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Abstract

This thesis addresses the problem of estimating the suridleetion model of objects ob-
served in a terrestrial scene, illuminated by natural illetion; that is, a scene which is illumi-
nated by sun and sky light alone. This is a departure fromrtitional analysis of laboratory
scenes, which are illuminated by idealised light sourceh positions and radiance distributions
that are precisely controlled. Natural illumination pnetsea complex hemispherical light source
which changes in both spatial and spectral distributiorhwiine, terrestrial location, and atmo-
spheric conditions.

An image-based approach to the measurement of surfaceti@ilés presented. The use
of a sequence of images, taken over a period of time, alloevsdhying reflection from the scene
due to the changing natural illumination to be measureds $hiown that the temporal change in
image pixel values is suitable for the parameters of a réfiechodel to be estimated. These pa-
rameters are estimated using regression techniques. Thasgression methods are considered:
a traditional non-linear method and the probabilistic apph of simulated annealing. It is shown
that simulated annealing provides consistent performantigs application.

This work focuses on the use of physically-based modeldushihation, surface reflection
and camera response. Using such models allows the systeradioce quantitative, as opposed
to qualitative, results and allows radiometric measurdmémbe made from image pixel values.
The use of accurate models of daylight illumination allowsrses illuminated by skies of varying
atmospheric conditions to be considered. The results méxdaby the presented methods may be
used for a variety of tasks ranging from object recognitiorthe automated generation of virtual
environments.

Results are presented which show that the proposed metisodasle for the wide variety
of camera positions, surface orientations and sky condittbat may be experienced. The method
is also shown to be tolerant of image noise and may be usechgte ar multiple pixels within
each image. These results are based on the analysis of @yithege sequences generated using
a validated lighting simulation system. Results are ales@nted for real data recorded using a
camera.
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Chapter 1

Introduction

A human observing a scene can acquire a wealth of informatigarding the shape of objects
in the scene, the nature of the light sources and the natutleeofnaterial with which objects
are composed. This in-depth analysis of a scene, possible when presented with a single
image, is attained with little conscious effort by the olser To date, no machine-based system
has managed to achieve a performance similar to that of thehuwisual system. This thesis
focuses on a single aspect of these abilities: analysiseasuiface material or, more specifically,
the modelling of light reflection from that material. Howevthis cannot be achieved without
consideration of object shape and illumination. The apgeae of an object is a direct product of
object shape, surface material and illumination. None es¢hmay be adequately considered, in

the context of image shading, without accounting for thevageanying factors.

This thesis focuses on the estimation of a surface reflectiodel for an object within a
naturally illuminated scene. That is, a scene which is ilhated by light from the sun and sky.
This represents a dramatic departure from the traditionalysis of images which have been ob-
tained under laboratory conditions using idealised lighirses. Such ideal sources of illumination
provide convenient conditions in which to interpret imag®imation. Natural illumination, how-
ever, provides a complex and ever changing light sources ditnge is both temporal and spatial.
The apparent movement of the sun with time yields an illutmewhich changes throughout the
day, the year, and for differing terrestrial locations. Tilhemination due to the sky changes not
only with the motion of the sun but also with atmospheric dtioads. These conditions provide

a hemispherical source of illumination which exhibits sgatariation in brightness and spectral
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composition.

Results from the analysis of naturally illuminated sceras loe used for a variety of pur-
poses. Object recognition relies heavily on both shape aateénmal properties; using either char-
acteristic in isolation will not provide a generalised rgoition system. For example, a robotic
system requested to select thggd'ssy red ball requires both the shape and reflection characteris-

tics of each object in the scene to ensure that the task isrpegtl correctly.

The results may also be used for remote sensing purposésasymtanetary surface explo-
ration. The reflective properties of a planetary terrainvgte vital information on the physical
structure and chemical composition of its topmost layed ence on the geological history of

the terrain.

This technique could also be used for the generation ofaligmvironments based upon
existing, naturally illuminated, scenes. Once the reflegtiroperties of the scene have been mea-
sured, the resulting virtual environment may be illuminbtsing a wide variety of illuminants,
not just natural ones, and observed from camera positiongseal when the scene was analysed.
A practical application of this would be in architecturakdm. The material reflection properties
of an existing building may be measured and the resultingrination used to model structural

modifications or extensions in a virtual environment.

1.1 Quantifying Reflection

The study, and quantification, of light reflection dates baxkhe 18th century. At this time
the performance and limitations of the human visual systesrevibeing explored. Leading this
pioneering work was Pierre Bouguer (1760). Bouguer's wakirabd the field of photometry and
hence allowed scientific measurement of human visual chgiesi It is also at this time that the
first mathematical models of surface reflection were beimpiédated. Lambert’s (1760) theory

of light scattering from surfaces is still widely used today

The work of James Clark Maxwell (1864) provided a physical #reoretical framework
with which to understand light's interaction with the emriment. The modelling of light as an
electromagnetic wave unifies the theory of light propagatioth that of radiant heat transfer.

This theory, and that of the quantum nature of light, hasidex many models of light reflection.
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Each of these models presents an approximate solution tavblexfundamental equations, for a

variety of surface types.

The field of radiometry provides a physically-based framwwaithin which light reflection
may be studied. It provides a set of quantities which alloe rigflection from a surface to be
measured. This thesis examines two aspects of light raftecthe scattering of incident light by
the surface material, and the attenuation of wavelengthrddyze apparent surface colour. The
distribution of light reflected from a surface is determirmdthe scattering that takes place at the
surface and within the bulk of the material. The level of wratg is governed by the material
type and the roughness of the surface. The perceived cofoan @bject is a product of the
illumination and the surface material. These factors cachagacterised in a functional model of

surface reflection.

Using measurements of surface reflection, a mathematicdehas a surface’s character-
istics may be formulated. The resulting model is a functibrbath illumination and viewing
positions as well as the spectral and spatial nature of ¢fne diource. A general reflection model
may be considered as having variables and parameters. Tiablea of the model describe the
directional quantities being considered and the waveleafjilluminating light. These values will
change for a given object as the light source is altered ootject is moved about the scene.
However, the parameters of the model characterise the dégehttering from the surface and the
wavelength attenuation of incident light. These paransedee fixed for any given surface mate-
rial, regardless of how the object is viewed or illuminatéds these parameters which are to be

estimated by the system presented in this thesis.

1.2 Physics-Based Machine Vision

In the early 1970s, Berthold Horn saw that the use of radidmetodels of light reflection and

image formation allowed detailed analysis of digital imsig@ particular it was shown that surface
shape could be estimated from a single image by analysis afjénshading. The use of such
physically-based models presented a departure from thgitmaal, geometry-based, approaches

which used oversimplified models of illumination, surfaeflection and camera optics.

The advent of ever increasing computing power has allowggipally-based models, de-
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rived from the consideration of differential quantities,lie employed. These models have been
developed in the fields of radiant heat transfer, energyemwasion, computer graphics and ma-
chine vision itself. Such models are used in this work fomaflects of the imaging process. Whilst
accurate models of image formation and surface reflectior baen used before in machine vi-
sion, the use of physically-based models of daylight iliiation have not. This thesis, therefore,

presents a significant extension to the study of physiceebagachine vision.

The use of such models allows quantitative, as opposed tivadive, results to be produced.
These results may be used in a variety of applications whdghire accurate measurements. For
example, a system which determines a surface to be red asslygkonot providing results suitable
for predicting light levels in a room containing the surfaGich calculations require radiometric
models of surface reflection that quantify surface propertirhis thesis presents a system that can
determine appropriate radiometric models for materiala maturally illuminated scene, given a

sequence of images of that scene.

1.3 Approach Used

The approach used in this thesis is to determine surfacetieflenodel parameters for an object
observed in a sequence of images obtained with a static earfibe images of the sequence are
acquired over a period of time. Given that the observed sisatieminated by sun and sky light, it
is expected that the nature of the illumination will changerdhe duration of the sequence. Each
image of the sequence, therefore, observes the scene ifegedifset of illumination conditions.
A typical sequence of images, taken hourly on a clear dayass in Figure 1.1. This sequence
clearly shows how the appearance of an object is dependenttbp changing natural illumination
in conjunction with the surface properties. It shows noyantchange in total brightness but also

the spectral change in the illumination.

It is assumed that the location and geometry of the sceneatimera’s projection charac-
teristics, and the prevailing weather conditions for eaghagde in the sequence are knoa/priori
Each of these may be estimated using existing methods, whighbe discussed where applica-
ble. Whilst these are significant assumptions, it is felt fhure work may look to relaxing these
requirements. Further to this, it is shown that the methaslelbped in this thesis may be used

directly if such information is not known, though experineare not performed to evaluate this.
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Figure 1.1: Sequence of images showing a building, ob-
served hourly, on a clear day.

The pixel values of an image sequence represent light refidobm the observed surface
in the direction of the camera. Using the physically-basextieis derived for illumination and
camera response it is possible to use such pixel values aasumeenent of reflected energy. The
task presented by this thesis is, therefore, to find the peatens of a model which best charac-
terise the observed reflection. This common problem, of figdhe model parameters which best
fit observed data, is that of regression. Two methods of ssipa are considered: Levenberg-
Marquardt non-linear regression, and the probabilisticragch of simulated annealing. The for-
mer technique is commonly used for such tasks but it is shovioetunsuitable in this case. The
use of simulated annealing for this task is a novel approadolving the problem of reflection

model parameter estimation.

This thesis will show that it is possible to estimate the paeters of a surface reflection
model which best characterise the object’'s surface matehiaracteristics using the temporal
change in image pixel values. It shall be shown that suchysisainay be performed by consid-
ering a single or multiple image pixels within each imagee Tinethods suitable for this analysis
will be developed by considering synthetic image sequepoeduced using a validated lighting
simulation system. The analysis of such sequences prosigesderstanding of the limitations
of the methods and the effects that the many viewing, illatém, and surface orientation condi-
tions may have on system performance. Using such sequeaheespnsequences of image noise
shall also be considered. Comparative results are prasortthe two regression methods consid-
ered. Finally, a real image sequence, observing a varietyatérial samples, and obtained using

a camera, is analysed.
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1.4 Overview of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: A review of the relevant background material and relatedaesh.

Chapter 3: A detailed discussion of light reflection based upon elestignetic and quantum
theory. A model of surface reflection is presented which antofor the reflection from a

wide variety of surface types.

Chapter 4: A description of daylight illumination models developeddntar energy researchers.
This chapter also presents a description and comparisoarimus methods to enable their

use in machine vision tasks.

Chapter 5: Development of a radiometric sensor model which will allawface reflection to be
measured from a colour digital image. The model allows inzgel values to be interpreted
in the context of a surface reflecting light which is incidénaim a possible hemisphere of

directions.

Chapter 6: A description of methods which may be used to estimate thenpaters of a surface
reflection model from a sequence of colour images. Theseaudstre developed by consid-
ering a number of synthetic image sequences. These segualime the limitations of the
methods to be explored for the wide variety of viewing, ilimation and surface orientation

conditions that may exist.

Chapter 7: Results for two of the suggested regression methods. Resdtshown from the

analysis of synthetic image sequences in addition to amedé sequence.
Chapter 8: Conclusions and a discussion of future work.

Appendix A: Relevant radiometric and photometric definitions and nasfaare.
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Related Work

The measurement of surface reflection or, more specifi@bygirectional reflectance-distribution
function (BRDF} may be achieved through the use of expensive, specialisgdregnt such as
a gonioreflectometer [89]. Such devices use precise lightces, often lasers, and accurately
calibrated sensors to measure reflectance for the full rafigmssible incident and reflection
directions. The fine precision of such measurements reisuitsta from which an accurate BRDF
model can be developed. Owing to their precise nature anciadised application area these
devices are expensive and often inaccessible. There ishasteed to obtain a suitable sample of
the material for analysis in the device. This is often imficat when considering natural scenes,
where the object under consideration cannot be moved outeo$¢ene and into the laboratory.
There has, therefore, been a demand for cheaper and morenteny methods of measuring
surface reflectance. Of particular interest has been theougaages, which are themselves a

representation of surface reflection, to determine theatdie characteristics of observed surfaces.

Research into this subject area has been led mainly by tvitest computer graphics
and machine vision. The computer graphics community hasinegt the accurate modelling of
materials for environment simulation. The apparent realig a virtual environment is enhanced
through the accurate modelling of light's interaction witle scene. The use of precise geometric
scene modelling may be wasted if the reflection models usedniter the scene are simplistic,
resulting in apparently unnatural images. Traditionallyfual environment builders have em-

pirically estimated surface characteristics but the iasieg demand for more physically-based

1See Chapter 3 and Appendix A for an explanation of the radiooterms used in this chapter.
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lighting simulation has led to the need for accurate BRDF sugaments for a wide variety of

materials. Many reflection models have been proposed byrtEhigs community (see Chapter
3), some derived from a physical consideration of the peeeivolved, but it is the parameters
of these models, for a variety of different surface matsritiiat are required. An inexpensive and

accessible method of obtaining parameter values is theréighly desirable.

Machine vision has also been a driving force behind imagedaneasurement of surface
reflection. Such data can be used for a variety of tasks. Tgraeetation of images into contigu-
ous regions, representing the projection of a scene oltjasttraditionally relied on the detection
of high contrast areas to locate object boundaries. Howeueh contrast may be due not only to
object changes but also to reflection effects such as speuglaights. Object recognition may
be aided by the use of reflection characteristics in additiashape [66]. Observed surface reflec-
tion can also be used to aid product inspection for qualitytrab [82]. However, most work in
this field has been associated with photoclinometrisi@pe-from-shadingechniques [50]. Such
techniques attempt to recover scene geometry from imagehgon the variation in observed
shading. However, the interpretation of image shadingireglknowledge of the surface reflection
model. Therefore, much work on reflection model estimatiaa been undertaken in the context

of shape-from-shading and its related topics.

This chapter presents work related to the estimation of aatdin model for a surface ob-
served in image data. It initially presents methods for tinectl measurement of surface BRDF
which may only be obtained by sampling the full hemispherpasfsible illumination and view-
ing directions. It will then discuss intensity-based apyittes using a limited number of scene
observations to estimate surface reflection charactsistMuch of this work is related to the
shape-from-shading problem. It will then proceed to disaudour reflection analysis which has,

in general, been associated with image segmentation andtabgognition.

2.1 Image Based Measurement of BRDF

A gonioreflectometer measures surface reflectance chasticteby sampling the full hemisphere
of possible incident and reflection directions. This is agbd through accurate manipulation of
the sample material, the light source, and the sensor devités section presents two image

based methods which, like the gonioreflectometer, conglgefull range of geometries within
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which reflection can take place. In this respect this sediffers from subsequent sections, which
attempt to determine surface reflectance from a restrictecber of images. The accuracy of the

resulting reflectance models is determined by the density which measurements are taken.

Ward [141] recognised the need for an inexpensive devicerfeasuring reflectance and
designed an image-based gonioreflectometer to measureidwrapic reflectance of a material
sample. Thdamaging gonioreflectometasses a half-silvered hemisphere and a fish-eye lens to
capture the hemispherical reflectance from a surface inglesimage. In this way the reflected
radiance in the hemisphere of possible reflection diresti@tue to a single incident direction,
can be obtained. The system measures the reflected radielatieer to a standard Lambertian
sample of known reflectance, to aid calibration. The apparebnsists of a white collimated light
source, outside of a half-silvered hemisphere, which ilhates the surface sample within. A
static camera is used to record the image obtained from fleetige surface of the hemisphere. A
number of images are obtained as the light source and theiata@mple are manipulated. Ward
obtained reflectance measurements for a wide variety ofriakténcluding brass, aluminum,
wood, cardboard, ceramic, plastic, paper and paint. Hokyvénig system is unable to measure
ideal, or near ideal, reflectance from specular surfacedalthe limited directional accuracy. The
resulting measurements have been used to derive a modefatesueflectance that is applicable

to a wide variety of surface types.

Dana et al. [16] used a similar, image-based, approach teuneanisotropic surface re-
flectance from a variety of material samples. They used anaglirically calibrated camera and
extended light source to measure reflected radiance. Thétingsmeasurements were fitted,
using a least-squares approach, to both the Oren-Naye}dhd2oenderink [68] reflection mod-
els. Both camera and light source were manipulated abostuiti@ce sample to record reflectance
from the full range of incident and reflection directions. tdp200 geometry combinations were
considered in this way. From the resulting measurementgabase of colour reflection model
parameters has been produced. This includes data for 6Xiahamples such as frosted glass,

feathers, cotton, cardboard, wood, orange peel and straw.

Whilst these approaches to image-based reflectance mesesnirare relatively inexpensive,
they have not addressed the issue of practicality. Theyikeghe gonioreflectometer, laboratory-
based systems which require a suitable material sampledbtaaed. This is often an impractical

requirement. However, such studies do allow for the evadnaif reflection models and the accu-
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mulation of material data. They also serve to show that raditic measurements can be obtained
using simple imaging devices, such as CCD cameras, prowdiable calibration is performed

(see Chapter 5).

2.2 Greyscale Image Analysis

This section considers work on estimating surface reflagiioperties from a restricted number of
greyscale images. Typically, these images view complexexcand not simply individual objects.
In these cases it is not possible to directly measure BRDEgsihe full range of illumination
and viewing geometry cannot be sampled in a single, or adamiumber of images. Therefore,
these approaches attempt to find the parameters which yigdiefitbetween observed data and
a given model of reflection. Other methods attempt to detatiter than measure, features such

as interreflection or specular reflections, to aid image ssgation or other machine vision tasks.

As stated above, related work in this area of study has tifpibaen associated with other
image processing tasks such as shape-from-shading or iseggeentation. Little work has been
performed on the task presented in this thesis of estimagfigction model parameters from
a complex scene of known geometry. This is probably due tadlaively recent advances in
range finder technology, which have meant that inexpensswvices can now be obtained to ac-
curately determine scene geometry. Such devices can baasddain 3D scene geometry (or
relative location and surface normal) irrespective of acef material or illumination. The result-
ing geometric data may then be used to aid the analysis ohwasénage shading. However,
shape-from-shading methods are still required for taskl si$ remote sensing where the terrain

is not knowna priori,

2.2.1 Single Image Methods

The problem ofshape-from-shadingSFS) from a single image was originally presented by Horn
[49]. Horn's original work showed that eeflectance mapan be used to relate image shading to
surface orientation independently of position within theage. In its most general form, Horn’s
method is able to determine the shape of surfaces, withranpiteflectance, under perspective

projection and illumination from a nearby light source. Asfiorder partial differential equation
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known as themage brightness equatids derived in terms of five dependent variables. These
define the surface patch location and gradient in a viewientgd co-ordinate space. A set of
five ordinary partial differential equations are then dedand solved using the characteristic strip
method which places constraints upon the resulting sutgmsogy. However, this method suffers
from several practical problems including noise sengitiagnd error accumulation in numerical

integration of the differential equations [75].

