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Summary. 

The use of classical creep continuum damage mechanics, constitutive and damage 

equations is restricted, to model certain types of creep deformation and fracture 

mechanisms, under isothermal conditions; and, to extend their predictive capabilities 
for a wider range of problems they have to be modified. The constitutive and damage 

equations are modified to represent the bi-linear, log. stress vs. log. rupture, and the 

log, stress vs. minimum strain rate, characteristics of materials; so that the change in 

material behaviour, as a mechanism change occurs, is represented in the constitutive 

model, by a change in the slope of these characteristic lines. 

Uni-axial creep tests of as-cast (OFHC) Copper have been performed at 150°C, 

250°C and 500°C; and, an anisothermal constitutive model has been developed for the 

temperature range 150°C to 500°C, which highlights how the constitutive equations 

may be modified, to model creep behaviour under varying temperature conditions. 
The model predictions are in good agreement with the test results. 

A compact tension specimen has been studied, which has shown the impor- 
tance of modelling the effects on rupture, of the high tri-axial stress-state present at 
the crack-tip, which accelerates void growth. Modified constitutive equations, have 
been used to model the mechanism of constrained cavity growth, and has enabled im- 

proved damage distribution and. lifetime predictions to be obtained for the compact 
tension specimen, similar to those expected from experimental tests. 

Non-local damage techniques are developed to model the effects of grain size 

characteristic dimension, on the failure of large and small cracked tension specimens. 
Non-local damage techniques are shown to be necessary to give accurate, physically 
related, finite element solutions. 

Suitably modified constitutive and damage rate equations are used to model 
the high temperature failure of a circumferential weld, in a thick steam-pipe, operating 

at a constant temperature and pressure. The models developed predict, the growth 

of damage in certain microstructural regions of the weld, and the lifetime of the 

component; which are observed to be in close agreement with the reults from a full- 

size pressure vessel tests. 

It will be shown that it is essential to use creep constitutive and damage 

equations in computer models, which accurately represent the underlying physics of 
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the predominant creep mechanisms present. 

The implications of the research work on future computer modelling and on 
design are discussed. 

,ý 
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Introduction. 

The earliest observations of the phenomenon of creep must have been made 

in furnaces and steam boilers or in the processes of the blacksmith's art. Early 

boiler and furnace components, when they became too deformed and/or cracked to 

function properly, were simply replaced. As the admission temperature of steam 

power plant increased towards the end of the 19th century, engineers and scientists 

started to investigate the influence of temperature on the behaviour of structural 

metals. In 1910, E. N. da Costa Andrade [1] observed the true character of metallic 

creep. With the advent of superheated steam and the use of steam turbines operating 

at still higher temperatures to give improved thermal efficiency, creep deformations 

became a problem for safety. This caused increased research activity. Metallurgists 

endeavoured to understand the microstructural mechanics of creep and to develop new 

creep resistant alloys; whilst engineers and scientists formulated constitutive models 

to predict creep deformation and rupture, for use in design. 

This thesis is concerned with the use and development of modern mathematical 
constitutive models to predict material deformation and failure in engineering struc- 
tures. The development of the constitutive models must be in accordance with the 

observed microstructural mechanisms of creep deformation and creep failure, which 

are described in Chapter 1. The constitutive models are based on the notion of a 
damage state variable (w), which is introduced in Chapter 2, through the theory 

of continuum damage mechanics. The damage state variable is in some sense a mea- 

sure of the amount of internal voiding present within the material which increases 

monotonically with time. Damage is included in the constitutive model to provide a 

coupling with strain rates, as damage evolves then material softens and strain rates 
increase, during tertiary creep, until the material ultimately fails. 

Having obained the isothermal creep strain rate constitutive and damage rate 

governing laws, Chapter 3 exemplifies how the creep constants in these two equations 

are obtained from uni-axial constant load creep tests. As-cast (OFIIC)-Copper has 

been tested by the author for the wide temperature range of 150 to 500°C and the 

data is used is used to exemplify the prodcedure followed. An understanding of the 

controlling creep mechanisms in these tests; and, of the problems encountered when 
testing a variable grain sized material is then presented. The formulation of a non- 
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isothermal constitutive model is detailed; and, the predicted uni-axial creep curves 
for a range of test stresses and temperatures are given. 

In Chapter 4 the creep continuum damage mechanics constitutive relationships 

are included within the finite element method to predict the variation of the creep 

strain, stress and damage fields with time, for engineering structures represented by 

a finite element mesh. The creep continuum damage finite element method is incor- 

porated within a Fortran computer program called Damage-(XX), which has been 

developed over a period of approximately 15 years by a number of researchers includ- 

ing the recent contributions of the author. The use of the program has been enhanced 
by the author, by interfacing the program with the pre-processors FAMBUILD and 
FEMGEN, and the post-processors FAMRESULT and FEMVIEW. This has allowed 
the author to quickly generate finite element meshes using automatic mesh genera- 
tion and to obtain colour contour plots as output from the program using modern 

post-processing facilities. 

In Chapter 5 this computer program is used to model creep crack growth in a 

compact tension specimen. Problems have been encountered in modelling the failure 

of this particular specimen using finite element creep continuum damage mechanics. 
These problems are addressed and new procedures are used to try and ovecome them. 
A new constitutive model allowing for the effects of tri-axiality on rupture is developed 

in accordance with the physically based constitutive models and observations of Cocks 

and Ashby [66] and is shown to give improved predictions. 
The continuum damage finite element method is modified in Chapter 6, using 

a non-local damage theory, where the local damage parameter is spatially averaged 

using the grain characteristic dimension of the material to predict grain size effects on 
the failure of cracked plate specimens. The non-local damage theory is important to 

restrict the localisation of the field variables, and to overcome the problems associated 

with spurious mesh refinement; with the aim of producing more physically related 
finite element solutions, through the characteristic material volume. 

Chapter 7 discusses the metallurgy of weldments, the current codes used for 

the design of high temperature welded components and the recent research develop- 

ments to improve design methodology. Chapters 8 is concerned with the particular 

application of the computer program Damage-(XX) to model the creep deformation 
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and failure of typical, circumferentially welded, thick-steam pipe. In the development 

of the computer model, various regions of the finite element mesh are assigned the 

creep properties of the weld metal; the heat affected zone material; and, the par- 

ent metal. The appropriate data having been collected from laboratory specimens 

prepared from the same material or simulated material having the same isolated mi- 

crostructures. Representation of both the coarse and fine grained bainitic regions of 
the weld metal are included in the final weld model. Comparisons of the predicted 
damage distributions within the weldment of a circumferentially-welded cylindrical 

pressure vessel subjected to constant internal pressure under isothermal conditions, 

with the observed damaged regions are made and the predicted lifetime compared 

with the experimental lifetime. 

Conclusions from the research work are made in Chapter 9; and, possible 
future developments of creep continuum damage mechanics finite element modelling 

are discussed in Chapter 10. 
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Chapter 1. 

Creep Deformation And Failure In 

Metals And Alloys. 

1.1 Introduction. 

When a metal or alloy is subjected to a load at a constant temperature, above 

about'0.3 T,,,, ( where T�, is the absolute melting temperature of the metal or alloy), 

and its strain (extension) increases continuously with time, it is said to creep. To 

determine the creep curve of a metal, a constant load is applied to a tensile specimen 

at a constant temperature and the increase in strain across the gauge length of the 

specimen is measured with time. A typical creep curve is shown in Fig 1.1. Da Costa 

Andrade [1] first introduced the notion of dividing the creep curve into three regions, 

namely the primary, secondary and tertiary creep regions. The time independent 

elastic and plastic strain ( co ) is obtained on initial loading the creep specimen and is 

usually subtracted from the creep curve to give the curve purely due to creep strain. 
Subsequent creep deformation during the primary creep region involves a gradual 
decrease of the creep strain rate (Fig 1.2). During primary creep the partial recovery 

or softening process competes against the increasing creep resistance of the material 

caused by strain hardening. The mechanism of cross-slip of dislocations, controls the 

partial recovery process (Section 1.2.1). Strain hardening is caused by the intera- 

ction between dislocations, forming dislocation tangles; hence the dislocations lock. 

Unlocked dislocation movement causes permanent deformation. For low temperatures 

(close to 0.3 T,,, ), and moderate stresses, primary creep is the predominant creep 

process. During the secondary creep region full recovery is obtained through the 

climb mechanism (Section 1.2.1). A balance now exists between strain hardening and 

recovery, giving a steady state creep rate (Fig 1.2). During the tertiary creep region 
the material undergoes increased strain rates (Fig 1.2) due to a reduction in the 

effective. cross sectional area, because of the nucleation and growth of voids, forming 

cracks or necking or both. The creep specimen is said to fail when breakage occurs 

at time, tf. 

The sizes of primary, secondary or tertiary creep regions in the formation of 
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the creep curve are dependent on the material; and, the test temperature and the 

applied stress. All creep mechanisms are present at all times during the creep test, 

but only one deformation and one fracture mechanism predominates for a particular 

test temperature and stress level. The dominant mechanisms of material deformation 

and fracture can be observed from microsections of creep tested specimens, using 

electron and optical microscopes. Having identified the dominant creep mechanisms 

the correct, physically based, mathematical laws governing the material deformation 

and failure may be used in structural calculations. 

What follows is a description of creep deformation mechanisms, followed by 

a description of creep fracture mechanisms and how the mechanisms pertaining to a 

particular material may be summarised in the form of Ashby deformation and fracture 

mechanism maps. 

1.2 Mechanisms Of Creep Deformation In Metals And 

Alloys. 

There are two main mechanisms involved with creep deformation. The first 

is called Dislocation Creep, in which the factor controlling the creep rate is the 

ability of dislocations to glide. The second is called Diffusional Creep, in which 
the factor controlling the creep rate is continuous annealing at high temperatures. 

These two mechanisms are unavoidably interconnected, as they may both take 

place at the same time. 

1.2.1 Dislocation Creep (giving power-law creep). 

Dislocations [2,13] are caused by lattice irregularity at grain boundaries, at 
impurities or at larger interstitial atoms and other lattice defects. Whole planes of 

atoms, in crystalbgraphic planes which are preferentially oriented relative to the 

shear forces, may move or slip through the propagation of a dislocation along the 

plane. This process requires much less energy than that required to move the whole 

plane of atoms at once. Dislocations may move from one slip plane to another, 
by the mechanism known as cross-slip, which allows dislocations a futher degree of 
freedom. In certain cases this may impede dislocation movement through dislocation 

interaction, causing dislocations to become entangled or locked. Dislocation motion 
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may also be arrested by obstacles such as second phase particles and inclusions. 

Diffusion of atoms can unlock dislocations from obstacles allowing them to climb and 

enabling further slip. This mechanism is termed the Climb Mechanism [3,13] and 

controls the dislocation creep process. 

Dislocation creep may be represented by a secondary creep rate law, where 

the secondary creep strain rate is dependent on the applied stress raised to a power: 

Ea = Bo (1.1) 

hence the term power-law creep. The power (n) is known as the creep exponent and 

usually has a value between 1 and 10. Equation (1.1) is also known as Norton's Law. 

Harper-Dorn Creep, [4]. 

This mechanism is similar to that of dislocation creep, and occurs only at very 

low stress , where the creep strain rate becomes proportional to the applied stress 
(i. e. the creep exponent in (1.1) is n=1.0). This is thought to occur only when the 

diffusional creep fields are suppressed by a large grain size, allowing climb controlled 

creep, with dislocation density which does not change with stress. 

1.2.2 Diffusional Creep. 

This involves the transport of atoms due to thermal activation within a ma- 

terial. 

(i) Bulk Diffusion 

This occurrs at high temperatures and relatively low stresses. Here the creep 

process is controlled by stress-directed atomic diffusion through the body or bulk of 

a metallic crystal (Fig 1.3). The stress changes the chemical potential of atoms at 
the surfaces of grains in a polycrystal. This causes vacancies to flow preferentially 
from grain boundaries under tensile stress to those under compressive stress. At the 

same time atoms flow in the opposite direction, which stack up on the tensile stress 
boundaries causing grain elongation. This creep mechanism is also called Nabarro- 

Herring creep [5,6]. As the bulk diffusion path is dependent on grain size, the creep 

rate is also dependent on grain size for high temperature diffusion. Usually for most 

materials, creep rate is found to be proportional to ( 1/d2 ), where d is the grain 
diameter. 
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(ii) Grain Boundary Diffusion. 

At higher temperatures bulk diffusion is short circuited by diffusion along a 

grain boundary or a dislocation core. The grain boundary acts as a planar channel 

about two atoms wide, with a high local diffusion rate, sometimes 106 times greater 

than in the bulk of the crystal. Grain boundary diffusion is also called Coble creep 

[7] 

1.2.3 Ashby. Deformation Mechanism Maps. 

A practical way of illustrating the mechanistic behaviour of creeping materials 

is with the deformation mechanism maps of Ashby et al [8,9]. These diagrams show 
- distinct areas in stress vs. temperature space, where a particular creep mechanism 

is dominant over all others. A typical Ashby mechanism map is that for pure nickel 

shown in Fig. 1.4. The normalised tensile stress ( alp ) or the shear stress ( o3/p ) 

is used as ordinate, where pc is the shear modulus and the homologous temperature 

( TIT, ) is used as abscissa. The maps are constructed on the basis of empirical 

microstructural observations and data from uni-axial creep tests. Theoretical cal- 

culations are also used by equating constitutive equations of different mechanisms 

and solving these. for stress as a function of temperature, to give the positions of the 

boundaries separating dominant mechanism map areas. Contours of constant strain 

rate are shown on deformation mechanism maps, which are useful in both engineering 

and experimental design. 

Grain Boundary Sliding. 
Whilst grain boundary sliding is an observed creep process, it does not con- 

tribute significantly to steady state creep, but it is important in the initiation of 

intergranular voids. Hence it is not represented in the Ashby deformation mechanism 

maps. 

Power-Law Breakdown. 

At larger stresses (above about 10-3p ), the simple power law breaks down as 
the measured strain rates are larger than those determined by this law (Equation 1.1). 

The creep mechanism changes from one which is climb controlled to glide controlled 
flow (Fig. 1.4). 
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1.3 Mechanisms Of Creep Fracture In Metals And Alloys. 

Here the only fracture and rupture modes which matter are the tensile ones. 
Failure in compression is by sliding, slip or crumbling, unless buckling occurs. The 

latter is usually avoidable by careful design to limit deformation behaviour. 

The following description of fracture mechanisms is in accordance with Ashby 

et al [11] and [12]. When a cylindrical specimen of a crystalline metal is pulled in 

tension, it may fail in several ways. At low temperature, where (T< UT"' ), the 

specimen may fail by neck-down until the cross section is reduced to zero, or by 

cleavage, brittle intergranular fracture or in a ductile manner. At high temperatures, 

where( T>0.3T,,, the specimen may fail by various creep fracture mechanisms, 

some transgranular and some intergranular. These failure modes are summarised in 

Fig. 1.5. 

1.3.1 Temperature below 0.3Tm . 

(i) Cleavage. 
Almost all crystalline solids may fail by cleavage (Fig. 1.5), where the metal 

or alloy contains small cracks, which become nucleated and grow rapidly. Such cracks 

are initiated from abrasion scores, corrosion growth defects, or cracks due to block 

slip. These cracks concentrate stress and may propagate by cleavage, before the stress 

equals the ideal stress. (The ideal stress is that required to overcome the interatomic 

forces, allowing the normal separation of two adjacent atomic planes of metal atoms. 
(ii) Ductile Failure At Low Temperature. 

When a metal or alloy does not fail by cleavage, it may fail in a ductile trans- 

granular way (Fig. 1.5). Holes nucleate at inclusions or pre-existant holes and further 

plasticity makes them grow. When large enough they may coalesce and the material 
fractures. The inclusions, if small, may produce a large local stress raiser, which on 

reaching a critical value may fracture the inclusion or its interface with the matrix, 
thereby nucleating a void. The void is initially spherical, then elongates and becomes 

ellipsoidal. The void grows, until it connects with others and fracture results. Duc- 

tile fracture usually follows transgranular fracture, but it may follow intergranular 

fracture, if the void density is higher in the boundaries. Necking or shear of the test 

specimen, can aid the coalescence of voids which results in fracture (Fig. 1.6). 
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1.3.2 Temperature Above 0.3T�ß. 

(i) Transgranular Creep Fracture. 

In metals and alloys which creep above 0.3T,,,, the flow stress depends on 

the strain rate, which is governed by power-law creep. One transgranular fracture 

mechanism is similar to the low temperature ductile failure mechanism described 

above, where holes nucleate and grow to coalesce and ultimately fracture, due to 

plastic deformation around inclusions (Fig 1.6). As the material is now creeping the 

stresses in the material tend to be lower than before, and relatively large strains 

are needed for nucleation. Diffusion is responsible for postponing the nucleation of 

voids, as the temperature permits the movement of atoms from regions of compression 

to those of tension, on the surface of inclusions. This results in local recovery and 

transition to rupture may occur (Fig. 1.5). 

(ii) Intergranular Creep Controlled Fracture. 

At lower stresses and larger times to fracture, than those where transgranular 

creep fracture occurs, a transition from transgranular to intergranular fracture is 

observed. Grain boundaries slide, allowing wedge type cracks or round type voids to 

nucleate and grow at grain boundaries lying normal to the axis of the tensile stress. 
[10]. Power-law creep is the dominant mechanism, yet diffusion contributes to both 

the void and crack growth. The local shear strain rate in the boundary may be many 
times greater than that in the grain, causing boundary inclusions to nucleate before 

those in 'the grains. When the voids are small they grow by diffusion, and their 

growth rate is controlled by power-law creep of the surrounding grains. Therefore 

the growth is controlled by coupled diffusion and power-law creep. (Fig. 1.7). The 

deformation of creeping material in the shaded region of Fig. 1.7, controls the rate 

of cavity growth. At very low stress and high temperature the power-law creep cage, 

as shown in Fig. 1.7, disappears and pure diffusional growth takes over, as described 

below. This occurs in the limiting case, where the boundaries between diffusion and 

power-law creep, surrounding the voids, overlap. 
(iii) Pure Diffusional Fracture. 

At low stress and high temperature, where the stress is so low power-law 

creep is negligible, holes on the grain boundaries grow by the mechanism of diffusion 

alone. Matter flows out of holes and is deposited in the grain boundary, causing 
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the surrounding grains to move apart. They do not always maintain their rounded 

shape, and often become flatter and penny shaped, as they grow until the mechanism 

changes to that of (ii) and (i), as the stress increases to fracture (Fig. 1.8). 

(iv) Rupture. 

If no fracture mechanism intervenes, a material pulled in tension ultimately 
becomes mechanically unstable. Deformation becomes localised in a neck or shear 
band and the cross section reduces almost to zero. The material then breaks open 
into two parts, when it is said to have ruptured (Fig. 1.5). Rupture involves large 

reductions in area. It requires that nucleation of internal voids is suppressed, or if 

they do nucleate, that they do not grow and coalesce. High local recovery, to relieve 

stresses at inclusions, may also prevent nucleation of voids and cracks. Dynamic 

recrystallisation can cause rapid recovery and hence stress relief, and is the cause of 

rupture in most face centered cubic metals. Recrystallisation is a process which is 

not well understood (Fig. 1.5). 

1.3.3. Ashby Fracture Mechanism Maps. 

Similar to the mechanism maps for deformation, fracture mechanism maps may 
be used to illustrate the dominant fracture mechanisms as distinct areas in stress vs. 
temperature space. A typical fracture mechanism map is that for pure nickel shown 
in Fig. 1.9. Here, the normalised tensile stress (olE) is the ordinate, where (E) is 

the elastic modulus at a particular test temperature and the homologous temperature 
(T/Tm) is the abcissa. The fracture mechanism maps are constructed from uni-axial 

creep rupture data, together with microstructural observations of the fracture surface, 
[11]. 

1.4. Conclusions. 

(i) Within this chapter the study of creep deformation and fracture mechanisms 
has been briefly described. For a more in-depth study [13] may be referred to. 

(ii) The study of creep deformation and fracture mechanisms is an impor- 

tant one, enabling physically based mathematical creep laws to be developed per- 
taining to a particular creep mechanism. From the Ashby mechanism maps the 
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stress/temperature region may be determined where a governing law is valid, so that 

the law is only applied to materials which lie in this same region of the diagram. 

(iii) Mechanism maps are useful in extrapolating creep rupture data forward 

in time, when using constitutive equations, by verifying where mechanism changes 

occur. 

(iv) Mechanism maps also prove useful to the design engineer enabling the 

optimum choice of creep resistant material for its application. 
G. 

(v) Mechanism maps are also used in the design of creep tests, giving guidlines 
w 

for the temperature and stress levels to be used. 
(vi) A wide range of deformation maps are currently available for pure metals, 

ferrous and non-ferrous alloys, some co-valent elements, metal halides, transition 

metals, metal oxides and ice. [8,9]. A more limited range of fracture mechanism 

maps are available [11,12]. 

(vii) An understanding of creep mechanisms has allowed the design of new ma- 

terials with increased creep resistance, providing improved component performance. 
For example, good power-law creep resistance is produced by having a large number 

of obstructions to dislocation movement. This has been achieved through alloying 

metals, to produce solid-solution precipitates within the material. To resist diffu- 

sional flow, diffusional distances should be as large as possible through the use of 
large grain size materials or even single crystals. This has lead to the development of 
the method of directional solidification, where long thin crystals are produced in the 

direction of the maximum tensile stress, to make gas turbine blades. 

11 
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Chapter 2. 

The Development Of The Creep Continuum 

Damage Model For The Mathematical 

Representation Of Creep Deformation And 

Failure Of Metals And Alloys. 

2.1 Introduction 

Early mathematical representations were concerned with the representation 

of the primary and secondary creep strains obtained from uni-axial creep tests. A 

review of these equations is given by Garofalo [10]. The most noteworthy expressions 

are those due to Andrade [14], Norton [15], Garofalo [16] and Arrhenius [17]. 

Andrade [14) found that the primary and secondary creep curve could be 

represented by: 

E= COO + ßti13)ekt (2.1) 

where (e) is the creep strain, (co) is the initial strain on loading, (t) is the time in 

hours and (0) and (k) are constants. He considered that the creep curve after initial 

loading consisted of the superposition of two separate processes. The first creep curve 

component is called transient creep, which has a decreasing creep rate with time and 
is represented by (f3t'n, m= 1/3 in this case). Added to this component is a constant 

rate, viscous creep component, represented by (ekt), (Fig. 2.1). For (k = 0) equation 
(2.1) gives a representation of the primary creep region. 

Norton [15] discovered the exponential law bearing his name, relating the 

secondary creep strain rate to the applied constant stress: 

e, = Ka" (2.2) 

where (K) and (n) are functions of temperature. (n) is known as the creep exponent 

and usually lies between 1 and 10. 

Garofalo [10,16] proposed a primary and secondary creep constitutive law: 

E= CO 'ý Et(1 - e'rt) +Et (2.3) 

12 



where (co ) is the instantaneous strain on loading; (et) is the limiting transient creep 

strain; (r) is the ratio of transient creep rate to the transient creep strain and (Es ) 

is the steady state creep rate, which is given by equation (2.2). 

By plotting the natural logarithm of the secondary creep strain rate ( ln(e�)) 

against the reciprocal of the absolute temperature (1/T), it has been established 
that the slope of the resulting line is (-Q/R) where (Q) is the activation energy 
(Jmol-1) for the creep deformation present and (R) is the universal gas constant 
(8.31 Jmol'1K-1 ), giving the dependency of the secondary creep strain rate on 
temperature at constant stress: 

ea 
= Ce-QIRT 

This equation is termed Arrhenius's law [17]. 

(2.4) 

The dependence of the creep strain rate on both stress and temperature may 
be obtained from equations (2.4) and (2.2) as: 

e8 == Bo, ne-QIRT (2.5) 

Therefore, reliable uni-axial constitutive equations have been developed to 

predict the creep strains during the primary and secondary creep regions. Though 

no attempt has been made in these equations to represent tertiary creep strains or to 

model multi-axial creep behaviour. 

In this chapter a phenomenological approach describing macroscopic rather 
than microscopic materials behaviour will be presented for both uni-axial (section 

2.2) and multi-axial creep behaviour (section 2.3). The concept of continuum dam- 

age will be developed and the single state variable (damage parameter, w) will be used 
to represent the tertiary creep behaviour in section 2.4. An allowance for the multi- 
axial rupture behaviour of different materials is included in the damage-evolution law. 
Comparisons are made in section 2.5 between the phenomenological creep continuum 
damage model and physically based constitutive and damage laws proposed by mate- 
rial scientists on the basis of microstructural observations. In section 2.6 the bi-linear 

representation will be presented, which is used to represent the changes in the slope of 
the stress-rupture diagram and the minimum strain rate vs. stress diagram to model 
both high stress, ductile rupture and low stress, brittle creep fracture. 
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2.2 The Uni-Axial State Of Stress. 

In this analysis the elastic deformation is omitted from the argument, assuming 

elastic deformation to be small in comparison with the much larger creep strains. 

The stress dependence of the secondary creep strain rate is given by equation 
(2.2) due to Norton [15]. Odqvist [18] states that the representation of both primary 

and secondary creep regions may be obtained by modifying (2.2) to include (f (t) ), 

which is some function of time: - 

E= KU»f (t) (2.6) 

where the simplest form of (f (t) ) is ( tm ) obtained in accordance with equation 
(2.1) due to Andrade [14]. (m ) is a material constant (which is different to that of 
(m) in the strain/time equation (2.1)), in theory ( -1.0 <m<0), so that ( t' ) 

represents the decreasing strain rate in the primary creep region, using (2.6). 

2.3 The Multi-Axial State Of Stress. 

Odgyist [18] has derived a generalised form of Norton's law (2.2) for a multi- 

axial stress system: 

Eýý) =2 KQe -15=7 (2.7) 

where ( s; j ) is the deviatoric stress tensor: 

Qkk 
s'; = at; - S; 3 (2.8) 

and (6ij ) is Kronecker's d¢Ita i. e. 

f1 ifi=j 

0 if ioj 

Here the tensorial notation of [19,20] is used, where the shear strain rates (e; i, for 

i }4 j) are defined as the absolute shear strain rates in accordance with the shear 

strain tensor [20]. (c. f. equation 4.6 which uses the engineering shear strain 
definition) 

Odqvist formulated equation (2.7) on the basis of the following assumptions: 
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(i) The material is incompressible i. e. no dilatation (no volume change) where: 

E11+E22+E33=0 (2.9) 

(ii) The creep rate is independent of superimposed hydrostatic pressure; 
(iii) There exists a flow potential or co-axiality of the stress and strain rate tensors; 

(iv) The material is isotropic; 

(v) Norton's law (2.2) holds for the special case of uni-axial stress. 

2.4 The Tertiary Creep Region And The Concept Of 

Continuum Damage. 

2.4.1 The Concept Of Continuum Damage. 

Hayhurst [21] observed that defects may begin to grow during the primary 

creep region at low stresses ( 0.2av <a<0.4ay ) and for homologous temperatures 

above ( 0.3Tm), typically found in many engineering components . The subsequent 

growth of such defects causes an increasing strain rate, from the constant rate observed 
in the secondary creep region (Fig. 1.2), giving the teriary creep region (Fig. 1.1). 

Creep during the tertiary creep region may last for up to 50 % of the component 
life. Therefore, it is important to consider tertiary creep in the design of engineering 
components. 

The voids or cavities observed to have grown within the material (Section 

1.3.2) link to form cracks, producing tertiary creep strains. Such voids and cracks 

within the material are termed damage. Hayhurst [21] has also observed from uni- 

axial tests for a range of different materials, that damage forms on grain boundaries 

perpendicular to the maximum principal tensi lý: stress and that the distribution of 
damage is uniform throughout the uniform stress field. Hayhurst [22] also performed 

equal bi-axial creep tests for specimens of both Aluminium and Copper which also 

gave a uniform distribution of damage in the uniform stress field, but it was not 

possible to assign a prefered direction for the growth of damage. From creep tests 

of both British Standard and circular notched bars [23]. Hayhurst concluded that 

the British Standard notch fails by the formation of concentrated damage (in the 

region of the concentrated initial elastic stress field) close to the notch. This damage 

propagates slowly to the centre of the bar, accompanied by the peak of the axial 
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stress component, until breakage occurs. Whereas the circular notched bar behaves 

as a homogeneously stressed specimen, with failure occurring across the whole of the 

section at the same time, due to stress redistribution from the edge of the blunt notch 

towards the centre of the specimen. 

Therefore, with reference to the results of Hayhurst et al [21,22,23], no single 

crack was found to grow in preference to others. Instead the tertiary creep damage 

was observed to be distributed uniformly in a uniform stress field and was observed 

to be concentrated in a non-uniform or a concentrated stress field. Creep damage, 

therefore posesses a field or continuum property analogous to that of stress; hence the 

term continuum damage. This leads to the definition of the damage state variable, 

which is given in the next section. 

2.4.2 The- Damage State Variable. 

Tertiary creep damage is quanitified mathematically through the normalised 
damage parameter (w ), sometimes (D). There are many different ways of measuring 

material damage. The amount of damage present within a material may be quantified 
in terms of the volume or area of voids on a material plane. Measurements of damage 

may be made by optical means, giving an area measurement or by material density 

changes, giving a volume measurement. Some researchers [24] relate the damage state 
to the ratio of the damaged area to the original un-damaged area of a material element. 
Though the damage state variable is representative of a wide range of internal material 

weakening effects [25], such as unstable dislocation sub-structure, particle coarsening, 
internal oxidation and so on; where the actual physical quantification of the damage 

state variable is complicated. 
The concept of the actual stress (0a ) is introduced for the case of uni-axial 

tension where: 
Q (2.10) 

and (a) is the nominal stress. Here, (a) is the uni-axial stress required in an 

undamaged material element to give the same strain rate effect as the damaged 

material element experiences under the uni-axial nominal stress (o ). 

Therefore the strain response of a deteriorating body is modelled using the material 
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damage state variable, by replacing the nominal stress with the actual stress ( as ) 

in Norton's law, equation (2.2). 

Kachanov [24] first proposed the form of the uni-axial creep continuum dam- 

age, creep strain rate and damage rate laws, which were subsequently modified by 

Rabotnov [26] and are given by: 

e IC' (1 19'w)" (2.11) 

v 
cv = M' 

(1 
u 

w)o 
(2.12) 

where K', M', n, v, and q are material constants. (n) and (v) are obtained from the 

gradients (1/n) and (-1/v) of the stress vs. minimum creep rate and the 

stress-rupture diagrams, respectively. It is noticed that (2.11) reduces to Norton's 

law (2.2) when the material is in the un-damaged state (i. e w=0). 

2.4.3 The Generalisation Of The Damage State Variable 

Description For Continuum Damage. 

The generalisation of equations (2.11) and (2.12) for multi-axial stresses has 

been made, by considering the effect of damage on the strain rate as a scalar effect. 
This generalisation is achieved by using the strain rate expression of Odqvist, given 
by equation (2.7), substituting the actual stress ( Qa ), given by equation (2.10) for 

the nominal stress (Q ). Equation (2.11) for the multi-axial stress state may then be 

written as: _1 
n-1 Etj =23 (1 

Ka n-1 
sij. f ýt) (2.13) 

where stj is given by equation (2.8) and (f (t) ) is included to represent the primary 

creep region. 

For the generalisation of (2.12), a stress function of degree one ( 0(ojj) ) is 

introduced, to allow for the effects of the multi-axial stress-state on uni-axial rupture 
behaviour (Section 2.4.7). ( i(ojj) ) may also be identified as the representative 

rupture stress. Equation (2.12) is then rewritten as: 

c; ý = M, 
(1X(w) 

f(t) (2.14) 

Again (f (t) ) is included to represent the primary creep region and is taken as 

f (t) = t'" . In equation (2.14) (X ) is now introduced, where X= v(m + 1) allowing 
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for the effect of the time scale modification on the gradient (-1/v) of the stress- 

rupture diagram, by the inclusion of the (tt) term. 

2.4.4 Normalisation Of The Constitutive And Damage 

Laws. 

The constitutive and damage laws used by Hayhurst [23] and by the author, 

use normalised values of stress, strain and time, to reduce numerical error when the 

equations are used for finite element analysis. The normalised stress and strain are 
defined as E; j = aji/Qo, S; j = s;; /Qo and V, "j = e; i/eo , where ( eo ) is the uni-axial 

elastic strain at a stress of ( ao ), given as co = ao/E . Equations (2.13) and (2.14) 

are then rewritten, with the introduction of: 

M= M'(1 + 0) (2.15) 

(to simplify the integration of (2.14)), as: 

dV; 
_3 

KEQÖ-ltmr -1 (! 
i. 

) 
(2.16) 

dt 2 (1 - w)" ob 
dw Mcö tm i(ati) x 

(2.17) 
dt _ (1 + 0) (1 - w) �, Qo 

Equations (2.16) and (2.17) are simplified by the introduction of the normalised time 
(T) and the constant ( V,, ) where: , 

dT = KEvö-itmdt 

and are re-written as: - 

dV; 3 E, '-' sii 
dr 2 (1 - w)n 
dw 

dT Vu(1+0)(1-w)ý 

where: 

(2.18) 

(2.19) 

(2.20) 

Vu = 
IM 

Qo"-x-i) (2.21) 

which is derived in section 3.6 and may be identified to be the normalised uni-axial 

creep strain at failure, (Vu = eu/eo), (Fig. 1.1); predicted by extrapolating the sec- 

ondary creep region line, corresponding to a creep test conducted at a stress of ( 00) 

to the failure time, (tf). 
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N. B. Equations (2.18) and (2.21) are divided by 100 for creep strains measured 

in percent strain. 

The equations (2.19) and (2.20) are the creep constitutive and damage rate 

equationýused by the author in finite element computer predictions of creep deforma- 

tion and failure. Equation (2.20) may be integrated for constant stress between the 

limits w=0, at normalised time r=0 and (0<w<1.0 ), at (0 <r< Tf ) to give: 

rI 0+1 OX(E.. ) 
()J (2.22) 

At r=r!, w=1 which gives: 
V. (2.23) Tf = 

0"(Eij) 
Equation (2.22) may be substituted into the strain rate equation (2.19) and integrated 

between the limits V; =0, at r=0 and (0 <V< Vj ), at (0 <r< T1), using 

equation (2.23) giving: 

- 
(i- ) 

V,; =2 QX(E 
)n 

(1 
1s'' 

f) 
(2.24) 

0+1 

at r=r1, Vj =VY) 

y(t) _3V 
En-1St; (2.25) 

`' 2Ax(Eij)(1 - 40+1) 
and (2.24) is re-written in terms of Vj(f): 

Vii ll ýý- + 
fý 

(t 

JJ 
(2.26) 

i, 

This equation (2.26), for i=j=1 (i. e. uni-axial conditions) represents the shape 

of the creep curve with the normalised time scale, which linearises the primary creep 

region. The corresponding uni-axial strain/time equation for the real time scale 
is given by equation (3.9 ). The relationship between the real time scale and the 

normalised time scale is given by the integration of (2.18): - 

_ 
T(m+1) 

() 

KEQO-1 
} 

(2.27) 

Hayhurst [34] used the creep tests of Johnson et al [27] for tension-torsion 

specimens and verified the multi-axial strain rate equation (2.19), in that the ratio of 

normalised shear strain to the normalised linear strain remained constant during the 

creep tests, at a similar value to the ratio predicted by the equation (2.19), for tests 

on both Copper and Aluminium. 
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2.4.5 Determination Of The Material Constants. 

The material constants in equations (2.19) and (2.20) are determined using 

uni-axial forms of these equations, which are integrated to give the uni-axial strain 

time equation (3.4), which is fitted using an optimisation scheme to a set of uni-axial 

creep curves obtained from experimental creep tests for a range test stress levels. The 

full procedure for the determination of the material constants is detailed in section 
3.6. 

2.4.6 Creep Rupture Under Multi-Axial States Of Stress 

The stress function A(E; j) in equation (2.20) is used to model the effect of 
the multi-axial stress-state on the uni-axial stress-rupture behaviour. Hayhurst [22] 

has investigated the bi-axial creep rupture behaviour of metals and alloys and he 

concluded that there or two extreme types of stress sensitive rupture behaviour. These 

are the bi-axial rupture behaviours of Copper and Aluminium, which may be closely 

represented by a maximum principal stress rupture criterion 0(E, ß) = Ei and an 

effective stress rupture criterion A(E,; ) = E. respectively. The behaviours of all 

other materials is said to lie between these two extremes of behaviour. Hayhurst [22] 

proposed a multi-axial rupture criterion of the form: 

L T+. i) = {au, + QHIl +'YQef }= 0Rup 2.28) 

3 {(Ql 
- 0.2)2 + (0'2 

- Q3)2 + (Q3 
- Q1)2}ý. where ap +NH+7' = 1, Il = Ql+LT2+173 and aq= 72- 

Using equation (2.23) and (2.27) the failure time may be written as: 

=x tf=C {aQ1 -I- ßHIl + 70-e} m+i (2.29) 

where (C) is a constant. 

By writing E_ = a; /Q0 and T=t f/to , where (to) is the time to rupture of a 

uni-axial test conducted at stress, (a), (2.29) may be written in normalised form 

for the principal bi-axial stresses under plane stress conditions: 

Y 
T= {a + Qx(El -1- E2) + 7(Ei + E2 - ElE2)i2 }m+l (2.30) 

Expressing E2 as the ratio C of the stress El, (2.30) may be re-written as: 

T *n+ý _ {a +, QH(1 + C) + 7(1 + (2 - C)12 }_X Ei X (2.31) 
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By setting the normalised rupture time ( T) to unity-the equation defining the shape 

of the isochronous rupture surface (i. e. the shape of the locus of points having the 

same rupture time) in the ( El, EZ ) -plane is given as: 

El = 
{« + ßx(1 + () +'Y(1 + (2 - C) 2 }-1 (2.32) 

which is noticed to be independent of the value of (x). The isochronous rupture 

surfaces for extreme values of a, PH and -y are shown in Fig. 2.2. Similarly the 

equation representing the isochronous rupture surface for plain strain conditions may 
be obtained: 

_1 (3+23 33Z 
-2c+4 

1 (2.33) «-e + -, QH--2c)--7(i3 

For most materials the multi-axial rupture criterion of (2.28) may be simplified 
(as QH is small) [35] to: 

A(uij) = {au, + (1 - a)Qtc } 
-= QRup (2.34) 

which is equivalent to the representative rupture stress. The representative rupture 

stress is defined as the test stress level required in a uni-axial specimen, so that the 

rupture time in the uni-axial specimen is the same as that in the component or the 

multi-axial test piece. 
In order to determine the values of (a) from the shape of the isochronous 

rupture surface for a material, at least three sets of rupture tests must be-conducted, 

one set of uni-axial tests and two sets of bi-axial tests. 

2.4.7 Creep Under Non-Proportional Loading And The 

Directional Nature Of Creep Damage. 

Non-proportional loading, occurs where the stress field within a material ele- 

ment rotates relative to the element. Trampczynski et al [29], details single and multi- 

ple reverse torsion tests of thin walled tubes made from Copper and Aluminium, where 
the maximum principal stress rotates through about 34°. For Copper, damage was 

observed to grow on two discrete planes without interaction. Both the damage planes 

are perpendicular to the maximum principal tension stress. This indicates that creep 
damage is in fact a vector functional quantity for non-proportional loading histories 
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and that a more complicated two state or a three state variable theory is required. 

Murakami [30] details how the tw. sor. iäl creep damage theory is extended to three 

dimensional states of material damage, in defining the damage tensor. Fortunately in 

many engineering components the loading history is proportional in character; and, 

this assumption will be made in the finite element models detailed in this thesis. 

2.5 The Material Science Approach To The Formulation Of 

Constitutive Equations And Their Comparison With The 

Phenomenological Approach. 

The method of the formulation of constitutive equations to represent material 
behaviour during the tertiary creep region, by the material scientist, differs from that 

of the engineering scientist. The method of the material scientist is to formulate math- 

ematical models from a fundamental understanding of the dominant microstructural 

mechanisms present during the tertiary creep region. The two dominant mechanisms, 

which are thought to dominate during tertiary creep are nucleation of voids and their 

subsequent growth by vacancy diffusion or power-law creep (section 1.3.2). Dyson 

and McLean [31], and Greenwood [321 have formulated constitutive models for these 

mechanisms on the basis of their experimental observations of void, growth in Ni- 

monic 80A and Copper respectively. They both formulated nucleation, void growth 

and creep strain' rate constitutive equations, which when used in conjunction with 
the double integral of Ashby and Ra S [33] gave expressions for the total. volume of 

voids at a point in time, from which an expression for the damage parameter (w ) 

was derived. Leckie and Hayhurst [34] have shown that the predictions for damage 

growth using the Dyson and McLean theories, the Greenwood theories and the single 

state variable theory all lie close to the experimental. This shows that the continuum 
damage equations (2.19), (2.20) not only fit macroscopic observations, but also de- 

scribe the growth of the physical damage within the material. Hayhurst et al [28] used 
the Dyson and McLean theory to predict the behaviour of the reverse torsion-tube 

tests for Nimonic 80A at 750°C and were able to conclude that nucleation appears 
to be scalar and creep damage is vectorial in character. For a more detailed study 

reference [36] may be referred to. 
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2.6 Modelling The Creep Behaviour Of Materials With 

Different High And Low Stress Characteristics: 

The Bi-Linear Representation. 
Some materials exhibit different strain-rate and stress-rupture behaviour at 

high and low stresses (Figs 2.3 (a) and (b)). The value of ( &) is determined by the 

cross-over point of the high and low stress lines from the experimental uni-axial data. 

Above the stress (v) the material behaves in a more ductile manner, where the 

strain rate and rupture time are more sensitive to stress, than at stresses lower than 

(fr ). The changes in the slope of the stress-rupture line are caused by a mechanism 

change within the material. 

To model such high and low stress behaviour necessitates the use of two pairs 
of constitutive laws, the first pair of laws having parameters to represent the high 

stress line (I) and the second pair to represent the low stress line (II); hence the term 

bi-linear representation. These two pairs of constitutive and damage laws representing 
the high and low stress behaviour must be compatibile at the break-stress, (& ). 

Consider first the uni-axial strain behaviour of a particular material (Fig. 

2.3(a)) which may be represented by: 

e= Ktm (1 17 
w)n 

(2.35) 

from(2.19), where K, m, n are material constants and (n ) is the gradient of a line 

in Fig. 2.3(a). Two equations must be used to represent the strain rate behaviour of 
the bi-linear material at high and low stress levels. For compatiblity the strain rates 

given by both high and low stress equations must be equal at the break stress (Q ). 

The condition for the compatibility of the time scales is that ( t"` ) is the same for 

both high and low stress behaviour, hence: 
/ nr nrr 

e= Ifltn (1 6)= Ifllt»' 
1 

(2.36) 

is obtained, yielding: 
'fl 

= ý(nrr-nj) = (D (2.37) 
Krr 

Hence, the two strain rate curves may be represented as: 
O nl 

EI _ iKlltm (1 (2.38) 

( lnll 
III K11im 

`1 w/ 
(2.39) 
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Normalising these two equations, as previously detailed in section 2.4.4, gives: 

dV(r) 
_Q 

(ntr-nj) nj 

dT wJ 
(2.40) 

dV (rr) E 
dT 

()1II 
41) 

1- 
(2. 

The multi-axial creep strain rate constitutive equations may be obtained from the 

previous two equations (similarly to the generalisation of equation (2.11) in section 
2.4.3): - 

3y nj-1 sii TAI) 
_C dr 2 c(1 - w)nl 

(Oro ) (2.42) 

V(II) 
_3 

En11-1 S.. 43) 
dr 2(1 

ew)nll' 
7o 

(2.43) 

Consider next the uni-axial stress-rupture characteristics of a particular ma- 
terial (Fig. 2.3(b)). The uni-axial damage rate equation which will define such 
behaviour is given by: 

Mtm lx (2.44) c`' - (1 + 0)(1 - w)m 
where M, m, X, 4 are material constants. For a uni-axial specimen under constant 

stress ( oo ) equation (2.44) may be integrated between the initial condition t=0, 

at w=0 and the final condition t=tf at w=1.0 giving: 

(= 
(2.45) 

where tf is the time to failure or rupture of the uni-axial specimen. At the break 

stress (Q ), the time to rupture is the same for both high and low stress equations. 
Assuming ( t'" ) is common for both high and low stress equations the failure time 

at the break-stress may be written in terms of both the high and low stress material 
constants: - 

(m-ß-1) 
_ 

(m+1) 
tf 

-{ MIQxr 

}={ 

MII&XII 

} 
(2.46) 

giving: 
MI 

= &(x"-x') =A (2.47) 
MII 

Hence the two damage rate equations which describe the stress-rupture lines (Fig. 

2.3(b)) are given by: 

&I Mlltm axl 

dt_ 
n(1+01)(1 (2.48) 

w)ýr 
dw11 

_ 
M11tmaxrr 

dt (1 + 011)(1- w)mrr 
(2.49) 

f 
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Normalising these two equations, (as previously detailed in section 2.4.4) gives: 

dwl 
dr 

dwII 

dr 

(xrr-xr) ('7o ) 

Exil 
Vu(1 + 4II)(1 -W)ý11 

EXI 

vu(1 + cr)(1 - w)4' 
(2.50) 

where: 

(2.51) 

Vu = 
KIIE,, (nhl-XII-1) 
Mll 

(2.52) 

The multi-axial damage laws, allowing for the multi-axial rupture criterion, may be 

obtained as follows: 

dwI 

__ 
l &Tij) (XII-XI) QXI(Ei? ) 

dT ( CO 

) 
V. (1 + 01)(1- W) "1 

(2.53) 

dwil pxxI (E=i) (2.54) 
dr - V�(1 + grr)(1 -- w)Orl 

where 0(u) is given by equation (2.34). Both (ýD ) and (A) are constants and are 

usually determined for uni-axial plane stress conditions where: 

(CP. ) _ 
Ql 

QO 0-0 ao 
(2.55) 

The multi-axial constitutive and damage laws used in the finite element creep 

program Damage-(XX) are given in equations (2.42), (2.43) and (2.53), (2.54) re- 

spectively. On the basis that (2.42) and (2.43) govern the creep deformation of the 

material and (2.53) and (2.54) the failure. 

The following rules apply, showing when each equation is to be used oft the 

basis of the prevailing stress state present: - 

(a) Creep Strain Rate Equations (2.42) and (2.43): 

For Ee > (Qe/ao) thetuse the high stress equation (2.42); 

For E. < (Qe/Qo) the2use the low stress equation (2.43); 

(b) Damage Rate Equations (2.53) and (2.54): 

For L (2) > (0(Q;, )/Qo) thenuse the high stress equation (2.53); 

For L(Eij) < (0(4ß)/QO) thenuse the low stress equation (2.54); 
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The values of the high and low stress parameters should ideally be obtained 

by fitting the creep strain/time equation (3.4) to sets of high and low stress creep 

curves. In many cases the creep tests at high stress (i. e. u>b) are of very short 
duration, due to the quick failure of the specimens and only rupture data is available 
from such tests. For this case a rupture time on the high stress-rupture line is chosen. 
Equation (2.48) may be integrated between the limits (t = 0) at (w = 0) and (t =t f) 

at (w = 1.0) to give: 
(m+l) 

tf - Mird (xir-xil vxc - 
(2.56) 

where M11 
, XII ,m are known from the fitting procedure for the low stress creep 

curve data. Thus the value of ( XI may be obtained and (MI) is obtained using 

equation (2.47). Then the value of ( nr ) is obtained from the gradient of the high 

stress line in Fig. 2.3(a) and the value of ( KI ) is obtained from equation (2.37). 

Having determined all the parameters in the pair of constitutive equations and the 

pair of damage laws, the equations may given an incompatibility in the uni-axial 
failure strain across the break point (o), (Fig. 2.4(a)). The uni-axial failure strain 

must be continuous at the break point (Fig. 2.4(b)). Compatibility of failure strain 
at the break point is obtained by adjusting ( ýi) such that: 

I nI 
= 

nil 

\ßr+1/ \irr+1 
(2.57) 

which is obtained from equation (3.4). The material constants can be substituted 
into the relevant high and low stress constitutive and damage rate laws in the finite 

element program Damage-(XX), where they may be tested with the uni-axially loaded 

plane stress finite element mesh shown in Fig. 2.5. Different loads (P) may be applied 
to this mesh and the resultant failure time and failure strain correlated against both 

theoretical predictions using the analytically integrated constitutive equations and 
the experimental results. At this stage modifications in the allowable integration 

error parameters EPSL and EPSR (section 4.3.3) may be made to give the desired 

numerical solution accuracy. 
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Figure 2.1: Andrade's analysis [14], showing the creep curve compo- 
nents he used to formulate his constitutive equation (2.1). 

F2 

Figure 2.2: The isochronous rupture surfaces obtained from equation 
(2.32) for plane stress conditions and extreme values of (a, ß, dy): maxi- 
mum, (a) hydrostatic stress (0,1,0); (b) effective stress (0,0,1); (c) tensile 

stress (1,0,0); after Hayhurst [22]. 
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Figure 2.3: Typical uni-axial, bi-linear (a) 1og(min. strain-rate) vs. 
log(stress) diagram and (b) stress-rupture diagram. 
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Figure 2.4: Predicted uni-axial rupture ductiliy obtained using qua- 
tion (2.25) with high and low stress material constants to give curves I 
and II respectively. (a) shows incompatible high and low stress failure 
strain predictions at the break stress, which are made compatible (b) us- 
ing equation (2.57) to give a new value for (q1). 

Figure 2.5: Simple uni-axial 
finite element mesh used to check 
both numerical and constitutive 
model accuracy. 
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Chapter 3. 

Tensile Creep Testing. 

3.1 Introduction. 

All theories used for the mathematical modelling and design of high temper- 

attire structural components, are related to the macroscopic mechanical properties 

of the materials to be used, by the material constants. The material constants are 

obtain J by performing tensile creep tests, using specimen samples of the material 
from which the final component is to be made ( sometimes samples may be taken from 

a prototype component). In tensile creep tests, specimens are subjected to uni-axial 
loads at the test temperature, to provide data which may be used directly, or which 

may be interpolated and/or extrapolated to data relating to the in-service cond`tions 

of the component. In order to establish an effective component design with confidence 

and safety, more sophisticated mathematical models and design theories are sought; 
but such models and theories are only as good as the material data they use. There- 
fore, testing techniques, equipment and laboratory standards must also improve, in 

parallel with the theoretical advancements; to provide materials data with smaller 
scatter bands. 

What follows is a detailed account of the tensile creep tests performed by the 

author for (OHFC) Copper. A description of the creep testing equipment is given 
in section 3.2, where special alignments are required to ensure small (ideally zero) 
induced specimen bending stresses and test accuracy. The manufacture and mea- 
surement of specimens is detailed in section 3.3 and the subsequent creep testing 

procedure, experimental design and material data acquisition is presented in section 
3.4. The material test data obtained is given in the form of creep curves, stress- 
rupture and minimum creep rate-stress diagrams in section 3.5. This data may be 

used directly in design via hand calculations, or used as in section 3.6 to obtain the 

uni-axial constitutive and damage law creep constants under isothermal conditions. 
These material constants when used in tke , creep-damage finite element 

method enable the study of deformation and failure behaviour of real high temper- 

ature components made from this tested material; to provide an improved design 

accuracy, over standard hand calculations which give conservative designs. 
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In section 3.7 a uni-axial anisothermal constitutive model is developed, so that 

creep strain rates and damage rates may be predicted as a function of both test stress 

level and test temperature. Finally, predicted stress-rupture and stress-minimum 

creep rate lines are compared with the experimental lines and predicted creep curves 

in the test temperature range are shown to have the characteristic shapes observed 

in tests. 

3.2 Tensile Creep Testing Equipment. 

3.2.1 General Description. 

Three identical, constant load, uni-axial tension creep rigs are used for the 

creep tests and are shown in Fig. 3.1. A schematic diagram of one such creep rig 
is shown in Fig. 3.2. A typical creep specimen is shown in the engineering drawing 

of Fig. 3.3. The creep specimen is held at either end by clamp blocks with a bolt 

and ceramic collars (Fig. 3.2 and 3.4). The collars are ceramic as steel collars creep 

at high temperature and may weld to the specimen. The collars grip the specimen 
flats and take some of the load away from the load holes, which reduces load hole 
deformation and eases removal of the specimen after the test. The pins, clamp blocks 

and pull rods are made from Nimonic superalloy for its good creep resistance at high 

temperatures. 

Referring to Fig. 3.2, the load is transferred from the load hanger via a 1: 10 
lever-ratio load arm, supported on a knife edge fulcrum. The load is then transfered 

through a knife-edge, a universal joint and a pull rod, to the specimen top clamp 
block and then the creep specimen. Such an arrangement of knife edges and universal 
joints incorporated into the load-train restricts induced bending stresses in the creep 
specimen to very low levels. (Better than 5% bending for all test loads. Refer to 

section 3.2.2 (a) for the definition of percentage bending). 

The test load is applied at a constant rate at the start of a test by a hydraulic 

jack, which is manually controlled by the operator. The constant heating effect is 

supplied by a Donaldson 3-zone resistance heating furnace, which is linked to a pro- 

portional temperature controller. The controller has a resistance type thermocouple 

placed in the centre of the furnace to provide temperature feedback control. Three 
. 
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separate manual potentiometers control the bias of each of the three furnace zones 

T, M and B to ensure there is no temperature gradient along the specimen. Ex- 

tensometer rods are connected to the creep specimen protrusions or pips (Fig. 3.3), 

which in turn are connected to a linear variable transformer (L. V. D. T. ) to measure 

the extension of the gauge length during a test (Fig. 3.5). 

As a creep test proceeds the specimen extends and the capstan needs adjusting 

to retain the load arm in the horizontal position to prevent change of the lever arm, 

beam ratio, and hence changes of the specimen stress level. The L. V. D. T. offset screw 

may also need periodically adjusting to keep the extensometer core within the linear 

range of the device (± 6 volts about OV or ±2 mm core displacement). 

A strain bridge type load cell is connected to the lower pull rod to measure 

the actual load transferred to the specimen. All sensor readings (Table 3.1) are 

measured digitally using a digital volt meter (D. V. M. ) connected to a Solatron switch 
box, which is controlled remotely by an Opus personal computer using an IEEE 488 

(IBM) interface board ( Fig. 3.6). An expert system developed by Dunne [37] records 

sensor readings at specified or automatically determined intervals of time. The digital 

readings are stored in files on a hard disc and may be periodically examined between 

logging times using the expert system graph examination/display facility. Having 

completed a test the data file may be dumped to floppy disc and transferred to 

mainframe computer for evaluation and constitutive parameter fits. 

An X/t or X/Y-chart recorder is also available to plot load vs. strain curves 
for the determination of stress/strain curves, or for monitoring fast changes in strain 

or load, during the initial loading period. An independent chart recorder also allowed 

other output signals of interest to be monitered continuously, where a descrete digital 

record was not satisfactory. 
All the test equipment is surrounded by a controlled atmosphere monitored 

to be 20°C ±0.5°C by a laboratory air conditioner, Fig. 3.7. The controlled atmo- 

sphere enbles improved accuracy control of test temperature and ensures that machine 

and instumentation deflection changes are minimised, by counteracting the external 

atmospheric changes. 
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3.2.2 Special Experimental Arrangements. 

(a) Restriction Of Bending In Tension Specimens. 

Bending occurs in uni-axial creep tension specimens as a result of poor spec- 

imen alignment, where the load line does not coincide with the central axis of the 

specimen gauge length. The effects of bending on creep tension tests have been stud- 
ied in detail, first by Penny et al [38,39] and then by Hayhurst [40]. If alignment is 

poor the bending stress superimposed on the mean axial stress may be high enough 

to cause a significant reduction in the rupture life, over a specimen which is correctly 

aligned. Hayhurst [40] details that a creep test, for a material having a Norton's law 

creep exponent of (n = 5, equation 2.2) and a constant eccentricity of (b/d ý 0.015), 

( where (S) is the displacement of the specimen centre line, from a specimen centre 
line corresponding to zero eccentricity and (d) is the diameter of the specimen), the 

rupture time may be reduced by a maximum of 60 %. Hayhurst also showed that 

the life reduction was also a function of the creep exponent of the material (n). The 

rupture life increases with higher values of (n) for specimens with the same con- 

stant eccentricity. These studies showed that much of the scatter in materials data 

previously attributed to material variation could be explained as a direct result of 
varying amounts of bending, which is qualified by a tolerance due to test temperature 

variations. 

