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ABSTRACT 
 

The increased awareness of the ability of cells in detecting mechanical cues 

from the external environment [1] led to consider the possibility of triggering a 

cellular response by applying external mechanical forces [2]. In order to drive 

the commitment of differentiated cells and obtain in vitro engineered implants 

as replacement for bone fracture sites, a scaffold closely mimicking the 3D 

distribution of forces acting on bone cells in vivo  is required and is still ongoing 

research. On this purpose, a composite scaffold embedded with collagen 

(cPCL) is proposed in this study as structure to transmit externally applied 

mechanical forces to embryonic human mesenchymal stem cells (hES-MPs) 

through a gelatinous matrix of collagen.  A collagen concentration of 2 mg/ml 

and plasma treatment of scaffolds were selected as optimal conditions for 

survival and uniform seeding distribution of cells. Then, the second part of the 

study allowed to fully characterize, by mechanical testing and x-ray imaging, a 

novel hybrid scaffold able to provide an optimal environment for controlled-

bone progenitor cells growth. The objective of the last part of the study focused 

on the evaluation of how short bursts of compressive strain, applied as series 

of cycles at early stages (L1) and late stages (L2) of culture, affects cellular 

proliferation, bone tissue formation and the osteogenic response of hES-MPs. 

Short bursts of compression were found to strongly affect hES-MPs 

proliferation, suggesting cyclic compressive loading to delay the proliferation 

of samples compressed once. On the other side, L2 prevented proliferation to 

occur over 28 days, although greatly enhancing the production of mineral 

which, instead, was null for samples undergoing L1.   This study underlined 

the existence of a strong link between proliferation and mineralization potential 

of cells and confirms the possibility to vary their response by short bursts of 

compression applied on hES-MPs seeded in 3D hybrid scaffolds. 
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1 INTRODUCTION 
 

 

1.1 The clinical problem 

 

Bone tissue fracture is a worldwide issue caused by tissue deterioration as a 

consequence of ageing, bone related diseases, and severe traumas. When 

bone fracture occurs, surgical intervention is often required  to stabilize the 

bone and restore functionality of the damaged tissue [3]. In the past, implants 

made by metals and ceramics based material were the most common solution 

to restore the functionality of injured sites located in the musculoskeletal 

apparatus. Metals were employed to restore joints or load bearing sites due to 

their remarkable ability to support mechanical load [4]. The use of metals, 

often, led to failure and/or malfunctioning of the implant caused either by an 

inflammatory response [5] or misplacement [6]. Indeed, the metallic prosthesis 

shields the bone from absorbing stresses due to its high stiffness, causing 

bone resorption at the implant-bone interface. In some cases, mismatches with 

the healing site occurred also as a consequence of forces acting at the contact 

surface [7], and inducing bone absorption and remodelling. In order to avoid 

release of ions, ceramics were considered as replacement of contact areas 

between articulations where friction forces elicit their action.   [8]. Despite their 

good resistance to biological and rubbing corrosion, ceramics are highly brittle. 

Consequently, they are unsuitable for many applications as they tend to break 

or crack in locations governed by torsion and bending stresses [9]. 

The limitations encountered with the techniques mentioned above pushed 

toward the increasing demand for the use of implants reproducing the same 

characteristic as the tissue to replace in terms of geometrical architecture, 

chemical composition and mechanical behaviour. The ideal scenario involves 

embedding the implant with living cells to obtain a graft able to progressively 

adapt to the implantation site, to induce new tissue formation, and fully 
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integrate into the host-body. Nowadays, common grafting materials for bone 

regeneration purposes are composed of osteogenic cells interacting with bone 

tissue [10]. The ideal cell source would be tissue harvested from another site 

of the patient (generally the iliac crest) to develop cancellous, cortical and bone 

marrow autologous grafts. Bone ingrowth by autologous grafts occurs at first 

just by the activity of cells embedded in the implant, while the surrounding 

tissue is involved in the healing process after four weeks from the graft 

implantation. Autologous cancellous bone grafts vascularize easily, and 

present osteoconductive and osteoinductive properties. Indeed, the bone 

matrix supports bone ingrowth and the infiltration of osteoblasts and osteoblast 

precursors through the structure. At the same time, it releases proteins which 

promote cell proliferation.  The main drawbacks of autologous cancellous bone 

grafts are that the lack of mechanical support prevents their use for load 

bearing sites regeneration. On the other hand, autologous cortical bone grafts 

provide mechanical support to mechanical load during the initial phase of bone 

formation and have good osteoinductive capabilities. However, these grafts 

lack of osteoconductivity as cortical bone presents a compact osteon-made 

structure rather than a porous net made of randomly aligned rods. Both 

cancellous and cortical grafts had high rates of success especially in the 

treatment of defects up to 5-6 cm [10]. A lack of immunogenic response is 

among the main advantages characterizing autologous grafts, and satisfactory 

results were also obtained by direct injection of bone marrow grafts in the 

healing site [11]. Despite this, the concentration and the quality of cells 

choosen for the development of in vitro engineered scaffolds affect the implant 

success in vivo and may vary depending on patient, target site and technique 

used [10]. Despite the autologous grafts rate of success, the method is limited 

by the amount of tissue available, especially treating patients with chronic 

diseases and when multiple surgical procedures are required causing donor 

site morbidity. The use of cells deriving from tissue harvested from other 

donors (allografts) or animals (xenografts) is the most common alternative but 

it can cause tissue rejection, immunogenicity effects, risk of infections and high 

costs [10]. Some good results were achieved in cartilage repair where the 
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immunogenic response is lessen by the absence of vascularized tissue [12]. 

Due to the limited evidences of success in the replacement of bone tissue, 

graft methods need improvement to obtain an implant able to fully integrate in 

the healing site and to actively work in synergy with the host body in the bone 

formation process. 

 

 

1.2 Tissue engineering and the in vitro approach 

 

Since the 1950s, understanding of bone regeneration processes increased 

enormously thanks to: 1) the development of new technologies, allowing 

studies to be performed at the microscopic level such as microcomputed 

tomography, finite-element modelling and nanotechnologies; 2) the advances 

made in cellular and molecular biology on the characterization of bone-forming 

cells in vitro and in vivo; and 3) the identification of proteins involved and genes 

expressed in the bone repair processes. A promising solution to the 

development of adequate grafts for bone-tissue replacement is known as 

Tissue Engineering (TE). TE aims to fully restore the functionality of a tissue 

and induce new functional tissue formation applying engineering and life 

science principles [13]. According to TE, the combination of cells, adequate 

extracellular matrix, growth factors, and mechanical stimuli allows to obtain in 

vitro tissue having the same biological and physical properties as the target 

material. The choice of the correct cell type, scaffold properties and 

mechanical/chemical stimulation depends on the characteristic of the tissue to 

regenerate.  Scaffolds used for TE purposes must be: 1) biocompatible to 

avoid immuno-rejection; 2) shaped to match the healing site to avoid 

mismatches and misalignments of the implant; 3) able to bear mechanical 

stimuli providing support for cell activities. Moreover, biodegradable, porous, 

osteoinductive and osteoconductive scaffolds are preferred to guarantee 

harmless expulsion from the body, and satisfactory seeding efficiency and 

tissue formation rate [14]. As cells are required to produce matrix rapidly and 
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differentiated cells often have low availability due to the difficulties of 

harvesting tissue, stem cells are currently used as cell source. They present 

remarkable proliferation and differentiation capability but precise control over 

their commitment toward a well-defined lineage is still an open issue. It is clear 

that biochemical factors have a strong impact on cell commitment and that 

mechanical forces influence cells behaviour [15]. The behaviour of a 

population of cells was already widely examined on non-rigid  2D substrates, 

clarifying the role of substrate stiffness [16], surface functionalization [17], and 

response to various tensile and shear stress stimuli on stem cell commitment 

[18]. However, the current knowledge related to the effect of mechanical stimuli 

on human bone marrow progenitor stem cells (hMSCs) is mainly limited to 2D 

surfaces or 3D soft matrices. As the stimulus is not directly applied to cells but 

to the scaffold embedding cells, the actual load experienced may be different 

from the externally applied one depending on the material properties, 

geometry and architecture of the structure. 

 

 

1.3 Aim of the thesis 

 

This thesis aims to clarify the behaviour of human embryonic stem cell-derived 

mesodermal progenitors (hES-MPs) when global compression stimuli are 

applied externally on 3D polymeric scaffolds embedded with collagen gel and 

hES-MPs. In the literature, the effect of compression when cells are cultured 

on two dimensional (2D) or soft materials is becoming increasingly clear. 

However, both materials are not ideal for mimicking the tissue environment. 

Indeed, the former does not provide the three-dimensionality of tissue, while 

the latter, due to its low stiffness, prevents the application of high stresses 

representative of bone. As a consequence, the focus recently moved toward 

the use of 3D polymeric structures able to bear mechanical stimuli and whose 

chemical properties can be modified in order to match the mechanical stability 
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required for a particular application. 3D Insert® PCL is a good candidate to be 

used to mimic the environment found in bone in vivo due to the high 

reproducibility obtained by the fuse deposition modelling fabrication technique 

and its porosity matching the range for bone formation [19]. Despite this, the 

three dimensionality of the construct is not sensed at cellular level due to the 

small dimensions of the contact surface between cells and scaffolds so that 

the stresses sensed by cells are spread along 2 axes (Fig. 1.1.3A). In order to 

better mimic the mechanics of bone tissue, this study aims to develop a 

composite scaffold formed by an external solid structure responsible for 

bearing the mechanical load, and an internal soft collagenous matrix. Such a 

structure exploits the mechanical resistance of polymers and the deformability 

of collagen, allowing the transmission of stresses all around the surface of cells 

(Fig. 1.1.3B). This approach increases the three-dimensionality of the structure 

and, at the same time, provides a matrix of the most common protein making 

up bone tissue. hES-MPs were chosen as the cell source because of their 

reduced risk of tumour development due to the fact that their differentiation 

pathway is already partly defined and because they are expected to be more 

stable compared to embryonic stem cells enabling future therapeutic 

applications and advantages for bulk production of cells for therapy [20]. 

Moreover, hES-MPs led to an higher production of tissue formation compared 

to adult mesenchymal stem cells when culture in column bioreactors showing 

great potential for the development of bone substitutes [21]. 

This thesis is part of a European Research Council grant (FP7-258321) where 

in vitro experiments are developed in synergy with computational simulations, 

mutually exchanging information to provide a complete description of the 

phenomenon observed.  
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Fig. 1.1: Scheme representing (1) the scaffold with cells from a frontal plane. (2) Forces F were 
externally applied along the z-axes causing the deformation of the structure. (3) The structure 
transmitted stresses to cells which were further affected by the reaction force R with the ground. 
(A) Deformation of the scaffold structure alone caused stresses to act at the cell-scaffold contact 
surface, limiting the mechanical stimulation along 2 axes. (B) Including collagen in the structure 
provided further compressive forces C to act on cells because of the deformation of the 
collagenous matrix. The resulting stresses are expected to be uniformly spread around the space 
surrounding the cell, providing a 3D mechanical environment which better mimics the in vivo 
tissue matrix. 

 

A review of the current state of the art, in accordance to the field of study, is 

depicted in Chapter 2. Chapter 3 gives an overview of the general 

methodologies and the materials employed through the whole study, aiming to 

provide a collection of common procedures for the analysis of cellular 

behaviour and scaffold analysis. Geometrical and mechanical properties of 3D 

Insert ® PCL (Biotek, USA), the 3D scaffolds, used as external structure for 

bearing the mechanical compression, are presented in Chapter 4. Here, a 

sensitivity analysis evaluating the contribution given by the geometrical 

architecture of scaffolds to the overall variability in the mechanical response is 

discussed. Chapter 5 focuses on the comparison between static and perfusion 

seeding techniques. For this purpose, an in-house, low cost and versatile 

microfluidic device was developed to test the effect of different velocities and 

system configurations on seeding efficiency. In Chapter 6, the scaffold 

embedded with collagen (cPCL) is characterized by Micro Computed 

Tomography. Then, the effect of collagen concentration and plasma treatment 
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on hES-MPs seeded scaffolds is further discussed. This part determines the 

optimal conditions enhancing cell activities and provides well-characterized 

controls for further studies embedding cells. Eventually, the effect of applying 

cyclic mechanical compression short periods of time on scaffolds embedded 

with collagen and hES-MPs, including resting periods among stimulation, is 

presented in Chapter 7. Chapter 8 is focused on the discussion of the overall 

results, and conclusions are presented in Chapter 9. 
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Chapter 2 

2 LITERATURE REVIEW 
 

 

2.1  BONE TISSUE  

 

2.1.1 Anatomical structure of bone and cartilage 

 

Tissues are assemblies of cells and proteins organised in 3D structures and 

giving structural support to the body.  Metabolism, fate, shape and cellular 

commitment are influenced by composition and organization of the 

extracellular matrix (ECM) which varies depending on the function of the target 

tissue. The skeleton apparatus is composed of two main tissues, bone and 

cartilage, working together as a strong structure to provide the optimal 

resistance to solicitations due either to internal action of muscles and tendons 

or external forces.  

The adult skeleton has a total of 206 bones which provide structural support 

during movements and locomotion, protect vital organs and guarantee mineral 

homeostasis. Bone is a biological tissue formed by living cells embedded in a 

rigid framework. Bones in the human body are divided in four main categories: 

long bones, short bones, irregular bones and flat bones. Long bones are 

divided in three main areas: diaphysis, metaphysis and epiphysis (Fig. 2.1a). 

Diaphysis is for a strong structure able to support the body weight in vertical 

direction and is mainly composed of compact cortical bone [22] (Fig. 2.1c). 

Cortical bone is dense, rigid and surrounds the bone marrow. It is organized 

in lamellae which overlap forming cylindrical structures giving shape to osteons 

(Fig. 2.1c). Osteons are wrapped together and form the so called Haversian 

system, hosting a blood vessel in the centre responsible providing nutriments 

through the structure. Osteons organize to form a hollow cylindrical structure 
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containing bone marrow confined in an inner canal made of endosteum, which 

is a thin interconnected layer of osteogenic cells lacking of fibrous tissue (Fig. 

2.1c). The external surface is covered by the periosteum, an external 

vascularized double layer tissue strongly connected to the underlying cortical 

bone by collagenous fibers called Sharpeys’ fibers and covered by a thicker 

outer layer formed by dense connective tissue.  

 

 

Fig. 2.1: a) long bone structure, b) trabecular and c) cortical bone architecture. Taken from 

http://classes.midlandstech.edu/carterp/Courses/bio210/chap06/Slide3.JPG 

 

Trabecular bone is less dense and is characterized by a network of plates and 

rods randomly organized to form a sponge-like structure with anisotropic 

properties (Fig. 2.1b). Although presenting a different organization at the 

macroscopic level, cortical and trabecular bone are composed of the same 

extracellular matrix made of 50 to 70% mineral phase, 20 to 40% organic 

matrix, less than 3% lipids and 20% water. The mineral component is mainly 

formed by 200 Å crystals of hydroxyapatite and is responsible for conferring 
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the load-bearing strength to bone, while the organic matrix provides elasticity 

and flexibility. Collagenous proteins among which collagen type 1 are the most 

abundant, while non collagenous proteins make up the 10-15% of bone 

forming proteins and may be responsible for regulating mineralization and cells 

proliferation.  

Cartilage is made of cells called chondrocytes embedded in connective tissue, 

and proteoglycans and collagen packed in a dense fibrous membrane called 

perichondrium. Cartilage in the human body can have three different 

compositions leading to hyaline cartilage, elastic cartilage or fibrous cartilage. 

Hyaline cartilage is formed by chondrocytes located in spaces called lacunae 

and a high concentration of collagen conferring flexibility, elasticity and 

strength to the resulting tissue. It can be found in trachea, nose and joints 

aiming to reduce friction effects, to promote movements and to enhance 

longitudinal growth. Elastic cartilage has a similar composition as hyaline 

cartilage but the former includes also elastic fibers spreading through the 

structure in all directions. Elastic cartilage is found in ears, epiglottis and larynx 

and works as support for maintaining the organs’ shape. Fibrous cartilage is 

extremely tough and composed of bundles with different orientations 

depending on the acting stresses. It can be found in intervertebral disks and 

the glenoid cavity of the shoulder joint where it acts as shock absorbers and 

prevents dislocations. 

 

2.1.2 Bone cells 

 

Bone activities are regulated by the action of active cells embedded in the bone 

matrix: osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts [23]. 

Progenitor cells initiate their differentiation process (Fig. 2.2) becoming 

osteoblasts precursors at first and mature osteoblasts later.   

Osteoblasts are cubical in shape, and are metabolically active cells 

responsible for secreting matrix and increasing bone mass [24]. Mature 

osteoblasts have a large nucleus, an expanded Golgi apparatus and an 
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extensive endoplasmic reticulum secreting collagen type I and other matrix 

proteins. Terminally differentiated osteoblasts lead to osteocytes working as 

support for the bone structure and as metabolic regulators.  

Osteocytes are fully differentiated osteoblasts trapped into the matrix with 

extended cytoplasmatic processes forming a connected network to promote 

cell-cell communication by secreting connexions [25]. They sense the shear 

stress due to fluid flow through the lacuno-canicula network caused by 

mechanical forces acting on the bone matrix and translate it in a biochemical 

signal through the production of signalling molecules modulating osteoblasts 

and osteoclasts activity [15]. 

 

 

Fig. 2.2: Bone cells development. Mono-nucleated osteoprogenitor cells differentiate in 

osteoblasts and then extend protrusions fully differentiating in osteocytes. Osteoclasts, instead,   

are multi-nucleated and derive from the macrophage lineage. Taken from 

http://www.zoology.ubc.ca/~biomania/tutorial/bonets/anc01.htm 

 

Activated multinucleated osteoclasts derive from mononuclear precursor cells 

of the monocyte-macrophage lineage [22] and are responsible for bone 

resorption. During the remodelling process, osteoclasts bind the bone matrix 

via integrins receptors and polarize, performing their resorbing action by 

http://www.zoology.ubc.ca/~biomania/tutorial/bonets/anc01.htm
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releasing hydrogens ions and hydrolytic enzymes to digest the mineral and 

protein matrix [26]. 

 

2.1.3 Bone growth, healing and remodelling 

 

2.1.3.1 Bone growth 

 

Bone grows progressively from childhood to adolescence in radial and 

longitudinal directions following two different mechanisms: intramembranous 

ossification [27]  and endochondral ossification [28]. Intramembranous 

ossification is the mechanism followed by primary fractures healing and during 

development, and takes place in the epiphysis of bones where osteoprogenitor 

cells directly differentiate into osteoblasts.  

 

 

Fig. 2.3: From embryonic  to postnatal development of bone: (A) cartilage portion with 

chondrocytes, (B) chondrocytes swelling, (C) mineralization of bone occurring around the 

hypertrophic chondrocytes, (D) formation of blood vessels and bone formation starts, (E) 

formation of secondary ossification centres, (F) fully developed bone. Taken from  [29]. 

 

Osteoprogenitor cells derive from (1) mesenchymal stem cells (MSCs) present 

in various tissues such as bone marrow, tooth pulp, fetal cord blood and liver, 
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and (2) flattened bone-lining cells forming the endosteum and periosteum. On 

the contrary, long bone growth occurs through endochondral ossification 

where MSCs differentiate first in proliferating chondrocytes which produce a 

large amount of cartilage, and then further differentiate in hypertrophic 

chondrocytes (Fig. 2.3 A, B). On the perichondrium, the external tissue of 

developing limbs, stem cells differentiate into osteoblasts surrounding the 

matrix of hypertrophic chondrocytes (Fig. 2.3 C). Eventually, the hypertrophic 

cartilage is invaded by blood vessels and replaced by bone and marrow (Fig. 

2.3 D).  At the distal ends other ossification centres are likely to appear, 

enhancing the progressive growth in longitudinal direction (Fig. 2.3E). The 

space of contact between ossification centres is called growth plate and it 

undergoes postnatal mineralization [29]. 

 

2.1.3.2 Bone healing and remodelling  

 

During life, bone models its overall shape in response to physiological stimuli 

to maintain the mineral homeostasis and preserve its strength, constantly 

replacing packets of old bone with new ones through the dependent action of 

bone cells. The balance between production and absorption of extracellular 

matrix determines the ability of bones to satisfy the demand for mechanical 

support following the functional adaptation criteria consisting in maximal 

strength and minimal bone mass [30]. Bone remodelling is also observed in 

response to mechanical forces as bone change its load-bearing axes or its 

strength [31] depending on the external forces acting on the structure. The 

global load acting on bone during locomotion is non-uniform distributed 

ranging from 0 to 1800 microstrain in the cortical midshaft during locomotion 

[32] and maximum peaks of load of 2000 microstrain were measured in the 

tibia during vigorous activity [33]. Forces felt by cells depend on local stresses 

developing as consequence of fluid shear stress, hydrostatic pressure and 

mechanical loading due to the action of external reaction forces, muscles and 

tendons. To estimate the forces acting on cells different computational models 

were developed showing shear stresses up to 0.8-3 Pa, hydrostatic 
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compression up to 1-28 MPa at 1 Hz resulting from locomotion and 

physiological strains of bone in vivo typically in the range between 0.04- 0.3% 

[34]. 

Bone remodelling is involved also in the process of bone healing. It is 

commonly divided into three phases: 1) early inflammatory stage, 2) repair 

stage and 3) remodelling stage. The first inflammatory stage involves the 

formation of a hematoma recruiting cells such as macrophages, monocytes, 

lymphocytes and fibroblasts, responsible for the development of granulation 

tissue. Then, MSCs migrate to the healing site and vascularization of the new 

forming tissue begins by the action of fibroblasts laying on the stroma. During 

the repair stage, osteoblasts shape osteoids and secrete collagen, leading to 

the formation of a soft callus which eventually ossifies to bridge the woven 

bone in the facture. Eventually, the callus is further remodelled by the action 

of osteoblasts and osteoclasts, and the healing process is complete when the 

complete functionality is restored and the bone acquires again its optimal 

shape, structure and mechanical strength. The effect of forces on the healing 

process can be appreciated by observing the endochondral ossification in 

secondary fractures. Experiments have indeed demonstrated stiffer bone and 

larger callus formation when the healing site is subject to cyclic load rather 

than rigid fixation [29]. Animal studies have shown that strain rate is more 

important than strain amplitude in the bone formation process and low strain 

at high frequency stimulates bone growth as they are common stimuli 

associate with daily life [30].  

 

 

2.2 BONE TISSUE ENGINEERING 

 

2.2.1 Culturing cells from 2D to 3D 

In the past, cells were mainly cultured in flasks or petri dishes due to the high 

viability of cells growing on two-dimensional (2D) surfaces. However, cellular 
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tissues consist of an extracellular matrix organized in a 3D highly 

interconnected network made by fibers and pores with an architecture much 

different from the 2D conditions. Indeed, 2D substrates require an adaptation 

by cells to the lack of the ECM environment, strongly affecting their 

differentiation process. The increasing demand for overcoming 2D limitation 

led to the development of 3D culture matrices, known as scaffolds, with 

different architecture, composition and surface properties.  

For tissue engineering purposes, polymers have been intensively studied as 

raw material to be employed for scaffolds development as they allow control 

over mechanical properties, degradation kinesis, shape, architecture, pores 

morphologic features, and surface functionalization. Polymers can be 

generally divided into natural and synthetic, and can be processed through 

numerous techniques to manufacture scaffolds with various shape and 

properties depending on the application.  3D matrices can be used for clinical 

studies or in vitro 3D models. In the former case, scaffolds are required to 

provide initial support during the tissue formation and then degrade at rate of 

tissue formation  [35]. In the latter, scaffolds are employed to facilitate analysis 

of tissue formation at cellular level to improve the understanding of the tissue 

formation process.  

Scaffolds have three levels of structural control: macro-, micro- and nano-

scale. The macroscale controls properties such as size, shape and overall 

architecture of the scaffold, allowing developing constructs which perfectly 

match the geometry of the implantation site. For tissue regeneration purposes, 

scaffolds are required to match shape and size of the defect to provide support 

for tissue integration. For biology characterization of cell behaviour, scaffolds 

need to be accessible to imaging tools and have highly controlled matrix 

properties. At the microscale, the scaffold architecture can be controlled in 

term of porosity, interconnectivity, pore geometry and distribution, and 

topography. Porosity and interconnectivity are among the most important 

parameters to take into account for cell attachment and survival [19], [36]. 

Indeed, small pores and low interconnectivity lead to non-uniformly seeded 

scaffolds, and difficulties in supplying nutrients and oxygen in the inner portion 
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of the structure. On the other side, large pores may prevent cell attachment 

due to the low rate of contact between cells and the walls of the scaffold. Pores 

between 200-400 μm are preferred for bone ingrowth, allowing good seeding 

efficiency and nutrients supply in the construct [19].  Moreover, features at the 

microscale define the bulk properties of the material, determining scaffold 

response to mechanical stimulation and degradation rate, but also factors 

influencing cells shape and consequently their differentiation [16]. Indeed, it 

has been shown on 2D surfaces that soft matrices (0.1-1 kPa) mimicking brain 

tissue are found to be neurogenic, stiffer matrices (8-17 kPa) mimicking 

muscles are myogenic, and rigid matrices (25-40 kPa) mimicking bone are 

osteogenic. hMSCs cultured in 3D polycaprolactone (PCL) scaffolds [37] 

showed increased proliferation and better distribution throughout the 

constructs when a bimodal porosity was present further underlying the 

importance of micro and nano features on hMSCs behaviour. Last but not 

least, microscale and nanoscale patterns can activate different genes 

modulating cellular behaviours such as neuronal cells polarization [38] and 

myoblast alignment [39]. 

 

2.2.2 Natural polymers and collagen 

 

Natural polymers are derived from proteins or polysaccharides available in 

nature. Table 2.1 gives an overview of the most common natural polymers 

employed for biomedical applications regarding drug delivery or tissue 

engineering purposes [40]. Natural polymers have optimal biodegradability 

properties preventing inflammation and rejection while their chemical and 

structural properties can be easily varied to provide the optimal environment 

enhancing tissue growth. Chitosan, for example, is a cationic polymer obtained 

from chitin, a natural polysaccharide found in the shell of crustacean. It is 

biologically renewable, biodegradable, biocompatible, non-antigenic, non-toxic 

and biofunctional. Preparing chitosan is inexpensive, easy, and its mechanical 

properties are tuneable by varying the degree of crosslinking between 

molecules [41]. The same versatility can be found in alginates and in 
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hyaluronic composites. Moreover, the latter are pH-sensitive allowing a strict 

control over the release of biomolecules and implying their use for drug 

delivery applications and cell encapsulations. 

 

Table 2.1: TE applications for natural polymers. 

MATERIALS 
POLYMER 

ARCHICTURE 
TE APPLICATION REFERENCE 

COLLAGEN 

SPONGE BONE [42] 

GEL SKIN [43] 

GELATIN HYDROGEL 

BONE [44] 

CARTILAGE [45] 

SILK-FIBROIN HYDROGEL BONE [46] 

FIBRIN 
GEL 

 

VASCULAR TISSUE [47] 

BONE [48], [49] 

DRUG DELIVERY [50] 

SKIN [51] 

VASCULAR [52] 

ALGINATE 

HYDROGEL 

VASCULAR [53] 

CARTILAGE [54], [55] 

SKIN [56] 

BEADS DRUG DELIVERY [57] 

HYALURONAN 

GEL DRUG DELIVERY [58] 

MEMBRANE SKIN [59] 
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Among natural polymers, collagen is the most commonly used for TE 

applications as it is the major component of the ECM of mammalian tissues 

including bone, cartilage, tendon, skin. In the body 29 types of collagen 

differing in chemical composition can be found, and collagen I is the most 

abundant [60]. Collagen molecules are formed by three alpha chains (Fig. 

2.4a) each composed of thousands of aminoacids based most commonly on 

the sequence Glycine-Proline-Hydroxyproline. The three α-chains assemble in 

tropocollagen molecules through covalent bonding of glycine. Tropocollagen 

assembles in collagen precursors molecules called pro-collagen. Once 

secreted in the ECM, they self-assemble forming 10-300 nm sized fibrils (Fig. 

2.4.b) which agglomerate into 0.5 to 3 μm collagen fibers (Fig. 2.4 c).  

 

 

Fig. 2.4: collagen architecture composed of a) three alpha chains bonded together at atomic level 

and assembling (b) in fibrils and then in (c) fibers which can be wrapped together to organize in  

(d) fibrous structures. Taken  from  [60]. 

 

Collagen presents high mechanical strength, good biocompatibility, and 

modifiable mechanical properties by playing with the crosslinking degree 

between fibers. Normally, collagen is harvested from animal tissues including 

bovine skin and tendons, porcine skin and rat tail. In order to enable the use 

of xenogenic collagen, complex enzymatic treatments and filtrations steps are 
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performed [61] to reduce its immunogenic response. In general, collagen is 

purified by treatments with pepsin, to eliminate the main antigenic 

determinants situated in the telopeptine regions, and by increasing the degree 

of crosslinking  to hide the antigenic molecules placed in the alpha chains [62]. 

Collagen can be further processed by alkaline or acidic procedure developing 

gelatinous material. 

 

Collagen gel 

Collagen gel has been widely investigated as TE constructs [63] because 

among its advantages, it is easy injectable and has a biocompatible matrix. 