The original SFS problem may be simplified by considerinpagtaphic projection, a dis-
tant light source from a known direction, and Lambertianfatgs of known constant albedo.
These assumptions enable the reflectance map to be defineanis of two variables, owing to
the view independence of the Lambertian reflection mode]. [Blowever, such precise knowl-
edge of the environment severely limits the applicabilityhe method. There has, therefore, been
much work on improving the original SFS algorithm to relax@of these assumptions. Light
source position, for example, may be estimated by a numberetiiods [28, 104]. Of particular
interest here are approaches which estimate the Lambestidiace albedo in addition to shape
[153]. Horn and Brooks [50] and Zhang et al. [152] provide ertlugh performance analysis of

the major SFS algorithms.

Natural scenes typically deviate from the Lambertian id@adl contain rough surfaces
which exhibit both diffuse and specular reflections. Theeribn characteristics of such sur-
faces cause difficulties for traditional SFS algorithmserkhis therefore a need for methods that
are applicable to a wide variety of surface types. This meguihe definition of reflectance maps
to model the reflection from differing materials. Variousgravements over the Lambertian re-
flection model have been proposed [102, 127, 150]. Thesmtte account for attributes such as
surface roughness and glossy reflections. Healey and Bifd&] show that a Torrance-Sparrow
reflection model [134] may be used to determine shape frogireurface specular reflections. A
combination of the Lambertian and Torrance-Sparrow raflaanodels, in the context of the SFS
problem, has also been considered [136]. A recent approe8k$ using a generalised reflectance
map is given by Lee and Kuo [75]. Typically, the resultingrasttion of surface topology leads to

the evaluation of parameters for the applied reflection rhode

Interreflection, or mutual reflection, between surfaces soene also presents problems for
traditional SFS algorithms. Koenderink and van Doorne [&#]e presented a formal treatment of

the process of interreflection between Lambertian surfatasbitrary shape and varying albedo.
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Nayer et al. [92] have looked at the analysis of such intereéifins within an image as indicators
of surface shape and albedo. They again assume Lamberti@ces) but present an iterative

approach that recovers both surface shape and albedo.

The SFS problem has also been considered in the case of ntarelnigumination. Langer
and Zucker [73] have approached the problem of SFS undeifesédihemispherical illuminant
which, they suggest, is similar to that of an overcast skgyl$how that shape recovery is possible

but assume the scene to be composed of Lambertian surfakeswaih albedo.

The a priori knowledge of scene geometry aids the estimation of surkftectance prop-
erties. Karner et al. [58] used an image-based system tmastithe parameters of the Ward
reflection model [141] for a planar material sample obserfived precise position. They used a
diffuse reflectance standard within the same image for i@idn and comparison purposes. Two
measurements are obtained, with and without a fixed point $igurce, to compensate for ambient
and stray light. A ratio of the known sample and the measusatpte image intensities across the
image are used to derive the surface BRDF parameters. Resalshown for both metallic and

dielectric materials.

Ikeuchi and Sato [53] have studied the fusion of a singleeangl intensity image to obtain
object shape and surface reflectance. The proposed reflectidel has three components: a dif-
fuse Lambertian lobe; a specular lobe conforming to thearare-Sparrow rough surface model
[134]; and a specular spike modelled using a delta funcligging least-squares fitting, they esti-
mated model parameters for an observed object. Resulthavendor Lambertian and specular

objects assuming uniform reflectance properties over trmendurface.

In the field of remote sensing the shape-from-shading pnolidemore commonly termed
photoclinometry Though the images considered here are typically obtaihgebat distance, such
as those from a satellite, aerial observation, or a plapetaage, the problem is very similar to
that of SFS. In this case, parameter values are estimatacthagpsa given surface geometry. The
resulting values provide information concerning the stitéhe surface, such as particle size or
undulation. The validity of the results is determined by hveell the reflection model characterises
the observed surface. Hapke’s extensive reflection modgl38] has been fitted to observed
shading sensed from a number of surface types includingl€9l, snow and ice [11, 140]. Other

models have also been fitted to observed data for surfacésasuforest canopy [33], sand and
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cloud [115].

2.2.2 Multiple Image Methods

Reflection model estimation, and shape recovery, usinggesintensity image is highly under-
constrained due to the limited variation in illuminationogeetry that is represented. The degree
of geometry variation is dependent upon the change of sunfiaemal across the observed ob-
ject. The use of further images can help to constrain thelpmolof reflection model estimation.
Two approaches may be used: observing a static scene ung@rgvdlumination conditions,
or observing a moving object. This section considers sugnagehes. As with the single im-
age methods presented above, much of the work presentedsh@imarily concerned with the

estimation of surface shape.

Static Scenes

Woodham introduced the conceptmtiotometric sterewhereby a scene is illuminated from dif-
ferent, known light source positions [151]. Using Horn'§leetance map, the observed image
intensities, in each of the images, can be used to deterroii@ce shape. Woodham showed
that, in the case of a Lambertian surface, three imagemiilated by non-coplanar light sources,
are required to sufficiently constrain the problem of shagtér@tion. The resulting inversion of
the image formation process allows surface albedo to bmestd. The same approach can be
used for the analysis of ideal specular surfaces illumih&ie extended sources [52]. Coleman
and Jain [13] have extended the principle to analyse tedtarg specular surfaces. In this case
it is shown that a four light photometric stereo techniquedsessary to extract the shape since
specular highlights may occur in any one of the three imagesl in Woodham’s method. This
is true provided that specular highlights do not overlapMeein images. Although no attempt is
made to determine the level of specular reflection, they bleta subtract it from the images to
provide intrinsic Lambertian images for analysis. A foight illumination has also been used by
Solomon and Ikeuchi [123] to determine the roughness of eudary reflecting Torrance-Sparrow
[134] type surface. Silver [122] has also developed waygpfydng the basic photometric stereo
method to surfaces of differing reflectance properties.sMmrk also showed that photometric

stereo could be conducted using experimentally measufiedtance maps.
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The similar concept ophotometric samplindnas been introduced by Nayer et al. [93]. In
this case extended, rather than point sources, are usddruriate the object from a variety of
source positions. The resulting sequence of images is osstidpe and reflectance estimation. A
least-squares technique is used to estimate the paramégerombined Lambertian and simpli-
fied Torrance-Sparrow model [134], though experiments $amuthe analysis of smooth surfaces.
Again, it is assumed that highlights do not overlap betweeages. Though quantitative results
are not presented, the subtraction of the specular comptmaid shape recovery is applied and
the relative strength if the diffuse component is calculatéay and Caelli [60] applied the same
reflection model and used non-linear regression technitprethe analysis of glossy reflections
from rough surfaces. It was shown that parameter estimatiay be carried out locally at each
pixel rather than globally on the entire image. In this cdmelight source positions are contained
within a plane and rotated about the camera’s principal. abagare and deFigueiredo [126] have
also considered the estimation of shape and reflectancafobertian and glossy specular objects,

though they are unable to provide a stable solution for réfleenodel parameter estimation.

Grimson has shown that existing photometric stereo metband$e modified to be used for
binocular stereo where the scene is observed from two gliffezamera positions [34]. Grimson
showed that surface orientation can be estimated alongefldttance. Again, Horn’s reflectance

map is used; however, in this case reflectance is modelled Biong’s empirical model [108].

The use of data obtained by a range finder enables surfaceahestimation to be per-
formed independently of model parameter fitting. Kay andliC&8] fuse range and brightness
images to derive surface shape and reflectance. In this bageftection model parameters are
estimated locally for each image pixel. Brightness imagesobtained under 4 or 8 differing
illumination conditions. However, this method is unabletpe with highly textured surfaces or

scenes consisting of many varied materials.

The separation of specular reflection highlights from insagan be achieved through the
use of polarising filters. Wolff and Boult present a unifiednfrework for the analysis of polarised
images and present theesnel reflectance modgl49]. Using this model to interpret differently
polarised images enables the classification of smooth lieedald dielectric materials [148]. This
is due to the differing ratio of Fresnel coefficients for cantive and dielectric materials. Wolff
also considered reflection from rough surfaces in accomlavith the Torrance-Sparrow model

[134] and successfully determined quantitative diffusé sgmecular reflection components [147].
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Moving Scenes

Scenes in which objects move provide an alternative to tlogogphetric stereo and sampling meth-
ods presented above. In this case the motion, and henceigbalhgmination and viewing ge-
ometry, is used to constrain traditional SFS methods. Bedtlses optic flow anghotometric
motionfor the estimation of surface shape and Lambertian albe@s] [ gain, Horn's reflectance
map is used to relate image intensity to surface orientabanhin this case a sequence of images
observing a moving object under a known illuminant is coaesd. This requirement fa priori

knowledge of the illuminant has been recently examined bkdwa [88].

Lu and Little [79] present a method which observes a rotatihgect illuminated by a
collinear light source. The light source lies on or near tpgaal axis of the camera. It is shown
that surface reflectance can be directly estimated fronmilagé sequence which observes a com-
plete rotation of the object. The reflectance model is es@thasingsingular surface pointshose
normals are in the viewing direction and as such are assuoedhibit maximum image intensity.
Given the 3D location of these singular points, and thegHtriess values in the image sequence,

the Lambertian reflectance of the surface can be estimated.

2.3 Colour Image Analysis

Surface colour is an important characteristic of an objetdwever, apparent colour is a product
of both the spectral nature of the illumination and mategralperties. A given object may appear
to have very different colouring when viewed in illuminatiof differing spectral composition.
Colour constancys the ability to recover a surface description of colour ethis independent of
the illumination. Therefore, even if illumination colouhanges, the surface descriptor of colour
remains constant. This provides a useful attribute for abjecognition. Approximate colour
constancy is exhibited by the human visual system. Humamepe the colour of a surface as an
invariant characteristic. For example, a human obsen@ygeises grass as being green despite
the changing spectral composition of daylight illuminatiocConversely, a camera would give a

high red channel response, rather than green, to grassvedsarsunset.

Section 2.3.1 presents methods of colour constancy thatldeeto determine the spectral

properties of a material independently of the illuminangpi€ally, such methods assume a scene
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of known geometry and Lambertian materials. Colour corstaadgorithms typically neglect
rough surfaces and glossy reflections. Attempts to analyse nomplex reflection characteristics
have generally focused on the use of the dichromatic refiectiodel [119]. These methods are

presented in Section 2.3.2. Finally, the use of alternatieelels is considered.

2.3.1 Colour Constancy

The first computational model of human colour constancy wapgsed by Land and McCaan
[72]. Their retinex theoryassumes a Mondridrworld which consists of planar patches of dif-
ferently coloured paper. The illumination across this Magud world is assumed to be smoothly
varying over the observed scene. As such, sharp changedaonr cignal intensity can be at-
tributed to object boundaries, whereas smooth changesiar®dllumination variation. Brainard
and Wandell [9] have examined the properties of the retingardghm and have found it to be an
effective colour constancy method. In general the algoritan determine constant colour de-
scriptors despite changes in illumination. However, if #eene surrounding a patch is changed,

different colour descriptors are generated.

More recent approaches to colour constancy have used adinitension linear model in
which surface reflectance and illumination are both exgess a weighted sum of fixed basis
functions [10, 21, 25, 47, 80]. The task of colour constattogrefore, becomes that of estimating
the reflectivity weights for the object and the illuminatimeights. Typically the scene is assumed
to be Mondrian and composed of Lambertian surfaces. MalandywWandell [80] defined a hum-
ber of conditions to be satisfied for efficient colour constarirhey show that illumination must
be constant over a given segment of an image and a sufficid¢mliffesent chromatic information
must be available. They also show thatnifveighted basis functions are used as a surface de-
scriptor, then at least+ 1 spectral samples of reflected radiance are required. €hgisrement
has since been improved upon by Ho et al. [47] who show thresnpeter recovery of a surface
descriptor and illumination descriptor from a three chdrmodour signal. Recently, Finlayson et
al. [23] have shown colour constancy using two reflectancasumements under spectrally distinct
illuminations. Interreflection between surfaces has aksentconsidered in the context of colour

constancy [25].

2pfter the Dutch abstract artist Piet Cornelius Mondrian.
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Supervised colour constancy uses objects of known pr@seais reference materials within
the same image. From the reflected signal from these knowplsarthe illuminant colour can
be estimated [98]. The resulting illuminant informatiomdae used as a constraint in determin-
ing object colour. A similar approach is proposed by Ohta Hagtashi for daylight illuminated
scenes [100]. Knowledge of the possible spectral compositf daylight illumination allows the

performance of existing colour constancy algorithms torbproved.

The extension of colour constancy to more natural scenashwlave varying scene geome-
try and surfaces which exhibit glossy reflection, has be@sidered by D’Zmura and Lennie [21].
They assumed that the specular component of reflectancegsacy with wavelength and show
that the hue of a surface is constant with respect to charggometry. Tominaga and Wandell
[133] also considered scenes which have a spectral refhectimponent and varying geometry.
They employed the dichromatic reflection model [119] to discinterface and body reflection

processes, typically observed from plastics.

Tominaga has recently presented a method for the measureshenrface spectral re-
flectance from a scene composed of objects which exhibitigigls [131]. In this case a mono-
chrome CCD camera, with extended dynamic range, is usedfiliighrs so that a six channel
image is recorded of the scene. The camera’s sensitivitadh &ltered wavelength is determined
by prior calibration. Results from experiments on a smaihber of surface samples indicate that
accurate estimation of surface colour can be achieved iitiaddo the illumination’s spectral

composition.

2.3.2 Colour Model Estimation

Whilst colour constancy attempts to determine spectragetghce properties, a full colour de-
scription of a surface material must also consider surfacghiness and glossy reflections. Such
reflection models are necessary for the analysis and imtitppn of natural scenes which include
a wide variety of material types. Much of the work in this aoéatudy has focused on the use of
the dichromatic reflection model [119], however altermativodels have been used for the analysis

of colour reflection.
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The Dichromatic Reflection Model

The dichromatic reflection model, originally proposed byafeln [119], provides a model of re-

flection for inhomogeneous dielectric materials. In paitdc, it considers smooth, pigmented
materials which contain colouring dye particles susperideimedium. This class of materials
includes plastics, paint, ceramics and some textiles. @wbylobes of reflection are considered:
ideal, specular interface reflection from the material acef and diffuse body reflection due to
scattering within the bulk of the material. The model is tgliy used to aid segmentation of
colour images through the ability to detect and remove dpecaflections which are assumed
not to have been coloured by the pigment particles [66]. &hHads shown that RGB pixel values
corresponding to a single material will lie on a parallebrgrwithin the colour space [119]. In

a similar approach, H.-C. Lee et al. [74] have developed thetidl Interface Reflection (NIR)

model which has been shown to be suitable for identifyingslae reflections.

Klinker [66] and Gershon [27] independently showed thahobenatic reflection from inho-
mogeneous dielectric materials is characterised by twoe@cted clusters in RGB colour space.
Klinker describes the resulting shape askewed-Tformation. From the orientation of these
clusters, the illuminant colour and material pigment cardbtermined, as can the level of spec-
ular reflection. This information may be used for segmeatapurposes or for the estimation of
material colour and the relative contributions of body antdiface reflection. Hashimoto et al.
[39] have used this characteristic clustering of pixel ealin colour space for the recognition of
material types under white light. They applied the dichrémmodel to a single image to distin-
guish between metallic, matte non-metallic, and glossymetallic surface types. However, they
made no attempt to quantify the specular surface reflectiamacteristics. It has also been noted
that the characteristic clustering occurs in other col@arces, such as the HSI space [1, 76]. The
conversion of image data to these spaces provides a moot dirgespondence between clusters

and surface shading due to body and interface reflections.

Tominaga and Wandell [132, 129] have tested the adequadyealithromatic model for
characterising reflection from inhomogeneous materidiss deported to apply well for plastic,
paint, ceramic, vinyl, fruit and leaves; however, it failed metal, textiles and paper. Tomi-
naga [130] has extended the standard model with the inclusica wavelength dependent in-

terface reflection component. In the case of metallic sedathe diffuse body component is
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neglected. They show that three variants of the basic dichtic model are suitable to describe

the reflectances of most materials.

As with greyscale images, interreflection between surf@egscause problems for image
analysis methods. Bajcsy et al. [1] and Novak and Shaferijavg used the dichromatic model
to detect highlights and interreflections in images. This been performed as an aid to image
segmentation where the characteristic colour bleedinggmts difficulties. It is noted that extra

clusters in colour space are observed due to interrefleptiocesses.

Real scenes are complex, with objects that may be texturdthwe patches of different
reflectance properties. Cluster analysis, in the conteitt@tlichromatic model, assumes smooth
surfaces and an object which has been sufficiently segmémt@dother image data. These con-
ditions allow surface colour and illuminant analysis to lséreated from the cluster orientations.
Rough surfaces and image noise cause the clusters to sprethdrzce make it difficult to separate
the reflection into its components. This problem is highiaghby Novak and Shafer [97] and S.
W. Lee [76]. Novak also showed that histogram shape is etlatélumination intensity and the

phase angle between camera and light source.

Sato and lkeuchi [116] have used the cluster analysis mdthtue context of an image
sequence. In this case the object is observed under an extdigtit source which is placed in a
number of differing positions, as with the photometric séimgpmethod [93]. The resulting pixel
values may be plotted in a five dimensiortamporal-colour spacelt is shown that clustering
also occurs in this space. From analysis of the clustersyrieatation and the reflectance can be
determined for each individual pixel. This is a departumfrthe previous cluster based methods
which have required pixel values from a region of the obj&tie method cannot be applied where
interreflection occurs, though the method is shown to beiegipk to both dielectric and metallic

surfaces.

