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iiAbstractThis thesis is concerned with the issue of �nding an accurate, e�cient and robustnumerical solution technique for solving mathematical models of reactive ow. Twomain issues of concern when solving these problems are large computational costsand numerical instabilities and inaccuracies. Over the past decades, many numericaltechniques have been suggested for the solution of reacting ow problems. The workin this thesis is part of the continuing trend to �nd schemes which can solve reactingow problems e�ciently and robustly.The technique described in this thesis uses the method of lines in which theunderlying system of PDEs is discretized in space to give a system of ordinary dif-ferential equations in time. For time integration we have implemented the extendedstability region method (NDF2) of Klopfenstein [47] and the analysis has shown thatthe integration step size has increased by a factor of 1.26. The spatial discretizationis achieved by using ux limited �nite di�erence and appropriate Riemann solverschemes in one and two space dimensions.The use of the method of lines while solving PDEs governing both atmosphericdispersion as well as combustion problems results in a large system of ODEs whichare highly coupled and sti�. In solving large sti� ODE system in time the approachof Verwer using a Gauss Seidel method for the sti� chemistry terms is extended tocombustion problems. The method has the additional advantage that the storagerequirement has been reduced considerably compared to conventional linear algebramethods.The general trend while solving these ODEs is to control the local error per step.In this thesis we have extended the novel technique of controlling the local errorper unit step with a time tolerance that varies with the spatial error. Techniquesare developed for estimating the growth of the spatial error locally in time onmodel problems and then applied to both atmospheric and combustion problems.Numerical results are used to show that the approach works well, is automatic andcan compare with the standard approach based on the CFL condition.
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ivNomenclaturea Advection velocityÂ Amplitude in trial solution used for the stability analysisA Two dimensional mesh area~A, ~B Parameter used to specify eigenvalues and eigenvectors and otherrelated quantities along x-direction and y-directionc Courant number~c Sound velocitycp;i Speci�c heat at constant pressure of ith speciesc298p;i Speci�c heat at constant pressure of ith species at 298Kcp Speci�c heat at constant pressurecv Speci�c heat at constant volumeD̂ Diagonal matrixest Spatial discretization errorêst Local growth in time of the spatial discretization errore Internal energy per unit masseV̂ Error when approximation has been usedto treat advection term explicitlyE Total energy per unit volumeEi Emission sources for ith species~En Growth of temporal error at time tnÊn PDE global errorEa Experimental activation energyF(tn;V(tn)) Primary ODE function resulting from discretization of advectionterm and integration of the source term~Ff (tn;V(tn)) Discretization of advection term with second orderupwind scheme~Fs(tn;V(tn)) Integration of source term with trapezoidal rulef(u) Flux vector along x-directionG(tn;V(tn)) Auxiliary ODE function to �nd auxiliary solutionGf (tn;V(tn)) Discretization of advection term to �nd auxiliary solutionGs(tn;V(tn)) Integration of source term to �nd auxiliary solutiong(u) Flux vector along y-direction



v~gi1 Dry deposition velocity of ith speciesĝi Dimensionless factor represents the scavenging ratioof ith specieshi Speci�c enthalpy of ith specieshfi Heat of formation of ith speciesh Speci�c enthalpy of a mixtureHi Total Enthalpy of ith speciesH Total enthalpy of a mixtureHmix Mixing height~j Photolysis rate constantI Identity matrixÎ Precipitation intensityJ Jacobian matrixJs Jacobian matrix of the source termJf Jacobian matrix of the ow termki1 Dry deposition coe�cient for ith specieski2 Wet deposition coe�cient for ith speciesKx Di�usivity coe�cient in x-directionKy Di�usivity coe�cient in y-directionle(tn) Time local error at time tnL 1D computational domainL̂ Lower triangular matrixL(w) Diagonal matrix of loss termsL(i) ith left eigenvectors~m Total moles of a mixture~mi Moles of ith species~M Total mass of a mixture~Mi Mass of ith speciesM� The number of physical or chemical modelled considered inan atmospheric dispersion problemNS The number of speciesp Pressurep̂Vc Derivative of Roe-averaged pressure with respect



vito conserved variables~P Wave number used in the trial solution forhaving stability analysisP � The physical or chemical process being modelled inan atmospheric dispersion problemre Relative error in wave speedPi Production term of ith speciesq Order of a methodR Speci�c gas constant for a mixture of gases~R Speci�c gas constant for the perfect gasRi Speci�c gas constant for ith speciesRu Universal gas constantR(i) ith right eigenvectorsRe Real partS Speed of the discontinuitySf Numerical solution operator for the system ofconservation lawsS Numerical solution operator for the system of ordinarydi�erential equationSexact Exact wave speedSnumerical Numerical wave speedt timetf Final time at which solution is requiredT TemperatureTE Truncation errorTEx Truncation error in spatial discretizationYi Mass fraction of ith speciesXi Mole fraction of ith speciesWi Molecular weight of ith speciesW Molecular weight of a mixtureŴn Iteration matrix~W Solution of variational equationu Vector of dependent variables
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Chapter 1IntroductionIn 1917, the British Scientist, L.F. Richardson made the �rst attempt to predictthe weather by attempting to solve partial di�erential equations by hand [84]. Itis supposed that this was �rst step towards the beginnings of Computational Fluiddynamics (CFD), an important part of scienti�c computing.The increasing availability, power and sophistication of computer software andhardware have led to signi�cant growth in the �eld of computational uid dynamicsin a variety of �elds including airplane design, car design, ship design, studies ofblood ow, oil recovery, oceanography, meteorology, and astrophysics.We will consider CFD in the �elds of the atmospheric and combustion problems.Currently the active area of the research is the numerical approximation of PDEswith sti� non-linear source terms. Such problems come from the modelling ofatmospheric chemistry, non-equilibrium gas dynamics, etc.As regards atmospheric chemistry the adverse e�ects of pollutants have made itvital to study thoroughly their production and loss. Important examples of pollu-tion problems include regional oxidants, acid deposition, destruction of stratosphericozone, and the built-up of greenhouse gases, etc. It is also a fact that the harmfule�ect of the pollutants is not restricted to the localities of the emissions, but rathercan be propagated over a widespread area. Considering the health e�ects of pol-lution, air pollution is a growing threat not only to human welfare but also otherliving species. The basic tools to provide detailed knowledge about the emissionand dispersion include laboratory experiments, �eld studies and modelling analy-sis. Laboratory studies, however, are unable to explain the complex atmosphericphenomena in detail. Consequently a mathematical model that allows multiple pro-1



CHAPTER 1. INTRODUCTION 2cesses to occur simultaneously is required for data analysis and scienti�c inquiry.The governing equations for such models are non-linear, highly coupled and ex-tremely sti� (see for example [94]). So, the complexity and nonlinearity of suchmodels in general exclude the possibility of having an analytical solution, even inextremely simpli�ed cases. Therefore, numerical methods are the only feasible al-ternative to meet the requirements for the simulation. This process divides timeand space into discrete intervals, and then de�nes discrete variables that approxi-mate the continuous functions, and we end up with the equations in a form suitablefor numerical computation. We expect the corresponding numerical solution toconverge and become a better representation of the continuous uid.A di�cult problem in the computational solution of such problems is that ofensuring that the numerical solution does not have unphysical oscillations.It has been accepted for a long time that upwind di�erencing can eliminate oscil-lations in the neighbourhood of shock wave at the expense of low accuracy. On theother hand, central di�erence schemes produce a good solution in smooth region,but are prone to oscillations in the neighbourhood of shock waves. These oscilla-tions can be suppressed only by the introduction of an additional dissipative term(see for example [44]). Also upwind di�erencing can be designed to have the totalvariation diminishing (TVD) property in one dimension, which suppresses the spu-rious oscillations [36]. The only drawback is that they require specifying a completeeigensystem for the problem. In practice, this can involve considerable analyticalwork as well as some complications when the eigensystem lacks uniqueness [30].The solution to one-dimensional Riemann problem describes the evolution of asingle planar discontinuity separating two di�erent but uniform uid regions. Thissituation arises while solving problems related to Euler equations of gas dynamics ifwe consider only inviscid ow. So the solutions may consist of shocks, contact dis-continuities and rarefactions. In a shock, the density, energy, pressure, and velocityare all discontinuous. At a contact discontinuity, the density and energy are dis-continuous, but the pressure and velocity are continuous. At these discontinuities,conservation laws give analytical jump conditions that can be used to determinehow the discontinuities evolve in time. Godunov �rst incorporated this analyticalsolution to the �nite-di�erence method to improve accuracy at discontinuities (see[35]). His basic idea was to solve a Riemann problem cell-by-cell or region-by-regionin the ow, and then to piece these local analytic solutions together.



CHAPTER 1. INTRODUCTION 3Using this approach an upwind code comprises an interpolation procedure cou-pled with an approximate Riemann solver (ARS). The primary role of the ARS isto evaluate the ux at the interface given the states to the left and right of theinterface.In nonequilibrium gas dynamics, chemical reactions between the constituentgases must be modelled along with the uid dynamics. While solving such reactingow problems numerically, new di�culties arise that are absent in non-reactingows. Aside from the increase in the number of equations, the main di�cultiesstem from the possible \sti�ness"of the reaction terms and spurious oscillationsthat have been reported if insu�cient spatial and time resolution has been used (seefor example [19, 52]). Moreover the transport variables may present such stronggradients, as to practically make results irresolvable on any mesh of reasonable size.Hence such cases require a careful treatment of the advection terms. This is due tothe fact that such ows have a strong non-linear component that is mainly drivenby advection coupled with propagation of the species concentration.A variety of e�cient numerical schemes for hyperbolic systems of conservationlaws have been developed in the recent past. These schemes evolved following theunderstanding of fundamental concepts from the theory of non-linear hyperbolicPDE's, such as characteristic surfaces, existence, uniqueness, and solution of theRiemann problem, etc, (see, for example, Courant and Hilbert [22], Lax[50, 51],any Yee[93]). Higher-order schemes, such as the ENO (essentially non-oscillatory)schemes, (Harten et al. [37]), the MUSCL scheme (van Leer [85]), the PPM scheme(Collela and Woodward [20]) and Roe's approximate Riemann solver [65] can beviewed as extensions of Godunov's original scheme to second-order accuracy andthe method of Osher [59] is widely used. Recently Donat and Marquina [25] havedevised an improved ux formula, and discussed the failure of Roe's approach onsome problems.The aforementioned schemes have been developed by making use of the theoryof characteristics for the system of hyperbolic PDEs in one space dimension. Theyemploy the characteristic decomposition of an equation into a set of scalar �elds,at computational cell to evaluate the ux term at the cell interface. A discontin-uous solution can be computed by supplying the characteristic equation with theappropriate jump relation. van Leer et al. [87] compared the earlier methods forthe Euler and Navier-Stoke equations and suggested the use of Osher [60, 26] and



CHAPTER 1. INTRODUCTION 4Roe's [65] schemes for their ability to accurately represents ow phenomenon suchas shocks, and contact discontinuities.With the increasing interest in high-temperature and chemically reacting ows,these methods have recently been extended to real gases by many researchers, seefor example [18, 53]. Collela and Glaz [18] presented a numerical scheme for ob-taining the ux from the exact solution of the Riemann problem for a real gas,that is with a non-ideal equation of state(EOS). Vinokur and collaborators (see[76]) have produced a sequence of papers on the extension of these formula to realgases, in which both the analysis of the numerical problems and the formulas pro-duced become more and more sophisticated. Glaister [33] has presented an elegantextension of Roe's \Approximate Riemann Solver", while Liou et al. [53] presentdi�erent extensions to these formulas backed by a careful analysis.A very natural wish is to extend to non-equilibrium chemistry, which meansthat the concentration of the concerned species depend not only on the transportof the uid, but also on the progress of chemical reactions, which implies that apriori determination of an EOS is not possible, and the EOS has to be constructedalong with the solution process.Just as for gases in equilibrium, the literature on numerical ux function fornon-equilibrium gases is rapidly expanding. Many solutions have been presentedto generalise Roe's solver (for example [2, 76]) as well as Osher's solver[1, 79] andreferences therein. More recently Fedkiw et al. [29] have produced the results forthermally perfect gas ows with chemistry with alternate route (ENO schemes). Inall these cases very complex analysis is involved, and it may be impossible to derivesimple enough expressions which can lead to an e�cient calculation of uxes, hencewe have extended the Donat and Marquina approach [25] to include non-equilibriumchemistry.The next task is to use a suitable time integration algorithm for solving ODEsarising from PDEs with the implementation of the method of lines. While choosingthe time integration algorithm it is important that it has the property of keeping thetime step as large as possible without sacrifying accuracy. Full details of the timeintegration algorithm can be found in Berzins et al.[6, 8, 9]. Of the many methodsthat may be used two are: the theta method (see Berzins and Furzeland [9]) andthe Gear backward di�erentiation (BDF) formula up to order 5 (see Berzins [6]).In order to deal with the chemical kinetics arising from the atmospheric chemistry



CHAPTER 1. INTRODUCTION 5we have used the extended stability region formula of Klopfenstein [47] and haveachieved very promising results in combination with Gauss Seidel iteration.The traditional approach in the time integration, while solving the ODEs is toeither control the CFL number ([84]) or the local error per step. We have controlledthe local error per unit step based upon the error balancing approach ([7, 49]), whichwill be described in Chapter 4.1.1 Mathematical FrameworkComputational models describing the chemical transformations and transport ofspecies have an essential role in understanding the complex processes which leadto the formation of pollutants such as greenhouse gases, acid rain and photochem-ical oxidants. An accurate and detailed description of the distribution of pollu-tants concentrations is needed over large spatial regions in order to compare with�eld measurements calculations. It is necessary to understand the mixing betweenplumes generated from the concentrated source and distributed urban and biogenicemissions, which is a di�cult task because there are many processes that a�ect thefate of the plumes including reaction, deposition and transport (see for example[82])The general form of the atmospheric dispersion equation in Cartesian co-ordinatescan be written as (for detail see [88])@u@t = P�1(u; x; y; z; t) + � � � + P�M�(u; x; y; z; t); (1.1)where the vector u is the concentration of the species being considered, x, y, z arethe Cartesian Co-ordinate and t is the time [88]. The function P�i i = 1; � � � ;M�represents the physical and chemical process that are to be modelled. They mayconsist of advection, di�usion, dry deposition, wet deposition, fumigation, emissionand chemical reaction (see [88]). The full equation of the model described in thisthesis (see section 2.4) clearly is of the form (1.1), and for simplicity we havecon�ned ourselves to advection and chemistry of the concerned species in modellingatmospheric ows.In nonequilibrium gas dynamics, the chemical reactions between the constituentgases must be modelled along with the uid dynamics. The coupled system of thisform also arises in combustion problems. In contrary to the simple (to some extent)



CHAPTER 1. INTRODUCTION 6atmospheric dispersion equation (1.1), the governing equations are either the Eulerequations or Navier Stoke equations if we consider viscous e�ects, which have beenmodi�ed to include multiple gas species and appropriate chemical reactions. Thediscontinuity presented in the initial data will break up into a combination of shocks,rarefaction and contacts as the evolution proceeds in time (see for example [58, 84]and Chapter 2), which is not the case with atmospheric dispersion problems.Hence restricting our attention to inviscid ow, we have essentially the EulerEquations of gas dynamics coupled with source terms representing the chemistry.In two space dimensions these equation take the formut + f(u)x + g(u)y =  (u); (1.2)where u is the vector of dependant variables including momentum, energy, densityand concentration for each species in the reacting mixture. The ux functions fand g describe the uid dynamics as in the Euler Equations, while the source term (u) arises from the chemistry of the reacting species (see for example [28, 83]).The next task is to �nd the solution of such complex system of partial di�erentialequations. The most popular techniques include the method of lines and operatorsplitting techniques. In this thesis no attention has been paid to operator splitting,because we have concentrated on the method of lines. When operator splitting isbeing implemented, instead of integrating the equations(1.1) and (1.2) at once, theintegration is done for each process separately. This implies that following sequenceof di�erential equations is solved over the time interval [t0; t1] for the atmosphericequation 8><>: @ui@t = P�i(u; x; y; z; t); for i = 1; � � � ;M�ui(x; y; z; t0) = ui�1(x; y; z; t1); (1.3)with u0(x; y; z; t1) = u(x; y; z; t0) and each P�i(u; x; y; z; t) represents the physicaland chemical process that is to be modelled, and M� is the total number of processesbeing modelled. With this technique the solution of equation (1.1) at time t1, theresults of the last step in equation (1.3) is taken, i.e. u(x; y; z; t1) = uM�(x; y; z; t1),and the error made in the approximation u(x; y; z; t1) is �rst order in time. If inthe next step from t1 to t2, the order of the processes have been reversed, the errorin the solution at t2 is second order in time. This is called Strang splitting and iscommonly applied for the atmospheric problem (see [88] and references therein),and similar procedures can be applied to the combustion problem (see [28]).



CHAPTER 1. INTRODUCTION 7The advantage of the operator splitting is that the chemistry is treated sepa-rately, hence the most e�cient numerical technique can be used.The disadvantage of operator splitting is the splitting error. In reactive owproblems low level accuracy often su�ces, however, which may justify he applicationof operator splitting in such cases.As explained in [28], the Strang splitting technique does not always work well incase of combustion problems. The reason is, one cannot split apart the two spatialconvection terms aparts of the 2D Euler equations, beacuse the truncation error dueto noncommutivity of operators causes a 'blow-up' of the solution (see for exampleMcRae et al.[57]). This technique has worked well in case of Fedkiw [28], as thesource terms are not overly sti�, and for the very sti� source term, the temperatureminimizing procedure has been described.The method of lines is frequently used to solve the set of time-dependent, non-linear coupled partial di�erential equations. To develop a method of lines model,the system of conservation equations and its associated boundary conditions are�rst discretized. This usually takes the form of �nite di�erence formulae of higherthan second order and the resulting system of di�erential equations is given by_U = FN (t;U(t)); U(0) given; (1.4)where the vector U represents the species concentration in case of the atmosphericproblem and density, momentum, energy and species concentration in case of thecombustion problem.A suitable algorithm is then chosen to integrate the resulting coupled ordinarydi�erential equation in time, hence existing packages for ODEs can be used. His-torically Liskovets [54] introduced this techniques and then Bledjian [13] applied itto the structure of laminar ame. The method of lines has been modi�ed by Galant[32] whose uses an implicit multi-step method to integrate the resulting sti� ODEsin time. His problem was related to the ozone-oxygen ame system and uses theGear integration method.In order to solve the chemical equations with su�cient accuracy, a numberof time steps with an implicit or semi-implicit solver is required (see Chapter 3).The advection can be computed using explicit integration techniques. This impliesthat when advection and chemistry are solved without operator splitting, a (semi)implicit method would be needed to solve this process in a coupled way because



CHAPTER 1. INTRODUCTION 8of the chemistry. Hence with the method of lines a prohibitedly large system ofnonlinear equations has to be solved, which is computationally very expensive andhence unattractive, because more time steps are taken than necessary for advectionalone. Hence operator splitting provides a way to limit the total computationneeded.1.2 The Present WorkThe main aim of the present work is to present a possible global approach to accu-rately solving the reacting ow problems arising in both atmospheric and combus-tion modelling. This goal has been achieved by using the new approach i.e. con-trolling the local error per unit step (LEPUS) rather than the classical approach ofcontrolling the local error per step (LEPS). Also the application of grid re�nementis one of the numerical technique to be implemented for the reacting ow problems.The monitor function we have used is the spatial error rather than the classicalmonitor function i.e. spatial derivatives and cosine function,[62]. The key issues ofthe research are:� Grid re�nement: The technique of grid re�nement o�ers the possibility tore�ne the grid dynamically in areas with large solution gradients. The re�ne-ment technique o�ers higher resolution where necessary. Where no re�nementis needed, only computations on the coarse base grid are done. For example,a problem with a single discontinuity should ideally have a very �ne mesh inthe vicinity of the discontinuity, whereas a coarser mesh is adequate in therest of the domain. On the other hand, the remeshing is quite computation-ally expensive and for some problems the saving made on the reduction ofmesh points may be outweighed by the additional calculations required forremeshing. The e�ciency of the remeshing process depends upon the choiceof the monitor function and other remeshing criteria, and on the frequency ofthe updates. The frequency of updates should be chosen carefully so that themesh keeps up with the evolving solution while avoiding unnecessary updates.As regards the monitor function we have used the spatial error rather thanemploy the existing technique of using the spatial derivatives (tends to in�nityaround a shock) or cosine functions [62], for example.



CHAPTER 1. INTRODUCTION 9� Error Balancing Technique: While solving PDEs the error may be decomposedinto spatial discretization error and temporal error. In general it is helpful ifthe temporal error does not corrupt the spatial error. We have tried to balancethese errors in such a way so that the temporal should not corrupt the spatialerror. This approach is already working well on both hyperbolic and parabolicpartial di�erential equation, see for details [7, 49], with no source term. Wehave applied this approach �rst to the Leveque and Yee problem [52], thento reacting ow (Dispersion and Combustion ) problems. The comparison ofnumerical results shows that the new method is e�cient and reliable. Thelocal growth in time or the spatial error measured in this way has been usedto re�ne the 1D grid.� Solution Methods for Chemical Kinetics Problems: The computationally mostexpensive part of the reacting ow is the the numerical treatment of theChemical Kinetics. Hence much research has been recently put into gettingfast and e�cient method for solving ODEs arising from chemistry. We haveimplemented the NDF2 (Extended Stability region BDF2) method developedby Klofenstein [47] with the Gauss Seidel iteration [90] as an e�cient solverfor the sti� chemistry terms.1.3 Overview of ContentsThe primary aim of this work is to present an e�cient, robust and general purposenumerical solver for reacting ow problems. Chapter 2 provides the description ofmathematical model of reacting ows associated with atmospheric as well as com-bustion problems. The governing equations of the model as well as the techniquesof the discretization have been presented.Chapter 3 outlines special purpose solvers for systems of sti� ODEs arising fromchemical kinetics. The emphasis is on e�ciency for modest accuracy requirements.Chapter 4 will give a general description of the numerical solution of a modelproblem. Stemming from controlling the local error per step (LEPS) a novel tech-nique of controlling local error per unit step(LEPUS) has been introduced. Thesolution obtained with the new technique (LEPUS) has been compared with thealready existing technique (LEPS). Additionally the new technique has been suc-



CHAPTER 1. INTRODUCTION 10cessfully implemented for grid re�nement for the 1D case only. Chapter 5 gives anoverview of the reacting ow problems.In Chapter 6 conclusions are drawn regarding the e�ectiveness of the approachadopted in this thesis.



Chapter 2The Governing Eqns and SolutionTechniques2.1 IntroductionIn this chapter the governing equations for modelling air pollution dispersion andcombustion will be described. The major task of this thesis is to �nd a bettermethod for the numerical solution of such chemically reacting ow problems. Whenan attempt is made to solve the reacting ow equations numerically, new di�cultiesarise that are absent in non-reacting ows.Aside from the increase in the number of equations, the main di�culty stemsfrom \sti�ness"of the reaction terms. This \sti�ness"results from a combination ofcoupled fast and slow chemical reactions in the same scheme [58]. Fast reactions,as is often the case with combustion, create gradients that can be too large toresult resolve on a mesh of \reasonable size". Moreover such ows may have abroad spectrum of time and length scales, thus a�ecting the stability limits forcomputations.Obviously it would be desirable to solve reactive ow equations in such a waythat avoids numerical oscillation of the solution, and hence unphysical solution val-ues. The two simple reactive ow problems studied here are a combustion problem[28] and an atmospheric dispersion problem [92, 94]. In this chapter the two prob-lems are described together with an outline of how the method of lines is appliedto solving them. 11



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 122.2 General Conservation LawsA conservation law states that the rate of change of the total amount of substancecontained in a �xed region G is equal to the ux of that substance across the bound-ary of G. Any continuum physical system is described by the law of conservationof mass, momentum and energy. Hence, according to the de�nition of the conser-vation law for each conserved quantity, the rate of change of the total amount inthe region is given by its ux (convective or di�usive) through the region boundary,plus whatever internal sources exist. The conservation laws in integral form arethen given by ddt ZG udV + Z@G f(u)dA = ZG  (u)dV; (2.1)where the vector u represents the conserved quantity, f(u) is the ux vector,  (u) isthe source term and the volume and surface integral indicated are over the domainG and its boundary @G. Assuming that G is to be an in�nitesimal volume andapplying the divergence theorem, we get the di�erential form of the conservationlaws @u@t + r:f(u) =  (u); (2.2)and in one space dimension, the di�erential form of conservation laws can be written@u@t + @f(u)@x =  (u); (2.3)whereu = 266666664 u1u2...um 377777775 f(u) = 266666664 f(u1)f(u2)...f(um) 377777775  (u) = 266666664  (u1) (u2)... (um) 377777775 :This is system of m conservation laws in m unknowns ui that depend on spacex and time t. Here ui are the dependent variables and x, t are the independentvariables.Many physical models can be described in terms of systems of such equations.For convenience, we will consider an equation in one dimension, then the di�erentialconservation law takes the compact form@u@t + @f(u)@x =  (u): (2.4)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 13In the case when u is a vector then bold face letters are used to indicate this.2.3 Hyperbolic Conservation LawsThe general conservation law equation (2.3) is called the hyperbolic conservationlaw if the Jacobian matrix de�ned by (see [84])J(u) = @f(u)@u ; (2.5)has real eigenvalues �i(u) and a complete set of linearly independent eigenvectorsR(i)(u); i = 1; � � � ;m which we assume to be ordered as�1(u) < �2(u) < � � � < �m(u);R(1)(u); R(2)(u); � � � ;R(m)(u): (2.6)The above equations show that eigenvalues and eigenvectors depend on u, andsometimes for the sake of brevity we shall omit the argument u.The hyperbolic conservation law is of interest because the equations of compress-ible uid ow reduce to a hyperbolic system, the Euler equations, when the e�ectsof viscosity are neglected. If we consider viscous e�ects also, then the governingequations are the compressible Navier-Stokes equations.2.3.1 Characteristic FieldsConsider the hyperbolic system of m conservation laws as given by the equation (2.3)with the eigenvalues �i and corresponding right eigenvectorsR(i). The characteristicspeed �i de�nes a characteristic �eld.The characteristic �eld is called linearly degenerate if following identity holdsr�i:R(i)(u) = 0; 8u 2 <m; (2.7)and in the above equation <m represents the set of real-valued vectors of m com-ponents and r�i is the gradient of the eigenvalue �i de�ned asr�i =  @@u1�i; @@u2�i; � � � ; @@um�i! : (2.8)The characteristic �eld is called a genuinely nonlinear ifr�i:R(i)(u) 6= 0; 8u 2 <m; (2.9)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 14and in the above equation <m and r�i have the similar meaning as de�ned imme-diately above.In the case of the 1D Euler equations there are three characteristi �elds corre-sponding to the three eigenvalues �(i) i = 1; 2; 3. The �rst and the second �elds aregenuinely non-linear, while the second �eld is linearly degenerate (see for example[84]).2.4 Atmospheric Dispersion ProblemsThe increasing level of air pollution makes it ever more desirable to help increaseawareness and understanding of the problem. One example is that of power stationplumes which are concentrated sources of NOx emissions [41]. The photo-chemicalreaction of this NOx produced by the power station with polluted air leads to thegeneration of ozone at large distances downwind from the source. The transportof the plumes and chemical reactions are modelled by the atmospheric di�usionequation and in the 2D case we have the equation:@wi@t = �@(uwi)@x � @(vwi)@y+ @@x  Kx(@wi@x )!+ @@y  Ky(@wi@y )!� (ki1 + ki2)wi + Ei + R̂i(w1; w2; :::; wNS); i = 1; 2; :::; NS; (2.10)where� NS represents the number of species being modelled,� wi represents the concentration of the pollutants,� u, v are wind velocities along the co-ordinate axes,� Kx;Ky are di�usivity coe�cients,� ki1 ; ki2 (i= 1, 2, ..., NS) represent the dry and wet deposition coe�cients,� Ei describes the emission sources for the ith (i =1, 2, ..., NS) compound,� R̂i represents the chemical reactions for ith compound (i= 1, 2, ..., NS).



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 15Note the chemical source term part R̂i, of the above equation for X = X(x; y) arisesfrom the chemical reactions is modelled by the systems of the ordinary di�erentialequation(ODE) (see Chapter 3). The ODE system describing the kinetic equationsconsists of reactions which have large variations in their time scales thus givingrise to classically sti� problems of ordinary di�erential equations. The numericaldi�culty associated with such types of problem is that some reaction time scaleswill be much faster than the scales on which the solution is evolving and on whichone would like to compute. This happens when the fast reactions are in nearequilibrium. Sti� ODE solvers often deal with this situation by approximating truefast transients in a stable fashion using implicit methods, and then taking timesteps modelling the slower transients with the required accuracy.One example of such an ODE system is the simple chemical mechanism asgiven in appendix (B.0.2) which contains only 7 species and 7 coupled PDEs, butdoes however represents the main features of a tropospheric mechanism, namelythe competition of the fast inorganic reactions with the slower reactions of volatileorganic compounds. This separation in time-scales generates severe sti�ness and sorequires the use of an implicit sti� ODEs method.2.4.1 Linear AdvectionIn Cartesian co-ordinates the dispersion of the pollutants in two space dimensionsis given by @wi@t = �@(uwi)@x � @(vwi)@y ; i = 1; 2; � � � ; NS; (2.11)where wi, u , v have the similar meaning as given by equation(2.10). Williamson(see references in [88]) has described desirable properties for advection schemes-the most important is that the scheme be positive. Negative solutions may lead toinstabilities when dealing with chemical equations and may make the solution of thechemical scheme more di�cult. Non-positive schemes may also lead to overshootin the numerical solution. These arguments imply that the advection scheme needsto be positive. For this reason we have made use of positivity preserving schemesbased on the van Leer limiter [7].