Collagen gel is generally characterized by a mesh of collagen fibers or 

molecules dissolved in a solvent and connected through hydrophobic and 

electrostatic bonds. Collagen gels exist in non-fibrillar or fibrillar form. Non-

fibrillar gels are formed by entangled rod-like molecules developing a viscous 

solution when dissolved in aqueous media. Molecules are much thinner than 

fibers whose porosity is obviously reduced up to 4 to 30 nm depending on 

concentration and additives [63]. The resulting gel is highly viscous and its 

charge can be tuned by varying the preparation method. Methylation produces 

a net positive charge on the molecules at neutral pH, while succinylation 

provides a net negative charge. On the other side, fibrillary collagen gel is 

composed of fibrils organized in a chain-like architecture, developing fibers 

variable in length and thickness. The behaviour of the gel is temperature-

dependent. The gel can be fluidized between 10-25°C, while incubation 

between 30-37°C confers a compact structure. Beyond temperature, collagen 

properties can be varied also by covalently modifying the level of crosslinking 

by exposure to physical or chemical treatments such as UV and gamma 

irradiation [60] or glutaraldehyde solutions [64]. Collagen gels have found 

applications in TE in the replacement of skin burns, myocardial tissue, vascular 

grafts [63]. Despite this, the lack of control over the final mechanical properties 

of the gel and the necessity to improve the gel strength for load bearing 

purposes in vivo led to the development of new collagenous solid forms such 

as sponges, sheets and preformed fibers. Among those, sponges are the most 
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interesting as they maintain the porous 3D structure typical of biological 

niches. Sponges are systems obtained from lyophilisation of collagen solutions 

whose porosity depends on temperature and speed of the freezing process 

before lyophilisation, and pH of the collagen solutions. Low temperature (-

80°C) produces homogeneous small pores of about 15 μm, while higher 

freezing temperature (-20°C) provides larger and less homogeneous pores 

ranging between 25-110 μm. Moreover, it was found that the lower the pH is, 

the smaller the pores are [62]. 

 

2.2.3 Synthetic polymers and 3D scaffolds fabrication 

 

2.2.3.1 Synthetic polymers 

 

Synthetics polymers (Table 2.2) were employed in the TE field during the past 

years finding applications in bone, cartilage as well as skin repair [65]. 

Synthetic polymers are particularly appealing, not only because their 

biodegradability rate can be easily tuneable, but also because it leads to the 

production of waste molecules well-tolerated by the host body, preventing 

immunorejection. The degradation rate of a polymer can be easily tuned by 

varying configurational structure, copolymer ratio, crystallinity, molecular 

weight, morphology, amount of residual monomer, porosity and site of 

implantation. Good biocompatibility is observed in polyesters whose erosion 

products are glycolic or lactic acid, ultimately expelled as carbon dioxide and 

water by the respiratory system. However, polyglycolic acid (PGA) and poly-

anhydride scaffolds have low molecular weight, resulting in a structure with 

poor mechanical properties and undergoing fast degradation [66].  Moreover, 

if the degradation rate of glycolic acid-based scaffolds is not optimized, a local 

increase in acids concentration occurs in the implant site, damaging the 

surrounding tissue. For this reason, polylactic acid (PLA) is preferred for 

biological applications. Not only it is highly hydrophobe and resistant to 

hydrolytic attack but it is also more easily metabolized by the body than the 
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other enantiomers of the same family. Copolymers of PGA and PLA show 

different properties depending on the ratio of each compound used in the 

fabrication process. The copolymers PLGA used in bone repair was shown to 

be biocompatible, non-toxic, and non-inflammatory, considered safe for use as 

replacement implants in musculoskeletal tissue [66].   

 

Table 2.2: TE application for synthetic polymers 

MATERIALS 
TE  

APPLICATIONS 
REFERENCE 

PLA 

BONE [67] 

BONE [68] 

CARTILAGE [69] 

BONE [70] 

PGA 

CARTILAGE [71] 

BONE [68] 

SKIN [72] 

BONE [73] 

CARTILAGE [74] 

PA ORTHOPAEDIC [65] 

PCL 

CARTILAGE [74] 

BONE [75] 

 

 

Polycaprolactone (PCL) is a semicristalline polyester with glass transition 

temperature at -60°C and low melting point between 59°C and 64°C. It 

degrades at lower rate than PLA. It is prepared by a ring opening 
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polymerization of the cyclic monomer ε-caprolactone. Homopolymers present 

a high degradation varying with molecular weight and were shown to be non-

toxic and biocompatible [76]. The degradation rate, porosity, interconnectivity 

and mechanical properties of polymeric scaffolds are strictly related to the 

processes employed for the fabrication.  

 

2.2.3.2 Polymeric scaffolds and common manufacturing techniques  

 

In order to achieve the desired characteristic at the macro-, micro- and nano-

scale different techniques can be employed in the fabrication process [77]. For 

the creation of porous materials, the most common techniques involve solvent 

casting, particulate leaching and freeze-drying processes. Solvent casting 

followed by particulate leaching is the most common technique for its 

simplicity, and strong control over pore size and interconnectivity of the 

resulting structure. It consists in mixing a water-soluble salt with a 

biodegradable polymeric solution in a container of desired shape followed by 

solvent evaporation.  

 

 

Fig. 2.5: PLLA scaffold prepared using different particles size. Taken from  [77]. 

 

Afterwards, the salt particles are leached by dissolving them in the appropriate 

solvent [77]. Pore size and interconnectivity can be adjusted by choosing 
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appropriate salt particles and varying the salt/polymer ratio to obtain constructs 

with different geometrical properties (Fig. 2.5). The dimensions of scaffolds 

created by this technique are restricted to a range of 0.5 to 2 mm because of 

the difficulties related to remove salt particles and enhancing nutrients diffusion 

in the inner of the scaffold [78]. The same drawback affects the production of 

freeze-dried gelatines. In this case, highly porous structures are formed by 

rapidly cooling the salt-polymer-solvent emulsion to lock the liquid state, and 

then the solvent and the water are removed by freeze drying. The resulting 

scaffolds were found to reach up to 90% porosity with closed pore size of 20-

200 μm (Fig. 2.6a) [79].  

 

 

Fig. 2.6: (a) PLLA scaffolds prepared by freeze drying [79] and (b) PLGA scaffolds prepared by 

gas foaming. Taken from  [80]. 

 

The use of solvents can affect the biocompatibility of the scaffolds due to 

residual compound left in the structure. This problem can be overcome by the 

gas foaming approach allowing the fabrication of highly porous polymeric 

foams employing carbon dioxide as bubble forming agents. The procedure 

consists in saturating the solid polymer by high pressure CO2 exposure and 

then in rapidly decreasing the pressure. This would lead to the nucleation and 

growth of CO2 bubbles responsible for the formation of pores. This technique 

was made to develop, for example, polymeric sponges with porosity down to 

100 μm size. The main drawback of this technique is related to the formation 

of closed pore structures with just 10-30% of interconnectivity (Fig. 2.6b) and 
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poor mechanical properties [70]. Improvement in the mechanical properties 

can be observed in other techniques involving phase preparation steps and 

allowing to tune pore morphology and mechanical properties by varying 

polymer, solvent, concentration of the polymer solution and phase separation 

temperature [77]. Although mainly limited to the development of 2D structures, 

an example of phase separation techniques is the electrospinning method, 

currently involved in the fabrication of fibrous polymeric scaffolds. 

Electrospinning consists in applying an electric field to control the formation 

and deposition of polymer fibers onto a target substrate. A polymer solution is 

injected with an electrical potential to create a charge imbalance. At a critical 

voltage, the charge imbalance begins to overcome the surface tension of the 

polymer solution to form an electrically charged jet directed toward the target. 

This electrospinning technique can fabricate fibrous polymer scaffolds in a 

sheet-like shape with fiber diameters ranging from several microns down to 

hundreds of nanometres [81]. 

 

 

Fig. 2.7: Rapid prototyping techniques for biomedical applications. Taken from [82]. 

 

Rapid prototyping emerged with the development of manufacturing industries. 

It enables the realization of highly interconnected structures and control over 

geometrical micrometric features. Rapid prototyping can be split in three main 
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branches called laser-based, nozzle-based or printer–based systems, 

depending on the working principle [82]. Laser based systems design 

predefined patterns on photolinkable prepolymers by applying high energy 

lasers.  An example is the process of stereolithography  (SLA) [39] consisting 

in (1) a reservoir containing the photocurable resin; (2) a laser source (normally 

UV) connected to a system controlling the movements on the beam in the XY 

plane; and (3) a platform moving on the Z axis (Fig. 2.8). This technique can 

follow either the bottom-up or the top-down approach and consists in 

depositing a layer of material on the top of the next by moving a platform 

toward the light source. The main difference between the two approaches 

consists in the position of the light source which is located respectively at the 

top or at the bottom of the reservoir containing the resin to cure. A further 

improvement of SLA was achieved by the introduction of μSLA [83] allowing 

the control of features at micro scale.  

Nozzle-based systems are generally based on melting polymers at elevated 

temperatures, which is undesirable from the perspective of scaffold bioactivity 

[82]. However with the development of the new technologies, systems using 

micro-syringes or deposition modelling were developed to avoid drawbacks 

related to the use of high temperatures.  

 

 

Fig. 2.8: Scheme representing the bottom-up and top-down approach followed by the SLA. Taken 

from [82]. 

 

For example, the Pressure Applied Micro-syringe process (PAM) employs a 

glass capillary syringe moving on the vertical plane and depositing material on 
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a platform while the Low temperature Deposition Modelling (LDM) consists in 

a liquefying process of the materials by applying temperatures below 0°C. The 

LDM technique is particularly worth to mention as it finds application in the 

development of bioactive scaffolds by involving multiple nozzles dispensing 

different materials simultaneously [84]. A further improvement in the realization 

of scaffolds suitable for TE was made by the arrival of 3D-plotters fitted with a 

computer- controlled syringe moving in the three planar directions and 

releasing material on a stationary platform. The key features of this process 

are the ability to plot viscous materials into liquid (aqueous) solutions with the 

same density, and the possibility to process thermally sensible biomolecules 

and even cells [85]. Among the main advantages, this technique supports the 

continuous deposition of micro-strands or discontinuous dots, providing high 

degree of control over the entire fabrication process. Moreover, strand 

thickness can be modulated varying viscosity, deposition speed, tip diameter 

or pressure. Despite the versatility, 3D plotting of scaffolds leads to smooth 

surfaces, requiring further functionalization to enhance cellular attachment.  

Printer-based systems can be used to fabricate parts in a wide variety of 

materials, including ceramic, metal, metal-ceramic composite and polymeric 

materials. The workflow is formed by three steps. In the first step, the powder 

is lifted while fabrication platform is moved toward the bottom where the 

powder lies (Fig. 2.9).  

 

 

Fig. 2.9: 3D printing working principle. Taken from [82].  
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During the second step, a roller spreads the powder in a thin layer and 

removes the excess of material.  Eventually, an inkjet print head releases a 

liquid compound working as bonding agent between adjacent particles of 

powder. Once the process is finished, any excess of powder is further removed 

by washing with solvents. A key requirement for the employment of such 

system in the development of scaffolds for TE purposes is the availability of 

biocompatible powder-binder systems [86]. The powder can be pure or 

surface-coated and also the use of multiple powders in the same application 

is permitted. The inkjet printing uses the same principle and workflow 

presented for the 3D printing but the powder is substituted with a liquid.  

 

2.2.4 Cell source 

 

In order to obtain versatile scaffolds able to progressively modify their 

architecture and eventually perfectly integrate into the healing site, cells are 

employed as active compound. The ideal scenario would be having access to 

a source of mature cells coming from the target tissue and able to produce 

high quantities of extracellular matrix. For bone regeneration, osteoblasts are 

the most obvious choice as they can be directly harvested from the patient 

(autologous cells), thus avoiding the immunologic effects. As the number of 

cells harvested from the tissue and their expansion rate are relatively low [23], 

other cell sources are required, especially in event of multiple surgical 

intervention. A promising alternative employs stem cells as they present high 

proliferation capabilities, multi-lineage differentiation and self-renewal 

properties. Stem cells are able to express different phenotypes depending on 

their stage of differentiation.  The most primitive cellular form derives from the 

zygote which divides in blastocyst developing the embryos, and the Inner Cell 

Mass (ICM). The latter is formed by embryonic stem cells (ESCs), pluripotent 

cells with unlimited self-renewal capabilities and able to differentiate towards 

every lineage.  
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Fig. 2.10: differentiation pathways followed by cone marrow progenitor stem cells. Taken from 

[87]. 

 

The development of a method able to directly differentiate ESCs toward a 

defined phenotype and obtain a fully functional and perfectly integrated tissue 

is still ongoing study [88]. ESCs may indeed be tumorigenic because of their 

unlimited proliferative capabilities, and immunological compatibility issues may 

also arise [89].  ESCs lead to the development of adult stem cells (ASCs) 

whose differentiation capabilities are narrowed to a limited amount of cell 

lineages depending on their embryonary origin (Fig. 2.10). So far, ASCs were 

found in bone marrow, fat, muscles, brain and skin [23]. Bone marrow stem 

cells (BMSCs) acquired increasing interest [23] as they can differentiate 

toward multiple lineages such as bone, cartilage, muscles, tendons or 

connective tissue (Fig. 2.10). BMSCs present also other important properties 

beside their regeneration potential such as high proliferation rates and reduced 

spontaneous differentiation with increased number of passages [23]. 

Moreover, they secrete a large number of immunosuppressive molecules 

promoting the use of allogenic cells. However, the low concentration of BMSCs 

makes the isolation process very elaborate and time consuming. Moreover, 

their differentiation potential was shown to vary depending on age of subjects 

[87]. Overall, BMSCs are considered more advantageous compared to ES for 
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bone tissue purposes and are already in clinical trials for clinical applications 

[90].  Eventually, other cell sources of mesenchymal origin for bone 

regeneration applications were found in fat tissue. Adipose derived stem cells 

(ADSCs), are under increasing consideration as they demonstrate to undergo 

osteogenesis in vitro and in vivo and can be easily isolated from visceral or 

subcutaneous fat in a relatively high amount [91]. On the other hand, 

mesenchymal stem cells lose their differentiation capability and show reduced 

proliferation after long term use demanding for a more stable cell source. 

Currently cells holding a great potential for tissue engineering purposes are 

the human embryonic stem cell-derived mesodermal  progenitor (hES-MPs) 

which were demonstrated to induce higher tissue formation [21] compared to 

adult stem cells and to be more stable and less tumorogenic [20], [92] 

compared to ESC. 

 

2.2.5 External factors influencing cell activities 

 

Once expanded to the desired amount, cells are seeded on scaffolding 

material and undergo external stimulations to drive their differentiation toward 

a defined pathway. As a consequence of the sensed stimuli, cells activate 

biochemical pathways defining the functional properties of the resulting 

engineered tissue [93]. Among external stimuli having a high impact on cell 

commitment, chemical stimulation was found to be particularly promising. 

Fibroblasts growth factors (FGF) showed to increase self-renewal and to 

maintain cell multi-lineage differentiation potential. Transforming growth 

factors (TGF) and serum free medium induce chondrogenesis, while bone 

morphogenic proteins (BMP) and dexamethasone, the most relevant chemical 

factors inducing osteogenesis, are already employed for clinical treatments 

such as spinal fusion and long bone fractures [94].  

In the last two decades, the use of external mechanical stimuli on cell 

differentiation has become more and more common as evidence has shown 

how mechanical stimulation can greatly influence the cell behaviour  [95], [96]. 
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Hydrostatic pressure, fluid shear stress, mechanical strain and electric fields 

generated by interstitial flow passing on charged bone crystals trigger 

variations in the cell behaviour [1]. Studies performed on differentiated bone 

cells showed that continuous hydrostatic pressure decreases collagen 

production by osteoblasts, while intermittent compressive force enhances 

osteoblasts activity and decreases osteoclasts resorption [1]. Also 

chondrocytes behaviour is modulated by the type of regime applied. Indeed, 

constant hydrostatic pressure induces chondrogenesis differentiation, while 

intermittent strain leads to hypertrophy [1]. When bone is loaded by tension, 

compression or torsion stimuli, the interstitial fluid is moved toward regions of 

low pressure to come back when the load is removed, inducing an oscillatory 

fluid flow of 0.8 Pa up to 3 Pa in vivo. This regime results in a dramatic 

amplification of local strains in proximity of the osteocyte processes [30], [97]. 

Osteocytes are able to sense these variations in the interstitial fluid as 

demonstrated by multiple studies where shear stress triggered mechano-

activated biochemical pathways regulating nitric oxide production in 

osteocytes [1], [98]. Compared to other bone cells, osteocytes are more 

responsive also to mechanical stimuli and are believed to play a role in 

regulating the activity of osteoblasts and osteoclasts [99]. Mechanical stimuli 

were shown to regulate calcium deposition with osteoblast cells increasing 

mineralization as a result of cyclic loading [100], [101].  

 

 

2.3 A REVIEW OF BIOREACTORS AND MECHANICAL 

STIMULI  

 

2.3.1 Bioreactors for tissue engineering 

 

In order to find a correlation between mechanical forces and differentiation, a 

controlled micro mechanical environment is provided by advanced scaffold 
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designs combined with complex bioreactors [102]–[104].  Bioreactors facilitate 

the monitoring and control of biological or biochemical processes undergoing 

within the scaffold during the bone forming process. Bioreactors are generally 

adapted to fit within an incubator which controls the external environment and 

maintains constant physiological conditions: 37°C temperature, 5% CO2 

concentration and 99% humidity. A bioreactor suitable for cell culture purposes 

must be inert to the harsh chemistry of the biological environment preventing 

corrosion and toxic reactions. Moreover, the diffusion limit and uniform 

distribution of cells in the scaffolds are key factors to consider in the 

development of functional tissue. With this purpose, bioreactors aim to 

maximize the supply of nutrients and oxygen to cells seeded in internal areas 

exceeding the diffusion limit distance of 100-200 µm [105]  to maintain their 

viability. Systems able to provide exchange of substances within the scaffold 

can be also employed during the seeding phase to increase seeding efficiency 

and uniform distribution of cells [106]. Current techniques use convection of 

medium by perfusion, centrifugation and spinner flasks [102]. Moreover, 

bioreactors can be designed to apply shear strain forces, mechanical strain or 

pulsed electromagnetic fields with a high control over the stimuli to reproduce 

the biological environment, and clarify the relationship between mechanical 

stimulation and tissue formation. 

 

2.3.2 Cell mechanotransduction 

 

As a matter of fact, bone is constantly under loading conditions arising from 

the daily activities. Deformations which occur in bone are defined in strains, 

where 1000 microstrains equal to 0.01% change in length compared to the 

initial length. Vigorous exercise induces bone strains up to 1000 microstrains 

which was associated with bone mass increase in humans [97]. 

Recently, the impact of mechanical stimulation on bone cells is under 

investigation to define a relationship between applied mechanical strain and 

cellular differentiation. The key cues to consider to better understand the effect 
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of mechanical stimuli on cell commitment are (1) the mechanical properties of 

cells themselves, depending on the forces applied by the cytoskeleton and the 

contractile components on the surrounding environment; (2) how the stiffness 

of the surrounding environment is sensed by cells through durotaxis, affecting 

the lineage differentiation; and (3) how external mechanical stimuli generated 

by gravitational action, muscles and other cells are translated into biochemical 

processes driving cell differentiation. In skeletogenesis, the differentiation of 

stem cells toward the osteogenic or chondrogenic pathway is regulated by 

many external factors [96][96],[107] influencing cytoskeletal organization, 

shape, motility [108], [109] and consequently cellular functions. Depending on 

the surrounding mechanical environment, different signalling pathways are 

activated inside the cell controlling the expression of transcription factors [110]. 

For example, the Wnt/ß-catenin or Rho/ROCK signalling pathways are known 

to play a crucial role for the control of cell commitment towards the osteogenic 

or chondrogenic pathway through the expression of Sox9 and Runx2 at early 

stage of differentiation [96]. Sox9 is put alongside with expression of collagen 

II, TGF and glycosaminoglycan (GAG) genes and identify differentiation 

toward the chondrogenic lineage, while Runx2 identifies osteogenic 

differentiation and induces expression of collagen I and non-collagenous 

proteins such as alkaline phosphatase (ALP), osteocalcin (OCN) and 

osteopontin (OP). ALP is an early marker for osteogenesis, while OCN and OP 

are normally expressed at late stage of differentiation and help regulating the 

size of mineral crystals deposited by mature osteoblasts [22]. 

 

2.3.3 Bioreactors for fluid flow induced cell differentiation  

 

The first step when developing an engineered bone tissue is to achieve a 

homogeneous cellular distribution and provide good exchange of nutrients and 

oxygen within the scaffolding material. Due to the three dimensional 

architecture of novel scaffolds, static seeding is no longer an optimal method 

as it leads to a low seeding efficiency, cellular inhomogeneous distribution and 

low diffusion of fluids or gases in the internal regions causing cell apoptosis. In 
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order to overcome these limitations, different systems were considered among 

which spinner flask (SF), rotating wall vessel (RWV), biaxial rotating (BXR) and 

perfusion bioreactors. Compared to the static methods where molecules 

exchange occurs by diffusion, these systems are more efficient by inducing a 

convective flow and thereby enhancing cell attachment, proliferation and 

differentiation. 

 

2.3.3.1 Rotating bioreactors 

 

SF bioreactors consist in a vessel provided with side arms for gas exchange 

and a stirring mechanism able to create a flow though the culture media (Fig. 

2.11a). In order to avoid scaffold fluctuation, pins are connected to the top lid 

for allocating samples. SF bioreactors were shown to increase the seeding 

efficiency compared to static methods [111] and to induce osteogenic 

differentiation though the expression of ALP and OCN, and increased calcium 

deposition [112]. RWV bioreactors consist in a hollow cylinder provided with 

an external chamber for scaffolds allocation and working as medium reservoir, 

rotating along the radial axis (Fig. 2.11b). The laminar flow generated by the 

rotating motion induces shear stress on cells, preventing their detachment, and 

partially overcomes the diffusional limitations encountered with static and SF 

seeding method. However, the RWV approach leads to lower cell number and 

decreased matrix production than SF because scaffolds seeded by RWV are 

free to float inside the chamber hitting against the walls of the rotating vessel. 

Solutions include the use of (1) rotating bed bioreactors where scaffolds are 

fixed to the cylindrical structure and moved alternatively between gas and 

liquid phase [113]; (2) scaffolds with lower density than water [114]; or (3) a 

rotation rate able to prevent contact with the walls [102]. According to a recent 

study [102], the gold standard seeding performance is given by BXR consisting 

in a spherical chamber, pins for scaffold allocation, a medium reservoir and a 

perfusion system (Fig. 2.11c). The spherical chamber is able to rotate 

simultaneously in two perpendicular axes overcoming diffusion problems 

observed with SF. Furthermore, it has apposite spaces for scaffolds allocation 
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preventing cell detachment phenomena observed in RWV. Moreover, BXR 

show all the advantages of the perfusion systems while it overcomes, at the 

same time, the “cell washout” phenomena observed in perfusion bioreactors. 

 

 

Fig. 2.11: Bioreactors for seeding and differentiation of MSCs due to effect of fluid flow. Spinner 

flask (a) and rotating wall vessel (b) bioreactors provide rotation toward an axis while the biaxial 

rotating wall vessel (c) systems allow rotation in two directions providing homogeneous shear 

stress distribution in the culture chamber. Closed loop perfusion bioreactor (d) scheme 

employing a serial multichamber configuration. Taken from [102]. 

 

Indeed not allocating the scaffold directly in the flow stream prevented cell to 

detach from the side of the scaffold facing the oncoming flow, resulting in 

higher homogeneous distribution of cells. BXR increase considerably cell 

attachment, proliferation, molecule diffusion and osteogenic differentiation 

compared to SF, RWV and even perfusion bioreactors working in optimal 

conditions [102].   
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2.3.3.2 Perfusion bioreactors  

 

In the last decade, the attention turned toward perfusion bioreactors (Fig. 2.11 

d) composed of a chamber fitting the geometry of the scaffold, a medium 

reservoir for supply of nutrients and a waste reservoir. Some perfusion 

bioreactors are closed loop and do not use a waste reservoir but nutrients are 

continuously pumped into the system [115]. Perfusion bioreactors force the 

fluid through the entire scaffold allowing cells to reach the interior of the 

structure and enhancing homogeneous distribution and optimal supply of 

gases and nutrients. The two main challenges developing perfusion systems 

are related to prevent air bubbles formation and to guarantee a solid 

anchorage of the scaffold. Air bubbles are the main cause of local stress 

variation as air blocks the passage of fluid, causing an increase in the local 

flow rate. As a consequence, an inhomogeneous distribution of stresses arises 

inside the culture chamber, which might compromise the seeding process.  

 

 

Fig. 2.12: Seeding of scaffolds by perfusion. Fluorescence staining showed uniform distribution 

of cell either in the exterior or in the interior of the structure. Taken from [116]. 

 

A similar effect is observed when scaffolds are not completely anchored to the 

walls of the bioreactor chamber. In this case, void areas arise and become the 

preferred pathway for fluid to flow. The shear stresses generated by the fluid 
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flowing through the scaffold are not only dependent on the inlet flow rate but 

also on the scaffold pore size and interconnectivity [117]–[119]. Despite the 

difficulties in developing efficient perfusion systems, a number of studies have 

investigated the effect of perfusion flow on cell attachment, proliferation, matrix 

production and differentiation. While turbulent flow caused mainly cell 

detachment or programmed cell death due to the high shear stress [120], 

laminar regimes such as continuous, oscillating and pulsating flow led to 

satisfactory results and increased performances compared to static conditions 

(Fig. 2.13a). Koch et al. demonstrated the effect of velocity and number of 

cycles on cell attachment applying a perfusion flow oscillatory in nature. 

Velocities up to 5 mm/s were necessary  to obtain uniform cell distribution in 

the interior of the scaffold (Fig. 2.13b) but the main effects on seeding 

efficiency were elicited by the number of cycles applied rather than the velocity 

used.  

 

Fig. 2.13: Effect of velocity and number of cycles on cell attachment in the interior of the scaffold. 

Taken from [116]. 
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Surprisingly, a lower number of cycles led to higher seeding efficiency 

percentages up to 51%, suggesting the dual role of shear stress in promoting 

cell attachment just at the early stages of the seeding process and causing cell 

detachment if applied for longer periods of time. Although fluid velocity of fluid 

flow had no role on seeding efficiency, the viability of cells on the exterior of 

the scaffold was found to be affected by increased cell apoptosis with 

increasing shear stress (Fig. 2.14). These outcomes underline the need to 

define the optimal conditions enhancing uniform cell distribution, high seeding 

efficiency and cell viability  

 

 

Fig. 2.14: Cells distribution on the exterior of the scaffold employing different velocities and 

number of cycles. Alive cells are shown in green while apoptotic/dead cells are shown in red. 

Taken from [116]. 
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. Compared to static seeding, continuous unidirectional flow of cell suspension 

was also demonstrated to increase cell attachment and distribution [121], 

[122], ECM production and osteogenic differentiation [116], [123]–[126]. 

Beyond guaranteeing a good distribution of cells, a laminar flow oscillating in 

nature mimics the in vivo conditions applied to bone cells, and stimulates 

calcium production in osteoblast-like cells [116] and human bone marrow 

stromal cells  [127]. However, pulsating flow was found to be the most efficient 

in enhancing mineralization [128], [129], inhibiting cell apoptosis [130] and 

regulating matrix deposition [98], [131]. The main drawback of perfusion 

bioreactors is the high amount of reagents needed, which has led to the 

development of perfusion microfluidic systems.  

Microfluidic systems are easy to develop, require a low amount of reagents 

and, above all, allow to perform many experiments in parallel [132]. The new 

generation of “lab on a chip” microfluidic devices allow to simultaneously apply 

identical and reproducible experimental conditions on multiple samples and it 

has already found application in the development of in vitro vascular implants 

[133]. Polydimethylsiloxane (PDMS) is the most commonly used material for 

microfluidic perfusion culture systems since it is non-cytotoxic, autoclavable, 

gas permeable, flexible, inexpensive and easy to mold. PDMS has low 

autofluorescence making it suitable for fluorescence imaging operation. 

Moreover, it is transparent to light finding application for optical imaging [134]. 

For cellular culture purposes, most common systems consist in a glass-PDMS 

configuration [135] as PDMS can be easily covalently bonded to glass 

substrates by surface activation through gas plasma treatments [136], [137]. 

Microfluidics systems made of glass-PDMS were applied as support for 2D 

and 3D culture studies in investigating the differentiation toward muscular 

tissue [138], the effect of different flow rates on cells morphology and 

proliferation [139], liver toxicology [140], cell seeding and monitoring [141], and 

comparison between cell lineages response to hydrostatic pressure [142]. The 

main challenges in creating a microfluidic system are the fabrication of  a 

robustly sealed channel and the prevention of bubble nucleation [134]. In 

general, the fluid flow in a microfluidic perfusion system has multiple roles as 

it can be employed for cell seeding purposes, for nutrients and gases delivery, 
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or for the transport of molecules probing cells  to perform cellular assays to 

test for cellular activities or viability [143]. Normally fluid perfusion is controlled 

by external pumps and valves and can employ multiple inputs. Cell seeding 

needs optimization as low flow rate leads to cells settling in reservoir, culture 

chamber and tubes while high shear stresses compromise cell viability and 

have detrimental effects. Cell settling is normally overcome by minimizing the 

distance between cell reservoir and culture chamber, employing a viscous 

carrier able to decrease the settling rate, or by rotating the reservoir [134].  

 

 

2.3.4 Bioreactors for mechanically induced cell differentiation 

 

2.3.4.1  Common bioreactor types 

 

Common bioreactor systems for mechanically induced differentiation include 

a vessel containing the culture media, spaces to allocate scaffolds, and 

clamping parts aiming to apply tension or compression stimuli through an 

external computer control. In simple stretching devices, the extremities of the 

scaffold are anchored to grips connected to external automatic controls which 

moves on a plane transmitting the displacement to the structure (Fig. 2.15a). 

Four-point bending devices (Fig. 2.15b) are another widely used and fairly 

simple configuration. The working principle consists in placing the structure on 

two vertical pillars and applying a force perpendicular to the plane of the 

structure [111]. Both setups allow high control over the mechanical stimuli 

employing load and displacement sensors, actuators and an external control 

interface. Four-point bending systems equipped with micromanipulators and 

cameras were also used to transmit tension as well as compression stimuli 

though a piezoelectric actuator bending when voltage was applied [103]. Upon 

application of voltage, a piezoelectric layer shrunk while the other stretched, 

bending the actuator and transmitting the resulting displacement to the sample 

(Fig. 2.15c). When the polarity was inverted, the actuator bent on the other 
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direction, enabling the testing of cell behaviour under both stimuli on 2D 

collagen layers. 