The percentage bending in an elastically loaded tension specimen is defined 

by Hayhurst [40] in terms of the elastic surface strains: - 

PercentageBending = (Cl el - E2 Jx 100 =8X too (3.1) 
\+ EZ/ d 

where (ei) and (e2) are the uni-axial elastic strains measured at diametrically oppo- 

site points on the surface of the specimen. Figure 3.8 shows values of the percentage 
bending as a function of load for different creep testing machines [38]. It shows the 

ability of the universal joints and the blocks to restrict bending caused by speci- 

men misalignment and bent pull-rods, in comparison with the large bending levels 

produced by commercially available machines. The commercially available machines 
have button head type specimens and specimens directly threaded to the pull-rods. 

Even with the use of the universal joints and blocks in the load train Penny 

[38] suggests that the initial specimen eccentricity should be restricted to better than 
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(ö/d=0.005), which corresponds to a bending value of less than 5% using (3.1). 

Hayhurst [40] suggests that for truly repeatable creep tests with low scatter initial 

eccentricity must be maintained to a value below (8/d=0.002), which corresponds to 

less than 2% bending. For the 8 mm diameter specimen used by the author, this 

corresponds to an eccentricity of less than approximately 0.025mm. With the aim 

of ensuring this accuracy special surfaces (A) and (B), (Fig. 3.2) were scraped by 

hand to be planar and parallel with one-another to within an accuracy of ±0.01mm. 

An inexpensive yet accurate measuring instrument has been designed by the author 
to enable this accuracy to be achieved. The instrument comprises a 5ft vertical bar 

supported between two lathe centres. A dial gauge of resolution 0.0025mm is mounted 

on the bar and may be rotated in a horizontal arc about an axis passing through the 

lathe centres. Accurate spirit levels were used to arrange each creep rig to have its 

lower pull rod precisely vertical. The axis of rotation of the measuring bar is also 

arranged to be vertical in a similar manner. The lower surface (A) was then hand 

scraped until flat, judged by the deviation of the clock-gauge when the surface is 

scanned by moving the clock-gauge in horizontal arcs of increasing radius. An optical 
flat and a surface plate with marking ink was also used to highlight high spots to be 

scraped. The clock-gauge was then used to scan both surfaces (A) and (B) until over 
correspondingly similar arcs for top and bottom surfaces, the deviation of the clock 
gauge is within the required tolerance of ±0.01mm, by scraping the top surface (A) 

only. After the plates were scraped the position of the lower bearing and the upper 
knife-edge support (see Fig. 3.2) were located by the use of an accurate plumb-bob 
suspended from the end of the load arm. The load train was then fully assembled and 

checked with spirit levels to make sure that the pull rods and blocks were precisely 
vertical and in line. 

The universal joints and blocks in the load train allow alignment of the creep 

specimen in two mutually perpendicular directions before a test proceeds. Feeler 

gauges are used to align the specimen axis between the clamp-block slots; straight 

edges ensure the clamp-blocks are in line and an engineers spirit level ensure the 

clamp-blocks are vertical [41]. 

The percentage bending results for each creep rig for a wide range of test loads 

was tested with a stainless steel specimen, which had four strain gauges mounted at 
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right angles to one another on the surface of a mid-cross-section of the specimen, (Fig. 

3.9). The percentage bending is measured in accordance with equation (3.1) in two 

mutually perpendicular directions for increasing values of load. A typical bending 

graph is shown for creep rig No. 2 also in Fig. 3.9. Three bending tests were carried 

out for each creep rig, removing then re-positioning and aligning the specimen in 

the creep rig each time, to judge reproducibility of the results. All three creep rigs 

gave results of less than 6% bending across the whole load range 0.7 KN to 3.5 KN, 

with some tests yielding less than 3% bending even at the lowest test load. Bending 

results obtained for the three creep rigs set up by the author compare favourably 

against results for other creep rigs in Fig. 3.8. 

(b) Extensometer Grip Design. 

The large deformations which could occur in the Copper creep tension spec- 
imens during some creep tests meant that the initial bolt pressure clamping the 

extensometer clamps to the pips, could relax during a test, allowing the extensometer 

clamp positions to move, producing discontinuous results. The extensometer clamps 

were re-designed by the author to incorporate a four spring arrangement (Fig. 5.10 
(a) and (b)) to allow the extensometer clamps to close as the specimen creeps, to 

maintain its grip position on the specimen protusions; thus giving accurate strain 
readings. L 

Nimonic springs were specified for the design using a specific spring force 
lar9a 

so as not to produceAcompressive stresses in the specimen, whilst retaining enough 

spring force to retain the clamps fixed to the specimen at the test temperature during 

specimen deformation. The use of the four spring extensometer clamp also allowed 

a larger specimen diameter of 8 mm to be used with the same extensometer clamps 
previously used for 6.35 mm diameter specimens, without further modification. 

(c) Calibration Of Sensors And Calibration Tests. 

The load cells were calibrated for both loading and unloading of a test speci- 
men within the elastic region at ambient temperature. The displacement transducers 
(L. V. D. T. 's) were calibrated using a micrometer calibration rig. Temperature cali- 
bration and temperature stability tests were performed for each test temperature for 

a period of two weeks duration, using a dumb specimen containing three thermocou- 

ples equispaced over the gauge length. Temperatures did not deviate from the test 
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temperature even at the highest test temperature of 500°C by more than 0.5°C. 

3.3 Manufacture Of (OFHC) Copper, Creep Tension 

Specimens. 

The (OFHC) Copper, creep tension specimens were manufactured to the spec- 
ifications given in the engineering drawing of Fig. 3.3. The creep tension specimen 
is classified as a non-proportional test piece by BS 3500 [42] for creep and rupture 
testing of materials; though the specimen dimensions do lie close to those of a propor- 

el tional test piece of 8 mm diarqter. A proportional test piece is defined in the standard 

as having a gauge length (Lo = 5.651) where (A) is the initial cross-section area of 
the specimen. 

The blanks of Copper material from which the creep specimens were machined, 

came from a large as-cast billet as shown in Fig. 3.11. The billets are cast using cast 
iron chills placed either side of the casting box to remove heat from surfaces (A) and 
(B). Etched sections of the cast block reveal that the chills produce a refined grain 

structure to a depth of about 3 mm from the surfaces (A) and (B), with long thin 

grains forming deeper into the material (Figs. 12(a) and (b)). These long thin grains 
grow inwards away from the two cooled surfaces (A) and (B) due to a directional 

solidification process and meet in the middle of the block forming a central rift. The 

creep specimen blanks are cut from the block as shown in Fig. 3.11 so that the long 

thin grains are transverse to the loading, direction in the creep specimens. 
The specimen blanks are initially machined flat leaving 1.0mm depth of ma- 

terial either side to be removed later. The blanks are then turned in a profiling lathe 

using a hard steel master specimen as template. Severe problems were encountered 

on machining the as-cast Copper blanks, due to its extreme softness and low shear 

strength. Even at very slow spindle speeds, taking fine cuts, at low feed rates, the cut- 
ter force is sufficient to bend the specimen and results in the specimen being thrown 

out of the machine as the tool digs into the material (Fig. 3.13). Unacceptably large 

amounts of twist along the length of the specimens also presented a problem. Good 

specimens were produced by the following production route: 

The specimen diameter is increased from 6.35 mm to 8.0 mm, increasing the 
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tortional rigidity of the speicmen some 50%. The driven end of the specimen blank 

is supported in a collet-chuck whilst the other end is supported by a lathe rotating 

centre. This increases the rigidity of the specimen in bending over a specimen sup- 

ported by a lathe centre at either_end. The lathe spindle speed is restricted to 300 

r. p. m. A high speed steel cutting tool is used with a large rake and face angle to 

restrict chip build up and prevent large cutter forces. The cutting tools are ground 

precisely in a grinding gig which produces a tool tip radius of 0.4mm to form the radii 

at the specimen pips. The lubricant is paraffin and oil mixture which is applied with 

a bush to the Copper specimen. Machine cuts are taken with extreme care and the 

depth of cut is reduced as the final diameters of the spacimen are approached. Final 

cuts were of the order of two thousandths of an inch depth with a very slow feed rate 
to give the surface finish of 0.8 pm as required. The specimen is then held betweem 

flat steel plates on a magnetic table and the specimen flats are ground on either side, 

until the specimen is of the required thickness and the specimen flats are equispaced 

about the axis of the specimen gauge length. This is ensured using an accurate clock 

gauge. The specimen load holes are then jig bored to within 0.01mm of the centre 
line of specimen gauge length. This tolerance corresponds to the loading eccentricity 
tolerance S/d-0.002 specified by Hayhurst [40]. 

The produced specimens were measured for accuracy using an S. I. P. Gener- 
t6t 

voise machine to check A all specified dimensions are explicitly satisfied. Specimens not 

satisfying the designed tolerances were rejected and not used in the tests.. 

B. S. 3500 [42] specifies that the gauge diameter shall not vary by more than 
0.03 mm and a tolerance of 4- 0.03 mm, on the axiality of the load hole centre lines 

relative to the centre line of the gauge length, shall be satisfied. The former and later 

measurements for the specimens measured were typically 0.015mm and ± 0.015mm 

respectively. 

3.4 Creep Testing Procedure And Experimental Design. 

3.4.1 Procedure. 

Before a creep test is performed the specimen must have thermocouples fitted 

and must be accurately aligned in the creep test rig. The set-up procedure is detailed 

elsewhere [41]. With a pre-load on the load hanger the furnace is switched on and the 

34 



creep specimen left to soak for up to 24 hours [42,44] for a creep test. The pre-load 

ensures that the alignment of the universal joints and specimen are maintained in 

position. The pre-load may be reduced from 20 N to 5N for high temperature tests 

where the 20 N load may cause significant creep to occur during the soak period. 

The soak period ensures that the steady thermal state is reached before a test is 

performed. For tensile tests, the soak time may be as little as 15 minutes after a 

stable temperature is obtained [43]. 

Having reached the end of the soak period and a stable test temperature 

(±0.5°C) has been obtained for a period of at least one hour, the full test load may 
be applied to the specimen. It is important to apply the load at a constant rate, 

with a load-up period which is constant for each test performed. Tilly [45] studied 

the effect of varying loading rate upon the shape of the creep curve obtained from 

identical creep tests. He observed that the slower the loading rate the higher the 

initial strain (co) at the end of the loading period. He notes that after this initial 

loading period creep rates are as much as four times slower than those following fast 

loading. The differences in the shapes of the creep curves for slow and fast loading 

tests are seen to diminish with time, both tests eventually stabilising at the same 

minimum creep rate showing the same tertiary creep profile and having the same 
failure time. It is apparent that rapid loading gives a fundamental form of creep 

curve which approximates to an (at-) term in the Andrade law, (equation 2.1) but 

slow loading causes creep to occur at intermediate stresses causing subsequent creep 

at the stable test load to follow a primary curve with a decreasing exponent (m). This 

implies that rapid loading is preferable. Therefore, loading times are maintained at 

a duration of 3 seconds with the use of a manually operated hydraulic jack, which 

steadily lowers the weights onto the load hanger (Fig. 3.2). 

Penny discusses [46] strain rate changes during the creep and tensile tests. He 

states that on loading, though the cross-head velocity may be constant the specimen 

may be subjected to vast changes in strain rate, which may be related to the stiffness 

of the machine and the specimen design. He states that constant strain-rate tests 

must be performed if the effects of machine stiffness and specimen design on the 

test results are to be eliminated; so that meaningful constitutive constants can be 

derived from test data. Constant strain rate tests upon loading may be performed by 
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manually controlling the loading rate or cross-head velocity. This may be done with 

the existing load jack by monitoring the strain time curve on the X/t-plotter, whilst 

controlling the hydraulic loading jack valve, to maintain a linear strain time profile 

on loading. This requires considerable practice and concentration and the load time 

has to be increased; but could be peformed accurately in future tests with the use of 

a suitable feedback controller and a variable speed screw-jack to load the specimen. 

From experience it is important to control the loading rate which determines 

the initial strain value (co), since (co) is subtracted from the whole total strain creep 

curve, giving the final creep curve (Fig. 3.14(a)). The error in (co) is directly trans- 

ferred to an error in the whole creep curve. Therefore, values of initial strain have 

been calculated in two ways within'the author's tests. The first method involves using 
fast scan data from the data logging system. Two data points per second are obtained 
for load and strain during load application. The data may be plotted and the strain 
(co) at time (to), where the full test load is first seen by the creep specimen, is taken 

as the initial strain (Fig. 3.14(b)). The second method involves performing a uni-axial 
tensile test at the creep test temperature and directly reading the strain (Co) at the 

test load from the stress/strain curve. The loading rate should be maintained as fast 

as possible, ideally it should be same as that in the creep test. If slower loading rates 
are used then the stress/strain curve drops low and hence the initial strain reading 
at a particular test stress will be large, and may even exceed the primary total strain 
value. The values of initial strain (co) calculated by the two different methods should 
be the same. 

Stress/strain curves are obtained from load/strain curves, which are directly 

read from a creep rig by the X/Y-plotter. The use of the initial cross-sectional area 

of the specimen seemed reasonable to convert the load/strain curve to an engineering 
stress/strain curve, as initial strain values were obtained well away from the point on 
the curve where significant necking occurred. 

3.4.2 Experimental Design. 

When material creep data is required for a new material, it is not known what 
test loads are required to give reasonable creep failure times. Test temperatures are 

easily identified for a range of fractions of the homologous temperature, relating to 
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the service temperatures of the components to be made from the material. At each 

test temperature a series of at least two creep rupture tests must be performed, at 
different stress levels, to define constitutive equation parameters representative of 

material behaviour at this temperature level (Fig. 3.15). For each temperature level 

a tensile test is conducted to determine the tensile strength and the 0.2 % yield stress 

or actual yield point stress, before creep testing proceeds. This is done in accordance 

with BS 3688, part 1, [43] and BS 4A4, part 1, section two [44]. From the yield 

stress (o 
,) and the tensile strength (vTs) an initial estimate of the highest stress level 

for the first creep test may be calculated, as the minimum of (ov/2) and (ors/2). 

This procedure is only appropriate for some materials but provides a starting value 

of stress to test at. Ashby deformation and fracture mechanism maps (section 1.2.3, 

1.3.3 and 1.4) may also prove useful in determining test stress levels . It is always 

preferable to test at the highest stress level initially, giving the. quickest failure times 

first, then test at lower stress levels giving long failure time tests finally. In this 

way the previous test values may be used to extrapolate along a straight line on a 
log(stress) vs. log(rupture time) plot, to define a stress level for the next test having a 
longer lifetime. Before each creep test is performed it is important to try to determine 

which dominant creep deformation and failure mechanism will be present during the 

test. Figures 3.16 and 3.17 show Ashby deformation and fracture mechanism maps 

respectively for a pure Copper material similar to that used in creep tests by the 

author. The homologous test temperature and uni-axial stress level will define a 

point on an Ashby deformation and fracture mechanism maps [8,9,11,12] for a similar 
test material, which will give some indication of the creep mechanisms present and if 

the test will be valid for use with the constitutive model; which is only representative 

of certain creep mechanisms. In creep tests failure times of 100 hours, 300 to 500 
hours and greater than 1,000 hours are aimed for, together with a longer term test of 
2,000 hours or so if time permits. Usually for creep tests, the larger the test duration 

the more representative the data is of the mechanisms occurring in the real structure 

and extrapolation will be of increased accuracy. 
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3.5 Results And Observations From Creep Tension Tests 

For As-Cast (OFHC) Copper. 

Uniaxial creep tension tests were performed on two different batches of a pure 
Copper material in the as-cast condition, at the test temperatures of 150,250 and 
500°C. The majority of tests used batch-(C) material, having long thin grains of 
1.35mm average diameter, arranged transversely across the specimen gauge length 

(section 3.3). Some creep tests for the test temperatures 150°C and 250°C used 
batch-(M) material, which had a equi-axed grain structure of average grain diameter 

0.5 mm. The batch-(M) Copper was used for comparison with batch-(C) Copper test 

data, to highlight the variation in material properties caused by grain size variation 

as a result of a different production route. 
Values of the elastic modulus (E), the 0.2 % proof stress and the ultimate 

tensile strength (U. T. S. ) were obtained from tensile tests on batch-(C) material over 
the temperature range 20°C to 500°C. The results are summarised in Figs. 3.18 

and 3.19 respectively. Using these material propertias and the specimen stress levels 

used in the creep tests, areas (Al), (A2) and (A3) at each test temperature of 150, 
250 and 500°C respectively, are identified on both the Ashby deformation mechanism 
map and the Ashby fracture mechanism map in Figs. 3.20 and 3.21 respectively, 
for a similar Copper material. The areas (A2) and (A3) show that both the 250°C 

and 500"C creep tests lie in the power-law creep regime, and fail by an intergranular 

creep fracture mechanism. The area (Al), corresponding to the 150°C tests, crosses 
mechanism map bondaries in both Figs. 3.20 and 3.21, with high stress tests lying in 

the power-law breakdown region and failing transgranularly respectively. Power-law 
breakdown means that Norton's power law (equation (2.2)) no longer holds true for 

the material deformation in this region. Hence, the creep constitutive equation and 
damage law (equations 2.19 and 2.20) cannot be applied to represent creep behaviour 

in this region. Testing at 150°C was still carried out, as the Ashby maps only provide 
a guideline and may not precisely represent the mechanistic behaviour of the test 

material. 

Thirty-two creep tests and three stress/strain tests were carried out, with 

some stress/strain data provided by parallel tests on creep fatigue specimens [47]. 

The results from the creep tests are presented in Table 3.2 and in the stress-rupture 
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and stress-minimum strain rate graphs of Figs. 3.22 and 3.23 respectively. It is 

noticed that as the temperature of the creep tests increases, the magnitude of the 

gradients of both the stress-rupture and stress-minimum strain rate lines, through 

the experimental data, decreases. 

Sample of failed specimens at each temperature level are shown in Fig. 3.24. 

The fracture surfaces corresponding to specimens (A), (D), (E) and (F) of Fig. 3.24 

are shown in Figs. 3.25,3.26,3.27,3.28 respectively. All the specimens shown except 

specimen (F) are made from batch-(C) material; specimen (F)is made from batch- 

(M) material. Referring to Figs. 3.24 specimens (A) and (B), were tested at 500°C 

which show intergranular cavitation (Fig. 3.25, Fig. 3.26) and fail on a fracture 

surface perpendicular to the tensile axis. Similar is true for specimens (C) and (D) 

which were tested at 250 °C 
. Observing the fracture surfaces corresponding to 

specimens (A) and (D), (Fig. 3.25 and Fig. 3.26) the transversely orientated columnar 

grain boundaries are seen as a serrated fracture surface. Bending has occurred in 

specimen (C), (Fig. 3.24), at rupture due to uneven damage propagation across the 

specimen. Specimens (E) and (F) were tested at 150°C and show local necking as 

the final rupture mode (Fig. 3.27 and 3.28 respectively), due to the high applied test 

stress levels, which were necessary to give reasonable rupture times, causing large 

deformation to occur in the specimens (Fig 3.24). The fracture surface for specimen 
(F), (Fig. 3.28), shows the equi-axed grain structure of the batch-(M) material. The 

fracture surface for specimen (E) is for batch-(C) material and shows the dominance 

. of a ductile rupture mode, not seen in the specimens tested at higher temperatures 

and lower stress levels, which fail in a creep-brittle manner. Therefore the specimens 
tested at 150°C at these high stress levels do not show a true creep deformation 

and failure mode, but one which is controlled by plastic deformation resulting from 

increased net-section stresses in the vi cinity of the specimen neck. It may be that 

the material is bi-linear in rupture behaviour (section 2.6) and will deform and fail 

in a creep-brittle manner without necking at lower test stress levels. 

Creep specimens at each of the test temperatures were sectioned and etched 
[48] so that a full metallurgical examination of the mechanisms present during the 

prevailing test conditions could be determined. The report from the metallurgical 

examinations confirmed the observations made above. The report details that the 
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specimens tested at 150°C were heavily deformed showing extensive surface-slip and 

cracks at 45° and 900 to the tensile axis, with final failure due to high ductility creep 

rupture in a necked region. Some slip-banding within the grains was observed, but 

it was not as extensive as that observed in the specimens tested at 250°C, which 

had a high etch pit density revealing a high density of dislocation networks. The 

final failure was through the formation of intergranular cracks with some voiding 

present causing a creep brittle type fracture. The 500°C specimens also showed the 

formation of intergranular cracks, again with some voiding, but no slip was observed. 
The specimen had a small etch-pit density, revealing reduced dislocation networks 
due to the dominance of the climb mechanism (section 1.2.1); which is a thermally 

activated mechanism. Therefore, the' specimens tested at 500°C also fail in a creep 
brittle manner. Hence, a mechanism change occurs in stepping from the high stress 
level tests at 150°C to the lower stress level tests at 250°C. It is thought that if the 

stress levels for the 150°C tests were lowered sufficiently, so that large initial loading 

strains and necking were not present, a creep brittle fracture could be obtained. Two 

specimens were tested at lower stress levels, see Test No. 5 and 6 Table 3.2, both of 

which had to be aborted due to rupture never being obtained. Test No. 6 continued 
to creep into the secondary creep region for some 3,500 hours without any turn-up in 

the creep curve, to show the presence of tertiary creep. It was therefore not possible 
to prove this theory in the time available. 

The results of the metallurgical examinations [48] are summarised in Table 

3.3. Metallurgical examination also highlighted significant variations of 'the grain 

sizes within specimens. Two out of four specimens, which were cut from the batch- 

(C) columnar grained cast block, when sectioned were revealed to have equi-axed or 

irregular grain size distributions within the specimens. This must explain some of 

the scatter in the test results obtained. 
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3.6 Obtaining The Uni-Axial Constitutive Equation And 

Damage Law Material Constants Under Isothermal 

Conditions, From the Experimental Data, For Use In 

Computer Finite Element Structural Analysis. 

The constitutive equation and damage law to be used (equation 2.19 and 

2.20) may be writen in simple uni-axial, non-normalised form: - 

Kt' )n Jn (3.2) 

At' 
(1 

ax 
-w) 

(3.3) 

where K, A, m, n, x, 0 are the material constants to be determined. Equations (3.2) 

and (3.3) may be integrated analytically to give a relationship for the creep strain as 

a function of the applied stress level and time: 

Ka"tl+m t11m 
(1 

. 0+1) 

(1+m)(1- n` 
1- 1- tf (3.4) 

where tf is the time to failure or rupture and is given by the integration of (3.3) 

between w=0, at t=0 and w=1.0 at t f: - 

tf - 
{A(O 

+ 1)ox 
} 

(3.5) 

Equation (3.4) gives a full primary, secondary and tertiary creep curve representation 

and may be simplified by noticing that the creep strain (ef) at the failure time (t f) 
is given by: 

Kv"t f+"` (3.6) f (1+m)ý1-ý+i) 

N. B. Equation (2.6) may be integrated where f (t) = tm, for a coittant uni-axial stress 
(ao) and equation (3.5) may then be used to give a primary and secondary analysis 
failure strain prediction: 

Kao -x 

A(c6 + 1) 
(3.7) 

analogous to that of equation (3.6). Equation (3.7) gives a normalised failure strain 
prediction of: 

V 
KE 
M 
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where V= e/eo, eo = Qo/E and M= A(q + 1). V. is identified to be a material 

constant which appears in the damage rate equation (2.20). Vu defines both the 

normalised time scale and the normalised strain scale. 

Equation (3.4) may be written in normalised form using (3.6) as: 

E/t \1}m 
(I- 

+1) 

= 1- 1-- ItJ (3.9) 
t\ fl 

This equation is fitted to a set of creep curves corresponding to uni-axial creep tests 

over a stress range under isothermal conditions and in conjunction with equation (3.5) 

the 6 creep constants may be determined in equations (3.2) and (3.3). What follows 

is a brief discription of a well developed creep curve fitting procedure [49,50,37], for 

obtaining these material constants. 
Othman [50] details the use of a two-parameter creep curve representation, 

where he defines one parameter as (1 + m) and the other as L1 = (1 - (n/c + 1)) in 

equation (3.9), which gives: 
l+m ý 

f= 1- 1-t (3.10) 
of tf 

Dunne [371 details that the experimental data for each stress level is normalised in the 

same way as equation (3.9) and equation (3.10) is fitted in turn to each experimental 
creep curve, using a least squares optimization scheme, where the residuals or errors 

are minimised with respect to (A) and (m). Values of (KQ") are then obtained using 
(0) and (m) for each creep curve, at each test stress level by rearranging equation 
(3.6): - 

Kvn - of (1 + m)Otf 
The technique described above is used to provide starting values for a further op- 
timization [37,49]. The second optimization minimises the residuals between the 

experimental creep curve data, and the functional creep curve representation of equa- 
tion (34. ), with respect to the constant groups (1+m), (A) and (KO'"). Therefore 

obaining new values of the three constants for each creep test stress level. As stated 
by Othman [50] (m) and (0) should ideally be independent of stress and hence should 
be constant for the whole stress range. In practice the fitted values vary slightly for 

creep curves at different stress levels, so the average values are used in a repeat op- 

timisation and the best values of (KO") are obtained for each stress level. (K) and 
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(n) are found by taking the logs. of (e, = Ka') and fitting a straight line through 

the data: - 
log(!, ) = log(K) + nlog(o) (3.12) 

Referring to Fig. 3.23 (1/n) is the gradient of a line on the log(stress) vs. 
log(min. strain rate) diagram for the experimental data. Having determined the 

value of (n), (¢) is obtained from the value of (A). The values of (X), (A) and (M) 

are found using equation (3.5) which may be written taking logs as: - 

log(es) = log (A(0 -I-1) 
X 

_C1-F 
m1log(tf) (3.13) 

1+m X) 

by fitting a line through the log(stress) vs.. log(rupture time) data, where M is 

given using: M=A (O + 1), as previously Referring toistress rupture plot of Fig. 

3.22 the gradients of the isothermal stress rupture lines are identified to be (-(1 + 

m)/X). Hence all the constants may be determined. The above procedures have been 

combined forming a set of subroutines by Dunne [37], forming a robust package which 
reads a set of digitized creep curves, corresponding to a series of at least two uni-axial 
creep tests at a particular test temperature, giving the optimized creep constants as 
output. 

Sets of material parameters for creep tests at 150,250 and 500°C were ob- 
tained using the above procedure. Experimental scatter in the data, as a result of 
microstructural variation in the test specimens, caused the fitting of curves to the 

optimum number of tests (5 tests) at each temperature to be downgraded. Some of 
the experimental creep curves at different test stress levels. were close to one another, 
some even crossed. Material parameters were obtained for data at 150°C using two 

creep curves, at 250°C using two curves and at 500°C using three curves. Care was 
taken in choosing the curves to be fitted, so that the stress rupture points corre- 
sponding to each curve lay close to the best line fitted through the stress-rupture and 
stress-minimum strain rate data of Figs. 3.22 and 3.23 respectively. 

The material constants for the three test temperatures are presented in Table 
3.4. Comparisons between the experimental data and the fitted creep curves are 
presented in Figs. 3.29(a) to (c). 
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3.7 The Anisothermal Creep Model. 

Having obtained the creep constants at these three discrete temperatures, it is 

required to interpolate between these temperatures to predict the creep deformation 

and failure behaviour over the whole temperature range (150°C to 500°C). Formerly 

this has been done with the use of an Arrhenius law [51] (equation 2.4), where it is 

assumed that both the creep strain rate and the damage rate increases exponentially 

with test temperature. This involves incorporating exponential terms as scalar multi- 

pliers in both the damage rate and strain rate equations (3.2) and (3.3) by replacing 
(K) and (A) by: 

K= (Koe (3.14) 

M= (Aoe ea) (3.15) 

where 0 is temperature, K,, b and A0, a are constants. Values of m, n, X and 0 in 

equations (3.2) and (3.3) are taken as the average values of those at the three tempera- 

ture levels. This assumes that the gradients of the stress-rupture and stress-minimum 
creep rate graphs of Figs. 3.22 and 3.23 do not vary much over the temperature range. 
Taking the natural logs of (K) and (A) the linear equations are obtained: - 

ln(K) = In(Ko) -a 
(1 (3.16) 

ln(A) = ln(Ao) -b 
(©) (3.17) 

which may be fitted to the values of (K) and (A) available across the temperature 

range (Table 3.4), giving the values of the material constants (K0), (b) and (A0), 
(a). Following this procedure it was found that the values of the constants varied 
so widely (Table 3.4) over the temperature range, that a reasonable representation 
of the experimental creep curves over the temperature range was impossible. Even 

when the 150°C data was neglected on the grounds that this data is for the power-law 
breakdown mechanism, allowing a line to be fitted through the values of (A) and (K) 

corresponding to the 250°C and 500°C tests, the difference between the average values 
of m, n, X and ¢ produced extremely poor creep curve predictions when comparisons 
were made with the originally fitted curves at 250°C and 500°C. Therefore, though an 
Arrhenius law has been used successfully for very small temperature ranges [51] and 
[52] of the order of 50°C and 30°C respectively, where the variation in the material 
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constants is small, its use was found to be totally inappropriate over a temperature 

range of 350°C, between 150°C and 500°C. 

A new approach has been proposed. It was decided to again neglect the 150°C 

test data, as the tests were of the ductile creep failure type, lying in the power-law 

breakdown region of the Ashby mechanism map. The new fitting procedure would 

use only the 250°C and 500°C creep data and data corresponding to 150°C test data, 

would be intuitively extrapolated, to give the correct strain-rate effect observed in 

the temperate-cyclic plasticity tests of Dunne [47]. 

It would have been ideal to produce tables of creep constants at smaller tem- 

perature intervals for the temperature range, so that the exact functional variation 

of the constants could be represented. Limitations of time and finance on the project 

made it impossible to carry out lengthy creep tests at intermediate temperature levels. 

The new approach involved fitting exponential functions to all the material 

constants across the temperature range. As there were only two data points for each 

constant over the temperature range 250°C to 500°C the fit is perfect at the discrete 

temperatures of 250°C and 500°C (Figs. 3.30(a) to (f)). The extrapolation of material 

constant data to 150°C was done on the basis that a value of (n =1.5) is required 
to make the strain-rate effect negligibly small at this temperature, as observed in 

experiments [47]. An exponential function was fitted between n =4.261 at 250°C 

and n =1.500 at 150°C (Fig. 3.30(c)). The value of (m) below 250°C was kept 

constant (Fig. 3.30(a)) at the value of (m) at 250°C, as a reasonable approximation. 
(m) cannot become much larger than (m) at 250°C, as it can never reach (-1.0) or 
(1-}- m) in the constitutive equation would become zero or negative. It was proposed 
to make (A) constant at the value of (A) at 250°C for temperatures below 250°C 

as an approximation (Fig. 3.30(f)); having tried the extrapolated high temperature 

exponential curve prediction for (A) in the creep strain equation (3.4) and finding 
it to predict poor creep curve shapes. The values of 0 and X at 150°C were simply 
obtained from the extrapolation of the high temperature exponential curves passing 
through the 250°C and 500°C data points (Fig 3.30 (b) and (e)). Finally, the value of 
(K) at 150°C was obtained using the creep curve equation (3.4) with different values 

of (K), starting at the high temperature exponentially extrapolated value, which was 

modified until similar creep strian levels were obtained to those from creep tests at the 
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same stress levels. A second exponential function for the temperature range 150°C to 

250°C was fitted to the two values of (K), one at 150°C and the other at 250°C (Fig. 

3.30 (d)). The fitted exponentials through all the material constant data points are 

shown in figs. 3.30(a) to (f) and their respective equations and temperature ranges 

are given in Table 3.5. It is noted that a similar procedure of fitting exponential 

funcitons to material constants over a similar temperature range (200 to 550°C) has 

been applied successfully [53] for stainless steel. 

Predictions of material constants using the set of exponential equations of 

Table 3.5 at temperature intervals over the temperature range 150 to 500°C were 

calculated. Using these material constants and equation (3.4) for stress levels similar 

to those used in the uni-axial creep tests, predicted creep curves are plotted in Figs. 

3.31 (a), (b) and (c) at similar temperature intervals. The creep curve predictions at 

the test temperatures 250°C and 500°C are the same as those of Figs. 3.29 (a) and (b). 

From the predicted creep curves it is noticed that as the test temperature decreases 

the primary creep strain increases, similar to that observed in experiments. The 150°C 

predicted curves give similar failure strains to those of the experimental tests at the 

same stress levels, though the predicted rupture lives are longer (c. f. Fig. 3.31 (a) 

and Fig. 3.29 (a)). At lower stress levels the predicted 150°C creep curves show the 

existence of a brittle stress-rupture line, as is thought to exist in practice. Predicted 

stress-rupture lines, for 50°C temperature intervals over the test temperature range, 

are plotted as dashed lines on a log(stress) versus log(rupture-time) plot in Fig. 3.32. 

The predicted lines may be judged against the solid lines which represent- a best fit 

through the experimental data. Dashed lines actually lie on top of the solid lines at 
temperatures of 250°C and 500°C, where a perfect fit to the experimental data is 

obtained. Similarly Fig. 3.33 shows a comparison between the predicted log(stress) 

vs. log(min. strain rate) lines (dashed lines) and the experimental lines (solid lines). 

Again the dashed lines corresponding to the 250°C and 500°C predicted lines lie on 
top of the solid experimental lines. 

3.8 Conclusions. 

(i) Metallurgical examination of a sample of the specimens tested showed a 

marked difference in grain sizes, both within individual specimens and between differ- 

ent specimens. As great care was paid to machine accuracy, specimen accuracy and 
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test procedure it seems that in this case material variations did cause some scatter in 

the results. 
(ii) From the experimental stress rupture lines of Fig. 3.22 it is observed that 

batch-(C) material at 250°C has a lower creep strength than batch-(M) material at 

250°C. This is due to the finer grain size of batch-(M) material and highlights the 

importance of the effects of grain structure on the material properties. Grain size 

variations can be directly related to the material production methods. 

(iii) A metallurgical report, on a sample of microsectioned creep specimens, 
highlighted a mechanism change from 250°C tests to 150°C tests. The high stress 

150°C tests fail in a ductile creep failure mode, showing characteristic neck formation 

at rupture. Therefore, as Norton's law cannot be used to model this type of defor- 

mation and the 150°C test data was neglected in the final curve fitting procedure. 
(iv) It was concluded that the Arrhenius law could only be applied for small 

temperature ranges of the order of 50°C, or so, and is totally inappropriate for tem- 

perature fitting over the much larger ranges of 150°C to 500°C. 

(v) Good predictions of creep test behaviour over the temperature range 250 to 

500°C were obtained with the use of exponential functions, which were fitted to each 

material constant. With the use of some intuitive assumptions and extra data supplied 
from temperate cyclic plasticity experiments, constitutive data was also obtained to 

represent low stress brittle creep behaviour at 150°C. 

A summary of this work has also been detailed in [54]. 
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Parameter Quantity Sensor Type 

t time in (hrs) computer clock 

TT specimen temperature thermocouple 1 

at top protrusion 

Tb specimen temperature thermocouple 2 

at bottom protrusion 

TR room temperature thermocouple 3 

SL displacement of gauge L. V. D. T. 

length (Lo) gives the 

total strain (CT) 

in percent. 

LD load cell reading strain gauge bridge 

gives specimen load type load cell 

in (KN). 

Table 3.1: Data Recorded For Each Creep Rig By The Expert System. 



Test 
No. 

Batch 
No. 

Test 
Temp. 
(°C) 

Stress 
Level. 

co (Mpa) 

Failure 
Time 

tf(hrs) 

Min. Creep 
Strain 
Rate, 

e, (%/hr) 

Last 
Recorded 

Creep 
Strain, ef (%) 

1 M 250 51.13 684.5 1.301E-3 2.308 
2 M 250 46.81 2185.0 5.938E-4 3.00 
3 M 250 56.84 123.0 7.392E-3 3.15 
4 M 150 130.0 Inst. - - 
5 M 150 65.0 Stop'd 3.520E-4 - 
6* M 150 80.0 Stop'd 1.410E-4 - 
7 M 150 105.03 992.92 2.515E-3 5.939 
8 C 150 115.0 0.1 - - 
9 C 150 107.4 16.8 1.657E-1 6.70 
10 C 250 56.72 47.0 2.896E-2 6.597 
11 C -150 105.94 12.58 - - 
12 C 20 Tens'l -test - - 
13 C 250 Tens'l -test - - 
14 C 500 Tens'l -test - - 
15 C 250 51.13 51.0 1.946E-2 2.492 
16 C 500 24.25 0.80 - - 
17 C 500 14.04 85.98 4.197E-2 3.477 
18 C 250 45.23 83.11 1.010E-2 2.210 
19 C 500 11.88 71.0 6.557E-4 0.433 
20 C 250 25.7 Stop'd - - 
21 C 500 7.94 Stop'd - - 
22 C 500 10.9 136.80 3.33E-4 1.358 
23 C 500 9.1 187.97 3.241E-4 0.791 
24 C 500 7.95 533.57 6.284E-5 0.150 
25 C 250 38.0 452.6 1.228E-3 1.661 
26 C 250 35.4 224.93 1.608E-3 2.346 
27 C 150 94.3 426.77 8.340E-3 8.20- 
28 C 250 32.7 Stop'd - - 
29 C 150 92.0 152.95 - - 
30 C 150 98.0 284.13 1.216E-2 7.773 
31 C 150 92.0 35.98 3.666E-2 2.029 
32 C 250 32.7 39.97 1.674E-2 1.865 
33 C 250 32.7 64.45 1.231E-2 1.877 
34 C 150 91.0 41.66 - - 
35 C 

___J __250 
44.0 46.0 1.364E-2 1.918 

Table3.2: Summary of uni-axial creep and tensile test results for as-cast copper 
batches (A) and (C). 
(Inst. ) means specimen failed immediately on loading. 
(Stop'd) means the test was aborted. 
Test 6* was aborted after 3,500 hrs. 



Specimen Stress 106MPa 45MPa JAMPa 

Temperature 150° 250° 5000 

Etch-Pit Density Low High Low 

Voiding Slight due 

to grain 

bdry sliding. 

Internal voiding 

present. 

Some Voiding 

at fracture 

site. 
Cracks 45° and 90° 

to tensile 

axis. 

Surface cracks 

present 90° to 

tensile axis. 

Single failure 

crack 90° to 

tensile axis. 
Climb None Climb present 'High climb 

activity. 

Oxide None Black CuO Cu20 

Failure Mode Creep Ductile Creep Brittle Creep Brittle 

Table 3.3: Summary of metallographic observations of microsections from uni-axial 
creep specimens tested at 150,250 and 500°C, due to Mabutt[48]. 



[mp. 
(°C) m n X A K 

150 -0.6941 6.991 7.599 20.22 0.2234E-17 0.3194E-14 

250 -0.7431 4.261 1.889 4.737 0.965E-5 0.3373E-8 

500 -0.0704 7.033 4.562 7.432 0.2397E-7 0.5063E-10 

Table3.4: Material constants fitted to batch-(C) Copper at 150°C, 250°C, 500°C. 

Material constants are calculated such that the variables take the units of Stress in 

MPa, Strain in (%), and Time in hours. 

a) m --0.743 
m --7.8482 exp(- 9.4289E-3 @) 

b) n-0.31329 exp(0.010441 0) 
n-2.5815 exp (2.0046E-3 0) 

c) K- 510.48 exp (- 0.10297 0) 
K-2.2471E-7 exp (- 0.01680 0) 

d) 0-3.0199 exp (1.8010E-3 0) 

e) x-0.78218 exp (3.5271E-3 0) 

f) A-0.9650E-5 
A-3.8854E-3 exp (- 0.0240 0) 

150 5B< 250 
250 50< 500 

150 s0< 250 
250 585 500 

150 50< 250 
250 59< 500 

150 sB : 000 
150 5BS 500 

150 50< 250 
250 85 500 

Table3.5: Functional variation of the material constants with temperature. 

Variables take the units of Stress in MPa, Strain in (%), and Time in hours. 
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Figure 3.1: The three constant-load uni-axial tension creep rigs, as 
used in tests by the author. 
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Figure 3.4: The specimen is held in the clamp-block with ceramic 
collars and a bolt. N. B. the block has two pivots, allowing specimen ro- 
tation in two mutually perpendicular directions. 

Figure 3.5: Arrangement of the extensouieter 
rods which are connected to the 
specimen protrusions and the L. V. D. T. 
for the electrical measurement of 
gauge length extension with time. 
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Figure 3.7: The exterior of the testing laboratory, showing the air- 
conditioning ducting. 

Uni-axial specimen load (KN) 

02468 10 12 

70% at 400 lbs. 
30 

Commercial machine using 
threaded adaptors, [38]. 

be 
25 

GÄ NASA machine with 
button head specimens, [38]. 

15 
y Results using universal 

10 
blocks at specimen ends, [38]. 

Typical results using universal 
blocks for the creep rigs set up 

5 by the author. (Fig 
. 3.9) 

0 
0 400 800 1200 1800 2000 2400 

Uni-axial specimen load (lbs) 
Figure 3.8: Percentage bending (equation 3.1) across a creep speci- 
rnen as a function of test load, for different test machines. 
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X% bending calculated 
from eqn. (3.1) using 
strain readings from 

gauge No. 1 and 2. 

0% bending calculated 
from eqn. (3.1) using 
strain readings from 
gauge No. 2 and 4. 

0 
0 500 1000 1500 2000 2500 3000 3500 

Uni-axial specimen load (N) 
Figure 3.9: The results from a typical bending test, for creep rig No. 2. 

Figure 3.10: Re-designed extensometer clamps, incorporating a four- 

spring arrangement. 
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(a) 

(b) 

Figure 3.12: (a) long-thin columnar grains of Copper in the as-cast 
condition. Note the grain refinement towards the left-hand side and bot- 
tom edge. These edges during casting touched the cast-iron chill and the 
sand-box of the mould, respectively. 
(b) etched microsection cut across the columnar grains, showing a plane 
90° to that of (a). 



Figure 3.13: Problems encountered with machining soft as-cast Cop- 
per. Even at low spindle speeds, taking fine cuts, cutter force is sufficient 
to bend the specimen, ejecting it from the lathe. 
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Figure 3.14: (a)Obtaining the creep 
curve from the total strain curve, by 

subtracting the initial strain on 
loading (co). 
(b)Determination of the initial strain (co) 

on loading, from the fast-scan 
digitally logged data. 

(a) 

-wie -- Time(t) 
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Figure 3.15: A typical series of creep-rupture curves at different test' 
stress levels, required to define the material constants for the constitutive 
equations at this temperature. 
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Figure 3.18: The variation of the elastic modulus with temperature 
for batch-(C) Copper. 
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Figure 3.19: The variation of the 0.2 % proof stress and the ultimate 
tensile strength with temperature for batch-(C) Copper. 
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Figure 3.25: Fracture surfaces for specimen (A), Fig. 3.24, tested at 500°C. 

Figure 3.26: Fracture surfaces for specimen (D), Fig. 3.24, tested at 250°C. 



Figure 3.27: Fracture surfaces for specimen (E), Fig. 3.24, tested at 
150°C. 

ýýý 7 

Figure 3.28: Fracture surfaces for specimen (F), Fig. 3.24, tested at 150°C. (Batch-(M) Copper). 
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Figure 3.29: Experimental (+) and fitted (-) creep curves for creep 
tests (a) at 150°C, (b) at 250°C and (c) 500°C and various test stress 
levels in MPa. 
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Figure 3.30: Graphs showing the functional variation of material pa- 
rameters with temperature. Parameter functions are given in Table 3.5. 
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Figure 3.31: Predicted creep curves for Copper at (a) 1500C, (b) 
300°C, and (c) 450°C. Stress levels in Mpa. N. B. Creep curves at 250°C 
and 500°C are the same as the predicted curves of Figs. 3.29 (b) and (c), 
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Figure 3.32: Comparison of predicted and experimental variations of 
log(stress) against log(rupture time) for batch-(c) Copper over the tem- 
perature range 150°C to 500°C. 
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Figure 3.33: Comparison of predicted and experimental variations 
of log(stress) against log(min. strain rate) for batch-(c) Copper over the 
temperature range 150°C to 500°C. 



Chapter 4. 

The Creep Continuum Damage Finite Element 

Method. 

4.1 Introduction. 

The constitutive damage laws (Chapter 2) are shown to represent the mi- 

crostructural features (Chapter 1) of materials which undergo creep deformations. In 

Chapter 3 it is shown how the material constants can be obtained for a material, from 

uni-axial creep tests. Here the application of the creep constitutive and damage rate 
laws within the finite element method is described (section 4.2). In the creep contin- 

uum damage mechanics finite element method the geometry of a structure is defined 

by a finite element mesh and the loads present on the structure, by the specification 

of boundary conditions. The computer solution for the finite element problem begins 

by solving the boundary value problem, it uses the initial elastic stresses, which are 

substituted into the creep constitutive and the damage rate laws and integrates the 

creep strain rate and creep damage rate fields with respect to time. The integra- 

tion is carried out by a 4th order Runge-Kutta method, which involves the repeated 

solution of the boundary value problem to determine the new up-dated field quanti- 
ties required for the numerical integration. Creep damage grows monotonically with 
time until the damage in an element reaches the critical value (w >0.9999), when 
the element is unable to sustain any load. The element is said to have failed and it 

is removed from the finite element model. The boundary value problem is re-solved 

and the integration continued until the growth of the failed element loci subtends 
the ligament of the component, at the component lifetime. Numerical integration 

methods, integration accuracy and method efficiency will be discussed in section 4.3. 

For each iterative step compatibility and force equilibrium must be explicitly 

satisfied. In section 4.4 parameters are discussed, which have been used by the author 
to check that equilibrium in the creep computer solution is satisfied, to ensure that 

good solution accuracy is achieved. 
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4.2 The Finite Element Method. 

(a) Here particular attention is given to the Absolute Method [23] for the 

solution of structural creep problems. This method has the distinct advantage over 

the Rate Method [55], in that cumulative truncation errors within the iterative 

technique do not violate the force equilibrium equations [56]. 

From the principle of virtual work applied to the boundary value problem 

given elsewhere [23]: - 
Fý _ [K] U- Fe (4.1) 

where (Fe) is the global elastic, applied force vector, and (Fe) is the global creep 

force vector; (U) is the global vector of the nodal displacements and [K] is the global 

stiffness matrix given by the assemblage of the stiffness terms for each individual 

(k)th. element: 

(K1(k) =J B(k)DB(k)dv(k) = Bk)DB(k)A(k). 1 (4.2) 
( k) 

Equation (4.2) is for two dimensional constant strain triangles, as used by the author, 

where (t) is the element thickness, which is normalised and taken as unity. (B) is a 

matrix whose components are dependent upon the nodal co-ordinates of the element 

and (D) is the isotropic elastic material property matrix derived from the general 

expression (Cijkm) [19J. 

The boundary conditions are applied in equation (4.1) by setting components 

of a single dimensioned array vector (called the state vector), to have a value of 1.0 

or 0.0. A 1.0 in the state vector fixes a displacement component for a node in the 

(X) or (Y) direction. 

Initially (Fe) is zero and (4.1) is solved by finding the inverse of the global 

stiffness matrix [K], which is performed using a Choleski square root method: 

U= [K]-i(F, +Fc) (4.3) 

giving the elastic (X) and (Y) nodal displacements. The elastic strains for each 

element are obtained: 

= E(k)U(k) (4.4) 

where U(k) is from global displacement vector (U). The elastic stress are given by: 

U(e)ij(k) =D E(e){j(k) (4.5) 
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The elastic stress components are substituted into the creep strain rate equo, tlon : 

E(`)'' (1 - w)- 
(4.6) 

where H(Q) may be shown [57] to be 

and: 

1 0.5 0 

"-i (u 1) -0.5 10 (4.7) 

003 

{ii + Q22 + Oll 22 + 3oi2}' (4.8) 

Here the creep strains are the engineering strains and plane stress conditions are 

assumed. Equation (4.6) is the same as Odqvist's equation (2.7), but equation (2.7) 

is defined in terms of the absolute strains in accordance with the absolute strain tensor 
[20]. N. B. for brevity future reference to the creep strain rate equations of Chapter 2 

is made in preference to equations (4.6) and (4.7). 

The elemental damage rates are calculated substituting the elastic stress com- 
ponents into the equation: - 

W= 
MtmLX(o'') 

(1 + 0) (1 - w)q, 
(4.9) 

The creep strain rate and damage rate values obtained from equations (4.6) 

and (4.9) are numerically integrated with respect to time (t) using a 4th. order 
Runge-Kutta method, but here for simplicity a Euler 1 scheme is shown, giving the 

current creep strain and damage values at time (t + At): - 

E(c)ij(r+ne) = E(c)ij(t) + E(c){ý(, ). 
Ot (4.10) 

w(: +nt) = w(t) + w(t). Et (4.11) 

for each element (k). The elemental creep stiffness matrices are calculated: - 

[R](k) =JB )Ddv(k) = B)DA(k). t (4.12) 
(k) 

for plane strain triangles. 

The nodal creep force vectors for each element are given by: 

F(c)(k) = [R](k)E(c)ij(k) (4.13) 
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and assembled into the global creep force vector (Fe). (Fe) is used to up-date equation 
(4.3). Now the solution of (4.3) yields the total displacements due to both creep and 

elastic forces, giving the total strain: 

E(Tot. )ij(k) - 
B(k) U(k) 

= E(e)ij(k) + E(c)ij(k) (4.14) 

from which the elastic strain may be obtained, knowing (etýý;; 
ýký} 

from (4.10): 

(4.15 E(e)ij(k) = B(k)U(k) -- E(c)ij(k) 

and the current stress field at time (t + At) is obtained using (4.5). Then, equation 
(4.5) to (4.15) may be used iteratively stepping forward in time (t), until the damage 

values (w) for an element reaches the critical values (0.9999), when the element is 

said to have failed. This element is unable to transmit any load and is removed, by 

removing its element stiffness component [K](k) and its corresponding creep forces 

F(c)(k) from equation (4.1). The global stiffness matrix is re-inverted (4.3) and the 

solution continued until the next element fails, when this procedure is repeated, until 

the whole finite element mesh ligament is subtended by failed elements. Elements 

are also forced to fail for special cases, where an element or an island consisting of 

a number of elements are surrounded by failed elements. Nodes which are not con- 

nected to unfailed elements are included within the boundary conditions of equation 
(4.1). The procedure described is primarily for a plane stress analysis, but is similar 
to the procedure used for plane strain and axisymmetric analysis; though for each 

analysis different (B) and (D) matrices are defined [58]. The loading conditions for 

the axisymmetric analysis are given in section 8.6.1. 

(b) In the finite element program Damage-(XX), equation (4.1) is normalised 
by defining ((J = u/eo), (eo = ao/E), (V c , )ji = c(, )ij/eo) and (D = DIE), to give 
the applied elastic force vector (Fe) in terms of the leg lengths of the top boundary 

elements, giving (4.1) as: 

(4.16) F'ei = l(T. B. )(k) = (k] (I - 
Pc 

where 

B(k)Ddv(k) V(c)(k) 4.17) 1(T. 
B. )ýký = 

ff. 
B(k)DB(k)dv(k) Ü(k) - 

ffm 
(k) 
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Using this normalised formulation the normalised creep strain rate and damage rate 

equations (2.19) and (2.20) are used, which are integrated using the normalised failure 

time scale defined by equation (2.18). The normalisation improves solution accuracy 
by not allowing very small and very large numbers into the computer solutions, there- 

fore reducing the effects of numerical rounding errors. 

4.3 Numerical Time Integration. 

4.3.1 The Initial Value Problem. 

The initial value problem may be written as: 

= Y(') _ .f 
(x, y); y(xn) =n 7x (4.18) 

A solution is to be found for (y) in the range (xfz <x<x f). It is assumed that 

(f) has a unique continuously differentiable soution (y(x)). (r) is the known starting 

or the initial value of the solution. (dy/dx) may be identified with the creep strain 

rate or damage rate, where (x) is the time scale. Considering the Taylor series for 

y(x� + h) about the point (x�): - 

y(xn + h) = y(xn) + hy(1)(xn) + 
2ý 

y(2)(xn) +... (4.19) 

where 
9 

y(9)(X.. ) = 
dqx 

;x= xn; q' = 1,2 ... (4.20) 

and (h) is the step length: h= (xri+i - xn). 

The simplest integration technique involves the truncation of (4.19) after the 

second term: 

y(xn + h) y(x++) + hy(i)(xn) (4.21) 

_ J(xn)+ h. f (x,,, y(x+i)) (4.22) 

from (4.19), which is called the Euler 1 method, as shown in Fig. 4.1. Hgnce, (4.1q), 

or the creep strain rate and damage rate equations (2.19) and (2.20) respectively, may 
be numerically integrated forward in time using such an integration scheme. 
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4.3.2 The Numerial Integration Technique Chosen For Use 

In The Creep Continuum Damage Finite Element Program. 

The time integration technique used in the creep continuum damage program 
Damage-(XX) is a 4th order Merson's Runge-Kutta method [59,60]. This method is 

an explicit one step method [60] and has improved accuracy over Euler 1,2, and 3 

methods [60], in that it takes account of higher order derivatives of the Taylor expres- 

sion (4.19) in the initial value problem, by sacrificing linearity; yet, the method only 

requires a single starting value. Merson's method provides an easily calculable local 

truncation error estimate, which forms the basis for the choice of time step, in the 

time stepping technique of the program Damage-(XX). If the error estimate is large 

the time step chosen is reduced and vice-versa. The use of high accuracy integration 

techniques of the implicit multi-step methods, such as predictor corrector methods 

and the explicit multi-step methods, require additional starting values and usually 
involve much higher computational effort than the 4th order Runge-Kutta technique. 

Numerical integration techniques have been reviewed and used by the author [60]; and 

the 4th order Merson's method, has been found to be particularly suited to its appli- 

caiton within the creep continuum damage program. This integration method gives 

reasonably good solution accuracy and stability with a low computational overhead. 
The use of the 4th order Merson's method and the variable time stepping procedure 
has been described by Hayhurst et al [23] in (Appendix Al and A2) respectively. 

4.3.3 Time Integration Accuracy And Its Effect On The 

Finite Element Creep Damage Solution. 

The selection of a time step (AT) is detailed [23] (Appendix A2.1 and A2.2). 

Having selected a time step, the Merson's error estimate is calculated for each com- 
ponent of creep strain for each element (V(ERR); j(k) ), and is normalised by the current 

component of creep strain (V 
C); j(, ) 

). When the creep strains (V(c)ij(, 
)) are very small 

(V(c)ij(k)) is replaced by (V(LIM) = EPSL x V(Ab3. A,,. )), where (EPSL) is a constant and 
(V(Ab8. Av. )) is the minimum absolute average strain for all the elements in the structure. 
The criterion for the acceptance of the time step is given as: the maximum absolute 
value of V(ERR); j(k) /V(c)Tj(k) for all elements in the structure must be less than (EPSR), 

where (EPSR) is also a constant and for V(c)ij(k) < V(Abs. Av. ) '(c)ij(k) =V LIM) 
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The values of (EPSL) and (EPSR) therefore determine the size of the ac- 

ceptable integration error in creep-strain, in the automatic time stepping integration 

procedure. If the maximum normalised strain error is larger than (EPSR), then the 

time step increment is reduced and a new solution obtained and the strain error is 

judged again. This procedure is continued until an acceptable strain error is obtained. 
A reduction in the sizes of both (EPSL) and (EPSR) therefore increases the accuracy 

of the integration and hence the accuracies of the predicted stresses, strains, failure 

time and failure strain are improved. This increase in accuracy unfortunately involves 

an increase in the number of iterative time steps for a finite element prediction to 

run to completion and also involves an increase in the number of unacceptible time 

steps tested within each iteration. Therefore, requiring an increased computational 

overhead. 

A simple two element, finite element mesh is subjected to a constant uni- 

axial load, under plane stress conditions, to show the effect of modifying the integra- 

tion parameters on the predicted normalised failure time (r1) and normalised failure 

strain (VJ) respectively. The top curve in Fig. 4.2 shows how the normalised failure 

time (Ty) is reduced with reduced sizes of the integration error parameters (EPSL) 

and (EPSR), which reduce the integrat toR error. The theoretical value of rupture 

time obtained by analytical integration of the damage rate law is given by (2.23) as 
(T =31.805). It is observed that as the integration error is decreased the number of 
iterative steps required increases from 22 to 290 steps. Referring to the top curve in 

Fig. 4.3, it is noticed that creep strain at failure (V1), is affected to a lesser-extent by 

the integration parameters. The values remain close to the theoretical value of (V1) 

for most of the range of the integration parameter values used in these tests. The 

theoretical value of (Vf) is obtained from the integration of both the creep stain rate 

and the damage rate equations and is given by equation (2.25) as (V1 = 7.65%). 

The significance of the size of the error in the predicted normalised failure 

time (r1) for a structure must be judged, by obtaining the real error between the 

numerical and the theoretical values of real failure time (t) using equation (2.27). 

Referring to this equation the significance of the integration error depends on the size 

of (1/(m + 1)). If (1/(m + 1)) is large then improved integration accuracy will be 

required, over the integration accuracy required for a material having a small value 

54 



of (1/(m + 1)). 