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 162.4.2 Dry DepositionWe are interested in �nding the general path of the trace components from theirsource to their sinks. Dry deposition is one of the physical removal processes inwhich the species are absorbed irreversibly by oil, water or plant surfaces ( see [92]).In equation (2.10) the term ki1wi ( i= 1, 2, ...,NS) represents the dry depositionprocess and the coe�cients ki1 are written as (see [94])ki1 = ~gi1Hmix ; (2.12)where Hmix is the mixing height (a function of both space and time) and ~gi1 is thedry deposition velocity of the ith pollutants.2.4.3 Wet DepositionAnother physical removal process of the trace components during their transporta-tion is wet deposition. In contrast to dry deposition, in wet deposition the tracecomponents are incorporated into precipitation elements ( clouds, rain droplet, andaerosols). Wet deposition (incorporation of trace components into falling precipita-tion) ('washout') or cloud droplets(`rainout`) is only signi�cant for those species thatare water soluble. The factor ki2wi in equation (2.10) represents the wet depositionfactor and ki2 is the wet deposition coe�cient, which is given as (see [94])ki2 = ĝiÎHmix ; (2.13)where Î is the precipitation intensity ( measured in cm/s),Hmix is the mixing height( a function of both space and time; measured in cm) and ĝi is the dimensionlessfactor represents the scavenging ratio of the ith pollutant.2.5 PhotolysisAn atmosphere is a giant photochemical reactor in which, the light source is thesun. Solar radiation not only heats planetary atmosphere, but it also drives much ofthe disequilibrium chemistry through photochemically initiated process. Radiationgenerally in the visible, and ultraviolet regions, either, fragments atmospheric con-stituents to produce atoms and ions or excites the constituents, without chemicalchange, to alter their reactivity (see for example [92]). Fragmentation of a chemical



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 17species following absorption of light is one of the most important photochemicalprocess in atmospheric chemistry.The photolysis rate constants, which depends on the solar zenith angle, has beenwritten as �rst order rate constant in the form(see for example [82])~ji = ~aiexp(�~bisec(�)); (2.14)where � is the solar zenith angle, ~ai, ~bi are speci�c for each chemical reaction and iis the number of reactions. The solar zenith angle � depends upon the time of day(given by the local hour angle LHA), the time of year (given by the solar declinationangle DEC) and the latitude (LAT), then the cosine of the solar angle is given bycos(�) = cos(LHA)cos(DEC)cos(LAT )+ sin(DEC)sin(LAT ): (2.15)Temperature-dependent rate constants have been evaluated by a standard Arrhe-nius expression given as � = AT ~�exp(� EaRuT ); (2.16)where Ea is an experimental activation energy, Ru is the universal gas constant andT is the temperature is being regarded as a function of time of day.In order to have the idea of variation of photolysis rate constant with respectto time we have used simple chemical mechanism (see appendix(B.0.2)). Figure(2.1) shows the variation of photolysis rate constants in molecules cm�3s�1 of �rstand third reaction for two days as a function of time and zenith angle as givenby equation (2.15). For these calculations, we have taken solar declination angle(DEC) 23:270, the latitide has assumed 500 and the local hour angle is given byLHA = �(1:0 + t4:32 + 4)0; (2.17)where t is time in seconds. Figure (2.1) shows the sudden rise of photolysis ratecoe�cient between 6AM and 6PM and the source terms will be sti� during thistime.2.6 Combustion ProblemsThe dynamics of compressible materials, such as gases or liquids at high pressureis governed by the Euler equations, and if we include the viscous e�ect then the
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Variation of photolysis rate constant Variation of photolysis rate constantof �rst reaction of third reactionFigure 2.1: Variation of photolysis rate constant as a function of time and solarzenith angle in molecules cm�3s�1.governing equations are the Navier-Stokes equations. For the computation of reac-tive ows in combustion devices the conservation laws of species mass, momentumand energy have to be solved and the compressible Navier-Stokes equations can bemodi�ed to include multiple gas species and appropriate chemical reactions.The standard approach while solving the reactive ow is that the total mixture isconsidered as a single compressible uid, together with the species-averaged densitymomentum, and energy evolving according to the conservation laws. Additionally,the mass fraction of each species is governed by separate continuity equations. Thesecontinuity equations are strongly coupled through the chemical reactions, and theyare also coupled strongly to the equations for mixture via the e�ect of reactions ontemperature and pressure [58].These coupled equations are a set of convection equations with sti� source termsadded on to model production and destruction of species in the mixture. Thegoverning equations in vector notation and conservative form dealing with unsteadytwo dimensional, multi-component ows of compressible reactive gas are (see Tonet al. 1994 [83])are given asut + fx(u) + g(u)y = fv;x(u) + gv;y(u) +  (u); (2.18)where u is the vector of conserved variables, f(u), g(u) represent the invisicid partsof the uxes, fv(u) and gv(u)v are di�usive ux vectors and  (u) is the source termcontaining species mass production (or consumption) rates. These vectors have the



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 19following forms:u = 26666666666666666666664
��u�vE�Y1�Y2...�YNS�1

37777777777777777777775 f(u) = 26666666666666666666664
�u�u2 + p�uv(E + p)u�uY1�uY2...�uYNS�1

37777777777777777777775 g(u) = 26666666666666666666664
��uv�v2 + p(E + p)v�vY1�vY2...�vYNS�1

37777777777777777777775 ;fv(u) = 26666666666666666664 0�xx�xyu�xx + v�xy �Qx��uY1��uY2...��uYNS�1
37777777777777777775 gv(u) = 26666666666666666664 0�xx�xyu�xx + v�xy�Qy��vY1��vY2...��vYNS�1

37777777777777777775  (u) = 26666666666666666666664
0000_w1_w2..._wNS�1

37777777777777777777775 :Where �, u and v represent the mixture density, components of mixture velocity, Eis the total energy per unit volume, p is the mixture pressure, Yi is the mass fractionof ith species, �xx, �xy and �yy are the components of the viscous stress tensor, Qxand Qy are the heat ux vectors, _wi stands for the mass rate of production of ithspecies, and �nally NS represents the number of species in the mixture.The �rst four equations describe the convective transport of mass, momentumand energy in a gas in two spatial dimensions. The other equations are the speciescontinuity equations and the source terms are due to the chemical reactions. On theother hand the chemical reactions cause an abrupt change in the temperature duringcombustion, hence it is essential to include accurately the temperature dependenciesin the equations of state used for the gas species. The most realistic model thatincludes the temperature dependencies is that of a thermally perfect gas, and forwhich the heat capacity can be a general function of temperature. Another modelis the caloric perfect gas where heat capacity is constant for each species and is afunction of the mass fraction (see for example [28]).While solving the combustion problem, the hydrogen-oxygen system is an at-tractive object of study because its detailed reaction mechanism is well understood



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 20(in contrast, for example, with hydrocarbon oxidation), because it is the simplestrealistic combustion system, and because of its potential as a fuel. The presentproblem consists of the detailed 37-step chemical reaction scheme relating eightspecies (H2, O2, O, OH, H, HO2, H2O2 and H2O) (see for example [28]).2.6.1 Linear AdvectionThe conserved quantities represented by the vector u and (mass, momentum, energyand species concentration) are transported by convective and/or di�usive uxes.The di�erence between the convective and di�usive uxes is that the di�usive uxis driven by the gradient, while the convective ux exists even in the absence of thegradient. In this section we will take into account the convective transport, ignor-ing the di�usion. The reason is that the convective transport requires specialisednumerical treatment. The di�usive uxes can be treated by standard numericalmethods. The important physical phenomena exhibited by convective conservationare the contact discontinuity, shocks and rarefaction fans. Here we will give a briefdiscussion of these phenomena.2.6.2 Contact DiscontinuitiesA contact discontinuity is a discontinuous jump in the mass density moved byconvection through a system. This kind of jump appears at the point of contactof di�erent materials, e.g. a contact discontinuity separates oil from water, and ismodelled with the simple model equation given by�t + u�x = 0; (2.19)using the step-function as initial data in the above equation. In equation (2.19)u is constant and equal to the convection velocity. As the contacts are a simpleconvection e�ect, they retain any perturbation they receive. This implies thatcontacts are especially sensitive to numerical methods, so spurious peturbations tothe contact will tend to persist and accumulate.In the context of the Euler equations the contact discontinuity is associated withlinearly degenerate �eld R(2), and across which both pressure and particle velocityare constant but the density jumps discontinuously as do variables that depend



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 21on density, such as speci�c internal energy, temperature, sound speed, etc (see forexample [84]).2.6.3 Shock WavesShock waves are small transition layers of very rapid changes of physical quantitiessuch as pressure, density and temperature and may develop spontaneously fromsmooth distributions. This implies that the shock jump is self-forming and selfmaintaining. The simplestmodel equation that describes shock formation is Burgersequation [61] given, in the presence of the source term, byut + (u22 )x =  (u): (2.20)The characteristic decomposition of the source term yields thatdudt =  (u); along dxdt = fu: (2.21)The above equation looks like a convection equation such as equation (2.19) withnon-constant convective speed u. This equation implies that the larger u valuesmove faster eventually overtaking smaller value, leading to the development of aright going shock of the initial data if u is positive. The shock moves at a speed thatis not simply related to the characteristic speed and the shock speed is calculatedby the di�erence between the inux and out ux of a conserved quantity into theregion.Suppose a conserved quantity u with the conservation law as given by equation(2.4) has a step function pro�le with one constant value extending to the left U land the lower constant value to the right U r with a single transition between thesetwo and this jump location is moving with speed S to the right. Then the integralform of the conservation law applied to any interval containing the shock gives therelation S(U r � U l) = f r � f l; (2.22)which may be stated as: the rate at which U appears S(UR � UL) in the intervalis given by the di�erences in uxes across the interval. Hence the proper speed ofthe shock is directly determined by and only by conservation of U via the ux f.In the context of the one-dimensional Euler equations, shock waves are discon-tinuous waves associated with the genuinely non-linear �elds R(1) and R(3) and allthe three quantities density, velocity and pressure change across a shock wave [84].



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 222.6.4 RarefactionA rarefaction is a discontinuous jump or steep gradient in properties that dissipateas a smooth expansion, and modelled by Burgers equation with the initial datahaving a tendency to expand. The main numerical problem arises while modellingsuch kind of jump is initiating the expansion (see for example [84]).A common example is the jump in air pressure from outside to inside a balloonwhich dissipates as soon as the balloon bursts and the high pressure gas inside theballoon is allowed to expand.In case of the Euler equations the rarefaction waves are associated withR(1) andR(3) characteristic �elds (see equation (2.6)) and the quantities, density, velocityand pressure change across a rarefaction wave [84].2.6.5 Mass ProductionThe next task is to �nd the mass production rate _w for each species arising from aset of chemical reactions. A typical reaction is given bya1A1 + a2A2 + � � � aNSANS ! b1A1 + b2A2 + � � � bNSANS; (2.23)where ai and bi represent the reactant and product stoichiometric co-e�cient andAi stands for the chemical symbols of the involved species. The reaction rate � incombustion problem, associated with each chemical reaction is assumed to have thefollowing Arrhenius temperature dependent form� = AT ~�exp(� EaRuT ); (2.24)where A, ~�, Ea, Ru, T are the pre-exponential factor, the temperature exponent,the activation energy, the universal gas constant and the temperature respectively(for unit see appendix(C)). The equations will be sti� because of the large variationof reaction rate constant �. It is evident from equation (2.24) that � = �(T ) is afunction of the temperature. The mass production rate of the species involved inthe chemical mechanism can be modelled in following system of ODE_wi = Wi(Pi � Li) i = 1; :::; NS; (2.25)whereWi, Pi = bi�NSj=1[Aj]aj and Li = ai�NSj=1[Aj]aj represent the molecular weight,production and the loss rate and [Aj] is the molar concentration of the species and



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 23is given by [Aj] = �YAjWj : (2.26)For a system of chemical reaction equations, we �nd the mass production rate ofspecies Ai in each equation. Then we add these together to get the total mass pro-duction rate of species Ai for the entire system. Moreover the reaction mechanismis a combination of reversible reactions and we have treated the reverse reaction inthe same way as forward reaction and added it to the system. In a reactive owmodel the most expensive part of the calculation is often the solution of chemicalkinetics. The computational cost is directly related to the number of species, thenumber of reactions among them (in a minor way), and the number of spatial cellsin the computational domain.On the other hand the simulation of a complex transient like that of ignitionassociated with a reacting system requires the full chemistry of combustion to berepresented. The kinetic system not only includes a large number of species butalso includes the intermediate stages of the reaction mechanism with widely varyingtime scales. This means that reaction mechanism is a combination of fast and slowreactions, so the concentration of each species can grow (or decay) at di�erent ratesand some time scale will be typically faster than the scale on which the solution isevolving and on which one would like to compute, (see for example [83]).2.7 Source TermsIn the modelling of reacting ow, currently an area of research is to develop areliable robust numerical scheme to solve the hyperbolic system with sti� nonlinearsource terms (see for example [61, 81]). Although much progress has been made inthis �eld, still there is a large question remaining concerning the optimal treatmentof the source term. The simple, but computationally challenging, Leveque andYee problem [52] plays a major role in the designing, analysing and testing of anumerical method for wave propagation problems. Leveque and Yee [52] studied alinear convective PDE with parameter-dependent source term and found that witha single discontinuity in the initial data, seemingly stable and reasonable resultscan be obtained, however the discontinuity is at the wrong position (see Chapter4)!



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 24Gri�ths et al. [78] in their subsequent work have devised a scheme for whichthey have proved the convergence of the numerical propagation speed to the truepropagation speed and found that it can oscillate and diverge if certain monoticityconditions on the source term are violated. An alternative way to handle problemswith sti� source term is to change the dependent variables so that the inhomoge-neous conservation law attains the form of a homogeneous conservation law. Thereare a number of proposed methods for treating conservation laws with source terms,see for example Roe [66] and Glaister [34], but unfortunately none is general orstraightforward. Sweby [80] utilised the technique of changing the dependent vari-ables to obtain a homogeneous PDE (no source term), but draws the conclusionthat there is a large question remaining about the optimal treatment of the sourceterm.2.8 Finite Di�erence Spatial DiscretizationMeth-odsThe mathematical modelling of complex systems involves the rate of changes withrespect to two or more independent variables. Generally these variables representtime, length or angle and automatically give rise to either one or more partial dif-ferential equations. The problems which involve time, t, as one of the independentvariable are modelled by parabolic or hyperbolic equations. Hyperbolic equationsusually come from problems where discontinuities exist in time, such as shock wave,across which there are discontinuities in speed, pressure and density. The complex-ity and non-linearity of such model problems generally, but not always, exclude thepossibility of having an analytical solution.The main concern here is the implementation of numerical methods for solvingpartial di�erential equations. When such a numerical method is being implemented,the basic technique is to replace the continuous problem represented by the PDEs bydiscrete problem. Many techniques are widely used, but perhaps the most popularare the �nite di�erence technique, the �nite volume method and the �nite elementmethods. In the �nite di�erence approach, the values are regarded as the pointvalues de�ned at grid points, while in the �nite volume approach these discretevalues are regarded as the average values over the �nite volume. In uid ow



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 25problems the second approach is commonly used [68]. The �nite element methodwill not be considered further here.2.8.1 Finite Di�erence Approximations to DerivativesFor a su�ciently smooth function f(x); the Taylor Theorem states that the value off(x) at any neighbourhood point x0 +4x can be found if we know f(x0) and allits derivatives at x = x0 by the formula [55]f(x0 + 4x) = f(x0) + Xj (4x)jj! f (j)(x0): (2.27)Hence by neglecting the term of third order, O(4x)3, and higher we can writef(x0 +4x) = f(x0) +4xf (1)(x0) + (4x)22 f (2)(x0) +O(4x)3; (2.28)and similarly we have thatf(x0 �4x) = f(x0)�4xf (1)(x0) + (4x)22 f (2)(x0) +O(4x)3: (2.29)Hence neglecting the second order term immediately leads to an approximation tothe �rst derivative f (1)(x) of f(x) at x0 and that isf (1)(x0) = f(x0 +4x)� f(x0)4x +O(4x); (2.30)and is called a forward �nite di�erence approximation, because x0 +4x is on theright hand-side to the point x0, at which the derivative is to be sought.Similarly we can obtain a backward �rst order approximation to the derivative asfollows f (1)(x0) = f(x0)� f(x0 �4x)4x +O(4x): (2.31)Now subtracting the equation (2.29) from the equation (2.28) leads tof (1)(x0) = f(x0 +4x)� f(x0 �4x)24x +O(4x)2; (2.32)and is called the central di�erence approximation to f (1)(x0) and is second orderaccurate.



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 262.8.2 Finite Di�erence Approximation to a PDECentral and upwind schemes are commonly used to discretize the PDE. In order tocheck the behaviour of these schemes consider the equation (2.2) in the 1D case(seefor example [84]), with no source termut + aux = 0;u(x; 0) = u0(x); (2.33)subjected to the appropriate initial and boundary conditions on the x-t plane. Thedomain of integration is [0; L] � [0; tf ]. We are interested in �nding the solutionof the above problem and for this we discretize the domain [0; L] using N equallygrid spaced points given by 4x = LN . The mesh points on the x-t plane are thenpositioned at (j4x; n4t) with j = 0; � � � N and n = 0; � � � ;M , then the discretevalue of u(x; t) at (j4x; n4t) will be denoted by Uj(tn), where j refers to the spacediscretization and n to the time discretization is called the time level.Then the spatial derivative with a second order central approximation is givenby at a particular time tn ux = Uj+1(tn)� Uj�1(tn)24x : (2.34)Suppose that Vj(tn) be the numerical approximation generated by the time integra-tor at tn and the equation (2.33) can be written asVj(tn+1)� Vj(tn)4t + aVj+1(tn)� Vj�1(tn)24x = 0; (2.35)where the Forward Euler method has been used for the time integration. It isevident from the above equation that the only unknown is Vj(tn+1), because allother values at the time level are known, hence we have thatVj(tn+1) = Vj(tn)� c2(Vj+1(tn)� Vj�1(tn)); (2.36)here c = a4t4x is the dimensionless quantity and is called the Courant number (see[58, 84]).But unfortunately the famous Von Neumann Stability analysis [58, 84] revealsthat this scheme is unconditionally unstable. For this consider the trial solution inthe following form Vj(tn) = Ânexp(�j~�), where Â is the amplitude, ~� = ~P4xis the phase angle, ~P is the wave number in x-direction and � = p�1 is the



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 27unit complex number. Putting this trial solution in equation (2.35), simpli�cationreveals that Â = 1 � �csin(~�). The requirement for the stability is k Â k � 1.Unfortunately k Â k = 1 + c2sin2(~�) � 1 hence the scheme is unstable under allcircumstances.2.8.3 The First Order Upwind SchemeThe previous section showed that the central di�erence scheme is unconditionallyunstable. One solution to this problem is to replace the central �nite di�erenceapproximation to the spatial derivative ux by a �rst-order one-sided approximation.Then there are two possible choices for it, the approximation (see for example [84])ux = Uj(tn)� Uj�1(tn)4x ; (2.37)and ux = Uj+1(tn)� Uj(tn)4x : (2.38)The correct choice of approximation depends upon the sign of the wave propagationspeed a of the partial di�erential equation (2.33). This is an \upwind"discretizationscheme and due to Courant et al.[23]. The key feature of the scheme is that thediscretization has been performed according to the sign of the wave propagationspeed in the partial di�erential equation (2.33). The word \upwind"means thatspatial discretization has been performed according to directional ow information.This implies that for positive a in equation (2.33) the upwind means \leftside"andwhen a is negative , \right side"is the upwind direction. For positive a the equation(2.38) combined with the Forward Euler method (as the time integrator) can bewritten as Vj(tn+1) = Vj(tn)� c(Vj(tn)� Vj�1(tn)); (2.39)where Vj(tn) is the numerical approximation generated by the time integrator attime tn. Suppose that for positive a, we use the downwind information to performthe spatial discretization and we arrived at the following schemeVj(tn+1) = Vj(tn)� c(Vj+1(tn)� Vj(tn)); (2.40)again the Forward Euler method has been used as the time integrator and Vj(tn) hasthe similar meaning. A Von Neumann stability analysis of equation (2.39) yields



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 28that [84] k Â k2 = (1 � c)2 + 2c(1 � c)cos(~�) + c2; (2.41)where c is the Courant number and the stability condition implies that k Â k < 1and which is only possible if 0 < c < 1. Hence the scheme is conditionally stablewith the stability condition 0 < c < 1: (2.42)As explained in the previous section c = a4t4x , so the Courant number dependsupon the speed a, the mesh spacing 4x and the time-step 4t. In equation (2.42)a is the wave propagation speed, 4x is chosen on the desired accuracy, hence therestriction is on the selection of the time step 4t. Now we introduce the notationa+ and a� in order to formulate the upwind scheme in a uni�ed mannera+ = max(a; 0) = 12(a + j a j); (2.43)and a� = min(a; 0) = 12(a � j a j); (2.44)and j a j represents the absolute value of a. It can be easily inferred from equations(2.43) and (2.44) that a � 0 implies that a+ = a and a� = 0, and a � 0 givesthat a+ = 0 and a� = a. On the line of the notation a+ and a� we de�ne theCourant number as followsc+ = 4t a+4x c� = 4t a�4x: (2.45)Using the notation c+ and c� we can express the �rst order upwind scheme in thefollowing wayVj(tn+1) = Vj(tn)� c+(Vj(tn) � Vj�1(tn))� c�(Vj+1(tn)� Vj(tn)); (2.46)where for a � 0 the second di�erence term vanishes, we are left with equation(2.39) and similarly for a � 0, we have equation (2.40) and note that the ForwardEuler method is the time integrator and Vj(tn) is the approximation generated bythe time integrator. The stability condition for the upwind scheme (2.46) is0 �j c j� 1: (2.47)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 292.9 Finite Volume MethodFinite volume discretization methods are commonly used in the �eld of numericaluid dynamics and can be considered as �nite di�erence methods applied to thedi�erential form of the conservation laws given by equation (2.2). The integralconservation laws (see equation (2.1)) for a discrete volume can be written as@@t Z
 ud
 + I ~S f:d ~S = Z
  (u)du; (2.48)and applied to a control volume 
j , then the above equation is replaced by thediscrete form @@t(Uj
j) + Xsides(f:~S) =  (Uj)
j; (2.49)where the sum of the ux terms refers to all the external sides of the control cell
j and the right hand side has been obtained with a quadrature rule.This is the general formulation of the �nite volume method and the user hasto de�ne, for a selected 
j , how to estimate the volume and cell face areas of thecontrol volume 
j . More importantly, the user has to de�ne the ux f on the edgeof the cell. In the 1D case the above equation has the following form4x _Uj(t) + fj+ 12 � fj� 12 = 4x (Uj(t)); (2.50)where Uj(t) denotes the approximation of U(t) at xj and _Uj(t) denotes the timederivative of Uj(t); and j + 12 denotes evaluation at x = (xj +xj+1)2 , and similarlyj � 12 .For the 2D case if we consider the regular Cartesian mesh on the region 
 = [0; 1]�[0; 1] then the integration of the conservation laws on the jth square givesZAj @u@t = � ZAj  @f@x + @g@y! d
 + ZAj  (u)d
; (2.51)where Aj denotes the area of the square j and 
 is the integration variable de�nedon Aj . If we apply the divergence theorem then we have thatAj @Uj@t = � ICj(f:nx + g:ny)d ~S + ZAj  (u)d
; (2.52)where the ux g is along the y-direction Cj is the circumference of jth square and~S is the integration variable along that circumference. Estimating the line integral



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 30along each edge with implementation of the one point quadrature rule along theside of the square givesdUi;jdt + [fi+ 12 � fi� 12 ]4x + [gj+ 12 � gj� 12 ]4y = �(Ui;j(x; y)); (2.53)wherexi = (i � 12)4x and yj = (j � 12)4y; i = 1; � � � ; N; j = 1; � � � ; Nand where 4x and 4y are constants.Once the mesh is selected, we have to decide where to de�ne the variables.When the variables are associated with a cell a cell-centered �nite volume methodis de�ned and if the variables are attached to the mesh points, i.e., the cell vertices,then we call this a cell vertex �nite volume method.In this thesis we have used cell-centered �nite volume methods on regular meshas described in [7] and in order to estimate uxes f and g we have adopted similarapproach as described in [7], for conviently we will consider mostly 1D equations.The approach can be easily extended to 2D on a uniform grid.2.9.1 The Higher Order Spatial DiscretizationsThe �rst order upwind discretization is a very di�usive scheme [58], implying thata higher order approximation of the ux is needed in order to obtain the desiredaccuracy. The dilemma regarding the higher order upwind biased linear scheme isthat even though they are more stable than pure central di�erencing schemes theseare still prone to oscillations under some circumstances. This limit is predictedby Godunov's famous theorem [91] stating that no linear convection scheme ofsecond-order accuracy or higher can be monotonic. The answer is to use non-lineardiscretizations, which adjust themselves according to the local solution to maintainmonoticity.Applying the �nite volumemethod as described in section (2.9) the discretizationof the conservation law on cell [xj� 12 ; xj+ 12 ] gives that_Uj + fj� 12 � fj+ 124x =  (Uj(t)); (2.54)where Uj is the approximation to u at xj and _Uj denotes the time derivative ofU(xj; t) and 4x is constant. At particular time tn, let Uj(tn) be an approximationto the average of the true solution over the cell [xj� 12 ; xj+ 12 ], then the discretization



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 31is conserved, implies that the time variation of U over the whole domain depends onthe ux at the boundaries. This means that the contribution of the ux at internalcell interfaces cancels [52].In equation (2.54) fj+ 12 and fj� 12 are approximated by an upwind di�erencingscheme given by, for examplefj+ 12 = f̂(xj+ 12 ; tn; U lj+ 12 ; U rj+ 12 );fj� 12 = f̂(xj� 12 ; tn; U lj� 12 ; U rj� 12 ): (2.55)The next task is to estimate U l(tn) and U r(tn). They are estimated with the helpof the standard upwind technique combined with a suitable limiter [11] and at timetn we have thatU lj+ 12 (tn) = Uj(tn) + 12(Uj(tn)� Uj�1(tn))B(rj; 1); (2.56)U rj+ 12 (tn) = Uj+1(tn) � 12(Uj+2(tn)� Uj+1(tn))B( 1rj+1 ; 1); (2.57)where B(:; :) is the limiter function (see below) and rj is given byrj = Uj+1(tn)� Uj(tn)Uj(tn)� Uj�1(tn) : (2.58)Roe [67] shows that on uniform grids, di�erent limiters give rise to di�erent spatialaccuracies. Three useful choices of limiter [7] are the following:First-order method B(rj; 1) = 0: (2.59)Second-order method (reverts to �rst-order if(rj � 0) is due to van Leer withlimiter function B(rj; 1) = rj + j rj j1+ j rj j ; (2.60)which is the ratio of the derivative of centered and left upwind interpolants, whilethird order accuracy but not monotonicity can be achieved by the Leonard limitergiven by, (see for detail [7])B(rj; 1) = 0:25 + 0:75rj: (2.61)For a non-uniform grid the equation (2.54) can be written as_Uj + fj+ 12 � fj� 1212(4xj + 4xj+1) = 4xj j� 12 + 4xj+1 j+ 124xj + 4xj+1 (2.62)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 32and the modi�ed form of the equations (2.57) and (2.56) can be written asU lj+ 12 (tn) = Uj(tn) + 4xj+12 (Uj(tn)� Uj�1(tn))4xj B(rj; 1); (2.63)U rj+ 12 (tn) = Uj+1(tn) � (4x)j2 (Uj+2(tn)� Uj+1(tn))(4x)j+2 B( 1rj+1 ; 1); (2.64)where B(:; :) is the limiter function (see above) and rj is given byrj = (Uj+1(tn)� Uj(tn))=4xj+1(Uj(tn)� Uj�1(tn))=4xj : (2.65)Now consider the problem de�ned by equation (2.33) with the initial conditionu(x; 0) = u0(x) = 8><>: al if x � 0:2ar if x > 0:2; (2.66)where (al 6= ar) are two constant values and the initial data has discontinuity atx = 0:2. This type of the initial value problem is called a Riemann problem. Inorder to solve such problems the numerical ux is needed at every mid point of themesh at every time step. The Riemann problem can be solved exactly (as in Go-dunov's method [35]), but doing so would be computationally expensive especiallywhen nonlinear equations are involved and some iterative method is needed.In the context of the Euler equations, the Riemann problem is a slight general-ization of the shock-tube problem: two stationary gases in a tube separated by adiaphragm. The rupture of the diaphragm generates a nearly centred wave systemthat typically consists of rarefaction waves, a contact discontinuity, and a shockwave. In the Riemann problem the particle speed is allowed to be non-zero, but thestructure of the solution is same as that of the shock-tube problem [84]. In the restof the chapter the dependence of f̂ on x and t and U l and U r on t will be taken asunderstood.2.9.2 Approximate Riemann SolversComputing solutions of equation (2.33) which contain discontinuities, such as shockwaves, poses stringent requirements on the numerical schemes to solve the partialdi�erential equations. Several numerical schemes have been devised for the solutionof hyperbolic conservation laws based upon the information obtained by consideringa sequence of Riemann problems. Historically Godunov [35] produced a conservative



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 33extension of the �rst-order upwind scheme of Courant et al. [23] to non-linearsystems of hyperbolic conservation laws. He supposed that the initial data couldbe replaced by a piecewise set of states with discontinuities at xj+ 12 . He then foundthe exact solution to this simpli�ed problem. After some time step 4t (less than4x divided by the greatest speed wavespeed found in the Riemann solutions) hereplaced the exact solution by a new piecewise constant approximation.The �rst major extension to this line of approach was made by van Leer [85]and raised the order of accuracy of the method from one to two. Some well knownmethods have been described in the previous chapter. Van Leer et al. [87] comparesome of the earlier methods for Euler and Navier Stoke equations and proposed theOsher [26, 60] and Roe [65] schemes for their ability to accurately represents owphenomenon such as shocks, rarefactions and contact discontinuities, etc. A briefdescription of the Osher's and Roe`s is given below:For Osher's approximate Riemann solver [26, 60] the numerical ux is given byf̂(Ul;Ur) = 12 �f(Ul) + f(Ur)�� 12 Z UrUl j A j d(U); (2.67)where J(U) = @f(U)@U is the Jacobian matrix, and j J j is a matrix de�ned byj J j = J+ � J�; (2.68)with J+ = P�+P�1; J� = P��P�1 and J = P�P�: (2.69)In above equation � represents the diagonal matrix of the eigenvalues of J . �+ and�� are the diagonal matrix such that �+ has only positive elements of �. Hence�� has only negative value, it implies that � = �+ + ��. The rows of thematrix P�1 are the left eigenvectors J , while the columns of the matrix P are theright eigenvector of J . The integral in equation (2.67) is evaluated along a pathpiecewise parallel to the eigenvectors of J(U), it means that along the wave pathsin the phase space of u (see for example [60]).The Roe numerical ux is given byf̂ (Ul;Ur) = 12 �f(Ul) + f(Ur)� � 12 j ~J(Ul;Ur) j (Ur � Ul); (2.70)where ~J(Ul;Ur) is a linearised form of a Jacobian matrix J and satisfying



