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Abstract

This thesis is concerned with the issue of finding an accurate, efficient and robust
numerical solution technique for solving mathematical models of reactive flow. Two
main issues of concern when solving these problems are large computational costs
and numerical instabilities and inaccuracies. Over the past decades, many numerical
techniques have been suggested for the solution of reacting flow problems. The work
in this thesis is part of the continuing trend to find schemes which can solve reacting
flow problems efficiently and robustly.

The technique described in this thesis uses the method of lines in which the
underlying system of PDEs is discretized in space to give a system of ordinary dif-
ferential equations in time. For time integration we have implemented the extended
stability region method (NDF2) of Klopfenstein [47] and the analysis has shown that
the integration step size has increased by a factor of 1.26. The spatial discretization
is achieved by using flux limited finite difference and appropriate Riemann solver
schemes in one and two space dimensions.

The use of the method of lines while solving PDEs governing both atmospheric
dispersion as well as combustion problems results in a large system of ODEs which
are highly coupled and stiff. In solving large stiff ODE system in time the approach
of Verwer using a Gauss Seidel method for the stiff chemistry terms is extended to
combustion problems. The method has the additional advantage that the storage
requirement has been reduced considerably compared to conventional linear algebra
methods.

The general trend while solving these ODEs is to control the local error per step.
In this thesis we have extended the novel technique of controlling the local error
per unit step with a time tolerance that varies with the spatial error. Techniques
are developed for estimating the growth of the spatial error locally in time on
model problems and then applied to both atmospheric and combustion problems.
Numerical results are used to show that the approach works well, is automatic and

can compare with the standard approach based on the CFL condition.
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Chapter 1

Introduction

In 1917, the British Scientist, L.F. Richardson made the first attempt to predict
the weather by attempting to solve partial differential equations by hand [84]. It
is supposed that this was first step towards the beginnings of Computational Fluid
dynamics (CFD), an important part of scientific computing.

The increasing availability, power and sophistication of computer software and
hardware have led to significant growth in the field of computational fluid dynamics
in a variety of fields including airplane design, car design, ship design, studies of
blood flow, oil recovery, oceanography, meteorology, and astrophysics.

We will consider CFD in the fields of the atmospheric and combustion problems.
Currently the active area of the research is the numerical approximation of PDEs
with stiff non-linear source terms. Such problems come from the modelling of
atmospheric chemistry, non-equilibrium gas dynamics, etc.

As regards atmospheric chemistry the adverse effects of pollutants have made it
vital to study thoroughly their production and loss. Important examples of pollu-
tion problems include regional oxidants, acid deposition, destruction of stratospheric
ozone, and the built-up of greenhouse gases, etc. It is also a fact that the harmful
effect of the pollutants is not restricted to the localities of the emissions, but rather
can be propagated over a widespread area. Considering the health effects of pol-
lution, air pollution is a growing threat not only to human welfare but also other
living species. The basic tools to provide detailed knowledge about the emission
and dispersion include laboratory experiments, field studies and modelling analy-
sis. Laboratory studies, however, are unable to explain the complex atmospheric

phenomena in detail. Consequently a mathematical model that allows multiple pro-



CHAPTER 1. INTRODUCTION 2

cesses to occur simultaneously is required for data analysis and scientific inquiry.

The governing equations for such models are non-linear, highly coupled and ex-
tremely stiff (see for example [94]). So, the complexity and nonlinearity of such
models in general exclude the possibility of having an analytical solution, even in
extremely simplified cases. Therefore, numerical methods are the only feasible al-
ternative to meet the requirements for the simulation. This process divides time
and space into discrete intervals, and then defines discrete variables that approxi-
mate the continuous functions, and we end up with the equations in a form suitable
for numerical computation. We expect the corresponding numerical solution to
converge and become a better representation of the continuous fluid.

A difficult problem in the computational solution of such problems is that of
ensuring that the numerical solution does not have unphysical oscillations.

It has been accepted for a long time that upwind differencing can eliminate oscil-
lations in the neighbourhood of shock wave at the expense of low accuracy. On the
other hand, central difference schemes produce a good solution in smooth region,
but are prone to oscillations in the neighbourhood of shock waves. These oscilla-
tions can be suppressed only by the introduction of an additional dissipative term
(see for example [44]). Also upwind differencing can be designed to have the total
variation diminishing (TVD) property in one dimension, which suppresses the spu-
rious oscillations [36]. The only drawback is that they require specifying a complete
eigensystem for the problem. In practice, this can involve considerable analytical
work as well as some complications when the eigensystem lacks uniqueness [30].

The solution to one-dimensional Riemann problem describes the evolution of a
single planar discontinuity separating two different but uniform fluid regions. This
situation arises while solving problems related to Euler equations of gas dynamics if
we consider only inviscid flow. So the solutions may consist of shocks, contact dis-
continuities and rarefactions. In a shock, the density, energy, pressure, and velocity
are all discontinuous. At a contact discontinuity, the density and energy are dis-
continuous, but the pressure and velocity are continuous. At these discontinuities,
conservation laws give analytical jump conditions that can be used to determine
how the discontinuities evolve in time. Godunov first incorporated this analytical
solution to the finite-difference method to improve accuracy at discontinuities (see
[35]). His basic idea was to solve a Riemann problem cell-by-cell or region-by-region

in the flow, and then to piece these local analytic solutions together.
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Using this approach an upwind code comprises an interpolation procedure cou-
pled with an approximate Riemann solver (ARS). The primary role of the ARS is
to evaluate the flux at the interface given the states to the left and right of the
interface.

In nonequilibrium gas dynamics, chemical reactions between the constituent
gases must be modelled along with the fluid dynamics. While solving such reacting
flow problems numerically, new difficulties arise that are absent in non-reacting
flows. Aside from the increase in the number of equations, the main difficulties
stem from the possible “stiffness”of the reaction terms and spurious oscillations
that have been reported if insufficient spatial and time resolution has been used (see
for example [19, 52]). Moreover the transport variables may present such strong
gradients, as to practically make results irresolvable on any mesh of reasonable size.
Hence such cases require a careful treatment of the advection terms. This is due to
the fact that such flows have a strong non-linear component that is mainly driven
by advection coupled with propagation of the species concentration.

A variety of efficient numerical schemes for hyperbolic systems of conservation
laws have been developed in the recent past. These schemes evolved following the
understanding of fundamental concepts from the theory of non-linear hyperbolic
PDE’s, such as characteristic surfaces, existence, uniqueness, and solution of the
Riemann problem, etc, (see, for example, Courant and Hilbert [22], Lax[50, 51],
any Yee[93]). Higher-order schemes, such as the ENO (essentially non-oscillatory)
schemes, (Harten et al. [37]), the MUSCL scheme (van Leer [85]), the PPM scheme
(Collela and Woodward [20]) and Roe’s approximate Riemann solver [65] can be
viewed as extensions of Godunov’s original scheme to second-order accuracy and
the method of Osher [59] is widely used. Recently Donat and Marquina [25] have
devised an improved flux formula, and discussed the failure of Roe’s approach on
some problems.

The aforementioned schemes have been developed by making use of the theory
of characteristics for the system of hyperbolic PDEs in one space dimension. They
employ the characteristic decomposition of an equation into a set of scalar fields,
at computational cell to evaluate the flux term at the cell interface. A discontin-
uous solution can be computed by supplying the characteristic equation with the
appropriate jump relation. van Leer et al. [87] compared the earlier methods for

the Euler and Navier-Stoke equations and suggested the use of Osher [60, 26] and
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Roe’s [65] schemes for their ability to accurately represents flow phenomenon such
as shocks, and contact discontinuities.

With the increasing interest in high-temperature and chemically reacting flows,
these methods have recently been extended to real gases by many researchers, see
for example [18, 53]. Collela and Glaz [18] presented a numerical scheme for ob-
taining the flux from the exact solution of the Riemann problem for a real gas,
that is with a non-ideal equation of state(EOS). Vinokur and collaborators (see
[76]) have produced a sequence of papers on the extension of these formula to real
gases, in which both the analysis of the numerical problems and the formulas pro-
duced become more and more sophisticated. Glaister [33] has presented an elegant
extension of Roe’s “Approximate Riemann Solver”, while Liou et al. [53] present
different extensions to these formulas backed by a careful analysis.

A very natural wish is to extend to non-equilibrium chemistry, which means
that the concentration of the concerned species depend not only on the transport
of the fluid, but also on the progress of chemical reactions, which implies that a
priori determination of an EOS is not possible, and the EOS has to be constructed
along with the solution process.

Just as for gases in equilibrium, the literature on numerical flux function for
non-equilibrium gases is rapidly expanding. Many solutions have been presented
to generalise Roe’s solver (for example [2, 76]) as well as Osher’s solver[l, 79] and
references therein. More recently Fedkiw et al. [29] have produced the results for
thermally perfect gas flows with chemistry with alternate route (ENO schemes). In
all these cases very complex analysis is involved, and it may be impossible to derive
simple enough expressions which can lead to an efficient calculation of fluxes, hence
we have extended the Donat and Marquina approach [25] to include non-equilibrium
chemistry.

The next task is to use a suitable time integration algorithm for solving ODFEs
arising from PDEs with the implementation of the method of lines. While choosing
the time integration algorithm it is important that it has the property of keeping the
time step as large as possible without sacrifying accuracy. Full details of the time
integration algorithm can be found in Berzins et al.[6, 8, 9]. Of the many methods
that may be used two are: the theta method (see Berzins and Furzeland [9]) and
the Gear backward differentiation (BDF) formula up to order 5 (see Berzins [6]).

In order to deal with the chemical kinetics arising from the atmospheric chemistry



CHAPTER 1. INTRODUCTION 3

we have used the extended stability region formula of Klopfenstein [47] and have
achieved very promising results in combination with Gauss Seidel iteration.

The traditional approach in the time integration, while solving the ODEs is to
either control the CFL number ([84]) or the local error per step. We have controlled
the local error per unit step based upon the error balancing approach ([7, 49]), which
will be described in Chapter 4.

1.1 Mathematical Framework

Computational models describing the chemical transformations and transport of
species have an essential role in understanding the complex processes which lead
to the formation of pollutants such as greenhouse gases, acid rain and photochem-
ical oxidants. An accurate and detailed description of the distribution of pollu-
tants concentrations is needed over large spatial regions in order to compare with
field measurements calculations. It is necessary to understand the mixing between
plumes generated from the concentrated source and distributed urban and biogenic
emissions, which is a difficult task because there are many processes that affect the
fate of the plumes including reaction, deposition and transport (see for example
52))

The general form of the atmospheric dispersion equation in Cartesian co-ordinates

can be written as (for detail see [88])

aa—ltl = P y(u,z,y,2,t) + -+ + Py«(u,2,y,2,1), (1.1)

where the vector u is the concentration of the species being considered, x, y, z are
the Cartesian Co-ordinate and ¢ is the time [88]. The function P7 ¢ = 1,-.- M*
represents the physical and chemical process that are to be modelled. They may
consist of advection, diffusion, dry deposition, wet deposition, fumigation, emission
and chemical reaction (see [88]). The full equation of the model described in this
thesis (see section 2.4) clearly is of the form (1.1), and for simplicity we have
confined ourselves to advection and chemistry of the concerned species in modelling
atmospheric flows.

In nonequilibrium gas dynamics, the chemical reactions between the constituent
gases must be modelled along with the fluid dynamics. The coupled system of this

form also arises in combustion problems. In contrary to the simple (to some extent)



CHAPTER 1. INTRODUCTION 6

atmospheric dispersion equation (1.1), the governing equations are either the Euler
equations or Navier Stoke equations if we consider viscous effects, which have been
modified to include multiple gas species and appropriate chemical reactions. The
discontinuity presented in the initial data will break up into a combination of shocks,
rarefaction and contacts as the evolution proceeds in time (see for example [58, 84]
and Chapter 2), which is not the case with atmospheric dispersion problems.
Hence restricting our attention to inviscid flow, we have essentially the Fuler
Equations of gas dynamics coupled with source terms representing the chemistry.

In two space dimensions these equation take the form

w + f(uh + glu)y = B, (1.2)

where u is the vector of dependant variables including momentum, energy, density
and concentration for each species in the reacting mixture. The flux functions f
and g describe the fluid dynamics as in the Euler Equations, while the source term
(u) arises from the chemistry of the reacting species (see for example [28, 83]).
The next task is to find the solution of such complex system of partial differential
equations. The most popular techniques include the method of lines and operator
splitting techniques. In this thesis no attention has been paid to operator splitting,
because we have concentrated on the method of lines. When operator splitting is
being implemented, instead of integrating the equations(1.1) and (1.2) at once, the
integration is done for each process separately. This implies that following sequence
of differential equations is solved over the time interval [to, ;] for the atmospheric
equation
% = P*(u,z,y,2z,t), fori = 1,---,M" (1.3)
u(x,y, z,t0) = wimq (2, y, 2, t1),
with ug(x,y, z,t1) = u(x,y, z,t) and each P*;(u, x,y, z,t) represents the physical
and chemical process that is to be modelled, and M* is the total number of processes
being modelled. With this technique the solution of equation (1.1) at time ¢y, the
results of the last step in equation (1.3) is taken, i.e. u(xz,y,z,t1) = um=(2,y,2,t1),
and the error made in the approximation u(x,y, z,t;) is first order in time. If in
the next step from ¢ to ¢y, the order of the processes have been reversed, the error
in the solution at t; is second order in time. This is called Strang splitting and is

commonly applied for the atmospheric problem (see [88] and references therein),

and similar procedures can be applied to the combustion problem (see [28]).
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The advantage of the operator splitting is that the chemistry is treated sepa-
rately, hence the most efficient numerical technique can be used.

The disadvantage of operator splitting is the splitting error. In reactive flow
problems low level accuracy often suffices, however, which may justify he application
of operator splitting in such cases.

As explained in [28], the Strang splitting technique does not always work well in
case of combustion problems. The reason is, one cannot split apart the two spatial
convection terms aparts of the 2D Euler equations, beacuse the truncation error due
to noncommutivity of operators causes a ’blow-up’ of the solution (see for example
McRae et al.[57]). This technique has worked well in case of Fedkiw [28], as the
source terms are not overly stiff, and for the very stiff source term, the temperature
minimizing procedure has been described.

The method of lines is frequently used to solve the set of time-dependent, non-
linear coupled partial differential equations. To develop a method of lines model,
the system of conservation equations and its associated boundary conditions are
first discretized. This usually takes the form of finite difference formulae of higher

than second order and the resulting system of differential equations is given by
U = Fy(t,U(1)), U(0) given, (1.4)

where the vector U represents the species concentration in case of the atmospheric
problem and density, momentum, energy and species concentration in case of the
combustion problem.

A suitable algorithm is then chosen to integrate the resulting coupled ordinary
differential equation in time, hence existing packages for ODEs can be used. His-
torically Liskovets [54] introduced this techniques and then Bledjian [13] applied it
to the structure of laminar flame. The method of lines has been modified by Galant
[32] whose uses an implicit multi-step method to integrate the resulting stiff ODEs
in time. His problem was related to the ozone-oxygen flame system and uses the
Gear integration method.

In order to solve the chemical equations with sufficient accuracy, a number
of time steps with an implicit or semi-implicit solver is required (see Chapter 3).
The advection can be computed using explicit integration techniques. This implies
that when advection and chemistry are solved without operator splitting, a (semi)

implicit method would be needed to solve this process in a coupled way because
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of the chemistry. Hence with the method of lines a prohibitedly large system of
nonlinear equations has to be solved, which is computationally very expensive and
hence unattractive, because more time steps are taken than necessary for advection
alone. Hence operator splitting provides a way to limit the total computation

needed.

1.2 The Present Work

The main aim of the present work is to present a possible global approach to accu-
rately solving the reacting flow problems arising in both atmospheric and combus-
tion modelling. This goal has been achieved by using the new approach i.e. con-
trolling the local error per unit step (LEPUS) rather than the classical approach of
controlling the local error per step (LEPS). Also the application of grid refinement
is one of the numerical technique to be implemented for the reacting flow problems.
The monitor function we have used is the spatial error rather than the classical
monitor function i.e. spatial derivatives and cosine function,[62]. The key issues of

the research are:

o Grid refinement: The technique of grid refinement offers the possibility to
refine the grid dynamically in areas with large solution gradients. The refine-
ment technique offers higher resolution where necessary. Where no refinement
is needed, only computations on the coarse base grid are done. For example,
a problem with a single discontinuity should ideally have a very fine mesh in
the vicinity of the discontinuity, whereas a coarser mesh is adequate in the
rest of the domain. On the other hand, the remeshing is quite computation-
ally expensive and for some problems the saving made on the reduction of
mesh points may be outweighed by the additional calculations required for
remeshing. The efficiency of the remeshing process depends upon the choice
of the monitor function and other remeshing criteria, and on the frequency of
the updates. The frequency of updates should be chosen carefully so that the

mesh keeps up with the evolving solution while avoiding unnecessary updates.

As regards the monitor function we have used the spatial error rather than
employ the existing technique of using the spatial derivatives (tends to infinity

around a shock) or cosine functions [62], for example.
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e Error Balancing Technique: While solving PDEs the error may be decomposed
into spatial discretization error and temporal error. In general it is helpful if
the temporal error does not corrupt the spatial error. We have tried to balance
these errors in such a way so that the temporal should not corrupt the spatial
error. This approach is already working well on both hyperbolic and parabolic
partial differential equation, see for details [7, 49], with no source term. We
have applied this approach first to the Leveque and Yee problem [52], then
to reacting flow (Dispersion and Combustion ) problems. The comparison of
numerical results shows that the new method is efficient and reliable. The
local growth in time or the spatial error measured in this way has been used

to refine the 1D grid.

e Solution Methods for Chemical Kinetics Problems: The computationally most
expensive part of the reacting flow is the the numerical treatment of the
Chemical Kinetics. Hence much research has been recently put into getting
fast and efficient method for solving ODEs arising from chemistry. We have
implemented the NDF2 (Extended Stability region BDF2) method developed
by Klofenstein [47] with the Gauss Seidel iteration [90] as an efficient solver

for the stiff chemistry terms.

1.3 Overview of Contents

The primary aim of this work is to present an efficient, robust and general purpose
numerical solver for reacting flow problems. Chapter 2 provides the description of
mathematical model of reacting flows associated with atmospheric as well as com-
bustion problems. The governing equations of the model as well as the techniques
of the discretization have been presented.

Chapter 3 outlines special purpose solvers for systems of stiff ODFEs arising from
chemical kinetics. The emphasis is on efficiency for modest accuracy requirements.

Chapter 4 will give a general description of the numerical solution of a model
problem. Stemming from controlling the local error per step (LEPS) a novel tech-
nique of controlling local error per unit step(LEPUS) has been introduced. The
solution obtained with the new technique (LEPUS) has been compared with the
already existing technique (LEPS). Additionally the new technique has been suc-
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cessfully implemented for grid refinement for the 1D case only. Chapter 5 gives an

overview of the reacting flow problems.

In Chapter 6 conclusions are drawn regarding the effectiveness of the approach

adopted in this thesis.



Chapter 2

The Governing Eqns and Solution

Techniques

2.1 Introduction

In this chapter the governing equations for modelling air pollution dispersion and
combustion will be described. The major task of this thesis is to find a better
method for the numerical solution of such chemically reacting flow problems. When
an attempt is made to solve the reacting flow equations numerically, new difficulties
arise that are absent in non-reacting flows.

Aside from the increase in the number of equations, the main difficulty stems
from “stiffness”of the reaction terms. This “stiffness”results from a combination of
coupled fast and slow chemical reactions in the same scheme [58]. Fast reactions,
as is often the case with combustion, create gradients that can be too large to
result resolve on a mesh of “reasonable size”. Moreover such flows may have a
broad spectrum of time and length scales, thus affecting the stability limits for
computations.

Obviously it would be desirable to solve reactive flow equations in such a way
that avoids numerical oscillation of the solution, and hence unphysical solution val-
ues. The two simple reactive flow problems studied here are a combustion problem
[28] and an atmospheric dispersion problem [92, 94]. In this chapter the two prob-
lems are described together with an outline of how the method of lines is applied

to solving them.

11
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2.2 General Conservation Laws

A conservation law states that the rate of change of the total amount of substance
contained in a fixed region (G is equal to the flux of that substance across the bound-
ary of (G. Any continuum physical system is described by the law of conservation
of mass, momentum and energy. Hence, according to the definition of the conser-
vation law for each conserved quantity, the rate of change of the total amount in
the region is given by its flux (convective or diffusive) through the region boundary,
plus whatever internal sources exist. The conservation laws in integral form are
then given by

%/G udV + /aG fu)dA = /G H(u)dV, (2.1)
where the vector u represents the conserved quantity, f(u) is the flux vector, ¢(u) is
the source term and the volume and surface integral indicated are over the domain

(¢ and its boundary 9G. Assuming that G is to be an infinitesimal volume and

applying the divergence theorem, we get the differential form of the conservation

laws

Ju

n + V.Ai(u) = ¢¥(u), (2.2)
and in one space dimension, the differential form of conservation laws can be written

Ju o0f(u)

bt = 2.
where

Uy f(u1) ?Z’(ul)

w= | ] rw = [T =

Unm f(um) () |

This is system of m conservation laws in m unknowns u; that depend on space
x and time t. Here u; are the dependent variables and x, t are the independent
variables.

Many physical models can be described in terms of systems of such equations.
For convenience, we will consider an equation in one dimension, then the differential

conservation law takes the compact form

Ou O

ol ox

= P(u). (2.4)



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 13

In the case when u is a vector then bold face letters are used to indicate this.

2.3 Hyperbolic Conservation Laws

The general conservation law equation (2.3) is called the hyperbolic conservation
law if the Jacobian matrix defined by (see [84])

Of (u)

Iy = S,

(2.5)

has real eigenvalues X;(u) and a complete set of linearly independent eigenvectors

RO(u), ¢ = 1,---,m which we assume to be ordered as

A(u) < Ag(u) <+ < Ap(u),

(2.6)
R(l)(u), R(Q)(u), . ,R(m)(u).

The above equations show that eigenvalues and eigenvectors depend on u, and
sometimes for the sake of brevity we shall omit the argument u.

The hyperbolic conservation law is of interest because the equations of compress-
ible fluid flow reduce to a hyperbolic system, the Euler equations, when the effects
of viscosity are neglected. If we consider viscous effects also, then the governing

equations are the compressible Navier-Stokes equations.

2.3.1 Characteristic Fields

Consider the hyperbolic system of m conservation laws as given by the equation (2.3)
with the eigenvalues A; and corresponding right eigenvectors R®). The characteristic
speed X; defines a characteristic field.

The characteristic field is called linearly degenerate if following identity holds

VA.RO(u) = 0, YueR™, (2.7)

and in the above equation R™ represents the set of real-valued vectors of m com-

ponents and VJ; is the gradient of the eigenvalue A; defined as

0 0 0
A= | =—X, — A, —N . 2.
v (8u1 Ouy o, ) (2:8)

The characteristic field is called a genuinely nonlinear if

VARO(u) £ 0, YueR™, (2.9)
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and in the above equation R™ and VA; have the similar meaning as defined imme-
diately above.

In the case of the 1D Euler equations there are three characteristi fields corre-
sponding to the three eigenvalues ) i = 1,2,3. The first and the second fields are
genuinely non-linear, while the second field is linearly degenerate (see for example

84]).

2.4 Atmospheric Dispersion Problems

The increasing level of air pollution makes it ever more desirable to help increase
awareness and understanding of the problem. One example is that of power station
plumes which are concentrated sources of NO, emissions [41]. The photo-chemical
reaction of this NO, produced by the power station with polluted air leads to the
generation of ozone at large distances downwind from the source. The transport
of the plumes and chemical reactions are modelled by the atmospheric diffusion
equation and in the 2D case we have the equation:

ow; O(uw;)  Jd(vw;)

ot oz dy

— (ki + ki)wi 4+ E; + Ri(wi,wa, o wns),i = 1,2, NS, (2.10)

where
o NS represents the number of species being modelled,
e w; represents the concentration of the pollutants,
e u, v are wind velocities along the co-ordinate axes,
o I, K, are diffusivity coefficients,
o ki ki, 1=1,2, ..., NS) represent the dry and wet deposition coefficients,
e F; describes the emission sources for the ith (i =1, 2, ..., N.5) compound,

N

e R, represents the chemical reactions for ith compound (i= 1, 2, ..., N.5).
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Note the chemical source term part ]%Z', of the above equation for X = X (x,y) arises
from the chemical reactions is modelled by the systems of the ordinary differential
equation(ODE) (see Chapter 3). The ODE system describing the kinetic equations
consists of reactions which have large variations in their time scales thus giving
rise to classically stiff problems of ordinary differential equations. The numerical
difficulty associated with such types of problem is that some reaction time scales
will be much faster than the scales on which the solution is evolving and on which
one would like to compute. This happens when the fast reactions are in near
equilibrium. Stiff ODE solvers often deal with this situation by approximating true
fast transients in a stable fashion using implicit methods, and then taking time
steps modelling the slower transients with the required accuracy.

One example of such an ODE system is the simple chemical mechanism as
given in appendix (B.0.2) which contains only 7 species and 7 coupled PDEs, but
does however represents the main features of a tropospheric mechanism, namely
the competition of the fast inorganic reactions with the slower reactions of volatile
organic compounds. This separation in time-scales generates severe stiffness and so

requires the use of an implicit stifft ODEs method.

2.4.1 Linear Advection

In Cartesian co-ordinates the dispersion of the pollutants in two space dimensions

is given by
ow; O(uw;)  Jd(vw;)

ot oz dy

where w;, u , v have the similar meaning as given by equation(2.10). Williamson

NS, (2.11)

(see references in [88]) has described desirable properties for advection schemes-
the most important is that the scheme be positive. Negative solutions may lead to
instabilities when dealing with chemical equations and may make the solution of the
chemical scheme more difficult. Non-positive schemes may also lead to overshoot
in the numerical solution. These arguments imply that the advection scheme needs
to be positive. For this reason we have made use of positivity preserving schemes

based on the van Leer limiter [7].



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 16

2.4.2 Dry Deposition

We are interested in finding the general path of the trace components from their
source to their sinks. Dry deposition is one of the physical removal processes in
which the species are absorbed irreversibly by oil, water or plant surfaces ( see [92]).
In equation (2.10) the term k;,w; ( 1= 1, 2, ...,NS) represents the dry deposition
process and the coefficients k;, are written as (see [94])

ki, = _[j : (2.12)
where H,,;; is the mixing height (a function of both space and time) and g,, is the
dry deposition velocity of the ith pollutants.

2.4.3 Wet Deposition

Another physical removal process of the trace components during their transporta-
tion is wet deposition. In contrast to dry deposition, in wet deposition the trace
components are incorporated into precipitation elements ( clouds, rain droplet, and
aerosols). Wet deposition (incorporation of trace components into falling precipita-
tion) ("washout’) or cloud droplets(‘rainout*) is only significant for those species that
are water soluble. The factor k;,w; in equation (2.10) represents the wet deposition

factor and k;, is the wet deposition coefficient, which is given as (see [94])

¥i
=7 (2.13)

k;
2 b
Hmiac

where I is the precipitation intensity ( measured in cm/s), H,;, is the mixing height
( a function of both space and time; measured in cm) and ¢; is the dimensionless

factor represents the scavenging ratio of the ith pollutant.

2.5 Photolysis

An atmosphere is a giant photochemical reactor in which, the light source is the
sun. Solar radiation not only heats planetary atmosphere, but it also drives much of
the disequilibrium chemistry through photochemically initiated process. Radiation
generally in the visible, and ultraviolet regions, either, fragments atmospheric con-
stituents to produce atoms and ions or excites the constituents, without chemical

change, to alter their reactivity (see for example [92]). Fragmentation of a chemical
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species following absorption of light is one of the most important photochemical
process in atmospheric chemistry.
The photolysis rate constants, which depends on the solar zenith angle, has been

written as first order rate constant in the form(see for example [82])

7= die:sz(—l;isec(n)), (2.14)

where 7 is the solar zenith angle, a;, b; are specific for each chemical reaction and
is the number of reactions. The solar zenith angle n depends upon the time of day
(given by the local hour angle LHA), the time of year (given by the solar declination
angle DEC) and the latitude (LAT), then the cosine of the solar angle is given by

cos(n) = cos(LHA)cos(DEC)cos(LAT)
+ sin(DEC)sin(LAT). (2.15)

Temperature-dependent rate constants have been evaluated by a standard Arrhe-

nius expression given as

Eq
R,T

where F, is an experimental activation energy, R, is the universal gas constant and

K = ATBGJ}p(—

), (2.16)

T is the temperature is being regarded as a function of time of day.

In order to have the idea of variation of photolysis rate constant with respect
to time we have used simple chemical mechanism (see appendix(B.0.2)). Figure
(2.1) shows the variation of photolysis rate constants in molecules em™?s™! of first
and third reaction for two days as a function of time and zenith angle as given
by equation (2.15). For these calculations, we have taken solar declination angle

(DEC) 23.27°, the latitide has assumed 50° and the local hour angle is given by

t
LHA = 1. — 4)° 2.1
(1.0 + 139 + 4)°, (2.17)

where ¢ is time in seconds. Figure (2.1) shows the sudden rise of photolysis rate
coefficient between 6AM and 6PM and the source terms will be stiff during this

time.

2.6 Combustion Problems

The dynamics of compressible materials, such as gases or liquids at high pressure

is governed by the Euler equations, and if we include the viscous effect then the
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Figure 2.1: Variation of photolysis rate constant as a function of time and solar

zenith angle in molecules cm™3s71.

governing equations are the Navier-Stokes equations. For the computation of reac-
tive flows in combustion devices the conservation laws of species mass, momentum
and energy have to be solved and the compressible Navier-Stokes equations can be
modified to include multiple gas species and appropriate chemical reactions.

The standard approach while solving the reactive flow is that the total mixture is
considered as a single compressible fluid, together with the species-averaged density
momentum, and energy evolving according to the conservation laws. Additionally,
the mass fraction of each species is governed by separate continuity equations. These
continuity equations are strongly coupled through the chemical reactions, and they
are also coupled strongly to the equations for mixture via the effect of reactions on
temperature and pressure [58].