4.3.4 The Z-Transformation Of The Damage Parameter, 

Coupled With the Runge-Kutta Method. 

Here a substitution [61] of: 

z= (1 - w)(O+i) 

is made in both the creep constitutive and damage law, equations (2.19) and (2.20) 

respectively. From (4.2 3): 

(4.23) 

dz = -(¢ + 1) (1 - w)4dw (4.24) 

giving: 

du, En-1 s,, 
dr z $i (4.25) 

and 
dz dw dz dw 

x (-1)( -{- 1)(1 - w), _ (-1)OX(Eii) (4.26) - aTxdw aT y 
where at time (TKO; w= 0), (z =1.0) and at (r = rp; w=1.0), (z =0) from (4.23). 

This substitution considerably eases the integration of the damage rate equation, as 
here (4.26) will be integrated instead of equation (2.19) and (4.26) is now indepen- 

dent of the monotonically increasing damage parameter. Hence (z) increases linearly 

at constant stress (0(Ejj)) with the normalised time. The Z-transformatidn has been 

included in the program Damage-(XX), by the author in collaboration with Othman 

[62] and utilises the 4th order Merson's method Runge-Kutta technique. Before en- 

tering the Runge-Kutta integration program module (w) is transformed to (z) using 

equation (4.23) and the strain rates and damage rates are given by (4.25) and (4.26) 
S 

respectively. On leaving the module (z) is trarAformed back to (w), so no further 

program modification is required. 
Similar integration accuracy tests were performed to those of section 4.33, for 

the standard Runge-Kutta technique, using a plane stress two element finite element 

mesh under uni-axial tension. The results are summarised as the lower curves of 
Figs. 4.2 and 4.3. Referring to the lower curve of Fig. 4.2 it is noticed that the 

normalised failure time is almost exactly that of the theoretical failure time, for 
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all the values of the integration accuracy parameters chosen. This is as a direct 

result of the simplified integration of the linear equation (4.26) for constant stress 

conditions. It is noticed that the number of iterative steps required till failure of 
the structure, is on average approximately 10% smaller for the Z-transformed tests in 

comparison with the plain Runge-Kutta method tests. Though, the Z-transformation 

gives much improved lifetime predictions compared with the standard Runge-Kutta 

solutions (Fig. 4.2), the failure strain predictions are worse than those obtained by 

the standard Runge-Kutta method (Fig. (4.3)). The value of the strain at failure 

approaches the theoretical value (V1=7.65%) as the integration error parameters are 

reduced. 

Therefore, if sufficiently small integration error parameters are chosen the two 

integration methods should give the same failure time and failure strain predictions, 

approaching the theoretical values respectively. As the use of small integration error 

parameters involves a high computational overhead, then if larger values of integra- 

tion error parameters have to be used, the Z-transformed Runge-Kutta technique will 

provide the best lifetime predictions and the standard Runge-Kutta technique will 

provide the best creep deformation (or creep strain) predictions, using the least com- 

putational resources. All computer solutions performed by the author and detailed 

in this thesis used the standard Runge-Kutta method so that consistent comparisons 
between results and CPU time usage of different finite element problems could be 

made. 

4.4 Mesh Equilibrium And Equilibrium Parameters. 

Formerly an equilibrium parameter called SIGREF has been used in the pro- 

gram Damage-(XX). This parameter is defined as the ratio of the total vertical force 

(i. e. in the (y) direction) on the finite element mesh bottom boundary, to the applied 
total vertical force on the mesh top boundary: 

F'(y)(B. B. )(k) SIGREF = (4.27) 
E F'(Y)(r. B. )(k) 

which may be written as: 

SIGREF .E 
t(B. B. )(k) E(v)(k) 

(4.28) 
L, 

1(T. B. )(k) 
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where (l(k)) are the leg lengths of the elements on the bottom boundaries (B. 13. ) 

and the top boundaries (T. B. ) and (E(b)ýký) are the stresses in the bottom boundary 

elements. The stress applied to the top boundary is usually normalised to unity in 

the program and hence the force on the top boundary of the finite element mesh is 

equal to the length of the top boundary (equation (4.16) and (4.17)), as the mesh 
has unit thickness for plane strain and plane stress conditions. For perfect force 

equilibrium SIGREF should equal unity throughout the creep solution, until a line 

of failed elements forms along the effective cross-sectional area of the mesh, when 
SIGREF becomes zero. Though, SIGREF only includes the force contribution to the 

bottom boundary of elements with a side on the bottom boundary, and does not 
include the contributions of other elements connected to bottom boundary nodes. 
For example in Fig. 4.4(a) only element No. 2 contributes force to the bottom 

boundary in the calculation of SIGREF; the contributions of elements No. 1 and 3 are 

neglected. This results in the parameter SIGREF giving erroneous values, particularly 

when crossed-triangular finite element meshes are used. This is exemplified by the 

situations which may occur when modelling crack growth along a crossed-triangle 

finite element mesh boundary. Examination of one crossed triangular element set 

taken from the larger mesh, shown in Fig. 4.4(a), shows that if the element at the 

bottom boundary fails first (Fig. 4.4(b)) then the value of SIGREF becomes zero, as 
the applied force is taken by the elements (1) and (3). Yet in Fig. 4.4(c) if element 
No. 1 fails first, the value of SIGREF becomes 2.0. Though, for both cases, from 

the summation of the nodal forces, force equilibrium, is satisfied. In a large structure 

smaller changes in SIGREF are noticed, but the parameter is still erroneous. 

The author has used a new parameter to check mesh equilibrium is satisfied 
throughout the creep continuum damage solution. The parameter is called FREF, 

defined: 

FREF . 
EF(a. a. )(v)(n) 

_E 
fv(k) B(k)E(T e)(v)(k)dv(k) (n) (4.29) 

c-ý E F(T. B. )(y)(,,, ) 
E F(APP)(v)(. 

) 
where (k) indicates the element numbers of elements having finite element mesh 
bottom boundary nodes, (n), and the top boundary nodes are termed (m). Therefore, 

FREF is the summation of the vertical (y) forces at the bottom boundary nodes, 

obtained from the elemental stresses in the bottom boundary elements (connected to 

the bottom boundary nodes), divided by the total force applied to the top boundary 
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in the vertical (y) direction. When an element fails (w >0.9999) at the bottom 

boundary its force contribution is not included in the calculation of FREF. The value 

of FREF should be explicitly satisfied at every iterative time step of the finite element 

creep damage solution and should remain at a value close to -1.0000, usually FREF 

= -0.9999, indicating that an almost perfect state of equilibrium is maintained. 
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Chapter 5. 

Modelling Creep Deformation And Failure In 

Regions Of High Stress Gradient. 

5.1 Introduction. 

In modern power generating plant operating at high temperatures many com- 

ponents of complex geometry are fabricated from creep resistant alloys, using welded 

joints. During the component service life cracks may occur in or close to the weld 
heat affected zone. Subsequent creep crack growth has two main characteristics: 

(i) High levels of constraint, due to the high local tri-axial stress gradient, 

caused by the presence of the crack tip, and by the material property mismatch 

across the heat affected zone. 
(ii) Bending stresses across the crack plane in Mode I loading, causing com- 

pressive as well as tensile stress in the ligament. 

In this chapter the compact tension specimen (CTS) is studied as represen- 

tative of these two characteristics. Previously the failures of structures, containing 

moderate tri-axial stress states such as notched bars [23] and centre and edge cracked 

plates (Chapter 6 and [63]), have been predicted using the creep constitutive and 
damage laws, equations (2.19) and (2.20) in the finite element program Damage- 

(XX). Reasonably good agreement has been obtained between the predictions and 
the experimental tests. The modelling of the CT-specimen is complicated by the 

specimen having a high tri-axial stress state at the crack tip, together with a super- 
imposed bending stress. Brown [64] tried to model the creep failure of the compact 
tension specimen using the same program and analysis technique used for both the 

notched bars [23], and the cracked plates [63], with little success. The predicted fail- 

ure time and damage distributions were both much larger than the results expected 
from experiment. 

This chapter describes systematically new computer methods and modelling 

modifications which have been introduced to try to obtain an improved failure pre- 
diction for the CT-specimen. The initial sections 5.2 to 5.6 detail the specification 

of the finite element model, the constitutive equations and material constants to be 
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used including the assumption for the growth of damage in compression; together 

with the calculation of the expected normalised experimental failure time for the 
AISI 316 stainless steel compact tension specimen, using the creep-rupture data of 
Myers and Pilkington [65] and the uni-axial creep rupture data of Hayhurst [23] for 

AISI 316 stainless steel. This experimental failure time is used as a means of assessing 
the appropriateness and accuracy of the finite element model predictions. A similar 

solution to that of Brown [64] for the CT-specimen has been obtained by the author 

and the results are presented in section 5.7. New computational techniques to remove 

elemental stiffness and creep forces, when an element fails (w >0.9999), are presented 
in section 5.8 . These techniques are used to try and promote improved stress redis- 
tribution ahead of the crack tip in the computer model for the CT-specimen. A plane 

stress CTS solution is detailed in section 5.9. The constitutive model is modified in 

section 5.10 to a full bi-linear model (Chapter 2, section 2.6) and a new plane stress 

solution is obtained for the CT-specimen model in section 5.11. A large deformation 

and rotation analysis is performed and discussed in section 5.12 and the effects of 

mesh refinement on the solution are considered in section 5.13. Section 5.15 concen- 

trates on the modification of both the creep constitutive and the damage rate laws 

in line with the physically based model of Cocks and Ashby [66], to allow for the 

effects of the tri-axial stress state on constrained void growth (section 1.3.2. (ii)), dur- 

ing the creep fracture process. New isochronous rupture surfaces are defined and a 

new computer failure prediction for the compact tension specimen is obtained, giving 
improved results. 

5.2 Creep Testing The Compact Tension Specimen. 

The geometry and dimensions of the compact tension specimen are shown in 

Fig. 5.1. The notch is machined into the specimen and a sharp crack is grown to 

a distance (a) from the tip of the notch, by fatigue loading the specimen at room 
temperature. This is done by cycling the specimen load, which is applied to the 

specimen through the load-holes by the load-pins. In a CT-specimen creep test the 

specimen is heated to the constant test temperature and subjected to a constant 
load. Creep tests for a range of applied constant loads (W), have been carried out 

at a constant temperature of 550°C +/ - 2°C by Myers and Pilkington [65] for 1Cr 
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0.5Mo - ferritic steel compact tension specimens. When the reference stress (aRef), 

defined by equation (A5.2), is calculated for each compact tension specimen tested 

and is plotted against the specimen failue time (t f), on a stress-rupture diagram, 

Myer's and Pilkington's data falls close to their uni-axial creep test, stress-rupture 

line. 

5.3 The Compact Tension Specimen Problem Specification. 

5.3.1 Determination Of A Test Load And A Specimen 

Failure Time For Comparison With Finite Element 

Predictions. 

The constants in the creep constitutive equations (2.19) and (2.20) are not 

available for the 1Cr 0.5Mo - ferritic steel used by Myers and Pilkington [65], and 

so a direct comparison cannot be made between CT-specimen lifetimes predicted 

from uni-axial data, using Damage-(XX), and the results of experiment. However 

material creep constants are available, for a batch of AISI 316 stainless steel, which 

have been obtained from the uni-axial and multi-axial creep tests of Hayhurst et al 

[23,631. This AISI 316 stainless steel material has similar uni-axial creep curve shapes, 

has similar ductility and multi-axial behaviour to the 1CrO. 5Mo material used in the 

tests by Myers and Pilkington; but it has a different stress rupture character. It will 

therefore be assumed that the relationship between the log. stress vs. log. rupture 

time behaviour for the CT-specimen and the uni-axial specimen, for the material data 

due to Hayhurst, is the same as that for the material tested by Myers and Pilkington; 

the same specimen geometry will be assumed. The lifetime of a compact tension 

specimen test carried out at a test load of (W=19,620 N), having a reference stress 

(crR, f = 164.808 MPa, (equation A5.2)) , 
has been determined from the data due to 

Hayhurst, (Fig. 5.2), and is shown to be 4x 10' hours. This approach is justified 

on the grounds that Myer's and Pilkington's CT-specimen rupture test results when 

plotted on log. reference stress, (QRef), and log. rupture time, (t,. ), axes lie close 

to his uni-axial creep rupture line, plotted on the same axes. This rupture time of 

4x 104 hours gives a normalised rupture time of (-rf 31.8), which will be taken 

as the basis for comparison with compact tension specimen finite element lifetime 
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predictions. While this approach may not be strictly correct, it gives results of the 

correct order which are useful in assessing the numerical methods and the constitutive 

equations to be developed in this chapter. 

5.3.2 Finite Element Mesh Discretization Of The Compact 

Tension Specimen. 

Only half of the compact tension specimen is modelled due to symmetry. The 

simplest finite element mesh generated [64], together with two exploded views of the 

refinement at the crack tip are shown in Fig. 5.3. The finite element mesh has 544 

elements and 296 nodes. The smallest elements at the crack tip are arranged to 

be of a similar dimension to the size of an average grain of the specimen material 
(d .: 0.055mm). Nodes on the lower boundary of the mesh are restricted not to move 
in the (y) direction. The crack is modelled by allowing the lower boundary nodes up 
to a distance (a) away from the notch (Figs. 5.1 and 5.3) to have freedom in both 

the (x) and (y) directions. The node marked (F) in Fig. 5.3(a) is fixed in both the (x) 

and (y) directions, to effectively fix the whole mesh in space. The load hole is also 

modelled, as the specimen geometry is such that the hole may affect the stress state 

at the crack tip [67]. 

The finite elements used are linear displacement three noded triangles, which 

are used in plane strain or plane stress. This mesh uses the crossed-triangle arrange- 

ment of elements, which have been observed to give improved creep solutions over 

standard triangular arrangements of elements [68]. 

5.3.3 Finite Element Mesh Loading. 

The true loading of the compact tension specimen at the load hole is best 

represented by a distributed pressure load along the upper surface of the load hole. 

Brown [64] performed computer solutions using both distributed and a single point 
load at the load-hole of the finite element mesh and concluded that the method for 

loading had little effect upon the solution. For simplicity a single point load (P) is 

used by the author (shown in Fig. 5.3(a)), where (P) is the normalised finite element 

mesh load (given in section 5.4 and calculated in Appendix A5.1) corresponding to a 

real test load of W=19,620 N. 

62 



5.4 Normalisation, AISI 316 Stainless Steel Creep Data 

And Creep Constants. 

The stresses, strains, applied load and the time scale are normalised in the 

finite element program to minimise rounding errors in the solution (section 2.4.4). 

It was decided to predict the failure time for a compact tension specimen having a 

test load of W=19,620 N. The normalised load (P) and the normalising stress (op) 

are calculated in the Appendix A5.1 for the compact tension specimen finite element 

mesh, using a specimen called the moment specimen shown in Fig. A5.1. The moment 

specimen has a similar ligament length and load position to the CT-specimen, but 

does not have a notch, or a crack, or load-holes. -It allows the calculation of the 

stress distribution in the compact tension specimen due to pure tension and bending 

alone (i. e no stress concentration is present due to the notch, load-hole and crack). 
From the calculations for the moment specimen (Appendix A5.1), the reference stress 
is defined and the applied finite element mesh load (P) is given as 4.76190, which 

gives a normalised maximum tensile stress of unity in the moment specimen, with a 

normalising stress equal to the reference stress for the CT specimen (i. e. Q, =164.808 
MPa). 

The material constants of the creep constitutive and damage laws, equations 
(2.19) and (2.20), for the batch of AISI 316 stainless steel have been determined 

elsewhere [23,63], from uni-axial constant load creep tests. A summary of the material 

parameters and the value of (Vs) for the normalised stress used for this specimen are 

given in Table 5.1. The uni-axial stress rupture data is given in Fig. 5.2 reproduced 
from Fig. 5, [63] and is observed to be bi-linear. This bi-linear material behaviour is 

represented with the use of two damage evolution laws (equation (2.53) and (2.54)) 

subscripted (I) and (II) for high and low stress behaviour respectively. Only low 

stress creep curves are available from the uni-axial tests and are given in Fig. 5.4 

from Fig. 2, [23]. Figure 5.4 shows the comparison between the uni-axial creep 

curves, computed using the creep constants of Table 5.1, in equation (3.4) and the 

experimental creep curves. The theoretical representation of the experimental data 

is observed to be good. 
The AISI 316 stainless steel tested by Hayhurst et al [23,63] had an average 

grain size of diameter 0.055 mm. Figures 5.5(a) and (b) show Ashby deformation 
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mechanism maps [69] for AISI 316 stainless steel of a similar grain size to that used 
in tests by Hayhurst et al [23] and [63]. Using the bulk shear modulus for the stainless 

steel given by (it = E/2(1 + v)), where (E) and (v) are obtained from Table 5.1, and 
the relationship between the shear stress and the tensile stress (Q, = aT/V3); region 
(A) is determined on the Ashby map of Fig. 5.5(a), representing the creep tests of 
Hayhurst et al, for a range of uni-axial stresses at a constant homologous tempera- 

ture of (T/1810°K=0.455). The high and low stress points within area (A) represent 

the highest and lowest test stress levels of 500 MPa and 162 MPa respectively (Figs. 

5.2 and 5.4). From Fig. 5.5(a) it is clearly seen that a mechanism change occurs 

as the test stress level is increased, from the mechanism of dislocation creep (section 

1.2.1) to that of dislocation glide (section 1.2.3). The boundary between these two 

mechanisms occurs at a tensile stress of approximately 440 MPa from the mechanism 

map. The boundary between the low and high stress behaviour from the creep tests 

of Hayhurst et al is in close agreement with this, occurring at the break stress of 
441.28 MPa. Comparisons between the predicted strain rates for various test stress 
levels using the constitutive data of Table 5.1, in equation (2.19) with the lines of 

constant strain rate of Fig. 5.5(a), also agree reasonably well in the dislocation creep 

region. High stress comparisons (a >441.28 MPa) gave creep strain rates which were 
lower than the constant strain rate line values given in Fig. 5.5(a), but comparisons 

are not easy due to the closeness of the constant strain rate lines on the mechanism 

map in the dislocation glide region. 

5.5 The Elastic Solution And Solution Convergence. 

The stresses in the (y)-direction at the centroids of elements on the lower 

boundary of the compact tension specimen mesh are plotted with distance from the 

crack tip in Fig. 5.6. In Fig. 5.6 this stress distribution, is compared with that 

for a more refined compact tension specimen finite element mesh (Fig. 5.7), having 

844 elements, to show convergence. The stress concentrations for the finite element 

meshes of Fig. 5.3 and the more refined mesh of Fig. 5.7 are 5.135 and 13.086 

respectively. The stress distributions are noted to be similar until very close to the 

crack tip. This difference in stress concentration at the crack tip is not important 
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since within a very short time (a few hours) this peak stress is redistributed due to 

the fast creep strain accumulation and damage growth at the crack tip. The refined 
finite element mesh required much more computational effort to obtain a full creep 
damage solution than the less refined compact tension specimen mesh. It was decided 

not to run the refined mesh problem to completion, as initial damage plots around the 

crack tip showed similar damage distributions for both meshes. Figure 5.8 shows the 

distribution of the normalised first stress variant (Ii = Ii/QO), equation (5.11), the 

normalised effective stress (Ee f=v, f/co), equation (5.12) and the ratio of the former 

and the latter (I1/Eef), which gives some measure of the severity of the tri-axial stress 

state in the compact tension specimen. 
Referring to Fig. 5.6 note the compressive stress which occurs in the compact 

tension specimen ligament furthest from the crack tip, due to the bending moment 

produced by the applied load. The next section dicusses the assumptions made to 

model damage growth in this compressive stress region of the CT-specimen. 

5.6 Damage In Compression. 

Hayhurst et al [70] have performed both tensile and compressive creep tests 

for both Copper and Aluminium. The compressive creep curves show the presence of 

primary, secondary regions, with compressive creep strains which are much smaller 
than the strains in tensile tests for both materials. For Copper no tertiary creep has 

been observed after 5 times the lifetime of the uni-axial tension test at the same test 

stress level. For Aluminium the lifetimes in both tension and compression are similar. 
Therefore, as Aluminium and Copper are materials which have bi-axial rupture cri- 
teria which are dependent upon the effective stress (Eel) and the maximum principal 

stress (Ei) [221, respectively, it is reasonable to suggest that only the effective (Ee f) 
contributes to the growth of creep damage in compression. This asumption is included 

within the finite element creep continuum damage analysis in making the maximum 

principal stress zero i; equation (2.20) and the damage rate purely dependent upon 
the effective stress when stresses become compressive . Therefore, when (El < 0) for 

a finite element (k), the damage rate equation (2.20) in compression becomes: - 

w(ý) - 

{(1- a)E(e)(k) X 
(5.1) 

0)(1ý 
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5.7 The First Finite Element Creep Continuum Damage 

Solution For The Compact Tension Specimen In Plane 

Strain. 

This solution used the material constants given in Table 5.1 with the finite 

element mesh shown in Fig. 5.3. As the compact tension specimen is 25 mm thick, 

through thickness deformation will be assumed to be negligibly small and hence a 

plane strain finite element solution will be performed. The stress field close to the 

crack tip rises above the break stress (&), making it necessary to model both high 

stress, ductile, and low stress, brittle, material behaviour, which is observed as a 

change in the gradient of the stress-rupture diagram of Fig. 5.2. As no creep strain 

rate data was available for high stress tests, due to very short rupture times (<16 

hours), the first solution is assumed to be bi-linear only in damage growth laws. The 

same low stress, creep strain rate equation is assumed to represent both low and high 

stress creep deformation behaviour. 

From the finite element solution, the first element fails (w >0.9999) almost 
immediately on loading the specimen. The window sizes for the failed element dis- 

tribution diagrams are given in Fig. 5.9 against the outline of the compact tension 

specimen finite element mesh. Further elements fail in the element fan at the crack 
tip; followed by elements failing forwards of the crack tip (Fig. 5.10(a)). Figure 5.10(b) 

shows the growth of the failed element zone into the body and across the ligament of 
the specimen. Figure 5.10(c) shows the distribution of failed elements (w >0.9999) at 

a normalised time close to failure. Damaged elements are observed around the load- 

hole and the damage distribution around the crack-tip is seen to grow towards the 

hole, close to the specimen failure time. The specimen fails quickly across the liga- 

ment at a normalised lifetime of (-rf =48.04) (Table 5.2). This normalised failure time 

gives a real life prediction of 38.89 x 106 hours. The expected experimental lifetime is 

4.0 X104 hours (r1 =31.8). Therefore, the finite element solution over-estimates the 

real failure time of the CT-specimen by a factor of approximately 1000. 

During. the finite element computer solution the parameter FREF (Section 4.4 

equation (4.29)) remained constant at -0.9999 indicating that force equilibrium based 

on the boundary element stress is satisfied throughout the solution. Reduction in 

the automatic time stepping error bound parameters EPSL and EPSR (section 4.3.3) 
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from 10'3 and 10'4 to 10'¢ and 10'5 only produced a 6% reduction in the normalised 

lifetime for the compact tension specimen solution. 

The finite element model is therefore well conditioned in that equilibrium 

calculated from the boundary element stresses is satisfied, yet the model yields an in- 

accurate lifetime prediction. From the failed element plots of Figs. 5.10 it is observed 

that the damage distribution is not forward growing, as would be expected in prac- 

tice, but seems to spread out equally in all directions. It was thought that this may 
be caused by the poor promotion of stress redistribution ahead of the crack tip. This 

may be caused by a loss of strain energy from the immediate removal of failed element 

stiffness components and the respective creep forces, within one iterative step in the 

finite element computer technique (section 4.2), causing poor off-loading of stress to 

neighbouring unfailed elements. Typically a finite element close to a crack-tip, with 

an initial elastic normalised stress of 3.0, off-loads stress to its neighbouring elements 

with time and has a normalised stress of approximately 0.3 when (w > 0.9999) and 

the element is removed from the solution. These values of stress are dependent upon 

the material parameters used and hence may vary for different materials in the finite 

element model. This method of instantaneous element removal when (w) reaches the 

critical value of (w >0.9999), will be term the instantaneous technique. 

Other researchers such as Chaboche [71] and Tvergaard [72] use different meth- 

ods of removing the components of stiffness and creep force, whereby the effects of 
failed elements removed from the finite element solution are spread out over a number 

of iterative steps. The techniques of Chaboche and Tvergaard are thought important 

for achieving an accurate solution for the compact tension specimen, it was expected 

that they might promote improved stress redistribution ahead of the crack tip; and 
decrease the size of the failed element distribution, hence localizing failure into a 

narrow cracked zone growing across the ligament, therefore, reducing the predicted 
failure time of the specimen. These techniques are explained; and they are used to 

predict the failure of the compact tension specimen in the following two sections. 
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5.8 Evaluation Of Techniques For The Removal, From The 

Solution Procedure, Of Element Stiffness And Creep Forces 

For Failed Elements (w >0.9999). 

5.8.1 The Elastic Modulus Technique Of Chaboche. 

Chaboche [71) details that damage may be represented in structural mechanics 
by a decrease in the elastic modulus (E). He relates the elastic modulus for an 

undamaged material element (E) to that of a damaged material element (E) through 

the damage parameter (w): - 
E= E(1 - w) (5.2) 

Instead of removing the stiffness of a fully damaged finite element from the global 

stiffness matrix and reducing the element creep forces to zero in one step, it may be 

more representative of continuous void growth within a material to reduce the value 

of the modulus of elasticity (E) for this element as the damage grows. This is done 

within the finite element creep damage program Damage-(XX) by pre-multiplying (E) 

for an element by (1-wlkl), where (w(k)) is the damage parameter for the element (k) 

in the creep strain rate and damage rate laws, equations (2.19) and (2.20). Therefore 

the value of (1 - w(k)) varies from 1.0 at (r = 0) to 0 at (r = -rf). The modifications 
to the finite element creep damage program are summarised as follows: - 

From equation (5.2): 

E(x) = E(k)(1-w(k) ) (5.3) 

D(k) = D(k)(1 - w(k)) (5.4) 

then: 

[K)(k)CZ - LJýk)J X5.5) 

and 

Fc, 
k) = Fc(k)(1 -'W(k)) X5.6) 

[K)(k) and FC(ký are assembled to replace the global stiffness matrix [KJ and the 

global force vector FF in the boundary problem equation (4.1). The solution to the 

68 



boundary value problem (equation (4.3)) is found by determining the inverse of the 

stiffness matrix [If]: 

U= [If]-i(F'ý Fý) (5.7) 

and the solution procedure described previously (equations (4.4) to (4.15)) is followed 

except that a new global stiffness matrix [K] its inverse, together with the global force 

vector A. are assembled, and equation (5.7) is solved for each iterative time step, using 

the current values of (w) in equations (5.5), (5.6); also equation (4.5) now becomes: 

D(1 -w(k))e(e); i(k) (5.8) 

Instead of removing [K]ik) and F , (k) when (w(k) =0.9999) for element (k), as 
in the instantaneous technique, both [K](o. ) and Ftk) are reduced in magnitude as 
the damage parameter (w(k)) grows, until (w(k) =1.0) at failure, when [K]rk) and F,,, 

k) 
will be completely removed as ((1 - w(k))=0), (in equations (5.5) and (5.6)). This 

method is expensive in the usage of computer time because it involves inversion of the 

stiffness matrix and re-solution of the equation (5.7) at each iterative step. Implicit 

in the formulation is that as (w(k)) tends to unity, the elastic stress in the failing 

element tends to zero (equation (5.8)), allowing the full redistribution of stress from 

damaged elements to less damaged elements within the finite element mesh. As the 

finite element formulation is a dynamic one, (i. e. as the creep forces are modified, 
these creep forces affect the stresses, which affect the creep and damage rates, which 

affect the creep strains, damage values and creep forces at the next time step and 

so on). Such a modification in the formulation may therefore produce significantly 
different solutions. 

The program Damage-(XX) has been modified by the author to include this 

technique, which will be termed the Chaboche technique [71]. The results for the 

compact tension specimen problem using the Chaboche technique and the constants 

given in Table 5.1 are summarised in Figs 5.11 and Table 5.3. Referring to Figs. 5.11 

the failed element distributions at similar times to those of the previous instantaneous 

method given in Fig. 5.10, are very similar. The first element to fail in the structure 
at the crack-tip occurs at a greater normalised time than that obtained using the 
instantaneous technique; indicating that slightly more stress redistribution from the 

crack tip is allowed in the Chaboche technique. Though, the failure times of both 
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techniques are very similar. Therefore there seems to be little difference between the 

two procedures. 

Research work recently published by Rides et al [73], (after these results were 

obtained), where a simple two bar structure is analysed to assess the effect of including 

the variation of the elastic properties with the growth of creep damage, within the 

structural analysis; also indicates that the variation of the elastic properties with 
damage does not strongly affect the structural response. 

5.8.2 The Tvergaard Technique. 

Tvergaard [72] uses a totally different technique to those of the instantaneous 

technique used by Hayhurst et al and the technique used by Chaboche. His technique 

is not explicitly documented, but what follows is a technique founded on what can be 

inferred from the descriptions of his method. This technique has also been included 

within the program Damage-(XX) by the author. 

When the damage parameter (w) becomes greater than 0.9999 and the element 
is said to have failed, the elastic forces at the nodes of this element (Fig. 5.12(b)), 

due to the stress in the element, are opposed by equal and opposite tractions (Fig. 

5.12(c)). The creep forces at this stage are still present (Fig. 5.12(d)). This causes the 

displacements at the nodes of the failed element to be due to the permanent creep 
deformation only. The elastic displacements are reduced to zero by the opposing 
forces. The stiffness components of this element may then be removed with the creep 
forces during the next iterative step, with the element containing zero stress due to 

the elastic forces (5.12(d), (e)). The opposition forces are then relaxed over 6 further 

iterations, by multiplying by a factor (R), which varies from 1.0 to 0 in steps of 0.2 

(5.12(e), (f)). This involves re-solving the stiffness solution equation (4.3) at every 

relaxation step for each failed element which is expensive in computer time (CPU- 

time). The creep solution may then continue as usual until the next element fails. 

This method is supposed to ensure that all the strain energy in the failing element is 

re-distributed gradually to its neighbouring elements. 
The results obtained using the Tvergaard approach are summarised in Figs. 

5.13 and Table 5.4. The failed element loci (Figs. 5.13) are similar to, those the 

previous two methods (Figs. 5.11 and 5.10), though the failure pattern seems to 
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be influenced to a lesser extent by the hole. The predicted failure time is slightly 

reduced from the former two approaches, (-rf) is 2% lower than the instantaneous 

approach value. Therefore, both the techniques of Chaboche and Tvergaard seem to 

give similar results to the instantaneous technique and hence provide no advantage 

over the instantaneous technique in the prediction of the true creep deformation and 

failure behaviour of the compact tension specimen. 

In the next section the effect of changing the plane strain assumption for the 

CT-specimen model to one of plane stress will be studied, where the through thick- 

ness stress is set to zero, yet through thickness deformation is allowed. 

5.9 The Plane-Stress Creep Continuum Damage Finite 

Element Solution For The Compact Tension Specimen 

Using The Instantaneous Technique. 

The finite element creep continuum damage program Damage-(XX) has been 

suitably modified by the author to include plane stress conditions. The material 

constants of Table 5.1 are used again. The finite element results are summarised in 

Table 5.5 and the form of failed element (w >0.9999) distributions throughout the 

life of the specimen in Fig. 5.14. It is noticed that the stress concentration at the 

crack tip is 7.97 which compares with that of 5.135 for the previous plane strain 

solution. The failed element distributions of Fig. 5.14 are observed to be similar 
to those of the previously described instantaneous plane-strain solutions (compare 

Figs. 5.14 with Figs. 5.10), but the failed element element distribution does seem 
to be directed slightly more in the horizontal direction. The hole seems to influence 

the damage growth to a lesser extent than that for the plane strain solution (Fig. 

5.10(c)). The predicted normalised failure time from the plane-stress solution for the 

compact tension specimen is (r1 =46.90) giving a real lifetime of 26.06 x 106 hours, 

which may be compared with that of 48.04 and 38.89 x 106 hours respectively, for the 

plane-strain solution. 
This result does not agree with the results of Webster [74], who details both 

experimental and theoretical results using the creep fracture parameter (C*) and 

shows that crack growth rates are faster in plane strain than in plane stress. In his 
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theoretical models the differences between the plane stress and plane strain results 

are predicted by modifying the available fracure ductility at the crack tip (C f*). He 

states that for plane stress conditions(e f) is taken to be equal to the uni-axial creep 
ductility (ei); and, for plane strain (e j) is taken as (cf/50). 

The results obtained from the finite element calculations, giving a smaller 
failure time for a plane-stress solution than the plane-strain solution, are consistent 

with the decrease in the effective stress term (Eef) in the damage rate equation 
for plane strain conditions. For plane strain (Ee f) for a uni-axial tension specimen 

under unit load (o) is 0.866 or (//2), whereas for plane stress (Ee f) is 1.0. This 

causes reduced damage rates in equation (2.20) for plane strain conditions and hence 

increased life predictions. 

At this stage is was not clear how to apply Webster's modification to the failure 

ductility within the finite element procedure to model plane strain and plane stress 

conditions. 

5.10 The Accuracy Of The Constitutive Model And Its 

Modification To A Full Bi-Linear Damage Rate And Strain 

Rate Model. 

The theoretical uni-axial stress-rupture characteristics for the AISI 316 stain- 
less steel material have been calculated, using equation (2.23) which is substituted 
into (2.27), and the material constants of Table 5.1, for a range of stresses above and 
below the break stress (b). The theoretical stress-rupture lines are compared with the 

experimental stress-rupture lines of Hayhurst et al [63] in Fig. 5.15. The theoretical 

fit is reasonable, though the high stress line is slightly low. 

The theoretical creep strains at failure are obtained from equation (2.24) for 

uni-axial plane stress conditions using the material constants of Table 5.1 for ranges 

of stress above and below the break stress (Fig. 5.16). 

Tests on a simple two element finite element mesh under uni-axial tension 
for plane-stress conditions gave stress-rupture and creep strains at failure close to 

those obtained theoretically in Figs. 5.15 and 5.16 respectively. When the allowable 
integration error parameters EPSL and EPSR of section 4.3 are made very small of 
the order (10-9) and (10-10) exact correlation between theoretical and finite element 
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results are obtained. Similar tests under plane strain conditions have slightly longer 

predicted lifetimes and slightly higher creep strains at failure for all uni-axial test 

stress levels, which is to be expected from the explanation of section 5.9. 

Therefore the high stress-rupture line for the AISI 316 stainless steel material 

is adjusted using equations (2.56) and (2.47), so that the line passes through the 

exerimental point in Fig. 5.15 at a stress of 500 MPa having a rupture time of 1.0 

hour; giving values of (xi) and (MI) for the high stress line, as explained in section 
2.6. 

The constitutive model used by Hayhurst et al [23,63] for AISI 316 stainless 

steel is bi-linear only in damage rate, with a single creep strain rate constitutive 

equation representing both high and low-stress creep deformation behaviour. With 

reference to Fig. 5.5(b) it is noticed that the gradient of the lines on the shear strain 

rate vs. stress diagram, for AISI 316 stainless steel, changes across the mechanism 

map boundary between dislocation creep and dislocation glide. (see the lines of 

Blackburn (1973) in Area (B) on the diagram at a temperature of 538°C, which is 

close to the 550°C temperature used in the tests of Hayhurst et al). The constitutive 

model for the AISI 316 stainless steel should therefore be bi-linear in creep strain rate 

as well as damage rate. Bi-linear strain rate behaviour is represented with two creep 

strain rate equations (2.42) and (2.43). 

It is known [75] that many bi-linear materials have high (I) and low (II) stress 

constants (Xr), (Xrr), (nj), (nrr) such that: 

Xr 
,,, 

nr 
XII nrr 

(5.9) 

Therefore, as there is no minimum creep rate data available to give the true 

high stress value of (n) for the AISI 316 stainless steel material, this equation is used 
to given a approximate value of (nr). (KI) may be obtained from equation (2.37). For 

the new high stress constitutive equation to have a compatible failure strain at the 

break point with that of the low stress constitutive equation (2.57) must be satisfied. 
Hence (0I) is obtained using (nj) and the low stress constitutive parameters of Table 

5.1, as detailed in section 2.6. Therefore, all the new high stress constants can be 

derived. The new constants are summarised in Table 5.6 and are used in the bi- 

linear representation constitutive and damage laws of equations (2.42), (2.43) and 
(2.53), (2.54). 
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A graph of theoretical creep strains at failure for a range of uni-axial test stress 
levels using the new high stress constitutive parameters in the full bi-linear model are 

given in Fig. 5.17. If the new failure strain graph of Fig. 5.17 is compared with that 

of the old constitutive model, Fig. 5.16, it is noticed that the rupture ductility of the 

material above the break stress increases with increasing stress. Nishida et al [76] 

have shown that the variation of creep ductility with stress affects the crack growth 

rate and hence the failure time of cracked specimens. The effect of this high stress 
ductility change, (modelled using the full bi-linear representation with the material 

constants of Table 5.6), on the failure prediction for the CT-specimen under plane 

stress conditions is detailed in the results of the following section: 

5.11 The Plane Stress Creep Continuum Damage Finite 

Element Solution For The Compact Tension Specimen 

Using The Instantaneous Technique With The New 

Bi-Linear Damage Rate And Strain Rate Model. 

The results are summarised in the Table 5.7 and the failed element diagrams 

of Figs. 5.18. Comparing the failed element plots of Figs. 5.18(a) and (b) with those 

obtained for the plane-stress solution using the material constants of Table 5.1, given 
in Figs. 5.14(a) and (b); it is observed that the initial failed element distributions 

are smaller due to increased stress redistribution away from the crack tip. The failed 

element distribution close to failure, Fig. 5.18(c), is also much more compact than 

that of Fig. 5.14(c). The solution became numerically stiff close to failure at a nor- 

malised lifetime of (r = 44.45); as a result of the automatic time step control choosing 
infinitely small time steps at the point where platic collapse of the specimen occurs. 
The normalised failure time of the specimen is taken as (T =44.45) which less than 

that of the previous solution and gives a predicted failure time of 10.66 x 106 hours; 

which is still much larger than the expected experimental value of approximately 
4x 104 hours, having a normalised life of (rj =31.80). 
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5.12 Large Deformation And Rotation Finite Element 

Analysis For The Compact Tension Specimen. 

The previous finite element analyses used a small deformation finite element 

method, where the effects of geometry changes and rotation of the finite elements 

within the structure, on the stress states are not allowed for; with all the calculations 
based on the initial non-deformed finite element mesh. A large deformation and 

rotation version of the finite element program Damage-(XX) has been developed by 

Othman [77]. This same program was modified by the author to produce a large 

deformation and rotation finite element creep continuum damage solution for the 

compact tension specimen, as rotations of 15° to 20° or so are observed in the compact 

tension specimen at failure (Fig. 5.19). It was thought that a large deformation and 

rotation analysis would model the increased stresses close to the crack-tip caused by 

the change of thickness of the specimen section and would also model the stress field 

rotations, which might influence the damage distibutions and the hence failure time 

prediction. 

Constant load uni-axial finite element tests using the creep constants of Table 

5.6, with the large deformation formulation, gave larger failure strains at high stress 
(Q > Q). A 10% increase in strains at failure was observed at a uni-axial stress level of 
500 MPa, over the strains at failure obtained using the previous small strain analysis 

at the same stress level. This is caused by the mesh geoemtry changes in the large 

deformation solution at high stress, modelling the decreasing cross-sectional area of 
the uni-axial specimen and the formation of a neck. This raises the net section stress 

causing increased strain values at failure, because strain at failure increases with stress 
in the model (Fig. 5.17). 

The high stress value of the creep exponent (ni) is therefore adjusted to 
(nr =2.5) and new values of (Kr) and (0I) calculated as in the last section, to give 

similar failure strain values at the same stress levels as were obtained (Fig. 5.17) 

using the constants of Table 5.6, in the small strain analysis. The new high stress 

constants are summarised in Table 5.8. 

The damage distribution close to failure is shown in Fig. 5.20, for the com- 

pact tension specimen from the large deformation and rotation finite element solu- 
tion under plane strain condtions. The red, most highly damaged zones show the 
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regions where elements have failed (w >0.9999), which may be compared with the 

plane-strain (small strain) failed element distribution of Fig. 5.10(c) at a similar 

normalised time. Distinct similarities are observed. With reference to Fig. 5.20, 

the large displacements and rotations are predicted in the compact tension specimen. 
The displacements shown in this figure are scaled down by a factor of 0.694. The 

normalised lifetime of the specimen is predicted to be (Tf = 49.95) which corresponds 

to real life prediction of 73.25 x 106 hours. This life prediction is slightly larger than 

that of previous predictions, which is thought to be caused as a result of crack tip 

blunting, enabling the reduction of the stress concentration at the crack tip and there- 

fore reducing the damage rates here. Therefore the large deformation and rotation 

analysis also fails to model the correct failure mode of the CT-specimen. 

Next the effects of using a constant mesh refinement across the ligament is 

examined, as it was thought that a possible reason for the diversity of the predicted 
damage distribution for the CT-specimen, using the finite element mesh of Fig. 5.3, 

could be due to the mesh refinement increasing with distance from the crack-tip. 

5.13 Compact Tension Specimen Solution Using Constant 

Finite Element Mesh Refinement Across The Ligament 

Length. 

A new finite element mesh for the compact tension specimen has been gen- 

erated by the author, where a constant node spacing along the bottom boundary is 

used, giving less mesh refinement at the crack tip than the mesh of Fig. 5.3, but a 

more uniform mesh refinement along the ligament length. The new mesh is shown in 

Fig. 5.21. The finite elements are crossed-triangles. The damage distribution close to 

failure of the plane strain small deformation solution for the compact tension speci- 

men problem using the new mesh and the constants of Table 5.6 is given in Fig. 5.22. 

It is seen that the most severely damaged zone (red) is not significantly different from 

the failed element distribution of the previous plane-strain solution (Fig. 5.10(c)), 

but. the shape of this region has a smoother periphery. The predicted normalised 
failure time is approximately (T-- 45.0); as in the previous solution the numerical 

procedure became stiff, close to ultimate plastic collapse when infinitely small time 

steps were selected by the automatic time stepping subroutine. The lifetime pre- 

76 



diction is 13.08 x 106 hours which is still very large in comparison with the expected 

experimental life of 4X 104 hours. 

Therefore, although improved mesh refinement across the ligament will reduce 

the predicted lifetime, and, the definition of the damage distributions will be im- 

proved, mesh refinement does not fully explain the difference between the expected 

and predicted lifetimes differing by a factor of at least two orders of magnitude. 

5.14 Brief Summary Of Results So Far. 

New computational techniques; constitutive models with improved accuracy; 

allowances for large deformations and rotations; and, the effects of mesh refinement, 

have all been shown not to be responsible for the poor lifetime predictions of the CT- 

specimen. All the previous solutions yield very similar damage distributions; and, 

the failure time predictions are at least two orders of magnitude greater than the 

experimental. 

5.15 Allowance For The Effects Of The Tri-Axial Stress 

State On Rupture. 

Ductility is the ability of a material to deform under an applied load without 

fracture. Manjoine [78] states that ductility is a function of the state of stress, because 

of the constraint to plastic flow. Under equal tri-axial tension no plastic flow can 

occur. Manjoine presents a diagram showing how ductility ratio varies as a function 

of the tri-axiliaity factor (Fig. 5.23); the diagram is compiled from his own tests 

and data from other published data for ductile materials. He suggests an empirical 

relationship between the multi-axial to uni-axial failure ductility ratio and the Davis 

Triaxiality Factor (TFD) 
Eef 

_ 2(1-TFD) 
E1 

(5.10) 

where (TFD) is identified to be the first stress invariant (Il) divided by the Von Mises 

effective stress (Ce f), where: 

Il = Q1+U2+73 (5.11) 

and 

Qef 
1S 

(U1 
- 72)2 + (U2 - U3)2 + (o 

- Ql)2}ý (5.12) 
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Equation (5.10) shows how the ductility of the material decreases with increasing tri- 

axiality factor (Ii/Qe f). N. B. equations (5.11), (5.12) and (5.10) may be normalised 

giving (Il = I1/QO), (E, f = ve f/Uo) and (TFD = li/EC f), respectively. 

Hayhurst [22] allows for the effects of the tri-axial stress state on the rupture 
behaviour of materials using a time to rupture versus stress relationship given in 

equation (2.29), where the representative rupture stress of the material (ORup), is 

a linear combination of the maximum principal stress (al), the hydrostatic stress 
(Il) (the first stress invariant), and the effective stress(aef), equation (2.28). The 

isochronous rupture surfaces (section 2.4.7) in principal stress space are given in 

Fig. 2.2 for extreme values of (a, ß, ry). 
For the AISI 316 stainless steel this expression (equation (2.29)) is simplified 

equating (ßH =0): 

t=A {aEj + (1 - a)Ef} m+ = AERüp (5.13) 

where (a) has been determined by Hayhurst et al [23,63] to be (a =0.75) and its 

isochronous rupture surface is defined by equation (2.32) for plane stress conditions 

and is shown in (Ei, E2) principal stress space in Fig. 5.24 . Similarly the isochronous 

rupture surface for plane strain conditions is defined by equation (2.33) and is shown 

graphically in Fig. 5.25. Close to the crack tip (Fig. 5.8) of the CT-specimen (Il), is 

the largest stress term in equation (2.29); however, its effect on rupture life has not 
been previously allowed for. If (011) is non-zero, then the rupture surface will be 

lowered from that of Fig. 5.24 towards the hydrostatic stress line (line-(a)) of Fig. 2.2 

in the tension-tension quadrant. Therefore, in regions of high triaxial tension the 

allowance for this hydrostatic term (Ii) in the rupture criterion will have the effect 

of decreasing failure times of crack-tip finite elements, decreasing the size of the 

creep-strains allowed to accumulate at failure. Therefore representing lower rupture 
ductility at high tri-axial states of stress. 

Cocks and Ashby [66] detail the use of a ß-term, which will be termed /3CA to 

be different from that of Hayhurst's Q-term, ßH. 

(5.14) PCA = sink 
2(n 

2) 
rl 

(n + 2) aef 

and allows for accelerated void growth due to hydrostatic tension, through the the 

ratio (Il/aef), which is included in their creep constitutive and damage rate laws for 
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void growth controlled by power-law creep: 

e (5.15) ödth - ACAS (1 
1fh)n 

-ll- fh) (Q, 

o)x 
1 de j 2rh j1_ 

111 (ýef 1"5.16 
eo it -1+d ßoa 4 ý1 - fh)n l1` ob %() l 

where (fh) is a damage parameter and (X) is assumed equal to (n) in equation (5.15). 

Cocks and Ashby [66] state that for transgranular creep fracture, the diameter 

of a growing void (2rh), replaces the grain diameter (d) in the strain rate equation 
(5.16) and the equation becomes: 

n Ö1 (5.17) 
CO dt = 1-{- ßCA 

(1 
1 
fh)n -1/ 

ý( Elf 
`/ 

and" the damage rate equation (5.15) remains unaltered. 

These two equations (5.15) and (5.16) are analogous to the equations due to 

Kachanov, Rabotnov and Hayhurst, (2.19), (2.20), as used in the program Damage- 

(XX) when (n = X). Uni-axial plane stress conditions imply that 6cA =1; and that 

the area fraction of voids (fh), is taken in the range 0.001 to 1.0 from (t = t; 0) to 

(t =t f), which are similar to the limits used for the damage parameter (w) in (2.20). 

By analogy with (2.19) and (2.20) equations (5.15) and (5.16) may be rewritten 
as: 

ddt 
- /CAM' j (1 

1 
fh)# - (1 - fh)1 O Jt" (5.18) 

de 
-- K1+ ßcß 

11 
Qri t'n (5.19) dt (1 fjy)n 

where (tm) includes the Andrade term to represent the shape of the primary creep 

region, (M') and (K) are constants. The terms (co) and (wo) do not appear as the 

equations are now not normalised. The equations are written in general form with 

n X, and (0) is introducted for consistency with the equation (2.20) due to Hauhurst 

[23,63]. 

The equations (5.18) and (5.19) are normalised consistently in a similar manner 
to equations (2.19) and (2.20) by defining the normalised strain as U, "j = eq/eo , where 
(eo = oo/E), and the normalised stress as Eii = cr; 1/cro; and, by allowing for multi- 

axial stresses and creep strains in a manner consistent with equation (2.7) due to 
Odqvist. Equation (5.19) then becomes: - 

dV; 3 
h'Eaö 1 -- QoA -{- 

QcA 
Ef 1S;, tm (5.20) 

dt 2 (1 - fh) 
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where S, j = st, /o7o. Introduction of the normalised time scale, defined by equation 
(2.18), (5.20) becomes: 

d' 
=22 

#CA+(1- 
fhl�}ý' ji. 5"i (5.21) 

l1 

Similarly, normalisation of equation (5.18) gives: 

dfn 
- 

Mßcao, ö 1 (5.22) 
di (1 +) 

{lfh_1_1h}ftm 
)m 

t where (1+¢) is introduced to simplify the later integration of (5.22) and M' = M(1+ 

c). Introduction of the same normalised time scale (2.18) leads to the expression: 

dfh MPCAO'ox 1 (1 - fh) f (5.23) 
dt KEoÖ-1(1 + 0) (1- fh)m 

f1 

and: 

df 
h 

Vu 
8CA 

{- ý) (1 
lfh)0 

- (1- fh) }Ef (5.24) 

where V. is given by equation (2.21). For equations (5.21)))) and (5.24), the equation 

for the f3CA-term (5.14) is re-written in normalised for as:. 

ßcA = sink 
(F_) 

(5.25) 
t 

where (F) has been introduced to give (/3cA =1.0) for uni-axial plane-stress conditions 
(i. e. F =0.8814) and the strain rate equation becomes exactly the same as the 

equation (2.19). The Cocks and Ashby equations (5.21), (5.24) and (5.25) are now 

written in a similar form to the equations (2.19) and (2.20) due to Hayhurst, and 

may now be compared for uni-axial plane-stress conditions where (#CA =1.0) and 
(aE1 + (1 - a)Eef = El = Eef). It may be observed that the creep strain rate 

equation (5.21) is identical to that of (2.19) when (ßcA =1.0). The damage rate 

equation (5.24) has a damage rate of zero for (fh=0), at (-r =0), whereas (2.20) has 

a finite damage rate. The results of the Cocks and Ashby equations differ under 

uni-axial plane stress conditions from those of the Hayhurst equations because of the 

inclusion of the (-(1 - fh)) term in the damage rate equation (5.24). This causes 
differences in the damage rates, failure times and failure strains. Though for large (f y, ) 

equations (5.24) and (2.20) have approximately the same damage rates as (-(1-- fh)) 

can be neglected in equation (5.24). 

Integration of equation (5.24) for conditions of constant uni-axial stress gives: 

T- Ti = Vu {ln(1 
- (1 - fh)(0+1» - In(1 - (1 - fi)(o+1»} (°11-x (5.26) 

\Ob/ 
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where (ft) is the initial volume fraction of voids at normalised time (T; ti 0), which is 

taken to be small (0.001) and (fh) is the volume fraction of voids at some normalised 
time (r. <T< r1) which gives: 

T= Vu {ln(1- (1- fh)(O+1)) + 5.8392} (El)"X (5.27) 

Similarly integration of (2.20) for conditions of constant uni-axial stress between the 
limits (wti=0) at (7-1 =0) and (w) at (r1 <T< rf) gives: 

r-T; = Vu {(-)(1 
- w)(ý+1) - 

(-)(1 
_ w; )(ý+1)} (E1)_x (5.28) 

7= Vu {1 
- (1 - w)(d+i)1(ý1)-x (5.29) 

The normalised times at failure, for the Cocks and Ashby equation (r1) at (fh = 1.0) 

and for the Hayhurst equation (r1) at (w =1.0) are given from equations (5.27) and 

(5.29) as: 

Tf =V (5.8392)El' (5.30) 

and 

if= vUE x 

respectively. 

(5.31) 

The predicted normalised failure time from the Cocks and Ashby equations 
is 5.8392 times that of the Hayhurst equations. If equations (5.27) and (5.29) are 

normalised by their respective normalised failure times equations (5.30) and (5.31), 

the increase of damage with normalised time, divided by the normalised time at 
failure, may be obtained as shown in Fig. 5.26, using 0 =1.914 as determined for 

(2.19) and (2.20) and shown in Table 5.1. 

These differences in the damage growth rates caused by the inclusion of (--(1- 

fh)) term in equation (5.24) will not occur if the material constants in the Cocks and 
Ashby equations are fitted to the same creep curves, as were used to obtain the creep 

constants in the Hayhurst equations (2.19) and (2.20), Different constants (0), (X), 

(M), (K) will be obtained for both sets of equations. This may be exemplified by Fig. 

5.27 which shows that the damage evolution law of Hayhurst eqn. (2.20) if adjusted, 

using a (0) value of 11.5901 may have a damage evolution curve close to that of the 

Cocks and Ashby model. Obviously other parameters would have to be adjusted to 

obtain exact compatibility of normalised failure times and damage curves. However, 
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for simplicity and since the material constants have already been determined from 

the Hayhurst damage evolution law, the term (-(1 - fh)) will be removed from the 

Cocks and Ashby damage rate law and (5.24) becomes: 

dfh 

- 

ßCA 1X- dw 
dr V�(1 + 0) (1- fh)m 

ý`r 
dýr 

(5.32) 

which now becomes directly compatible with the Hayhurst equation (2.20), where 

(#cA =1.0) for uni-axial conditions and (fh 
-= w). 

Taking (fh = w) equation (5.32) can be integrated in the range (0< w<1.0) 

at (0 <r< -rf) with the initial conditions (w = 0), (T = 0) to give: 

{1 
_ (1 -- w)(ý+1)} - 

OV 
- fT (5.33) 

u 

{1-#CAEC 7} (5.34) 
lu JJJ 

At failure (T = rf) and (w =1.0) this equation gives: 

TY-V. (5.35) 
flCAEXef 

From (5.21) the effective creep strain rate equation may be written as: 

ddrf 
(1 

Pcw)n JEj 
(5.36) {1 -- QcA + 

gives: 

where 

Substituting for (1 - w) from (5.34) into (5.36), integrating, then using (5.35) 

Vef =E T(1- #cA) + (1QcATf 1- 
ý1 

- 
Tf (5.37) 

of 
m+l 

, 3CA = sinh 
{o. 

8814 
rýel 

(5.38) 

The modification to the Cocks and Ashby damage rate equation (5.24) neglect- 
ing the (-(1 - fh)) term considerably simplifies the integration of the constitutive 

and damage rate laws to give the equation (5.37) for the creep strain variation with 

time. 

At failure (T = r1) and (Vf = V(j)): - 

V(f) = Eef X)VU 1 
#-QCA J` CA) + 

(1 
- 0+1 

(5.39) 
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The uni-axial tensile elongation at failure is given by substituting (QCA = 1.0) and 
Eef = El into (5.39), for uni-axial plane stress conditions: 

Wf) 
_ 

El"`-x) vu 
5.40 

The uni-axial tensile elongation at failure is used to normalise the strain versus tri- 

axiality factor diagram of Fig. 5.23, due to Manjoine [78] 

Normalising the multi-axial effective strain at failure equation (5.39) by the 

uni-axial tensile elongation at failure, equation (5.40), gives: 
U) r\ (n-x) 

Of) =0 11ßA f+1} 
(E1) (5.41) 

i 
where (ß. 

a. 
) is given by (5.38) and A-1- (n/q5 + 1) . 

Equation (5.41) is used to plot the multi-axial rupture ductility predicted by 

the new constitutive and damage laws, using the (QUA)-term, to allow for the influence 

of the tri-axial stress state on the rupture ductility and is compared against the 

empirically obtained curve of Manjoine [78] in Fig. 5.28. The points plotted (Fig. 5.28) 

represent (a) uni-axial tension (C =0); (b) equal-biaxial tension (C =1.0); (c) un-equal 
bi-axial tension (C =1/2); (d) tension-compression (( =-1/2); (e) tension-compression 

(C =-1/3); where (C) is the ratio (E2/El). The curve predicted by equation (5.41) 

compares reasonably well for (ii/ei) > 1.0, with the empirical curve of Manjoine. 

For (Il/E, f) < 1.0, it is noticed that as (I1/Ee j) or the Davis Triaxiality Factor tends 

to zero the ratio of the effective strain at failure to the tensile elongation at failure 

predicted by equation (5.41) becomes infinite. Manjoine in Fig. 5.23 uses constant 

value of (V (f)/V1(') 
=2.0) given by a dotted line for (TFD <0). 

