comparison was based on the parameters which measure the main characteristics
of a tree, called the measured parameters. These measured parameters are presented
in figure 6.6.

These parameters will be used to describe and compare the extensions in the

section of the results.

6.3.2 Test programs

The test programs differ in the number of the implemented operators depending on
the extension to be tested. Thus, the el program was used to test the extension 1, e2
to test extension 2, and so on. Figure 6.7 shows the general TDSO implementation
corresponding to all the test programs. The rest of the TDSO implementations for
functions called by a test program are presented in appendix C.

Insertion and searching methods into the RTree class include some statements
to measure time. We use the timing function provided by C++4 in UNIX sys-
tems that is getrusage(). This function returns information describing the re-
sources utilized by the current process, or all its terminated child processes. We
use getrusage(RUSAGE_SELF, time) for getting initial and final time of each op-
erations that we need to measure. For each operation e.g. insert, retrieve, etc.,
we transform the time obtained to seconds, and compute average and variance over
all objects in the file. These two calculated values were utilized to perform some
statistical tests mentioned in the next section. To be sure that time values were as
accurate as possible, we put initial time measure statement inside the function just
before the beginning of the real work of it, and the final time measure statement
just after the real work finished inside the function. After that instruction, we put
other statements to calculate time in seconds, time cumulation, and other things.
We also avoid the timing of initialization of variables.

Each test program creates the structure by inserting one by one the object’s mbr
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and its reference. Fach insertion gives an insertion time in seconds and the number
of disk accesses. After inserting the demanded number of objects (1000, 2770, 5000,
and 10000), the parameters H, NB, NE, ES, AIT, IDA, and the variance of insertion
time are calculated.

For retrieval operations in all of the extensions, the test scenario is as follows:

1. AMST, MDA, MRO, and the variance of exact match time are calculated for

exact match operations by searching for each object in turn.

2. ARST, RDA, RRO, and the corresponding variance are calculated for range
operations. For every object in the dataset, the range operator is applied to
find all the objects satisfying the range condition. This can be seen in tables

of the appendix C.

3. For the rest of the retrieval operations, the same considerations apply.

6.4 Results

First of all, extension 1 is considered equivalent to the original R_tree because of
the only difference between them is the deletion algorithm, and we do not use that
method in any of our experiments. For this reason, in what follows, the results of
extension 1 will be taken to represent the original R_tree and provide the reference
point for evaluating the other extensions. Extensions 1 and 2 were tested with the
2D spatial data uniformly distributed in space, that is the s2D.mbr file generated
by MBRCreation program. Figure 6.8 presents the curves obtained for empty space
within nodes (ES) vs. database size. This figure shows clearly the reduction in
wasted space within nodes for the case of extension 2. The reason for that is the
use of the redistribution policy during insertions.

Referring to the average insertion time (AIT), figure 6.9 illustrates that there is
no appreciable difference among the results obtained for both extensions. Extension
2 gives better AIT when the database size is larger than 10.000 of objects. On the
other hand, there is an important difference in the results for the average exact
match time (AMST) for the two extensions as shown in figure 6.10. It is clear that
extension 2 always gives a greater AMST value than extension 1. This is because
of the redistribution of entries during insertions. Surprisingly, the curve for the
average range search time (ARST) shown in figure 6.11 illustrates no differences at

all among the two extensions, that is redistribution during insertion does not affect
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range retrieval because the function utilised to search into the nonleaf nodes is the
same in both extensions (non disjoint).

Figure 6.12 presents the curves for the hit ratio vs. database size among the
two extensions. This hit ratio was calculated as the number of retrieved objects
divided by the number of disk accesses, to account for false hits. Thus, for exact
match searches, the hit ratio was calculated as MRO/MDA, and similarly for range
searches where it is defined as RRO/RDA. A greater hit ratio means less disk accesses
are needed to retrieve the required objects. It follows that extension 1 requires fewer
disk accesses than extension 2 for retrieving the same number of objects.

The complete results obtained for several runs are shown tabularly in appendix C.
These runs correspond to the parameters mentioned in section 6.3.

Extensions 3 and 4 were tested with the same 2D spatial data used to test
extensions 1 and 2. Figure 6.13 shows the reduction in waste space within nodes for
the case of extension 4 for all database sizes. The reason for this is that extension 4
was built based on extension 2. Figure 6.14 presents lower average insertion times
for extension 3, except for a database size of 5000, where they are equal. It means
that redistribution in insertions have a cost in tree performances, when an insertion
operation is made. For retrieval times, figure 6.15 clearly shows lower average exact
match times for extension 3, because the sequential search within nodes is shorter
than those of extension 4. Similar results are shown in figure 6.16 corresponding
to a particular case of range retrieval, such as average not disjoint time (AINT). In
this particular point, we can observe a better time discrimination in extension 3 and
4, compared with the obtained results of extensions 1 and 2, where we obtain no
differences at all in range searches.

The curve of average disjoint time (ADT) is not included here, because it is not
very important in our comparison. A disjoint search means a complete scroll of tree
leaf nodes and it normally retrieves all of the objects in the database, except the
object of the search.

The calculated hit ratios for each case of extensions 3 and 4 are presented in
the next figures. The hit ratio for exact match retrieval, MRO/MDA, is illustrated
in figure 6.17, where hit ratio for extension 4 is clearly lower than those results
of extension 3. Similar results were obtained for not disjoint (IDRO/!IDDA), in-
side or contain (ICRO/ICDA), and not disjoint in one dimension (IDIRO/!D1DA)
hit ratio curves. Conversely, the hit ratio for disjoint retrieval (DRO/DDA), left
(LIRO/L1DA) and right (RIRO/RIDA) in one dimension hit ratios, are lower for

extension 3 than for extension 4, except for a database size of 5,000. The redistri-
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bution in insertion affects hit ratios in disjoint, and left and right in one dimension
retrievals. The cover or covered by hit ratio is not present because the nature of the
data is such that there will always be zero objects for CRO. The rest of the figures
for each hit ratio type is presented in appendix C, and also four tables containing
results of each program test.

For different combinations of the results, we made statistical tests to reinforce
our conclusions. An analysis of two factors applied to the first four extensions vs.
the use of different blob sizes gives a non significative difference with a confidence
level of 95%, that is, blob size does not influence the extensions’ behaviour. The
comparison of means between AMST of extensions 2 and 4, for all of the blob size
and number of objects, concludes that the use of the covers operator in extension 4
instead of the overlap of extension 2, decreases appreciably the AMST in successful
searches. Figure 6.15 illustrates AMST for the first four extensions. Using the same
type of test with extensions 3 and 4, we obtain a better AMST in extension 3.
This is due to the lack of redistribution during insertions, even if it uses the covers

operator. Example of this test:
HO: Initial hypothesis. AMST of both extensions 4 and 3 are equal. (y; = p12).

H1: Alternative hypothesis. AMST of extension 4 is greater than AMST of exten-
sion 3. (p1 > fi2).

where pq: population mean for exact match search time of extension 4, and ps:
population mean for exact match search time of extension 3. For a confidence level

of 99.8% and a blob size of 2K, we have

Number of exact match Calculated
Extension | searches in each case mean Variance
3 n1=10000 X, =0.130 sec | S? =0.113 sec
4 n,=10000 X, = 0.072 sec S2 = 0.664 sec

and we obtain the estimated 7Z = 6.614, which is greather that Zjg9s = 2.88
and HO is rejected. That means there is a significant difference at 99.8% between
extension 3 and 4 due to the use of redistribution in insertion. AMST is better in
extension 3.

On the other hand, a better AIT value was obtained by using covers operator
without redistribution in insertions (extension 3). AIT curves for extensions 1, 2,
3, and 4 are shown in figure 6.14. It can also be seen the exact match hit ratios for
these extensions in figure 6.17 where extension 3 is clearly better that the others.

Figure 6.18 presents the range hit ratios for these four extensions, extensions 1 and
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2 have this parameter, but it is not the case for extensions 3 and 4. In this particular
case, we consider the not disjoint hit ratio of these two extensions as equivalent
to the range hit ratio of extensions 1 and 2, because the not disjoint operator
is used to calculate overlapping mbrs in extensions 3 and 4, and range is used to
calculate the same in the other two extensions.

Two tests were made for extensions 3 and 4 using spatio-temporal data uniformly
distributed in space and time, but only in the case of 10.000 of objects. For lack of
time, we did not perform more tests, but in both cases the relationships between all
measured results of extension 3 and 4 were maintained as for spatial tests. Results
are included in appendix C in tabular form.

The multipoint version of the R_tree, that is extension 5, was tested with the
REM data, but it could not be compared with other results because the lack of
similar data. Figure 6.19 illustrates the average insertion time obtained for 1.000
and 2.770 of records of the preprocessed real data of REM.

Extension 6 is not comparable with any of the former extensions because of the
different conception and data that it manages. It was tested with real polygonal
data of the U.K. Unfortunately, after processing these two available data files, only
a small number of records were obtained, 128 and 68 records, in the wards of West
Yorkshire and the counties of the U.K., respectively. This quantity of records is so
small that we decide to discard figures of this extension. Appendix C contains some

obtained results for the wards of West Yorkshire.

6.5 Concluding remarks

A substantial improvement in terms of reduction in wasted space through the redis-
tribution policy is our first conclusion. This policy mainly affects the average exact
match search time and the search hit ratio, but it permits to obtain a more compact
index structure.

Secondly, we have obtained a better hit ratio and therefore fewer disk accesses
by including a minimal set of more specific and specialized search operators that
were defined in chapter 4.

Third, we have shown that the object-oriented approach and the TDSO technique
lead to a very flexible scheme whereby the indexing structure can be very easily
adapted to the problem at hand. As an example of that, we had developed quickly
and easily the O_tree extension by only adding a few new methods to the extension 3

class. This point is important because we are trying to accommodate requirements
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that appear at the query stage right down at the indexing level. Consequently,
we can say that whatever requirements an application presents, the object-oriented
code can easily be adapted to meet them.

The benefits of the comparison is to know which parameter values are appropriate
for better R_tree performance. The outcome of the comparison is basically that
AIT is better in extension 3 due mainly to the use of the covers operator inside the
majority of the internal range search routines of the Rtree class. AMST is also
better in extension 3. There is no appreciable difference in using a particular blob
size for any extension used, so the size of the blob is not an important performance
factor as we had thought at the beginning of this work. Height (H), number of
entries (NE), number of used blobs (NB), and empty space (ES) are reduced in
those extensions with redistribution during insertion, i.e., extensions 2 and 4. The
cost of having a compacted R_tree index with better AIT is paid for in terms of the
time taken for retrieving a specific entry in the structure. In general, extension 3
offers the best performances, except for disjoint, and left and right in one dimension
hit ratios. This is due to the overlapping regions in the higher nodes of the tree,
where the left and right in one dimension routines have to examine almost all of the
tree nodes.

Comparing these four extensions together for the same data file (s2D.mbr), we

have obtained the following results:

e in terms of the reduction on wasted space within nodes, extension 4 is the best

for all database sizes,

e in terms of average insertion time, average exact match time, and exact match

hit ratio, extension 3 is the best,

o if it is valid to compare range searches of extensions 1 and 2 with not disjoint

searches, then we can say that

— in terms of average range time, extensions 1 and 2 are the best, and

— the range hit ratio was better in extension 3.

Extensions 1 and 2 can not be compared directly with extensions 3 and 4 to
have some curves of the main parameters. Nevertheless, extensions 1 or 2 can be
used to retrieve a set of objects with a poor hit ratio for those queries different to
exact match or not disjoint queries. For example if the question is Find all objects

that cover object A and the standard R_tree index of extension 1 is used, then it is
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retrieved all objects that are not disjoint from A and then selected from those just
the ones that cover A. Whilst that the same query can be answered more quickly
with extension 3 or 4, because instead of using the not disjoint operator, it is used
the cover operator which retrieve a smaller set of retrieved objects in the first phase
to answer that query.

Extension 5 and 6, the multipoint R_tree and the O_tree, have acceptable perfor-
mances, mainly because we used extension 3 as a base to build them. Extension 5
has entries of smaller length in the leaf nodes than those of the O_tree and even the
other extensions. Extension 6 has the leaf node entries of largest length. Extension
5 has the most compact index, and extension 6 is the largest index tree.

The lack of appropriate real data to test the R_tree extensions is a point that
we can conclude. The generation of adequate data to each extension was made
easily without major complications. The parameters for this generation were chosen
randomly. The use of the uniform distribution was selected as a first case of testing,

having no available time to generate data following other distributions.
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Jun.96
Implementation tbo
Classes: Integer, String, SetOf, Polygon, File
2 | for each line in the file of segments -line: String: Record of the file
[ endOrPolyld(line,pnl,pn2,posl, of segments.
pos2,xa,ya) -pnl,pn2: String: Names of the
searchPolyName(pnl,cnp,pol) polygons one and two.
searchPolyName(pn2,cnp,pol) -posl,pos2: Integer: Position

if(posl) [ posl=insNew(pnl,cnp,pol)] | of each polygon in
if(pos2) [ pos2=insNew(pn2,cnp,pol)] | the set of polygons.
if(xa and ya) [ initiates pol(posl).tho | -xa,ya: Integer: Actual values

and pol(pos2).tho] of the absolute coordinates.
for each relative coordinate -cnp: Integer: Polygon counter.
[ update xa and ya -pol: SetOf Polygon: Contain
update pol(posl).tho and name and tbho of each polygon.
pol(pos2).tho] -ifTbo,ifTxt: File: Binary
] and text file containing

3 | nrf=writePoly(pol,ifTho,if Txt) the set of polygons.

2 | Define ifTho and ifTxt -nrf: Integer: Polygon number

in this region.
-endOrPolyld(),writePoly(),
searchPolyName(),insNew():
Functions defining new polygons,
searching polygons in the set,
inserting a new polygon in

the set, and writing the set

of polygons in two files.

1| 38820.00 45282.00 40283.00 45403.00 | Record in the if T'xt file containing
81074.00 89464.00 -3974.00 4900.00 the tho of the West Yorkshire

3 708 county.

Figure 6.3: TDSO implementation of the tbo program.
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May.96

Implementation MBHRCreation
Classes: Float, Integer, String, Entry

nrec=Read from the keyboard
mbrFile=File

[ xc=uniform(0,300)
yc=uniform(0,800)

xa=uniform(1,100)

yl=uniform(10,100)

y=uniform(1,6)

mo=uniform(1,12)

depending on y and mo di=uniform(1,31)
ti=y/mo/di

ed=uniform(0,364)

depending on mo ed=fl(ed,nd,di,mo,y)
ts=y/mo/di

mbhrRec=(xc-xa/2, yc-yl/2,xc+xa/2,
vetyl/2, ti, ts, i41)

Write mbhrRec in mbrFile

] i=0,nrec

-nrec: Integer: Number of
mbhr that will be generated.
-mbrFile: String: File where
are stored the generated data.
-xc,yc: Float: Centroid

of a mbr.