Sato and Ikeuchi [117] have extended the work presentedL] fb scenes observed under
daylight illumination conditions. Again, the dichromatitodel is used to interpret a sequence of
images obtained over a period of time. The duration of theggreequence is such that the move-
ment of the sun provides an illuminant suitable for analpgishe photometric sampling method.
In this case, the natural daylight illumination is modellgda sun, represented as a Gaussian disc,

and a sky which is assumed to have uniform radiance over linaiflating hemisphere. They



Chapter 2. Related Work 20

show that surface normal recovery is under-constrainedtaltiee sun’s limited trajectory across
the sky hemisphere. Using the dichromatic model, they aeadyreal image sequence and es-
timate the colour vectors due to Lambertian and speculagatidh. Analysis focuses upon the
detection of highlights due to the sun and the subsequeatatim of reflection from sun and sky
illumination. This is shown to allow shape determinatiothea than quantitative reflection model

parameter estimation.

In a similar approach to Wolff [149], Nayer et al. [91] haveeatly used polarisation for
the analysis of colour images. In the context of the dichtiem@flection model, polarisation
can be used to separate specular and interface componerttss tase, it is assumed that light
becomes polarised after having been reflected from the Epeoterface of the material. This
allows for specular component removal from the images t@aalysis using the resulting diffuse
component images. The algorithm is applied to complex scaréch include textured objects

and interreflections. Results show that estimates can be pfdatle specular component.

Alternative Colour Models

Owing to the many successful applications of the dichroorafilection model, and its derivatives,
little work has been performed on colour image reflectionlysis using alternative reflection
models. This section presents two alternative approachéhvhave utilised range finder data to

aid scene analysis.

Baribeau et al. [2] have used range and colour images to &stilocal reflection properties
in the context of the Torrance-Sparrow model [134]. The usthis model allows the analysis
of rough surfaces which exhibit glossy reflections. An egghsource is used to illuminate the
scene to enable surface roughness and Fresnel reflectaracegpars from three selected object

areas to be estimated.

Sato and lkeuchi [118] have also employed a laser range findestimate object shape. In
this case, however, the object is observed whilst it perfoan360 rotation, with the illuminant
position similar to that of the camera. The resulting segaesf range images is used to generate
a set of triangular patches to represent object shape. Therdimage sequence, of up to 120 im-
ages, is then separated into diffuse and specular reflemimponents using the method presented

in [116]. However, in this case the reflection model is a lm@ambination of the Lambertian and
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a simplified Torrance-Sparrow model [134]. This allows aad roughness to be accounted for in
the specular component. Results are shown for a glossyqédgect with parameters estimated

using Levenberg-Marquardt regression [5].

2.4 Summary

This chapter has presented a review of work related to reflechodel estimation from image
data. It has shown that imaging devices, such as CCD camnmeagshe successfully used for the
measurement of reflection provided that suitable calibrats undertaken. The use of imaging
devices allows more complex and natural objects to be a@alysthin their environment. This
method of analysis is to be contrasted with the use of speethtevices, such as the gonioreflec-

tometer, which require a material sample to be obtainedatoodatory-based experiments.

The estimation of surface reflection properties from imageachas typically been per-
formed in conjunction with a specific task, such as image segation, object recognition or
shape estimation. These methods often only attempt totdetiéection characteristics, such as
highlights or interreflection, that may assist in the pripnabjective. These methods result in a
gualitative analysis of surface reflection rather than dimedion of reflection model parameters.
Such results may be used, however, to provide a broad ctaggifi of observed objects by their

material type.

The measurement of spectral material properties presemty difficulties for image based
systems. This is due to the observed reflection being a ptaduioth the illuminant and mate-
rial properties. There has, therefore, been a need for amiiant invariant description that can
be recovered from image data. This problem has been addrégseolour constancy methods.
However, as this chapter has shown, these typically requinatural constraints to be placed on

the observed scene.

The study of natural scenes, illuminated by natural illuatiion, has received little attention.
Those studies that have examined machine vision tasks soder complex illumination have
typically employed simplistic reflection models which angphcable only to specific material
types. Quantitative analysis of reflection in such envirents, accounting for surface roughness

and a variety of materials, has not been attempted.
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Surface Reflection

Our perception of objects is governed by the interactionmgbitiwith the environment. The physics
of light propagation and reflection has been the subjecttefise study for hundreds of years. To-
day the true nature of light still remains unresolved. Twaaities have come to the fore, each with
its protagonists. James Clark Maxwell (1864) formaliseshiew of classical physics by defining
the relationship between electric and magnetic fields. Mdkdetermined that electromagnetic
waves propagate with the speed of light indicating thattliggelf is an electromagnetic wave
[121]. More recently the quantum model of light has foundfay depicting light as a distribution
of charge packets. Neither the classical wave model nortlaatgm model is able to adequately
explain the phenomena that light exhibits in nature [124hisTchapter will focus on the wave

model which is able to describe most of the reflection charatics exhibited by natural surfaces.

The study of light’s interaction with the environment negalencompass the three processes
that light may undergo on meeting a material interfaggfiection absorptionand transmission
This chapter focuses on the study of opaque objects whiclotkoamsmit light. As shall be shown
in the proceeding sections, a complete study of reflectiostmot neglect light transmission. As
Maxwell's equations show, light reflected from opaque catide materials may be attenuated
by the transmissive nature of the material. In the case dédiigc surfaces this chapter will
concentrate on the processes of reflection and absorptign Diis chapter will also assume an

air-object interface which is that most commonly encowrden natural scenes.

Maxwell’'s equations are used to describe the interacticglexftromagnetic waves with any

22
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isotropic medium under the condition of no accumulationtafis charge. For the processes of
visible light interaction, this chapter considers onlyigditn in the visible region of the spectrum
(380-770 nm). Maxwell's equations cover wave-surfaceraaton for ideal surfaces which are
optically smooth, clean and reflect light in an ideal specfdahion. In this context a surface is
deemed smooth if surface irregularities are small comperéae wavelength of incident light (see
Section 3.3). These equations provide a basic undersmodiight reflection but are complex to
compute. They also depart from observed measurements dueféee roughness, surface con-
tamination, material impurities and crystal structure ifiodtion by surface working. It is these

natural surface characteristics that must be addressegiactcal model of surface reflection.

This chapter presents models of light reflection that ardiegdge to this thesis. These mod-
els have been developed from the study of radiant heat &aagsfl applied to computer graphics
and machine vision tasks. Any model of surface reflectiorsgmés either a solution or an ap-
proximation to Maxwell’s fundamental equations. This deagegins by defining a method of
measuring and describing a surface’s reflecting charatiesi Fresnel’s solution to Maxwell’'s
equations for ideal surfaces will then be considered. Thlat®n provides the basis for the
computational models which follow. Models of surface infpetions are also presented as these

enable the theoretically ideal reflection models to be appid real-world surfaces.

3.1 Reflectance: The Measure of Reflection

Li(@)

Figure 3.1:Surface reflection geometry.
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Reflection is the process by which incident flux leaves aiaty* surface from the incident
side without change in frequency [95]. Figure 3.1 shows #ilkection geometry for a differential
surface elementdA. Note that the angles of incidence and reflecti®nand 6,, are measured
relative to the surface normah. The azimuthal anglesp and ¢, are measured relative to a

reference vector perpendicular to the surface normal.

A surface may not reflect the same quantity of flux for each iptessncident direction.
It is also possible that the surface may cause scatteringeoinicident light into a distribution
of reflection directions. This section presents distrimutfunctions which enable the reflection

properties of a surface to be fully described by a single tionc

3.1.1 Reflectance

Reflectancep, represents the ratio of reflected flux to incident fIf&1]. It is a function of the
geometry of the incident and reflected flux and may be depé¢ngem the wavelength of incident
light. When considering flux incident on or reflected from aface it is necessary to define the
distribution of directions within which the flux is constnad. Different reflectance terms are used
to specify the geometry under consideration. Table 3.1 stibernine possible reflectance geome-
tries for a planar surface element. In this conwixéctionalrefers to flux within a differential solid
angle (), conicalrefers to flux within a cone of finite solid anglA®) and hemisphericakefers

to flux within a hemisphere of directionso= 2m). The directional-hemispherical reflectance is

also referred to as the surfaathedo

Reflectance defines the total quantity of flux reflected by taser The hemispherical and
conical reflectances give no indication as to the relatiwtribution of the flux, either incident
on or reflected from a surface. To consider the spatial digtion of flux a more fundamental

measure of reflection is required.

1if the surface were to be in motion the reflected light wouldsbbject to Doppler shift.
23ee Appendix A for an explanation of the radiometric quagitised in this chapter.
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Table 3.1:The nine reflectance geometries.

Bi-directional Py — Q)
Directional-conical p(tx — AGY)
Directional-hemispherica p(txy — 2m)
Conical-directional pP(AGY — G)

Bi-conical p(AGY — AGY)

B EKIKEIKIK

Conical-hemispherical p(AGy — 2m)
Hemispherical-directiona p(2rm— Gy)
Hemispherical-conical p(2m— AGy)
Bi-hemispherical p(2m— 2m)
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3.1.2 The Bidirectional Reflectance Distribution Function

Nicodemus et al. [95] presented a defining paper which pealia standard framework for the
description of light reflection from a surface. The fundataéoontribution of this work was the
presentation of théidirectional reflectance-distribution functigBRDF). This provides a flexible
and general mathematical function with which to descritee ahisotropic reflection of incident
flux from most surface types [31]. The BRD#, describes the distribution of reflected light as a
function of the incoming and outgoing directions and redatflected radiancé,, to differential

incident irradiancel.i;

Lr(era(ﬂ')
6i, @) cost; duwy

f(6,.@;6, @) = O [sr Y. (3.1)

The BRDF has the following properties:

1. The BRDF obeys thélelmholtz reciprocity principleso that if the incident and reflection

directions are reversed thdpis unchanged,
fr(@ — Gy) = £ (6 — @). (3.2)

2. The BRDF is, in generaknisotropic That is, if the surface is rotated about the surface
normal whilst the incident and reflected directions remaichanged then the value &f
may change. A surface which isotropichas a BRDF which is independent of the surface
orientation,

fr(en(ﬂ"‘(Pfera(Pr"‘(P):fr(en(ﬂ,eraq)r) (33)

Nicodemus et al. show that each of the nine reflectance fumeghown in Table 3.1 can
be defined using the BRDF [95]. The BRDF can be readily exigndeénclude a dependence
on the wavelength of the light under consideration. Witls taxtension the BRDF can be used
to describe wavelength attenuation by the surface mateFiails is the cause of apparent object

colour. A wavelength dependent BRDF can be defined as,

Lf(era(ﬂ’;)\)
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Plane of incidence

Reflected

Medium 1

|
Medium 2 / |

Transmitted
wave

Figure 3.2:Behaviour of an incident wave at the interface between twdiae

3.2 Fresnel's Laws of Reflection

Maxwell's equations provide the baslaw of reflectionwhich state that incident and reflected
waves have directions symmetrical with respect to the nbanthe point of incidence and are
contained within the plane of incidend&,= 6, (see Figure 3.2). Such ideal reflection is termed

mirror or speculareflection and the surface is termed@ecular surface

Maxwell’s equations also provides the derivation of Ssdiw of refraction, again with the
transmitted wave refracted within the plane of incidence,

sin n
Wgti — n—; (3.5)
wheren, is the refractive index of medium 1 in which the incident wavepagates and, is the
refractive index of medium 2. In the special case where nmadius air,n; ~ 1 and hence
_sinG;

= g, (3.6)

N2

The refractive index of a material is determined by the speithl which light propagates in the
material relative to a vacuunm = c/cy,, wherec is the speed of light in a vacuum angl is the
speed of light in the medium [31]. Since the refractive indgexa function of wavelength it can
be seen that the angle of refraction is dependent upon thelavayth of incident light. In the
case of materials with finite conductivity (such as metdis)refractive indices become complex
guantities,

n=n-+iy, 3.7

wherenis the complex index of refraction aryds the material@bsorption coefficient
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Fresnel's coefficients [144] give the amplitude of the rafidcelectric field in terms of
the electromagnetic fields parallel and perpendicular éoplane of incidence. From these the
isotropic reflectance for unpolarized radiation can be rdeitged,

cos(6; +6,)
coZ(6; —et)> '

. _ 1sir?(6 — 6)
PO = 2N = 258 1 8) (”

(3.8)

Equation 3.8 is known as Fresnel's equation. It defines trextibnal-hemispherical re-
flectance as a function of wavelength and the angle of incielend refraction. Note that Fresnel's
equation obeys Helmholtz's law of reciprocity. The equati® a minimum wherd; = 0 and is
unity (no light is absorbed by the material) whén= 7. Fresnel's equation shows that metals
have a higher reflectance than dielectrics. For examplersédad aluminum reflect over 90 per

cent of all visible light [124], and the reflectance of metaligs considerably with wavelength.

Fresnel's laws of reflection characterise the reflected afrdated light as they depend on
wavelength, polarisation and angle of incidence. Sincg #ne derived directly from Maxwell's
equations they assume a surface is optically smooth. Madedarface reflection and refraction

build upon Fresnel's laws and extend them to encompass reudhces of differing material

types.

3.3 Modelling Surface Structure

The preceding sections of this chapter have so far assumettalreflecting surface. That is, a
surface which is smooth, clean and reflects light in a spedathion. Such surfaces are rarely

encountered in the natural environment and depart fromide&l in a number of ways.

The Rayleigh criterion is an approximate quantificationt tthefines when a surface may
be considered rough, or when specular reflections becontieiszh[144]. It states that a surface
is considered rough when the change in surface height is thatheflected light undergoes in-
terference. This interference occurs when light waves tpecout of phase due to the different

reflection path lengths caused by the changes in height afghrsurface (see Figure 3.3).

The scattering of light from rough surfaces has been theestibf much study, especially
in the field of photometry. These models have in general fedugpon the particulate surfaces that

are to be found on planetary bodies. The models thus deriieB[/] may be applied to terrestrial
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surfaces such as sand and dry soil. Stochastic models Isvpralved to be suitable for describing

surface roughness, either through the use of fractals [P4)], dr Monte Carlo processes [145].

This section only considers isotropic surfaces and two [@puodels are presented. Such
surfaces exhibit the same surface texture in all directioAs anisotropic surface may appear
to have different surface textures when rotated about timfacai normal [110, 141]. Whilst
anisotropic surfaces are commonly encountered in nateeries they have not been included
in the initial investigations. Dirt and other surface imities are also present in natural scenes.
These effects have not been the subject of much study aneace Imot considered here.

Incident light Reflected light
in phase out of phase

Figure 3.3:Difference in path lengths for light reflected from a roughface.

3.3.1 Surface Height Distribution

Average slope

A

AN AN AR AN
A 4 AT/ \ N

4 \

Figure 3.4:Surface height distribution model.

The height of a point on a surface can be described by a stayigandom function which has
zero mean and is spatially isotropic. A Gaussian procedseicommon method for modelling
surface height, which is given by the probability distribution:
o(2) = —-_ei (3.9)
ozV21
whereag;, is therms roughnessf the surface. This, however, does not provide a full desiom of
the surface geometry as there is no indication of the distietween surface peaks. Equation 3.9

can be extended to become a two point probability functioickvrepresents the two point height
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distribution of the surface [42]:
exp(—(Z + % — 2C(r)z122) /205(1 - C(r)?))
2mo2,/1—C(r)?

P(z1,2) = (3.10)

wherer is the horizontal Euclidean distance between the pointsCGinglis the autocorrelation
coefficient Figure 3.4 shows the profile of a surface which can be madieking such a function.

The autocorrelation coefficient is a circularly symmetdadtion ofr,
2
C(r)=e?, (3.12)

wheret is thecorrelation distance/hich represents the average peak to valley distance [36hgJ
such a representation, surface roughness can be modahedust two parametersy, andt. The

average slope of the surface facets for this represent'mi% [4].

3.3.2 Facet Slope Distribution

Mean surface
normal
Facet normal

AA
\

Figure 3.5:Facet slope distribution model.

A popular alternative to the height distribution model ddess the surface as a collection of
planar microfacets. The surface has a mean normal and eacbfadiet has a local normal which
deviates from the mean by an angldsee Figure 3.5). The distribution of facet normals can be
modelled by assuming to be a random variable with a distribution rotationally sgetric with

the mean surface normal. Assuming the mean surface norniaivi® a slope deviation of zero,

the distribution ofa can be produced using a Gaussian process [134],

a2

p(a) = ce 2, (3.12)
whereagy is therms slopeandc is a normalisation constant. Cook [14] proposes using thekBe

mann distribution, which has a similar shape but withoutatistrary constart

1

—(tana /oy )? 1
02 coda cos‘cxe . (3.13)

p(a) =

3Cook’s original paper [14] omits the 4 in the denominatorisikas corrected by Hall [36].
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This surface representation has advantages in its sinyphcid can be used to represent most
isotropic surfaces. It can, however, be difficult to vissalthe true shape of the surface based on
the single parametar,. There is no direct comparison between the slope and heigfhibdtion
models but He et al. suggest that rms slope is proportion&? {d2]. Despite not providing a
complete model of surface geometry the facet slope modeapsilpr and the scattering of light
from real surfaces has been found to be dependent on loged sither than the height change of
the surface [94].

3.3.3 Shadowing and Masking

Facet masking Facet shadowing

=N

Figure 3.6:Facet shadowing and masking.

Blinn [7] and Cook [14] introduced the effects of self-shaitty and self-masking by rough sur-
faces to the field of computer graphics. At large angles afigrce or reflection some surface
facets may be shadowed and/or masked by other facets (age Bi§). The net effect is to reduce
the amount of reflection that would normally be observed fesnideal smooth surface. Blinn and
Cook both adopt a geometrical approach to modelling theeesffiey assuming the surface facets
to be arranged in symmetric V-grooves. Shadowing and mgdka&is become an integral part of

many other models of reflection [37, 42, 41, 101].

3.4 Modelling Surface Reflectance

The BRDF of a surface can be measured for a set of surfacaatiers and illumination geome-
tries using agonioreflectometef89]. This device enables the surface reflectance charstatsr

to be measured and recorded in the form of a look up table. Uge gesulting data is, however,
impractical as it may contain noise and will not cover tharerdomain of the BRDF. It is there-

fore desirable to be able to represent the BRDF in terms ofietitnal model [31]. Such a model
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would need to encapsulate all the features of the surfaceHmutld not be expensive in terms of
computing time. Ideally, the model would have parameteth wiphysical meaning with which

to describe the surface’s reflection characteristics [36].

Total
Surface BRDF Specular
. normal ray
Incident \ - =
ray s \
4 \
- = - 7/
~ - |
Backscatter ! T I
lobe T+ /' Forescatter
\ </\
\ lobe
/
\ 7
Normal__— e
lobe S =

Figure 3.7:Linear approximation to BRDF.