From the integration of (5.32), using (2.18) to give the real time (t), the rupture 

time may be shown to be: 

t=l`M) aaefx} 
m+l (5.42) 

If (5.42) is written in full, for the principal bi-axial stresses in plane-stress: 

((fm+i). 
h(__O. 8814(o1+a2) 

+= )) 

-} vvz 
(0+ - 47102) 2 (5.43) 

ý1 2- is 2) 
Defining (to) as time to rupture in a uni-axial test (i. e. /3cA =1.0) at a stress 

(Qo) from (5.42): 

_r 
(m-I-1l 

crXl to =lM)J (5.44) 
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Writing (T = t/to) and (Ei - ai/co), (5.43) is re-written as: - 

1 
T=t= 

({sinh( 0.8ä14(E1-1- E2) -1(Ei 
+ EZ - ElE2)ý 

m+l 
(5.45) 

to \ E? + E2 - E1 E2 21 

ý 

By expressing (E2) as the ratio (C) of (El), (( _ E2/El), (5.45) may be re- 

written as: 

Tm+l = sink 
(o. 8814(c + 1) ((ý2 

_c+ 1)2)-x Ei' (5.46) 
((2 - (+ 1)' 

Setting (T =1.0) the equation for the isochronous rupture surface in bi-axial 

principal stress space is determined for different values of the bi-axiality ratio (C): - 

) 0.8814((+1 
sink -f-1) 

2 (5.47) 2 
(C2-C+1)2 

Similarly for plane strain conditions the equation for the isochronous rupture surface 

corresponding to equation (5.32), using the (, ßcA)-term may be shown to be: 

=. I 1 _1 
E1 = sink 

(0.88 34(2 3 

22 
i 

\4 2C+ 4(2ý 
(5.48) 

1(lq 

2'a 
+4)I( 

It may be observed from equations (5.47) and (5.48) that the rupture surfaces are 
dependant on the value of (X), whereas the equations (2.32) and (2.33) used by 

Hayhurst [22] are independant of (X). 

The isochronous rupture surface defined by the plane stress equation (5.47) 

with (X-5) is given in Fig. 5.29. It may be observed that the effect of the inclusion of 
the (#cA)-term, drops the rupture surface below that of the rupture surface defined by 

(aE1-f- (1- a)E, f) of Fig. 5.24, in the tension-tension quadrant. The corresponding 
isochronous rupture surface using the Ashby/Cocks model represented by equation 
(5.48) for plane strain conditions is shown in Fig. 5.30. Here it may be observed 
that the rupture life is zero for the equi-tri-axial tension (C =0) case. This may not 
be explicitly true for real materials, but is accepted here whilst the new model is 

evaluated. The Cocks and Ashby constitutive model is for growth of voids due to the 

surrounding material deforming by the mechanism of power-law creep (section 1.3.2 
(ii)). In this model voids do not grow in pure shear, but are elgonated by the shear 

processes. Therefore, the model predicts infinite life in pure shear, as shown by the 
(C)-ratio of (-1.0) on the dotted line shown in Fig. 5.29; whereas the Hayhurst model 
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(Fig. 5.24) based on experimental data from tension-torsion tests in plane stress, shows 

a reduction in life, below the uni-axial life in the same region. For this reason the 

Hayhurst damage law and creep strain rate constitutive equations will be used for 

principal stresses in all the quadrants of the (El, E2) principal stress space, except 

the tension-tension quadrant, where the Cocks and Ashby model equations will be 

used allowing for the effect of the tri-axial stress state on rupture life. Both low and 
high stress behaviour using a bi-linear model similar to that of section 2.6, will also 

be incorporated in the Cocks/Ashby equations. 

The new creep damage model may be represented graphically using the schematic 
diagram of Fig. 5.32. Here the shaded plane represents the original uni-axial stress- 

rupture diagram as shown in Fig. 5.2, which is selected for compatibility of the new 

multi-axial model with plain stress uni-axial conditions. The axes for this plane are 

log(stress) vs. log(rupture-time). The third axis is the ratio of the normalised hy- 

drostatic stress (Il), to the normalised effective stress, (Eef). For (Ii/Ef) >1.0, the 

high and low stress-rupture lines extend into plane surfaces (C) and (D) (Fig. 5.31) 

in 3-D space. The gradients of the lines in the shaded plane which are related to, 

(Xi) and (X2), remain constant as (Ii/Eef) increases, but their levels in planes par- 

allel to the shaded plane drop with increasing (Ii/Ee f). This models the effect of 

decreasing rupture-life with increasing tri-axiality. The break point line (Fig. 5.2) is 

assumed to lie on the plane (E, f= 
E), where (E) is the normalised break stress 

Woo). The high and low stress rupture planes for (Ii/E, f) >1.0 will be repre- 

sented by the Cocks/Ashby model equations (D2) and (C2) (Fig. 5.32) respectively. 
Their isochronous rupture surfaces are only defined in the tension-tension quadrant 
by equation (5.47) for plane stress and (5.48) in plane strain. 

For (I1/E,, f) <1.0 the equations due to Hayhurst (B2) and (A2) (Fig. 5.32) will 
be used to represent the surfaces (B) and (A) respectively. Their isochronous rupture 

surfaces are only defined for compressive stress quadrants by the rupture criterion in 

equation (5.13) shown for plane stress and plane strain conditions in Figs. 5.24 and 
5.25 respectively. 

Under uni-axial plane stress conditions (ßcA =1.0), the equations (A), (B), (C) 

and (D) have been formulated to be compatible giving the same creep strain rates and 

rupture times, at the break stress point on the shaded plane ((Il/E, j)--1.0), shown 
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in Fig. 5.31. The isochronous rupture surfaces must also be compatible in both prin- 

ciple plane stress and plane strain space, moving from the tension-tension quadrant 

represented by the Cocks and Ashby equations (C2) and (D2), to compressive stress 

quadrants, represented by the Hayhurst equations (A2) and (B2). 

The material constants of Table 5.8 are used in the new model, in preference 
to the equations of Table 5.6 as these constants produced slightly lower failure strains 

at high stress (as for the large deformation solution), requiring much fewer iterative 

steps to solution completion and hence reduced computational effort. It required 6,852 

iterative steps to solve the plane stress instantaneous technique CT-specimen problem 
(Table 5.7), which may be compared with 983 iterations (Table 5.5) for the same 

solution using the material constants of Table 5.1. The failure strain predictions using 
the constants of Table 5.8 increases monotonically with stress similar to that shown 
in Fig. 5.17, and the stress-rupture characteristics are the same as those modelled by 

the constants of Table 5.6. 

The equations (5.47) and (5.48) show the dependence of the form of the 

isochronous rupture surfaces on the value of (X). As the values of (x) given in the 

table of material constants (Table 5.8), have been determined for the normalised 

time scale and the correct value of (x) must be used in equations (5.47) and (5.48) 

corresponding to the real time scale in hours, for the (ßcA)-term to have the correct 

effect on the multi-axial rupture behaviour, in line with the Cocks/Ashby mechanism; 
(m+1) is therefore included in a new definition of the (ßcA)-term: - 

m+l 

Ica = sink 
(O. 

8814 
iJ 

(5.49) 
f 

this carries through to give the true value of (x) in the equations (5.47) and (5.48), 

as (XT - X/(m + 1)), which is identified as the material constant (v) which defines 

the true gradient (-1/v) of the stress-rupture diagram given equation (2.12). 

By plotting the isochronous rupture surface in both plane stress and plane 

stress space, it is found that the plane stress isochronous rupture surfaces produced 

by the Cocks/Ashby equations (Fig. 5.29) will always match up with those of the 

Hayhurst equations (Fig. 5.24) at the points (*(a)) and (*(b)) (Fig. 5.29) giving a 

smooth transition reasonably independent of the value of (XT) in equation (5.47). 

The matching of the surfaces Fig. 5.25 and Fig. 5.30 in plane strain is dependent upon 

the value of (XT) in equation (5.48). It has been found by the author that a reasonably 
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good match of rupture surfaces at the points (*(a)) and (*(b)) Fig. 5.30 in plane strain 
between the Cocks/Ashby (low stress) isochronous rupture surface, and that of the 

Hayhurst rupture surface may be obtained using: - 
n(m+l) 

# CA = sink 
r0.8814 Eel 

(5.50) 

where (n) is the creep exponent. Using this (ßc"A) instead of (QUA) equations (5.47) 

and (5.48) representing the isochronous rupture surfaces are modified by replacing 
(-I/X) by (-n(m + 1)/X). Equation (5.50) has been used to give the isochronous 

rupture surfaces for the final constitutive model, which are shown in Figs. 5.33(a) and 
(b) for low and high stress values of (n) and (X), respectively in plane stress, principal 

stress space and Figs. 5.34(a) and (b) for low and high stress values of (n) and (X), 

respectively in plain strain, principal stress space. The new constitutive model only 

uses the solid lines of the rupture surfaces in the tension-tension quadrant and the 

dotted lines in the other quadrants of Figs. 5.33 and 5.34. 

The new constitutive model is therefore defined using the four strain rate 

equations, the four damage rate equations of Fig. 5.32 and the material constants of 

Table 5.8, with (P,,, )-term given by equation (5.50). The results from the use of this 

new model in the creep continuum damage program Damage-(XX) to predict the 
failure of the CT-specimen are summarised in the following section. 

5.16 Results From The New Creep Continuum Damage 

Model Allowing For The Effect Of The Tvi-Axial Stress 

State On Rupture. 

The first solution used the finite element mesh of Fig. 5.3, as used by Brown 

[64] to model the compact tension specimen under the plane strain conditions. The 

finite element solution showed the growth of the failed element (w >0.9999) loci in a 
localised band along the bottom boundary of the mesh, as shown in Fig. 5.35. The 

finite element solution became numerically stiff after the formation of the damage 

distribution shown in Fig. 5.36 close to failure, giving a normalised lifetime prediction 

of (rj =41.3). 

A second solution was performed for a finite element mesh (Fig. 5.21) having 

an almost constant mesh refinement across the ligament. This finite element solution 

87 



also, as was the case for the previous, became numerically stiff, giving a predicted 

normalised lifetime of (Tf =34.4). This normalised failure time prediction lies close 
to the expected experimental value of (-rf = 31.80), giving an error of 8% in the nor- 

malised lifetime prediction for the CT-specimen using the new tri-axial constitutive 

model. The damage distribution as shown in Fig. 5.37, is much more localised, which 
is as expected in practice. The damage distribution is seen to grow only forward of 
the crack tip, with very little damage at the crack-flanks. The damage around the 

load holes is seen to be much reduced in comparison with the earlier damage distri- 

butions of Fig. 5.22. It is seen that the damage distribution becomes slightly more 
localised, where the vertical element refinement becomes more refined, at about half 

way across the mesh ligament. 

The allowable integration error parameters for both these two solutions us- 
ing the new model were set at quite large values; EPSL and EPSR were 10'2 and 
10'3 respectively (section 4.33), due to the restriction on computational resources. 
The refined mesh required approximately 3 hours dedicated CPU time for the whole 

solution. 

5.17 Discussion. 

The results obtained for the failure predictions of the compact tension spec- 
imen are summarised in Table 5.9. Referring to Table 5.9 (No. 1) it is seen that 

the original continuum damage solution performed by the author similar to that by 

Brown [64], grosly over-estimates the expected normalised failure time expected in 

experiments by approximately 50%. The crack tip failed element zone was much 
larger than that expected in experiments [65,79]. 

New finite element techniques to remove the elements and creep forces grad- 

ually, as used by Chaboche (Table 5.9, No. 2) and Tvergaard (Table 5.9 No. 3) did 

not provide significant improvements in the computer solution for the CT-specimen, 

giving predicted failure time and damage distributions similar to those of (Table 5.9, 

No. 1). The techniques of Chaboche and Tvergaard both used more CPU time than 

the instantaneous element removal method as used by Hayhurst et al and in the CT- 

specimen solution of Brown [64]; in that the stiffness matrix has to be inverted for 

every iterative time step of the Chaboche technique and new displacements have to 
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be evaluated for every new force vector during the relaxation of the creep forces in 

the Tvergaard technique. 

The Chaboche technique gave a slightly longer life prediction in comparison 

with that predicted by the instantaneous technique as used by Hayhurst [23,63], which 
is consistent with the comparisons of Sanouri [80]. Sanouri [80] also compared the 

damage distributions at the crack tip for the different methods, which show distinct 

similarlities, to that of the instantaneous approach; the instantaneous approach hav- 

ing a slightly larger failed element region, due to this method allowing less stress 

re-distribution away from the crack tip. As the solutions progress, and damage grows 

across the ligament, the differences in the failed element distributions become less ob- 

vious and to all intents and purpose, both the solutions are the same. The results of 
Rides [73] also support this conclusion, that the inclusion of the coupling between the 

damage parameter and the elastic modulus has little effect on the structural analysis. 
From the tests and comparisons made by the author, the instantaneouos el- 

ement removal technique compares favourably with the Tvergaard and Chaboche 

techniques, as the stresses in the elements decay, becoming quite small before they 

are said to fail (i. e. before w >0.9999) and are removed with their respective creep 
forces; which results in a negligibly small loss of strain energy. The instantaneous 

approach is also attractive, as it is more computationally efficient than the former 

two methods. 

Performing a plane-stress solution reduces the normalised life prediction for the 

compact tension specimen (Table 5.9, No. 4) in comparison with the corresponding 

plane strain solution (Table 5.9, NO. 1), which is consistent with the expected increase 

in the damage rates due to the larger values of the effective stress present under plane 

stress conditions in equation (2.20). This is inconsistent with the experimental results 

of Webster [74], who shows that creep crack growth in plane stress specimens is slower 

than in a plane strain specimens. He includes this difference in his crack growth rate 

expressions using (C*) by defining the available ductility at the crack tip (e j) as equal 

to the uni-axial creep ductility (er) for plane stress conditions and equal to (ef/50) 

for plane strain conditions. Therefore, fracture occurs at the crack tip at a rupture 

strain of (1/50)th of the uni-axial rupture ducitlity (ef) for a plane-strain specimen, 

which causes the plane strain specimen to have a considerably shorter lifetime than 
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a plane-stress specimen. 

Nisheda et al [76] show that ductility may affect the creep crack growth rates 

and hence lifetimes of cracked specimens. The constitutive model was re-defined 
in terms of a full bi-linear strain rate and damage rate model (section 2.6), which 

was modified to represent the high stress rupture data more accurately and to have 

a continuously increasing failure strain with increasing stress. The new bi-linear 

model had the effect of producing a more localised damaged element distribution at 

the crack-tip under plane-stress condtions, giving a slight reduction in the predicted 

normalised lifetime (Table 9, No. 5). 

A large deformation and rotation solution was performed in plane-strain which 

produced an larger normalised lifetime prediction, (Table 5.9, No. 6), than the com- 

parable small deformation solution, (Table 5.9, No. 1). This is caused by increased 

stress re-distribution, caused by the allowance of crack-tip blunting in the model, 

producing larger damage distribution at the crack-tip spreading into the body of the 

CT-specimen mesh. 

The effect of mesh refinement was also considered and a mesh with almost 

constant refinement across the ligament length was used to provide a new plane 

strain solution for the CT-specimen. The new lifetime prediction is given in Table 9, 

No. 7 which is smaller than that predicted from the previous solution (Table 9, No. 

1), using a mesh with fine refinement close to the crack-tip and coarse refinement 

elsewhere. 

Therefore, all the model modifications performed still give a minimum nor- 

malised life prediction some 40% greater than that expected, which corresponds to a 
lifetime prediction approximately 300 times larger than that expected by experiment 

of 4x 104 hours. 

Having explored almost all available avenues to explain the differences between 

predicted and the exerimental life times, the effect of the tri-axial stress-state on 

rupture life was considered. Cocks and Ashby [66] derived damage rate and strain 

rate equations for the mechanism transgranular creep fracture due to constrained void 

growth. Included within their equations is the term (13CA), (equation (5.14)), which 

modifies the damage rate and strain rate equations, to model the increased damage 

and strain rates due to the effect of the hydrostatic stress, which in turn models 
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accelerated void growth. These new equations have been modified to give similar 

equations to the creep rate and damage rate equations used by Hayhurst et al, [23,63], 

but including the (ßcA)-term 
. They have been shown to reproduce, reasonably 

well, the empirically obtained ductility curve of Manjoine [78], (Fig. 5.28) relating 
the decrease in the multi-axial rupture ductility with increasing tri-axiality measured 
by (Iila, f). The new constitutive model produced modified isochronous rupture 

surfaces in the tension-tension quadrants of (El, E2) principal-stress space. The new 
isochronous rupture surfaces for plane stress conditions (Figs. 5.33 (a) and (b)) are 

similar but more rounded than those of the previously used constitutive equations 

of Hayhurst (Fig. 5.24) which are more vee-shaped. These rupture surfaces should 

produce broadly similar compact tension specimen failure predictions to the solutions 

previously obtained for plane stress conditions. Though, isochronous rupture surfaces 
for plane strain conditions using the new constitutive model allowing for the effect of 
tri-axiality on rupture (Fig. 5.34 (a) and (b)) are considerably different in the tension- 

tension quadrant from those of the previously used constitutive equations of Hayhurst 

shown in Fig. 5.25. The trough along the equal bi-axial tension line (Fig. 5.34(a)) is 

caused by the accelerated growth of voids under tri-axial stress states. If the (ßft)- 

hydrostatic term in the rupture criterion (equation (2.28)) defined by Hayhurst [22] 

is allowed for in the in the damage rate equation (2.20), the isochronous rupture 

surface in plane-stress will become more rounded than that of Figs. 5.24 depending 

on the value of (ßH). This is consistent with the Cocks/Ashby model (Fig. 5.29); 

but for plane-strain conditions the rupture criterion of Hayhurst cannot represent the 

same isochronous rupture surface of the Cocks/Ashby model Fig. 5.30(b). It is this 

behaviour, unique to the plane-strain stress state of the Cocks/Ashby model, which 

will predict the factor of 50 decrease in the available ductility at the crack tip, (ef/50), 

observed by Webster [74] and has been shown to predict the rupture ductility curve 
Fig. 5.23, observed by Manjoine [78], to produce reduced life of material elements at 
the crack tip in this region of high tri-axial stress state. 

The modified (ßcA)-term (equation (5.50)) is observed to be raised to the 

power (n) and is a multiplier on the power law in equation (5.21). It may be that with 
the inclusion of the power (n) in the (ßaA)-term, an exponential stress dependence of 
the. strain rate is modelled, possibly producing increased strain rates particularly at 
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high stress in the glide controlled flow region of the Ashby mechanism map Fig. 5.5(a). 

Strain rates in this region were previously predicted to be too small by the equations 

(2.19) and (2.20) using the bi-linear representation (section2.6). These equations due 

to Hayhurst et al, are based on the Norton's power-law, which breaks-down at high 

stress in the dislocation glide region [8]. 

The results under plane stress conditions using the new constitutive model 

allowing for the effects of the tri-axial stress state on rupture, are given in Table 

5.9, No. 8 and No. 9 for the original finite element mesh and a refined mesh with con- 

stant refinement across the ligament length respectively. The predicted normalised 
failure times are significantly reduced and the damage distributions are seen to grow 
forward of the crack-tip along the liagement length, (Fig. 5.37), consistent with the ob- 

servations of Riedel [79]. The effects of this mesh refinement on the solution is more 

pronounced for the new constitutive model, giving approximately 20% reduction in 

the ratio (T/Te(ll) between solutions No. 8 and No. 9, Table 5.9, compared with a 10% 

reduction in the same ratio between the solutions No. 1 and No. 7. The integration 

error parameters corresponding to the two computer solutions given in Table 9, No. 8 

and No. 9, were set quite large due to the refined mesh requiring a large computa- 

tional effort. If the integration parameters were refined from EPSL and EPSR values 

of (10-2) and (10-3) to values of (10'4) and (10-s), one would expect a reduction in 

normalised life to (r1 33.0), from the graph of Fig. 4.2 which was formulated using 

the same AISI 316 stainless steel material constants used here. In this same figure, as 

the life prediction for the CT-specimen (Tf = 34.4) lies approximately on this curve, 

and predicted life of the CT-specimen with no integration error could be infered to 

be (Tf = Vu, = 31.805), which is consistent with the expected normalised life for the 

compact tension specimen on the basis of the tests by Myers and Pilkington [65]. 

These preliminary results in plane strain using the new constitutive model with 

the inclusion of the modified (, QCA)-term look very promising, in that a comparable 
failure time prediction with the expected value by experiment should be possible if 

the time stepping integration accuracy is improved and a refined mesh such as that 

of Fig-5.38 is used to given an accurate damage growth prediction. 
It may be that the plane-stress solutions detailed in this chapter will approxi- 

mately represent the failure behaviour of a plane stress CT-specimen (with thickness 
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t<5 mm or so, with a proportionally reduced test load to maintain the same net sec- 

tion stress); as the new model allowing for the tri-axial stress state gives isochronous 

rupture surfaces, which are not too dis-similar to those produced by the rupture cri- 

terion (equation (5.13)) used in the Hayhurst equations. This would give agreement 

with the observations of Webster [74], in that the plane stress solution lifetime pre- 

diction is larger than the plane strain prediction (c. f. normalised lifetimes Table 9 

solution No. 9 for plane strain, with solution No. 5 for plane stress). 

Ideally if the exact form of the bi-axial isochronous rupture surfaces could be 

determined by experiment, for both plane-stress and plane-strain stress states, the 

(Qca) term could be used to fit the damage rate rate equation to the experimental 

data. Though it is questionable whether purely bi-axial tests will suffice, and possibly 

tri-axial rupture behaviour should be studied by reproducing similar stress states 

which occur in the compact tension specimen by testing notched bars. Although 

notched bars are not able to reproduce the high tri-axial stress states present at the 

crack tip of the compact tension specimen. 

Therefore, recommendations for future work include the use of the developed 

finite element model allowing for the effect of tri-axiality on rupture, with further 

experimental compact tension specimen results for CT-specimens of various crack 

geometries under plane strain and plane stress conditions. More detailed experi- 

ment investigations of bi-axial and tri-axial rupture behaviour are required to verify 

and/or improve the new multi-axial constitutive model developed in this chapter, 

so that it may be applied to other crack growth problems with confidence. Further 

investigations into the validity of using the bi-linear representation in the power-law 

breakdown region needs to be carried out, together with investigations into the abil- 

ity of the (f3 A) term and other modifications to the constitutive equations to model 

creep in the power-law breakdown region. 
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11 1 Fora<& Fora>v 

Qo = 164.808MPa nrr = 1.7371 nr = nrr 

Qo = 441.28MPa Krr = 1.3826 x 10-5 Kr = Itrr 
E= 169.617 x 103MPa XII = 0.4776 xi = 4.00 

v=0.300 Mir = 2.7726 x 10-3 Mr = 4.3033 x 10-11 

m=-0.940 Oil 1.9136 qr=Oll 

a=0.750 V, ý =31.805 
Table5.1: Summary of material constants for ABI 316 Stainless Steel in units of 

megapascals, percentage creep strain and hours, due to Hayhurst et al [23], [63]. 

Failed Element Normalised Iteration No. of Elements 

Plot Fig. No.. Time (r) No. Failed (w >0.9999) 

5.10(a) 24.97 380 54 

5.10(b) 36.66 664 112 

5.10(c) 47.40 1100 211 

At failure 48.04 1159 224 

Table5.2: Summary of numerical results for the CT-specimen, in plane strain using 

the instantaneous technique of elemental removal and creep constants of Table 

5.1. (lst element failure at r=1.48) 

Failed Element Normalised Iteration No. of Elements 

Plot Fig. No. Time (r) No. Failed (w >0.9999) 

5.11(a) 24.31 210 51 

5.11(b) 36.80 349 122 

5.11(c) 47.52 525 213 

At failure 48.94 571 243 

Table5.3: Summary of numerical results for the CT-specimen in plane strain, using 
the Chaboche technique and creep constants of Table 5.1. (lst element failure at 

T=3.30) . 



Failed Element Normalised Iteration No. of Elements 

Plot Fig. No. Time (T) No. Failed (w >0.9999) 

5.13(a) 24.60 420 63 

5.13(b) 36.76 819 122 

5.13(c) 46.89 1554 231 

At failure 46.89 1554 231 

'Table5.4: Summary of numerical results for the CT-specimen in plane strain, using 

the Tvergaard technique and creep constants of Table 5.1. (1st element failure at 
T=1.47) 

Failed Element Normalised Iteration No. of Elements 

Plot Fig. No. Time (r) No. Failed (w >0.9999) 

5.14(a) 24.37 396 50 

5.14(b) 36.55 609 111 

5.14(c) 46.90 983 226 

At failure 46.90 983 226 

Table5.5: Summary of numerical results for the CT-specimen in plane stress using 
the instantaneous technique and creep constants of Table 5.1. 

Fora<Q For o> 

ao = 164.808MPa nil = 1.7371 nj = 4.8215 

do = 441.28MPa Ifrl = 1.3826 x 10-5 Ifl = 9.6206 x 10'14 

E= 169.617 x 103MPa XII = 0.4776 XI = 1.3257 

v=0.300 M, 1 = 2.7726 x 10-3 M1= 1.5835 x 10-5 

m= -0.940 Oil = 1.9136 ¢1= 7.0789 

a=0.750 V. = 31.805 

Table5.6: Summary of material constants for A]SI 316 Stainless Steel, with new 
high stress constants giving a full bi-linear model, in units of megapascals, 
percentage creep strain and hours. (Low stress constants are the same as in Table 
5.1) 



Failed Element Normalised Iteration No. of Elements 

Plot Fig. No. Time (rr) No. Failed (w >0.9999) 

5.18(a) 24.39 4685 46 

5.18(b) 36.39 4875 118 

5.18(c) 44.45 6852 190 

At failure 44.45 6852 190 

Table 5.7: ' Summary of numerical results for the CT-specimen in plane stress using 
the instantaneous technique and the new creep constants of Table 5.6, 

representing full bi-linear strain rate and damage rate behaviour. 

11 1 Fora<v Fora>v 

o, o = 164. Sd8MPa n11 = 1.7371 nj = 2.50 

do = 441.28MPa K11= 1.3826 x 10-5 Ifl = 1.3267 x 10-7 

E= 169.617 x 103MPa XII = 0.4776 XI = 1.3257 

v=0.300 M11 = 2.7726 x 10-3 MI = 1.5845 x 10'b 

m=-0.940 01, =1.9136 ýI=3.1934 

a=0.750 tü=31.805 

Table5.8: Summary'of material constants for A1SI 316 Stainless Steel, in units of 

megapascals, percentage creep strain and hours. As' used for large deformation and 

rotation solution. 



Solution Solution Method Normalised Ratio of (r1) Damaged 
No. Discription. Failure to Element 

Time (-rf) experimental (Tf) Distribution 
(TI/Te(i)) At (r1) 

In (%) In Fig. No. 
1 1st soln. 48.04 151.1 5.10(c) 

as Brown [64] 
(plane strain) 

2 Technique of 48.94 153.9 5.11(c) 
Chaboche 

(plane strain) 
3 Technique of 46.89 147.5 5.13(c) 

Tvergaard 
(plane strain) 

4 (plane stress) 46.90 147.5 5.14(c) 
solution 

5 (plane stress) 44.45 139.8 5.18(c) 
full bi-linear 

representation 
6 large deformation 49.95 157.1 5.20 

and Rotation 
(plane strain) 

7 constant 45.0 141.5 5.22 
mesh refinement 
across ligament 

(F. E. mesh Fig. 21) 
(plane strain) 

8 new tri-axial 41.3 129.9 5.36 
constitutive 

model. 
(F. E. mesh Fig. 5.3) 

(plane strain 
9 as 8 with 34.4 108.2 37 

constant 
mesh refinement 
across ligament. 

(F. E. mesh Fig. 21) 

Table5.9: Summary of the finite element results obtained for the prediction of the 
failure of the CT-specimen. ( Expected experimental normalised lifetime of the 
CT-specimen for comparison with the finite element results is rj = 31.8). 
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Figure 5.2: Uni-axial stress rupture data for AISI 316 stainless steel, 
at 550°C, after Hayhurst et al, [23]. 
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Figure 5.3: The finite element mesh for the CT-specimen generated 
by Brown, [64], showing the mesh refinement at the crack tip. The mesh 
has 544 elements and 296 nodes. 



timescale for tests at 344.75,275.80 and 241.33 MPa 
time/h 

I- 11344.75 MPa 

lE 

ö 
C 
S. 

L 

N 

.; E 

7 

275.80 MPa 
241.33 MPa 

ý 

-,:: 
i206.85 

MPa 

0 

/ 
_ýýýjý-ý-mai 

ýýýýý 
MPa 

time/h 
timescale For tests at 206.85 and 162.03 MPa 
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(o < ci), after Hayhurst et al [23]. 
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Figure 5.6: Elastic stress in the (y)-direction versus distance from 
the crack-tip, for the finite element mesh shown in Fig. 5.3 and a more 
refined mesh shown in Fig. 5.7. 

Figure 5.7: Refined compact tension specimen finite element mesh, 
having 844 elements. 
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Figure 5.8: The variation of measurements of tri-axial stress state 
with distance from the crack-tip, from the elastic finite element solution 
for the mesh shown in Fig. 5.3. 
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Figure 5.9: Window sizes for the failed element (w > 0.9999) plots 
shown in Figs. 5.10,5.11,5.13,5.14,5.18, against the outline of the 
compact tension specimen. 
Window (A) is 2.15mm wide by 1.30mm high. 
Window (B) is 8.00mm wide by 6.50mm high. 
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Figure 5.10: Failed element (w > 0.9999) plots, for the failure 

prediction of the CT specimen in plane strain using the instantaneous 
method and the creep constants of Table 5.1. 
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Figure 5.11: Failed element (w > 0.9999) plots, for the failure 
prediction of the CT-specimen in plane strain using the technique of 
Chaboche and the creep constants of Table 5.1. 
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Figure 5.13: Failed element (w > 0.9999) plots, for the failure 
prediction of the CT-specimen in plane strain using the technique of 
Tvergaard and the creep constants of Table 5.1. 
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Figure 5.14: Failed element (w > 0.9999) plots, for the failure 
prediction of the CT-specimen in plane stress using the instantaneous 
technique of element removal and the creep constants of Table 5.1. 
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Figure 5.15: The theoretical uni-axial stress rupture lines fitted to 
the experimental data points (o), given by the constants of Table 5.1 and 
the new high stress rupture line (- -), given by the constants of Table 5.6. 
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Figure 5.16: Plot of the theoretical normalised uni-axial failure 

strain variation with the normalised stress, for low and high stress levels, 

using the material constants of Table 5.1. 
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Figure 5.17: Plot of the theoretical normalised uni-axial failure strain 
variation with the normalised stress, for low and high stress levels, using 
the material constants of Table 5.6, giving a full bi-linear representation. 
The transition between low and high stress behaviour, crossing the break 
stress point (a = Q), is continuous and the failure strain increases mono- 
tonically with increasing stress. 
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Figure 5.18: Failed element (w > 0.9999) plots, for the failure predic- 
tion of the CT-specimen in plane stress using the instantaneous technique 
of element removal and the new creep constants of Table 5.6, giving a full 
bi-linear representation of material behaviour. 
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Figure 5.20: Damage distribution close to failure (r s: 47.0) for the 
CT-specimen in plane strain, using a large deformation and rotation analysis. 
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Figure 5.21: Finite element mesh generated to represent the 
CT-specimen and has a constant mesh refinement across the ligament. 
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Figure 5.22: Damage distribution close to failure (r = 44.1) for the 
CT-specimen, using the finite element mesh of Fig. 5.21, in plane strain. 

Le 
.o 

TFO <0 
Cade 

2.0 1 1.0-35c Steel 
2.0.25c Steel 
3. Ann. Brass 

1.6 4.2024-13 Al 
5.7015 "T651 Al 

Strain Rate 
Ductility " 

1.2 and 
[If. Shin Wisest 

Temperature 
Consent 

Tensile Ebngatlon 
2 0.8 

3,4 
5 ITF 11 0 

0.1 CTF' 1211 -Tf0 " 

0 
- 21012)4 

tit ol +0 2. o31 
TfD. Davis Triasilily Factor 

R 222 112 
- t ,, o, E°I-o2L . leZ-63 l . IO, 

Figure 5.23: The empirical relationship between multi-axial rupture 
ductility and the degree of tri-axiality, due to Manjoine [78]. 
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Figure 5.24: Isochronous rupture surface for AISI 316 stainless steel 
in plane stress, given by equation (2.32) with (a = 0.75, ßm = 0). 
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Figure 5.25: Isochronous rupture surface for AISI 316 stainless steel 
in plane strain, given by equation (2.33) with (a = 0.75, flit = 0). 



1.0 
w 

0.0 
w Hayhurst (2.20) 

0.6 w Cocks and Ashby 
(5.20). 

0.4 F 
I/ 

0.2 

0.0-ý. , -r 
0.0 0.2 0.4 0.6 0.0 1.0 T /Tf 

Figure 5.26: Graph showing the differences in the damage evolution 
rates predicted by the equation of Hayhurst (2.20) and that of the Cocks 

and Ashby model (5.24). 
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Figure 5.27: Graph showing the comparison between the damage 

rates predicted by the equation of Hayhurst (2.20) and that of the Cocks 

and Ashby model (5.24), when the creep constant (0) is changed from 
1.914 to 11.590 in the former equation. 
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Figure 5.28: Comparison of the multi-axial rupture ductility pre- 
dicted by the new constitutive model (equation(5.41)) with the empirical 
curve of Manjoine [78], Fig. 5.23. 
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Figure 5.29: Isochronous rupture surface in plane stress for a 
material with a value of (X = 5), using equation (5.47). 
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Figure 5.30: Isochronous rupture surface in plane strain for a 
material with a value of (x = 5), using equation (5.48). 
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Figure 5.33: Plane stress isochronous rupture surfaces for the new 
continuum damage model allowing for the effects of the tri"axial stress 
state. Solid lines represent the Cocks/Ashby rupture surfaces (equation 
(5.47)) and the dotted lines the Hayhurst rupture surfaces (equation 
(2.32)) for low (a) and high stess (b) values of (ßöa). 
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Figure 5.34: Plane strain isochronous rupture surfaces for the new 
continuum damage model allowing for the effects of the tri"axial stress 
state. Solid lines represent the Cocks/Ashby rupture surfaces (equation 
(5.48)) and the dotted lines the Hayhurst rupture surfaces (equation 
(2.33)) for low (a) and high stess (b) values of (fl&). 
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Figure 5.35: Damage distribution at (r = 36.06), for the simplest 
CT-specimen finite element mesh (Fig. 5.3) in plane strain, using the new 
continuum damage model allowing for the effects of tri-axiality on rupture 
and deformation. 
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Figure 5.38: Damage distribution at (r = 41.3) close to failure, for 
the simplest CT-specimen finite element mesh (Fig. 5.3) in plane strain, 
using the new continuum damage model allowing for the effects of tri- 
axiality on rupture and deformation. 
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Figure 5.37: Damage distribution at (r = 34.3) close to failure, for 

the CT-specimen finite element mesh (Fig. 5.21) in plane strain, having a 

constant mesh refinement across the mesh ligament; using the new contin- 
uum damage model allowing for the effects of tri-axiality on rupture and 
deformation. 
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Figure 5.38: A refined compact tension specimen finite element mesh, 
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model the damage distribution of crack growth across the ligament length. 



Appendix A5. 

A5.1 Determination Of The Finite Element Mesh 

Normalised Applied Load (P) And The Normalisation 

Stress (QO). 

To normalise the stresses in the finite element program the elastic solution for 

a compact tension specimen without a notch, a crack, or load-holes is used to calculate 

the applied normalised load (P) to produce unit stress at (*) in the new specimen 

(Fig. A5.1). This new specimen (Fig. A5.1) is called-the moment specimen. 

It may be shown that the stress at any point (x) from the centre line of the 

cross-section of the moment specimen is given by: - 

yy 12 A+ 2 
2) 

A5.1 
Q Ct 

1+ C2 

where (t) is the thickness of the specimen and (W) is the applied load in Newtons. 

In the finite element program the thickness (t) is constant and is normalised out of 

the procedure. (t) is therefore taken as unity. 
As the maximum stress occurs at (*), substitution of (X = C/2) into equation 

(A5.1) gives: 

aMAX=W 

f1+ 3(Aa B) J°Ojj (A5.2) 

(cMAX) 
may be used as a reference stress to determine the life of the CT-specimen 

using uni-axial stress-rupture data. Here (CReI) or (aMAX) is chosen to normalise the 

stresses in the finite element program, so that (aMAx/vo = 1.0) at (*) in Fig. A5.1. 

Equation (A5.2) may be re-written for normalised stress and load as: 

'MAX = 
acoX 

= G� 
fl+3(AC+, B)l (A5.3) 

The value of the normalised load (P) is given using equation (A5.3) with the dimen- 

sions for the moment specimen given in Fig. A5.1, as (P=4.76190). 

Therefore a point load of value (P) when applied to the finite element mesh 

representing the moment specimen will produce a normalised elastic stress (E) in the 

vertical direction at (*), in Fig. A5.1, of unity. The normalising stress (a0) is calculated 

using equation (A5.2) to calculate the real stress at (*), using (t = 25 x 10-3m) with 
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the dimensions given in Fig. A5.1 in meters. (c°) is calculated as 8400. W Pa. As the 

real specimen load (W) is 2000. g Newtons = 19,620 N this gives (QO) as 164.808 MPa. 

A finite element mesh representation of the moment specimen was also used 

to confirm these calculations and check the normalisation procedure for the compact 
tension specimen problem [64] 
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Figure A5.1: The moment specimen, for the compact tension spec- 
imen problem normalisation. Only the top half of the specimen is shown 
due to symmetry. 



Chapter 6. 

Modelling The Size Effect Due To Grain 

Characteristic Dimension, Through A Non-Local 

Damage Approach. 

6.1 Introduction. 

Hayhurst [81] observed a size effect in the experimental failure times of two 

different sizes of both centre and edge cracked plates, tested under tensile creep 

conditions at 250°C. The plates are made from Copper and their geometries are 

shown in Figs 6.1(a) and (b). The dimensions of the large plates are twice those of 

the small plates, (a/b) ratios being preserved. Plate dimensions are given in Tables 

6.1(a) and (b) which refer to Figs 6.1(a) and (b) respectively. Plane strain conditions 

are achieved by making (t) large compared with (a). All the plates were machined 

from the same batch of Copper, having the same average grain size. The nominal 

stress is defined as: 
P (6.1) 

2(b - a)t 
where (P) is the tensile load on the specimen load-pins. The nominal stress (v,, ) is 

plotted against the specimen failure time for external and internal cracked specimen 
tests in figures 6.2(a) and (b) respectively. The uni-axial stress-rupture data for the 

same material is also plotted on the same axes for comparison. 
The size effect on the rupture time for the externally cracked specimen is clearly 

seen in Fig. 6.2(a). The small externally cracked specimen demonstrates higher notch 

strengthening character than the large externally cracked specimen. The terms notch 

weakening/strengthening character and the representative rupture stress have been 

introduced by Hayhurst et al [23]. Hence at the same nominal stress level, a large 

external cracked specimen will fail before a correspondingly small specimen. 

The size effect on the rupture time for the internal cracked specimen is much 

smaller (c. f. Fig. 6.2(b)). The failure points lie within the experimental scatter band 

(f 8%), showing slight notch weakening (ER�p = 1.01). 

Formerly finite element creep continuum damage analyses carried out by the 

author have shown that such a size effect cannot be predicted, due to the assumption 

96 



that the model has homogenous and continuous material properties, and is indepen- 

dent of the geometrical scale of the microstructure. It is thought by the author that 

the observed size effect only occurs where a correspondingly similar stress gradient 

acts over two different microstructural fields (i. e. the crack tip stress gradient may 
initially act over a smaller number of grains, for a small specimen, compared to a 
larger number of grains, of the same size, for a large specimen). Therefore, it is 

proposed to use the non-local damage method to spacially average the damage state 

variable over a discrete characteristic volume, which may be related to a characteristic 

microstructural cell size, to model the grain size effect using a modified finite element 

creep damage analysis. If the size effect on creep lifetimes can be predicted then 

such a non-local damage technique may be applied to other problems in structural 

mechanics such as the microstructural modelling of the spatial grain size variations 

across a weld heat affected zone, in which it is known that microstructures and their 

distribution have important effects on the weld failure. 

The size effect due to grain characteristic dimension will be modelled by av- 

eraging the damage rate parameter, (w), spatially over a characteristic area of the 

microstructure through a non-local damage rate formulation, where all other vari- 

ables remain local within the finite element technique. The non-local concept was 
first introduced to continuum mechanics by Kroner [82], Krumhansl [83] and Eringen 
[84], and has been successfully applied for strain-softening materials by Bazant et al 
[85-87]. Chaboche [88] used non-local continuum damage to overcome localisation in 

creep problems, but the non-local damage concept has not been adopted to model 

microstructural effects of size. What follows is an account of the use of non-local 
damage finite-domain methods, developed by the author, followed by the use of a 

general non- local damage infinite domain method similar to that used by Chaboche 

[88], to attempt to predict the size effect between the large and small, externally 

and internally cracked specimens. Finally, the problems of localization, convergence 

and spurious mesh refinement are studied with reference to the use of the non-local 
damage concept in finite element creep damage solutions. 

First the standard creep damage solutions for both the external and internal 

cracked specimens are presented. 
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6.2 The Standard Creep Continuum Damage Finite 

Element Solutions For The Centre And Edge Cracked 

Plates. 

The discretized internal and external cracked specimen finite element meshes 

are detailed in Figs. 6.3 and 6.4 respectively. The boundary conditions are also given 
in these figures. The batch of Copper used for the experimental tests by Hayhurst 

et al [81] was also used by Hayhurst in uni-axial creep tests to give constitutive 

parameters for this material at 250°C, [63]. These parameters are summarised in 

Table 6.2 ',. (V�) was calculated for a mid-stress level uni-axial test having the 

value of (moo = 48.76MPa). The material constants are used in the creep strain rate 

and damage rate equations (2.19) and (2.20) within the creep continuum damage finite 

element program Damage-(XX), to provide computer predictions of the deformation 

and failure of the cracked plate specimens. 
The finite element meshes for the cracked plate specimens are scaled. to give 

the dimensions of the test specimen to be modelled. Each (1/4)-plate mesh is loaded 

only on the top boundary with a uniform unit normalised stress (o/oo = 1.0). Values 

of the normalised stress concentration at the crack tips at normalised time (T = 0) are 

given in Table 6.3. The results from the plain-strain finite element creep continuum 
damage mechanics solutions for both internally and externally cracked specimens are 

also summarised in this table and the damaged element failure loci of Figs 6.5 and 6.6 

respectively. The integration parameters defined in section 4.3.3, EPSL and EPSR, 

were set at 10-3 and 10-4 respectively, for these computer solutions . The results 

almost exactly agree with those obtained by Hayhurst et al [23]. The failure loci may 

be compared with the micrographs taken from failed Copper internal and external 

cracked specimens which are given in Figs 11(a) and 11(b) of the paper by Hayhurst 

et al [23]. 
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6.3 The Development Of Non-Local Damage Methods 

Using A Square Cell Having A Characteristic Grain 

Dimension. 

6.3,1 The Finite Domain Non-Local Damage Method. 

Bazant [87] has proposed that damage may localize into one single crack, 

but more usually cracking is distributed over a characteristic volume. When such 

distributed damage reaches a critical level, one large crack may form through the 

smaller cracks, leading to the failure of the whole structure; this type of cracking 
has been observed, c. f. Figs 6(a) and 6(b) [23], during the creep tests for both the 

internally and externally cracked Copper specimens by Hayhurst et al [23], also refer 

to [81]. It is proposed here that materials have a characteristic volume over which 

cracking is almost uniform. This characteristic volume is related to grain size, or to 

the distribution of material inhomogeneities, and is thought to be characterised by 

a multiple of one of these dimensions. Therefore, the definition of a characteristic 

material volume will be used to determine if damage will be allowed to localized or 

whether damage will grow in a more distributed manner in the finite element model. 

Localization will be allowed to occur for a small characteristic volume (relative to the 

specimen size), but the damage will be forced to distribute for a large characteristic 

volume. 

For the case of Copper it is postulated that the single state damage variable 

or its rate of change is constant within such a characteristic volume, which will be 

described by a cell having a characteristic dimension which is some multiple of the 

grain size of the Copper. It is convenient to define the cells as cubes, so that a 

sequence of such cubes in 2D may be represented as a mesh of squares, which may be 

overlayed on a 2D-finite element mesh representing the material specimen, as shown 

in Fig. 6.7. 

The objective of the analysis is to seek a spatially averaged damage value, 
(w), or a damage rate value, (cw), within each cell, from the corresponding elemental 
damage values, which when used in the continuum damage theory models the observed 

physical behaviour of non-local damage. Using such an analysis one can investigate 

its potential to describe the size effect observed in Section 6.1. The spatial averaging 
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will be performed on an area basis for a 2D finite element mesh, as the thickness of 

the cracked plates is constant; and, as the damage parameter, (w), represents an area 

fraction of damaged material. 
The spatially averaged damage rate parameter for each square cell is defined 

non-locally as: - 
wcen =1f 

wadA (6.2) Acefl Acell 

where 

A«rr =J dA (6.3) 
den 

and where the subscripts (el) and (cell) denote a parameter which refers to a triangu- 

lar element and a parameter which refers to a square cell, respectively. For example 
("ei) is the damage rate at the centroid of a triangular finite element. 

The integrals in equations (6.2) and (6.3) are evaluated numerically. The area 

weights (dA) of the damage rate, (iv), are calculated prior to the finite element analysis 

by precise calculation of the element intersection areas within each cell. This is done 

by determining if the sides of each element triangle lie either totally inside the cell, or 

cross the cell boundary. If the element triangle is contained wholly within the square 

cell then (dA) is the total area of the element. If the triangular element lies outside 
the square cell region, then (dA) and (weidA) for this element is not included in the 

numerical summation. If the sides of the triangular elements cross the cell boundary 

then the intersection coordinates of each element side with the sides of the cell are 

calculated and stored. These coordinates are then subtended by lines only around 
the extreme points to form a convex polygon, which is termed forming the convex- 
hull [Appendix A6.1]. The resultant polygon is then split into triangles whose areas 

are calculated and summed to give the overlap area of the element within the cell 

concerned. Such a procedure is repeated for all triangular elements and alb material 

cells, giving the area weights which are stored in a single dimensional array. Two 

additional arrays are used; one stores the element numbers of the elements contained 
in such a cell; and the other stores the number of elements contained in the same 

cell. They are used to locate the area weight corresponding to a particular cell and 

element intersection, for repeat evaluation of equation (6.2). A detailed description 

of the weight factor calculation algorithm is given in Appendix A6.1. 

The integral (6.3) is used to allow for cell area extending beyond the boundaries 
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of the triangular finite element mesh and for elements which have failed (w > 0.9999). 

This area is automatically not included in the integrals of (6.2) by the use of (6.3), 

which maintains the sum of all area weights over each cell as unity: 

dA = 1.0 (6.4) 1 IA,. 

Il A,, u 
Here it is also noted that elements which have failed automatically have their damage 

rates set to zero, as the elements are removed from the finite element solution in the 

instantaneous method (section 4.2). 

. During the finite element damage analysis for each time step iteration a new 

spatially averaged non-local damage rate (c%, 11) is determined using equations (6.2) 

and (6.3) from the local damage rates (w, t), and the area weights (dA). Each element 

contained within a cell is then forced to have this new spatially averaged damage rate 
(WceR)" This is imposed in one of two ways: - 

Firstly: 

wel(Nzw) = wcell (6.5) 

applies if the area of the triangular element within a cell is greater than the area of 

the triangular element outside the cell; otherwise (wei) remains unchanged from that 

determined by the single state variable damage evolution law. The non-local damage 

method using this procedure will be known as Method 1. 

Secondly: 

'%'(NEW) =der L 
JA .1 

wceudA (6.6) 

This is in effect a double weight method, in which reverse-weights are calcu- 

lated for cells intersecting elements. This procedure will be known as the non-local 

damage Method 2. This procedure does not force the damage rate parameter to be 

the same for all elements within a cell. Here the damage rate parameter for an ele- 

ment crossing a cell boundary, or boundaries, will be calculated from area weighted 

values of (wui, ) for all cells associated with the element. Therefore, smoothing the 

elemental damage rate step which occurs across cell boundaries using Method 1. For 

an element contained within a cell (6.6) reduces to (6.5). 
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The computer algorithms were written in modular form using double precision 

arithmetic to achieve the accuracy required for the area calculations. Many tests were 

performed during their development to check the program formulation and numerical 

accuracy of intersection area and area summation calculations. 

A simple quadrilateral mesh generator was written by the author to generate 

the overlay cell meshes. Both cell mesh and triangular mesh data are input to the 

area intersection module, (described in Appendix A6.1), prior to the finite element 

analysis. The number of elements, and the numbers of the elements, which lie in each 

cell, together with the respective intersection area weights, are calculated and stored. 

These data are accessed by the finite element creep continuum damage program during 

each iteration to obtain the new non-local damage rate values for each triangular 

element. If it is necessary to make use of the restart facility in the program then the 

intersection area calculations need not be performed again, since the area weights are 

stored on disc and are read in directly to the finite-element program, to minimise 

CPU time. 

A boundary element number may be specified, where for element numbers 

beyond the boundary number no spatial averaging of the damage values is performed. 

This is achieved by arranging the triangular element numbers to increase with distance 

away from the crack tip. Hence, as the element size approaches the cell size, with 

increasing distance from the crack tip, the original continuum damage solution may 

be used to save CPU time. 

6.3.2 Results Of Finite Domain Non-Local Damage Method 

Tests. 

Many tests were performed in the development of the finite domain non-local 

damage methods. One such test is the symmetric loading of a rectangular finite 

element mesh in plain strain, as shown in Fig. 6.8. Only part of the left-hand side 

of the mesh defined by the region ABCD is analysed non-locally using the double 

weight Method No. 2. Plots of elemental damage and stress values at the centroids 

of elements in the bottom row of the mesh, are plotted against horizontal distance 

along the mesh boundary in Fig. 6.9(a) and (b) respectively. The plotted curves are 
jagged due to the properties of the crossed triangle arrangement of the elements. The 
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elements with edges on the vertical sides of the quadrilaterals have peaks and troughs 

in the damage and stress distributions. The elements with edges on the horizontal 

sides of the quadrilaterals have damage and stress values between these peaks and 

troughs. It is of interest to note that the damage profile across the non-local damage 

analysis region is smoother, and slightly lowered. Though the corresponding stress 

profile over the this same region region is perturbed slightly. This is thought to be 

caused by the spatially averaged damage parameters becoming smaller than the local 

damage values, due to the spatial averaging, hence causing stress to be off-loaded 

from the local damage analysis regions of the finite element mesh. The distributions 

of stress and damage, in the case of a full local damage analysis of the same structure, 

are symmetrical about the mesh centre-line. Method 1 may be shown to have similar 

properties to Method 2, but requires increased triangular element size refinement than 

is used here. 

Methods 1 and 2 have been used with damage rates (w) replaced by damage 

values (w) and essentially the same results have been obtained; but, with a higher 

level of computational complexity. For this reason the damage rates have been used 

for the non-local damage solutions detailed in this chapter. 

6.3.3 Finite Domain Non-Local Continuum Damage 

Mechanics Analysis Of Internally And Externally Cracked 

Tension Members. 

For the prediction of the size effect between large and small, external and 

internal cracked specimens a characteristic cell dimension has to be determined. For 

Method 1, numerical solutions showed that the failure time increased from that of 

the local damage analysis value as the cell size increased. Hayhurst [89] suggested a 

cell dimension of 6 or 7 grain diameters from his observations of the damage growth 

in this Copper material. The average grain diameter of the Copper is 0.15mm, which 

results in a cell dimension of approximately 0.9mm, and is the cell dimension chosen 

for the size effect tests. The characteristic cell dimension (C) may be normalised 

relative to the ligament length (L), giving the normalised cell dimension (rye = L/C), 

for square cells, as defined in Fig. 6.10. 

Details of the cell meshes used to overlay the finite element meshes (Figs. 6.3 
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and 6.4) for both the small and large, external and internal cracked specimens are 

shown in Fig. 6.11 and Fig. 6.12 respectively. The same cell dimension is used for both 

large and small meshes. The finite domain non-local finite element results are given in 

Table 6.4. The corresponding damaged element (w > 0.9999) failure loci are shown in 

Figs. 6.13 and 6.14 for external and internal cracked geometries respectively. Figures 

6.13(a) and 6.14(a) are for Method 1 and Figures 6.13(b) and 6.14(b) are for Method 

2. From Figs. 6.13 and 6.14 it may be clearly seen that the extent of the damage 

distributions close to the crack tips are greater for the small specimens than for the 

large. This is caused by each cell covering more triangular elements for the small 

specimens, thus increasing the strength of the spatial averaging and delocalization of 

the damage over a larger region than for the large specimens. If the non-local damage 

failure patterns are compared with the local damage analysis failure patterns of Figs. 

6.5. and 6.6, the non-local damage plots show increased spread of damage, blunting 

the crack tip, yet the failure loci is confined more to the initial notch plane. The 

large specimen failure loci are seen to deviate more from the initial notch plane than 

do the loci for the small specimens. This behaviour may be observed particularly in 

Figs-6.14(a). 

Colour plots of elemental damage values over the finite element mesh relating 
to the solution for the small externally cracked non-local damage Methods 1 and 2, at 

a time just before the first element fails, are shown in Figs. 6.15 and 6.16 respectively. 
The large square cell mesh, representing the cells of side 0.90mm, may be overlayed 

on these figures, to show the non-local damage analysis cellular regions in the finite 

element mesh. The differences in the way elements which cross cell boundaries are 

treated by each method may be observed. Fig. 6.15 shows how Method 1 causes a 

sharp discontinuity in the elemental damage values as the cell boundary at the crack 
tip is crossed. Fig. 6.16 shows how Method 2 averages the damage values of an 

element on the cell boundary, (on an area basis), between the damage values of the 

cells it subtends. This is seen as the intermediate colouring of elements crossing the 

cell boundary at the crack tip, between the red and blue colours, of the crack tip 

cell and the surrounding cells, respectively. Both methods 1 and 2 show similarities, 
in that elements totally contained within each square cell have the same colour and 
hence damage value. 
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The colour contour plots of Figs. 6.17,6.18,6.19, and 6.20 relate to the results 
for the small externally cracked specimen, using the finite domain non-local damage 

Method 2, at a time just before the first element failure. These figures show how the 

damage values are non-local, through the cellular spacial averaging (Fig. 6.17), whilst 

the stresses (Figs. 6.18 and 6.19) and strains (Fig. 6.20) remain local to the triangular 

elements. The maximum principal stress is shown (Fig. 6.18) to be re-distributed 

out of the most damaged cellular region, which is shown as the red damaged zone 

at the crack tip in Fig. 6.17. Figs. 6.19 and 6.20 show how the Von-Mises stress 

and creep strain are distributed and that both have maximum values at the crack 

tip. Corresponding plots to Figs. 6.17 to 6.20 for the small specimen, are shown in 

Figs. 6.21 to 6.24 for the large externally cracked specimen, also using Method 2. 

Care must be taken when comparing corresponding plots since both plots are at an 

instant in time just before the failure of the first element, but correspond to different 

life fractions (t/t! ). 

The small square cell mesh, representing cells of side 0.90mm, may be overlayed 

with the plot of Fig. 6.21, to show the cellular damage regions. The damage contour 

plots of Figs. 6.17 and 6.21 may be compared to show the difference in the spatial 
distribution of damage at the crack tips of the large and small cracked specimens. 

Figs. 6.25 and 6.26 show damage contour plots at various fractions (t1t1) 

of specimen lifetime (t j), for small and large external cracked specimens respectively 

using the non-local damage Method 2. These figures show the differences in the shapes 

of the most damaged (or cracked) regions for small and large specimens, and also how 

these damaged regions grow, and eventually cover the whole ligament length of the 

specimen, to produce failure. Enlargements of the damaged contour plots at specimen 
failure for the small and large specimens (Figs. 6.25(c) and 6.26(c)) are given in Figs. 

6.27 and 6.29 respectively. The figures 6.27 and 6.29 may be compared with the 

photo-micrographs of figures 6.28 and 6.30 respectively. The micrograph of Fig. 6.28 

is at a life fraction of (t/t j=0.94) and that of Fig. 6.30 is at specimen failure. The 

computed damage plots give a reasonable representation of the damage distributions 

in the real specimens. The damage distributions for the small specimen (Fig. 6.27) are 

restricted to a narrow band, whereas in the large specimen the damage distributions 

(Fig. 6.29) spread out away from the cellular damaged zone at the crack tip, to form a 
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more curved damage envelope. The computed damaged zones at the crack tips seem 

slightly larger than the cracked zones observed in the photo-micrographs, possibly 
indicating that a slightly smaller non-local damage analysis cell size could have been 

chosen, with a more refined triangular finite element mesh. 