-xa,yl: Float: Width and
large of a mbr.

-y,mo,di: Float: Year,
month, and day, respectively.
-ti,ts: Float: Low time

and high time of the

interval.

-ed: Float: Extent of the
time interval in days.
-mbhrRec: Entry: mbhr
and number of the record in

the file.

nrec=2, mbrFile=‘st3D.mbhr’
mbr:(315.9 318.443 641.104 703.672
19910510 19910704 1)

mbr:(119.121 135.869 277.985 335.961
19930128 19930204 2)

Create two mbhrs following
the defined distribution.

Figure 6.4: TDSO implementation of the MBHRCreation program.

Name Date Measure | Units of
NUTS of the Sample of the ment measure
code district Type Reference | sample | Nuclide value ment Latitude | Longitude

Figure 6.5: Format of each record of the REM data file.
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Parameter Meaning
H The height of the tree, which measures, in theory, how many disk accesses are
needed to find an entry in the tree.
NB The total number of used blobs, that express the actual disk space
used by the tree.
NE The total number of entries, equivalent to the tree size.
ES The percentage of empty space within blobs, which measures the space
occupancy of each blob.
AIT The average insertion time, that shows how fast the structure is
during an insertion.
AMST The average exact match search time, that shows how fast an exact
match search is in the current tree.
ARST The average range search time, which gives the average timing of a
range search in the actual tree (extensions 1 and 2).
ADT The average disjoint search time, that shows how fast a disjoint
search is in the actual tree (extensions 3 and 4).
AIDT The average non disjoint search time, which gives the average timing of a
meet or overlap operation (extensions 3 and 4).
AICT The average inside or contain search time, that shows the average
timing of a containment search (extensions 3 and 4).
ACT The average cover or coveredBy search time (extensions 3 and 4).
AIDIT The average non disjoint in one dimension
search time, which shows the average timing of a non
disjoint in a given dimension search (extensions 3 and 4).
AL1T The average left in one dimension search time (extensions 3 and 4).
AR1T The average right in one dimension search time (extensions 3 and 4).
IDA The average number of disk accesses during an insertion, saying how many
disk accesses in average were made to insert a new entry in the tree.
MDA The average number of disk accesses during an exact match search, that express
how many disk accesses in average are required to search for an entry in the tree.
RDA The average number of disk accesses during a range search. This measures how many
disk accesses in average are required to search all the tree entries which satisfy
the condition of a specified range operator for a given region or mbr
(extensions 1 and 2).
DDA The average number of disk accesses during a disjoint search (extensions 3 and 4).
'DDA The average number of disk accesses during a non disjoint search (extensions 3 and 4).
ICDA The average number of disk accesses during an inside or
contain search (extensions 3 and 4).
CDA The average number of disk accesses during a cover
or coveredBy search (extensions 3 and 4).
'D1DA The average number of disk accesses during a non
disjoint in one dimension search (extensions 3 and 4).
L1DA The average number of disk accesses during a left
in one dimension search (extensions 3 and 4).
R1DA The average number of disk accesses during a right
in one dimension search (extensions 3 and 4).
MRO The average number of retrieved objects during an exact
match search. This number must be equal to 1 in all cases.
RRO The average number of retrieved objects during a
range search (extensions 1 and 2).
DRO The average number of retrieved objects during a
disjoint search, which is always equal to the total
number of objects less one (extensions 3 and 4).
'DRO The average number of retrieved objects during a
non disjoint search, that is for meet or
overlap(extensions 3 and 4).
ICRO The average number of retrieved objects during an
inside or contain search (extensions 3 and 4).
CRO The average number of retrieved objects during a
cover or coveredBy search (extensions 3 and 4).
'D1RO The average number of retrieved objects during a
non disjoint in one dimension search (extensions 3 and 4).
L1RO The average number of retrieved objects during a
left in one dimension search (extensions 3 and 4).
R1RO The average number of retrieved objects during a
right in one dimension search (extensions 3 and 4).

Figure 6.6: The measured parameters.
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Jun.96

Implementation testProgram
Classes: Integer, String

1 | argc=Read from the keyboard
argv=Read from the keyboard
3 | if(arge=5)

[ file=Read from the keyboard
recl=Read from the keyboard
fs=Read from the keyboard
op=Read from the keyboard
ent=Read from the keyboard
from=Read from the keyboard
top=Read from the keyboard
dop=Read from the keyboard
prox=Read from the keyboard
tep=Read from the keyboard
hrl=Read from the keyboard
hr2=Read from the keyboard
]
if(arge=13 V arge=26)

[ from=ent=op=top=dop=prox=
tep=file=recl=fs=hrl1=hr2=Substring
of argv

]

choices(from, ent, op, top, prox,
dop, tep, recl, file, hrl,hr2)

-argc: Integer: Number of calling
parameters.

-argv: String: Calling parameters.
-file: String: Data file name.
-recl: Integer: Number of bytes
of each file record.

-fs: Integer: Number of file records.
-op: Integer: Operation number.
-ent: Integer: Number of records
to be tested.

-from: Integer: Record number
from which begins the

records to be tested.

-top, prox, dop, tep: Number
of the topological, proximity,
directional, and temporal
operators, respectively.
-choices(): Function defining

the menu, respectively.

1 | arge=2
argc=>5
4 | argc=13

Invalid argument
Using the test menu

Simulation run

Figure 6.7: TDSO implementation of a testProgram program.
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Figure 6.8: Percentage of empty space vs. data set size for extensions 1 and 2. (File:

s2D.mbr, blob size=2KB)
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Figure 6.9: AIT vs. data set size for extensions 1 and 2. (File: s2D.mbr, blob
size=2KB)
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Figure 6.10: AMST vs. data set size for extensions 1 and 2. (File: s2D.mbr, blob
size=2KB)
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Figure 6.11: ARST vs. data set size for extensions 1 and 2. (File: s2D.mbr, blob
size=2KB)
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A Match hit ratio
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Figure 6.12: The hit ratio vs. data set size for extensions 1 and 2. (File: s2D.mbr,
blob size=2KB)
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Figure 6.13: Percentage of empty space vs. data set size for extensions 3 and 4.
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Figure 6.14: AIT vs. data set size for extensions 1, 2, 3, and 4. (File: s2D.mbr,
blob size=2KB)
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Figure 6.15: AMST vs. data set size for extensions 1, 2, 3, and 4. (File: s2D.mbr,
blob size=2KB)
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Figure 6.16: AIDT vs. data set size for extensions 3 and 4. (File: s2D.mbr, blob
size=2KB)
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Figure 6.17: The exact match hit ratio vs. data set size for extensions 1, 2, 3, and

4. (File: s2D.mbr, blob size=2KB)
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Figure 6.18: The range match hit ratio vs. data set size for extensions 1, 2, 3, and

4. (File: s2D.mbr, blob size=2KB)
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Figure 6.19: AIT vs. data set size for extension 5. (File: rem95.dat, blob size=2KB)



Chapter 7

Conclusions and future work

Indexing spatial objects by object position in space is well achieved by SAMs, but
spatial objects have also a shape which combined with spatial location define spatial
objects more accurately, chapter 2. It is hard to think about a particular object in
2D or 3D geographical space that has not got any area or volume, respectively. This
space occupancy of an object defines its shape that has to be included into the key
of an index structure. Spatial objects whose position and shape change over time
are classed on spatio-temporal objects. Spatio-temporal access methods are actually
based on spatial ones. The majority of the spatio-temporal indexing methods take
the R_tree structure because it is the simplest access method which can index as
many dimensions as needed. If we take three dimensions for the spatial location
and shape, and two dimensions for the temporal data, then we can use the same
structure, the R_tree, as we have two spatial dimensions and one time dimension. We
use a multi-dimensional index structure to support whatever number of dimensions
the application needs, and we add new dimensions to the index key to include
temporal data of a spatial object.

In this work, we propose a novel approach to building multi-dimensional in-
dexes which attempts to improve the hit ratio by accommodating spatio-temporal
search operators within the indexing mechanism. Therefore, we have extended a
well known SAM, the R_tree, to support more specific range search operators which
are specialized on doing a more restricted task of search. This new approach avoids

partitioning of spatial objects.

137
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A second outcome of this work is the developing of a family of methods for index-
ing into multi-dimensional spatio-temporal data and performing some preliminary
testing of these techniques. This result follows directly from our approach men-
tioned before, that had been refined until obtaining a minimal set of range search
operators (presented in chapter 4) to be used as a base to answer spatial, temporal,
and spatio-temporal queries.

We also have come to some initial conclusions in terms of the efficiency of these
techniques and the sensitivity to parameters such as blob size and the use of redis-
tribution during insertion. These initial conclusions presented in chapter 6 are the
substantial improvement in terms of reduction in wasted space through the redis-
tribution policy, and the achievement of better hit ratios and consequently of fewer
disk accesses in some range searches.

In general, we have provided support for the usefulness of the TDSO and object-
oriented techniques, which are shown in chapters 5 and 6. This was permitted to
lead to a very flexible scheme whereby the indexing structure was easily adapted to
our problem.

The first problem we mentioned in chapter 1 focusses on avoiding extra geo-
metric calculus when a system is solving a particular spatial query. The majority
of the proposed SAMs index objects by a general container like a mbr, which ap-
proximates spatial shape and location of the object. But, a spatial query normally
needs to answer which objects obey the particular conditions of the query, and an
approximation of the location and shape do not achieve these needs. For such cases,
it is mandatory to include into the spatial query processor the mentioned geometric
calculus to provide the exact set of "answering” objects. We realize that SAMs do
not retrieve this set, because of the approximation used as the index key. Thus, we
propose to use the R_tree structure extended with specialized range search operators
to reduce the cardinality of the set of "retrieved” objects, where will be extracted
the other set. We also propose the O_tree that uses an octagon container which is a
better approximation of location and shape of a spatial object. The disadvantage of
the O_tree is the use of a larger index entry compared to those of the R_tree, without
fulfilling the requirement of retrieving the needed set of "answering” objects.

The problem of indexing spatial and temporal attributes using the same access
method is solved by treating both characteristics homogeneously. That means we
defined some operators to manage both attributes together. However, a user may
query a database by any of them separately, and some operators for each kind of

query are needed. Thus, we propose spatial, temporal, and spatio-temporal opera-
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tors.

A spatial query only uses spatial operators like topological, directional, or prox-
imity operators. These spatial operators are referred to X-Y coordinates which are
used to define the approximation included into the index as its key. In our case, we
use the mbr.

A temporal query only expresses the question based on temporal operators, which
use one time dimension. Even if the application has several time dimensions, we
define temporal operators for only one of them in the query. We see that the use
of the rectangular approximation (mbr) can be more appropriately applied to a
temporal mbr than to a spatial mbr, if time inside each interval is continous, and
valid time and transaction time are considered orthogonal. With these assumptions,
a temporal mbr defines completely the content of the temporal space permitting the
right application of the topological, directional, and proximity operators, already
defined to spatial mbrs.

A spatio-temporal query asks for particular conditions for space and time of the
object. In this case, we only propose to use topological operators applied to our
multi-dimensional container named hyper-rectangle. Because of the location and
shape approximation problem, spatio-temporal operators inherit the disadvantage
of using hyper-rectangles to retrieve the set of answered objects.

Taking this large set of operators, we realise that we may reduce its cardinality
by studying the relationships among them. We propose in chapter 4, a minimal set
of operators that can be used as a base to build other operators. With an object-
oriented R_tree implementation, we could include the minimal set of operators into
the RTree class. We can also extend the class to support whatever behaviour we
need for that class in specific applications. Utilizing this object-oriented property,
we decide to make six extensions with the minimal changes into the class verifying
the advantages of the object-oriented approach.

Our third problem was to search and to choose adequate data to test R_tree
extensions and the O _tree proposition. The RTree class of each extension was tested
with a particular and reduced set of data objects. We solve this problem partially,
due to the lack of available real data. Some particular data sets were generated by
following a uniform distribution of the hyper-rectangles in dD space. We realise the
lack of an adequate test bed data set to be applied to the extensions.

The generation of a test bed for all of the extensions with several distribution
other than uniform is a subject for short term future work. Many of the SAMs

reported in the bibliography suffer from the need for more test data because the
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behaviour of SAMs depends on the distribution of the data to be indexed. We
mentioned this point in chapter 2, e.g. the grid file structure is highly recommended
only for uniform data distribution, otherwise the buddy tree is good.

The formal definition of the extension of the D/K model to support spatio-
temporal objects is a mid term future work. We partially achieved this point in
[BM98], but it remains to implement and test this extension in the implementation
of the D/K model. In this extension, we are planning to include temporal operators
for more than one time dimension, conforming temporal hyper-rectangles.

Finally, long term future work will involve the inclusion of the RTree class in a
more general index to cover 1D and dD management. That is an index method like
the grid index where the first scale will be a prefix B_tree, the second scale an R_tree
extended with spatio-temporal facilities, and the other scales defined by the user.
This structure will be a super index composed of one 1D index and two dD index,
where the grid index (dD) contains the others two. We tested this possibility by
implementing a grid index where the first scale is a prefix B_tree, and it is presented
by E. Paredes in [Par97]. We foresee that this kind of big index will reliably retrieve

whatever object is present in the system.
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Appendix A

A comparative table of OODBMS

This appendix shows a comparative table between six database management systems
(DBMS) which refer to themselves as object-oriented database management systems
(OODBMS). This table was built based on the characteristics of OODBMS presented
by M. Atkinson et al. in [ABD*89] as the main features that a system must have
to qualify as an OODBMS.

These characteristics can be categorized into three groups:

Mandatory: the OODBMS must satisfy two types of facilities, those concerned
with DBMS and those due to object-oriented systems (OOS). These facilities
are persistence, secondary storage management, concurrency, recovery, query,
complex objects, object identity, encapsulation, types or classes, inheritance,
overriding combined with late binding, extensibility, and computational com-

pleteness.

Optional: features to be added to the system for improving it. Multiple inheri-
tance, type checking and type inferencing, distribution, design transactions,

and versions.

Open: features which may be included at the designers dicretion. These include:

programming paradigm, representation system, type system, and uniformity.

All of these features are well explained in the aforementioned manifesto and we
take it for building our comparative table in a more standard form. More clearly, the

manifesto considers complex objects as objects which are built from simpler ones by
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Complex Object Encapsula- Types and
OODBMS | objects identity tion classes
ORION Composite | OID consists Classes whose | Classes with

objects. of a class id instances are its extensions

Include an instance id | objects, en- can be ma-

multimedia | and eventually | capsulate nipulat-

objects. a site id. data and beha- | ed at

vior. run-time.