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 34� ~J(Ul;Ur)(U r � U l) = f(Ur) � f(Ul),� ~J(U;U) = J(U),� ~J has real eigenvalues with linearly independent eigenvectors.Now j ~J j is given by the equations (2.68) and (2.69) and for linear J we have thatj ~J j = J . The equation (2.70) can also be written asf̂ (Ul;Ur) = 12 �f(Ul) + f(Ur)�� 12 NPDEXj=1 ~�j j ~�j j ~R(j); (2.71)where NPDE is the number of partial di�erential equations, ~�j is the wave strength,~�j and ~R(j) are eigenvalues and eigenvectors of matrix ~J (see for example [84]). Asusual, the one-dimensional scalar equation is a useful study case, because it providesthe starting point for the comparison of various approximate Riemann solvers.In [86], van Leer considers the upwind-di�erencing �rst order schemes of Go-dunov, Roe and Engquist and Osher(E-O)[26] solvers for the invisicid Burgers'sequation. He observes that the di�erence between the E-O scheme and Godunov'smethod lies in the treatment of transonic shocks, while Roe and Godunov's schemesdi�er only at transonic expansion where the exact Riemann solver, used in Go-dunov's method (see for example [25, 84]).Roe's method puts in a so-called expansion shock, i.e., an entropy violatingdiscontinuity. To prevent these expansion shocks, the ux function in Roe's schemeneeds to be modi�ed. Harten and Hyman [38] introduced an intermediate statethat simulates the di�usion introduced to a Godunov-type scheme by a continuoustransition between the left and right states. Roe [69] describes another modi�cationthat beaks down expansion shocks.Donat and Marquina[25] have, however, pointed out even with the implementa-tion of above mentioned modi�cation the Roe's solver [65] still does not give goodresults when the sonic rarefraction is involved. They have proposed an improvedformula and in the scalar case, their ux formula is a combination of Roe's ux andLax-Friedrichs [75] ux and is given asf̂ (U l; U r) = 8>>>><>>>>: f(U l) iff 0 > 0 in [U l; U r];f(U r) iff 0 < 0 in [U l; U r];12((f(U l) + f(U r) � �(U r � U l)) else; (2.72)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 35where � = maxU2[U l;Ur ] j f 0(U) j; (2.73)and [U l; U r] should be understood as the range of U -values that lie between U l andU l.While extending their approach to systems of conservation laws, Donat andMarquina [25] have pointed out that Roe's linearization may not always be appro-priate, especially when dealing with systems of conservation laws other than theEuler equations for which the \Roe mean"might not be easily computed. So theyhave made use of two sets of eigenvalues and eigenvectors, one coming from theleft and other coming from the right, to compute the ux at a given interface. Thealgorithmic description of Marquina's ux formula is as follow:Having computed the left and right states, the local characteristic variables anduxes are evaluated~�~pl = L(~p)(U l):U l; ~�~pl = (L(~p))(Ul):f(U l);~�~pr = L(~p)(U r):U r; ~�pr = (L(~p))(Ur):f(U r); (2.74)for ~p = 1; 2; � � � ;m and L(~p)(U l) and L(~p)(U r) represents the left eigenvectors ofthe Jacobian matrix.Suppose that �1(Ul); � � � ; �m(Ul) and �(Ur); � � � ; �m(Ur) be the correspondingthe left and right eigenvalues. Then we have the algorithm [25]For j = 1; � � � ;m,if �j(U) does not change sign in [Ul;Ur] thenif�j(Ul) > 0 then~�j+ = ~�jl~�j� = 0else~�j+ = 0~�j� = ~�jrendifelse~�j = maxU2�(Ul; Ur) j �j(U) j~�j+ = 0:5(~�jl + ~�j ~�jl )~�j� = 0:5(~�jr � ~�j ~�jr)endif



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 36where �(Ul; Ur) is a curve in phase space connecting (Ul) and (Ur). Then theMarquina's ux [25] is given byf̂(Ul;Ur) = mX~p=1(~�p+R(~p)(Ul) + ~�p�R(~p)(Ur)); (2.75)where R(~p)(Ul), R(~p)(Ur) are right eigenvectors of the Jacobian matrix.Marquina's numerical ux is consistent, i.e.,f̂ (Ul;Ur) = f(U);and, when applied to a constant coe�cient one-dimensional system, Marquina'sscheme is equivalent to Roe's [65] and would yield an exact solution to the Riemannproblem. It is evident from equation (2.75) that Marquina's numerical ux has sux-splitting structure withf(Ul;Ur) = f+ + f�;where f� = mX~p=1 ~�~p�R(~p)(Ur); f+ = mX~p=1 ~�~p+R(~p)(Ul): (2.76)Although these methods deal with ideal gases, the literature is continuously ex-panding to deal with the real gases in high-temperature and chemically reactingows, (see for example [18, 33, 53], and also the references in [76]).With growing interest in high temperature and non-equilibrium chemistry, thesemethods have been successfully extended to non-equilibrium chemistry. In thisregard, many extensions to the Osher[60] and Roe[65] solvers have been proposedin the literature (see [1, 76, 79], and references therein).Shuen et al. [76] extended Roe's [65] scheme, backed by a comprehensive andcomplicated analysis. While extending the Roe's scheme to non-equilibrium chem-istry the Roe-average operator � is given by (see for example [76, 84])�(f) = ~arfr + ~alfl~ar + ~ar ; ~a = � 12 ; (2.77)where � is the density. With the help of the above equation we have that�̂ = ~al~ar;û = �(u);



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 37ê = �(e);Ĥ = �(H);where �̂, û, ê, and Ĥ represent the Roe-average of density, velocity, speci�c internalenergy and total enthalpy, and similarly the average value (Ŷ ) of mass fraction canbe calculated as Ŷ = �(Y ):The pressure jump is then calculated by considering the pressure p as a function ofthe following form p = p(�; e; Y1; � � � ; YNS�1); (2.78)where �, e, Yi are respectively the density, speci�c internal energy and mass con-centration for species i. Then the pressure jump is given by (see [76]),4p = p̂�4� + p̂e4e + N�1Xj = 1 p̂Yi4Y; (2.79)where p̂�, p̂e and p̂Yi are derivative of pressure with respective to �, speci�c energye and species concentration p̂Yi (for more detail see [76]).Similarly the extension of the Osher solver to non-equilibrium chemistry in-volves a complicated analysis, and it is di�cult to derive simple enough expressionswhich can lead to a robust calculation of uxes. In both cases the complexity ofthe extended Roe ([65]) and Osher [60]) solvers increase with larger numbers ofspecies. Recently Fedkiw et al. [29] have used very complex ENO schemes to solvecombustion problems related to non-equilibrium chemistry.Hence, it is natural to try and introduce some simplicity, so we have used theMarquina approach [25] to both deal with the non-equilibrium as well as equilib-rium chemistry, and have obtained very promising results. The only complexityinvolved is that it needs a complete analysis of the eigenvalues and eigenvectors ofthe governing equations.2.10 Method of LinesSeveral methods have evolved to solve sets of time-dependent, non-linear coupledpartial di�erential equations [58] but the two commonly used are the method of lines



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 38and the operator splitting. In this project we have used the method of lines and haveavoided using operator splitting because of the extra errors that are introduced, see[3].The method of lines focused on the idea of separating the spatial and temporalparts of the problem regardless of nonlinearity of the governing equation. It isassumed that the spatial mesh, with constant spacing 4x, is de�ned byxi+1 = xi + 4x; i = 1; � � � ; N � 1; x1 = 0;and the midpoints xi+ 12 = xi + 124x. This mesh partitions the interval [0; L]into N subintervals of constant length 4x. The implementation of the spatialdiscretization to the PDE equation (2.4) is given by equation(2.54) and can bewritten as the following system of ODEs (see equation 1.4)_U = F(U(t); t): (2.80)The solution vector U(t) is given byUk(t) = Uj(xj; t) where k = TNOE � (j � 1) + i; (2.81)for j = 1; � � � ; N +1, i = 1; � � � ; TNOE and TNOE (total number of equations)represents the total number of partial di�erential equations or ordinary di�erentialequations at each grid points. Hence the solution vectorU(t) is thus made up of allthe PDE variables at the mesh-point x1, all the PDE variables at the mesh-point x2.,followed by any coupled ODEs variables, hence making a total of TNOE �NPTSsolution components.The ODEs system given by the equation (2.80), along with and initial condition,U(0), forms an initial value problem which can be integrated in time by standardmethods. Such methods are described in the next chapter. One advantage of thismethod is that it is possible to use the very sophisticated ODEs solvers that nowexist with many features and reliable error control.An alternative approach is to employ a time-splitting in which one alternatesbetween solving a system of conservation laws, with no source terms, and a systemof ordinary di�erential equations modelling the chemistry. Applying this techniqueto the equation (2.4), we have thatV(tn+1) = Sf(4t)S (4t)V(tn): (2.82)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 39In the above Sf (4t) represents the numerical solution operator for the conservationlaw @u@t + @f(u)@x = 0; (2.83)and S (4t) is the numerical solution operator for the ordinary di�erential equation@u@t =  (u): (2.84)This splitting procedure, however, introduces an O(4t) splitting error (see for ex-ample [52, 57]. To maintain second-order accuracy, the Strang splitting [28, 52] canbe used, in which the solution V(tn+1) is computed from V(tn) by the proceduregiven as V(tn+1) = S (4t2 )Sf(4t)S (4t2 )V(tn): (2.85)The splitting approach is frequently used to solve atmospheric reacting ow prob-lems, but it may be less satisfactory for combustion problems, since in reality theuid dynamics and chemistry are strongly coupled. However, there are distinctadvantages to the splitting from the standpoint of algorithm design. High qualitynumerical methods have been developed both for system of conservation laws andfor sti� systems of ordinary di�erential equations. By decomposing the probleminto subproblems of these types, it is possible to take advantage of these methoddirectly.2.11 ConclusionThe governing equations of atmospheric and combustion problems have been pre-sented and there are NS (number of species) number of equations for the atmo-spheric problem, while the combustion problem has NS+3 equation if we considerthe 2D case of the combustion. These equations are highly non-linear consisting ofthe complex chemistry term arising from the chemistry.Hence it is not possible to obtain solution analytically and numerical methodsmust be employed. This can be achieved by discretizing the governing equations atevery point of the computational domain. Throughout this work, a �nite volumeapproach is employed to both the 1D and 2D Leveque and Yee problem [52], 1Dand 2D atmospheric dispersion problem, and 1D combustion problem [28].With the help of the method of lines approach, the governing equations havebeen reduced to the form of the ODE system and upwind schemes have been used for



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 40the spatial discretization. The reason is that the upwind schemes are conditionallystable while the central di�erence schemes are unconditionally unstable.Also some well knows Riemann solvers dealing with ideal as well as real gaseshave been considered. But due to simplicity we have used the Marquina approach[25] to deal with reacting ow related to the combustion problem. The resultingODE system, which will be sti� because of the chemistry, has been solved withthe help of the theta method time integrator, and also a brief description of thesplitting error has been given.



Chapter 3The Sti� Chemistry ODE SolutionMethods3.1 IntroductionThe reactive ow models (discussed in Chapter2 ) are computationally very ex-pensive to solve. The computational work is often dominated by the numericaltreatment of the system of the ordinary di�erential equation (ODEs) describing thechemical transformation. When large scale models are under consideration thenwe have found by numerical experiments that more than 80% or more of the totalcomputation time is spent on solving these ODEs. The term appearing R̂i in theequation (2.10) is the non-linear term associated with the chemistry and can becast in the following ODE system_w = P(w)� L(w)w; w = [w1; � � � ; wNS]t; (3.1)with given initial condition w(0). In the above equation P(w) is a NS-vectorspecifying the production terms and L(w) a NS�NS diagonal matrix de�ning theloss rates, NS being the number of species. The reciprocal of Li(w) represents thecharacteristic reaction time for species wi. The component Pi(w) and Li(w)wi arenon-negative and represent respectively, production and loss terms [90] and theirdependence of the vector w on space is taken to be understood.As regards the combustion problem, the reactions mechanism can be cast in thefollowing form of chemical kinetics system. For the ith species we have that_wi = Wi(bi � ai)�NSj=1[Aj]aj i = 1; 2; � � � ; NS; (3.2)41



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 42where Wi is the molecular weight of ith species, ai and bi are the stoichiometriccoe�cients of reactants and products and [Aj] is the molar concentration of the jthspecies given by [28, 83][Aj] = �YjWj ; j = 1; 2; � � � ; NS; (3.3)where Yj is the mass fraction of the jth species and � is the density. Recall from(Chapter 2) that these kinetic equations are modelled as either Euler equations, if noviscous e�ect has been considered, otherwise, Navier-Stokes equations. It is worthnoting that while dealing the atmospheric dispersion problem, the rate constantsare in general function of temperature, while the photolysis rate constants are thefunction of solar zenith angle [82]. So each _wi in equation (3.1) will be a functionof solar zenith angle and temperature and is given by_wi = _wi(T; �; w1; w2; ; � � � ; wNS); (3.4)where T is the temperature and � is the solar zenith angle. In the combustionproblem rate constant depends upon the temperature [28], so each wi in equation(3.2) is a function of the temperature, density and mass fractions, then we havethat _wi = _wi(T; Y1; Y2; ; � � � ; YNS): (3.5)These kinetic equations model reactions with widely varying time scales. Hencethe classical sti�ness problem of ordinary di�erential equations arises. Secondly,at each time step, the solution of the chemical equations is required at all gridcells. Hence the need is for fast and e�cient special-purpose solvers. On the otherhand, the accuracy level required may be modest, say 1%, and higher accuracyis considered to be unnecessary because of the various other uncertainties aboutthe physical parameters and input data. Hence it may be satisfactory to solve thechemistry part of the calculation at a low accuracy only. In this chapter somespecial purpose solvers are described and examined for reactive ow models (i.e.atmospheric and combustion models). The detailed description of the governingequations for atmospheric and combustion problems is given in Chapter 2.The method of lines approach has been used to numerically integrate the gov-erning equation of atmospheric and combustion problems. Hence with spatial dis-cretization scheme used in [10] for the PDE described in Chapter 2 result in a



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 43system of di�erential equations (see equation (1.4))_U = FN (t;U(t)); U(0) given; (3.6)where the vector, U(t), is given by U(t) = [U1(t); � � � ; UN (t)]t is the numericalapproximation to the exact solution. A method of lines approach is used to numer-ically integrate the equation (3.6) thus generating an approximation V(t) to thevector of exact PDEs solution at the mesh points u(t). Presently the theta methodwith the iterative method of [12] has been used to solve atmospheric dispersionproblem [10]. Recently Verwer [90] has reported that second order backward di�er-entiation method (BDF2) with Gauss-Seidel iteration works well in solving ODEsfrom atmospheric chemistry. In the present chapter we describe an alternative toboth the theta method and to BDF2 by investigating whether the NDF methodsof Klopfenstein [47] as suggested by [71, 74] forms a viable alternative.In the second part of the chapter, consideration is extended to the IMEX ap-proach of Ascher et al. [4]. The standard example that is used by Ascher [4] isof a convection-di�usion type problem in which the explicit scheme is used for theconvective term and implicit scheme for the di�usion term. In a similar mannerreaction-di�usion problems can also be approximated. Many authors have madeanalysis of IMEX schemes. For example Basdevant et al. [5] made an experimentalanalysis of several IMEX schemes and Varah [89] has discussed stability proper-ties for certain second order IMEX schemes. Ascher et al. [4] have systematicallyanalysed the performance of such schemes and pay attention to their relative per-formance in the context of fast multigrid algorithms. In this chapter the stabilityproperty of second-order IMEX schemes by using NDF2 as the time integrator in-stead of BDF2 will be discussed. Most of this chapter has appeared in abbreviatedform in [3].3.2 The Theta MethodThe theta method [9], is widely used to solve initial value problems for ordinary dif-ferential equations. Among the examples of application include the method of linestreatment of partial di�erential equation (Hopkins [41], Berzins, Dew and Furzer-land [8]), simulation of electric power system (Johson et al. [21]) and the modellingof gas transmission (see for example Chau and Dew [17]). The theta method can



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 44be implemented for both sti� and non-sti� ordinary di�erential equations. Whentaking a reasonable size time step while solving a sti� problem, an important re-quirements is that the convergence of the Newton type iteration must be achieved.The Newton type iteration requires the evaluation of the Jacobian matrix. On theother-hand when code is applied to non-sti� problems, a full Jacobian matrix isnot needed , as a much cheaper iteration method such as functional iteration canbe used. The technique related to the changes of the iteration method is discussedin [72]. Our concern here is to consider the theta method to the case of problemsarising from the chemistry which are highly non-linear and sti� due to the variationof the rate constant �.Recall that the method of lines approach has been used to numerically integrateequation (3.6). Hence it implies that generating an approximation V(t) to the vec-tor of exact PDEs solution value at the mesh point u(t) and application of the thetamethod de�nes the numerical solution V(tn+1) at tn+1 = tn +4t givesV(tn+1) = V(tn) + (1 � �)4t _V(tn) + �4tFN(tn+1;V(tn+1)): (3.7)In the above equation V(tn) and _V(tn) represents the numerical approximation andits time derivative at time tn. The optimal choice of � and the other details aregiven in [9]. In the following section we shall briey discuss the local error as thiswill be required later in the thesis.3.3 Local Error EstimationThe complete description of local error estimates can be found in [7, 9]. The basictechnique is that the local error is de�ned by the local solution on [tn; tn+1] bysolving the following ODE system_yn+1 = FN (t;yn+1(t)); (3.8)where yn+1(tn) = V(tn) and the local error indicator le(tn+1) is given byle(tn+1) = V(tn+1)� y(tn+1): (3.9)The common approach used by the software based on method of lines is that thelocal error is less than the user supplied tolerance, then we have thatk le(tn+1) k= �̂T ol: (3.10)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 45where �̂ is the suitable acceptance factor less than 1. With the help of equation(3.7) the local error can be written as (see for example [7, 9]).le(tn+1) = �yn+1(tn+1) +V(tn) (3.11)+ (1� �)4t _V(tn) + �4tFN(tn+1;V(tn+1)):Expanding V(tn) = yn+1(tn) about tn+1 as given by equation (3.8) and its timederivative we have thatle(tn+1) = �4t(FN(tn+1;V(tn+1))� FN (tn+1;yn+1(tn+1)))� (1 � �)4t( _yn+1(tn+1)� _V(tn)) + 124t2y(2)n+1(tn+1)� 4t36 y(3)n+1(tn+1) +O(4t4); (3.12)where superscript (i) means the ith derivative of y(:) with respect to time. Withthe implementation of the mean value theorem to the term involving FN , thede�nition(3.8) and expansion of the derivatives of yn+1(tn+1) about tn, we get thefollowing form of the above equation(I �4t�J)le(tn+1) � (� � 12)4t2y2n+1(tn) + 4t32 (� � 13)y(3)(tn) +O(4t4); (3.13)where the superscript (i) has the similar meaning as de�ned above, and J is theJacobian matrix given by J = @FN(tn;V(tn))@V(tn) : (3.14)Equation (3.13) suggests that the value of � = 12 would result in the most accuratetheta formula. But this hypothesis is wrong because such analysis is based uponthe leading term and the choice of an optimum value of theta has been discussed inBerzins and Fuzerland [9] and Prothero and Robinson [64]. This is evident from theequation (3.13) is that it makes use of the factor (I�4t�J), which is available in itsLU decomposed form in case of the sti� ODE system. The local error estimation fora �xed step size in the following form has been implemented in the code of [9, 64]:le(tn+1) = (� � 12)4n + (� � �2 � 16)(4n �4n�1); (3.15)where 4n = 4tnŴ�1n ( _V(tn)� _V(tn�1)) and 4n�1 is de�ned similarly andŴn = (I � 4tn�J): (3.16)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 46Both these vectors are stored by the code and also used in the predictor (see [9]).In the case when functional iteration being used with a constant step size the errorestimate has the following formle(tn+1) = (� � 12)4tn( _V(tn) � _V(tn�1))+ (� � �2 � 16)4tn( _V(tn)� 2 _V(tn�1) + _V(tn�2)): (3.17)The time step is accepted by the integrator if k le(tn+1) kw < 1 and otherwiserejected, and k le(tn+1) kw is weighted error norm.3.4 Klopfenstein NDF MethodIn 1971 Klopfenstein [47] modi�ed the BDF methods in such a way that they havebetter stability properties and lower error constant in some cases. These methodsare called NumericalDi�erentiation Formulae or NDFs and the second order methodstep size may be 20% larger than ordinary BDF2 methods, the details are givenin [47]. Although these methods were recommended by Shampine many years ago[71] they were not implemented in general purpose software until recently [74]. Thequestion related to the extra cost of the NDF method is that we need only onemore back value, which is present in the Milne-type error estimate used by theBDF code and no extra storage is required. As described in Chapter 1 the methodof lines approach has been adopted to numerically integrate the equation (3.6) thusgenerating an approximation V(t) to the vector of exact PDEs solution values atthe mesh points u(t). For simplicity the Klopfenstein method of order 2 , NDF2hereafter will be described by starting from the BDF2 formula given byV(tn+1) � P2i=1V(tn+1�i)�i4t~ � F(tn+1;V(tn+1)) = 0: (3.18)In the above equation, the coe�cients �i and ~ are well-known, see [6]. With thehelp of Nordsieck vector form of the BDF the predicted values of the solution andthe �rst two derivatives are given by Vpn(tn),V(1)pn (tn) and V(2)pn (tn) are given byusing the existing derivativesV(l)p(tn+1) = 2Xi=l V(i)(tn)(4t)i�l(i� l)! ; l = 0; � � � ; 2: (3.19)The correction vector given below�� = V(tn+1)�Vp(tn+1)4t~ ; (3.20)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 47can be obtained by solving the system of nonlinear equations, (see for example [6]),given byV(1)p(tn+1) + �� � F(tn+1;Vp(tn+1) + 4t~��) = 0; where ~ = 23 : (3.21)The predictor values are then corrected byV(i)(tn+1) = V(i)p(tn+1) + ~i4t1�in+1��; (3.22)where ~0 = ~2 = 23 and ~1 = 1. Now the NDF2 formula described in [47] maybe implemented in the same Nordsieck framework by writing it as a correction toequation (3.19)V(tn+1) � P2i=1V(tn+1�i)�i4t~ � �̂ (V(tn+1)�V(tn+1)p)4t~ � F(tn+1;V(tn+1)) = 0;(3.23)where �19 � �̂ � 13 . For simplicity we write the equation (3.23) as followV(1)p(tn+1) + �� � F(tn+1;Vp(tn+1) + 4t~���) = 0; (3.24)where �� = V(tn+1) � Vp(tn+1)4t~� :Hence on comparing the coe�cient V(tn+1) in equation (3.23) and (3.24) it followsthat ~� = ~(1��̂) and as �̂ = �19 and it implies that ~� = 0:9~. The leadingterm of local truncation error of the qth order NDF method isTE = �̂~q + 1q + 1 where ~q = qXm=1 1m (3.25)which reduces to the leading term of the truncation error of the BDF2 for (�̂ = 0).So for (�̂ = 0) the leading term of local truncation error associated with BDF2 is13 and that of ND2 (�̂ = �19) is 16 , which is still twice that of the trapezoidal rulehowever. This implies that the local error estimate is halved and the step at theorder two is increased by the factor of about 1.26 over BDF2 for the same error.The comparisons of BDF and NDF made by Shampine and Reichelt [74] haveshown that on a range of sti� test problem the NDF code is on average about 8%faster and uses an average of about 11% fewer steps on all problems except one.



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 483.5 Stability PropertiesNow we concentrate on obtaining the stability properties of the NDF2 method. For(�̂ = �19) the �xed step NFD2 formula is given belowF(tn+1;V(tn+1))� 164t(10V(tn+1) � 15V(tn) + 6V(tn�1) �V(tn�2)) = 0: (3.26)The characteristic polynomial when the formula given by equation (3.26) is appliedto the single equation of the form _V = �V is given by [47]�4t = ~q = � + 12�2 � �̂~q�3; (3.27)where � = 1 � ��1 = 1 � exp(���) and �� � � � �. According to Dahlquist[24] for a multistep method to be A-stable it must be� implicit� have an order equal to or less than twoand further that among all second order methods that are A-stable the trapezoidalrule has the smallest error constant. Putting the value of � in equation (3.27) andsimplifying gives thatRe(~q) = 4sin4(�) [1� 3�̂ + 12�̂cos(�)] ; (3.28)where � = �2 and Re(~q) is the real part of q and recall that the order of the methodis two (for derivation see appendix (A)).For the method to be A-stable it requires that Re(~q) is non-negative for all valuesof � which is the case if and only if �19 � �̂ � 13 . Figure (3.1) shows the stabilityregion for three di�erent values of �̂ = 0; �19 ; �29. Recall from the previoussection that �̂ = 0 represents the stability region of the BDF2 while �̂ = �19shows the stability region of the NDF2.Then the comparison of stability region corresponding to these two values of �̂shows that the stability region in the right half plane (where the true solution isgrowing) corresponding to �̂ = �19 is (desirably) smaller that the BDF2 stabilityregion corresponding to �̂ = 0, see Klopfenstein [47].In order to have idea of above points we consider the homogeneous system ofODE given by _Q = MQ; (3.29)
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Figure 3.1: Stability region.whereM is the constantm�mmatrix. It is assumed thatM has distinct eigenvalues�i; i = 1; 2; � � � ;m. We are interested in �nding the stability region of numericalmethod being applied to solve the above equation. For the stability of the methodthe requirement is that all the roots of the characteristic polynomial must be lessthan one. Suppose that the behaviour of the one of the root of characteristicpolynomial is like this r1 = exp(�̂) + O(�̂q+1); (3.30)where q is the order of the numerical method being used and �̂ = �4t. It immedi-ately follows that for small �̂ with Re �̂ > 0, j r1 j > 1 and the method is ustable.In other words, the region of stability of any convergent method cannot contain thepositive real axis in the neighbourhood of the origin. Note that since the aboveargument is asymptotic (as �̂! 0), we cannot conclude that the region of stabilitydoes not contain part of the positive real axis (for more detail see Lambert [48] P.71).3.6 Nonlinear equations splitting algorithmWhen the modi�ed Newton method is being implemented to solve the nonlinearequations at each time-step, then the system of linear equations to be solved for



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 50the (m+1)th correction to the solution 4V is[I � 4t~J ]4Vm = r(tmn+1); (3.31)where J = @F@V ;r(tmn+1) = �Vmn+1 + zn + ~4tF(tn+1;Vmn+1);4Vm = [V(tm+1n+1 ) � V(tmn+1)];and zn = P2i = 1Vn+1�i�i: (3.32)The major computational task of the method of lines calculation is the solutionof the system of equations (3.31). In cases when large ODEs systems result fromthe discretization of ow problems with complex chemistry, the CPU times maybe excessive unless special iterative methods are used to solve the system of linearequations given by equation (3.31). One common approach as explained in [12] andreferences therein, is to take into account the ODEs function F(t;V(t)) de�ned byequation (3.6) and decompose it into two partsF(t; V (t)) = Ff (t;V(t)) + Fs(t;V(t)); (3.33)and in the above equation Ff (t;V(t)) represents the discretization of the advectiveux term and Fs(t; V (t)) stands for the discretization of the di�usion and sourceterms in the same equation. Then the nonlinear equation splitting method utilisesthe approximate factorisation of Jacobian matrix employed by the time integratormethod within a Newton iterationI �4t~J � [I �4t~Jf ] [I �4t~Js] +O(4t)2; (3.34)where Jf = @Ff@V and Js = @Fs@V . The technique in neglecting the advective terms Jfhas been borrowed from[12] and thus in the case when no source or di�usion termsare present corresponds to using functional iteration for the advective calculation,for example see [9]. In the case when di�usion is absent or su�ciently small to beneglected in the Jacobian matrix[12], then the matrix (I � 4t~Js) represents theJacobian matrix of that part of the ODEs system corresponding to the discretizationof the time derivatives and the source terms. Hence this matrix is the block-diagonalmatrix with as many blocks as there are spatial elements and with each block havingas many rows and columns as there are PDEs. The fact that the blocks relate onlyto the chemistry within each cell means that each block's equations may be solved



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 51independently.Then the nonlinear equations splitting iteration may thus be written as[I � 4t~Js]4V�m = r(tmn+1); (3.35)and in the above equation 4V�m is an approximation to 4Vm. The purpose of thesplitting is only to speed up the solution of the nonlinear equations and providingthat the iteration is continued until the residual r(tmn+1) is su�ciently small thissplitting error does not have the same impact as introducing splitting at the PDElevel. In order for the nonlinear equations splitting iteration de�ned by equation(3.35) to converge with a rate convergence rc the necessary condition is [46] p.11that k [I � 4t~Js]�14t~Jf k = rc where rc < 1: (3.36)This condition will also turn out to be important for the IMEX method consideredin the next section.Here we have concentrated on the convective transport, and ignoring di�usion.We take this simpli�ed approach because the convective transport requires special-ized numerical treatment. If present, di�usive uxes can be treated by standardnumerical methods (e.g. standard conservative central di�erence) [28] that are in-dependent of those for the convective terms.3.6.1 Gauss-Seidel IterationsIn order to �nd the solution of the equation (3.35), it is necessary to employ aNewton-type iterative method. Although the Newton-type iterative method is ofsecond order of convergence, it requires the solution of a large system of linearequations which makes this method unattractive. If we have a mesh of mx � mypoints, this results in an often prohibitively large but sparse system of mxny �NPDE equations. Storage may also be a restrictive factor[55].The great success of the implementation of the Gauss-Seidel Iterative Methodfor atmospheric chemistry has been reported (see [90]) and the method is now verywidely used. The Jacobian matrix given by equation (3.35) can be split as follows(I �4t~D̂ � ~4tL̂)4V�m+1 = ~4tÛV�m + r(tmn+1); (3.37)where L̂, D̂, and Û represent the strictly lower triangular matrix, diagonal matrixand strictly upper triangular matrix. This method completely eliminates the usage



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 52of the any kind of the decomposition and the storage requirements will also reduceconsiderably.3.6.2 Convergence TestWhen the Gauss-Seidel iteration is being implemented the next task is to employa strategy to decide when to terminate the iteration during each time step. Thisstrategy needs to be employed at each time step to avoid doing extra work andimprove the e�ciency. In this concern two techniques are commonly used: one isto employ a �xed number of iterations, which is unattractive because there is arisk that the code may do more work than necessary and sometimes the iterativeprocedure may stop before the true convergence has occurred, and the other is anadaptive procedure. We have implemented an adaptive procedure similar to thatin DASSL [15]. A minimum of two iterations has been performed to evaluate theconvergence rate �, given on the mth iteration by~� =  k 4V�m+1 �4V�m kwk 4V�1 �4V�0 kw ! 1m : (3.38)The iterations are continued untilk 4V�m+1 �4V�m kw < ITOL; (3.39)where ITOL = 0.01 or 0.001 and m is the number of Gauss Seidel iterations. Thefact ~� > 0:95 is taken as the convergence failure. The e�ect of varying ITOL isconsidered by Verwer [90] and in the next section.3.6.3 Local ErrorIn this section we will discuss the local error being used in the NDF2 code. It isessential to �nd the exact behaviour of the local error, otherwise, the software maybehave incorrectly and may even fail because the error estimates do not reect thetrue behaviour of the error. In code based upon the BDF method the local error isbeing estimated by the di�erence between the predictor and the corrector given by(see for example, [63])le(tn+1) = cn;q(Vc(tn+1) � Vp(tn+1)); (3.40)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 53whereV(tn+1)c is the corrected values at the end of a step, Vp(tn+1) is the predictedvalue and cn;q represents the constant depending on the method and recent stepsizehistory of the integration. Sack-Davis [70] has observed that for sti� problems, theusual error estimate based upon the simple di�erence between the predictor andcorrector overestimates the true error and has proposed the following strategy forcontrolling the errorle(tn+1) = Ŵ�1n+1cn;q(Vc(tn+1) � Vp(tn+1)); (3.41)where Ŵn+1 is the iteration matrix de�ned by equation (3.16) above and is availablein the code in an LU decomposed form. As regards our implementation, after thesuccessful return from the nonlinear solver then we estimate the local error. Forthis, �rst we try equation (3.40) and after calculating the weighted error norm (seelater) the local error test is being made. In the case of the failure of the local errortest we then used equation (3.41) to estimate the local error and repeated the sameprocedure. It is possible that the local error test may fail even with equation (3.41)in which case we reduce the time step. The numerical experiments have revealedthat local error estimated by the equation (3.41) have given more promising resultsas compared to the local error estimated by the equation (3.40).3.7 Numerical ResultsWe have used the three test problems to compare the performance of NDF2 Methodwith the theta method and the BDF2 method. The code for NDF2 method hasbeen developed by changing a few constants in a BDF2 code. The constant ~ hasbeen replaced with ~� (see Section (3.4)) and also some changes have been made tolocal error estimation.The test on the standard DETEST problems [27] reveals that the predictedaccuracy inprovements was achieved in practice. The experiments have revealedthat NDF and BDF codes used more time-steps for atmospheric problems than thetheta method code [9], but did less work per step. The aforementioned hypothesiswill be tested on three test problems with the e�ect of using the Gauss-Seidelmethod.Problem 1 This problem consists of 20 species and 25 reactions with constantreaction rates from atmospheric chemistry and is copied from [90]. The initial



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 54concentrations of the species in ppm units are given in Table (3.1) and the reactionschemes has been given in appendix (B.0.1). The problem is highly sti� becauseNo. Name of Initial concentration No. Name of Initial concentrationthe Species (ppm) the Species (ppm)1 NO2 0:000 11 C2O3 0:0002 NO 0:200 12 CO2 0:0003 O3P 0:000 13 PAN 0:0004 O3 0:040 14 CH3O 0:0005 HO2 0:000 15 HNO3 0:0006 OH 0:000 16 O1D 0:0007 HCHO 0:100 17 SO2 0:0078 CO 0:30 18 SO4 0:0009 ALD 0:010 19 NO3 0:00010 MEO2 0:000 20 N2O5 0:000Table 3.1: The initial concentration of problem 1.for the ODE system the Lipschitz constant is about 1:5 � 107 and the simulationtime is 60 minutes.Problem 2 This problem originates from the simpli�ed chemistry [10] and has only7 species and 7 reactions with photolysis rate time-dependent. The photolysis rateconstant has been given in equation (2.14), which shows that it depends upon thesolar zenith angle, which has been given in equation (2.15). Again it is evident thatsolar zenith angle depends upon the time of day, the time of year and the Latitude.In our calculation we have taken the time of year (given by the solar declinationangle DEC) 23:270, the latitude has been assumed 500 and the local hour angle hasbeen evaluated by the following expressionLHA = �(1:0 + t=4:32 + 4)0;where time, t, is in seconds. The temperature dependent rate constants havebeen evaluated with the standard Arrhenius expression, and temperature T indegree kelvin has been evaluated according to the following expression (see forexample [82]) T = 289:86 + 8:3sin((7:27 � 10�5t)� 1:96):



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 55The initial concentrations of the species in molecules/cm3 have been displayed inTable (3.2) and the reaction scheme have been given in appendix(B.0.2). TheNo. Name of the Species Initial concentration (mol=cm3)1 NO2 1:0� 1092 NO 1:0� 1093 O3 1:0� 10114 ROC 1:0� 10115 RP 0.06 SGN 0.07 SNGN 0.0Table 3.2: The initial concentrations of Problem 2.simulation time is 1:8� 105 seconds, (see [10] for details) or two days.Problem 3 This problem with lumped chemistry was obtained from systematicreduction of the Extended Carbon Bond Mechanism CBMEx[39] and consists of29 species and 59 reactions with non-constant reaction rates. In order to calculatethe solar zenith angle and temperature, the proocedure as described in Problem 2has been adopted. The initial concentrations in (molecules/cm3) are displayed inTable (3.3). The full extended Carbon Bond Mechanism, see [39] with 205 reactionsNo. Name of Initial concentration No. Name of Initial concentrationthe Species (mol=cm3) the Species (mol=cm3)1 NO2 1:696� 1011 16 MEO2 0:0002 NO 4:006� 1012 17 PAN 0:0003 O 0:000 18 PAR 7:618� 10124 O3 0:000 19 ROR 0:0005 NO3 0:000 20 KET 0:0006 O1D 0:000 21 OLE 3:195� 10117 H2O 2:460� 1017 22 ETH 7:594� 10118 OH 0:000 23 TOL 3:072� 10119 HO2 0:000 24 CRES 0:00010 N2O5 0:000 25 TO2 0:00011 HONO 0:000 26 OPEN 0:00012 CO 5:680� 1013 27 XY L 1:954� 101113 FORM 2:077� 1010 28 MGLY 0:00014 ALD2 1:029� 1010 29 ISOP 0:00015 C2O3 0:000Table 3.3: The initial concentrations of Problem 3 with lumped chemistry.