Referring to the results of Table 6.4 it may be seen that the number of time 

iterations taken by the program to achieve failure of the structure, is reduced signif- 
icantly for non-local damage Method 1 compared with the local damage computer 

solutions. More elements fail during the same iteration, hence requiring fewer stiff- 

ness matrix inversions to be performed; this caused a considerable saving in computer 

time when using Method 1. No real saving in computer time has been observed for 

Method 2. This method required more iterations to achieve failure of the specimen 

compared with the local damage solution. The normalised times to failure of the first 

finite element, during all the non-local damage runs are greater than those of for the 

local damage runs. 
The real failure times of the specimens may be obtained from the normalised 

failure times for a nominal specimen stress of (an = 40MPa), using equation: 

(m --1)rf 
m' 

(6.7) tý = yucM 
f 

where 
a 

Qo = 
{1 

-b an (6.8) 
The predicted failure times may be compared with the experimental stress 

rupture lifetimes of Fig. 6.31(a) and (b), for external and internal cracked specimens 

respectively. For the externally cracked 'specimens, the non-local damage Method 1 

predicts a size effect of a difference in the failure -lifetimes between, 1830 hours for 

the large and 2110 hours for the small specimens, a difference of approximately 280 

hours at a nominal stress of 40 MPa. This may be compared with the experimen- 
tally measured difference of approximately 500 hours. The predicted failure times for 

large and small specimens made using the non-local damage Method 1 lie to the right 

of the experimental lines of Fig. 6.31(a), therefore predicting failure times which are 

slightly too large. The corresponding prediction for the externally cracked specimens 
by Method 2 gives an improved prediction for the size effect, of a difference in the fail- 

ure lifetimes, between 1390 hours for the large and 1850 hours for the small specimen 
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of approximately 460 hrs at the same nominal stress level. This compares favourably 

with that of the experimentally measured difference of 500 hrs. The corresponding 
failure points are also shown in Fig. 6.31(a) for the externally cracked specimens and 
lie only marginally to the right of the experimental lines. Referring to figure 6.31(b) 

for the internally cracked specimens both homogenization procedures show very little 

difference between the failure times for the large and small specimens, which is consis- 

tent with the experimental results. The Method 1 again predicts failure times which 

are slightly longer than the experimental values; and, the Method 2 predicts failure 

times close to the unhomogenized solution. Therefore, the non-local damage Method 

2 correctly predicts the difference between the failure times for the large and the small 

externally cracked specimens; and, correctly predicts very little relative difference be- 

tween the failure times of the internal cracked large and small specimens; but, the 

absolute failure times for the external cracked specimen solutions are slightly larger 

due to the characteristics of the spatial averaging technique. From tests performed 

using non-local damage Method 1 and 2 as the cell size is decreased the failure time 

of the specimen is shown to decrease until the original local damage analysis failure 

time is approached; and, conversely as the cell size is increased the failure time of the 

structure is increased. If a slightly smaller cell size is used for the externally cracked 

specimen and the finite element mesh is refined constantly from the crack tip to the 

left-hand side of the mesh (Fig. 6.4), then it would be expected that this may reduce 

the magnitude of the predicted failure times and the size of the damage distributions, 

bringing them into line with those of the experimental, yet maintaining the size of 

the difference in failure times between large and small specimens. 

6.4 The Infinite Domain Non-Local Continuum Damage 

Mechanics Analysis For Externally Cracked Tension 

Members. 

The infinite domain non-local damage method detailed here is similar to that 

used by Chaboche [88], although the technique has been specifically adapted by the 

author for use with the creep continuum damage mechanics program Damage-(XX). 

In the method the damage rate parameter (w) is assumed to be non-local and the 
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new spatially averaged damage rate parameter ((D) is defined as: 

f 
z9(s - x)wý, ýdU, ý (6.9) 

V, ý, ý v 

where 

Vrýsý - Jv 
$(s - x)dV, ) (6.10) 

and is the characteristic or representative material volume defined in Fig-6.32. For a 

two dimensional finite element mesh this characteristic volume is represented as the 

area of a circular cell. The weighting function is defined according to a Gaussian 

normal distribution as: 

t9(R) = exp - 
(KIRI)2} 

(6.11) 

where 
i 

IRI = 
(AX2 +E22 (6.12) 

as shown also in Fig. 6.32. The term (x) in equations (6.9 and 6.10) represents an 

element centroid which forms the centre of a circular cell. The term (s) represents the 

centroids of the triangular elements whose damage rates are to be averaged within the 

bounds of the circular cell. (V) is the volume of a finite element which reduces to the 

area of a triangular element for the case of a two dimensional mesh. The constant (K) 

in equation (6.11) takes the value (K = 2) for circular cells used by Bazant [86], and 

the cell diameter is (41). It can be seen from Fig. 6.31, that for each triangular element 

(x), all elements whose centroids lie within distance (21) from (x), (i. e. JR1 <- 21), 

have their weights calculated using (6.11), which are multiplied by their respective 

elemental areas. For those elements whose centroids lie outside the distance (21) from 

(x), (i(R)) is set to zero, due to the rapid decay of the Gaussian normal distribution 

defined by (6.11). The numerical sum of all the weights multiplied by the elemental 

areas over the whole circle gives (V, 
(s)) as in (6.10); (V, 

(2)) allows for the boundaries 

of the finite element mesh and for elements which have failed (w > 0.9999). The areas 

beyond the boundaries and of failed elements are simply deleted from the integration 

in (6.10), therefore maintaining the sum of the weights (i9(x, s) = t? (s - x)/V,. (. )), 

over each circular cell, equal to unity for any (x). The integrals (6.9) and (6.10) are 

therefore calculated as finite sums and a new spatially averaged damage parameter 
(w) is calculated. The closer an element is to the centre of the cell then the greater the 

influence the damage rate value will have on the spatially averaged value. The new 
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non-local damage rates (w) for each triangular element may be substituted directly 

for the local damage rate parameter (cv) in the continuum damage finite element 

solver. A new damage parameter is calculated for each element at every subsequent 

iteration. 

When an. element fails (w > 0.9999) the damage rate for this element is au- 

tomatically set to zero by the program and hence this element will not contribute to 

the non-local solution in (6.9). 

The area weights and Gaussian weights are calculated before the finite element 

creep continuum damage solution is performed; and, are stored for subsequent access, 

if the creep solution is re-started, to save computer time. When the finite element 

mesh is coarse, so that the cell size is smaller than the element size the spatial aver- 

aging of the local damage values may be stopped by specifying a boundary element 

number, as before in the finite domain technique. The infinite domain method is con- 

siderably simpler than the finite domain methods as intersection areas do not have to 

be calculated. This is due to the use of the Gaussian normal distribution where the 

damage rate contributions due to elements at the boundaries of a cell are weighted 

to zero. The larger the value of (1) in (6.11) the flatter the Gaussian normal 

distribution, and hence the damage, or damage rate values of surrounding elements 
become more influential in determining the damage rate for a particular element. 

As before the normalised cell dimension (ye) is defined relative to the ligament 

length of the external crack specimen as shown in Fig. 6.10. As the size effect was 

observed to be most significant in the external cracked specimen, only this specimen 
has been studied with the infinite domain technique. The numerical results obtained 

using the infinite domain non-local damage method are given in Table 6.5 for the 

externally cracked Copper specimen for a wide range of normalised cell dimension 

(7t) values. The failed element (w > 0.9999)) distributions are given in Fig. 6.33 

at final rupture. The numerical results in Table 6.5, and the corresponding failure 

plots in Fig. 6.33, are for a range of normalised cell sizes including those for the large 

and small externally cracked Copper specimens; a cell size of (C = 0.6mm) has been 

taken for the (c)large and for the (d) small specimens respectively. The failure times 

for all the computations performed do not differ significantly, showing an inability 

to predict the change of failure times between large and small externally cracked 
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specimens. The failure times all lie close to the local damage solution time. It may 
be clearly seen from Fig. 6.33(a) to (c) that as the normalised cell dimension decreases 

(i. e. the cell size relative to ligament length increases) the damage region close to the 

crack tip becomes less localised. 

No significant saving in computer time was observed, Table 6.5, as was reported 
by Chaboche [88] in the non-local damage solution of a uni-axial tension specimen , 
because either more or a similar number of iterations were required for each solution, 

compared with the requirements of the local damge analysis solutions; but, a larger 

number of elements failed within single iterations, reducing the number of stiffness 

matrix inversions required and the associated computational overhead. 

6.5 Non-Local Continuum Damage And The Problems Of 

Localisation, Convergence And Spurious Mesh Refinement. 

Localisation of stress and/or strain occurs in finite element solutions which 
involve softening due to the formation of damage, where the energy dissipation rate 
due to imminent element failure is incorrectly predicted to be zero and subsequently 
the solutions converge to a physically meaningless solution as the mesh is refined 
further. Localisation effects have been observed and detailed by Bazant [85-87] and 
by Chaboche [88]; and they occur where the finite element mesh is most refined, e. g. 

at a crack-tip. As the finite element mesh is refined further to achieve convergence 

of the field variable to the required solutions, the stresses and/or strains increase 

in such regions, inducing increased local deformation. When the effects of material 
degeneration, damage, or softening are included it is therefore possible to induce 

highly localised failure mechanisms or zones, in regions of high mesh refinement. 
The solution to the finite element structural model therefore becomes totally mesh 
dependent. 

With reference to Fig. 6.34 and 6.35 it may be seen that the normalised time to 

the failure of the first finite element, at the crack-tip, is increased as the normalised 

cell dimension is decreased. This result effectively shows the power of the non-local 
damage techniques as localisation limiters. Formerly, the minimum size of the mesh 

refinement at the crack tip is chosen arbitrarily to be that of one grain of the material 
to be modelled. Such a choice is a localisation limiter itself, but is dependent upon 
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the material chosen to be modelled; depending upon the physics of the process being 

modelled this minimum homogenous damage region may in fact be much larger than 

a grain. This minimum homogenous damage region is the characteristic volume or 

cell, for the material, which has a size determined by how material defects nucleate, 

grow and form macrocracks. 

It is important to notice that, although the cell size effects the stress and/or 

strain localisation around the crack tip and produces different times to failure of the 

first element, the infinite domain non-local damage method of Chaboche shows little 

if any effect on the overall lifetime of the whole structure. This is thought to be 

due to the fact that the energy dissipation for the delocalised cracking, in the case 

of the external and internal cracked specimens, using the non-local damage method 

of Chaboche is the same for the different cell sizes chosen. Bazant shows [87] that 

the non-local damage concept is equivalent to providing an energy dissipation rate 

control, where the energy dissipation rate due to damage evolution is independent of 
the degree of mesh refinement. 

Spurious mesh refinement may also cause problems which may be thought of 

as localisation problems; for instance, where a fine zone finite element mesh interacts 

with a coarse zone, or where a line of elements coincides with a plane of maximum 

shear. One such example is shown in Fig. 6.36, which shows part of the damage failure 

loci for a heavily refined cracked tension specimen mesh. By using a non-local damage 

analysis such localisations may be smoothed, producing a more realistic deformation 

and failure pattern. 

6.6 Discussion. 

The difference between the failure times of the large and small external cracked 
specimens has been predicted with finite domain non-local damage Method 2 to be 

approximately 460hrs, whereas experiments give a difference of 500hrs. A difference 

between the failure times of large and small internal cracked specimens is predicted 
to be small, which is also in agreement with the experimental data. Though the 

actual magnitude of the failure times predicted for the external cracked specimens 

are slightly higher than the experimental values, and than the values predicted by 

the local damage method. The results of Method 2 gave an improved prediction in 

111 



comparison with the results of the finite domain non-local damage Method 1, though 

the results highlighted distinct similarities between both methods. The difference in 

the two methods is due to the different treatment of the elements which cross a cell 
boundary. 

The computations performed using the infinite domain non-local damage method 

of Chaboche [88] did not predict the size effect; the failure times for externally cracked 

specimens were almost constant for a large range of normalised cell dimensions. 

It is thought that the ability of the finite domain non-local damage method 
to model such effects of size is due to distinct regions of material being constrained 
to have the same spatially averaged damage rate value. These distinct regions may 
be directly related to a material characteristic volume, which are observed to damage 

uniformly in experiments [87]. The characteristic volume is also advocated by material 

scientists and is consistent, for the cell located at the crack tip, with the concept of 

a crack-tip process zone of finite size (901, ( Fig. 6.21). 

In contrast the infinite domain non-local damage technique of Chaboche shows 
an independence of the cell characteristic dimension on the failure lifetime of the 

structure. This is possible due to the energy dissipation due to damage evolution being 

constant for this delocalized cracking model for arbitrary cell size or mesh refinement. 
Even so the cell characteristic dimension does limit the amount of localization for all 
the techniques used and hence determines the deformation processes local to the crack 
tip. 

It is possible that the exact failure times could be obtained by using the 

finite domain non-local damage Method 2, with a slightly smaller cell dimension and 

constant mesh refinement across the ligament of the externally cracked specimen; 

with the elements smaller than the cells close to the left-hand mesh boundary shown 
in Fig-6.4. This will involve large computer resources and hence has not yet been 

studied. 

Many researchers have modelled grain, or inhomogeneity, effects in material; 
with reference to creep and plasticity the most noteworthy are Eringen [91], Giessen 

and Tvergaard [92]. Tvergaard's analysis involves modelling grain facets by the sides 

of polygons where damage may grow along grain boundaries. To model a whole 

structural specimen with such grains will require a vast amount of computer re- 
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source. Hence, to develop models based on a characteristic material dimension is all 
important, to relate the behaviour of small scale test specimens to large structures. 

Besides the prediction of grain or inhomogenity effects the non-local damage 

theory is necessary to restrict stress or strain localisation into small regions of refined 

meshes as shown by Bazant [85-87], by Chaboche [88] and by Tvergaard [93,94]; they 

have observed localisation effects both experimentally and computationally. Tver- 

gaard [931 has used constitutive equations suggested by Gurson [951 to model the 

material properties of a porous ductile medium using the finite element technique. 

Tvergaard [94] produced solutions showing plastic flow localisation into shear bands 

between voids in the material. He notes that the prediction of localisation is very 

sensitive to mesh design and that shear bands may localise along lines of nodes pref- 

erentially orientated within the mesh. Therefore localisation effects depend on the 

constitutive equations used, and also the mesh geometry and refinement close to stress 

raisers. Through the use of non-local concept, problems associated with lo- 

calisation, convergence and spurious mesh refinement may be overcome and failure 

behaviour predicted which is more closely allied to that observed in practice. 

The concept of non-local damage used in the finite domain Methods 1 and 2 

show an ability to model the magnitude of the size effect due to a grain or inhomogen- 

ity characteristic dimension. The results show the validity of such a model and the 

potential to predict the size effect in the specimens considered. Through the work 

of Bazant and Chaboche a non-local procedure has been developed by the author to 

restrict localisation, improve convergence of solutions and to overcome the problems 

associated with spurious mesh refinement; with the aim of obtaining more physically 

related finite element solutions through a characteristic material volume. 
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TYPE d 2a 2b C i 

INTERNAL CRACKED SMALL 4.762 8.382 25.4 38.10 22.225 

SPECIMEN LARGE 9.525 16.764 50.8 63.5 38.10 

Table 6.1(a): Dimensions of the small and large internally cracked 
specimens shown in Fig. 1(a). 

TYPE a 2b t 

EXTERNAL CRACKED SMALL 6.35 19.05 38.10 

SPECIMEN LARGE 12.70 38.10 38.10 

Table 6.1b): Dimensions of the small and large externally cracked 
specimens shown in Fig. 1(a). 

00 48.76 
E 66.24x103 
v 0.30 
m -0.79 
a 0.70 
n 2.97 
K 1.28x10-6 
x 1.21 
M 6.02x10-4 
¢ 3.83 
Vu 27.02 

Table 6.2: Material creep constants for Copper at 250°C in units of 
MPa, % creep strain and hours, after Hayhurst et al [63]. 

Stress Concen- Normalised Representative 
Specimen Type tration @ Crack tip Failure Time Rupture Stress 

(1. -0) tf Er - ar/U0 

External Cracked 
Specimen 17.99 8.309 0.884 

(Small and Large) 

Internal Cracked 
Specimen 14.26 16.372 1.014 

Table 6.3: Finite element local continuum damage solution results for 
externally and internally cracked specimens. 
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Figure 6.2(a): Specimen nominal stress-rupture diagram showing 
creep data from tests on both large and small, externally cracked plates. 
(x) small sized specimen. 
(0) large sized specimen. 
- Uni-axial specimen test line. 
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Figure 6.2b): Specimen nominal stress-rupture diagram showing 
creep data from tests on both large and small, internally cracked plates. 
(x) small sized specimen. 
(®) large sized specimen. 
- Uni-axial specimen test line. 
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Figure 6.5: Failed element (w > 0.9999) distributions across the liga- 
ment of the internally cracked Copper specimen, using the standard local 
damage tequnique. 

Figure 6.6: Failed element (w >. 0.9999) distributions across the liga- 
ment of the externally cracked Copper specimen, using the standard local 
damage teqnique. 
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Figure 6.8: Finite-domain, non-local damage analysis, test problem, 
showing a symmetrically loaded oblong mesh with region ABCD over- 
lapped with a cell mesh. In this region the non-local damage technique 
is applied, the rest of the mesh is solved using the standard local damage 
technique. 

Nodal Forces Applied To Top Boundary. 
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Figure 6.10: Definition of the normalised cell dimensions (-Y, ) and 
('n). 
L is the ligament length. 
C is length of the side of a square cell, in the overlapping cell mesh for the 
finite domain non-local damage technique. 
I is the diameter of a circular cell for the infinite domain non-local damage 
technique. 
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Figure 6.25: Damage distribution contour plots for the small exter- 
nally cracked plate at life fractions (t/t1) of: (a)53%; (b)82.2%; (c)100%., 
using the finite domain non-local damage method No. 2. 
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Figure 8.26: Damage distribution contour plots for the large exter- 
nally cracked plate at life fractions (t/tj) of : (a)26%; (b)62.4%; (c) 100%, 
using the finite domain non-local damage method No. 2 . 
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Figure 6.27: Predicted damage distribution for the small externally 
cracked Copper plate at failure. using the finite domain non-local damage 

method No. 2. Compare this figure with the micrograph in Fig. 6.28 below. 
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Figure 6.28: Mid-thickness micrograph taken from the minimum sec- 
tion of a small externally cracked Copper plate specimen at a life fraction 

of (t/t j=94%). 
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Figure 6.29: Predicted damage distribution for the large externally 

cracked Copper plate at failure, using the finite domain non-local damage 

method No. 2. Compare this figure with the micrograph in Fig. 6.30 below. 
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Figure 6.30: Mid-thickness tniciu6rapli taken from the minimum sec- 

tion of a large externally cracked Copper plate specimen at failure. 
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Figure 6.31(a): Comparison between experimental and predicted 
lifetimes for large and small externally cracked Copper plate specimens, 
using the developed finite domain non-local damage methods: 

100 8% uni-axial scatter band. Experimental lines. FFFF ^ I- 
uni-axial specimen and large 

.ý, and small cracked specimen. 
b 

N aý 

Cl) 

Computer Predictions. 
,, 

o small and large specimen predictions using method No. 1. o" 
small and large specimen predictions using method No. 2. 

x standard local-(CDM) solution. 
1002 

103 104 

Failure Time (tj) (hrs). 

Figure 6.31(b): Comparison between experimental and predicted 
lifetimes for large and small internally cracked Copper plate specimens, 
using the developed finite domain non-local damage methods. Note that 
both small and large specimen experimental lines lie on the uni-axial 
stress-rupture line. 
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Figure 6.32: Schematic representation of the circular cell used in the 
infinite domain non-local damage method, which is centered on an element 
centroid (x). The damage values (w) of other element centroids within ra- 
dius (21) are scaled by the height of the gaussian normal distribution at 
distance R along the (x)-axis in the lower graph. 
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Figure 6.33: Failed element (w > 0.9999) distributions for exter- 
nally cracked Copper specimens, predicted by the infinite domain non- 
local damage method, for a wide range of normalised cell sizes (ryn). ('n) 
is defined in Fig. 6.10, and figures (c) and (d) have cell sizes corresponding 
to large and small specimen sizes, respectively. 



12 
ti 

10 

9 
H8 

6 

ö5 

3 
2 

Method No. I. 

- -- . Method No. 2. 

[ (r1, t) prediction by local damage method, -ý- 

, malte method 

0 10 20 30 40 s0 

Normalised cell dimension 'y, 

Figure 6.34: Graph showing the variation of the normalised time 
to the failure of the first element in the structure (riot), (points-x), and 
the normalised time to the failure of the specimen (rf), (points-+) with 
the size of the normalized cell dimension (yc), for the externally cracked 
Copper specimen, using the finite domain non-local damage methods No. 1 
and No. 2. 
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the failure of the first element in the structure(ri, e), (points-x), and the 
normalised time to the failure of the specimen (r1), (points--+-), with the 
size of the normalized cell dimension (yz), for the externally cracked Cop- 
per specimen, using the infinite domain non-local damage method. 
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Figure 6.36: Example of localization due to spurious mesh refinement 
at the crack-tip of a finite element mesh representing a cracked specimen. 



Appendix AG. 

A6.1 Algorithms Used For The Calculation Of Area 

Weight-Factors In The Finite Domain Non-Local Damage 

Methods. 

In the following description, reference is made to the Area Weight-Factor flow 

chart presented in figure A6.1 on three separate pages of Fig. A6.1. Referring to the 

section of the flow chart marked (A) to (B), the coordinates and topolgies for both 

triangular finite element mesh and the square cell mesh are read into stores within 
the computer program. Test 1 is performed to determine if any of the first cell's sides 
(CL1, CL2, CL3, CL4) intersect with any of the first triangular element's sides (L1, 

L2, L3). This is done with the subroutine INTR, which requires the end coordinates 

of each pair of line segments PQ and RS ( Fig. A6.2); one line segment belonging 

to a triangular element, the other to a square cell respectively. The subroutine uses 

a property of the calculation for the area of a triangle from its coordinates, that 

if the nodes of the triangle are numbered in a clockwise order, the area calculated 

will be of opposite sign, to that calculated for a triangle with nodes numbered in an 

anti-clockwise direction. It is observed that the areas of the triangles formed by the 

points RPQ, SQP, QRS and PSR are all positive, when the line segments intersect, 

(Fig. A6.2(a)). When the line segments do not intersect (Fig. A6.2(b)) negative 

and positive signs are produced whose signs cancel. Therefore, a (one) is used to 

denote line segments which intersect and a (zero) is used to denote non-intersecting 
line segments. If the nodes at the ends of the line segments touch or the lines are 

colinear a (zero) is given by the algorithm, but the intersection, if there is one, will 
be spotted by later tests. If two line segments intersect the coordinates of the point 

of intersection are calculated from the solution of two simultaneous equations for 

the lines. The intersection coordinates are stored in the single dimension arrays 
XNST and YNST. When all three sides of the triangular element have been tested 

for intersection with all sides of the square cell, Test 2 is performed, (see section 
(B) in the flow chart, Fig. A6.1). Isere the nodes are stored of any triangular element 
nodes which lie inside the square cell area under consideration. This is done using two 
inequalities defined by two IF-statements, one with upper and lower bounds as the 
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x-coordinates of the vertical cell sides and the other with bounds as the y-coordinatcs 

of the horizontal cell sides. If all the nodes of a triangular element lie within the 

square cell, then the whole area of the triangular element is the intersection area, 

which is then calculated. If the number of nodes contained within the square cell 

is less than three, Test 3 is performed, (see section (C) of the flow chart, Fig. A6.1). 

Here, in Test 3a more complicated set of inequalities is used, with bounds provided 

by a side of the triangle and a parallel line through the opposite node to the side, 

to define the triangular element region, (Fig. A6.3). Any cell nodes lying within 

the triangular element region are stored. If more than three nodes lie within the 

triangular region, then the area of intersection is the area of the square cell, which 

is then used as the area weight factor for this cell/triangular element pair. If no 

overlap is present between the triangular element and square cell pair then ITTI = 

0, ISQ =0 and ITR =0 and no area weight calculation will be performed. The next 

triangular element and cell pair will then be tested for intersection. If an intersection 

is present then ACTION 1 is performed (see section (D) of the flow chart, Fig. A6.1). 

At this stage the trivial intersections of all the shaped intersections possible (many of 

which have been summarised in Fig. A6.4), have had their area weights calculated. 

Now the areas of more complex intersections must be calculated. This involves the 

use of a general technique called forming the Convex-Hull, to order the intersection 

coordinates, as previously stored. The method takes the lowest point having the 

smallest y-coordinate and the largest x-coordinate as its starting datum point No. 1. 

(See Fig. A6.5(a)). A horizontal line is drawn through this starting point and lines 

are also drawn between this point and every other intersection point. The angles 

between the horizontal line and the other lines are calculated and the coordinate 

point having a line which forms a minimum angle with the horizontal line is stored. 

This newly stored coordinate point then becomes the new datum coordinate No. 2 

and a line may be drawn from the previous datum point to it. The angles between 

this current line and lines adjoining the new datum -point with all other points are 

calculated and the next point chosen, as that of a line which forms the minimum angle 

with the current line, (Fig. A6.5(b)). This procedure continues until points are stored 
in an anti-clockwise order, which define a peripheral convex shape enclosing all the 

intersection coordinate points, (Fig. A6.5(c)); hence the term, forming the Convex- 
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Hull. This convex shape is then segmented into triangles using ACTION 2. (See 

section (E) in the flow chart, Fig. A6.1). This is done by noting a simple number 

pattern for the triangles forming the convex shape, i. e. 1,2,3 - 1,3,4 - 1,4,5 etc.. (See 

Fig. A6.5(d)). The areas of each triangle are calculated from the coordinates of its 

nodes and each area is summed giving the area of the convex hull intersection shape, 

which is the area weight-factor for this particular cell/triangular element pair. 

These procedures are repeated for every square cell and each triangular element 

up to the finite domain non-local damage analysis boundary element number, yielding 

three single dimension stores AR(I), NEL(I) and NIN(I). (See section (F)in the flow 

chart, Fig. A6.1). AR(I) contains the area weight factors, NEL(I) contains the 

numbers of the elements in each cell and NIN(I) contains the total number of elements 

contained in each cell. NEL(I) and NIN(I) are used to locate the intersection area of 

a particular cell/triangular element intersecting pair in the array AR(I), which will 

be used to weight the relevant elemental damage rate parameter in the finite element, 

finite domain, non-local damage program. 
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Chapter 7. 

Creep Deformation And Failure Of Weldments. 

7.1 Introduction. 

Welded joints are used extensively in the construction of elecrical power plant. 
Welding provides a strong, yet simple and cost effective joint between components, 

alleviating the need for bolted flanges and seals. There, are many methods available 
for producing a welded joint, the most important method for high temperature power 

plant is fusion welding. . 
The Central Electricity Generating Board (C. E. G. B. ) use the Manual Metal 

Arc technique for a large proportion of their fusion welds, to form joints in 0.5Cr 

0.5Mo 0.25V main steam pipes using 2.25Cr 1Mo weld metal. Such steam pipes and 

joints are designed in accordance with British Standard Codes (BS 806, BS 1113 and 

BS. 5500) to have a high temperature design life in excess of 100,000 hours, based 

on the stress-rupture properties of the parent material and the mean diameter hoop 

stress level in the parent pipe. However in practice lifetimes are not limited by the 

behaviour of the parent metal pipe but by the formation of macroscopically large 

cracks in the weld, which can occur early in the service life of the component [96,97]. 

This cracking is observed to be as a direct result of creep damage accumulation within 

certain microstructural regions of the weld metal or heat affected zones of the joint. 

The large cracks observed in steam pipes, although not usually resulting in catas- 

trophic failure, produced concern for safety in the continued operation of the power 

plant past its initial 20 years design life. In the early 1970's the CEGB proposed a col- 
laborative research program for the high temperature design of weldments. Together 

with independent researchers a significant amount of literature is now available from 

the past 20 years intensive research into the creep behaviour of weldments. What 

follows is a review of the past research and a statement by the author of the cur- 

rent understanding of weld metallurgy, design and weld modelling. The next chapter 
(No-8) covers the advancements made by the author for the prediction of the creep 
deformation and failure of welded components operating at high temperature. 
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7.2 Welding Methods. 

Currently the main methods of fusion welding used in power plant construction 

are the Manual Metal Arc, the Gas Metal Arc and the Submerged Arc Processes. 

The Manual Metal Arc process uses a high current discharge, which melts the core 

wire of the electrode and bridges the gap between the two components to be joined. 

The electöde flux coating melts and provides protection of the weld pool against 
A 

atmospheric elements, which may adversely affect the quality of the weld. The Gas 

Metal Arc process uses an inert gas shroud. The gas shroud may be tungsten inert 

gas (T. I. G. ), which uses an Argon shroud or metal inert gas (M. I. G. ), which uses a 
Carbon Dioxide inert shroud and may have force fed filler wire. This method produces 

a metallurgically clean weld having low absorbed gas and inclusion content with no 

surface slag. The Submerged Arc Process has a separate slag feeding process. It is 

a high energy production process and is automated to weld large steel constructions. 
Other specalist fusion welding methods exist such as the electroslag process for joining 

large castings and forgings, but are not cn vered here. 

Non-fusion techniques include friction welding, electron beam welding, diffu- 

sion bonding, laser-beam welding and explosive welding. These specialist processes 

can be costly, but may impart the required properties of the materials and provide 

the most appropriate production method for a particular component. For example 

electron-beam welding and laser welding provide very small heat affected zones due 

to very localised heating and hence cause low distortion in the vicinity of the weld. 

7.3 Weld Types And Preparations. 

Typical high temerature ferritic steel steam pipes and pressure vessels use 

0.5Cr 0.5Mo 0.25 V parent metal with 2.25Cr 1Mo, ICr 1Mo, 0.5Cr 0.5 Mo 0.25V 

or mild steel weld metal. Dissimilar metal welds, or transition joints as they are 

sometimes called, are used where a corrosion and creep resistant steel is joined to a 
less resistent ferritic steel for economic reasons. For example a joint is made between 

AISI type 316 austenitic steel and 2.25Cr Mo ferritic steel welded with a Nickel based 

weld metal, e. g. an Inconel weld metal. The relatively expensive austenitic steel is 

used only where it is required and the cheaper ferritic steel is used where lower creep 

resistance and corrorsion resistance is adequate. New designs of power plant now use 
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high alloy ferritic steels in transition joints such as the 9Cr Mo and the 12Cr Mo V 

series of steels. 

Within transition joints thermal expansivity differences between the different 

materials connected produce detrimental interfacial stresses, resulting in additional 

creep strains which contribute to failures occurring early within the design life of the 

component. New weld materials and graded composition joints reduce the severity of 

these differences (section 7.7 and [98]). 

Weld preparations are made by machining and or grinding the parent metal 

surfaces before welding. Weld preparation geometries are designed to improve weld 

penetration, by making it easy for the weld metal to reach the lower parts of the 

joint and produce good fusion contact with the parent metal. The weld preparation 

should also be such that the weld may be easily built up by the successive layering 

of weld beads in a neat and consistent manner, to provide uniformity of material 

strength across the joint. Three popular weld preparations are shown in Figs. 7.1(a) 

to (c). Figure 7.1(a) details a general vee-weld preparation for thin plates and Fig. 

7.1(b) shows a 'J' type preparation used for thick steam pipes. Figure 7.1(c) shows 

a narrow gap preparation which has nearly parallel sides in which the weld beads 

are deposited, one or two per layer, in an automated process. The narrow gap weld 

preparation provides a quicker and cheaper method for connecting thick pipes than 

the 'J' type preparation, but care has to be taken to ensure good side wall fusion. 

Other weld preparations include the use of a backing strip to hold the first layer of 

weld beads into the weld cavity, and the use of a back preparation where the weld is 

completed from both back and front of the plate, alleviating the need for a backing 

strip. The most commonly used weld preparation for thick pipes is that of the 'J' 

type preparation of Fig. 7.1(b). 

The weld preparation has to be filled with weld metal in a controlled and 
systematic order, where small diameter rods are used initially and the size of the 

rod is increased as the weld is filled. This layering procedure is called buttering or 

multipassing. An ideal filler metal geometry is shown in Fig. 7.2. The geometry of the 

weld preparation, the overlapping of the buttered layers of weld, the weld bead size, 
the heat input and corresponding thermal cycle heating and cooling rates determine 

the final microstructures and their distribution in the weld and hence determine the 
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creep properties of the joint. 

7.4 The Weld Thermal Cycle. 

Rosenthal (99,100] calculated theoretical temperature distirbutions produced 

by a point heat source moving with velocity V, similar to that produced by arc 

welding (Fig. 7.3(a)). Figure 7.3(b) shows a 3D temperature distribution in mild steel 

thick plate produced by a point heat source, calculated from heat flow equations 

by Rosenthal. ( n-n ) in the figure represents the locus of the boundary between 

rising and falling temperatures. As the heat source moves forwards with velocity V 

it rapidly heats the parent material at a point ahead of it and as it passes this point 

the point cools at a slower rate, the point is then left behind in the wake of the 

heat source, 3D-thermal cycle. Kohno and Jones [101] measured the temperature at 

such points in the parent metal heated by a weld thermal cycle. Figure 7.4 shows 

the temperature variation with time for various points in the weld preparation and 

highlights the severity of the heating and cooling rates in the weld thermal cycle. It 

is these severe heating and cooling rates which cause phase transformations, grain 

growth and refinement in the region close to the weld metal fusion boundary called 

the heat affected zone (IIAZ). 

7.5 Weldment Metallurgy. 

The following analysis is primarily concerned with low alloy ferritic weld ma- 
terials and base metals. During welding the parent plate material is heated to its 

melting point by the severe weld thermal cycle, enabling the weld metal and parent 

metal to fuse together. The parent metal further from the fusion boundary experi- 

ences lower peak temperatures and heating and cooling rates of the thermal cycle than 

parent metal at the fusion boundary, which produces different material microstruc- 

tures of varying degrees of grain refinement in the heat affected zone (Fig. 7.5). The 

type of microstructure and grain refinement produced are dependent on the severity 

of the weld thermal cycle, the base material phase transformation characteristics and 

grain growth kinetics. 

A detailed investigation of a 0.5Cr 0.5Mo 0.25V: 2.25Cr 1Mo weld by Middle- 

ton and Cane [102] has identified 13 separate microstructures in the heat affected 
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zone alone. Coleman [96] details simplified microstructural observations of both a 

single weld bead and a multipass ferritic weld. With reference to Fig. 7.6(a), (b) and 

7.7, each weld bead produces a repeatable microstructural distribution if the welding 

parameters such has heat input and bead dimensions are kept constant. The mi- 

crostructure of the cast weld metal has coarse columnar grains and is almost fully 

banitic. Referring to Fig. 7.6(a) and Fig. 7.5, crossing the fusion boundary the first 

microstructural region in the heat affected zone is the coarse grained region. Here the 

parent material has been fully austenitised by the weld thermal cycle peak tempera- 

ture, and on cooling, the cooling rate is such that the austenite is fully transformed 

to bainite. Moving further away from the fusion boundary the grain structure be- 

comes more refined, with the prior austenite grain size decreasing almost linearly 

with decreasing peak temperature of the thermal cycle. This is represented as the 

fine grain zone in Fig. 7.6. Moving still further away from the fusion boundary is a 

region where the peak temperature reached by the parent metal is only sufficient for 

partial transformation to austenite to occur (Fig. 7.5); the resulting microstructure 
in this region is a mixture of ferrite and bainite. The partially transformed zone is 

predominantly ferrite at the cold end of the beat affected zone and predominantly 
bainite at the hot end. The next zone experiencing lower peak temperatures than the 

partially transformed zone is termed the tempered or overtempered zone (Fig. 7.5), 

which has a microstructure similar to that of the parent metal. It does show some 

degradation in structure having precipitates of vanadium carbide and is 95% ferritic, 

5% bainitic. The partially transformed zone and overtempered zones are included 

in Fig. 7.5, but for simplicity only the partially transformed zone is represented in 

Fig. 7.6(a) and (b) as the intercritical zone, because the overtempered zone has a 

microstructure very similar to the parent metal. 
Microstructural distributions in the heat affected zone have been predicted by 

Allerry and Jones [103] using heat flow equations to define the weld thermal cycle, 
knowing the continuous cooling transformation diagram for the parent metal. 

In multipass welds layers of weld are built up on top of each other. Figure 7.7 

shows a section through a 'J' type preparation Manual Metal Arc weld in a low alloy 
ferritic steel thick pipe section, showing how the weld beads are arranged to fill the 

weld cavity. Each weld bead laid down is tempered by the weld thermal cycle of the 
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next adjacent weld bead, which recrystallises the previous coarse and fine bainite (Fig. 

7.6(b)) in the previously laid down weld bead. The heat cycle of each weld bead also 
tempers the heat affected zones in the parent metal produced by the previously laid 

down weld bead. The last layer of weld beads to be laid down are called the capping 

beads, they remain fully coarse and have a columnar grain structure (Fig. 7.6(b)). 

Multiple layers of weld beads are found in many thick pipe welds, where the 

extent of the overlap, bead dimensions, heat input and other welding parameters 

controls the proportion of the final microstructures in the weld metal and heat affected 

zones. Allerry and Jones [104] developed a computer program which is capable of 

predicting the heat affected zone microstructures and their distribution from the 

welding conditions, so that optimum conditions can be established to produce the 

most beneficial microstructural distributions to improve weld performance. For low 

alloy ferritic steel weldments the promotion of refined bainitic microstructures gives 

good creep strength, rupture ductility and weld performance. Highly refined heat 

affected zone and weld metal structures are obtained by overlaying small weld beads 

produced by small diameter electrodes with larger weld beads produced by large 

diameter electrodes [105]. 

Krutz and Segerlind [106] detail a finite element thermal model where certain 

welding parameters can be varied to optimise joint strength by promoting certain 
beneficial metallurgical structures in the weld. 

Further modification of weldment microstructures can occur due to any post 

weld heat treatment, or in-service heating due to plant temperature, or due to ageing. 

7.6 Properties Of Weld Microstructures. 

The mechanical testing of thin zones of microstructures from welds cannot be 

carried out, as insufficient quantities of each microstructure can be isolated to make 

uni-axial creep specimens. However, weld simulation apparatus [107] are available, 

where a thermal cycle analogous to that which occurs in the welding process is applied 
to a specimen of the parent material, producing larger quantities of microstructures 

analogous to those observed in the real weld [108]. Furnace heat treatments of parent 

metal specimens may also be used to reproduce bulk quantities of the heat affected 

zone microstructures, if the prior austenite grain size and cooling rate through the 
transformation temperature range are carefully controlled. 

122 



Middleton and Cane [102] have identified the microstructures within a 0.5Cr 

0.5Mo 0.25V: 2.25Cr Mo weld and have obtained their mechanical properties [109]. 

For welds in general the coarse grained heat affected zone material has the strongest 

creep resistance and is the most brittle structure. The parent metal has a relatively 

good creep strength with a medium to high ductility. The weld metal is weaker in 

creep than the parent metal and has a lower ductility. The partially transformed and 

over-tempered regions have the lowest creep strength and the highest ductility. The 

properties of the weld metal coarse and fine zones have not been determined, but the 

weld metal coarse grained bainitic regions can be thought of as stronger in creep and 

more brittle than the refined weld metal zones [110]. 

Figure 7.8 shows the relative creep properties for weld metal, parent metal 

and heat affected zone microstructures at the same uni-axial test stress level for a 

transition weld due to Roode, Etienne and Van Rossurn [111]. In transition joints 

sometimes the weld metal can be arranged to be stronger than the parent metal. The 

property changes across transition welded joints is complicated as dissimilar parent 

metals are welded together, for example 2.25Cr Mo ferritic alloy is joined to AISI 

316 austenitic steel with a Nickel based weld metal. Different heat affected zones are 

observed on either side of the weld which are produced by the different responses of 

the two base materials to the same weld thermal cycle. 

7.7 Weldment Failure. 

Cracking and failure of ferritic pipe wcldments occurs primarily in three modes: 

either through the formation of circumferential cracks in the coarse heat affected zone; 

or by transverse cracks forming in the weld metal; or by circumferential cracks forming 

in the soft over-tempered and partially transformed region. These cracking modes 

may initiate during post weld stress relief heat treatment or early within the life of 

the welded component. Cracks form due to the accumulation of creep strain, which 

leads to the nucleation and subsequent growth of cavities, which coalesce to form 

macroscopic damage reducing the effective cross-section of the component till failure. 

Circumferential heat affected zone cracking occurs in the coarse grained bainitic 

region adjacent to the fusion boundary. Cracks start to grow in the outer 1/3 of the 

pipe wall thickness and may subtend the whole circumference of the pipe, growing 
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inwards towards the internal bore (Fig. 7.9). Cracking can arrest in refined bainitic 

region of the HAZ [112] and re-initiate ahead of the main crack in a coarse bainite 

region of a neighbouring weld bead. This shows the ability of the refined bainitic 

regions to arrest crack growth. Gooch and King [113] have shown that creep crack 

growth is an order of magnitude smaller in the HAZ refined zones in comparison to 

crack growth rates in coarse grained zones. The final failure of the component usually 

involves brittle fracture or plastic collapse leading to steam leakage in a safe manner. 

Transverse weld metal cracking usually initiates in the coarse columnar bai- 

nite regions of the outermost weld beads. The cracks, oriented transversely across 

the circumferential weld, extend radially inwards. In extreme cases the cracks may 

extend across the heat affected zones into the more ductile parent metal where crack 

growth usually arrests. Initially the transverse cracks are confined within the creep 

brittle, coarse grained regions of each weld bead, surrounded by more ductile fine 

grained weld metal. Stress off-loading from the hoop to the axial direction due the 

transverse cracking can sometimes change the cracking mode from transverse to cir- 

cumferential. Final failure is through steam leakage through the weld metal, although 

the possibility of a longitudinal pipe split resulting in a catastrophic failure does exist. 

Circumferential cracks may also form in the partially transformed and overtem- 

pered regions of the heat affected zone, close to the parent metal. This cracking is 

termed type IV cracking which originates from the German classification of weld 

cracking [1141. This type of cracking usually occurs due to additional system loading 

on the joint such as bending caused by pipe supports or reactions of internal fluid at 

bends or close to pipe geometry changes where stress raisers may exist [115). 

With reference to Fig. 7.10 several failure modes may occur within one weld; 
here types IV and associated circumferential IIAZ cracking occur together. 

Premature heat affected zone and weld metal cracking may occur as a result 

of the relaxation of residual welding stresses due to inadequate post weld stress relief 
heat treatment. 

Though these main failure modes have been reported to occur prematurely 
before the design life of the welded component has elapsed, failures similar to these 
basic modes are also observed close to the design life of the component. 

The failure of transition joints are usually associated with the coarse grained 
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heat affected zone of the ferritic steel parent metal close to the fusion boundary 

[116,117]. Cracking results because of the material inhomogeneity across the dissim- 

liar weldment, which is aggrevated by thermal gradients and the incompatibility of 
thermal strains between the parent metals and the weldment. Failure modes at high 

stress may be associated with the soft partially transformed zones of the IHAZ in the 
ferritic steel parent metal [117]. Nicholson et al [118] detail thermal cycling and creep 
loding of a transition joint, where the failure mode is complicated by the competing 
failure processes of cracking associated with a narrow zone of interfacial carbides close 
to the fusion boundary in the 2.25Cr iMo pipe as well as coarse heat affected zone 

cracking. Interfacial carbide precipitates have also been observed to cause failure of 

transition joints after long term service. Graded composition joints alleviate some of 
the problems of the severe change in mechanical and thermal properties across the 

ferritic to austenitic fusion interface, where most in-service failures occur; by arrang- 
ing for the material and thermal properties to gradually change across an elongated 

welded joint. This results in improved joint life and low crack susceptibility [98]. 

7.8 Design Codes For High Temperature Weldments. 

In Britain the current design codes used to design high temperature pipe 

and pressure vessels fabricated using welds are BS 806, BS1113 and the most re- 

cent BS5500. These design codes are based on the stress-rupture properties of the 

parent material using the mean diameter hoop stress and no allowance is made for the 

effects of the material inhomogeneity in the region of the weld on the design lifetime 

of the component. , 
In the design of a pressure vessel or pipe the internal diameter is calculated 

to give the required volume for a pressure vessel or steam flow for piping. The thin 

pressure vessel formula for the mean diameter hoop stress is :' 

P' Dm 
(7. I) Qmdh = 2i 

where the mean diameter is given by 

Dmºº = DID +1 (7.2) 

and (DID) is the internal pipe diameter. This formula is used to calculate the pressure 
vessel thickness (t) required to sustain the internal pressure load (P, ), to give a mean 
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diameter hoop stress (Qmdh), which when multiplied by a safety factor of 1.2 to 1.5, 

and compared to ISO uni-axial creep rupture data for the parent material, gives a 

rupture life in excess of 105 hours design life. 

Having determined the pipe thickness, (1), a further 10% is added to the 

thickness to allow for bending, which may occur due to additional loads at bends, 

junctions, or pipe supports. In practice there is no evidence of plain pipes failing 

by creep within their design life using these British Standard codes and hence this 

approach is conservative. Though early failures associated with cracking in weldments 

occur early in the design life of some components. With the need for the accurate 

appraisal of the. remenant life of conservatively designed pipework in power plant, 

which has passed its initial design lifetime, so that it may continue to operate safely 
into the future, and with new high performance and safety standards required by 

the nuclear power industry; the understanding and prediction of welded component 
deformation and failure is important. 

The United States nuclear (high temperature) code N47 allows for the presence 

of the weld in the design of pipework by defining the maximum allowable creep strain 

which can accumulate in the locality of the weld under service conditions. 
Researchers have considered the use of stress, "strain based approaches, the use 

Loop S" SS 
of the reference stress, the mean diametern , the maximum principal stress, the effec- 
tive stress, the skeletal stresses and weld performance factors, to define the failure 

mode and the failure times of the welded component with reasonable success. These 

approaches will be discussed in more detail in the following sections. 

7.9 High Temperature Weld Deformation And Failure 

Predictions And Their Comparison With Experimental 

Test Results, In The Search For An Improved Design 

Methodology. 

7.9.1 Analysis Of Cross-Welds. 

Clark and A16erry [119] and Clark [120] presented results from uni-axial creep 
tests of specimens containing heat affected zone microstructures produced by weld 
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thermal simulation in ferritic steel parent metal. The simulated weld was perpen- 
dicular to the tensile axis. Failures occurred in the coarse grained bainite regions of 

the heat affected zone. Homogeneous specimens of the heat affected zone microstruc- 

tures produced by furnace heat treatment gave rupture lives of an order of magnitude 

greater than those of corresponding tests on specimens produced by weld simulation 
in the same parent material. They concluded that this is due to a complex interaction 

between the mismatched creep properties of each component microstructure along the 

gauge length of the specimens produced by the weld thermal simulation. 

A simple two material model is presented [119] where coarse and fine heat 

affected zone material have different creep rates in both the axial and radial directions; 

but at the interface between these structures, due to compatibility of strain, both 

structures are forced to creep at some intermediate strain rate. A more realistic 

model is that of the Nicol model [121]. This model uses Cosserat Plate theory and 

Norton's law to predict the steady state strain rate distributions in a composite plate, 

containing a zone of different mechanical creep properties under uni-axial tension 

(Fig. 7.11). Referring to figure 7.11, the plate is assumed to be infinitely wide in the 

(z) and (y)-directions. Plane strain conditions are used, where no displacement is 

allowed in the (y)-direction. The plate contains a zone of material (B), of thickness 

(T), and width (h); with different creep properties to the zones of material (A). 

The model assumes that the creep deformation of each zone is governed by 

Norton's law: - 

EA 
_ AcrnA (7.3) 

EB = Bo' (7.4) 

and that the creep exponents for each zone are the same. (i. e. nA = nB), allowing the 

relative creep rate ratio of the two materials to be defined as a constant: - 

CB \B/ 
(7.5) 

Numerical solutions were obtained using (BfA) values from 0.01 to 1,000 and 

creep exponent (n) from 1 to 10, for a zone width ratio (T/h) from 0.5 to (oo), 

corresponding to a thin zone (B) and an infinitely thick zone (B) respectively. For 

the infinitely thick zone (B) only one interface is present at (z = 0), (Fig. 7.11). 
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The change in the secondary creep strain rate in the (z)-direction across a 

single interface (i. e T/h = oo) is shown, in Fig. 7.12, due to Nicol and Williams [122], 

for (n = 4) and (B/A) ratios form 1 to 10. It is noticed that the creep rates remote 

from the interface are the same as would be expected in individual uni-axial specimens 

of each homogeneous zone of material, as the interface is approached the creep strain 

rate varies smoothly from the remote values, with a compatibile creep strain rate 

intermediate at the interface itself, which is consistent with the Clark and Allerry 

model [119]. 

A zone width ratio (T/h < oo) represents two interfaces and a significant 

interaction occurs once (Tlh) becomes less than one. Nicol and Williams [122] show 

the effect on the secondary creep axial strain rate of varying the creep exponent (n) 

for a very soft zone (B), with a (B/A) ratio of 200 for various zone width ratios (T/h), 

(Figs. 7.13 (a) to (c)). As (n) increases the strain rate at the interface is increased, but 

the rate of change of strain rate near the interface decreases. Figures 7.14 (a) and (b) 

show the effect of reducing the zone width for hard and soft zones respectively due 

to Nicol [121]. It is observed that for a soft zone (Fig. 7.14(b)) as the zone width is 

reduced relative to the specimen width (i. e. T/h changes from oo to 0.25) the strain 

rate is reduced below that of a homogeneous soft zone material subject to the same 

loading conditions. The maximum strain rate is at the centre of the soft zone. For 

a hard zone, which is analogous to a heat affected zone in a weld (Fig. 7.14(a)), as 

the zone width ratio (T/h) is reduced the creep strain rate in the harder zone (B) is 

increased over that of the homogeneous hard zone material under the same loading 

conditions. Now the maximum strain rate in the hard zone is at the zone interface. 

It is thought that as the zone width ratio (T/h) is reduced the constraint on the 

deformation of the zone (B) by the deformation of the parent material (A) increases, 

forcing the zone (B) to creep closer to the rate of the parent material (A). 

On the basis of these results it may be concluded that soft zones will have a 

small effect on the weld behaviour, as for small zone width ratios the strain rates in 

the soft zone are reduced. Yet, for hard zones with narrow zone width ratios, strain 

rates are increased, which is a detrimental effect. Though in both cases increased 

strain rates are observed in the harder material and decreased strain rates in the 

softer material at the zone interfaces, relative to the respective creep strain rates of 
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samples of each homogeneous material for the same loading condition. This is caused 

as a direct result of stress redistribution from the softer zone material to the harder 

zone material in close proximity to the interface. 

Therefore on the basis of these secondary state analyses maximum strain rates 

occur at the intefaces in the hard zone material, which is where final failure should 

occur and this is consistent with circumferential heat affected zone failures in weld- 

ments. 

From the predicted maximum strain rates within the zone material, Nicol and 
Williams [122] were able to propose equations for an apparent reference stress for 

such a composite, to predict the approximate failure lifetimes of cross welds knowing 

the secondary creep rate ratios of the microstructural zones within the weldment. 

Experimental cross welded specimen tests involve the uni-axial creep testing of 

a specimen machined from a blank cut from a welded joint (Figs. 7.15). The specimen 

will contain parent metal, weld metal and heat affected zone regions. These specimens 

can give information of which zone will fail under particular uni-axial stress levels and 

may also be used to observe damaged microstructures and fracture surfaces analogous 
to those obtained in practice [123]. Williams [124] details that care has to be taken 

when testing and interpreting the results of cross-weld specimen tests as the ratio 

of the specimen diameter to the weld metal zone thickness influences the failure 

times of the specimens and may in some extreme cases influence the zone in which 

microstructural failure occurs. Another drawback in using cross-weld specimens to 

determine the deformation and failure behaviour of larger components is that the 

stress-state in most standard cross-welded specimens produces a maximum principal 

stress at right angles to the weld direction, whereas in- pressure vessels and pipe welds 
the maximum principal stress usually lies in the same direction as the circumferential 
direction along the weld and hence is 90° to that of the cross welded specimen. 
Geometry and loading differences together with effects of size make the multi-axial 

stress-states significantly different in the uni-axial cross-weld specimen to those in a 

pipe weld. This causes great difficulty in relating the test results from cross-welds to 

real structures containing welds. 
Etienne, Von ßossum and R. oode [125] performed uni-axial creep tests on weld 

metal, two heat affected zone microstructures and the parent metal of an austenitic 

129 



weld in a thick plate. The uni-axial creep data for each material weld zone was repre- 

sented by Blackburn's formula (similar to that of Garofalo, equation (2.3) using (2.2)) 

to represent both primary and secondary creep behaviour; tertiary creep is neglected. 
Multi-axial creep strains are represented using Odgvists generalisation given in 

section 2.3. A finite element study of the creep deformation of both a circular section 

cross-weld and a thick plate were performed using a four material model [111]. The 

cross-weld was modelled with an axisymmetric finite element analysis and the thick 

plate by a plain strain analysis. The finite element meshes used to analyse sections 

of the cross-weld specimen (Fig. 7.16(b)) and the thick plate (Fig. 7.16(d)), are shown 
in Figs. 7.16 (a) and (c) respectively. Both specimens were subjected to the same 

uni-axial stress of (165MNm-2)-at a constant temperature of 600°C. The predicted 

longitudinal creep strains and the Von Mises surface stresses for the cross-weld and 

the thick plate-weld specimens are given in Figs. 7.17 (a), (b) and (c), (d) respectively. 
Experimental values of creep strain obtained from a cross-weld specimen test compare 
favourably well with the finite element results in Fig. 7.17(a). Comparing creep strain 
distributions for the cross-weld specimen (Fig. 7.17(a)) with those for the thick plate 

weld Fig. 7.17(b), significant differences in the creep strain levels are observed. The 

longitudinal creep strain is maximum in the parent metal for the cross-weld specimen, 

yet the maximum longitudinal creep strain is a maximum in the weld metal for the 

thick plate weld. This behaviour may be explained as a direct result of the difference 

in the multi-axial stress states present in each specimen (Figs. 7.17(c) and (d)). It is 

clearly seen in both figures 7.17(c) and (d), that on initial loading, a uniform stress is 

produced in all the zones-of the welds, but stress is redistributed with test time from 

the softer weld metal and base metal (parent metal) into the harder heat affected 

zone (HAZ), close to the fusion boundary and the (HAZ)/parent metal boundary. 

(See Fig. 7.8 for the relative creep strengths of each material zone). Futher stress 

redistribution may occur in practice as a result of the formation of tertiary creep 
damage in one or more of the weld zones, which is not allowed for in this model. 
Though the axial stresses are the same the Von Mises stresses in the thick plate weld 

are much lower than those in the cross-weld specimen; hence the creep strain rates 
in the thick plate will be smaller than that in the cross-weld specimen. Roode et al 
[111] concludes that it is not possible to use the test data from a cross-weld compos- 
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ite specimen to assess the creep resistance of a complete structure containing a weld. 
Structural creep analysis will be possible with a finite element analysis using exper- 
imental data from uni-axial creep tests on the various weld microstructural zones. 
To make accurate predictions of rupture life and failure mode it will be necessary to 

incorporate tertiary creep into the calculations. 

Evans and Wilshire [117] also studied the failure of cross-welded test pieces 
taken from a transition weld between 2.25Cr Wo steel and AISI 316 austenitic steel 

parent plates, joined with 17Cr 8Ni 2Mo austenitic weld metal, tested at a tempera- 

ture of 838K (565°C). Uni-aixal tests performed at high stress (250MNm'2) showed 
ductile creep failures in a region of the 2.25Cr Mo steel outside the heat affected zone 

several millimeters from the fusion boundary. At low stress (100MNm 2) cross-weld 

test pieces replicated long term failures in most transition welded tubes, with creep 

damage accumulating in the coarse heat affected zone of the 2.25Cr 1Mo material 

some 75 to 150 ym from the fusion boundary. Evans and Wilshire performed an 

axisymmetric secondary creep finite element analysis of the transition weld under a 

uniform axial stress using a five material model. The multi-axial creep constitutive 

equation of Odqvist (2.7) is used to model the creep deformations of each mate- 

rial zone and no allowance for the effects of tertiary creep damage on the seconary 

creep stress state. The model used uni-axial creep strain data from tests on homo- 

geneous specimens of the parent metal, weld metal and simulated heat affected zone 

microstructures in the 2.25Cr Mo parent metal; namely the coarse grained bainitic, 

fine grained bainite and intercritical zone microstructures. The uni-axial creep strain 
data provided creep constants in equation (2.7), to represent the multi-axial minimum 

secondary creep strain rates of each material zone in the finite element model. Results 

from the finite element analysis gave maximum principal stress and effective stress 

contour plots in the welded joint, which showed a stress concentration at the interface 

between the intercritical zone and the 2.25Cr Wo parent metal for a cross-weld uni- 

axial specimen pressure load of 250MNm-2. Corresponding results for a cross-weld 

subjected to uni-axial pressure load of 100MNm-2 showed stress concentrations in a 

region close to the fusion boundary in' the coarse heat affected zone of the 2.25Cr 1Mo 

plate. The positions of maximum stress were consistent with the final experimental 
failure positions of the cross-weld specimens. 
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Life reductions of 2.5 and 60 were calculated for the high and low stress tests 

respectively, using the maximum stress level and the stress-rupture properties of the 

material zone (where this maximum stress level occu d), to calculate a rupture time. 