Table A.1: Object and classes.

applying constructors to them. Simple objects are integers, characters, bytes strings
of any length, booleans, and floats. Complex object constructors are tuples, sets,
bags, lists, arrays, etc. Any constructor should apply to any object. The object
identity must support object’s existence independent of its value.

Encapsulation provides a form of logical data independence, but in some cases
it is not needed. In databases, an object encapsulates both data and program, in
other words, structure and behavior. Types and classes are useful for representing
real objects and they help code sharing (reusability). Tables A.1 and A.2 illustrate
these concepts for the chosen OODBMS.

Overriding permits the redefinition of operations resulting in a single name de-
noting a set of different programs, this is called overloading. The operation name
problem is resolved at run-time, called late binding. The computational complete-
ness express the requirements of the DML of the database system, which has to
offer any computable function. Table A.3 shows the particularities of the chosen
OODBMS.

Extensibility means the posibility to define new type or classes without any dis-
tinction between system defined and user defined. Persistence of database objects
should be orthogonal, each object is independent of its type. All of the secondary
storage management services are invisible to the user. These services are indexing,
clustering, buffering, access path selection, and query optimization. Finally, the
three features as concurrency, recovery, and ad hoc query facilities are considered
indispensable, and in any case, they have to be supported at least as in the DBMS.
Tables A.4 and A.5 show these properties of the chosen OODBMS. In database sys-
tems, persistence is treated as a property of the elements in the database. When
a program opens a database, it supplies all the variables needed for containing the
values obtained from the database. Thus, this program is normally written in some

programming language (PL) which has embedded the sentences of the database
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Complex Object Encapsula- Type and

OODBMS | objects identity tion classes

O, Yes, regard- Yes, but re- Classes whose | Types (ADT)
less of trieval of instances are cannot be
whether objects i1s made | objects and modified
they are by its name. which encapsu- | at run-time.
persistent The OID is late data and Concepts of
or not. the record behavior and ‘shadow class’
Complex ob- identifier RID types whose and class are
jects man- in WiSS. instances are considered
ager support Temporary OIDs | values. separately.
tuples, are generat- Methods can
lists, ed for new be private
sets, and jects and they or public.
multimedia are changed
objects. before commit.

GemStone | Complex Supported by Classes Classes with
objects like Smalltalk-80. encapsulate its extensions
composite ob- structure can be ma-
jects in ORION. and nipulated at
Supported by behavior. run-time.
Smalltalk-80.

ONTOS Objects have Different Objects Types
a set of identification encapsulate (ADT)
rutines and a between a properties cannot
set of proper- C++ object and be modified
ties. Unstruc- and a DB behavior. at run-time.
tured text object. Name It is
and graphics. identification strongly

is possible. typed.

IRIS Primitive and Not Types are Types
composite specified. objects and cannot
objects are they encap- be
classified as sulate data modified
literal and and behavior. | at
non-literal. run-time.

CACTIS | Objects and Not Objects re- It does not
relationships specified. encapsulate support
called mile- data and classes
stone. behavior.

Table A.2: Object and classes. (Continuation)
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Inheritance. Overriding,
Class or type overloading, and | Computational

OODBMS | hierarchies. late binding. completeness FExtensibility

ORION Single and All of them Supported by Supported by
multiple. A are present. C. schema
class is the evolution.
root class.

Oy Single and Late binding Supported by Extensibility
multiple. A is done in CO, (C) of the
class called constant time. or system are
Object is the Information BasicO, preserved
root class. about the (Basic). by the

inherited possible
method is du- schema

plicated down changes.
the inheritance

hierarchy.

Support method

overriding.

GemStone | Single. A class | All of them Supported by Extensibility
is the database | supported by Smalltalk-80, are preserved
root. Smalltalk-80. C, and C++. by dynamic

schema
modification.

ONTOS Single. A class | Supported by Supported by Not
called Entity run-time C and C+-+. specified.
is the root invocable
class. functions.

IRIS Single and Overloading. Not specified, Supported by
multiple. but OSQL is extensible

embedded in types.
Common LISP.

CACTIS | Single and These functions | Supported by New objects

multiple. are supported C, Pascal, or can be created

via type rede-
finition at
run-time.

Fortran.

and new
attribute
types too.

Table A.3: Inheritance and extensibility.
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management language (DML) of the database system. Sometimes, the program is
written in an integrated database programming language (DBPL), but it also sup-
plies the containers for values obtained from the database. These containers are in
main memory in a special space called workspace, where is written all the changes
needed to the persistent values which will be actually written to disk when the
transaction commits. Here, a transaction (T) is a set of actions -probably only one
action- upon the values stored in the database, and it has the atomicity property
which is that T is completly executed or not executed at all. The relationship be-
tween persistence and concurrency/security in the database area is very important,
because this last assures the database consistency from a state change to another.

The optional features include multiple inheritance, where a class can have sev-
eral superclasses. Type checking and type inferencing are beneficial in OODBMS
because integrity constraints are very important. Distribution is very useful today
and ideally, the system has to be distributed. Following the comparative table,
table A.6 presents these characteristics.

About design transaction and versions, we consider them vital in CAD/CAM and
CASE applications. Design transactions include long transactions or nested trans-
actions. In open choices, programming paradigm as logic, functional, or imperative
can be used. The representation system is defined by the set of types or classes,
which can be extended in different ways. Type system is referred to encapsulation
or some other system is used. Table A.7 presents these characteristics.

Finally, uniformity is explained at three levels. First, at the implementation
level, one must decide which information should be stored as objects or in other ad
hoc form. Secondly, at the programming language level, the problem is centered on
types and classes. Finally, at the interface level, the key corresponds to a uniform
view of types or classes, objects, and methods. We also include in our table fea-
tures as: object interface type, the concept of attribute, data definition language,
query processing and optimization, clustering, buffering, implementation language,
attached predicates, work space, objects format, advantages, and disadvantages.
Object interface type is referred to the form of communications between objects. In
attribute concept, we consider if the OODBMS contains or not this concept. The
name and some little things are included in the data definition language. Table A.8
shows the values considered for these parameters.

In query processing and optimization, we consider a little description of the more
important characteristics. Tables A.9 and A.10 present the corresponding values to

these characteristics.
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Secondary
storage
OODBMS | Persistence management Concurrency Recovery
ORION Pages are the A storage ma- | Lock the Only soft
basic unit nager which descriptor crashes
of manages disk | objects. and
persistence. space and it Timestamp in user-
A garbage implements longdata initiated
collector. indexes for descriptor transaction
By associative object and abort.
reachability. accesses to client page
objects. buffer pool.
Oy Pages are the Task of the For "flat” Crash
basic unit disk manager | records, recovery
of persistence which is it is available
A circular WiSS provided for classes
garbage collector | (Wisconsin by and methods.
of unreferenced storage WiSS. Recovery
objects. system). Concurrency may be
Persistent on the switched on
structures are schema are or off. Use
record-structured different to savepoints.
sequential files, concurrency
unstructured on objects.
files, and long For objects,
data items. a two-phase
By reachability. locking
Classes with algorithm on
extension are pages and
persistent. files.
GemStone | By reachability Stone is Optimistic Soft
A database built upon and pessimistic | and
persistent the underly- techniques. Pes- | hard
root. A gar- ing VMS simistic is used | crashes.
bage collector. file when conflicts
system. are high or
transactions

are so long.

Table A.4: Persistence, concurrency, and recovery.
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Secondary
storage
OODBMS' | Persistence management Concurrency Recovery
ONTOS By reachability | An area is It is rudimen- | Yes,
Objects persist | implemented tary and based | but
until the users | in UNIX by a on locks. A it is
explicitly de- file. Areas segment is the | not
lete them. decompose in unit of trans- specified.
Object root segments. fer between
called Entity. Objects(chunks) | disk and the
is the lowest server memory.
level of
granularity.
IRIS It permits Based on Yes. All.
explicit deletion | relational Relational DB. | Via
of persistent model. Via HP-SQL. HP-SQL.
objects, but
guarantee re-
ferential
integrity.
CACTIS | Not Not Timestamping | Lack of a
specified. specified. at attribute rollback and
level. recovery
Partial sorting. | mechanism.

Table A.5: Persistence, concurrency, and recovery. (Continuation)
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Ad hoc Type checking
query Multiple and type

OODBMS | facility inheritance inferencing Distribution

ORION Yes. Yes. Objects are In ORION-2.

It 1s loaded on It runs on a
similar demand. local area net-
to the work. TCP/IPC
relational sockets
databases. adopted.

Oy Yes, it is Yes. Objects are Ethernet and
possible loaded on transport protocols
by the demand. are TCP/IP.
database For each process
programming running on a
language workstation, there
(DBPL). is a mirror process

running on the
server. The lock
table and the
buffer managed by
WiSS are shared
by all process.

GemStone | Not specified | Yes, in the It is present Not
but it can new version | but not sup- distributed.
be supported | of Smalltalk. | ported by
by OPAL. Smalltalk.

ONTOS SQL Not Type checking | Client
interface. specified. at compile server

time whenever | architecture.
possible. The Local area
user may op- network of
tionally defer workstation.
it to run time
when necessary.
IRIS OSQL. Yes. Yes. Not specified.
CACTIS | Not specified. | Yes. Yes. Not distributed.

Table A.6: Query and distribution.
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Design Representation | Type

OODBMS | transactions Versions system system

ORION Transactions Transient and | Class Encap-
are seriali- working hierarchy sulation.
zable. The versions. A contains
lock manager version is a primitive
mantains a lock | specific classes.
table and a instance of
blocked trans- versioned
action table. object.

Oy Support trans- | Not Types appear | Encap-
action modes specified. as components | sulation.
which adapt of classes.
system to Types are
execution mode constructed
or development recursively
mode. using the

atomic types.

GemStone | Transactions Not All on the Encap-
are seriali- specified. system are sulation.
zable. objects.

ONTOS Atomics and Versions of Types are Encap-
bounded by objects and constructed sulation.
starting and general recursively
either commit- | version using the
ting or aborting | configura- atomic types.

a transaction. tions.
Nested and

shared trans-

actions.

IRIS Not Not By types. Encap-
specified. specified. sulation.

CACTIS | Not Not By types. Encap-
specified. specified. sulation.

Table A.7: Transactions, versions, and system type.
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Object inter- | Attribute Data definition

OODBMS | Uniformity | face type concept language

ORION Methods By Defined. Lisp Statice,
are messages. extension
objects. to LISP.

Oy Methods are | By Yes, it is Schema
procedures | messages. present in command
attached to | Message the tuple interpreter,
the objects. | passing type. CO,
Classes, manager. compiler,
types, and BasicO,
values are compiler,
not objects. and OOPE.

GemStone | Not By Set-valued OPAL.
specified. messages. attributes. Alltalk,

It can be extension to
heterogeneous. | Smalltalk.

ONTOS Differences | By Supported by | Extension
between functions. the abstract to C
objects, class called called
types, and association. Type
functions. Definition

Language
(TDL) and
C Object
processor
(COP).

IRIS Not By It is called OSQL

specified. functions. functions and | embedded
may be in C.
single-valued
or multi-
valued with
heterogeneous
objects.

CACTIS | Not By values. Defined and Not

uniform. derived specified,
by means but it is
of an evalu- compiled
ation rule. using
Classified subqueries.
as important
or not.

Table A.8: Implementation characteristics.
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Query proces-
sing and Implementation
OODBMS | optimization Clustering Buffering language
ORION Similar to Simple. By A page buffer | Two systems.
the rela- class. pool and an ORION1
tional data- Object object buffer | single user,
base,but with | directory pool with its | multitask
more complex | with managers. system.
statistics. extendible Dual-buffer ORIONI1X,
Algorithm is | hashing. evaluation ORION2
similar to schema. network.
nested loop Common
algorithm in LISP.
relational C under
databases. UNIX.
Oy A query A cluster A buffer man- | C under
returns manager ager takes UNIX.
an object based on care of trans- | (Sun0S4.0)
or a value. information lating OID
The query given by into memory
language is the DBA. The | addresses
a subset of clustering Dual buffer
the program- | algorithm management
ming lan- operates schema.
guage, func- at commit A page
tional, and time on both, | buffer (disk
first order. new and format), and
old objects. an object
Not composite | buffer pool
objects like (memory
ORION. format).
GemStone | A single- Under DBA Not Smalltalk-80
target query responsabi- specified. and C.
along a lity.

class-composi-
tion hier-
archy. Query
optimization
is not
supported.

Table A.9: Query processing, clustering, and buffering.
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Query proces-
sing and Implementation

OODBMS' | optimization Clustering Buffering language

ONTOS Query mech- Controlled Controlled C++.
anism for by by
identifying programimers. | programimers.

a group of
logically
related
objects.

IRIS Queries Yes. Yes. C under
expressed Relational By record. UNIX.
in a tree Databases.
structure
called
F_tree.

CACTIS | High priority | Dynamic, Not C under
queue without | based on specified. UNIX.
disk accesses. | object
Processes are | statistics
divided in about the
pieces which actual
are treated amount of
independently | disk 1/0.
in a priority Object past
queue. behavior.

Table A.10: Query processing, clustering, and buffering. (Continuation)
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Attach Work Objects Space

OODBMS | predicates space format overhead

ORION Not Not Two, a disk Minimum.
specified. specified. format and an | No duplica-

in-memory tion.

Oy Yes, as A workspace | format. Not
methods. is an Distinction specified.

object whose | between

type is a set | objects and

of objects. values. Ob-

It can be ject OIDs are

persistent. different to
value OIDs.

GemStone | Possible. One per user | Not Minimum.

session. specified.

ONTOS Supported by | Notion of Two, a DB Not
means of working format and a | specified.
triggers. directory. C++ format.

IRIS Yes, as Not Two, a disk Medium
functions. specified. format and an | respect to
Conjunctives, in-memory ORION.
disjunctive, format.
and non-
recursive
rules.

CACTIS | Yes, con- Not Not Not
straints on specified. specified. specified.
attributes.

Table A.11: Predicates, format, and space.

We consider too, if the system contains attach predicates or not, how it manages
the work space and how is objects format. Additionally, we include four characteris-
tics presented by Willshire and Kim in [WK90], which are space overhead, instance
modification, indexing, and schema changes or evolution. Space overhead means the
quantity of memory needed for storing data. Table A.11 illustrates the mentioned
parameters.

Instance modification explains how is done instances updating in the system.
The main strategy of indexing is shown as indexing, and schema evolution presents
how the schema is updated following classes or methods modification. Table A.12
presents these characteristics.