These coupled equations are a set of convection equations with stiff source terms
added on to model production and destruction of species in the mixture. The
governing equations in vector notation and conservative form dealing with unsteady
two dimensional, multi-component flows of compressible reactive gas are (see Ton

et al. 1994 [83])are given as
u; + fo(u) + g(u)y = foo(u) + guy(u) +4(u), (2.18)

where u is the vector of conserved variables, f(u), g(u) represent the invisicid parts
of the fluxes, f,(u) and g, (u), are diffusive flux vectors and ’(u) is the source term

containing species mass production (or consumption) rates. These vectors have the
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following forms:

P pu P
pu pu® +p pUv
pu pUv pv? +p
E F 4+ nu FE + pv
ye f(u) = (£ +p) g(u) = (& +p)
pY1 puYy pvY]
pYa puYs pvYs
| pYNs-1 | | pul¥ys-1 | | pvYns—1 |
r 1 r 1 0
0 0
0
TerTry TerTry 0
UTps +vT2Y — Qs UTew + 0TTY — @y 0
f.(u) = —puY; g.(u) = —poY plw =1
—puYs —poYs N
. . W2
—puYns_1 —pvYns_q )
- - - - WNS-1 |

Where p, u and v represent the mixture density, components of mixture velocity, £
is the total energy per unit volume, p is the mixture pressure, Y; is the mass fraction
of ith species, 7, 7, and 7,, are the components of the viscous stress tensor, (),
and (), are the heat flux vectors, w; stands for the mass rate of production of ith
species, and finally NS represents the number of species in the mixture.

The first four equations describe the convective transport of mass, momentum
and energy in a gas in two spatial dimensions. The other equations are the species
continuity equations and the source terms are due to the chemical reactions. On the
other hand the chemical reactions cause an abrupt change in the temperature during
combustion, hence it is essential to include accurately the temperature dependencies
in the equations of state used for the gas species. The most realistic model that
includes the temperature dependencies is that of a thermally perfect gas, and for
which the heat capacity can be a general function of temperature. Another model
is the caloric perfect gas where heat capacity is constant for each species and is a
function of the mass fraction (see for example [28]).

While solving the combustion problem, the hydrogen-oxygen system is an at-

tractive object of study because its detailed reaction mechanism is well understood
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(in contrast, for example, with hydrocarbon oxidation), because it is the simplest
realistic combustion system, and because of its potential as a fuel. The present

problem consists of the detailed 37-step chemical reaction scheme relating eight

species (Hy, O, O, OH, H, HOy, H;O5 and H,0) (see for example [28]).

2.6.1 Linear Advection

The conserved quantities represented by the vector u and (mass, momentum, energy
and species concentration) are transported by convective and/or diffusive fluxes.
The difference between the convective and diffusive fluxes is that the diffusive flux
is driven by the gradient, while the convective flux exists even in the absence of the
gradient. In this section we will take into account the convective transport, ignor-
ing the diffusion. The reason is that the convective transport requires specialised
numerical treatment. The diffusive fluxes can be treated by standard numerical
methods. The important physical phenomena exhibited by convective conservation
are the contact discontinuity, shocks and rarefaction fans. Here we will give a brief

discussion of these phenomena.

2.6.2 Contact Discontinuities

A contact discontinuity is a discontinuous jump in the mass density moved by
convection through a system. This kind of jump appears at the point of contact
of different materials, e.g. a contact discontinuity separates oil from water, and is

modelled with the simple model equation given by
pr + upr, = 0, (2.19)

using the step-function as initial data in the above equation. In equation (2.19)
u is constant and equal to the convection velocity. As the contacts are a simple
convection effect, they retain any perturbation they receive. This implies that
contacts are especially sensitive to numerical methods, so spurious peturbations to
the contact will tend to persist and accumulate.

In the context of the Euler equations the contact discontinuity is associated with
linearly degenerate field R(®), and across which both pressure and particle velocity

are constant but the density jumps discontinuously as do variables that depend



CHAPTER 2. THE GOVERNING EQNS AND SOLUTION TECHNIQUES 21

on density, such as specific internal energy, temperature, sound speed, etc (see for

example [84]).

2.6.3 Shock Waves

Shock waves are small transition layers of very rapid changes of physical quantities
such as pressure, density and temperature and may develop spontaneously from
smooth distributions. This implies that the shock jump is self-forming and self
maintaining. The simplest model equation that describes shock formation is Burgers

equation [61] given, in the presence of the source term, by

2

u (%)x = ¥(u). (2.20)

The characteristic decomposition of the source term yields that

du dx

o = Yp(u), along o = fu. (2.21)

The above equation looks like a convection equation such as equation (2.19) with
non-constant convective speed u. This equation implies that the larger u values
move faster eventually overtaking smaller value, leading to the development of a
right going shock of the initial data if w is positive. The shock moves at a speed that
is not simply related to the characteristic speed and the shock speed is calculated
by the difference between the influx and out flux of a conserved quantity into the
region.

Suppose a conserved quantity u with the conservation law as given by equation
(2.4) has a step function profile with one constant value extending to the left U’
and the lower constant value to the right U” with a single transition between these
two and this jump location is moving with speed S to the right. Then the integral
form of the conservation law applied to any interval containing the shock gives the
relation

swr - Uy = [ — [l (2.22)
which may be stated as: the rate at which U appears S(Up — Up) in the interval
is given by the differences in fluxes across the interval. Hence the proper speed of
the shock is directly determined by and only by conservation of U via the flux f.

In the context of the one-dimensional Euler equations, shock waves are discon-
tinuous waves associated with the genuinely non-linear fields R™ and R® and all

the three quantities density, velocity and pressure change across a shock wave [84].
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2.6.4 Rarefaction

A rarefaction is a discontinuous jump or steep gradient in properties that dissipate
as a smooth expansion, and modelled by Burgers equation with the initial data
having a tendency to expand. The main numerical problem arises while modelling
such kind of jump is initiating the expansion (see for example [84]).

A common example is the jump in air pressure from outside to inside a balloon
which dissipates as soon as the balloon bursts and the high pressure gas inside the
balloon is allowed to expand.

In case of the Euler equations the rarefaction waves are associated with R and
R®) characteristic fields (see equation (2.6)) and the quantities, density, velocity

and pressure change across a rarefaction wave [84].

2.6.5 Mass Production

The next task is to find the mass production rate w for each species arising from a

set of chemical reactions. A typical reaction is given by
aAr + aAy + -ranvsAns = AL + b Ay + - bysAnws, (2.23)

where a; and b; represent the reactant and product stoichiometric co-efficient and
A; stands for the chemical symbols of the involved species. The reaction rate x in
combustion problem, associated with each chemical reaction is assumed to have the

following Arrhenius temperature dependent form

. E,
K = ATﬁe:L'p(—R T), (2.24)

where A, 3, E,, R,, T are the pre-exponential factor, the temperature exponent,
the activation energy, the universal gas constant and the temperature respectively
(for unit see appendix(C)). The equations will be stiff because of the large variation
of reaction rate constant x. It is evident from equation (2.24) that k = &(T') is a
function of the temperature. The mass production rate of the species involved in

the chemical mechanism can be modelled in following system of ODE
w; = Wi(P — L) 1=1,...,NS, (2.25)

where W;, P, = bIT5[A;]" and L; = a,IT}5[A;]" represent the molecular weight,

production and the loss rate and [A;] is the molar concentration of the species and
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is given by
[A;] = —=~. (2.26)

For a system of chemical reaction equations, we find the mass production rate of
species A; in each equation. Then we add these together to get the total mass pro-
duction rate of species A; for the entire system. Moreover the reaction mechanism
is a combination of reversible reactions and we have treated the reverse reaction in
the same way as forward reaction and added it to the system. In a reactive flow
model the most expensive part of the calculation is often the solution of chemical
kinetics. The computational cost is directly related to the number of species, the
number of reactions among them (in a minor way), and the number of spatial cells
in the computational domain.

On the other hand the simulation of a complex transient like that of ignition
associated with a reacting system requires the full chemistry of combustion to be
represented. The kinetic system not only includes a large number of species but
also includes the intermediate stages of the reaction mechanism with widely varying
time scales. This means that reaction mechanism is a combination of fast and slow
reactions, so the concentration of each species can grow (or decay) at different rates
and some time scale will be typically faster than the scale on which the solution is

evolving and on which one would like to compute, (see for example [83]).

2.7 Source Terms

In the modelling of reacting flow, currently an area of research is to develop a
reliable robust numerical scheme to solve the hyperbolic system with stiff nonlinear
source terms (see for example [61, 81]). Although much progress has been made in
this field, still there is a large question remaining concerning the optimal treatment
of the source term. The simple, but computationally challenging, Leveque and
Yee problem [52] plays a major role in the designing, analysing and testing of a
numerical method for wave propagation problems. Leveque and Yee [52] studied a
linear convective PDE with parameter-dependent source term and found that with
a single discontinuity in the initial data, seemingly stable and reasonable results

can be obtained, however the discontinuity is at the wrong position (see Chapter

4)!
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Griffiths et al. [78] in their subsequent work have devised a scheme for which
they have proved the convergence of the numerical propagation speed to the true
propagation speed and found that it can oscillate and diverge if certain monoticity
conditions on the source term are violated. An alternative way to handle problems
with stiff source term is to change the dependent variables so that the inhomoge-
neous conservation law attains the form of a homogeneous conservation law. There
are a number of proposed methods for treating conservation laws with source terms,
see for example Roe [66] and Glaister [34], but unfortunately none is general or
straightforward. Sweby [80] utilised the technique of changing the dependent vari-
ables to obtain a homogeneous PDE (no source term), but draws the conclusion
that there is a large question remaining about the optimal treatment of the source

term.

2.8 Finite Difference Spatial Discretization Meth-
ods

The mathematical modelling of complex systems involves the rate of changes with
respect to two or more independent variables. Generally these variables represent
time, length or angle and automatically give rise to either one or more partial dif-
ferential equations. The problems which involve time, t, as one of the independent
variable are modelled by parabolic or hyperbolic equations. Hyperbolic equations
usually come from problems where discontinuities exist in time, such as shock wave,
across which there are discontinuities in speed, pressure and density. The complex-
ity and non-linearity of such model problems generally, but not always, exclude the
possibility of having an analytical solution.

The main concern here is the implementation of numerical methods for solving
partial differential equations. When such a numerical method is being implemented,
the basic technique is to replace the continuous problem represented by the PDEs by
discrete problem. Many techniques are widely used, but perhaps the most popular
are the finite difference technique, the finite volume method and the finite element
methods. In the finite difference approach, the values are regarded as the point
values defined at grid points, while in the finite volume approach these discrete

values are regarded as the average values over the finite volume. In fluid flow
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problems the second approach is commonly used [68]. The finite element method

will not be considered further here.

2.8.1 Finite Difference Approximations to Derivatives

For a sufficiently smooth function f(x); the Taylor Theorem states that the value of
f(z) at any neighbourhood point xg + Az can be found if we know f(z¢) and all

its derivatives at @ = zg by the formula [55]

B2 10 ay). 22)

Jlwo + Da)=fleo) + 3

Hence by neglecting the term of third order, O(Az)?, and higher we can write

floot Ar) = flzo) + AafO(eo) + B O 4 0(A), (229
and similarly we have that
Flan = 2a) = fla) = Darf o) + SO w) 4 0020y, 229)

Hence neglecting the second order term immediately leads to an approximation to

the first derivative f()(x) of f(z) at 2o and that is

fD(xo) = Jlvo AXJ); = J(o) + O(Aw), (2.30)

and is called a forward finite difference approximation, because x¢ + Az is on the
right hand-side to the point zg, at which the derivative is to be sought.

Similarly we can obtain a backward first order approximation to the derivative as
follows

f(l)(l'o) _ fl@o) — J;(;?O — Aax)

Now subtracting the equation (2.29) from the equation (2.28) leads to

f(l)(l'o) — f(l'o + Aw;;j(lﬁo - AJ}) n O(Ax)27 (2‘32)

+0(Ax). (2.31)

and is called the central difference approximation to f()(xg) and is second order

accurate.
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2.8.2 Finite Difference Approximation to a PDE

Central and upwind schemes are commonly used to discretize the PDE. In order to
check the behaviour of these schemes consider the equation (2.2) in the 1D case(see

for example [84]), with no source term

ur + au, = 0,

2.33
u(x,0) = up(a), ( )

subjected to the appropriate initial and boundary conditions on the x-t plane. The
domain of integration is [0, L] x [0,%¢]. We are interested in finding the solution
of the above problem and for this we discretize the domain [0, L] using N equally
grid spaced points given by Ax = % The mesh points on the x-t plane are then
positioned at (jAx,nAt) with j = 0, --- Nand n=0,---, M, then the discrete
value of u(x,t) at (jAx,n/AAt) will be denoted by Uj(t,,), where j refers to the space
discretization and n to the time discretization is called the time level.

Then the spatial derivative with a second order central approximation is given
by at a particular time ¢,

Ujt1(tn) — Ui (tn)
2N\« '

Uy =

(2.34)

Suppose that V;(¢,) be the numerical approximation generated by the time integra-
tor at t,, and the equation (2.33) can be written as

Viltat1) = Vi(tn) N o Yii(ta) = Vi (t)
At 2N

= 0, (2.35)

where the Forward Euler method has been used for the time integration. It is
evident from the above equation that the only unknown is Vj(¢,41), because all

other values at the time level are known, hence we have that

Viltusn) = Vilt) = 5V (tn) = Vica(t)), (2.36)

here ¢ = a% is the dimensionless quantity and is called the Courant number (see
[58, 84]).

But unfortunately the famous Von Neumann Stability analysis [58, 84] reveals
that this scheme is unconditionally unstable. For this consider the trial solution in
the following form V;(t,) = A”e:z;p(ng), where A is the amplitude, § = PAx
is the phase angle, P is the wave number in x-direction and ¢ = +/—1 is the
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unit complex number. Putting this trial solution in equation (2.35), simplification
reveals that A = 1 — Lcsin(é). The requirement for the stability is || A | < 1.
Unfortunately || A =1+ czsinz(é) > 1 hence the scheme is unstable under all

circumstances.

2.8.3 The First Order Upwind Scheme

The previous section showed that the central difference scheme is unconditionally

unstable. One solution to this problem is to replace the central finite difference

approximation to the spatial derivative u, by a first-order one-sided approximation.

Then there are two possible choices for it, the approximation (see for example [84])
Ui(tn) — Uj—1(tn)

Uy = N ) (2.37)

and
Ui (ta) — Ui(Ln)
AN, '

The correct choice of approximation depends upon the sign of the wave propagation

(2.38)

Uy =

speed a of the partial differential equation (2.33). This is an “upwind”discretization
scheme and due to Courant et al.[23]. The key feature of the scheme is that the
discretization has been performed according to the sign of the wave propagation
speed in the partial differential equation (2.33). The word “upwind”means that
spatial discretization has been performed according to directional flow information.
This implies that for positive a in equation (2.33) the upwind means “leftside”and
when a is negative , “right side”is the upwind direction. For positive a the equation
(2.38) combined with the Forward Euler method (as the time integrator) can be
written as

Villnyr) = Vitn) = c(Viltn) = Viaa(ln)), (2.39)

where V;(t,) is the numerical approximation generated by the time integrator at
time ¢,,. Suppose that for positive a, we use the downwind information to perform

the spatial discretization and we arrived at the following scheme
Viltas1) = Vi(ta) = e(Vita (t2) = Vi(ta)), (2.40)

again the Forward Euler method has been used as the time integrator and V;(t,) has

the similar meaning. A Von Neumann stability analysis of equation (2.39) yields
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that [84]
| A?= (1—¢)?+2e(1 — c)eos(0) + 2, (2.41)

where ¢ is the Courant number and the stability condition implies that || A | < 1
and which is only possible if 0 < ¢ < 1. Hence the scheme is conditionally stable
with the stability condition

0 < ¢ < 1. (2.42)
As explained in the previous section ¢ = a%, so the Courant number depends

upon the speed a, the mesh spacing Ax and the time-step At. In equation (2.42)
a is the wave propagation speed, Az is chosen on the desired accuracy, hence the
restriction is on the selection of the time step At. Now we introduce the notation

a™ and ¢~ in order to formulate the upwind scheme in a unified manner
n 1
a” = max(a,0) = 5(@ + |al), (2.43)

and

¢~ = min(a,0) = %(a— lal), (2.44)

and | a | represents the absolute value of a. It can be easily inferred from equations
(2.43) and (2.44) that @ > 0 implies that a* = @ and a= = 0,and a < 0 gives
that a¥ = 0 and a= = a. On the line of the notation «* and a~ we define the
Courant number as follows

n

= At& = AtZ—_x. (2.45)

Using the notation ¢™ and ¢~ we can express the first order upwind scheme in the

following way
Viltngr) = Viltn) = " (Vi(tn) = Vica(tn)) = ¢ (Via(tn) = Vi(tn)),  (2.46)

where for @ > 0 the second difference term vanishes, we are left with equation
(2.39) and similarly for a < 0, we have equation (2.40) and note that the Forward
Euler method is the time integrator and V;(¢,) is the approximation generated by

the time integrator. The stability condition for the upwind scheme (2.46) is

0<|cl|< L. (2.47)
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2.9 Finite Volume Method

Finite volume discretization methods are commonly used in the field of numerical
fluid dynamics and can be considered as finite difference methods applied to the
differential form of the conservation laws given by equation (2.2). The integral

conservation laws (see equation (2.1)) for a discrete volume can be written as

%/Qudﬂ + ]%f.dé* - /Q;/)(u)du, (2.48)

and applied to a control volume ), then the above equation is replaced by the

discrete form

9
ot

where the sum of the flux terms refers to all the external sides of the control cell

(U;95) + D2(f.8) = »(U;)Q;, (2.49)

sides

1, and the right hand side has been obtained with a quadrature rule.

This is the general formulation of the finite volume method and the user has
to define, for a selected €1;, how to estimate the volume and cell face areas of the
control volume €);. More importantly, the user has to define the flux f on the edge

of the cell. In the 1D case the above equation has the following form
AxUi(t) + frpr — fior = Dag(U(t), (2.50)

where U;(t) denotes the approximation of U(t) at x; and Uj(t) denotes the time

derivative of U;(t); and j + % denotes evaluation at * = W, and similarly
-4
For the 2D case if we consider the regular Cartesian mesh on the region 2 = [0, 1] x

[0,1] then the integration of the conservation laws on the jth square gives

A]g—?:—/ (gi ag) dQ+/ (2.51)

where A; denotes the area of the square j and ) is the integration variable defined

on A;. If we apply the divergence theorem then we have that

oU;

A%t = - ?{Cj(f.nx +gny)dS + /A O(u)de, (2.52)

where the flux ¢ is along the y-direction C; is the circumference of jth square and

S is the integration variable along that circumference. Estimating the line integral
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along each edge with implementation of the one point quadrature rule along the

side of the square gives

s = fiml lgjes — 954
a T A T Ay = ¢(Uij(x.y)), (2.53)

where
i = (1 — Az and y; = (j — $)Ay, ¢ = 1,---,N, j = 1,--- N
and where Az and Ay are constants.

Once the mesh is selected, we have to decide where to define the variables.
When the variables are associated with a cell a cell-centered finite volume method
is defined and if the variables are attached to the mesh points, i.e., the cell vertices,
then we call this a cell vertex finite volume method.

In this thesis we have used cell-centered finite volume methods on regular mesh
as described in [7] and in order to estimate fluxes f and g we have adopted similar
approach as described in [7], for conviently we will consider mostly 1D equations.

The approach can be easily extended to 2D on a uniform grid.

2.9.1 The Higher Order Spatial Discretizations

The first order upwind discretization is a very diffusive scheme [58], implying that
a higher order approximation of the flux is needed in order to obtain the desired
accuracy. The dilemma regarding the higher order upwind biased linear scheme is
that even though they are more stable than pure central differencing schemes these
are still prone to oscillations under some circumstances. This limit is predicted
by Godunov’s famous theorem [91] stating that no linear convection scheme of
second-order accuracy or higher can be monotonic. The answer is to use non-linear
discretizations, which adjust themselves according to the local solution to maintain
monoticity.

Applying the finite volume method as described in section (2.9) the discretization

of the conservation law on cell [:z:j_%, l’j_l_%] gives that

o dint Sy
Uj + T_;/;(Uj(t)), (2.54)

where U; is the approximation to u at x; and Uj denotes the time derivative of
U(xz;,t) and Ax is constant. At particular time ¢, let U;(t,) be an approximation

to the average of the true solution over the cell [:z:j_%, :I;j+%], then the discretization
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is conserved, implies that the time variation of U over the whole domain depends on
the flux at the boundaries. This means that the contribution of the flux at internal
cell interfaces cancels [52].

In equation (2.54) fj+% and fj_% are approximated by an upwind differencing

scheme given by, for example

JR— ¢ l r
fir = f($j+%vthj+§’Uj+%)’ (2.55)

f]—% = f(x]—%v tnv U]l‘_%7 U;’_%)
The next task is to estimate U'(¢,) and U"(t,). They are estimated with the help

of the standard upwind technique combined with a suitable limiter [11] and at time

t, we have that

Uls(t) = Uylta) + 505000 = U () Bl ), (250)
Ujps(t) = Upni(t) = 5(Ussalt) = Ut B 1), (257)

where B(.,.) is the limiter function (see below) and r; is given by

 Uja(tn) — Us(t)
YT Ut = Upea (b))

(2.58)

Roe [67] shows that on uniform grids, different limiters give rise to different spatial
accuracies. Three useful choices of limiter [7] are the following:

First-order method

B(r;.1) = 0. (2.59)

Second-order method (reverts to first-order if(r; < 0) is due to van Leer with

limiter function
ri+ |[r]
4| r |

which is the ratio of the derivative of centered and left upwind interpolants, while

Blriy1) = (2:60)

third order accuracy but not monotonicity can be achieved by the Leonard limiter

given by, (see for detail [7])
B(r;,1) = 0.25 + 0.75r;. (2.61)

For a non-uniform grid the equation (2.54) can be written as

e
B CAC FRE AR Arj + Az '
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and the modified form of the equations (2.57) and (2.56) can be written as

Az (Ui(tn) = Uisa(tn))

U;+%(tn) = U(t,) + 5 o B(r;,1), (2.63)
U;+%(tn) — j-I—l(tn) . (A;?)j (Uj+2(i721j)]gi+l(tn))B(rjl_l_l71)7 (2.64)

where B(.,.) is the limiter function (see above) and r; is given by

(Ui (tn) = Us(ta))/ Dy
(Ui(tn) = Ujma(tn))/ Dy

(2.65)

ry =
Now consider the problem defined by equation (2.33) with the initial condition

ula,0) = ugla) = 002 (2.66)
a, if x> 0.2,

where (a; # a,) are two constant values and the initial data has discontinuity at
x = 0.2. This type of the initial value problem is called a Riemann problem. In
order to solve such problems the numerical flux is needed at every mid point of the
mesh at every time step. The Riemann problem can be solved exactly (as in Go-
dunov’s method [35]), but doing so would be computationally expensive especially
when nonlinear equations are involved and some iterative method is needed.

In the context of the Euler equations, the Riemann problem is a slight general-
ization of the shock-tube problem: two stationary gases in a tube separated by a
diaphragm. The rupture of the diaphragm generates a nearly centred wave system
that typically consists of rarefaction waves, a contact discontinuity, and a shock
wave. In the Riemann problem the particle speed is allowed to be non-zero, but the
structure of the solution is same as that of the shock-tube problem [84]. In the rest
of the chapter the dependence of f on z and ¢ and U and U” on t will be taken as

understood.

2.9.2 Approximate Riemann Solvers

Computing solutions of equation (2.33) which contain discontinuities, such as shock
waves, poses stringent requirements on the numerical schemes to solve the partial
differential equations. Several numerical schemes have been devised for the solution
of hyperbolic conservation laws based upon the information obtained by considering

a sequence of Riemann problems. Historically Godunov [35] produced a conservative
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extension of the first-order upwind scheme of Courant et al. [23] to non-linear
systems of hyperbolic conservation laws. He supposed that the initial data could
be replaced by a piecewise set of states with discontinuities at Tipt. He then found
the exact solution to this simplified problem. After some time step At (less than
Ax divided by the greatest speed wavespeed found in the Riemann solutions) he
replaced the exact solution by a new piecewise constant approximation.

The first major extension to this line of approach was made by van Leer [85]
and raised the order of accuracy of the method from one to two. Some well known
methods have been described in the previous chapter. Van Leer et al. [87] compare
some of the earlier methods for Euler and Navier Stoke equations and proposed the
Osher [26, 60] and Roe [65] schemes for their ability to accurately represents flow
phenomenon such as shocks, rarefactions and contact discontinuities, etc. A brief
description of the Osher’s and Roe's is given below:

For Osher’s approximate Riemann solver [26, 60] the numerical flux is given by

5 1 1 sur
l ry _ l r -
BULUY) = S (f(U) + £(U) =5 | [ A]dU), (2.67)
where J(U) = agg is the Jacobian matrix, and | J | is a matrix defined by
|| = Jr—J, (2.68)
with
J*t = PAYPTl, J- = PA"P™' and J = PAP-. (2.69)

In above equation A represents the diagonal matrix of the eigenvalues of J. AT and
A~ are the diagonal matrix such that A* has only positive elements of A. Hence
A~ has only negative value, it implies that A = A%t + A~. The rows of the
matrix P~ are the left eigenvectors J, while the columns of the matrix P are the
right eigenvector of J. The integral in equation (2.67) is evaluated along a path
piecewise parallel to the eigenvectors of J(U), it means that along the wave paths

in the phase space of u (see for example [60]).

The Roe numerical flux is given by

f(UU) = S (F(U") + £(U")) — S | JULU) [(U = U,  (270)

1
2

[N

where j(Ul, U”) is a linearised form of a Jacobian matrix J and satisfying
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o J(ULUN)UT — UY) = f(U") — f(UY),

e J has real eigenvalues with linearly independent eigenvectors.

Now | J | is given by the equations (2.68) and (2.69) and for linear J we have that
| J | = J. The equation (2.70) can also be written as

(NPDE
(f(U") + f(Uf“))—5 S G| A |RY, (2.71)

i=1

f(u,un =

[N

where NPDE is the number of partial differential equations, ¢; is the wave strength,
); and RY) are eigenvalues and eigenvectors of matrix J (see for example [84]). As
usual, the one-dimensional scalar equation is a useful study case, because it provides
the starting point for the comparison of various approximate Riemann solvers.

In [86], van Leer considers the upwind-differencing first order schemes of Go-
dunov, Roe and Engquist and Osher(E-O)[26] solvers for the invisicid Burgers’s
equation. He observes that the difference between the E-O scheme and Godunov’s
method lies in the treatment of transonic shocks, while Roe and Godunov’s schemes
differ only at transonic expansion where the exact Riemann solver, used in Go-
dunov’s method (see for example [25, 84]).

Roe’s method puts in a so-called expansion shock, i.e., an entropy violating
discontinuity. To prevent these expansion shocks, the flux function in Roe’s scheme
needs to be modified. Harten and Hyman [38] introduced an intermediate state
that simulates the diffusion introduced to a Godunov-type scheme by a continuous
transition between the left and right states. Roe [69] describes another modification
that beaks down expansion shocks.

Donat and Marquina[25] have, however, pointed out even with the implementa-
tion of above mentioned modification the Roe’s solver [65] still does not give good
results when the sonic rarefraction is involved. They have proposed an improved
formula and in the scalar case, their flux formula is a combination of Roe’s flux and

Lax-Friedrichs [75] flux and is given as
fF(Uh iff > 0in [U, U],
fwhuny =2 fory i <0 UL U], (2.72)
(ST + fU) = o(Ur =U") else,
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where

!
g = max
UelULUT] | f

and [U', U"] should be understood as the range of U-values that lie between U' and
U

)1, (2.73)

While extending their approach to systems of conservation laws, Donat and
Marquina [25] have pointed out that Roe’s linearization may not always be appro-
priate, especially when dealing with systems of conservation laws other than the
Euler equations for which the “Roe mean”might not be easily computed. So they
have made use of two sets of eigenvalues and eigenvectors, one coming from the
left and other coming from the right, to compute the flux at a given interface. The
algorithmic description of Marquina’s flux formula is as follow:

Having computed the left and right states, the local characteristic variables and
fluxes are evaluated

i = LOWUL & = (L) UL,

! ) > ) (2.74)
= LOWN.U7, & = (LO)U)EU),

for p = 1,2,---,m and L®(U") and L) (U") represents the left eigenvectors of
the Jacobian matrix.
Suppose that A (U'), -+, A, (U") and A(U"),---, \,,(U") be the corresponding
the left and right eigenvalues. Then we have the algorithm [25]
Fory = 1,---,m,
if A;(U) does not change sign in [U', U] then
ifA(UY > 0 then
& = ¢
& =0

else

endi f
else
% = et o | A;(U) |

o= 05(8 + o)
& =058 — o50i)
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where I'(U’, U") is a curve in phase space connecting (U') and (U"). Then the
Marquina’s flux [25] is given by

f(u', U i U + ER®Wn)), (2.75)

where R®(UY), RP(U") are right eigenvectors of the Jacobian matrix.

Marquina’s numerical flux is consistent, i.e.,
f(U', U") = f(U),

and, when applied to a constant coefficient one-dimensional system, Marquina’s
scheme is equivalent to Roe’s [65] and would yield an exact solution to the Riemann
problem. It is evident from equation (2.75) that Marquina’s numerical flux has s

flux-splitting structure with
f(U,U") = £t + 7,

where
- = YEROUY, £ = AR, (276)
p=1 p=1
Although these methods deal with ideal gases, the literature is continuously ex-
panding to deal with the real gases in high-temperature and chemically reacting
flows, (see for example [18, 33, 53], and also the references in [76]).