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 56(non-constant reaction rates) and 90 species was also used as a test problem butproduces almost identical performance pro�les to the lumped version. The initialconcentrations in (molecules/cm3) for this full chemistry are given in Table (3.4).The simulation time is 1:8� 105 seconds again.No. Name of Initial concentration No. Name of Initial concentrationthe Species (mol=cm3) the Species (mol=cm3)1 NO2 5:410� 1010 46 HTMA 0:0002 NO 1:600� 1012 47 PNO2 0:0003 O 0:000 48 DNIT 0:0004 O3 0:000 49 ETH 7:600� 10115 NO3 0:000 50 ETO2 0:0006 O1D 0:000 51 CH4 4:551� 10137 H2O 2:460� 1017 52 OZD 0:0008 OH 0:000 53 ACAC 0:0009 HO2 0:000 54 TOL 2:780� 101110 N2O5 0:000 55 BO2 0:00011 HNO3 0:000 56 CRES 0:00012 HONO 0:000 57 TO2 0:00013 PNA 0:000 58 BZA 0:00014 H2O2 0:000 59 BZO2 0:00015 CO 5:680� 1013 60 PHO2 0:00016 CO2 0:000 61 PBZN 0:00017 FORM 2:080� 1010 62 PHO 0:00018 H2 0:000 63 NPHN 0:00019 FROX 0:000 64 CRO 0:00020 PROX 0:000 65 CRO2 0:00021 FACD 0:000 66 NCRE 0:00022 ALD2 0:000 67 OPEN 0:00023 C2O3 0:000 68 ACID 0:00024 MEO2 0:000 69 XY L 1:960� 101125 PAN 0:000 70 XLO2 0:00026 MPNA 0:000 71 XINT 0:00027 MEO 0:000 72 MGLY 0:00028 MNIT 0:000 73 MGPX 0:00029 MEN3 0:000 74 OPPX 0:00030 MEOH 0:000 75 ISOP 0:00031 AONE 0:000 76 EPOX 0:00032 ANO2 0:000 77 ISO1 0:00033 PAR 7:630� 1012 78 ISO2 0:00034 RO2 0:000 79 ISO3 0:00035 RO2R 0:000 80 ISO4 0:00036 X 0:000 81 MACR 0:00037 NTR 0:000 82 MVK 0:00038 ROR 0:000 83 ISNT 0:00039 KET 3:150� 1011 84 ISN 0:00040 D 0:000 85 DISN 0:00041 AO2 0:000 86 MV 1 0:00042 OLE 3:200� 1011 87 MV 2 0:00043 CRIG 0:000 88 MAC1 0:00044 MCRG 0:000 89 MAC2 0:00045 HOTA 0:000 90 MVNT 0:000Table 3.4: The initial concentrations of problem 3 with full chemistry.3.7.1 Results DiscussionThe following notations are used to present the test results� Step = the number of integration steps,� Fun = the number of residual evaluations,� TOL = error tolerance used to de�ne RTOL and ATOL,



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 57� ATOL = absolute error tolerance = 10�6� TOL for problem 1, = 105 forproblems 2 and 3,� RTOL = relative error tolerance = TOL,� ITOL = Gauss-Seidel tolerance,� G-S = number of Gauss-Seidel iterations,� SDT = the number of the signi�cant digits for the maximum relative errorat the speci�ed time tf , de�ned bySDT = �log10  maxi j Vi(tn) � ~Vi(tn) j~Vi(tn) !! ; (3.42)shows the accuracy of the calculated results, and ~Vi(tn) is the highly accu-rate solution and has been estimated by using DASSL[15] with much tightertolerances.The numerical results on Problem 1 (see Table 3.7) show that the number ofGauss-Seidel iterations per step are comparable with those in [90] albeit obtainedusing a somewhat di�erent nonlinear Gauss-Seidel method without Aitken Extrap-olation. The comparison of number of steps to Verwer [90] results shows that atTOL=0.1, the number of steps are almost similar and there are considerable reduc-tion in the number of Gauss Seidel iterations, even though Aitken extrapolationtechnique has not been applied. For TOL=0.01, the NDF2 showed the improvedperformance, the code took 71 steps as compared to 132 steps for ITOL=0.01 andfor ITOL=0.001, the number of steps taken by the new code are 112 as comparedto 132 steps. Besides this, the Gauss-Seidel iterations have decreased considerably.As regrads CPU time, it is an approximate value and implementation and ma-chine dependent. The given time is an indicative for comparison purpose (on aSilicon Graphics Indigo workstation, using the Fortran77 Complier Options -g -static -mips2). We have noted the CPU time for Problem 3, which has 29 speciesand 59 reactions. For ITOL=0.001 and RTOL=0.01, its value is 0.08 second, whichis less as compared to Verwer [90] values, even tough his Problem has 20 speciesand 25 reactions. A particular point to note on the results here is that whenITOL = 0:001 for Problem 1 then the work increases by 50%.



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 58Full Problem 1 Problem 2 Problem 3matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2Steps 36 40 39 783 1016 986 744 966 978Jac 11 14 13 48 73 67 66 74 75Fun 354 352 337 2427 1120 1079 2372 1110 1098SD 2.33 1.36 1.66 2.23 2.45 2.48 1.83 2.83 2.92Table 3.5: The results of the chemical kinetics arising from atmospheric chemistryusing full linear algebra for 0.1 relative tolerance.Full Problem 1 Problem 2 Prob lem 3matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2Steps 59 74 64 797 1108 1042 705 985 1010Jac 20 14 16 46 77 77 62 76 73Fun 630 399 426 2473 1236 1169 2272 1154 1146SD 2.53 2.88 2.68 2.42 3.37 2.34 2.47 2.97 3.06Table 3.6: The results of the chemical kinetics arising from atmospheric chemistryusing full linear algebra for 0.01 relative tolerance.Gauss NDF2 Problem1 Problem 2 Problem3Seidel TOL ITOL 0.01 0.001 0.01 0.001 0.01 0.0010.1 Steps 51 71 982 1015 1024 1054Jac 17 29 67 70 88 96Fun 431 715 1080 1116 1166 1210G-S 221 460 2171 2314 2883 3847SD 1.99 2.02 2.57 3.03 2.24 2.390.01 Steps 71 112 1037 1027 980 1002Jac 18 42 73 71 80 88Fun 476 1045 1170 1142 1163 1192G-S 379 647 2421 2542 3153 4218SD 2.71 2.84 4.4 2.89 2.92 2.39Table 3.7: The results of the chemical kinetics arising from atmospheric chemistryusing Gauss Seidel method.A comparison between the theta and NDF2 (see Tables (3.5) and (3.6)) methodsshows that NDF2 uses less function evaluations but takes more steps and Jacobianevaluations. This is probably due to the theta method's sophisticated error estima-tor [9] and its double or halving stepsize strategy. It is also worth noting that thetheta codes error estimator requires one extra function evaluation and back solveper step, and so accounts for the much larger number of function calls. A com-



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 59parison between Tables (3.5) and (3.6) shows that when the Gauss Seidel methodis used there are a few more Jacobian evaluations for Problem 3. This seems toarise because of the fact that for Problem 3 19 of the 29 equations are not diag-onally dominant. Analysis of the Jacobian matrices shows that species 8, the OHradical, destroys the diagonal dominance of a large part of the matrix. Table (3.7)also shows that there is signi�cant cost penalty in terms of numbers of iterationassociated with using ITOL = 0.001 but that there is a also increase in theaccuracy.3.8 IMplicit-EXplicit MethodsIn this section we will explore the e�ect of the improved performance of the NDFmethod over BDF methods when it is applied to the IMEX approach used by Ascheret al. and categorise the relationship between the IMEX approach and the nonlinearequations splitting method described in Section (3.6). For this we write the ODEfunction as given by equation (3.26) in the following formF(tn+1;V(tn+1)) = Ff (tn+1;V(tn+1)) + Fs(tn+1;V(tn+1)); (3.43)where Ff (tn+1;V(n+1)) and Fs(tn+1;V(tn+1)) have de�ned in Section (3.6). Ascheret al. [4] in their approach e�ectively replace the non-sti� part of the ODE, i.e.,Ff (tn+1;V(n+1)) with an explicit method to getFf (tn+1;V(tn+1)) = 2Ff (tn;V(tn)) � Ff (tn�1;V(tn�1)): (3.44)In another approach, Frank et al. [42] replaced the implicit term in non-sti� partof the ODE as given by equation (3.26) as follows:V�(tn+1) = 2V(tn)�V(tn�1): (3.45)We have adopted here second approach and which gives the NDF IMEX methodconsidered here:Ff(tn+1;V�(tn+1)) + Fs(tn+1; V̂(tn+1))� 164t �10V̂(tn+1) � 15V(tn) + 6V(tn�1)�V(tn�2)� = 0; (3.46)where V�(tn+1) is given by equation (3.45) and V̂(tn+1) is the solution value evalu-ated by this method at the end of the step. Now the Newton iteration is identical



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 60to that given by equation (3.31) except that the residual on the right hand side isde�ned by r̂(tpn+1) = �V̂p(tn+1) + zn + ~4tFf(tn+1;V�(tn+1)+ ~4tFs(tn+1; V̂p(tn+1)): (3.47)In this case a crude approximation to the norm of the inverse iteration matrix [71]is given by the observed rate of convergence rimexck [I � 4t~Js]�1 k � rimexc ; where rimexc < 1: (3.48)It is worth noting that the cost of the �rst IMEX iteration is identical to that oneiteration of the splitting method as described in Section (3.6), but thereafter theterm F f(tn+1; V �(tn+1)) does not have to be evaluated.
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Figure 3.2: IMEX stability region.The test equation considered by Ascher et al. [4] is given by_V = (� + ��)V �; � real; (3.49)which has been obtained by a Fourier analysis of the advection di�usion equation.In the above equation � models the advective terms and � the di�usive term. Whenthe BDF2 method is under consideration the characteristic polynomial (�̂ = 0) is�(z) = (32 � �4t)z2 � (2 + 2��4t)z + (12 + ��4t); (3.50)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 61while with the help of NDF2 the characteristic polynomial has the following form�(z) = (106 � �4t)z3 � (52 + 2��4t)z2 + (1 + ��4t)z � 16 : (3.51)The stability contours of the above polynomial are displayed in Figure (3.2) inwhich the horizontal axis is � and the vertical axis is �. The comparison betweenFigure (3.2) and (5) in [4] shows that the NDF2 method is stable for purely imagi-nary eigenvalues, unlike BDF2. In the case when the nonlinear equations splittingmethod of Section (3.6) is applied to the same model equation (3.49) used by Ascher,then from equation (3.36) the convergence condition isj [I � 4t~�]�14t~�� j < rc; (3.52)and it is evident that the NDF2 method is stable for purely imaginary 4t� inthe range [0; rc~4t ], unlike the BDF2 method and so has slightly superior stabilityproperty.3.8.1 The Extended Test Equation of Frank et al.Frank et al. [42] have emphasised that there is a need to generalise the stabilitydecomposition used by Ascher to model some aspects of the atmospheric di�usionequation by allowing � and � in equation (3.49) to be complex. In this concerntwo situations have been followed by Frank et al. In the �rst choice they considerthe values of � for which the method is A-stable with respect to �. The secondoption [42] is to recognise that while A-stability is valuable: it is , in many practicalsituation, possible to settle for A(�)-stability. We have adopted here the secondoption in that � is forced to lie in the stability region of the explicit NDF2 methodgiven byF f(tn+1; V �(tn+1)) � 164t(10V̂ (tn+1) � 15V (tn) + 6V (tn�1)� V (tn�2)) = 0;(3.53)and a similarly modi�ed BDF2 method. In these two cases the stability regionsare given by the interior of the semi-circular domains shown in Figure (3.3) and forNDF2 the maximum possible values of j �4t j � 1:775 and for � 1:3 for BDF2.Figure (3.4) gives the boundaries of the stability region for NDF2 (�̂ = �19) andfor BDF2 (�̂ = 0) with � has been chosen any of the stable values in Figure(3.3).The stability regions in Figure (3.4) are the exteriors of the semi-circular regions.
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Figure 3.3: Explicit stability region.
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Figure 3.4: Modi�ed stability region.Figure (3.4) shows that NDF2 has a desirably smaller stability region than BDF2in the right half plane(i.e. a larger instability region where the true solution isgrowing) but a less desirable slightly smaller one in the left half plane than BDF2(see Section (3.5)). Both methods are A(�)-stable however. Now the convergencecondition of the nonlinear equations splitting method as given in Section (3.6) for



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 63the model equation (3.49) used by [42] when both � and � are complex is given byj [I � 4t~�]�1 j < rc~4t j � j ; (3.54)see equation (3.48). The maximum values of 4t j � j to be in the stability regionsare 1.3 and 1.8 for BDF2 and NDF2, respectively, and ~ = 23 and ~� = 0:6. Henceif4t� lies on the edge of the explicit region then ~4t j � j � 1 and this requirementis very similar to the IMEX convergence requirements, which from equation (3.48)is given by j [I � 4t~�]�1 j < rimexc : (3.55)Hence it is evident that in both cases �4t must satisfy a very similar condition ifthe iterations are to be stable and to converge at the same rate.3.9 Estimating the local splitting errorIn Section (3.8) we have described two approaches to treat advection explicitly,when IMEX schemes are used. We have adopted the approach of Frank et al. [42]as given by equation (3.45). When this approach is being implemented, V̂(tn+1)is the solution at the end of the step. As given by equation (3.26), V(tn+1) is anapproximation to the solution at time tn+1. Now we are interested in �nding thelocal IMEX splitting error denoted by eV̂(tn+1) and de�ned byeV̂(tn+1) = [V(tn+1) � V̂(tn+1)]: (3.56)With the assumption that the past values V(tj); j = n; n � 1; n � 2 for bothmethods are identical, and subtraction of equation(3.46) from equation(3.26) withthe multiplication by ~4t and linearization gives[I � 4t~Js]eV̂(tn+1) = ~4t[Ff(tn+1;V(tn+1))� Ff(tn+1;V�(tn+1))]: (3.57)Then addition and subtraction of the term Ff (tn+1; V̂(tn+1)) and further lineariza-tion gives that[I � 4t~Js]eV̂(tn+1) = ~4t[Jf(eV̂(tn+1)+ Ff (tn+1; V̂(tn+1)) � Ff (tn+1;V�(tn+1))];(3.58)



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 64and in the above equation the higher order terms have been ignored. Multiplyingwith [I � 4t~Js]�1 on both side of the above equation we have thatk eV̂(tn+1) k � k [I � 4t~Js]�1~4t[Ff(tn+1; V (tn+1))� Ff (tn�1;V�(tn+1))] k+ rc k eV̂(tn+1) k : (3.59)Then simpli�cation gives thatk eV̂(tn+1) k � ~4t1 � rc k [I � 4t~Js]�1[Ff(tn+1;V(tn+1))�Ff (tn+1;V�(tn+1)] k :(3.60)The righthand side term k : k in the above equation may be calculated using oneextra evaluation of Ff (tn+1; V̂(tn+1)) and a backsolve. The equation (3.48) can beused to bound the norm of the inverse Jacobian k [I � 4t~Js]�1 by the rate ofconvergence rimexc to getk V(tn+1)� V̂(tn+1) k � rimexc ~4t1 � rc k [Ff (tn+1; V (tn+1))�Ff (tn+1; V �(tn+1))] k :(3.61)The right hand side term ~4 k : k is related to the extra local truncation errordue to splitting see [43], and can be written in the following form�4t[Ff(tn+1;V(tn+1))� Ff (tn+1;V�(tn+1))] = �4tJf(V̂(tn+1) � V�(tn))+ h:o:t:; (3.62)where V̂(tn+1) � V�(tn+1) = (V̂(tn+1) � 2V(tn) + V(tn�1)) may be regardedas an O((4t)2) error. Alternatively with the help of equation (3.36) we can derivethe following expressionk eV̂(tn+1) k � rc1 � rc k V̂(tn+1) � V�(tn+1) k : (3.63)Then in both case the quantity rc plays an vital role in the relationship between theIMEX splitting error and the quantity V̂(tn+1) � V�(tn+1). As the restriction onrc is also required for convergence of the nonlinear splitting method, this restrictionthus appears to be important to both methods for di�erent reasons.3.10 The Time Step MechanismThe NDF and the theta code explained in this chapter used a variable step-size inwhich the time step is chosen automatically throughout the integration to satisfy a



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 65user speci�ed local error tolerance. The NDF code uses the Newton iteration, whilethe theta method code implies either Newton iteration or functional iteration tosolve the non-linear equations at each time step. For the selection of the step sizethe local error indicated by le(tn+1) is used and for the NDF code this error estimateis based on the di�erence between the predictor and corrector. Now consider theweighted error norm k le(tn+1) kw = max j lej(tn+1) jW nj ! ; (3.64)where W nj = ATOLj + RTOLjVj(tn) and ATOLj and RTOLj the absoluteand relative error tolerance for component j. An integration step is accepted ifk le(tn+1) kw� 1 and rejected otherwise. The following new step strategy has beenadopted. 8>>>>>>><>>>>>>>: rh = 4t4toldrh = max(rh; 4tminj4tj )rh = rhmax(1:0; j4tj�4tmax�rh)4t = rh � 4t (3.65)where4tmin and4tmax are bounds of the stepsize4t,4told is the previous stepsizeand rh is the growth factor. After the convergence of the nonlinear solver, theweighted local error norm is estimated and if this norm is < 1, then the solutionsatis�es the local error tolerance. Unfortunately if it is � 1 then we must reducethe step size. In case the nonlinear equation solver fails to converge, then �rst weupdate the Jacobian matrix and even after that failure occurs then we think aboutthe reduction of the step size if possible. For the theta method ([9]) we have usedthe doubling and halving the time step strategy.3.11 ConclusionWe have applied the NDF2 method to solve the chemical kinetics arising from at-mospheric chemistry. The analysis has shown that it has slightly superior accuracyand stability properties to the more widely used BDF2 method for the type of ODEsystems considered here, and the step-size has increased by the factor of 1.26. Wehave used the adaptive Gauss-Seidel iterative method, instead of a Newton-type it-erative method. The results have shown that with NDF2 method, the Gauss-Seideliterations have reduced almost 30% as compared to Verwer [90]. In term of number



CHAPTER 3. THE STIFF CHEMISTRY ODE SOLUTION METHODS 66of steps, at modest tolerance the NDF2 method takes a number of step comparableto that of Verwer [90] and at tighter tolerance, about 10% reduction of steps haveoccurred in all cases except one.A stability analysis of IMEX schemes has been given for the NDF2 methodcalled here the NDF2 IMEX scheme. The test equation used is that of Ascher etal.[4] as given by equation (3.49). Firstly we took the � and � in the same equationas reals, then extended the stability analysis by taking both � and � complex. Inall cases it has been observed that NDF2 IMEX scheme has better stability region,as compared to BDF2 IMEX scheme. Besides this NDF2 IMEX scheme is stable onpurely imaginary axis while BDF2 IMEX scheme not. A comparison between theIMEX and nonlinear splitting approaches has shown some interesting similaritiesand has indicated a way of measuring the IMEX splitting error. The advantageof the splitting approach- that it more closely couples the ow and chemistry-isbalanced by its greater cost after the �rst two iterations if the local splitting errorestimation is included.The numerical experiments have shown that the new NDF2 code works wellbut have also indicated that some tuning of the stepsize strategy and Jacobianevaluation criteria may be needed. At present the approach described here is alreadybeing used successfully in large scale experiments in computational atmosphericmodelling.



Chapter 4The numerical Solution of aModel Problem4.1 IntroductionA currently active area of research is the numerical approximation of PDEs with sti�non linear source terms [61, 81]. Tang [81] concentrated on the convergence analysisfor operator-splitting methods when applied to conservation laws with sti� sourceterms. Papalexandris et al. [61] have considered the spatial discretization aspectwhen sti� source terms are involved. But here we have paid attention to the timeaspect when there is a sti� source term involved in the PDE. Such problems comefrom the modelling the atmospheric chemistry, non-equilibrium gas dynamics andcombustion. Earlier workers [19, 52] have shown that spurious numerical solutionphenomenon may occur when the insu�cient spatial and temporal resolution areused; both have reported that the incorrect wave speeds and incorrect discontinuitieswhen the PDE has sti� source terms.In this chapter we will focus on the Leveque and Yee problem [52] in both oneand two space dimensional cases using the method of lines approach. Recall thatin this method a suitable spatial discretisation scheme is applied to the advectionterm and the PDE is reduced to a system of ordinary di�erential equations (ODEs)in time. The factors that e�ect the performance of the method include the spatialdiscretisation error, the position of the spatial discretisation points and the timeintegration method.In particular the spatial mesh points should be chosen to reect the true so-67



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 68lution of the PDE. After choosing the spatial mesh the next step is to pick anappropriate ODE solver. As mentioned in [7] there are many adaptive algorithmsavailable for controlling the spatial discretisation error. Although these algorithmsuse the spatial error to re�ne and coarsen the mesh, the aim is to integrate in timewith su�cient accuracy so that the spatial error is not degraded while maintainingthe e�ciency of the time integrator. This has been achieved by varying the timeaccuracy tolerance with spatial error rather than keeping it �xed (see [7, 49]). Inthe present work, the method of Berzins [7] developed for convection dominatedPDEs in two space dimensions has been applied to the 1D and 2D PDE of Levequeand Yee [52]. The central idea is that the temporal error should not corrupt thespatial discretisation error.When solving time-dependent PDEs the error introduced may be split into thetemporal error and spatial error, [7]. The next task is to estimate and controlthem in a sophisticated way so that the method works e�ciently. Two approachesfor controlling local error in time are given in the literature (see [7, 12]). The �rstapproach is related to controlling the local error in time per step while in the secondapproach the local error in time per unit step is controlled. A complete descriptioncan be found in [7, 12, 49]. As mentioned in Lawson et al. [49], controlling thelocal error in time per step does not reect the true growth in the global error aswell as controlling the local in time per unit step. This Chapter will thus explainhow to implement the local error per unit step control strategy when a source termis present and to determine how the source term e�ects the spatial discretisationerror. For the spatial discretisation error we will use a strategy similar to that of[12]. The local temporal error is controlled in such a way that it is the fraction ofthe spatial discretisation error over each step and the theta method [9] is used asthe time integrator. This approach requires an estimate of the spatial error to becalculated and depends for its robustness on the quality of this estimate.In order to deal with sti� source terms a Gauss Seidel iterative technique hasbeen implemented to solve the systems of non-linear equations, because this iter-ation works well in a method of lines frame work, see [90]. The �rst part of thework deals with the implementation of these ideas for a 1D hyperbolic conservationlaw with a nonlinear source term, [52]. Extensive numerical experimentation hasbeen done and the results are compared with the exact solution whenever possible.The second part deals with the implementation of aforementioned technique in 2D