Finally, table A.13 shows our opinion in some advantages and disadvantages.
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Instance Schema changes
OODBMS | modification Indexing or evolution
ORION At most one BT _tree Use the deferred
write to larger update approach.
the DB for class- Dynamic schema
the three hierarchy. modification.
operation May require moving
(insertion, instance without a
deletion and database
modification. reorganization.
Oy Possible, but Based on Changes dealing
it is not complex ob- with the structure
spacified. jects and of a class are
inheritance. disallowed.
Class hier- Methods can
archy index- be added, dropped,
ing with a redefined, and classes
modification may be refined into
which permit | subclasses. A class
retrieve all is deleted only if
objects of a 1. it has
subclass in a | no instances, and
single block. 2. no other classes
depend on it.
GemStone | Not BT _tree index | Use the immediate
specified. on a collection | update approach.
of objects. Dynamic schema
Equality or modification.
or identity
indexes.
ONTOS Add a new field B_trees and Superclass
to a class defini- | linear change or
tion with existing | hashing. changing the
instances is data type
possible, but it is of a field
not dynamically incompatible.
supported.
IRIS Updating require | Yes. By tuple.
only one write. Relational Dynamic schema
The other require | DBMS. modification.
several writes.
CACTIS | Not Not Little
specified. specified. flexibility.

Table A.12: Instances, indexing, and changes.
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OODBMS' | Advantages. Disadvantages.
ORION Support versions and Objects cannot migrate to
changes notification. another class.
Transient and Transformation of formats.
working versions. It does not support either
Object identifiers recovery from disk crashes,
generated general triggers, and
by the system. multiple application
programming languages.
0, Two versions. The workstation When it operate under
version is single-user memory- execution mode, the
based, while the server version schema is frozen.
is multiuser, disk based. It is not possible
Architecture in layers. changes on it.
WiSS bypasses the OS file
system. Crash recovery are
directly available for classes
and methods. Lists or insertable
arrays are represented by ordered
trees which are very efficient.
GemStone | Indexing and concurrency control | It supports only single
are unique. Client/server inheritance in old versions
architecture. and not allow objects to
be explicitly deleted.
ONTOS Client/server architecture. It does not support class
It support parameterized types attibutes or metatypes.
through an aggregate type. Objects can be activated
Users can customize both types or deactivated by users.
and properties of types.
IRIS Support rules, long OSQL does not support
fields and versioning. either GROUP BY
It is built on top of and HAVING clauses on
a conventional relational SELECT.
storage manager (DBMS). It does not
Data model has a strongly support recursive
functional style. Objects function definitions.
may have more than one type.
CACTIS | Integrity constraints It is not really
are very important object-oriented.
in the data model. Interrelation
They are represented between objects
by attach predicates through relationship
and maintaned with two types
by a trigger of connectors.
mechanism of out- It does not support recovery
of-date attributes. mechanism, dynamic schema
changes, authorization, and
security facilities.

Table A.13: Advantages and disadvantages.
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Class implementations

This appendix includes all of the class implementations utilized in the R_tree exten-
sions. These class implementations are specified unsing the TDSO technique that
was described in chapter 4. They are described by their order number already shown
in the R_tree universe in the same chapter. Classes (7) ListNode and (8) List only

have structure and they were already defined in 4.

164
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Implementation {9}Class ListOf[T]
Classes: T, Integer, void

1 | Superclasses: -descriptor: List head.
Structure: -List(): Constructors.
descriptor: List -~List(): Destructor.

3 | Functions: -=(): Mutator. Assignment.
List():ListOf[ T] -object(): Observer. Return the actual object.
~List() -insObjList(), ordInsList(): Mutators. Insert
=(ListOf[T]):ListOf[T] | a new element before the actual and ordered,
object(): T respectively.
insObjList(T): T -delObjList(): Mutator. Delete the
delObjList(): T actual element, otherwise empty list.
objList(): T -objList(): Observer. Return the actual object.
headList(): T -headList(): Observer. Return the head
lastObjList(): T object and move actual to the head node.
headObjList(): T -lastObjList(): Observer. Move actual
nextList(): T to the last node.
priorList(): T -headObjList(): Observer.
nextObjList(): T Return the head object.
priorObjList(): T -nextList(): Mutator. Return the object
cleanList(): T in the next node moving actual to it.
actualPosList(void): T | -priorList(): Mutator. Return the object
whichSens(Integer, in the anterior node moving actual to it.
Integer): Integer -nextObjList(): Observer.
iPosList(Integer): T Return the next object.

antltemList(void): T -priorObjList(): Observer.
postltemList(void): T | Return the prior object.

searchList(T): T -cleanList(): Mutator. Clean the list.

numList(): Integer -actualPosList(): Mutator. Move actual to
ordInsList(T):ListOf[T] | the node that contains the searched element.
push(T):ListOf[T] -whichSens(): Observer. Sense calculation.

-iPosList(): Mutator. Move actual i times
beginning in actual and return the actual object.
-antItemList(): Observer.

Return the prior object.

-postItemList(): Observer.

Return the next object.

-searchList(): Observer. Search the object in
the list moving actual to it.

-numUList(): Observer. Return the actual
number of nodes in the list.

-ordInsList(): Mutator. Ordered insertion.
-push(): Mutator. Stack insertion.

Figure B.1: TDSO implementation of the ListOf[T] class.
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Implementation {10} Class DKOMError
Classes: Cardinal, Char, Float

Superclasses:

Structure:

c: Cardinal

Functions:
DKOMError():DKOMError
DKOMError(Cardinal ):DKOMError
errorMessage(Char)
warningMessage(Char)
warningMessage(Char, Char)
warningMessage(Char, Float)
tail(Char, Cardinal)

-c: Error number.
-DKOMError(): Constructors.
-errorMessage(): Observer.
Display the error message.
-warningMessage(): Observer.
Display the warning message.

Figure B.2: TDSO implementation of the DKOMError class.

Mar.97

Implementation {11}Class EleType
Classes: Cardinal, Integer, ostream

1 | Superclasses:

Structure:

pn: Cardinal

pi: Integer

3 | Functions:

noDef():EleType

<< (ostream, EleType): ostream

-pn, pi: Element 1 is
associated to element 2

in a node list.

-noDef(): Observer. Define
an undefined element type.
-<<(): Observer. Display
on screen an eletype object.

Figure B.3: TDSO implementation of the EleType class.
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Implementation {12} Class Interval
Classes: Float, Integer, ostream, istream

Superclasses:

Structure:

inf, sup: Float

Functions:

Interval(): Interval
Interval(Float, Float): Interval
Interval(Float): Interval
=(Interval): Interval
==(Interval): Integer

' =(Interval): Integer
<(Interval): Integer
<=(Interval): Integer
>(Interval): Integer
>=(Interval): Integer
disjoint(Interval): Integer
meet(Interval): Integer
inside(Interval): Integer
coveredBy(Interval): Integer
contain(Interval): Integer
coverg(Interval): Integer
overlap(Interval): Integer
left(Interval): Integer
right(Interval): Integer
start(Interval): Integer
finish(Interval): Integer
adjacent(Interval): Integer
follow(Interval): Integer
precede(Interval): Integer
intersection(Interval): Interval
display()

display AsInt()

<< (ostream, Interval): ostream
>>(istream, Interval): istream

-inf, sup: Inferior and superior

bounds of an interval.

-Interval(): Constructors.

-=(): Mutator. Assignment.

-==(): Observer. Return one if

both Interval are equal in value.

-1 =(): Observer. Return one if

both Interval are different in value.

-<(): Observer. Return one if one
Interval is less than the second one.
-<=(): Observer. Return 1 if one Interval
is less or equal than the second one.
->(): Observer. Return 1 if one

Interval is greater than the second one.
->=(): Observer. Return 1 if one Interval
is greater or equal than the second one.
-disjoint(): Observer. Disjointness.
-meet(): Observer. Meeting.

-inside(): Observer. Interval 1 is

inside of Interval 2.

-coveredBy(): Observer. Coverage.
-contain(): Observer. Containment.
-coverg(): Observer. General coverage.
-overlap(): Observer. Overlapping.
-left(),right(): Observer. Interval 1 is
on the left or on the right of Interval 2.
-start(),finish(): Observer. Interval 1
starts or finishes on the

same value of Interval 2.
-adjacent(),follow(),precede():
Observers. Interval 1 is adjacent, follows,
or precedes Interval 2.

-intersection(): Observer. Calculate the
Interval that is the intersection.
-display(),display AsInt(),<<():
Observers. Display a Interval.

->>(): Mutator. Interval input.

Figure B.4: TDSO implementation of the Interval class.
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Implementation {13}Class HR
Classes: Interval, Integer, Double, ostream

Superclasses:

Structure:

hreg: Array[DIM]Of
Interval

Functions:
putlnt(Integer,

Interval): Integer
=(HR): Integer

==(HR): Integer
'=(HR): Integer

<(HR): Integer

<=(HR): Integer
disjoint(HR): Integer
inside(HR): Integer
coveredBy (HR): Integer
coverg(HR): Integer
overlap(HR): Integer
sIDisjoint(HR): Integer
siIMatch(HR): Integer
slCoverg(HR): Integer
slinside(HR): Integer
slCoveredBy(HR): Integer
slOverlap(HR): Integer
equal(Interval): Integer
adjacent(Interval): Integer
precede(Interval): Integer
follow(Interval): Integer
during(Interval): Integer
intersection(HR): HR
hRec(HR): HR
isAPoint(): Interval
volume(): Double
display()

<< (ostream, HR): ostream

-hreg: Variable array of

intervals. One per dimension.

-putInt(): Mutator. Put the

interval in the specified dimension.

-=(): Mutator. Assignment.

both Interval are equal in value.

-==(): Observer. Return one if

both hyper-rectangles are equal in value.

-1 =(): Observer. Return one if

one hyper-rectangles are different in value.
-<(): Observer. Return 1 if one
hyper-rectangle is less than the second one.
-<=(): Observer. Return 1 if one hyper-
rectangle is less or equal than the second one.
-disjoint(): Observer. Disjointness.
-inside(): Observer. Hyper-rectangle 1

is inside of hyper-rectangle 2.

-coveredBy(): Observer. Coverage.
-coverg(): Observer. General coverage.
-overlap(): Observer. Overlapping.
-slDisjoint(): Observer. Spatial disjointness.
-sIMatch(): Observer. Spatial matching.
-slCoverg(): Observer. General spatial coverage.
-slInside(): Observer. Spatial inside.
-slCoveredBy(): Observer. Spatial coverage.
-slOverlap(): Observer. Spatail Overlapping.
-equal(): Observer. Temporal equality.
-adjacent(): Observer. Temporal adjacency.
-follow(): Observer. Follow in time dimension.
-precede(): Observer. Temporal precedence.
-during(): Observer. Temporal inclusion.
-intersection(): Observer. Calculate the
hyper-rectangle that is the intersection.
-hRec(): Observer. Calculate the hyper-
rectangle that cover both hyper-rectangles.
-isAPoint(): Observer. Return one if the
hyper-rectangle is a point.

-volume(): Observer. Return the hyper-area.
-display(),<<(): Observers. HR display.

Figure B.5: TDSO implementation of the HR class.

(Class implementations
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Implementation {14} Class Blob
Classes: Char, Cardinal, Integer, ostream

1 | Superclasses:

Structure:

status, objNum: Char
length: Cardinal

left, right: Cardinal

tail: Array[TailSize]Of Char
3 | Functions:

Blob():Blob
Blob(Blob):Blob
Status():Char
ObjNum():Char
Length():Cardinal
Left():Cardinal
Right():Cardinal
Tail(Integer):Char
getNew(Integer):Cardinal
display()
fileName(Cardinal): Char
Status(Char): Integer
ObjNum(Char): Integer
Length(Cardinal): Integer
Left(Cardinal): Integer
Right(Cardinal): Integer
Tail(Char, Cardinal): Integer
readBlob(Cardinal, Cardinal): Integer
writeBlob(Cardinal, Cardinal): Integer
=(Blob): Blob

<< (ostream, Blob): ostream

-status: One if it is actually

in use.

-objNum: Current number

of object in it.

-length: Current length in bytes.
-left: Left brother blob number.
-right: Right brother blob number.
-tail: Blob content.

-Blob(): Constructors.
-Status(), ObjNum(), Length(),
-Left(), Right(): Observers.
Return the current value

for each blob attribute.

-Tail(): Observer. Return the
required character of the blob tail.
-getNew(): Observer. Return

a new blob.

-display(): Observer. Display

a blob.

-fileName(): Observer. Return
the corresponding file

name for a given class.

-Status(), ObjNum(), Length(),
-Left(),Right(): Mutators.
Change the current value in each
one of the blob attributes.
-Tail(): Mutator. Change the
current value in the required
character of the tail.
-readBlob(): Observer. Fetch
the required blob from the
corresponding file on disk.
-writeBlob(): Mutator. Write
on disk the specified blob.

-=(): Mutator. Assignment.
-<<(): Observer. Display a blob.

Figure B.6: TDSO implementation of the Blob class.
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Implementation {15}Class Entry

Classes: HR, Cardinal, Integer, Char, MPoint, Interval, ostream

Superclasses:

Structure:

hr: HR

bn: Cardinal

Functions:

Entry():Entry

Entry(HR, Cardinal):Entry
Entry(Entry):Entry
Entry(Char):Entry

Hr():HR

Bn():Cardinal
==(Entry):Integer

! =(Entry):Integer
disjoint(HR):Cardinal
match(HR):Cardinal
inside(HR): Cardinal

cover(HR): Cardinal
coverg(HR): Cardinal
covers(MPoint): Cardinal
overlap(HR): Cardinal
overlap(MPoint): Cardinal
sIDisjoint(HR): Cardinal
sIMatch(HR): Cardinal
slCoverg(HR): Cardinal
slnside(HR): Cardinal
slOverlap(HR):Cardinal
slCover(HR):Cardinal
overlapD(HR, Cardinal):Cardinal
leftD(HR, Cardinal):Cardinal
rightD(HR, Cardinal):Cardinal
leftOverlap(HR, Cardinal):Cardinal
rightOverlap(HR, Cardinal):Cardinal
tMeet(HR, Cardinal):Cardinal
equal(HR, Cardinal):Cardinal
start(HR, Cardinal):Cardinal
finish(HR, Cardinal):Cardinal
adjacent(HR, Cardinal):Cardinal
precede(HR, Cardinal):Cardinal
follow(HR, Cardinal):Cardinal
during(HR, Cardinal):Cardinal

-hr: Entry’s hyper-rectangle.

-bn: Blob number associated.

-Entry(): Constructors.