With growing interest in high temperature and non-equilibrium chemistry, these
methods have been successfully extended to non-equilibrium chemistry. In this
regard, many extensions to the Osher[60] and Roe[65] solvers have been proposed
in the literature (see [1, 76, 79], and references therein).

Shuen et al. [76] extended Roe’s [65] scheme, backed by a comprehensive and
complicated analysis. While extending the Roe’s scheme to non-equilibrium chem-

istry the Roe-average operator v is given by (see for example [76, 84])

drfr + dlfl ~ 1
—_ = p>2 2.77
s a0 4= (2.77)

v(f) =
where p is the density. With the help of the above equation we have that

P = iy,
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where p, 4, €, and H represent the Roe-average of density, velocity, specific internal

energy and total enthalpy, and similarly the average value () of mass fraction can

be calculated as
Y = u(Y).
The pressure jump is then calculated by considering the pressure p as a function of

the following form
p = plp,e, Y1, Ynsoa), (2.78)

where p, e, Y; are respectively the density, specific internal energy and mass con-
centration for species i. Then the pressure jump is given by (see [76]),

N-1

Dp = Bpbp + pebe + Y prAY, (2.79)
7 =1

where p,, p. and py, are derivative of pressure with respective to p, specific energy
e and species concentration py, (for more detail see [76]).

Similarly the extension of the Osher solver to non-equilibrium chemistry in-
volves a complicated analysis, and it is difficult to derive simple enough expressions
which can lead to a robust calculation of fluxes. In both cases the complexity of
the extended Roe ([65]) and Osher [60]) solvers increase with larger numbers of
species. Recently Fedkiw et al. [29] have used very complex ENO schemes to solve
combustion problems related to non-equilibrium chemistry.

Hence, it is natural to try and introduce some simplicity, so we have used the
Marquina approach [25] to both deal with the non-equilibrium as well as equilib-
rium chemistry, and have obtained very promising results. The only complexity
involved is that it needs a complete analysis of the eigenvalues and eigenvectors of

the governing equations.

2.10 Method of Lines

Several methods have evolved to solve sets of time-dependent, non-linear coupled

partial differential equations [58] but the two commonly used are the method of lines
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and the operator splitting. In this project we have used the method of lines and have
avoided using operator splitting because of the extra errors that are introduced, see
[3].

The method of lines focused on the idea of separating the spatial and temporal
parts of the problem regardless of nonlinearity of the governing equation. It is

assumed that the spatial mesh, with constant spacing Az, is defined by
g1 = 2, + Ny, =1, N—1, a2 = 0,

and the midpoints ,,1 = x; + 3Axz. This mesh partitions the interval [0, L]

1
3
into NV subintervals of constant length Axz. The implementation of the spatial
discretization to the PDE equation (2.4) is given by equation(2.54) and can be

written as the following system of ODEs (see equation 1.4)
U = F(U(@),t). (2.80)
The solution vector U(t) is given by
Ui(t) = Uj(xj,t) where k = TNOE x (5 —1) + 1, (2.81)

fory =1,---,N+1, ¢ = 1,--- ,TNOE and TNOF (total number of equations)
represents the total number of partial differential equations or ordinary differential
equations at each grid points. Hence the solution vector U(t) is thus made up of all
the PDE variables at the mesh-point 1, all the PDE variables at the mesh-point 5.,
followed by any coupled ODEs variables, hence making a total of TNOFE x NPTS
solution components.

The ODEs system given by the equation (2.80), along with and initial condition,
U(0), forms an initial value problem which can be integrated in time by standard
methods. Such methods are described in the next chapter. One advantage of this
method is that it is possible to use the very sophisticated ODEs solvers that now
exist with many features and reliable error control.

An alternative approach is to employ a time-splitting in which one alternates
between solving a system of conservation laws, with no source terms, and a system
of ordinary differential equations modelling the chemistry. Applying this technique
to the equation (2.4), we have that

Vi(tas1) = SHADSHAHV(L,). (2.82)
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In the above S¢(At) represents the numerical solution operator for the conservation

law
Ju f(u)
el — 2.
o + O 0, (2.83)
and Sy (At) is the numerical solution operator for the ordinary differential equation
du
— = : 2.84
) (2.54)

This splitting procedure, however, introduces an O(At) splitting error (see for ex-
ample [52, 57]. To maintain second-order accuracy, the Strang splitting [28, 52] can
be used, in which the solution V(¢,41) is computed from V(¢,,) by the procedure

given as
JAN JAN
5 )5BSy (-

The splitting approach is frequently used to solve atmospheric reacting flow prob-

V(tns1) = Sl V(). (2.85)

lems, but it may be less satisfactory for combustion problems, since in reality the
fluid dynamics and chemistry are strongly coupled. However, there are distinct
advantages to the splitting from the standpoint of algorithm design. High quality
numerical methods have been developed both for system of conservation laws and
for stiff systems of ordinary differential equations. By decomposing the problem
into subproblems of these types, it is possible to take advantage of these method
directly.

2.11 Conclusion

The governing equations of atmospheric and combustion problems have been pre-
sented and there are NS (number of species) number of equations for the atmo-
spheric problem, while the combustion problem has NS + 3 equation if we consider
the 2D case of the combustion. These equations are highly non-linear consisting of
the complex chemistry term arising from the chemistry.

Hence it is not possible to obtain solution analytically and numerical methods
must be employed. This can be achieved by discretizing the governing equations at
every point of the computational domain. Throughout this work, a finite volume
approach is employed to both the 1D and 2D Leveque and Yee problem [52], 1D
and 2D atmospheric dispersion problem, and 1D combustion problem [28§].

With the help of the method of lines approach, the governing equations have

been reduced to the form of the ODE system and upwind schemes have been used for
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the spatial discretization. The reason is that the upwind schemes are conditionally
stable while the central difference schemes are unconditionally unstable.

Also some well knows Riemann solvers dealing with ideal as well as real gases
have been considered. But due to simplicity we have used the Marquina approach
[25] to deal with reacting flow related to the combustion problem. The resulting
ODE system, which will be stiff because of the chemistry, has been solved with
the help of the theta method time integrator, and also a brief description of the

splitting error has been given.



Chapter 3

The Stiff Chemistry ODE Solution
Methods

3.1 Introduction

The reactive flow models (discussed in Chapter2 ) are computationally very ex-
pensive to solve. The computational work is often dominated by the numerical
treatment of the system of the ordinary differential equation (ODEs) describing the
chemical transformation. When large scale models are under consideration then
we have found by numerical experiments that more than 80% or more of the total
computation time is spent on solving these ODEs. The term appearing R; in the
equation (2.10) is the non-linear term associated with the chemistry and can be

cast in the following ODE system
w o= P(W)_L(W)W7 w = [wlv"'vaS]tv (31)

with given initial condition w(0). In the above equation P(w) is a NS-vector
specifying the production terms and L(w) a N.S x NS diagonal matrix defining the
loss rates, N.S being the number of species. The reciprocal of L;(w) represents the
characteristic reaction time for species w;. The component P;(w) and L;(w)w; are
non-negative and represent respectively, production and loss terms [90] and their
dependence of the vector w on space is taken to be understood.

As regards the combustion problem, the reactions mechanism can be cast in the

following form of chemical kinetics system. For the ith species we have that
wi = Wilb — a)IDS[A)]Y @ =1, 2,---, NS, (3.2)

41
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where W; is the molecular weight of ith species, a; and b; are the stoichiometric
coefficients of reactants and products and [A;] is the molar concentration of the jth

species given by [28, 83]

pY; .
[ ]] 117]‘7 .] Y Y Y Y ( )

where Y} is the mass fraction of the jth species and p is the density. Recall from
(Chapter 2) that these kinetic equations are modelled as either Euler equations, if no
viscous effect has been considered, otherwise, Navier-Stokes equations. It is worth
noting that while dealing the atmospheric dispersion problem, the rate constants
are in general function of temperature, while the photolysis rate constants are the
function of solar zenith angle [82]. So each w; in equation (3.1) will be a function

of solar zenith angle and temperature and is given by
U')Z' = wZ(T, n, Wi, W, 5 ,sz), (34)

where T is the temperature and n is the solar zenith angle. In the combustion
problem rate constant depends upon the temperature [28], so each w; in equation
(3.2) is a function of the temperature, density and mass fractions, then we have
that

w, = wi(T, Y1, Yo, ,--+,YNs). (3.5)

These kinetic equations model reactions with widely varying time scales. Hence
the classical stiffness problem of ordinary differential equations arises. Secondly,
at each time step, the solution of the chemical equations is required at all grid
cells. Hence the need is for fast and efficient special-purpose solvers. On the other
hand, the accuracy level required may be modest, say 1%, and higher accuracy
is considered to be unnecessary because of the various other uncertainties about
the physical parameters and input data. Hence it may be satisfactory to solve the
chemistry part of the calculation at a low accuracy only. In this chapter some
special purpose solvers are described and examined for reactive flow models (i.e.
atmospheric and combustion models). The detailed description of the governing
equations for atmospheric and combustion problems is given in Chapter 2.

The method of lines approach has been used to numerically integrate the gov-
erning equation of atmospheric and combustion problems. Hence with spatial dis-

cretization scheme used in [10] for the PDE described in Chapter 2 result in a
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system of differential equations (see equation (1.4))
U = Fy(t,U(t)),  U(0) given, (3.6)

where the vector, U(¢), is given by U(¢t) = [Uy(t), -+, Un(¢)]" is the numerical
approximation to the exact solution. A method of lines approach is used to numer-
ically integrate the equation (3.6) thus generating an approximation V(¢) to the
vector of exact PDEs solution at the mesh points u(¢). Presently the theta method
with the iterative method of [12] has been used to solve atmospheric dispersion
problem [10]. Recently Verwer [90] has reported that second order backward differ-
entiation method (BDF2) with Gauss-Seidel iteration works well in solving ODEs
from atmospheric chemistry. In the present chapter we describe an alternative to
both the theta method and to BDF2 by investigating whether the NDF methods
of Klopfenstein [47] as suggested by [71, 74] forms a viable alternative.

In the second part of the chapter, consideration is extended to the IMEX ap-
proach of Ascher et al. [4]. The standard example that is used by Ascher [4] is
of a convection-diffusion type problem in which the explicit scheme is used for the
convective term and implicit scheme for the diffusion term. In a similar manner
reaction-diffusion problems can also be approximated. Many authors have made
analysis of IMEX schemes. For example Basdevant et al. [5] made an experimental
analysis of several IMEX schemes and Varah [89] has discussed stability proper-
ties for certain second order IMEX schemes. Ascher et al. [4] have systematically
analysed the performance of such schemes and pay attention to their relative per-
formance in the context of fast multigrid algorithms. In this chapter the stability
property of second-order IMEX schemes by using NDF2 as the time integrator in-
stead of BDF2 will be discussed. Most of this chapter has appeared in abbreviated

form in [3].

3.2 The Theta Method

The theta method [9], is widely used to solve initial value problems for ordinary dif-
ferential equations. Among the examples of application include the method of lines
treatment of partial differential equation (Hopkins [41], Berzins, Dew and Furzer-
land [8]), simulation of electric power system (Johson et al. [21]) and the modelling

of gas transmission (see for example Chau and Dew [17]). The theta method can
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be implemented for both stiff and non-stiff ordinary differential equations. When
taking a reasonable size time step while solving a stiff problem, an important re-
quirements is that the convergence of the Newton type iteration must be achieved.
The Newton type iteration requires the evaluation of the Jacobian matrix. On the
other-hand when code is applied to non-stiff problems, a full Jacobian matrix is
not needed , as a much cheaper iteration method such as functional iteration can
be used. The technique related to the changes of the iteration method is discussed
in [72]. Our concern here is to consider the theta method to the case of problems
arising from the chemistry which are highly non-linear and stiff due to the variation
of the rate constant x.

Recall that the method of lines approach has been used to numerically integrate
equation (3.6). Hence it implies that generating an approximation V() to the vec-
tor of exact PDEs solution value at the mesh point u(¢) and application of the theta
method defines the numerical solution V(t,41) at t,41 = t, + At gives

V(tas1) = V(ta) + (1= 0)AIV(L) + 0AF x(turr, Vitgs)). (3.7)

In the above equation V(¢,) and V(tn) represents the numerical approximation and
its time derivative at time ¢,. The optimal choice of # and the other details are
given in [9]. In the following section we shall briefly discuss the local error as this

will be required later in the thesis.

3.3 Local Error Estimation

The complete description of local error estimates can be found in [7, 9]. The basic
technique is that the local error is defined by the local solution on [t,,¢,41] by
solving the following ODE system

Yn-l—l - FN(tv Yn-l-l(t))v (38)
where y,+1(t,) = V(t,) and the local error indicator le(¢,41) is given by
le(tny1) = V(tng1) = y(tnsr)- (3.9)

The common approach used by the software based on method of lines is that the

local error is less than the user supplied tolerance, then we have that

| 1e(t,41) ||= BTl (3.10)
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where B is the suitable acceptance factor less than 1. With the help of equation

(3.7) the local error can be written as (see for example [7, 9]).

le(ti1) = —yut1(tagr) + V(ts) (3.11)
+ (1= 0)AtV(t,) 4+ OAF N (tgy, V(Eapr)).

Expanding V(t,) = ynt1(tn) about t,4; as given by equation (3.8) and its time

derivative we have that

le(t,41) = OAUFN(tar1, V(tas1)) = Fn(tatt, Yotri(tas)))
. . 1
= (1= 021G (farn) = V(1)) + 5LV (i)
AtB (3

Tynll(tnﬂ) + O(AY), (3.12)

where superscript (¢) means the ith derivative of y(.) with respect to time. With
the implementation of the mean value theorem to the term involving Fy. the
definition(3.8) and expansion of the derivatives of y,+1(¢,41) about ¢,, we get the

following form of the above equation

1 ANE 1
(L — At0])le(tng) = (0 — §)At2y721+1(tn) + (0 g)y(B)(tn) +O0(AY), (3.13)

where the superscript (i) has the similar meaning as defined above, and J is the

Jacobian matrix given by

[ OB, V(1))
OVt

Equation (3.13) suggests that the value of § = % would result in the most accurate

(3.14)

theta formula. But this hypothesis is wrong because such analysis is based upon
the leading term and the choice of an optimum value of theta has been discussed in
Berzins and Fuzerland [9] and Prothero and Robinson [64]. This is evident from the
equation (3.13) is that it makes use of the factor ({ — At6.J), which is available in its
LU decomposed form in case of the stiff ODE system. The local error estimation for

a fixed step size in the following form has been implemented in the code of [9, 64]:
1 , 1
where A\, = Athn_l(V(tn) — V(tn_l)) and A\,_; is defined similarly and

W, = (I — At0J). (3.16)
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Both these vectors are stored by the code and also used in the predictor (see [9]).
In the case when functional iteration being used with a constant step size the error

estimate has the following form
1 . .
le(tu1) = (0= 5)Ot(V(t) — V(tu-1))
1 . . .
+ (0 — 0 — E)Atn(V(tn)—ZV(tn_l) + V(t.—2)). (3.17)

The time step is accepted by the integrator if || le(t,41) |l < 1 and otherwise

rejected, and || le(t,41) || is weighted error norm.

3.4 Klopfenstein NDF Method

In 1971 Klopfenstein [47] modified the BDF methods in such a way that they have
better stability properties and lower error constant in some cases. These methods
are called Numerical Differentiation Formulae or NDF's and the second order method
step size may be 20% larger than ordinary BDF2 methods, the details are given
in [47]. Although these methods were recommended by Shampine many years ago
[71] they were not implemented in general purpose software until recently [74]. The
question related to the extra cost of the NDF method is that we need only one
more back value, which is present in the Milne-type error estimate used by the
BDF code and no extra storage is required. As described in Chapter 1 the method
of lines approach has been adopted to numerically integrate the equation (3.6) thus
generating an approximation V() to the vector of exact PDEs solution values at
the mesh points u(¢). For simplicity the Klopfenstein method of order 2 , NDF2
hereafter will be described by starting from the BDF2 formula given by

V(tup1) — Yy Vtagi—i)o
AN
In the above equation, the coefficients a; and 4 are well-known, see [6]. With the

help of Nordsieck vector form of the BDF the predicted values of the solution and
the first two derivatives are given by V2(¢,),VIU?(¢,) and V(??(1,) are given by

— Fltyr, V(te)) = 0. (3.18)

using the existing derivatives

2 VO, )(At
VOP(t,41) Z z—l))’ [ =0,---,2 (3.19)

The correction vector given below

o _ Vlap1) = Vo)
AN ’

(a4

(3.20)
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can be obtained by solving the system of nonlinear equations, (see for example [6]),

given by
V(l)p(tn—l—l) + o — F(tp41, VP(toy1) + At3a™) = 0, where 7 = % (3.21)
The predictor values are then corrected by

VO(t,) = VOP(t,,,) + SITA T (3.22)

where % = 4, = 2 and §; = 1. Now the NDF?2 formula described in [47] may
be implemented in the same Nordsieck framework by writing it as a correction to

equation (3.19)

V(i) = S5 Vlt-idai L (V(ta) = V(t)?) _
AL —a NG —F(lut1, V(tay1)) = 0,
(3.23)

where _?1 < & < =, For simplicity we write the equation (3.23) as follow

W=

VPt 0) + 87 = F(lngr, Vtap) + A7) = 0, (3.24)

where

V(tiy) = VP(tugi)

g = NG

Hence on comparing the coefficient V(¢,41) in equation (3.23) and (3.24) it follows

that 4* = (11&) and as & = —% and it implies that 3 = 0.9%. The leading

term of local truncation error of the qth order NDIF method is
TE 2% ! h y y ! (3 25)
= @ + —— where = E — .
i q + 1 i mey M

which reduces to the leading term of the truncation error of the BDF2 for (& = 0).
So for (& = 0) the leading term of local truncation error associated with BDF2 is
+ and that of ND2 (& = —%)is %, which is still twice that of the trapezoidal rule
however. This implies that the local error estimate is halved and the step at the
order two is increased by the factor of about 1.26 over BDF2 for the same error.
The comparisons of BDF and NDF made by Shampine and Reichelt [74] have
shown that on a range of stiff test problem the NDF code is on average about 8%

faster and uses an average of about 11% fewer steps on all problems except one.
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3.5 Stability Properties

Now we concentrate on obtaining the stability properties of the NDF2 method. For

(& = —3) the fixed step NFD2 formula is given below
1
F(tn_H,V(th))—@(lOV(th) — 15V (t,) + 6V(t,—1) — V(t,—2)) = 0. (3.26)

The characteristic polynomial when the formula given by equation (3.26) is applied
to the single equation of the form V' = AV is given by [47]

M= G = & + %52 — &7,8°, (3.27)
where £ = 1 — A7! = 1 — exp(—¢) and —7 < ¢ < 7. According to Dahlquist
[24] for a multistep method to be A-stable it must be

e implicit
e have an order equal to or less than two
and further that among all second order methods that are A-stable the trapezoidal

rule has the smallest error constant. Putting the value of ¢ in equation (3.27) and

simplifying gives that
Re(¢) = 4sin*(0)[1 —3a + 12a&cos(0)], (3.28)

where § = % and Re(q) is the real part of q and recall that the order of the method
is two (for derivation see appendix (A)).

For the method to be A-stable it requires that Re(q) is non-negative for all values
of ¢ which is the case if and only if =1 < & < L. Figure (3.1) shows the stability

region for three different values of & = 0, —%, —%. Recall from the previous
section that & = 0 represents the stability region of the BDF2 while & = —%

shows the stability region of the NDF2.

Then the comparison of stability region corresponding to these two values of &
shows that the stability region in the right half plane (where the true solution is
growing) corresponding to & = —2 is (desirably) smaller that the BDF2 stability
region corresponding to & = 0, see Klopfenstein [47].

In order to have idea of above points we consider the homogeneous system of
ODE given by

Q = MQ, (3.29)
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Figure 3.1: Stability region.

where M is the constant m xm matrix. It is assumed that M has distinct eigenvalues
Ayt = 1,2,---,m. We are interested in finding the stability region of numerical
method being applied to solve the above equation. For the stability of the method
the requirement is that all the roots of the characteristic polynomial must be less
than one. Suppose that the behaviour of the one of the root of characteristic
polynomial is like this

ry = e:z;p(j\) + O(S\q"'l), (3.30)

where ¢ is the order of the numerical method being used and A = AAL. It immedi-
ately follows that for small X with Re A > 0,|r1 | > 1 and the method is ustable.
In other words, the region of stability of any convergent method cannot contain the
positive real axis in the neighbourhood of the origin. Note that since the above
argument is asymptotic (as A= 0), we cannot conclude that the region of stability

does not contain part of the positive real axis (for more detail see Lambert [48] P.

7).

3.6 Nonlinear equations splitting algorithm

When the modified Newton method is being implemented to solve the nonlinear

equations at each time-step, then the system of linear equations to be solved for
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the (m+1)th correction to the solution AV is

(I — AAJIAV,, = r(t7,), (3.31)
where
J =2,
r(ty) = =V + 2o + YAF (L, Vi), (3.32)
AV, = [V — V(L))
and z, = Y7_ | Vo

The major computational task of the method of lines calculation is the solution
of the system of equations (3.31). In cases when large ODEs systems result from
the discretization of flow problems with complex chemistry, the CPU times may
be excessive unless special iterative methods are used to solve the system of linear
equations given by equation (3.31). One common approach as explained in [12] and
references therein, is to take into account the ODEs function F(¢, V(¢)) defined by

equation (3.6) and decompose it into two parts
F(t,V(t)) = FI(1, V(1)) + F(t, V(1)) (3.33)

and in the above equation F/ (¢, V(¢)) represents the discretization of the advective
flux term and F*(¢,V(¢)) stands for the discretization of the diffusion and source
terms in the same equation. Then the nonlinear equation splitting method utilises
the approximate factorisation of Jacobian matrix employed by the time integrator

method within a Newton iteration

[ — DY = [ = ORI — A3 + O(AL)?, (3.34)
where J; = % and J;, = %. The technique in neglecting the advective terms J;

has been borrowed from[12] and thus in the case when no source or diffusion terms
are present corresponds to using functional iteration for the advective calculation,
for example see [9]. In the case when diffusion is absent or sufficiently small to be
neglected in the Jacobian matrix[12], then the matrix (I — At4.J;) represents the
Jacobian matrix of that part of the ODEs system corresponding to the discretization
of the time derivatives and the source terms. Hence this matrix is the block-diagonal
matrix with as many blocks as there are spatial elements and with each block having
as many rows and columns as there are PDEs. The fact that the blocks relate only

to the chemistry within each cell means that each block’s equations may be solved
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independently.

Then the nonlinear equations splitting iteration may thus be written as
(I — AWRJ)AVE = r(t),), (3.35)

and in the above equation AV’ is an approximation to AV,,. The purpose of the
splitting is only to speed up the solution of the nonlinear equations and providing
that the iteration is continued until the residual r(t};} ;) is sufficiently small this
splitting error does not have the same impact as introducing splitting at the PDE
level. In order for the nonlinear equations splitting iteration defined by equation
(3.35) to converge with a rate convergence r. the necessary condition is [46] p.11
that

| [I — AtAJ)T'AtAJ || = 7. where r, < 1. (3.36)

This condition will also turn out to be important for the IMEX method considered
in the next section.

Here we have concentrated on the convective transport, and ignoring diffusion.
We take this simplified approach because the convective transport requires special-
ized numerical treatment. If present, diffusive fluxes can be treated by standard
numerical methods (e.g. standard conservative central difference) [28] that are in-

dependent of those for the convective terms.

3.6.1 Gauss-Seidel Iterations

In order to find the solution of the equation (3.35), it is necessary to employ a
Newton-type iterative method. Although the Newton-type iterative method is of
second order of convergence, it requires the solution of a large system of linear
equations which makes this method unattractive. If we have a mesh of m, x m,
points, this results in an often prohibitively large but sparse system of m,n, x
NPDE equations. Storage may also be a restrictive factor[55].

The great success of the implementation of the Gauss-Seidel Iterative Method
for atmospheric chemistry has been reported (see [90]) and the method is now very

widely used. The Jacobian matrix given by equation (3.35) can be split as follows
(I — A3D — ALY AV, 1y = 3ALUVE +e(17,), (3.37)

where [2, b, and U represent the strictly lower triangular matrix, diagonal matrix

and strictly upper triangular matrix. This method completely eliminates the usage
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of the any kind of the decomposition and the storage requirements will also reduce

considerably.

3.6.2 Convergence Test

When the Gauss-Seidel iteration is being implemented the next task is to employ
a strategy to decide when to terminate the iteration during each time step. This
strategy needs to be employed at each time step to avoid doing extra work and
improve the efficiency. In this concern two techniques are commonly used: one is
to employ a fixed number of iterations, which is unattractive because there is a
risk that the code may do more work than necessary and sometimes the iterative
procedure may stop before the true convergence has occurred, and the other is an
adaptive procedure. We have implemented an adaptive procedure similar to that
in DASSL [15]. A minimum of two iterations has been performed to evaluate the

convergence rate p, given on the mth iteration by

AV . — AVE L\
| AVT = AVE |l
The iterations are continued until
I Aan_H — AV e < ITOL, (3.39)

where ITOL = 0.01 or 0.001 and m is the number of Gauss Seidel iterations. The
fact p > 0.95 is taken as the convergence failure. The effect of varying ITOL is

considered by Verwer [90] and in the next section.

3.6.3 Local Error

In this section we will discuss the local error being used in the NDF2 code. It is
essential to find the exact behaviour of the local error, otherwise, the software may
behave incorrectly and may even fail because the error estimates do not reflect the
true behaviour of the error. In code based upon the BDF method the local error is
being estimated by the difference between the predictor and the corrector given by

(see for example, [63])

le(tny1) = cag(Vitapr) = VP(tata)), (3.40)
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where V(1,,11)¢ is the corrected values at the end of a step, V?(¢,,41) is the predicted
value and ¢, , represents the constant depending on the method and recent stepsize
history of the integration. Sack-Davis [70] has observed that for stiff problems, the
usual error estimate based upon the simple difference between the predictor and
corrector overestimates the true error and has proposed the following strategy for

controlling the error
le(tn1) = Wiieay(Vi(tusr) — VP(tup1)), (3.41)

where Wn-l—l is the iteration matrix defined by equation (3.16) above and is available
in the code in an LU decomposed form. As regards our implementation, after the
successful return from the nonlinear solver then we estimate the local error. For
this, first we try equation (3.40) and after calculating the weighted error norm (see
later) the local error test is being made. In the case of the failure of the local error
test we then used equation (3.41) to estimate the local error and repeated the same
procedure. It is possible that the local error test may fail even with equation (3.41)
in which case we reduce the time step. The numerical experiments have revealed
that local error estimated by the equation (3.41) have given more promising results

as compared to the local error estimated by the equation (3.40).

3.7 Numerical Results

We have used the three test problems to compare the performance of NDF2 Method
with the theta method and the BDF2 method. The code for NDF2 method has
been developed by changing a few constants in a BDF2 code. The constant 4 has
been replaced with 4* (see Section (3.4)) and also some changes have been made to
local error estimation.

The test on the standard DETEST problems [27] reveals that the predicted
accuracy inprovements was achieved in practice. The experiments have revealed
that NDF and BDF codes used more time-steps for atmospheric problems than the
theta method code [9], but did less work per step. The aforementioned hypothesis
will be tested on three test problems with the effect of using the Gauss-Seidel
method.

Problem 1 This problem consists of 20 species and 25 reactions with constant

reaction rates from atmospheric chemistry and is copied from [90]. The initial
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concentrations of the species in ppm units are given in Table (3.1) and the reaction

schemes has been given in appendix (B.0.1). The problem is highly stiff because

No. | Name of | Imtial concentration | No. | Name of | Initial concentration
the Species (ppm) the Species | (ppm)
1 NO 0.000 11 203 0.000
2 NO 0.200 12 (0, 0.000
3 O°P 0.000 13 PAN 0.000
4 03 0.040 14 CH30 0.000
5  HO, 0.000 15 HNO; 0.000
6 Of 0.000 16 O'D 0.000
7T HCHO 0.100 17 50, 0.007
§ CO 0.30 18 50, 0.000
9  ALD 0.010 19 NOs 0.000
10 MFEO? 0.000 20 N9Os 0.000

Table 3.1: The initial concentration of problem 1.

for the ODE system the Lipschitz constant is about 1.5 x 107 and the simulation
time is 60 minutes.

Problem 2 This problem originates from the simplified chemistry [10] and has only
7 species and 7 reactions with photolysis rate time-dependent. The photolysis rate
constant has been given in equation (2.14), which shows that it depends upon the
solar zenith angle, which has been given in equation (2.15). Again it is evident that
solar zenith angle depends upon the time of day, the time of year and the Latitude.
In our calculation we have taken the time of year (given by the solar declination
angle DEC) 23.27°, the latitude has been assumed 50° and the local hour angle has

been evaluated by the following expression
LHA = 7(1.0 + t/4.32 + 4)°,

where time, t, is in seconds. The temperature dependent rate constants have
been evaluated with the standard Arrhenius expression, and temperature T' in
degree kelvin has been evaluated according to the following expression (see for

example [82])

T = 289.86 + 8.3sin((7.27 x 107°t) — 1.96).
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The initial concentrations of the species in molecules/cm?® have been displayed in

Table (3.2) and the reaction scheme have been given in appendix(B.0.2). The

No. | Name of the Species | Initial concentration (mol/cm?)

1 NO, 1.0 x 107

2 NO 1.0 x 10°

3 O3 1.0 x 10

4 ROC 1.0 x 101

5 RP 0.0

6 SGN 0.0

7 SNGN 0.0

Table 3.2: The initial concentrations of Problem 2.

simulation time is 1.8 x 10 seconds, (see [10] for details) or two days.

Problem 3 This problem with lumped chemistry was obtained from systematic

reduction of the Extended Carbon Bond Mechanism CBMEx([39] and consists of

29 species and 59 reactions with non-constant reaction rates. In order to calculate

the solar zenith angle and temperature, the proocedure as described in Problem 2

has been adopted. The initial concentrations in (molecules/cm?) are displayed in

Table (3.3). The full extended Carbon Bond Mechanism, see [39] with 205 reactions

No. Name of Initial concentration | No. Name of Initial concentration
the Species (mol/em?) the Species | {(mol/em?)