Tagare and deFigueiredo [127] provide a good frameworkHerstudy of BRDFs and the
different reflection mechanisms that contribute to themeyTpresent the BRDF as being a linear
composition of four approximating basis functions (seeufég3.7). These represent an ideal

specularly reflected ray, a forescatter lobe, a normal labd,a backscatter lobe,

fr(@§ - &) = Kspecfspe((d')i — W) + Kescfrse(@ — G)
%

+Knormfnorm(G% — G ) + Kpscfbsd(63 — 6 ), (3.14)

whereKspeo Kfre, Knorm: Kbsc@re dimensionless constants which represent the contribat each
of the respective lobes. Each of these lobes may have a dependn the wavelength of incident
light and, hence, may attenuate the reflected wavelengthntelels employ all four terms, with
the specular ray and backscatter terms often being omitfdds section presents the popular

models used in computer vision and graphics with referentkdse lobes of reflection.

Interface Incident
reflection light

Body.
reflection

o » ~
» * ), ‘e e ? )")Pigment

e 23

Figure 3.8:Light reflection from pigmented dielectric material.

The dichromatit reflection model, introduced by Shafer [119], is an examjla wbed

4Similar to H.-C. Lee'sNeutral Interface ReflectiofNIR) model [74].
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model. In this variant the backscatter and specular refleatomponents are ignored. Further
to this, the glossy reflection component is assumed not te h&aen coloured by the surface
material. The forescatter BRDF approximation therefore ha dependence on the wavelength
of incident light. The dichromatic model assumes the waxgtle of normal lobe reflection to be
determined by a combination of incident wavelength andctigiematerial absorption. The glossy,
interface, reflection is assumed not to have been attenaatg:dhence has the same wavelength
as the incident light. Such a model is useful in describirg riflection from inhomogeneous
opaque dielectric materials such as plastics. The seteatdgorption of certain wavelengths by
colour pigments in the body of the material gives rise to ae@d body reflection. Such a surface
typically has few pigment particles on the surface and héheesurface reflection component is
unattenuated. Figure 3.8 shows the processes assumed dichinematic model. A thorough
analysis of the dichromatic model and its various uses inpeder vision is given by Klinker [66].
An obvious failing of the dichromatic model is the inability model conductive materials which
do not exhibit body reflection and attenuate the wavelenpihterface reflections. Consideration
of such materials, as well textiles, within the context @& tlichromatic model has been attempted

by Tominaga [130].

A number of studies have looked at modelling surface refleetaof particular materials.
These include: vegetation [61]; snow and ice [140]; and lsaie[109]. Whilst these represent
surface types that one would expect to encounter in natoeales they have not been considered
here. This work looks at the use of a single model that may Ipficable to a wide variety of

surface types.

Care should be taken when attempting to construct a hybfielcten model based upon
lobe models proposed by different authors. When consigexiphysical model of light reflection,
it is imperative that the resulting total BRDF function hasger normalisation. A reflectance
model that does not yield a correct energy balance is usetemss considering the physical process
of light reflection [141]. Failure to ensure this could catlse model to predict more light energy
to be reflected than is incident on a surface. For this redsemeflectance model proposed by
Ward is treated in isolation, though still with referencettie lobe model above. This model has
been formulated to ensure proper conservation of energyshadld not be used in conjunction

with the other lobe models without proper normalisation.
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3.4.1 Ideal Specular Reflection

A perfectly specular (mirror-like) reflecting surface refig incident radiance only in the mirror
direction defined by the law of reflection. Such a surface canldscribed in terms of a BRDF

involving Dirac delta functions [12],

0(cosh; — coshy)
1:s pec— co Sei

o(@ — (@ 1)), (3.15)

where the Dirac delta functiong, have the following properties:

0(x) =0 for x#0,
[d(x)dx=1, and (3.16)
[ f(x)d(x—a)dx= f(a).

Ideal specular surfaces are rarely encountered in natceaks. Almost all surfaces contain
surface imperfections which render the above consideratiepecular reflection impractical. For

this reason many reflection models neglect this portion etthal reflectance.

3.4.2 The Normal Lobe

Incident light reflected about the surface normal, indepanaf the incident direction, is con-
tained within thenormal lobe Real-world surfaces can reflect a high proportion of inotdmergy
into this lobe. The earliest and simplest normal lobe rdfieatnodel is that proposed by Lambert

(1760) [71] and has since become knowrlLambert’s law Stated in terms of a BRDF this gives

. . 1

Lambert's model has been shown to approximate experimdatalfor a large set of mate-
rials. A complete explanation of Lambert’s law has not yet¢rbproposed [127]. It is generally
thought that incident light undergoes repeated scattevitign the bulk of the material (see Figure
3.8) [150] . This scattering causes the emergent radiatidoe tuniform about the surface normal

(see [127] for a summary of the various normal lobe thearies)

Studies by Oren and Nayer [101, 102] have shown that the Larabenodel is a poor

approximation for rough surfaces. The Oren-Nayer reflaxamodel uses the Gaussian facet
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slope distribution of Section 3.3.2 with each Lambertiasefehaving the same albedo. The model
accounts for facet shadowing, foreshortening and intexcgfin. The Oren-Nayer model provides
a useful alternative to the Lambertian model in the case ofosurfaces and reduces to the
Lambertian model for smooth surfaces. The model has beemrstwofit experimental data when
combined with the Cook-Torrance model for the forescatiel(see Section 3.4.3) [16]. Care
must be taken, however, in combining this model with the baatter models of Section 3.4.4,

since an element of reflection within the backscatter loltekien into account by this model.

3.4.3 The Forescatter Lobe

An early attempt to model the observed glossy reflectionsciested with the forescatter lobe was
made by Phong [108]. This was an empirical model which cabeoadequately expressed in
terms of a BRDF, as presented in this chapter due to its éilorbe bidirectional. The model
assumes maximum reflectance along the perfect mirror dredd;, = 6;. Reflectance falloff is
approximated by cdsx wheren is the surface’specular-reflection exponeahda is the angular
difference between the considered reflection direction t#wedideal mirror direction. Phong’s
model fails to account for Fresnel effects and assumes $nsfaces. For this reason images

generated using this model appear plastic and, in many,aasestural.

Torrance and Sparrow [134] used geometrical optics mettmdensider the phenomenon
of observed off-specular peaks and incident light attéanaby metals. They concluded that
this was a result of roughened surfaces and Fresnel effétisy employed the Gaussian slope
model of Section 3.3.2 and added a geometric attenuatidorfacaccount for facet masking and
shadowing. Cook and Torrance [14] adapted the model anéedgpfor use in computer graphics.
They replaced the Gaussian slope distribution with the aopgsed by Beckmann (see Section
3.3.2). The resulting forescatter model accounts for mdnye observed shading effects seen

especially from conductive materials with surface finishes

DGF(A
ftsc(6i,@; 0, (s A) = ﬁa (3.18)
| r

whereD is the Beckmann microfacet distribution of Section 3.32is the Fresnel term (see
Section 3.2) an is a geometric attenuation factor to account for surface@lvang and masking
(see Section 3.3.3).

There are many alternative models for the forescatter lbtadl provides a good overview
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of the various models that may be used [36]. Despite theseCtiok-Torrance model has re-
mained the most popular geometric model. Physical modath(as [4, 42, 41]) derived from a
consideration of the wave nature of light and the moleculaicture of the material produce good
results but are complex. It is important that a model shodelgaately describe the process of
reflection but not at the expense of undue complexity. In trgext of machine vision, the time
taken to evaluate a model for a single surface patch is of itapoe when considering algorithms

that are required to apply repeated evaluations over a whizge, or a sequence of images.

3.4.4 The Backscatter Lobe

Observed natural shading of many materials has providetenee for the backscatter lobe [22,
87]. A well studied example is that of the surface of the Mood ather planetary bodies whose
reflectance peaks in the direction of incidence, sometieresdd theopposition effec{38, 121].

This effect is most apparent from particulate surfaces aglsand or dry soil. Experimental
evidence suggesting the existence of the backscatter lalso be found in the data supplied
by Torrance and Sparrow [134]. Models for the backscattee lre presented by [127] and [102].

They have not been considered in this work owing to their derify and relative immaturity.

3.4.5 Ward’s Reflection Model

The reflection model proposed by Ward [143, 141] has beernatkempirically from reflectance
data obtained using an imaging gonioreflectometer. Degpitdaving been formulated from a
thorough consideration of the physics of light reflectiorards model has been shown to provide

an accurate simulation of light reflection in complex enmim@ents [35, 81].

Ward’'s model dispenses with the specific geometric attémuaind Fresnel terms adopted
by many models in favour of a single normalisation factorisEnsures that the reflection function
integrates predictably over the hemisphere of incidentrafidction directions, within the limits
defined by the conservation of energy. This is an importaimtgo consider. Some reflection
models, though derived using a physically based approadhipfaccount for this and hence may

provide inaccurate results when global illumination is sidered.

In a similar approach to the model proposed by Cook and Toegeee Section 3.4.3),
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Ward uses a Gaussian process to model isotropic surface atmphence glossy reflection into the
forescatter lobe. This is combined with the Lambertian otfilece model covered in Section 3.4.2

to account for normal lobe reflection,

. Pd 1 exp(—tar?3/02)
B V- - 249

wherepy is the diffuse reflectance into the normal lolmg,is the specular reflectance into the
forescatter lobegy is the rms slope (see Section 3.3&)s the half angle andpg + ps < 1. The

half angle is the angle between the surface normal and ani@stxting the incident and reflection
directions. Reflection into the backscatter lobe is not ictamed by this model. The inclusion of a

specular term allows the modelling of perfectly smoothsglosurfaces which do not scatter light.

Ward suggests thady values of less than.b be used to model plastics, whils values
greater than & be used for metallic surfaces. By making each of the refheetéerms a function
of wavelength, the model can be extended to characterigctiefh from coloured surfaces. In
the case of plastics, coloured body reflection can be aathibyenakingpy a function of wave-
length, specular interface reflection being the colour ofdant light, as described by the dichro-
matic model. For metals, bothy and ps are made a function of wavelength, hence providing
the coloured specular reflection characteristic of metdhses. This may be performed provided
pd+ Pps < 1. Experimental data also suggests that a practical ramgg,fis (0.0 — 0.2) [141]. The
model can be further extended to model Fresnel effects byngake ps term a function of both

wavelength and geometry, though this is not considered here

This work considers three variants of the basic reflectiomehgiven by Equation 3.19.
The first requires thapy + ps = 1 and therefore has two free parametgysandoy. The second
variant provides an achromatic reflection model which afiole total reflectance of the surface to

be given. This model therefore has three paramefrgs, ando, whereR is the total reflectance

andpg = 1—ps;
_ Pd 1 exp(—tarfd/03)
fl’(elv(ﬂvel’v(ﬂ’):R ?_*—ps\/m 4_,_[0_(21 - (320)

Finally a colour reflection model is considered. This reptathe total reflectandgwith a material
colour vectorC to denote the reflectance of the surface at three discreteleraths. Again,
pd + Ps = 1 but how the colour vector is used in the model depends upervdlue ofps. If

ps < 0.5 the material is considered plastic and as such the colotlreo§lossy highlight is not

affected byC. If ps > 0.5 the material is considered to be metallic and u{landpy are made
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functions ofC to provide coloured body reflection and coloured glossy lights. Note that the

colour vectorC is not normalised.

The reflectance function given in Equation 3.19 has beeweftusing reflection data ob-
tained from a broad variety of material types. As such, itiatdeen designed to model reflection
from a particular class of materials. This is a particulalirfg of the previous models presented
in this chapter. Though alternative models provide aceusamnulation of light reflection from
surfaces they do not, in general, extend to cover a wide tyapiesurface types. Ward’'s model
has been shown to characterise reflection from surfacesasielood, metal, cardboard, plastic,

ceramic and paper. One would expect to encounter such susfpes in a natural scene.

Since Ward’s model has been derived from the fitting of okestneflection data, it would
appear suitable for the machine vision task of surface mestéation presented here. Reflec-
tion from the surface types mentioned above have been shmWnthe model in the laboratory
situation and it would therefore be expected that similaults could be obtained from surfaces

observed under natural illumination.

This model may be extended to characterise anisotropiacireflection by the inclusion
of further roughness parameters. Since such reflectiontisansidered here, the full anisotropic

model is not presented.

3.5 Summary

This chapter has shown the development of models to dessuriffece reflection. These have been
derived by consideration of the interaction of light witke@ surfaces. Practical models extend this
theory to characterise reflection from surfaces which devilom the ideal. As such, the models
presented are able to account for scattering by materiattsites and by surface irregularities.
These enable the modelling of some of the observed reflegtienomena which may be observed
from many surfaces. It has also been shown that specific mededt to describe light reflection

from a number of natural surfaces.

It has been shown that the reflection model due to Ward is nudsidsto the task presented
here. It is able to model the reflection from a wide variety wfaces and is computationally con-

venient. Since this model has been developed using an igaginioreflectometer in laboratory
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conditions it would appear to be suitable for the similaraga-based, system observing natural
scenes presented here. Whilst the methods developed théisis do not pertain to any particular

reflection model, the Ward model has been selected for arpetal purposes.
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Natural lHlumination

The appearance of an object is determined not only by therialgdeoperties discussed in Chapter
3 but also by the illumination to which the object is expodedk example, a mirror viewed under
a diffuse, uniform light source will appear very differemt dne observed under a single point
source. It is also necessary to consider the spectral nafure illumination. A material which
absorbs radiation in the red region of the spectrum will apge have no reflective properties
when viewed under red illumination. In the case of natutahiination, an object illuminated by
a cloudy, overcast sky may well look different to an idertmaject viewed under a clear blue sky
with an unobstructed sun. This chapter is concerned witteffeets of natural illumination on

objects and how their subsequent appearance may be modelled

Natural illumination, or more specifically daylight illumation, can be considered as being
composed of two components: direct solar and diffuse skyt ligumination. The magnitude
and distribution of each of these components is determipdddiors such as location, time and
weather conditions. In order to predict how an object wilbegr given these parameters, a reliable
and accurate daylight illumination model is required. Soaddels have been used extensively in
the energy and architecture communities and their use idsee@aming more common in computer

graphics and machine vision.

40
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4.1 Direct Solar lllumination

4.1.1 Solar Geometry

The earth rotates about the sun approximately once ever% 8a%s in an almost circular path.
The sun is located slightly away from the centre of the esudibit which causes the solar intensity
to be about 7 per cent higher in January than July. The eatrsgins about its axis every 24 hours
giving diurnal variation in solar intensity. The earth’'sigwf rotation is tilted by 2%° relative to
its plane of motion and this causes seasonal variation irpssition. Therefore, the position of
the sun in the sky hemisphere, and hence solar intensitgté&rdined by date, time and global
location. The average solid angle subtended by the sun atgoathe earth is & 10~° steradians
[103].

At any time, the position of the susg, in the sky hemisphere for a global location can be
specified by spherical polar co-ordinatéh, ¢s), wherebs is the solar zenith angs is the solar
azimuth. These angles represent the location of the sutiveel@ a vertical direction and the
north direction at a solar hour angle, The solar hour angle is calculated from the local solar time
(LST). LST accounts for location longitude and uses ¢geation of timgo compensate for the
eccentricity of the earth’s orbit [112]. Local solar timesisch that at 12:00 hours, the sun is due

south of the location. Given a local solar time, the hour ahgs given by,

h=(LST—12) %15 4.1)

Figure 4.1 shows the horizontal plane at a global locafiamith latitudeL® in the northern
hemisphere. On an equinox (April 21 or September 21) therdgan of the earth is such that the
sun appears to move within a plane tiltedlyalong the west-east axis. Such a plane is termed
the equatorial plandor the locationO. On other dates the declination of the earth, relative to
the sun, is such that the plane of apparent motion of the sehified by an angle equal to the
declinationd. This plane of apparent motion is termed tfexlination plandor the location. The
directionV is anup direction which is perpendicular to the horizontal plandhe locationO.

The directionP is a direction perpendicular to the sun’s plane of apparestian. Note that the

possible declination planes for a location are parallehtodquatorial plane.

Looking at the spherical triangleV § which is composed of great circles, the solar zenith,
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Figure 4.1:Solar geometry (follows Rapp [112]).
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Bs, is given by the law of cosines,

cosBs = c0g90—d)cos90— L)+ sin(90—d)sin(90— L) cosh

= sindsinL + cosd cosL cosh (4.2)
where
. 180 | .
sind = — cos[(DS 1)@} sin(23.45°) (4.3)

whereDs = 1 on December 21, arfds = 365 on December 20.

The solar azimuth anglag, is defined as the angle between the north direction and the
projection of the sun onto the horizontal plane. Applying tosine law to the spherical triangle

PV Sthe azimuth angle can be found as,

cog90—d) = c0g90—L)cosBs+ sin(90— L)sinBscosps
sind — sinL cosBs

cosps = cosL sinBg (4.4)

where sird is given by Equation 4.3.

4.1.2 Solar Intensity

Owing to the elliptical trajectory of the earth, the distarfeetween the sun and earth changes
throughout the year. The extraterrestrial irradiance duiaé sun on a surface normal to the sun,
when the earth is at a mean distance from the sun, is termedathe constant Traditionally

this has been taken to be 1353W#[17]. Measurements suggest, however, that a value of
1377Wn12 is more appropriate [112]. The extraterrestrial solarristsy, Ney;, for a given day in

the year may be estimated from the solar constant [112],

S(1+ ecosp)? 45)

N =

where,Sis the solar constang,is the eccentricity of the earth’s orbit (=0.01672) apig given by,

360°

3652 (4.6)

o= (Dj-2)

whereDj is the day of the Julian year. Figure 4.2 shows a graph of extestrial solar irradiance
on a surface normal to the sun’s rays on the twenty first dayaoli enonth as given by Equation

4.5, assuming a solar constant of 1377 Wm
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Figure 4.2:Extraterrestrial solar irradiance incident on a surfacensa
to the direction of the sun’s rays on the twenty first day ofreawonth,
calculated using Equation 4.5.