-Hr(), Bn(): Observers. Return the
current values of the entry attributes.
-==(): Observer. Return 1 if both

entries are equal in value.

-1 =(): Observer. Return 1 if both

entries are different in value.

-disjoint(): Observer. Return the

blob number if the entry’s

hyper-rectangle is disjoint.

-match(): Observer. Return the blob
number if entry’s hyper-rectangle is equal.
-inside(): Observer. Return the

blob number if the entry’s

hyper-rectangle is inside.

-cover(): Observer. Return the blob
number if the entry’s hyper-rectangle

is covered, but it is not inside.

-coverg(): Observer. Return the

blob number if the entry’s

hyper-rectangle is covered.

-covers(): Observer. Return the

blob number if the entry’s

hyper-rectangle covers the point.
-overlap(): Observer. Return the

blob number if the entry’s

hyper-rectangle overlaps.

-overlap(): Observer. Return the

blob number if the entry’s

hyper-rectangle overlaps the point.
-slDisjoint(): Observer. Spatial disjoint-
ness. Return the blob number if the spatial
hyper-rectangle of the entry is disjoint.
-sIMatch(): Observer. Spatial equality.
-slCoverg(): Observer. Spatial coverage.
-slInside(): Observer. Spatial containment.
-slOverlap(): Observer. Spatial overlapping.
-slCover(): Observer. Spatial coverage only.

Figure B.7: TDSO implementation of the Entry class.
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Implementation {15}Class Entry

during(Interval):Cardinal -overlapD(): Observer. Overlapping
tOverlap(MPoint):Cardinal in the given dimension,

display() returning the blob number.
=(Entry): Entry -leftD(): Observer. Return the
Hr(HR) blob number if the hyper-rectangle’s
Bn(Cardinal) dimension is on the left.

<< (ostream, Entry): ostream | -rightD(): Observer. Return the

blob number if the hyper-rectangle’s
dimension is on the right.
-leftOverlap(): Observer. Return the
blob number if the hyper-rectangle’s
dimension overlaps on the left.
-rightOverlap(): Observer. Return the
blob number if the hyper-rectangle’s
dimension overlaps on the right.
-tMeet(): Observer. Return the blob
number if the hyper-rectangle’s

time dimension meets.

-equal(): Observer. Return the blob
number if the hyper-rectangle’s

time dimension is equal.

-start(): Observer. Return the blob
number if the hyper-rectangle’s time
dimension starts at the same point.
-finish(): Observer. Return the blob
number if the hyper-rectangle’s time
dimension finishes at the same point.
-adjacent(): Observer. Time adjacency.
-precede(): Observer. Time precedence.
-follow(): Observer. Time consequence.
-during(): Observer. Time containment.
-tOverlap(): Observer. Time overlapping.
-display(): Observer. Display the entry.
-=(): Mutator. Assignment.

-Hr(), Bn(): Mutators. Change the actual
values of the entry’s attributes.

-<<(): Observer. Display a blob.

Figure B.8: TDSO implementation of the Entry class. (Continuation)
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Implementation {16}Class RTreeNode
Classes: Cardinal, Char, Entry, Integer, ostream

1 | Superclasses:

Structure:

blobld: Cardinal

level, entries: Char

length: Cardinal

left, right: Cardinal

rest: Array[MaxEntryMem]Of Entry
3 | Punctions:

RTreeNode(): RTreeNode
RTreeNode(Cardinal, Char, Char,
(Cardinal, Cardinal, Cardinal):
RTreeNode
RTreeNode(Cardinal):RTreeNode
RTreeNode(RTreeNode):RTreeNode
maxHb():HR
=(RTreeNode):RTreeNode
insNewEntry(Entry, Cardinal):Integer
delExEntry(Cardinal):Integer
writeNodeOnDisk(Cardinal): Integer
readNodeFromDisk(Cardinal, Cardinal):
Integer

cleanR(Cardinal, Cardinal)

-blobld: Blob identifier.

-level: Node high in the tree.
-entries: Current number of entries.
-length: Current length in bytes.
-left: Left brother node number.
-right: Right brother node number.
-rest: Node’s entries.
-RTreeNode(): Constructors.
-maxHDb(): Observer. Return the
hyper-rectangle that covers all

of the current hyper-rectangles.
-=(): Mutator. Assignment.
-insNewEntry(): Mutator. Insert
a new entry into the node.
-delExEntry(): Mutator. Delete
an existing entry into the node.
-writeNodeOnDisk(): Mutator.
Write on disk the modified node.
-readNodeFromDisk(): Mutator.
Read from disk the specified node.
-cleanR(): Mutator. Clean all of
the node of the R_tree.

Figure B.9: TDSO implementation of the RTreeNode class.
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Implementation {17}Class RTreeExt1
Classes: Char, Cardinal, Float, RTreeNode, Integer, HR, ListOf[T], Entry, EleType

Superclasses:

Structure:

dim,height,entLength,
xDim,nCoord: Char
entNum,blobRoot,blobNum,bnf,
blobSize,insNum,delNum,
maQNum,raQNum: Cardinal
emptyPer,tInsTime,tDel Time,
tMaQTime,tRaQTime: Float

root: RTreeNode

Functions:

RTreeExt1(): RTreeExtl
RTreeExt1(Cardinal): RTreeExtl
~RTreeExt1()
Dim(),Height(),EntLength(),XDim(),
NCoord(): Char
EntNum(),BlobNum(),Bnf(),
BlobSize(),InsNum(),DelNum(),
MaQNum(),RaQNum(): Cardinal
EmptyPer(),avgInsTime(),
avgDelTime(),avgMaQTime(),
avgRaQTime(): Float

isMultidim(): Integer
match(HR,ListOf[Cardinal],Cardinal,
Cardinal): Float
range(HR,ListOf[Cardinal],Cardinal,
Cardinal): Float
insertEnt(Entry,Float,Cardinal):
RTreeExt1
deletEnt(Entry,Float,Cardinal):
RTreeExt1

cleanRTree(Cardinal): RTreeExtl
chooseLeaf(RTreeNode,Entry,
ListOf[EleType],Cardinal)
linearPickSeeds(RTreeNode,Cardinal)
splitNode(RTreeNode,RTreeNode)
adjustTree(RTreeNode,RTreeNode,
ListOf[EleType],Cardinal)

-dim,height.entLength,xDim,nCoord:
Dimension, current height, length of each
entry in bytes, position of X coordinate
and number of coordinates, respectively.
-entNum,blobRoot,blobNum,bnf,
blobSize,insNum,delNum,maQNum,
raQNum: Actual number of entries, root
blob number, actual number of blobs in use,
actual number of assigned blobs, blob size
in bytes, actual number of insertions,
actual number of deletions, actual number
of exact match and range queries, resp.
-emptyPer,tInsTime,tDelTime,
tMaQTime,tRaQTime: Current
average of empty space within nodes,
total insertion time, total deletion

time, total exact match query time,

total range query time, respectively.
-root: R_tree’s root in main memory.
-RTreeExt1(): Constructors.
-~RTreeExt1(): Destructor.
-Dim(),Height(),EntLength(),XDim(),
NCoord(),EntNum(),BlobNum(),Bnf(),
BlobSize(),InsNum(),DelNum(),
MaQNum(),RaQNum(),EmptyPer(),
avgInsTime(),avgDelTime(),
avgMaQTime(),avgRaQTime():
Observers. Each function permits to see
the value stored in each R_tree attribute.
-isMultidim(): Observer. Return 1 if
the R_tree has many dimensions.
-match(): Observer. Execute an exact
match query returning the number of disk
accesses, the number of retrieved objects,
and the time used to answer the query.
-range(): Observer. Execute a range
query returning the number of disk
accesses, retrieved objects, and time.

Figure B.10: TDSO implementation of the RTreeExt1 class.
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findLeaf(RTreeNode,RTreeNode,Entry,
Cardinal,ListOf[EleType],Cardinal)
condenseTree(RTreeNode,
ListOf[EleType],Cardinal)
redistribution(RTreeNode,RTreeNode,
RTreeNode,RTreeNode,Integer)
redistribution2(RTreeNode,RTreeNode,
RTreeNode,Integer,Cardinal)
deletion(RTreeNode,RTreeNode,
RTreeNode,RTreeNode,Integer,
Cardinal)
deletion2(RTreeNode,RTreeNode,
RTreeNode,Integer,Cardinal,

Cardinal)

<< (ostream,RTree)
displayNode(Cardinal)

-insertEnt(): Mutator. Insert a

new entry returning the time used.
-deletEnt(): Mutator. Delete an exist-
ing entry returning the time used.
-cleanRTree(): Mutator. Delete all

of the objects and nodes of the R_tree.
-chooseLeaf(): Observer. Choose a
leaf to store the new entry.
-linearPickSeeds(): Observer. Pick up
the splitting point of a node.
-splitNode(): Mutator. Split a node
following the splitting policy.
-adjustTree(): Mutator. Change the
hyper-rectangle of the needed entries.
-findLeaf(): Observer. Find the leaf
where is the entry that will be deleted.
-condenseTree(): Mutator. Change hyper-
rectangles and delete nodes if needed.
-redistribution(): Mutator.
Redistribute entries among three nodes.
-redistribution2(): Mutator. Re-
distribute entries among two nodes.
-deletion(): Mutator. Delete a node
when it has two brother nodes.
-deletion2(): Mutator. Delete a node
when it has only one brother node.
-<<(): Observer. Display on screen

an RTreeExt1 object.

-displayNode(): Observer. Display on
screen the demanded node.

Figure B.11: TDSO implementation of the RTreeExt1 class. (Continuation)
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Implementation {17}Class RTreeExt3
Classes: Character, Float, Integer, Cardinal, EleType, ListOf,
Interval, Entry, RTreeNode

Superclasses:

Structure:
dim,height,entLength,xDim,
timeDim,nTime,nCoord:
Character
entNum,blobRoot,blobNum,
bnf,blobSize,insNum,delNum,
diQNum,nDQNum,maQNum,
inQNum,coQNum,sIDiQNum,
siIMaQNum,slInQNum,
slCoQNum nDDQNum,IDQNum,
rDQNum,tmQNum,eqQNum,
stQNum,fiQNum,adQNum,
preQNum,foQNum,duQNum:
Cardinal
emptyPer,deltaTime,delta,
tInsTime,tDelTime,tDiQTime,
tNDQTime,tMaQTime,tInQTime,
tCoQTime tSIDIQTime,
tSIMaQTime, tSInQTime,
tSICoQTime,tNDDQTime,
tLDQTime,tRDQTime, t TmQTime,
tEqQTime, tStQTime, tFiQTime,
tAdQTime,tPreQTime,
tFoQTime,tDuQTime: Float
root: RTreeNode

Functions:
RTreeExt3():RTreeExt3
RTreeExt3(Cardinal):

RTreeExt3

~RTreeExt3()
Dim(),Height(),EntLength(),
XDim(),TimeDim(),NTime(),
NCoord(): Character
EntNum(),BlobNum(),Bnf(),
BlobSize(),InsNum(),
DelNum(),DiQNum(),NDQNum(),
MaQNum(),InQNum(),CoQNum(),
SIDIQNum(),SIMaQNum(),

-dim: Number of dimensions.

-height: Current height.

-entLength: Length of each entry.
-xDim: X coordinate position.
-timeDim: Time position.

-nTime: Number of time dimensions.
-nCoord: Number of coordinates.
-entNum: Current entries number.
-blobRoot: Blob root number.
-blobNum: Current number of blobs in use.
-bnf: Current number of assigned blobs.
-blobSize: Current blob size.
-insNum: Actual number of insertions.
-delNum: Actual number of deletions.
-diQNum,nDQNum,maQNum,inQNum,
coQNum: Actual number of

disjoint, not disjoint, exact

match, inside, and cover dim-
dimensional queries.
-sIDiIQNum,sIMaQNum,slInQNum,
slCoQNum: Current number of
disjoint, exact match, inside, and

cover queries (Spatial).
-nDDQNum,IDQNum,rDQNum:
Actual number of not disjoint

in dimension, left in dimension,

right in dimension queries (1D).
-tmQNum,eqQNum,stQNum,
fiQNum,adQNum,preQNum,
foQNum,duQNum: Current number
of temporal meeting, equal, start,
finish, adjacent, precede, follow,

and during temporal queries.
-emptyPer.,deltaTime,delta:

Actual percentage of empty

space within nodes, unit of

time to be used in temporal

queries, and unit of space to

be used in near/far queries.

Figure B.12: TDSO implementation of the RTreeExt3 class.
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Implementation {17}Class RTreeExt3
SIInQNum(),SICoQNum(), -tInsTime,tDelTime,tDiQTime,
NDDQNum(),LDQNum(), tNDQTime,tMaQTime,tInQTime,
RDQNum(),TmQNum(),EqQNum(), | tCoQTime: Current cumulative
StQNum(),FiQNum(),AdQNum(), insertion, deletion, disjoint, not
PreQNum(),FoQNum(), disjoint, exact match, inside, and
DuQNum(): Cardinal cover query time.
isMultidim():Integer -tS1IDiIQTime,tSIMaQTime,
EmptyPer(),DeltaTime(), tS1InQTime,tS1CoQTime:
Delta(),avgInsTime(), Current cumulative spatial disjoint,
avgDelTime(),avgDiQtime(), exact match, inside, and cover
avgNDQTime(),avgMaQTime(), query time.
avgInQTime(),avgCoQTime(), -tNDDQTime, tLDQTime,
avgSIDQTime(),avgSIMaQTime(), tRDQTime:Current cumulative
avgSlInQTime(), 1D not disjoint in dimension, left
avgSICoQTime(), in dimension, and right in
avgNDDQTime(),avgL.DQTime(), dimension query time.
avgRDQTime(),avgTmQTime(), -tTmQTime,t EqQTime,tStQTime,
avgEqQTime(),avgStQTime(), tFiQTime,t AdQTime,tPreQTime,
avglFiQTime(),avgAdQTime(), tFoQTime,tDuQTime: Current
avgPreQTime(),avgFoQTime(), cumulative temporal meeting, equal,
avgDuQTime():Float start, finish, adjacent, precede,
disjoint(HR,ListOf[Cardinal], follow, and during query time.
Cardinal,Cardinal):Float -root: The R_tree root is
nDisjoint (HR,ListOf[Cardinal], always in main memory.
Cardinal,Cardinal):Float -RTreeExt3(): Constructors.
match(HR,ListOf[Cardinal], -~RTreeExt3(): Destructor.
Cardinal,Cardinal):Float -Dim(),Height(),EntLength(),
inside(HR,ListOf[Cardinal], XDim(),TimeDim(),NTime(),
Cardinal,Cardinal):Float NCoord(),EntNum(),BlobNum(),
cover(HR,ListOf[Cardinal], Bnf(),BlobSize(),InsNum(),
Cardinal,Cardinal):Float DelNum(),DiQNum(),NDQNum(),
sIDisjoint(HR,ListOf[Cardinal], MaQNum(),InQNum(),CoQNum(),
Cardinal,Cardinal):Float SIDIQNum(),SINDiNum(),
sINDisjoint(HR,ListOf[Cardinal], SIMaQNum(),SIInQNum(),
Cardinal,Cardinal):Float SICoQNum(),NDDQNum(),
sIMatch(HR,ListOf[Cardinal], LDQNum(),RDQNum(),TmQNum(),
Cardinal,Cardinal):Float EqQNum(),StQNum(),FiQNum(),
slinside(HR,ListOf[Cardinal], AdQNum(),PreQNum(),FoQNum(),
Cardinal,Cardinal):Float DuQNum(): Observers.
slCover(HR,ListOf[Cardinal], Each function returns the current
Cardinal,Cardinal):Float value stored in the attribute.