1 NO, 1.696 =< 101! 16 MEQ2 0.000

2 NO 4.006 x 10%? 17 PAN 0.000

3 O 0.000 18 PAR 7.618 x 1012

4 O3 0.000 19 ROR 0.000

5 NO3 0.000 20 KET 0.000

6 oD 0.000 21 OLE 3.195 x 10!

7 H20 2.460 x 1017 22 F'TH 7.594 x 1011

8 oIl 0.000 23 TOL 3.072 x 10"

9 HO, 0.000 24 CRES 0.000

10 N5Os 0.000 25 T0O2 0.000

11 HONO 0.000 26 OPEN 0.000

12 CO 5.680 x 1013 27 XYL 1.954 x 10!

13 FORM 2.077 x 10'0 28 MGLY 0.000

14 ALD? 1.029 x 1010 29 ISOP 0.000

15 C203 0.000

Table 3.3: The initial concentrations of Problem 3 with lumped chemistry.
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(non-constant reaction rates) and 90 species was also used as a test problem but
produces almost identical performance profiles to the lumped version. The initial
concentrations in (molecules/cm?) for this full chemistry are given in Table (3.4).

The simulation time is 1.8 x 10° seconds again.

Nao. Name of Initial concentration Nao. Name of Initial concentration
the Species (rneol [ ern®™) ‘ ‘ the Species (rnol [ ern®™)

1 NOs 5410 > 1010 16 IT°TAM A 0.000

2 NO 1.600 =< 10'2 47 PNO2Z 0.000

3 @] 0.000 18 DN T 0.000

1 [@F 0.000 19 > Ir 7.600 < 1011
5 Ny 0.000 50 ETO2 0.000

8] o1D 0.000 51 CTHa 4.551 = 10'3
7 H20 2.160 »x 1017 52 [e3Zp)] 0.000

8 QI7 0.000 53 ACAC 0.000

o] HO 0.000 54 TOL DT8RO < 101!
10 NoOsy 0.000 55 RO 0.000

11 ITNQsz 0.000 56 CRICS 0.000

12 ITONO 0.000 57 TOs 0.000

13 PN A 0.000 58 BZA 0.000

11 H20o 0.000 59 RBZO2 0.000

15 'O 5.680 s 103 GO PITO2 0.000

16 lele 0.000 61 PBZN 0.000

17 FORM 2.080 % 10'0 62 PHO 0.000

18 Ho 0.000 63 N I°HN 0.000

19 I"ROX 0.000 G4 RO 0.000

20 PROX 0.000 65 CRO2 0.000

21 FACT) 0.000 66 NCRF 0.000

29 AL 12 0.000 67 OPHEN 0.000

23 203 0.000 68 ACTD 0.000

24 M EO2 0.000 69 XY L 1.960 = 10"!
25 AN 0.000 70 X 1.O2 0.000

26 MPN. A 0.000 71 XINT 0.000

27 MEO 0.000 T2 MGLY 0.000

28 MNIT 0.000 73 MGPX 0.000

29 M N3 0.000 71 orrx 0.000

30 MO 0.000 75 ISOP 0.000

31 AONE 0.000 76 ErOXx 0.000

32 ANO2 0.000 77 1501 0.000

33 PAR 7.630 < 1012 78 1502 0.000

34 RO?2 0.000 79 1503 0.000

35 RO2FR 0.000 80 1504 0.000

36 B' 0.000 81 M AC IR 0.000

37 NTR 0.000 ]2 MV K 0.000

38 ROR 0.000 83 ISNT 0.000

39 KET 3.150 > 107" &4 TSN 0.000

10 1 0.000 85 DISN 0.000

41 AO2 0.000 ]6 MV1 0.000

42 OLFE 3.200 > 10" 87 MV2 0.000

13 CRIG 0.000 88 M AC 0.000

A1 M CIRCG 0.000 89 M AC2 0.000

45 HOTA 0.000 20 MV NT 0.000

Table 3.4: The initial concentrations of problem 3 with full chemistry.

3.7.1 Results Discussion

The following notations are used to present the test results
o Step = the number of integration steps,

e Fun = the number of residual evaluations,

e TOL = error tolerance used to define RTOL and ATOL,
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e ATOL = absolute error tolerance = 107%x TOL for problem 1, = 10° for
problems 2 and 3,

e RTOL = relative error tolerance = TOL,
o ITOL = Gauss-Seidel tolerance,
e G-S = number of Gauss-Seidel iterations,

e SDt = the number of the significant digits for the maximum relative error

at the specified time ¢, defined by

SDr = —logio (maxi(| W(t”)‘z(_tn;vi(t”) |)) (3.42)

shows the accuracy of the calculated results, and ‘N/Z(tn) is the highly accu-
rate solution and has been estimated by using DASSL[15] with much tighter

tolerances.

The numerical results on Problem 1 (see Table 3.7) show that the number of
Gauss-Seidel iterations per step are comparable with those in [90] albeit obtained
using a somewhat different nonlinear Gauss-Seidel method without Aitken Extrap-
olation. The comparison of number of steps to Verwer [90] results shows that at
TOL=0.1, the number of steps are almost similar and there are considerable reduc-
tion in the number of Gauss Seidel iterations, even though Aitken extrapolation
technique has not been applied. For TOL=0.01, the NDF2 showed the improved
performance, the code took 71 steps as compared to 132 steps for ITOL=0.01 and
for ITOL=0.001, the number of steps taken by the new code are 112 as compared
to 132 steps. Besides this, the Gauss-Seidel iterations have decreased considerably.

As regrads CPU time, it is an approximate value and implementation and ma-
chine dependent. The given time is an indicative for comparison purpose (on a
Silicon Graphics Indigo workstation, using the Fortran77 Complier Options -g -
static -mips2). We have noted the CPU time for Problem 3, which has 29 species
and 59 reactions. For ITOL=0.001 and RTOL=0.01, its value is 0.08 second, which
is less as compared to Verwer [90] values, even tough his Problem has 20 species

and 25 reactions. A particular point to note on the results here is that when

ITOL = 0.001 for Problem 1 then the work increases by 50%.
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Full Problem 1 Problem 2 Problem 3
matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2
Steps 36 40 39 783 1016 986 744 966 978
Jac 11 14 13 48 73 67 66 74 75
Fun 354 352 337 2427 1120 1079 2372 1110 1098
SD 2.33 1.36 1.66 2.23 2.45 2.48 1.83 2.83 2.92

Table 3.5: The results of the chemical kinetics arising from atmospheric chemistry

using full linear algebra for 0.1 relative tolerance.

Full Problem 1 Problem 2 Prob lem 3
matrix Theta BDF2 NDF2 Theta BDF2 NDF2 Theta BDF2 NDF2
Steps 59 74 64 797 1108 1042 705 985 1010

Jac 20 14 16 46 7 77 62 76 73

Fun 630 399 426 2473 1236 1169 2272 1154 1146

SD 2.53 2.88 2.68 2.42 3.37 2.34 2.47 2.97 3.06

Table 3.6: The results of the chemical kinetics arising from atmospheric chemistry

using full linear algebra for 0.01 relative tolerance.

Gauss NDF2 Problem1 Problem 2 Problem3

Seidel TOL ITOL 0.01 | 0.001 0.01 | 0.001 0.01 | 0.001

0.1 Steps 51 71 982 | 1015 1024 | 1054
Jac 17 29 67 70 88 96

Fun 431 715 1080 | 1116 1166 | 1210

G-S 221 460 2171 | 2314 2883 | 3847

SD 1.99 | 2.02 2.57 | 3.03 2.24 | 2.39

0.01 Steps 71 112 1037 | 1027 980 | 1002
Jac 18 42 73 71 80 88

Fun 476 | 1045 1170 | 1142 1163 | 1192

G-S 379 647 2421 | 2542 3153 | 4218

SD 271 | 2.84 4.4 2.89 292 | 2.39

Table 3.7: The results of the chemical kinetics arising from atmospheric chemistry

using Gauss Seidel method.

A comparison between the theta and NDF2 (see Tables (3.5) and (3.6)) methods
shows that NDF2 uses less function evaluations but takes more steps and Jacobian
evaluations. This is probably due to the theta method’s sophisticated error estima-
tor [9] and its double or halving stepsize strategy. It is also worth noting that the
theta codes error estimator requires one extra function evaluation and back solve

per step, and so accounts for the much larger number of function calls. A com-
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parison between Tables (3.5) and (3.6) shows that when the Gauss Seidel method
is used there are a few more Jacobian evaluations for Problem 3. This seems to
arise because of the fact that for Problem 3 19 of the 29 equations are not diag-
onally dominant. Analysis of the Jacobian matrices shows that species 8, the OH
radical, destroys the diagonal dominance of a large part of the matrix. Table (3.7)
also shows that there is significant cost penalty in terms of numbers of iteration
associated with using ITOL = 0.001 but that there is a also increase in the

accuracy.

3.8 IMplicit-EXplicit Methods

In this section we will explore the effect of the improved performance of the NDF
method over BDF methods when it is applied to the IMEX approach used by Ascher
et al. and categorise the relationship between the IMEX approach and the nonlinear
equations splitting method described in Section (3.6). For this we write the ODE

function as given by equation (3.26) in the following form

F(tner, V(tnrn)) = F (g, V(tas)) + F(tag, Vite)), (3.43)

where F/(t,11, V(n31)) and F*(t,.1, V(t,31)) have defined in Section (3.6). Ascher
et al. [4] in their approach effectively replace the non-stiff part of the ODE;, i.e.,
F/(t,41, V(ny1)) with an explicit method to get

F/ (thy1, V(ta1)) = 2F (4, V(L)) —F (L1, V(L)) (3.44)

In another approach, Frank et al. [42] replaced the implicit term in non-stiff part
of the ODE as given by equation (3.26) as follows:

V*(tas1) = 2V(te) — V(tai). (3.45)

We have adopted here second approach and which gives the NDF IMEX method

considered here:

F/ (ts1, V(g)) 4 F* (fagr, Vi)

_ @(10\7(%) — 15V() + 6V(tat) = V(tas)) = 0, (3.46)

where V*(,,41) is given by equation (3.45) and V(tn+1) is the solution value evalu-

ated by this method at the end of the step. Now the Newton iteration is identical
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to that given by equation (3.31) except that the residual on the right hand side is
defined by

B(thy) = =V(tep1) + 20 + FAF (tgr, VV(tagn)
+ AAEF (tgy, VP (tayr)). (3.47)

In this case a crude approximation to the norm of the inverse iteration matrix [71]

imexr

is given by the observed rate of convergence !

| [I — At3J)7 || = r™" where rim® < 1. (3.48)

C C

It is worth noting that the cost of the first IMEX iteration is identical to that one
iteration of the splitting method as described in Section (3.6), but thereafter the
term F/(t,41,V*(t,31)) does not have to be evaluated.
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Figure 3.2: IMEX stability region.
The test equation considered by Ascher et al. [4] is given by
V = (a+ )V a,f real, (3.49)

which has been obtained by a Fourier analysis of the advection diffusion equation.
In the above equation  models the advective terms and « the diffusive term. When

the BDF2 method is under consideration the characteristic polynomial (& = 0) is

o(z) = (g — alt)2? — (2 + BNtz + (% + (BAL), (3.50)
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while with the help of NDF2 the characteristic polynomial has the following form

o(z) = (% — ozAt)zS — (g + 2L[3Ai)22 + (1 + BAY)z — % (3.51)
The stability contours of the above polynomial are displayed in Figure (3.2) in
which the horizontal axis is a and the vertical axis is 3. The comparison between
Figure (3.2) and (5) in [4] shows that the NDF2 method is stable for purely imagi-
nary eigenvalues, unlike BDF2. In the case when the nonlinear equations splitting
method of Section (3.6) is applied to the same model equation (3.49) used by Ascher,

then from equation (3.36) the convergence condition is
| [ — Atya]*"AtvB] < e, (3.52)

and it is evident that the NDF2 method is stable for purely imaginary At¢3 in
the range [0, %], unlike the BDF2 method and so has slightly superior stability

N

property.

3.8.1 The Extended Test Equation of Frank et al.

Frank et al. [42] have emphasised that there is a need to generalise the stability
decomposition used by Ascher to model some aspects of the atmospheric diffusion
equation by allowing o and [ in equation (3.49) to be complex. In this concern
two situations have been followed by Frank et al. In the first choice they consider
the values of # for which the method is A-stable with respect to a. The second
option [42] is to recognise that while A-stability is valuable: it is , in many practical
situation, possible to settle for A(«)-stability. We have adopted here the second
option in that [ is forced to lie in the stability region of the explicit NDF2 method
given by

FHlasns VA(tis1)) = ——(10V (bs1) — 15V(0) + 6V(bnos) = Vi(tuos)) = O,

6At
(3.53)
and a similarly modified BDF2 method. In these two cases the stability regions
are given by the interior of the semi-circular domains shown in Figure (3.3) and for
NDF2 the maximum possible values of | BAt | < 1.775 and for < 1.3 for BDF2.
Figure (3.4) gives the boundaries of the stability region for NDF2 (& = —31) and

for BDF2 (& = 0) with 8 has been chosen any of the stable values in Figure(3.3).

The stability regions in Figure (3.4) are the exteriors of the semi-circular regions.
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Figure 3.3: Explicit stability region.
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Figure 3.4: Modified stability region.

Figure (3.4) shows that NDF2 has a desirably smaller stability region than BDF2
in the right half plane(i.e. a larger instability region where the true solution is
growing) but a less desirable slightly smaller one in the left half plane than BDF2
(see Section (3.5)). Both methods are A(«)-stable however. Now the convergence

condition of the nonlinear equations splitting method as given in Section (3.6) for
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the model equation (3.49) used by [42] when both « and 3 are complex is given by

Te

[ — At ™ | < —=—,
U= Aol < e

(3.54)

see equation (3.48). The maximum values of At | 3| to be in the stability regions
are 1.3 and 1.8 for BDF2 and NDF2, respectively, and ¥ = % and ¥* = 0.6. Hence
if Atf lies on the edge of the explicit region then At | 5 | &~ 1 and this requirement
is very similar to the IMEX convergence requirements, which from equation (3.48)
is given by

|[I — Atya]™ | < rimee, (3.55)

Hence it is evident that in both cases a/At must satisfy a very similar condition if

the iterations are to be stable and to converge at the same rate.

3.9 Estimating the local splitting error

In Section (3.8) we have described two approaches to treat advection explicitly,
when IMEX schemes are used. We have adopted the approach of Frank et al. [42]
as given by equation (3.45). When this approach is being implemented, V(tn+1)
is the solution at the end of the step. As given by equation (3.26), V(t,4+1) is an
approximation to the solution at time ¢,.1. Now we are interested in finding the

local IMEX splitting error denoted by eV(tn+1) and defined by

A

eV(tus1) = [V(tar1) — V{twp)]: (3.56)

With the assumption that the past values V(¢;), j = n, n—1, n — 2 for both
methods are identical, and subtraction of equation(3.46) from equation(3.26) with

the multiplication by YAt and linearization gives
(I = A3L)eV(togr) = FAF (togr, V(tags)) = F (tugs, V()] (3.57)

Then addition and subtraction of the term F/(¢,,, V(tn+1)) and further lineariza-
tion gives that
([ — AS]eV(tag) = AU eV (tag)
+ gy V() = F(tun, Vi(1a11))],(3.58)
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and in the above equation the higher order terms have been ignored. Multiplying

with [I — At3J,]~" on both side of the above equation we have that

[Vt | < 11 = AR FAF (togr, Vtagn) = F (g, V()] |
+ 1o |l eVt || - (3.59)

Then simplification gives that

. TN L «
leVta) < = 1T = DAL (g, V() =F (fgr, V()] ]
(3.60)
The righthand side term || . || in the above equation may be calculated using one

extra evaluation of F/(#,1, V(tn+1)) and a backsolve. The equation (3.48) can be
used to bound the norm of the inverse Jacobian || [[ — At%J,]™! by the rate of
convergence "% to get

aar

1 — r,

IV (tnss) = Vitap) || < e

C

I TEY (s V() =FF (G, V()] | -
(3.61)
The right hand side term A || . || is related to the extra local truncation error

due to splitting see [43], and can be written in the following form

—AUF (g1, V(tagn)) = F (L, V()] = =AU (V(tagn) — V7(t0))
+ h.ot., (3.62)

where V(tn+1) — V¥tp41) = (V(th) — 2V(t,) + V(t,-1)) may be regarded
as an O((At)?) error. Alternatively with the help of equation (3.36) we can derive

the following expression

Te

leV(tnn) | < I V(tes) = V(tar) || - (3.63)

— TC
Then in both case the quantity r. plays an vital role in the relationship between the
IMEX splitting error and the quantity V(tn+1) — V*(t,41). As the restriction on
r. is also required for convergence of the nonlinear splitting method, this restriction

thus appears to be important to both methods for different reasons.

3.10 The Time Step Mechanism

The NDF and the theta code explained in this chapter used a variable step-size in

which the time step is chosen automatically throughout the integration to satisfy a
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user specified local error tolerance. The NDF code uses the Newton iteration, while
the theta method code implies either Newton iteration or functional iteration to
solve the non-linear equations at each time step. For the selection of the step size
the local error indicated by le(,41) is used and for the NDF code this error estimate
is based on the difference between the predictor and corrector. Now consider the
weighted error norm

| le(tnt1) ||w = max (%@HH) ) (3.64)
where W? = ATOL; + RTOL;V;(t,) and ATOL; and RTOL; the absolute
and relative error tolerance for component j. An integration step is accepted if

| le(t41) ||w< 1 and rejected otherwise. The following new step strategy has been
adopted.

At
rho= Dtgig
rh = max(rh, Simn
( hlml ) (3.65)
rh = maz(1.0, |At|XAtpmaz xrh)
At =rh* At

where At,,;, and At,,,, are bounds of the stepsize At, At is the previous stepsize
and rh is the growth factor. After the convergence of the nonlinear solver, the
weighted local error norm is estimated and if this norm is < 1, then the solution
satisfies the local error tolerance. Unfortunately if it is > 1 then we must reduce
the step size. In case the nonlinear equation solver fails to converge, then first we
update the Jacobian matrix and even after that failure occurs then we think about
the reduction of the step size if possible. For the theta method ([9]) we have used
the doubling and halving the time step strategy.

3.11 Conclusion

We have applied the NDF2 method to solve the chemical kinetics arising from at-
mospheric chemistry. The analysis has shown that it has slightly superior accuracy
and stability properties to the more widely used BDF2 method for the type of ODE
systems considered here, and the step-size has increased by the factor of 1.26. We
have used the adaptive Gauss-Seidel iterative method, instead of a Newton-type it-
erative method. The results have shown that with NDF2 method, the Gauss-Seidel

iterations have reduced almost 30% as compared to Verwer [90]. In term of number
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of steps, at modest tolerance the NDF2 method takes a number of step comparable
to that of Verwer [90] and at tighter tolerance, about 10% reduction of steps have
occurred in all cases except one.

A stability analysis of IMEX schemes has been given for the NDF2 method
called here the NDF2 IMEX scheme. The test equation used is that of Ascher et
al.[4] as given by equation (3.49). Firstly we took the oo and 3 in the same equation
as reals, then extended the stability analysis by taking both « and § complex. In
all cases it has been observed that NDF2 IMEX scheme has better stability region,
as compared to BDF2 IMEX scheme. Besides this NDF2 IMEX scheme is stable on
purely imaginary axis while BDF2 IMEX scheme not. A comparison between the
IMEX and nonlinear splitting approaches has shown some interesting similarities
and has indicated a way of measuring the IMEX splitting error. The advantage
of the splitting approach- that it more closely couples the flow and chemistry-is
balanced by its greater cost after the first two iterations if the local splitting error
estimation is included.

The numerical experiments have shown that the new NDF2 code works well
but have also indicated that some tuning of the stepsize strategy and Jacobian
evaluation criteria may be needed. At present the approach described here is already
being used successfully in large scale experiments in computational atmospheric

modelling.



Chapter 4

The numerical Solution of a

Model Problem

4.1 Introduction

A currently active area of research is the numerical approximation of PDEs with stiff
non linear source terms [61, 81]. Tang [81] concentrated on the convergence analysis
for operator-splitting methods when applied to conservation laws with stiff source
terms. Papalexandris et al. [61] have considered the spatial discretization aspect
when stiff source terms are involved. But here we have paid attention to the time
aspect when there is a stiff source term involved in the PDE. Such problems come
from the modelling the atmospheric chemistry, non-equilibrium gas dynamics and
combustion. Earlier workers [19, 52] have shown that spurious numerical solution
phenomenon may occur when the insufficient spatial and temporal resolution are
used; both have reported that the incorrect wave speeds and incorrect discontinuities
when the PDE has stiff source terms.

In this chapter we will focus on the Leveque and Yee problem [52] in both one
and two space dimensional cases using the method of lines approach. Recall that
in this method a suitable spatial discretisation scheme is applied to the advection
term and the PDE is reduced to a system of ordinary differential equations (ODEs)
in time. The factors that effect the performance of the method include the spatial
discretisation error, the position of the spatial discretisation points and the time
integration method.

In particular the spatial mesh points should be chosen to reflect the true so-

67
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lution of the PDE. After choosing the spatial mesh the next step is to pick an
appropriate ODE solver. As mentioned in [7] there are many adaptive algorithms
available for controlling the spatial discretisation error. Although these algorithms
use the spatial error to refine and coarsen the mesh, the aim is to integrate in time
with sufficient accuracy so that the spatial error is not degraded while maintaining
the efficiency of the time integrator. This has been achieved by varying the time
accuracy tolerance with spatial error rather than keeping it fixed (see [7, 49]). In
the present work, the method of Berzins [7] developed for convection dominated
PDEs in two space dimensions has been applied to the 1D and 2D PDE of Leveque
and Yee [52]. The central idea is that the temporal error should not corrupt the
spatial discretisation error.

When solving time-dependent PDEs the error introduced may be split into the
temporal error and spatial error, [7]. The next task is to estimate and control
them in a sophisticated way so that the method works efficiently. Two approaches
for controlling local error in time are given in the literature (see [7, 12]). The first
approach is related to controlling the local error in time per step while in the second
approach the local error in time per unit step is controlled. A complete description
can be found in [7, 12, 49]. As mentioned in Lawson et al. [49], controlling the
local error in time per step does not reflect the true growth in the global error as
well as controlling the local in time per unit step. This Chapter will thus explain
how to implement the local error per unit step control strategy when a source term
is present and to determine how the source term effects the spatial discretisation
error. For the spatial discretisation error we will use a strategy similar to that of
[12]. The local temporal error is controlled in such a way that it is the fraction of
the spatial discretisation error over each step and the theta method [9] is used as
the time integrator. This approach requires an estimate of the spatial error to be
calculated and depends for its robustness on the quality of this estimate.

In order to deal with stiff source terms a Gauss Seidel iterative technique has
been implemented to solve the systems of non-linear equations, because this iter-
ation works well in a method of lines frame work, see [90]. The first part of the
work deals with the implementation of these ideas for a 1D hyperbolic conservation
law with a nonlinear source term, [52]. Extensive numerical experimentation has
been done and the results are compared with the exact solution whenever possible.

The second part deals with the implementation of aforementioned technique in 2D
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Leveque and Yee problem [52].

4.2 Spatial Discretisation

In the present numerical investigation, the focus is on the 1D Leveque and Yee

problem [52], which is given by
d d
v, o5

ol ox

= —t(u) x€]0,00), (4.1)

where 1(u) is the source term defined by pu(u—1)(u—0.5) and f(u(x,t)) = u(x,t)
and is the linear advection with a source term that is “stifffor large p. The

characteristic decomposition of above equation gives, [61]

du dx
- = —(u) along i A, (4.2)
af(u)

where A = =5 and is equal to 1.0. In the absence of the source term the equation

(4.1) can be written as

Ou , 0f ()

ol ox

=0 z€][0,00). (4.3)

Now consider # = x(t) as a function of t, then v = wu(x(t),t), because u is also a

function of time, t, then the rate of change of u along x(t) is

du ou dx Ou

Now the equation (4.2) gives Cfl—f = 1, and from above equation we have that

du Ju dx Ou

- =7 B 4.5

dt or T oaras (4:5)
which shows that the rate of change of u along the characteristic curve x(t) is zero,
and which implies that u is constant along the curve ().

The next question that arises is along which curve does u as defined by the

equation (4.1) remains constant]’ The answer is

du de (u)
7= 0 along o =fu — g_; , (4.6)

and details are given in [61]. The special feature of equation (4.1) is that the
discontinuity will move with constant speed (A = 1), and the shock will never be

formed in this problem.
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Although this model problem is inadequate as a full test of any numerical
method, it reveals the essential difficulties that make it possible to understand
the numerical problems, identify their source and yields insight that may be valu-
able in developing better numerical methods . To find the source of difficulty we
compare the present situation with that of a homogeneous system of conservation
laws with no source term. In the case of a homogeneous system of conservation
laws with no source terms, the use of a conservative numerical methods guarantees
the propagation of the discontinuity in the initial data at the correct speed. To see

this, the cell average is defined (see [52]) as

1 T
Ui(t) = E/x 2 (e, t)de, (4.7)

=

where Uj() is a numerical approximation to u;(t). The integration of the conser-
vation law w; + f(u), = 0, over the interval [z, . L] X [t taaa] yields

=37 w]-l-g
that

Viltn) = Vilta) = = [ iV g = [T 0], )

where V;(t,,) is the approximation to u(x;,t) by the time integration method. Sum-
mation of the above expression over j ( j is the number of the grids points) gives
the cancellation of the flux term and we are left with only fluxes at the boundaries
of our region. A finite difference is said to be conservative if it can be written in

the conservation form

A
Viltay1) = Vilts) — A—i[fﬁé — fj_%}. (4.9)

In equation (4.9) f;y1 are the numerical fluxes based on V' at neighbouring points
2

and Atfj_l_% approximates the corresponding integral in equation (4.8). The sum-

mation of equation (4.8) gives the same cancellation of flux as in the true solution.

Now if we include the source term and integration of following equation

0fw)

uy + O

= P(u), (4.10)

over the interval [J}j_% . 1] X [tn, t,41] reveals that

v ity

wwozwmw~if“m%ﬁww—f“mwf

tn

[T J)ddt. 411

[T

l\J|>—-
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It is evident from the equation that the new term appearing in equation (4.11) does
not undergo cancellation while summing over j. This is main source of difficulty
while solving problems with stiff source term, consequently it is important that
this term is modelled accurately if we are to obtain the correct behaviour (see for

example [52]).

4.3 Space-Time Error Balancing Control.

While solving PDEs a common approach is to select the time step in such a way
that the CFL condition is satisfied. This guarantees the stability of the methods,
but on the other hand the solution may not be of required accuracy, [62]. Hence the
option of using the approach of controlling the local growth in time of the spatial
discretization error is preferred [62]. It is mentioned in [62] that when the local time
error has been controlled to required accuracy, the CFL condition will automatically
be satisfied in some sense. The disadvantage of this type of error control strategy
is that there is no clear relationship between the accuracy tolerance and the global
space and time error [7, 12].

Our aim here is to develop an error control strategy that allows the accuracy
tolerance to be selected and adjusted automatically for problems involving chemistry
source terms. This is difficult with the local error per step control strategy because
the time global error is not proportional to the local error tolerance (tol) see for

example [7, 49]). We are interested in solving the initial value problem given by
U = Fy(t,U(1)), U(0) given, (4.12)

nd its true solution [U(tn)]izo is approximated by [V(tn)]izo at set of discrete time

points 0 = 1o < t; < ... < l; = ly by the time integrator. The vector values of

N

the global error at the spatial mesh points, at any time t is denoted by E(¢) and
defined by (see for example [49])

E(t) =u(t)—V(1), (4.13)
where u(t) represents the the restriction of the exact PDE solution to mesh, i.e.,

[u(t)]; = ulz;, 1), j=1,..,N. (4.14)
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The vector E(t) can be written as the combination of the restriction of the PDEs
spatial discretization error est(¢) and the ODE global error ge(t,tol)

A

E(t) = est(t) + ge(t, tol), (4.15)
where est(t), the restriction of the PDEs spatial discretisation error, is given by
est(t) = u(t) — U(1), (4.16)
and the ODEs global error can be written as
ge(tni1,tol) = W(t,y1) + le(ty), (4.17)

see [7, 49] for details. In the above equation VNV(tn_H) represents the solution of the
variational equation given by (see Shampine [73])

W =JW, Wi(t,) = ge(t,,tol), (4.18)

where J = aFgI(JU) and time local error le(¢,41) has been explained in Chapter 3

and also see [7, 9, 63] for more detail. Combining equations (4.15) and (4.17) the

global time error can be written as,(see [7, 49])

A

E(tn1) = est(toy1) + W(tagr) + le(tog). (4.19)

Since we are interested in both global and local accuracy and equation (4.19) shows
that the true relation between the time global error and the user supplied tolerance
is not clear. Hence controlling the local error does not guarantee the equal control of
the global error. When solving PDEs it is important that the error control strategy
must ensure that the time global error must be proportional to the the required
accuracy. This is said to be case (see Berzins [7]) if global error at time t for an

accuracy requirement tol is Etol, then for 7 > 0,
Etole’ =X E(t)tol- (420)

It is also shown in [7, 49] that this proportionality can be achieved if and only if

the local error le(t,41) for the given tolerance(tol) satisfies
le(t,4+1) = AtY(tny1, tn)tol + O(AL, tol), (4.21)

where the behaviour of 7 is very similar to integral mean over [r, t] of a function
that is independent of tol and bounded on [0, ¢;]. Here the term O(At,tol) is

numerically negligible compared with terms of order Attol in the above equation.
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So the technique used in [7, 49] in which the user supplied tolerance is related

to the spatial discretisation error in some way is given as
[e(tur) | = ¢l est(tur) || - (4.22)

In the above equation € is balancing factor and eét(tn_H) represents the local growth
in time of the spatial discretisation error from ¢, to ¢,11. The local growth in time of
the spatial discretization error is defined as the spatial error at time ¢,,4 given the
assumption that the spatial error est(t,) at time ¢, is zero (see for example [12]).
The next task is to estimate the local growth in time of the spatial discretization
error. For this purpose the procedure developed in (Berzins and Ware [12]) has
been extended to PDEs with stiff source terms.