The addition of multiple chamber configurations allows high throughput studies 

and increases repeatability and reproducibility of the tested conditions [144]. 

Recently, novel bioreactors are developed to fit in incubators and maximize 

sterile conditions such as the BOSE Electroforce® systems (Fig. 2.15d) already 

employed in studies on scaffold mechanical characterization [145], hMSCs 

differentiation [104] and vascularization of bone grafts [146]. The biodynamic 

chamber works as a bioreactor providing (1) sterile and isolated environment; 

(2) samples immersed state preventing drying phenomena; (3) high controlled 

tension or compression stimuli and simultaneously fluid shear stress by an 

external pumping system; and (4) multiple motors configuration for parallel 

experiments.  

 

 

 

Fig. 2.15: Stretching principle to apply tension stimuli (A) and four-point bending system (B) while 

applying deformation  on 2D seeded substrates (taken from [113]). Four point bending system 

equipped with piezoelectric actuators (C) able to exploit tension and compression stimuli by 

varying the external voltage applied (taken from [103]) and BOSE Electroforce ® equipped with 

culture chamber form mechanicals stimulation and simultaneous perfusion of media.  
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2.3.4.2 Mechanical load and cell commitment 

 

The effect of tension on mesenchymal stem cell osteogenic commitment was 

studied on 2D surfaces or 3D structures by employing stretching devices or 

four-point bending systems (2.3). In 2D studies MSCs behaviour was 

investigated on silicone membranes coated with collagen, showing increased 

osteogenic differentiation through synthesis of BMP2 and collagen 1 in multiple 

studies [147]–[149]. Haudenshild et al. demonstrated the dual effect of 

applying tension and compression on 3D alginate phosphate scaffolds seeded 

with hMSCs [150]. Volume, surface area, skeletal length and diameter of cells 

were quantified by confocal images and revealed variation in cell morphology 

depending on the stimuli received. Compression stimuli led to round and 

shorter cells while tension led to more elongated and spread cells compared 

to controls. Moreover, gene microarray screening and RT-PCR analysis 

showed upregulation of a wide range of osteogenic genes and downregulation 

of chondrogenic genes in samples undergoing tension stimuli. The opposite 

expression profile was characteristic in samples undergoing compression. 

Compression stimuli were mainly investigated on hydrogels because of their 

remarkable properties such as biocompatibility, biomimetic, easy moulding 

and transmission of uniform distribution of stresses through the structure. Last 

but not least, accessibility through fluorescence and optical light allows not 

only the investigation of cell viability to the exterior of the scaffold but also to 

monitor cell conditions within the core [151]. For example, cell and collagen 

fibers alignment after static or cyclic compression of collagen gel scaffolds 

embedding hMSCs were monitored and characterized in multiple studies by 

real time acquisition. Both static or cyclic loading conditions were shown to 

affect cell alignment inducing cells to orient parallel to the direction of the 

applied stress [152]. However, collagen orientation, GAG and cellular 

metabolism were unaffected, suggesting that mechanical loading alone have 

no effect on the collagen remodelling action performed by hMSCs.  
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Table 2.3: Studies on differentiation of stem cells following mechanical stimulation on different 

scaffolds.  

CELLS SCAFFOLDS MEDIA PARAMETERS DIFFERENTATION REFERENCES 

STRETCHING DEVICES 

MSCs 
Silicon 

membrane 

- 

0.5 % strain 
0.17 Hz 

4 hours/day 
3 days/week 

Osteogenesis↑ [147] 

4 and 8% strain 
0.5 Hz 
4h/day 

Osteogenesis ↑ [148] 

Osteogenic 

0.3% strain 
1 Hz 

15 mins/day 
Osteogenesis↑ [149] 

2 or 8% strain 
1 Hz 

2h/day 
3days/week 

Strain 8%: 
Osteogenesis↑ 

[153] 

FOUR POINT BENDING 

BMSCSs 
  
  

Partially 
demineralized 

bone 
Osteogenic  

0.2mm 
0.2 Hz 

250 cycles/24 
hours 

Depending on 
dexamethasone 
concentration: 
Osteogenesis↑  

[111] 

Osteoblasts Collagen gels - 
0.3% strain 

Low VS broad 
frequencies 

Low amplitude, 
high frequencies: 
Osteogenesis ↑ 

[154] 

MSCs Collagen gels - 

10% strain 
1,0.5,0.1 Hz 

1h/day 
7days/week 

Chondrogenesis↓ 
Osteogenesis↓ 

[152] 

Porcine 
MSCs 

Agarose 
hydrogels 

  

Chondrogenic VS 
untreated 

10% strain 
1Hz 

1h/day 
5 days/week 

Supplementing 
chondrogenic 

media: 
Chondrogenesis ↑ 

[155],[156] 

OTHER SYSTEMS 

Porcine 
MSCs 

Agarose 
hydrogels 

Chondrogenic 

10% strain 
1 Hz 

1h/day 
5 days/week 

Confined 
compression: 

Chondrogenesis ↑ 
[104] 

MSCs 

Poly ethylene 
hydrogels 

Chondrogenic VS 
untreated 

10% strain 
1Hz 

1,2,2.5,4 
hours/day 

Chondrogenesis ↑ [88] 

Fibrin Poly-
urethane 3D 

scaffolds 
Chondrogenic 

15, 20, 30% 
strain 

0.1, 1 Hz 

High strain, high 
frequency: 

chondrogenesis ↑ 
[157] 

Poly ethylene 
hydrogels 

- 

15% strain 
0.3 Hz 

4 hours/day 
14 days 

Chondrogenesis↓ 
Osteogenesis↓ 

[158] 

Agarose 
hydrogels 

- 

9% strain 
0.03, 0.15,0.33 

Hz 
12,54,120 
mins/day 

3days/week 

54, 120 mins: 
chondrogenesis ↑ 

[159] 
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2.3.4.3 Loading parameters affecting cells response 

 

The presence of chemical factors has a high effect in modulating the response 

of cells to mechanical forces. The osteogenic ability of BMSCSs cultured in 

demineralized bone scaffolds under cyclic tension was found to be strictly 

related to the concentration of dexamethasone, varying ALP and OP 

expression. Absence as well as high amounts of dexamethasone (100nM) led 

to suppression of osteogenic markers. Similar results were obtained 

investigating compression stimuli. When coupled with chondrogenic media, 

mechanical compression increased chondrogenesis gene expression [155]. 

However, compression forces alone were proved in multiple studies to induce 

no significant differences in cell phenotype compared to free swelling samples 

[88], [156].  

Amplitude, frequency and duration of the stimuli can play a role in the activation 

of  mechano-transduction pathways [160] and in modulating osteogenic or 

chondrogenic protein expression. Applying 2% and 8% cyclic tensile strain on 

MSCs, ALP activity and OCN expression were upregulated when 8% strain 

was applied regardless of the presence of dexamethasone [153]. Maintaining 

constant amplitude, frequency was varied and the effect of sinusoidal 

frequencies (S), broad frequencies (V) and a combination of both (S+V) stimuli 

was investigated on osteoblasts. OCN was 2.6 fold higher when S+V was 

applied, other osteogenic markers were upregulated after 4 days from V 

exposure but no significant differences were noticed by applying S alone [154]. 

Varying both the parameters Li et al. observed increased chondrogenic marker 

expression of the TGF family as a result of high strain and high frequency 

stimulations [157]. Low amplitude high frequency stimuli were shown to 

produce the same effect as high amplitude low frequency stimuli to activate 

bone formation [161].  Similar results were obtained in other studies where the 

duration of the stimuli and its frequency were varied. Long periods of 

stimulations have no significant difference in driving cell commitment as 

continuously loaded hMSCs downregulated the expression of both osteogenic 

and chondrogenic genes [158].  hMSCs are also sensitive to accumulation of 
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stress as reported by previous studies claiming a stronger chondrogenic 

commitment associated to high frequency stimuli and prolonged stimulation 

(54 or 120 min versus 12 min) [159]. Despite the high amount of studies 

claiming chondrogenic commitment as a result of scaffold compression, short 

bursts of compressive load were found to activate the same response as 

dexamethasone elicits on matrix mineralization by hMSCs cultured in 

polyurethane scaffolds [162]. This suggests the possibility to induce 

osteogenic differentiation by compression forces within polymeric scaffolds.  

 

2.3.5  Electromagnetic field bioreactors and differentiation 

 

Electromagnetic field (EMF) and pulsed EMF (PEMF) in vivo arise from the 

piezoelectric effect induced by bone deformation as a consequence of 

muscular action [163]. EMF stimuli arise in vivo in two ways: (1) as a 

consequence of  postural or walking activities causing displacement in bone 

and resulting in EMF frequencies ranging between 5 and 30 Hz, and (2) when 

bone fracture occurs giving rise to a negative potential due to accumulation of 

negative charges at the injured site [164].  

 

 

Fig. 2.16: Common design for PEMF bioreactors. Taken from [113] 
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In the recovery process, EMF and PEMF had a beneficial effect on patients 

affected by osteoporosis or non-union fractures, decreasing the bone 

resorption action performed by osteoblasts or accelerating the bone forming 

process by osteoblasts [165], [166]. In order to observe the effect of EMF and 

PEMF on cellular conformational changes, proliferation and differentiation, 

EMF-based bioreactors were developed. These systems consist of two 

Helmholtz coins hosting a chamber for scaffold allocation and connected to an 

external EMF generator (Fig. 2.16). Applying continuous stimuli of PEMF was 

found to have no effect on osteoblasts or BMSCSs proliferation, ALP or 

calcium content up to day 14 where an increase in calcium deposition occurs 

in BMSCSs at the expense of proliferation [167].  In other studies employing 

short resting periods between consecutive stimulations (8 h), EMF increased 

hMSCs proliferation, viability and multi-lineage differentiation [168]. MEF was 

found to affect bone progenitor cell proliferation rate depending on their bone 

differentiation stage (BMSCSs versus osteoblasts) and the presence of 

osteogenic media [169]. BMSCSs had a higher proliferation rate compared to 

untreated controls in presence of osteogenic media whereas previously 

differentiated osteoblasts decreased in cell number compared to untreated 

controls. Increased ALP and BMP2 were observed at early stages culturing 

BMSCSs in osteogenic media. Following these findings, studies were 

performed using mainly BMSCSs culture in osteogenic media to maximize the 

osteogenic performance (osteogenic BMSCSs). Increased osteogenic 

markers expression and proliferation rate were achieved by applying PEMF 

over shorter periods at low amplitude. Osteogenic BMSCSs undergoing 0.13 

mT quasi-rectangular pulses at 7.5 Hz for 2 h a day showed higher production 

of ALP at day 7 and enhanced mineralization at day 28 compared to untreated 

controls [170]. The effect of frequency on BMSCSs osteogenic marker 

expression was further investigated at 1mT of EMF by varying frequencies at 

10, 30, 50 and 70 Hz. Enhanced proliferation was observed in samples 

stimulated at 10 Hz, as well as expression of ALP and OCN after a week of 

treatment. Despite this, enhanced cell viability was observed at 50 Hz together 

with maturation of osteoblasts after 2 weeks of exposure and extensive matrix 

mineralization [171]. Similar studies were performed supplementing hMSCs 
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with chondrogenic media and applying 5 mT sinusoidal EMF at 15 Hz, 4 times 

a day (45 min every 8 h), over 21 days, demonstrating that sinusoidal low 

frequency EMF stimulates and maintains differentiation toward a lineage when 

supplemented with specific growth factors [172]. 

 



  
 

47 
 

Chapter 3 

3 GENERAL MATERIALS AND 
PROCEDURES 

 

 

3.1 Introduction 

 

This chapter presents a collection of reagents and equipment employed in the 

project. Moreover, methodologies repeated among studies are here presented 

to avoid repetitions among chapters following the same procedure. Examples 

are the static seeding mentioned in Chapters 5, 6 and 7, or the reconstruction 

of samples by microCT mentioned in Chapters 4, 6 and 7.  Here, commonly 

used protocols related to assay kits, such as Presto Blue, DNA assay and 

ELISA, are also described in detail. More information about how a protocol 

described here contributed to a particular study is further explained in the 

“Materials and Methods” section of each chapter.  

 

 

3.2 Materials, reagents and buffers 

 

1. Human embryonic stem cell-derived mesodermal progenitors (hES-

MPs). HES-MPs were obtained by following the procedure cited by 

Karlsson consisting in perorming consecutive enzymatic passages of 

human embryonic cells (hES) on gelatin 2D substrates (ref.). the 

procedure increased homogeneity of the cell culture by reducing the 

proportion of the non-mesenchymal cell types which are present in the 

initial high-density cultures of pluripotent undifferentiated hES cells. 
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2. Scaffold: Commercially available 3D Insert ® PCL (3D PCL) (Sigma 

Aldrich, UK, cod. Z724513) fabricated by 3D Biotek, USA. It is produced 

by fuse deposition modelling and, according to manufacturer, is 

characterized by: 

- Fiber diameter and spacing between fibers: 300 μm,  

- Laydown pattern between overlapping layer of fibers: 0°/90°,  

- Overall Height: 1.5 mm, 

- Overall diameter, 300 um pores fabricated by fuse deposition; 

 

3. Scaffold sterilization: 99.9% pure Ethanol biological degree (Sigma 

Aldrich, UK, cod. E7023); 

 

4. Microfluidic chamber sterilization: IMBS (Fisher, UK, cod. M/4450/17), 

Acetone (Fisher, UK, cod. 20065.327); 

 

5. Gel embedded in the 3D PCL structure: Collagen I, Bovine (Gibco, UK, 

cod.A10644-01); 

 

6. Media for cells culture: 

 

 

 

7. Particles for shear stress evaluation in the microfluidic device: Green 

fluospheres, 10 µm (Gibco, cod.F8836) mimicking cells dimensions; 

 

8. Cell fixative for Sirius Red staining: 10% formalin (Sigma Aldrich, UK, 

cod. HT5011); 
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9. Cell fixative for MicroCT: 25% Glutaraldehyde (Sigma Aldrich, UK, cod. 

G6257), 10 times diluted in distilled water; 

 

10. Lysis buffer used to detach cells from the scaffold aiming to preserve 

protein content for ELISA assay. 

 

 

11. Fabrication of microfluidic devices by soft lithography: 

Polydimethylsiloxane (PDMS) composed of silicon elastomer curing 

agent and monomer (Sylgard, US, cod. 2699150); 

 

12.  Washing solution: PBS (Sigma, UK, cod.D8537); 

 

 

 

3.3 Equipment 

  

1. Kern analytical balance ABJ-NM/ABS-N (Kern & Sohn GmbH, Germany) 

to register mass of scaffolds and reagents; 

 

2. Sub Aqua 12 plus Water bath (Grant, UK) for warming up media, PBS or 

any reagent to be put in contact with alive cells; 

 

3. Eppendorf Centrifuge 5702 (Fisher, UK) for resuspension of cells in new 

media before seeding; 
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4. Eppendorf mini-spin (Fisher, UK) for centrifugation of cells once removed 

from the scaffold; 

 

5. Class II Cell culture hood (ESCO GB Ltd., UK) to guarantee a sterile 

environment handling cells; 

 

6. Ultrasonic bath (VWR, UK) for cell removal from scaffolds; 

 

7. Motic Microscope for cell counting (Motic, UK); 

 

8. Tecan Infinite F200 pro plate reader (Labtech, UK) for absorbance and 

fluorescent reading during biological assays (Presto Blue, DNA, Sirius 

Red, OCN ELISA); 

 

9. Vacuum pump (Diener, Germany) for bubble removal during PDMS curing; 

 

10. Hoven (Frigidaire, UK) for curing of PDMS into desired mold;  

 

11. Plasma machine (Diener, Germany) for enhanced bonding between 

PDMS and glass slides as well as scaffolding surface treatment; 

 

12. Aladdin Syringe pump AL-1000 (World Precision Instruments, US) for 

controlled perfusion of fluid through the microfluidic system;   

 

13. Eclipse fluorescent microscope (Nikon, Japan) equipped with UVP UV 

lamp for visualization of fluorescent stained cells and auto-fluorescent 

scaffold; 

 

14. Electroforce Bose Bioreactor  5500 (BOSE Corp., US) for mechanical 

loading of scaffolds to determine mechanical properties or cellular 

behaviour; 
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15. Water purification system (VWR, UK) dispensing distilled water to be used 

for biological assay after filtration with 0.2 um cellulose sterile filters; 

 

16. Absolute AOS Digimatic calliper (Mitutoyo, UK) for measuring scaffold 

height; 

 

17. Scanning electronic microscope XL-20 (Philips, US) for visualization of 

collagen structure; 

 

18. Micro Computed tomography by SkyScan 1172 (Bruker, Belgium) for 

evaluation of scaffold architecture, and collagen, tissue and mineral 

distribution. 

 

 

3.4 General procedures and assay kits 

 

3.4.1 Plasma treatment and sterilization of samples 

 

Samples were put into a plasma machine and treated for 5 min at 1 mBar and 

30W by air plasma. Then, samples were removed and placed in 96 well plates 

to undergo further sterilization by alternating 3 times 200 μl of ethanol 70% and 

1X PBS solutions. Then, samples were dried for 20 min and moved to a new 

96 well plate before further processing. 

 

3.4.2 Cell thawing and culturing 

 

Cells (MG63 or hES-MPs) were removed from liquid nitrogen and re-

suspended in culture media upon dissolution of the ice. Then, cells were 

centrifuged and seeded in T75 flasks in a density of 15-20*103 cells/cm2. hES-
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MPs were cultured in media supplemented with FGF for preventing 

differentiation, while MG63 were cultured in standard media. At the desired 

passage (5-6 for hES-MPs or 72-100 for MG63), cells were detached by 

trypsinization and resuspended in culture media for seeding of scaffolds. 

 

3.4.3 Static seeding 

 

Cells were suspended in a culture media solution and 20 μl of suspension was 

placed on the top marked surface of sterile samples. After 1.5 hour incubation 

at 37°C, 5% CO2 and 99% humidity, 180 μl of culture media were added to 

samples.  

 

3.4.4 Fluorescent imaging 

 

Calcein AM (Gibco, UK, cod. C34852) and Ethidium bromide homodimer 

(Sigma Aldrich, UK, cod. E1903) were diluted in PBS in a concentration of 

respectively 2μM and 4μM.  200 μl of fluorescence stain was added and, then, 

samples were incubated covering the plate with aluminium foil to prevent 

exposure to light. After 40 minutes in a dark environment, samples were rinsed 

3 times with PBS to remove unreacted stain and avoid signal background. 

Samples immersed in PBS were imaged by fluorescent microscopy and 

pictures were elaborated by the Metamorphosis software (Nikon, Japan). The 

time of exposure was set to: 

- Blue light (scaffold autofluorescence):  40 ms 

- Red light (dead/apoptotic cells):   40 ms 

- Green light (alive/viable cells):   200 ms 

 and reconstructed by ImageJ.  
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3.4.5 Viability assay  

(Presto BlueTM Cell Viability Reagent, Gibco, cod.A13261) 

 

Samples were fitted in a 96 well plate and washed with PBS. 200 μl of Presto 

Blue (1:10 v/v in culture media) was added to samples and let react for 1 hour 

in incubator. Viability was assessed withdrawing 180 μl of fluorescent solution 

from each well and reading fluorescence by microplate reader at ex/em 

540/590 nm.  

 

3.4.6 DNA assay  

(Quant-IT DNA kit, Gibco, cod.Q-33120) 

 

3.4.6.1  DNA standard curve 

 

A standard curve was determined per each cell line before performing the 

experiments to associate fluorescent values and number of cells (Fig. 3.1).  

 

 

Fig. 3.1: Standard curve to relate fluorescent values to number of cells by DNA assay. 
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Cells were re-suspended in media and cultured in petri dishes for 24 hours 

before DNA quantification. Cells were detached from the petri dish by adding 

0.5% trypsin for 5 minutes. After 5 s of vortex, 20 μl of cell suspension was 

used for DNA quantification Fluorescent values were obtained by subtraction 

of the background obtained from empty wells. The relationship between 

fluorescence value and cell number matched the linear trendline extrapolated 

from the data using Microsoft Excel.  

 

3.4.6.2  DNA assay of samples 

 

Samples were collected, washed in PBS and cut in small pieces to facilitate 

cellular detachment from the inner part of the specimen. 200 μl of 0.5% trypsin 

was then added following incubation for 5 minutes. Then, 200 μl of culture 

media was added to samples to block the action of trypsin and prevent damage 

of the cellular membrane. In order to achieve complete detachment of cells, 

samples underwent 5 s vortex. Then, 20 μl of suspension were tested for DNA 

quantification adding 180 μl of working solution made of lysis buffer and 

PicoGreen fluorescent stain (200:1 v/v). After incubation for 10 minutes in a 

dark environment, plates were read at ex/em 485/535 nm. Samples were then 

centrifuged for 3 minutes at 3,000 rpm to allow cell sedimentation. Afterwards, 

the overlaying medium was removed and the pellet was resuspended in lysis 

buffer, briefly vortexed and stored at -80°C. 

 

3.4.7 MicroCT 

 

3.4.7.1  Working principle 

 

MicroCT is a well-established technique employing x-rays to characterize 

complex 3D structures in vivo as well as in vitro. In this study, microCT was 

used to provide 3D volumes of 3D polymeric scaffolds and to investigate the 
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distribution of other materials previously embedded in the structure. MicroCT 

requires the use of an x-ray source and a detector. The first provides an x-ray 

beam whose intensity approaching the detector is related to the attenuation 

coefficient of the scanned object. It depends on the atomic number of the 

material and is therefore, strictly connected to its density. In order to 

reconstruct 3D volumes, the object needs to be placed between the x-ray 

source and the detector and progressively rotated around its long axis. At each 

rotation, a 2D projection is acquired representing per each pixel the linear 

attenuation coefficient of the material along the x axis of the x-ray beam. As a 

consequence, dense materials appear as black structures due to their high x-

ray absorption capabilities, while the signal becomes progressively brighter 

decreasing density. 2D projections of the scaffolds are then elaborated, 

through automatic algorithms implemented by commercially available 

softwares, and 2D images of the cross-section of the structure are 

reconstructed. The visualization of low density materials by x-ray can be 

achieved employing a high-density contrast agent able to chemically bound 

the substrate and to provide attenuation of the x-ray beam crossing the 

sample. 

 

3.4.7.2  Osmium staining 

 

Samples were collected and washed in 1X PBS. Samples were then immersed 

in 180 μl of 2.5% of glutaraldehyde for 2 hours [173]. Eventually, 20 μl of 10% 

osmium tetroxide were added to the solution [174]. Samples were stained 

overnight, washed in dH2O and air dried for 2 days to allow complete 

evaporation of water from the interior of the sample. MicroCT scanning was 

performed within 7 days from the staining procedure to avoid degradation of 

biological material in the sample. 
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3.4.7.3  Scanning  

 

Samples were stacked one upon another (up to 3 samples) into a straw and 

separated by small pieces of paper. Then, they were placed on a holder 

located in the microCT equipment between the x-ray source and the detector. 

Scaffolds were scanned at 40 kV, 10 W, and 250 mA. Moreover, no filters were 

applied and the pixel size was set to 17.4 μm. During the scanning, scaffolds 

were automatically rotated and consecutive projection images were acquired 

by the detector. Through algorithms implemented in the CTAn reconstruction 

software (Bruker, Belgium), projections were automatically analysed, and 

cross-sectional slices showing the density profile of the material were 

provided. Such 2D slices were obtained by applying ring artefacts and beam 

hardening corrections of respectively 10% and 15%. From the histogram, grey 

values (GV) between 0 and 0.2 were selected to improve image contrast. 2D 

slices were then stacked, and 3D volumes were reconstructed by ScanIP 

software (Simpleware Ltd., UK). 

 

3.4.7.4  Reconstruction and analysis 

 

A 0.5 μm Gaussian filter was applied to remove the random error from images. 

Considering cell, collagen, scaffold and background, the overall signal results 

in the following histogram (Fig. 3.2). 

Quantitative analysis was performed considering overall masks or a cylindrical 

region of interest (ROI) 4 mm in diameter, 0.5 mm in height, and concentric to 

the scaffold (Fig. 3.3). GV between 8,000 and 13,000 were selected to highlight 

the 3D PCL structure and to eliminate the background provided by the straw 

(Fig. 3.2). 
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Fig. 3.2: histograms of a reconstructed 3D PCL (PCL, blue), 3D PCL with collagen (cPCL, red) and 

3D PCL embedding collagen and cells (cPCL+cells, green). Zero grey values refer to black pixels. 

The first peak (GV 0-3500) was related to the void regions in the image. GV between 3500 and 

7500 were instead representing the signal of collagen and of the structure used as support to 

stack scaffolds. The second peak (GV 8000-13000) was linked to the 3D PCL while high GV (13000-

60000) were correlated to densified collagen and cellular content. 

 

A median filter (1 μm) and a Gaussian smoothing filter (value: 0.5 μ) were 

eventually applied to further remove random error in the image. 

 

 

Fig. 3.3: Scaffold volume rendering by Simpleware. Grey volume underneath the surface of the 

scaffold represents the cylindrical volume selected for porosity evaluation. Red and green lines 

indicate respectively the radial plane while blue line defines the perpendicular plane. 

 

Two ranges of GV were affected from the presence of collagen at respectively 

3500-7500 and 13000-60000 (Fig. 3.2).  The identification of different densities 

of collagen was achieved by segmentation of images, leading to the distinction 
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of areas occupied respectively by low density (LD) or hard density (HD) 

collagen by manual selection and merging of masks (Fig. 3.4). 

 

 

Fig. 3.4: 2D slides obtained from reconstruction of microCT images. (A) 3D PCL embedding 

collagen gel. (B) LD collagen (green) and (C) HD collagen (red) were manually selected through 

the structure by the FloodFill feature provided by Simpleware. 

 

A further distinction of the distribution and content of collagen in the interior 

(IN) and on surface of the scaffold (OUT) was provided by selecting a ROI 

fitting the interior of the scaffold. 2D slices segmentation was performed by 

selecting different areas of the slice, and merging multiple selections in an 

overall mask by employing the Simpleware feature FloodFill. The use of such 

feature helped increasing accuracy of the segmentation process and 

eliminated the large amount of background otherwise included applying 

common automatic masking methods. Gaussian filter (0.7 μm) was applied 

twice to masks to eliminate random error before quantification. Performing long 

experiments, the signal in the GV interval 3500-7500, before attributed to LD 

collagen, was instead associated to tissue formation as it accounted for the 

production of extracellular matrix (ECM) and the increase in cells number. 

Furthermore, the signal in the GV interval 10000-60000 (before attributed to 

HD collagen) was hypothesised to be associated with the growth of mineral 

crystals.  Reconstructions of tissue and mineral content followed the same 

segmentation procedure employed for collagen. 
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3.4.8 OCN ELISA assay  

(CytoSetTM kit, Life Technologies, cod.CNB0011) 

 

A flat bottom Costar 96 well plate was treated overnight with 100 μl of coating 

antibody solution (Mouse monoclonal anti-OCN (Life Technologies, cod. 33-

5400)) diluted in coating buffer B at room temperature. After 3 washing steps 

with 200 µl of washing buffer, the plate was blocked with 300 µl of assay buffer 

for 1 hour at room temperature. 100 µl of standards, samples (Labtech, 

cod.W4500) and controls were pipetted in duplicates as quickly as possible to 

avoid variation in the absorption of OCN between wells. Then, 50 µl of working 

detection antibody (Goat anti-Mouse IgG H+L-HRP (Life Technologies, cod. 

62-6520) diluted in assay buffer) was added to each well and the plate was 

incubated for 2 hours. Eventually, the plate was again washed 3 times with 

washing buffer and 100 μl of TMB substrate was added to each well to 

enhance release of OCN in solution. After 30 min incubation in the dark, 100 

μl of stop solution were added and absorbance was read at 405 nm.   

 

3.4.9 Statistical analysis 

 

Statistical analysis was performed by SPSS software. Normality and equality 

of variances were tested respectively by Shapiro [175], [176] and Levene’s 

tests [177]  to justify  the involvement of parametric tests T-Test and ANOVA 

for detecting significant differences among series of data. Applying Shapiro 

and Levene’s tests, all series showing =probability values below 0.05 were 

considered respectively normal distributed and with equal variance. These 

tests were particularly relevant in the assessment of the variability associated 

to the response of scaffolds to mechanical compression in Chapter 4. 
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Chapter 4 

4 MECHANICAL 
CHARACTERIZATION OF 3D 

Insert ® PCL SCAFFOLDS 
 

 

4.1 Introduction 

 

The Tissue Engineering (TE) approach aims to closely mimic the biological 

environment found in the body to drive progenitor cells toward a defined 

differentiation pathway and obtain fully functional tissue as replacement for 

injured sites. Although the behaviour of several cellular lineages seeded on 

two dimensional (2D) surfaces is nowadays well defined on a wide range of 

materials [16], it does not enable a physiological replication of the biological 

environment because of the lack of 3D structure. As a consequence, the first 

challenge addressed by TE regards the possibility of employing structures 

closely mimicking the geometry and chemistry of the biological environment 

found in the target tissue. For bone regeneration purposes, a basic 

requirement is for the scaffold to be able to bear mechanical stimuli as bone is 

constantly under mechanical forces by the action of muscles and body 

movements. Gelatine-like scaffolds made by natural polymers such as 

collagen, fibrin or chitosan represent a good choice for cellular studies as they 

naturally mimic the main components of the extracellular matrix. However, soft 

matrices present inadequate properties to bear mechanical forces, preventing 

their use for bone regeneration purposes. Synthetic materials made by 

polymerization of lactic acid, glycolic acid or caprolactone were explored to 

manufacture composite scaffolds, often embedding natural proteins. This 

approach led to the fabrication of scaffolds able to bear mechanical forces, 

providing at the same time an architecture and a matrix similar to the bone 

tissue niche [79]. Among those, poly caprolactone (PCL) is gaining increasing 
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interest as it is a thermoplastic polymer presenting low glass transition and low 

melting temperature [178]. As a consequence, temperature dependent 

processes can be employed to confer on PCL the desired shape providing 

control over features at micro scale [179]–[181]. Moreover, PCL showed to be 

highly biocompatible [182] and it presents slow degradation rates [183] due to 

its high degree of crystallinity and hydrophobicity. These last mentioned 

properties make it suitable for studies requiring consistency in the mechanical 

properties of the material over time. This study aims to define the mechanical 

properties of 3D Insert® PCL scaffolds (3D PCL) under compression stimuli 

and to test their suitability in providing a controlled mechanical environment. In 

the literature, porous 3D biomaterials with similar architecture and chemical 

composition were mainly characterized under compression stimuli [106], [184], 

due to the limitation in applying tensile strain related to their structure. A 

prerequisite for the use of polymeric structures for mechanobiology purposes 

is the reproducibility of consecutive stimulations by preventing viscoelastic 

effects to occur. For this purpose, static pre-conditioning was  proposed in 

multiple studies [185]–[187] as a method to prevent viscoelastic response to 

dynamic compression and to achieve relaxation of scaffolds. Environmental 

conditions also affect the mechanical response of 3D scaffolds as 

demonstrated by Dynamic Mechanical Analysis (DMA) analysis in previous 

literature studies [106], [188], [189].  DMA was used in this study to capture 

any difference in the mechanical response of scaffolds when surrounded by 

liquid (water) as cellular experiments require immersion in culture media during 

the stimulation. The architecture of scaffolds is claimed to elicit a strong impact 

on the mechanical properties of polymeric scaffolds [75], [106], [188], [189]. 