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 69Leveque and Yee problem [52].4.2 Spatial DiscretisationIn the present numerical investigation, the focus is on the 1D Leveque and Yeeproblem [52], which is given by@u@t + @f(u)@x = � (u) x 2 [0;1); (4.1)where  (u) is the source term de�ned by �u(u�1)(u�0:5) and f(u(x; t)) = u(x; t)and is the linear advection with a source term that is \sti�"for large �. Thecharacteristic decomposition of above equation gives, [61]dudt = � (u) along dxdt = �; (4.2)where � = @f(u)@u and is equal to 1.0. In the absence of the source term the equation(4.1) can be written as @u@t + @f(u)@x = 0 x 2 [0;1): (4.3)Now consider x = x(t) as a function of t, then u = u(x(t); t), because u is also afunction of time, t, then the rate of change of u along x(t) isdudt = @u@t + dxdt @u@x: (4.4)Now the equation (4.2) gives dxdt = 1, and from above equation we have thatdudt = @u@t + dxdt @u@x = 0; (4.5)which shows that the rate of change of u along the characteristic curve x(t) is zero,and which implies that u is constant along the curve x(t).The next question that arises is along which curve does u as de�ned by theequation (4.1) remains constant? The answer isdudt = 0 along dxdt = fu �  (u)@u@x ; (4.6)and details are given in [61]. The special feature of equation (4.1) is that thediscontinuity will move with constant speed (� = 1), and the shock will never beformed in this problem.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 70Although this model problem is inadequate as a full test of any numericalmethod, it reveals the essential di�culties that make it possible to understandthe numerical problems, identify their source and yields insight that may be valu-able in developing better numerical methods . To �nd the source of di�culty wecompare the present situation with that of a homogeneous system of conservationlaws with no source term. In the case of a homogeneous system of conservationlaws with no source terms, the use of a conservative numerical methods guaranteesthe propagation of the discontinuity in the initial data at the correct speed. To seethis, the cell average is de�ned (see [52]) asUj(t) = 14x Z xj+ 12xj� 12 u(x; t)dx; (4.7)where Uj(t) is a numerical approximation to uj(t). The integration of the conser-vation law ut + f(u)x = 0, over the interval [xj� 12 ; xj+ 12 ] � [tn; tn+1] yieldsthatVj(tn+1) = Vj(tn) � 14x �Z tn+1tn f(V (xj+ 12 ; t)dt � Z tn+1tn f(Vj� 12 ; t)dt� ; (4.8)where Vj(tn) is the approximation to u(xj; t) by the time integration method. Sum-mation of the above expression over j ( j is the number of the grids points) givesthe cancellation of the ux term and we are left with only uxes at the boundariesof our region. A �nite di�erence is said to be conservative if it can be written inthe conservation formVj(tn+1) = Vj(tn) � 4t4x hfj+ 12 � fj� 12 i : (4.9)In equation (4.9) fj� 12 are the numerical uxes based on V at neighbouring pointsand 4tfj+ 12 approximates the corresponding integral in equation (4.8). The sum-mation of equation (4.8) gives the same cancellation of ux as in the true solution.Now if we include the source term and integration of following equationut + @f(u)@x =  (u); (4.10)over the interval [xj� 12 ; xj+ 12 ] � [tn; tn+1] reveals thatVj(tn+1) = Vj(tn) � 14x Z tn+1tn f(V (xj+ 12 ; t))dt � Z tn+1tn f(V (xj� 12 ; t)dt+ 14x Z tn+1tn Z xj+ 12xj� 12  (V (x; t)dxdt: (4.11)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 71It is evident from the equation that the new term appearing in equation (4.11) doesnot undergo cancellation while summing over j. This is main source of di�cultywhile solving problems with sti� source term, consequently it is important thatthis term is modelled accurately if we are to obtain the correct behaviour (see forexample [52]).4.3 Space-Time Error Balancing Control.While solving PDEs a common approach is to select the time step in such a waythat the CFL condition is satis�ed. This guarantees the stability of the methods,but on the other hand the solution may not be of required accuracy, [62]. Hence theoption of using the approach of controlling the local growth in time of the spatialdiscretization error is preferred [62]. It is mentioned in [62] that when the local timeerror has been controlled to required accuracy, the CFL condition will automaticallybe satis�ed in some sense. The disadvantage of this type of error control strategyis that there is no clear relationship between the accuracy tolerance and the globalspace and time error [7, 12].Our aim here is to develop an error control strategy that allows the accuracytolerance to be selected and adjusted automatically for problems involving chemistrysource terms. This is di�cult with the local error per step control strategy becausethe time global error is not proportional to the local error tolerance (tol) see forexample [7, 49]). We are interested in solving the initial value problem given by_U = FN (t;U(t)); U(0) given; (4.12)nd its true solution [U(tn)]~pn=0 is approximated by [V (tn)]~pn=0 at set of discrete timepoints 0 = t0 < t1 < ::: < t~p = tf by the time integrator. The vector values ofthe global error at the spatial mesh points, at any time t is denoted by Ê(t) andde�ned by (see for example [49])̂E(t) = u(t)�V(t); (4.13)where u(t) represents the the restriction of the exact PDE solution to mesh, i.e.,[u(t)]j = u(xj; t); j = 1; :::; N: (4.14)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 72The vector Ê(t) can be written as the combination of the restriction of the PDEsspatial discretization error est(t) and the ODE global error ge(t; tol)Ê(t) = est(t) + ge(t; tol); (4.15)where est(t), the restriction of the PDEs spatial discretisation error, is given byest(t) = u(t)�U(t); (4.16)and the ODEs global error can be written asge(tn+1; tol) = ~W(tn+1) + le(tn+1); (4.17)see [7, 49] for details. In the above equation ~W(tn+1) represents the solution of thevariational equation given by (see Shampine [73])_~W = J ~W; ~W(tn) = ge(tn; tol); (4.18)where J = @FN (U)@U and time local error le(tn+1) has been explained in Chapter 3and also see [7, 9, 63] for more detail. Combining equations (4.15) and (4.17) theglobal time error can be written as,(see [7, 49])Ê(tn+1) = est(tn+1) + ~W(tn+1) + le(tn+1): (4.19)Since we are interested in both global and local accuracy and equation (4.19) showsthat the true relation between the time global error and the user supplied toleranceis not clear. Hence controlling the local error does not guarantee the equal control ofthe global error. When solving PDEs it is important that the error control strategymust ensure that the time global error must be proportional to the the requiredaccuracy. This is said to be case (see Berzins [7]) if global error at time t for anaccuracy requirement tol is Êtol, then for ~r > 0,Êtol�~r = ~r � Ê(t)tol: (4.20)It is also shown in [7, 49] that this proportionality can be achieved if and only ifthe local error le(tn+1) for the given tolerance(tol) satis�esle(tn+1) =4t(tn+1; tn)tol +O(4t; tol); (4.21)where the behaviour of  is very similar to integral mean over [� , t] of a functionthat is independent of tol and bounded on [0, tf ]. Here the term O(4t; tol) isnumerically negligible compared with terms of order 4ttol in the above equation.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 73So the technique used in [7, 49] in which the user supplied tolerance is relatedto the spatial discretisation error in some way is given ask le(tn+1) k = � k êst(tn+1) k : (4.22)In the above equation � is balancing factor and ^est(tn+1) represents the local growthin time of the spatial discretisation error from tn to tn+1. The local growth in time ofthe spatial discretization error is de�ned as the spatial error at time tn+1 given theassumption that the spatial error est(tn) at time tn is zero (see for example [12]).The next task is to estimate the local growth in time of the spatial discretizationerror. For this purpose the procedure developed in (Berzins and Ware [12]) hasbeen extended to PDEs with sti� source terms.The underlying idea is to evaluate the primary solution using one upwind schemeapplied to the advection term and a quadrature rule to integrate the sti� sourceterm. Then the secondary solution is being estimated at same time step with upwindscheme of di�erent order and di�erent quadrature rule for source term integration.The di�erence between the two computed solutions has been taken as an estimateof the local growth in time of the spatial discretization error in the same way as in[7, 49]. Suppose that the ODE function in equation (4.12) at time tn is given byFN (tn;U(tn)) = FfN (tn;U(tn)) + FsN (tn;U(tn)); (4.23)where FfN (tn;U(tn)) is the discretisation of the convective ux terms in equation(4.1) and with the implementatation of the second order upwind together with asuitable limiter at jth grid point is denoted ~F fj (tn; Uj(tn)) and given by~F fj (tn; Uj(tn)) = � 14x "1 + 12  B(rj; 1) � 1rj�1B(rj�1; 1)!# (Uj(tn) � Uj�1(tn));(4.24)where B(.,.) is any suitable limiter (see Chapter 2 and [7, 49]) and the factor rj isde�ned by (see equation (2.65))rj = Uj+1(tn)� Uj(tn)Uj(tn)� Uj�1(tn) : (4.25)FsN (tn;U(tn)) represents the source term integration in the same equation and atjth grid point we have thatF sj (tn; Uj(tn)) � � 14x�(Uj(tn));� 14x�(Uj(tn)) = � 14x Z xj+ 12xj� 12  (Uj(tn))dx; (4.26)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 74where �(Uj(tn)) represents the integration of source term at jth grid point withmidpoint rule and is given as�(Uj(tn)) = 4x (Uj(tn)): (4.27)Then at jth grid point the F sj (tn; Uj(tn)) is given byF sj (tn; Uj(tn)) = � (Uj(tn)): (4.28)So the equation (4.23) with the help of equations (4.24) and (4.28) at jth grid pointcan be written asFj(tn; Uj(tn)) = � 14x "1 + 12  B(rj; 1) � 1rj�1B(rj�1; 1)!# (Uj(tn) � Uj�1(tn))�  (Uj(tn)): (4.29)Now the auxiliary solution used for the evaluation of the local growth in time ofthe spatial discretization error at time tn is calculated by the solution of followingmodi�ed ODEs system _vn+1(tn) = GN (tn;vn+1(tn)); (4.30)where vn+1(tn) = V(tn). In the above equation G(tn;V(tn)) has the following formGN (tn;V(tn)) = GfN (tn;V(tn)) +GsN(tn;V(tn)); (4.31)whereGfN (tn;V(tn+1)) is the spatial discretization with the upwind scheme of orderdi�erent from equation (4.24) and when the limiter function B(.,.) is zero (seeequations(2.56) and (2.57)), means �rst order upwind scheme, has the followingform at the jth grid pointGfj (tn; Vj(tn)) = �Vj(tn)� Vj�1(tn)4x : (4.32)Now GsN (tn; Vj(tn)) is evaluated by the trapezoidal rule and at jth grid given asGsj(tn; Vj(tn)) � � 14x ~�(Vj(tn));� 14x ~�(Vj(tn)) = � 14x Z x+ 12x� 12  (V (tn))dx: (4.33)In the above equation~�(Vj(tn)) = 4x2 � (Vj� 12 (tn)) +  (Vj+ 12 (tn))� ; (4.34)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 75where  (Vj� 12 (tn)) =  (Vj(tn)) +  (Vj�1(tn))2 ; (Vj+ 12 (tn)) =  (Vj(tn)) +  (Vj+1(tn))2 :So with help of above equation the equation (4.33) can be written asGsj(tn; Vj(tn)) = �14 ( (Vj�1(tn)) + 2 (Vj(tn)) +  (Vj+1(tn))) : (4.35)So with the combination of equations (4.30) and (4.35) the function G(tn;V(tn))(see equation (4.31)) at jth grid point is given byGj(tn; Vj(tn)) = �Vj(tn)� Vj�1(tn)4x� 14 ( (Vj�1(tn)) + 2 (Vj(tn)) +  (Vj+1(tn))) : (4.36)Then the local in time of the spatial discretization error is estimated by^est(tn+1) = V(tn+1)� vn+1(tn+1): (4.37)Since only the order of the magnitude of the norm of the local growth in time ofthe spatial discretization error is needed, it is su�cient to apply only a few GaussSeidel iterations to compute the auxiliary solution of the ODE system given by(4.30). If the theta method (Chapter 3) is being used as the time integrator thenthis equation in combination with equation(4.37) and equation (3.7) givesêst(tn+1) = 4t� (FN (tn+1;V(tn+1))�GN (tn+1;V(tn+1))) (4.38)+ 4t(1� �) (FN (tn;V(tn)) � GN (tn;V(tn))) :When the solution and the time derivative calculated by equation (4.12) is sub-stituted in equation (4.30), the residual of the auxiliary equation can be writtenas r(tn;V(tn)) = _V(tn)�G(tn;V(tn)): (4.39)Using the equations (4.12) and (4.39) and substituting for FN (tn;V(tn)) using _V(tn)gives êst(tn+1) = 4t (�r(tn+1;V(tn+1)) + (1 � �)r(tn;V(tn))) : (4.40)So the time tolerance when the strategy of the LEPUS is being implemented on thestep tn+1 is given byTOL = � k �r(tn+1;V(tn+1)) + (1� �)r(tn;V(tn)) k : (4.41)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 76Now FN (tn;V(tn)) is approximated by the second order upwind scheme, while the�rst order upwind scheme is used for GN(tn;V(tn)), so a simple calculation showsthat equation (4.39) can be written asrj(tn; V (tn)) = �4Vj� 12 (tn)24x "B( 1rj ; 1)� 1rj�1B(rj�1; 1)#+ 14 ( (Vj+1(tn))� 2 (Vj(tn)) +  (Vj�1(tn))) ; (4.42)where 4Vj� 12 (tn) = Vj(tn) � Vj�1(tn) and rj(tn+1; V (tn+1)) can be expressed byan almost identical form.4.3.1 Local Growth in Spatial Discretization ErrorAs explained in the previous Section the approach used is to calculate the primarysolution with one particular upwind scheme applied to the advection term and onequadrature rule used to integrate the sti� source term. The secondary solution isthen obtained with upwind scheme of di�erent order and a di�erent quadraturerule. The di�erence between the two solutions is an indicator of the local growth intime of the spatial discretization error (see [7]). Hence with the implementation ofthe second order upwind scheme to advection term and midpoint rule to the sourceterm the ODE function as given by equation (4.23) at jth grid point can be writtenasFj(tn; U(tn)) = � 14x "1 + 12  B(rj; 1)� 1rj�1B(rj�1; 1)!# (Uj(tn)� Uj�1(tn))� F sj (tn; Uj(tn)); (4.43)where F sj (tn; Uj(tn)) is the source term integration with midpoint rule, (see equation(4.28)). For the time being we have taken the factor r de�ned in equation (4.25)to be constant then B(r; 1) � 1rB(r; 1) = (r+jrj)(r�1)r(1+r) where B(.,.) is the van Leerlimiter given as (see [7]) B(r; 1) = r + j r j1 + r ; (4.44)and with the help of Taylor series Uj(tn) � Uj�1(tn) = 4x@Uj(tn)@x . The ODEsfunction as given by equation(4.43) has the following formFj(t; Uj(t)) = � 14x "1 + 12 (r+ j r j)(r � 1)r(1 + r) # (Uj(tn) � Uj�1(tn))� F sj (tn; Uj(tn)): (4.45)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 77For simplicity we de�ne â = "(r+ j r j)(r � 1)r(1 + r) # ; (4.46)which is zero for r negative, and when r is positive has the value â = h2 (r�1)(1+r)i,and next task is to simplify â by making use of the de�nition of r which is given byequation (4.25) r = Uj+1(tn)� Uj(tn)Uj(tn)� Uj�1(tn) ; (4.47)r + 1 = Uj+1(tn)� Uj�1(tn)Uj(tn)� Uj�1(tn) ;and r � 1 = Uj+1(tn)� 2Uj(tn) + Uj�1(tn)Uj(tn)� Uj�1(tn) :From this it can be inferred that â in equation (4.46) has the following formâ � 2(4x)2(Uj)xx(tn)24x(Uj)x(tn) ; (4.48)and further simpli�cation gives thatâ � (4x)(Uj)xx(tn)(Uj)x(tn) : (4.49)With this value of â, the truncation error associated with the equation (4.45) maybe written as, just for convience, we denote it with SDE1SDE1 = � "(1 + (4x)2(Uj)xx(tn)24xTEx # TEx �O(4x2); (4.50)where O(4x)2 is the error due to mid point rule, which is applied for the sourceterm integration and TEx truncation error being introduced due to the spatialdiscretization of @Uj(tn)@x and will be of the form 4x@2Uj(tn)@x2 .The next task is to �nd the auxiliary solution with upwind scheme of di�erentorder and di�erent quadrature rule for source term integration that have have ap-plied to �nd the primary solution. So with the implementation of �rst order upwindscheme and the trapezoidal rule (see equation (4.34)) to the source term integrationthe auxiliary ODE function at jth grid point is given byGj(tn; Uj(tn)) = �Uj(tn)� Uj�1(tn)4x �Gsj(tn; Uj(tn)); (4.51)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 78where Gsj(tn; Uj(tn)) is the integration of the source term with the trapezoidal rule(see equation (4.35)), then the truncation error will be of the formSDE2 = �TEx +O(4x2); (4.52)where O(4x)2 is error due to the trapezoidal rule, as used for the source termintegration. The error TEx being introduced due to the spatial discretization willbe of the form 4x@2Uj(tn)@x2 we have conviently denoted it by SDE2.If the Backward Euler Method is being implemented as the time integrator thenthe di�erence between equation (4.50) and equation (4.52) is the local growth intime of the spatial discretization error and is given below at jth grid point^estj(tn+1) = �4t "4x2 @2Vj(tn+1)@x2 #�4t O(4x)2); (4.53)where Vj(t) is the numerical approximation to Uj(t) with the time integrator and thesecond term is due to the source. It is evident that local growth in time of the spatialdiscretization error will increase with an increasing in sti�ness of the source term.The reason for this is that the second error term in the above equation appearingdue to the source term, which will increase in size with increasing sti�ness.4.4 Stability for the SchemeAs discussed earlier, using the upwind scheme with a zero limiter for the spatialdiscretisation, we have the following form of equation (4.1) at jth grid point andtime t @Uj@t = �(Uj(t)� Uj�1(t))4x � F sj (t; Uj(t)); (4.54)and F s(tn; Uj(tn)) represents the integration of the source term with mid point rule(see equation (4.28)). When the limiter is not zero, we have the following equation@Uj@t = � 14x "1 + 12  B(rj; 1)� 1ri�1B(rj�1; 1)!# (Uj(t)� Uj�1(t))� F s(t; Uj(t)): (4.55)Using the vector notation the equation(4.55) takes the following form (see [7])_U(t) = ��I +B(t;U(t))�AN4x U(t)�  (U(t)); (4.56)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 79and in the above equation AN represents the �rst order upwind approximation andB stands for the term involving the limiter function. Let us de�ne matrix CN asa product of the matrices AN and (I + B) (diagonal matrix) and substituting inequation (4.56) gives _U(t) = � 14xCNU(t)� � ~ (U(t)); (4.57)where ~ has de�ned in equation (4.68). Let vector V(tn) be the numerical approx-imation to U(tn) generated by the time integrator, we haveV(tn+1) = V(tn)� 4t4xCNV(tn)� �4t ~ (V(tn+1)): (4.58)In the above equation the source term is to be treated implicitly while an explicittechnique has been used for the advection term. If V(tn) is the numerical approxi-mation to U(tn) given by the time integrator, we de�ne the growth of error in time~En = U(tn)�V(tn) and applying the Mean Value Theorem to the source it gives~En+1 = �4t4xCN ~En � �4t~En+1Js; (4.59)where Js is the Jacobian matrix and de�ned by �@ ~ (V(tn+1)@V(tn+1) �. Rearranging equation(4.59) we have ~En+1 = �4t4x(I + �4tJs)�1CN ~En: (4.60)Hence in the presence of the sti� source term the stability requirement isk "4t4x(I + �4tJs)�1CN# k< 1; (4.61)thus giving a CFL type condition. For the non-sti� case the term 4t�Js can beignored because it will be small, so we have that4t4x k CN k< 1; (4.62)which is the similar stability condition as given by Berzins [7]. As the matrix 14xCNcorresponds to spatial discretization of the advection term, the stability conditionreduces to the standard CFL stability condition4t4x < 1: (4.63)While this CFL, condition provides a stable time step, there is no guarantee ofaccuracy. In the sti� source term case when the term 4t�Js is large the sourceterm will act as a relaxation factor and allow a larger value of 4t to be used.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 804.5 Wave SpeedAs mentioned earlier, our focus is on the Leveque and Yee [52] problem given byequation (4.1). In this Section the phenomenon of the numerical propagation ofthe front will be explored. Leveque and Yee solved this problem with the splitalgorithm and have seen no spurious wave speeds for � = 0:5. From numericalexperiments it is evident that the performance of the algorithm depends upon thecritical dimensionless parameters; the mesh ratio c = 4t=4x and product 4t�of the time step and reaction rate. Now we will calculate the step size using newapproach.The ODEs function as given by equation (4.12) can be written asFj(t; Uj(t)) = �(Uj(t)� Uj�1(t))4x � F sj (Uj(t)); j = 1 � � �NPTS (4.64)for simplicity the �rst order upwind method has been used for spatial discretizationand the source term has been integrated with mid point rule over the control volume,so F sj (Uj(t)) = 14x�(Uj(t)); (4.65)where �(:) has been de�ned by equation (4.27). Then the integration of the sourceterm is given by F sj (Uj(t)) =  (Uj(t)): (4.66)For this analysis we have taken source term of the form (U) = � ~ ; (4.67)where ~ (U) = U(1 � U); (4.68)has been de�ned for notational convience below. The derivative of source term withrespect to U is given by @ (U)@U = �(1 � 2U): (4.69)To reduce any unnecessary complexity in the analysis we have utilised the BackwardEuler method as the time integrator and the Forward Euler as the predictor, gettingV pj (tn+1) = Vj(tn) +4tF (tn; Vj(tn)); (4.70)and V cj (tn+1) = Vj(tn) +4tF (tn+1; Vj(tn+1)): (4.71)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 81In order to explain how the error balancing algorithm de�ned in equation (4.22)works when applied to the Leveque and Yee [52] we now need to obtain the explicitform of the time local error and the local in time space error.4.5.1 Estimation of Time Local ErrorThe local error at tn+1 is de�ned as le(tn+1), with the jth component given bylej(tn+1), and is estimated in standard ODE codes by [63]lej(tn+1) = V pj (tn+1)� V cj (tn+1)2 : (4.72)Using equations (4.70) and (4.71), the above equation may be written aslej(tn+1) = 4t [(Vj(tn+1)� Vj�1(tn+1))� (Vj(tn)� Vj�1(tn))]24x+ 4t2 [ (Vj(tn+1))�  (Vj(tn))] : (4.73)Rearranging giveslej(tn+1) = 4t [(Vj(tn+1)� Vj(tn))� (Vj�1(tn+1)� Vj�1(tn))]24x+ 4t2 [ (Vj(tn+1))�  (Vj(tn))] : (4.74)From the Mean Value Theorem we haveVj(tn+1)� Vj(tn) = 4t@Vj(tn+1)@t +O(4t)2: (4.75)Similarly we also haveVj�1(tn+1)� Vj�1(tn) = 4t@Vj�1(tn+1)@t +O(4t)2: (4.76)So the equation (4.74) takes the following formlej(tn+1) = 4t22 h@Vj(tn+1)@t � @Vj�1(tn+1)@t i4x+ 4t2 [ (Vj(tn+1))�  (Vj(tn))] : (4.77)Applying of the Taylor series expansion to the �rst term and the Mean ValueTheorem to the second term giveslej(tn+1) = 4t22 "@2Vj(tn+1)@t@x + @Vj@t @ (Vj(tn+1))@Vj # + O(4t)3; (4.78)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 82and by substituting for @ (Vj(tn+1))@Vj(tn) from the equation (4.69) the equation (4.78) hasthe following formlej(tn+1) = 4t22 "@2Vj(tn+1)@t@x + �(1 � 2Vj(tn+1))@Vj(tn+1)@t # + O(4t)3; (4.79)and with help of equation (4.57) the above equation can be written asle(tn+1) = 4t22 [CN(CNV(tn+1)4x + � ~ (V(tn+1))4x (4.80)+ � ~ V  CNV(tn+1)4x + � ~ (V(tn+1))!] + O(4t)3;where ~ has been de�ned in equation (4.68).4.5.2 Estimation of Local in Time Space ErrorThe next task is to estimate the local growth in time of spatial discretization error.As explained earlier, the basic technique is to evaluate the primary solution by usingone of upwind scheme for the advection term and a quadrature rule to integrate thesti� source term. Then the secondary solution is being estimated at same time stepwith an upwind scheme of di�erent order and a di�erent quadrature rule for sourceterm integration. The di�erence between the two computed solutions is then usedas an estimate of the local growth in time of the spatial discretization error.Hence, for evaluating the primary solution, the limited second order upwindmethod has been used as the spatial discretization and the trapezoidal rule (equa-tion (4.34)) is used to evaluate the source term. Then the ODEs function, (seeequation (4.12)) is given byFj(t; Uj(t)) = � 14x "1 + 12  B(rj; 1) � 1rj�1B(rj�1; 1)!# (Uj(t)� Uj�1(t))� ~F sj (t; Uj(t)); (4.81)where ~F sj (t; Uj(t)) represents the source term integration with trapezoidal rule andis given by 14( (Uj�1(t)) + 2 (Uj(t)) +  (Uj+1(t))) (see equation (4.35)). With theimplementation of the Backward Euler as the time integrator, the di�erence of theequations (4.64) and (4.81) is taken as the estimate of the local growth in time ofthe spatial discretization error and is given at the jth grid point byêstj(tn+1) = 4t24x "B(rj; 1)� 1rj�1B(rj�1; 1)# (Vj(tn+1)� Vj�1(tn+1))+ 4t4 ( (Vj�1(tn+1))� 2 (Vj(tn+1)) +  (Vj+1(tn+1))) : (4.82)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 83Now given that B(r; 1)� 1rB(r; 1) = (r+jrj)(r�1)r(1+r) ;Vj(tn) � Vj�1(tn) � 4x@Vj(tn)@x ;and assuming (Vj�1(tn+1)) � 2 (Vj(tn+1)) +  (Vj+1(tn+1)) = 4x2@2( (Vj(tn+1)))@x2 ;then we have the following form of local growth in time of the spatial discretizationerror êstj(tn+1) = 4t " (r+ j r j)(r � 1)r(1 + r) ! @Vj(tn+1)@x #+ 4t "4x24 �@2 ~ (Vj(tn+1))@x2 # : (4.83)It is evident that �rst term on the right hand side of above equation will be zerofor r negative and and the source term is only active when 0 < V < 1. Nowusing equations (4.46) and (4.48) the above equation can be written as^estj(tn+1) =4t "4x(Vj(tn+1))xx2 + 4x24 �@2 ~ (Vj(tn+1))@x2 # : (4.84)The error balancing approach is given byk le(tn+1) k = � k êst(tn+1) k; (4.85)then using the value of êst(tn+1) from equation (4.84) the above equation can bewritten ask l̂e(tn+1) k = �4t k 4xV(tn+1)xx2 + (4x)24 �@2 ~ (V(tn+1))@x2 k : (4.86)The combination of equations (4.79) and (4.86) gives4terrbal = � k 4xV(tn+1)xx2 + (4x)24 �@2 ~ (V(tn+1))@x2 kk @2V(tn+1)@t@x + � (1� 2V(tn+1)) @V(tn+1)@t k ; (4.87)and more precisely4terrbal4x = � k V(tn+1)xx2 + (4x)4 �@2 ~ (V(tn+1))@x2 kk @2V(tn+1)@t@x + � (1� 2V(tn+1)) @V(tn+1)@t k : (4.88)This equation can be modi�ed by using the equation (4.57) to substitute for thetime derivatives gives:4terrbal4x = � k Vxx(tn+1)2 + (4x)4 �@2 ~ (V(tn+1))@x2 kk CN4x �CNV(tn+1)4x + � ~ (V(tn+1))�+ � ~ V �CN4xV(tn+1) + � ~ (V(tn+1))� k :(4.89)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 84It is evident that when � is very large then the terms in which the factor � isappearing, will be dominant, because each Vj(tn+1) lies in the interval [0,1]. Soignoring the term in which the factor � is absent we have that�4terrbal4x � � k4x4 @2 ~ (V(tn+1)@x2 kk ~ V ~ (V(tn+1)) k : (4.90)Hence by varying � we are in fact controlling �4t4x . From the above equation we seethat the factor � does not appear on the right hand side and ~ is only a functionof V(tn+1) and every component of V(tn+1) lies in [0, 1], so we conclude the righthand side is small as compared to �. So for large � and moderate 4x the crudeapproximation is 4terrbal � 1�: (4.91)Our goal here is to �nd the numerical solution of equation (4.1) when the disconti-nuity presents present in the initial data and discontinuity must move with correctspeed. It has been reported by Leveque and Yee [52] that insu�cient spatial resolu-tion may result in incorrect wave speed when � is large. So with the implementationof equation (4.91) we shall derive the condition for spatial resolution when � is large.4.5.3 StabilityNow we discuss the issue of the stability when the LEPUS strategy is being imple-mented. The time step used when LEPUS is being implemented was explained inthe previous Section and given as4terrbal = � k 4xVxx(tn+1)2 + (4x)24 �@2 ~ (V(tn+1))@x2 kk @2V(tn+1)@t@x + � (1� 2V(tn+1)) @V(tn+1)@t k : (4.92)The PDE to be solved is given by equation (4.1) and for this analysis we haveassumed  (V ) = �V (1 � V ), where V is the numerical approximated solutiongiven by the time integrator, and for @V(t)@t we have the following form of equation(4.87).4terrbal = � k 4xVxx(tn+1)2 + (4x)24 �@2 ~ (V(tn+1))@x2 kk @2V(tn+1)@t@x + (1� 2V(tn+1)) ��@V(tn+1)@x + �2V(tn+1)(1 �V(tn+1))� k :(4.93)It is interesting when � is very large, from equation (4.91) we have that4terrbal � 1� .The stability criteria for convergence of the iteration can be written as (see equation



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 85(3.36)) k [I �4terrbal~Js]�14terrbal~Jf k < rc; where rc < 1; (4.94)and for the Backward Euler Method ~ = 1,k [I �4terrbalJs]�14terrbalJf k < rc; where rc < 1: (4.95)In the above equation Js is the Jacobian of the source term. It is clear from equation(4.58) that Js � ��@ ~ (V(tn))@V(tn) (for ~ see equation (4.68)), then the above equationcan be written ask [I + @ ~ (V(tn))@V(tn) ]�14terrbalJf k < rc; where rc < 1: (4.96)For large � the time step is 4terrbal � 1� (see equation (4.91)), and multiplyingboth side of equation (4.96) with k [I + @ ~ (V(tn))@V(tn) ] k we have thatk [I+ @ ~ (V(tn))@V(tn) ] k [I+ @ ~ (V(tn))@V(tn) ]�14terrbalJf k < k [I+ @ ~ (V(tn))@V (tn) ] k rc: (4.97)Using the identity k ab k�k a kk b k; (4.98)the above equation can be written ask 4terrbalJf k < k [I + @ ~ (V(tn))@V (tn) ] k rc where rc < 1: (4.99)Now the entries of the diagonal matrix [I + @ ~ (V(tn)@V(tn) ] can be written aseij = 8><>: 1 + (1 � 2Vj(tn)) = 2(1 � Vj(tn)) if i = j0 otherwisebecause the equations are not coupled. The expression �@ ~ (V(tn)@V(tn) � is given by equa-tion (4.69). It is evident that the maximum value of eij will be 2 because theminimum value of V is zero, so that the quantity k I + @ ~ (V(tn))@V(tn) k will be less thanor equal to 2 if we used the max norm. Again equation (4.58) reveals that Jf = CN4xso that the stability criteria as given by equation (4.99) has the following formk 4terrbalCN4x k < r; (4.100)where r is de�ned by k [I+ @ ~ (V(tn))@V(tn) k rc and 4terrbal � 1� (equation (4.91)) hencewe have that k CN4x� k < r; (4.101)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 86which gives 4x � O( 1� ): (4.102)4.5.4 Calculated Wave SpeedAn important feature of solving the Leveque and Yee problem [52] is that thenumerical solution may move with an incorrect wave speed. The computed wavespeed in time step tn is given by (see for example [52])wave speed = 4x4t Xj (Vj(tn)� Vj(tn�1)) (4.103)= 4x4t � where � = Xj (Vj(tn)� Vj(tn�1)) ;where Vj(tn) and Vj(tn�1) represent the computed solution at the nth and (n-1)thtime step and jth grid point. To have an idea of the time step and mesh size so asto move the front with correct speed, we have used the initial data given asu(x; 0) = u0(x) = 8><>: uL = 1 if x � 0:2uR = 0 if x > 0:2:The initial data shows that the initial discontinuity is at x = 0:2. Let S be thespeed of discontinuity and for this problem S = 1. Then the relative error in thespeed is given by (see [61]) re = Snumerical � SexactSexact ; (4.104)where Snumerical is the average wave speed given belowAverage speed = 4xtn � t0 0@Xj Vj(tn) �Xj Vj(t0)1A ; (4.105)where 4x is the mesh size. Figure (4.1) displays the relative error in speed for localerror per step with RTOL = 0.01. Here we have taken the CFL number c = :3 and4t = :22i i = 5; :::7. In order to calculate the mesh we have used the identityc = 4t4x (the CFL number) and this has been assumed to be �xed with the value0.3 in the calculation of the mesh size. The pre-multiplication factor � of the sourceterm as given by equation (4.67) has been taken as 1000.It is clear from Figure (4.1) that in the regime 1�4t � :3 (4t � :3� ) the relativeerror in speed is nearly 20% and after that it is still decreasing and correspondingly
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Reciprocal of product of time and muFigure 4.1: Variation of relative error in average speed with the reciprocal of thesti�ness factor 4t� using the LEPS strategy.the mesh size will be 4tc where c is the CFL number. These observations revealthat the step size and the mesh size should be O( 1� ), to avoid spurious solutions,which is the same observation as we derived analytically in Section (4.5.4).For the comparison to Leveque et, al [52] results we have taken initial datau(x; 0) = u0(x) = 8><>: uL = 1 if x � 0:3uR = 0 if x > 0:3;and 4x =0.02 and �xed time step 4t= 0.015. The product of time step 4t andthe reaction rate � determines the sti�ness of the system. Figure(4.2) shows thecomparison of the computed solution and exact solution at t = 0:3 for � =1, 10,100, and 1000 (4t�=0.015, 0.15, 1.5 and 15) respectively, with the strategy ofcontrolling the local error per step.It is evident from Figure (4.2) that for smaller 4t� with the local error controlstrategy the front is moving with correct speed. In the case when 4t� = 15, thediscontinuity has remained at x = 0.3 and when we switched to another quadraturerule (the trapezoidal rule), a large undershoot and overshoot were seen . The samenumerical experiment has been performed with even smaller step sizes and similarresults have been obtained. This incorrect propagation of the discontinuity is dueto the lack of proper spatial resolution. In the previous Section we have shown that4x � 1� to avoid this wrong propagation of the discontinuity.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 88
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n

x

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n

xSolution with 4t� = 0.015 Solution with 4t� = 0.15
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n

x

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ol

ut
io

n

xSolution with 4t� = 1.5 Solution with 4t� = 15Figure 4.2: Comparison of true solution(line) and numerical solution(dots) usingthe LEPS, for 0.01 relative tolerance and 1 � 10�5 absolute tolerance.4.6 Local Grid Re�nementIn the previous Section it was shown that the front is moving with the wrong speed,due to lack of proper spatial resolution. This is not surprising , because the sourceof di�culty is the discontinuity in the initial data and much �ner grid is needed inthe vicinity of the discontinuity. Our analysis shows that spatial resolution is asimportant as the temporal resolution. One solution to such problems is to deploya method that is capable of essentially increasing the spatial resolution rather than