Figure B.13: TDSO implementation of the RTreeExt3 class. (Continuation)
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nDisjointD (HR,ListOf[Cardinal],
Cardinal,Cardinal,Cardinal):Float
leftD(HR,List Of[Cardinal],Cardinal,
Cardinal,Cardinal):Float
rightD(HR,List Of[Cardinal],
Cardinal,Cardinal,Cardinal):Float
tMeet(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
equal(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
start(Interval ListOf[Cardinal],
Cardinal,Cardinal):Float
finish(Interval ListOf[Cardinal],
Cardinal,Cardinal):Float
adjacent(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
precede(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
follow(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
during(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
insertEnt(Entry,Float,Cardinal):
RTreeExt3
deletEnt(Entry,Float,Cardinal):
RTreeExt3
cleanRTree(Cardinal,Cardinal):
RTreeExt3
chooseLeaf(RTreeNode,Entry,
ListOf[EleType],Cardinal)
linearPickSeeds(RTreeNode,Cardinal)
splitNode(RTreeNode,RTreeNode)
adjustTree(RTreeNode,RTreeNode,
ListOf[EleType],Cardinal)
findLeaf(RTreeNode,RTreeNode Entry,
Cardinal,ListOf[Ele Type],Cardinal)
condenseTree(RTreeNode,
ListOf[EleType],Cardinal)
redistribution(RTreeNode,RTreeNode,
RTreeNode,RTreeNode,Integer)

-isMultidim(): Observer. Return 1
if the R_tree has many dimensions.

-EmptyPer(),DeltaTime(),Delta(),

avgInsTime(),avgDelTime(),avgDiQtime(),

avgNDQTime(),avgMaQTime(),
avgInQTime(),avgCoQTime(),
avgSIDQTime(),avgSIMaQTime(),
avgSlInQTime(),avgSICoQTime(),
avgNDDQTime(),avgLDQTime(),
avgRDQTime(),avgTmQTime(),
avgEqQTime(),avgStQTime(),
avgFiQTime(),avgAdQTime(),
avgPreQTime(),avgFoQTime(),
avgDuQTime(): Observers. Each function
returns the corresponding attribute value.
-disjoint(),nDisjoint(),match(),
inside(),cover(),slDisjoint(),
slMatch(),slInside(),slCover(),
nDisjointD(),leftD(),rightD(),
tMeet(),equal(),start(),finish(),
adjacent(),precede(),follow(),
during(): Observers. Each function
execute a named query returning the
number of disk accesses, number of
retrieved objects, and time.
-insertEnt(): Mutator. Insert a

new entry returning the time used.
-deletEnt(): Mutator. Delete an exist-
ing entry returning the time used.
-cleanRTree(): Mutator. Delete all

of the objects and nodes of the R_tree.
-chooseLeaf(): Observer. Choose a
leaf to store the new entry.
-linearPickSeeds(): Observer. Pick up
the splitting point of a node.
-splitNode(): Mutator. Split a node
following the splitting policy.
-adjustTree(): Mutator. Change the
hyper-rectangle of the needed entries.
-findLeaf(): Observer. Find the leaf

Figure B.14: TDSO implementation

of the RTreeExt3 class. (Continuation)

(Class implementations
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Implementation {17}Class RTreeExt3

redistribution2(RTreeNode,RTreeNode, | where is the entry that will be deleted.
RTreeNode,Integer,Cardinal) -condenseTree(): Mutator. Change hyper-
deletion(RTreeNode,RTreeNode, rectangles and delete nodes if needed.
RTreeNode,RTreeNode,Integer, -redistribution(): Mutator.

Cardinal) Redistribute entries among three nodes.
deletion2(RTreeNode,RTreeNode, -redistribution2(): Mutator. Re-
RTreeNode,Integer,Cardinal, distribute entries among two nodes.
Cardinal) -deletion(): Mutator. Delete a node
<< (ostream,RTree) when it has two brother nodes.
displayNode(Cardinal) -deletion2(): Mutator. Delete a node
when it has only one brother node.
-<<(): Observer. Display on screen

an RTreeExt1 object.

-displayNode(): Observer. Display on
screen the demanded node.

Figure B.15: TDSO implementation of the RTreeExt3 class. (Continuation)

Mar.97
Implementation {18}Class MPoint
Classes: Float, Integer, HR, Interval, ostream

-p: Variable array of

float. One per dimension.

-=(): Mutator. Assignment.

-==(): Observer. Return one if

both hyper-points are equal in value.

-1 =(): Observer. Return one if

one hyper-points are different in value.

-<(): Observer. Return 1 if one multi-
dimensional point is less than the second one.
-<=(): Observer. Return 1 if one multi-
dimensional point is less or equal than the other.
->(): Observer. Return 1 if one multi-
dimensional point is greater than the second one.
->=(): Observer. Return 1 if one multi-

1 | Superclasses:
Structure:

p: Array[DIM]Of Float
3 | Functions:
=(MPoint): MPoint
==(MPoint): Integer
! =(MPoint): Integer
<(MPoint): Integer
<=(MPoint): Integer
>(MPoint):Integer
>=(MPoint):Integer
disjoint(HR): Integer
meet(HR):Integer
inside(HR): Integer

coveredBy (HR): Integer
sIDisjoint(HR): Integer
slOverlap(HR): Integer
slinside(HR): Integer
sIMeet(HR): Integer

dimensional point is greater or equal than the other.
-disjoint(): Observer. Disjointness.

-meet(): Observer. Meeting.

-inside(): Observer. Multi-dimensional point

is inside of hyper-rectangle .

Figure B.16: TDSO implementation of the HR class.
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Implementation 18 Class MPoint

during(Interval): Integer -coveredBy(): Observer. Coverage.
equivalent(Interval): Integer -slDisjoint(): Observer. Spatial disjointness.
adjacent(Interval): Integer -slOverlap(): Observer. Spatial overlapping.
follow(Interval): Integer -slInside(): Observer. Spatial inside.
precede(Interval): Integer -slMeet(): Observer. Spatial meeting.
tOverlap(HR): Integer -during(): Observer. Temporal inclusion.
start(Interval): Integer -equivalent(): Observer. Temporal equality.
finish(Interval): Integer -adjacent(): Observer. Temporal adjacency.
hRec(HR): HR -follow(): Observer. Temporal consequence.
hrfmp(): HR -precede(): Observer. Temporal precedence.
display() -tOverlap(): Observer. Temporal overlapping.
<< (ostream, MPoint): ostream | -start(): Observer. Time starts on the same point.

-finish(): Observer. Time finishes on the same point.

-hRec(): Observer. Calculate the hyper-

rectangle that includes the point.

-hrfmp(): Observer. Return the hyper-

rectangle that is built from the point.

-display(),<<(): Observers. HR display.

Figure B.17: TDSO implementation of the HR class. (Continuation)

Mar.97
Implementation 19 Class LeafEntry
Classes: MPoint, Cardinal, Char, Integer, HR, Interval, ostream

1 | Superclasses: -mp: Multi-dimensional point.

2 | Structure: -bn: Blob number.
mp: MPoint -LeafEntry(): Constructors.
bn:Cardinal -Mp(), Bn(): Observers. Return the values

3 | Functions: of the leaf entry attributes.
LeafEntry():LeafEntry -=(): Mutator. Assignment.
LeafEntry(MPoint, Cardinal):LeafEntry | -==(): Observer. Return one if
LeafEntry(LeafEntry):LeafEntry both leaf entries are equal in value.
LeafEntry(Char):LeafEntry -1 =(): Observer. Return one if
Mp():MPoint both leaf entries are different in value.
Bn():Cardinal -disjoint(): Observer. Disjointness.
=(LeafEntry): LeafEntry -match(): Observer. Equality.
==(LeafEntry): Integer -inside(): Observer. Multi-dimensional point
! =(LeafEntry): Integer is inside of the hyper-rectangle.
disjoint(HR): Cardinal -coveredBy(): Observer. Coverage.

Figure B.18: TDSO implementation of the LeafEntry class.
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Implementation {19}Class LeafEntry

match(MPoint):Cardinal
inside(HR): Cardinal
coveredBy(HR): Cardinal
overlap(HR): Cardinal
sIDisjoint(HR): Cardinal
sIMatch(MPoint): Cardinal
slCoverg(HR): Cardinal
slnside(HR): Cardinal
slOverlap(HR): Cardinal
slCover(HR): Cardinal
overlapD(HR, Cardinal): Cardinal
leftD(HR, Cardinal): Cardinal
right D(HR, Cardinal): Cardinal
leftOverlap(HR, Cardinal): Cardinal
rightOverlap(HR, Cardinal): Cardinal
tMeet(HR, Cardinal):Cardinal
equal(MPoint, Cardinal):Cardinal
start(HR, Cardinal):Cardinal
finish(HR, Cardinal):Cardinal
adjacent(HR, Cardinal):Cardinal
precede(HR, Cardinal):Cardinal
follow(HR, Cardinal):Cardinal
during(HR, Cardinal):Cardinal
during(Interval):Cardinal
equal(MPoint):Cardinal
Mp(MPoint)

Bn(Cardinal)

display()

<< (ostream, LeafEntry): ostream

-overlap(): Observer. Overlapping.
-slDisjoint(): Observer. Spatial disjointness.
-sIMatch(): Observer. Spatial matching.
-slCoverg(): Observer. General spatial
coverage.

-slInside(): Observer. Spatial inside.
-slOverlap(): Observer. Spatial overlapping.
-slCover(): Observer. Spatial coverage.
-overlapD(): Observer. Overlapping in 1D.
-leftD(): Observer. On the left in 1D.
-rightD(): Observer. On the right in 1D.
-leftOverlap(): Observer.

Overlapping on the left.

-rightOverlap(): Observer.

Overlapping on the right.

-tMeet(): Observer. Temporal meeting.
-equal(): Observer. Temporal equality.
-start(): Observer. Time start equality.
-finish(): Observer. Time finish equality.
-adjacent(): Observer. Temporal adjacency.
-precede(): Observer. Temporal precedence.
-follow(): Observer. Temporal consequence.
-during(): Observer. Temporal inclusion.
-equal(): Observer. Multi-dimensional

point equality.

-Mp(), Bn(): Mutators. Change the values
of the leaf entry attributes.
-display(),<<(): Observers. Leaf

entry display.

Figure B.19: TDSO implementation of the LeafEntry class. (Continuation)
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Implementation {17}Class MRTree
Classes: Character, Float, Integer, Cardinal, EleType, ListOf,
MPoint, Interval, HR, Entry, LeafEntry, RTreeNode

Superclasses:

Structure:

dim,height,entLength,
leafEntLen,xDim,timeDim,
nTime,nCoord:Character
entNum,blobRoot,blobNum,
leafNum,bnf,blobSize,
insNum,delNum,diQNum,
nDQNum,maQNum,inQNum,
coQNum,sIDiQNum,sIMaQNum,
slIn@QNum slCoQNum,
nDDQNum,IDQNum,rDQNum,
tmQNum,eqQNum,stQNum,
fiQNum,adQNum,preQNum,
foQNum,du@QNum:Cardinal
emptyPer,deltaTime,delta,
tInsTime,tDelTime,tDiQTime,
tNDQTime,tMaQTime,tInQTime,
tCoQTime tSIDIQTime,
tSIMaQTime, tSInQTime,
tSICoQTime,tNDDQTime,
tLDQTime,tRDQTime, t TmQTime,
tEqQTime, tStQTime, tFiQTime,
tAdQTime,tPreQTime,
tFoQTime,tDuQTime: Float

root: RTreeNode

Functions:

MRTree():MRTree
MRTree(Cardinal):

MRTree

~MRTree()
Dim(),Height(),EntLength(),
LeafEntNum (), XDim(),TimeDim(),
NTime(),NCoord(): Character
EntNum(),BlobNum(),LeafNum(),
Bnf(),BlobSize(),InsNum(),
DelNum(),DiQNum(),NDQNum(),
MaQNum(),InQNum(),CoQNum(),
SIDIQNum(),SIMaQNum(),

-dim,height: Dimension and actual height.
-entLength,leafEntLen: Length of index
and leaf entries, respectively.

-xDim: X coordinate position.

-timeDim: Time position.

-nTime: Number of time dimensions.
-nCoord: Number of coordinates.
-entNum: Current entries number.
-blobRoot: Blob root number.
-blobNum,leafNum,bnf: Actual

number of index, leaf blobs in use,

and assigned blobs.

-blobSize: Current blob size.