The aims of this[75], [106], [188], [189]. The final aims of the chapter consist 

in 1) characterizing the mechanical response of 3D PCL to compression to 

prove the reproducibility of the loading protocol, 2) quantifying the error due to 

geometrical variability, and 3) investigating how the surrounding environment 

affects the mechanical properties of 3D PCL.  
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4.2 Materials and Methods 

 

4.2.1 Mechanical characterization of 3D PCL 

 

4.2.1.1  Stress/strain curve 

 

The stress/strain curve of 3D porous polymeric structures fabricated by fuse 

deposition modelling in general show a different trend compared to that 

observed for bulk polymers. Indeed, while the latter show an initial linear region 

with strain increasing proportionally to the stress (Fig. 4.1A) [190], the linearity 

characterizes just a limited portion of the curve in the former [189] making it 

difficult to identify. In general, porous materials show three different regions 

(Fig. 4.1B).  

 

 

Fig. 4.1: Stress/strain curve of (A) bulk polymeric materials showing the ultimate point of linear 

behaviour where strain varies linearly with stress (P),  the maximum strain achieved prior to  

plastic deformation (E), the yield point showing constant stress with increasing strain (Y) and the 

necking point (M).(B) Porous polymeric structures showing a liner elastic behaviour followed by 

a plateau and a final densification of the material for high strains. 
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After the initial linear region from which the elastic modulus of the structure can 

be calculated, the curve is characterized by a plateau of roughly constant 

stress with increasing strain, and a final region of densification of the material 

governed by plastic effects, where the stress values increase rapidly with strain 

[189] due to deformation and relative movements between polymeric fibers. 

 

Stress/strain curves were obtained applying loading ramps of 14% 

compressive strain at 10 µm/s. This task was performed by the BOSE 

Biodynamic System 5500 (BOSE Corp., US). This mechanical testing machine 

was already employed in different studies requiring highly precise mechanical 

stimulation of polymeric scaffolds for cellular studies [100], [146], [162]. Low 

strain values were chosen to avoid rupture or significant plastic deformation of 

the structure occurring when elevated strains were applied. Scaffolds (n=5) 

were tested at 25°C in air and at 40% of humidity. The zero position was 

defined by load referring to an initial preload of 0.1 N on the structure as zero 

stress/strain condition. Such value corresponded to the minimum variation 

detectable by the load sensor. Load (F) and displacement (d) data were 

acquired at 20 Hz using the Wintest 7.0 software (BOSE Corp., US). 

The stress σ(Eq.4.1) was defined as: 

 𝜎 =
𝐹

𝐴
 

 

Eq. 4.1 

 

where A was the area of the scaffolds, considering an average diameter of 5 

mm.  

Strain ε(Eq.4.2) was defined as: 

 𝜀 =
𝑑

ℎ
 

 

Eq. 4.2 

 

Where h was the height of the scaffold. 
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4.2.1.2  Secant modulus 

 

Secant modulus is recognised as a standard parameter involved in the 

definition of the mechanical response of polymeric materials [189], [190] due 

to difficulties in identifying linear regions in the stress/strain curve when forces 

are applied.  The secant modulus is identified as the slope of the line 

connecting the origin with any point on the stress/strain curve (Fig. 4.2). As it 

remains constant in correspondence of linear regions on the stress/strain 

curve, it helped identifying the range of strain to calculate the apparent elastic 

modulus.  

 

 

Fig. 4.2: stress strain curve of polymeric materials. The secant moduli are represented as straight 

lines connecting the origin (O) to random points (P1 or P2) on the curve [190].  

 

4.2.1.3  Apparent elastic modulus 

 

5% strain ramps at 10 μm/s were applied at 25, 30 and 37°C allowing 

stabilization of the temperature inside the incubator for 30 minutes at each 

temperature variation. Samples (n=3) were tested with 10 ramps and recovery 

of the structure was achieved by allowing 10 min recovery between 
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consecutive ramps (Fig. 4.3). The apparent elastic modulus was calculated as 

average of stress/strain ratio in the range of linear response of scaffolds, hence 

where the secant modulus was constant. 

 

 

Fig. 4.3: single loading ramps for evaluation of the apparent elastic modulus. The compression 

is applied 10 times allowing a recovery of 10 minutes between 2 consecutive cycles. 

 

4.2.2  Sample preconditioning and dynamic compression  

 

Scaffold relaxation was obtained by static preconditioning.  

 

 

Fig. 4.4: relaxation protocol performed maintaining constant strain for 180 min. 
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A 8% compressive ramps was applied at 10 μm/s and the resulting 

displacement was kept constant for 3 hours (Fig. 4.4). To confirm absence of 

viscoelastic effects as consequence of the application of the static 

preconditioning protocol, samples (n=3) underwent cyclic compression before 

and after relaxation at 37°C and 40% humidity. Dynamic forces were applied 

as 5% strain triangle waves for 10 times at 1 Hz (Fig. 4.5). 

 

 

Fig. 4.5: Cyclic compression applied before and after relaxation of 3D PCL to test the viscoelastic 

response of scaffolds. 

 

4.2.3 Dynamic mechanical analysis (DMA) 

 

Different parameters defining the response to cyclic forces are considered. 

Among these, the storage modulus (E’) gives insight of the elastic response of 

the structure and of the energy stored by the specimen while the loss modulus 

(E’’) takes in account the dissipation effects caused by the viscoelastic 

component. The two moduli can be combined to obtain the complex elastic 

modulus (Eq.4.3) and tan δ (Eq.4.4). 

 𝐸∗ =  𝐸′ + 𝐸′′ 

 

Eq. 4.3 
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 tan 𝛿 =
𝐸′′

𝐸′
 

 

Eq. 4.4 

 

Tan δ is defined as the phase shift occurring between load and displacement 

signals (Fig. 4.6) and it is more commonly known as loss factor. It is particularly 

useful in the evaluation of the dynamic mechanical response of composite 

structures because it allows to account for the energy dissipated regardless of 

the mechanism involved [191].     

 

 

 

Fig. 4.6: phase shift due to dissipation phenomena in viscoelastic materials undergoing cyclic 

compression. 

 

DMA was performed in dry or wet conditions keeping samples (n=3) 

respectively in air or water at 37°C. Samples ( 
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Table 4.1) were preloaded at 0.1 N and a ramp at 5% strain was superimposed 

to induce a pre-stress on the structures. 

 

Table 4.1: geometrical features of samples used for DMA analysis. 

 

 

Then, consecutive sinewaves 2% peak to peak (Fig. 4.7) were applied at 0.1, 

0.5, 1, 5, 10 Hz by BOSE. DMA analysis was performed by the DMA software 

(BOSE Corp., USA) and post processing of data was automatically provided 

by the DMA Analysis software (BOSE Corp., USA).  

 

 

Fig. 4.7: 2% peak to peak sinewave centred at 5% strain and applied at different frequencies to 

test behaviour of 3D PCL under cyclic compression.  
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DMA analysis was repeated three times on the same sample to determine E’, 

E’’ and tan δ without varying the orientation of the structure into the machine. 

 

4.2.4 Geometric variability 

 

Analysis on geometrical variability of samples (n=14) was performed by 

microCT scans (Chapter 3.4.7). According to histograms interpretation 

(Chapter 3.4.7.4), GV between 8,000 and 13,000 were selected to compute a 

mask of the scaffold architecture and quantify volume, surface area and 

porosity. Volume and surface area were calculated automatically by 

Simpleware on the overall mask while porosity measurements required the 

selection of an internal volumetric region of interest (ROI). The percentage of 

material (Vmat) occupying the overall selected volume (VROI) was considered in 

the estimation of the final porosity (Eq.4.5) and the relative density (Eq.4.6). 

 𝑝 =  1 − (
𝑉𝑚𝑎𝑡

𝑉𝑅𝑂𝐼
)*100 

 

Eq. 4.5 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 100 − 𝑝 Eq. 4.6 

   

3D volumes were further elaborated in ImageJ to evaluate the average fiber 

diameter. Fiber diameter was measured on a cross-section of the scaffold 

whose cutting plane passes through the centroid of the structure. Then, 

circular areas were drawn matching the fibers profile. Other parameters taken 

into account were the height and the mass of scaffolds measured respectively 

using a calliper and a digital scale.  

 

4.2.5 Boundary effects and mechanical variability 
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The effect of geometry and porosity on the response to compression was first 

investigated on a mechanically well-known material such as 

polydimethylsiloxane (PDMS) in the effort to provide reference measurements, 

helping the clarification of the source of variability. Indeed, the complicated 

geometrical texture contributes to the standard deviation just when 3D PCL is 

considered, while the human and systematic errors affect both materials.  

PDMS was prepared mixing curing reagent and monomer at 1:10 (w/w) ratio. 

Vacuum was applied until complete removal of bubbles was achieved and then 

PDMS was cured at 75°C for 20 min in a temperature controlled oven. Once 

solidified, PDMS was cut into a cylindrical shape by punching holes 5 mm in 

diameter through the structure. Through this procedure, it was possible to 

obtain PDMS samples whose dimensions match 3D PCL. PDMS and 3D PCL 

mechanical properties were tested by applying a preload of 0.1 N followed by 

a 5% strain loading ramp at a fixed velocity. Ea values obtained by performing 

10 ramps were averaged to perform statistical analysis and allowing 10 min 

recovery between consecutive ramps (Fig. 4.3). In this study the effect of three 

variables on the mechanical response of samples were studied: height, 

velocity and sample orientation. The first was explored to test the existence of 

a link between the height of the specimen and its measured mechanical 

properties. 

 

Table 4.2: 3D PCL samples used in the variability analysis. 
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For this purpose, PDMS samples (n=3) 2 mm (PDMS2) and 10 mm (PDMS10) 

tall were tested under the same conditions in terms of strain amplitude and 

rate. To evaluate the adaptation of the material when displacement was 

applied at different rates, the velocity of the loading ramp was varied at 1 and 

10 μm/s on both PDMS2 and 3D PCL.  

 

Fig. 4.8: 3D PCL representation with local coordinate system highlighting the rotation α of the 

sample occurring in the xy plane perpendicular to the z plane.  

 

The 3D PCL samples (n=3) used in the experiments were chosen randomly 

from the same batch ( 

Table 4.2). The last variable considered was the orientation α of the sample 

inside the machine (Fig. 4.8).   

 

Table 4.3: Statistical tests used to evaluate the effect of height and ramp rate on the mechanical 

response of 3D PCL. 
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At each velocity, Ea was statistically analysed to evaluate the effect elicited by 

repositioning the samples on a compact or a 3D porous material. Normality 

and equality of variances among series of data were tested with common 

methods (Chapter 3) and statistical analysis was performed (Table 4.3). 

 

4.3  Results 

 

4.3.1 Microcomputed tomography and 3D PCL architecture 

 

Scaffolds architecture is believed to play a central role in the variability of the 

mechanical response observed when compressing different samples. For this 

reason before undergoing dynamic compression, scaffolds were scanned by 

microCT and the geometrical features were scrutinized to identify any 

significant difference in the architecture among different scaffolds. All the 

parameters tested (Table 4.4) showed high deviation from the average value 

with percentage error up to 12%.  

 

Table 4.4: Geometrical parameters involved in the evaluation of 3D PCL geometrical variability. 

 

 

Sample number Height [mm] Surface Area [mm2] Volume [mm3] Fiber diameter [μm] Porosity [%]

1 1.42 137.67 13.04 290 31.6

2 1.36 145.91 13.31 254 46.54

3 1.62 148.59 12.59 305 46.61

4 1.52 145.94 13.31 284 43.74

5 1.55 153.04 15.88 348 34.2

6 1.67 155.68 16.76 393 50.9

7 1.61 201.12 15.95 335 48.25

8 1.61 166.03 13 380 47.73

9 1.59 159.31 17.84 335 42.71

10 1.55 147.22 13.56 315 35.5

11 1.66 161.91 12.51 300 40.3

12 1.53 151.22 12.14 299 36.09

13 1.67 157.17 13.28 296 35.5

14 1.53 122.66 13.28 296 51.2

Average 1.56 153.82 14.03 316 42.2

Standard deviation 0.09 17.39 1.79 38 6.6
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Average samples height was up to 1.56 mm covering a range between 1.36 to 

1.67 mm. As revealed by reconstruction of samples (Fig. 4.9), differences in 

height were due to the dimension of fibers varying within the sample and also 

among different specimens. Indeed, not only fibers were not perfecly 

cylindrical, but they were also not equally spaced and with very variable 

diameter. In the same sample, the diameter of fibers varied up to 8% while, 

extending the comparison among different samples, the variability increased 

up to 12%. 

 

Fig. 4.9: Cross-sections of samples obtained by volume rendering. Misalignment between fibers 

belonging to different layers, imperfections in the structure and variable pore size characterize 

all samples. 

 

Beyond scaffold height and fiber diameter, variability above 10% was also 

noticeable for surface area, volume and porosity amounting respectively to 

11.3%, 12.8% and 15.6%.  

 

4.3.2 Stress/strain curve and apparent elastic modulus 

 

Observing the stress/strain curve (Fig. 4.10A), a classic viscoelastic behaviour 

was identified by the non-linear increase of stress with increasing strain. 

Moreover, the development of an hysteresis cycle suggests loss of energy 

associated to the deformation. Indeed, the unloading curve showed 6% 
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residual strain when a single ramp at 14% strain was applied, suggesting the 

occurrence of plastic deformation of the structure for strains above 8%.  

 

 

 

Fig. 4.10: Stress/strain curve applying loading/unloading ramp to evaluate 3D PCL response to 

mechanical compression for strain up to (A) 14%, (B) 5%. 
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On the contrary, a single 5% strain ramp (Fig. 4.10B) did not present plastic 

effects and it showed complete recovery of the structure. 

 

 

 

Fig. 4.11: Loading curve resulting of 3D PCL undergoing compression for ranges of strain (A) 

below 1% and (B) up to 5%. The standard deviation refers to an average of 10 consecutive ramps. 
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For this reason, low strain values thresholded at 5% were applied in the next 

experiments involving consecutive loading of samples, while a 8% threshold 

was used to achieve complete relaxation of scaffolds.response of a single 

scaffold undergoing cyclic compressive load led to a massive standard 

deviation for high strains (Fig. 4.11B). However, other two regions were 

identifiable in the stress/srain curve. Indeed, strain below 1% (Fig. 4.11A) were 

governed by the non linearity related to an adaptation of the material to 

compression and local rearrangement of fibers, while a linear region was 

identifiable above 1% strain and before the densification. At this point, the 

secant modulus was examined as it remains constant in the range of strain 

governed by linearity on the stress/strain curve (Fig. 4.12).   

 

 

Fig. 4.12: Secant modulus resulting from compression of a 3D PCL sample. The standard 

deviation refers to an average of 10 consecutive ramps. 

 

Following these findings, a certain strain was considered as belonging to  the 

linear range if the secant modulus underwent a maximum variation of 10% 

from the value observed at 1%.  
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Fig. 4.13: (A) stress\strain curve varying temperature at 25, 30 and 37°C; (B) apparent elastic 
modulus (n = mean±S.D.) values depending on temperature. 

 

As a result, all secant moduli falling in the range of strain between 1 and 2.5% 

were averaged and defined as apparent elastic modulus. Ea is a parameter 

representative of the stiffness of the structure and was involved in the 

evaluation of the effect of temperature on the mechanical properties of 3D 

PCL. Indeed, Ea remained constant among stimulations regardless of the 

previous history of the material if (1) the strains applied previously did not 

exceed the 8% threeshold for plastic deformation; (2) samples were not 

repositioned in the machine; and (3) samples were allowed to recover for 10 
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min between consecutive compression cycles.Respecting these conditions, Ea 

was found to progressively decrease with raising temperature (Fig. 4.13A). 

Samples tested at 25, 30 and 37°C showed Ea respectively at 4.8, 3.8 and 2.2 

MPa (Error! Reference source not found.B). Indeed, not only fibers were not 

perfectly cylindrical, but they were also not equally space and with very 

variable diameter. In he same sample, the diameter of fibers varied up to 8% 

while, extending the comparison among different samples, the variability 

increased upt o 12%. 

 

4.3.3  Preconditioning and viscoelastic effects 

 

Viscoelastic effects occurred when cyclic loading was applied, enhancing 

progressive relaxation (Fig. 4.14) as the structure was not allowed to recover 

between ramps. The highest dissipation of energy was observed during the 

first cycle and then viscoelastic effects progressively decreased. For strains up 

to 5%, viscoelastic effects were prevented by static preconditioning applying 

constant displacement. Samples required an average of 150 min to completely 

relax under 8% strain compression, reaching a plateau (Fig. 4.15A).  

 

Fig. 4.14: viscoelastic relaxation of scaffolds tested by cyclic loading. 
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Applying cyclic loading on statically preconditioned specimens, viscoelastic 

effects were absent with overlapping loading/unloading curves (Fig. 4.15B). 

Moreover, the absence of plastic deformation was confirmed as no residual 

strain was observed at the end of the unloading curve.  

 

 

 

 

Fig. 4.15: (A) Relaxation pattern of four different samples relaxed under constant displacement 

over 180 min (B) stress/strain curves showing the behaviour of the material for 10 consecutive 

compression ramps after undergoing relaxation. 
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Despite the similarity in the relaxation pattern, the load force registered by the 

machine varied among samples although the same strain was applied, 

suggesting geometrical differences play a role in the mechanical response of 

scaffold to compression. 

 

4.3.4 Mechanical characterization of PDMS 

 

PDMS samples with different height underwent the same compressive 

protocol as 3D PCL to evaluate the effect of the geometry on the response of 

the material. At first glance, height seemed to play a fundamental role on the 

mechanical response, while rate of application of the stimuli did not elicit any 

strong effect on a compact material such as PDMS (Fig. 4.16).  

 

.

 

Fig. 4.16: Effect of different heights and compression rates on the response of PDMS samples. 

The mechanical response of 2 mm height samples compressed at 1 μm/s (blue) and 10 μm/s (red) 

are compared to that of 10 mm samples compressed at 10 µm/s (green). Each condition was 

tested on three samples (A, B, C) (n = mean±S.D.). 
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In order to confirm the truthfulness of this statement, statistical analysis was 

performed to test data for normality and equality of variances. Data series 

presented a normal distribution and equal variance as demonstrated 

respectively by the Shapiro and Levene’s test (Table 4.5). These findings 

together with the hypothesis of independent samples enabled the use of 

ANOVA and T-Test for comparison among experimental tests. Comparing 

samples having the same height by ANOVA (Table 4.5) no significant 

differences were noticed in the mechanical response. This suggests the 

suitability of PDMS to be used as reference for evaluation of the precision of 

the methodology and quantification of the human and systematic error. Despite 

the repeatability in the estimation of the material stiffness for a given height, 

PDMS10 showed a significantly higher Ea (p<0.001) compared to PDMS2 

(Table 4.5).  

 

Table 4.5: SPSS statistics of Ea data obtained compressing 10 times PDMS samples. Height was 

varied at 2 mm (PDMS2) and 10 mm (PDMS10). Series of data obtained by compression of each 

sample (A, B, C) are tested for normality. Levene’s test is performed to confirm equality of 

variances among different samples presenting same geometry. Afterwards, ANOVA and T-Test 

are performed to confirm similarity in Ea values by employing respectively different samples with 

the same height or samples with different height. Eventually T-Test is further adopted to evaluate 

variability among single samples 2 mm height tested at different velocities.  

 

 

This suggests that a shorter height causes an underestimation of the final 

apparent elastic modulus. T-Test statistics showed no significant differences 

by comparing series of data referring to a single PDMS2 sample compressed 
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first at 1 μm/s and then at 10 μm/s although its orientation in the machine was 

varied (Table 4.5). These findings imply the rate of application of the stimuli 

and the orientation in the machine to not elicit any effect on the mechanical 

response of samples when a compact and elastic material such as PDMS is 

considered. Moreover, variances remained consistent among different 

samples or varying testing conditions. Indeed, standard deviation values were 

below ± 0.2 MPa regardless of velocity, height and repositioning of the sample. 

As consequence, this value was considered representative of the standard 

deviation caused by the human and systematic error. 

 

4.3.5 3D PCL variability analysis 

 

A different situation was instead observed when compressing 3D PCL 

scaffolds due to the texture of the architecture and the absence of a compact 

material.  

 

 

Fig. 4.17:  stress/strain curves (1-10) repositioning the same sample among compression ramps 

applied at 10 μm/s. 
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Conversely to what was observed testing PDMS in the same conditions, a high 

variability in the mechanical response was noticed which cannot be clearly 

associated to any particular feature. Indeed, stress/strain curves did not 

overlap when a single 3D PCL sample was compressed several times varying 

its orientation (Fig. 4.17). The average percentage error resulting from the 

application of a defined compression protocol remained constant among 

specimens, amounting to 1 MPa.  

 

 

Fig. 4.18: Apparent elastic modulus (n = mean±S.D.) of 3D PCL samples (A, B, C) tested varying 

the velocity of application of compressive ramps at 1 um/s (blue) and 10 um/s (red). 

 

However, the overall error reached up to 30% of the measure depending on 

the Ea values associated with the mechanical response of samples to 

compression. Contrary to PDMS, 3D PCL showed also differences in the 

overall mechanical response when different samples were tested (Fig. 4.18) 

as already noticed by testing relaxation (Fig. 4.15A). According to Shapiro test, 

data series followed a non-normal distribution (Table 4.6) for sample A and B 

compressed respectively at 1 and 10 μm/s.  
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Table 4.6: Shapiro tests normality on 3D PCL samples compressed at 1 mm/s and 10 mm/s; 

Levene and T Test respectively verify equality of variances and identify any significant difference 

among single samples compressed at different velocity. 

 

 

However, a further analysis on stem-leaf graphs was performed, revealing 

symmetry especially at 10 μm/s (Fig. 4.19). Following those outcomes, data 

series were considered as normally distributed while the presence of outliers 

was associated to human error occurring during the application of the initial 

pre-load.   

 

 

Fig. 4.19: stem-leaf diagrams to evaluate normality on samples with negative Shapiro tests 

results. From left to right, graphs refer respectively to sample A compressed at 1 μm/s and 

sample B compressed at 10 μm/s. 

 

Considering normal distribution of data, parametric tests were employed for 

comparison of means between series, guaranteeing reliability especially at 
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higher compression rate. Conversely to PDMS, 1 out of 3 samples showed 

differences in the mechanical response when compressed at different velocity 

(Table 4.6).  

 

Table 4.7: Tukey post-hoc test showing significant differences among Ea within different samples 

tested at 1 µm/s and 10 μm/s. 

 

 

Indeed, sample C resulted significantly stiffer (p<0.05) when compressed at 

10 μm/s, suggesting velocity as a variable in the mechanical response of 

porous materials.  

 

Table 4.8: Levene’s test for equality of variances of samples (A, B, C) compressed at the same 

velocity. 
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Given that, Tukey post-hoc test (Table 4.7) showed significant differences 

(p<0.05) between samples A, B and B, C at 1 μm/s. The differences in the 

mechanical response of samples became less evident at higher velocity as the 

mean value varied only comparing samples B and C with probability values 

falling close to the significativity threshold (Table 4.7).These findings highlight 

once more the importance of height and architecture in the definition of the 

mechanical response of the material.  Despite the difference in the average 

Ea, the homogeneity of variances between series of data was obtained by 

Levene’s test regardless of the sample architecture (Table 4.8), allowing to 

define 1 MPa as the maximum standard deviation acceptable. 

 

4.3.6 DMA analysis 

 

Air and water were taken as variables in this study to define the effect of a 

different surrounding environment on mechanical behaviour of 3D PCL. From 

the results, no significant differences were found testing the same sample in 

dry or immersed state. Indeed, storage modulus (Fig. 4.20A), loss modulus 

(Fig. 4.20B) and tan δ (Fig. 4.20C) remained constant regardless of the 

environment surrounding the specimen. The pattern followed by samples 

increasing frequency was the same for all specimens tested. In general, 

increasing frequency above 5 Hz led to significant increase (p<0.05) in storage 

modulus and a significant decrease (p<0.05) in tan δ. Variations in terms of 

loss modulus were observed just on 1 sample out of 3, showing less dissipation 

effects with increased frequency. 
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Fig. 4.20: (A) Storage modulus, (B) loss modulus and (C) tan δ (n = mean±S.D.) resulting from 

DMA analysis on three 3D PCL samples tested in air (continuous line) or water (dot line). 

Significant differences are marked by * (*p<0.05) referring to all samples (black bracket) or a 

single sample matching the colour of brackets. 
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4.4 Discussion 

 

4.4.1 3D PCL apparent elastic modulus 

 

Stress/strain curves showed a viscoelastic behaviour with non-linearity 

governing through a wide range of strains.  Ea calculated as average σ over ε 

in the range of strain between 1-2.5% amounted to 2.2±1 MPa at 37°C. Such 

value classifies the 3D PCL as a good substitute for bone recovery as it 

matches the Young’s modulus of fibrous tissue developing during early stage 

of healing and marrow [192]. However, an underestimation of the real value in 

terms of stiffness of the material is believed to occur due to the limited height 

of scaffolds, as demonstrated by applying the same conditions on PDMS 

samples at different height. Despite this, Ea remained constant among 

loadings on a single sample whose orientation was not varied. The 

repeatability of Ea enabled the investigation of the effect of temperature 

variations on the 3D PCL stiffness. The dependence noticed between 

mechanical responses to compression over temperature links to the polymeric 

nature of scaffolds which become softer at higher temperature due to the 

weaker bonds between adjacent polymeric chains. These thermal properties 

characteristic of polymeric materials [190] were also reported on PCL scaffolds 

tested either as  a compact [193], [194] or a 3D structure [75], [189]. However, 

comparison among results is difficult because scaffold architecture affects the 

mechanical response to a given stimuli. Numerous studies in the literature 

[106], [184], [189] have shown indeed a strict correlation between porosity, 

pore size, offset between fibers and mechanical response. Thus, these 

parameters together with other properties of the sample - such as the 

geometry, degree of crosslinking and molecular weight – have to be taken into 

account when comparing results with the literature (Table 4.9). For example, 

the stiffer Ea values claimed by Hutmacher [189] could be correlated to the 

different 3D geometry of their scaffolds, or to the molecular weight of the 

rawmaterial whose value for 3D PCL is 43000-50000 Da. Despite the similar 

geometry considered in Yeo study [75], a higher modulus than for 3D PCL was 
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claimed probably due to the different laydown pattern as well as the inclusion 

of TCP particles in the structure. The stiffness of 3D PCL scaffolds with 

geometry similar to 3D PCL was tested by Sobral [106] who evaluated the 

mechanical response of scaffolds with pore size varying between 100 and 750 

μm. The pore size of 3D PCL was considered to be 300±48 μm assuming a 

maximum 15.6% error from the average value provided by the manufacturer. 

The error was based on the assumption that pore size matched the same 

variability as the other geometrical features such as height, porosity, fiber 

diameter, surface area and volume.  Given that, the pore size of 3D PCL fits 

in the range of porosity tested by Sobral allowing a comparison of the results. 

In their study, Young’s modulus of samples ranged between 1.5 and 8 MPa for 

structures with pore size varying respectively from 750 to 100 µm. Our findings 

agree with Sobral’s as Ea for 3D PCL compressed at 37°C amounts to 2.2 ± 

0.1 MPa, therefore falling within the range of stiffness claimed by the literature 

study. Differences in the surrounding environment can be excluded due to the 

similar mechanical response obtained testing 3D PCL in air or water at 37°C. 

In the literature (Table 4.9), the percentage error of the average stiffness 

reaches 14% when consecutive identical compression cycles are applied on 

different samples. The deviation from the average value was instead higher in 

this study because of architectural differences and imperfections which lead to 

high variability in the 3D PCL mechanical response. 

 

Table 4.9: Comparison among the literature studies evaluating the stiffness of 3D PCL when 

molecular weight, dimensions, compression protocol, laydown pattern, porosity, Pore size and 

surrounding environment are varied. 
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4.4.2 Mechanical response and geometry 

 

Before testing the dynamic mechanical performance, samples underwent 

static preconditioning in an effort to remove viscoelastic effects and guarantee 

reproducibility of the stimuli when several loading cycles are performed. 