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 89excessive re�nement of the overall grid.When the error balancing approach described in the Section (4.3) is appliedFigure (4.3) displays the local growth in time of the spatial discretization error asgiven by equation (4.53) for (4t� = 0:015; 0:15; 1:5; and 15) and it is evident thatthe local growth in time of spatial discretization error is growing with increasing4t� which is evident from the equation (4.53). The trend of the local growth in timeof spatial discretization error corresponding to 4t� = 0:015 and 0:15 is identicaland decreasing in time after an initial increase. In contrast for 4t� = 1:5,i.e.,� = 100 the error has increased rapidly due to increasing sti�ness of the sourceterm (see equation (4.53)) and stays at a higher level than the previous two cases.The wiggles are more prominent as compared to previous cases, which may be dueto insu�cient spatial resolution. The case corresponding to 4t� = 15 of Figure(4.3) shows that the error is increasing and interestingly for 4t� = 15 is constantbecause the discontinuity does not move. From this it seams that much �ner gridis needed to ensure the correct movement of the discontinuity.The numerical experiments have revealed that this error is growing sharply nearthe discontinuity, which is only due to the lack of proper spatial resolution. It impliesthat higher resolution is only needed in that part of domain where discontinuityexists.This leads to the concept of local grid re�nement, and with the help of the errorbalancing approach described in Section (4.3) it is possible to create a new re�nedgrid directly surrounding of the location of the source. The local growth in time ofthe spatial discretization error measured by the error balancing approach has beentaken as the remeshing monitor function. The mesh cell is re�ned if the monitorfunction is greater than a speci�ed limit.4.6.1 Spatial remeshing using the MONITOR routineThe SPRINT package (Software for Problem IN Time), is a state-of-the-art com-puter program, which deals with the numerical solution of mathematical modelsthat involve mixed system of time-dependent algebraic, ordinary and partial di�er-ential equations (ODEs and PDEs) see [8]. The important property of SPRINT isthat it has the ability to handle both discrete and continuous remeshing schemes.After the success of each time-step of the integrator a routine, generic name MONI-



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 90
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.2 0.4 0.6 0.8 1

V
ar

ia
tio

n 
of

 lo
ca

l g
ro

w
th

 in
 ti

m
e 

of
 th

e 
sp

at
ia

l d
is

cr
et

iz
at

io
n 

er
ro

r

Time

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.2 0.4 0.6 0.8 1

V
ar

ia
tio

n 
of

 lo
ca

l g
ro

w
th

 in
 ti

m
e 

of
 th

e 
sp

at
ia

l d
is

cr
et

iz
at

io
n 

er
ro

r

TimeLocal growth in time of spatial error Local growth in time of spatial errorfor 4t� = 0.015 for 4t� = 0.15
0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

V
ar

ia
tio

n 
of

 lo
ca

l g
ro

w
th

 in
 ti

m
e 

of
 th

e 
sp

at
ia

l d
is

cr
et

iz
at

io
n 

er
ro

r

Time

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

V
ar

ia
tio

n 
of

 lo
ca

l g
ro

w
th

 in
 ti

m
e 

of
 th

e 
sp

at
ia

l d
is

cr
et

iz
at

io
n 

er
ro

r

TimeLocal growth in time of spatial error Local growth in time of spatial errorfor 4t� = 1.5 for 4t� = 15Figure 4.3: Local growth in time of the spatial discretization error for di�erent valueof sti�ness factor 4t�.TOR, is called which has the exibility of performing various tasks. The key featureof the MONITOR routine is that it has the power to access the whole of the non-linear solver in SPRINT and has been designed for tasks such as ODEs global errorestimates, discrete time remeshing, etc.In discrete remeshing processes a new mesh is created at certain times in inte-gration, the solution and its time derivatives are interpolated onto the new meshand the integration is continued. For this purpose we have modi�ed the SPDIFFroutine as developed by Berzins and Fuzerland [31]. The key di�erence is that we



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 91have used a new monitor function based on local growth in time of the spatial dis-cretization error (see Section 4.3.1). The remesh routine applies the ideas of [14] toconstruct a new mesh at the current time step, i.e., bisecting the mesh cell if themonitor function is too large or combining the two mesh points if the monitor func-tion at that point is well below the required value. In the numerical experimentshere, the remeshing routine is called on every second time step.When a decision is made that the new mesh is needed and the remesh routinehas evaluated a new mesh, then the next task performed by the MONITOR routineis to evaluate the solution, its time derivative and any other higher time derivativesused by the ODEs integrator on the new mesh, by using cubic spline interpolation.Then the time integration attempts to continue directly using the stepsize and orderdetermined at the end of the step prior to remeshing. The case in which the numberof mesh points has changed, and hence which will change the size of the DAE systembeing integrated in time makes it necessary to calculate the Jacobian matrix beforeintegration can continue.Initially we start with 26 points and when the error was larger than the speci�edlimit then we divide the corresponding cell into two with a maximum75 points beingallowed. Figures (4.4) and (4.5) reveal that the front is moving with the correct
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True SolutionFigure 4.5: Comparison of true solution (lines) and numerical solution(dots) withgrid re�nement technique at time equal to 0.6.4.7 2D ProblemsIn this Section we will focus on a 2D version of Leveque and Yee ([52]) in order tohave the evidence of the accuracy, robustness, reliability of our new error controlstrategy (i.e. local error per unit step). The Leveque and Yee [52] problem in twospace dimension takes the following form@u@t + @f(u)@x + @g(u)@y = � (u) t 2 [0; tf ] and (x; y) 2 
; (4.106)where u may be vector of dependent variables, but here we are assuming it to bea scalar. As usual the ux functions f and g contains the advective terms whilethe source term  (u) arises from the reactive term into PDEs. For the spatialdiscretisation we have adopted the �nite volume approach as described in Section(2.9) i.e, dUi;jdt + [fi+ 12 � fi� 12 ]4x + [gj+ 12 � gj� 12 ]4y = ��(Ui;j(x; y)): (4.107)The next task is to �nd the convective uxes midway along the edge of the volumeelement, which involves the approximate solution of the four one dimensional Rie-mann problems in the direction of the normals to edges of the volume element. To�nd the convective ux fi+ 12 ;j and fi� 12 ;j we have adopted a similar procedure tothat given in [7] such thatfi+ 12 ;j = f̂(xi+ 12 ; yj; t; Uxi;j(xi+ 12 ; yj; t); Uxi+1(xi+ 12 ; yj; t));fi� 12 ;j = f̂(xi� 12 ; yj; t; Uxi�1;j(xi� 12 ; yj; t); Uxi (xi� 12 ; yj; t)):



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 93In the above equation Uxi;j(x; y; t) represents the x-dimensional upwind interpolantfrom cell i,j, and is being estimated at the midpoint of the edge, and the f̂ in factis given by the solution of Riemann problem with Uxi;j(x; y; t) and Uxi+1;j(x; y; t) asthe discontinuous values on each side of the edge. By a similar procedure we canestimate the convective uxes along y-direction gi;j+ 12 and gi;j� 12 as followsgi;j+ 12 = ĝ(xi; yj+ 12 ; t; Uyi;j(xi; yj+ 12 ; t); Uyi;j+1(xi; yj+ 12 ; t));gi;j� 12 = ĝ(xi; yj� 12 ; t; Uyi;j�1(xi; yj� 12 ; t); Uyi;j(xi; yj� 12 ; t));where Uyi;j(x; y; t) represents the dimensional upwind interpolant estimated at themid point (x, y, t) and the function ĝ is de�ned with the help of the solution of aRiemann problem with Uyi;j(x; y; t) and Uyi;j+1(x; y; t) as the discontinuous values oneach side of the edge.As mentioned in [7], limited combination of these interpolants gives more accu-rate estimates of solution values on the edge given asUxi�1;j(xi� 12 ; yi; t) = Ui�1;j(t) + 4x2 Ui�1;j(t) � Ui�2;j(t)4x B(rxi�1; 1);Uxi;j(xi� 12 ; yi; t) = Ui;j(t) � 4x2 Ui+1;j(t) � Ui;j(t)4x B( 1rxi ; 1);where the ratio rxi is de�ned byrxi = Ui+1;j(t) � Ui;j(t)Ui;j(t) � Ui�1;j(t) ; (4.108)and it is further mentioned in Berzins [7] that di�erent limiter functions B(.,.) giverise to di�erent spatial accuracies. With this implementation of the 2D spatialdiscretization and appropriate boundary conditions to the equation (4.106) we getthe following system of ODEs _U = FK(t;U(t)); (4.109)where the K-dimensional vector K = N �N is given by[U(t)]m = Ui;j(t); m = (i� 1) �N + j; i = 1; :::; N; j = 1; :::; N: (4.110)The next task is to �nd the solution of the above equation for which we will applythe local error per unit step control strategy rather than the local error per stepcontrol strategy to check the performance of local error per unit step control strategyon a 2D problem.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 944.8 Numerical ResultsProblem 1 First we have solved the 1D Leveque and Yee problem [52] with evenlyspaced, meshes having 21, 41, 81 and 161 points as well as the adaptive meshdescribed earlier. The test initial data is given byu(x; 0) = u0(x) = 8><>: uL = 1 if x � 0:1uR = 0 if x > 0:1:The length of domain is L = 1 and time tf=1. As regards the boundary condition,at origin we have solved an ordinary di�erential equation of the formut = � (u): (4.111)On the right hand side an outow boundary condition has been applied given byfN+ 12 = fN� 12 ; (4.112)where N is the number of mesh cells.Problem 2 Then we solved the 2D Leveque and Yee problem with �xed mesh size.The initial data is given belowu(x; y; 0) = u0(x; y) = 8><>: uL = 1 if 0:5(x+ y) � 0:1uR = 0 if 0:5(x+ y) > 0:1.Again the simulation time is 1 and domain 
 = [0; 1]� [0; 1]. The next task is toimplement appropriate boundary conditions. So at the origin we have solved thean ordinary di�erential equation as given in Problem 1. Along x-axis we have taken@g(u)@y = 0 and on y-axis we assumed @f(u)@x = 0. On the right boundary we haveapplied the outow boundary condition given byfN+ 12 ;j = fN� 12 ;j; (4.113)and similarly the top boundary has been treated.4.8.1 Results DiscussionTwo di�erent kinds of error control strategies have been used within the integrationroutine:Method A: The LEPS strategy that is controlling the local error le(tn+1) so thatk le(tn+1)RTOL j V(tn) j +ATOL k < 1; (4.114)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 95Method B: The LEPUS strategy that is controlling the local error le(tn+1) so thatk le(tn+1) k = � k êst(tn+1) k; (4.115)where êst(tn+1) is the local growth in time of the spatial discretisation error andis given by Section (4.3.1). Before comparing the e�ciency of these local controlstrategies, the choice of the parameter � should be discussed.The vital fact in the selection of this parameter is that local growth in thespatial discretization error should dominate the temporal error and work neededwhile implementing this technique should be minimum. Obviously the larger thevalue of � the fewer ODE time steps there will be, and the smaller the value of �the more steps there will be (see for example Figure (4.6)). We have also plottedCFL number by varying balancing factor � (see Figure (4.9)) and it is evident thatCFL number is arising with increasing balancing factor.It is also clear that the CFL number increases sharply near the time t = 1, dueto the sudden rise of local growth in the spatial discretization error at this time.Also equation (4.115) shows that when the local growth in time of the spatialdiscretization error is larger, the local error test being made in the solver satis�ed,but this may result in the convergence failure of the non-linear solver, which willforce to the reduction of the time step. That is why the the graphs in Figure (4.9)shows sudden fall after it has increased.Additionally, Figure (4.9) shows that when � > 0:5 the CFL number increasesmore sharply and when � < 0:3 the code is taking more steps, which is clear fromFigure 4.6. Hence any value of � between 0.3 and 0.5 can be used in the calculationfor the mildly sti� problem, the factor may have to be reduced in case of highlysti� problem such as combustion.In Figures(4.8) and (4.7) we have plotted the norm of the local growth in timeof the spatial discretization error and is increasing sharply near time t equal to l.The reason is that at t equal to 1 the solution values are not exactly equal to one,and the source term becomes active and we get a sudden rise in the local growth intime of the spatial discretization error.The following notation has been used to represent the result:� NPTS = The number of points used in the spatial discretisation,� Nsteps = The number of integration steps used by the integrator,



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 96� ATOL = Absolute error tolerances,� � =balancing factor,� RTOL = Relative error tolerance,� G-S = The number of Gauss Seidel iterations.The numerical results obtained for 1D problem are displayed in Figure(4.10) withMethod B (see equation (4.115)) and in Figure(4.11) with method A (see equation(4.114)) and comparison has been made with exact solution.Figure (4.10) shows the comparison of exact and numerical solution by using themethod B, while Figure (4.11) displays the comparison when the method A is beingimplemented for (RTOL = 0.01) respectively at t=0.5 and its maximum solutionat t=1 is 1. From these Figures it is evident that the results are of comparableaccuracy with both strategy for � = 10.In order to have more information about the accuracy of the both strategies,we have presented the results at tf=1 in Table (4.2) using di�erent �, di�erentnumber of points, and di�erent RTOL when the LEPS strategy is used. It is evidentthat for � = 10 and NPTS=161, the results with LEPUS strategy is as accurateas RTOL=0.001 with the LEPS strategy, and for � = 100 again the results aremore accurate than the LEPS with RTOL=0.01 and the number of steps has beenreduced by almost 50%. The reason for the reduction of steps with LEPUS strategyis that by increasing � the local growth in time of the spatial discretization errorhas increased, consequently the local growth in time of the spatial discretizationerror dominates the temporal error. Almost the same behaviour can be observedwhen the number of points has been reduced to 81.The dimensionless parameters the mesh ratio c = 4t4x and product 4t� of thetime step and reaction rate play a vital role in the performance method and thesti�ness of the system is determined by the product 4t�.Figure (4.2) shows there is some discrepancy in the location of the discontinuity,when 4t� = 1:5 and the situation become worse for 4� = 15, because thediscontinuity has not moved from x = 0:3. These results have been obtained with4t = 0:015, and experiments have been performed even with smaller time stepsbut no improvement was achieved in the results.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 97Methods NPTS ATOL or � RTOL Nsteps Fun Jac G-SA 21 10�5 10�1 154 650 43 79410�5 10�2 254 970 52 119610�5 10�3 471 1720 77 2140B 21 0.3 155 605 33 1068A 41 10�5 10�1 255 1031 57 129210�5 10�2 454 1736 90 214610�5 10�3 808 2728 82 3472B 41 0.3 273 1022 51 1822A 81 10�5 10�1 462 2068 130 259410�5 10�2 814 3025 137 262610�5 10�3 1316 4298 100 5534B 81 0.3 600 2011 58 3782A 161 10�5 10�1 820 3754 229 477210�5 10�2 1384 5135 222 646010�5 10�3 2467 8326 240 10634B 161 0.3 1242 4096 107 7756Table 4.1: Results of 1D Leveque and Yee problem with uniform grid using theLEPUS(B) and LEPS(A) control strategies.NPTS � Method ATOL or � RTOL NSTEPS Solution at tf=11� 10�5 0.1 820 1.0154A 1� 10�5 0.01 1384 0.9997161 10 1� 10�5 0.001 2467 0.9997B 0:3 1242 0.99991� 10�5 0.1 881 0.9815A 1� 10�5 0.01 1727 0.9987100 1� 10�5 0.001 2966 1.0000B 0:3 798 0.99991� 10�5 0.1 462 1.0062A 1� 10�5 0.01 814 0.998381 10 1� 10�5 0.001 1316 0.9970B 0:3 600 0.99981� 10�5 0.1 485 1.0095A 1� 10�5 0.01 923 0.9980100 1� 10�5 0.001 1831 1.0002B 0:3 426 0.9999Table 4.2: Table showing the accuracy of the numerical solution of 1D Leveque andYee problem with Both strategies at time =1 by using di�erent number of pointswith di�erent value of �.This implies that the spatial resolution is important for having correct prop-agation of the reaction front. We conclude that the controlling of local error perstep (see equation (4.114)) gives an accurate speed propagation unless insu�cientspatial resolution has been used.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 98Methods NPTS ATOL or � RTOL Nsteps Fun Jac G-SA 10� 10 1� 10�4 1� 10�1 199 1133 135 132010� 10 1� 10�4 1� 10�2 187 1084 126 128410� 10 1� 10�4 1� 10�3 191 1030 106 1246B 10� 10 0.3 205 1113 120 1730A 20� 20 1� 10�4 1� 10�1 414 2547 305 300820� 20 1� 10�4 1� 10�2 497 3077 369 364220� 20 1� 10�4 1� 10�3 448 2586 290 3078B 20�20 0.3 478 2803 324 4274A 30� 30 1� 10�4 1� 10�1 722 4356 517 512230� 30 1� 10�4 1� 10�2 809 5011 598 594430� 30 1� 10�4 1� 10�3 811 4857 565 5756B 40�40 0.3 650 3840 446 5838A 40� 40 1� 10�4 1� 10�1 1359 8568 1041 1012040� 40 1� 10�4 1� 10�2 1146 7203 870 852840� 40 1� 10�4 1� 10�3 1112 6826 800 8130B 40�40 0.3 1230 7399 850 11260Table 4.3: Results of 2D Leveque and Yee problem with uniform grid using theLEPUS(B) and LEPS(A) control strategies.We have explained in Section (4.5.4) that for correct movement of the disconti-nuity, it is essential that 4t� � 1, hence when 4t� = 15, a much �ner grid isneeded to model the correct movement of the front.Hence it is better to re�ne the grid locally rather than globally, because thisis a more e�cient way to tackle the problem given that substantial re�nement isnecessary to obtain reasonable results.For this purpose we need some sort of monitor function, so that the decisioncan be made where to re�ne. The commonly used monitor function is the spatialderivative which tend to in�nity around a shock [62] as the mesh is re�ned. Wehave introduced a new monitor function based upon the local growth in time spatialerror. The local growth in time spatial discretization error (see equation (4.53)) isincreasing with the increasing sti�ness of the source (see Figure (4.3)) and has beensuccessfully implemented for the grid re�nement (see Section (4.6)).In order to check the reliability of the new control strategy LEPUS equation(4.115) on 2D problem the comparison has been made with the LEPS control strat-egy by using di�erent grids and RTOL but �xed ATOL. Figures (4.12) and (4.13)show the results with LEPUS control strategy on 31 � 31 and 41 � 41 respectivelyat time equal to 0.6. It is evident that quality of results are improving by increasingthe mesh resolution.



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 99Figures (4.14) and (4.15) show the results with the LEPS on 31�31 and 41�41grids respectively by taking RTOL=0.01 and ATOL=10�4. It is evident there aresmall oscillations on coarser grid. We have also presented results in Figures (4.16)and (4.15) with same ATOL and RTOL=0.001 at time equal to 0.6, which showsthat accuracy have increased by decreasing RTOL.Comparison of results obtained with LEPUS and LEPS show that the resultsobtained with LEPUS are as accurate as obtained with LEPS using RTOL=0.001and ATOL=10�4.Table (4.3) shows that when method A(LEPS) is being implemented at somegrids with large RTOL values the code takes more steps as compared to the tightertolerance. This appears to be happening due to convergence failures in the non-linear solver.The e�ciency of both strategies can be seen from Tables (4.1) and (4.3), whichshows that it is worth using the local error per unit step control strategy ratherthan local error per step control strategy. Even though a modest tolerance hasbeen used for the LEPS, ( see equation (4.114)) strategy, the number of steps arecomparable to the LEPUS equation (4.115) strategies thus showing the e�ectivenessof the latter approach.4.9 ConclusionThe method of lines has been used to solve 1D and 2D Leveque and Yee problem[52]. The second order upwind together with the van Leer limiter [7] has beenused as the spatial discretization and the theta method has been used as the timeintegrator [9]In most existing software based upon the the method of lines, the standardprocedure is to control the local time error per step [40] with respect to a suppliedtolerance. It is di�cult for the user to select a tolerance which is related to thespatial discretization error. Also the controlling of local error per step does notalways guarantee equivalent control of the global time error. This implies that thistechnique is not ideal because a clear relationship can be found between the suppliedtolerance and the global error.Keeping in view these arguments we have derived a new control strategy (LE-PUS) based upon the error balancing approach [7]. The underlying idea is that �rst



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 100we evaluate the primary solution by using an upwind scheme and quadrature rulefor the source term integration, and then the secondary solution is evaluated witha less accurate upwind scheme and a di�erent quadrature rule .It is the di�erence between two solutions, the local growth in time of the spatialdiscretization error, that is used as time tolerance. It should be noted that thisonly estimates the local growth in time of the spatial discretization error in the lessaccurate solution. The statistic in Tables (4.1) and (4.3) have shown that the newcontrol strategy works well in combination with the Gauss-Seidel iteration.We have used the Gauss-Seidel iterative method because when solving big at-mospheric problems storage is the restrictive factor. The storage requirement isreduced considerably by implementation of the Gauss-Seidel method [7] as com-pared to using conventional linear algebra solvers. The reduction of storage isthe main reason for the popularity of the Gauss-Seidel method, for large systemsof advection-reaction equations arising in the modelling of atmospheric pollutionproblems.
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Figure 4.12: Solution of 2D Leveque and Yee problem using the LEPUS strategyon 31 � 31 for balancing factor equal to 0.3 grid at time equal to 0.5.
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Figure 4.13: Solution of 2D Leveque and Yee problem with the LEPUS controlstrategy on 41� 41 for the balancing factor is equal to 0.3 at time=0.6.
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Figure 4.14: Solution of 2D Leveque and Yee problem using the LEPS strategy on31 � 31 grid for 0.01 relative tolerance and 1� 10�4 absolute tolerance.
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Figure 4.15: Solution of 2D Leveque and Yee problem using the LEPS controlstrategy on 41 � 41 grid by using 0.01 relative tolerance and 1 � 10�4 absolutetolerance at time=0.6.
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Figure 4.16: Solution of 2D Leveque and Yee problem using the LEPS strategy on31 � 31 grid for 0.001 relative tolerance and 1� 10�4 absolute tolerance.
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Figure 4.17: Solution of 2D Leveque and Yee problem using the LEPS strategy on41�41 grid for 0.001 relative tolerance and 1�10�4 absolute tolerance at time=0.6.



Chapter 5Reacting Flow ProblemsIn this chapter we will discuss the numerical solution of two simple cases of reactingow problems: an atmospheric dispersion problem and the combustion problem wehave been considering. The atmospheric problem is described by the atmosphericdi�usion equation given by equation (2.10). In the combustion problem the uid dy-namics and the chemistry are modelled together, while the uid dynamics governedby the coupled conservation equations:� one scalar equation for the mass density �;� one vector equation with one, two, or three components for the momentumdensity �u;� and one scalar equation for the energy E.Solving these equations satisfactorily is one of the important, di�cult problems incomputational uid dynamics. A major problem is due to the discontinuity in thesolution values which may form a contact discontinuity, shock wave or rare-fractionfan.Another di�culty posed by reactive ow problems is the spatial resolutionneeded. The computer time and memory is so demanding for three dimensionalcalculations, that the chemistry may have to be simpli�ed drastically. Despite thisthe general trend in reactive ow problems is to use models including an ever largenumber of reactions in the chemical schemes describing the atmospheric as well asthe combustion chemistry. It is desirable, where possible, to minimise the num-ber of chemical species, because much of the computing time is spent in solving108



CHAPTER 5. REACTING FLOW PROBLEMS 109the equations describing the chemistry. Some well-known techniques, related tominimise the number of chemical species, such as lumping, sensitivity analysis andquasi-steady-state approximation have discussed in Heard et al. [39]. It this waythe number of variables in the scheme reduce signi�cantly.A critical point in the simulation of reactive ows is the treatment of the sourceterms which needs special treatment to avoid giving rise to non physical solutionvalues. The reason is that the source term arises from the ODE systems describingthe chemical kinetics model in use (see Chapter 3) and thus we expect that thesource term will be sti� in time. Thus any numerical method must e�ectivelyhandle sti� ODEs.Solving the case in which these chemical kinetics are coupled with uid dynamicsis very di�erent from solving a set of chemical kinetics alone. The large number ofcomputational cells, perhaps ten or hundreds of thousands in a multidimensionaldomain, usually implies that we cannot a�ord to store auxiliary information aboutall the species in each cell between time steps hence some simpli�cations are needed[58].The main purpose of the present study is to employ the error balancing approachtogether with Gauss Seidel iterative method to reactive ow to asses its robustnessand accuracy. The reason for adopting this approach is that the error balancingapproach gives very promising results on the simulation of the 1D and 2D Levequeand Yee problem [52] (see Chapter 4) and in the work of Berzins [7, 49].We have used the theta method which is specially designed for the solution ofsti� systems with moderate accuracy and automatic control of the local error in timeinstead of NDF2 method as described in Chapter 3. The numerical experimentshave shown that NDF2 method requires the further investigation, in term of, tuningthe stepsize strategy and Jacobian evaluation criteria and so the theta method wasused.5.1 An Atmospheric Dispersion Problem5.1.1 IntroductionThe adverse e�ect of pollutants in daily life has made it vital to study them thor-oughly in the context of their e�ect on the atmosphere. An important example of



CHAPTER 5. REACTING FLOW PROBLEMS 110such pollution includes power station plumes which are concentrated source of NOxemissions [82]. The photo-chemical reaction of this emitted NOx and polluted airresults in the production of ozone at large distances downwind from the source.In atmospheric pollution problems achieving high resolution is a di�cult chal-lenge because of the large number of species present in the atmosphere. The numberof chemical rate equations which need to be solved rises with the number of thespecies, and for high resolution 3-dimensional calculation, detailed chemical schemescan become prohibitively large. The range of reaction time-scale can lead to sti�systems of di�erential equations which require more expensive solvers. To avoidthis di�culty two strategies are adopted.The �rst strategy related with retaining the detailed chemistry for understand-ing many reactions of pollutants such as NOx, SO2 and other organic compounds,and to use 1-D trajectory models or coarse grid models to simulate the reac-tion/transport problem. Such models are essential in developing an understand-ing of how chemical species interact to form secondary pollutants. This strategydoes not, however, provide the spatial resolution which is needed to understand thecomplex interaction between multiple source of distributed type.The second strategy uses a simpli�ed model and a high resolution grid. In thiscase the problems arise in assessing the role of individual species on the pollutantdistribution. Both strategies have advantages and disadvantages and a compro-mise is necessary between spatial resolution and the number of species. Thus theincreasing complexity of practically relevant models requires that new e�cient nu-merical methods should be implemented to solve the underlying extensive systemsof time-dependent partial di�erential equations [82].5.2 Governing Equations, Spatial Discretizationand Controlling StrategyThe complete governing equations of 2D atmospheric problem have been explainedin Chapter 2 (see equation (2.10)). The basis of the numerical method is the spacediscretization of the PDEs discussed in Chapter 2. This approach (known as the\method of lines"), reduces the set of PDEs to a system of ordinary di�erentialequations (ODEs). The system of ODEs can then be solved as an initial value



CHAPTER 5. REACTING FLOW PROBLEMS 111problem, and we have used the theta method [9].For spatial discretization we have implemented the second order upwind togetherwith van Leer limiter [7] as described in Chapter 2. The novel step here is thatinstead of controlling the local error per step we have controlled local error per unitstep based upon space-time error balancing approach. The motivation was thatlocal per step does not guarantee the best control of the global error, because therelation between the local error and the global error (see for example [7, 49]), is notclear.5.3 Numerical ResultsProblem 1: First we have solved the 1D atmospheric dispersion problem, having 7species and 7 reactions together with time-dependent photolysis rates as explainedin Section (2.5) (see for example [10]). The initial concentrations of the species inmolecule/cm3 have been displayed in Table (3.2).The polluted air emitted from the source has been assumed to be enriched sourceof Nitrogen Oxide and has the following concentrations in molecules/cm3:NO2 = 1:0 � 1011;NO = 1:0 � 1012:We have assumed a constant wind speed of 0.75 cm/sec in the x-direction. Thelength of domain is 1 km and the simulation time is two days, i.e., 1:8�105 seconds.We have used 21, 41, 81 and 161 points and the mesh size has been kept �xed. Theboundary conditions have been described in Problem 1 of Section (4.8)Problem 2: The 2D atmospheric problem has 20 species and 25 reactions withconstant reaction rate from atmospheric chemistry. The initial concentrations inppm have been given in Table (3.1) and the reaction mechanism has been displayedin appendix (B.0.1).Similarly to the 1D case we have made the assumption that the polluted airemitted by the source term is enriched with the oxides of Nitrogen having concen-tration in ppm given asNO2 = 0:8NO = 0:3NO3 = 0:2N2O5 = 0:3:



CHAPTER 5. REACTING FLOW PROBLEMS 112The domain 
 is 1km�1km, the simulation time is 60 minutes and for conveniencewe have taken velocities along x-direction and y-direction 1km/min. This problemis highly sti� and the Lipschitz constant is about 1:5�107 as the simulation periodis 60 minutes which will makes the ODE system sti� (see for example [90]). Theboundary conditions have been given in Problem 2 of Section (4.8).5.3.1 Results DiscussionTwo di�erent kinds of error control strategies have been used within the time inte-gration routineMethod A: The LEPS strategy that is controlling local error le(tn+1) (see equation(4.114)) so that k le(tn+1)RTOL j V(tn) j +ATOL k < 1: (5.1)Method B: The LEPUS strategy that is controlling the local error le(tn+1) (seeequation (4.115)) so that k le(tn+1) k = � k êst(tn+1) k; (5.2)where ^est(tn+1) is the local growth in time of spatial discretisation error esti-mate and is given by the Section(4.3) and strategy about the selection of the pre-multiplication factor � has been discussed in the Chapter 4. In these problems wehave used � = 0.3 as has been proposed in [49] and experiments show this seems towork well for the problems considered here and Gauss Seidel iterative method hasbeen used to solve the linearised equations.The following notation has been used to represents the results:� NPTS = The number points used in the spatial discretisation,� Nsteps = The number of integration steps used by the integrator,� ATOL = Absolute error tolerances,� � = The balancing factor,� RTOL = Relative error tolerance,� G-S = The number of Gauss Seidel iterations.