This was compared to the rupture life of the same zone under the same applied 

specimen stress level to give the life reduction factor. These values were also in 

agreement with experimental tests. 

Creep strain values were plotted along the length of the cross-weld specimen 

surface from the finite element analysis results (Fig. 7.18). In addition measurements 

taken from the distortion of a strain grid scribed on the surface of the cross-weld test 

specimens were included in the paper and compared with the finite element results. 
The comparisons were good showing the localisation of creep strain at the positions 

where final failure occurred. 

Evans and W0 shire also showed that from the good correlation of the finite 

element results with the results from cross-welded specimens, the finite element tech- 

niques using uni-axial creep strain data for each weld zone material could be applied 

to real component geometries. Thermal stresses, non-steady loading and temperature 

cycling could also be included in the finite element analysis, to replicate the actual 
in-service conditions. 

Evans and 'Wi, (shire also state that the exact material properties of in-service 

component heat affected zone microstructures cannot be determined accurately using 

weld simulation by furnace heat treatment of the parent material, as a result of 

compositional changes in microstructure which occur at elevated temperature during 

service. Elements in the weld metal alloy such as Cr, Ni and Mo diffuse into the 

parent metal and Carbon migrates into the weld metal. Ageing may also affect the 

material properties of each weld zone due to Carbide dispersion. The Evans and 
Wi1 shire model makes no allowance for stress redistribution during the primary and 
tertiary creep regions of the weld materials and the effects of the multi-axial stress 

state on the failure of the material, which are of equal if not more importance to the 

prediction of weldment failure than these microstructural effects. 
Therefore, although good correlations have been obtained between cross-weld 

test behaviour and finite element predictions, the data obtained from cross-weld tests 

cannot be related to full size component geometries, due to differences in the multi- 
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axial stress states. Hence, laboratory tests and finite element studies must be per- 
formed on the actual weld geometries encountered in practice. Therefore small scale 
tube burst tests and expensive full size pressure vessel tests on steam pipes containing 

welds have to be performed to obtain meaningful results. 

7.9.2 Creep Testing Butt Welded Tubes. 

Ivarson and Sandstrom [126,127] studied the creep deformation and rupture 

of thin butt welded tubes of cold worked AISI 316 stainless steel with an external 

to internal diameter ratio less than 1.1. Uni-axial creep data was obtained for the 

parent metal, weld metal and heat affected zones using samples of the parent metal, 

weld metal and furnace heat treated parent metal respectively. The appropriate heat 

treatment was chosen to give a microstructure and microhardness values of a heat 

affected zone in the pipe weld. Properties of other heat affected zone microstruc- 

tures were interpolated from the previously determined IIAZ data using the hardness 

measurements in the pipe weld HAZ as weight functions [127]. Using the material 

data for each weld zone a secondary creep finite difference computer simulation was 

performed for the butt welded tube containing an internal pressure of 24.5 MPa. The 

calculated hoop stress distributions as a function of time are shown in Fig. 7.19. This 

figure clearly shows the severe off-loading of hoop stress from the weld metal into 

the heat affected zone. Reasonably good agreement was obtained between the finite 

difference and the creep strain results from the tube burst tests, after a primary creep 

representation was included in the finite difference analysis. In the tube burst tests 

failure of the tube occurred in the weld heat affected zone with the formation of 

through thickness axial cracks, which is consistent with the finite difference results if 

one assumes that the maximum principal stress (the hoop stress) is the stress which 

controls the failure of the tube; with cracking occurring at 90° to this principal stress 
direction (i. e. in the axial direction). 

It was concluded that the creep life of the tube was reduced by a factor of 15 

to 30 dependent on the test stress level in comparison with the lives of homogeneous 

cold worked tubes. Invarson et al [126] suggest that in order to decrease the loss in 

creep strength caused by the presence of a weld, the creep deformation and rupture 

properties of the different material zones in the weld should be arranged to be similar, 
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to prevent the severe stress redistribution of stress from soft zones to harder ones, 

as the increased stress carried by hard zones (such as the HAZ) is not usually out- 

balanced by the increased rupture strength of this hard zone. 

Invarson and Sandstrom 1261 present a simplified graphical method based on 

the stress rupture diagrams for the parent metal and the weld metal, with the use 

of an estimation of how stress is redistributed from the weld metäl. The maximum 

stresses in the weld metal and parent metal are used to give the minimum life of the 

welded joint. Though failure of the tube burst tests occurs in the heat affect zone, 

the stress rupture properties of the HAZ are not allowed for in the calculations and 

no allowance for the effects of the multi-axial state of stress on the failure life of the 

welded tube is made. The life predictions therefore are reasonable but conservative. 

Browne et al [128] also studied the failure of butt welded tubes. The butt 

welded tubes were scaled down versions of real thick walled steam pipes having an 

internal to external diameter ratio of 1.52. The parent pipe was 0.5Cr 0.5Mo 0.25V 

which was welded with a- range of different weld metals: mild steel, 1Cr Mo, 2.25Cr 

Mo and 0.5Cr 0.5Mo 0.5V. Tube burst tests were conducted at two internal pressures 

of 45.3 MPa and 51.5 MPa at the constant temperature of 565°C. All failures in 

the tubes were through axial heat affected zone cracks, with some welds showing 

circumferential and transverse weld metal cracking close to the fusion boundary. The 

longest tube life was obtained using the 0.5Cr 0.5Mo 0.25V weld metal having the 

same creep properties as the parent metal. 

An axisymmetric finite element analysis was performed using the secondary 

creep rate data from uni-axial tests on the parent metal, weld metal and a weld 

simulated heat affected zone material. The constitutive model of Garofalo (equation 

(2.3)) was used with the use of Norton's law (equation (2.2)) with the use of Odgvists 

multi-axial generalisation (section 2.3) to model multi-axial creep strains in the finite 

element program. The three material finite element mesh representation of the weld 

is shown in Fig. 7.20. In the analysis the three materials in the weld model were 

assumed to have the same Norton's law steady state creep exponent of n=4. The 

different secondary creep strain rates of each material zone are represented as a ratio 

of the Norton's law constants (A) with respect to the parent material constant (B) 

(equations (7.3), (7.4) and (7.5)). The weld metal to parent metal ratio (A/B) for 
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mild steel, ICr Mo, 2.25Cr 1Mo and 0.5Cr 0.5Mo 0.25V were 1690,14,5 and 1 

respectively and the heat affected zone to parent metal ratio of 0.25 was used for all 

the weld metals. 

The stationary state stresses in the weld from the finite element analysis of an 
internally pressurised tube with weld metal: parent metal : HAZ creep rate ratios of 

10: 1: 0.25 are summarised in the graphs of Fig. 7.22(a), (b) and (c) across various var- 

ious sections of the weld Fig. 7.21. Referring to Fig. 7.22(a) stresses are redistributed 

from the weld metal into the heat affected zone. Figure 7.22 (b) and (c) show that 

the maximum hoop and axial stress occur at the outer surface of the tube and the 

maximum equivalent or Von Mises stress occurs at the inner surface of the tube, when 

the steady state creep conditions are achieved. 

Using the maximum principal and equivalent stresses obtained from the finite 

element weld model stress distributions, estimates of the minimum life of the pipe 

welds were obtained, using the larger of the former two stresses and the experimental 

uni-axial stress-rupture diagrams for each material zone. The zone having the shortest 

lifetime prediction is said to define the region where final tube failure occurs, with the 

orientation of cracks perpendicular to the maximum principal tension stress direction. 

Referring to the results of such calculations (Table 7.1) the minimum lifetimes are 

predicted for the heat affected zone in column No. 4 and No. 10, which correctly defines 

the zone where failure of the tubes occurred in the experimental tube burst tests. The 

calculated failure time predictions for the heat affected zone gives a poor prediction 

of the life of the tubes giving generally shorter life predictions than those obtained 
in practice (column No. 2) except for the 2.25Cr 1Mo weldment test at a presure 

of 51.5MPa. In order to allow for the effects of the multi-axial stress state on the 

rupture behaviour of the material zone where most tube failures occurred, a stress 

rupture criterioadue to Cane [129] was used: 

tßup C= (7.6) 
°1 a; J 

where (v, ) is the maximum principal stress, (of) is the Von Mises effective stress; 
(q) is the principal stress exponent of rupture, determined from torsion/tension creep 

rupture tests; (r) is obtained from the gradient (-1/r) of the uni-axial stress-rupture 
diagram and (C) is a constant. (r) and (q) were obtained from rupture tests on the 

heat affected zone material as 3.0 and 8.5 respectively. Having determined (q) and 
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(r) the representative rupture stress may be defined from (7.6): - 

Qflep . Qi QeJ' (7.7) 

which when applied to the uni-axial stress-rupture data will predict the life of the 

structure. 

Improved rupture time calculations were performed for each tube burst test 

(Table 7.1, column No. 9) using equation (7.7) and the uni-axial stress rupture data for 

the heat affected zones. The rupture times are seen to be greater than those of column 

No. 4 giving improved lifetime predictions. The lifetime predictions using the British 

Standard codes BS 806 and BS 1113 are given in columns No. s 6,7 and 8 of Table 7.1, 

using the mean diameter hoop stress and the parent material uni-axial stress rupture 

properties, with and without safety factors. The life predictions using the safety 

factors (Table 7.1, column No. s 7 and 8) are extremely conservative when compared 

to the experimental rupture times (column No. 2). The life predictions without the 

use of a safety factor in general are poor, overestimating the rupture lifetimes except 

for the 0.5Cr 0.5Mo 0.25V weld metal test. The use of the mean diameter hoop 

stress with the parent material uni-axial stress rupture properties does not predict 

the trends in the failure lifetimes of tubes welded with different weldmetals. 

Therefore, the use of the representative rupture stress does imporove the life- 

time predictions of welded tubes and goes someway to predicting the relative trends in 

the rupture times for tubes having different weldmetals. Though life predictions are in 

general smaller than the experimental lifetimes due to the finite element analysis ne- 

glecting the stress redistribution occurring during the primary creep and particularly 

during the tertiary creep region. 

7.9.3 Experimental Testing And Predictions Of The Creep 

Deformation And Failure Of Full Size Welded Steam Pipes. 

In order to study the actual creep strains and failure of full size steam pipes, 

pressure vessels constructed from welded sections of thick steam pipes were tested by 

the C. E. G. B. in their collaborative programme on The Correlation of Test Data for 

High Temperature Design of Steam Pipes. Early research within this research pro- 

gramme by Coleman, Parker, Walters and Williams was concerned with the effects of 
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through thickness inhomogeneity in the parent metal steam pipes on the outer diam- 

eter steady state creep rate and the validity of simple uniform property steady state 

strain rate calculations. When the parent pipe is mechanically formed, differences 

in metallurgical structure are caused by localised working variations, through thick- 

ness temperature gradient and cooling rate differences. These variations can typically 

cause a difference between the secondary creep strain rates of uni-axial test specimens 

taken from the inner and the outer pipe wall, of a factor of 10 to 20. Coleman et 

al [129] used a simple finite element model of a pipe consisting of three concentric 

material cylinders, having different creep properties, where the constant (A) in Nor- 

ton's law (Equation (7.3)) was varied by a factor of 10 between the inner and outer 

ring (Fig. 7.23). From the finite element results the effect of the through thickness 

material inhomogeneity produced a difference of less than 20% in the surface strain 

rate in comparison with the surface strain rates for a homogeneous pipe with mid 

wall thickness creep properties. 
Williams [130] used an analytical technique which incorporated a smooth 

power law functional variation of pipe through thickness creep properties which is 

closer to the material property variation expected in practice. Coleman's model [129] 

described above used three discrete regions with different creep properties and a sharp 

transition between one region and the next. Williams showed that within an error 

of (±11 %) a skeletal point stress exists for a wide range of creep exponent (n) and 

the material through thickness property variation index (x) and if (n) is kept con- 

stant close to the values obtained in practice, the skeletal stress predictions result in 

negligible tangential surface strain rate calculation error, in comparison with surface 

strain rate calculations based on the homogeneous pipe of mid wall creep properties. 
Therefore these results suggest that the steady state outer surface tangential creep 

strain rate may be represented by the average creep properties of the parent metal 

pipe at the mid wall position, with an assumption in calculations that the pipe has 

homogeneous creep properties. This suggests that through thickness parent pipe ma- 

terial variations are of secondary importance when modelling the creep behaviour of 

welded pipes, in that the mid wall properties will suffice. 
Coleman et al [131] performed full size creep tests of 0.5Cr 0.5Mo 0.25V steam 

pipe at a temperature of 565°C. Two pressure vessels were constructed from thick 
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section steam pipe of extarr I to rýtarnal diameter ratio 1.52. The pressure vessels 

were subjected to the same test conditions, and were pressurised to 455 bar, to give 

a failure life a factor of 10 shorter than the expected service life of the steam pipe. 
Circumferential welds of mild steel, 1Cr Mo, 2.25Cr Mo and 0.5Cr 0.5Mo 0.25V weld 

metals were used to connect 0.5Cr 0.5Mo 0.25V parent pipe in the pressure vessels, 

using a standard multipass weld with a standard J-type preparation (Fig. 7.1(b)). The 

weldments were all post weld heat treated for 3 hours at 700°C prior to testing, to 

relieve any welding residual stresses. 
The details of the pressure vessel tests, weld specifications and experimental 

measurements are made elsewhere [131] and in the following chapter, section 8.2, 

while here the test results, modelling and conclusions which can be gained from the 

analysis, are of primary importance. It suffices to say that all strain measurements 

were surface strain measurements either across the weld or parent metal pipe, or 

locally at the weld metal centre line and the parent metal center line in both the 

hoop and axial directions. On pressurisation of the vessels, at temperature, the 

initial loading strains were elastic for both the welds and the parent pipe materials, 

which were shown to be compatible with those calculated from the Lame equations, 

giving a hoop stress to axial stress ratio of 2: 1. Permanent creep strains were then 

measured with time, the parent pipe showing primary creep in the hoop direction 

lasting for some 4,000 hours with no axial creep strain accumulation. All weld metals 

showed primary and secondary creep strain accumulation in both the hoop and axial 
directions of varying degrees due to the different creep strengths of the weld metals. 
The creep strains and strain rates measured across the mild steel weld metal were 

much higher than those of the other weld metals, showing high ductility and low creep 

strength. The hoop strain rates measured across the ICr Mo, 2.25Cr 1Mo and 0.5Cr 

0.5Mo 0.25V welds are all similar to that of the parent metal. The mild steel weld 
has a hoop creep strain rate approximately three times that of the parent pipe and 

an axial strain rate which was approximately ten times that of the parent pipe hoop 

strain rate (from the measurements across the weld metal and parent metal regions). 
Local strain gauge data taken at the centre of the welds indicates that the 

same hoop creep strain rate occurs at the center of all the welds as that in the remote 

parent pipe, irrespective of weld strength. This' indicates that stress must be off- 
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loaded from the soft weld metal into the heat affected zone to retain hoop strain rate 

compatibility in the weld with that of the parent metal. 
Coleman et al [129] showed that the steady state creep rate observed in a 

thick walled 0.5Cr 0.5Mo 0.25V steam pipe is best described using the Von Mises 

equivalent stress and the strain rates in a given direction are obtained from the 

generalised Norton's law, due to Odqvist, given in equation (2.7). Where the creep 
deformation may be calculated using the stationary state stresses, predicted by the 

Bailey [132] equations (8.15), (8.16) and (8.17). 

Coleman et al [131] states that the presence of the weld inhomogeneity in the 

parent pipe invalidates the use of the Bailey equations due to stress redistribution 
between different material zones. Though if hoop and the axial strain rates are known 

at a point on the surface of the vessel, equation (2.7) can be used to calculate the hoop 

to axial stress ratio and therefore the stresses within the weld, if the Norton's law 

constants (K) and (n) are known for the weld metal. Calculations were performed 

using the ratios of hoop to axial strain rates at the weld, from the pressure vessel 

tests with (A) and '(n) values for each weld metal obtained from uni-axial creep 

tests [109], giving hoop to axial stress ratios and actual stress values for each weld 
(Table 7.2). It is noticed that the 0.5Cr 0.5Mo 0.25V weld has the same stress 

ratio as the parent pipe (o /Q, % = 2. ), which is identical to that predicted by the 

Bailey equations. The stress ratios for the 1Cr Wo and 2.25Cr Wo welds show that 

significant stress redistribution has occurred, in having an almost equi-bi-axial stress 

ratio (oN /vA 1. ). For mild steel (Q� /QA ,<1. ) indicating that the axial stress is 

greater than the hoop stress, showing that for this weld the hoop stress of loads into 

the axial direction. 

Creep strain measurements therefore can be made on components in the power 

plant to give the surface stress ratios in the vi cinity of the weld, from which life 

estimates can be made, but due to the large numbers of welds in a power station this 

may not be economic. Another drawback to this method is that it will only give data 

local to where the strain measurements have been made and this region may not be 

the position where the component fails, as many failures are associated with narrow 

regions of coarse grained microstructure in the weldment and heat affected zones. A 
finite element stress analysis may provide a full description of stresses and strains 

139 



throughout the zones of a welded joint. 

A three material secondary creep finite element solution was performed by 

Coleman et al [1311 for different ratios of the weld metal to parent metal creep rate 

ratios of 1,3,10,15 and 1690, giving the properties of the whole range of different weld 

materials which can be used to make joints in the 0.5Cr 0.5Mo 0.25V parent metal. 

The creep rate ratios for the 0.5Cr 0.5Mo 0.25V, ICr Wo and 2.25Cr 1Mo and mild 

steel welds are 1,5,14 and 1690 respectively, after Browne et al [128]. The stationary 

state hoop stresses on the pipe surface at the weld metal centre, the heat affected 

zone and in the parent pipe from the finite element analysis are summarised for the 

range of weld properties in Fig. 7.24(a). As the weld metal to parent metal creep rate 

ratio increases the hoop stress at the weld metal centre decreases. The hoop stress 

in the heat affected zone is greatest but only increases marginally with the increase 

in the creep rate ratio. The remote parent metal hoop stress is insensitive to the 

variation in the creep rate ratio. The variation in the corresponding axial stresses at 

the pipe surface are shown in Fig. 7.24(b), which shows that a peak IIAZ stress exists 

for a creep rate ratio of about 15. Figure 7.24(c) shows the variation of the Von Mises 

equivalent stress with the weld metal to parent metal creep rate ratio. 

The secondary creep strain rates on the pipe surface at the positions detailed 

in Fig. 7.25 from the finite element analysis are shown in Table 7.3. It is noticed that 

the hoop strain rates are all approximately the same at the weld metal centre line 

and- are similar to the parent metal hoop strain rates remote from the weld, which 

is consistent with the observations made in the experiments. The axial creep strain 

rates at the pipe surface at the centre of weld are dependent upon the weld metal 

to parent metal creep rate ratio and increases with increasing weld metal to parent 

metal creep rate ratio (Fig. 7.26). The magnitudes of the surface strain rates from 

the finite element analysis are in general approximately 30% larger than those of the 

experimentally measured values. 

The axial strain rates (Table 7.3) increase with distance from the weld metal 

centre line (A) reaching a peak value in the heat affected zone then decreasing into 

the parent metal tending to a zero axial strain rate, which is consistent with the 

Nicol and Williams uni-axial model (section 7.9.1). This effect is most pronounced 
for mild steel weld metal with the largest weld metal to parent metal creep rate ratio. 
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The hoop strain rates (Table 7.3) are relatively constant with distance from the weld 

metal centre line (A) except for very large weld metal to parent metal creep rate 

ratio. Since reasonable agreement of the hoop strain rates measured locally at the 

weld metal centre, non-locally across the weld and in the parent metal was obtained 

in the experimental tests, the consistency of the hoop creep strain rate at the pipe 

surface across different microstructures of the weldment during secondary creep is 

considered to be a real effect. The weaker, initially faster creeping material zones 

shed load to the harder, slower creeping zones, decreasing the creep rates in soft 

zones and increasing the creep rates in harder ones, to maintain a hoop strain rate 

compatible with that of the parent material. Stress redistribution is much easier in 

the hoop direction in comparison to the axial direction and the creep rates in the 

axial directions reflect the relative creep strengths of the weld metals. 

The predicted life of the pressure vessel using BS 806 and BS 1113 codes with 

a maximum allowable stress of 110MNm-2 gave a life of 20,000 hours, which may be 

compared to the final failure life of 46,000 hours detailed by Coleman [133] using the 

pressure vessels of [131] tested to failure. The British Standard codes are therefore 

conservative. Similar indications have been obtained from damage measurements of 

sections removed from real components having reached their design life. The results 
indicate that less than 50% of safe operational life of the components had expired. 
Other methods were therefore sought to determine the life of welded pipe sections. 
Using the mean diameter hoop stress underestimates life and using net section stress 

grosely overestimates life. When the life estimates were based on the surface principal 

stresses at the weld metal centre line from experimental tests, or from the finite 

element analysis, calculations using the appropriate weld uni-axial stress-rupture data 

gave lifetimes in excess of 50,000 hours for the three low alloy ferritic welds. A life 

estimate of 35,000 hours was calculated for the mild steel weld on the basis of the 

axial stress at the pipe surface, since the axial stresses were greater than the hoop 

stresses for this weld metal. This may be compared with the actual life of the mild 

steel weldment of 23,671 hours, which failed by circumferential creep cracking in 

the weld metal [134,135] close to the fusion boundary. These calculations provide 

obvious improvements in life prediction for welds, but the analysis has assumed that 
failures occur in the weld metal and no allowance has been given to the effects of the 
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multi-axial stress state on rupture or the stress redistribution due to tertiary creep. 
Modelling tertiary creep in the life prediction analysis is important as the growth of 

creep cracks and damage may occupy a significant proportion of the total life of the 

weldment. 

A recommendation, is given on the basis of the reported results [131) that due 

to the 0.5Cr 0.5Mo 0.25V weld metal having no axial creep rate, similar to that of 

the parent metal this weld metal has the best properties to give the longest service 

life. 

It is noted that Walters and Coleman [137] performed a large strain ter ̂ äry 

creep finite element analysis of a homogeneous 0.5Cr 0.5Mo 0.25 thick section steam 

pipe, using parent metal uni-axial creep data represented by a simplified form of 

Rgbnov-Kachanov creep damage relationship. Reasonable agreement was obtained 

between hoop and axial strain predictions from the finite element analysis in com- 

parison with experimental results from a full size pipe test containing a 0.5Cr 0.5Mo 

0.25V weld [131]. Up to 10,000 hours life there was a one to one correlation with 

the calculated and experimental hoop strains, thereafter the calculated stresses were 
larger than the experimental values; the difference never exceeding a factor of 2. The 

axial strains gave good correlations up to 35,000 hours after which the experimen- 

tal strains were more compressive. The analysis may have been improve& by the 

inclusion of both the primary and secondary creep regions. Unfortunately improved 

life predictions cannot be obtained from the analysis as the material is assumed to 

be homogeneous and therefore does not attempt to model the stress redistribution 

which occurs between different material zones of the weldment, from which new life 

predictions can be obtained using uni-axial stress-rupture data. 

7.9.4 Improved Life Prediction And Design Of Welded 

Pipes for High Temperature Applications. 

Current British Standard codes used for the design of pressure vessels and 
piping use the mean diameter hoop stress and the uni-axial stress rupture properties 

of the parent pipe to determine a safe design life of the component, which has been 

described in detail in section 7.8. The British codes have been shown to give conser- 

_ vative estimates of life. The use of the net section stress with parent pipe uni-axial 
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stress rupture properties grossly over-estimates the welded tube life. 

The through wall thickness stress distribution at a stationary state for a homo- 

geneous pipe under internal pressure has been determined analytically by Bailey [132]. 

Fairburn and Mackie [138] have extended the work of Bailey, in the derivation of a 

skeletal stress point, (which is a point in the pressure vessel where the stress remains 

invariant as the stresses redistribute during creep deformation) and Johnson [139] 

defined the reference stress, which has been used to define improved deformation 

and failure predictions of homogeneous pipes at uniform pressure and temperature. 

None of these analyses include any allowance for stress redistribution and the differ- 

ent stress-rupture characteristics associated with the material inhomogeneity in the 

region of the weld. 

Coleman et al [131] used Bailey's analysis in conjunction with Odgvists 

equation (2.7) to represent multi-axial steady state strain rates, to obtain hoop and 

axial stresses at the weld metal centre line on the surface of the pipe, using exper- 

imental strain rate data measured at the same surface positions. With the use of 

the weld metal uni-axial stress-rupture data this gave improved life predictions, but 

assumed that failure would occur in the weld metal. Therefore surface strains can be 

measured for in-service weldments to give an estimate of remnant life. 

Browne et al [128] used a three material finite element solution to model tube- 

burst tests, which failed in the heat affected zones. The representative rupture stress 

based on a multi-axial rupture criterion was used in conjunction with uni-axial stress 

rupture data for the heat affected zone material using the surface stresses obtained 
from the finite element analysis to predict lifetimes of different welds in the tube burst 

tests. The correlation of predicted and experimental test lifetimes was improved, in 

comparison with the design code lifetime predictions and in general were slightly 

conservative, but showed the relative trends between the lifetimes of tubes containing 
different weld metals. 

Williams [140] developed simple weld performance factors (WPF) which allow 
for the effects of stress redistribution from the weld metal to the heat affected zone, on 
the basis of the stresses obtained from a finite element parametric study by Browne 

[128]. The weld performance factor is defined as the fraction by which the required 

pipe stress must be reduced to obtain the required life in the weld metal or the heat 
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affected zone. If the weld performance factor is less than unity then the operating 

pipe pressure must be reduced or the pipe thickness increased. If the WPF is greater 
than unity then the weld or heat affected zone will have a life greater than the design 

life of the parent pipe. Weld performance factors were obtained for different weld 

metal and parent metal combinations for both the weld metal and heat affected zone. 
Material failure ductility is allowed for in the weld performance factor by the use 

of the Monkman-Grant relationship [141]. In using the weld performance factors the 

rupture ductilities of the heat affected zone and the weld metal are defined, which may 
be useful to -compare with measured surface strains from the in-service component to 

judge remnant life. 

The use of weld performance factors provides a simple design criterion with 

improved predictive capabilities over the British Standard codes and other homo- 

geneous stress based approaches. The effects of primary and tertiary creep stress 

redistribution have been neglected and the effect of the multi-axial stress state on 

rupture have not been allowed for. These may be allowed for in future development 

and evaluation of weld performance factors. 

The United States nuclear code N47 already allows for the presence of the 

weld and uses a stress based approach together with strain limits, which dictate the 

maximum allowable strains which may accumulate near the weld in-service. It is clear 
that the B. S. codes must be improved, at least, to take into account the material creep 
ductilities in the region of the weld with the use of strain limits. 

Improvements to current design codes must allow for the stress redistribution 
in the region of the weld from soft to harder zones. Allowance for the effects of the 

stress redistribution during the primary, secondary and tertiary creep regions on the 

weld design and performace should also be incorporated. From the improvements 

in the life prediction of butt welded tubes reported by Browne et al [128] allowing 
for the multi-axial stress rupture characteristics of the heat affected zone, the effects 

of the multi-axial stress state on the rupture lives of each material zone in the weld 

must also be included in improved life calculations. Finally, though the behaviour of 

most of the ferritic weld materials is bi-linear in stress-rupture character (observed 

in the data of Cane [109]) and only the low stress-rupture line has been considered 
in the life predictions of parent and weldment materials, the inclusion of a bi-linear 

144 



representation (section 2.6) of stress-rupture behaviour will have an effect on life 

prediction accuracy and design, particularly for the high redistributed stress levels in 

the heat affected zone. 

7.10 The Effect Of Residual Stresses On Weld Deformation. 

Residual stresses are caused by the weld thermal cycle producing local expan- 

sion of the weld metal and parent metal, which is opposed by the material further 

away from the heat source (Fig. 7.27(b) and (c)), resulting in the formation compres- 

sive stresses in the plate section. As the section cools the surrounding material resists 

the contraction of the weld material and the previously heated parent metal, and 

a tensile stress is set up in the weld, with the surrounding material in compression 

(Fig. 7.27(d)). This simplified analysis is complicated by the effects of local changes 

in the modulus of elasticity, Poisson's ratio, the accumulation of plastic strains and 

phase transformations of the materials which may cause dilatation in steels. Phase 

transformations from (ry) to (a)-phase in steel where the structure changes from face 

centred cubic (F. C. C. ) to body centre cubic (B. C. C. ) can cause a dilatation of about 
4% corresponding to a linear variation of 1.4% strain. Such phase transformation 

effects interact with temperature effects to produce the total residual stress pattern 

shown in Fig. 7.28. Plastic strains and dilatation may cause distortion particularly in 

welded thick sections. Residual stresses in thick joints can equal the yield stress of the 

material dependent on the rigidity of the structure, but multipassing may significantly 

relieve such stresses. 
Coleman and Parker [136] studied the creep deformation of welds made in 

heavy section 0.5Cr 0.5Mo 0.25V parent pipe using 2.25Cr 1Mo weld metal, which 

was tested in the as-welded or stress relieved condition, at pressures up to 455 bar at 

a constant temperature of 565°C. The aim of the tests were to examine the effects of 

residual welding stresses on the creep behaviour of the pipe weldments. In these tests 

the variation of creep strain in the hoop and axial directions were measured across 
both as welded and stress relieved welds (Figs. 7.29 and 7.30). Elastic displacements 

were the same for both as-welded and stress relieved welds. It is clearly seen that the 

creep deformation of the as-welded pipe is much faster than that of the stress relieved 

welds in both the hoop and axial directions. 
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In all tests performed the hoop and axial steady state creep rates were always 

greater in the as-welded pipe by up to a factor of four. The differences in the observed 

behaviour was reported not to be related to mechanical property differences, since 

uni-axial tests performed on both stress relieved and as-welded weld metals showed 

little difference in creep properties. The increased deformation rates were therefore 

directly attributed to residual welding stresses of the order of 10 to 20 MNm'2. 

These welding stresses relieve during service at temperature, but may lead to low 

ductility failures due to cavitation damage early in the design life of the component. 

7.11 Narrow Gap Welds. 

Fidler [142,143] performed finite element analyses of narrow gap welds (Fig 

7.1(c)) in ferritic pipe work using a two material weld model representing parent 

metal and weld metal properties [142] and a three material model [143], where the 

properties of the heat affected zone were included. The analysis is restricted to 

secondary creep. The results from the three material model suggests that narrow gap 

welds will have slightly shorter lives than comparable single vee-preparation welds, 

with failure initiating in the weld heat affected zone at the bore. The results from the 

two material model indicates that weld metal widths may significantly alter the life 

of the welded joint; though small variations in weld width over the practical narrow 

gap weld ranges of 8 to 12 mm produces only small differences in redistributed peak 

stresses and hence minimal variations in life. Fidler *[143] also states that replacing 

2.25Cr 1Mo weld metal by 0.5Cr 0.5Mo 0.25V weld metal, with similar properties to 

the parent metal does not significantly alter the stress redistribution and life of the 

joint. This is possibly due to the constraint on the narrow soft zone of 2.25Cr IMo 

weld metal by the stronger parent material, forcing it to deform at the lower creep 

rate of the parent pipe, as was observed in the Nicol model (section 7.9.1). 

7.12 Concluding Remarks. 

Failures of welded pipework operating at high temperatures under internal 

pressure have been shown to occur in microstructural regions associated with the 

weld. British design codes make no allowance for the presence of the weld, with the 
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design life of the component determined from parent metal uni-axial stress-rupture 

data. The life predictions have been shown to be conservative and inaccurate. 

Many researchers have studied the deformation and failure of cross-weld speci- 

mens, although the problem exists of how to relate the results to the deformation and 

failure of welded pipes due to differences in the multi-axial stress states. Simple com- 

posite models under uni-axial tension containing hard and soft zones of material have 

been analysed theoretically and have highlighted the effects of stress redistribution 

from soft zones into harder zones. In such models the creep strain rate distributions 

are seen to vary smoothly from a high value in the soft zone to a lower value in a 

hard zone, having an intermediary compatible strain rate at the zone interface. 

The uni-axial creep properties of the weld metal, parent metal and thermally 

simulated heat affected zone microstructures have been obtained successfully. This 

uni-axial creep data has been used in primary and secondary creep finite element 

weld models in both plane strain and axisymmetric analyses to represent creep de- 

formations of plates and circular cross-welds or steam pipes respectively. The finite 

element results show reasonably good agreement with the creep strain measurements 
from experimental specimens and full size pipe welds. Both experimental and finite 

element results for the surface hoop strains across the various material zones of pipe 

weldments show that the hoop creep strain rate remains approximately compatible 

with that of the parent metal for a range of weld metals. This result also suggests 

that significant stress redistribution occurs from softer, faster creeping material, to 

harder heat affected zone, slower creeping material, to maintain this compatibility of 

the hoop strain rate across the various material zones. 

It has been shown that creep strain rate measurements made on the surface of 

pipes in-service can give the surface stresses from which life estimates can be made, 

using uni-axial stress-rupture data for the 'material zone where the measurements 

were made. Failure predictions have also been made using the stationary state sur- 

face stresses from finite element weld models, giving reasonable but still conservative 

predictions. Better predictions are obtained when the effects of the multi-axial stress 

state on rupture are allowed for using a multi-axial stress rupture criterion through 

a representative rupture stress which is applied to uni-axial stress rupture data. 

As a result of the complexity of the interactions of the material zones within 
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the weld and the way in which they off-load stress, enabling various failure modes to 

occur, advancements in our understanding of the behaviour of weldments has relied 

heavily on the results of weld models. Due to the problems of relating inexpensive 

cross-weld specimen tests to real components, expensive full size welded components 

have to be tested. Therefore the use of uni-axial creep data within the finite element 

method becomes an attractive alternative. With the new demands for remnant life 

prediction together with the requirements for safe designs by the nuclear power in- 

dustry, component deformation and failure predictions at the design stage must be 

improved. This can be achieved in one of two ways: either by the use of simplified weld 

performance factors developed from the results of finite element parametric studies, 

or through actual finite element analyses performed for the actual component design 

geometry. Both these alternatives rely on finite element model predictions, which 

have to be accurately verified by experimental test data before they will be accepted, 

which may take many years of development. Certainly there is now enough data 

available to include creep strain limits (section 7.9.4) within the British Standard 
tý. aM 

codes to bring 
w 

into line with the American N47 code. 
To be able to use the finite element technique as a research and/or design 

tool to develop new design methodologies for welds requires a full primary, secondary 

and tertiary creep analysis of a weld model containing at least three material zones. 

Incorporating a full bi-linear material representation of stress-rupture behaviour and a 

multi-axial stress rupture criterion for each weld zone material. A continuum damage 

mechanics finite element solution will predict damage distributions showing where 

failure initiates in the weldment and will also show how the weldment cracks grow 

until final failure ensues at a rupture time given by the program. The development 

of a weld model along these lines will be studied by the author in the next chapter. 
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Life Vredietiun A 

Veld 
Internal 
Pro. - 

Observed 
luytur. 

Life Iledans. uivalent Strew Mean Dienste, M Stress 

Macias 
lupture 

Strue 

Meniaýr 
Principal 
Stn.. IW lel IR. A. Veld Heul hAl t. r. nc ash 1. Iieýh .S ash WS IN2 

Mild Steel 45.3' t<, 5i 22.000 5.000 40.000 31.000 «. 200 1.500 6.000 17.000 

1Cr$s 45.3 18,774 50.000 14.000 60.000 31.000 5.200 1.100 17,000 24.000 

21C[Me 45.3 22,039 50,000 18,000 40,000 31.000 5,200 1,500 14.000 26,000 

IC[Mv 65.7 67,471 60,000 21,000 40,000 31,000 5.2001 1,500 14.000 24,000 

Mild Steel $1.5 7.732 18,000 2,000 18,000 11.000 1,100 300 7,500 10,000 
1cd4e 51.5 7.7 22 76,000 7.500 16,000 11,000 1.900 300 11.000 13.000 

21Ctne $1.5 9.265 28,000 10,000 16,000 11,000 1.900 300 12,500 55.000 

ICtlov 51.5 1.6.51. 18,000 12.000 16,000 11,000 1,100 Poo 14,500 11.400 

Column 11 I2I3J 4- 
15 I6 (7 I- 18 I9II 

No. 

Table 7.1: Comparisons of experimental rupture fifes with those pre- 
dicted, using uni-axial stress-rupture data with various stress criteria, after 
Browne et al (128]. 

Weld metal Experimental measurements Calculated stresses 

Uniaxial creep Pressure vessel CH' 
A CH/a, off oA 

constants strain rates (MNm'2 ) (MNm"=) 
x 10" h- 

An Hoop Axial 

Mild steel 5.4 x 10-'2 4 6 70 0.086 0.60 14.1 23.5 
ICrMo 4.5 x 10-1' 4 85 1.60 1.17 44.2 37.8 
2CrMo 1.6 x 10"11 4 54 1.25 1.08 49.0 45.4 
=CrMoV 3.2 x 10-" 4 80 - 2 95.0 47.5 

Table 7.2: Measured steady state strain rates, calculated stress ratios 
and stresses, at the weld center line on the outer surface of four pipe welds, 
in a 0.5Cr 0.5Mo 0.25V thick pipe, after Coleman et al [131]. 

Position 
Distance from weld 

centreline (mm) 

Weld metal 

ABCD 

0-10 14.5 18 22 28 53 140 235 

HAZ Parent material 

EFGH 

'A' ratios 
(WM: PM: IIAZ) 

and direction: 
1: 1: 0.25 Hoop II II II , II II II II 12 

Axial -1 -I -1 -I -1 0 0 
3: 1: 0.25 Hoop 12 12 12 12 13 12 12 12 

Axial 2 2 2 3 0.7 0 0 
10: 1: 0.25 Hoop 13 14 14 14 14 13 12 12 

Axial 5 6 8 9 3 0 -1 15: 1: 025 Hoop 14 14 14 14 15 14 12 12 
Axial 7 9 11 13 4 -I - 

1690: 1: 0.25 Hoop 12 13 16 22 . ä7 31 19 17 
Axial 58 61 190 340 100 -6 -l 

All creep rates x I0-1 h-', with constant it =4. 

Table 7.3: Hoop and axial steady state creep rates at the pipe surface 
positions shown in Fig. 7.25 calculated in the finite element analysis of 
Coleman et al [131], for various creep rate ratios of WM: PM: HAZ. 
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Figure 7.1: cross-sections of commonly used weld preparations in 
plates to be joined. 
(a) General Vee-Preparation. 
(b) J-type Thick-Plate Preparation. 
(c) Narrow Gap Technique Preparation. 

Figure 7.2: Ideal weld filler geometry, showing multipass welding. 
The first weld bead to be layed is No. 1 and the last is No. 6. 
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Figure 7.4: Experimentally measured weld thermal cycle at various 
points in a steel weld preparation after Kohno and Jones [101]. 
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Figure 7.5: Schematic diagram showing the microstructural regions 
of the a weld in a 0.15% Carbon steel, caused by the weld thermal cy- 
cle peak temperatures reached in each zone and the phase transformation 

characterigtica of the material, (1441. 
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Figure 7.6: A simplified representation of the microstructures in a 
ferritic (a) weld bead and (b) a multipass weld, after Colman [96]. 

Figure 7.7: Micrograph of a section taken through a 1Cr 1Mo: 0.5Cr 
O.. SMo 0.25 V multipass weld. the heat affected zone regions and the weld 
metal recrystalised coarse and fine grained regions can be identified with 
reference to Fig. 7.6. Micrograph courtesy of Coleman [96]. 
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Figure 7.8: Creep curves showing the relative creep properties of the 

weld metal, the parent metal (base metal) and the coarse (I) and fine heat 
(II) affected zones, after Roode et al [111]. 
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Figure 7.9: Circumferential coarse heat affected zone cracking in a 
ferritic steel weldment after Coleman [96]. 

o Wo /0000 15,0040 20,000 

-TIAE. h 



Figure 7.10: Type IV cracking and associated circumferential crack- 
ing in the coarse grained region of the heat affected zone, after Yeldman 

et al [145]. 
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Figure. 7.11: Schematic diagram of the Nicol composite plate model 
[121]. The plane strain direction is coincident with the y-axis. 
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Figure 7.12: The effect of the property ratio (B/A) on the axial 
creep strain rate distribution across the interface, Fig. 7.11, after Nicol 

and Williams [122]. 
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cumferential thick pipe weld, after Browne et al [128] 
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Chapter 8. 

Finite- Element Creep Continuum Damage 

Modelling Of The High Temperature 

Deformation And Failure Of A 

2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V Steam Pipe 

Weldment. 

8.1 Introduction. 

Coleman [148] has compiled creep strain data and the complete failure history 

of a 2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V thick steam pipe weldment from a C. E. G. B. 

constant pressure (455 bar) vessel test, at a constant temperature of 565°C. In this 

test, transverse cracks are initially observed in the coarse columnar regions of the 

outer buttered layers of the weld metal [133]. Subsequent failure includes bending, 

and the weld bulges outwards with the formation of circumferential cracks in the 

outer weld beads, close to the fusion boundary. 

This deformation and failure through macroscopic cracking is to be modelled 

using axisymmetric finite element creep continuum damage models, with a full creep 

curve representation for each constituent material microstructural zone of the weld. 

Initially a simple three material weld model is used, where discrete regions of the 

finite element mesh are assigned the creep properties of the parent metal, the heat 

affected zone and the weld metal. This model is then refined and a new solution 

performed. Finally, a four material model is developed where both coarse and fine 

grained bainitic regions inside the multipass weld metal are represented, to try to 

predict the exact effects of the material inhomogeneity on the damage field within 

the joint. Comparisons are made between the damage distributions predicted by 

the models and the cracked weldment of the full-size pressure vessel test. Computer 

predictions of strain and failure times are also correlated with the experimental results. 
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8.2 Experimental Description. 

Pressure vessels have been constructed to test circumferential welds in thick 

steam pipes at high temperature [131]. One such pressure vessel was constructed 

from 0.5Cr 0.5Mo 0.25V parent metal in the normalised and tempered condition, 

using two 1Cr 0.5Mo and two 2.25Cr 1Mo multipass welds, Fig. 8.1(a). The steam 

pipe section was of 60 mm wall thickness, having an external diameter of 350 mm 

and an external to internal diameter ratio of approximately 1.52. The end caps of 

the vessel were forged and the seamless pipe sections of parent metal were hot drawn. 

The welds were made with the Manual Metal Arc fusion process, using a standard 

'J' type weld preparation, Fig. 8.1(b). Welding was performed at a preheat of 200°C 

and the welds were subsequently stress relieved for 3 hours at 700°C ±10°C. A cross- 

section through a similar 2.25Cr 1Mo weld is shown in Fig. 8.2, where the parent 

metal, heat affected zone and the weld metal coarse and fine zones, (section 7.5), may 

be identified. The choice of the materials used for the pressure vessel, the welding 

parameters and construction were arranged to reproduce both a microstructurally and 

a macrostructurally realistic component typical of those used in power generating 

plant. Auxiliary weldments were produced using exactly the same materials and 

procedure from which specimens were cut, to give uni-axial creep data from constant 
load tests of microstructural regions within the weld [109]. 

The pressure vessel was tested at a temperature of 565°C and a pressure of 455 

bar giving an accelerated test factor of about 10, in comparison with the component 
design life (calculated using I. S. O. stress rupture-data for the parent metal). An 

air circulation bell furnace is used to heat the pressure vessel, which is pressurised 

incrementally with steam up to the test pressure. During the test elastic and creep 

strain measurements were obtained by two strain measurement methods. The first is a 

manual method where the relative displacements between stellite domes (creep pips), 
(Fig. 8.1), welded to the surface of the pressure vessel are measured at test intervals 

when the test temperature is reduced to the ambient temperature. The creep pips 

are positioned on either side of the welds (Fig. 8.1(a)), and are used to measure the 

displacements across each weld and the parent metal pipe sections, in both diametral 

and axial directions. The hoop strains are calculated from the displacement of 
diametrically opposite creep pips and have a gauge length of approximately 400 mm. 
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The axial strains are calculated from the axial displacements of the creep pips, using 

gauge lengths of 100 mm to obtain the axial weld strains and a gauge length of 150 

mm to obtain the axial parent metal strains. 

The second method of strain measurement gives a continuous reading of strain 

with test time. This method uses planar high capacitance gauges developed by the 

C. E. G. B. to function up to a temperature of 700°C with a low drift rate. The capaci- 

tance gauges were situated locally on the weld metal centre lines of the two inner most 

welds of the pressure vessel; positioned to measure both hoop and axial weld surface 

strains. Capacitance gauges were also placed in the centre of the middle parent metal 

pipe section of the vessel, (Fig. 8.1(a)). The capacitance gauges used have a gauge 

length of 20 mm. 

8.3 Deformation And Failure History Of The 

2.25Cr lMo: 0.5Cr 0.5Mo 0.25V Steam Pipe Weldment. 

The strains measured using the capacitance gauges, during the pressurisation 

of the vessel at the test temperature, showed a linear relationship with pressure in 

both the welds and the parent metal. This indicated that the initial deformation was 

elastic with measurements giving a hoop to axial strain ratio in both the welds and 

parent metal of 4 to 1; which gives a hoop to axial stress ratio of 2: 1 as expected from 

elastic theory. 

Creep strains were then observed to accumulate with time. A primary creep 

region was observed in the hoop direction for both the parent metal and the weld 

metal, lasting for about 4,000 hours followed by a secondary creep region. The sec- 

ondary creep hoop strain rate in both the weld and the parent metal were observed 

to be similar. Hoop strain measurements obtained from both the creep pips and 

capacitance gauges gave a secondary creep rate of approximately 7x10-8 /hour. 

Axial creep strain measurements from the creep pips for the parent metal were 

observed to be zero over the test period until severe cracking and bulging was ob- 

served. Capacitance gauges in the parent metal indicated a small amount of primary 

creep followed by a secondary creep strain rate of zero. Axial creep strain measure- 

ments for the weld metal, from both the creep pips and capacitance gauges, indicated 

primary creep strain stages lasting for about 4,000 hours followed by a secondary 

151 



creep strain rate of approximately 5x10-'/hour. From calculations performed by 

Coleman et al [1311 using the measured surface secondary creep strain rates and the 

Bailey equations (8.15), (8.16) and (8.17) [132], the hoop to axial steady state stress 

ratio at the centre of the 2.25Cr 1Mo weld is approximately bi-axial. 

The creep deformation history of the welded pressure vessel is summarised by 

the creep curves of Fig. 8.3, measured from both the creep pips and capacitance strain 

gauges. With reference to Fig. 8.3 the secondary creep region gives way to increased 

strain rates of the tertiary creep region after approximately 20,000 hours. This fig- 

ure highlights the difference between the magnitudes of the hoop strains measured 

from the creep pips with those from the capacitance gauges. These differences are 

explained as a result of the creep pip measurements being taken across the periphery 

of the vessel, giving a global measurement of the deformed and cracked regions of the 

weldment, whereas the capacitance gauges give measurements locally on the surface 

of the weldment. It must also be remembered that the creep pips for the weld actually 

lie in the parent metal, a few millimetres away from the fusion boundary, whereas 

the capacitance gauges lie on the centre line of the weldmetal. The creep curves of 

Fig-8.3 will be used in comparison with the finite element results obtained from the 

developed weld models later in this chapter. 
The observed failure history of the pressure vessel is briefly summarised in 

Table8.1 with reference to Figs. 8.4 to 8.8. 

8.4 Weld Model Specifications. 

As the failure of the pipe weldment occurs at the weld, the geometry and be- 

haviour of the materials and microstructures within the welded joint and its viscinity 

are important. A micrograph of a radial section taken from the 2.25Cr IMo: 0.5Cr 

0.5Mo 0.25V pipe weldment is given in Fig. 8.2. A detailed investigation of a single 

2.25Cr lMo: 0.5Cr 0.5Mo 0.25V weld was presented by Middleton and Cane [102], 

where 13 separate material structures were identified in the heat affected zone. Many 

of these microstructures have not been isolated in sufficient volume, so that creep test 

can be performed to determine the individual material properties of these microstruc- 

tures. Coleman [96] detailed a simplified representation of the main microstructures 

and the spatial distribution in a multipass ferrite weld (Fig. 7.6 and section 7.5). 
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With the added restriction of the limited creep test data made available Cane [109], 

simplifications in the analysis must be made to model such welds. 

All the weld models developed will use an axisymmetric representation of the 

thick steam pipe, with plain strain triangular finite elements. Only half of the weld 

will be modelled due to symmetry. The first weld model, which will be termed WM1, 

will model the three main microstructural regions of the weldment, namely; the parent 

metal, the heat affected zone and the weld metal. The geometry, boundary conditions 

and loading specifications for WM1 are shown in Fig. 8.9. The second model will have 

the same microstructural regions and the same specifications as WM1, but it will 

have a refined finite element mesh to examine the convergence of the solution. This 

second model will be termed WM2. The third weld model will be an improvement 

of weld model two (WM2), in that it will include a representation of the coarse and 

fine bainitic regions of the weld metal (Fig. 7.6). The modelling of these regions is 

thought important, since initial cracking occurs in the weld metal coarse columnar 

bainite regions of the outer weld beads, with creep crack growth extending radially 

inwards through alternate coarse and fine grained regions in a circumferential mode 

until failure. 

The welding specifications for this welded joint (i. e. heat input and bead over- 
lap) have been controlled so that each weld bead, between the capping beads, con- 

tain approximately 20% coarse grained bainite by area, on metallurgical examination 
[149]. A simplified representation of the 2.25Cr Mo weld metal microstructures may 

be made (Fig. 8.10), where successive coarse grained bainite regions are represented 

as crescent shapes. These coarse grained crescent shapes will be later represented 

topologically as groups of triangular finite elements with the material properties of 

the coarse grained weld metal. The size and position of these groups of elements is 

in accordance with careful examination of the distribution of coarse and fine grained 

regions in the weld metal using the micrograph of Fig. 8.2. The weld capping layer is 

mainly coarse grained columnar bainite and is represented as a fully coarse grained 

region in the weld model. This weld model will be termed WM3. 

In all the weld models it is assumed that the residual welding stresses in 

the pressure vessel weldment are small after the stress relief heat treatment, and no 

allowance for the effects of residual stress distributions is made in the finite element 
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analysis. The thermal expansivity differences across the different material zones of 

the weldment are also assumed to be small, and no allowance for thermal strains is 

made in the weld models. 

8.5. Materials Data. 

The elastic behaviour of each material zone of the weldment is assumed the 

same, which is in accordance with the experimental results of Coleman [131]. There- 

fore each material zone has the same value of the elastic modulus (E), which is taken 

as that of the parent metal (E=170 GPa), with reference to Jones [150]. 

The creep deformation and failure characteristics of each material zone in the 

weld model are obtained from the uni-axial and multi-axial creep data of Cane [109]. 

Some additional long term creep data, from tests which continued to failure after this 

report [109] was written, were obtained through Jones [150] (due to Cane) and have 

been used to supplement the data of the report. 

As Coleman et al [131] have previously determined that Norton's power-law 

adequately describes the creep deformations observed in the pressure vessel weldment, 

from their secondary creep finite element analysis, no reference is made to the Ashby 

mechanism maps; as the materials in the weldment operate in the power-law creep 

region at low stress levels. Hence the standard creep constitutive and damage rate 

laws (2.19) and (2.20) will be used. At high stress levels the bi-linear modifications to 

these equations (section 2.6) will be used to model the high stress excursion from the 

mechanism map power-law creep region, partially into the dislocation glide region. 

8.5.1 Obtaining The Uni-Axial Creep Constitutive And 

Damage Law Material Constants For The Weld Materials 

For Low Stress Conditions. 

The uni-axial creep test specimens for the weld metal were machined from 

blanks cut chordally from the middle and outer regions of the pipe section, Fig. 8.11. 

The creep test specimens for the parent metal were obtained from blanks only cut 

from the middle of the steam pipe section, to give average properties at the mid wall 

section of the pipe in accordance with Coleman and Williams [129,130]; who suggested 
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that through thickness effects are of secondary importance in pipe models and that 

average mid wall creep properties are adequate. The uni-axial creep specimens had 

a diameter of 9 mm and a guage length of 60 mm. The uni-axial creep test data for 

the coarse grained heat affected zone was obtained by testing furnace heat treated 

parent metal to simulate this weld microstructure. The simulated heat affected zone 

material is termed grain coarsened parent metal (G. C. P. ) for short. All the creep tests 

were constant load tests, performed for a wide range of stress levels. The selected 

results from the uni-axial creep tests for the parent metal, the heat affected zone 

microstructure and the weld metal are summarised in Table 8.2. From results of Table 

8.2, the uni-axial stress-rupture and stress vs. minimum creep rate diagrams are given 
in Figs. 8.12 and 8.13, respectively, for each material zone. All of the materials show 

bi-linear strain rate and stress-rupture characteristics, due to different high and low 

stress behaviour. Uni-axial strain/time creep curves were only available for low stress 

tests (i. e. for tests conducted below the knee of the stress-rupture lines; the knee is 

known as the break stress). The strain time curves for the creep tests marked with 
(o) in Table 8.2 have been digitized by the author, following an algorithm [54] to 

obtain a distribution of data points which has been observed to improve the accuracy 
of constitutive model fits to experimentally obtained creep strain vs. time data. The 

uni-axial creep constitutive equation (3.2) and damage law (3.3) material constants 

are obtained by optimum fitting of the uni-axial primary, secondary and tertiary 

creep strain/time relationship (equation 3.4) to the digitised creep curves for a range 

of test stress levels, as detailed in section 3.6. Plots of the experimental (digital) and 
fitted creep curves are presented in Fig. 8.14(a) (b) and (c) for the parent metal, heat 

affected zone and the weld metal respectively. The corresponding material constants 

are given in Table 8.3 (a), (b) and (c). Some of the creep curves given by Cane [109] 

have not been selected for inclusion within the fitting procedure as only well shaped 

creep curves, which consistently increase in height for higher applied test stress levels, 

are used; so as not to downgrade the curve fits. The fits obtained are seen to be good 

and are representative of the low stress creep test data. The curve fits obtained for 

the heat affected zone material could be better for the 100 MPa and 85 MPa curves 
(Fig. 14(b)). 
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8.5.2 Obtaining The High Stress Material Constants. 

Uni-axial creep curves were not available for the high stress rupture tests (i. e. 
for tests above the break stress). Hence the material parameters could not be obtained 

using the fitting procedure, as was used to obtain the low stress material constants. 

Therefore the high stress material constants are obtained by hand fitting calculations, 

using the gradients of the stress-rupture and stress-minimum creep rate diagrams of 
Figs. 8.12 and 8.13, and the data of Table 8.2. The bi-linear representation detailed 

fully in section 2.6 is used, where the assumption is made that the high stress creep 

curves have the same primary creep curve shape, and therefore the same value of the 

material constant (m), as the low stress creep curves. The break stresses (a) used for 

each material are shown in Figs. 8.12 and 8.13. Their values for each weld material are 

given in Table 8.3 and are the same for both the stress-rupture and stress-minimum 

creep rate diagrams for simplicity. High and low stress constants are subscripted I and 

II respectively. The values of the high stress constant (XI) may be obtained from the 

gradient of the high stress stress-rupture line for each material. The gradient of the 

high stress-rupture line may be shown to be (-(m+1)/X). Alternatively the value of 
(x) may be calculated by taking the values of failure time and stress at a point on the 
high stress-rupture line and substituting these values into equation (2.56) with the 

low stress values of the constants MIr, XII, m and the value of the break-stress (Q). 

Equation (2.56) may be re-arranged and by taking logs of each side of the equation 
the value of (XI) determined. (MI) is obtained from equation (2.47). 

The high stress value of the creep exponent (nj, ) is obtained from the gradient 

of the high stress vs. minimum creep diagram which is identified as (1/n). The value 

of (KI) is then obtained using equation (2.37), the value of (n1) and the low stress 

values of (KII) and (nll). The compatibility of failure strain is maintained at the 

break stress by defining (0I) such that equation (2.57) is satified. A full description of 

the method for obtaining the high and low stress material constants for the bi-linear 

continuum damage mechanics analysis is given in section 2.6. 

The high stress material constants for each material zone of the weldment 

are summarised in Table 8.3. Checks are made using both the high and low stress 

material parameters by determining the theoretical failure strains and failure times 

at certain test stress levels using the uni-axial equations (3.4) and (3.5) respectively, 
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where M= A(ý + 1). 