The intensity of the sun at the earth’s surface is reduced fre extraterrestrial amount due
to atmospheric scattering and absorption. Section 4.2isé&s the scattering processes which so-
lar radiation undergoes in order to form the diffuse skytigrhe amount of direct solar radiation
lost to scattering and absorption is dependent upon thetpk#n by the radiation through the
atmosphere. The level of radiation received by a surfacsideiof the atmosphere is referred to
asair mass zeroWhen the sun is directly above a surface at sea level, thati@d received is
air mass oneWhen the sun is located such that the radiation passesgtihi@greater amount of
atmosphere, the effective air mass is increased. The igffiguath length to sea level through the
atmospherd,, and hence air mass, at any time is giver byse®;,, wheref, is the solar zenith.
The fraction of light absorbed by the atmosphere over a gatyth ofl is given by exp—B(A)l),
wheref3(A) is the extinction coefficienfor radiation of wavelengtiA. The extinction coefficient
for radiation of all visible wavelengths may be approxintat®y a single value. A reasonable
approximation for a clear sky (A\) = 0.431 [112]. Increased scattering due to moisture or pol-
lution will increase the extinction coefficient such thatedt solar irradiance becomes negligible

as the atmosphere becomes more overcast.

The direct solar irradiance received by a plane at the eastirface, oriented such that it is

normal to the direction of the sun’s rays is,

N = NexteXp(—B(A) sed). 4.7)
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Surface Vertical
normal

Figure 4.3:Tilted surface geometry.

Atilted plane will receive more or less irradiance directrfr the sun. Maximum irradiance will be
received when the surface is tilted such that the sun is éwiith the surface normal. Figure 4.3
shows the geometry under consideration for a tilted surifagainated by direct solar irradiance.

The cosine of the angle between the sun direction and tkd slirface normd is given by,
cosBr = cosBy, coshy, + SinB, SinBrcog @ — @r). (4.8)
Direct solar irradiance incident on the tilted plaig;, is therefore,

Dt = NcosBr. (49)

Figure 4.4 shows the direct solar irradiance on a horizostaface and a surface tilted
30 to the south for a location with latitude 34 on a clear day. Values were calculated using
Equations 4.7 and 4.9 assuming noon air mass of 1.7, corestanttion coefficient of 0.23, and
solar constant of 1377Wni. Measured data was recorded at a location with the samedatit

on a clear day in 1977, using a normal incidence pyrhelioni&as].

4.1.3 Spectral Distribution

The sun emits radiation over a wide range of wavelengths. attfqular importance is radiation
within the visible spectrum betweendum and O7um. Extraterrestrial data suggests that the
radiation emitted by the sun compares closely with the egole@diation from a black body at
5762K [112]. Scattering and absorption by the atmosphepadfcular wavelengths causes the

terrestrial spectral distribution of direct solar energybe shifted (see Section 4.2). The spectral
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Figure 4.4:Measured and predicted solar irradiance on a horizontal and
tilted surface for a location with latitud&l®° N on January 4 1977. The
tilted surface is incline®0° to the south. Predicted solar irradiance is
calculated using Equations 4.7 and 4.9 assuming noon as ofdk 7,

constant extinction coefficient of 0.23, and solar constéh877 W 2
[113].
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composition of terrestrial sunlight depends upon the le¥elcattering and hence upon the com-
position of the atmosphere. Measured data shows that trestiéal solar spectrum correlates to
black body radiation at 4000K [46, 48, 56, 128]. As the sulitituae increases the spectrum can

be compared to a correlated colour temperature of 5500K [48]

4.2 Diffuse Sky Light lllumination

To an observer on the ground, sky light appears to emanatedrbemisphere of directions. The
diffuse nature of sky light is due to atmospheric scatteiifigadiation incident from the sun.

Scattering occurs when light strikes particles suspendedmedium and can be due to reflection
or refraction on meeting the particles. Two widely used nt®decount for scattering by particles

of varying sizes [85]:

Rayleigh Scattering: This scattering model is applicable for particles whicharaller than the
wavelength of light under consideration. This model is atipalar interest when consider-

ing scattering by air molecules.

Mie Scattering: Scattering by particles which are larger than the wavelenfjtight is described
by Mie scattering theory. This model accounts for scattphiy aerosols. This model is

applicable when considering moisture, dust and pollutangpended in the atmosphere.

The extent to which light is scattered in each of the aboves#s dependent upon the
wavelength of light being considered. The characterisiie Isky observed on clear days is due
to Rayleigh scattering, and the absence of Mie scatteringdigture particles. The colour of the
sky shifts towards longer wavelengths as the level of maasiticreases. Pollutants also play an

important role in determining the overall scattering ofssahdiation by the atmosphere.

Computer graphics and machine vision systems have genersdld a constant ambient
light to model the diffuse nature of sky light. This is a poppeoximation because sky light, es-
pecially clear sky light, has high spatial variation. Thédaing section provides a more detailed

description of sky light which enables a more accurate mtmbé developed.
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Figure 4.5:Sky luminance geometry.

4.2.1 Sky Light Distribution Models

The Commission Internationale deélclairage (CIE) has formulated standard luminance distri-
bution models for various reference skies. These wererailyi commissioned in response to a
need by the illumination engineering community for a settahdard reference skies for light-
ing calculations. Two such models have been formulated ehathe CIE standard clear skgnd
CIE standard overcast skyhese two reference skies represent luminance diswibsitfor ex-
treme ideal weather conditions. To extend these modelsdouat for skies between these two
extremes, a general or intermediate sky needs to be defiedCIE have yet to approve a gen-
eral sky model which is applicable to all global locationsl @mospheric conditions but various

models have been proposed [106, 107].

Figure 4.5 shows the sky hemisphere geometry required fouleding the relative lumi-
nance of a discrete sky point. The solar zen@if),and azimuthgs, can be determined using the

equations given in Section 4.1.1.

CIE Standard Clear sky

The clear sky luminance,, of a point in the sky hemisphere with zenith an@jgand azimuth

angleqy is,
Lai(6s,6p,0)  Y(Bp) f(Q)
Lzci(8s) () f(8s) (4.10)
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where
L,c(Bs) = clear sky zenith luminance (4.12)
ye) = 1-—¢ 030 (4.12)
f({) = 091+10e % +0.45c08¢, (4.13)
co§{) = co0sBscos0y+ SinBsSiNB,CcoSs Ps— @p|. (4.14)

The clear sky model can be further extended to account foospireres polluted with
particulates. Such extensions typically use a sky tunpifittor to account for the level of at-
mospheric pollution [18]. Such models are particularlytailie for urban or industrial regions.
Regional models also exist to account for the sky luminanstilolition for a particular location,

for example [90].

Figure 4.6 shows sky point luminance relative to the skytheliminance for clear skies
with solar altitudes of 2%°, 45 and 675°. Each greyscale image is accompanied by a false

colour image showing the pattern of relative luminance dlrerwhole sky hemisphere.

A general equation for the absolute clear sky zenith lumiedmas yet to be standardised
by the CIE. A popular model, which is applicable to a varietygtmbal locations, suitable for

8s > 30, is given by Kittler [64],
L2ci(s) = 300+ 3000coBs [cdm 2. (4.15)

Figure 4.7 shows the overcast sky zenith luminance as peellizy this model. As with the
luminance distribution model, a variety of alternative id@models exist to account for differing
conditions. In particular, models attempt to account fdiyti@n and high turbidity. An overview

of possible alternative models is given by [18].

CIE Standard Overcast Sky

The overcast sky luminanckec, of a point in the sky hemisphere with zenip and azimuthyp,

is given by the CIE standard overcast sky model,

Loc(Bp)  1+42cosB,
= 4.16
Lzoc(es) 3 ( )
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Figure 4.6: Greyscale images of clear sky luminance relative to zenith
as modelled by Equation 4.10 for: (8) = 67.5°; (b) 65 = 45°; (c)
0s = 22.5°; and false colour images for: (8} = 67.5°; (e)0s = 45°; (f)

B = 22.5°.
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Figure 4.7:Sky zenith luminance for clear and overcast skies predicted
by Equation 4.15 and 4.17.
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whereL,od{6s) is the overcast sky zenith luminance. Note that, unlike tbarcsky model, the
luminance of a sky point does not depend on its positioniveldd the sun. Also note that the

distribution of relative illuminance is independent of gaar zenith angle.

Figure 4.8 shows sky point luminance relative to the skythelniminance for an overcast
sky. The greyscale image is accompanied by a false colougarahowing the pattern of relative

luminance over the whole sky hemisphere.

0.33 1.0
[ | -

Relative luminance

(@) (b)

Figure 4.8:(a) Greyscale overcast sky luminance relative to zenith for
sun zenith angle o#5° as modelled by Equation 4.16, and (b) false
colour image of the same sky.

As with the clear sky model, there is no standard formula &dcuating the overcast sky
zenith luminance. A model which has been shown to match medsiata is given by Krochmann
and Seidl, [70]:

LzodBs) = 1234 8600cods [cdm 2. (4.17)

Figure 4.7 shows the overcast sky zenith luminance as peediny this model.

Intermediate Sky

Models for describing intermediate skies have yet to bedstatised by the CIE. Such a sky
model would need to account for the large variety of weatbeadiions that are possible between
the ideal clear and overcast skies presented above. A yafemethods for describing such
intermediate skies are discussed in the CIE daylight rd@8it The method used in this work is

the simple combination proposed by Gillette and Kusuda.[28]s model uses aun probability
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¢, to interpolate between the CIE clear and CIE overcast skyatso
Lin = (1—¢)Loc+ OLal, (4.18)

whereLqc andL are the CIE luminance distributions for overcast and cleessrespectively. A
clear sky has a high sun probability, herce: 1. Similarly, an overcast sky is modelled usipig-

0. This model assumes that cloud cover is homogeneous. Mltalakcount for inhomogeneous
skies, with patches of cloud and blue sky, have been comrsidart are not sufficient for practical

use at present [135].

Figure 4.9 shows sky luminance relative to the sky zenithiamce for intermediate skies
with a solar altitude of 45 calculated using Equation 4.18. The skies shown have simrapilities
of 0.25, 0.5 and 0.75 and each greyscale image is accomplayiadalse colour image showing

the pattern of relative luminance over the whole sky hemésph

- -'38 0.71 - ﬁ? (iﬁ? - 5'55

Relatlve luminance Relative luminance Relative luminance

(d) (e) ®

Figure 4.9:Greyscale images of intermediate sky luminance relative to
zenith for sun zenith angle d&° as modelled by Equation 4.18 for: (a)

¢ =0.25 (b) b =0.5; (c)p =0.75; and false colour images for: (d)

¢ =0.25;(e)o =0.5; (f)  =0.75.
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This intermediate sky model has been evaluated by Littlefdio compared the model to
illuminance data recorded near London between July 1991Jandary 1993 [77]. The results
suggest that, over the whole sky hemisphere, the model h&dvis error of 43 per cent when
compared to measured data for skies over this period. Thehpedforms well when considering
cloudy and intermediate skies but performs relatively poahen considering clear skies. Little-
fair shows that, in the case of intermediate skigs=(0.5), the intermediate sky model predicts
increased sky luminance values. This may be due to the asisumgb homogeneous cloud cover.
Despite these deficiencies, the model is simple to compuwteequires few parameters. Deter-
mining a sun probability value for an observed sky is simpleew compared to calculating the

parameters that are required for more accurate internediat descriptions.

4.2.2 Sky Light Luminous Efficacy

The above models provide photometric luminance values i&grete sky points. In order to
convert these to radiometric quantities the luminous effica the light must be considered. The
luminous efficacy relates the luminous intensity of the skytradiant intensity. The luminous
efficacy of light is dependent upon wavelength since it iedagon the photopic response of the

human visual system (see Appendix A).

Assuming a luminous efficacy which is constant with respeaetavelength, data suggests
that a value of 150ImW! for clear skies and 115 125ImW! for overcast skies is suitable
[48, 70]. The change in luminous efficacy between clear amdloast skies is due to the shift in

spectral distribution and hence the perceived brightness.

By applying the above efficacy values to the appropriatetadniminance models for each
reference sky, the zenith radiance may be determined. Wirabioed with the relative distribu-

tion models, the radiance of any point in the sky hemispheag lbe determined.

4.2.3 Spectral Distribution

The scattering processes described in Section 4.2 showhthapecular distribution of sky light is
dependent upon the extent and type of scattering that inca&@ar radiation undergoes. Klassen

[65] and Inakage [55] have shown that, by modelling the wariscattering processes, the spectral
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attenuation of light due to the atmosphere can be modelledimilar approach has been used
by Tadamura et al. [125] which they show to match closely tHeilluminance distributions. An
alternative, and less complex, approach is to use measatagdwhich suggests a correlated colour

temperature of 4500 7000K for overcast skies and 40 10°K for clear skies [46, 48].

4.2.4 Surface Irradiance

Each of the sky models described above provides the radianiment from a differential solid
angle. To calculate the total irradiance incident on a sarfeom the sky it is necessary to integrate
the distribution functions over the visible sky hemispheta the case of a horizontal surface
element this requires integration over the whole sky heh@igp. In the case of a tilted surface it
is necessary to determine the regions of the sky which aikleiabove the horizon. In scenes
where there may be shadowing, it is necessary to calculatshwigions of the sky are masked by
other objects before computing the sky irradiance. As shiowkppendix A, surface irradiance is
calculated by integrating incident radiance over the hphese of visible directions [32]. In the

case of a surface illuminated by sky light this integrati@edmmes,

2n 20
E— /0 /0 > L(8, ) cosddade (4.19)

whereL (8, @) is the sky radiance determined using the models describ@edtion 4.2. To account
for tilted surfaces and shadowing a sky visibility term wibuked to be added into Equation 4.19

for each differential direction.

The integration of available light incident on a surface ioaamon problem in computer
graphics and a variety of solutions have been proposed. Ncahintegration of the irradiance
is desirable but comes at the expense of computational tageation 4.19 can be approximated
using methods derived from computer graphics and heatferassidies. Three such methods are

considered here.

Hall's Hemispherical Integrator

Hall has presented a simple method for calculating the imraxd incident on a surface from a
hemisphere of directions [36]. This technique is easilypaeih to the computation of sky irra-

diance for tilted and shadowed surfaces. The surface eleroerwhich the calculation is to be
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Figure 4.10:Irradiance from a CIE clear sky calculated on the surface
of a sphere. The camera is viewing the sphere from the nodhta
sun is located due west with a zenith angl&0: (a) Irradiance calcu-
lated using Hall's hemispherical integrator with an angierément of
/16 (11.3 minutes); (b) calculated using Nishita’s band methsidg

24 bands (25.6 minutes); (c) calculated using Ward'’s Raeéjdighting
simulation system using high image quality parametersr8rhites).
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b

Figure 4.11:Use of a local hemisphere of incident directions to sample
the sky hemisphere.
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Figure 4.12:Geometry for sky irradiance calculation using Hall's hemi-
spherical integrator [36].

performed, is assumed to be in the centre of the base of thieeskisphere. This is a fair assump-
tion assuming the size of the sky hemisphere to be large wbrapared to the size of the element.
A local hemisphere of visible directions is placed over théace patch under consideration. This
local hemisphere is positioned such that its zenith is ¢dért with the surface normal. The lo-
cal hemisphere of directions is sampled and these direca@o® mapped to the sky hemisphere
to provide radiance values. Figure 4.11 shows the use ofa lmmisphere for sampling the
global sky hemisphere. The figure shows a sample direetiwhich successfully samples the sky
hemisphere and hence contributes irradiance. Sampldidimdzis below the horizon and hence
irradiance from the sky does not contribute from this dimtt Sample directiorr is incident on

another scene object and is therefore shadowed from skijiarree in that direction.

To calculate irradiance the local surface hemisphere islgilinto discrete elements such
that the angle increments in the longitudinal and latitatlidirections are equalf = dg) (see
Figure 4.12). The centre of the hemisphere element is sahipleletermine the possible sky
radiance of the element. When the direction is below thezbaror is incident on another object
in the scene, the sky element is assigned a radiance of zqr@tign 4.19 is now approximated

by summing the contribution from each hemisphere element

n 4n

E~ L(iT/2n, jTt/2n) cos(iTy/2n) dw (4.20)
22
wheredw is the projected solid angle of the element sourceraisdhe number of divisions made.

Figure 4.10(a) shows the irradiance incident on a sphemileabd using this sampling

method. Slight spatial aliasing can be seen, owing to ir@efft sampling of the hemisphere. The
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technique does, however, provide a good approximationeoirthdiance incident on the surface.

Nishita’s Band Integrator

Band|

Y

Figure 4.13: Geometry for sky irradiance calculation using Nishita’s
band source integration method [96].

A popular computer graphics technigue for calculating sggitlirradiance is due to Nishita and
Nakamae [96]. This method aims to reduce the time spent erm@ting which regions of the

sky are visible to an element. As with Hall's method above, ilbmisphere of possible incident
directions is placed above the surface element. This laaaisphere is divided into bands which
are treated as transversely uniform band luminaires (sgearé&i4.13). When determining sky
visibility, only the mid-line of each band is sampled. Theibie band region is then integrated
to determine the irradiance received by the element fromskyeband source. The irradiance

received from bantlis given by

a
E=d / L(a,d)sirfada. (4.21)
Jo
whered, = (cosd —cosd| ;) andg| = & —Ad. The total irradiance is calculated by summing the

contribution from each of the band sources,

Ex~YE. 4.22
;a' (4.22)

Figure 4.10(b) shows the irradiance incident on a sphereutzed using this method.
Aliasing in the form of bands can be seen owing to insufficearhpling of the hemisphere. This
is due to the technique being originally intended for placamvex polygons as opposed to the
curved surface presented by a sphere. The approximatidd beumproved by dividing the lo-

cal hemisphere into more bands but this would be at the erpanscreased computation time,
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though the method has since been modified so as to improverirgdime [19]. Results using

this method are poor when compared to the simple method atkaby Hall.

Ward’'s Radiancelighting Simulation System

An alternative to the deterministic sampling techniquescdbed above is to randomly sample
the local hemisphere of visible directions shown in Figurgl4 Provided that enough samples
are taken and the sample density is uniform, Equation 4@ hance irradiance incident on the
surface, can be approximated. Such a stochastic methotkistefmed a Monte Carlo approach,
due to the inherent random nature [32]. The use of Monte Qadoniques to determine surface
irradiance is ill-advised when considering daylight [120his is due to the high spatial variance of
the illumination, especially when considering clear artdrimediate skies. When direct irradiance
from the sun is also considered, the use of stochastic metiledd be avoided owing to the small
size of the sun relative to the sky hemisphere. In order tarenthat the high radiance regions of
the hemisphere are not missed by the random sampling, maogahds of samples would have
to be taken. Despite this, a lighting simulation system téaseMonte Carlo methods, developed

by Ward, has proved successful for the simulation of daylidggmination [142, 81].