Applying compression strains below 8% prevented the appearance of plastic 

deformation and enabled a complete relaxation of the structure from pre-

stresses. 3D PCL scaffolds with an architecture similar to 3D PCL employed 

in our study relaxed under constant strain conditions over periods from few 

hundred of seconds [186] up to 33 minutes [187]. The differences with the 

literature are believed to correlate to differences in the initial molecular weight 

and the degree of crystallinity of samples. Despite the consistent response 

during dynamic compression, the overall stress varied among scaffolds due to 

differences in the geometry and the architecture. As shown by microCT 

reconstructions, fibers presented different dimensions and seemed to be fused 

together, randomly decreasing the spacing between layers in the z-plane. This 

variability caused significant differences in the porosity distribution and 

interconnectivity within samples. Moreover, the height of 3D PCL does not 

meet the requirements for reliable estimation of the elastic modulus, stating 

the height to be at least twice the diameter [195]. Consequently, boundary 

effects occurred leading to differences in the mechanical response when the 

orientation α of the same sample was varied. In addition, scaffolds often 

present a bullet-like shape due to the fabrication method requiring the cutting 

of cylindrical shaped scaffolds from large sheets of polymeric fibers produced 

by fuse deposition modelling. In order to understand the contribution of the 

geometrical variability of samples loaded in different orientations, PDMS was 

used as reference material. As a matter of fact, the error resulting from the 

compression of PDMS was formed by 1) a systematic component associated 

to the accuracy of displacement and load sensors, and 2) human error lessen 

by routine and well-established procedures but limited by human eye 

resolution. Given that, the error with the procedure was demonstrated to be 

below 10% regardless of the sample orientation. As consequence, the high 
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variability up to 30% characterizing the 3D PCL response can be reasonably 

assumed to be related to the geometry and architecture of samples. In order 

to reduce the geometrical variability, a sub-group of samples presenting the 

same height and diameter (n=7) was selected to identify a possible relationship 

between porosity and stiffness.  

 

 

 

Fig. 4.21: (A) Mass and (B) apparent elastic modulus (n = mean±S.D.) vary with relative density of 

scaffolds presenting same height and diameter. The red point represents the sample whose 

behaviour was inconsistent with the general trend followed by the other specimens . 
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By 3D reconstruction and analysis of samples, a decrease in mass was 

correlated to an increase of porosity (Fig. 4.21A). Given that, further 

dependence between Ea and porosity was observed by performing mechanical 

compression. More porous scaffolds resulted softer than less porous ones 

matching results found in the literature where the effect of  porosity, pore size 

and offset between fibers was shown to correlate to the stiffness [106], [188]. 

According to the literature, stiffness of open pores structures made of high 

molecular weight PCL is expected to increase with increasing material relative 

density, following a squared power law[196]. Here, a fit line with an exponent 

of 1.8 was the best representing the variation of stiffness with relative density 

(Fig. 4.21B), closely approaching the value mentioned in the literature. Indeed, 

porosity measurements give a good insight of the percentage of voids over 

material content without taking into account the size of pores and their 

distribution. In this particular case, the inconsistent mechanical response of 

the sample represented in red (Fig. 4.21) was further scrutinized by measuring 

fibers diameter. That step revealed the sample to be characterized by bigger 

fibers compared to other equally porous specimens, leading to a stiffer 

structure. Hence, average diameter, relative orientation of fibers or presence 

of small defects have a strong effect on the mechanical behaviour of scaffolds 

and must be considered for a more accurate evaluation of 3D PCL response 

to external forces.  

 

4.4.3 DMA and stress distribution 

 

DMA analysis defined the effect of different frequencies on 3D PCL 

mechanical response and helped with the evaluation of viscous and elastic 

properties of the structure. Increasing frequencies led to an increase in the 

ability of the scaffold to store energy as noticed by the increase in storage 

modulus and the simultaneous decrease of tan δ  affecting all samples. 

Scaffolds with interconnectivity and geometry very similar to 3D PCL samples 

but higher height were demonstrated to follow the same pattern in terms of E’ 



Mechanical Characterization of 3D Insert ® PCL Scaffolds 

 

 

93 
 

and tan δ  (Table 4.10). According to Sobral study [106], the differences 

observed comparing E’ among samples can be addressed to larger pores 

characterizing S4. Moreover, E’ was lower for all conditions tested compared 

to our findings because of the difference in the amplitude of the sinewave 

applied. Indeed, the amplitude of the strain at the peak of compression 

amounted to 6% in our experiment while it was just 1.4% in the literature study. 

A cylindrical geometry matching 3D PCL scaffolds presented here was 

investigated by Yilgor [188], although the height of the specimens and the 

protocol applied to samples during the DMA analysis were not clear. Despite 

this, storage modulus and tan δ values match the results found in our study 

when a laydown pattern of 0/90° is considered. Among others, DMA enabled 

also the investigation of the effect elicited by the external environment on the 

mechanical response of 3D PCL.  

 

Table 4.10: Comparison of the literature studies testing the mechanical performance of 3D PCL. 
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No significant differences were observed comparing E’, E’’ and tan δ in air or 

in liquid. These results match findings in the literature related to five-layered 

pattern structures [189], while slightly different three-layered architectures, 

tested in the same study, were found to decrease stiffness upon immersion in 

PBS. The plasticity effect claimed by Hutmacher was also confirmed on 

different raw polymers in another study [197].  The parameters obtained by 

DMA analysis were used in the development of a computational model [198] 

aiming to clarify the distribution of stress into the structure at the peak of 

compression (Fig. 4.22). 

 

 

Fig. 4.22: Computational estimation of stress distribution on the surface of a scaffold undergoing 

5% strain compression. The cross-section of the sample reveals the development of tensile 

strains (red) within the structure, while compressive stress (green) are concentrated mainly in 

the area of contact between fibers occupying consecutive z-planes [198]. Despite this, the 

majority of the structure appears not to be affected by compression remaining in its un-deformed 

state (orange and yellow). 

 

 The computational model revealed non-uniformly distributed stresses within 

the entire volume of scaffolds. Indeed, some fibers did not deform and 

compressive stresses were governing mainly at the contact surface between 

fibers. Moreover, local tensile stress prevailed in certain areas, causing 

bending of fibers as an effect of compression. Similar outcomes were claimed 

in literature by applying compression on open-cell nickel foams [199] where 
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compression led to the development of local strains in the weaker regions of 

the structure. 

 

 

4.5 Conclusions 

 

4.5.1 Summary 

 

Despite the high variability encountered with 3D PCL scaffolds, the variation 

of the stress with the strain can be considered linear between 1% and 2.5%. 

Ea defined in this range remained constant among stimulations, allowing the 

investigation of a relationship between temperature and 3D PCL mechanical 

response. Ea varied consistently when the scaffold was repositioned or 

compared between different specimens because of boundary effects related 

to the small height and differences in terms of architecture. In order to define 

the real stiffness of the scaffold, 10 mm height samples would be required due 

to the conditions governing mechanical tests in compression and demanding 

for the height to be at least twice the diameter of the specimen. 3D PCL was 

manufactured by third parties and so the final dimensions of the construct were 

not modifiable. Consequently, Ea values obtained here cannot be considered 

as appropriate to define the mechanical properties of the material. Although 

the variability is among the main drawback associated to 3D PCL scaffolds, it 

provides a good representation of the in vivo conditions. As a matter of fact, 

the mechanical stimuli acting locally on injured bone sites are a combination 

of stretching and bending forces whose distribution depends on the shape of 

the fracture, the magnitude of the applied force and the stage of ossification 

[200]. The same distribution of stress is well mimicked in vitro inside a 3D 

fibrous specimen where fibers deform, leading to compression and tensile 

stresses as shown by computational analysis. The findings of this study 

confirm the suitability of 3D PCL to be used for bone mechanobiology studies 
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as 3D PCL was demonstrated to provide a reproducible mechanical response 

and to bear compressive mechanical forces.  

 

4.5.2 Future work 

 

A sample of compact raw material would be the ideal specimen to test to better 

define the mechanical properties of the 3D PCL. Indeed, the lack of such 

specimens prevented a full characterization of the single fibrous components 

not only in terms of response to mechanical forces but also of the chemical 

properties.  Among the principal chemical cues, the molecular weight was 

indeed found to strongly affect the mechanical response of polymers [201]. 

However, the effect of pore size and fiber diameter on the mechanical 

response of 3D PCL cannot be investigated due to the random fibers 

dimension in the sample. A more reproducible geometry can be achieved by 

the optimization of parameters playing a role in the dimensional accuracy of 

fuse deposition modelling (FDM) such as temperature, humidity, wire 

diameter, layer thickness, road width and speed of deposition [202]. 

Alternatively, future studies may consider 3D PCL to be substituted with 

scaffolds made of the same polymer but providing a more regular structure 

through the use of more precise fabrication techniques such as 3D printing 

[203] and precision extruding deposition [204]. 
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Chapter 5 

5 MICROFLUIDIC PERFUSION 
BIOREACTOR  

 

 

5.1 Introduction 

 

In order to obtain uniform 3D tissue growth, cells must first be homogenously 

seeded in a scaffolding structure. Perfusion is claimed to be among the best 

techniques to obtain uniform attachment, although the investigation of various 

perfusion flow rates was often needed to establish the optimal seeding 

conditions [116], [122], [205]. Perfusion has also been used in numerous 

studies to investigate the effect of shear stresses on proliferation and 

differentiation of cells [124], [126], [129], [206], [207]. Despite the promising 

results, common perfusion systems require the use of high amount of reagents 

and to deal with equipment of large dimensions. The demand to decrease 

costs and facilitate the handling of bioreactors led to the development of 

microfluidic systems [134]. Microfluidic bioreactors require a low amount of 

reagents, are easy to develop by common soft lithography techniques, and 

allow the fabrication of devices easy to handle. Another advantage of 

microfluidic systems is their versatility which allows to manufacture devices 

with variable shape and with multiple chambers working in parallel to increase 

the reproducibility of experiments. Such devices were employed mainly in the 

study of the effect of fluid flow on cellular masses [208]  to maintain the 

characteristics of the microenvironment otherwise prevented by the 

embedding of scaffolding structures. This study proposes different 

configurations of a custom-made microfluidic bioreactor made of 

Polydimethylsiloxane (PDMS) equipped with multiple chambers to evaluate 

how the seeding efficiency of 3D Insert ® PCL scaffolds (3D PCL) is affected 

by fluid flow. Increased flow rates can create large stresses within porous 
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scaffolds influencing cellular metabolism and shear stress magnitudes which 

can be detrimental to cell viability exceeding in vivo conditions [116], [205]. 

Therefore, a compromise has to be met between the mass transfer through 

porous structures and shear stresses occurring during seeding to prevent cell 

detachment and death although still supplying the necessary nutrients. 

According to the literature [120], shear stresses below 2 Pa are optimal in 

enhancing cell attachment, even though it is strictly dependent on the types of 

cells, the substrate and the time of exposure [209].  

This study aims to 1) develop a custom-made microfluidic bioreactor able to 

provide a system for perfusion of scaffolds, 2) characterize the flow estimating 

the shear stresses acting through the structure to validate the suitability of the 

device for culture studies, and 3) evaluate the effect of different flow rates on 

cells attachment to establish the best approach for acceptable seeding 

efficiencies in future studies. 

 

 

5.2 Material and methods 

 

5.2.1 Fabrication method 

 

The procedure for the development of microfluidic devices followed the same 

workflow regardless of the design used (Fig. 5.1). First, a mold with the 

patterns to be printed on the PDMS was created by applying adhesive stickers 

on top of a petri dish. Then, homodimer and curing reagent were mixed (1:10 

w/w) and vacuum was applied for 10 min to remove bubbles from the viscous 

mixture. PDMS was then poured into the mold and let to cure at 75°C in an 

oven for 20 min. Once cured, the mold was removed and cut into shape. Holes 

were punched to hold the scaffold and 3D PCL were placed into the designed 

spaces. In order to define the path followed by the liquid, the mold and two 

glass slides underwent air plasma treatment at 100 W, 1 mBar for 30 s. 
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Fig. 5.1: Workflow followed to fabricate the microfluidic device by soft lithography of PDMS. 

 

Immediately after the treatment, PDMS and glass were put in contact to 

covalently bond the surfaces. Eventually, 0.5 mm diameter tubes were inserted 

in the inlet and outlet to provide a close system for perfusion of scaffolds.  

 

5.2.2 Fluid flow experiments setup 

 

Microfluidic systems were connected to 1 ml syringes allocated in specific 

spaces for controlled pumping of fluid back and forward in the system. The 

liquid was aspirated in the syringes and dispensed by controlling the flow rate 

with external pumps (Fig. 55.2). 

 



Chapter 5 
 

 

100 
 

 

Fig. 5.2: Perfusion system setup composed of two pumps connected to the microfluidic device 

by syringes. 

 

For cellular seeding experiments, consecutive dispensing and withdrawn of 

cellular suspension was required to increase the possibility of cell contact with 

the walls of the scaffold. Given that, the outlet tube was connected to another 

pump (Fig. 5.2), working in synergy with the first, to guarantee homogenous 

fluid flow through the system and decrease cell settling phenomena at the 

outlet. 

 

5.2.3 Particle tracking 

 

Particle tracking was performed by following the movements of fluorescent 

microspheres injected in a single chamber device. The particle tracking was 

performed to evaluate how the presence of the scaffold affects the average 

velocity of the fluid in the seeding chamber. The main hypothesis were 

formulated on the motion of particles  assuming 1) null relative velocity 

between particles and fluid stream, and 2) the only force acting on particles to 

be the drag force of the fluid. Following these assumptions, the movement of 

spheres was reasonable to be considered as a representation of the fluid 

streams flowing through the device and could then be related to the force 

sensed by cells suspended in such a media. Particle tracking experiments 

employed a single chamber device (Fig. 5.3) since air bubbles removal was 
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easily achieved by manually increasing the pressure applied from the inlet and 

pumping ethanol into the system.  

 

 

Fig. 5.3: Single chamber microfluidic system for particles tracking experiments with allocated 

scaffold and inlet/outlet tubes. 

 

Then, the chamber was flushed with PBS to remove residues of ethanol. 

Fluorescent particles of 10 µm in diameter were suspended in PBS in a 

concentration of 106 particles/ml, and 8 ml of suspension was perfused varying 

velocity every 1 ml of volume dispensed. The velocities tested were 0.01, 0.03, 

0.05, 0.07, 0.1, 0.3, 0.5, 0.7 mm/s. Images were acquired every 1 second by 

the Metamorph® software (Molecular Devices, LLC, USA) and analysed by 

ImageJ. The particle tracking was performed manually selecting the centre of 

spheres at each time frame. Measurements for each velocity were done on an 

average of four particles. The experiment was repeated three times in the effort 

to increase reproducibility when comparing devices fabricated at different time, 

and to take into account the effect elicited by variation in scaffold geometries.   

 

5.2.4 Shear stress calculation  

 

From the results obtained by the particle tracking, it was possible to calculate 

the average shear stress τ considering a laminar flow through the specimen 

by applying the Kozeny-Carman equation. It relates the drop of pressure 

caused by friction effects to the shear stress acting in the system [210]: 
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 τ =
 8μ𝑣𝑖𝑛

𝑑2
 (Eq. 5.1) 

 

where µ is the viscosity of the fluid, and d is the diameter of the pores.  

The kinematic viscosity µ of PBS was set to 8.9 x 10-4 Pa∙s [211], while the 

diameter of pores was 300 μm according to the manufacturer.  

 

5.2.5 Single chamber system validation 

 

In order to show the suitability of the system in enhancing cell attachment 

within the range of velocities tested, osteosarcoma cells (MG63) were 

suspended in 10 ml of medium in a concentration of 106 cells/ml and 500 µl of 

cell suspension was perfused through the inlet of the bioreactor at 0.01, 0.1 

and 0.5 mm/s. After 2 h of perfusion, specimens were removed from the device 

and cell viability was qualitatively determined by fluorescence imaging 

(Chapter 3.4.4). The fluid flow was set in dispense and withdrawal mode to 

continuously pump cells and increase the probability of scaffold-cell contact. 

 

5.2.6 Multi-chamber system validation 

 

Multi-chamber configurations employed devices fitted with three spaces 

placed in series or in parallel (Fig. 5.4) for scaffolds allocation. While the in-

series configuration provided consecutive perfusion through all the three 

scaffolds (Fig. 5.4A), the in-parallel configuration divided the main stream in 

three minor channels each leading to a single scaffold (Fig. 5.4B). In the latter 

configuration, the fluid coming from each chamber connected again into a main 

stream and moved toward the opposite pump.  Fluid flow was inverted every 

500 µl of volume were dispensed. 
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Fig. 5.4: Top view of (A, C) in-series and (B, D) in-parallel design. Both designs are shown (A, B) 

without or (C, D) with bubble traps. 

 

Following single chamber validation experiments, an inlet flow rate of 0.5 mm/s 

was set to guarantee optimal seeding conditions. In order to avoid the 

inconvenience brought by residual air sitting in the middle chamber, both 

configurations were further provided with bubble traps (Fig. 5.4C&D) by adding 

two empty specular areas located on the top and bottom of each chamber (Fig. 

5.5). 

 

 

Fig. 5.5: side view of a chamber showing the path followed by fluid flow through (a) the scaffold. 

(b) Bubbles are trapped in (c) bubble traps areas. 
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MG63 viability and seeding efficiency was evaluated by fluorescence imaging 

and quantified by DNA assay (Chapter 3.4.6) at 1,2 and 3 h on three different 

devices with an in series configuration. 

 

5.2.7 Dynamic seeding 

 

Human embryonic stem cell-derived mesodermal progenitors (hES-MPs) were 

suspended in 1 ml of media in a concentration of 16 x 104 cells/ml and were 

injected at 0.1 mm/s and 0.5 mm/s into the system, allowing inversion of the 

fluid stream every 500 μl dispensed.  

 

 

Fig. 5.6: In-parallel configuration fitting three independent scaffolds in the same device. 

 

The bioreactor chosen for the dynamic seeding of cells presented three single 

chambers placed in parallel on the same device to apply equal conditions on 

three independent specimens (Fig. 5.6). A total of five scaffolds were 

accounted for each condition. Chambers developing bubbles within the 

duration of the experiment were discarded, as their presence led to the failure 

of the most important hypothesis of our study demanding for uniformity in the 

fluid flow. After 24 and 48 perfusion cycles from the beginning of the seeding 

process, the device was sacrificed and specimens were tested for cell number 

quantification by DNA assay (Chapter 3.4.6). 
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5.2.8 Static seeding 

 

Scaffolds (n=5) underwent sterilization (Chapter 3.4.1) hES-MPs were then 

suspended in a concentration of 16 x 104 hES-MPs/ml in culture media and 

statically seeded following common techniques (Chapter 3.4.3). Samples were 

collected and tested for DNA quantification (Chapter 3.4.6) after 24 h and 

compared to dynamic seeding results. 

 

 

5.3 Results 

 

5.3.1 Single chamber devices and fluid flow 

 

 

Fig. 5.7: Relationship between internal velocity and inlet velocity obtained by tracking of 

fluorescent particles. 

 

By particle tracking experiments, it was possible to define a relationship 

between the inlet flow rate (vinlet) and the average velocity acquired by particles 

(v) (Fig. 5.7). v increased proportionally to vinlet, leading to a 6-fold increase 
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when particles were perfused through the scaffold pores with velocities up to 

0.1 mm/s. For velocity above 0.1 mm/s, particles varied their kinetic behaviour 

showing only a 1.33-fold increase in velocity. At higher velocity, a rise of the 

average error associated to the measure was also observed due to difficulties 

in precisely tracking the displacement of particles during the manual post 

processing of images. 

 

 

Fig. 5.8: Fluorescent imaging of particles stuck to the PDMS chambers after several perfusion 

cycles. Coloured lines show the pathway followed by particles through the specimen and are 

obtained by manual tracking. 

 

Indeed, not only at higher velocities particles were moving faster making 

difficult manual tracking, but also a higher amount of particles stuck to the 

PDMS structure causing an increase of the fluorescent background in the 

images proportional to the duration of the experiments (Fig. 5.8). The values 

obtained from the tracking experiments were used to calculate the average 

stress into the system. By applying the Kozeny-Carman relationship, the shear 

stress never exceeded the recommended values for cell attachment in the 

range of velocities tested (Fig. 5.9), reaching a maximum value of 0.14 Pa for 

a velocity of 0.7 mm/s.  
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Fig. 5.9: Shear stress calculated using kozeny-Carman equationvarying inlet fluid velocity. 

 

In order to find the velocity giving the highest attachment, three different inlet 

rates were applied to suspension of MG63 cells cultured in single chamber 

devices without bubble traps. By qualitative evaluation of cellular viability 

through fluorescence images, a velocity of 0.01 mm/s was found to prevent 

cell attachment to the scaffold (Fig. 5.10A) while 0.1 mm/s allowed cell 

adhesion and enhanced viability (Fig. 5.10B). A velocity of 0.5 mm/s gave the 

best results with numerous cells occupying the pores of the scaffold (Fig. 

5.10C). Indeed, cells seeded at 0.5 mm/s not only were well spread through 

the pores but also began extending protrusions, suggesting enhanced cellular 

adhesion. Although perfused cells are expected to uniformly occupy internal 

areas of the scaffold, not many cells were attached to the surface of fibers and 

the difference in pore dimensions led to variation in terms of cellular 

distribution.On the contrary, static seeded 3D PCL showed higher number of 

cells and uniform cellular distribution on the top of the scaffold. Moreover cells 

were better spread and presented bridging among neighbour polymeric fibers. 
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Fig. 5.10: MG63 seeded PCL by perfusion at (A) 0.01, (B) 0.1, (C) 0.5 mm/s, and (D) by static 

seeding. 

 

5.3.2 Multi chamber configurations 

 

Employing multi-chamber with an in-series configurations led to uniform 

distribution of cells through a single scaffold (Fig. 5.11). However, considering 

specimen tested in the same device but located in consecutive chambers, the 

number of cells attached varied with more cells occupying the first (Fig. 5.11A) 

and last (Fig. 5.11C) structure compared to the one in the middle. This 

phenomenon was due to difficulties related to the bubble removal in the central 

chamber. 

For in-parallel setups, the removal of bubbles was difficult, leading most of the 

time to failure of the glass-PDMS bond achieved by plasma because of the 

high pressure required at the inlet to push air outside the system. Moreover, 

as for in series configurations, scaffolds presented significant differences and 

very low number of cell attached. 
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Fig. 5.11: Viability of cells employing a in series configuration considering scaffolds located 

respectively in the (A) first, (B) middle, (C) last chamber of the device. 

 

The introduction of bubble traps led to very similar results comparing scaffolds 

belonging to the same device as proved by DNA quantification (Fig. 5.12).  

 

 

Fig. 5.12: Comparison between seeding efficiencies obtained by perfusion of three different multi-

chamber devices within-series configuration.  

 

All systems tested showed the same trend with MG63 attachment reaching a 

peak after 2 h of seeding and, then, showing a progressive detachment of cells. 

Despite the similar pattern of attachment in different microfluidic systems, 

significant differences were detected when comparing the seeding efficiencies 

among devices. Indeed, although the same initial mold was employed in the 
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fabrication of the three devices, small imperfections in terms of micro features 

caused the nucleation of bubbles during the seeding process and produced 

variations above 20% in the final amount of detected cells. 

5.3.3 Static versus dynamic seeding 

 

The dependence between inlet flow rate and cell adhesion capabilities was 

evaluated by dynamically seeding hES-MPs at different velocities (Fig. 5.13). 

0.5 mm/s perfused scaffolds led to lower attachment compared to samples 

seeded at lower velocity, suggesting hES-MPs to be more sensitive to shear 

stress than MG63.  

 

 

Fig. 5.13: seeding efficiency obtained after perfusing hES-MPs at different velocities and for a 

variable number of cycles. 

 

Regardless of the velocity applied, shear stress elicited a negative action on 

cell adhesion, causing progressive detachment in higher amount for higher 

flow rates. Compared to static seeding results where 40% seeding efficiency 

was achieved, dynamic seeding induced very low attachment allowing at best 

only 14% of cells to adhere.  
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5.4 Discussion 

 

5.4.1 Movement of particles and shear stresses in a single 

chamber device 

 

As demonstrated by particle tracking experiments, a single chamber 

configuration provided a uniform and reproducible fluid flow through the 

system and consistency in the results with errors, in terms of particles velocity, 

below 10%. Despite this, an increase in the standard deviation was noticeable 

when particles were moving at velocities higher than 0.1 mm/s due to errors 

related to post-processing of data. Indeed, particles moving fast were difficult 

to track and after few minutes from the injection in the systems, fluorescent 

background was developing preventing precise manual selection of the 

particles.  Moreover, higher velocities may also have caused recirculation 

phenomena around and within the scaffold, leading to a variation of the 

common pathway followed by particles and an increase in the variability of the 

measured velocity [212]. The change in slope observed for velocities above 

0.1 mm/s was instead absent in computational simulations [212]. This 

suggests that the variation was associated to experimental conditions, not 

considered during simulations, rather than the geometry or architecture of 

scaffolds. Given that, the variation in slope observed experimentally is believed 

to be related to a progressive failure of the glass-PDMS bonding when high 

pressure is acting in the system. Probably, the pressure in the system 

increases consistently for velocities above 0.1 mm/s causing an enlargement 

of the microfluidic channels due to the infiltration of liquid between the bonded 

glass and PDMS. As a consequence, the increase in area accessible by the 

fluid may cause a decrease in the average particle velocity to maintain the 

condition of constant inlet flow rate. The range of shear stress resulting from 

fluid flowing through the scaffold gave acceptable values for cell attachment 

for all velocities tested. Further comparing with computational results [212], 

simulations showed lower velocities compared to experiments for a given inlet 

rate (Fig. 5.14).  
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Fig. 5.14: velocity of particles resulting from average among experiments or calculated at 

different planes by computational simulations. 

 

The discrepancies observed between experiments and computational model 

can be related to differences in the geometry of the scaffold. As observed 

analysing scaffolds geometry (Chapter 4.3.1), the architecture of specimens 

varied significantly in terms of height, pores and interconnectivity, facilitating 

the passage of particles and decreasing values of resulting shear stress for 

scaffolds with larger pores, lower interconnectivity and shorter height. Another 

source of variability was represented by the cross-sectional plane chosen to 

calculate the velocity.  

 

 

Fig. 5.15: Cross-sectional planes showing the distribution of velocities at the (A) top, (B) middle, 

(C) bottom of the sample for a 0.1mm/s inlet  [212]. 
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Indeed, particles at the entrance (Fig. 5.15A) and at the exit (Fig. 5.15C) of the 

scaffold moved slower, while higher velocities were detected in the middle 

plane. Here, pores decreased the area available for the fluid to flow, leading to 

an increase of the average particles velocity to comply the mass transfer 

dictated by the inlet flow rate (Fig. 5.15B). Last but not least, the geometry of 

the chamber used in the simulations was considered to be perfectly cylindrical 

during the simulations, while scaffolds presented many defects especially at 

the periphery.  

 

 

Fig. 5.16: (A) scaffold located in a single chamber microfluidic device. The chamber slightly 

deform at the bottom of the scaffold, matching the geometry of the structure. Following injection 

with PBS, bubbles develop (A) the top and bottom of scaffold and (B) bubble traps areas. 

 

For this reason, empty spaces were surrounding specimens during 

computational simulations where the resistance of the fluid was lessened. As 

a consequence, particles moved toward those areas rather than through the 

specimen, causing a decrease in the average velocity of particles crossing the 

sample. This phenomenon was instead prevented experimentally by the 

elasticity of PDMS which wrapt the edges of the scaffold, often causing a slight 

deformation of the internal diameter of the chamber to better adapt to the 

profile of the structure (Error! Reference source not found.A). 
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5.4.2 Bubble nucleation and variability  

 

The main issue affecting custom-made systems was related to the removal 

and prevention of air bubbles. When injecting the liquid for the first time, 

bubbles developed on the top and the bottom of the scaffold requiring further 

removal by applying manually high pressure from the inlet (Error! Reference 

source not found.A). This procedure worked well with single chamber 

devices but did not lead to satisfactory results in configurations equipped with 

multiple chambers. Indeed, the complete removal of bubbles from all the 

chambers required high pressure from the inlet, often leading to failure of the 

bonding achieved by plasma treatment between PDMS and glass. Introducing 

traps at the top and bottom of the scaffolds allowed to confine bubbles in areas 

where the fluid flowing through the specimen was not affected by their 

presence, enhancing a more uniform distribution of cells among specimens 

with comparable results when an in-series configuration was employed (Error! 

Reference source not found.B). 

On the contrary, this solution was not equally efficient considering in-parallel 

configurations due to slight differences in the architecture of channels splitting 

the fluid in three main streams and leading each to a different sample. Of 

course, higher pressure acted on chambers characterized by small inlet 

channels hence facilitating the removal of bubbles while having minimal effect 

on chamber connected by larger inlet.  The negative effect caused by 

imperfections in the initial mold was also observed in seeding efficiency values 

obtained comparing bioreactors fabricated at different times. 

Indeed, even though bubbles were removed at the beginning of the 

experiment, new ones were nucleating during the perfusion process. When 

devices were equipped with traps, bubbles moved away from the main stream 

but caused a decrease in the area for the passage of the fluid correlated to the 

amount of accumulated air. Thus, the fluid flow was consistent among 

specimens placed on the same stream (in-series configuration) but caused 

differences in the velocity of cells comparing different devices as mass 

transport varied depending on the amount of accumulated air. Moreover, the 
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bubble traps were working as storage for air content but also for cells. Indeed, 

once injected in the chamber cells were free to move following the main stream 

and remained trapped in large amount in bubbles designated areas (Error! 

Reference source not found.).   

 

 

Fig. 5.17: Optical images of cells trapped into bubble trap areas at (A) 4X and (B) 10X magnitude.  

 

5.4.3 Static seeding versus perfusion of hES-MPs  

 

In order to use the microfluidic bioreactor developed in this study in the 

evaluation of cell attachment over time varying velocity, a compromise 

between efficiency, repeatability and bubble formation was needed and it was 

achieved by employing a single chamber system without bubble traps. This 

configuration guaranteed repeatability of the experiment and minimal 

dispersion of cells in the system but limited the use of such systems to short 

time experiments due to the nucleation of bubbles. For this reason, 

experiments were carried out for a maximum of 3 h, enabling the investigation 

of the effect of fluid flow on attachment capabilities but not proliferation and 

differentiation of cells as instead performed in other studies [126], [207]. 