-insNum: Actual number of insertions.
-delNum: Actual number of deletions.
-diQNum,nDQNum,maQNum,inQNum,
coQNum:Actual number of disjoint, not
disjoint, exact match, inside, and

cover dim-dimensional queries.
-sIDiIQNum,sIMaQNum,slInQNum,
slCoQNum: Current number of

disjoint, exact match, inside, and

cover queries (Spatial).
-nDDQNum,IDQNum,rDQNum: Actual
number of not disjoint in dimension,

left in dimension, right in

dimension queries (1D).
-tmQNum,eqQNum,stQNum,fiQNum,
adQNum,preQNum,foQNum,duQNum:
Current number of temporal meeting,
equal, start, finish, adjacent,

precede, follow, and during

temporal queries.
-emptyPer.,deltaTime,delta:

Actual percentage of empty space

within nodes, unit of time to be

used in temporal queries, and unit

of space used in near/far queries.
-tInsTime,tDelTime,tDiQTime,

Figure B.20: TDSO implementation of the MRTree class.
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Implementation 17 Class MRTree

SIInQNum(),S1CoQNum(), tNDQTime,tMaQTime,tInQTime,
NDDQNum(),LDQNum(), tCoQTime:Current cumulative
RDQNum(), TmQNum(),EqQNum(), | insertion, deletion, disjoint, not
StQNum(),FiQNum(),AdQNum(), disjoint, exact match, inside, and
PreQNum(),FoQNum(), cover query time.
DuQNum(): Cardinal -tSIDiQTime,tSIMaQTime,tSIInQTime,
isMultidim():Integer tS1CoQTime: Current cumulative
EmptyPer(),DeltaTime(), spatial disjoint, exact match,
Delta(),avglnsTime(), inside, and cover query time.
avgDelTime(),avgDiQtime(), -tNDDQTime,tLDQTime,tRDQTime:
avgNDQTime(),avgMaQTime Current cumulative 1-dimensional
avgInQTime(),avgCoQTime(), not disjoint, left, and right in
avgSIDQTime(),avgSIMaQTime(), dimension query time.
avgSIInQTime(), -tTmQTime,tEqQTime,tStQTime,
avgSlCoQTime(), tFiQTime,t AdQTime,tPreQTime,
avgNDDQTime(),avgLDQTime(), tFoQTime,tDuQTime: Current
avgRDQTime(),avgTmQTime(), cumulative temporal meeting, equal,
avgEqQTime(),avgStQTime(), start, finish, adjacent, precede,
avgFiQTime(),avgAdQTime(), follow, and during query time.
avgPreQTime(),avgFoQTime -root: The R_tree root in main memory.
avgDuQTime():Float -MRTree(): Constructors.
disjoint(HR,List Of[Cardinal], -~MRTree(): Destructor.
Cardinal,Cardinal):Float -Dim(),Height(),EntLength(),
nDisjoint (HR,List Of[Cardinal], LeafEntLen(),XDim(),TimeDim(),
Cardinal,Cardinal):Float NTime(),NCoord(),EntNum(),BlobNum(),
match(MPoint,ListOf[Cardinal], LeafNum/(),Bnf(),BlobSize(),
Cardinal,Cardinal):Float InsNum(),DelNum(),DiQNum(),
inside(HR,ListOf[Cardinal], NDQNum(),MaQNum(),InQNum(),
Cardinal,Cardinal):Float CoQNum(),SIDiQNum(),SIMaQNum(),
cover(HR,List Of[Cardinal], SlInQNum(),S1ICoQNum(), NDDQNum(),
Cardinal,Cardinal):Float LDQNum(),RDQNum(), TmQNum(),
sIDisjoint (HR, ListOf[Cardinal], EqQNum(),$tQNum(),FiQNum(),
Cardinal,Cardinal):Float AdQNum(),PreQNum(),FoQNum(),
sIMatch(HR,List Of[Cardinal], DuQNum(): Observers. Each function
Cardinal,Cardinal):Float returns the current attribute’s value.
slInside(HR,ListOf[Cardinal], -isMultidim(): Observer. Return 1
Cardinal,Cardinal):Float if the R_tree has many dimensions.
slCover(HR,ListOf[Cardinal], -EmptyPer(),DeltaTime(),Delta(),
Cardinal,Cardinal):Float avgInsTime(),avgDelTime(),
nDisjointD(HR,ListOf[Cardinal], avgDiQtime(),avgNDQTime(),
Cardinal,Cardinal,Cardinal):Float avgMaQTime(),avgInQTime(),

Figure B.21: TDSO implementation of the MRTree class. (Continuation)
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Implementation {17}Class MRTree

leftD(HR,ListOf[Cardinal],Cardinal,
Cardinal,Cardinal):Float
rightD(HR,ListOf[Cardinal],
Cardinal,Cardinal,Cardinal):Float
tMeet(Interval, ListOf[Cardinal],
Cardinal,Cardinal):Float
equal(Interval, ListOf[Cardinal],
Cardinal,Cardinal):Float
start(Interval, ListOf[Cardinal],
Cardinal,Cardinal):Float

finish (Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
adjacent(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
precede(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float

follow (Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
during(Interval,ListOf[Cardinal],
Cardinal,Cardinal):Float
insertEnt(LeafEntry,Float,
Cardinal):MRTree
deletEnt(LeafEntry,Float,
Cardinal):MRTree
cleanRTree(Cardinal,Cardinal):
MRTree
chooseLeaf(RTreeNode,Entry,
ListOf[EleType],Cardinal)
linearPickSeeds(RTreeNode,Cardinal)
splitNode(RTreeNode,RTreeNode)
adjustTree(RTreeNode,RTreeNode,
ListOf[EleType],Cardinal)
findLeaf(RTreeNode,RTreeNode,Entry,
Cardinal,ListOf[EleType],Cardinal)
condenseTree(RTreeNode,
ListOf[EleType],Cardinal)
redistribution(RTreeNode,RTreeNode,
RTreeNode,RTreeNode,Integer)

avgCoQTime(),avgSIDQTime(),
avgSIMaQTime(),avgSIInQTime(),
avgSlCoQTime(),avgNDDQTime(),
avgLDQTime(),avgRDQTime(),
avgTmQTime(),avgEqQTime(),
avgStQTime(),avgFiQTime(),
avgAdQTime(),avgPreQTime(),
avgFoQTime(),avgDuQTime():
Observers. Each function returns

the corresponding attribute value.
-disjoint(),nDisjoint(),match(),
inside(),cover(),slDisjoint(),s1IMatch(),
slInside(),slCover(),nDisjointD(),
leftD(),rightD(),tMeet(),equal(),
start(),finish(),adjacent(),
precede(),follow(),during(): Observers.
Each function executes a named query re-
turning the number of disk accesses,
number of retrieved objects, and time
-insertEnt(): Mutator. Insert a

new entry returning the time used.
-deletEnt(): Mutator. Delete an exist-
ing entry returning the time used.
-cleanRTree(): Mutator. Delete

all of the nodes of the R_tree.
-chooseLeaf(): Observer. Choose a
leaf to store the new entry.
-linearPickSeeds(): Observer. Pick
up the splitting point of a node.
-splitNode(): Mutator. Split a node
following the splitting policy.
-adjustTree(): Mutator. Change the
hyper-rectangle of the needed entries.
-findLeaf(): Observer. Find the leaf
where is the entry that will be deleted.
-condenseTree(): Mutator. Change
rectangles and delete nodes if needed.
-hyperRecFromLeaves(): Observer.

Figure B.22: TDSO implementation of the MRTree class. (Continuation)
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Implementation {17}Class MRTree

redistribution2(RTreeNode,RTreeNode, | Prepare the hyper-rectangle of a leaf node.
RTreeNode,Integer,Cardinal) -overflow(): Mutator. Decide over to
deletion(RTreeNode,RTreeNode, redistribute or split an overflow node.
RTreeNode,RTreeNode,Integer, -redistribution(): Mutator.
Cardinal) Redistribute entries among three nodes.
deletion2(RTreeNode,RTreeNode, -redistribution2(): Mutator. Re-
RTreeNode,Integer,Cardinal, distribute entries among two nodes.
Cardinal) -deletion(): Mutator. Delete a node
<< (ostream,RTree) when it has two brother nodes.
displayNode(Cardinal) -deletion2(): Mutator. Delete a node
hyperReckFromLeaves(RTreeNode,HR, | when it has only one brother node.
HR,Integer):Integer -<<(): Observer. Display on screen
overflow (RTreeNode,ListOf[EleType]) an MRTree object.

-displayNode(): Observer. Display on

screen the demanded node.

Figure B.23: TDSO implementation of the MRTree class. (Continuation)
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Test functions and results.

This appendix presents the TDSO implementations of the test functions called by
the test program mentioned in chapter 5, the obtained results after running the

R _tree extensions, and the polygons of West Yorkshire.

C.1 Test functions

The rest of the functions used in the test program are not included here as TDSO

implementations. These functions are implemented in the code of each extension.

C.2 Results

The results are shown in tables. Tables contain R_tree parameters, such as: blob
size(BS), R_tree height(H), total number of used blobs(NB), total number of en-
tries(NE), percentage of empty space within blobs(ES), average insertion time(AIT),
average exact match searching time(AMST), average range searching time(ARST),
average number of disk accesses during an insertion(IDA), average number of disk
accesses during an exact match search (MDA), average number of disk accesses dur-
ing a range search(RDA), and average number of retrieved objects during a range
search(RRO). Additionally, results for extensions 3 and 4 include more parameters
because range searches are particularised by spatio-temporal operators described
in chapter 4. These new parameters are average disjoint time(ADT), average non

disjoint time(A!DT), average inside or contain time(AICT), average cover or cov-
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Test functions and results.

Jun.96

Implementation choices(from, ent, fd, op, top, prox, dop, tep, recl:Integer,
hr1:HR, file:String)
Classes: Integer, String, HR

1 | case op =

1 createRTree(ent, recl, file)

2 insertRTree(hrl, recl, file)

3 deleteRTree(from, ent, recl, file)

4 if(tope{1..8} A proxe

...{1, 2, 3}) then spatialQuery(fd, from,
................ ent, top, prox, recl, file)
... endif

.. if(dope{1..4}) then unoDQuery(
............ from, ent, dim, dop, recl, file)
... endif

... if(dop€{5..12}) then

..... double1DQuery (from, ent, dim, dim1,
...................... dop, recl, file)

... endif

.. if(tepe{l, 2, 4}) then

..... unoDQuery (from, ent, dim, tep,
.................. recl, file)

... endif

.. if(tepe{3, 5..11}) then

..... temporalQuery(from, ent, tep,
...................... recl, file)

... endif

... if(tep = 12) then

..... double1DQuery(from, ent, dim,
................ dim1, tep, recl, file)

.. endif

5 rt.display()

6 if(fd) then

..... [rt.displayNode(i)] i=1, rt.Bnf()
. .else [i=Read from the keyboard
........ if(i>0 A i<rt.Bnf()) then
........... rt.displayNode(i)

........ endif

........ yes=Read from the keyboard]
....... (yes#£1)

.. endif

endcase

-from, ent, fd, op, top,

prox, dop, tep, recl,

hri, file: Already

defined in testProgram.

-dim, dim1: Integer:
Dimension indicator.

-rt: RTree: An RTree

instance.

-yes: Stop displaying.
-createRTree(): Create the
desired RTree.

-insertRTree(): Insert

a new entry in the

RTree already created.
-deleteRTree(): Delete one o
more entries of the RTree.
-spatialQuery(): Search in

the RTree the blob number

of the corresponding entries
following top or prox operators.
-unoDQuery(): Search all the
blob numbers of the
corresponding entries following
dim and dop or tep parameters.
-double1DQuery(): Search all the
blob numbers of the corresponding
entries following dim, dim1,

and dop or tep parameters.
-temporalQuery(): Search all
the blob numbers of the
corresponding entries following
the tep parameter.

-display(), displayNode(), Bnf():
RTree operations already defined
in the RTree class.

Figure C.1: TDSO implementation of choices function.
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Jun.96

Implementation choices(from, ent, fd, op, top, prox, dop, tep, recl:
Integer, hr1:HR, file:String)

1 | op=1 | RTree creation.

2 | op=2 | Entry insertion.

3 | op=3 | Entry deletions

4 | op=4 | RTree search.

5 | op=5 | Display RTree instance.

6 | op=6 | Diaplay one or more RTree nodes.

Figure C.2: TDSO implementation of choices function. Test cases.

Jun.96

Implementation createRTree(ent, recl:Integer, file:String)
Classes: Integer, String

[rec=record j of the file

. e=Entry(rec)

. rt.insertEnt(e, tim(j), da)
. dac=dac+da | (j=1, ent)
if(ent>0) then

..... display dac, dac/ent
endif

-rec: String: File record that contain

an entry.

-J: Integer: Counter.

-rt: RTree: An RTree instance.

-e: Entry: RTree entry containing the record.
-tim: Array[ent]Of Real: Time container.

-da, dac: Integer: Number of disk accesses and
accumulate disk accesses, respectively.
-Entry(): Entry constructor.

-insertEnt(): RTree operation.

ent=0, da=0, dac=0
ent=1, da=1, dac=1

No RTree creation.
Create the RTree with one entry.

Figure C.3: TDSO implementation of createRTree function.

Jun.96

Implementation insertRTree(ahr:HR, recl:Integer, file:String)
Classes: HR, Integer, String

1 | p=position of the end-of-file | -p: Integer: Total number of bytes on the file.

2 | a=p/recl -a: Integer: Number of the actual last blob.

3 | e.Bn(a) -e: Entry: RTree new entry.

4 | e.Hr(ahr) -rt: RTree: An RTree instance.

5 | rt.nsertEnt(e, tim, da) -tim: Real: Time container.

6 | dac=dac+da -da, dac: Integer: Number of disk accesses and

7 | write record p on the file accumulate disk accesses, respectively.

8 | display dac, da -Bn(), Hr(): Entry operations.
-insertEnt(): Rlree operation.

1 | ahr=NullHR, da=0, dac=0 | No RTree insertion.

2 | ahr=ValidHR, da=1, dac=1 | Insert the new RTree entry.

Figure C.4: TDSO implementation of insertRTree function.
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Jun.96
Implementation deleteRTree(from, ent, recl:Integer, file:String)
Classes: Integer, String

1 | j=from -j: Integer: Counter.
(j<(from-ent)) [rec=record j of the file | -rec: String: File record
...................... e=Entry(rec) containing an entry.
...................... rt.deletEnt(e, tim(j), da) | -e: Entry: RTree entry.
...................... dac, j=dac+da, j+1 -rt: RTree: An RTree instance.
...................... ] -tim: Array[ent-from]Of Real:

3 | if(ent>0) then Time container.

.... display dac, da/ent -da, dac: Integer: Number of

endif disk accesses and accumulate
disk accesses, respectively.
-Entry(): Entry constructor.
-deletEnt(): RTree operation.

1 | from=0, ent=0, da=0, dac=0 No RTree deletion.
from=0, ent=1, da=1, dac=1 Delete one RTree entry.

Figure C.5: TDSO implementation of deletRTree function.

ered by time(ACT), average non disjoint in one dimension time(A!DIT), average
on the left in one dimension time(AL1T), average on the right in one dimension
time(ARI1T), average number of disk accesses during a disjoint search(DDA), aver-
age number of disk accesses during a non disjoint search(!DDA), average number
of disk accesses during an inside or contain search(ICDA), average number of disk
accesses during a cover or covered by search(CDA), average number of disk accesses
during a non disjoint in one dimension search(!D1DA), average number of disk ac-
cesses during a left in one dimension search(LLIDA), average number of disk accesses
during a right in one dimension search(R1DA), average number of retrieved objects
during a disjoint search(DRO), average number of retrieved objects during a non
disjoint search(!DRO), average number of retrieved objects during an inside or con-
tain search(ICRO), average number of retrieved objects during a cover or covered
by search(CRO), average number of retrieved objects during a non disjoint in one
dimension search(!D1RO), average number of retrieved objects during a left in one
dimension search(LL1RO), and average number of retrieved objects during a right in
one dimension search(R1RO).