8.5.3 Determination Of The Multi-Axial Rupture Criterion 

Parameters For The Weld Materials. 

Cane [109 gives multi-axial rupture data for the parent material and the 

simulated heat affected zone material, from double shear, torsion and uni-axial tension 

tests. He uses a multi-axial stress rupture criterion of the form: 

1 
-q) 

t1 = Baasof (8.1) 

where (tf) is the rupture time, (al) is the maximum principal tension stress, (cq ) is 

the von Mises effective stress, (r) is related to the gradient (-1/r) of the uni-axial 

stress-rupture diagram, (q)is the principal stress exponent of rupture, determined 

from torsion/tension creep rupture tests and (B) is a constant. Values (Oei), (Q1), 

(r) and (q) are given in Table 8.4. 

The finite element program Damage-(XX) to be used for the weld modelling 
has a multi-axial rupture criterion formulated by Hayhurst [22] of the form: 

1 (8.2) tf 
M {(ail+(1 -a)a f}xT 

where (XT) is related to the gradient (-1/XT) of the uni-axial stress-rupture plot, 

(a) is a material constant where (0 <a< 1) which determines the bias of the multi- 

axial rupture behaviour of the material between a maximum principal stress and an 

effective stress rupture criterion (section 2.4.6); M is a constant. Here for simplicity 

the expression for the rupture criterion of Hayhurst is written without the inclusion 

of the material constant (m), which appears in equation (2.29) as (m) does not affect 

the form of the isochronous rupture surface (equations (2.32) and (2.33)). (f3&) in 

equation (2.29) is assumed to be zero for lack of tri-axial rupture data to suggest 

otherwise. Both equations (8.1) and (8.2) represent multi-axial rupture criterion 

based on the maximum principal stress and the effective stress. It is to be shown that 

these two expressions are in fact equivalent and may be expressed in terms of one 

another, so that values of (a) 'may be obtained from the values of (r) and (q) given 
by Cane [4], enabling Hayhurst's form of the rupture criterion to be used. 
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For uni-axial plane stress conditions: 01 = oo, a2 = a3 = 0; and o=Q,! = a, 
Substituting for o and af into (8.1) gives: 

(8.3) to 
"(,, r r -a) = Bvö 

Substituting o and ve f into (8.1) gives: 

(8.4) t! ' M {acTo + (1 - a)ao}XT MOOT 

Since t fl =tf,, (r) and (XT) are identified to be the same and equal to (v), which 

is related to the gradient (-1/v) of the uni-axial stress-rupture plot; this implies 

that (B = M). Since both (B) and (M) are constants, (B = M), must hold true 

for multi-axial states of stress as well as uni-axial. Equations (8.1) and (8.2) may 

therefore be combined: 

Uhup = 0.1 17e f Q) = {cxo, l + (1 - a)Qf}" (8.5) 

where (QRup) is the representative rupture stress, which when applied to the uni-axial 

stress rupture data gives the life of a structure under a multi-axial state of stress. 
Substituting values of (Qef), (a1), (v = r) and (q) from Table 8.4 into equation 

(8.5) values of (a) for the parent metal and the heat affected zone are obtained 

and are also given in Table 8.4. The shapes of the isochronomous rupture surfaces 

in plane stress, principal stress space, due to the equations of Cane and Hayhurst, 

using the newly determined (a)-parameters, may be obtained to show that the two 

representations are equivalent for a range of bi-axiality ratios. First the equations 

representing the multi-axial rupture surfaces for equations (8.1) and (8.2) must be 

determined: - 
Equation (8.1) may be written in terms of the plane stress principal bi-axial 

stresses vl > U2 > 03 = 0: - 

1 
tf 

Baij (ai + a2 - ala2) 2T 
r-9ý 

(8.6) 

l 

which is normalised by writing E; = of/vo and T= t/to, where (to) is the time to 

rupture of a uni-axial test at a stress (ao), equation (8.6) is re-written as: 

ýZl -1 

T= 
to = 

{Ei ýEi + E2 - E1E2) 2} (8.7) 
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By writing (E2) as the ratio (C) of the (El), equation (8.7) may be re-written as: 

T= (1-I- CZ - c) 2 Eý' (8.8) 

T in (8.8) may be set to unity, to give the bi-axial stresses required to give a rupture 

time equal to the uni-axial and rupture time: 

Eý _ 
(C2 

_C+ 1) 
() (8.9) 

This equation may be used to give the shape of the rupture locus in the (Ei, E2)-plane, 

for points having the same rupture time. 

Equation (8.2) may be re-written in a similar manner giving an analogous 

equation to that of (8.9): 

Ei - a+ (1- a) ýý2 
.. x-. 11 2 -i (8.10) 

Equations (8.9) and (8.10) obtained from the rupture criteria of Cane and Hayhurst 

respectively have been used with the material parameters of Table 8.4 to give values 

of (E1) and (E2) for a range of bi-axiality ratio in Tables 8.5(a) and (b), for the 

heat affected zone and the parent metal respectively. The values of (El) and (E2) 

obtained using equations (8.9) and (8.10) may be compared and are seen to be closely 

equivalent. The shapes of the isochronous rupture surfaces in normalised principal 

stress space are shown in Figs. 8.15 for the parent metal and the heat affected zone. 

It is seen from equation (8.10) that the shape of the isochrono« rupture 

surface is independent of (v) and hence (x) and therefore the values of (a) derived 

may be used directly in the creep continuum damage equations (equations (2.19) and 
(2.20) using the normalised time scale (2.18), where (x = v(m + 1)), without futher 

A 

modification. 

No data is available for the multi-axial rupture criteria of the weld metal, but 

Goodall [148] suggests a pure af criterion (i. e. a=1.0) 
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8.6 Development and Evaluation Of The Finite Element 

Program To Model A Homogeneous Pressurised Tube. 

8.6.1 Development Of The Finite Element Program To 

Include The Internal Pressure Loading Of The Tube. 

The effects of internal pressure loading, due to the constant pressure (po) 

is included within the axisymmetric finite element program by applying horizontal 

(radial) nodal forces to the nodes on the vertical boundary of the finite element mesh 

representing the inside surface of the pressure vessel. With reference to Fig. 8.16 the 

contribution of nodal force in the horizontal direction caused by the pressure (po) 

acting on the revolute area (A, ) is given by: 

F; =F1=2irr; 1l; 1(2°) (8.11) 

where (i) and (j) indicate node numbers (they are not tensors) and (l; a) is the finite 

element leg length and (Fe) is the average radial distance (which in the case of a 

small strain analysis of a pressure vessel is a constant and is the internal radius 

of the pressure vessel). (po) is normalised by ((7, ) in the program (Po = po/co)" 
Having calculated the nodal force contributions for each element, the nodal forces are 

assembled in the global force vector (F., in equation 4.1), where the force contributions 
due to the boundary elements connected to the boundary nodes are added. The 

subroutines developed to include the pressure loading are general and cope with 
different mesh sizes and varying mesh refinement. Care has to be taken when failed 

elements (w > 0.9999) occur on the inner surface of the mesh, as the nodal loads for 

these elements are effectively removed from the system. If the finite element mesh 

size is small and the number of damaged elements is small, this reduction of load will 

not be detrimental to the solution, but this situation should ideally be avoided. 
The axial load on the pressure vessel wall due to the action of the internal 

pressure on the vessel end-caps (Fig. 8.17) is included within the finite element solution 
by applying a uniform axial pressure load to the top boundary of the finite element 

mesh (Fig-8.18). 

The axial pressure load is calculated referring to Fig. 8.17 as follows. The 
internal pressure (po) acting on an end cap of area (7ra2) produces a reaction of 
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(poira2), which is equated to the equal and opposite reaction produced in the pressure 

vessel of (Qz7r(b2 - a2)) giving: 

Po 
Qx = 

C(ä)2 -1) 
(8.12) 

where (o) is the uniform axial stress in the pressure vessel wall which is applied to 

the top boundary of the finite element mesh. 

The vertical (axial) nodal forces applied to the top boundary of the axisym- 

metric finite element mesh (Fig. 8.18) are calculated using: 

F; = ir (r; - rk) 
1 

rk }2rtl 
l 

(8.13) C3 
3 

Fk =r (r; - rk) )2 rk 
1l (8.14) -I- 3r'J o, -- 

where (o) in the program is normalised by (00), giving (E, = Qx/QO). These forces are 

also included in the global force vector (equation 4.1) in the finite element program. 

8.6.2 Evaluation Of The Developed Axisymmetric Finite 

Element Pressure Vessel Model In Comparison With A 

Closed-Form Solution. 

Odqvist [18] has presented a plane strain analysis of an internally 

pressurised thick walled pressure vessel due to Bailey [132]. The pressure vessel 

has an external to internal diameter ratio (b/a=2.0). The section of the tube, the 

coordinate system and the directions of the stresses are given in Fig. 8.19. The model 

assumes that there is no through thickness strain in the (z)-direction, which may 

be assumed true for long pressure vessels. Equations for the hoop, radial and axial 

stresses are derived [18] and are: 

Oro -O1- 
?J (r) n (8.15) 

an{nb} 

-21 

PO 
{1 

-Cn (8.16) a,, = 
{(_i} t bl 

Qz =2 (0, + oo) (8.17) 

where (n) is the creep exponent of stress in Norton's law (2.2). 
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These equations have been used by the author to calculate the stress distri- 

butions across the wall thickness (1.0 < r/a < 2.0) of the pressure vessel with an 

internal pressure of (po) and a creep exponent of (n = 1); which corresponds to the 

elastic solution ( the lines in Fig. 8.20). Another solution has been performed for a 

creep exponent of (n = 2), which results in secondary creep stress redistribution. The 

solution gives the stress distributions through the wall thickness of the pressure vessel 

at the stationary state (the 'lines if Fig. 8.21). All the stresses are normalised with 

respect to the internal pressure (po), and the radial distance (r) is normalised with 

respect to the internal radius of the pressure vessel (a). 

A uniform crossed-triangular finite element mesh generated by the author to 

represent the thick pressure vessel of Odqyist is shown as the original green mesh 

of Fig. 8.22. Subroutines developed in accordance with the details given in section 

8.6.1, are used to load the mesh radially with a normalised internal pressure load of 

(Pa = 3) and a normalised axial stress (E. = 1.0). The axial stress is calculated 

from (8.21) for a (b/a = 2.0). The initial elastic stress distribution (n = 1) along the 

bottom boundary and the subsequent steady state stress distribution (n = 2) from 

the axisymmetric finite element analysis are compared with the analytical solution 

results of Odqvist in Figs. 8.20 and 8.21. The correlation between the results of the 

analytical and the finite element solution are excellent. With reference to Fig. 8.22 

which shows the original finite element mesh in green and the displaced mesh in red 

immediately after the steady state has been reached; the deformation is noticed to be 

uniform away from the top edge of the mesh, but close to the top boundary an end 

effect is observed where the mesh has rotated clockwise. This effect is caused by radial 
differences in the axial Poisson contraction due to the internal pressure increasing the 

diameter of the vessel. 
When a full primary, secondary and tertiary creep solution is performed, slight 

stress concentrations in the top left-hand corner of the finite element mesh caused 
by the end effect, results in local damage accumulation in this region, Fig. 8.23. This 

effect would cause boundary elements at the top of the mesh to fail prior to the failure 

of elements in the weld at the bottom of the weld model mesh, causing the applied 
forces at the nodes of these elements to be set to zero. Hence damage resulting 
from the end-effect would affect the solution for the weld models. To overcome this 
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problem the mesh is increased in length, retaining the same wall thickness, taking the 

end-effect well away from the lower part of the mesh where the weld geometry will be 
St" SS 

modelled and uniform 
states 

must be obtained. The elements in the top 1/5 of the 

finite element mesh have damage rates set to zero for the duration of weld solution, 
by defining a new material data set in this region of the mesh. This region of material 

is still allowed to deform and has the same deformation material properties as the 

parent metal. Having made these modifications to the weld model, tests showed that 

uniform stress distributions were obtained in the middle and lower half of the finite 

element mesh, and failed elements (w > 0.9999) did not occur locally at the top 

left-hand side of the mesh (Fig. 8.23). 

Tests were also performed on the weld model meshes where severe mesh re- 

finement was used in the weld. The tests involved performing homogeneous material 

elastic and creep solutions to check that no faults or severe stress concentrations 

resulted in the meshes because of poor element shape and mesh refinement. 

8.7 Time Scale Transformations For The Different Weld 

Materials In The Weld Model. 

The creep constitutive equation and the damage rate law to be used in tta 

finite element analysis are given principally by equations (2.16) and (2.17) without 

allowing for the bi-linear representation (section 2.6) modifications to these equations. 
These two equations are normalised with the introduction of the normalised time scale 

equation (2.18) and the constant (Y�) giving equations (2.19) and (2.20). Equations 

(2.19) and (2.20) are the normalised equations used in the finite element program 
Damage-(XX). 

Each weld material is represented by discrete regions of the finite element mesh, 

each having different associated material constants which dictate the respective creep 
behaviours of each zone. Each material zone will therefore have its own normalised 
time scale determined by (2.18), using its particular material constants. The finite 

element program uses one normalised time scale which is chosen to be that of the 

parent metal and the time scales of the weld metals and the heat affected zones must 
be transformed onto this base time scale. The time scale normalisation is achieved 
as follows: 

163 



If there are two different materials M1 and M2, which have different values 

of the material constants (K), (n), (m), (M), (x), (0) and (Va), (subscripted 1 and 
2 respectively) and the same values of (co), (eo), (E), then the creep strain rate 

equation (2.19) may be written for materials M1 and M2 as: 

dV; 
l _3E 

-1 
dri 2 (1 - w, )nl-i `ý" (8.18) 

Enz-1 d[ t; z _3ef ný_ý ýý (8.19) 
drr2 2(1-w ) 

where 

d-rl = KiEQO1'lt"dt1 (8.20) 

and 

dr2 = KZEvö'-ltri`2dt2 (8.21 

Only one normalised time scale, (r1), is used by the program to represent the be- 

haviour of both materials M1 and M2. Equation (8.19) must be transformed onto 

time scale (r1). Using (8.20) and (8.21): 

dV jZ dr2 3E n2-1 d-r2 

n, -1 
s,, (8.22) 

d7-2 dT1) 21- w2 drl 
) 

where: 
dr2 K2Ea02-1tm2dtZ (8.23) 

nl-1 dr, I iEv° tm1 dtl 

as dtl = dt2 = the real time scale: 
dTZ 

_ 
KZ0, on2-n1)t(m2-m1) (8.24) drl Ki 

where: 
J -1 1 71- 

t 
{rl(m+1) 

' (8.25) 
K, EcoI - 

from the equation (2.27), and (8.24) becomes: 

m, 2-m1 

dr2 
= 

If20, (n2-n1) Ti(m+ 1) 
I 

m1+1 { 
(8.26) 

KiEvo1-1 d7', Kl ° 

_ ýcTl (8.27) 

where: 

X= 
I(2 

ß(n2-nl) 
m+1 } 

° 8.28 () 
If1Eao1-i IC, 

m2 - ml C (8.29) 
ml+1 

164 



The damage rate law may be written for materials M1 and M2, and the time scale 
for the damage rate law corresponding to material M2 is similarly transformed onto 
that of material MI: 

dWZ (dr2 AX2 (( Eii) (dr2's 
(8.30) äT2 dr, vus "ý lý ll _W 3 

)02 dTi 

where (dr2/drl) is given by equation (8.27). 

If other weld materials are present such as M3 and M4 etc., then multipliers 

must be calculated using (8.27) to scale the constitutive and damage law equations 
for these materials onto one time scale. The values of (rc) and (t) for the heat affected 

zone and weld metal are given in Table 8.3, where the parent metal time scale defines 

the base scale and hence is not transformed. 

Having incorporated each set of weld material parameters given in Table 8.3 

(a), (b) and (c) into the code of the finite element program, the constitutive models 

were checked for accuracy by performing solutions for a small four element finite 

element mesh under uni-axial tension (Fig. 4.4(a)). Solutions were performed over the 

stress range of the experimental uni-axial tests and the rupture times and strains at 
failure compared with both the experimental and analytical values. 

From such tests it was observed that many of the solutions needed large num- 
bers of computational iterative steps until rupture occurred, some solutions were not 

taken to rupture because of long run times. It would be computationally expensive 
to run the program for a larger problem, such as a refined weld mesh, for so many it- 

erative steps. The problem seemed to be caused by the program choosing small time 

step increments over a long time scale. For example a uni-axial creep test for the 

heat affect zone material at a stress of 85 MPa lasted for approximately 105 hours. 

Reducing the integration accuracy to increase the time step increments and hence 

decrease the number of iterative steps until failure, had little effect on the number of 
iterations required and caused error in the failure time predictions. When the integra- 

tion accuracy was reduced further, unstable stress solutions were produced causing 
the program to abort as a result of mesh inequilibrium. 

These problems were overcome by the author by re-scaling both the normalised 

creep strain and normalised time scales for all the materials with a transformation of 
the material parameter V. 
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8.8 The (Vu)-Txansformation. 

The creep constitutive and damage law equations used by the finite element 

program for a single material are given in equations (2.19) and (2.20) respectively. 

Where the normalised time scale is defined by equation (2.18) where (r) is the nor- 

malised time and (t) is the real time in hours. To reduce the size of the real time 

scale the normalised time scale is reduced by a factor of (0) to give. 

dT' =6= KEQÖ-1 Ö (8.31) 

Defining (2.19) in terms of the transformed normalised time scale (r') gives: 
n-1 1' 

=02(1ý_w)ns (8.32) 

If (0) is not included in (8.32) in the finite element code then the normalised creep 

strain scale is also scaled by the factor (0): - 

dV; = 
dý' (8.33) 

Substituting (8.33) into (8.32) gives: 

dV j`3 Eß -1 
S (8.34) 

dT' 2( `' 
Similarly, normalising the damage rate equation (2.20) by the new transformed nor- 

malised time scale (8.31) gives: 

dw 0 Ex 
_ 

EX (8.35) 
aTý Vu (1-i'ß)(1-w)ý VUTRAN(1+c5)(1-w)m 

where: 
V_ KEC(n-X-1) VuT N=0 MO 

(8.36) 

(0) therefore scales the normalised creep curve in both the axes of strain and time 

through the replacement of the material parameter (Vu) by (VuT"RAN). When (V,, ) 

is replaced by (VUTRAN) both the normalised creep strain and the normalised time 

results obtained from the computer program must be multiplied by (0) to give the 

true values of the creep strain and normalised time, as would be obtained if (V,, ) was 

used: 

T=Tx0 (8.37) 

u; = v,.; x0 (8.38) 
Vu = VuTRAN x0 (8.39) 
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The value of (0) if 1.96758 was used to give a parent metal (VUTRAN) value of 5.0 % 

strain, originally having a value for (Vu) of 9.83792 % strain, which enabled a uni-axial 
finite element tests to run to failure requiring fewer iterative time steps and hence 

computer time. The values of (Vu) for the other materials are scaled consistently in 

the computer program using the same (0) value and are given in Table 8.3. The 

time steps used in the program were relatively longer, but solution accuracy was 

retained and improved accuracy and solution stability was obtained by increasing the 

integration accuracy in reducing the integration parameter sizes (EPSL) and (EPSR), 

(section 4.3.3). The possibility exists for homogeneous material finite element meshes 

of normalising (V,, ) out of the program allowing for the effects of (V,, ) by purely scaling 

the finite element results. This may enhance the consistency of future solutions for 

comparison with one another, in requiring similar numbers of iterative time steps for 

stress redisttibution to occur, and similar numbers of steps in which elements may 

damage. 

It is also noted that in the weld analysis (r1) in (8.27) must also be multiplied 
by (0) when using the (Vu)-tansformation. 

8.9 The New Constitutive Equation And Damage Laws As 

Used For The Weld Modelling. 

The new constitutive equation and damage laws used in the computer weld 

analysis involving the bi-linear representation, time scale transformation and the (Vu)- 

transformation are: 
dVý 

_3 
j(nz, -nj) s (T O)` (8.40) drl 2 (1 

-W)nI 
'1 

for Eef > Eýf. 
nrr-I 

dT' 2 (1 _ w)rirr 
S, uýc (T10)` (8.41) 

i 
for Eef <I ff. 

t(Xll-XF)AXI (E5) 

äT1 =V, N(1 + 01)(1 - w)O1, ý (Tio)ý (8.42) 
for 0(Eij) > 0(Es. i) 

dw Oxu (s. 

äT1. - vuTRAN(l + OIi)(1 

- w)ýrl'ý 
ýTloý" (8.43) 

for 0(Eij) < A(Ei3). where I and II indicate high and low stressmaterial constants 
respectively. The same assumptions made in section 5.6 are applied here to model 
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the growth of damage in compressive stress situations using the equations (8.42) and 
(8.43). 

The true creep strain values are given using equation (8.38) and the real time 

is given by: 

t= 
E)7-1 (m, + 1) jnj+1 

(8.44) t If1Evo1'ý 

where the constants are those of the parent metal (subscripted (1)), which defines 

the base time scale given in Table 8.3(a), and 0=1.96758. This implies that the 
n 

creep strains and real times from the use of the costitutive and damage laws above, 

are obtained using: 

Vii V j' x 1.96758 (8.45) 

and 
(11.1721 x 103) 1.25486 (8.46) 

Having incorporated all the developed constitutive theories for the weld modelling in 

the above four equations, future work may involve the simplification of these equa- 

tions. The present work concentrates on the equations abilities to predict weld de- 

formation and failure behaviour using the finite element method. 

8.9.1 Initial Results From The Finite Element Solution For 

The First Weld Model. 

A part of the first weld model (WM1) finite element mesh is shown in Fig. 

8.24. This finite element mesh has 156 nodes and 261 elements. The regions coloured 
dark blue, light blue and green represent the parent metal, the heat affected zone and 
the weld metal of the circumferential steam pipe weld, having the material properties 

given in Table 8.3(a), (b) and (c) respectively. The first weld solution has a multi-axial 

rupture parameter value for the weld metal of (a = 0) in accordance with Goodall 

[148], because experimental data is not available to determine the true (a) value. 
A colour damage contour plot is given from the finite element solution in Fig. 8.25 

showing the damage distribution, on the background of the finite element mesh of 
Fig. 8.24, at a life fraction of 31.2%. The maximum damage zone occurs towards 
the inner surface of the pressure vessel weld in the heat affected zone. The maximum 
damaged zone emanates radially outwards from the inner bore along the heat affected 
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zone close to the fusion boundary and the first elements to fail (w > 0.9999) do so in 

the inner 1/3 of the wall thickness in the heat affected zone. This failure behaviour 

is not observed in practice, as the first signs of macroscopic damage or cracking 

are observed in the outer 1/3 of the weld metal. The predicted failure time of the 

structure from the finite element solution is 39,119 hours. 

As there is no material data available for the multi-axial rupture criterion of 

the weld metal, it was thought that the (a) value chosen for the weld metal was in 

error. Another solution was performed using weld model (WM1) with (a) for the 

weld metal set to the same value as that for the heat affected zone material (i. e. 

a=0.4298). The damage distribution on the background of a displaced mesh at 

a life fraction of 90.0% is shown in Fig. 8.26. The damage distributions for (a = 0) 

gave a similar failure prediction as that for (a = 0.4298). Though the former solution 

showed elements failing only in the heat affected zone, whereas the latter solution 

involved several elements also failing in the middle to outer weld metal region close 

to the fusion boundary. The failure time predicted for this weld model using a value 

of (a = 0.4298) for the weld metal, is 39,002 hours. 

Consideration of the lower stress creep curve fits for the heat affected zone 

material Fig. 8.14(b), indicates that the constitutive equation fits to the lower stress 
data at the uni-axial test stress levels of 100 MPa and in particular 85 MPa are not 

good. Whereas the curves fitted to the higher stress data are reasonably good. The 

creep exponent (n) obtained from the curve fits is given as (n = 1.3654), which when 

substituted into the Bailey equations (8.15), (8.16) and (8.17) is shown to promote 
low stress redistribution, with a maximum steady state stress at the internal bore of 

the pressure vessel. The maximum stress occurring at the inner bore induces elements 

to fail here at the inner bore. As the heat affected zone spends most of its life at 

the' lower stresses shown in Fig. 8.14(b) it is important to obtain good constitutive 

equation fits to this data. 

The heat -affected zone of weld model (WM1) is 4 mm wide and is given the 

properties of the coarse grained simulated heat affected zone material (G. C. P. ). In 

the real heat affected zone of the weldment this 4 mm zone incorporates the coarse 

grained and fine grained bainite regions, the intercritical and the overtempered zones. 
The coarse grained material is brittle in character with failure strain decreasing with 
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increasing stress; whereas from the results of Cane [1091 for thermally simulated 

refined and doubly refined grain microstructures of the heat affected zone, much larger 

failure strains are observed in uni-axial tests, which increase and decrease respectively 

with increasing test stress level. The rupture ductility is seen to increase from the 

coarse heat affected zone, across the refined grain structures to the highest rupture 
ductility of the parent metal. Therefore, to truly represent the average properties of 
the heat affected zone materials only the low stress curves are used to give material 

constants (Fig. 8.27) and the failure strains are adjusted to increase slightly up to 

the break stress of 180 MPa, consistent with the increasing rupture ductility of the 

refined heat affected zone material of Cane [109], termed refined parent metal (RP). 

The high stress material parameters are obtained from the stress-rupture and stress 

vs. minimum creep strain rate properties of the grain coarsened parent material 
(following the procedure of section 8.5.2 , with reference to section 2.6), having a 

rupture ductility behaviour dictated by the high stress values of (XI) and (ni). 

The resultant high stress rupture ductility using the new high stress constants 
is intermediate between that of the grain coarsened parent material and the refined 

parent material, having a slightly decreasing failure strain as the test stress increases. 

The new high and low stress material constants for the heat affected zone are sum- 

marised in Table8.3 (d), where the low stress creep exponent is given as (n = 3.3685) 

which is close to that of (n = 4.0) obtained by Cane (109]. 

Weld model (WM1) is re-solved using the new heat affected zone (HAZ(2)) 

material parameters, which are thought to be more representative of the average 

properties of the heat affeced zone material. The first solution has a multi-axial 

rupture criterion value of (a = 0) for the weld metal of zero. The predicted failure 

time is 52,781 hours. The damage distribution close to failure at a life fraction of 
99.9% is given in Fig-8.28. Failed elements elements (w > 0.9999) are observed in the 

weld metal, the heat affected zone and in the parent metal. 
The damage distribution plots are contour plots using interpolation between 

nodal values, which are obtained from area averaged centroidal values. This averaging 
lowers the actual damage value shown in the contour plots slightly, but the dark 

red colour contour indicates the maximum damaged region and dark blue the least 
damaged region at any one life fraction. The dark red colour contour having a damage 
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value greater than about 0.8 shows the region where the material is totally ineffective 

to carry load and has failed through the formation of macrocracks. The elements of 

the finite element mesh in these regions are removed from the finite element solution. 

Therefore the red regions of the damage distribution diagrams having (w > 0.8 - 0.9) 

shows the locus of macrocracking in the pressure vessel wall. 

A corresponding solution has been performed for (a = 0.4298) for the weld 

metal. The corresponding damage distribution close to failure at a life fraction of 

99.9% is given in Fig. 8.29. Here the first elements failed (w > 0.9999) in the outer 

1/3 of the weld metal close to the fusion boundary. Further elements fail as the 

maximum damage zone grows inwards along the fusion boundary, which is consistent 

with the experimental results. The predicted failure life is 47,247 hours, which may 

be compared with 46,000 hours life from the pressure vessel test of Coleman [133]. 

The results from the final computer solution for the weld model WM1 are discussed 

in more detail next, and comparisons are made with the experimental results. 

8.9.2 Detailed Final Results From the Finite Element 

Solution For the First Weld Model And Comparisons With 

Experimental Results. 

Here, detailed results are given with the use of colour contour plots. Where 

a figure has been omitted for brevity a detailed explanation of the omitted figure is 

given or a similar figure is referred to. 

Figure 8.30 shows the distribution of damage early in the lifetime of the pres- 

sure vessel at a life fraction (t/t f) of 0.12%. The maximum elastic stress components 

for the pipe are initially, greatest on the inner bore (Fig. 8.20), so causing the initial 

damage rates to be highest at this location. This causes damage to grow most rapidly 

in that region and subsequently causes stress redistribution across the section. 
The damage distribution at a life fraction of 45.2% shows that the damage 

distribution in the weld is now more uniform across the pipe section, with the max- 
imum damaged region occu it 

max- 
t, 

along the fusion boundary between the weld metal 

and the heat affected zone. 
The damage distribution of a life fraction of 63.5% shows the width of the 

most damaged zone (red) on the fusion boundary has become wider and more intense 

171 



in the outer 1/3 of the weldment. 
Figure 8.31 shows the damage distribution at a life fraction of 77.2%. The 

maximum damaged zone on the fusion boundary close to the outer surface of the 

pipe bulges and becomes still more intense in the region of damage (w > 0.303). 

Figure 8.32 shows the damage distribution now at a life fraction of 80.8%. The 

damage now localises in the same region noted in the previous figure, close to the 

outer surface of the pressure vessel. The centroid of the damaged zone has moved 

slightly off the fusion boundary into the weld metal. 
Figure 8.33 shows the damage distribution at a life fraction of 87.0%. The 

intense damage on the fusion boundary now propagates both inwards and outwards 
towards the pipe surface. 

The damage distribution at a life fraction of 99% shows that the region in the 

previous figure which had undergone the most intense damage now has a damage 

level in the region of 0.5 to 0.7. The damaged zones either side of this region and in 

a zone closer to the inner bore of the pipe, on the fusion boundary now have higher 

damage levels, which suggests that stress redistribution has occurred from the most 
damaged region of Fig. 8.33; causing damage evolution at higher rates outside this 

region. 

Figure 8.29 shows the damage distribution at a -life fraction of 99.9% and shows 
the coalescence of the most damaged zones (described in the previous paragraph) into 

two main localized damaged regions. 

Figure 8.34 shows the original axisymmetric finite element mesh of weld model 
(WM1) with a superimposed deformed mesh at a life fraction of 77.2%. It shows 
how the weld metal has less resistance to creep deformation under the action of the 
internal pressure. The predicted characteristic bending and bulging of this 2.25Cr 

Mo weldment at failure may be compared with the badly cracked and bulged radial 

section taken through the pressure vessel at failure shown in Fig. 8.8. 

Figure 8.35(a) shows the damage distribution very close to failure. Failure 

is through the formation of localised macrocracking in this (red) band of intense 
damage along the fusion boundary. The finite element solution at this point becomes 

numerically stiff as a result of extremely large strain rates present due to high section 
stress across the small remaining ligament length. The finite element program 
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automatically chooses infinitely small time steps at the point of breakage and the 

solution does not progress further. As the time of breakage is very small the failure 

time of the structure is taken as that corresponding to this figure (t f= 47,247 hours). 

It is noted that the most damaged zone (in red) closest to the outer surface of the 

pipe spreads into the weld metal. 
The prediction of macrocracking by the most damaged region of Fig. 535(a) may 

be compared with the micrograph of a radial section taken from the failed pressure 
(c C-100) 

vessel, courtesy Coleman C. E. G. B, showing the formation of a deep circumferential 

weld metal crack. Comparison may also be made with another more badly cracked 

section from a locally bulged region of the pressure vessel Fig. 8.8 where some damage 

is also seen in localized regions of the heat affected zone. 

The following seven, colour, normalised stress contour plots of Fig. 8.36 to 8.42 

are for a life fraction of 77.2%, taken just prior to the first element failure (w > 0.9999) 

and have a corresponding damage distribution given in Fig. 8.31. All stress values are 

normalised by (ca = 45.5MPa). 

Figure 8.36 shows. the distribution of the normalised radial stress in the pres- 

sure vessel weldment. The maximum compressive stress occurs on the inner bore and 

is equal in magnitude to the internal pressure. The stress discontinuity across the 

heat affected zone is observed. 

Figure 8.37 shows the axial components of the normalised stress, where the 

inner dark blue region at the inner bore of the weld metal and heat affected zone 
is compressive, showing the presence of localized bending in the weldment. The 

maximum tensile stress is at the surface of the vessel in the heat affected zone and 
local parent metal. 

Figure 8.38 shows the axial/radial normalised shear stress distribution in the 

weldment, where a concentration of shear stress in the region of the weld metal close 
to the fusion boundary is observed. Towards the inner bore of the pipe, dark blue and 
blue regions show negative shear stresses and towards the outer bore the red regions 

show positive shear stresses of approximately the same magnitude. The diagram 

clearly shows the highly localised nature of the shear stress across the section. 
Figure 8.39 shows the distribution of the normalised hoop stress in the weld- 

ment. It is noticed that all the stresses are positive, but that the stresses in the weld 
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metal are typically one half of those in the parent metal with a very abrupt change 

taking place across the fusion boundary. This arises due to the differences in the 

creep characteristics of the weld metal and the parent metal, the weld metal having 

a ductility of the order of 12% in comparison with that for the parent metal of about 

5% at a uni-axial stress level of 100 MPa (o /ao = 2.2). The difference in the material 

properties results in this severe stress redistribution out of the weld metal into the 

heat affected zone and parent metal. The maximum hoop stress is observed to be in 
sul-iwco the heat affected zone and the parent metal at the outer of the pipe. 

Figure 8.40 shows the normalised Von Mises stress distribution in the weld- 

ment. It is observed that within all regions of the weldment the Von Mises stress is 

highest at the inner bore and least at the outer outer. The stress is seen to peak 

at the boundary between the heat affected zone and the parent metal at the inner 

bore. Again a dramatic stress gradient occurs in the heat affected zone and across 

the fusion boundary. 

Figure 8.41 shows the normalised maximum principal stress (P1) variation in 

the weldment. Note that this graph is very similar to that of the hoop stress (c. f. 

Fig. 8.39); this is not surprising since the maximum principal stress is close to the 

hoop stress. 

Figure 8.42 shows the normalised effective strain distribution in the weldment. 
This shows the differences in the creep deformation occurring in the weld metal in 

comparison with that in the parent metal. Note the vertical step in the contours 

which highlights the discontinuity in shear stress across the fusion boundary and 
hence relates to the localized bulging that takes place in the pipe. The maximum 

effective strain occurs at the at the bore of the pipe in the weldmetal. 
Figure 8.43 shows the distribution of the normalised hoop stress at a life frac- 

tion of 99.9%, having a damage distribution given by Fig. 8.29. This figure shows 
that very little stress is carried by the weld metal region extending about 2/3 across 
the wall thickness from the outer bore, due to complete material failure in the blue 

and dark blue regions through the formation of macroscopic cracks. Thus the parent 

metal and remaining inner weld metal still sustain the stresses. 
Figure 8.44 shows the distribution of the normalised axial stress at a life frac- 

tion of 99.9%. The figure shows that there are two concentrated regions of stress on 
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the fusion boundary at the tips of the most damaged regions of Fig. 8.29. These severe 

stress concentrations induce speedy creep crack growth across the ligament resulting 
in vessel failure. 

Figure 8.45 shows the variation of the surface hoop strain with test time, close 

to the weld in the parent metal measured from the diametrically opposite creep pips. 
These strains are compared with those predicted from the finite element solution. The 

predicted strains are calculated from the radial displacement of a node: of the finite 

element mesh approximately situated at the same position on the pressure vessel as 

the creep pips. 
Figure 8.46 shows the variation of the surface hoop strain with test time, at 

the weld centre line, measured from the capacitance strain gauge. These strains 

are compared with those predicted from the finite element solution. The predicted 

strains are taken from a finite element in the pressure vessel mesh at the location of 

the capacitance gauge. 

Figure 8.47 shows the variation of the surface axial strain with test time, across 

the weld, measured from the creep pips. The strains are again compared with those 

predicted from the finite element solution. 
Figure 8.48 shows the variation of the surface axial strain with test time, at 

the weld metal centre line, measured from the capacitance gauge; which is compared 

with the strains predicted from the finite element solution. 

The predicted creep pip strains from the finite element solution (Figs. 8.45 

and 8.47) compare very well with the experimental results up to a test time of 30,000 

hours where the predicted tertiary creep strains deviate from the experimental curves. 
These deviations are due to large deformations and rotations occurring due to geom- 

etry changes in the pressure vessel caused by tertiary creep damage accumulation 
during the test, which cannot be modelled by the small strain finite element analysis 

solution used in the weld model. The predicted strains are therefore lower than the 

experimental. 

The predicted capacitance gauge strains from the finite element solution (Figs. 8.46 

and 8.48) compare reasonably well with the experimental results. Though the pre- 
dicted secondary creep hoop strains (Fig. 8.46) are larger than those of the experiment. 
Again the predicted tertiary creep strains are smaller than the experimental strains 
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because the model uses a small strain analysis. 
Figure 8.49 shows the predicted surface hoop strains measured on the parent 

metal pipe section of the weldment corresponding to creep pip and capacitance strain 

gauge measurements. Here no comparison is made with experimental data. The hoop 

strains are observed to be of a similar size to the predicted surface hoop strains at 

the weld (Figs. 8.45 and 8.46), and also have similar secondary creep region gradients; 

consistent with the compatibility of the hoop strain rates along the outer surface 

of the weld metal and the parent pipe detailed by Coleman et al [131], from the 

pressure vessel test. Though the strain time plots look fairly linear, a primary region 
does exist below about 3 to 4 thousand hours test time, and the secondary region 
does turn upwards slightly showing a tertiary creep region. A 

Figure 8.50 shows the predicted surface axial strains for the parent metal pipe 

section of the pressure vessel corresponding to both creep pip and capacitance strain 

gauge measurements. Reasonable agreement is obtained between predicted creep pip 

and capacitance gauge strains. The graph indicates that the axial creep strain rate 
in the parent metal is approximately zero throughout the life of the pressure vessel 

until the last 10% of life, where compressive strains occur possibly due to bending 

as a result of severe bulging in the damaged weld. Which is consistent with the 

experimental findings of Coleman et al [133,131]. 

Figure 8.51 shows predicted normalised hoop stress distributions along the 
inner bore of the welded pressure vessel at various life fractions. Initially at (t/t1 = 0) 

a uniform stress of (EB = 2.5) is present in the weld metal, heat affected zone and 
the parent metal. As time progresses stress is redistributed from the weld into the 

heat affected zone. Stress is also redistributed from all the material zones at the 

inner bore towards the outer surface of the pressure vessel, which is seen as the 

gradual decrease in the stress levels with time in. all the zones below the initial elastic 

stress level at (t/t f= 0). Close to failure (t/t1 99.9 %) the hoop stresses at the 

internal bore increase because of the growth of circumferential cracks from the outer 
diameter increasing the net section stress. Close to failure the parent metal carries 
the maximum hoop stress at the pipe bore. 

Figure 8.52 shows predictions of the normalised hoop stress with axial distance 

along the outer surface of the pressure vessel at various life fractions. The initial elastic 
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stress distribution is uniform across all the zones of the weldment(EB = 1.5). As time 

progresses creep stress redistribution occurs from the weld metal to the heat affected 

zone, causing the peak stress to occur in the heat affected zone. Redistribution of the 

elastic stresses from the internal bore of the pressure vessel towards the outer surface 

raises the level of the stresses in all zones with time until significant creep damage 

occurs in the weld metal close to the fusion boundary (t/t f> 87.0 %), after which 

the materials at the outer surface of the pipe (in particular the weld metal) offload 

stress towards the inner bore. 

Figure 8.53(a) and (b) shows the distributions of the normalised hoop stress 

along the fusion boundary of the weldment (Fig. 8.9) at various life fractions. The 

abscissa represents distance along the fusion boundary moving, left- to right, from the 

internal surface to the external surface of the pipe. The elastic stress distribution is 

shown as the dotted line in Fig. 8.53(a). The elastic stress is seen to redistribute very 

quickly to an almost horizontal uniform distribution within 56 hours (t/t1 = 0.12 

%). As time progesses and stresses redistribute further a maximum stress, above 

the initial elastic stress level, occurs approximately 10 mm under the surface of the 

pipe. It is noticed that the surface stress remains almost constant until elements 

with damage (w > 0.9999) are removed from the finite element mesh at the fusion 

boundary (Fig 8.29), when the distribution of stress (Fig. 8.53(b)) drops to zero as 
further elements are removed, modelling the inward growth of a large circumferential 

crack from the outer surface of the pipe. It is noticed that the first element to fail at 

the fusion boundary is approximately 10mm inward of the outer surface in the region 

of maximum hoop stress (see curve at t/t f= 80.0 %). As elements fail the net section 

stress close to the inner bore of the pipe increases. 

Fig. 8.54(a) and (b) show the normalised radial stress distribution along the 

bottom boundary of the finite element mesh (Fig. 8.9) for various life fractions. The 

bottom boundary of the finite element mesh corresponds to the centre line of the weld 

metal. The abscissa represents radial distance; (R = 0) is the internal diameter of the 

pipe and (R = 60) the external diameter. The elastic stress distribution is shown as 
the dotted line Fig. 8.54(a), where the stress at the inner bore of the pipe is equal and 

opposite to the normalised internal pressure (Po) and the stress at the outer surface 
is zero. The stress increases uniformly across the weld metal centre line until close to 
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failure (t/t f >87.0%). 

Figure 8.55 (a) and (b) show how the stresses in the axial direction redistribute 

with time along the weld metal centre line, (Fig. 8.24). The initial elastic stress 
distribution is uniform across the section (Ez = 0.75). The stresses subsequently 

redistribute with time giving a maximum stress close to the outer diameter of the 

pressure vessel. As fully damaged (w > 0.9999) elements are removed from the 

solution unloading occurs under the most damaged regions of the weldment. (See 

curve t/t f= 100% and the damaged zones of Fig. 8.35(a)). 

Figure 8.56 (a), (b) and (c) show how the normalised stresses in the hoop di- 

rection are redistributed along the the weld metal centre line for various life fractions. 

The initial elastic stress distribution is shown as a dotted line Fig. 8.56 (a). Again the 

elastic stress redistributes quickly with time giving a maximum stress at the outer 

diameter of the pressure vessel. Fig. 8.56(b) clearly shows the existence of a skeletal 

point approximately 20 mm from the internal diameter of the pipe, where the stress 

remains stationary at a value of (Ee = 1.2), whilst stress from the outer 2/3 of the 

pipe wall thickness redistributes to the inner 1/3 of the pipe wall, as creep damage 

propagates from the outer diameter inwards. Finally the stress increases at the in- 

ner section of the pipe as the circumferential cracking grows inwards across the pipe 
ligament. 

8.10 Results From The Finite Element Solution For The 

Second Weld Model. 

This weld model (WM2) has three material zones namely the parent metal, 
the heat affected zone material and the weld metal, represented as the dark blue, 

blue and green regions respectively in Fig. 8.57. The material parameters used for 

each region are the same as those used in the previous weld model (WM1) and are 

given in Table8.3(a), (c) and (d) respectively. Figure 8.57 shows a more refined mesh 
in comparison with that of weld model (WM1) Fig. 8.24. The mesh (Fig. 8.57) has 350 

nodes and 637 elements, The damage distributions for weld model (WM2) presented 

on the background of the finite element mesh are given at fractions of the lifetime 

in Figs. 8.58 to 8.62(a). Distinct similarities in the damage distribution are noticed 

with those of weld model (WM1) given in figures 8.30 to 8.33; and Fig. 8.35(a) at 
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failure. Figure 8.58 shows a similar damage distribution to that of weld model (WM1) 

Fig. 8.30. The highest damage region Fig. 8.58 (red) towards the inner bore of the pipe 
SN/-1Atf, 

in the weld metal causes stress to re-distribute radially towards the outer ,I giving 

a more even damage distribution in the weld metal Fig. 8.59. Stresses are also re- 
distributed along the heat affected zone from the inner bore outwards, causing the 

maximum damaged region (Fig. 8.59 coloured red) to move along the heat affected 

zone Fig. 8.60. The peak stress is now at the outer bore of the pipe in the heat affected 

zone which initiates high damage growth in the outer 1/3 of the weld metal and the 

heat affected zone - along the fusion boundary. This initiates an inward growing highly 

damaged region along the fusion boundary Fig. 8.61. These figures in comparison 

with those of weld model (WM1) show similar trends in damage distribution, but 

the damaged zones are more localized due to the increased mesh refinement. The 

maximum damaged zone at a life fraction of 99% is shown in Fig. 8.62(a), which 

predicts the growth of a circumferential crack in the weld metal close to the fusion 

boundary, which is compared with the radial section through the failed pressure 

vessel weld (Fig. 8.62(b)). It is noticed that instead of the two failed element regions 
(w > 0.9999) observed in weld model (WM1) shown in figure 8.29, this weld model 

predicts one circumferential failed region, (as with the fine mesh it is possible to define 

more accurately the damage location). 

The solution again became numerically stiff as the circumferential damage 

crossed the mesh ligament close to failure, requiring infinitely small time steps to 

progress the solution. The predicted failure time is therefore slightly greater than 

43,882 hours. This is compared with the actual failure time of the pressure vessel test 

by Coleman [133] of 46,000 hours (Table 8.1) 

Distributions of the normalised stress components in the radial(R), axial(Z), 
shear(RZ) and hoop(O) directions given in Figs. 8.63,64,65 and 66, respectively, and 

show the same features as the corresponding distributions for weld model (WM1) 

shown in Figs. 8.36,37,38 and 39, respectively, at a similar life fraction of approx- 
imately 80%. The distributions of the normalised Von Mises stress, the maximum 

principal stress and the effective strain for weld model (WM2) at a similar life frac- 

tion also show similar features to the distributions ffr weld model (WM1) given in 

Figs. 8.40,41 and 42, respectively, except that the stress distributions for (WM2) are 
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more localised and the peak stresses are slightly larger, as a result of the increased 

mesh refinement. The comments made for the stress distribiutions for weld model 
(WM1) hold true for the stress distributions obtained from weld model (WM2). 

Figure 8.67 shows the distribution of the normalised hoop stress in the weld- 

ment at a life fraction of 99%, having a corresponding damage distribution given by 

Fig. 8.62(a). The red zone of Fig. 8.67 shows the severity of the stress concentration at 

the tip of the circumferentially cracked region of Fig. 8.62(a). The heat affected zone 

running parallel with the highly damaged region sustains a high level of hoop stress. 

Figure 8.68 shows the distribution of the normalised axial stress in the weldment also 

at a life fraction of 99%. The red zone shows the axial stress concentration (Fig. 8.67), 

which is of a similar magnitude to the hoop stress concentration (Es ' EB = 3.2) at 

the tip of the most intensely damaged zone of Fig. 8.62(a). The maximum stressed 

region (red) in the axial direction is sustained almost in equal proportions by both 

the heat affected zone and the weld metal. Figures 8.67 and 8.68 for weld model 

(WM2) may be compared with Figs. 8.43 and 8.44 for weld model (WM1), where two 

stress concentrations are observed at the tips of the most damaged regions, caused by 

a small region at the centre of the mesh at the fusion boundary remaining unfailed. 

The axial compressive stress in the dark blue region Fig. 8.68 at the inner bore of the 

pipe in the weld metal, shows the effects of bending as the pipe bulges outwards at 
failure. 

Hoop creep strain predictions at the weld are compared with the measured 

strains from the pressure vessel test in Fig. 8.69 and 8.70. The comparison between 

the predicted and experimental strains corresponding to the creep pip measurements 
is observed to be good (Fig. 8.69). The predicted hoop strains at the weld centre line 

corresponding to the capacitance strain gauge measurements (Fig. 8.70), overestimate 

the size of the measured secondary creep strains . The axial creep strain predictions 

at the weld are compared with the measured strains from the pressure vessel test in 

Figs. 8.71 and 8.72. The predicted and experimental strains corresponding to both 

the creep pip and capacitance strain gauge measurements compare well. The tertiary 

creep strains in all the predictions are noticed to be smaller than the experimental 

strains because the weld model uses a small deformation analysis. The hoop and axial 

strains predicted from the finite element analysis corresponding to both creep pip and 
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capacitance strain gauge measurements are shown in Figs. 8.73 and 8.74. Figure 8.74 

shows that predicted the axial strain in the parent metal corresponding to the creep 

pip measurements is effectively zero, until damage in the weldment causes bending and 

compressive strains close to failure. Though the local strain values from an element 

at a corresponding point in the finite element to where the capacitance strain gauge 
is situated indicates slight tensile strains are present close to failure at this location, 

but the strains are small of magnitude (< 0.04 %) and are effectively zero. Figures 

8.69 to 8.74 may be compared with those for weld model (WM1), Figs. 8.45 to 8.50, 

respectively, and are observed to be similar. 
Figures 8.75 and 8.76 show the predicted normalised hoop stress distributions 

with life fraction (t/t f) along an axial line on the inner bore and the outer surface 

of the pressure vessel weidment (Fig. 8.9), respectively. Stress redistributes from the 

weld metal into the heat affected zone and from all'the weld zones from the inner 

bore towards the outer surface through the pipe wall. Figures 8.75 and 8.76 show 

similar ki%tmr4tto those of weld model (WM1) Figs. 8.51 and 8.52, except that steeper 

stress gradients across the heat affected zones are observed for weld model (WM2), 

which is evidence of an improved finite element mesh representation, giving superior 

results to those of weld model (WM1). 

Figures 8.77(a) and (b) show the predicted redistribution of the normalised 
hoop stress along the fusion boundary with life fraction. The initial elastic stress 
distribution, shown as the dotted line, redistributes giving a stress distribution with 

a peak stress close to the outer surface of the pressure vessel. As elements fail (w > 

0.9999) in the outer weld metal close to the fusion boundary, the stress in the outer 

region of the fusion boundary is reduced to zero (Fig. 8.77(b)). Stress distributions 

close to failure show how the peak stress at the tip of the circumferentially cracked 

zone moves towards the inner surface of the pipe and increases in height, as the crack 

grows forwards along the fusion boundary. Slight variations in the stress distributions 

may be due to some mesh dependency. 

Figures 8.78,8.79 and 8.80 show the distributions of the computer predicted 
vary 

normalised radial, axial and hoop stresses along the weld metal centre line with life- 

fraction respectively. Figures 8.78 to 8. '8O may be compared with those of weld model 
(WM1) of Figs-8.54 to 8.56 respectively which are seen to be similar. Note that in 
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(Fig. 8.80) insufficient graphical plots at different life fractions have been presented to 

identify the skeletal stress point, shown in (fig. 8.56). 

8.11 Obtaining Material Parameters To Model The 

Behaviour Of the Weld Metal Coarse And Fine Grained 

Bainitic Regions. 

No experimental uni-axial creep test data is available for the coarse and fine 

grain bainitic regions of the weld metal (Fig. 8.10). The as-cast weld metal has a 

coarse columnar grained bainitic structure, which is tempered by subsequent weld 

beads giving a coarse and fine equiaxed bainitic structure (Fig. 8.10(a)). For simplicity 

and the lack of experimental creep data, the microstructural regions of the weld metal 

will be considered to be fine or coarse grained bainitic regions (Fig. 8.10(b)). 

The material constants for the fine grained bainite regions of the weld metal 

are taken to be those previously determined from the creep tests of the weld metal 

containing both coarse and fine grained bainite regions, and are given in Table 8.3(c). 

This is a reasonable approximation as the welding parameters used in the construction 

of the weld are arranged to produce 80% fine grain bainite and 20% coarse grain 
bainite in the weldmetal; Coleman [133]. 

The material parameters for the coarse grained bainite regions of the weld 

metal are calculated using the uni-axial creep data of Cane [109] for coarse and fine 

grained heat affected zone microstructures, to scale the fine grained weld metal creep 
data. The uni-axial creep data for the simulated coarse grained heat affected zone 

material is given in Table 8.2 and by the material parameters of Table 8.3(d); and 

the creep data for fine heat affected zone material is given in Table 8.6. 

The fine grained heat affected zone data is plotted on both stress-rupture 
diagrams and the stress vs. minimum creep rate diagrams in figures 8.81 and 8.82, 

respectively. Lines, parallel to the coarse grained heat affected zone lines, are drawn 

through the fine grained heat affected zone points on both diagrams. The distances 

between the coarse grain heat affected zone lines and the derived fine grain heat 

affected zone lines are used to judge how to translate the lines of the fine grained weld 

metal, to give lines representing coarse grain weld metal creep data. The translations 

of the fine grained weld metal lines in each diagram are adjusted so that the break 
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stress point is the same for both stress-rupture and stress vs. minimum creep rate 
diagrams. The choice of the lines was not easy, due to the difference in gradients 

between the heat affected zone and the weld metal lines. The final stress-rupture 

and stress vs. minimum creep rate lines chosen for the coarse grained weld metal are 

shown as the solid lines in Figs. 8.81 and 8.82, respectively. Both pairs of lines have 

a break stress of (a = 125 MPa), (E = 2.747). As the new lines for the coarse grain 

weld metal have the same gradients as the fine grain weld metal lines, the same values 

of (n), (m), (c), (x) and (5) can be used for the coarse grain weld metal as for the fine 

grain weld metal. New values of (K), (M), (Vu) and (a) are calculated using the new 

break stress for the coarse weld metal, which defines the translation of the fine grain 

weld metal lines. The stress-rupture lines of the fine grain weld metal are translated 

vertically from a break stress of 100 MPa to that of 125 MPa. The stress vs. minimum 

strain rate lines are translated both vertically and horizontally to have a break point 

also at 125 MPa, with a' strain rate of 1.25 (ych-i)' at the break point. From the 

positions of the new break stress points in each diagram (Figs. 8.81 and 8.82) values 

of (Mil) and (KII) are calculated, using failure time and strain rate relationships, 

respectively, for the low stress data. High stress values of (MI) and (K1) are obtained 

using equations (2.47) and (2.37) respectively. The material parameters for the coarse 

grained bainitic regions of the weld metal are given in Table 8.3(e). The value of (a) 

defining the multi-axial rupture criterion for the coarse grained weld metal is taken 

as that used for the fine grained weld metal (a = 0.4298). Failure strain calculations 

are performed to check that the rupture ductility of the material model for the coarse 

grained weld metal is reasonably in line with expected rupture ductility behaviour 

of the coarse grained bainite material, which should be more creep brittle than the 

softer fine grained bainite, (Coleman [149). At a stress of 100 MPa the coarse grained 
bainite has a rupture ductility a factor of approximately 5 times smaller than that 

of the fine grained bainite, using the material parameters of Table 8.3(e) and (c) 

respectively in equation (3.4) at (t = t1). This is consistent with the relative rupture 

ductilities of the coarse grained and fine grained heat affected zone microstructures 

at a test stress of 100MPa (see Table 8.6 and Table 8.2); having on-average ductilities 

in the ratio 1: 4.7 respectively. 
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8.12. Results From The Finite Element Solution For The 

Third Weld Model (WM3). 

This weld model is a four material model, where the parent metal, the heat af- 

fected zone and the weld metal coarse and fine grained bainite regions are represented 

respectively as the dark blue, blue, brown and green regions of the finite element mesh 

shown in Fig. 8.83. The coarse and fine grained regions of the weld metal are assumed 

to have the same multi-axial rupture behaviour as the average weld metal used in 

weld models (WM1) and (WM2), (i. e. a=0.4298). The material parameters used 

for each material zone are given in Table 8.3 (a), (c), (d) and (e). The finite element 

mesh used has 747 nodes and 1374 elements. The results from the finite element creep 

continuum damage analysis are summarised as follows: 

Figure 8.84 shows the distribution of damage at a life fraction of 0.73% against 

the background of the finite element mesh (Fig. 8.83). The damage distribution is 

observed to be similar to that of (WM1) and (WM2) Figs. 8.30 and 8.58, except that 

more intense damage is seen in the locality of the coarse grained weld metal. 

Figure 8.85 shows the damage distribution at a life fraction of 44%, where due 

to stress redistribution from the inner bore of the pipe, the damage spreads along the 

heat affected zone and also through the weld metal towards the outer surface of the 

pipe. 

Figure 8.86 shows the damage distribution at a life fraction of 32.0%. Now the 

damage grows most rapidly in the coarse grained bainite regions of the weld metal 

close to the outer surface, due to the stress redistribution which has occured towards 

the outer surface. This correlates with observed transverse weld metal cracking in the 

coarse columnar regions of the outermost weld beads, which initiate at a life fraction 

of 43% in the pressure vessel test ( Table 8.1 and Fig. 8.4). Note also the high levels 

of damage on the inner bore of the heat affeced zone. 

Figure 8.87 shows the damage distribution at a life fraction of 66.0%. The 

damage distribution is similar to that of Fig. 8.86, but damage values are now much 
higher. The rate of damage growth now is noticed to be much faster in the coarse 

grain weld metal than in the heat affected zone at the inner bore, as a result of the 

stress redistribution from the bore to the outer surface of the pipe. 
Figure 8.88 this figure shows the damage distribution at a life fraction of 
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86.2%. The damage in the coarse grain bainite region of the weld metal at the 

outer surface has intensifield in a region close to the fusion boundary. This region of 

intense damage may be identified as 
place 

where the growth of an inwardly growing 

circumferential macro-crack initiates in the weld metal. Circumferential cracks are 

observed to initiate at a life fraction of 76% in the pressure vessel test (see Table 8.1 

and Fig. 8.6). 