CHAPTER 5. REACTING FLOW PROBLEMS 113Methods NPTS ATOL or � RTOL Nsteps Fun Jac G-SA 21 105 10�1 1340 4376 328 6067105 10�2 1381 4537 326 6540105 10�3 1682 5487 293 14086B 21 0.3 1425 4755 362 11076A 41 105 10�1 1276 4179 304 5881105 10�2 1332 4652 319 7251105 10�3 1905 6480 272 16844B 41 0.3 1486 5042 379 11789A 81 105 10�1 1380 4877 404 7210105 10�2 1677 6318 448 10465105 10�3 3068 10250 408 25204B 81 0.3 1823 6428 489 15282A 161 105 10�1 1290 5133 441 8563105 10�2 2313 9359 711 15945105 10�2 5058 16783 571 40668B 161 0.3 2387 8502 722 19829Table 5.1: Results of 1D Atmospheric problem with uniform grid using the LE-PUS(B) and LEPS(A) control strategiesPoint at which Results at t = 180000 secondsSolution given Methods ATOL or � RTOL NO conc. NO2 conc.in mol=cm3 in mol=cm30.1 8:1268� 1011 2:8636� 1011A 105 0.01 8:1571� 1011 2:8377� 1011x=0.5 0.001 8:1618� 1011 2:8336� 1011B 0:3 8:1569� 1011 2:8380� 1011B 0:5 8:1520� 1011 2:8419� 1011Table 5.2: Table showing the accuracy using the LEPUS(B) and the LEPS(A)strategies for 0.1, 0.01, 0.001 relative tolerances and 1� 105 absolute tolerance, 161number of points at time =1:8� 105 seconds and x=0.5 km.For the 1D atmospheric problem extensive experiments have been performed inorder to check the reliability, e�ciency and accuracy of the new proposed scheme,the LEPUS control strategy as given in equation (5.2), against the LEPS (equation(5.1)) control strategy.In Figure (5.1) we have displayed the results at the origin (where we are solving



CHAPTER 5. REACTING FLOW PROBLEMS 114Methods NPTS ATOL or � RTOL Nsteps Fun Jac G-SA 5� 5 1� 10�5 1� 10�1 863 3829 577 65575� 5 1� 10�5 1� 10�2 1003 4212 695 6613B 5� 5 0.3 826 3549 471 10452A 10� 10 1� 10�5 1� 10�1 1950 8016 1092 1305910� 10 1� 10�5 1� 10�2 1976 8000 1035 12883B 10�10 0.3 1908 7956 1093 20520A 15� 15 1� 10�5 1� 10�1 3037 14139 1982 3514915� 15 1� 10�5 1� 10�2 3226 14814 2114 3135115� 15 1� 10�5 1� 10�3 3401 15295 2304 28571B 15�15 0.3 3086 13537 1836 36362A 20� 20 1� 10�5 1� 10�1 4005 17678 22258 4300120� 20 1� 10�5 1� 10�2 4276 19101 2601 4212520� 20 1� 10�5 1� 10�3 4460 20106 2638 36832B 20�20 0.3 4151 18095 2342 49363Table 5.3: Results of 2D atmospheric problem with uniform grid using the LEPUS(B) and LEPS (A) control strategies.The Grid Point Results at t = 60 minat NO conc. NO2 conc.which Solution Grid Methods ATOL or � RTOL in ingiven ppm ppmThe top 0.1 1:3950� 10�1 6:8115� 10�2right 15� 15 A 10�5 0.01 1:3944� 10�1 6:8148� 10�2corner 0.001 1:3944� 10�1 6:8196� 10�2B 0:3 1:3948� 10�1 6:8196� 10�2The top 0.1 1:3790� 10�1 6:4963� 10�2right 20� 20 A 10�5 0.01 1:3792� 10�1 6:4865� 10�2corner 0.001 1:379� 10�1 6:4910� 10�2B 0:3 1:3788� 10�1 6:4855� 10�2Table 5.4: Table showing the accuracy of the LEPUS(B) and the LEPS(A) controlstrategy on 15 � 15 and 20 � 20 grid respectively at t=60 minutes, with di�erentrelative tolerance and �xed absolute tolerance.a system of ODEs assuming that no advection e�ect) at time =1:8 � 105 secondsfor RTOL =0.1, 0.01, by assuming �xed ATOL = 105 with LEPS control strategy,while the Figure (5.4) shows the growth of the NO and NO2 concentrations with



CHAPTER 5. REACTING FLOW PROBLEMS 115the LEPUS control strategy. The comparison shows that there is no di�erence inthe growth of the concentration even with RTOL = 0.01.In order to provide more evidence about the accuracy for the LEPUS and dif-ferent RTOL when the LEPS strategy has been used, we have presented the con-centration of these species x=0.5 km in Table (5.2). It is evident that accuracy isimproving with decreasing RTOL in LEPS control strategy and it is also clear thatusing the LEPUS control strategy the results have a superior level of accuracy overRTOL=0.01.
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CHAPTER 5. REACTING FLOW PROBLEMS 119where V(tn+1) is the solution vector at the time tn+1 andLSPNRM = max k êst(tn+1) k; (5.4)where ^est(tn+1) is the local in time spatial error used as the time tolerance and ifLSPNRM < 10�06 �AMAX, then the code is using the local error per step controlstrategy. These results thus show that the local error per unit step control (equation(5.2)) provides a good balance between e�ciency and reliability.
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Figure 5.7: Concentration of NO2 in ppm using LEPUS strategy in 2D atmosphericproblem for balancing factor (�) equal to 0.3.5.4 Combustion Problem5.4.1 IntroductionModelling reactive ow in combustion problems is based on a generally accepted setof time-dependent coupled partial di�erential equations maintaining conservation ofdensity, momentum and energy. Recall that these equations describe the convectivemotion of the uid, the chemical reaction among the constituent species and thedi�usive transport process such as thermal conduction and molecular di�usion [58].The Navier Stokes equations are the natural starting point for modelling chemicallyreacting ow.There are basically four types of physical processes represented in reactive owequations. These processes are chemical reactions, di�usive transport, convectionand wavelike properties, [58]. The chemical kinetics represents the production andloss of the chemical species, convection describes the motion of uid quantities in
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Figure 5.8: Concentration of NO2 in ppm using LEPS strategy in 2D atmosphericproblem for 0.01 relative tolerance and 1 � 10�4 absolute tolerance.space. The wavelike behaviour are described implicitly in the reactive ow equationsby the coupled continuity equations. The important point about wavelike motionis that energy is transferred from one element of the uid to others by waves thatcan travel much faster than the uid velocity.The main type of wave considered is a shock wave, which moves as a disconti-nuity through the system. The shock wave heats and compresses the undistributedreactive mixture as it passes through it. The raised temperature triggers chemicalreactions, and energy release eventually occurs and the pressure waves are gener-ated, some of which propagate forward and accelerate the shock wave.The reactions proceed very rapidly after the initiation, which will make thesource term sti� [83, 90] in time, hence it is possible that the solution will yield non-physical waves with incorrect speed and incorrect discontinuous in ow properties[28, 83]. Additionally, sti�ness problems place restrictions on the time step and thegrid spacing, which results in computational ine�ciency.



CHAPTER 5. REACTING FLOW PROBLEMS 122The next task is to solve this complex system of equations. The very complexityof which eliminates the possibility of �nding an analytical solution and the onlyreasonable alternative is to construct the numerical solution. Since the source termsrequire specialized and possibly costly time integration, the common approach is touse a time splitting to isolate their treatment from the rest of the problem. In thisapproach, however, a splitting error is introduced. Hence we have used the methodof lines approach (see Chapter 2) together with the new splitting approach only atthe level of the non-linear equations as described in [12], which avoids any extrasplitting error.To handle the steep spatial fronts, it is natural to apply modern shock-capturingnumerical methods for the convective part of the conversation laws. These methodstypically require complete analytic expression for the characteristic data, i.e. theeigenvalues and eigenvectors of the linearised convective ux matrix. There aremany approaches in common use to handle the steep spatial front and the mostpopular has been considered in Chapter 1. Due to excellent shock capturing andimproved performance of the Marquina method [25] on non-reacting ows, it hasalso been used for reacting ow, together with theta method as the time integration[9].5.5 Governing EquationsA brief description of the governing equations of the combustion problem has beengiven in Chapter 2 and is extended here by using the description given in Fedkiw[28].The one dimensional compressible ow problem is modelled by the 1D Eulerequations and can be written asut + [f(u)]x = 0; (5.5)where vector u and f(u) are given byu = 266664 ��uE 377775 f(u) = 266664 �u�u2 + p(E + p)u 377775 ; (5.6)E = �p+ �u22 + �h; (5.7)



CHAPTER 5. REACTING FLOW PROBLEMS 123and t is the time, x is the spatial dimension, � is the density and u is the velocity,E is the energy per unit volume, h is the enthalpy per unit mass, and p is thepressure.Similarly the two dimensional compressible ow problem is modelled by the 2DEuler equations ut + [f(u)]x + [g(u)]y = 0; (5.8)where u, f(u) and g(u) has the following formu = 266666664 ��u�vE 377777775 f(u) = 266666664 �u�u2 + p�uv(E + p)u 377777775 g(u) = 266666664 �v�uv�v2 + p(E + p)v 377777775 ; (5.9)where E = �p + �(u2 + v2)2 + �h: (5.10)5.5.1 Energy and EnthalpyThe total energy per unit volume is denoted by E and is equal to the sum of thepotential and kinetic energy and is de�ned byE = PE +KE = �e+ �u2 + v22 ; (5.11)where e denotes the internal energy per unit mass. The enthalpy per unit mass isde�ned by h = e+ p�: (5.12)By analogy the enthalpy of the mixture is given byH = E + p� : (5.13)Using equation (5.12) we can write equation (5.11) as followsE = �p+ �u2 + v22 + �h; (5.14)and similarly the total enthalpy is given byH = h+ u2 + v22 : (5.15)



CHAPTER 5. REACTING FLOW PROBLEMS 124A \perfect"gas is de�ned as a gas in which intermolecular forces are neglected andin a perfect gas the internal energy, enthalpy and speci�c heat are a function of thetemperature only. So we have that, for perfect gas,h = h(T ); e = e(t); (5.16)cp = cp(T ); cv = cv(t); (5.17)and cp is the speci�c heat at constant pressure. For a perfect gas we have twofurther relations [28]dh(T ) = cp(T )dT; de(T ) = cv(T )dT: (5.18)Integration of both sides of the above equation givesZ h(T )h(0) ds = Z T0 cp(s)ds; (5.19)and the further simpli�cation yields the following form of the above equationh(T ) � h(0) = Z T0 cp(s)ds; (5.20)h(T ) = h(0) + Z T0 cp(s)ds; (5.21)where s is the dummy variable of integration. A perfect gas can further be dividedinto a thermally perfect gas (speci�c heats are functions of the temperature) andcalorically perfect gas(speci�c heats are constant). For the calorically perfect gasthe equation (5.21) has the formh(T ) = hf + cpT; (5.22)where hf = h(0) is the enthalpy per unit mass at 0K, and also called the heatof formulation and is constant can be found in the JANAF thermodynamics Table[77]. For thermally perfect gas the equation (5.21 ) can be written ash(T ) = hf + Z T0 cp(s)ds: (5.23)5.5.2 Equation of StateThe equation of the state for the perfect gas is, [56],p = � ~RT; (5.24)



CHAPTER 5. REACTING FLOW PROBLEMS 125and in the above equation ~R is the speci�c gas constant and given by the followingrelation ~R = RuW ; (5.25)and Ru = 8314 Joules per kilomole degree Kelvin is the universal gas constant,and W is the molecular weight of the gas. W can be found in the JANAF Thermo-chemical Tables [77].5.5.3 GammaThe ratio of the speci�c heats is denoted by  and given by [56] = cpcv : (5.26)Another useful relation is given bycp � cv = ~R; (5.27)which is valid for both a calorically perfect and a thermally perfect gas. With thehelp of the equations (5.26) and (5.27) the above equation can be written as = cpcp � ~R; (5.28)which is valid for both calorically perfect and thermally perfect gases.5.6 Multiple SpeciesThe 2D Euler equations can be modi�ed in such a way that the ow of more thanone species can be considered. The modi�ed form of 2D Euler Equations for multi-species ows are (see for example Ton et al. [83]):ut + [f(u)]x + [g(u)]y = 0; (5.29)where u = 26666666666666666664 ��u�vE�Y1...�YNS�1
37777777777777777775 f(u) =

26666666666666666664 �u�u2 + p�uv(E + p)u�uY1...�uYNS�1
37777777777777777775 g(u) = 26666666666666666664 �v�uv�v2 + p(E + p)v�vY1...�vYNS�1

37777777777777777775 ; (5.30)



CHAPTER 5. REACTING FLOW PROBLEMS 126and where E = �p + �(u2 + v2)2 + �h; (5.31)NS represents the number of species and Yi is the mass fraction of species i andYNS = 1�PNS�1i=1 Yi.5.6.1 Energy and EnthalpyBy analogy with equation (5.12) we de�ne the enthalpy, h for the mixture of gas asfollows [28]h = e + p� = NSXi=1 Yiei + PNSi=1 pi� = NSXi=1 Yi  ei + pi�Yi! = NSXi Yihi; (5.32)where ei, pi and hi represents the internal energy, partial pressure and enthalpy perunit mass of the ith gas respectively. Similarly to equation (5.21) the enthalpy fora perfect gas can be written ashi(T ) = hfi + Z T0 cp;i(s)ds; (5.33)where hf is the heat of formation and can be found from the JANAF tables ofthermodynamics [77] and like that of equation(5.22) equation (5.33) can be writtenfor the ith calorically perfect gas as:hi(T ) = hfi + cp;iT: (5.34)Now the combination of equation(5.32) and (5.33) givesh = NSXi=1 Yihfi + Z T0 NSXi=1 Yicp;i(s)ds = NSXi=1 Yihfi + Z T0 cp(s)ds; (5.35)where cp is the total speci�c heat at constant pressure of the mixture, and for themixture of calorically perfect gas this can be written ash = NSXi=1 Yihfi + cpT: (5.36)5.6.2 Equation of StateWhen multi-species ow is considered with the assumption that each species is athermally perfect gas, then the partial pressure of each species is given as, [28],pi = �YiRiT; (5.37)



CHAPTER 5. REACTING FLOW PROBLEMS 127where Ri is the speci�c gas constant for each species and is given asRi = RuWi ; (5.38)and where Wi represents the molecular weight of the ith species and Ru is theuniversal gas constant. Now R for the multi-species ow is de�ned asR = NSXi=1 YiRi; (5.39)and then the equation of state for multi-species ow has the following formp = NSXi=1 pi = NSXi=1 �YiRiT = � NSXi=1 YiRi! = �RT; (5.40)which is valid for both calorically perfect and thermally perfect gases, [28].5.6.3 GammaSimilarly to equation (5.39), the speci�c heat cp and W can be de�ned for the gasmixture as follows: cp = NSXi=1 Yicp;i; (5.41)and W = 1PNSi=1 YiWi ; (5.42)then  for the mixture of gases is de�ned as = cpcp � RuW : (5.43)and cp and W are de�ned by equations (5.41) and (5.42) respectively (for examplesee [28]). Recall that for the mixture of the calorically perfect gases, cp;i is constantfor each i, which implies that cp = cp(Yi) is a function of the mass fraction only.AsW = W (Yi) is also a function of the mass fraction, it is evident that  = (Yi)is function of the mass fraction.On the other hand for a thermally perfect gas, each cp;i = cp;i(T ) is a functionof temperature and it implies that cp = cp(Yi; T ). Hence  = (Yi; T ) is functionof both the mass fraction and the temperature (see for example [28]).



CHAPTER 5. REACTING FLOW PROBLEMS 1285.6.4 Mean Molecular Weight for a MixtureThe equation (5.42) is di�erent then equations (5.39) and (5.41). The di�erence isthat both R and cp are de�ned per unit mass, while W is de�ned per mole. Thuswhen de�ning W for the mixture, we use mole fractions, not mass fractions. So themean molecular weight for a mixture is de�ned by (see for example [28])W = NSXi=1XiWi; (5.44)where Xi is the mole fraction of species i. This has been de�ned along the lines ofequations (5.39) and (5.41).Now, Xi = ~mi~m = ~MiWi~MW = ~Mi~M WWi = YiWWi ; (5.45)where ~mi is the moles of species i, ~m is the total moles of the mixture, ~Mi is themass of species i, ~M is the total mass of the mixture, Wi is the atomic weight ofspecies i and W is the atomic weight of the mixture.If we sum both sides of above equation, we have thatNSXi=1Xi = NSXi=1 YiWWi : (5.46)The left hand side of the above equation represents the sum of the mole fraction ofall species and should be equal to 1. Then we have that1 = W NSXi=1 YiWi ; (5.47)which gives that W = 1PNSi=1 YiWi ; (5.48)which gives the equation (5.42).5.7 Chemical ReactionsThe 2D equations can be modi�ed for reactive ow problems by incorporating thechemical reactions. These equations represent the convective motion of the uidand chemical reactions among the constituent species. Hence for multiple speciesow with chemical reactions the 2D Euler Equations are given by (see [28, 83])ut + f(u) + g(u) =  (u) (5.49)



CHAPTER 5. REACTING FLOW PROBLEMS 129where u, f(u) and g(u) are given by equation (5.6) and the source terms  aregiven by  (u) = 26666666666666666666664
0000_w1(T; p; Y1; Y2; � � � ; YNS�1)......_wNS�1(T; p; Y1; Y2; � � � ; YNS�1)

37777777777777777777775 ;and _wi represents the mass production rate of the ith species and has been discussedin Chapter 2 (also see [28] for more details).5.8 Temperature, Gamma, Speci�c Heat, and En-thalpyThe factor  can be calculated from the conserved variable and the speci�c heatcp, which implies that the next task is to calculate cp (see equation (5.41)), whichmeans that we need to calculate cp;i for each species. These can be evaluated withthe help of polynomial �t as described in Kee et al.[45] if the temperature is known.Hence the major task is to calculate temperature from conserved variables. Themost general form of the energy equation is given byE = �p+ �u2 + v22 + �h; (5.50)and the equation of state for the mixture of gas is given byp = � "NSXi=1 YiRi#T: (5.51)The combination of equation (5.50) and equation(5.51) means that the temperaturecan be written asT = �E + �(u2+v2)2 + � �PNSi=1 Yihfi + R T0 cp(s)���(PNSi=1 YiRi� ;= C3 Z T0 cp(s)ds+ C4; (5.52)



CHAPTER 5. REACTING FLOW PROBLEMS 130where C3 and C4 are constants if the conserved variables are �xed. With theassumption of calorically perfect gas the equation (5.52) can be written asT = C41 � C3cp : (5.53)However for the thermally perfect gas the equation (5.52) is implicit in temperature,and for simplicity we write it in the following formT = �E + �(u2+v2)2 + �h(T )� �PNSi=1 YiRi� ; (5.54)= C1 + C2h(T );where C1 and C2 are constants if the conserved variables are �xed and the aboveequation has the form f(T ) = T � C1 � C2h(T ): (5.55)In the above equation dh(T )dt = cp(T ) (see equation (5.18)), and C2 = 1R (equation(5.39)) and it is also given in the previous Section that  = cpcp�R , then thecombination of all these quantities enables that the equation (5.55) to be writtenas df(T )dT = 1 �C2dh(T )dT = 1� C2cp(T ) = 1� cp(T )R = �1 � 1 ; (5.56)where  is the function of temperature and which is always greater that one, so wehave that df(T )dT = �1 � 1 < 1; (5.57)and which guarantees that the function is strictly decreasing function. So theequation (5.55) can be solved by using a Newton Raphson iteration [16]. Hencewith the implementation of the Newton Raphson iteration the equation (5.55) canbe cast in the following form.Tn+1 = Tn � f(Tn) " Tn � Tn�1f(Tn) � f(Tn�1)# : (5.58)For performing above iteration there is a need to evaluate the enthalpy h(T ) as thefunction of temperature. For this purpose the integration of the equation (5.18)with the reference temperature 298 Kelvin, givesZ hi(T )hi(298) ds = Z T298 cp;i(s)ds; (5.59)



CHAPTER 5. REACTING FLOW PROBLEMS 131hi(T ) = h298i + Z T298 cp;i(s)ds; (5.60)where s and hfi = h298i are the dummy variable of integration and enthalpy per unitmass at 298K for species i and also called the heat of formation at 298K, and isgiven in [77]. With the assumption of the calorically perfect gas, then 298K canused to evaluate the constant value of cp;i. Then with notation of c298p;i , the equation(5.60) can be written as hi(T ) = h298i + c298p;i (T � 298); (5.61)for a calorically perfect gas with reference temperature 298K (see for example Fed-kiw [28]). Now the enthalpy as a function of temperature is given by equation (5.32).To speed up the code the similar procedure as described in [28] has been adopted, i.e. at the beginning of the code, the table of hi(T )'s for each species and everyinteger number between 300K and 4800K have been created by the polynomial �t(see for example Kee et al.[45]), and during the computation, for the non-integralvalue of the temperature, hi(T )'s have been obtained by interpolation.5.9 Eigenvalues and EigenvectorsUpwind scheme are widely used for the simulation of the reacting ow problems dueto their excellent shock capturing ability, but may require a complete analysis of theJacobian matrix of the PDEs system in term of the eigenvalues and eigenvectors.On the other hand when attempting to simulate complex phenomenon, a systemof equations will almost certainly have very complicated convection terms. It ishard to �nd the Jacobian matrix of a convection term with respect to the conservedvariables.If the eigensystem is slightly perturbed then the characteristic �elds are changedand in some cases upwind for one �eld is downwind for another [28]. In the followingSection we will write the eigenvalues and eigenvectors, the detail is given in [28]5.9.1 1D Euler EquationConsider the equations (5.5), (5.6) and (5.7). Recall that for the thermally perfectgas, the equation (5.21) gives the enthalpy per unit mass ash = hf + Z T0 cp(s)ds; (5.62)



CHAPTER 5. REACTING FLOW PROBLEMS 132which is the function of temperature, and for any conserved variable, the equation(5.62) can be written as dhdVc = cp(T ) dTdVc ; (5.63)which express the derivatives of h with respect to conserved variables. For thecalorically perfect gas the enthalpy per unit mass, see equation (5.22) is given byh(T ) = hf + cpT; (5.64)and cp is constant. Then the derivative of h can be expressed in the following waydhdVc = cp(T ) dTdVc : (5.65)Now the equations (5.63) and (5.65) are identical except the fact that cp is thefunction of temperature in equation (5.63). The equation (5.7) can be written forpressure as follow p = �E + �u22 + �h; (5.66)and the derivative with respect to the conserved variables are given asdpd� = �u22 + h + �cpdTd� ; (5.67)dp(d�u) = u + �cp dT(d�u) ; (5.68)dpdE = �1 + �cp dTdE ; (5.69)with the help of equations (5.63) and (5.65). Now the derivative of the equation(5.24) with respect to conserved variables gives thatdpd� = ~RT + � ~RdTd� ; (5.70)dpd(�u) = � ~R dTd(�u) ; (5.71)dpdE = � ~RdTdE ; (5.72)which can used to eliminated the derivative of T in equations(5.67-5.69). We canthen solve for the derivative of p to obtaindpd� = ( � 1)(u22 � h + cpT ); (5.73)dpd(�u) = ( � 1)(�u); (5.74)



CHAPTER 5. REACTING FLOW PROBLEMS 133dpdE = ( � 1); (5.75)which will be needed while calculating the Jacobian matrix. Now the Jacobianmatrix of f(u) is given asuI +  dpd�Jf dpd(�u)Jf dpdE Jf!+ (1Jb uJb HJ)b)T (5.76)and the notation MT stands for the transpose of the matrix M , I is the 3 � 3identity matrix and Jf = 266664 01u 377775 Jb = 266664 �u10 377775 : (5.77)The eigenvalues of above mentioned Jacobian matrix are�1 = u � ~c; �2 = u; �3 + u + ~c; (5.78)and corresponding the left eigenvectors L(1), L(2), L(3) and the right eigenvectorsR(1), R(2), R(3) are L(1) =  b22 + u2~c ; �b1u2 � 12~c; b12 ! ; (5.79)L(2) = (1 � b2; b1u; �b1) ; (5.80)L(3) =  b22 � u2~c; �b1u2 + 12~c; b12 ! ; (5.81)R(1) = 266664 1u� ~cH � u~c 377775 ; R(2) = 266664 1uH � 1b1 377775 ; R(3) = 266664 1u+ ~cH + u~c 377775 ; (5.82)where ~c = sp� ; (5.83)and b1 =  � 1~c2 b2 = 1 + b1u2 � b1H: (5.84)5.9.2 2D EulerConsider the equation (5.8-5.10). In order to obtain the eigenvalues and eigenvectorsof the Jacobian matrix f(u) set ~A = 1 and ~B = 0, and similarly the eigenvalues andeigenvectors of g(u)) can be obtained by setting ~A = 0 and ~B = 1 in the equations



CHAPTER 5. REACTING FLOW PROBLEMS 134given below (see for detail Fedkiw [28]).From equation (5.10) the pressure is given byp = �E + �(u2 + v2)2 + �h; (5.85)then the derivatives with respect to the conserved variables aredpd� = �(u2 + v2)2 + h + �cpdTd� ; (5.86)dpd(�u) = u + �cp dTd(�u) ; (5.87)dpd(�v) = v + �cp dTd(�v) ; (5.88)dpdE = �1 + �cp dTdE : (5.89)Then the derivative of equation (5.24) with respect to the conserved variables aregiven as dpd� = ~RT + � ~RdTd� ; (5.90)dpd(�u) = � ~R dTd(�u) ; (5.91)dpd(�v) = � ~R dTd(�v); (5.92)dpdE = � ~RdTdE : (5.93)The above derivatives can be used to eliminate the derivative of T in equations(5.86-5.89) and �nally we have thatdpd� = ( � 1)(u2 + v22 � h+ cpT ); (5.94)dp(d�u) = ( � 1)(�u); (5.95)dp(d�v) = ( � 1)(�v); (5.96)dpdE = ( � 1); (5.97)which will be utilized while calculating the Jacobian of both f(u) and g(u). Nowthe Jacobian matrix is given byûI +  dpd�Jf dpd(�uJf dpd(�vJf dpdE Jf! + (1Jb uJb vJb HJb)T : (5.98)



CHAPTER 5. REACTING FLOW PROBLEMS 135In the above equation MT means the transpose of the matrix M , I is the 4 � 4identity matrix, and Jf = 266666664 0~A~B̂u 377777775 Jb = 266666664 �û~A~B0 377777775 : (5.99)Next list of the eigenvalues, the left and right eigenvectors of the Jacobian matrixare given by �1 = û � ~c; �2 = �3 = û; �4 = û + ~c; (5.100)L(1) =  b22 + û2~c; �b1u2 � ~A2~c ; �b1v2 � ~B2~c; b12 ! ; (5.101)L(2) =  1 � b22 � v̂2~c; b1u2 � ~B2~c; b1v2 + ~A2~c ; �b12 ! ; (5.102)L(3) =  1 � b22 + v̂2~c ; b1u2 + ~B2~c; b1v2 � ~A2~c; �b12 ! ; (5.103)L(4) =  b22 � û2~c; �b1u2 + ~A2~c; �b1v2 + ~B2~c ; b12 ! ; (5.104)R(1) = 266666664 1u� ~A~cv � ~B~cH � û~c 377777775 ; R(2) = 266666664 1u � ~B~cv + ~A~cH � 1b1 + v̂~c 377777775 ; (5.105)R(3) = 266666664 1u + ~B~cv � ~A~cH � 1b1 � v̂~c 377777775 ; R(4) = 266666664 1u + ~A~cv + ~B~cH + û~c 377777775 ; (5.106)where q2 = u2 + v2 û = ~Au + ~Bv; v̂ = ~Av � ~Bu (5.107)



CHAPTER 5. REACTING FLOW PROBLEMS 136b1 =  � 1~c2 ; b2 = 1 + b1q2 � b1H (5.108)~c = sp� : (5.109)5.9.3 2D Euler with Multiple SpeciesThe 2D Euler equations with Multiple Species have NS + 3 equations thus im-plying that there will be NS+3 possibly non-distinct eigenvalues with associatedeigenvectors. For the mixture of thermally perfect gases the enthalpy per unit massas de�ned by equation (5.35) can be written ash = NSXi=1 Yihfi + Z T0 cp(s)ds; (5.110)and for a mixture of calorically perfect gases the above equation has the formh = NSXi=1 Yihfi + cpT: (5.111)Now considering the above equation we calculate the derivative of �h with respectto the conserved variables d(�h)d� = hNS + �cpdTd� ; (5.112)d(�h)d(�u) = �cp dTd(�u) ; (5.113)d(�h)d(�v) = �cp dTd(�v); (5.114)d(�h)dE = �cp dTdE ; (5.115)d(�h)d(�Yi) = hi � hNS + �cp dT(d�Yi) ; (5.116)where i = 1 to NS�1. These derivatives hold for both mixture of thermally perfectgases as well as for the mixture of calorically perfect gases. The equation (5.31) canbe written as p = �E + �(u2 + v2)2 + �h; (5.117)and the derivatives with respect to the conserved variables givedpd� = �(u2 + v2)2 + hNS + �cpdTd� ; (5.118)



CHAPTER 5. REACTING FLOW PROBLEMS 137dpd(�u) = u + �cp dTd(�u) ; (5.119)dpd(�v) = v + �cp dTd(�v) ; (5.120)dpdE = �1 + �cp dTdE ; (5.121)dpd(�Yi) = hi � hNS + �cp dTd(�Yi); (5.122)where i = 1 to NS � 1. By taking the derivatives of equation (5.40) with respectto the conserved variables we obtaindpd� = RNST + �RdTd� ; (5.123)dpd(�u) = �R dTd(�u) ; (5.124)dpd(�v) = �R dTd(�v) ; (5.125)dpdE = �RdTdE ; (5.126)dpd(�Yi) = (Ri �RNS)T + �R dT�Yi : (5.127)The above derivatives can be used to eliminate the derivatives of T in equations(5.118-5.122) and �nally we will getdpd� = ( � 1)(u2 + v22 � hNS + cpRNSTR ); (5.128)dpd(�u) = ( � 1)(�u); (5.129)dpd(�v) = ( � 1)(�v); (5.130)dpdE = ( � 1); (5.131)dpd(�Yi) = ( � 1)(�hi + hNS + cp(Ri �RNS)TR ); (5.132)which we will need while calculating the Jacobian matrix.The Jacobian matrix is given byûI + JF + JB; (5.133)whereJF =  dpd�Jf dpd(�u)Jf dpd(�v)Jf dpdE Jf dpd(�Y1)Jf � � � dpd(�YNS�1)Jf! ; (5.134)



CHAPTER 5. REACTING FLOW PROBLEMS 138and JB = (1Jb uJb vJb HJb Y1Jb � � � YNS�1Jb)T ; (5.135)where I is the NS + 3 by NS + 3 identity matrix, andJf = 26666666666666666664 0~A~B̂u0...0
37777777777777777775 Jb = 26666666666666666664 �û~A~B00...0