Indeed, beyond the advantages related to the uniformity of the fluid flow, 

microfluidic devices are largely affected by the presence of bubbles, causing 

cellular death and non-homogeneous fluid flow. The selected regimes led to 

low seeding efficiency values reaching at best 14% at 0.1 mm/s. Similar results 
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were observed by computational simulations, revealing the preferred pathway 

followed by cell to match the centre of pores avoiding contact with fibers [212]. 

By computational simulations, it was also possible to observe the beneficial 

effect of gravity on seeding efficiency (Fig. 5.18). For all the velocities tested, 

gravity allowed an increase in the number of cells attached showing 

respectively 3.1, 1.9 and 1.6 fold increase compared to the case where gravity 

was not accounted for. Moreover, the increased magnitude of the drag force 

of the fluid in the perfusion system progressively nullified the action of gravity. 

This provides a possible explanation to the low attachment observed at low 

flow rate and confirms the presence of settling phenomena causing cellular 

sedimentation into the syringe as well as in the interior of the chamber.  

 

 

Fig. 5.18: seeding efficiency at 0.01, 0.1 and 0.5 mm/s accounting for gravity (G) or considering 

gravity less (w/o G) computational simulations [212]. 

 

The low attachment can also be related to the unidirectionality of the flow 

regime. Indeed, the inversion in flow direction was applied covering ranges of 

minutes, leading to the development of a unidirectional fluid flow. Better 

attachment could be obtained inverting the fluid flow more frequently. The 

application of an oscillatory regime is indeed shown to improve cell attachment 

and induce a more uniform cellular proliferation in 3D perfused scaffolds  [205]. 
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Dependence among seeding efficiency and number of cycles as that claimed 

here was also observed in other studies [116], although they have used a 

perfusion system of larger dimensions.  

 

5.4.4 Effect of perfusion on cells attachment 

 

Analysis of the distribution of cells in the interior of the scaffold was not 

performed due to the limited penetration of fluorescence light through the 3D 

PCL, limiting the qualitative analysis of distribution of cells to the surface of the 

scaffold and the most external pores. Moreover, the low and variable amount 

of cells detected by perfusion prevented also the use of x-ray techniques, as 

the contrast created by cells was too low to give a clear idea of their disposition. 

The number of cells attached was very variable among samples in multi-

chamber devices. A multi-chamber system able to perfuse simultaneously four 

parallel chambers, each containing three polymeric scaffolds placed in-series 

was proposed by Zhao et al. [213]. Similarly to what was observed in this study, 

the number of cells remained constant among scaffolds placed in-series but 

higher seeding efficiency up to 60% was obtained. Moreover, scaffolds placed 

in parallel chambers showed consistency in the number of cells attached. This 

is due to the different perfusion setup and the seeding technique which 

provided not only a more uniform distribution of stresses through samples 

belonging to different chambers, but also more uniform distribution of cells by 

seeding with the depth filtration method. Despite this, observing fluorescent 

images of MG63 perfused through scaffolds by in-series multi-chamber 

systems, cells were better distributed within the pores than those injected by 

static seeding where they looked mainly spread on the surface. Similar results 

were also found in the literature where oscillatory fluid flow was indeed found 

to provide more uniformly distributed scaffolds compared to static seeding 

methods [122].  
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5.5 Conclusions  

 

5.5.1 Summary  

 

Despite issues related to bubble nucleation and variability of results obtained 

with multi-chamber configurations, this study clearly defined the flow through 

a single chamber system determining the shear stresses acting on the scaffold 

walls and consequently felt by cells immersed in the perfused solution. Low 

values of seeding efficiency are believed to be related to the lack of contact 

between cells and scaffold as well as to settling phenomena occurring in the 

device. As confirmed by computational simulations, the first is correlated to the 

unidirectional nature of the imposed fluid flow driving cells through the centre 

of pores rather than close to the fibers, while the second is strongly linked to 

the dragging action elicited by gravity. Moreover, due to the low attachment, 

the distribution of cells in the scaffold was difficult to determine, preventing to 

draw reliable conclusions on the effect of perfusion on cell distribution within 

the scaffold. Thus, the proposed system allowed to define the flow inside the 

scaffold when perfused by cell suspension and suggested static seeding 

methods as the preferred option for increased seeding efficiency of 3D PCL 

scaffolds rather than continuous perfusion.  

 

5.5.2 Future work 

 

The device developed in this study can be further employed with a single 

chamber design to investigate the effect of different flow regimes on cellular 

attachment, while settling phenomena can be overcome by injecting cells 

directly on the top of the samples already allocated in the perfusion chamber. 

For example, 30 gauges needles can be used to access the interior of the 

device exploiting the elastic properties of PDMS. Indeed, a thin needle should 

be able to penetrate through the side of the microfluidic device and develop a 
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thin channel disappearing once the needle is removed. This approach based 

on local injection of cells requires optimization of seeding procedure to 

guarantee cell survival. Moreover, the volume of cell suspension to inject and 

the volume of media to perfuse at each cycle need further optimization  to 

guarantee uniform initial distribution of cells among scaffolds embedded in the 

device and minimal dispersion of cellular content in the perfusion process. 

Further options to increase the seeding efficiency can involve either the 

external rotation of the device deviating cells from the main stream and 

increasing contact occurrences as proposed in previously studies [102], or the 

physical or chemical functionalization of the scaffolds surface [125], [214]. Last 

but not least, bubbles formation represent the main constrain of the custom-

made device presented in this study limiting the use of such system to short 

term experiments.  The next step toward the use of the microfluidic device 

developed here for longer differentiation studies concerns the improvement of 

the initial mold. More precise fabrication techniques, such as 3D printing, could 

be considered to provide an imperfection-less surface, high accuracy features 

and high reproducibility of the mold.  

 

 

. 
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Chapter 6 

6 A NOVEL COMPOSITE 
SCAFFOLD: 3D Insert ® PCL AND 

COLLAGEN GEL 

 

 

6.1 Introduction 

 

PCL constructs fabricated by rapid prototyping techniques based on the 

deposition of consecutive layers of fibers are widely employed for studying 

cells activities [188], [189], [215], [216]. Their architecture overcomes 

limitations related to lack of structure observed on common 2D substrates. 

Geometrical features such as pore size, gradients of pores and offset between 

fibers placed on the same plane as well as on consecutive overlapping fibrous 

layers play an important role in the interaction between scaffolds and cells 

[106], [216], [217]. Indeed, the architecture of scaffolds strongly affects the final 

distribution and activities of cells as well as their proliferative potential [19], 

[73]. 3D Insert ® PCL (3D PCL) are promising scaffolds to be used in the 

investigation of cell differentiation. Their ability to support cell activities over 

long periods of time has already been shown in previous studies investigating 

endothelial differentiation [218] and nerve regeneration [219]. In order to better 

mimic the extracellular matrix (ECM), 3D PCL scaffolds were combined with 

an internal network of collagen to increase cell viability and to increase the 3D 

dimensionality of the structure[118], [125]. In general hES-MPs seeded in 

collagenous gel-structures were found to reorganize the surrounding matrix 

and acquire a spherical shape differentiating mainly toward a chondrogenic 

pathway [220], depending on the concentration of collagen used and the 

seeding density [41]. Despite the outcomes highlighting differentiation toward 

cartilaginous tissue as a consequence of the interaction between cells and the 

collagen matrix, Mizuno et al. [221] found enhanced osteogenic markers 
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expression when type I collagen was employed with bone marrow stromal 

cells, suggesting that type I collagen matrix could also offer a suitable 

environment for the induction of osteoblastic differentiation in vitro and 

osteogenesis. Following these findings, we propose a composite scaffold 

made of 3D PCL and collagen gel (cPCL) to be used in further studies 

investigating how mechanical stimuli affect osteogenic potential of human 

mesenchymal stem cells. Indeed, the soft matrix of gel not only provides a 

bone tissue-like niche as collagen is the main component of the bone 

extracellular matrix, but also a support for cell attachment. Furthermore, the 

collagen gel is responsible for the transfer of externally applied mechanical 

forces to cells embedded in the structure, overcoming issues related to the 

limited stress transmitted by PCL alone. Indeed, the deformation of the 

polymeric structure transmits stresses through the contact surface between 

cells and fiber, leading to forces distributed on a 2D environment. The 

collagenous gel instead creates a compact matrix all around cells whose 

deformation involves forces acting on three dimensions, providing a better 

reproduction of the real tissue environment.  

3D PCL is chemically inert and therefore requires surface activation to 

guarantee a good interaction at the PCL-gel interphase, facilitating the 

spreading of collagen through the whole sample and avoiding the formation of 

clots. Moreover, extraction of cells, ECM and collagen placed in the internal 

volume is often difficult. Indeed, small pores prevent good exchange of fluids 

within the internal areas of the scaffold and make it difficult to assess  

properties related to material placed in the inner volume. For this reason, 

kinetic assays are not a good tool for the determination of the overall behaviour 

of cells but can still be used to assess cell viability on the scaffold surface. x-

ray techniques have been previously used in the literature to investigate 

distribution or growth of ECM and mineral within the internal volume of the 

scaffold [207], [214]. While polymeric scaffolds and mineral do not need further 

process because of their high density, protein-based materials are commonly 

stained with contrast agents to provide absorption by x-ray. Osmium is a good 

candidate for the staining of potein based materials as it is known to react with 
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sulphydryl and disulphide groups, polyphenols and with the nitrogen groups of 

tertiary bases such as trytophane and proline [222]. 

The goal of this study focuses on 1) the selection of the best conditions in 

terms of surface treatments and collagen concentration enhancing uniform 

collagen distribution and cell activities and 2) the characterization of 

distribution and morphology of collagen embedded in a 3D stiff matrix to 

develop a well-defined environment and a series of protocols to be involved in 

further studies on cellular differentiation. 

 

 

6.2 Materials and methods 

 

6.2.1 Collagen gel preparation 

 

A collagen solution was prepared according to protocol mixing collagen bovine 

1 (Gibco) 5 mg/ml (Vc), NaOH 1M (VNaOH), PBS 1X (VPBS) and culture media 

(Vmedia) in ice.  Depending on the final concentration of collagen and the final 

volume of collagen gel needed (Vtot) the different solutions were mixed: 

 

 𝑉𝐶 =  0.5𝑉𝑡𝑜𝑡 Eq. 6.1 

 𝑉𝑁𝑎𝑂𝐻 =  0.025𝑉𝐶 Eq. 6.2 

 𝑉𝑃𝐵𝑆 =  0.1𝑉𝑡𝑜𝑡 Eq. 6.3 

 𝑉𝑚𝑒𝑑𝑖𝑎 = 𝑉𝑡𝑜𝑡 − (𝑉𝐶 + 𝑉𝑁𝑎𝑂𝐻 + 𝑉𝑃𝐵𝑆) Eq. 6.4 

 



A novel composite scaffold: 3D Insert ® PCL and collagen gel 

 

 

123 
 

The final concentrations of collagen considered were 0, 1.5, 2 and 2.5 mg/ml. 

The concentration 0 mg/ml was formed just by culture media without addition 

of any other chemical. 

 

6.2.2 Collagen injection 

 

Half of the scaffolds underwent plasma treatment (Chapter 3.4.1) while the 

other half was used without undergoing any further treatment. After 3D PCL 

sterilization (Chapter 3.4.1), gel was injected by placing a 20 µl drop of collagen 

solution on the top of the scaffold. Collagen solidification was achieved by 

incubation at 37°C, 99% humidity, 5% CO2. After 1.5 h, 180 µl of culture media 

(α-MEM, 10% fetal bovine serum, 1% pen/strep/glutamine) was added to the 

samples to preserve collagen integrity, and avoid water evaporation and 

collagen shrinking.  

 

6.2.3 Scaffold seeding 

 

Human bone marrow progenitor stem cells (hES-MPs) were used at the 5th 

passage, and were suspended in culture media (0 mg/ml collagen 

concentration) or in a collagen solution prepared substituting Vmedia with the 

cellular suspension. The seeding concentration was 20 x 103 cells in 20 µl 

corresponding to about 12,000 cells/cm2. Scaffolds were seeded following 

common static seeding methods (Chapter 3.4.3). The role of plasma treatment 

and collagen concentration on cell distribution, viability and seeding efficiency 

was evaluated respectively by fluorescence imaging (Chapter 3.4.4), Presto 

Blue (Chapter 3.4.5) and DNA assay (Chapter 3.4.6). Each condition was 

tested on three samples and was repeated three times to validate 

reproducibility between experiments (n=9). Eventually, the cell viability over 

five days was monitored to select the collagen concentration which gives the 

best results in terms of cell metabolic activity by Presto blue assay. The 
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number of samples tested with Presto Blue progressively decreased: day 1 

(n=9), day 3 (n=6), day 5 (n=3) because three samples were sacrificed for DNA 

quantification at each time point. Normality and equality of variance in the data 

series were tested with common methods (Chapter 3.4.9) and statistical 

analysis was performed using Student-T test or ANOVA and post-hoc analysis 

(Table 6.1). 

 

Table 6.1: Statistical tests for assessment of significant differences between cells seeded in 

treated or non-treated scaffolds using different concentration of collagen and/or at multiple time 

points. 

 

 

6.2.4 Sirius red staining 

 

Scaffolds (n=3) were washed with PBS and then 200 µl of 10% formalin was 

added to the samples. After 30 min, samples were again washed in PBS, and 

200 µl of 1 mg/ml Sirius red (Direct Red 80, Sigma Aldrich) solution in saturated 

picric acid was added. After two hours, samples were rinsed five times with 

deionized water in the effort to completely remove excess of red stain. Then, 

pictures were taken by fitting a SRL digital camera EOS 750D/T6i (Canon, UK) 

fitted in an optical microscope. Collagen quantification was performed by 

cutting samples into pieces with a scalpel and adding a solution of methanol: 

0.2M NaOH (1:1 v/v) for 20 min in ultrasound at 37°C to detach and dissolve 

collagen. Absorbance measurements were taken with a microplate reader at 
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405 nm to quantify the amount of collagen in the samples through comparison 

with a standard curve (Fig. 6.1). 

 

 

Fig. 6.1: Standard curve for Sirius red quantification relating the absorbance value given by the 

microplate reader with the amount of collagen in the sample. 

 

6.2.5 MicroCT scanning  

 

Table 6.2: Statistical tests for assessment of significant differences between collagen content 

considering different collagen density and quantification in ROI. 
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Samples were kept in an incubator immersed in culture media and at 1, 3, 7, 

14, 21 and 28 days were osmium stained for collagen quantification by 

microCT (Chapter 3.4.7.2). Within seven days from the osmium staining, 

samples were scanned by microCT (Chapter 3.4.7.3) and reconstructed by 

Simpleware using common protocols (Chapter 3.4.7.4) for assessment of 

collagen distribution and quantification (n=3). Normality and equality of 

variances among series of data were tested with common methods (Chapter 

3.4.9) and statistical analysis was performed (Table 6.2).   

 

6.2.6 Scanning Electron Microscopy (SEM) 

 

Samples were fixed adding 200 µl of 10% formalin for 30 min. After washing 

three times with PBS, samples were dehydrated by immersion for 1 h in 200 

µl of ethanol solution varying concentrations at 70, 80, 90 and 100%. Then, 

samples were air dried, placed on a holder and gold coated. SEM images were 

taken at 15kV increasing magnitude to investigate the different organization of 

collagen at the macro-, micro- and nano-scale.  

 

 

6.3 Results 

 

6.3.1 Composite scaffolds and cellular interaction 

 

Fluorescence imaging of statically seeded scaffolds showed the benefit of 

plasma treatment on cell distribution. Considering either scaffolds with 

collagen or without collagen, the distribution of cells was non-homogeneous in 

both cases when plasma treatment was not applied (Fig. 6.2). Indeed, cells in 

3D PCL tent to attach to the surface they first come in contact with, limiting the 

presence of cellular content to the top of the scaffold (Fig. 6.2A). Cells injected 
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with collagen were instead confined to the region where the gel solidified, 

causing non-uniform cellular distribution through the diameter of the scaffold 

(Fig. 6.2B). On the contrary, 3D PCL (Fig. 6.2C) and cPCL (Fig. 6.2D) 

undergoing plasma treatment achieved a good distribution, with cells evenly 

covering the entire surface area. Plasma treatment did not affect the seeding 

efficiency (Fig. 6.3) regardless of the collagen concentration in use. No 

significant differences were identified between treated and non-treated 

samples, suggesting that plasma treatment did not elicit any modification on 

the surface topography of scaffolds, leading to the same amount of cells 

detected by DNA assay regardless of the exposure to plasma. 

 

 

Fig. 6.2: Fluorescence images 24 hours after seeding of hES-MPs seeded on (A) non treated 3D 

PCL w/o collagen, (B) non treated 3D PCL with collagen, (C) treated 3D PCL w/o collagen and (D) 

treated 3D PCL with collagen. 
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On the contrary, the amount of cells attached was significantly higher for 

scaffolds embedding collagen compared to 3D PCL, showing an increase in 

efficiency from 40% to 60% for all concentrations (Fig. 6.3). Although the 

amount of cells in the scaffolds after 24 h from the seeding process was the 

same for all cPCL scaffolds, the effect of different collagen concentrations on 

cell behaviour was clarified monitoring the viability of cells (Fig. 6.4). 

 

 

Fig. 6.3: Effect of different collagen concentration on the seeding efficiency for plasma treated 

(T) and non-treated (NT) samples. (N = mean±S.D.,*p<0.05). 

 

Results from Presto Blue showed increased metabolic activity for cells 

embedded in 1.5 and 2 mg/ml collagen, whereas for 0 and 2.5 mg/ml, the 

cellular metabolism was low already at day 1 and over the following 5 days of 

culture. However, while 3D PCL showed a 2-fold increase in metabolic activity 

at day 3, cells embedded in collagen maintained constant viability over time. 

Particularly low values were found in samples embedded in 2.5 mg/ml 

collagen, featuring a dramatic drop in cell viability at day 5. These outcomes 

were confirmed by fluorescence imaging of samples at day 5 (Fig. 6.5) where 

1.5 and 2.0 mg/ml cPCL presented viable cells on the surface (Fig. 6.5A&B). 
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Fig. 6.4: Metabolic activity of hES-MPs at various collagen concentrations over time. (n = 

mean±S.D.,*p<0.05) 

 

Cells embedded in 2.0 mg/ml collagen showed enhanced viability, leading to 

a much stronger green signal and a lower amount of red stain. The worst 

scenario was identified when a concentration of 2.5 mg/ml was considered with 

enhanced apoptosis characterizing all cells in the scaffold as suggested from 

the high red signal detected throughout the pores of the sample (Fig. 6.5C). 

 

 

Fig. 6.5: fluorescence images of hES-MPsseeded in cPCL varying collagen concentration at (A) 

1.5 mg/ml, (B) 2.0 mg/ml and (C) 2.5 mg/ml. 
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6.3.2 Collagen characterization 

 

3D volume rendering allowed to observe the distribution of the gel throughout 

the volume of the scaffold. It also identified the presence of two different 

collagen densities named as LD (low density collagen) and HD (high density 

collagen), and referring respectively to grey values (GV) ranging between 

3,500-7,500 and 13,000-40,000.  

 

 

Fig. 6.6: MicroCT reconstruction of (A) top and (B) side view of collagen; (C) top and (D) bottom 

view of collagen and scaffold. Green and red identify respectively to LD and HD while different 

tonalities of blue are used to represent three replicates of scaffolds (from left to right). 
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HD collagen was not uniformly distributed through the scaffold. Increased 

collagen density was found to occupy central or peripheral areas (Fig. 6.6A) 

depending on the position where the seeding took place, as well as porosity 

and pore size of the sample. Indeed, the variable geometry characterizing 3D 

PCL (Chapter 4) caused collagen to accumulate on the surface at the 

periphery of the structure rather than in the central volume.  

 

 

Fig. 6.7: (A) top and (B) bottom distribution of collagen by Sirius red staining of three samples 

after 24 hours.  
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However, LD was better distributed through the structure compared to HD, 

homogeneously filling also pores located in the centre. Indeed, LD penetrated 

throughout the structure down to the bottom of the scaffold despite the low 

pore size (Fig. 6.6B).Moreover, an accumulation of collagen occurred at the 

plate-sample contact surface (Fig. 6.7B) probably due to the effect of gravity. 

When the scaffold structure was included into the reconstruction, collagen 

organization became more evident. Layers of collagen linked adjacent 3D PCL 

fibers, increasing the connectivity of the construct (Fig. 6.6 C&D). The layer-

like organization on the top (Fig. 6.7A) as well as on the bottom (Fig. 6.7B) of 

cPCL was confirmed by Sirius red staining where the distribution and 

aggregation of collagen was highlighted by red stain. Quantification by Sirius 

red of collagen amount after 24 h from the injection led to a total of 24±5 μg 

embedded in the sample. 

The layer distribution observed at the macro scale by microCT reconstruction 

and Sirius red staining was also investigated by SEM imaging (Fig. 6.8A), 

showing the morphology and the architecture of collagen at a lower scale. 

Layers were formed by filaments whose aggregation led to the development 

of multiple overlapping structures presenting a leaf-like shape (Fig. 6.8B). At 

higher magnification a tertiary level of organization was observed, where fibers 

of collagen randomly spread, overlapping one upon each other and creating a 

well interconnected nano-porous network (Fig. 6.8C). 

 

 

Fig. 6.8: SEM images of collagen organization at (a) macro, (b) micro and (c) nano scale without 

cells. 
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6.3.3 Collagen degradation 

 

MicroCT imaging allowed not only observation of the overall distribution of 

collagen through the scaffold but also monitoring of degradation over time.  In 

order to investigate how different areas were affected by the degradation 

process, regions of interest (ROI) were selected (Chapter 3.4.7).  

 

 

Fig. 6.9: Degradation of the overall collagen content over time (n = mean±S.D.,*p<0.05, **p<0.01). 

 

This procedure allowed the quantification of collagen content in pre-selected 

volumes within the 3D PCL structure. Considering the overall collagen content, 

the gel volume was halved over 28 days (Fig. 6.9) with a statistically significant 

decrease at day 7 (p<0.05) and at day 21 (p<0.01). Despite the differences in 

sample geometry the degradation was clearly visible by microCT 

reconstruction of scaffolds after 1, 7, and 21 days from the injection of collagen 

especially considering LD due to the higher amount of LD resulting from the 

solidification. By selecting an internal ROI, it was possible to separate the 

signal related to collagen occupying internal volumes to the surface of the 

construct, confirming the aggregation of collagen previously qualitatively 

observed by the 3D rendering of volumes. 
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Fig. 6.10: top and side view of samples injected with collagen at three different time points. Green 

and red represent respectively to LD and HD. 

 

As observed before, collagen tends to accumulate (Fig. 6.11) at the periphery 

of the sample. A quantification of the gel volume revealed HD and LD to 

amount respectively to 57±45% and 65±19% on the surface of the scaffold.  

 

 

Fig. 6.11: Degradation of the overall collagen content inside the ROI (IN) or on the surface (OUT) 

over time quantified by microCT reconstruction (n = mean±S.D.). 



A novel composite scaffold: 3D Insert ® PCL and collagen gel 

 

 

135 
 

However, from day 14 comparable amount of collagen was found in the interior 

and at the surface due to progressive degradation of the gel placed on the 

superficial layer, becoming significantly lower (p<0.05) at day 7. Instead, 

collagen occupying pores located in the inner of scaffolds decreased 

significantly (p<0.05) only from day 21. The same pattern of degradation was 

observed looking separately at HD and LD. The degradation process affected 

both LD and HD progressively decreasing the total volume of collagen over 

time. HD and LD were equally affected by degradation with matching 

degradation rates for collagen located on the surface (OUT) and collagen 

belonging to the ROI (IN).  

 

 

Fig. 6.12: Ratio of HD and LD over the total amount of collagen at each time point (n = mean±S.D.). 

 

Degradation caused a 4-fold decrease in the collagen detectable from day 1 

to day 28. Given that HD and LD presented matching degradation rates, ratios 

between HD or LD volume and the total amount of collagen in the sample at 

each time points was constant (Fig. 6.12). An average of the percentage of LD 

and HD collagen over the entire experiment confirmed LD to make up the 

63±10% of collagen in the sample against the 37±9% of HD. 
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6.4 Discussion 

 

6.4.1 Collagen-cells interaction 

 

The composite scaffold developed in this study led to good cellular distribution 

through the structure with a strong dependence upon plasma treatment and 

collagen concentration. Treating scaffolds with plasma was sufficient to 

enhance uniform distribution of collagen and cells without affecting the overall 

cellular behaviour. Indeed, hES-MPs after 24 h from seeding showed 

elongated shape and enhanced viability independently from the exposure to 

plasma. The presence of collagen intensively increased the static seeding 

efficiency as the gel prevented the wash-off phenomenon responsible for cells 

to attach at the bottom of the well-plate rather than the wall of the scaffold. 

Collagen provided a dense matrix which increased the connection between 

neighbour cells and enhanced bridging among consecutive polymeric fibers. 

Moreover, it overcomes issues related to the surface topography of samples. 

Indeed, the polymeric fibers present only few anchorage sites which can be 

the cause of the low seeding efficiency noticed when collagen was not injected 

in the scaffold (Error! Reference source not found.). cPCL reached seeding 

efficiencies up to 60%, resulting in an average density of 5,000 cells/cm2. 

According to the literature, such a seeding density is in the optimal range to 

induce stem cells osteogenesis in 2D conditions [223]. The presence of 

collagen played a central role on the proliferation potential of cells. The 

absence of proliferation noticed when collagen was embedded in the structure 

is in accordance with studies in the literature where cells did not proliferate as 

a consequence of a contraction mechanism dependent on the collagen 

concentration [62]. While cells cultured on 3D PCL showed enhanced 

metabolic activity already at day 3, hES-MPs in cPCL varied their behaviours 

over a relatively short period of 5 days depending on the concentration of 

collagen used. The decrease in cell viability and extensive cell death observed 

in 2.5 mg/ml cPCL is believed to be associated to the high compactness of 

collagen, limiting both cell-cell interaction already prevented by the relatively 
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low seeding density, and diffusion of nutrients. As shown by SEM, the collagen 

gel in use was indeed an assembly of randomly distributed fibers, forming nano 

pores. As the diameter of pores is expected to be inversely proportional to the 

concentration of fibers [224], a higher amount of fibers led to a more compact 

structure with smaller pores limiting the diffusion of molecules throughout the 

structure. Moreover, the presence of cells is likely to affect the distribution of 

collagen in the samples as cells are known to reorganize the fibers by 

interaction between integrins and matrix [220]. As result, collagen degradation 

could be faster or slower depending on the action elicited by cells. A faster 

degradation of collagen may be associated to the progressive differentiation of 

cells and, for example, the production of mineral. On the other hand, a slower 

degradation may be due to a mechanism of protection initiated by cells which 

produce further further ECM to reinforce the surrounding niche. Unfortunately, 

the techniques employed in the study did not allowed any assessment of how 

the collagen degradation was varied by cellular activities due to difficulties in 

distinguishing pre-injected collagen from the protein matrix produced by hES-

MPs. 

 

6.4.2 Distribution and morphology of collagen embedded in 3D 

PCL 

 

Once the optimal conditions to obtain a uniform seeding distribution and cell 

survival were selected, distribution of the collagen into the internal volume of 

the scaffold was studied, since so far the investigation was limited to the 

surface. For the collagen characterization, a concentration of 2 mg/ml was 

selected as it enhanced cellular viability and because it was previously 

employed for differentiation of mesenchymal stem cells [152], [225], [226]. The 

small pores characterizing 3D PCL samples affected more HD penetration 

capability than LD. As HD was denser than LD, it experienced higher 

resistance when passing through the scaffold, leading to an increased amount 

of LD embedded in the structure. This statement was also confirmed by the 

percentage of voids filled by collagen amounting to 11±5% for LD and only 
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5±3% for HD. Similar outcomes claiming non homogenous material distribution 

As a consequence of static seeding are extensively discussed in the literature 

[106], [151], [227]. Vacuum was also tested as an option to facilitate the 

injection of collagen into the structure but elicited a negative effect on cell 

survival even if applied for short periods of time, provoking 2D cultured cells to 

shrink and detach (Fig. 6.13). The main hypothesis of the technique was that 

the signal from the osmium is proportional to the protein concentration. Indeed, 

HD referred to a brighter x-ray signal and it was associated with an 

accumulation of material but whether it correlates to accumulation of collagen 

or osmium stain is still not clear. Sirius red staining confirmed the morphology 

observed by MicroCT with collagen organizing in layers between 3D PCL 

fibers.  

 

 

Fig. 6.13: Osteosarcoma cells (MG63) seeded on collagen coated Petri dish (A) before and (B) 

after application of vacuum for 10 min. 

 

Moreover, Sirius Red stained samples showed higher red staining in some 

areas which may be related to the accumulation of collagen claimed  in the 

MicroCT reconstructions. An issue affecting the reliability of the method was 

related to the fact that, during the experiment, collagen was kept in a hydrated 

condition while images were taken on dry samples. Common sense dictates 

the drying process would cause reorganization and aggregation of collagen 
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into the sample as a consequence of the evaporation of water. Another issues 

affecting the reliability of the method were related to the use of fixative agents 

which are known to reorganize the collagen. For example, glutaraldehyde is 

commonly used to chemically crosslink collagen by reaction between the 

aldehyde group  and the amine groups of the protein [64]. For this reason, the 

intense MicroCT signal as well as the layer-like organization of collagen could 

be due to the fixation of the samples performed before imaging. Similarly to 

glutaraldehyde, formaldehyde could have caused the same reorganization 

when used to fix the samples in the visualization of collagen by Sirius red as it 

also presents an aldehyde group. 