The average number of retrieved objects during a match search is not included
in tables, because it is always equal to one. The others not included parameters
are DRO, and CRO, because they are always equal to Database size - 1, and zero,

respectively.
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Data- Ex- MDA
base ten- AIT | AMST | ARST and
size BS | sion | H | NB NE ES [ms] [ms] [ms] IDA | RDA | RRO
512 1 2 57 1056 25.90 | 2.00 10.00 8.00 4 18 16
2 2 48 1047 12.75 | 3.00 17.00 8.00 4 25 16
1K 1 1 26 1025 21.15 | 3.00 14.00 8.00 3 14 16
1000 2 1 22 1021 7.18 3.00 12.00 8.00 3 12 16
2K 1 1 13 1012 22.93 | 4.00 11.00 8.00 2 6 16
2 1 12 1011 16.58 | 5.00 16.00 8.00 2 100 16
512 1 2 157 2926 25.45 | 3.61 31.77 11.55 5 53 43
2 2 133 2902 12.72 | 3.61 44.04 46.21 5 70 43
1K 1 2 75 2844 24.16 | 3.61 32.85 11.55 3 35 43
2770 2 2 64 2833 11.47 | 3.97 37.19 11.55 3 39 43
2K 1 1 37 2806 24.91 | 5.05 27.44 11.55 2 19 43
2 1 31 2800 10.57 | 5.42 44.40 11.55 3 26 43
512 1 2 277 5276 23.81 | 3.60 57.00 25.60 5 93 79
2 2 241 5240 13.03 | 3.80 80.20 25.60 5 126 79
1K 1 2 136 5135 24.49 | 4.20 57.20 25.60 4 64 79
5000 2 2 113 5112 9.52 4.60 75.40 25.60 4 77 79
2K 1 1 65 5064 22.86 | 5.40 47.80 25.60 3 31 79
2 1 54 5053 7.35 5.60 75.60 25.60 3 44 79
512 1 3 560 | 10559 | 24.58 | 4.10 114.00 51.20 5 188 157
2 3 483 | 10482 | 13.19 | 4.30 170.40 51.20 5 255 158
1K 1 2 263 | 10262 | 21.96 | 4.80 101.70 51.20 4 111 158
10000 2 2 226 | 10225 9.51 4.60 141.40 51.20 4 145 158
2K 1 2 132 | 10131 | 24.01 | 6.00 94.70 51.20 3 63 158
2 2 107 | 10106 6.49 5.80 146.00 51.20 3 87 158

Table C.1: Results for objects uniformly distributed in a space of two dimensions.
Extensions 1 and 2.

Figures C.6, and C.7 correspond to average inside or contain time (AICT), and
average cover or covered by time (ACT).

Figures C.8, C.9 and C.10 show disjoint, left and right in one dimension hit ratio
curves, respectively.

Not disjoint, inside or contain, and not disjoint in one dimension hit ratio curves

are presented in figures C.11, C.12, and C.13, respectively.

C.3 Polygons of West Yorkshire

We include an example of the obtained data for the polygons of West Yorkshire.
Similar information was obtained for the polygons of England counties, which are

not included because of lack of space.

SEGMENTS

Z03BPAP Z08CZAU 39951 41301 6 -6 10 -13 6 -8 5-54 -55-58 -8 7-67-73-46-41-24333232613
133232004-52-43-45-63-4-6-5-5-5-4-5-4-4-3-13-76-105-103-74-65-64-96-116-125-97
155-85-115-115-94-84-64-72-44-62-34-45-65-54-54-44-43-46-58-56-47-44-22-24-3
3-35-72-32-4/

Z03BQAJ ZOSCYAM 39673 42034 -6 -6 -6 -5 -5 -5 -2 -5 -3 -6 -1 -5-2 -7 1 -90-5 1 -121-42-11 2-92-10 3
62-62-26-36-34-35-44-54-84-43-35-34-37-76-66-46-57-34-36-43-33-37-105-101-72
81 -70-T0-8-1-7-1-7-1-4-3-7-3-7-6-10-6-10-2-3-5-9-1-2-1-3-1-51-50-42-32-40-2-1-3-1-1
3-3-401-40-5-3-13-2-8-1-9-1-T1-70-51-92-7T3-72-53-65-56-T8-68-73-26-35-36-26-25
26-33-31-33-T0-61-81-7-1-10-1-8-1-8-2-6-3-6-2-5-1-3/

703BQAQ Z08CYAM 39806 414740 -6 1 -6 1-55-75-95-113-74-93-92-71-71-81-T1-71-51-33
61-72-66-132-51-18112151304-17-45-24-15-1219395536221/

703BQAQ ZOSCZAU 39942 41332 8 -15 1 -3 4 -8 2 -3 -6 -2 /
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Data- Ex-
base ten- AIT ADT AIDT | AMST | AICT
size BS | sion | H | NB NE ES [ms] [ms] [ms] [ms] [ms]
512 3 2 57 1056 25.90 | 2.00 403.29 11.00 8.00 5.50
4 2 48 1047 12.75 | 2.00 283.00 16.00 12.00 16.00
1K 3 1 26 1025 21.15 | 2.00 340.00 14.00 11.00 13.99
1000 4 1 22 1021 7.18 3.00 308.00 13.00 11.00 13.00
2K 3 1 14 1013 28.36 | 3.99 344.00 11.00 9.00 11.00
4 1 12 1011 16.58 | 4.00 303.00 18.00 16.00 17.00
512 3 2 157 2926 25.45 | 2.53 3153.58 32.37 21.66 15.34
4 2 133 2902 12.72 | 2.89 1659.20 45.49 33.57 43.68
1K 3 2 75 2844 24.16 | 3.25 2148.74 34.30 24.91 32.85
2770 4 3 64 2833 11.47 | 2.53 2388.81 40.07 32.13 38.99
2K 3 2 36 2805 22.86 | 4.33 3355.23 29.24 22.74 28.88
4 1 31 2800 10.57 | 4.70 4084.12 46.57 41.52 45.85
512 3 2 227 5276 23.81 | 2.60 9777.40 58.60 37.40 54.80
4 2 241 5240 13.03 | 3.20 7788.40 82.00 59.40 78.00
1K 3 2 134 5133 23.39 | 3.60 8225.20 58.40 41.20 55.20
5000 4 2 113 5112 9.52 3.80 5397.00 81.20 64.20 77.60
2K 3 1 65 5064 22.86 | 4.60 | 11580.60 54.40 40.40 51.60
4 1 54 5053 7.35 4.60 9620.00 80.80 70.40 79.00
512 3 3 560 | 10559 | 24.58 | 3.10 | 72974.60 | 118.90 73.70 109.30
4 3 483 | 10482 | 13.19 | 2.87 | 62940.50 | 157.80 | 129.40 177.50
1K 3 2 263 | 10262 | 21.96 | 4.00 | 34272.50 | 115.70 74.70 102.50
10000 4 2 226 | 10225 9.51 4.70 | 29450.00 | 153.80 | 137.20 163.80
2K 3 2 132 | 10131 | 24.01 | 4.80 | 17201.20 | 107.60 74.30 97.20
4 2 107 | 10106 6.49 5.10 | 13943.40 | 164.20 | 135.80 154.40

Table C.2: Results for objects uniformly distributed in a space of two dimensions.
Extensions 3 and 4.

Data- Ex-
base ten- ACT AID1T AL1T ARIT
size BS | sion [ms] [ms] [ms] [ms] 'DRO | ICRO | 'D1RO | L1RO | R1RO
512 3 5.50 71.25 182.47 148.76
4 17.00 23.00 135.00 137.00
1K 3 13.00 23.00 127.00 117.00
1000 4 14.00 20.00 123.00 116.00 16 0 120 439 439
2K 3 11.00 19.00 94.99 123.00
4 19.00 23.00 120.00 128.00
512 3 15.70 478.06 1664.12 1237.44
4 46.21 115.52 1389.53 1377.62
1K 3 34.30 92.42 1020.58 1036.10
2770 4 41.16 85.20 984.84 981.23 43 1 332 1218 1218
2K 3 31.05 68.95 608.66 889.90
4 49.46 68.23 429.24 605.78
512 3 28.30 245.99 3587.80 3955.20
4 81.80 298.80 4709.80 4741.00
1K 3 58.60 241.40 3518.60 3851.60
5000 4 82.60 261.20 3659.00 4423.40 79 1 603 2198 2198
2K 3 55.40 178.20 2123.40 3238.20
4 84.80 142.40 1288.60 2056.80
512 3 114.20 | 979.10 10159.60 | 10772.70
4 197.40 | 997.30 10893.20 | 10920.10
1K 3 108.50 | 912.00 16945.90 | 19584.30
10000 4 172.60 | 973.20 17282.30 | 21778.20 158 3 1200 4399 4399
2K 3 103.80 747.50 14960.80 | 15875.30
4 165.90 | 654.90 12763.70 | 11459.20

Table C.3: Results for objects uniformly distributed in a space of two dimensions.
Extensions 3 and 4. (Continuation)
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Data- Ex-
base ten-
size BS | sion | IDA | DDA | 'DDA | MDA | ICDA | CDA | 'D1DA | L1DA | R1DA
512 3 4 53 18 13 18 18 38 43 42
4 44 25 20 25 25 30 39 37
1K 3 3 25 14 11 14 14 19 21 22
1000 4 21 12 10 12 12 14 17 18
2K 3 2 13 7 5 7 7 9 11 11
4 11 10 9 10 10 10 10 10
512 3 5 148 53 36 53 53 107 120 121
4 124 70 54 70 70 85 111 105
1K 3 3 72 35 27 35 35 52 64 62
2770 4 61 39 32 39 39 43 54 52
2K 3 2 35 18 14 18 18 24 30 29
4 3 30 26 24 26 26 28 29 28
512 3 5 262 93 64 93 93 152 214 214
4 225 126 96 126 126 154 203 190
1K 3 4 129 59 44 59 59 89 112 109
5000 4 108 77 64 77 77 86 102 95
2K 3 3 64 33 25 33 33 44 54 54
4 59 44 39 44 44 46 49 49
512 3 5 346 188 126 188 188 274 434 437
4 319 255 194 255 255 270 415 410
1K 3 4 254 111 80 111 111 176 221 217
10000 4 218 145 119 145 145 154 201 198
2K 3 3 154 63 48 63 63 89 110 110
4 128 87 77 87 87 82 98 98

Table C.4: Results for objects uniformly distributed in a space of two dimensions.
Extensions 3 and 4. (Continuation)

Data- MDA

base AIT | AMST | ARST and

size H | NB NE ES [ms] [ms] [ms] IDA | RDA | RRO
1000 40 1039 27.85 | 3.00 14.00 8.00 3 14 1
2770 2 106 2875 24.66 | 4.33 29.96 11.55 4 31 2
5000 192 5191 24.90 | 5.00 56.00 25.60 4 59 3
10000 374 | 10373 | 22.96 | 4.90 145.80 51.20 5 162 31

Table C.5: Results for objects uniformly distributed in two spatial dimensions and
in one time dimension. Extension 1 (BS=1K)

Ex-
ten- AIT | AIDT | AMST | AICT | AID1T | AL1T | AR1T
sion H NB NE ES [ms] [ms] [ms] [ms] [ms] [ms] [ms]
3 2 134 10183 23.14 5.80 | 163.80 136.40 160.70 | 480.20 13.68 13.89
4 2 152 10151 7.25 5.80 | 194.90 166.70 189.10 598.70 20.16 19.87
L1RO
'DRO | ICRO | 'DIRO | R1RO | IDA | 'DDA MDA ICDA | 'D1DA | L1DA | R1DA
3 87 5 84 45 4 10 91 10 14 16 16
4 87 5 84 45 4 11 99 11 12 14 13

Table C.6: Results for objects uniformly distributed in two spatial dimensions and
in one time dimension. (BS=2K, Database size=10.000)
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Ext. 3

} + } + |
1,000 2,770 5,000 10,000  Database size

Figure C.6: AICT vs. data set size for extensions 3 and 4. (File: s2D.mbr, blob
size=2KB)
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Figure C.7: ACT vs. data set size for extensions 3 and 4. (File: s2D.mbr, blob
size=2KB)
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Figure C.8: The disjoint hit ratio vs. data set size for extensions 3 and 4. (File:
s2D.mbr, blob size=2KB)
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A Left in one dimensi on hit ratio
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Figure C.9: The left in one dimension hit ratio vs. data set size for extensions 3 and

4. (File: s2D.mbr, blob size=2KB)

A Right in one dimens ion hit ratio
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Figure C.10: The right in one dimension hit ratio vs. data set size for extensions 3

and 4. (File: s2D.mbr, blob size=2KB)
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Figure C.11: The not disjoint hit ratio vs. data set size for extensions 3 and 4. (File:

s2D.mbr, blob size=2KB)
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A Inside and contain hit ratio
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Figure C.12: The inside or contain hit ratio vs. data set size for extensions 3 and

4. (File: s2D.mbr, blob size=2KB)
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Figure C.13: The not disjoint in one dimension hit ratio vs. data set size for

extensions 3 and 4. (File: s2D.mbr, blob size=2KB)
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xmin Xmax ymin ymax Min(x+y) | Max(x+y) | Min(y-x) | Max(y-x) | Polygon name
39850.00 | 41093.00 | 40631.00 | 41762.00 81115.00 82431.00 -36.00 1466.00 Z08CZAU
40471.00 | 41969.00 | 40283.00 | 41015.00 81074.00 82767.00 -1257.00 169.00 Z08CZAY
38959.00 | 40279.00 | 41927.00 | 43660.00 81085.00 83482.00 2060.00 4252.00 Z08CYAB
39429.00 | 40927.00 | 41222.00 | 42545.00 81180.00 83096.00 1147.00 2522.00 Z08CYAM

Table C.7: Example of the octagon points obtained and their associated polygon
name.

Z05CEAP Z08DBAU 44570409078 -39-67-13-12485841222110166954334234312052 14
111412108755050571054615-1423412007-410-589138116-350735115-122011043
2654544-632548-163628846-413-110239512888-46-9-6-2-2-911-1088-24-8-3-7-43
104623144196943-7-10-63-6141084-58-25-810-23-414-619-2754911341114053-310
-214-4806-21509-216-21305114121103 15619108 533 / END

After processing the file that contains records shown before, we obtain a file
ready to be read for extension 6. A sample of this file in ASCII form is presented in
table C.7. The first eight points conform the octagon corresponding to the polygon

name presented at the final of the line.