The underlying idea is to evaluate the primary solution using one upwind scheme
applied to the advection term and a quadrature rule to integrate the stiff source
term. Then the secondary solution is being estimated at same time step with upwind
scheme of different order and different quadrature rule for source term integration.
The difference between the two computed solutions has been taken as an estimate
of the local growth in time of the spatial discretization error in the same way as in

[7, 49]. Suppose that the ODE function in equation (4.12) at time ¢, is given by
Fa(tn, Ult) = Fh(t,, Ult) + Py (6, U(1)) (123

where F{V(tn, U(t,)) is the discretisation of the convective flux terms in equation
(4.1) and with the implementatation of the second order upwind together with a
suitable limiter at jth grid point is denoted ij(tn, U;(t,)) and given by

P (1, U(t,) = —é [1 + % (B(rpl) -

Bl | €50) = Uima(0)

(4.24)
where B(.,.) is any suitable limiter (see Chapter 2 and [7, 49]) and the factor r; is
defined by (see equation (2.65))

T]‘_l

 Uja(tn) — Us(t)
YT Ut = Upea (b))

F5 (t,, U(t,)) represents the source term integration in the same equation and at

(4.25)

jth grid point we have that

1

i, Us(ta)) ~ == d(U(tn),

) = e [ ), 4.26)

I—

M=
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where ¢(U;(t,)) represents the integration of source term at jth grid point with

midpoint rule and is given as
O(Uj(tn)) = Dap(Uj(tn)). (4.27)
Then at jth grid point the F?(,, Uj(t,)) is given by
Fi(ta, Uj(tn)) = —¢(Ui(ta)). (4.28)

So the equation (4.23) with the help of equations (4.24) and (4.28) at jth grid point

can be written as

Bt tin) = = (144 (B = b)) | @) - vm)
— ¥(U;(tn)). (4.29)

Now the auxiliary solution used for the evaluation of the local growth in time of
the spatial discretization error at time ¢, is calculated by the solution of following

modified ODEs system
Vusaltn) = Gl Via(1)), (4.30)
where V,i41(t,) = V(t,). In the above equation G(t,, V(#,)) has the following form
Gl V(1)) = Gt V(1)) + Girlta, V(1,)), (1.31)

where G{V(tn, V(tn41)) is the spatial discretization with the upwind scheme of order
different from equation (4.24) and when the limiter function B(.,.) is zero (see
equations(2.56) and (2.57)), means first order upwind scheme, has the following
form at the jth grid point

Gt V(1)) = )= Vimall) (432

Now G¥(tn, Vj(t,)) is evaluated by the trapezoidal rule and at jth grid given as

Gl Vilt)) &~ =d(Vi(1))
) = =g [ V) (1.33)
In the above equation
V(1) = B5(0Vioy () + 6(Vps(0)) (4.31)
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where
0y = V) V()
BV (1)) = PO P h)

So with help of above equation the equation (4.33) can be written as
1

Giltn, Vi) = =7 (0(Vima(ta) + 20 (Vi(ta)) + (Vi (1) - (4.35)

So with the combination of equations (4.30) and (4.35) the function G(t,, V(t,))
(see equation (4.31)) at jth grid point is given by
Viltn) = Viea(tn)
AV
1

= 7 @Vima(ta)) + 20 (Vita)) + 9(Viga(ta))) . (4.36)

Giltn, Vi(ln)) =

Then the local in time of the spatial discretization error is estimated by

e%t(tn+1) = V(tn+1) — Vn+1(tn+1). (437)

Since only the order of the magnitude of the norm of the local growth in time of
the spatial discretization error is needed, it is sufficient to apply only a few Gauss
Seidel iterations to compute the auxiliary solution of the ODE system given by
(4.30). If the theta method (Chapter 3) is being used as the time integrator then

this equation in combination with equation(4.37) and equation (3.7) gives

est(tu1) = A0 (Fn(tust, V(tnpr)) = Gr(toss, Vitern))) (4.38)
AL =0) (Fa(t, V(6) — Galtn, V(L)

When the solution and the time derivative calculated by equation (4.12) is sub-
stituted in equation (4.30), the residual of the auxiliary equation can be written
as
r(tn, V(ta) = V(t) — G(t,, V(t,)). (4.39)
Using the equations (4.12) and (4.39) and substituting for Fn(¢,, V(¢,)) using V(tn)
gives
est(tnp1) = A (Or(toyr, V(tasr)) + (1 — 0)r(t,, V(t,))). (4.40)
So the time tolerance when the strategy of the LEPUS is being implemented on the

step t,41 1s given by

TOL = ¢ || Or(tuyr, V(tasr)) + (1 — 0)r(te, V(£a)) | - (4.41)
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Now Fy(t,, V(t,)) is approximated by the second order upwind scheme, while the
first order upwind scheme is used for Gy (t,, V(t,)), so a simple calculation shows

that equation (4.39) can be written as

AVi_s(ta) [ 1 1
riltn, V(ta)) = ———72— |B(-— 1) = — IB(Tj—hl)
J J—

(P Vir(tn)) = 20(Vi(tn)) + ¥ (Vi (tn))), - (4.42)

el Bl

_|_

where A\/j_%(tn) = Vi(t,) — Vi_i(tn) and rj(t,41, V(t,41)) can be expressed by

an almost identical form.

4.3.1 Local Growth in Spatial Discretization Error

As explained in the previous Section the approach used is to calculate the primary
solution with one particular upwind scheme applied to the advection term and one
quadrature rule used to integrate the stiff source term. The secondary solution is
then obtained with upwind scheme of different order and a different quadrature
rule. The difference between the two solutions is an indicator of the local growth in
time of the spatial discretization error (see [7]). Hence with the implementation of
the second order upwind scheme to advection term and midpoint rule to the source

term the ODE function as given by equation (4.23) at jth grid point can be written

B0 = = [1+ 5 (B = B0 @) - i)
— Fi(t,, Us(tn)), (4.43)

where F?(t,,U;(t,)) is the source term integration with midpoint rule, (see equation
(4.28)). For the time being we have taken the factor r defined in equation (4.25)

to be constant then B(r,1) — LB(r,1) = % where B(.,.) is the van Leer

limiter given as (see [7])

r4 ||
and with the help of Taylor series U;(t,) — U;j_1(t,) = A:z;aUé—S"). The ODEs
function as given by equation(4.43) has the following form
L[ - 1)
Fi(t, U (t = 1+ = U:(t,) — U;_1(t,
](7 ]( )) A:L‘ ‘|' (1_|_r) ( ]( ) J 1( ))

— Pt Uj( n)). (4.45)
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For simplicity we define

i@ = l(HJ(Z 2(:)_ 1)]’ (4.46)

(=]l

and next task is to simplify @ by making use of the definition of r which is given by
equation (4.25)

which is zero for r negative, and when r is positive has the value ¢ = [2

U;(t,) — Uj_1(tn)
Ujt1(tn) — Uj—1 (1)
r+41 = - ,
Uj(tn) — Uj—a(tn)

and

Ujt1(tn) = 2U;(tn) + Uj—i(tn)

ol Us{tn) — Upr (1)

From this it can be inferred that @ in equation (4.46) has the following form

(L2)*(Uj)as(tn)

0@ 2 - 4.48
AV T ANTR (448)
and further simplification gives that
i o L2 Wileslln) (4.49)
(U5)z(tn)

With this value of @, the truncation error associated with the equation (4.45) may
be written as, just for convience, we denote it with SDFE;

(BP0 )uslt)
2082TE,

SDE, = — |(1+ TE, — O(Az?), (4.50)

where O(Ax)? is the error due to mid point rule, which is applied for the source
term integration and T'F, truncation error being introduced due to the spatial
discretization of aUé—S") and will be of the form Ax%.

The next task is to find the auxiliary solution with upwind scheme of different
order and different quadrature rule for source term integration that have have ap-
plied to find the primary solution. So with the implementation of first order upwind
scheme and the trapezoidal rule (see equation (4.34)) to the source term integration
the auxiliary ODE function at jth grid point is given by
CUi(te) = Uja(in)

AV

Giltn, Uj(La)) = — G (L, Uj(1n)), (4.51)
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where G%(t,, U;(t,)) is the integration of the source term with the trapezoidal rule

(see equation (4.35)), then the truncation error will be of the form
SDE, = —TE, + O(Az?), (4.52)

where O(Az)? is error due to the trapezoidal rule, as used for the source term
integration. The error T'E,. being introduced due to the spatial discretization will
be of the form Ax% we have conviently denoted it by SDF;.

If the Backward Euler Method is being implemented as the time integrator then
the difference between equation (4.50) and equation (4.52) is the local growth in

time of the spatial discretization error and is given below at jth grid point

21/,
esti(tpyr) = =t l%%] — At O(Az)?), (4.53)

where V(1) is the numerical approximation to U;(¢) with the time integrator and the
second term is due to the source. It is evident that local growth in time of the spatial
discretization error will increase with an increasing in stiffness of the source term.
The reason for this is that the second error term in the above equation appearing

due to the source term, which will increase in size with increasing stiffness.

4.4 Stability for the Scheme

As discussed earlier, using the upwind scheme with a zero limiter for the spatial
discretisation, we have the following form of equation (4.1) at jth grid point and
time ¢

ov; _ (Ui() = Ui (1))

— = — — F?(t,U;(t 4.54

at Al’ ]( 9 ]( ))7 ( )

and F*(t,,U;(t,)) represents the integration of the source term with mid point rule

(see equation (4.28)). When the limiter is not zero, we have the following equation

Fo(8, U (1)), (4.55)

Using the vector notation the equation(4.55) takes the following form (see [7])

X I+ B(t,U Ay
e G () EL T (1.5
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and in the above equation Ay represents the first order upwind approximation and
B stands for the term involving the limiter function. Let us define matrix Cy as
a product of the matrices Ay and (I + B) (diagonal matrix) and substituting in
equation (4.56) gives

U(1) = — - CxU(1) — w(U (1)) (4.57)

where ¢ has defined in equation (4.68). Let vector V(%,,) be the numerical approx-
imation to U(t,) generated by the time integrator, we have

Vi) = Vi) — SeCnV(E) — pA(V(t)) (153)

In the above equation the source term is to be treated implicitly while an explicit
technique has been used for the advection term. If V(¢,) is the numerical approxi-
mation to U(¢,) given by the time integrator, we define the growth of error in time
E" = U(t,) — V(t,) and applying the Mean Value Theorem to the source it gives

N At N

Ert! = _A—CNEn — /,LAZ‘E”HJS, (4.59)
x

OY(V (tny1)

TV (g 1) ] Rearranging equation

where J; is the Jacobian matrix and defined by [

(4.59) we have

N At N
B = o (4 ) OV E (4.60)
Z

Hence in the presence of the stiff source term the stability requirement is

At »
| E([‘H«LAUS) Cn

<1, (4.61)

thus giving a CFL type condition. For the non-stiff case the term AtuJs can be
ignored because it will be small, so we have that

% | Cyll< 1, (4.62)
which is the similar stability condition as given by Berzins [7]. As the matrix 2=Cy
corresponds to spatial discretization of the advection term, the stability condition
reduces to the standard CFL stability condition

Aty (4.63)
Az ’ ’

While this CFL, condition provides a stable time step, there is no guarantee of
accuracy. In the stiff source term case when the term Atp.J; is large the source

term will act as a relaxation factor and allow a larger value of At to be used.
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4.5 Wave Speed

As mentioned earlier, our focus is on the Leveque and Yee [52] problem given by
equation (4.1). In this Section the phenomenon of the numerical propagation of
the front will be explored. Leveque and Yee solved this problem with the split
algorithm and have seen no spurious wave speeds for A = 0.5. From numerical
experiments it is evident that the performance of the algorithm depends upon the
critical dimensionless parameters; the mesh ratio ¢ = At/Axz and product Atpu

of the time step and reaction rate. Now we will calculate the step size using new

approach.
The ODEs function as given by equation (4.12) can be written as
(1) —U;—1(2
vy = ~BOZO) )5 = vers e
x

for simplicity the first order upwind method has been used for spatial discretization
and the source term has been integrated with mid point rule over the control volume,
S0

FAU(1) = 2-(U5(1), (4.63)
where ¢(.) has been defined by equation (4.27). Then the integration of the source
term is given by

FRU;) = $(U;(1)). (4.66)

For this analysis we have taken source term of the form

P(U) = py, (4.67)

where

H(U)=U(l — U), (4.68)

has been defined for notational convience below. The derivative of source term with

respect to U is given by
9y (U)
ou

To reduce any unnecessary complexity in the analysis we have utilised the Backward

= u(l — 2U). (4.69)

Euler method as the time integrator and the Forward Euler as the predictor, getting
Vi(tan) = Vilta) + ALE (L, Vi(tn)), (4.70)

and

Viltusr) = Vits) + AtE (g, Viltag))- (4.71)
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In order to explain how the error balancing algorithm defined in equation (4.22)
works when applied to the Leveque and Yee [52] we now need to obtain the explicit

form of the time local error and the local in time space error.

4.5.1 Estimation of Time Local Error

The local error at ¢,41 is defined as le(t,41), with the jth component given by
le;j(t,+1), and is estimated in standard ODE codes by [63]

VIitnyr) = Vi(tag)

lej(tt1) = 5 (4.72)
Using equations (4.70) and (4.71), the above equation may be written as
ety Al = Vi) = (V) = Vs (1)
2N\«
At
+ 5 [Vilte)) =0 (Vita))]- (4.73)
Rearranging gives
[(Vi(thsr) — V() — (Vi1 (tagr) — ViZi(t0))]
ey = Al0l) i)~ Cilh) 1)
At
+ 5 [Vilter)) =9 (Vita))]- (4.74)
From the Mean Value Theorem we have
Viltn) = Vitta) = a2 oy (4.75)
Similarly we also have
- (t,,
Visi(tngr) — Vi (1) = Atav“ai(t“) + O(At). (4.76)
So the equation (4.74) takes the following form
i [t i)
At
— [WViltar)) = 0 (Vilta))]. (4.77)

Applying of the Taylor series expansion to the first term and the Mean Value
Theorem to the second term gives

AL [PVi(tagr) | OV; 00(Vi(tuts))
2 dtox ot A%

le(tsr) = + O(AY, (4.78)
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and by substituting for % from the equation (4.69) the equation (4.78) has

the following form
Atz 82‘/]‘(tn+1) a‘/](tn—l—l)
2 Jtox ot

and with help of equation (4.57) the above equation can be written as

AtQ[C () 4 (V (L4))
2 Az

b by (D) V)] + O

where ¢ has been defined in equation (4.68).

les(tsr) = f(1 = 2V (t11) | + o, wr

le(tps1) = (4.80)

4.5.2 Estimation of Local in Time Space Error

The next task is to estimate the local growth in time of spatial discretization error.
As explained earlier, the basic technique is to evaluate the primary solution by using
one of upwind scheme for the advection term and a quadrature rule to integrate the
stiff source term. Then the secondary solution is being estimated at same time step
with an upwind scheme of different order and a different quadrature rule for source
term integration. The difference between the two computed solutions is then used
as an estimate of the local growth in time of the spatial discretization error.
Hence, for evaluating the primary solution, the limited second order upwind
method has been used as the spatial discretization and the trapezoidal rule (equa-
tion (4.34)) is used to evaluate the source term. Then the ODEs function, (see

equation (4.12)) is given by

BU0) = 4 [1+5 (B0 - B wo - vao)
— Fj(t,Uj(t)), (4.81)

where Fj(t, U;(1)) represents the source term integration with trapezoidal rule and
is given by T(¥(Uj—1 (1)) + 2¢(U;(t)) 4+ ¥ (Uj41(1))) (see equation (4.35)). With the
implementation of the Backward Fuler as the time integrator, the difference of the
equations (4.64) and (4.81) is taken as the estimate of the local growth in time of

the spatial discretization error and is given at the jth grid point by

. At 1
esti(tun) = o |Blrj1) —— 13(77—17 D (Vi(tnsr) = Viea(tnga))
i

JAN

- @Vicatarr)) = 20(Viltar1)) + ¥ (Vi (tarn))) . (4.82)
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Now given that

— (rHrD(r—1
1) - ( (lzlfr) )7

Viltn) = Vima(ta)  DaZ3ed,
and assuming

P(Vici(tr)) — 20(Vi(taga)) + v (Visa(tagr)) = AxgaQ(;/)(‘a/JgnH)))?

then we have the following form of local growth in time of the spatial discretization

error

Csti(ton) = At[((wlrl)(r—l)) avj(tnﬂ)]

r(l+7r) ox
At [A4x2ﬂaz¢(‘gij”+l))] . (4.83)

It is evident that first term on the right hand side of above equation will be zero
for r negative and and the source term is only active when 0 < V < 1. Now
using equations (4.46) and (4.48) the above equation can be written as

est;(top1) = At [A (Vf(t”;))”+ fz a%(ai ”“))]. (4.84)

The error balancing approach is given by

He(tur) || = ¢l est(tu) |, (4.85)

then using the value of est(t,4;) from equation (4.84) the above equation can be

written as
: Vit)eo | (82) POV (tr))
[e(tunn) || = eat || ap¥lmtales (B0, FRVUar)) (g5
2 4 dx
The combination of equations (4.79) and (4.86) gives
A 75n+1 zx (Al’)2 821;(V(§n+1))
Atepppar = € ! V(i+1) S 8IaV(th,lH (4.87)
| =55 (1= 2Vt ) PG |
and more precisely
Aterr . (tnt1)az (Al’) 75n+1
el = ﬂtnl i VJI . (4.88)
t H Dtz +/~‘(1 —2V(l n-l-l)) 9t |

This equation can be modified by using the equation (4.57) to substitute for the

time derivatives gives:

VAN S _ I Vm(ztnﬂ) + (ﬁx)ﬂa2&(\af;§n+l)) I
Az e o (Qvlas) 4y (V(tg))) + by (SEV () + o (V(Egr))) |l

(4.89)
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It is evident that when p is very large then the terms in which the factor p is
appearing, will be dominant, because each V;(t,41) lies in the interval [0,1]. So

ignoring the term in which the factor p is absent we have that

|Az 924(V (bn1)
Aterrbal 972 H

Ar T UVt I

(4.90)

Hence by varying e we are in fact controlling /,L%. From the above equation we see
that the factor p does not appear on the right hand side and ¥ is only a function
of V(t,41) and every component of V(¢,41) lies in [0, 1], so we conclude the right
hand side is small as compared to . So for large p and moderate Ax the crude
approximation is

1
Aterrbal ~ —. (491)
7

Our goal here is to find the numerical solution of equation (4.1) when the disconti-
nuity presents present in the initial data and discontinuity must move with correct
speed. It has been reported by Leveque and Yee [52] that insufficient spatial resolu-
tion may result in incorrect wave speed when p is large. So with the implementation

of equation (4.91) we shall derive the condition for spatial resolution when y is large.

4.5.3 Stability

Now we discuss the issue of the stability when the LEPUS strategy is being imple-
mented. The time step used when LEPUS is being implemented was explained in

the previous Section and given as

| Aq¥eelosrd 4 (B2, 2G|

€ 2
| G g (1= 2V () D]

Aterrbal — )
dtox ot H

(4.92)

The PDE to be solved is given by equation (4.1) and for this analysis we have
assumed (V) = puV(1 — V), where V is the numerical approximated solution

given by the time integrator, and for V() e have the following form of equation

(4.87).

I Axvm(;nﬂ) + (AZ’) Ma ¢(‘8’;n+1)) I

| ) 4 (1= 2V (1) (52 4 02V (L) (1= Vi) |
(4.93)

It is interesting when f is very large, from equation (4.91) we have that At rpa & i

Aterrbal = ¢

The stability criteria for convergence of the iteration can be written as (see equation
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(3.36))
| [ — Dteprpard ) Dteppai ¥ || < 7oy where re < 1, (4.94)

and for the Backward Fuler Method ¥ = 1,
| L — Dterppards]  Dteprpar s || < 7o, where r, < 1. (4.95)

In the above equation J; is the Jacobian of the source term. It is clear from equation

(4.58) that J; =~ —Mag(\,(( ) (for W see equation (4.68)), then the above equation

can be written as

d !
Il [+ @g(v(( )))] Aterrpardy || < 1oy where r. < 1. (4.96)

For large i the time step is Aleppar = i (see equation (4.91)), and multiplying
both side of equation (4.96) with || [/ + %Z—’;D] || we have that

H [1+6§§<( )11+ W(“?;”rlmmuf < 28 s e )

Using the identity
[ab[[<| alll[ 0], (4.98)

the above equation can be written as

8#}( )
IV (ta)

Now the entries of the diagonal matrix [/ + %V%t—;ll] can be written as

| Aterrbards || < || [ + —5—2] || e where r, < 1. (4.99)

o { L+ (1= 2Vi(t,) = 21— Vi(t,) if i =

0 otherwise

99(V (tn)
BV (tn)

because the equations are not coupled. The expression [ ] is given by equa-

tion (4.69). It is evident that the maximum value of eij will be 2 because the

minimum value of V' is zero, so that the quantity || / + 20V(in)) || will be less than
or equal to 2 if we used the max norm. Again equation (4.58) reveals that J; = %

so that the stability criteria as given by equation (4.99) has the following form

Cn
H Aterrbal

o< (4.100)

where r is defined by || [{ + ag(v(t")) | 7o and Ateprpar ~

V(tn) (equation (4.91)) hence

we have that

| < r (4.101)
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which gives

Nxr =~ O(l

;). (4.102)

4.5.4 Calculated Wave Speed

An important feature of solving the Leveque and Yee problem [52] is that the
numerical solution may move with an incorrect wave speed. The computed wave
speed in time step ¢, is given by (see for example [52])
AV (
VAN

J
AV

= 5 where o = Zj:(‘/j(tn)_‘/j(tn—l))v

wave speed =

Vi(tn) = Vilta-1)) (4.103)

where V(t,) and Vj(t,_1) represent the computed solution at the nth and (n-1)th
time step and jth grid point. To have an idea of the time step and mesh size so as

to move the front with correct speed, we have used the initial data given as

=1 ifz<0.2
u<x,o>uo<x>{“ L

up = 0 ifz>0.2.

The initial data shows that the initial discontinuity is at * = 0.2. Let S be the
speed of discontinuity and for this problem S = 1. Then the relative error in the

speed is given by (see [61])

Snumerica - Sel’ac
re = ’ i (4.104)

”
Sewact

where S,umerical 18 the average wave speed given below

JAN

Average speed = ; xt (Z Viltay = > ‘/j(to)) , (4.105)
n — Y0 J J

where Ax is the mesh size. Figure (4.1) displays the relative error in speed for local

error per step with RTOL = 0.01. Here we have taken the CFL. number ¢ = .3 and

At = 24i = 5,..7. In order to calculate the mesh we have used the identity

21
c = % (the CFL number) and this has been assumed to be fixed with the value
0.3 in the calculation of the mesh size. The pre-multiplication factor p of the source
term as given by equation (4.67) has been taken as 1000.
It is clear from Figure (4.1) that in the regime ﬁ > .3 (At < ;3) the relative

error in speed is nearly 20% and after that it is still decreasing and correspondingly
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Relative error in average wave speed

0 ! ! ! ! ! ! ! !
0.2 0.3 0.4 0.8 0.9 1

0.5 0.6 0.7
Reciprocal of product of time and mu
Figure 4.1: Variation of relative error in average speed with the reciprocal of the

stiffness factor Aty using the LEPS strategy.

the mesh size will be % where ¢ is the CFL number. These observations reveal
that the step size and the mesh size should be O(i), to avoid spurious solutions,
which is the same observation as we derived analytically in Section (4.5.4).
For the comparison to Leveque et, al [52] results we have taken initial data

w2 0) = () = up, = 1 if2<0.3

up = 0 ifx>0.3,

and Ax =0.02 and fixed time step At= 0.015. The product of time step At and
the reaction rate y determines the stiffness of the system. Figure(4.2) shows the
comparison of the computed solution and exact solution at ¢ = 0.3 for p =1, 10,
100, and 1000 (Atp=0.015, 0.15, 1.5 and 15) respectively, with the strategy of
controlling the local error per step.

It is evident from Figure (4.2) that for smaller Aty with the local error control
strategy the front is moving with correct speed. In the case when Aty = 15, the
discontinuity has remained at x = 0.3 and when we switched to another quadrature
rule (the trapezoidal rule), a large undershoot and overshoot were seen . The same
numerical experiment has been performed with even smaller step sizes and similar
results have been obtained. This incorrect propagation of the discontinuity is due

to the lack of proper spatial resolution. In the previous Section we have shown that

Az ~ i to avoid this wrong propagation of the discontinuity.
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Figure 4.2: Comparison of true solution(line) and numerical solution(dots) using

the LEPS, for 0.01 relative tolerance and 1 x 107 absolute tolerance.

4.6 Local Grid Refinement

In the previous Section it was shown that the front is moving with the wrong speed,

due to lack of proper spatial resolution. This is not surprising , because the source

of difficulty is the discontinuity in the initial data and much finer grid is needed in

the vicinity of the discontinuity. Our analysis shows that spatial resolution is as

important as the temporal resolution. One solution to such problems is to deploy

a method that is capable of essentially increasing the spatial resolution rather than
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excessive refinement of the overall grid.

When the error balancing approach described in the Section (4.3) is applied
Figure (4.3) displays the local growth in time of the spatial discretization error as
given by equation (4.53) for (Aty = 0.015, 0.15, 1.5, and 15) and it is evident that
the local growth in time of spatial discretization error is growing with increasing
Aty which is evident from the equation (4.53). The trend of the local growth in time
of spatial discretization error corresponding to Atu = 0.015 and 0.15 is identical
and decreasing in time after an initial increase. In contrast for Aty = 1.5,i.e.,
= 100 the error has increased rapidly due to increasing stiffness of the source
term (see equation (4.53)) and stays at a higher level than the previous two cases.
The wiggles are more prominent as compared to previous cases, which may be due
to insufficient spatial resolution. The case corresponding to Aty = 15 of Figure
(4.3) shows that the error is increasing and interestingly for Aty = 15 is constant
because the discontinuity does not move. From this it seams that much finer grid
is needed to ensure the correct movement of the discontinuity.

The numerical experiments have revealed that this error is growing sharply near
the discontinuity, which is only due to the lack of proper spatial resolution. It implies
that higher resolution is only needed in that part of domain where discontinuity
exists.

This leads to the concept of local grid refinement, and with the help of the error
balancing approach described in Section (4.3) it is possible to create a new refined
grid directly surrounding of the location of the source. The local growth in time of
the spatial discretization error measured by the error balancing approach has been
taken as the remeshing monitor function. The mesh cell is refined if the monitor

function is greater than a specified limit.

4.6.1 Spatial remeshing using the MONITOR routine

The SPRINT package (Software for Problem IN Time), is a state-of-the-art com-
puter program, which deals with the numerical solution of mathematical models
that involve mixed system of time-dependent algebraic, ordinary and partial differ-
ential equations (ODEs and PDEs) see [8]. The important property of SPRINT is
that it has the ability to handle both discrete and continuous remeshing schemes.

After the success of each time-step of the integrator a routine, generic name MONI-
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Figure 4.3: Local growth in time of the spatial discretization error for different value

of stiffness factor Atpu.

TOR, is called which has the flexibility of performing various tasks. The key feature
of the MONITOR routine is that it has the power to access the whole of the non-
linear solver in SPRINT and has been designed for tasks such as ODEs global error
estimates, discrete time remeshing, etc.

In discrete remeshing processes a new mesh is created at certain times in inte-
gration, the solution and its time derivatives are interpolated onto the new mesh
and the integration is continued. For this purpose we have modified the SPDIFF
routine as developed by Berzins and Fuzerland [31]. The key difference is that we
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have used a new monitor function based on local growth in time of the spatial dis-
cretization error (see Section 4.3.1). The remesh routine applies the ideas of [14] to
construct a new mesh at the current time step, i.e., bisecting the mesh cell if the
monitor function is too large or combining the two mesh points if the monitor func-
tion at that point is well below the required value. In the numerical experiments
here, the remeshing routine is called on every second time step.

When a decision is made that the new mesh is needed and the remesh routine
has evaluated a new mesh, then the next task performed by the MONITOR routine
is to evaluate the solution, its time derivative and any other higher time derivatives
used by the ODEs integrator on the new mesh, by using cubic spline interpolation.
Then the time integration attempts to continue directly using the stepsize and order
determined at the end of the step prior to remeshing. The case in which the number
of mesh points has changed, and hence which will change the size of the DAE system
being integrated in time makes it necessary to calculate the Jacobian matrix before
integration can continue.