 

6.4.3 Degradation of collagen in 3D PCL  

 

Observing the degradation behaviour over time, collagen degraded as a 

consequence of the action elicited from external agents. The degradation 

affected first the outer layer directly exposed to the culture media. Then, it 

progressively altered gel placed in the internal volume of the structure As a 

consequence of the disappearance of most external layer. The study of 

degradation processes by microCT allowed also confirming the accumulation 

of collagen into the sample by observing LD and HD rate of degradation. 

Indeed, the accumulation of osmium in the sample due to the staining 

procedure is expected to affect all samples in equal measure. This is in 

contradiction with the consistent decrease of HD content over time observed 

in this study. Moreover, the matching degradation rates of LD and HD suggest 

the existence of a link among stain absorption and collagen density although 

further experiments are necessary to confirm these findings. 
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6.5 Conclusions 

 

6.5.1 Summary  

 

The composite scaffold proposed in this study enhanced viability and 

homogeneous distribution of cells for a collagen concentration of 2 mg/ml and 

when samples were plasma treated. hES-MPs did not proliferate in cPCL 

although cell viability was maintained constant over 5 days, suggesting the 

suitability of such structure to be used for further studies over longer periods 

of time. The cellular behaviour investigated in the first part of this study focused 

on cells located on the outmost layer covering the surface of the scaffold, due 

to limitation in withdrawing fluorescent solution trapped in the interior of the 

structure. Despite this, it helped determining 1) the optimal treatment to apply 

for the achievement of uniform cellular distribution and 2) the concentration of 

collagen enhancing cellular activity. Collagen was expected to form a compact 

matrix inside the PCL structure, while it had a layer organization instead. 

However, it greatly increased the interconnectivity among pores and its overall 

organization allows to consider a 3D environment surrounding cells very 

similar to the ideal model proposed at the beginning of this thesis (Chapter 

1.3). Despite the high variability obtained in terms of collagen distribution within 

different samples, the amount of gel detected at each time point (average of 

three samples) present acceptable deviation (maximum 10% standard 

deviation) from the average value. Moreover, this study gives for the first time 

an insight of how degradation affects collagen embedded in 3D structures. The 

scaffold developed here can be used to investigate cellular activities in further 

studies. Indeed, these outcomes will be fundamental to eliminate the 

background signal due to the collagen presence, hence enabling the 

quantification of tissue formation and mineralization by the action of cells. 
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6.5.2 Future work  

 

Plasma treatment was used in an effort to overcome issues related to poor 

distribution of collagen/cells in 3D structures. Although it decreases the 

aggregation phenomena throughout the diameter of the superficial area, it was 

not sufficient to avoid densification of collagen toward the height of the 

specimen. Multiple seeding points may be considered by injecting the seeding 

solution at different locations on the surface of the scaffolds to homogenize the 

collagen content throughout the structure. Also employing perfusion of a 

collagen-cells suspension through the scaffold for a limited amount of cycles 

may avoid formation of densification areas. However, the viscosity of the 

collagen and the small pores size of the material might present a limitation for 

perfusion processes, leading to high shear stresses and preventing cellular 

attachment. Moreover, non-uniform distribution could still be an issue due to 

the variable pore size of the material enhancing the passage of collagen 

towards volumes providing less resistance to the fluid. Eventually, the seeding 

efficiency exploiting perfusion is expected to be low due to 1) dispersion of 

material into the system, requiring optimization of the volume to dispense, and 

2) limitation in the number of applicable cycles due to the progressive 

solidification over time of the collagen gel. 
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Chapter 7 

7 hES-MPs RESPONSE TO CYCLIC 
MECHANICAL COMPRESSION OF 

cPCL 
 

 

7.1 Introduction 

 

Until recently, cell behaviour under mechanical forces was mainly investigated 

on 2D substrates [147]–[149], [153] whose geometry does not provide a good 

representation of the 3D architecture of biological tissues. The increasing 

demand for a structure matching architecture and chemistry of bone fracture 

sites led to the development of 3D scaffolds. Among those, hydrogels were 

extensively proved to enhance cell survival and provide a tissue-like 

environment for cell growth and differentiation [228]. Moreover, they offer a 

compact matrix, often made by proteins, which guarantees uniformity of 

stresses when mechanical forces are applied. However, the forces applicable 

to such scaffolds are limited by their soft matrix, preventing their use for 

applications which require to bear high stresses [229] as those acting on bone. 

As consequence, the focus moved toward the use of 3D polymeric structures 

able to bear mechanical loading. Scaffolds made by polymerization of lactic, 

glycolic or polycaprolactone acid were widely investigated because they are 

easy to shape through high-temperature processes, allowing the fabrication of 

high reproducible fibrous structures [79]. Despite their remarkable resistance 

to forces, 3D polymeric scaffolds are characterized by low deformability. 

Moreover, they are also affected by plastic deformation when high strains are 

applied as shown, for example, on 3D Insert ® PCL in this study (Chapter 4). 

This study aims to investigate the possibility of differentiating cells by 

transmitting externally applied forces through a soft gel, embedded in a 3D 

polymeric scaffold, whose deformation results as effect of the displacement 
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applied to the external structure. At present, mechanical differentiation of cells 

was mainly investigated on hydrogels, 2D substrates or 3D foam-like scaffolds. 

In general, high amplitude compression strains applied to scaffolds embedding 

cells mainly induced chondrogenic differentiation [88], [104], [157], [159], while 

tensile stimuli with frequencies mimicking forces affecting bone in vivo [32] 

have been shown to induce osteogenic differentiation on 2D substrates [149], 

[153]. Despite this, compression of scaffolds enhanced osteogenesis on 2D 

[149] as well as 3D structures [162], if the force was applied for short periods 

of time. Eventually, including resting periods of 5 days among stimulations in 

combination with short bursts of compression was previously shown to induce 

mineral production on differentiated osteoblasts [100]. In order to overcome 

these limitations and take advantage from the mechanical properties of both 

hydrogels and polymeric structures, a new composite scaffold made of stiff 3D 

Insert ® PCL and soft collagen (cPCL) is proposed here as support for 

mechanically-induced differentiation of cells.  

This study aims to investigate how short bursts of compression applied to 3D 

scaffolds embedding collagen and cells, and the repetition of the stimuli at late 

stage of culture affect 1) mesenchymal stem cells proliferation; 2) spatial 

formation of ECM and mineral deposition; and 3) osteogenic protein 

expression. Here, techniques commonly used to assess cell activities, such as 

assays quantifying metabolic activity, cell number and protein expression, are 

put alongside to x-ray scanning to determine distribution of collagen, cells, 

ECM and mineral through the whole structure. According to the literature, X-

ray contrast to protein-based materials can be achieved by staining with 

osmium tetroxide [222], [230], while the mineral phase is identifiable without 

the use of any contrast agent, due to the diffraction properties related to its 

chemical nature [231]. Indeed, micro computed tomography (microCT) was 

already proved to provide reliable insight of bone mass variations in vivo [232] 

as well as of the mineral distribution through  3D structures in vitro [215], [233], 

confirming the possibility of visualizing mineral without the use of any contrast 

agent. 
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7.2 Materials and methods  

 

7.2.1 Mechanical characterization of PCL scaffolds  

 

Samples were divided in groups depending on the mechanical protocol to be 

applied. A total of 48 samples were used in each experiment: 18 were kept in 

free-floating conditions, 18 were cyclically loaded and 12 were controls without 

cells. Before seeding, PCL specimens were marked on the top surface with a 

black marker to allow recognition of the surface where the seeding took place. 

All samples were then named and scanned by microCT (Chapter 3.4.7). 

Samples undergoing cyclic loading during the experiment were further 

mechanically relaxed at 37°C, as previously shown (Chapter 4.2.2), by 

applying a 8% strain ramp calculated over the height of the sample. Any stress 

from the structure was removed maintaining a constant displacement for 180 

min (Chapter 5). Before seeding, samples were treated by air plasma and 

sterilized (Chapter 3.4.1) to avoid the outbreak of bacterial infections during 

the experiment.  

 

7.2.2 Mechanical compression of seeded cPCL  

 

Samples (n=36) were statically seeded with hES-MPs in a concentration of 

40,000 cells per scaffold following common techniques (Chapter 3.4.3). A 

collagen concentration of 2 mg/ml was used, as it was found to be the best 

enhancing cellular activity among those tested (Chapter 6). After five days in 

culture to allow the adaptation of cells to the environment, samples were 

collected and placed into a previously autoclaved biodynamic chamber (Fig. 

7.1). 
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Fig. 7.1: Electroforce biodynamic chamber embedding shafts and filled with culture media (pink) 

for mechanical compression of samples.  

 

The chamber was then mounted onto the BOSE bioreactor and a preload of 

0.1 N was applied to avoid shifting of the specimen. Then, the chamber was 

filled with media by pumping the fluid with a peristaltic pump and samples 

underwent cyclic compression (Fig. 7.2): 

1) superimposing a 5% strain ramp at 10 μm/s, 

2) applying a 2% peak-to-peak sinusoidal waveform at 1 Hz for 15 min, 

3) removing the superimposed ramp by unloading the sample at 10 μm/s. 

 

 

Fig. 7.2: Cyclic compression of samples with superimposed initial ramp at 5% strain.  
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The chamber was then removed from the bioreactor, placed under a culture 

cabinet, and samples were moved to 96 well plates in presence of culture 

media. The latter was changed every day with 200 μl of new culture media. 

Non-loaded samples (U) were kept in static culture and no compression was 

applied. The response of cells cultured in non-loaded samples was compared 

to samples loaded for 15 min per day (Table 7.1), from day 6 to day 10 (L1). 

Half L1 samples were then compressed again from day 16 to day 20 (L2).  

 

7.2.3 Analysis of hES-MPs response 

 

Time points were set at 1, 3, 7, 14, 21 and 28 days and the initial number of 

samples varied among conditions.  

 

Fig. 7.3: schematic representation of the experiment. Samples were kept in culture for 28 days. 

Timepoints were set at day 1, 3, 7, 14,  21 and 28. At the time of the first two time points, samples 

were all non-loaded, so just three samples were tested for DNA and OCN expression, and 

microCT. The following two time points match the period of the first series of compression. So at 

day 7 and 14, six samples, three non-loaded and as many loaded, were tested. As the second 

series of stimuli was applied between day 16 and 20, three more samples were tested at the last 

two time points to account simultaneously for U,L1 and L2. 
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At day 1 and day 3, no samples had undergone compression yet (Fig. 7.3), 

therefore testing three random samples over the entire batch provided a good 

representation of the behaviour of cells for all samples involved in the 

experiment. At day 7 and 14, samples were either non-loaded or loaded with 

a single series of cycles and therefore a total of six samples needed to be 

tested, three for each condition. 

 

Table 7.1: loading conditions applied to samples and total number of samples involved per each 

stimulation protocol. It is important to notice that non-loaded (U), loaded once (L1) and twice 

loaded (L2) samples were monitored respectively since day 1, day 7 and day 21.  

 

 

The last time points were preceded by a second series of compression cycles, 

therefore nine samples were tested at day 21 and 28. Thus, at day 0 (Table 

7.1): 

- 18 samples accounted for U as 3 samples were tested at each time 

point (3x6=18); 

- 12 samples accounted for L1 as 3 samples were tested at day 7, 14, 21 

and 28 (3x4=12); 

- 6 samples accounted for L2 as 3 samples were tested at day 21 and 28 

(3x2=6). 
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Before performing any further analysis, the condition of equality among 

samples belonging to different groups (U, L1, L2), but undergoing the same 

protocol (Fig. 7.3), was tested at each time point by Presto Blue. 

For every condition at each time point: 

1) All samples were tested with Presto Blue (Chapter 3.4.5) to evaluate 

cellular viability. Variable number of samples was considered due to the 

sacrifice of three samples at each time point (Table 7.2). The number of 

samples tested by Presto Blue differed among conditions up to day 21, as U 

and L1 were tested for a higher number of time points (Fig. 7.3). 

 

Table 7.2: Summary of the number of samples teste for metabolic activity by Presto Blue assays 

per each condition at each time point. The number indicates the total of samples tested in 3 

different experiments. 

 

 

2) Two samples were sacrificed and tested for DNA quantification 

(Chapter 3.4.6). Once removed from the structure, cells were centrifuged and 

stored in lysis buffer at -80°C for osteocalcin (OCN) quantification by ELISA 

(Chapter 3.4.8). 

 

3) One sample was osmium stained (Chapter 3.4.7.2) for microCT 

evaluation of cellular proliferation and quantification of mineral content, by 

following segmentation of microCT slides as previously reported (Chapter 

3.4.7.4). As the intensity of the signal resulting from the x-ray is related to the 

density of the scanned material, signal in the low (3,500-7,500) grey values 
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(GV) range was associated to volumes occupied by cells and ECM. Higher GV 

(13,000-60,000) were instead attributed to the mineral phase. The amount of 

tissue and mineral was further divided, among material developing on the 

surface or in the internal volume of the scaffold, through selection of a region 

of interest (ROI), following the procedure previously reported (Chapter 3.4.7). 

 

4) Two controls were collected for removal of the background. One was 

used as control for DNA assay (Chapter 3.4.6) and, then, was stored in the 

same conditions as samples for OCN ELISA (Chapter 3.4.8). The other 

underwent osmium staining (Chapter 3.4.7.2) and x-ray scanning (Chapter 

3.4.7.3) to remove the background due to the initial injection of collagen gel. 

 

Table 7.3: Summary of the total number of samples used for DNA, OCN and microCT analysis at 

each time point. The number of samples refers the total number of samples. So, the number of 

tested samples 1) at day 1 and 3 were three because all samples were non-loaded,  2) at day 7 

and 14 were six  to consider any difference caused by L1, and 3) at day 21 and 28 were nine to 

account for non-loaded (U), loaded once (L1) and twice loaded (L2).  

 

 

The entire experiment, from day 1 to day 28, was repeated three times in the 

effort to investigate reproducibility of the results and account for the variability 

due to slightly different external conditions and scaffold architecture. The 

number of samples, involved in Presto Blue (Table 7.2) or other assays (Table 

7.3), allowed to perform statistical analysis. Per each condition, a minimum of 
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three samples were considered, averaging values from the three repeats of 

the experiment. Data were tested for normality and equality of variances 

(Chapter 3.4.9), but due to the high variability between series, statistics was 

run based on Games-Howell non-parametric test. 

 

 

7.3 Results  

 

7.3.1 hES-MPs viability  

 

 

Fig. 7.4: Viability of cells (n = mean±S.D.) by Presto Blue measurement over 28 days considering 

non-loaded (U), loaded once (L1) and twice loaded (L2) samples as average of three experiments.  

Stars highlight significant differences with p<0.05 referring to * all the series or * just U samples. 

 

At day 1 and 3 cells showed enhanced viability and samples from different 

groups had similar fluorescent values, confirming uniformity of the seeding 

among samples (Fig. 7.4). After one day of stimulation (day 7), the fluorescent 

signal of loaded samples was weaker compared to free-floating samples, 

although cells metabolic activity increased for both conditions. Between day 7 



hES-MPs response to cyclic mechanical compression 

 

 

151 
 

and day 21, the metabolic activity remained unvaried among time points as 

well as comparing loaded and non-loaded samples. Due to the high standard 

deviation, no significant differences among conditions were identified by 

statistical analysis at any time point, except at day 28 when non-loaded 

samples underwent a further increase in cellular metabolism. 

 

 

Fig. 7.5: Fluorescent images of samples seeded with hES-MPs at 10X. Viable cells are green, while 

scaffold fibers are blue due to auto-fluorescent properties of PCL. At day 28 loaded samples show 

cells randomly oriented with a star-like shape. 
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Similar results were obtained by fluorescence images taken at each time point 

(Fig. 7.5). A lower green signal characterized scaffolds undergoing 

compression at both day 7 and day 28. At the latter time point, cells were well 

elongated and spread in all cases, but clear sign of proliferation was mainly 

observed on non-loaded conditions where cells covered the entire surface of 

the scaffold. Cells oriented in the same direction, developing a highly 

interconnected cellular network in U and L1. On the contrary, cells embedded 

in samples undergoing twice the cyclic loading appeared less oriented, with 

thin protrusions spreading in different directions and conferring a more star-

like shape (Fig.7.5). 

 

7.3.2 hES-MPs proliferation and ECM production 

 

Fig. 7.6: Cell number (n = mean±S.D.) over time for non-loaded (U), loaded once (L1) and twice 

loaded (L2) over 28 days. Samples from different groups were considered the same as at day 1 

and day 3, as no statistical differences were found comparing metabolism of U, L1 and L2 by 

Presto Blue. Due to the ANOVA results on Presto blue assay, loaded (L1 and L2) samples at day 

7 and day 14 were also considered as belonging to the same group. As a consequence, the 

amount of cells attributed to L1 for those two time points was simultaneously representative for 

the behaviour of L1 and L2. Significant differences are underlined: *p<0.05. 
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The proliferation of cells was also quantified by DNA assay. An increase in cell 

number was observed at day 14 for U (p<0.05), and day 21 for L1 (p<0.05) 

and L2. However, L2 showed lower cell content compared to L1 at every time 

point, suggesting that a second series of cyclic mechanical load prevents 

proliferation. A decrease in cell number occurred at day 28 for all tested 

conditions, indicating an extensive cell death. A similar trend was observed by 

considering the x-ray signal (Fig. 7.7), confirming a relationship between the 

proliferation of cells and the signal detected by microCT in the range 3,500-

7,500 of GV. At day 1, the signal from cells was hidden by the surrounding 

collagen due to their reduced dimension and the low seeding number. Cellular 

content started to be detected from day 3 when cells assumed a more 

elongated shape and produced ECM. Tissue content experienced a decisive 

increase at day 21 for all conditions, although an earlier increase in cell 

proliferation for U was already observed at day 7.  

 

 

Fig. 7.7: Volume of tissue (n = mean±S.D.) accounting for cells and ECM content considering GV 

ranging between 3,500 and 7,500 (*p<0.05). 

 

The increase in cell content following the end of the first cycle of stimuli was 

not noticed on samples undergoing a second series of stimulation. This 

suggests that proliferation began after the 5 days of rest, when L2 samples 
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had already undergone the second series of compression. For this reason, 

proliferation was further delayed on L2 samples while cell number increased 

for L1 samples as they had time to recover from the first proliferation-inhibitory 

series of compression.  

 

 

 

Fig. 7.8: internal (IN) and superficial (OUT) amount of tissue (n = mean±S.D.) quantified by 

microCT scanning of non-loaded (U), loaded once (L1) and twice loaded (L2) samples over 28 

days (*p<0.05). 
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These findings suggest the role of cyclic loading in delaying the proliferative 

response of cells. Eventually, the enhanced decrease in cellular content 

associated to U and L1 at day 28 was not observed for L2, contrasting the DNA 

results. This discrepancy is probably related to ECM production at day 21 in 

L2, not detectable by DNA, but contributing to the x-ray signal (Fig. 7.7). The 

spatial variation of tissue distribution in samples was examined by selecting an 

internal ROI allowing the assessment of different sites in the sample (Fig. 7.8). 

The growth of tissue was enhanced on the surface of the scaffold, while the 

average tissue volume in ROI amounted to 40±12%, 45±7% and 47±8% 

respectively for U, L1 and L2 samples over the entire duration of the 

experiment. The increase in tissue content detected for loaded conditions 

suggests cyclic loading to promote gasses and nutrients exchange with the 

internal region of the scaffold otherwise prevented by static conditions. 

A progressive increase of the tissue on the surface of the scaffold was 

observed by microCT. Tissue growth involved volumes either inside or outside 

the ROI at day 21 for L1, suggesting cyclic stimulation as a trigger for increased 

proliferation when applied at early stage of culture. In this case, it was not clear 

if the increase in tissue amount was related just to proliferation or ECM 

production. However, the quick drop of tissue content in L1 at day 28 suggests 

absence of ECM production as the degradation was expected to occur at lower 

rate. On the other side, a second burst of cyclic stimulation applied at late stage 

of culture delayed cellular proliferation but enhanced formation of ECM through 

all the volume of scaffolds. 

 

7.3.3 Mineralization  

 

Further observation of microCT scans allowed the isolation of the signal from 

the mineral formed by the action of cells by selecting high intensity GV (Fig. 

7.9). U samples mineralized at day 14 and then the mineral content remained 

constant through the whole duration of the experiment. Differentiating among 

growth occurring in the interior or the surface of scaffolds (Fig. 7.10), mineral 
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content was 2 mm3 on the surface but it was below 0.5 mm3, close to the 

detectable threshold, in the internal volume. On the contrary, cells in loaded 

samples started to produce mineral inside the ROI as well as on the surface 

from day 7, suggesting an early mineralization process triggered by the cyclic 

load applied.  

 

 

Fig. 7.9: Overall volume of mineral (n = mean±S.D.) detected by microCT for non-loaded (U), 

loaded once (L1) and twice loaded (L2) samples over 28 days, and referring to GV in a range 

between 13,000 and 60,000. 

 

Although the early mineralization response triggered in L1 samples was not 

observed in free-floating conditions, U samples showed a 6-fold higher volume 

of mineral compared to L1 from day 14 onwards, suggesting that cyclic load 

prevented mineralization when applied at early culture time. The load elicited 

a strong effect on mineralization also when applied at advanced culture stage. 

Indeed, L1 samples did not show any further sign of mineralization after day 7, 

and the mineral phase at day 28 was only 25% of the amount detected in U. 

Conversely, a second series of compression cycles enhanced mineralization 

at day 21, and the mineral content became  30% significantly higher at day 28 

compared to U (p<0.05). Moreover, the mineralization in ROI for L2 was 3-fold 
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higher than the other tested conditions from day 21, suggesting late cyclic 

stimuli to induce mineralization on previously compressed samples. 

 

 

 

Fig. 7.10: internal (IN) and superficial (OUT) amount of mineral (n = mean±S.D.) quantified by 

microCT scanning of non-loaded (U), loaded once (L1) and twice loaded (L2) samples over 28 

days (*p<0.05). 

 

The pattern of mineralization observed by microCT was confirmed by 

quantification of OCN by sandwich ELISA (Fig. 7.11). Although not statistically 

significant, OCN was expressed on L1 samples at day 7, suggesting the 
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possibility to consider an early cellular response triggered by the mechanical 

loading.  

 

 

 

Fig. 7.11: OCN content (n = mean±S.D.) over time normalized over total cell number measured by 

DNA. The test was performed on six samples per time point, for non-loaded (U), loaded once (L1) 

and twice loaded (L2). Stars indicate significant differences among conditions at the same time 

point. 

 

Moreover, the effect of cyclic loading, applied at later stage of culture on 

mineralization potential of cells was further confirmed at day 28 by the 

significantly higher (*p<0.05) amount of OCN expression detected in L2 

samples compared to U and L1. The total amount of osteocalcin for U, L1, and 

L2 at day 28 was respectively  35.1, 28.3 and 35.9 pg. 
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7.4 Discussion  

 

7.4.1 Mechanical compression and proliferative response 

 

3D PCL showed to be suitable for studies requiring prolonged culturing of cells 

and to promote proliferation of hES-MPs in the structure. As a matter of fact, 

Presto Blue gave a good insight of the behaviour of hES-MPs located only on 

the surface of the sample due to limitations related to 1) the porosity of samples 

preventing the washout of the fluorescent solution from the internal volume, 

and 2) the development of an external layer of cells, blocking the diffusion of 

molecules in the interior of the structure. Despite this, Presto Blue was used to 

confirm the equality among samples in terms of initial number of embedded 

cells and cellular metabolic activity. As a consequence, any difference in the 

cellular response could be related to the applied mechanical conditions rather 

than to initial differences among samples. As long as Presto Blue results gave 

the same fluorescent signal, specimens assigned to different groups but 

undergoing the same loading conditions were considered as belonging to the 

same group. Thus, choosing random samples among those following the same 

protocol provided a reliable insight of the behaviour of cells also in samples 

which were still kept in culture for later analysis. This assumption refers to 

outcomes obtained 1) at day 1 and 3 when all samples were non-loaded, and 

2) at day 14 and 21 when samples L1 and L2 underwent the same loading 

protocol.  According to statistical analysis on Presto Blue results, the equality 

among different groups of samples was statistically met here, allowing to halve 

and reduce to a third the number of respectively L1 and L2 specimens to test 

in the experiment. A reliable proliferation profile was provided by quantification 

of DNA content. Conversely to Presto Blue, DNA quantification required the 

destruction of the sample, enabling the complete extraction of cells and 

accounting also for the information related to cells located in the internal 

volumes of samples. Moreover, DNA is a highly sensitive test and, therefore, 

provides precise measurements with standard deviations below the 30% of the 

average values except for loaded samples at day 28. The high standard 
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deviation observed at the end of the experiment can be due to differences 

among the repeats - in terms of initial seeding density, initial concentration of 

collagen, scaffolds geometry, slightly different media formulations - which 

progressively affect the behaviour of cells over time and become more evident 

at later stage of culture. According to DNA quantification, cyclic compression 

applied over 5 days caused a delayed proliferation, although significantly 

increasing the amount of cells at day 21 compared to the other tested 

conditions. On the contrary, L2 samples did not show any sign of proliferation 

after 5 days of rest, suggesting that 1) cyclic compression of scaffolds over a 

5 day-length period induces proliferation only if the stimulus is applied once; 

2) equally long resting periods are not enough to recover from the previous 

series of compression cycles and enhance proliferation; and 3) a second 

series of cyclic compression further delays or may block the proliferation, 

although enhancing ECM and mineral production. Whether a second series of 

cyclic compression causes delay or blocks the proliferation of cells can be 

clarified by performing longer experiments, testing samples at day 31, at least, 

to equalize the time elapsed between loading series. However, comparison 

with the other loading conditions could be difficult due to the progressive 

apoptosis already observed at day 28 for U and L1 samples. Improved 

proliferation after cyclic load was also claimed in the literature, although 

different scaffolds, compression protocols and cell type were employed. For 

example, murine embryonic stem cells seeded in collagen type 1 scaffolds and 

compressed 4 hours a day presented higher viability over time compared to 

non-loaded samples [101]. Enhanced variability associated with daily 

compression of 3D samples was also observed in other studies on hES-MPs 

seeded, bone mineralized  scaffolds [111].  

 

7.4.2 ECM deposition and tissue development 

 

A proliferation profile similar to DNA was obtained from the reconstruction of 

microCT images. A further differentiation between tissue and mineral formation 

was performed by splitting the signal among different densities. Tissue content 
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was related to a less dense material associated to growth of cells and ECM 

deposition. Observing the growth of tissue in the internal volume of samples, 

the high variability up to 12% in U is likely to reflect the differences in porosity 

among samples (Chapter 4). Indeed, diffusion of molecules is expected to be 

facilitated through larger porous samples, enhancing cell survival. A less 

variable and higher percentage of alive cells was found in the inner volumes 

of loaded samples, suggesting a possible involvement of cyclic load in the 

mass transport of nutrients throughout the structure. As a result of cyclic 

deformation, a gradient of pressure is believed to arise, enhancing convective 

transport of fluid and cell survival through the whole structure.  

At day 21, the absence of proliferation detected in L2 confirmed prolonged 

cyclic load to prevent proliferation. Last but not least, at day 28 all conditions 

were affected by cellular apoptosis, which is believed to be associated to lack 

of nutrients in the interior regions of samples because of the development of 

the external layer. Apoptosis affected also cells on the surface of L1 samples, 

suggesting the occurrence of a programmed cell death phenomenon due to 

the high density achieved [234], [235] at day 21. 

Differences in the cell quantification among DNA and microCT may be related 

to the production of ECM, which signal is accounted for during microCT 

reconstruction while being excluded in the DNA quantification. The 

impossibility to split the signal coming from cells and ECM into two separate 

components was related to the type of contrast agent employed in the study, 

presenting the same absorbability to cells and ECM. Following this 

observation, the absence of decrease in tissue volume in L2 between day 21 

and day 28, can be reasonably associated with matrix production as well as 

variations in cell number. Increased production of ECM as a consequence of 

shorts bursts of compression was also claimed in another study [162] where 

hES-MPs seeded on a polyurethane scaffolds  underwent stimulation at 5% 

global strain for 2 hours. Similarly to our study, resting periods of 5 days were 

allowed among series of compression.  
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7.4.3 Tissue and mineral growth 

 

Cyclic loading affected proliferation, tissue formation, cell survival, as well as 

mineralization potential of cells. Mineralization went along with the appearance 

of a more dense material into the scaffold, associated to the deposition of salt 

crystals.  

 

 

Fig. 7.12: Cellular (blue) and mineral (red) tissue growth over time for non-loaded (U) (left), loaded 

once (L1) (centre) and twice loaded (L2) (right). 

 

At day 7, an early sign of mineralization was observed in loaded samples and 

confirmed also by OCN quantification. However, the early presence of mineral 

content and the mechanism governing such activation needs to be further 

clarified and it needs to be confirmed due to the high standard deviation 

associated to both measurements. In general, no degradation of the mineral 

content was observed over long periods of time (Fig. 7.12). Indeed U increased 

mineral volume up to 2 mm3 in the first 14 days, L1 showed a slight sign of 

mineralization at day 7 and L2 reached the highest mineral content of 3 mm3 

after 21 days, but the amount of mineral remained constant until day 28 for all 
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conditions. The mineral content increased without ongoing proliferation and 

this phenomenon leads to hypothesize the existence of a strong link between 

the two processes whose turnover is largely affected by the mechanical cues 

provided by the surrounding environment. Applying load at day 6 seemed to 

enhance mineralization and to temporary decrease the proliferation potential 

of cells. At the same time, it seems to have triggered a postponed, highly 

enhanced cellular tissue growth as noticed for L1 at day 21, while further 

delaying the mineralization which may occur after day 28. Unfortunately, 

longer studies, not involving compression of samples, are difficult to perform 

due to the enhanced cellular death observed after 28 days in culture. This 

phenomenon was probably caused by the barrier to diffusion developing on 

the surface due to the high proliferation rate of cells in contact with constantly 

accessible nutrients and gases, as well as the production of ECM reducing the 

diffusion capability of the matrix. However, similar results claiming the increase 

in calcium or OCN content as consequence of cyclic compression of scaffolds 

were previously reported in the literature. For example, expression of OCN 

was noticed on cells cultured on 2D substrates which underwent continuous 

strain over 14 days [147]. Enhanced calcium deposition at late stage of culture 

was also shown to be elicited on 3D scaffolds [100] by using relatively shorts 

bursts of compression (2 hours). 