37777777777777777775 : (5.136)Let us write the eigenvalues of this Jacobian matrix as follows:�1 = û � ~c; (5.137)�2 = � � � = �NS+2 = û; (5.138)�NS+3 = û + ~c: (5.139)The rows of the following matrix are the left eigenvectors L(~p)0BBBBBBBBBBBBBBBBBB@ b22 + û2~c + b32 � b1u2 � ~A2~c � b1v2 � ~B2~c b12 �b1z12 � � � �b1zNS�121� b2 � b3 b1u b1v �b1 b1z1 � � � b1zNS�1v̂ ~B � ~A 0 0 � � � 0�Y1 0 0 0... ... ... ... I�YNS�1 0 0 0b22 � û2~c + b32 � b1u2 + ~A2~c � b1v2 + ~B2~c b12 �b1z12 � � � �b1zNS�12
1CCCCCCCCCCCCCCCCCCA ; (5.140)while right eigenvectors R(~p) are the columns of the following matrix0BBBBBBBBBBBBBBBBBB@ 1 1 0 0 � � � 0 1u� ~A~c u ~B 0 � � � 0 u+ ~A~cv � ~B~c v � ~A 0 � � � 0 v + ~B~cH � û~c H � 1b1 �v̂ z1 � � � zNS�1 H + û~cY1 Y1 0 Y1... ... ... I ...YNS�1 YNS�1 0 YNS�1

1CCCCCCCCCCCCCCCCCCA ; (5.141)



CHAPTER 5. REACTING FLOW PROBLEMS 139where I is NS � 1 by NS � 1 identity matrix andq2 = u2 + v2; û = ~Au + ~Bv; v̂ = ~Av � ~Bu; (5.142)~c = sp� + ppe�2 ; H = E + p� ; (5.143)b1 = pe�~c2 ; b2 = 1 + b1q2 � b1H; (5.144)b3 = b1 NS�1Xi=1 Yizi; zi = ��pYipe ; (5.145)where pYi is the derivatives of pressure with respect to mass fraction of ith species.5.10 Numerical MethodWe have considered 1D case of equation (5.29) with no viscous e�ect,excluding andincluding the source terms by using the method of lines. The standard computa-tional procedure followed in the method of lines is that the hyperbolic term [f(u)]is discretized with the suitable discretization scheme and resulting ODEs system isintegrated with the suitable time integration package.Due to its popularity the second order upwind scheme together with the vanLeer limiter [7] was used for the spatial discretization. The motivation was to usea simpler alternative to the very complicated scheme (ENO) used for the spatialdiscretization in ([29]). Another novelty we have introduced is that instead ofcontrolling CFL number or the local error per step we have controlled the localerror per unit step, as in previous work.An additional stringent requirements imposed on the numerical methods is thatit must be able to handle step gradients, shock and contact discontinuities, that maydevelop spontaneously and then persist in the ow. Classical numerical schemeshad a tendency to either produce large spurious oscillations near steep gradients.An introductory discussion of these di�culties and method can be found in [84].Among the various upwind methods, one of the most popular is the Roe's scheme,which was originally proposed for a perfect gas [65]. The complicated procedureconcerning the extension of the above scheme to non-equilibrium chemistry has beendiscussed in [76], its failure on some problems have been discussed in [25]. Due tosimplicity and better shock capturing properties [25] we have used the MarquinaFlux scheme for both reacting and non-reacting cases [25]. For the 2D problem the



CHAPTER 5. REACTING FLOW PROBLEMS 140same considerations can be applied to the ux in the other spatial dimension. Thenremains only to solve the quasilinear form of the mass fraction equation0BBBB@ �Y1...�YNS�1 1CCCCAt +0BBBB@ �uY1...�uYNS�1 1CCCCAx = 0: (5.146)These equation have been solved equation by equation (scalarly) and it is evidentthat the upwind direction for the x-direction is u respectively and similarly canbe extended to other direction. In this concern we have followed the approach, asdescribed in [76], and we have thatf̂j+ 12 (U l; U r) = Y lf+�u(U l; U r) + Y rf��u(U l; U r); (5.147)where f+�u(U l; U r) and f��u(U l; U r) have been estimated by the procedure describedin Chapter 2, U l and U r have been approximated with the second order upwindscheme.5.10.1 Numerical ResultsProblem 1 This is the popular shock tube test problem of Sod[70] for the one-dimensional, time dependent Euler equations for ideal gases with  = 1:4 and hasan exact solution. The problem models the ow of a gas in a long tube followingthe sudden breakdown of a diaphram separating two initial gas states at pressureand densities. Its solution will contain simultaneously a shock wave, a contactdiscontinuity and an expansion fan. Hence it is an attractive problem to judge theperformance of the method. The initial conditions are given by�(x; 0) = 1; m(x; 0) = 0; e(x; 0) = 2:5; for x < 0:5;�(x; 0) = 0:125; m(x; 0) = 0; e(x; 0) = 0:25; for x > 0:5; (5.148)where m is the momentum, � is the density and e is the speci�c total energy. Thelength of the domain is 1 and �nal time is 0.2 and the boundary conditions aretransmissive [84].Problem 2 The 1D Euler Equation for multi-species ow without chemical reactionhas been solved �rst. The molar ratio 2/1/7 of H2=O2=Ar has been assumed withthe further assumption that they are thermally perfect gases. The initial data for1D shock tube problem isT = 400K p = 8000 Jm3 ; (5.149)



CHAPTER 5. REACTING FLOW PROBLEMS 141on the left and T = 1200K; p = 80000 Jm3 ; (5.150)on the right. The above equations show that we know the temperature and pressureand need to know the density and total energy for the mixture of thermally perfectgases.First we describe the procedure to evaluate the density of the mixture, whichcan be evaluated by making use of the equation of state for multi-species as givenby equation (5.40). The equation of state shows that there is a need to evaluate thegas constant for the mixture of thermally perfect gases, which is given by equation(5.39). It involves the mass fraction of each species, which can been calculatedaccording to the procedure described in Section (5.6.4).The total energy E of the mixture for the 1D Euler equations can be evaluatedwith help of equation (5.31), and we write as follow:E = �p + �u22 + �h: (5.151)In the above equation, the procedure to evaluate enthalpy per unit mass for mixtureof thermally perfect gases has been described in Section (5.8).The length of the domain is 10cm and time is 40�s and this example has beentaken from [28] and the transmissive boundary conditions (see [84]) have appliedproblem 3 Now, we have considered a one-dimensional shock tube test problemwith chemistry as given in [28]. Consider a shock hitting a solid wall boundary andreecting o�. Then after a delay a reaction wave kicks in at the boundary. Thereaction wave picks up stream and merges with the shock causing a split into 3waves. From wall to outow (left to right) these waves are a rarefaction, a contactdiscontinuity and a shock (see for detail Fedkiw [28]).Consider the 1D Euler equations for multi-species ow with chemistry (see ap-pendix (C) for chemical mechanism). Similarly to Fedkiw [28] we have taken 2/1/7molar ration of H2/O2/Ar and all the gases are assumed to be thermally perfect.Now consider the initial data� = :072 kgm3 ; u = 0ms ; (5.152)p = 7173 Jm3 ; (5.153)



CHAPTER 5. REACTING FLOW PROBLEMS 142on the left and on the right the initial data is given by� = :1870 kgm3 u = �487:34ms ; (5.154)p = 35594 Jm3 ; (5.155)and for details see Fedkiw [28]. The procedure to calculate the total energy hasdescribed in Problem 2 and for mass fraction calculation see Section (5.6.4). Thelength of domain is 10cm and time is 230� s. The left side boundary conditions arereective (see appendix (D) and [84]), while transmissive boundary conditions havebeen implemented on right hand side of the domain [84].5.10.2 Results DiscussionThe �rst Problem is a mild test problem and its exact solution has computed inthe spatial domain 0 � x � 1. The numerical solution is computed with N = 140cells of constant meshsize. The second order upwind order together with the vanLeer Limiter [7] has been used as the spatial discretization. The theta method [9]together with Gauss Seidel iterative method has been used as the time integration.The novel technique we have introduced is that we have controlled the localerror per unit step(see equation (5.2)) rather than the CFL number or the localerror per step (see equation (5.1)). The results with LEPUS control strategy hasbeen displayed in Figure (5.9), and code took 319 number of steps with the balancingfactor (�=0.3) with Gauss Seidel iterative method.The results have also been obtained with LEPS control strategy for RTOL=0.1and 0.01 and ATOL=10�5 and are displayed in Figures (5.10) and (5.11). Thecode took 383 and 566 number of steps with Gauss Seidel iterative method. Thecomparison to the exact solution shows that with LEPUS control strategy, sametrend of accuracy follow as given by LEPS control strategy for RTOL=0.01 withless number of stepsThe second Problem concerns with the modelling of the thermally perfect gases.So it is a hard problem and it is useful to assess the performance of the numericaltechnique. We have taken 200 cells and the convection term has been discretizedwith the second order upwind scheme and the theta method in combination withGauss Seidel method as the time integrator [9].



CHAPTER 5. REACTING FLOW PROBLEMS 143The code takes 458 time steps with the local error per step control strategyto reach the �nal time with the balancing factor (� = 0:3) and the results arepresented in Figure (5.12) which are comparable with the results as obtained byFedkiw [29]. The numerical experiments have also been performed with higher valueof the balancing factor, and when � was greater that 0.5, then aacuracy starteddegrading when comparison was made to Fedkiw [28] results. In Figure (5.13) theresults have been displayed with balancing factor � = 0:6 and the results are lessaccurate as compared to results obtained with � = 0:3 as given in �gure (5.12).The numerical experiments have also been performed with local error per stepwith (RTOL=0.1 and ATOL=10�4). In this task the code took 482 steps and smalloscillations are visible in the solutions the results are displayed in Figure (5.14),and it is evident that are small oscillations in the graph showing the density . Thecode has been run at the tighter RTOL =0.01 with same ATOL, and the resultshave been shown in Figure (5.15). The oscillations are no longer visible but theCode took 846 time steps as compared to the 458 time step with LEPUS controlstrategy.For the comparison of both we have displayed the step size history with bothstrategies in Figure (5.16) and Figure (5.17) and which reveal that with local errorper step control strategy the time-step is varying in oscillation manner while withlocal error per unit step control strategy the step-size is almost constant whichis corresponding CFL number (4t4x , where 4t and 4x are scaled time step andmesh size) 0.4 as given in Figure (5.18). Hence it can be concluded that withLEPUS control strategy equation (5.2) yields solutions at least as accurate as thoseobtained when controlling the LEPS control strategy chosen in order that the spatialdiscretization error is dominates.The Problem 3 is a very hard problem in which the species continuity equationshave been modelled along with 1D Euler equations, and has been taken from Fedkiw[28]. The domain has been discretized into 400 equally spaced grid cells. For spatialdiscretization we have used the 2nd order upwind method together with van Leerlimiter [7] in contrary to approach adopted in Fedkiw[28], i.e., ENO schemes. Thetheta method together with Gauss Seidel iterative method has been used for thetime integrationThe code took a long time to run, and results show that there is small oscillationdue to fact the numerical method has to resolve a one cell thick shock. The results



CHAPTER 5. REACTING FLOW PROBLEMS 144with new technique LEPUS control strategy (see equation (5.2)) are given in Figure(5.19) for time of 230�s and the code took 6532 steps and the results are comparableto Fedkiw[28].The code has also been run with local error per step control strategy as givenby equation (5.1) with di�erent RTOL and di�erent ATOL. With RTOL= 0.1 andATOL=1�10�4, in this case, the code stop working after some time due to negativepressure being generated near the boundary and consequently a slightly tightertolerance has been used and the code has been run with RTOL=0.1 and ATOL=10�5. In this case the code took 5549 steps to reach the �nal time=230�s andgot small oscillations as given in Figure (5.20). When the code had been run withRTOL=0.01 and ATOL=10�5, the code took 8207 steps and the results are givenin �gure (5.21), again small oscillations are visible in this case also.With both strategies, the results are of comparable accuracy except the speciesHO2 and H2O2. When LEPS strategy is being used, the comparison of results toFedkiw [28] have shown that for 0.1 relative toleranceHO2 peak is higher and H2O2peak is smaller and for 0.01 relative tolerance HO2 peak is comparable to Fedkiw[28] but the peak of H2O2 is smaller. On the other hand when LEPUS strategy isbeing used HO2 is exactly similar to Fedkiw [28] and H2O2 is slightly smaller thanFedkiw [28]. The shock position with both strategies is same.From this we again draw the conclusion that LEPUS control strategy givessolution with the comparable accuracy to that of the LEPS control strategy, butfor this extremely sti� and nonlinear problem, there is need to reduce the balancingfactor � and here we have chosen the balancing factor 0.025. The best choice of thisparameter merits further investigation.5.11 ConclusionThe method of lines has been used to solve the reactive ow (problems from at-mospheric dispersion and combustion problems). This method reduces the partialdi�erential equation to ordinary di�erential equations (ODEs) in time. The generalprocedure usually adopted in the time integration package is to control the local er-ror per step. The new controlling strategy (LEPUS) based upon the error balancingapproach has been successfully implemented instead of controlling the local errorper step and the linearised equations have been solved with Guass Seidel iterative



CHAPTER 5. REACTING FLOW PROBLEMS 145method.A detailed description of the error balancing approach has been explained inChapter 4 (see also [7, 49]). In the case of the atmospheric problem the newtechnique has been successfully implemented to both 1D and 2D. The e�ciency ofboth strategies can be compared in Tables ((5.1) and (5.3)) comparing the numberof the integration steps taken by the both strategies.The framework and numerical results regarding combustion problems presentedhere shows that modern high accuracy numerical methods developed for gas dynam-ics can be usefully extended to the much more complicated problem of chemicallyreacting gas ows, and that these methods can e�ectively capture complex com-bustion phenomenon presented in these ows. The local error per unit step controlstrategy developed for the 1D Leveque and Yee problem [52] has been implementedto complex combustion phenomena and numerical results with Guass Seidel itera-tive method have revealed that with this control strategy the code is much morerobust as compared to the controlling the local error per step. From this work it isclear that this technique merits further study.
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Distance in meterFigure 5.19: Numerical solution of Problem 3 with LEPUS control strategy forbalancing factor(�) equal to 0.025 at time=230�s.
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Distance in meterFigure 5.20: Numerical solution of Problem 3 with LEPS strategy for 0.1 relativetolerance and 1� 10�5 absolute tolerance at time=230�s.
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Distance in meterFigure 5.21: Numerical solution of Problem 3 with LEPS strategy for 0.01 relativetolerance and 1� 10�5 absolute tolerance at time=230�s.



Chapter 6Conclusion and SummaryThe major aim of the present work is to develop an e�cient, robust, highly ac-curate and general purpose numerical solver for reacting ow problems (such asatmospheric dispersion and combustion). In the research, attention has been paidto � fast and e�cient solvers for the chemical equations,� space-time error balancing approach,� local uniform grid re�nement (1D case).The �rst is of importance because the solution of reacting ow problems requiresthat sti� ODEs integration must be carried out at thousands of grid points manytimes in quick succession. This implies that the computational work is heavily dom-inated by the numerical treatment of the sti� odes system describing the chemicalkinetics model in use. Hence it is of practical interest to investigate special purposesolvers which run faster without sacri�cing accuracy and reliability.For this reason ODE solver based upon the NDF2 method of Klopfenstein [47]has been developed for the solution of chemical kinetics arising from atmosphericchemistry. Analysis [3] has shown that the the stepsize integrator has increased bythe factor of 1.26 over the same error in comparison with the BDF method. TheNDF2 algorithm is second order which implies that there is no increase in storagerequirements, and little increase in the computing e�ort.It has formed a useful basis for constructing the numerical solution of the chem-ical kinetics arising from atmospheric chemistry in combination with the Gauss-Seidel iteration. The additional advantage of the Gauss-Seidel technique is that157



CHAPTER 6. CONCLUSION AND SUMMARY 158it reduces the storage requirements considerably. Also the storage requirement isthe restrictive factor because in large air pollution models the chemistry has to becarried out at thousands of grid points.Even though the NDF2 code in combination with Gauss Seidel showed improvedperformance as compared to Verwer's method [90], the results have indicated thatsome tuning of the stepsize strategy and Jacobian evaluation criteria may be needed.For this reason the theta method code has still proved useful, so we have used thetheta method [9] as the time integrator to �nd the solution of model problem (1Dand 2D Leveque and Yee problem [52]) and reacting ow problems.The IMEX schemes [4] are widely used for the solution of the convection-di�usionequation. The e�ect of using the NDF2 scheme has been explored and stabilityanalysis shows that in this case an IMEX scheme is stable on the purely imaginaryaxis unlike the BDF2 method.In the second part of the research much e�ort has been put into devising a re-liable, fast and e�cient solver for PDEs arising from atmospheric and combustionproblems. The method of lines approach has been used for the treatment of ad-vection which reduces the PDEs to a system of ordinary di�erential equations withimplementation of the suitable discretization scheme. For this purpose a secondorder upwind scheme together with the Van leer limiter [7] has been applied for thediscretization of the spatial derivative.For method of lines to be used e�ciently, it is important that the time inte-gration error should not dominate the error due to the spatial discretization of thePDEs, otherwise temporal errror will remove the bene�ts of using a good spatialdiscretization scheme.This is really di�cult if the LEPS is controlled by the integrator, since therelationship between the ODE global error and the chosen accuracy is not clear[49]. Also the spatial accuracy may vary with time, so any �xed tolerance usedin the ODE integrator is unlikely to be related to the size of the changing spatialerror. Hence we need a variable ODE tolerance which is related to the spatialdiscretization the error and can be modi�ed when the spatial discretization errorchangesSo the new computational procedure based upon the error balancing approach ofBerzins [7] has been extended to PDEs with source terms, the LEPUS is controlledrather than the LEPS and ODEs tolerance has varied with the local growth in time



CHAPTER 6. CONCLUSION AND SUMMARY 159of the spatial discretization error. This strategy balanced the spatial and temporalerrors, allowing the spatial discretization error to dominate. The optimum choiceof the balancing factor is necessary so that the code may not take unnecessary timesteps (blanacing factor too small) and accuracy may not be degraded (balancingfactor too large) as explained in Chapter 4. In order to measure the local growthin time of spatial discretization error, we �rst calculated the primary solution usingan upwind scheme and a quadrature rule to the source term, then the secondarysolution is estimated an with an upwind scheme and quadrature rule, di�erent to theprevious one. The di�erence is the local growth in time of the spatial discretizationerror. The spatial error measured with the error balance approach has been usedas the ODEs tolerance.The starting point for the investigation of this approach has been the well-known problem of Leveque and Yee [52] and produced very promising results. Wehave observed that the local growth in time of the spatial discretization error isincreased sharply near the discontinuity. In the case of this problem a lack of thespatial resolution yields a numerical front moving with the wrong speed becauseof the discontinuity present in the initial data. This needs a very �ne mesh in thevicinity of the discontinuity, whereas a coarser mesh is adequate in the rest of thedomain. Hence it is desirable to automatically adapt the mesh to follow the time-dependent nature of the solution which in turn requires some monitor function toadapt the grid. The commonly used monitor function, is based upon the spatialderivative. In this work we have introduced a new monitor function based uponthe local growth in spatial discretization error and this has been successfully usedto re�ne and coarsen the grid in a 1D case only.In order to check the accuracy and reliability of the new approach, we haveperformed numerous tests and draw the conclusion that the LEPUS control strategy,gives as accurate results as that obtained with LEPS strategy.After that we have tried to explore the feasibility of the new approach (LEPUS)on reactive ow problems. First we have solved the 1D and 2D atmospheric disper-sion problems, again the results provide the evidence that LEPUS control strategyis as accurate as that of LEPS strategy. In the end we have tested a very hardproblem related to combustion [29], in which the second order upwind in combina-tion with van Leer limiter has been used instead of the complex ENO [29] scheme.We have attempted this problem both including and excluding chemistry, and in



CHAPTER 6. CONCLUSION AND SUMMARY 160both case the LEPUS control strategy was applied. The results, even on this hardproblem, have revealed that LEPUS control strategy has accuracy comparable tothat of the LEPS control strategy.Although LEPUS control strategy has worked well on almost all the problems,there is need to pay more attention regarding some unresolved issues stated below.The reason is that the local growth in time of spatial discretization error is increasingwith increasing the sti�ness of the source term. With large values of the local growthin spatial discretization error, the local error test made by the code is satis�ed, butmay lead to the convergence failure of the non-linear solver, and the code will takeunnecessary steps.Hence it is important that when the local growth in spatial discretization is largethen the balancing factor � should be small, which is the case only if we vary thebalancing factor � adaptively. The same is the case when the local growth in time ofspatial discretization error is small, the code will take unnecessary steps. To avoidthis problem we have taken a crude approximation, still there is more e�ort neededin this regard.Although a second order upwind scheme together with the van Leer limiterwere successfully implemented to a 1D combustion problem, still there are smalloscillations in the solution, and the code is not much faster, hence there is need toattempt the use of a higher order upwind scheme.



Appendix ADerivation of the StabilityEquationHere we will derive the equation (3.28), recall that characteristic polynomial is givenby (see equation (3.27)) �4t = ~q = � + 12�2 � �̂~q�3; (A.1)where � = 1 � ��1 = 1 � exp(���) and �� � � � � and ~q = Pqm=1 1m andfor q = 2 ~q = 32, putting the � in equation (A.1) and simpli�cation gives that�4t = 12(1 � exp(���))(3 � 3�̂ � exp(���) + 6�̂exp(���) � 3�̂exp(�2��)):(A.2)Using the fact that exp(��) = cos(�) + �sine(�) in the above equation withsimpli�cation gives that�4t = 12(1� cos(�))(3� 3�̂ � cos(�) + 6�̂cos(�)� 3�̂cos(2�))+ 12sin(�)(sin(�) � 6�̂sin(�) + 3�̂sin(2�))+ �12sin(�)(3� 3�̂� cos(�) + 6�̂cos(�)� 3�̂cos(�))+ 12 �(1� cos(�))((sin(�) � 6�̂sin(�) + 3�̂sin(�)): (A.3)We will consider the real part of the above equation, which isRe(q) = 12(1� cos(�))(3� 3�̂ � cos(�) + 6�̂cos(�)� 3�̂cos(2�))� 12sin(�)(sin(�) � 6�̂sin(�) + 3�̂sin(2�); ) (A.4)161



APPENDIX A. DERIVATION OF THE STABILITY EQUATION 162and simpli�cation gives thatRe(q) = 12 [3 � 4cos(�) + cos(2�)+ (�3�̂ + 9�̂cos(�)� 9�̂cos(2�))+ 3�̂cos(3�)]: (A.5)Using the identitiessin(� + �) = sin(�)cos(�) + cos(�)sin(�);cos(� + �) = cos(�)cos(�) � sin(�)sin(�);cos(2�) = cos2(�) � sin2(�);sin(2�) = 2sin(�)cos(�): (A.6)Using the identies de�ned in equation (A.6) successively we have that3 � 4cos(�) + cos(2�) = 8sin4(�); (A.7)3�̂cos(3�) = 3�̂ � 54�̂cos(�) + 48�̂sin2(�) (A.8)+ 96�̂cos2(�)sin4(�);and (�3�̂ + 9�̂cos(�)� 9�̂cos(2�) = �3�̂ + 54�̂sin2(�)� 72�̂sin4(�); (A.9)where � = �2 . Adding above three equations we have thatRe(q) = 4sin4(�)[(1� 3�̂ + 12�̂cos2(�)]; (A.10)which is the required expression.



Appendix BAtmospheric Reaction SchemesB.0.1 First Reaction SchemeThis reaction scheme with constant reaction rate has been taken from [90]. Theunits for the rate constants are min�1 for �rst order reactions and ppm�1min�1 forthe second order ones.No. reaction mechanism rate constant1. NO2 ! NO + O3P 0:350� 10+002. NO + O3 ! NO2 0:266� 10+023. HO2 + NO ! NO2 + OH 0:120� 10+054. HCHO ! 2HO2 + CO 0:860� 10�035. HCHO ! CO 0:820� 10�036. HCHO + OH ! HO2 + CO 0:150� 10+057. ALD ! MEO2 + HO2 + CO 0:130� 10�038. ALD + OH ! C2O3 0:240� 10+059. C2O3 + NO ! MEO2 + NO2 + CO2 0:165� 10+0510. C2O3 + NO2 ! PAN 0:900� 10+0411. PAN ! . C2O3 + NO2 0:220� 10�0112. MEO2 + NO ! CH3O + NO2 0:120� 10+0513. CH3O ! . HCHO + HO2 0:188� 10+0114. NO2 + OH ! HNO3 0:163� 10+0515. O3P ! O3 0:480� 10+0716. O3 ! O1D 0:350� 10�0317. O3 ! O3P 0:175� 10�0118. O1D ! 2OH 0:100� 10+0919. O1D ! O3P 0:444� 10+1220. SO2 + OH ! SO4 + HO2 0:124� 10+0421. NO3 ! NO 0:210� 10+0122. NO3 ! NO2 + O3P 0:578� 10+0123. NO2 + O3 ! NO3 0:474� 10�0124. NO2 + NO3 ! N2O5 0:178� 10+0425. N2O5 ! NO2 + NO3 0:312� 10+01163



APPENDIX B. ATMOSPHERIC REACTION SCHEMES 164B.0.2 Second Reaction SchemeThis reactions schemes has been borrowed from [10], which has 8 species and 7reactions. The unit for the mth order rate constant is (molecule cm�3)1�ms�1. Thephotolysis rate constants have been pararmeterised as a function of the solar zenith,giving a �rst-order rate constant.O3 Reaction Rates1. ROC + h� ! RP + ROC jp[1] = 1000exp(-4710/T)jp[3]2. RP + NO ! NO2 kr[2] = 3.7098�10�12exp(242/T)jp[3]3. NO2 + h� ! NO + O3 jp[3] = 1.45�10�2exp(-0.4 sec(�)4. NO + O3 ! NO2 kr[4] = 1.7886�10�12exp(-1370/T)5. RP + RP ! RP kr[5] = 6.7673�10�126. RP + NO2 ! SGN kr[6] = 1:00� 10�137. RP + NO2 ! SNGN kr[7] = 1:00� 10�13



Appendix CChemical MechanismSpecies Molecular Weight Low Temp High TempH 1.00797 300 5000O 15.9994 300 5000H2 2.01594 300 5000O2 31.9988 300 5000OH 17.0074 300 5000H2O 18.0153 300 5000HO2 33.0068 300 5000H2O2 34.0147 300 5000Ar 39.9480 300 5000UnitsMolecular Weight g �mole�1Temp(T) KelvinPre Exp(A) cm �mole � sec �KelvinTemp Exp (~�) (non)Act Eng (Ea) cal �mole�1165



APPENDIX C. CHEMICAL MECHANISM 166REACTION MECHANISMReactions PRE EXP TEMP EXP ACT ENG1. O2 + H ! OH + O 2.00E+14 0.000 1.6802E+042. OH + O ! O2 + H 1.46E+14 0.000 4.9702E+023. H2 + O ! OH + H 5.06E+04 2.67 6.2860E+034. OH + H ! H2O + O 2.24E+04 2.67 4.3980E+035. H2 + OH ! H2O + O 1.00E+08 1.60 3.2980E+036. H2O + H ! H2 + OH 4.45E+08 1.60 1.8435E+047. OH + OH ! H2O + O 1.50E+09 1.14 1.0000E+028. H2O + O ! OH + OH 1.51E+10 1.14 1.7122E+049. H + H + M ! H2 + M 1.80E+18 -1.00 0.0000E+0010. H2 + M ! H + H + M 6.99E+18 -1.00 1.0423E+0511. H + OH + M ! H2O + M 2.20E+22 -2.00 0.0000E+0012. H2O + M ! H + OH + M 3.80E+23 -2.00 1.1936E+0513. O + O + M ! O2 + M 2.90E+17 -1.00 0.0000E+0014. O2 + M ! O + O + M 6.81E+18 -1.00 1.1864E+0515. H + O2 + M ! HO2 + M 2.30E+18 -0.80 0.0000E+0016. HO2 + M ! H + O2 + M 3.26E+18 -0.80 4.6816E+0417. HO2 + H ! OH + OH 1.50E+14 0.00 1.0040E+0318. OH + OH ! HO2 + H 1.33E+13 0.00 4.0225E+0419. HO2 + H ! H2 + O2 2.50E+13 0.00 6.9300E+0220. H2 + O2 ! HO2 + H 6.84E+13 0.00 5.8102E+0421. HO2 + H ! H2O + O 3.00E+13 0.00 1.7210E+0322. H2O + O ! HO2 + H 2.67E+13 0.00 5.7964E+0423. HO2 + O ! OH + O2 1.80E+13 0.00 -4.0600E+0224. OH + O2 ! HO2 + O 2.18E+13 0.00 5.5117E+0425. HO2 + OH ! H2O + O2 6.00E+13 0.00 0.0000E+0026. H2O + O2 ! HO2 + OH 7.31E+14 0.00 7.2545E+0427. HO2 + HO2 ! H2O2 + O2 2.50E+11 0.00 -1.2430E+0328. OH + OH + M ! H2O2 + M 3.25E+22 -2.00 0.0000E+0029. H2O2 + M ! OH + OH + M 2.10E+24 -2.00 4.9426E+0430. H2O2 + H ! H2 + HO2 1.70E+12 0.00 3.7520E+0331. H2 + HO2 ! H2O2 + H 1.15E+12 0.00 1.9331E+0432. H2O2 + H ! H2O + OH 1.00E+13 0.00 3.5850E+0333. H2O + OH ! H2O2 + H 2.67E+12 0.00 7.3497E+0434. H2O2 + O ! OH + HO2 2.80E+13 0.00 6.4050E+0335. OH + HO2 ! H2O2 + O 8.40E+12 0.00 2.0098E+0436. H2O2 + OH ! H2O + HO2 5.40E+12 0.00 1.0040E+0337. H2O + HO2 ! H2O2 + OH 1.63E+13 0.00 3.1718E+04Collision e�ciences in reactions with M:fH2 = 100; FO2 = 0:35; FH2O = 6:5 fN2 = 0:5



Appendix DBoundary ConditionsThe imposition of boundary condition is, fundamentally, a physical problem sogreat care is required in their implementation. For this consider the domain [0; L],which has been discretized into N computing cells of length 4x we need boundaryconditions at the boundaries x = 0 and x = L as shown in Figure(D). Numerically,boundary conditions provide the numerical uxes f 12 and fN+ 12 . The boundaryconditions may result in direct evaluation of uxes f 12 and fN+ 12 . We may alsohave an alternative route, in which we have �ctitious values in the ghost cells I0and IN+1, adjacent to I1 and IN respectively. So boundary Riemann problemsRP (U0;U1) and RP (UN ;UN+1) are solved and the corresponding uxes f 12 andfN+ 12 are computed with appropriate Riemann solver. Suppose that at x = L
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      x=Lreective boundary conditions have been applied. Then �ctitious state UN+1(tn) isde�ned from the known state UN (tn) inside the computational domain, namely�N+1(tn) = �N (tn) uN+1(tn) = uN(tn); pN+1(tn) = pN (tn): (D.1)In the above equation (D.1), � is the density u is the velocity, p is the pressure.167
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