Initially we start with 26 points and when the error was larger than the specified
limit then we divide the corresponding cell into two with a maximum 75 points being

allowed. Figures (4.4) and (4.5) reveal that the front is moving with the correct

14
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04
TTrue Solution
0.2

02+

-0.4 ! ! ! !
0 0.2 0.4 0.6 0.8 1
X

Figure 4.4: Comparison of true solution(lines) and numerical solution(dots) using

grid refinement technique at time equal to 0.3.

speed. The statistics in Tables (4.1) and (4.3) reveal that the Error Balancing
approach automatically gives the correct level of temporal error while monitoring

efficiency as compared to the LEPS approach.
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Figure 4.5: Comparison of true solution (lines) and numerical solution(dots) with

grid refinement technique at time equal to 0.6.
4.7 2D Problems

In this Section we will focus on a 2D version of Leveque and Yee ([52]) in order to
have the evidence of the accuracy, robustness, reliability of our new error control
strategy (i.e. local error per unit step). The Leveque and Yee [52] problem in two

space dimension takes the following form
du  0f(u) N dg(u)
ot oz dy

where u may be vector of dependent variables, but here we are assuming it to be

= —(u) t €[0,ts] and (x,y) € Q, (4.106)

a scalar. As usual the flux functions f and g contains the advective terms while
the source term ¢ (u) arises from the reactive term into PDEs. For the spatial
discretisation we have adopted the finite volume approach as described in Section
(2.9) i.e,

dU; ; [fH-% — fi_1] [9]‘4-% - gj—%]

a A Ay = —¢(Usj(x,y)). (4.107)

The next task is to find the convective fluxes midway along the edge of the volume

element, which involves the approximate solution of the four one dimensional Rie-

mann problems in the direction of the normals to edges of the volume element. To

find the convective flux f. and f,_1 . we have adopted a similar procedure to
2

1 .
5.7

that given in [7] such that

7j

fipry = J@igpn,y L US (e 05, 0), Ul (241,50 1)),
-5 = i L, Y by Uiy A1, Y5, 1), Ui T, L, Yy, .
fiors = Foeoyint Uny (o yint), Uyt 1)



CHAPTER 4. THE NUMERICAL SOLUTION OF A MODEL PROBLEM 93

xr

In the above equation UF;(z,y,1) represents the x-dimensional upwind interpolant
from cell 1,j, and is being estimated at the midpoint of the edge, and the f in fact
is given by the solution of Riemann problem with U (z,y,t) and U, ;(x,y,t) as
the discontinuous values on each side of the edge. By a similar procedure we can

estimate the convective fluxes along y-direction g, ;.1 and g, . 1 as follows
2, 2 2, 2

gi,j+% = g(xivyj+%7t7U;{j(xivyj{—%vt)vU;{j-l—l(xivyj{—%vt))v
gi,j_% = g(xivyj_%vtvU;{j—l(xivyj—%vt)vU;{j(xivyj_%vt))v

where UY;(x,y,t) represents the dimensional upwind interpolant estimated at the
mid point (x, y, t) and the function § is defined with the help of the solution of a
Riemann problem with UY.(x,y,t) and U, (x,y,t) as the discontinuous values on
each side of the edge.

As mentioned in [7], limited combination of these interpolants gives more accu-

rate estimates of solution values on the edge given as

UZy (o s,yint) = Uiy (1) + 4p8=all =Bl pe | ),

i—1,7 2 Az -

Uf](xz—%vymt) - UZ7](t) — %Ui+lvj(t)A; Ui,](t)B(%71)7

where the ratio r7 is defined by

o _ Ui = Ui(1)
' Uij(t) — Ui ()

(4.108)

and it is further mentioned in Berzins [7] that different limiter functions B(.,.) give
rise to different spatial accuracies. With this implementation of the 2D spatial
discretization and appropriate boundary conditions to the equation (4.106) we get

the following system of ODEs
U = Fy (1, U(1)), (4.109)
where the K-dimensional vector K = N x N is given by
Ut)]m =Uijt), m=(GE—-1)xN+j,¢=1,.,N,j = 1,.,N. (4.110)

The next task is to find the solution of the above equation for which we will apply
the local error per unit step control strategy rather than the local error per step
control strategy to check the performance of local error per unit step control strategy

on a 2D problem.
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4.8 Numerical Results

Problem 1 First we have solved the 1D Leveque and Yee problem [52] with evenly
spaced, meshes having 21, 41, 81 and 161 points as well as the adaptive mesh

described earlier. The test initial data is given by

=1 ifz<0.1
u<x,o>uo<x>{“ L

up = 0 ifz >0.1.

The length of domain is L = 1 and time ¢;=1. As regards the boundary condition,

at origin we have solved an ordinary differential equation of the form

up = —(u). (4.111)

On the right hand side an outflow boundary condition has been applied given by

fN+% = fN—%v (4.112)

where N is the number of mesh cells.
Problem 2 Then we solved the 2D Leveque and Yee problem with fixed mesh size.

The initial data is given below

ur, = 1 if0.5(x+y) <0.1

ulz,y,0) = ug(x,y) =
( ) 0( ) { ur = 0 if0.5(:1:—|-y)>0.1.

Again the simulation time is 1 and domain € = [0, 1] x [0, 1]. The next task is to
implement appropriate boundary conditions. So at the origin we have solved the
an ordinary differential equation as given in Problem 1. Along x-axis we have taken
9g(u)

5= = 0 and on y-axis we assumed %(u) = 0. On the right boundary we have
Y T

applied the outflow boundary condition given by

Ivir; = Inorg (4.113)

and similarly the top boundary has been treated.

4.8.1 Results Discussion

Two different kinds of error control strategies have been used within the integration
routine:

Method A: The LEPS strategy that is controlling the local error le(t,41) so that

H le(tn-l-l)
RTOL | V(L) | +ATOL

| < 1, (4.114)
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Method B: The LEPUS strategy that is controlling the local error le(t,41) so that

He(tpr) || = |l est(ta) Il (4.115)

where eét(tn+1) is the local growth in time of the spatial discretisation error and
is given by Section (4.3.1). Before comparing the efficiency of these local control
strategies, the choice of the parameter € should be discussed.

The vital fact in the selection of this parameter is that local growth in the
spatial discretization error should dominate the temporal error and work needed
while implementing this technique should be minimum. Obviously the larger the
value of € the fewer ODE time steps there will be, and the smaller the value of €
the more steps there will be (see for example Figure (4.6)). We have also plotted
CFL number by varying balancing factor € (see Figure (4.9)) and it is evident that
CFL number is arising with increasing balancing factor.

It is also clear that the CFL number increases sharply near the timet = 1, due
to the sudden rise of local growth in the spatial discretization error at this time.

Also equation (4.115) shows that when the local growth in time of the spatial
discretization error is larger, the local error test being made in the solver satisfied,
but this may result in the convergence failure of the non-linear solver, which will
force to the reduction of the time step. That is why the the graphs in Figure (4.9)
shows sudden fall after it has increased.

Additionally, Figure (4.9) shows that when ¢ > 0.5 the CFL number increases
more sharply and when € < 0.3 the code is taking more steps, which is clear from
Figure 4.6. Hence any value of € between 0.3 and 0.5 can be used in the calculation
for the mildly stiff problem, the factor may have to be reduced in case of highly
stiff problem such as combustion.

In Figures(4.8) and (4.7) we have plotted the norm of the local growth in time
of the spatial discretization error and is increasing sharply near time t equal to I.
The reason is that at t equal to 1 the solution values are not exactly equal to one,
and the source term becomes active and we get a sudden rise in the local growth in
time of the spatial discretization error.

The following notation has been used to represent the result:
e NPTS = The number of points used in the spatial discretisation,

e Nsteps = The number of integration steps used by the integrator,
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e ATOL = Absolute error tolerances,

e ¢ =balancing factor,

e RTOL = Relative error tolerance,

o G-S = The number of Gauss Seidel iterations.

The numerical results obtained for 1D problem are displayed in Figure(4.10) with
Method B (see equation (4.115)) and in Figure(4.11) with method A (see equation
(4.114)) and comparison has been made with exact solution.

Figure (4.10) shows the comparison of exact and numerical solution by using the
method B, while Figure (4.11) displays the comparison when the method A is being
implemented for (RTOL = 0.01) respectively at t=0.5 and its maximum solution
at t=1 is 1. From these Figures it is evident that the results are of comparable
accuracy with both strategy for p = 10.

In order to have more information about the accuracy of the both strategies,
we have presented the results at ¢;=1 in Table (4.2) using different p, different
number of points, and different RTOL when the LEPS strategy is used. It is evident
that for ¢ = 10 and NPTS=161, the results with LEPUS strategy is as accurate
as RTOL=0.001 with the LEPS strategy, and for ¢ = 100 again the results are
more accurate than the LEPS with RTOL=0.01 and the number of steps has been
reduced by almost 50%. The reason for the reduction of steps with LEPUS strategy
is that by increasing p the local growth in time of the spatial discretization error
has increased, consequently the local growth in time of the spatial discretization
error dominates the temporal error. Almost the same behaviour can be observed
when the number of points has been reduced to 81.

The dimensionless parameters the mesh ratio ¢ = £t and product Atu of the

Aw
time step and reaction rate play a vital role in the performance method and the
stiffness of the system is determined by the product Atgu.
Figure (4.2) shows there is some discrepancy in the location of the discontinuity,
when Aty = 1.5 and the situation become worse for Apy = 15, because the
discontinuity has not moved from x = 0.3. These results have been obtained with

At = 0.015, and experiments have been performed even with smaller time steps

but no improvement was achieved in the results.
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Methods | NPTS | ATOL or e | RTOL | Nsteps IF'un Jac G-5
A 21 10—° 10—1 154 650 43 794
10—° 102 254 970 52 1196
10—° 107 471 1720 | 77 2140
B 21 0.3 155 605 33 1068
A 41 10—° 101 255 1031 | 57 1292
10-° 102 454 1736 | 90 2146
10—° 10—3 &08 2728 | 82 3472
B 41 0.3 273 1022 | 51 1822
A 81 10-°5 10— 1 4162 2068 | 130 | 2594
10—° 102 814 3025 | 137 | 2626
10—° 10—3 1316 4298 | 100 | 5534
B 81 0.3 600 2011 | 58 3782
A 161 10-° 10~ 820 3754 | 229 | 4772
10—° 102 1384 5135 | 222 | 6460
10—° 10—3 2467 8326 | 240 | 10634
B 161 0.3 1242 4096 | 107 | 7756

Table 4.1: Results of 1D Leveque and Yee problem with uniform grid using the
LEPUS(B) and LEPS(A) control strategies.

NPTS 1] Method | ATOL or ¢ | RTOL | NSTEPS | Solution at t;=1
1x10=° 0.1 820 1.0154
A 1x10~° 0.01 1384 0.9997
161 10 1 %1077 0.001 2467 0.9997
B 0.3 1242 0.9999
1 %1077 0.1 881 0.9815
A 1x 1077 0.01 1727 0.9987
100 1x 1077 0.001 2966 1.0000
B 0.3 798 0.9999
1x10°° 0.1 462 1.0062
A 1x 1077 0.01 814 0.9983
81 10 1x 1077 0.001 1316 0.9970
0.3 600 0.9998
1x10°° 0.1 485 1.0095
A 1x 1077 0.01 923 0.9980
100 1x10°° 0.001 1831 1.0002
B 0.3 426 0.9999

Table 4.2: Table showing the accuracy of the numerical solution of 1D Leveque and
Yee problem with Both strategies at time =1 by using different number of points
with different value of p.

This implies that the spatial resolution is important for having correct prop-
agation of the reaction front. We conclude that the controlling of local error per
step (see equation (4.114)) gives an accurate speed propagation unless insufficient

spatial resolution has been used.
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Methods NPTS ATOL or € RTOL Nsteps Fun Jac G-S
A 10 x 10 1x10~* 1x 1071 199 1133 135 1320
10 x 10 1x10~* 1x 102 187 1084 126 1284

10 x 10 1x 101 11073 191 1030 106 1246

B 10 x 10 0.3 205 1113 120 1730
A 20 x 20 1x10~% 1x 1071 414 2547 | 305 3008
20 x 20 1x 10=7 1 x 102 497 3077 | 369 3642

20 x 20 1x10~% 1x10-3 448 2586 | 290 3078

B 20x20 0.3 478 2803 | 324 4274
A 30 x 30 1x10~% 1x 1071 722 4356 | b17 5122
30 x 30 1x 10~—* 1% 1072 809 5011 598 5944

30 x 30 1x10~* 11073 811 4857 | 565 5756

B 40 x40 0.3 650 3840 | 446 H838
A 40 < 40 1x 10=7 1 x 107! 1359 8568 | 1041 | 10120
40 x 40 1x10~* 1x 102 1146 7203 | 870 8528

40 x 40 1x10~* 1x10-3 1112 6826 | 800 8130

B 40x40 0.3 1230 7399 | 850 11260

Table 4.3: Results of 2D Leveque and Yee problem with uniform grid using the
LEPUS(B) and LEPS(A) control strategies.

We have explained in Section (4.5.4) that for correct movement of the disconti-
nuity, it is essential that Atg < 1, hence when Aty = 15, a much finer grid is
needed to model the correct movement of the front.

Hence it is better to refine the grid locally rather than globally, because this
is a more efficient way to tackle the problem given that substantial refinement is
necessary to obtain reasonable results.

For this purpose we need some sort of monitor function, so that the decision
can be made where to refine. The commonly used monitor function is the spatial
derivative which tend to infinity around a shock [62] as the mesh is refined. We
have introduced a new monitor function based upon the local growth in time spatial
error. The local growth in time spatial discretization error (see equation (4.53)) is
increasing with the increasing stiffness of the source (see Figure (4.3)) and has been
successfully implemented for the grid refinement (see Section (4.6)).

In order to check the reliability of the new control strategy LEPUS equation
(4.115) on 2D problem the comparison has been made with the LEPS control strat-
egy by using different grids and RTOL but fixed ATOL. Figures (4.12) and (4.13)
show the results with LEPUS control strategy on 31 x 31 and 41 x 41 respectively
at time equal to 0.6. It is evident that quality of results are improving by increasing

the mesh resolution.
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Figures (4.14) and (4.15) show the results with the LEPS on 31 x 31 and 41 x 41
grids respectively by taking RTOL=0.01 and ATOL=10"*. It is evident there are
small oscillations on coarser grid. We have also presented results in Figures (4.16)
and (4.15) with same ATOL and RTOL=0.001 at time equal to 0.6, which shows
that accuracy have increased by decreasing RTOL.

Comparison of results obtained with LEPUS and LEPS show that the results
obtained with LEPUS are as accurate as obtained with LEPS using RTOL=0.001
and ATOL=107*.

Table (4.3) shows that when method A(LEPS) is being implemented at some
grids with large RTOL values the code takes more steps as compared to the tighter
tolerance. This appears to be happening due to convergence failures in the non-
linear solver.

The efficiency of both strategies can be seen from Tables (4.1) and (4.3), which
shows that it is worth using the local error per unit step control strategy rather
than local error per step control strategy. FEven though a modest tolerance has
been used for the LEPS, ( see equation (4.114)) strategy, the number of steps are
comparable to the LEPUS equation (4.115) strategies thus showing the effectiveness
of the latter approach.

4.9 Conclusion

The method of lines has been used to solve 1D and 2D Leveque and Yee problem
[52]. The second order upwind together with the van Leer limiter [7] has been
used as the spatial discretization and the theta method has been used as the time
integrator [9]

In most existing software based upon the the method of lines, the standard
procedure is to control the local time error per step [40] with respect to a supplied
tolerance. It is difficult for the user to select a tolerance which is related to the
spatial discretization error. Also the controlling of local error per step does not
always guarantee equivalent control of the global time error. This implies that this
technique is not ideal because a clear relationship can be found between the supplied
tolerance and the global error.

Keeping in view these arguments we have derived a new control strategy (LE-

PUS) based upon the error balancing approach [7]. The underlying idea is that first
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we evaluate the primary solution by using an upwind scheme and quadrature rule
for the source term integration, and then the secondary solution is evaluated with
a less accurate upwind scheme and a different quadrature rule .

It is the difference between two solutions, the local growth in time of the spatial
discretization error, that is used as time tolerance. It should be noted that this
only estimates the local growth in time of the spatial discretization error in the less
accurate solution. The statistic in Tables (4.1) and (4.3) have shown that the new
control strategy works well in combination with the Gauss-Seidel iteration.

We have used the Gauss-Seidel iterative method because when solving big at-
mospheric problems storage is the restrictive factor. The storage requirement is
reduced considerably by implementation of the Gauss-Seidel method [7] as com-
pared to using conventional linear algebra solvers. The reduction of storage is
the main reason for the popularity of the Gauss-Seidel method, for large systems
of advection-reaction equations arising in the modelling of atmospheric pollution

problems.
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Figure 4.6: Graph showing relationship between number of steps and balancing

factor €, for 161 points and the source term factor equal to 10.
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Figure 4.7: Variation of norm of local growth in time of the spatial discretization
error using LEPUS strategy, 161 points, balancing factor 0.3 and the source term
equal to 10.
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Figure 4.8: Variation of norm of local growth in time of the spatial discretization
error using the LEPS strategy for 161 number of points, 0.01 relative tolerance,

1 x 107 absolute tolerance and the source term factor equal to 10.
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Figure 4.9: Variation of CFL number with balancing factor e.
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Figure 4.10: The comparison of true (line) and numerical(dot) solutions in 1D
Leveque and Yee problem using LEPUS control strategy a uniform mesh of 81
points (top), 161 points(bottom) and balancing factor equal to 0.3. at time=0.5
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Figure 4.11: The comparison of true (line) and numerical(dot) solutions in 1D
Leveque and Yee problem using LEPS control strategy with a uniform mesh of 81

points (top), 161 points(bottom), RTOL=0.01 and ATOL=10"" at time=0.5.
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Figure 4.12: Solution of 2D Leveque and Yee problem using the LEPUS strategy
on 31 x 31 for balancing factor equal to 0.3 grid at time equal to 0.5.
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Figure 4.13: Solution of 2D Leveque and Yee problem with the LEPUS control
strategy on 41 x 41 for the balancing factor is equal to 0.3 at time=0.6.
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Figure 4.14: Solution of 2D Leveque and Yee problem using the LEPS strategy on

31 x 31 grid for 0.01 relative tolerance and 1 x 10™* absolute tolerance.
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Figure 4.15: Solution of 2D Leveque and Yee problem using the LEPS control
strategy on 41 x 41 grid by using 0.01 relative tolerance and 1 x 10™* absolute

tolerance at time=0.6.
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Figure 4.16: Solution of 2D Leveque and Yee problem using the LEPS strategy on

31 x 31 grid for 0.001 relative tolerance and 1 x 10™* absolute tolerance.
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Figure 4.17: Solution of 2D Leveque and Yee problem using the LEPS strategy on

41 x 41 grid for 0.001 relative tolerance and 1 x 10™* absolute tolerance at time=0.6.




Chapter 5

Reacting Flow Problems

In this chapter we will discuss the numerical solution of two simple cases of reacting
flow problems: an atmospheric dispersion problem and the combustion problem we
have been considering. The atmospheric problem is described by the atmospheric
diffusion equation given by equation (2.10). In the combustion problem the fluid dy-
namics and the chemistry are modelled together, while the fluid dynamics governed

by the coupled conservation equations:
e one scalar equation for the mass density p;

e one vector equation with one, two, or three components for the momentum

density pu;
e and one scalar equation for the energy F.

Solving these equations satisfactorily is one of the important, difficult problems in
computational fluid dynamics. A major problem is due to the discontinuity in the
solution values which may form a contact discontinuity, shock wave or rare-fraction
fan.

Another difficulty posed by reactive flow problems is the spatial resolution
needed. The computer time and memory is so demanding for three dimensional
calculations, that the chemistry may have to be simplified drastically. Despite this
the general trend in reactive flow problems is to use models including an ever large
number of reactions in the chemical schemes describing the atmospheric as well as
the combustion chemistry. It is desirable, where possible, to minimise the num-

ber of chemical species, because much of the computing time is spent in solving

108
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the equations describing the chemistry. Some well-known techniques, related to
minimise the number of chemical species, such as lumping, sensitivity analysis and
quasi-steady-state approximation have discussed in Heard et al. [39]. It this way
the number of variables in the scheme reduce significantly.

A critical point in the simulation of reactive flows is the treatment of the source
terms which needs special treatment to avoid giving rise to non physical solution
values. The reason is that the source term arises from the ODE systems describing
the chemical kinetics model in use (see Chapter 3) and thus we expect that the
source term will be stiff in time. Thus any numerical method must effectively
handle stiff ODEs.

Solving the case in which these chemical kinetics are coupled with fluid dynamics
is very different from solving a set of chemical kinetics alone. The large number of
computational cells, perhaps ten or hundreds of thousands in a multidimensional
domain, usually implies that we cannot afford to store auxiliary information about
all the species in each cell between time steps hence some simplifications are needed
[58].

The main purpose of the present study is to employ the error balancing approach
together with Gauss Seidel iterative method to reactive flow to asses its robustness
and accuracy. The reason for adopting this approach is that the error balancing
approach gives very promising results on the simulation of the 1D and 2D Leveque
and Yee problem [52] (see Chapter 4) and in the work of Berzins [7, 49].

We have used the theta method which is specially designed for the solution of
stiff systems with moderate accuracy and automatic control of the local error in time
instead of NDF2 method as described in Chapter 3. The numerical experiments
have shown that NDF2 method requires the further investigation, in term of, tuning
the stepsize strategy and Jacobian evaluation criteria and so the theta method was

used.

5.1 An Atmospheric Dispersion Problem

5.1.1 Introduction

The adverse effect of pollutants in daily life has made it vital to study them thor-

oughly in the context of their effect on the atmosphere. An important example of
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such pollution includes power station plumes which are concentrated source of NO,
emissions [82]. The photo-chemical reaction of this emitted NO, and polluted air
results in the production of ozone at large distances downwind from the source.

In atmospheric pollution problems achieving high resolution is a difficult chal-
lenge because of the large number of species present in the atmosphere. The number
of chemical rate equations which need to be solved rises with the number of the
species, and for high resolution 3-dimensional calculation, detailed chemical schemes
can become prohibitively large. The range of reaction time-scale can lead to stiff
systems of differential equations which require more expensive solvers. To avoid
this difficulty two strategies are adopted.

The first strategy related with retaining the detailed chemistry for understand-
ing many reactions of pollutants such as NO,, SO, and other organic compounds,
and to use 1-D trajectory models or coarse grid models to simulate the reac-
tion/transport problem. Such models are essential in developing an understand-
ing of how chemical species interact to form secondary pollutants. This strategy
does not, however, provide the spatial resolution which is needed to understand the
complex interaction between multiple source of distributed type.

The second strategy uses a simplified model and a high resolution grid. In this
case the problems arise in assessing the role of individual species on the pollutant
distribution. Both strategies have advantages and disadvantages and a compro-
mise 1s necessary between spatial resolution and the number of species. Thus the
increasing complexity of practically relevant models requires that new efficient nu-
merical methods should be implemented to solve the underlying extensive systems

of time-dependent partial differential equations [82].

5.2 Governing Equations, Spatial Discretization

and Controlling Strategy

The complete governing equations of 2D atmospheric problem have been explained
in Chapter 2 (see equation (2.10)). The basis of the numerical method is the space
discretization of the PDEs discussed in Chapter 2. This approach (known as the
“method of lines”), reduces the set of PDEs to a system of ordinary differential

equations (ODEs). The system of ODEs can then be solved as an initial value
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problem, and we have used the theta method [9].

For spatial discretization we have implemented the second order upwind together
with van Leer limiter [7] as described in Chapter 2. The novel step here is that
instead of controlling the local error per step we have controlled local error per unit
step based upon space-time error balancing approach. The motivation was that
local per step does not guarantee the best control of the global error, because the
relation between the local error and the global error (see for example [7, 49]), is not

clear.

5.3 Numerical Results

Problem 1: First we have solved the 1D atmospheric dispersion problem, having 7
species and 7 reactions together with time-dependent photolysis rates as explained
in Section (2.5) (see for example [10]). The initial concentrations of the species in
molecule/cm® have been displayed in Table (3.2).

The polluted air emitted from the source has been assumed to be enriched source

of Nitrogen Oxide and has the following concentrations in molecules/cm?:

NO, = 1.0 x 101,
NO = 1.0 x 10'2.

We have assumed a constant wind speed of 0.75 c¢m/sec in the x-direction. The
length of domain is 1 km and the simulation time is two days, i.e., 1.8 x 10° seconds.
We have used 21, 41, 81 and 161 points and the mesh size has been kept fixed. The
boundary conditions have been described in Problem 1 of Section (4.8)
Problem 2: The 2D atmospheric problem has 20 species and 25 reactions with
constant reaction rate from atmospheric chemistry. The initial concentrations in
ppm have been given in Table (3.1) and the reaction mechanism has been displayed
in appendix (B.0.1).

Similarly to the 1D case we have made the assumption that the polluted air
emitted by the source term is enriched with the oxides of Nitrogen having concen-

tration in ppm given as

NO; = 0.8
NO = 0.3

N205 — 03
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The domain €2 is 1km x 1km, the simulation time is 60 minutes and for convenience
we have taken velocities along x-direction and y-direction 1km/min. This problem
is highly stiff and the Lipschitz constant is about 1.5 x 107 as the simulation period
is 60 minutes which will makes the ODE system stiff (see for example [90]). The

boundary conditions have been given in Problem 2 of Section (4.8).

5.3.1 Results Discussion

Two different kinds of error control strategies have been used within the time inte-
gration routine
Method A: The LEPS strategy that is controlling local error le(¢,,11) (see equation

(4.114)) so that
H le(tn-l-l)
RTOL | V(t,) | +ATOL

Method B: The LEPUS strategy that is controlling the local error le(t,41) (see
equation (4.115)) so that

| < 1. (5.1)

He(tpr) || = |l est(ta) Il (5.2)

where eét(tn_H) is the local growth in time of spatial discretisation error esti-
mate and is given by the Section(4.3) and strategy about the selection of the pre-
multiplication factor € has been discussed in the Chapter 4. In these problems we
have used ¢ = 0.3 as has been proposed in [49] and experiments show this seems to
work well for the problems considered here and Gauss Seidel iterative method has
been used to solve the linearised equations.

The following notation has been used to represents the results:

e NPTS = The number points used in the spatial discretisation,

Nsteps = The number of integration steps used by the integrator,

ATOL = Absolute error tolerances,

o ¢ = The balancing factor,

RTOL = Relative error tolerance,

o G-S = The number of Gauss Seidel iterations.
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Methods NPTS ATOL or € RTOL Nsteps Fun Jac G-S
A 21 10° 10—-1 1310 1376 328 6067
10° 10—2 1381 4537 326 6540
10° 10— 7 1682 5487 293 14086
B 21 0.3 1425 4755 362 11076
A 41 10° 10—1 1276 4179 304 HE8&1
10° 10—2 1332 4652 319 7251
10° 10—7 1905 6480 272 16844
B 11 0.3 1186 5012 379 11789
A 81 10° 10—1 1380 4877 404 7210
10° 102 1677 6318 448 10465
107 10-3 3068 10250 | 408 25204
B &1 0.3 1823 6428 489 15282
A 161 10° 101 1290 5133 441 8563
107 10—2 2313 9359 711 15945
10° 10—2 50568 16783 | 571 | 40668
B 161 0.3 2387 8502 722 19829

Table 5.1: Results of 1D Atmospheric problem with uniform grid using the LE-
PUS(B) and LEPS(A) control strategies

Point at which Results at t = 180000 seconds

Solution given | Methods | ATOL or e | RTOL | NO conc, NO, conc.

inmol/em® | in mol/em?

0.1 | 81268 x 10™ | 2.8636 x 10"

A 10° 0.01 | 81571 x 10M | 2.8377 % 10+
x=0.5 0.001 | 8.1618 x 10" | 2.8336 x 10M
B 0.3 8.1569 x 10" | 2.8380 x 10"
B 0.5 8.1520 x 10" | 2.8419 x 10"

Table 5.2: Table showing the accuracy using the LEPUS(B) and the LEPS(A)
strategies for 0.1, 0.01, 0.001 relative tolerances and 1 x 10° absolute tolerance, 161

number of points at time =1.8 x 10° seconds and x=0.5 km.

For the 1D atmospheric problem extensive experiments have been performed in
order to check the reliability, efficiency and accuracy of the new proposed scheme,
the LEPUS control strategy as given in equation (5.2), against the LEPS (equation
(5.1)) control strategy.

In Figure (5.1) we have displayed the results at the origin (where we are solving
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Methods | NPTS ATOL or € RTOL Nsteps Fun Jac G-5
A Hhxh 1 x 1072 1x 1071 863 3829 77 6557

5 xhH 1x10™° 1x 102 1003 4212 695 6613

B 5x b 0.3 826 3549 471 10452

A 10 x 10 1x10™° 1x 101 1950 8016 1092 | 13059

10 x 10 1 x10=° 1x10~2 1976 8000 1035 | 12883

B 10x<10 0.3 1908 7956 1093 | 20520

A 15 x 15 1x10™° 1x 101 3037 14139 | 1982 | 35149

15 x 15 1 x107° 1x10-2 3226 14814 | 2114 | 31351

15 < 15 1x10™° 1x 1073 3401 15295 | 2304 | 28571

B 15x 15 0.3 3086 13537 | 1836 | 36362

A 20 x 20 1x107° 1x 101 4005 17678 | 22258 | 43001

20 x 20 1 x10=° 1x 1072 4276 19101 | 2601 | 42125

20 x 20 1 x 1072 1x 1073 446() 20106 | 2638 | 36832

B 20x20 0.3 4151 18095 | 2342 | 49363

Table 5.3: Results of 2D atmospheric problem with uniform grid using the LEPUS

(B) and LEPS (A) control strategies.

The Grid Point Results at t = 60 min
at NO conc. NQOs conc.
which Solution | Grd | Methods | ATOL or ¢ | RTOL n m

given ppm ppm
The top 0.1 | 1.3950 x 0% | 6.8115 x 10~7
right 15x 15 A 10-° 0.01 | 1.3944 x 107" | 6.8148 x 10=*
corner 0.001 | 1.3944 x 10~ | 6.8196 x 1077
B 0.3 1.3948 x 107" | 6.8196 x 10~
The top 0.1 | 1.3790 % 10" | 6.4963 x 10~
right 20 x 20 A 1072 0.01 | 1.3792x 107 | 6.4865 x 10=*
corner 0.001 | 1.379% 107" | 6.4910 x 10=*
B 0.3 1.3788 x 1071 | 6.4855 x 1072

Table 5.4: Table showing the accuracy of the LEPUS(B) and the LEPS(A) control

strategy on 15 x 15 and 20 x 20 grid respectively at t=60 minutes, with different

relative tolerance and fixed absolute tolerance.

a system of ODEs assuming that no advection effect) at time =1.8 x 10° seconds
for RTOL =0.1, 0.01, by assuming fixed ATOL = 10° with LEPS control strategy,
while the Figure (5.4) shows the growth of the NO and NO; concentrations with
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the LEPUS control strategy. The comparison shows that there is no difference in
the growth of the concentration even with RTOL = 0.01.