 

7.4.4 Mechanical differentiation of hES-MPs in cPCL 

 

 The shape of cells at day 28 excluded differentiation toward the chondrogenic 

pathway, as in all cases cells were well elongated with extended protrusions 

rather than spherical. Loaded samples exhibited a less compact tissue-like 

organization on the surface compared to non-loaded samples probably due to 

the repetitive contact between the sample surface and the bioreactor shafts, 

causing a slight damage to the most exposed tissue. Moreover, L2 cells 

appeared star-like shaped, extending multiple, random oriented, thin 

protrusions. These findings, together with the volume of mineral found by x-

ray scanning and the expression of osteocalcin detected for L2 at day 28 may 
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be sign of osteogenic differentiation. In the literature, studies performed on 2D 

substrates [147]–[149], [153] showed enhanced osteogenesis when tensile 

strains were applied, while chondrogenesis was associated mainly with 

compression applied on hydrogels [88], [104], [156], [159]. On the contrary, 

mineralization occurred in this study as consequence of compression of 

scaffolds. This discrepancy comparing to the literature is mainly due to the 

different type of scaffolds considered. Indeed, 2D substrates transmits 

stresses to cultured cells just through the attachment surface while hydrogels 

provide a different distribution of stresses through space compared to that 

elicited by the cPCL structure due to their soft and compact matrix. Another 

important fact to highlight regards the distribution of stresses in cPCL. Indeed, 

diverse stresses act throughout the structure because of irregularities in the 

geometry of fibers (Chapter 4.2.4) and also the presence of collagen further 

increases the variability in the mechanical environment surrounding cells. So 

far, it was shown that local tensile stresses were also developing from the 

compression of 3D PCL [198] while further clarification of the deformations 

affecting collagen is required  to find a link between the  cellular response 

obtained in this study and the mechanical forces sensed by cells. According to 

other studies where load was applied to 3D scaffolds by four-point bending 

devices, compression of scaffolds could elicit a decrease in the chondrogenic 

potential of cells [155] and enhance osteogenic differentiation [111], [154]. 

However, the different type of cells and the different loading protocols applied 

in the experiments do not allow a direct comparison with those studies. As 

matter of fact, the response to mechanical stimuli, as well as other 

environmental cues, is strongly linked to the cell lineage, and cells are highly 

sensitive to the amplitude, frequency, the day the stimulation starts, and the 

duration of the stimuli, leading to different responses as reported in Chapter 

2.3.4.2. For example, polyurethane scaffolds showed enhanced 

chondrogenesis on hES-MPs for high strain above 10% [157], while more 

moderate strains below the 10% enhanced matrix production on hES-MPs 

[100] and mineral deposition on MLO-A5 [162].  
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7.5 Conclusions 

 

7.5.1 Summary  

 

This study highlights how cyclic compression stimuli of scaffolds embedding 

cells can modify cell response while maintaining good exchange of fluids with 

the interior of the scaffold. A peculiar characteristic of this study relates to the 

accurate methodology and the effort to provide repeatability by performing the 

experiment three times on a large number of previously relaxed, mechanically 

characterized and x-rays scanned PCL scaffolds. Cell behaviour was 

evaluated on the overall amount of material in the sample without 

distinguishing among local stress variation, geometrical differences or 

imperfections, increasing the variability of the experiment and enabling a 

stronger linkage between compressive protocol and overall cellular response.  

Scaffolds undergoing short daily bursts of compression showed not only 

variations in terms of proliferation but also the mineralization potential of cells. 

The mineral content detected by microCT, the expression of osteocalcin 

observed at day 28, and the overall shape acquired by cells permit to exclude 

the formation of cartilaginous tissue, and support bone development as 

pathway likely to be triggered by the applied cyclic loading conditions. 

 

7.5.2 Future work 

 

In order to clarify the influence of cyclic load on cell response as well as to 

further assess osteogenic differentiation, the expression of osteogenic marker 

such as RunX2, ALP, OPN and OCN by RT-qPCR can be the next step, giving 

a deeper insight of the commitment of hES-MPs. Investigation of genes 

expression could also clarify the early mineralization process observed by 

microCT and OCN quantification to distinguish among genes associated to 

proliferation rather than mineralization. In order to identify the effect of 
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mechanical stimuli on cell survival, a gradient of pressure enhancing mass 

transport in the internal volumes of specimens could be proven by a 

combination of experimental and computational results. This approach would 

also better define the stresses felt by cells giving an insight of the stimuli 

transmitted from the scaffold to collagen and from collagen to cells. A further 

step forward regards the distinction between signal coming from cell and ECM 

content. An accurate quantification of ECM content would clarify differences 

rising from the comparison of DNA and tissue quantification, and would help 

to fully understand the process governing tissue formation into scaffolds. With 

this purpose, possible candidates are Hexabrix and Lipiodol, ionic contrast 

agents already used in clinical practice for visualization of the internal structure 

of the body by CT scanning [236] as well as for assessing tissue formation in 

vivo [237] and in vitro [238], [239]. Hexabrix was already used in the  

quantification of the ECM by nano-CT demonstrating higher diffusion 

compared to phosphotungstenic acid (PTA) [239] due to its low molecular 

weight. The low specificity of Hexabrix allowed the visualization of the ECM 

components whose detection was prevented from the use of PTA due to its 

high affinity for collagen-fibrin rich components [238]. Hexabrix allows 

automated image analysis as the signal is independent from exposure time 

and matrix quantity [239]. Eventually, in an effort to distinguish among x-ray 

signals of ECM and cells, iron oxide nanoparticles can be used for cell labelling 

and assessment of their distribution into the scaffold, as previously proposed 

by Albertini et al. [240]. Considering alternative techniques to microCT, 

nanoparticle were also recently used for labelling cells  and track their activity 

by Magnetic Resonance Imaging (MRI) in vivo [241], [242] as well as in vitro 

[243], [244]. 
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Chapter 8 

8 GENERAL DISCUSSION 
 

 

8.1 PCL geometrical and mechanical characterization 

 

The first part of this thesis aims to verify the geometrical repeatability of 3D 

Insert ® PCL (3D PCL) scaffolds and investigate its mechanical response to 

compression (Chapter 4). The main challenge at this stage consisted in 

defining an apparent elastic modulus (Ea) able to provide a good 

representation of the linear response to compression due to the variable 

architecture of scaffolds. At first, viscoelastic effects were prevented by static 

preconditioning. In the literature, constant strain is often used to obtain 

relaxation of samples [185]–[187]. In this study, equilibrium was reached by 

imposing constant displacement on samples for 180 minutes. The reason for 

the large amount of time required to achieve complete relaxation is believed to 

be related to the high degree of crystallinity of 3D PCL. This assumption is 

further confirmed evaluating the degradation potential and water uptake of 3D 

PCL. Indeed, slow degradation and low water uptake are correlated in the 

literature to a crystalline state of the material rather than an amorphous one 

[245]. In this study, the crystalline state of 3D PCL is suggested by the similar 

values in term of dynamic modulus found testing the same scaffold in air or 

water. The static strain applied during the relaxation prevented any plastic 

behaviour to occur for strain amplitude below 8%. This limited to 8% the 

maximum strain applicable in experiments to guarantee reproducibility of the 

mechanical stress among stimulations and to avoid the presence of plastic 

deformation.  Once relaxed, a range of strains eliciting an elastic response was 

identified for further analysis of the mechanical behaviour of 3D PCL varying 

temperature, or under cyclic load. As expected from a polymeric material, the 

mechanical response was dependent to temperature. Apparent stiffness 
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values found here are in accordance with other studies presenting comparable 

order of magnitude [75], [106], [189]. The main drawback in the evaluation of 

the stiffness of the structure was related to the high variability in the 

measurement. Indeed, considering a different orientation on the xy plane, the 

same scaffold led to Ea varying up to 30% from the average value. This 

variation was much higher than the percentage error found applying the same 

protocol to standard PDMS samples with identical geometry but compact 

architecture. This difference between the two materials suggests a link 

between the architecture of PCL and the variability of the measure.  As 

extensively claimed in the literature [106], [188], [189], the mechanical 

properties of scaffolds vary greatly depending on the diameter of the fibers, 

their relative orientation or the presence of defects. As observed by microCT, 

3D PCL is characterized by many structural irregularities which cause a highly 

randomized distribution of stresses. Furthermore, the sample height is 3-fold 

lower than the diameter, causing an underestimation of the overall stiffness of 

the structure as demonstrated compressing PDMS samples with different 

height. DMA analysis provided the required parameters to implement 

computational models [198] that can simulate the scaffold mechanical 

response to compression and better clarify the local distribution of stress within 

the structure.  The variability observed in the mechanical response of PCL can 

be also considered advantageous in an effort to simulate the in vivo 

environment. Indeed, the bone fracture site is characterized by a combination 

of tensile, compressive and bending forces strictly connected to the synergic 

action of muscles, tendons, blood flow and external factors, rather than a single 

and uniform compressive component. In fracture sites, stresses felt by cells 

vary consistently with the shape and the dimensions of the defect [200]. 

According to a computational models developed by Claes and Heigele, 

intramembranous ossification occurs for strains below 5% while endochondral 

ossification was predicted applying hydrostatic pressures greater than 0.15 

MPa and local strains below 15% [246]. Moreover, the callus tissue forming in 

bone fracture sites has variable stiffness ranging from 0.6 to 1010 MPa as 

measured by nanoindentation [247]. These findings confirm the suitability of 

using PCL for in vitro experiments aiming to reproduce the same global 
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mechanical environment present in bone fracture as well as the ability of the 

stiff PCL structure to bear mechanical compression. Further analysis of the 

local distribution of strains and stresses within 3D PCL is necessary to better 

define the mechanical environment sensed at the cellular level and correlate 

the differentiation toward a certain lineage with the mechanical cues 

developing in the structure. The use of 3D PCL for in vivo applications requiring 

the replacement of bone in large fracture sites is limited to its height. In spite 

of this, the mechanical properties and the low degradation rate shown by 3D 

PCL allow to consider structures of the same material and with a similar 

architecture but higher height for in vivo studies as it would provide the support 

to the mechanical forces affecting bone as well as a good tolerability from the 

host body.  

 

8.2 PCL seeding techniques 

 

The second part of this thesis aims to establish a well-defined methodology to 

be used for further studies requiring minimum differences in seeding 

efficiencies and consequently high reproducibility of the initial seeding 

conditions. Once the mechanical properties were defined, cellular attachment 

on PCL was investigated by comparing perfusion and static approaches 

(Chapter 5). In order to apply perfusion of cells, a custom made bioreactor was 

designed and manufactured by common soft lithography techniques. After 

having been defined by experiments and confirmed by computational 

simulations [212] the shear stress acting on the wall of the scaffold in a single 

chamber device, other multi-chambered configurations were tested. The main 

challenge encountered at this stage regarded the development of identical 

systems. Indeed, marginal differences in the design and the presence of 

imperfections in the initial mold caused respectively differences in the inlet flow 

rate approaching the scaffold and the nucleation of bubbles into the system. 

The necessity to overcome these issues required a compromise between the 

number of samples included in the microfluidic system and the time of culture. 

A single chamber device was used in the comparison between perfusion and 
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static seeding performances as the fluid flow in such a simple system was 

already well-characterized experimentally and computationally [212]. The 

simplest configuration proposed in this study, indeed, proved to support a good 

perfusion of scaffolds with shear stress values in a beneficial range for 

attachment. Seeding efficiencies obtained by static and perfusion were 

compared considering two different velocities. Using different devices and 

different scaffolds led to a slight variation in the amount of cells attached, 

confirming the ability of a single chambered design to provide a repeatable 

shear stress stimuli for a given inlet rate. However, due to the architecture and 

topography of the scaffolds as well as the regime of constant perfusion, static 

seeding methods provided a higher number of cells attached compared to 

perfusion.  These outcomes are in contradiction with the literature where either 

unidirectional [114] or oscillatory perfusion [116], [122], [213] were generally 

found to increase seeding efficiency and provide a better cellular distribution 

within the constructs. The reason for such low values of seeding efficiency 

were clarified by computational simulations [212] carried out on a model 

replicating the real geometry of scaffolds. It was shown that cells pass through 

the centre of pores rather than contacting with PCL walls. Furthermore, 

discrepancies in the literature can also be justified by differences in the number 

and type of cells involved in the seeding process, velocities applied, and 

architecture and topography of scaffolds. Due to the increased seeding 

efficiency, common static techniques were preferred for the seeding of 

specimens in the next part of the study. The spatial distribution assumed by 

collagen injected in the structure (Chapter 6) is likely to reproduce the pathway 

followed by the cellular suspension when static seeding was performed 

regardless the use of collagen. So after static seeding, cells are expected to 

occupy the full thickness of the scaffold. This phenomenon can be related to 

the short height of 3D PCL. Indeed, the limited thickness of 3D PCL requires 

cells to migrate over a short distance resulting in a good distribution also in the 

interior of the structure. This phenomenon instead prevented employing taller 

scaffolds where cells probably move toward the centre as noticed in our case, 

but the thickness of the structure is too high preventing them to reach internal 

volumes just through diffusion (Chapter 2.3). In such cases, perfusion is 
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indeed preferred because it allows cells to reach internal areas of the 

construct, whereas in this study the reduced thickness promotes a uniform 

distribution of cells by common static seeding methods. 

 

8.3 Collagen characterization and cellular interactions 

 

While the stiff PCL structure is able to bear the mechanical force and sustain 

tissue growth, its deformability is limited, preventing the transmission of 

mechanical stress to seeded cells. Hence, a collagen gel was included in the 

structure (cPCL) to provide a soft matrix mimicking the bone-tissue niche and 

to transmit external mechanical stimuli to the cultured cells (Chapter 6). When 

injected in PCL, collagen must be evenly distributed to guarantee equal 

conditions within the whole volume of the scaffold. Distribution, architecture 

and degradation of collagen over time were investigated to verify this 

requirement. The task was conducted by microCT and Sirius red stain. The 

former enabled the observation of the internal volume of scaffolds while the 

second excluded drying steps to cause modifications in the overall distribution 

and organization of collagen. The micro and nano organization of collagen was 

further assessed by SEM imaging to give an insight of the type of pores and 

collagenous matrix provided by the gel. A very similar architecture composed 

by overlapping, randomly oriented fibers was also imaged in another study 

aiming to investigate the micro and nano structure of collagen hydrogel [174]. 

By x-ray imaging collagen was found to be organized in a layered structure 

bridging neighbour 3D PCL fibers, leading to a well interconnected matrix. 

However, differences in the architecture of scaffolds were responsible for a 

non-homogeneous densification of collagen observed when comparing 

samples. Indeed, less interconnected portions of the scaffold provided less 

resistance, facilitating the infiltration of molecules through larger pores. 

Collagen placed on the surface of scaffolds degraded first due to continuous 

exposure to culture media while collagen located in internal volumes was 

affected later. Embedding cells into the structure confirmed the ability of 

collagen in promoting cell survival and proliferation at early stage of culture. 
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Plasma treatment and various gel concentrations were applied to samples to 

investigate how different conditions affect the behaviour of cells. Seeding 

efficiency and distribution of cells were compared among conditions to define 

the best enhancing cell survival. Static seeding of cells led to higher 

attachment when collagen was embedded in PCL. This was due to the higher 

viscosity of the solution used to seed cells in cPCL, contrasting the action of 

gravity and providing layers to connect neighbour polymeric fibers.  A uniform 

spreading of the overall cellular content through the structure was instead 

guaranteed by plasma treatment of samples before embedding cells. 

According to the literature, plasma not only contribute to the sterilization 

process [248] but also improves the surface reactivity [249] increasing 

interaction with collagen [250] and cells [251]. Here, plasma treatment was 

proved [251]. Here, plasma treatment was shown to improve the distribution of 

cells and collagen on the surface of the scaffolds. Collagen concentration was 

also found to play an important role in cell survival. Cell viability was enhanced 

for low concentration while extensive cellular apoptosis and necrosis was 

noticed for high concentration of collagen. The extensive apoptosis observed 

for high concentration of collagen was probably due to the reduced porosity for 

increased collagen content, preventing diffusion of vital nutrients and gasses 

through the structure. Moreover, an even mixture of cells within the 

collagenous solution at time of injection guarantees the distribution of collagen 

to be a good representation of the spreading of cells in the sample. According 

to the results, this study identifies plasma treatment of scaffolds and a collagen 

concentration of 2 mg/ml as the best condition to apply to obtain optimal 

seeding efficiency and uniform collagen and cellular distribution. These 

findings, together with the consistency of the seeding efficiency among 

different samples, confirm the suitability of cPCL in providing a proper 

environment for prolonged cellular studies. 
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8.4 Collagen, tissue and mineral quantification by microCT 

 

Among the main challenges, the necessity to identify a staining technique able 

to give contrast for microCT imaging without affecting the collagen structure 

was overcome by exploiting osmium tetroxide as contrast agent. A strict 

correlation between density of the material and intensity of the x-ray signal 

resulting from osmium stain is not provided by the state of the art. In our study, 

a higher intensity signal may therefore be correlated to accumulation of 

osmium rather than associated to an increase of collagen density. Despite this, 

hypothesizing a link between intensity of the signal and density of the collagen 

is reasonable since the staining procedure was kept identical through the 

whole experiments. Thus, variations in the x-ray signal due to the differences 

in the staining procedure performed at different time points were minimized. 

Accumulation of collagen was also confirmed by Sirius Red. As Sirius Red 

absorption is linearly proportional to the concentration of collagen in the 

sample [252], a more intensely stained volume indicated collagenous 

densification (HD). MicroCT was also used in the visualization of collagen, 

cells, ECM and mineral distribution, and it was correlated with DNA and protein 

expression assays to validate the results. Following staining with osmium 

tetroxide, a clear visual distinction between initially injected bovine collagen, 

cellular content and ECM was not possible due to matching intensity of their 

signals. Indeed, bone-like ECM, as well as cells themselves, presents a 

structure very similar to the bovine collagen employed here [253]. As a 

consequence, they contribute to the x-ray signal in the same range of GV as 

collagen and they are also equally affected by osmium staining due to their 

proteinaceous nature. This phenomenon prevented distinction among newly 

deposited ECM, increase in cellular content and initially injected collagen. The 

latter was instead removed from the quantitative analysis by providing cell-less 

controls and accounting for the progressive degradation of collagen at each 

time point. Therefore, the growth of tissues quantified in this thesis (Chapter 

7) accounts at the same time for increase in cell number and in matrix 

production. An example of this was observed at day 21 for single loaded 
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samples where the enhanced signal detected by microCT was attributed to 

proliferation but it could also have been further influenced by matrix production. 

The same issue affected the visualization of mineral content as it matched the 

same range of GV as collagen undergoing accumulation. Despite this, it is still 

unclear how the osmium staining affects the signal from the mineral 

component although there is no significant evidence of interaction between 

osmium and salts. Thus, the higher intensity of the signal attribute to the 

mineral phase could be due to a higher absorption of osmium on the crystal 

surface compared to the ECM or, most likely, to the direct attenuation of x-ray 

by salt crystals [254]. However, quantification of mineral content was possible 

by employing controls to subtract the signal of the collagen initially injected. 

The signal in the GV initially attributed to aggregation of collagen injected in 

the sample increased its volume over time when cells were embedded, 

suggesting the production of a material denser than ECM which is believed to 

represent the mineral phase. The growth of mineral was further confirmed by 

the enhanced osteocalcin production.  

 

8.5 Effect of compression of cPCL on ECM and mineral 

production 

 

The last part of the study (Chapter 7) aims to evaluate the effectiveness of 

cyclic mechanical compression applied for short amount of time  on seeded 

scaffolds and the application of resting periods between stimulations on the 

proliferative response and commitment of progenitor cells. Compression of 

cPCL was shown to delay proliferation if applied once (L1) at early stages of 

culture but to enhance mineralization and matrix production if a second cyclic 

stimulus (L2) was added at later stage of culture. Indeed, L2 samples showed 

enhanced mineral content as a result of the applied compression, further 

confirmed by expression of OCN and the shape of cells noticed by 

fluorescence imaging. Compression of scaffolds in the literature was mainly 

found to drive chondrogenesis of cells when culture in hydrogels [88], [104], 
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[156], [159] while tension was preferred to induce an osteogenic differentiation 

on 2D substrates [147]–[149], [153]. However, contradictory results claiming 

inhibition of chondrogenic as well as osteogenesis [152], [158], or enhanced 

bone marker expression [111], [154], [255] as consequence of compression 

were found. Discrepancies are attributed to differences not only in the 

surrounding matrix providing support for cells growth and transmission of 

stress, but also in the protocol adopted. Indeed, the duration of application of 

the stimuli [156] as well as amplitude [154], frequency [157] and start point of 

the stimulation [156] were shown to affect cell activities and differentiation. The 

effectiveness of the compression protocol adopted here in modifying the 

metabolic  and proliferative response of cells is in accordance with previous 

studies [146], [256], confirming similar behaviour. Although compression was 

applied here for a short period of time, it demonstrated to be effective in varying 

mineralization potential of hES-MPs. These findings match results in the 

literature [100] where applying the same stimuli several times elicited a 

negative effect on proliferation. The osteogenic potential claimed in this study 

may be related to the translation of the external compression into tension 

forces acting on fibers as proven by computational analysis simulating the 

distribution of stresses into compressed samples [198].  

 

8.6 Stress sensed by cells and collagen deformation 

 

cPCL proved to fulfil the requirements for a reproducible mechanical response 

and for a niche enhancing cellular activities. As mentioned before, the collagen 

embedded in cPCL was expected to transmit external forces to cells through 

the deformation of its soft structure. While the mechanical properties and the 

deformation of PCL under compression forces were extensively determined by 

static and dynamic tests, the mechanics of collagen is currently still unclear. 

This is due to the unfeasibility of performing experiments to directly measure 

how the collagen was affected by a force applied externally to cPCL. 

Computational models [257] are currently under development  to clarify the 

amplitude and distribution of stresses for embedded collagen. The mechanical 
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properties of collagen were tested by experiments performed on samples at 

different concentration [257]  to provide parameters for modelling the material 

properties.  cPCL samples reconstructed by microCT and described here 

(Chapter 6) are used as models to provide a realistic representation of the 

collagen distribution. Although the stresses sensed by cells are still unknown, 

the effectiveness of the cPCL in transmitting forces to cells was shown in the 

last part of the study where different loading protocols induced different 

responses of cells. As mentioned earlier, collagen is assumed to transfer the 

forces to cells, leading to the possibility of the real strain felt by cells to be very 

different than the one applied externally. However, whether the stresses here 

transferred by the deformation of collagen or of the polymeric 3D PCL structure 

was not clear and a comparison with experiments performed on cells cultured 

only in the 3D PCL structure without collagen can help to elucidate this point.  

Beyond the distribution of stresses in the collagen, another variable not 

considered in this study is the effect of fluid flow generated indirectly from the 

application of compression in the interior of the scaffold. The outcomes of this 

study identified a link among cyclic compression of cPCL, hES-MPs 

proliferation and mineralization potential with consistent response among 

specimens despite the variable geometry of the scaffold. These findings are 

very valuable due to the high number of tested scaffolds and the repeats of the 

experiment. The same experiment was indeed performed three different times 

to account for uncontrolled variables related to external environmental 

conditions, initial sample preparation, small differences in cell number, 

expanding conditions and culture media formulation among experiments. 
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Chapter 9 

9 CONCLUSIONS 
 

9.1 Summary 

 

In this study, a novel composite scaffold was developed, merging in the same 

construct the force-bearing properties of polymers with the deformability of the 

3D matrix characterizing collagen gels. This study, due to the large number of 

tested samples and repeats, accounts for the contribute given to the variability 

by the geometrical irregularities among samples as well as by the random 

external variables such as medium composition, environmental temperature, 

and collagen concentration, distribution and densification.  

The main contributions of this thesis concern: 

 The development of a 3D hybrid scaffold with a solid external structure able 

to bear cyclic mechanical load and an internal collagenous matrix 

reproducing the in vivo bone environment. Although the collagen did not 

form a compact matrix within the scaffold, it was very well interconnected 

through the structure, increasing the three-dimensionality of the construct. 

Moreover, the in vivo variability of the mechanical environment was well 

reproduced by the local geometrical irregularities and the different stresses 

elicited by the deformation of fibers as well as collagen. 

  The evaluation of the overall contribution given by geometrical features to 

the variability in the mechanical response of 3D PCL. 3D PCL was indeed 

able to provide repeatability in the stress with a range of variability up to 

30% due mostly to the architecture and the small dimensions of samples. 

This range can be improved considering taller scaffolds as proved by testing 

polydimethylsiloxane under compression. 

 The investigation of the effect of constant fluid flow regimes on attachment 

of stem cells and the development of an in-house microfluidic device to 

provide perfusion of PCL. Static seeding was proved as suitable to achieve 
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uniform distribution of cells through 3D structures as long as specimens are 

plasma treated before the seeding procedure and they are sufficiently short 

to guarantee diffusion through the whole height of the construct. 

 The assessment of the distribution and the degradation profile over time of 

collagen embedded in 3D porous scaffolds. Collagen was found to organize 

in layer-like structures increasing the interconnectivity in the sample. 

Collagen progressively degraded over time becoming significantly lower on 

the surface of scaffold from day 7 and in the internal volumes from day 21. 

Moreover, osmium tetroxide was proved to be efficient as stain to image 

proteins in vitro by x-ray techniques. The investigation of the collagen 

distribution when it was embedded in 3D Insert® PCL (3D PCL) defined 

controls to be used in further experiments requiring the embedding of cells. 

 The evaluation of the best experimental conditions promoting cell survival 

and tissue development. Air plasma treated scaffolds embedding 2 mg/ml 

collagen were found to greatly enhance cellular viability and enhance cell 

proliferation from day 7 onwards on free-floating scaffolds. 

 The effectiveness of cyclic mechanical stimuli in modifying the response of 

mesenchymal stem cells (hES-MPs). Proliferation and mineralization 

potential of hES-MPs were indeed proved to be affected by the external 

mechanical cues even if applied for short periods of time. Indeed, not only 

a 15 min stimulation delayed proliferation and differentiation of cells, as 

noticed applying a 5 days long series of cycles, but repeating the same 

stimuli a second time increased the production of mineral phase. Particularly 

worth to mention is the growth of tissue and mineral occurring in the interior 

of the scaffold only when mechanical stimuli were applied. 

 

These outcomes open the frontiers for a new approach where mechanobiology 

and 3D composite structures can be used as a tool for the development of 

engineered bone tissue applicable in the large fracture repair practice. Due to 

the high variability encountered in the mechanical response of 3D PCL and to 

satisfy the increasing demand for more repeatable measures, taller scaffolds 

with the same porosity and structure, and presenting a more regular geometry 

will be most likely considered for future studies. This would allow a more 
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uniform distribution not only of compressive stress, but also in terms of fluid 

shear stress when a liquid is perfused though the structure. DMA analysis used 

alongside with computational simulation and microCT provides the necessary 

tools to achieve the next goal aiming to 1) define local stresses distribution in 

the scaffold, 2) include collagen layers into the 3D structure and quantify the 

stresses transmitted by the gel to cells, and 3) link the formation of tissue in a 

certain sub volume of the scaffold to a well-defined range of forces acting 

locally. A combination of ionic, non-toxic contrast agents and metallic 

nanoparticles provide a promising approach for a reliable representation of the 

tissue growth process within 3D fibrous polymeric scaffolds. Alternatively, 

magnetic resonance imaging could be considered to follow the growth of tissue 

in a single scaffold in the effort to better link mechanical stresses and cells 

differentiation. Eventually, the effect of compression on cPCL seeded with 

hES-MPs can be further explored considering the same protocol presented 

here but adding a further loading condition which consider compression of 

samples just at late culture stage. 

 

 

9.2 Future work 

 

This work can be further developed to better clarify the mechanobiology of 

hES-MPs. Future studies include: 

 PCR: which could be employed to investigate expression of ostegenic 

genes such as RunX2, ALP, ostepontin and osteocalcin. Other 

differentiation pathways could be considered expanding the study to the 

expression of markers for chondrogenesis or adipogenesis. As the 

commitment toward such lineages are the most likely alternative 

pathways to occur due to the process undergone in the differentiation 

of hES-MPs from hESCs [20]. That would allow the clarification of how 

mechanical stimuli induce differentiation toward a certain tissue and, 

testing other protocols could enable the determination of a strong link 
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between cell commitment and mechanical environment which is 

fundamental for the development of implantable engineered tissue 

prepared in vitro.  

 

 Histology: which would clarify the spatial tissue formation and better 

define the differentiation pathway followed by cells through staining of 

proteins such as alcian blue and alizarin red. In order to apply this 

methodology, PCL requires embedding in resin as it would to enable 

the cutting of thin slices, avoiding the destruction of the structure 

otherwise occurring due to the brittleness of the polymer. 

 

 Other loading conditions consist in applying the same protocols 

described here to 3D PCL samples without collagen. Those 

experiments allow the determination of whether the stiff PCL scaffolds 

contributes to the transmission of the stress resulting from the 

compression of samples or if PCL just has a role in bearing the force 

preventing the cellular culture to collapse. 

 

 DMA on samples with similar height to provide mechanical parameters 

such as elastic and dynamic modulus to be imported in computational 

models to elucidate the local stresses developing in the structure either 

with or without collagen. This would also allow clarification of the fluid 

shear stresses arising in the structure as results of cyclic loading and 

define their role in the differentiation of hES-MPs.  

 

 As mentioned in Chapter 6, the use of alternative non-destructive 

techniques for staining of protein tissue would avoid the drawbacks 

encountered here with the use of fixatives and drying procedures, giving 

a better insight of the distribution and organization of collagen, tissue 

and cells into the scaffold. 
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