The Radiancdighting simulation system [142] was originally designed drtificial interior
lighting calculations and has been extended to accounixterier and daylit scenes. The system
uses a hybrid deterministic and stochastic ray tracingriecie to provide physically accurate
lighting calculations for an extensive range of surfaced #llaminants. The system primarily
uses a Monte Carlo technique to account for diffuse illunidmasuch as sky light. Since direct
solar and clear sky illumination have a high variance, detieistic methods are also used. In the
case of a clear sky with a sun, Monte Carlo methods would beé tassample the majority of the
sky hemisphere. Knowing that the regions of high variancénsky hemisphere exist near the
location of sun the majority of samples are made in this megithis hybrid technique allows for
accurate calculations with the advantage of low cost. Thebar of rays cast using this method
is considerably lower than in the methods presented prelyioMardaljevic [81] has shown a
good correspondence between the results produced biRabiéancesystem and actual daylight

measurements for a variety of sky conditions.

Figure 4.10(c) shows integrated irradiance on the surfdeesphere incident from a clear
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sky without a sun. This method does not exhibit the aliasiifeces which are produced by the
Hall and Nishita methods. However, this improved calcolatof surface irradiance does not
come at the expense of computation time, as indicated bydh®arative timings shown in

Figure 4.10. The time taken to compute the irradiance vakisggnificantly improved over the
two previous methods. Figure 4.14 shows a reconstructiothefdaylight sequence shown in

Figure 1.1 produced using tifeadiancdighting simulation system.

Figure 4.14: Reconstruction of the daylight image se-
quence shown in Figure 1.1, produced using the Radiance
lighting simulation system.

4.3 Summary

Natural illumination can be considered as being the contiginaof two light sources. These
are direct irradiance from the sun and diffuse irradiancenfithe sky hemisphere. The relative
contribution of each of these is determined by the atmosplotenditions which affect the level
of direct solar illumination reaching the terrestrial @.o€. Each of these sources of illumination

have been treated separately in the models presented.

This chapter has shown that models developed in the solagyenemmunity may be used
directly to provide a physically based model of naturalilination. These can be used in conjunc-
tion with computer graphics techniques to calculate thal totadiance on a surface, and hence
reflected radiance. Such calculations allow for the inetgdion of reflection measurements made

by the methods developed in this thesis.

1Timings obtained on SiliconGraphics Indy.
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A Sensor Model

Accurate measurement of the radiance reflected by a sunfatte idirection of a sensor can be
achieved using a specialised calibrated device such asiargffectometer [89]. Measurements
obtained using such devices can be used directly for thdajavent of a bidirectional reflectance-
distribution function (BRDF) model. Machine vision haswever, relied on the use of CCD

cameras and digitised photographic images. Such imagel ls@sesors provide cost effective,
compact and robust technology that can be used in a widetyafisituations. Before measure-
ments are made from the images provided by such camerasmeestebe taken to consider the
processes by which the resultant image is formed. This ehapll focus upon the characteristics
of CCD based devices in the context of measuring scene @i&gimilar consideration need be
applied to digitised photographic images as these aredlpiscanned using a CCD device, and
hence, similar sources of error may be encountered. Inraitiee the limitations imposed by the

camera optics are the same.

The sensor model developed here is based upon that of a CGbrsiavice with appropri-
ate optics to capture an image of a scene. Such a camera leasrinkources of error and these
shall be discussed in this chapter. The significance to wthiebe errors affect the resultant image
can be determined by prior calibration of the camera. Thaptér will discuss both radiometric
and projective calibration. The sensor model developed ety be adapted to allow the analysis

of data obtained using alternative image based sensors.

1charge-Coupled Device.

60
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5.1 Projection of the Scene

To determine which regions of a scene contribute to an ar#@edfnage it is necessary to model
the projection of the three dimensional scene onto the inpdayee [24]. Ideally, this perspective
projection of the 3D scene onto the 2D image plane would beeet using a pin-hole aperture.
The use of such an ideal, infinitesimally small, aperturevisles an undistorted projection of
the scene onto the image plane, with all objects in sharpsfo@ihis model of projection is that
which is commonly used in the computer graphics communitytioes model only approximates

the processes by which a scene is projected onto the image pyaa practical lens.

The sensitivity of a sensor determines the flux necessargottuge an image. The aperture
may therefore need to be enlarged to allow sufficient ligibdhe image plane. This increase in
aperture size compromises the pin-hole model. So that hjge brought to focus on the image
plane, a lens is used in conjunction with the aperture. OhJgais within theprincipal planeof
the lens are brought to sharp focus, whilst those withirdyeth of fieldof the lens are brought to
apparent focus on the image plane. Objects beyond the défididoare represented by a region
on the image plane, termed tl@cle of confusion The perspective projection of objects within
the depth of field can be approximated by the pin-hole model,parameters of which may be

determined by prior calibration (see Section 5.4).

To determine which regions of the scene contribute to arviddal image pixel it is nec-
essary to perform the inverse perspective projection. This be achieved using the common
computer graphics technique of tracing a ray backwardsitiirahe projection and into the scene
[30, 31]. The surface patch which contributes to the setkptrel is determined by intersecting
this ray with the scene. This technique requiagsriori knowledge of the scene geometry within

a defined co-ordinate system.

5.2 Image Plane Irradiance

A camera lens provides a system of optics through which liglivcused onto the image plane.
Figure 5.1 shows a single lens of focal lendfand aperture of diamet& bringing an image of

a surface patchjA,, to focus on the sensor’s image plane. Image plane irragjdfy; is due to
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Image plane

______ Principalaxis_—

Figure 5.1:Imaging geometry for a simple camera model.

the flux within the projected solid angle of the patch pas#imgugh the aperture of the lens,

do
This flux is due to the reflected radiance from the patch withinsolid angle,
do — dAo/ L, (:, @) cosh; deo, (5.2)
Q

whereQ is the projected solid angle subtended by the aperture. tiithgy into Equation 5.1
gives:

_dA
B = n /Q L (6, @) cosd: o, (5.3)

Comparing the projected solid angles subtendedAyanddA,, at the aperture shows,

dAscost;  dApcosa
f2 N fg '

(5.4)

Image plane irradiance can therefore be defined in termseofefiected scene radiance and the
lens system,

Ep= (fo/fp)zcoscx/QLr(er,(p() (cosB,/ cosh}) dw. (5.5)

Assuming the aperture of the lens to be small relative to thauce from the object allows the
ratio of the cosineg,cosb, / cos8;), to be unity. It can also be assumed that the reflected raglianc
from the surface patch will tend to be constant over the erstolid angle. These assumptions

allow Equation 5.5 to be approximated [51]:

Ep — (g) (%>2cos‘1aLr(er,cpr)
= I(a)L (6, ). (5.6)
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The reflected radiance,; (6;,@ ), from a surface is due to incident irradiance from light
sources and interreflection from other surfaces being teflem accordance with the surface’s
reflection characteristics. Chapter 3 has shown that acisfaeflection characteristics are most
generally defined using a BRDF,. The reflected radiance due to illumination incident frora th

hemisphere of possible directions about the surface nasnal

n o2
L (6r.@) =/0 /0 f(61,@:6r.@)Li (61, @) cost; d6; dg. (5.7)

This double integral equation has a similar form to that ofi&epn 4.19 for the calculation of sur-
face irradiance due to sun and sky light. Equation 5.7 mayhed using the same computational

methods used to compute incident irradiance (see Sectof)4.

The image plane irradiance due to the illuminants and schjeets, given the simple cam-

era model above, is therefore,

2n p2
Epzl(a)/0 /0 £, (61, @ 0r. @ )Li (61, @) cosB; d; dp. (5.8)

In the case of a scene illuminated by sun and sky light thelértiradiance,;, can be provided by
the illumination models presented in Chapter 4 and fromas@rinterreflection. This work does
not consider the contribution due to surface interreflecaod hence illumination is due only to

visible sun and sky light.

5.3 Production of the Digital Image

An image represents the spatial variation of radiance amti¢h the direction of the camera from
the scene. For the purposes of machine vision, this conislyaarying radiance is discretised to
provide a numeric representation of the scene in the forrm@freay of pixel values. This section
considers how such an image is formed in a CCD camera. Thelspdssented in this section
may equally be applied to cameras using photographic méediahich case the discretisation

takes place when the image is scanned to provide pixel values

A CCD chip, used in the majority of commercial imaging systens segmented into a
grid of individual sensor sites. When a photon strikes a C&®an electron is generated in the
silicon structure. Each site will integrate photons over dluration that the site is exposed by the

mechanical shutter or, in the case of an electronic shuitgil,the photon-generated electrons are
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collected from the site. The charge generated at each séadsoff and amplified by the CCD chip
circuitry to provide a signal suitable for processing. Theultant signal is quantised to provide
a pixel value within a range of discrete values, theamic rangeA thorough description of the

processes by which a CCD chip generates a signal is provigietbbley and Kopendupy [44].

An achromatic camera will provide a grey-scale image of tens. The grey levels in the
image are due to scene radiance integrated over the watedeoijight to which the CCD sensor
is responsive. To provide a colour representation of thaestee light is selectively filtered, either
over the individual sensor sites or over different CCD chipsprovide a composite image. This

section presents pixelised image formation for both aclataand colour cameras.

5.3.1 Achromatic Image Formation

The number of photons striking an individual sensor site dBGD chip is proportional to the
incident flux over the duration to which the site is exposeflux. The total flux incident upon an

individual sensor site at grid locatid, j) within the CCD grid,®y, is

Pp = /X_/yEp(i,i)dydx (5.9)

wherex andy are the dimensions of the sensor site &pds irradiance incident on the site given
by Equation 5.8. Assuming the surface patch in the scenm Whbich this flux originates, to be
small and the surface to be within the camera’s depth of fietdn be assumed that irradiance is

constant over the area of the sensor, hence,
CDp = ApEp(ia J)a (510)
whereA, is the area of the sensor.

The range of electro-magnetic radiation to which a CCD isiier is wider than that of
the human visual system. Figure 5.2 shows the relative igpeesponse of a typical CCD device.
It can be compared to the photopic equivalent for the humanalisystem. It can be seen that
the CCD device is responsive to a broader spectrum and igarty responsive to infrared
radiation. This sensitivity can be reduced by the use of g@mpate filters to block out unwanted
radiation. The spectral response of a camera can be detmirhinthe use of calibration methods

(see Section 5.4) and a response functi&gh), can be formulated. A discrete pixel val\eis
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Figure 5.2:Relative sensitivity to wavelength of a CCD camera and thedmeye.

obtained by quantisation of the total irradiance incidemttloe sensor site during the exposure

time set by the shutter speed,
V=T QAp/)\s()\)Ep()\) dA, (5.11)

whereT in the integration time as determined by the shutter@nsl a model of the quantisation
process in the form of &ansfer function The transfer function defines the rate at which the pixel
value increases in proportion to an increase in irradiafitgs function also defines the dynamic

range of the pixel values.

Commercial CCD cameras have primarily been designed foatheisition of images for
display purposes. This has significance when using theseraanfor image processing in the
context of measuring scene radiance. It should be notedhbdtansfer function of the camera
may not be linear and hence an increase in scene radiancedgsmplemented by an proportional
increase in image pixel value. This is due to the disglaynmatypically used to provide a qual-
itative representation of the scene. This can be compeahatdy the use of gamma correction
methods [36].

5.3.2 Colour Image Formation

In order that a colour image may be produced, the scene i@@iarsampled in three wavelength

regions representing red, green and blue light. This icglpi performed using filters with trans-
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mittance functiongr(A), Tg(A) andtg(A), see Figure 5.3. From the composition of these three

samples the variation of wavelength from the scene may begijppated. The errors incurred by

the use of such a tristimulus colour approximation are dised in [36].
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Figure 5.3:Relative sensitivity of CCD camera to filtered wavelengths.

The use of three filters to sample the scene radiance yielidet bf values for each image

pixel, (Vr,Vg,Vs). The composite RGB pixel value can be obtained by extendiugion 5.11:

Ve — TQAp/A S(\)TR(VEp(A) dA, (5.12)
Ve = TQA, /A s(A\)Te (N Ep(A) dA, (5.13)
(5.14)

Ve — TQAp/AS()\)TB()\)Ep()\)d)\.

5.4 Sources of Error and Calibration

The processes by which the scene is projected and the imegieleel are subject to a number of
error sources. These errors originate from non-unifornjgation by the optics of the scene and
the sensor used to create the image. The detection and si@nsegduction of such errors can be

achieved by the use of calibration methods. This sectiomsamses the problems associated with

CCD cameras and calibration techniques.
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5.4.1 Optical Errors

Lenses do not provide a uniform projection across the argheimage. This results in two
forms of aberration: spherical and chromatic. The use oéspéal lenses, as opposed to the ideal
parabolic shape, results in the scene being projected niboroly onto the image plane. The
resulting image may exhibit blurring due to objects not bdimought to focus uniformly across
the image. Chromatic aberration is due to the refractiveneadf the lens material. The extent to
which light is refracted by the lens is a function of waveldmd.ight, originating from the same
scene point, of differing wavelength will not be focused teqisely the same point on the image
plane. The aberration thus caused is particularly evidetiieaperiphery of an image. Novak et

al. suggest a method for the detection and correction ofnahtiz aberration [99].

Commercial lenses attempt to reduce aberrations. In pectimera lenses consist of a
system of optics, typically a double-Gauss system. A plajlsibased model of such lenses is
provided by Kolb et al. [69]. This model allows for the comgiin of irradiance incident on the
image plane to be made for a variety of commercial lensesh &umodel is invaluable for the
accurate radiometric analysis of image pixel values frome@s. Chromatic aberration may be

reduced by the use of coatings applied to the surface of ti le

Determining the perspective projection provided by thesJeand hence the parameters to
the pin-hole approximation, can be achieved using a nunfblibration methods. An overview

of the various techniques is provided by Tsai [137].

5.4.2 Sensor Errors

The process by which a CCD chip generates an image of theabgdiribution of incident radi-
ance is not without inherent errors. The silicon which makgs CCD chip is thermally sensitive
and may produce a signal due to ambient temperature. Thitgés dark noiseacross the im-
age. The quantum process by which electrons are generatéttibgnt photons is subject to
uncertainty and results ishot noise The dynamic range of a sensor site may cause regions of
the image to be over or under exposed. Over exposure is auydartproblem when using a CCD
sensor since the resulting overflow of charge from a sensgmcauses neighbouring sites to pro-

duce increased signals. The resultAfdomingin the image causes highlight regions to appear
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enlarged in the image. Detection and calibration of thersrdue to the use of CCD sensors is

presented by Healey and Kondepudy [44, 45] and Klinker [66].

The projection of the scene onto a segmented sensor to @eddigital image is the cause
of spatial aliasing artifacts. The resulting errors, duth®quantisation of the projection process,
are discussed in [40] and [57].

The sensitivity of the CCD sensors to both change in intgresitd wavelength of light varies
between manufacturers. For accurate analysis of the iegydixels it is necessary to determine
the transfer function of the sensor. Such calibration caadeved by the use of test targets such
as the Macbeth ColorChecker [84, 31]. Such targets proadeptes of known chromaticity and
reflectance so that the linearity of the camera’s responséeassessed. Calibration methods for

determining sensor sensitivity are provided by [66, 99,]146

5.5 Summary

This chapter has briefly discussed the characteristics & G&Vices for the purposes of obtaining
digital images from which radiometric measurements carakert. The development of a camera
model has shown that, given suitable calibration, such @sazan be used for measuring the

reflected radiance from a surface patch.

Despite the inherent errors of such devices, CCD camerasligittsed photography may
be used for surface reflection model estimation. The acgwhthe resulting model will be de-
pendent upon the accuracy of the sensor used and of the seadet. Errors in the measurements
can be accommodated by a system but only if the magnitude iatribdtion of such errors has

been determined by prior calibration.
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Surface Model Estimation

The aim of this chapter is to show how the reflection charesties of an observed surface, illumi-
nated by natural daylight, may be estimated. Chapter 3 Isasised how the reflection character-
istics of a surface can be described in terms of a functior@leh The most general description
of reflection is given by the bidirectional reflectance-dlgttion function (BRDF) (see Section
3.1.2), which defines reflected radiance in terms of incidadiance confined within differential
solid angles. Surface BRDF can be approximated for use ippatengraphics and machine vision
tasks using the reflection models presented in Chapter 8.thiei parameters of such a reflection

model that are to be estimated by the methods presented here.

The appearance of an object is determined by both the illatioin and the object’s sur-
face properties. This work assumes that the illuminatiomsigis of sun and sky light alone and
corresponds to the models presented in Chapter 4. It isfireraecessary to determine whether,
given a priori knowledge of the illumination and a sensor measurementflefcted energy due
to this illumination, the parameters of a reflection model ba determined. Further to this, it is
necessary to determine whether a solution is unique and &b sdgree of certainty the solution

found is accurate.

The use of the sensor model developed in Chapter 5 allowsaimiagl values obtained from
a camera to be interpreted in the context of a surface rafpeicident radiance in the direction of
a sensor. In a natural scene, this illumination is due to suhs&y light. These are characterised

by the models of Chapter 4. This work only considers regidrth® scene which are within the

69
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camera’sprinciple plane of focus Only these objects are brought to sharp focus on the image
and hence, for the purposes of this work, it can be assumedsthiance from a small area on an
object’s surface is projected onto the pixel area of the@gpisine [51]. Surface interreflection is

not considered.

An image of a scene represents a number of measured valugsvalae is the result of re-
flected light in the direction of the camera. Given accuratglefs of daylight illumination, surface
reflection and sensor response it is possible to predicethe=asured values for any given scene.
Any discrepancy between the measured and predicted valuglsl \we due to either measurement
error or inadequacies in the models. Giveepriori knowledge of the scene geometry, the sensor,
and the nature of the illumination, the free parameters efctbmplete model for predicting pixel
values are those which describe the surface reflection ciegistics. We wish to select these pa-
rameters such that the discrepancy between measured ealdéisose predicted by the model are
minimised. This chapter presents a measure of differenteda® such values and methods by

which it can be minimised.