In order to provide more evidence about the accuracy for the LEPUS and dif-
ferent RTOL when the LEPS strategy has been used, we have presented the con-
centration of these species t=0.5 km in Table (5.2). It is evident that accuracy is
improving with decreasing RTOL in LEPS control strategy and it is also clear that
using the LEPUS control strategy the results have a superior level of accuracy over

RTOL=0.01.

L L L L L L L L 0 L L L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Time in seconds Time in seconds

NO concentration with RTOL=0.1 NQO; concentration with RTOL=0.1

L L L L L L L L L L L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 20000 40000 60000 80000 100000 120000 140000 160000 180000
ime in seconds ime in seconds

NO concentration with RTOL=0.01 NQO; concentration with RTOL=0.01

Figure 5.1: Concentration of NO and NO; in molecules/cm? at origin using LEPS
strategy at time =1.8 x 10° seconds for Az =0.00625 km, various relative tolerance

and fixed absolute tolerance equal to 1 x 105,

In the second test, we have represented the growth of both species at =1 km
by taking Az = 0.025 km, 0.0125 km, 0.00625 km respectively with both control
strategies at time=1.8 x 10° seconds. For the LEPS control strategy we assumed

(RTOL = 0.1, 0.01) by taking ATOL = 10° and results have been displayed in
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Figure 5.2: Concentration of NO and NO; in molecules/cm® using LEPS strategy
at time =1.8 x 10° seconds for Az = 0.025 km(line 1), 0.0125 km(line 2), 0.00625
km(line 3), various relative tolerance and fixed absolute tolerance equal to 1 x 10°

at x=1 km.

Figure (5.2), while with the LEPUS control strategy the results have been shown in
Figure (5.5), again the comparison shows that there are small differences in results
with both control strategies and same trend of accuracy foloows with both strategies
as at ©=0.5 km.

In the third experiment we have shown the growth of above mentioned species
at times, t=1.5 x 10* seconds, 9.5 x 10* seconds, 1.8 x 10° seconds with different
RTOL (0.1, 0.01) by keeping ATOL fixed with Az = .00625 km. The results
are displayed in Figure (5.3). With the same times the experiments have been
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Figure 5.3: Concentration of NO and NO, in molecules/cm?® using LEPS strategy
at time =1.5 x 10* seconds (line 1), 9.5 x 10* seconds (line 2), 1.8 x 10° (line 3)
seconds for Az =0.00625 km, various relative tolerances and fixed absolute tolerance

1 x 105,

performed with the LEPUS control strategy (see Figure (5.6)), again the graphs
look identical and by comparing the computed solution revealed that the accuracy
level was same as that x=0.5 km.

For the 2D atmospheric problem we have shown only NO; concentration with
the the LEPUS (Figure (5.7)) and with LEPS (Figure (5.8)) with RTOL = 0.01.
From these Figures it is evident that the results are of comparable accuracy with
both strategies. For information about the accuracy of the NO and NO; concen-

tration with both strategies, we have presented the results in Table (5.4), and it is
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evident that with the LEPUS control strategy the computed results have compara-
ble accuracy to that of LEPS control strategy with ATOL=10"° and RTOL=0.001
on both grids.

le+12 T T T T T T T T T 3e+ll

9.5e+11 - B 2.5e+11 -

e+11

8.5e+11 [

ncertration at origin for two days
©

8e+ll [ 4 2 levll

concentration at origin for two days

NO cor

7.5e+11 B 5e+10
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Time in seconds time in second

NO concentration NO2 concentration

Figure 5.4: Concentration of NO and NO; in molecules/cm® using the LEPUS
strategy at origin at time=1.8 x 10° seconds for Az = 0.00625 km and balancing
factor (€) equal to 0.3.

The efficiency of both strategies can compared by using the statistics of Tables
(5.1) and (5.3), which show the worth of using the local error per unit step control
strategy rather than local error per step control strategy in that it delivers the
required level of accuracy to let the spatial error dominate.

The numerical experiments on 1D atmospheric problem have revealed that ini-
tially the code with local error per unit step strategy is faster than the local error
per step control strategy and after some time the reverse situation occurs.

The reason is that initially the spatial error is dominant and with time plumes
grow continuously from the left (because of positive velocity ) and the code is taking
more steps. Once the plume stops growing the local error per unit step control
strategy forces the code to do more work in term of the number of integration step
as the spatial error is small. In this case it makes sense to have a lower bound on
the local growth in time of spatial error (Chapter 4) so that the code does not take
too many steps when the local growth in time of spatial error is negligible. This is
implemented by passing control to the local error per step based upon the following

switch

AMAX = max || V(tu41) || (5.3)
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where V(,41) is the solution vector at the time ¢,41 and
LSPNRM = max || est(t,41) |, (5.4)

where eét(tn_H) is the local in time spatial error used as the time tolerance and if
LSPNRM < 107% x AMAX, then the code is using the local error per step control
strategy. These results thus show that the local error per unit step control (equation

(5.2)) provides a good balance between efficiency and reliability.
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Figure 5.5: Concentration of NO and NO, in molecules/cm?® using the LEPUS
strategy at time =1.8 x 10° seconds for Az = 0.025 km(line 1), 0.0125 km(line 2),
0.00625 km(line 3) and balancing factor(e) equal to 0.3.
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Figure 5.6: Concentration of NO and NO; in molecules/cm?® using LEPUS strategy
at time =1.5 x 10* seconds(line 1), 9.5 x 10* seconds (line 2), 1.8 x 10° seconds(line
3) for Az = 0.00625 km and balancing factor (¢) equal to 0.3.
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Figure 5.7: Concentration of NO; in ppm using LEPUS strategy in 2D atmospheric
problem for balancing factor (¢) equal to 0.3.

5.4 Combustion Problem

5.4.1 Introduction

Modelling reactive flow in combustion problems is based on a generally accepted set
of time-dependent coupled partial differential equations maintaining conservation of
density, momentum and energy. Recall that these equations describe the convective
motion of the fluid, the chemical reaction among the constituent species and the
diffusive transport process such as thermal conduction and molecular diffusion [58].
The Navier Stokes equations are the natural starting point for modelling chemically
reacting flow.

There are basically four types of physical processes represented in reactive flow
equations. These processes are chemical reactions, diffusive transport, convection
and wavelike properties, [58]. The chemical kinetics represents the production and

loss of the chemical species, convection describes the motion of fluid quantities in
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Figure 5.8: Concentration of NOy in ppm using LEPS strategy in 2D atmospheric

problem for 0.01 relative tolerance and 1 x 10™* absolute tolerance.

space. The wavelike behaviour are described implicitly in the reactive flow equations
by the coupled continuity equations. The important point about wavelike motion
is that energy is transferred from one element of the fluid to others by waves that
can travel much faster than the fluid velocity.

The main type of wave considered is a shock wave, which moves as a disconti-
nuity through the system. The shock wave heats and compresses the undistributed
reactive mixture as it passes through it. The raised temperature triggers chemical
reactions, and energy release eventually occurs and the pressure waves are gener-
ated, some of which propagate forward and accelerate the shock wave.

The reactions proceed very rapidly after the initiation, which will make the
source term stiff [83, 90] in time, hence it is possible that the solution will yield non-
physical waves with incorrect speed and incorrect discontinuous in flow properties
[28, 83]. Additionally, stiffness problems place restrictions on the time step and the

grid spacing, which results in computational inefficiency.
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The next task is to solve this complex system of equations. The very complexity
of which eliminates the possibility of finding an analytical solution and the only
reasonable alternative is to construct the numerical solution. Since the source terms
require specialized and possibly costly time integration, the common approach is to
use a time splitting to isolate their treatment from the rest of the problem. In this
approach, however, a splitting error is introduced. Hence we have used the method
of lines approach (see Chapter 2) together with the new splitting approach only at
the level of the non-linear equations as described in [12], which avoids any extra
splitting error.

To handle the steep spatial fronts, it is natural to apply modern shock-capturing
numerical methods for the convective part of the conversation laws. These methods
typically require complete analytic expression for the characteristic data, i.e. the
eigenvalues and eigenvectors of the linearised convective flux matrix. There are
many approaches in common use to handle the steep spatial front and the most
popular has been considered in Chapter 1. Due to excellent shock capturing and
improved performance of the Marquina method [25] on non-reacting flows, it has
also been used for reacting flow, together with theta method as the time integration

[9].

5.5 Governing Equations

A brief description of the governing equations of the combustion problem has been
given in Chapter 2 and is extended here by using the description given in Fedkiw
[28].

The one dimensional compressible flow problem is modelled by the 1D Euler

equations and can be written as
u; + [f(u)l, = 0, (5.5)

where vector u and f(u) are given by

p pu
w={pu| fw=| prip |, (56)
E (E+pu
pu’
E = —p+ -5 ph, (5.7)
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and t is the time, x is the spatial dimension, p is the density and u is the velocity,
E is the energy per unit volume, h is the enthalpy per unit mass, and p is the
pressure.

Similarly the two dimensional compressible flow problem is modelled by the 2D

Euler equations

u; + [f(u)l: + [g(u)l, = 0, (5.8)

where u, f(u) and g(u) has the following form

i P ] i pu ] i pY ]
w= [ s = | T g | L )
pu pUv puv°—+p
| £ | (E+pu | | (E+pv ]
where
E = —p+'0(“2;r L ph. (5.10)

5.5.1 Energy and Enthalpy

The total energy per unit volume is denoted by E and is equal to the sum of the
potential and kinetic energy and is defined by

uz—l—v2

E = PE4+KE = pe+p 5

(5.11)

where e denotes the internal energy per unit mass. The enthalpy per unit mass is
defined by

h = e+l (5.12)
p

By analogy the enthalpy of the mixture is given by

E
= Lte (5.13)

p

Using equation (5.12) we can write equation (5.11) as follows

uz—l—v2
2

E = —p+p + ph, (5.14)

and similarly the total enthalpy is given by

uz—l—v2

H = h
T

(5.15)
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A “perfect”gas is defined as a gas in which intermolecular forces are neglected and
in a perfect gas the internal energy, enthalpy and specific heat are a function of the

temperature only. So we have that, for perfect gas,
h = h(T), e =e(t), (5.16)

¢, = ¢(T), ¢y = (1), (5.17)

and ¢, is the specific heat at constant pressure. For a perfect gas we have two

further relations [28]
dh(T) = ¢,(T)dT, de(T) = ¢, (T)dT. (5.18)

Integration of both sides of the above equation gives

h(T) T
/ ds = / cp(s)ds, (5.19)
h(0) 0

and the further simplification yields the following form of the above equation
T
WT) — h(0) = / ¢, (s)ds, (5.20)
0

WT) = h(0) + /OTcp(S)ds, (5.21)

where s is the dummy variable of integration. A perfect gas can further be divided
into a thermally perfect gas (specific heats are functions of the temperature) and
calorically perfect gas(specific heats are constant). For the calorically perfect gas

the equation (5.21) has the form
R(T)=h!+¢,T, (5.22)

where Y = h(0) is the enthalpy per unit mass at 0K, and also called the heat
of formulation and is constant can be found in the JANAF thermodynamics Table

[77]. For thermally perfect gas the equation (5.21 ) can be written as

WT) = hf—l—/OTcp(s)ds. (5.23)

5.5.2 Equation of State

The equation of the state for the perfect gas is, [56],

p = pRT, (5.24)
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and in the above equation R is the specific gas constant and given by the following

relation
~ R,
R = — 5.25
W ? ( )
and R, = 8314 Joules per kilomole degree Kelvin is the universal gas constant,

and W is the molecular weight of the gas. W can be found in the JANAF Thermo-
chemical Tables [77].

5.5.3 Gamma

The ratio of the specific heats is denoted by v and given by [56]

<, (5.26)

Cy

")/:

Another useful relation is given by

¢, — ¢ = R,

(5.27)

which is valid for both a calorically perfect and a thermally perfect gas. With the

help of the equations (5.26) and (5.27) the above equation can be written as
_ %
T = Cp . ﬁf7

which is valid for both calorically perfect and thermally perfect gases.

(5.28)

5.6 Multiple Species

The 2D Euler equations can be modified in such a way that the flow of more than
one species can be considered. The modified form of 2D Euler Equations for multi-

species flows are (see for example Ton et al. [83]):

u, + [f(w)l, + [gw)], =0, (5.29)
where
P pu pv
pu ,ou2 +p pUv
pu pUv pv? +p
u=| B |fw)=|(E+pu| gw=|(E+pe [, (530
pYi puYi poYi
| PYNSs— | PuYNs-1 | PUYNs—




CHAPTER 5. REACTING FLOW PROBLEMS 126

and where
u? + v?
E = —p+ it 5 ) + ph, (5.31)
NS represents the number of species and Y, is the mass fraction of species i and

Yys = 1= YL
5.6.1 Energy and Enthalpy

By analogy with equation (5.12) we define the enthalpy, h for the mixture of gas as
follows [28]

» NS ZNSP' NS i NS
h=e+4 = =73 Ye + === = Z}g(ei + Z):Zmi, (5.32)
P =1 P =1 p)/Z i

where e;, p; and h; represents the internal energy, partial pressure and enthalpy per
unit mass of the ith gas respectively. Similarly to equation (5.21) the enthalpy for

a perfect gas can be written as
T
h(T) = hi + / ¢pi(5)ds, (5.33)
0

where A/ is the heat of formation and can be found from the JANAF tables of
thermodynamics [77] and like that of equation(5.22) equation (5.33) can be written
for the ith calorically perfect gas as:

hi(T) = bl + ¢,.T. (5.34)

Now the combination of equation(5.32) and (5.33) gives

NS T NS NS T
h = ZYJL{—I—/O ZKCW(S)dS = ZYihzf—l'/o cp(s)ds, (5.35)
=1 =1 =1

where ¢, is the total specific heat at constant pressure of the mixture, and for the

mixture of calorically perfect gas this can be written as

NS
h=3"Yih! +¢,T. (5.36)

=1
5.6.2 Equation of State

When multi-species flow is considered with the assumption that each species is a

thermally perfect gas, then the partial pressure of each species is given as, [28],

pi = pYilRiT, (5.37)
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where R; is the specific gas constant for each species and is given as
R, = — (5.38)

and where W; represents the molecular weight of the ith species and R, is the

universal gas constant. Now R for the multi-species flow is defined as
R = > YR, (5.39)
and then the equation of state for multi-species flow has the following form

NS NS NS
p = Zpi = Z,OY;'RZ'T = ,O(ZYZ'RZ') = pRT, (5.40)
=1

which is valid for both calorically perfect and thermally perfect gases, [28].

5.6.3 Gamma

Similarly to equation (5.39), the specific heat ¢, and W can be defined for the gas

mixture as follows:

NS
¢ = ZYZ'CN, (5.41)
=1
and
1
W= _ 5.42
SR >42)

then « for the mixture of gases is defined as
v = — (5.43)

and ¢, and W are defined by equations (5.41) and (5.42) respectively (for example
see [28]). Recall that for the mixture of the calorically perfect gases, ¢, ; is constant
for each i, which implies that ¢, = ¢,(Y;) is a function of the mass fraction only.
As W = W(Y)) is also a function of the mass fraction, it is evident that v = ~(Y)
is function of the mass fraction.

On the other hand for a thermally perfect gas, each ¢,; = ¢,,(7T) is a function
of temperature and it implies that ¢, = ¢,(Y;,T). Hence v = ~(Y;,T) is function

of both the mass fraction and the temperature (see for example [28]).
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5.6.4 Mean Molecular Weight for a Mixture

The equation (5.42) is different then equations (5.39) and (5.41). The difference is
that both R and ¢, are defined per unit mass, while W is defined per mole. Thus
when defining W for the mixture, we use mole fractions, not mass fractions. So the

mean molecular weight for a mixture is defined by (see for example [28])

NS
W= > X;W, (5.44)

=1
where X; is the mole fraction of species 7. This has been defined along the lines of

equations (5.39) and (5.41).

Now,
me M ynw W
X, = 4 =% - 2 —y 5.45
m M MW, W, (5:45)

where ; is the moles of species 7, m is the total moles of the mixture, M; is the
mass of species 7, M is the total mass of the mixture, W; is the atomic weight of
species 1 and W is the atomic weight of the mixture.

If we sum both sides of above equation, we have that

NS NS
X =) Yi—. (5.46)
=1 =1 m

The left hand side of the above equation represents the sum of the mole fraction of

all species and should be equal to 1. Then we have that

NS Y.
1 =W : 5.47
which gives that
1
W = —, (5.48)
Zizsi %

which gives the equation (5.42).

5.7 Chemical Reactions

The 2D equations can be modified for reactive flow problems by incorporating the
chemical reactions. These equations represent the convective motion of the fluid
and chemical reactions among the constituent species. Hence for multiple species

flow with chemical reactions the 2D Euler Equations are given by (see [28, 83])

u; +f(u) + g(u) = ¥(u) (5.49)
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where u, f(u) and g(u) are given by equation (5.6) and the source terms ¢ are

given by

o o o O

U‘Jl(Tvpvi/lv}/?v T 7YNS—1)

L wNS—l(T7p7 1/17 1/27 te 7YNS—1) i
and w; represents the mass production rate of the ith species and has been discussed

in Chapter 2 (also see [28] for more details).

5.8 Temperature, Gamma, Specific Heat, and En-
thalpy

The factor 4 can be calculated from the conserved variable and the specific heat
¢y, which implies that the next task is to calculate ¢, (see equation (5.41)), which
means that we need to calculate ¢, ; for each species. These can be evaluated with
the help of polynomial fit as described in Kee et al.[45] if the temperature is known.
Hence the major task is to calculate temperature from conserved variables. The
most general form of the energy equation is given by

u? + v?

2

E = —p+p + ph, (5.50)

and the equation of state for the mixture of gas is given by

p=r [imx] T. (5.51)

The combination of equation (5.50) and equation(5.51) means that the temperature

can be written as
—E 4 2 (SN Yk 4 T e (s)
(/=X viR)

T
- 03/0 ¢,(s)ds + Cy, (5.52)

T =

Y
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where (5 and C, are constants if the conserved variables are fixed. With the
assumption of calorically perfect gas the equation (5.52) can be written as

Cy

T=—"2_
1—030p

(5.53)

However for the thermally perfect gas the equation (5.52) is implicit in temperature,

and for simplicity we write it in the following form

— B 4 £525)  ph(T)
p (S YiR))

- Cl —|— CQh(T),

T =

: (5.54)

where C; and C; are constants if the conserved variables are fixed and the above

equation has the form

FT) = T~y — Coh(T). (5.55)
In the above equation % = ¢,(T) (see equation (5.18)), and C, = 4 (equation
(5.39)) and it is also given in the previous Section that v = c:va then the

combination of all these quantities enables that the equation (5.55) to be written

as
df(T) dh(T) ey (T) —1
Sl — 11— ) = 1 — _ ,
dT C 7 Cacy(T) R = 590
where v is the function of temperature and which is always greater that one, so we
have that
df(T) —1
= 1 .
o7 o < 1, (5.57)

and which guarantees that the function is strictly decreasing function. So the
equation (5.55) can be solved by using a Newton Raphson iteration [16]. Hence
with the implementation of the Newton Raphson iteration the equation (5.55) can

be cast in the following form.

Toyw = 1T, — f(Tn)[ Lo docs ]

N1 = [(Th)

For performing above iteration there is a need to evaluate the enthalpy h(7') as the

(5.58)

function of temperature. For this purpose the integration of the equation (5.18)

with the reference temperature 298 Kelvin, gives

hi(T) T
/ ds = / ¢pi(s)ds, (5.59)
h 2

;(298) 98
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T
hi(T) = h¥® / ¢pi(5)ds, (5.60)
208
where s and h{ = h??® are the dummy variable of integration and enthalpy per unit

mass at 298K for species 7 and also called the heat of formation at 298K, and is
given in [77]. With the assumption of the calorically perfect gas, then 298K can

298

used to evaluate the constant value of ¢, ;. Then with notation of ¢

(5.60) can be written as

, the equation

hi(T) = RI® + (T — 298), (5.61)

12

for a calorically perfect gas with reference temperature 298K (see for example Fed-
kiw [28]). Now the enthalpy as a function of temperature is given by equation (5.32).
To speed up the code the similar procedure as described in [28] has been adopted
, i.e. at the beginning of the code, the table of h;(T)’s for each species and every
integer number between 300K and 4800K have been created by the polynomial fit
(see for example Kee et al.[45]), and during the computation, for the non-integral

value of the temperature, h;(T')’s have been obtained by interpolation.

5.9 Eigenvalues and Eigenvectors

Upwind scheme are widely used for the simulation of the reacting flow problems due
to their excellent shock capturing ability, but may require a complete analysis of the
Jacobian matrix of the PDEs system in term of the eigenvalues and eigenvectors.
On the other hand when attempting to simulate complex phenomenon, a system
of equations will almost certainly have very complicated convection terms. It is
hard to find the Jacobian matrix of a convection term with respect to the conserved
variables.

If the eigensystem is slightly perturbed then the characteristic fields are changed
and in some cases upwind for one field is downwind for another [28]. In the following

Section we will write the eigenvalues and eigenvectors, the detail is given in [28]

5.9.1 1D Euler Equation

Consider the equations (5.5), (5.6) and (5.7). Recall that for the thermally perfect
gas, the equation (5.21) gives the enthalpy per unit mass as

T
h = k' o+ / ep(s)ds, (5.62)
0
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which is the function of temperature, and for any conserved variable, the equation

(5.62) can be written as
dh dT

d‘/c = Cp( )d—‘/cv

which express the derivatives of h with respect to conserved variables. For the

(5.63)

calorically perfect gas the enthalpy per unit mass, see equation (5.22) is given by
MT) = kY + T, (5.64)

and ¢, is constant. Then the derivative of h can be expressed in the following way

dh drT
= T .
d‘/c Cp( ) d‘/c

Now the equations (5.63) and (5.65) are identical except the fact that ¢, is the

(5.65)

function of temperature in equation (5.63). The equation (5.7) can be written for

pressure as follow
2

p = —E+ % + ph, (5.66)
and the derivative with respect to the conserved variables are given as
d 2 dT
dp drT
= — 5.68
) =~ T Py (568)
dp drT

with the help of equations (5.63) and (5.65). Now the derivative of the equation

(5.24) with respect to conserved variables gives that

dT

d . .
@ pr - .
i RT + pR 0’ (5.70)
dp . dT
= pR——r, 5.71
T = P 57
dp - dT

which can used to eliminated the derivative of T in equations(5.67-5.69). We can
then solve for the derivative of p to obtain

dp

5 =0 - (% = h + ¢T), (5.73)

= (v = D(=u), (5.74)
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j—g = (y — 1), (5.75)

which will be needed while calculating the Jacobian matrix. Now the Jacobian
matrix of f(u) is given as

dp dp dp T
I + =), —J, —=J:|+ (I, uJ, HJ )
“ (d,o ! d(pu) I AR f) (13, udy ») (5.76)

and the notation M7 stands for the transpose of the matrix M, [ is the 3 x 3

identity matrix and

0 —u
Jf = 1 J, = 1 . (577)
U 0

The eigenvalues of above mentioned Jacobian matrix are
Alzu—é,)\gzu,)\g—l—u—l—é, (578)

and corresponding the left eigenvectors LY, L), L®) and the right eigenvectors

R, R® RO are

b v —biu 1 b
LV — [Z2 - = - A )
(2 + 2¢’ 2 2¢7 27 (5.79)
L® = (1 — by, by, —by), (5.80)
b v —biu 1 b
L® - [2 . = L - 2 8]
(2 2¢7 2 + 2¢7 27 (5.81)
1 1 1
RD=| y—¢ |, RY= w o |, RO=1| wte |, (5.82)
H — uc H — i H + ue
where
~ yp
¢ = | —, 5.83
p (5.83)
and
—1
bl = 7~2 bz =1 + blu2 — blH (584)
¢

5.9.2 2D Euler

Consider the equation (5.8-5.10). In order to obtain the eigenvalues and eigenvectors
of the Jacobian matrix f(u) set A =1and B =0, and similarly the eigenvalues and

eigenvectors of g(u)) can be obtained by setting A = 0 and B = 1 in the equations
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given below (see for detail Fedkiw [28]).
From equation (5.10) the pressure is given by

plu? +v?)

- K
P + 5

+ ph,

then the derivatives with respect to the conserved variables are

dp — —(u* + )
bt L S L B h bttt
dp 2 Tt dp’
dp N drT
= u pe ,
d(pu) "d(pu)
dp d
— = v + pc ,
d(pv) “d(pv)
D drT
Bt S| bl
aE RS

134

(5.85)

(5.86)

(5.87)
(5.88)

(5.89)

Then the derivative of equation (5.24) with respect to the conserved variables are

given as
%;: ET+pE%§,
d . dT
T = Py
d . dT
) = iy
A

(5.90)
(5.91)
(5.92)

(5.93)

The above derivatives can be used to eliminate the derivative of T' in equations

(5.86-5.89) and finally we have that

D - - ke
dp B B u
dp B B .
2 = =10,

(5.94)

(5.95)
(5.96)

(5.97)

which will be utilized while calculating the Jacobian of both f(u) and g(u). Now

the Jacobian matrix is given by

dFE

d d d d
ul + (p.] P J P Jf —pJf) + (1.]5 udy, vdy HJb)T. (598)

dp™! d(pu™ d(pv
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In the above equation MT means the transpose of the matrix M, [ is the 4 x 4

identity matrix, and

e O

J;=

Wl

U

SIS

0

(5.99)

Next list of the eigenvalues, the left and right eigenvectors of the Jacobian matrix

are given by

u— Aé
v — Bé
H — uce

where

G, M o= 0+ &
blv B bl
2 2¢7 2 )7

ey 2o
2 287 2)7
_ X -
u — B¢
U‘|‘AE 7
| H — -+ e
_ X -
RO — u—l-zZlE 7
v + B¢
| H + qac |

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)
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—1

by = 752 o by = L4bg?—bH (5.108)
. 7p

&= |2 5.109

, (5.109)

5.9.3 2D Euler with Multiple Species

The 2D Euler equations with Multiple Species have NS + 3 equations thus im-
plying that there will be NS+3 possibly non-distinct eigenvalues with associated
eigenvectors. For the mixture of thermally perfect gases the enthalpy per unit mass

as defined by equation (5.35) can be written as
NS T
ho= Y Vih! + / ep(s)ds, (5.110)
=1 0
and for a mixture of calorically perfect gases the above equation has the form

NS
ho= S Yih{ + epT. (5.111)

=1
Now considering the above equation we calculate the derivative of ph with respect

to the conserved variables

d(deh) = hys + ,ocpcjl—z, (5.112)
e,

jﬁzi; _ pcp%7 (5.114)

% _ pcng, (5.115)

j((;}fé)) b~ b 4 'OCWZ%’ (5.116)

wherei =1 to NS —1. These derivatives hold for both mixture of thermally perfect
gases as well as for the mixture of calorically perfect gases. The equation (5.31) can

be written as
plu? + v%)
2

and the derivatives with respect to the conserved variables give

p = —E + + ph, (5.117)

dp —(u? + v?) dT
_ T TY) oy o 11
dp 5 + hns + pep 0’ (5.118)
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dp drT

Tow =t P (5.119)
d(cfopv) =0+ pcp%, (5.120)
j—g = 1+ ,ocpj—g, (5.121)
d(i}%’) = hi—hys + pcp%, (5.122)

where 1 = 1 to NS — 1. By taking the derivatives of equation (5.40) with respect

to the conserved variables we obtain

d dT
= RysT + pR=-, (5.123)
dp dp
dp drT
= pR——, 5.124
T = P (5124
dp drT
= pR——, 5.125
Ty = "o (5:125)
dp drT
dp dT
= (Ri — Rys)T . 12
dpvy = T )T ekt (5.127)

The above derivatives can be used to eliminate the derivatives of T in equations(5.118-

5.122) and finally we will get

dp u? 4+ v? ¢, BnsT
— = -1 (—— — K L 12
5, =~ 0= Ns + F), (5.128)
dp
= (v — D)(—u), 5.129
s = = ) (5.129
dp
= (v — 1)(—v), 5.130
= = () (5.130)
b (v = 1) (5.131)
dE - 7 9 .
dp C (RZ — RNs)T
= — 1)(—hy h L 5.132
oY) (v = D(=hi + hys + 7 ); (5.132)
which we will need while calculating the Jacobian matrix.
The Jacobian matrix is given by
ul + JF + JB, (5.133)

dp dp dp dp dp dp )
JF = (23 J J, Ly, P 3. P 3 5134
(d,o Tdlpu)™ d(pn)™ dET d(py)) T d(pYnso) (5134
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and

JB = (1.]5 uJb UJb HJb 1/1.15

where [ is the NS 4+ 3 by NS + 3 identity matrix, and

0

<> ml D>z

jam)

0

J, =

|
>

g

o o

0

Let us write the eigenvalues of this Jacobian matrix as follows:

A2

)\1 = u — C,
prnd . prnd )\NS-I—Q prnd u7
)\NS—I—S — ﬁ —|— E

The rows of the following matrix are the left eigenvectors L(?)

by | 4 4 b3
2 +26+ 2
1 — by — by
0
-V
—Ynso1
by 4 4 b
2 25+2

while right eigenvectors R® are the columns of the following matrix

1
u— Aé
v — Bé
H — e

Yi

Yns—1

_bhu
2 28

_biu | A
5+

blu

2¢

_bhwv

2

_bw | B
5 1oz

jam)

B
22

b1
2

—b,
0

b1
2

—by 2z
2

5121

0

—by 2z
2

0 1
0 u+ Aé
0 v+ Bé
zns—1 H + e
Y1
Yns-1

YNS—1Jb)T )

—bizns—_1

b1ZNS—1

—bizns—_1

2

138

(5.135)

(5.136)

(5.137)

(5.138)

(5.139)

, (5.140)

(5.141)
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where [ is NS — 1 by NS — 1 identity matrix and

¢ = w4+ v} 4= Au + Bv, 6 = Av — Bu, (5.142)

8 PPe L+ p
¢ = \|p, + o H = P (5.143)
b= L2 b = 1+ b — b, (5.144)

pC

NS-1 oy,

bg = bl Z 1/2'22', Z; = ——l, (5145)
=1 DPe

where py, is the derivatives of pressure with respect to mass fraction of ith species.