Figure 8.89 shows the distribution of damage at a life fraction of 89.5%. The 

regions of maximum damage in the coarse grain bainite regions of the weld metal 

move closer to the fusion boundary. 

Figure 8.90 shows the original mesh in green and the displaced mesh geometry 

at a life fraction of 89.5% showing the bending in the weldment as the weldment 

bulges outwards. 

Figure 8.91(a) shows the distribution of damage at a life fraction of 99.9%. 

Failure of the weldment is observed in the coarse grained bainite regions of the weld 

metal; namely: in the outer weld bead and close to the fusion boundary. Though 

some local failures do occur further in-board. It is noticed that the highly damaged 

regions of the coarse grained bainite close to the fusion boundary link, through the 

slower damage growth in the fine grained bainite between these regions, to form a 

large jagged circumferential crack. The damage distribution is compared with a radial 

section through the pressure vessel weldment at failure ( Fig. 8.91(b)). Localised dam- 

aged zones are also observed in the weld metal of Fig. 8.91(b) and circumferentially 

inward growing cracks are seen to divert along coarse grained structures, perpendic- 

ular to the circumferential growth direction of the main crack in the weldment. 

The finite element solution again became stiff, at a time of 33,433 hours. The 

predicted lifetime of the structure is therefore taken as slightly greater than 33,433 

hours, which is compared with the life of the pressure vessel test of 46,000 hours. 

The life prediction for (WM3) is not good in comparison with the predictions of weld 

model (WM1) and (WM2) which are close to the real life of the structure. Though, 

the damage distributions obtained seem to predict the failure history of the pressure 

vessel extraordinarily well. The failure prediction may be improved if actual creep 
data and multi-axial stress rupture data were available for the weld metal coarse and 
fine bainitic regions. 
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Figure 8.92 shows the distribution of the normalised radial stress at a life 

fraction of 66.0%, which is observed to be similar to that of weld model (WM2) 

Fig. 8.63. 

Figure 8.93 shows the distribution of the normalised axial stress at the same 

life fraction. Here, stress concentrations are observed in the outer weld metal coarse 

grain bainitic regions and in the outer heat affected zone and local parent metal. 

Figure 8.94 shows the distribution of the normalised radial/axial shear stress 

also at a life fraction of 66%, where similar shear zones are observed to those in weld 

model (WM2) Fig. 8.65, except the red positive shear zone has been dispersed in a 

wider more jagged zone through the outer weld beads, as a result of the inclusion of 

the coarse and fine weld metal zones' in the weld model. 

Figure 8.95 shows the normalised hoop stress distribution at a life fraction of 

66.0% which is observed to be similar to that of Fig. 8.66 for the weld model (WM2), 

except a moderate stress concentration is observed in the outer coarse weld metal 

regions. The Von Mises stress distribution for weld model (WM3) is given in Fig. 8.96 

at a life fraction of 66.0% and is also observed to be similar to that of weld model 

(WM2) except for stress concentrations occurring in the coarse regions of the weld 

metal. 

The distributions of the normalised Von Mises stress, the maximum principal 

stress and the effective strain at a life fraction of 66% are given in Figs 8.96 to 8.98, re- 

spectively. These figures show similarities in comparison with the corresponding plots 

for (WM1), (Figs. 8.40 to 8.42), except that the stress distributions are more localised, 

particularly across the heat affected zone. Stress is also observed to concentrate in 

the localities of the coarse grained bainitic regions of the weld metal. 

Figure 8.99 shows the normalised hoop stress distribution at a life fraction 

of 99.9% . Here the stress concentration is shown, at the tip of the circumferential 
damaged zone, which has grown along the weld metal close to the fusion boundary 

(Fig-8.91(a)). The stress concentrates in the heat affected zone, spreading along the 

remaining ligament length of the pressure vessel pipe. This figure is compared with 

that of weld model (WM2) Fig. 8.67 where the stress concentration is seen to be much 

more localised. 

Figure 8.100 shows the distribution of the normalised axial stress also at a life 
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fraction of 99.9%. Here the coarse grain weld metal zones carry most of the stress 

off-loaded from the failed (w > 0.9999) regions in the outer half of the weld metal. 
This figure may be compared with that of Fig. 8.68 for weld model (WM2) where the 

stress concentration at the tip of the circumferential damaged zone close to the fusion 

boundary is observed to be similar but is more localised. The red columnar zones in 

Fig. 8.100 show that the coarse grained weld metal sustains most of the axial stress 

ahead of the circumferential crack-tip. 

Figure 8.101 shows a local positive normalised radial stress concentration at 

the tip of the circumferential crack close to the fusion boundary, at a life fraction of 

99.9%. 

The predicted hoop strains at the weld corresponding to the creep pip and 

capacitance strain gauge measurements for weld model (WM3) are similar to those 

for weld model (WM2), (Figs. 8.69 and 8.70), except the strain/time curves terminate 

at the predicted lifetime of 33,433 hours. 

The predicted axial strains at the weld corresponding to creep pip and capac- 
itance gauge measurements from (WM3) are similar to those for weld model (WM2), 

(Figs. 8.71 and 8.72), except the strain/time curves terminate at the predicted lifetime 

of 33,433 hours. Here the axial strains are approximately 50% of the experimental 

values throughout the secondary creep region. This is caused as a result of the coarse 

grained regions of the weld metal having a ductility approximately 5 times smaller 

than the fine grained regions in the model, which effectively decreases the average 

ductility, and hence the creep deformation, of the weld metal in the joint. These weld 

strain comparisons indicate that, for better weld model predictions, the actual creep 
deformation and failure properties of the weld metal coarse and fine zones must be 

obtained by laboratory tests on these isolated microstructures and used within the 

weld model. 

The predicted hoop and axial strains at the surface of the parent metal pipe 

sections corresponding to the creep pip and capacitance strain gauge methods mea- 

surements are similar to those of weld model (WM2), (Fig-8.73 and 8.74), except the 
S 

strain/time curve terminate at the predicted lifetime of 33,433 hours. The predicted 

axial strains were positive and less than (0.01 %). Therefore axial strain is effectively 

zero, which is in agreement with experiment. As the weldment fails the predicted 
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axial creep strains corresponding to the creep pip measurements become negative, 
due to bending in the pressure vessel caused by the weld metal bulging outwards as a 

result of the propagation of the inwardly growing circumferential crack, but the strain 

still remains small (< -0.05 %), and is effectively zero. 

Figures 8.102 and 8.103 show distributions of the normalised hoop stress along 

axial lines at the inner bore and the outer surface of the pressure vessel respectively. 
Similar stress redistribution is observed to that of weld models (WM1) and (WM2), 

(c. f. Figs. 8.51,8.52 and 8.75,8.76, respectively) in that stress is off-loaded from 

the weaker weld metal into the harder heat affected zone material. Stress is also 

redistributed from all the zones radially from the inner bore to the outer surface 

of the vessel, which is observed in the decreasing height of the stress distribution 

(0 < t/t f <66.0%) in Fig. 8.102 and the increasing height of the stress distributions 

(0 < t/t f <66.0%) in Fig. 8.103. Close to failure the failed regions of the weld metal 

carry zero stress (Fig. 8.103, t/t f= 96.8%), and some stress is redistributed towards 

the inner bore of the pipe (Fig. 8.102, t/t f=96.8%). 

Figures 8.104 (a) and (b) show the distribution of normalised hoop stress 

along the fusion boundary of the weld at various life fractions. The initial elastic 

stress distribution (t/t1 = 0) redistributes with time; the maximum stress occurring 

at the outer surface of the pressure vessel. The stress distributions become uneven, 

as stress concentrates in the coarse grained regions of the weld metal. As failure 

of the weld metal occurs in the outer regions of the-coarse grained weld metal the 

stresses drop to zero, off-loading stress to the local fine grained weld metal regions 
(Fig. 8.104(b)). 

Figures 8.105 (a) and (b) show the redistribution of the normalised radial 

stress along the centre line of the weld with life fraction. Similar stress distributions 

are produced to those of weld model (WM1) and (WM2), (c. f. Figs. 8.54(a), (b) 

and Figs. 8.78(a), (b), respectively), except the distributions are uneven due to the 

inhomogeneity of the weld metal. 

Figures 8.106 (a) and (b) show the redistribution of the normalised axial stress 

along the centre line of the weld with life fraction. Similarities are again observed 
between these stress distributions and those of weld models (WM1) and (WM2), 

(Figs. 8.55(a), (b) and 8.79 (a), (b), respectively). It is clearly seen that the maximum 
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stresses are carried by the coarse grained regions of the outer weld metal (see line 

Of = 66.0%). Close to failure compressive axial stresses are produced close to the 

inner bore of the pipe showing the presence of bending. 

The normalised hoop stress distributions along the centre line of the weld 

Fig. 8.107 (a) and (b) again show similar trends to the axial stress distributions of 

weld model (WM1) and (WM2), (c. f. Figs. 8.56(a), (b), (c) and Figs. 8.80 (a), (b), 

respectively). The hoop stress distributions (Figs. 8.107) show similar trends to the 

axial stress distributions (Figs. 8.106 (a) and (b)) except the stresses are generally 

larger in the hoop direction and compressive bending stresses are not observed at the 

pipe bore, although lower hoop stress values are observed here. 

8.13 Discussion. 

The developed axisymmetric weld models have been shown to predict both 

the deformation and failure history of the full size pressure vessel weldment test of 

Coleman et al [131] reasonably well. The results available for these finite element 

studies have been presented for each weld model in a systematic manner throughout 

the life of the weldment. It is thought by the author that this comprehensive study 

will provide the basis for other researchers to observe the complicated interactions of 

each different weld material zone within the weldment. It is only through a complete 

understanding of the different properties of each material zone, the stress 

states present and how these stress and damage fields redistribute with time, that 

new design methodologies for welded components may be formulated. As it is difficult 

to measure through thickness variations in stress, strain and damage in real welded 

components under high temperature service conditions, the finite element modelling 

of welded structures becomes an important tool to facilitate this understanding. 

The weld models have shown that initially the maximum damaged region is 

at the inner bore of the weld metal and heat affected zone. The elastic stress from 

the softer weld metal off-loads into the harder heat affected zone and from every zone 

radially from the pipe inner diameter to the outer surface. The weld metal damage 

distribution becomes more even over the radial section; but damage concentrations 

are still present in the heat affected zone, which subsequently spreads out along the 

fusion boundary as the stresses redistribute. The maximum hoop and axial stresses 
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during secondary creep occur at the outer surface of the pressure vessel. Damage now 

concentrates in the outer 1/3 of the weld metal close to the fusion boundary. The 

damage intensifies here until elements are forced to fail (w > 0.9999). This damaged 

zone then grows inwards through the pipe wall raising the'lialInent stresses ahead of 

the circumferentially damaged region close to the fusion boundary, which elongates 

showing how a large circumferential crack propagates radially through the weld metal 

causing the subsequent failure of the vessel. 

From the colour plot of Fig. 8.65 two large (radial/axial, R/Z)-shear stress zones 

are observed in the weldment. The dark blue zone represents a region of negative 

shear in the heat affected zone at the inner half of the pressure vessel wall. The 

red zone represents a region of positive shear, close to the fusion boundary in the 

outer 1/3 of the weld metal. It is in the red region where the large circumferential 

crack grows. It is known that shear processes cause the nucleation of voids at grain 
boundaries, ledges and triple points in metals. These shear zones may provide extra 
impetus for cavitation formation in these regions. 

It is noticed from the finite element solutions that the maximum axial and 
hoop stresses during secondary creep result in the heat affected zone close to the 

outer surface of the pressure vessel. This may not be the case for all materials as for 

low creep exponent materials the maximum stress may be produced at the inner bore 

of the pipe due to low stress redistribution of the elastic stresses. As the maximum 

secondary creep Von Mises stress occurs at the internal diameter of the pressure vessel 

and the maximum secondary creep principal stress occurs at the outer diameter, the 

rupture criterion, or (a), value has a strong effect on the damage distribution, the 

failure mode and the predicted failure time. This is observed in the difference between 

the damage distribution of Fig. 8.28 (having a value of a=0 for the weld metal) and 
that of Fig. 8.29, (having a value of a=0.4298 for the weld metal). 

Good agreement has been obtained with the secondary creep finite element 

analysis solutions of Coleman et al [1311 and Browne et al [128] for the same weldment. 
From Figs. 8.79(a) and 8.80(a) an approximately equibiaxial stationary state stress is 

predicted at the centre line of the weld at the pipe surface. (Eaxiat .:: Shoop s : 1.4), 

which verifies the results of Coleman et al [131, although the magnitudes of the 

stresses, calculated by Coleman et al using the surface strain rates and the Bailey 
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equations (8.15) to (8.17) give (Eax; 
at - Ehoop The stationary state hoop 

stress distribution at (t/t f =53.7%) along an axial line on the outer surface of the 

pipe predicted from the finite element analysis (Fig. 8.76), may be compared with the 

finite element results of Browne et al [128] Fig. 7.22 (a). The stationary state axial 

stress distributions of Fig. 8.79(a) and the hoop stress distribution along the weld 

metal centre line of Fig. 8.80(a) at a life fraction of (t/tj =35%) may be compared 

with the stress distributions of Fig. 7.22 (c). Good correlations are observed. 

Predicted hoop and axial strains from the weld models (WM1) and (WM2) on 
the whole also correlate well with the experimental results. Predicted tertiary creep 

strain results are observed to be lower than the experimental, which is explained as a 

result of the weld models only modelling small deformations and rotations. A further 

development of the weld models would be to transfer the weld modelling subroutines 

already developed to a large strain version of the creep damage program developed 

by Othman [77], which has been used by the author to predict the large deformations 

and rotations in the creep failure of a compact tension specimen in section 5.12. This 

would allow the geometry and rotation changes to be modelled in the finite element 

solution during vessel failure . 
The finite element analysis predicted very small axial strains in the parent 

metal (less than '0.01% strain) until failure, which is also consistent with the experi- 

mental results. 

Weld model (WM3) incorporated a representation of the weld metal coarse 

and fine grain bainitic regions. No creep data was available for the coarse grained 

weld metal microstructure, but material constants were derived for the coase grained 

weld metal from the fine grained weld metal properties, using the creep data from 

simulated heat affected zone coarse and fine grained materials, which was used to scale 

the properties of the fine grained weld metal. The axial creep strain predictions at the 

weld for weld model (WM3) were lower than those obtained from the experimental 
tests, which suggests that the ductility of the coarse grained weld metal was too 

low. Though damage distributions produced by 
.. the weld model (WM3) good, 

predicting the growth of the large circumferential crack in the weld metal along the 

fusion boundary. 

The life predictions for each weld model are compared with the experimental 
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lifetime in Table 8.7, and reference is made to the figures showing the predicted 
damage distributions at failure. Weld models (WM1) and (WM2) give life predictions 

within 5% of the real failure time of the weldment. Weld model gave a lifetime 

prediction 27% smaller than the real failure time of the weldment. 

The Von Mises stress distributions across the weldment highlights the severity 

of the stress gradient present across the fusion boundary due to the mismatch in 

the creep properties between the weld metal the parent metal and the heat affected 

zone (Figs. 8.40 and 8.96). The weld model must have sufficient mesh refinement to 

model this stress gradient. Weld model (WM1), which has the coarsest finite element 

mesh, gives a reasonably good life prediction. Weld model (WM2) is the same as weld 

model (WM1) except it has a more refined mesh in the region of the weld. Weld model 

(WM2) produced more localised damage and stress distributions, which gave a slightly 

reduced failure life prediction to that of weld model (WM1). If the mesh was refined 

further then this failure lifetime may be reduced further unless a localisation limiter 

is used. Non-local damage techniques, as described in Chapter 6 may restrict this 

localisation, to obtain a truly representative solution. Future work may involve the 

application of the non-local damage technique to model the effects of grain refinement 

in the weld and heat affected zones on the creep deformation and failure behaviour 

of the weld. This is complicated and would involve using different spatial averaging 

cell sizes for each weld material microstructural zone, which would overlay a very 
fine finite element weld model mesh. Though the predictive capability of weld model 
(WM3) must first be improved with the use of the exact material properties of the 

coarse and fine grained weld metal. This will involve futher laboratory testing. 

Weld model (WM3) showed how the weld metal coarse grain regions damage at 

a faster rate than the fine grain regions. The damage distributions close to failure for 

weld model (WM3) show how the most intensely damaged zones localise close to the 

fusion boundary in the outer 1/3 of the weld metal coarse bainitic regions. Damage 

is then observed to link across the fine grain bainite regions inbetween these coarse 

grained regions showing how the circumferential crack close to the fusion boundary 

propagates inwards across the pipe wall .A restriction of the axisymmetric analysis 
is that the geometry of transverse weld metal cracks is not modelled; and although 
damage distributions in the outer coarse grained weld bead indicates where these 
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cracks initiate and grow they are not explicity modelled, whereas the circumferential 

cracks are modelled by the removal of damaged elements (w > 0.9999) from the weld 

model mesh. 

Future improvements in the weld modelling will rely on the availability of both 

the uni-axial and multi-axial creep test data for each microstructural region of the 

weldment. Though reasonably good results have been obtained by the author using 

the available creep data, for truly accurate life and failure predictions several heat 

affected zones should also be incorporated in the weld models. 

Larger materials data bases are currently being used to catalogue available and 

new materials data. With the assessment of the remnant life of power generating 

plant and the new demands of safety for nuclear power industry, the potential of 

these weld models must be realised. Initially these weld models provide an effective 

research tool, but computer solutions may be provided for a range of pipe sizes and 

materials, giving design data from which new design standards may be formulated; 

possibly utilising new procedures such as the Weld Performance Factors of Williams 

(section 7.9.4). The effects of weld geometry changes can be studied and material 

parameter surveys may help to obtain the best parent metal/weld metal material 

combinations to give improved weld service life. 

Looking into the future, this research tool may be incorporated within a com- 

mercial Computer Aided Design facility. The design engineer would design the ge- 

ometry of the component required and would determine where the welds are to be 

made to fabricate the component. He would then specify the weld geometry, welding 

parameters such as heat input and welding rod sizes and the materials to be used. A 

program such as that of A1 erry and Jones [104] would calculate the distributions of 

the microstructures in the weld from heat flow equations and phase transformation 

diagrams and continuous cooling curves. The extent of each identified microstruc- 

tural region could then be automatically represented by a finite element mesh and 

the relevant material properties for the microstructures would be assigned to each 

region of the mesh from a materials data base. A full creep continuum damage finite 

element solution for the prototype component under the appropriate service condi- 
tions could then be performed which would highlight any problems of cracking early 
in the required life of the weldment, at the design stage. The problem could then be 
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identified and adjustments made to geometry, welding parameters or materials, and 

a new solution performed, until the desired component performance is attained. 
The foundations of such future research and commercial developments have 

been laid down and it is hoped that the abilities of the theory of continuum damage 

mechanics to model the complicated deformation and failure behaviour of welded 

components has been demonstrated. Though to truly judge the abilities of such 

models other more complicated geometries for a range of different materials must be 

modelled. 
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Time(hrs) t/t f Observation 

20,000 43% Creep cracking initiates on the outer surface of the 

pressure vessel, as transverse cracks in the coarse 

columnar regions of the weld metal and the heat affected 

zones (IIAZ) (see sketch of Fig. 8.4). 

35,000 76% Transverse cracks are more clearly defined in the capping 

weld beads and are of depth less than 5 mm (see photograph 

of Fi . 8.5 . 
35,000 > 76% Circumferential cracks initiate in the weld metal coarse 

columnar regions close to the fusion boundaries, as a 

consequence of stress redistribution caused by the 

transverse cracking (see sketch of Fig. 8.6). 

42,000 91% Significant circumferential cracking is now present. The 

transverse cracks have grown inwards to a depth of 20 mm 

and extended through the weld metal, across the heat 

affected zone (HAZ) into the parent metal (see the 

photograph of Fig. 8.7). 

46,000 100% Massive transverse and circumferential cracking causes 

steam leakage in a bulged region of the pressure vessel. 

The pressure vessel is said to have reached its rupture 
life see photograph of Fi 

. 8.8 . 

Table 8.1: A brief summary of the failure history of the 2.25Cr 1Mo : 

0.5Cr 0.5Mo 0.25V pipe weldment from a pressure vessel test by 

Coleman et al [1331, [131]. 



Test Min. Creep Life Last 
Material Specimen No. Stress Rate (abs/hr) Time (hrs) Recorded 

(MPa) Strain (%) 
Weld Metal C17 WMI 120 9.0x10-6 2241 14.0 

No. 17 C17 W01 105 2.1x10-6 6140 9.4 
2.25Cr 1Mo o C17 WM2 92 2.0x10-6 11278 12.0 

Stress Relieved o C17 W03 66 5.6x10-' 35840 3.5 
3hrs @ 700°C o C17 W04 56 2.7x10-7 66376 4.7 

Parent 1CM 180 5.7x10-5 672 20.0 
Metal 2CM 155 1.2x10-5 2262 12.1 

0.5Cr 0.5Mo 0.25V 3CM 140 2.2x10-6 4459 16.0 
4CM 120 8.5x10-7 15193 13.0 

o C17 PM1 110 4.2x10'7 31111 6.5 
o 5CM 100 2.5x10'7 51900 10.8 

oC17 PM2 85 1.4x10'7 83000 2.98 
Simulated CGB9 250 9.0xI0- 240 0.31 

HAZ CGB10 240 6.8x10-6 - - 
(Grain CGB8 200 1.2x10-6 1151 0.38 

Coarsened oCGB1 160 3.3x10'7 12960 0.64 
Parent) CGB2 140 2.2x10'7 17856 0.90 

oCGB3 120 1.4x10-7 34010 1.16 
o CGB4 100 9.1x10'8 65217 2.203 
o CGB5 85 5.5x10'8 106767 2.326 

Table8.2: Summary of the uni-axial creep test data for the weld metal, parent 
metal and HAZ (G. C. P. ) materials isolated from a 2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V 
weld. From the laboratory tests of Cane [1091. 
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Material o,, f oI q r a 
Parent Metal 155 90 3.7 7.0 0.5955 

Simulated 

HAZ (G. C. P. ) 

250 

200 

144 

115 

3.1 

2.8 

8.5 

8.5 

0.4298 

0.3921 

Table8.4: Values of the multi-axial rupture criterion constants from the double 

shear, torsion and uni-axial tension tests of Cane [109], giving the values of (q) and 
(r) for use in equation (8.1). Corresponding values of (a) have been calculated by 

the author for use in equation (8.2). 



(a) Heat Affected Zone Material: 

Cane Equation (8.9) 

Bi-Axiality 

Ratio 

Ei E2 

-1.5 0.6096 -0.9144 

-1.0 0.7054 -0.7054 
-0.5 0.8371 -0.4186 
0.0 1.0 0.0 

0.1 1.0304 0.1030 

0.5 1.0957 0.5478 

1.0 1.0 1.0 

(b) Parent Metal. 

Cane Equation (8.9) 

Bi-Axiality 

Ratio 

El Ez o 

-1.5 0.6765 -1.0147 

-1.0 0.7719 -0.7719 

-0.5 0.8764 -0.4382 
0.0 1.0 0.0 

0.1 1.0225 0.1022 

0.5 1.0702 0.5351 

1.0 1.0 1.0 

a=0.4298; q=3.1 ; r=8.5. 

Hayhurst Equation (8.10) 

E1 E2 

0.5979 -0.8968 
0.7055 -0.7055 
0.8445 -0.4222 

1.0 0.0 

1.0270 0.1027 

1.0827 0.5414 

1.0 1.0 

a=0.5955; q=3.7; r=7.0. 

Ilayhurst Equation (8.10) 

ýi E2 

0.6770 -1.0155 
0.7715 -0.7715 
0.8845 -0.4422 

1.0 0.0 

1.0190 0.1019 

1.0573 0.5286 

1.0 1.0 

Table 8.5: The values of (El) and (E2) are calculated from equations (8.9) and 
(8.10) using the equations of Cane and Hayhurst respectively, for a range of 
bi-axiality ratio (C = E2/Ei) defining the shapes of the isochronous rupture surfaces 

given in Fig. 8.15. 

Table (a) is for the heat affected zone material and (b) is for the parent metal. 
The values of (El) and (E2) show that equations (8.9) and (8.10) are equivalent. 



Test Min. Creep Life Last 
Material Specimen No. Stress Rate (abs/hr) Time (hrs) Recorded 

(MPa) Strain (%) 
Refined R1P1 160 6.9x10'6 2242 10.7 

Parent(RP) R2P2 100 4.4x10'7 20405 7.9 
Doubly Refined R2P1 160 1.4x10-5 1686 10.0 
Parent (R2P) R2P2 100 8.0x10-7 19691 12.7 

Table8.6: Uni-axial creep data for refined parent metal, simulated heat affected 
zone material, after Cane [109]. 
The heat affected zone microstructure is obtained by furnace heat treatment of the 
0.5Cr 0.5Mo 0.25V parent plate. 

Weld Model Life Time Damage Distribution 
No. 

11 
Prediction (hrs) in Figure No. 

WM1 47247 8.35(a) 
WM2 43882 8.62(a) 
WM3 33433 8.91(a) 

Table 8.7: Summary of weld model predictions. c. f. the experimental 
lifetime of approximately 46,000 hrs, and the cracked weldment section, 
Fig. 8.91(b). 
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Figure 8.1: End elevation of the welded pressure vessel as tested by 

Coleman et al (131], (a) showing the four circumferential welds and the 

positions of the capacitance strain gauges and the creep pips from which 

surface strain measurements were taken. (b) shows the J-type weld prepa- 
ration. 
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Figure 8.2: Micrograph showing a section through a 2.25Cr 1Mo: 0.5Cr 
0.5Mo 0.25V multipass weld, identical to the welds used in the thick steam 
pipe tests of Coleman et al [131]. 
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Figure 8.3: Experimental creep strain measurements with test time 
from the creep pips and the capacitance strain gauges at the surface of 
the 2.25Cr 1Mo weld (Fig. 8.1(a)), courtesy of Coleman [149]. 
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Figure 8.4: Sketch of a section taken from the 2.25Cr 1Mo: 0.5Cr 

0.5Mo 0.25V steam pipe weldment, showing the initial transverse crack- 
ing, in the coarse columnar grained bainitic regions of the weld metal. 
(t /t f .: 43%1. 



Figure 8.5: Photograph of the outer surface of the pressure vessel, 
showing the transverse weld metal cracking, which is limited to the coarse 
columnar grained bainitic regions of the weld. Courtesy Coleman, CEGB 

DIR&&r,. N. 

Figure 8.6: Sketch of a section taken from the 2.25Cr 1Mo: 0.5Cr 
0.5Mo 0.25V steam pipe weldment, showing the initial circumferential 
cracking in the coarse grained bainitic regions of the weld metal close to 
the fusion boundary. (t/t1 . 76%). 
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Figure 8.7: Extensive transverse and circumferential cracking in the 
2.25Cr 1Mo pipe weldment, (t/tf .:: 91%). Photograph courtesy of Coleman [149]. 

Figure 8.8: Micrograph 
of a section through 
the 2.25Cr 1Mo: 0.5Cr 
0.5Mo 0.25V weld taken 
from a failed pressure 
vessel, showing the 
extent of the circumf- 
erential crack growth 
towards the inner bore 

and the consequent 
bulging at failure (t/tt : zz 100%). 
Micrograph courtesy of 
Coleman [14911, 
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Figure 8.9' : Diagram showing the axisymmetric finite element model 
and the boundary conditions used to represent the thick-steam pipe weld 
laboratorty test of Coleman et al [131]. 

P, 



(a) 
WELD 8, Eºa z. 

ýý 
WELD BEAD 1. 

fENT 
NETAL" 

1 
ý. ýr 

As-CAtr, 

COARSE COL 4MNAR BA11V1rf. 

fk"SPoaNED) COARSE CtNtAxCD 

Eaiuirr 
¶1 JSFotMED1 F1WC EQMIAxCb 

Ar- Cnsr 
CDM'E UCCA NAR 8-41-VOTE. 

$'IMPL. IFIEb 
T0. 

i 1. LEID GC4D 2. 

COARSE ßAINITIE (COLUMN'") 

1 

f1 tNT 
` 

FINE e u. 'irE (fawsFos b). 

NETAL. \. 

ý'ý. ýý ARSf MARIE. (? oCUMA1At) 
VEt D QEAD i. 

Figure 8.10: Simplified representation of the coarse and fine grain 
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Figure 8.11: Section through the steam pipe wall showing the posi- 
tions- where uni-axial specimens were cut from the parent metal and weld 
metal pipe. 
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Figure 8.14: Comparisons of the experimental uni-axial creep test 
data and the predicted creep curves for (a) the parent metal, (b) the HAZ 
(G. C. P. ) and (c) the weld metal, for various test stress levels in MPa. 
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Figure 8.15: Isochronous rupture surfaces plotted in principal plane 
stress space (j'1 > 22 >F, 3= 0), for the HAZ (G. C. P. ) material (a 
0.4298) and the parent metal (a = 0.5955). 
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Figure 8.16: Diagram showing the radial nodal forces on the inner 
surface of an elemet in the axisymmetric finite element mesh of the pres- 
sure vessel, to model the internal steam pressure loading. (F; ) and (Fj) 
are given by equation(8.11). 
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Figure 8.17: Diagram showing the constant axial stress in the pres- 
sure vessel wall, produced by the action of the internal pressure on the 
end caps. 
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Figure 8.18: Diagram showing the axial nodal forces on an element at 
the top boundary of the axisymmetric finite element mesh of the pressure 
vessel tube, to model the constant axial stress due to the action of inter- 
nal steam pressure on the end-caps. (F; ) and (Fk) are given by equations 
(8.13) and (8.14) respectively. 

Figure 8.19: Diagram of the thick walled pressure vessel used by 
Odgvist[18], showing the dimensions, the coordinate system and the stress 
directions. 
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Figure 8.20: Comparison between the stress distributions across the 
mall thickness of the thick pressure vessel from the Bailey equations (8.15), 
( . 1¬). { . 17). and the finite element stationary state stress results. for a 
creep exponent, (n = 1.0) giving the Plastic stress distributions. 
(r/a = 1.0) i,, the inner bore and (r"/a=2.0) is the outer bore. 
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Figure 8.21: Comparison between the stress distributions across the 
wall thickness of the thick pressure vessel from the Bailey equations (8.15), 
(8.16), (8.17) and the finite element stationary state stress results, for a 
creep exponent (n = 2.0). 
(r/a = 1.0) is the inner bore and (r/a=2.0) is the outer bore. 
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Figure 8.24: The lower section of the axisymnietric finite element 
mesh for the first weld model (WM 1) (Fig. 8.9), as used to model the 
2.25Cr 1Mo: 0.5Cr 0.5Mo 0.25V thick steam pipe weld. The dark blue, the 
blue and the green regions are assigned the material properties (Table 8.3) 
of the parent metal, the IIAZ(G. C. P. ) and the weld metal, respectively. 
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Figure 8.25: Dainge dibiributiou at a life fraction (t/if = 31.2%). 
The value of (a=0.0) for the weld metal. The maximum damaged region 
occurs in the HAZ at the inner bore. 
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Figure 8.26: Dainge distribution at a life fraction (t/t1 = 90.0%). 
The value of (a=0.4294) for the weld metal. The maximum damaged re- 
gion occurs in the HAZ. 
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Figure 8.27: Comparison between the experimental uni-axial creep 
strain data and the predicted creep curves for the 100RMPa and the 85.0 
Mpa HAZ(G. C. P. ) creep tests. These new curves creep curves give an im- 

proved low stress fit to the creep data (c. f. Fig. 8.14(b)). The new material 
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Figure 8.29: Damage distribution for weld model (WM1), at a life 
fraction (t/t1 = 99.9%), using the new HAZ(2) material constants (Table 
8.3(d)) and a value of (o=0.4298) for the weld metal. The region of max- 
imum damage localises mainly in outer weld metal at the fusion boundary. 
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Figure 8.30: Damage distribution for weld model (WM1), at a life 
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Figure 8.32: Damage distribution for weld model («'? 111) at a life 
fraction (tilt f= 90.4%--). 
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Figure 8.33: Damage distribution for weld model (WM 1) at a life 
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Figure 8.34: The original finite element mesh for weld model (WMI) 
is shown in green and the displaced mesh is shown in red at a life frac- 
tion of (tf : 77.2%), havig a corresponding damage distribution given 
in Fig. 8.31. The displaced plot shows how the weld metal deforms most, 
it being the weakest in creep strength, and how then weld bulges caus- 
ing bending to occur in the pressure vessel due to the growth of damage 

across the ligament (Fig. 8.31); as is observed in the full size laboratory 
test. [133], and Fig. 8.8. 
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((A,, > 0.8 in the colour plot key). which may he compared with (bi which 
shows the cracking observed in a section taken through the 2.25Cr I blo 

steam pipe weld at vessel failure. Micrograph courtesy Coleman (149]. 
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Figure 8.36: Distribution of the normalised radial stress (E, = o, /a0) 
for weld model (WM1) at a life fraction of (t/t, = 77.2%) before the first 
element (ý, > > 0.9999) fails and is removed from the finite element mesh. 
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Figure 8.37: Distribution of the normalised axial stress (Es = vs/va) 
for weld model (WM1) at a life fraction of (t/t f= 77.2%) before the first 

element (w > 0.9999) fails and is removed from the finite element mesh. 
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Figure 8.38: Distribution of the normalised radial/axial shear stress 
(E, s = ors/Qa) for weld model (WM I) at a life fraction of (t/tt = 77.2%) 
before the first element (a. ' > 0.9999) fails and is removed from the finite 

element mesh. 
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Figure 8.39: Distribution of the normalised hoop stress (Ed = oe/Qo) 
for weld model (WM I) at a life fraction of (t/tj = 77.2%) before the first 

element (w > 0.9999) fails and is removed from the finite element mesh. 
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Figure 8.42: Distribution of the normalised Von Mises (effective) 

creep strain (l t1 = cri/o�) for weld model (VVM 1) at a life fraction of 
(t! tf = 77.2Wc) before the first element (aw > 0.9999) fails and is removed 
from the finite element mesh. 
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Figure 8.44: Distribution of the noriualised axial btresb (Es = of/o, ) 
for weld model (WX11) at a life fraction of (t/tj = 99.97(). 
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Figure 8.45: Comparison between the experimental hoop strains and 
those predicted from weld model (WM1) corresponding to the pip mea- 
surements at pipe weld. 
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Figure 8.46: Comparison between the experimental hoop strains and 
those predicted from weld model (WM I) corresponding to the capacitance 
strain gauge measurements at the weld metal centre line. 
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Figure 8.47: Comparison between the experimental axial strains and 
those predicted from weld model (W M1) corresponding to the pip mea- 
surements across the pipe weld. 
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Figure 8.48: Comparison between the experimental axial strains and 
those predicted from weld model (WM1) corresponding to the capacitance 
strain gauge measurements at the weld metal centre line. 
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Figure 8.49: Comparison between the predicted hoop strains corre- 
sponding to the creep pip and capacitance strain gauge measurements in 
the parent metal pipe from weld model (WM1). 
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Figure 8.50: Comparison between the predicted axial strains corre- 
sponding to the creep pip and capacitance strain gauge measurements in 
the parent metal pipe from weld model (WM1). 
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Figure 8.51: Normalised hoop stress (Ei) distributions along the in- 

ner bore (Fig. 8.9) of the steam pipe at various life fractions. The z-distance 
is measured in the z-direction from the weld metal centre line (Fig. 8.9). 
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Figure 8.52: Normalised hoop stress (Ee) distributions along the 
outer surface (Fig. 8.9) of the steam pipe at various life fractions. The 
z-distance is measured in the z-direction from the weld metal centre line 
(Fig. 8.9). 
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Figure 8.53(a) and (b): Normalised hoop stress (Do) distribu- 
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Figure 8.54(a) and (b): Normalised radial stress (E, ) distribu- 
tions along the weld metal centre line (Fig. 8.9) of the steam pipe at various 
life fractions. The distance along the weld metal centre line is measured 
from the internal diameter (Fig. 8.9). 
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Figure 8.55(a) and (b): Normalised axial stress (Es) distributions 
along the weld metal centre line (Fig. 8.9) of the steam pipe at various life 
fractions. The distance along the weld metal centre line is measured from 
the internal diameter (Fig. $. 9). 
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Figure 8.56(a), (b) and (c): Normalised hoop stress (E6) dis- 

tributions along the weld metal centre line (Fig. 8.9) of the steam pipe at 

various life fractions. The distance along the weld metal centre line is 

measured from the internal diameter (Fig. 8.9). Note the skeletal stress 

point (P), in (b). 
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Figure 8.57: The 1uw"er sectiun of the axisytuiiietric finite element 
mesh for the second weld model (ß'l'': 112) (Fig-8.9), as used to model the 
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Figure 8.58: Damage distribution for weld model (WM2) at a life 
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weld metal and the HAZ at the inner bore. 



FEYNTEW 4.11 DAT 
,. _.. .... 

CONIY m 

NUO pAIA 1,14 VIEW 
MAX Z4 1HW HE SH 

RESULIS 
PRESENT 
OPrI015 
EYE 
SEr 
UT IL ItY 
DRAWIN6 
INDEX 
HCLP 

5 ,' FINISH 

: 
-? 

I"[ 
ý ý. la1C-I 

. 162E-1 
1 46E 

29E-1 
117E- 
9^IE-2 

Y 617E 
485Eý2 

k1 3P4Eý 162E ý2 

Figure 8.59: Damage distribution for weld model (WM2) at a life 
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Figure 8.60: Damage distribution for weld model (WM2) at a life 
fraction (t/t f= 53.7%). 
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Figure 8.61: Damage distribution for weld model (WW2) at a life 
fraction (t/tf = 81.1%). 
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Figure 8.63: Distribution of the normalised radial stress (E, = o, /o) 
for weld model («"_142) at a life fraction of (t/tf = before the first 

element (w > 0.9999) fails and is removed from the finite element mesh. 

u: mrraac. 
V IIH 
it Al SPf!, 

Ix I`' 
F'P !t NT 
UPI 'lM'- 
ETE 
St I 
UI 1111V 
pP{NIIN, 
INUEJ 

HELP 
F INISH 

'1.47 
'I. J7 

I. 2D 
1.86 
. 9ee 

72s 
wa 
s+I 
374 

IDI 
'-. 365 

173 
319 

Figure 8.64: Distribution of the uorrnalised axial stress (-Vs = ojwo) 
for weld model (WVN12) at a life fraction of (t, /tj = 41.19') before the first 
element. 1w > 0.9999) fails and is removed from the finite element mesh. 



Figure 8.65: Distribution of the normalised radial/axial shear stress 
(Er. = 0;, /7) for weld model (WM2) at a life fraction of (f/tt = 81.1%) 
before the first element (w > 0.9999) fails and is removed from the finite 

element mesh. 

Figure 8.66: Distribution of the normalised hoop stress (re = adloo) 
for weld model (WM2) at a life fraction of (t/tf = 81.1%) before the first 

element 1:, ' > 0.99991 fails and is removed from the finite element mesh. 
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Figure 8.67: Distribution of the normalised hoop stress (E = os/o, ) 
for weld model (WM2) at a life fraction of (t/tf = 99.9%). 
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for weld model (WM2) at a life fraction of (t/tf = 99.9%). 
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Figure 8.89: Comparison between the experimental hoop strains and 
those predicted from weld model (WM2) corresponding to the pip mea- 
surements at pipe weld. 
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Figure 8.70: Comparison between the experimental hoop strains and 
those predicted from weld model (WM2) corresponding to the capacitance 
strain gauge measurements at the weld metal centre line. 
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Figure 8.71: Comparison between the experimental axial strains and 
those predicted from weld model (WM2) corresponding to the creep pip 
measurements acroas ripe weld. 
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Figure 8.72: Comparison between the experimental axial strains and 
those predicted from weld model (WM2) corresponding to the capacitance 
strain gauge measurements at the weld metal centre line. 
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Figure 8.73: Comparison between the predicted hoop strains corre- 
sponding to the creep pip and capacitance strain gauge measurements in 
the parent metal pipe from weld model (WM2). 
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Figure 8.74: Comparison between the predicted axial strains corre- 
sponding to the creep pip and capacitance strain gauge measurements in 
the parent metal pipe from weld model (WM2). 
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Figure 8.75: Normalised hoop stress (E9) distributions along the in- 

ner bore (Fig. 8.9) of the steam pipe at various life fractions for weld model 
(WM2). The z-distance is measured in the z-direction from the weld metal 
centreline (Fig. 8.9). 
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Figure. 8.76: Normalised hoop stress (E9) distributions along the 
outer surface (Fig. 8.9) of the steam pipe at various life fractions for weld 
model (WM2). The z-distance is measured in the z-direction from the 
weld metal centre line (Fig. 8.9). 
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Figure 8.77(a) and (b): Normalised hoop stress (Do) distribu- 

tions along the fusion boundary (Fig. 8.9) of the steam pipe at various life 
fractions for weld model (WM2). The distance along the fusion boundary 
is measured from the internal diameter (Fig. 8.9). 
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Figure 8.78(a) and (b): 
, 
Normalised radial stress (E, ) distribu- 

tions along the weld metal centre line (Fig. 8.9) of the steam pipe at various 
life fractions for weld model (WM2). The distance along the weld metal 
centre line is measured from the internal diameter (Fig. 8.9). 
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Figure 8.79(a) and (b): Normalised axial stress (Es) distributions 

along the weld metal centre line. (Fig. 8.9) of the steam pipe at various life 
fractions for weld model (WM2). The distance along the weld metal centre 
line is measured from the internal diameter (Fig. 8.9). 
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line is measured from the internal diameter (Fig. 8.9). 
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Figure 8.83: The lower section of the axisynmietric finite element 
mesh for the third weld model (\VM3) (Fig. 4.9), as used to model the 
2.25Cr JMo: 0.5Cr 0. SMo 0.25V thick steam pipe weld. The dark blue, the 
hlne, the green and the brown re? inns are assigned the material properties 
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and the weld mctal(coarse ) grained banitic regions, respectively. 
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Figure 8.84: Damage distribution for weld model (WIN13) at a life 
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of (tja X9.5"%, corresponding to the damage distribution of Fig. 8.89. 
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vessel as is observed in the full size laboratory test, j133], and Fig. 8. ý. 
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Figure 8.91: (a) Damage distribution for weld model (WM3) at a 
life fraction (t/t1 -- 100.0%, ) predicting the formation of failed regions 
(w > 0.8 in the colour plot key) in the weld metal, which may be compared 
with (b) the observed cracking in a radial section through the 2.25Cr 1Mo 

steam pipe weld at vessel failure. Micrograph courtesy Coleman [149]. 



Figure 8.92: Distributiun of the nurnialised radial stress (E, = v, /o, ) 

for weld model («ßN13) at a life fraction of (t/tf = 66.0%) before the first 

element la' > 0.999Pº fails and is removed from the finite element mesh. 
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Figure 8.93: Distribution of the nuriiialised axial stress (EZ = as; ý o) 
for weld model (WM3) at a life fraction of (±/t f= before the first 

element 1:,, > 0.9999 P fails and is removed from the finite element mesh. 



Figure 8.94: Di-, tributiuit of thr awindliseJ iaüial/axial shear stiess 
- _) 

for weld model (ý'ý''113) at a life fraction of (t/tj 
before the first e! Pment cam' > 0.9999) fRi! Q -rd iq removed from the finite 

element mesh. 

Figure 8.95: Distribution of the normalised hoop stress (Ed = as/a0) 
for weld model (WM3) at a life fraction of (t/t1 = 66.0%) before the first 

element (w > 0.9999) fails and is removed from the finite element mesh. 
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Figure 8.96: Distribution of the normalised Von Mises (effective) 
stress (-vef = oe f/vo) for weld model (W: 113) at a life fraction of (t/tf _ 
66.0%), before the first element (w > 0.9999) fails and is removed from 
the finite element mesh. 

Figure 8.97: Distribution of the normalised niaxiinum principal stress 
(E1 = cr /cJ for weld model (W1143) at a life fraction of (t/tf = 66.0(), before 

the first element (w > 0.9999) fails and is removed from the finite element 
mesh. 



Figure 8.98: Distribution of the normalised Von Mises (effective) 
creep strain ([ f= Vej/a, ) for weld model (WM3) at a life fraction of 
(t/t1 = 99.9%). 
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Figure 8.99: Distribution of the normalised hoop stress (mod 
for weld model (WA13) at a life fraction of (t/tf = 99.9%). 
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Figure 8.102: Normalised hoop stress (Es) distributions along the 

inner bore (Fig. 8.9) of the steam pipe at various life fractions for weld 
model (WM3). The z-distance is measured in the z-direction from the 

weld metal centre line (Fig. 8.9). 
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Figure 8.103: Normalised hoop stress (Es) distributions along the 

outer surface (Fig-8.9) of the steam pipe at various life fractions for weld 
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Figure 8.104(a) and (b): Normalised hoop stress (E9) distribu- 

tions along the fusion boundary (Fig. 8.9) of the steam pipe at various life 
fractions for weld model (WA13). The distance along the fusion boundary 
is measured from the internal diameter (Fig-8.9). 
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Figure 8.105(a) and (b): Normalised radial stress (Er) distri- 
butions along the weld metal centre line (Fig. 8.9) of the steam pipe at 
various life fractions for weld model (WAi3). The distance along the weld 
metal centre line is measured from the internal diameter (Fig. 8.9). 
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- Normalised axial stress (E, ) distri- 

butions al9ng the weld metal centre line (Fig. 8.9) of the steam pipe at 
various life fractions for weld model (WM3). The distance along the weld 
metal centre line is measured from the internal diameter (Fig. 8.9).. 
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Figure 8.107(a) and (b): Normalised hoop stress (E0) distri- 

butions along the weld metal centre line (Fig. 8.9) of the steam pipe at 
various life fractions for weld model (WM3). The distance along the weld 
metal centre line is measured from the internal diameter (Fig. 8.9). 
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Chapter 9. 

Conclusions. 

The research work has resulted in some important findings: 

1. From the mechanical creep testing of different batches of material it has 

been observed that grain size variation can produce a marked difference in both 

deformation and rupture characteristics. Grain size variation within a single batch of 

material may be related to the production route and causes considerable scatter in 

the results of uni-axial creep tests. 

2. For (OFHC) Copper it has been found that the Arrhenius law may only 
be applied to model the variation of creep strain rate and damage rates with tem- 

perature, for a temperature range of approximately 50°C. For larger temperature 

ranges exponential terms have been fitted to the isothermal creep constants at de- 

screte temperatures within the temperature range; giving the functional change of 

creep constants with temperature, which when used with the creep strain rate and 
damage rate laws predict creep deformation and failure behaviour at intermediate 

temperatures, over a wide temperature range. Reasonable predictions of creep test 

behaviour have been obtained for the temperature range 250°C to 500°C for (OFHC) 

Copper. 

3. The 4th order Runge-Kutta numerical integration method of Merson [59] is 

found to be particularly suited to the finite element creep continuum damage method. 
The time integration accuracy of the solution may be improved by adjusting param- 

eters which control the allowable strain error using Merson's integration error 

estimate. Improved accuracy solutions implies the choice of smaller time steps and 
hence incurs an increased computational overhead. 

The Z-transformation Runge-Kutta integration method provides a better fail- 

ure time prediction over the standard Runge-Kutta method, but the standard method 

provides an improved failure strain prediction over the Z-transformed method, for the 

same integration accuracy. Therefore a choice exists, where one of these two methods 

may be selected, ' using a low integration accuracy, giving either accurate failure time 

or accurate failure strain predictions, requiring less computer processing time; than 

using either method with a high integration accuracy. 
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4. New techniques for removing both elemental stiffness and creep forces 

such as the techniques of Tvergaard and Chaboche provide no advantage over the 

instantaneous removal method due to Hayhurst et äl, giving very similar damage 

distributions and life predictions for the compact tension specimen. 

The use of the creep rate and damage rate laws due to Hayhurst, equations 
(2.19) and (2.20), using a bi-axial rupture criterion does not model the failure of the 

compact tension specimen under plane strain conditions. 

New creep constitutive and damage rate laws have been formulated by the 

author, analogous to the equations by Cocks and Ashby [66), for creep fracture due 

to constrained cavity growth, allowing for the effects of the tri-axial stress state on 

rupture. The new constitutive model predicts the expected damage distribution and 

growth ahead of the crack tip in the CT-specimen and a failure time close to that of 

the expected experimental results. The effect of a constant mesh refinement across 

the CT-specimen ligament produces improved damage distribution definition and a 

reduced life prediction. 

5. The concept of non-local continuum damage has been used in a finite 

domain method, through the grain size characteristic dimension, to spatially average 

local damage fields in both small and large cracked Copper plates having the same 

grain size. The method has correctly predicted the difference in the lifetimes and 
damage distributions, between the large and small sized external cracked specimens. 
This method should prove important to restrict damage and strain localisation into 

small regions of refined finite element meshes, giving some representation of grain 

size and/or inhomogeneity effects through the grain characteristic dimension, to give 

more physically related finite element solutions. The grain characteristic dimension 

has been defined as 6 grain sizes. It is thought important to apply this non-local 
damage method to model the effect of grain refinement across the heat affected zone 

of a weld, in the finite element modelling of the high temperature deformation and 
failure of a welded joint. This method may also be used to restrict localisation of strain 

and damage into refined finite element regions, in and close to the heat affected zone; 

where high mesh 'refinement is required to model the high stress gradient here, and 

the size of small heat affected zone regions. 
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6. Current British Standard codes make no allowance for the presence of the 

welded joint, which have been shown to produce over-conservative designs. From the 

available literature the British Standards could be modified in line with the American 

codes, which include strain limits and could include a simple multi-axial rupture 

criterion using the representative rupture stress, for improved lifetime predictions 

using simple hand calculations. 

7. Weld models have been developed to represent the high temperature de- 

formation and failure of a thick-walled steam pipe circumferential weld. Very good 
lifetime and damage distribution predictions have been obtained from simple three 

material zone, weld models, representing the parent metal, weld metal and heat af- 
fected zone material. It was found that extremely fine mesh refinement is not required 

in and close to the heat affected zone to model the stress gradients here, for this par- 

ticular weld. 

It is thought that the modifications to standard creep constitutive and damage 

laws, (2.19) and (2.20), allowing for the effects of the tri-axial stress state on rupture, 

which were used to model crack growth in the CT-specimen, was not necessary for 

the weld models; due their being a lower degree of constraint, or tri-axiality, present 

at the metallurgical notch ( between the HAZ and the weld metal), than at the tip 

of the sharp line crack in the CT-specimen. If the weld models were to be used to 

model the growth of sharp cracks, which have been observed to grow in weldments 

subjected to fatigue conditions, then the tri-axial modification to the standard creep 

constitutive and damage laws will have to be used. 

The effect of modifying the rupture criterion of the weld metal had a marked 

effect on the damage distribution and the lifetime predictions and highlighted the 

importance of accurate multi-axial testing of weld microstructures, for accurate weld 
failure prediction. 

The final weld model inlcuded the geometries of the coarse and fine grained 
bainitic regions of the weld metal and shows how damage growth concentrates in the 
hard coarse grained regions and eventually links across the fine grained weld metal 

regions, to form a jagged circumferential crack along the fusion boundary, comparable 

with that obtained from a full size pressure vessel weld test. 
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Improved weld models will rely heavily upon new uni-axial and multi-axial 
test data, for the coarse and fine grained bainitic weld metal regions, and other heat 

affected zone microstructures. Much finer finite element meshes will be required if 

more material regions are used in the weld model to represent the heat affected zone 

microstructures, possibly requiring a non-local damage technique to prevent effects 

of localisation. 

8. The creep constitutive and damage rate laws due to Hayhurst et al are 

only valid for the dominant mechanism of power-law creep. The application of these 

constitutive models is extended part way into other Ashby mechanism map areas, 

such as the dislocation glide creep region by the use of the bi-linear creep strain rate 

and damage rate law modification. Fortunately most engineering structures operate 
in the power-law creep region at moderate service stresses and temperatures. Further 

development of the creep strain'rate and damage laws must be made, to truly model 

creep in the power-law breakdown region. As many high performance alloys used 
in gas turbines and nuclear power plant now operate well within the diffusional flow 

region of the Ashby mechanism maps at high homologous temperatures, the ability 

of the creep constitutive and damage rate laws due to Hayhurst to model this type 

of creep deformation must be studied further and possibly modified in line with the 

constitutive laws sugested by Cocks and Ashby [66]. 

9. Therefore it is important before modelling a new material component, 
to know the predominant creep mechanisms at the component stress and tempera- 

ture levels; it is also important to understand the stress-states present, so that the 

correctly modified constitutive and damage rate laws, representative of the physical 

processes occuring during the service life of the component, are used in the finite 

element model. A criticism of the Ashby mechanism and fracture maps is that the 

effects of stress-state on the predominant creep and fracture mechanism is neglected. 
Three dimensional Ashby maps could be developed, with a third axis (I1/o f), which 

would include the effect of the degree of the tri-axial stress state on the predominant 
mechanism, enabling the correct choice of constitutive equations for the component 
model. Having determined the constitutive equations for each predominant creep 
mechanism, material constants for each mechanism, are determined from the relevant 
creep test data. The constitutive models are then only applied for the range of stress 
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and temperature were they are valid; and when a mechanism map boundary is crossed 

a different constitutive model and creep constants are used. Therefore enabling the 

finite element technique to model the changing physical behaviour of the material 

with component stress and temperature history. 
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Chapter 10. 

Future Work And Developments. 

Future work should include the aquisition of futher experimental multi-axial 
test data, to provide a better understanding of the effect of the tri-axial stress-state 

on creep rupture behaviour. A materials data base could be formulated to store a 

wide variety of both uni-axial and multi-axial materials data for use in the program 
Damage-(XX). The standard creep constitutive and damage laws must be modified to 

represent all the creep deformation and fracture mechanisms in the Ashby mechanism 

maps, including the allowance for the effect of the multi-axial stress-state on rupture; 

so that problems outside the power-law creep region may be solved with confidence. 

Currently 
'a 

wide range of high performance materials are available to the 
design engineer. For example the metal matrix composites, ceramics and sintered 

materials, which are used for high temperature applications, where strength yet low 

weight is required. The properties of these new materials are very different from those 

of the steels. It is important to be able to model and predict the behaviour of these 

new materials, which should be possible using the computer program Damage-(XX); 

but the success of this will require further research effort. At each stage of devel- 

opment the program has to model various test specimens and component structures 

consistently to reproduce observed experimental results. 

With the availability of increasingly faster computers having larger memories 

and with their current parallel processing capability, larger finite element problems 

can be solved with a reduced overhead. Hence, the computer program Damage- 

(XX) may be used as a Computer Aided Design and Research Tool. The Computer 

Aided Design methodology of such a computer package is shown in the flow diagram 

in Fig. 10.1. Here as an example, the component to be designed is a welded pipe 
bend for an aircraft engine. The design engineer initially forms the 3D-geometry of 
the component using the Solid Modeller. He specifies the working conditions for the 

pipe, in terms of operating stresses, temperatures, any special corrosion resistance and 
the component lifetime required. An expert system analyses the requirements and 

chooses the material with the optimum properties, from which the pipe. will be made. 
The solid model is converted into a finite element mesh and boundary conditions 
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are applied appropriate to the working conditions. A continuum damage mechanics 
finite element solution is obtained for the problem providing a prediction of the de- 

formation and failure of the pipe in service. This deformation and failure information 

is processed with an advanced animated graphics facility, which provides a person 
to computer interface, presenting all the information to the designer in a succinct 

way, enabling him to make speedy decisions to modify parts of the original design 

using the Solid Modeller. Another finite element solution may be performed without 

making costly prototypes, until the desired component performance is achieved. The 

final component specifications are automatically drafted in the form of an engineering 
drawing or a file which may be processed by a Computer Aided Machining centre and 
Welding center, ' which will automatically profile then weld the final product. As new 

materials become available, the materials database may be up-dated and the new ma- 

terial incorporated into the same design procedure. The developed algorithms may 
be linked and mounted as a package into a computer workstation for use in industry. 

The potential of the creep continuum damage method, and the predictive 

capabilities of this method, embodied in the comuter program Damage-(XX), has 

been demonstrated; and, that future development of this program will result in the 

formation of a major research and design tool. 
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Figure. 10.1: Advanced Computer Aided Design Route. 
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Bless and praise we famous men- 

Men of little showing- 

For their work continueth, 

And their work continueth, 

Broad and deep continueth, 

Great beyond their knowing! 

Stalky & Co., Rudyard Kipling. 