It should be noted that a surface’s BRDF cannot be measuredtlgli This is due to the
differential quantities used in the definition of BRDF. A€suany model of surface BRDF derived

from finite measured data is only an approximation. As Nicode states [95];

‘The BRDF itself, as a ratio of infinitesimals, is a derivatiwith “instantaneous”
values that can never be measured directly. Real measutenmenlve non-zero
intervals of the parameters, e\go or AA rather thardw or dA, and hence, can yield

only average value$ over these parameter intervals.’

6.1 Thex? Metric

The difference between a set of measured values and thadietpcbby a model can be evaluated
in a least-squaresense. This provides a figure-of-merit function which estds the correspon-
dence between measured data and a model. Given amsatlifervationsy;, and an associated set

of model valuesy(x;; a), obtained for the same data points,the least squares difference between
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the data and the model is given by

m

least-squares difference zl[yi —y(x; a)]z, (6.1)
i=
wherex; are the model variables ards a vector of parameters upon which the model depends.

Selection of these parameters, such that the least-sqdéf@®nce is minimised, provides the

model which most accurately describes the given data.

In practice measured data will have an associated errohdrtase of digital images, the
sources of such error are described in Chapter 5. With daitzddibration the error of a sensor
may be determined and knowledge of possible measurememtreay be included in the figure-
of-merit function. If each measured data valyehas an associated Gaussian error with standard
deviationa;, a chi-squaredmetric may be used [5]:

2= ii [Yi —y(%;a)

Gj

2
(6.2)

Minimisation of this function will yield the parameters vehi best model the measured values
given the estimate of the measurement errors. The procestioh these optimal parameters are

determined is termerkgression

Minimisation of x? to find the optimal model parameters is a methodraiximum likeli-
hood Given a model, it is assumed that the set of measured datesvate observations from the
parent distribution of possible model values. Minimisixgis the equivalent of maximising the
probability that the observations are from the parent ihstion. The performance of the least-
squares method of model parameter estimation is governéuegccuracy of the sensor readings
and the quality of the model. It is also dependent upon thebeuraf observations made. Mea-
sured values which are not within the error estimatipicause problems when considering jfe
metric. Such outlying values in the measured data will gipeer fit between data and model and

yield poor estimates for the parameters.

It can be seen from Equation 6.2 thet is a function of the model parameters. Tk
function therefore describes a hypersurface in a spacawdriion equal to the number of model
parameters. The global minimum of this hypersurface is tiatmt which the parameter values
provide a least-squares fit with the measured data. Mintiois@f Equation 6.2 is equivalent to

locating the global surface minimum within the parametexcep
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6.2 Description of Data and Associated Model

Consider the simple case of a surface illuminated by a sipgiet source with reflected energy
being measured at a single discrete wavelength by a seniserinfiensity of the reflected energy
at this wavelength is due to the intensity of the point souttoe reflectance of the surface, and the
extent to which light is scattered and attenuated by thesar$tructure. Surfaces which exhibit
different levels of scattering and absorption may appeailai to a sensor which is only receiving

reflected light from a single, small direction, see Figurk 6.

| |
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Figure 6.1:Sensor measuring reflected radiance within a small solid an-
gle due to a point source: (a) Lambertian surface; (b) glessiace. In
each case the magnitude of the reflected radiance incidaghe@ensor

is the same.

This simple example highlights the problems of the task. Jéresor can provide no infor-
mation regarding light reflected into directions other tilaose which are incident on the sensor.
A single measurement provides information relating onlyhat particular instance of the view-
ing and illumination geometry. Using the single measurerfrem a calibrated device would not

provide suitable information with which to determine theface’s reflection characteristics.

So that more information can be obtained regarding the seifaeflection characteristics
it is necessary to obtain further measurements. In this eimomatic case, the BRDF of a sur-
face is a function of the incident and reflection directioelative to the surface normal. Hence, it
would be advantageous to obtain a number of measurememt®babich is a result of a different
illumination or viewing geometry. Each measurement presidata to which a proposed reflec-
tion model can be compared. Figure 6.2 shows possible methiodbtaining further reflection

measurements.

Moving the light source, as shown in Figure 6.2(a), will pd®/a number of measure-
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Figure 6.2:Methods for obtaining further measurements of surface re-
flection: (a) moving the light source; (b) moving the sengoj;sam-
pling other regions of the surface.

ments from which the surface reflection model can be estunditdaboratory conditions the light
source can be positioned such that many measurements chtabeed from a wide distribution of
source positions. In the case of a scene illuminated by aldight alone, such control over light
source position is not possible. However, if the scene ismlesl over a period of time, the relative
position, and hence surface irradiance, of the sun will gbaas will the spatial and spectral distri-
bution of radiance from the sky. These temporal changestaacterised by the models given in
Chapter 4 and hence provide a variety of illumination candi from which measurements can be
obtained. In the case of a naturally illuminated scenet igincident from a possible hemisphere
of directions, depending upon the surface orientation hidi¢he directions may contribute to the

light reflected in the direction of the sensor.

Figure 6.2(b) shows that further measurements can be @otéiom a single surface patch
by moving the position of the sensor, hence changing theingegeometry. This method is not

considered here.

The use of an image obtained by a CCD camera provides a nurhb®asurements, each
of which may be considered to be due to light reflected fronffarmint surface patch. As shown in
Figure 6.2(c), each pixel of such an image represents aeliffélumination and viewing geom-
etry. The extent to which these geometries vary is depengson the change of surface normal

across the visible surface.

Itis proposed that a combination of changing illuminatiow he sampling of different sur-
face regions will provide data suitable for a surface’s etiten model to be determined. The basic

approach will be to observe a surface over a period of timgs firoviding varying illumination
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conditions. The temporal change in value of a single pixebsxthe resulting image sequence
provides a measure of surface reflection from that surfatehpgiven the changing illumination.
Since the projection of the visible surface may cover a groliipnage pixels, a number of such
measurements can be obtained from each individual image isequence. Each pixel in an image
sequence represents a measured data walue,be used in the evaluation of Equation 6.2. Figure
6.3(a) shows the change in value of a single pixel across agémsequence observing a glossy
surface under a clear sky. The variation in the values athessequence is due only to the change
of illumination over the duration of the sequence. The extéithis variation is determined by the
reflection characteristics of the surface. Figure 6.3(oyshthe values of a number of pixels from
the same surface image. Here it can be seen that, though teeéahhas remained constant, the
differing illumination and viewing geometries presentsddach pixel has resulted in a variation
in values between the pixels. Again, the extent to which #ilaes from different pixels vary will

be determined by the reflection characteristics of the sarfa
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Figure 6.3: The change in image pixel value across a sequence of thir-
teen images for: (a) a single pixel in each image; (b) threelpin each
image.

6.2.1 Selection of a Suitable Model

The model,y(x;;a), used in Equation 6.2 is to be defined such that it descritesdtiation in

observed image pixel values over an image sequence. Thrablesjx;, of this model represent
the camera position, time the image was taken, and the atientof the surface. From these
variables the illumination due to sun and sky light can besmieined, as can the direction of
reflection towards the camera. The unknown parameters ofitiiel,a, are therefore those which

describe the surface’s reflection characteristics sucloa@ghness, Fresnel effects or wavelength
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attenuation.

Initial work proposed the use of a surface reflection modehalto describe the variation
of image pixel values [78]. In this case, illumination frohetsky was neglected and the sun was
modelled as a moving point source. The surface reflectioneingskd was a combination of those
proposed by Lambert and Phong (see Chapter 3). Results ghbate whilst this model of pixel
value variation across a sequence did allow the estimafiomodel parameters, there were strict
limitations as to the success of the method. Since only dé@ar illumination was considered it
was necessary for the surface to be orientated such thaed fdne sun. This limitation obviously
excluded the consideration of overcast skies. The resudts wiso shown to be dependent upon
the location of the camera with respect to the surface. k¢hse the model chosen fgix;; a)

did not attempt to predict image pixel values. It attemptely ¢o describe the variation of values

across the sequence and not absolute pixel values.

The use of the full sensor model presented in Chapter 5 emaur®re accurate description
of pixel value variation. Equations 5.8 and 5.12 show howlighy illumination and surface
reflection models can be incorporated into the sensor maddlat pixel values may be predicted.
The use of this more complex model allows illumination dusky light and the characteristics of
the sensor to be accounted for. It is intended that the powvisf this, more accurate, model will

provide improved results over those presented in [78].

It is proposed to evaluatg? using image pixel values and pixel values predicted by the
sensor model of Chapter 5. Givenpriori knowledge of the illumination and scene geometry,
the free parameters of this model are those of the functied ts describe surface reflection. All
other aspects of the sensor model shall be assumed to havedzeeded at the time the image
was taken. Therefore, the evaluationygk;;a) will be performed using the full sensor model
with a being the parameters of the chosen surface reflectancaednndn this way, the optimal
parameters of the reflectance function may be estimated biynisiation of thex? function for a

given image sequence.

6.2.2 X2 for an Image Sequence

Given that the supplied data are to be in the form of a sequehimages, the(? function can

be redefined specifically for this application. Considerngingle pixel across a sequencenof
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images,|, the value of the pixel, in a single image, with co-ordinategis denoted byl'(x,y)
wherei = 1,...,m. A single pixel of a colour image is typically representedabyiplet of values.
These represent the sensor response to three wavelengthsdgee Section 5.3.2). Each of
these values may be treated in isolation and is a result oplgagnthe model over the range of
wavelengths to which light has been filtered. The tristirsulalue of a single pixel in a colour
image of the sequence is, therefofgh(x,y),5(x,y),15(xy)}, whereR G,B denote the three

sampled wavelengths represented by each of the values.

The model used to describe the variation of pixel valuessscam image sequence is dis-
cussed in Section 6.2.1. Again, in the case of colour imafese values may be associated with
a pixel. The tristimulus pixel value predicted by the mod®i & given set of reflection model
parameters is denoted by{M(i,x,y,R;a),M(i,x.y,G;a),M(i,x,y,B;a)}, whereM is the pixel
value model. Note that the image numbethe pixel co-ordinates, and the filtered wavelengths
are variables of the model. These denote the time the imagdaken, the sampled wavelengths

of light, and the location of the pixel within the consideiigthge.

If the values of a number of colour pixels in each image of aisage are considered then;
2 = 1. : 42
X*=3 2 2 oz oy —Mlxya)l”. 6.3)
i=1Xy C)-I

whereA = {R G, B}, x andy are the co-ordinates of each considered pixel,@rd the expected

error associated with the pixel value.

In the above definition of thg? function, the difference between each individual pixel and
that predicted by the model is summed individually and iratefently of other pixel values in
the sequence. In the case of colour images, each of the RGBsvi treated as an individual
measurement. Therefore, a single evaluation of the terne summed only calculates the ability
of the model to predict that particular pixel value. Only bg use of the complete summation can

the ability of the model to predict values across the whotgisace be determined.

Equation 6.3 is a good measure of the difference betweendaraad predicted pixel values
across an image sequence since, in its evaluation, each,fand each pixel within the frame, is
considered independently. If a set of measured pixel vadnespredicted values have the same
combined magnitude but the values occur in a different omléne sequence then thg value
will be high. To achieve a low? value both the magnitude and order of the pixel values must be

similar. Therefore, both the shape and the magnitude of uinaes presented in Figure 6.3 must
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be modelled by the function selected fd(i, x,y,A; a) in Equation 6.3.

When dealing with digital images, pixel values are typigatiteger quantities. Therefore
the calculation of difference between actual and predipigels in Equation 6.3 involves integer
values (though predicted values may be estimated to flogtivy accuracy). It is also the case
that, given an accurate model of the imaging process, asstmated parameters approach those
of the observed surface, the difference in Equation 6.3tetill to zero. Both of these situations
give a potential for error in the calculation gf for an image sequence. However, as shall be
shown in the results (see Chapter 7), in the case of real imageencesy? rarely approaches

zero and in some cases may be considered large.

As stated in Chapter 5 the error in the actual pixel valuesiestd sensor and optical error.
In the case of CCD devices this error is a quantum process atiteiefore more adequately
modelled as Poisson distribution. The magnitude of opicedr varies with respect to image
pixel coordinates and is not uniform across the image. hésdfore an approximation to model
these expected errors with the single Gaussian tin Equation 6.3. For these reasons the use
of the x? metric in the case of digital images may not be seen as idéw.d€rivation of a more

suitable metric is seen as a possible direction for futurekwo

6.3 Topology of thex? Hypersurface

As stated in Section 6.1, the optimal model parameters abe testimated by minimisation of
the x? function. To determine the most appropriate method forctéag the parameter space, the
expected topology of thg? hypersurface is now considered. Only with an understandirife

nature of thex? function can methods be developed which will allow minirtitsa

Synthetic image sequences provide noiseless data obtagiegl a precise camera model.
To generate these image sequencesRadiancé lighting simulation system has been used. The
images are of a scene composed of an object with known sunfade! parameters and use the
sky models presented in Chapter 4. We aim to search the psrasmace of the same reflection
model used to generate the image sequence, and thus woeldt éxfind ax? value of zero where

the reflection model parameters are the same as those useddmte the image sequence.

1see Section 4.2.4 for a description of this system.
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The reflection model used in tHRadiancdighting simulation system is that due to Ward
[141] and has been described in Section 3.4.5. Samplingdighree discrete wavelengths, repre-
senting red, green and blue light, provides an approximatftthe spectrum of reflected light. In
this case, the colour reflection model has five parametershwkpresent the surface reflectance at
three discrete wavelengths, surface roughness and a rmed#surface gloss. Visualisation of the
resulting five-dimensiongt? hypersurface in the parameter space, for a given image se€uis
not possible. Reducing the number of free reflection modedmpaters to two will allow the sur-
face to be presented. To allow this, the two-parameter e this reflection model described in
Section 3.4.5 shall be used. Here, the two free model pasmsetpresent surface glogs, and
surface roughnessy. All other parameters are fixed at appropriate values. asens made
from the examples in this reduced parameter space may nessaily extend to the full reflec-
tion model, or to other reflection models. However, minirtiga within a higher dimensional

parameter space is expected to be at least as difficult as dfssrvations will show.

To appreciate the topology of tix@ surface for a specific image sequence we first consider
a horizontal, unoccluded Lambertian surfape=£ 0, a4 = 0), illuminated by a sun and clear sky,
and observed from a camera situated in the north such th@akisldown upon the surface at an
angle of 45 to the surface normal. The image sequence consists ofdhiiteages, each taken

hourly between 06:00 and 18:00. Selected images from thiséguence are shown in Figure 6.4.

@ (b) (©) (d)

Figure 6.4: Selected images from a sequence showing a Lambertian
disc, illuminated by a clear sky, on June 21 at terrestrigialmn
A0°N,0°W. The camera is situated in the north and looks down upon
the disc at an angle @5°. Each image is taken at (a) 08:00, (b) 12:00,
(c) 14:00, (d) 18:00.

First thex? function for a single pixel at the centre of each image is wmed. Note that
thex? value at each point in the parameter space is found by ewaduBEtjuation 6.3 for the same
pixel within each image of the sequence. Figure 6.5 showstsurface for this pixel within

the permitted parameter space of the Ward model. Note thatxpected, the minimum in the
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parameter space occurs on the lpe= 0.

700000

Figure 6.5: x? function for a single pixel in an image sequence of a
horizontal Lambertian disc illuminated by a clear sky aneiwéd from
the north.

Figure 6.6 shows thg? function for an image sequence, of the same length and dorati
observing a disc generated with various reflection modedipater values. In each case the min-
imum x? coincides with the model parameters used to generate tgearisequence. These
examples show that, in the situations considered, a singiEmam exists in theq? function. This
minimum coincides with that of the optimal parameter valuresach case. All other parameter
value combinations yield a highg? value. It is therefore proposed that the minimisation of the

x? function will lead to correct estimation of the model paraens in these cases.
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Figure 6.6:x2 function for a single pixel in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from themafa) disc
with Ward parametengs = 1.0,04 = 0.0; (b) disc with Ward parameters
ps = 0.8,04 = 0.1; (¢) disc with Ward parametegs, = 1.0,04 = 0.2.

6.3.1 Effect of Camera Position

We now consider the same scene and illumination conditisrebave but viewed from differing

camera positions. It would be expected that the existeneehiahlight due to a bright sun would

2surface roughnessy, has no significance in the Ward model whmyn= 0.
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Figure 6.7:x2 function for a single pixel in an image sequence of a hor-
izontal disc illuminated by a clear sky and viewed from thetega) disc
with Ward parametenss = 0.0,04 = 0.0; (b) disc with Ward parameters
ps = 1.0,04 = 0.0; (¢) disc with Ward parametegs, = 1.0,04 = 0.2.

provide evidence that the observed surface is glossy. Indke of a camera sited in the south, the
illumination geometry would be such that a highlight coutd accur when using Ward'’s reflection
model. In the following experiments, a camera in the eastsauth is considered. Since motion
of the sun, and hence the spatial distribution of sky radiarecsymmetric about the north-south
axis, it is not necessary to consider a camera in the westefféet of other camera positions can

be inferred from these examples.

Figure 6.7 shows thg? function values generated by the east view sequence forigtyar
of surface types. This surface shows a more complex topdluayy that shown in Figure 6.6. The
ridged nature of the surface shows that a gradient descardtsmethod (see Section 6.4) would
be inefficient in this case. In general, the global minimuraugounded by steep regions. Away
from the optimal parameter values, plateau and local mir@rist in these surfaces. Such regions
on thex? surface may cause difficulties for a method which searchepainameter space for the

optimal parameters.

800000

X2

@ (b) (©

Figure 6.8:x2 function for a single pixel in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from theto(a) disc
with Ward parametenss = 0.0,04 = 0.0; (b) disc with Ward parameters
ps = 1.0,04 = 0.0; (¢) disc with Ward parametefs = 1.0,04 = 0.2.
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Figure 6.8 shows thg? function for scenes observed from the south. As stated algte
the Ward reflection model a glossy highlight would not be expe to be within the sequence
with the camera in this position relative to the surface. aib e seen from the graphs that the
resulting topology lacks features, though surface glosshieen correctly indicated by a loyf
function value. However, changes in surface roughnessarebservable due to the absence of
any highlight information. Thg? surfaces of Figures 6.8(a) and 6.8(b) do not show any vanati

with surface roughness.

The above experiments show that the position of the camerailgaificant effect on the
expected performance of the system. The absence of higlififinmation, such as that missing
from the data obtained from the south view, prevents detetiun of surface roughness. In the
absence of this information any system baseg®minimisation would be unable to determine
whether it is observing a Lambertian surface of low albeda gtossy surface with a geometry
such that a glossy highlight is not visible in the sequenaghBhe north and east camera positions
provide some highlight information due to the movement efghn over the duration of the image
sequence. The above examples show the significance of thioistime estimation of surface

parameters.