5.10 Numerical Method

We have considered 1D case of equation (5.29) with no viscous effect,excluding and
including the source terms by using the method of lines. The standard computa-
tional procedure followed in the method of lines is that the hyperbolic term [f(u)]
is discretized with the suitable discretization scheme and resulting ODEs system is
integrated with the suitable time integration package.

Due to its popularity the second order upwind scheme together with the van
Leer limiter [7] was used for the spatial discretization. The motivation was to use
a simpler alternative to the very complicated scheme (ENO) used for the spatial
discretization in ([29]). Another novelty we have introduced is that instead of
controlling CFL number or the local error per step we have controlled the local
error per unit step, as in previous work.

An additional stringent requirements imposed on the numerical methods is that
it must be able to handle step gradients, shock and contact discontinuities, that may
develop spontaneously and then persist in the flow. Classical numerical schemes
had a tendency to either produce large spurious oscillations near steep gradients.
An introductory discussion of these difficulties and method can be found in [84].
Among the various upwind methods, one of the most popular is the Roe’s scheme,
which was originally proposed for a perfect gas [65]. The complicated procedure
concerning the extension of the above scheme to non-equilibrium chemistry has been
discussed in [76], its failure on some problems have been discussed in [25]. Due to
simplicity and better shock capturing properties [25] we have used the Marquina

Flux scheme for both reacting and non-reacting cases [25]. For the 2D problem the
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same considerations can be applied to the flux in the other spatial dimension. Then
remains only to solve the quasilinear form of the mass fraction equation
pY1 puY
: + : = 0. (5.146)
pYNs—1 . puYns-1
These equation have been solved equation by equation (scalarly) and it is evident
that the upwind direction for the x-direction is u respectively and similarly can

be extended to other direction. In this concern we have followed the approach, as

described in [76], and we have that
Fn(ULU7) = YU, + Y7 1L (U U7, (5.147)

where /;';(Ul, U”) and fp_u(Ul, U”) have been estimated by the procedure described

in Chapter 2, U! and U” have been approximated with the second order upwind

scheme.

5.10.1 Numerical Results

Problem 1 This is the popular shock tube test problem of Sod[70] for the one-
dimensional, time dependent Euler equations for ideal gases with v = 1.4 and has
an exact solution. The problem models the flow of a gas in a long tube following
the sudden breakdown of a diaphram separating two initial gas states at pressure
and densities. Its solution will contain simultaneously a shock wave, a contact
discontinuity and an expansion fan. Hence it is an attractive problem to judge the
performance of the method. The initial conditions are given by
p(x,0) = 1, m(x,0) = 0, e(x,0) = 2.5, forx < 0.5, (5.148)
p(x,0) = 0.125, m(x,0) = 0, e(x,0) = 0.25, for x > 0.5,
where m is the momentum, p is the density and e is the specific total energy. The
length of the domain is 1 and final time is 0.2 and the boundary conditions are
transmissive [84].
Problem 2 The 1D Euler Equation for multi-species flow without chemical reaction
has been solved first. The molar ratio 2/1/7 of Hy/O3/Ar has been assumed with
the further assumption that they are thermally perfect gases. The initial data for

1D shock tube problem is

J
T = 40K  p = 8000, (5.149)
m
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on the left and
J
T = 1200k, p= 80000—3, (5.150)
m

on the right. The above equations show that we know the temperature and pressure
and need to know the density and total energy for the mixture of thermally perfect
gases.

First we describe the procedure to evaluate the density of the mixture, which
can be evaluated by making use of the equation of state for multi-species as given
by equation (5.40). The equation of state shows that there is a need to evaluate the
gas constant for the mixture of thermally perfect gases, which is given by equation
(5.39). It involves the mass fraction of each species, which can been calculated
according to the procedure described in Section (5.6.4).

The total energy F of the mixture for the 1D Euler equations can be evaluated
with help of equation (5.31), and we write as follow:

2
E = —p+ % + ph. (5.151)

In the above equation, the procedure to evaluate enthalpy per unit mass for mixture
of thermally perfect gases has been described in Section (5.8).

The length of the domain is 10cm and time is 40ps and this example has been
taken from [28] and the transmissive boundary conditions (see [84]) have applied
problem 3 Now, we have considered a one-dimensional shock tube test problem
with chemistry as given in [28]. Consider a shock hitting a solid wall boundary and
reflecting off. Then after a delay a reaction wave kicks in at the boundary. The
reaction wave picks up stream and merges with the shock causing a split into 3
waves. From wall to outflow (left to right) these waves are a rarefaction, a contact
discontinuity and a shock (see for detail Fedkiw [28]).

Consider the 1D Euler equations for multi-species flow with chemistry (see ap-
pendix (C) for chemical mechanism). Similarly to Fedkiw [28] we have taken 2/1/7
molar ration of H2/02/Ar and all the gases are assumed to be thermally perfect.

Now consider the initial data

k
p = 022 u=0", (5.152)
m

S

J
p = 7173, (5.153)
m
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on the left and on the right the initial data is given by

kg m
p = A1870—= u = —487.34—, (5.154)

m S
J
p = 35504-", (5.155)
m

and for details see Fedkiw [28]. The procedure to calculate the total energy has
described in Problem 2 and for mass fraction calculation see Section (5.6.4). The
length of domain is 10cm and time is 230u s. The left side boundary conditions are
reflective (see appendix (D) and [84]), while transmissive boundary conditions have

been implemented on right hand side of the domain [84].

5.10.2 Results Discussion

The first Problem is a mild test problem and its exact solution has computed in
the spatial domain 0 < = < 1. The numerical solution is computed with N = 140
cells of constant meshsize. The second order upwind order together with the van
Leer Limiter [7] has been used as the spatial discretization. The theta method [9]
together with Gauss Seidel iterative method has been used as the time integration.

The novel technique we have introduced is that we have controlled the local
error per unit step(see equation (5.2)) rather than the CFL number or the local
error per step (see equation (5.1)). The results with LEPUS control strategy has
been displayed in Figure (5.9), and code took 319 number of steps with the balancing
factor (e=0.3) with Gauss Seidel iterative method.

The results have also been obtained with LEPS control strategy for RTOL=0.1
and 0.01 and ATOL=10"° and are displayed in Figures (5.10) and (5.11). The
code took 383 and 566 number of steps with Gauss Seidel iterative method. The
comparison to the exact solution shows that with LEPUS control strategy, same
trend of accuracy follow as given by LEPS control strategy for RTOL=0.01 with
less number of steps

The second Problem concerns with the modelling of the thermally perfect gases.
So it is a hard problem and it is useful to assess the performance of the numerical
technique. We have taken 200 cells and the convection term has been discretized
with the second order upwind scheme and the theta method in combination with

Gauss Seidel method as the time integrator [9].
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The code takes 458 time steps with the local error per step control strategy
to reach the final time with the balancing factor (¢ = 0.3) and the results are
presented in Figure (5.12) which are comparable with the results as obtained by
Fedkiw [29]. The numerical experiments have also been performed with higher value
of the balancing factor, and when e was greater that 0.5, then aacuracy started
degrading when comparison was made to Fedkiw [28] results. In Figure (5.13) the
results have been displayed with balancing factor ¢ = 0.6 and the results are less
accurate as compared to results obtained with € = 0.3 as given in figure (5.12).

The numerical experiments have also been performed with local error per step
with (RTOL=0.1 and ATOL=10""). In this task the code took 482 steps and small
oscillations are visible in the solutions the results are displayed in Figure (5.14),
and it is evident that are small oscillations in the graph showing the density . The
code has been run at the tighter RTOL =0.01 with same ATOL, and the results
have been shown in Figure (5.15). The oscillations are no longer visible but the
Code took 846 time steps as compared to the 458 time step with LEPUS control
strategy.

For the comparison of both we have displayed the step size history with both
strategies in Figure (5.16) and Figure (5.17) and which reveal that with local error
per step control strategy the time-step is varying in oscillation manner while with
local error per unit step control strategy the step-size is almost constant which
is corresponding CFL number (%, where At and Az are scaled time step and
mesh size) 0.4 as given in Figure (5.18). Hence it can be concluded that with
LEPUS control strategy equation (5.2) yields solutions at least as accurate as those
obtained when controlling the LEPS control strategy chosen in order that the spatial
discretization error is dominates.

The Problem 3 is a very hard problem in which the species continuity equations
have been modelled along with 1D Euler equations, and has been taken from Fedkiw
[28]. The domain has been discretized into 400 equally spaced grid cells. For spatial
discretization we have used the 2nd order upwind method together with van Leer
limiter [7] in contrary to approach adopted in Fedkiw[28], i.e., ENO schemes. The
theta method together with Gauss Seidel iterative method has been used for the
time integration

The code took a long time to run, and results show that there is small oscillation

due to fact the numerical method has to resolve a one cell thick shock. The results
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with new technique LEPUS control strategy (see equation (5.2)) are given in Figure
(5.19) for time of 230us and the code took 6532 steps and the results are comparable
to Fedkiw[28].

The code has also been run with local error per step control strategy as given
by equation (5.1) with different RTOL and different ATOL. With RTOL= 0.1 and
ATOL=1x107*, in this case, the code stop working after some time due to negative
pressure being generated near the boundary and consequently a slightly tighter
tolerance has been used and the code has been run with RTOL=0.1 and ATOL=
1077, 1In this case the code took 5549 steps to reach the final time=230us and
got small oscillations as given in Figure (5.20). When the code had been run with
RTOL=0.01 and ATOL=107%, the code took 8207 steps and the results are given
in figure (5.21), again small oscillations are visible in this case also.

With both strategies, the results are of comparable accuracy except the species
HO, and H,0;. When LEPS strategy is being used, the comparison of results to
Fedkiw [28] have shown that for 0.1 relative tolerance HO; peak is higher and H;0;
peak is smaller and for 0.01 relative tolerance HO; peak is comparable to Fedkiw
[28] but the peak of Hy0j is smaller. On the other hand when LEPUS strategy is
being used HO, is exactly similar to Fedkiw [28] and H,0; is slightly smaller than
Fedkiw [28]. The shock position with both strategies is same.

From this we again draw the conclusion that LEPUS control strategy gives
solution with the comparable accuracy to that of the LEPS control strategy, but
for this extremely stiff and nonlinear problem, there is need to reduce the balancing
factor € and here we have chosen the balancing factor 0.025. The best choice of this

parameter merits further investigation.

5.11 Conclusion

The method of lines has been used to solve the reactive flow (problems from at-
mospheric dispersion and combustion problems). This method reduces the partial
differential equation to ordinary differential equations (ODEs) in time. The general
procedure usually adopted in the time integration package is to control the local er-
ror per step. The new controlling strategy (LEPUS) based upon the error balancing
approach has been successfully implemented instead of controlling the local error

per step and the linearised equations have been solved with Guass Seidel iterative
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method.

A detailed description of the error balancing approach has been explained in
Chapter 4 (see also [7, 49]). In the case of the atmospheric problem the new
technique has been successfully implemented to both 1D and 2D. The efficiency of
both strategies can be compared in Tables ((5.1) and (5.3)) comparing the number
of the integration steps taken by the both strategies.

The framework and numerical results regarding combustion problems presented
here shows that modern high accuracy numerical methods developed for gas dynam-
ics can be usefully extended to the much more complicated problem of chemically
reacting gas flows, and that these methods can effectively capture complex com-
bustion phenomenon presented in these flows. The local error per unit step control
strategy developed for the 1D Leveque and Yee problem [52] has been implemented
to complex combustion phenomena and numerical results with Guass Seidel itera-
tive method have revealed that with this control strategy the code is much more
robust as compared to the controlling the local error per step. From this work it is

clear that this technique merits further study.
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Figure 5.9: The numerical (dots) and exact (line) solutions of Problem 1 for the
density, velocity and pressure using local error per unit step control strategy for

balancing factor(e) equal to 0.3 at time=0.2.
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Figure 5.10: The numerical (dots) and exact (line) solutions of Problem 1 for the
density, velocity and pressure using local error per step control strategy for 0.1

relative tolerance and 107° absolute tolerance at time=0.2.



CHAPTER 5. REACTING FLOW PROBLEMS 148

O
&

Density
o
o
T
|

&

Pressure
o
o
T

Velocity

I I I I
o 0.2 0.4 0.6 0.8 1
X

Figure 5.11: The numerical (dots) and exact (line) solutions of Problem 1 for the
density, velocity and pressure using local error per step control strategy for 0.01

relative tolerance and 107° absolute tolerance at time=0.2.
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Figure 5.12: Numerical solution of Problem 2 using local error per unit step control

strategy for balancing factor(e) equal to 0.3 at time=40ys.
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Figure 5.13: Numerical solution of Problem 2 with local error per unit step control

strategy with for balancing factor (¢) equal to 0.6 at time=40us.
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Figure 5.14: Numerical solution of Problem 2 using local error per step control

strategy for 0.1 relative tolerance and 1 x 10™* absolute tolerance at time=40us.
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Figure 5.15: Numerical solution of Problem 2 using LEPS strategy for

tolerance and 1 x 10™* absolute tolerance at time=40us.
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Figure 5.16: Step size history using LEPS strategy, for 0.1 relative tolerance and

1 x 10~* absolute tolerance.
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Figure 5.17: Step size history using LEPUS strategy for balancing factor(e) equal
to 0.3.
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Figure 5.20: Numerical solution of Problem 3 with LEPS strategy for 0.1 relative
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Chapter 6

Conclusion and Summary

The major aim of the present work is to develop an efficient, robust, highly ac-
curate and general purpose numerical solver for reacting flow problems (such as
atmospheric dispersion and combustion). In the research, attention has been paid

to

o fast and efficient solvers for the chemical equations,
e space-time error balancing approach,

e local uniform grid refinement (1D case).

The first is of importance because the solution of reacting flow problems requires
that stiff ODEs integration must be carried out at thousands of grid points many
times in quick succession. This implies that the computational work is heavily dom-
inated by the numerical treatment of the stiff odes system describing the chemical
kinetics model in use. Hence it is of practical interest to investigate special purpose
solvers which run faster without sacrificing accuracy and reliability.

For this reason ODE solver based upon the NDF2 method of Klopfenstein [47]
has been developed for the solution of chemical kinetics arising from atmospheric
chemistry. Analysis [3] has shown that the the stepsize integrator has increased by
the factor of 1.26 over the same error in comparison with the BDF method. The
NDF2 algorithm is second order which implies that there is no increase in storage
requirements, and little increase in the computing effort.

It has formed a useful basis for constructing the numerical solution of the chem-
ical kinetics arising from atmospheric chemistry in combination with the Gauss-

Seidel iteration. The additional advantage of the Gauss-Seidel technique is that

157



CHAPTER 6. CONCLUSION AND SUMMARY 158

it reduces the storage requirements considerably. Also the storage requirement is
the restrictive factor because in large air pollution models the chemistry has to be
carried out at thousands of grid points.

Even though the NDF2 code in combination with Gauss Seidel showed improved
performance as compared to Verwer’s method [90], the results have indicated that
some tuning of the stepsize strategy and Jacobian evaluation criteria may be needed.
For this reason the theta method code has still proved useful, so we have used the
theta method [9] as the time integrator to find the solution of model problem (1D
and 2D Leveque and Yee problem [52]) and reacting flow problems.

The IMEX schemes [4] are widely used for the solution of the convection-diffusion
equation. The effect of using the NDF2 scheme has been explored and stability
analysis shows that in this case an IMEX scheme is stable on the purely imaginary
axis unlike the BDF2 method.

In the second part of the research much effort has been put into devising a re-
liable, fast and efficient solver for PDFEs arising from atmospheric and combustion
problems. The method of lines approach has been used for the treatment of ad-
vection which reduces the PDEs to a system of ordinary differential equations with
implementation of the suitable discretization scheme. For this purpose a second
order upwind scheme together with the Van leer limiter [7] has been applied for the
discretization of the spatial derivative.

For method of lines to be used efficiently, it is important that the time inte-
gration error should not dominate the error due to the spatial discretization of the
PDEs, otherwise temporal errror will remove the benefits of using a good spatial
discretization scheme.

This is really difficult if the LEPS is controlled by the integrator, since the
relationship between the ODE global error and the chosen accuracy is not clear
[49]. Also the spatial accuracy may vary with time, so any fixed tolerance used
in the ODE integrator is unlikely to be related to the size of the changing spatial
error. Hence we need a variable ODE tolerance which is related to the spatial
discretization the error and can be modified when the spatial discretization error
changes

So the new computational procedure based upon the error balancing approach of
Berzins [7] has been extended to PDEs with source terms, the LEPUS is controlled
rather than the LEPS and ODEs tolerance has varied with the local growth in time
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of the spatial discretization error. This strategy balanced the spatial and temporal
errors, allowing the spatial discretization error to dominate. The optimum choice
of the balancing factor is necessary so that the code may not take unnecessary time
steps (blanacing factor too small) and accuracy may not be degraded (balancing
factor too large) as explained in Chapter 4. In order to measure the local growth
in time of spatial discretization error, we first calculated the primary solution using
an upwind scheme and a quadrature rule to the source term, then the secondary
solution is estimated an with an upwind scheme and quadrature rule, different to the
previous one. The difference is the local growth in time of the spatial discretization
error. The spatial error measured with the error balance approach has been used
as the ODEs tolerance.

The starting point for the investigation of this approach has been the well-
known problem of Leveque and Yee [52] and produced very promising results. We
have observed that the local growth in time of the spatial discretization error is
increased sharply near the discontinuity. In the case of this problem a lack of the
spatial resolution yields a numerical front moving with the wrong speed because
of the discontinuity present in the initial data. This needs a very fine mesh in the
vicinity of the discontinuity, whereas a coarser mesh is adequate in the rest of the
domain. Hence it is desirable to automatically adapt the mesh to follow the time-
dependent nature of the solution which in turn requires some monitor function to
adapt the grid. The commonly used monitor function, is based upon the spatial
derivative. In this work we have introduced a new monitor function based upon
the local growth in spatial discretization error and this has been successfully used
to refine and coarsen the grid in a 1D case only.

In order to check the accuracy and reliability of the new approach, we have
performed numerous tests and draw the conclusion that the LEPUS control strategy,
gives as accurate results as that obtained with LEPS strategy.

After that we have tried to explore the feasibility of the new approach (LEPUS)
on reactive flow problems. First we have solved the 1D and 2D atmospheric disper-
sion problems, again the results provide the evidence that LEPUS control strategy
is as accurate as that of LEPS strategy. In the end we have tested a very hard
problem related to combustion [29], in which the second order upwind in combina-
tion with van Leer limiter has been used instead of the complex ENO [29] scheme.

We have attempted this problem both including and excluding chemistry, and in
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both case the LEPUS control strategy was applied. The results, even on this hard
problem, have revealed that LEPUS control strategy has accuracy comparable to
that of the LEPS control strategy.

Although LEPUS control strategy has worked well on almost all the problems,
there is need to pay more attention regarding some unresolved issues stated below.
The reason is that the local growth in time of spatial discretization error is increasing
with increasing the stiffness of the source term. With large values of the local growth
in spatial discretization error, the local error test made by the code is satisfied, but
may lead to the convergence failure of the non-linear solver, and the code will take
unnecessary steps.

Hence it is important that when the local growth in spatial discretization is large
then the balancing factor € should be small, which is the case only if we vary the
balancing factor € adaptively. The same is the case when the local growth in time of
spatial discretization error is small, the code will take unnecessary steps. To avoid
this problem we have taken a crude approximation, still there is more effort needed
in this regard.

Although a second order upwind scheme together with the van Leer limiter
were successfully implemented to a 1D combustion problem, still there are small
oscillations in the solution, and the code is not much faster, hence there is need to

attempt the use of a higher order upwind scheme.



Appendix A

Derivation of the Stability

Equation

Here we will derive the equation (3.28), recall that characteristic polynomial is given

by (see equation (3.27))
. 1 . s
ML= § = € F 86, (A1)

where { = 1 — X' = 1 — exp(—i¢p) and —m < ¢ <mand j, = X! _, = and
forqg = 2 7, = %, putting the £ in equation (A.1) and simplification gives that

ANE = %(1 — exp(—9))(3 — 3& — exp(—tp) + 6&exp(—ip) — 3dexp(—2up)).

(A.2)
Using the fact that exp(f) = cos(d) + isine(§) in the above equation with
simplification gives that
ML = %(1—cos(qb))(i’)—?)éz—cos(qb)—|—6&c05(¢)—3&005(2¢))
+ gsin(@)(sin(9) — Gésin(d) + 3asin(20))
F g in(8)(3 — 3 — cos() + Gacos(d) — Bacos(9)
il cos(0))((sin(6) — Gasin(é) + Basin(4)). (A.3)
We will consider the real part of the above equation, which is
Relg) = (1~ cos(¢)(3 — 36 — cos(6) + 6ircos(d) — 3dcos(20))
- %sin(qb)(sin(qb) ~ Gasin(é) + 3asin(26),) (A4)
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and simplification gives that

Re(q)

+ +

Using the identities

) =
) =

Using the identies defined in equation (A.6) successively we have that

3 — dcos(¢) + cos(29)

3acos(3¢) =

+ 96&0032(0)3@'714(0),

and

(=3& + 9dacos(¢) — 9écos(2¢)

where § = % Adding above three equations we have that

Re(q) = 4sin*(0)[(1 —3& + 124cos*(0)],

which is the required expression.

[3 — dcos(¢p) + cos(29)
(—=3& + 9dacos(¢) — 9acos(2¢))
3écos(39)].

sin(a)cos() + cos(a)sin(f),
cos(a)cos() — sin(a)sin(B),
2a) = cos*(a) — sin?(a),

)

= 2sin(a)cos(a).

3&¢ — bHdacos(f) + 48&5in2((9)

—3a + 54&5in2((9)
— T2asint(9),

162

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)



Appendix B

Atmospheric Reaction Schemes

B.0.1 First Reaction Scheme

This reaction scheme with constant reaction rate has been taken from [90]. The

units for the rate constants are min="! for first order reactions and ppm=

the second order ones.

No. | reaction mechanism | rate constant
1. NO, — NO + O3P 0.350 x 10+9¢
2. NO + Os — NOs 0.266 x 10192
3. HO; + NO — NO; + OH 0.120 x 101095
4. HCHO — 2HO, + CO 0.860 x 10793
5. HCHO — e 0.820 x 10~°3
6. HCHO + OH — HO, + CO 0.150 x 10195
7. ALD — MEO2 4+ HOs + CO 0.130 x 10793
8. ALD + OH — C203 0.240 x 10+
9. C203 + NO — MFEO2 + NOs> + COs  0.165 x 1019
10.  C203 4+ NO4 — PAN 0.900 x 10104
11. PAN — . (C203 + NO, 0.220 x 10~
12. MEO2+ NO — CH30 4+ NOs 0.120 x 1019®
13. CH30 — . HCHO + HO, 0.188 x 101091
14. NOs + OH — HNO3 0.163 x 10195
15. O3P — Os 0.480 x 10107
16.  Oj — o'D 0.350 x 10793
17. O3 — 03P 0.175 x 10791
18. O'D — 20H 0.100 x 10+9¢
19. O'D — 03P 0.444 x 10112
20. SOs + OH — S04 + HO» 0.124 x 101094
21. NOsj — NO 0.210 x 10+09!
22.  NOsj — NOs + O3P 0.578 x 101091
23. NOs + O3 — NOs 0.474 x 10~
24. NO; + NOsj — N-Os 0.178 x 1010
25. N-Os — NOs + NOs3 0.312 x 101!
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B.0.2 Second Reaction Scheme

This reactions schemes has been borrowed from [10], which has 8 species and 7
reactions. The unit for the mth order rate constant is (molecule cm™?)*="s~. The

photolysis rate constants have been pararmeterised as a function of the solar zenith,

giving a first-order rate constant.

O3 | Reaction Rates
1. ROC +hv — RP+ ROC jp[1] = 1000exp(-4710/T)ip[3]
9. RP+NO — NO, kr[2] = 3.7008x 10~ Zexp(242/T)ip[3]
3. NOs + hv -  NO + 05 ip[3] = 1.45x10 %exp(-0.4 sec(h)
4. NO+0; —= NO» kr[4] = 1.7886x 10~ Zexp(-1370,T)
5. RP + RP — RP kr[5] = 6.7673x 10712
6. RP+ NOy — SGN kr[6] = 1.00 x 10713
7. RP+ NO, — SNGN kr[7] = 1.00 % 1013




Appendix C

Chemical Mechanism

Species Molecular Weight  Low Temp
H 1.00797 500
0 15.9994 300
H, 2.01594 300
0 21,9988 300
OH 17.0074 300
H,0 18.0153 300
HO, 33.0068 500
Hy0, 24.0147 300
Ar 59.9480 300
Units
Molecular Weight
Temp(T)
Pre Exp(A)

Temp Exp (5)
Act Eng (F,)

165

High Temp

5000
5000
5000
5000
5000
5000
5000
5000
5000

g x mole™?
Kelvin
cm X mole X sec x Kelvin
(non)
cal x mole™!
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REACTION MECHANISM
| Reactions [ PRE EXP__TEMP EXP__ACT ENG
1. O, + H — OH 4+ 0 2.00E+14 0.000 1.6802E+04
2. OH + O — O3+ H 1.46E+14 0.000 4.9702E402
3. Ho + O — OH+ H 5.06E+04 2.67 6.2860E+03
4, OH + H — HsO 4+ O 2.24E+04 2.67 4.3980E403
5. Hs + OH — H-0 4+ 0O 1.00E408 1.60 3.2980E+03
6. H-O + H — Hs + OH 4. 45E+08 1.60 1.8435E+04
7. OH + OH - HO+ O 1.50E+09 1.14 1.0000E402
8. H-O + O — OH 4+ OH 1.51E+10 1.14 1.7122E4+04
9. H+ H4+ M — Hy 4+ M 1.80E+18 -1.00 0.0000E+00
10. Hs + M - H4+H+ M 6.99E+18 -1.00 1.0423E405
11. H4+ OH + M — HO+ M 2.20E+22 -2.00 0.0000E+00
12. HsO + M — H+OH+ M 3.80E+23 -2.00 1.1936 E4+05
13. O+0+ M - O+ M 2.90E+17 -1.00 0.0000E4-00
14. Oy + M - 04+ 0+ M 6.81E+18 -1.00 1.1864E+05
15. H+ 0y + M — HO, + M 2.30E+18 -0.80 0.0000E400
16. HOs + M - H4+ 0+ M 3.26E+18 -0.80 4.6816E4+04
17. HO, + H — OH 4+ OH 1.50E+14 0.00 1.0040E+03
18. OH + OH — HOs + H 1.33E+13 0.00 4.0225E4+04
19. HOs + H —  Ho + O 2.50E+13 0.00 6.9300E402
20. Hy + O — HO, + H 6.84E+13 0.00 5.8102E+04
21. HOs + H - H-O+ O 3.00E+13 0.00 1.7210E403
22. HO+ O — HOs + H 2.67TE+13 0.00 5.7964E404
23. HOy + O — OH + 0O+ 1.80E+13 0.00 -4.0600E4+02
24. OH + O — HOs + O 2.18E+13 0.00 5.5117E+04
25. HOs + OH —  H-50 + Os 6.00E+13 0.00 0.0000E+400
26. H-O + Os — HO, + OH 7.31E+14 0.00 7.2545E+04
27. HO, + HO» —  Hy04 + O 2.50E+11 0.00 -1.2430E+403
28. OH+OH+ M — HsOs+ M 3.25E4+22 -2.00 0.0000E+00
29. H-Os + M — OH +OH + M 210E+24 -2.00 4.9426 E+04
30. H-.Oy + H — Ho+ HO+ 1.70E+12 0.00 3.7520E+03
31. Hy+ HO+ — H-2O, + H 1.15E+12 0.00 1.9331E+04
32. H-O, + H — H-O + OH 1.00E+13 0.00 3.5850E403
33. HO+ OH — Hs0Os + H 2.67E+12 0.00 7.3497E+04
34. H-O5 + O — OH + HO» 2.80E+13 0.00 6.4050E+03
35. OH + HO- —  H-205 + O 8.40E+12 0.00 2.0098E+404
36. H-Os + OH —  Hs0O + HO» 5.40E+12 0.00 1.0040E+03
37. Hs0O + HO» — H.Oy + OH 1.63E+13 0.00 3.1718E+04
Collision efficiences in reactions with M:
fu, = 100, Fo, = 035, Fg,o = 6.5 fn, = 0.5
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Appendix D

Boundary Conditions

The imposition of boundary condition is, fundamentally, a physical problem so
great care is required in their implementation. For this consider the domain [0, L],
which has been discretized into N computing cells of length Az we need boundary
conditions at the boundaries #+ = 0 and = L as shown in Figure(D). Numerically,
boundary conditions provide the numerical fluxes f% and fN+%- The boundary
conditions may result in direct evaluation of fluxes f% and fN+%' We may also
have an alternative route, in which we have fictitious values in the ghost cells [y

and Inyq, adjacent to [; and Iy respectively. So boundary Riemann problems

RP(Ug,Uy) and RP(Uy,Upy1) are solved and the corresponding fluxes f% and

fN+% are computed with appropriate Riemann solver. Suppose that at « = L
Left Right
boundary boundary
Computational
domain
>~ e * o
X= X=
(O 1 N N+1
Left Right
ghost cell ghost cell

reflective boundary conditions have been applied. Then fictitious state Uyn4y(2,) is

defined from the known state Un(¢,) inside the computational domain, namely

praa(t) = pv(ta) unaa(ta) = unlta)e paaa(t) = p(t). (D)

In the above equation (D.1), p is the density w is the velocity, p is the pressure.
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