6.3.2 Effect of Sky Conditions

A CIE clear sky, as considered in Section 6.3 and Sectiori 6p8ovides a hemispherical illumi-
nant which has temporally varying spatial distribution afliance over the duration of an image
sequence. It also allows direct solar illumination, dueh® $un, to be considered. It is therefore
expected that such illumination would provide the mostatlé@ conditions for reflection model
parameter estimation. This section considers scenes Vitaioh been illuminated by alternative

sky conditions such as those described in Chapter 4.

Figure 6.9 shows thg? function for scenes illuminated by an intermediate sy=0.5)
and observed by a camera in the east position. These suidiaeesimilar to those of Figure
6.7. However, the overall gradient of the surface is redugddch indicates a lessening of the
difference between the possible pixel values predictechbyntodel. Figure 6.9(b) clearly shows
a local minimum which has a significantly highet value than that of the global minimum. This

may present problems to a search algorithm which is basen agoadient descent of the surface.
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Itis expected that, since these examples show a similaldgpto those presented for a clear sky,

the results obtained from intermediate skies will be corapia:

160000
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Figure 6.9: X2 function for a single pixel in an image sequence of a
horizontal disc illuminated by an intermediate sky and \eevirom the
east: (a) disc with Ward parametgys= 0.0,0, = 0.0; (b) disc with
Ward parametenss = 1.0,64 = 0.0; (c) disc with Ward parameteps =
1.0,04 =0.2.

Figure 6.10 shows thg? function for scenes illuminated by a CIE overcast sky and ob-
served by a camera in the east position. In comparison wsthitepresented for the same scenes
illuminated by clear and intermediate skies, these susfhe@e lowy? values. This indicates that
there is a much reduced difference between the pixel valeeiqied for differing model parame-
ters. However, the topology of the surface in each case ifentireless. It can be seen that scenes
of differing surface types have produced strikingly simi& surfaces. Only in the cases shown
in Figures 6.10(a) and 6.10(b) does the surface slope tothardptimal parameters. However,
in each of these cases the minimum covers a region of thecsuaiad as such a unique optimal
solution could not be determined. In the case shown in Fi§ur&(c) minimisation of? would

lead to incorrect parameter estimation.
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Figure 6.10: x? function for a single pixel in an image sequence of
a horizontal disc illuminated by an overcast sky and viewedhfthe
east: (a) disc with Ward parametgys= 0.0,0, = 0.0; (b) disc with
Ward parametenss = 1.0,04 = 0.0; (c¢) disc with Ward parameteps =
1.0,04 =0.2.
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6.3.3 Effect of Camera Noise

The expected effect of camera noise on the system'’s perfarenia now considered. As described
in Chapter 5, any practical image acquisition system isexultp noise. In the case of CCD digital
cameras, noise comes from a variety of sources such as ,opticsor and quantisation. For the
purposes of system evaluation camera noise is modelledaseam additive Gaussian process.
Whilst this is not an accurate representation of the expleatése, it serves to provide a measure
of system performance. Care must be taken in using additiserso as to not exceed the actual
dynamic range of the pixel values. A negative pixel value,ekample, is not permissible. In
these examples, the standard deviation of the Gaussiae isoexpressed as a percentage of the

pixel dynamic range.

Figure 6.11 shows the value of a pixel throughout an imageeseze viewing a rough
metallic disc, illuminated by a clear sky and observed by meara positioned in the east. The
graph shows the values of the same pixel for clean imageshwdoatain no noise, images to
which Gaussian noise with a standard deviation of 5% has bdded, and images to which

Gaussian noise of with a standard deviation of 10% has begedad
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Figure 6.11: Value of a pixel in each image of a sequence to which
Gaussian noise has been added.

Figure 6.12 shows thg? function for the pixel over the sequence to which Gaussiaseno
with a standard deviation of 5% has been added. These sheudrbpared with those in Figure
6.7. It can be seen that, in this case, the general topologjyeasurfaces has been unaffected by
the addition of noise. The effect of noise has been to recheedlues of the? function for any

set of parameter values, and hence reduce the gradient fafritigon.
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Figure 6.12: x? function for a single pixel in an image sequence of
a horizontal disc illuminated by a clear sky and viewed frdra éast.
Additive Gaussian noise with a standard deviation of 5% leafladded

to each image: (a) disc with Ward parametays- 0.0,04 = 0.0; (b) disc
with Ward parametenss = 1.0,04 = 0.0; (c) disc with Ward parameters
ps=1.0,04 =0.2.

Figure 6.13 shows thg? function for the same sequence but with Gaussian noise with a

standard deviation of 10%. Again, the topology is similatttat found in the clean images shown

in Figure 6.7. These examples serve to show thaixfhieinction is suitable for the comparison

of pixel values and model predictions in the case of noisyg@sa The general topology of the
examples has remained similar to those presented for aeages. The effect of noise has been
to reduce theg? function values and hence the gradient of the function. Asenis increased it

is expected that thg? surface will flatten such that minimisation will not be pdmsi It should

be noted that, as stated in Section 6.1, noise in the formtiémicompromises the least-squares

fit. Such outliers may, in the context of images, be incolydoterpreted as highlight peaks in the

sequence values.
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Figure 6.13:x? function for a single pixel in an image sequence of a
horizontal disc illuminated by a clear sky and viewed from #ast. Ad-
ditive Gaussian noise with a standard deviation of 10% has helded

to each image: (a) disc with Ward paramefays- 0.0,04 = 0.0; (b) disc
with Ward parametenss = 1.0,64 = 0.0; (c) disc with Ward parameters
ps=1.0,04 =0.2.
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6.3.4 Sampling Multiple Pixels with Similar Surface Normals

It would be expected that sampling more than one pixel of b@jected surface image would
provide further evidence to support a set of hypothesisielctéon model parameters. This section
considers the same image sequences as those presenteduabwoith four pixel values used in

the calculation of thg? function.

Figure 6.14 shows the value of four pixels across the imageesee for a number of
possible reflection parameter combinations. Figure 6)1gt{aws the pixel values sampled from
a Lambertian disc. As expected the slight variation in vieywWjeometry provides no difference
between the pixel values. Values sampled from a smooth ligatédc, shown in Figure 6.14(b),
show slight variation. The peak value for each pixel vartesugh the small highlight has not
been sufficiently sampled by these pixels. Figure 6.14(owshpixel values sampled from a
rough metallic disc. It can be seen that the peak pixel vatoeirs in a different image of the
sequence in each case. In this case however, the increaseaf she highlight, due to the rough

nature of the surface, has meant that it appears in the gfaptigese pixels.
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Figure 6.14:Values of four pixels within an image across a sequence: (a)
disc with Ward parametegs, = 0.0,04 = 0.0, (b) disc with Ward param-
etersps = 1.0,04 = 0.0; (c) disc with Ward parametefs; = 1.0,04 =
0.2.
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Figure 6.15 shows thg? function for these scenes. These should be compared to tfiose
Figure 6.7 which show the same sequence but with a singlé Ipgieg used for the calculation
of X2. It can be seen that the gradient of the function is highen thase for a single sampled
pixel. This is to be expected due to the increased numberofrations performed in evaluating
Equation 6.2. The addition of further pixels also has theafbf smoothing theg? function in
each case. This would be advantageous for any search métitdd to be used to find the optimal

parameters.
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Figure 6.15:x2 function for four pixels in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from the.q@3 disc
with Ward parametenss = 0.0,04 = 0.0; (b) disc with Ward parameters
ps = 1.0,04 = 0.0; (¢) disc with Ward parametefs = 1.0,04 = 0.2.

6.3.5 Sampling Multiple Pixels with Differing Surface Normals

Figure 6.16 shows selected images from a sequence obsentingbertian sphere illuminated
by a clear sky and viewed from an east position. The sequemtgsts of thirteen frames taken
hourly, starting at 06:00 and ending at 18:00. The changerifase normal provides a variation
of shading across the surface of the sphere. It is expecatdampling a number of pixels across
the image sequence would provide suitable variation ofl piakies so that the reflection model

parameters may be determined.

Pixel values sampled from sequences imaging spheres efidigfsurface models are shown
in Figure 6.17. In each case the values of five pixels are shdvigure 6.17(a) shows values
sampled from a sequence of a Lambertian sphere. Owing tohdmege in surface normal there
is variation in the pixel values. This is to be compared tovthkeies sampled from a Lambertian
disc shown in Figure 6.14, where no variation can be obselvignire 6.17(b) shows pixel values
sampled from a smooth metallic sphere. The selected pix@le hot adequately sampled the

highlight, which is present due to the sun, hence the pixeleghave little variation across the
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Figure 6.16: Selected images from a sequence showing a Lambertian
sphere, illuminated by a clear sky, on June 21 at terredtvizdtion
40°N,0°W. The camera is situated in the east and looks down upon the
horizontal plane at an angle #%°. Images taken at (a) 08:00, (b) 12:00,
(c) 14:00, (d) 18:00.

sequence. Figure 6.17(c) shows values obtained from a nmagdllic sphere. It can be seen that,
in this case, the roughness of the surface is such that adfiglaue to the sun has been sampled
by some of the pixels. There is significant difference betwte location of these peaks within

the image sequence for each pixel.

Thex? surface for three image sequences of a sphere illuminatadi®ar sky and observed
from the east is shown in Figure 6.18. These show a similé&sityose of Figure 6.7 and Figure
6.15.

The effect of sampling pixels of an object which represegtaes of different surface nor-
mals for the problem situations highlighted above is nowsidered. Section 6.3.1 and Section
6.3.2 have shown that a camera situated in the south andt®lijaminated by overcast skies
presents problems for the estimation of surface model petens using(®> minimisation. Figure
6.19 shows the? surfaces for spheres illuminated by a clear sky and obsérvéite south. In
comparison with the results shown in Figure 6.8, it can be seat there is more detail contained
in the surfaces. In the case of the metallic sphepgs=(1) the difference in surface roughness
can now be observed. The addition of data from regions withréint surface normals has, in this

case, provided suitable information for greater accuradyet achieved.

Section 6.3.2 highlighted the difficulties presented byarcast sky. In this situation there
is no illumination provided by the sun and sky light radiasbanges only in magnitude and not
spatial distribution. Figure 6.20 shows that t{fesurface has been smoothed with the sampling
of further pixels. However, in the case of the rough metalfihere, the minimum is not in the

expected position ops = 1 andoy = 0.2. This would result in the incorrect reflection model
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Figure 6.17: Values of five pixels within an image across a sequence:
(a) sphere with Ward parameteps = 0.0,04 = 0.0; (b) sphere with
Ward parameterps = 1.0,64 = 0.0; (c) sphere with Ward parameters
ps=1.0,0, =0.2.
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Figure 6.18:x? function for five pixels in an image sequence of a sphere
illuminated by a clear sky and viewed from the east: (a) spheith
Ward parameterps = 0.0,04 = 0.0; (b) sphere with Ward parameters
ps = 1.0,04 = 0.0; (c) sphere with Ward parametgss= 1.0,064 = 0.2,
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Figure 6.19:x? function for five pixels in an image sequence of a sphere
illuminated by a clear sky and viewed from the south: (a) sphrath
Ward parameterps = 0.0,04 = 0.0; (b) sphere with Ward parameters
ps = 1.0,04 = 0.0; (c) sphere with Ward parametgss= 1.0,064 = 0.2,

parameters being estimated by minimisatioryx®in this case. This example serves to show the

difficulties presented by overcast sky illumination for eetion model estimation.
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Figure 6.20:x? function for five pixels in an image sequence of a sphere
illuminated by an overcast sky and viewed from the east:lagse with
Ward parameterps = 0.0,04 = 0.0; (b) sphere with Ward parameters
ps = 1.0,04 = 0.0; (c) sphere with Ward parametgys= 1.0,04 = 0.2.

6.3.6 Effect of Sequence Length and Image Frequency

The above sections have considered image sequences whiehthe majority of the daylight
period of a day and sampling the scene hourly. This sectimsiders the effects of sequence
length and image frequency on the possible performanceedfytitem. Here image sequences of
a disc illuminated by a clear sky and observed from the naetcansidered. Figure 6.21 shows
the x? surfaces for discs of a variety of materials observed overgmence of five images taken
hourly between 12:00 and 16:00. These should be comparédtihigse of the complete image

sequence shown in Figure 6.5 and Figure 6.6.

It can be seen that, owing to the short sequence length, aree meduced number of sum-
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Figure 6.21:x2 function for one pixel in a short image sequence of
a disc illuminated by a clear sky and viewed from the north: diac
with Ward parametenss = 0.0,04 = 0.0; (b) disc with Ward parameters
ps = 1.0,04 = 0.0; (¢) disc with Ward parametefs = 1.0,04 = 0.2.

mations performed in the evaluation of tigé function, the gradient of the function is reduced.
The overall topology of the surfaces is similar to those ef il sequence. Performance of the
system would therefore be expected to degenerate as thersegiength becomes shorter. Fewer
pixel samples across an image provide less supporting resédfor a particular set of reflection
model parameters. It would also be expected that, if theodeaver which the sequence is taken
is such that the illumination and reflection geometry dodsatiow the characteristic highlights
of glossy surface to be observed, then the performance dcfyttem will be poor. For example,
a camera sited in the east would not observe a highlight dtleetsun in a sequence of images
taken in the morning hours of a day. This is a similar problerthat encountered with the camera
sited in the south. In such a situation the system will havicdity in differentiating between

Lambertian and glossy surfaces usjfgminimisation.

The frequency with which images are taken of the scene véb affect the ability of a
system to estimate surface reflectance. It has been fouhdrthges taken hourly or half hourly
provide a suitable sampling frequency so that glossy tagidi may be observed. If this frequency
is reduced then the rate of change in illumination may be sbahhighlights, characteristic of
some surface types, may not be observed in the pixel valutedfmage sequence. This depen-
dence on frequency can be seen in Figure 6.22. Here the tahgiange in surface reflection has
not been sufficiently sampled over the duration of the secpiand the peak reflected radiance has
been missed. A number of reflection models, characterisimg different materials, may provide

a good fit with the resulting data.
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Reflected radiance

Figure 6.22: Sampling reflected radiance at three hour intervals, indi-
cated by dashed lines.

6.3.7 Observations from Simple Experiments

The experiments presented above have shown the difficdfieletermining surface reflection
properties from a sequence of images. In each case the praisented has been simplified so
that the topology of thg? function can be visualised. They have, however, servedgialight the
conditions of illumination or viewing geometry which mayus problems for any system based
upon the minimisation of thg? difference between image pixel values and those predicteal b

model.

The extension to a full colour reflection model would incedise dimension of the pa-
rameter space from that shown in the above examples. Thésepaxameters would account for
surfaces of differing reflectance, Fresnel effects andaser€olour. Itis expected that the inclusion
of these extra parameters would cause the topology of thiacguto be at least as complicated as
the above examples have illustrated. In these situatioagnitportant that the method used to find
the optimal parameters (those that yield a lgtwalue) is efficient and robust. Given the contin-
uous range of each of the parameters there is a potentigltyrhimber of parameter possibilities,

hence the search space can be considered large.

It should be noted that the performance of the system imsitally dependent upon the
performance of the camera. A camera which is not sufficieselysitive to respond to the subtle
changes, which a reflection model parameter attempts to Iinwdenot provide suitable infor-
mation for the system. Performance is also determined bwdtharacy of the illumination and
surface reflection models used. Natural surfaces and asities present a wide variety of observ-

able effects. Some of these are not encapsulated in the sno@slented in Chapter 3 and Chapter
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6.4 Minimising x2

Section 6.3 has shown the topology of tkfesurface in the strictly limited case of a reflection
model with two parameters. Observations made fromxthexamples show that the surface may
contain local minima and plateau regions. In the case of gptetmreflection model, the param-
eter space is multidimensional and hence the regressiomoshetosen for this purpose must be
suitable for such a search space. It is therefore necedsatryhie method used to minimise the
X2 function should not be misled by plateau regions or nonlotinima. Typically, a model of
surface reflection has a non-linear dependence on the ptmamé is therefore the case that the
complete sensor model, which utilises the surface modeloislinear. Any regression method
used to minimisg? in this case must therefore be suitable for non-linear dépece of model

parameters.

6.4.1 Brute Force Search

The simplest method of locating the parameters which yietdramum in thex? hypersurface is
that of a brute force search. The parameter space can beethatpiegular increments of each of
the parameterd)a;, comparing the function value with that of the minimythus found. Whilst
this approach is certain to sample the parameter space wifttron density, it is not certain that it
will locate the optimal solution. The global minimum may iliebetween the sampled positions in
the parameter space. The accuracy of this systematic semittod is determined by the size of
the increments used to sample the search space. Reducisigdlaf these increments, and hence

increasing the density of the samples, requires furthduatians of thex? function.

This method also suffers from poor scalability. As the numiiemodel parameters in-
creases, as does the dimensionality of the search spaceefdiiee the number of? evaluations
required increases exponentially with the number of modehmeters. It would be desirable to

have a method of minimisation that does not exhibit this tdgserformance.

Given that each parameter of a reflection model lies in a poatis range of values, such
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a discrete sampling of the parameter space to locate thmalptialues would not appear to be
practical. In searching for the optimal parameters it wdudddesirable for the search not to be
limited by the discrete nature of the chosen method. Foethessons the brute force approach to

locating the optimal model parameters is not consideretthdur

6.4.2 Gradient Search

By starting with an initial estimate of the model parametérss possible to traverse the? hy-
persurface such that a minimum is found. By considering thelignt ofx? with respect to each
of the model parameters a path can be followed which will lead minimum. The method of
gradient searclj5] increments the parameters of an initial estimate suelxf is reduced by
following the path of steepest descent. The direction ofimar gradientyy, is determined by
evaluating the first order partial derivatives of tfefunction at each step,

yj:[g—z]aaj j=1....n, (6.4)

whereda; is an increment of the model parametgr

This method of gradient search performs poorly as the sespploaches the minimum. It
is also the case that this method is easily misled by localmarin the hypersurface. Naively
following the path of steepest descent does not ensurettbdaiobal minimum is located for any
given starting estimate of the parameters. This can be omerdy repeated trials using different
initial estimates of the parameters. Provided a suitabhalrar of trials are performed, at suitably
spaced starting points, the true global minimum should batéxl. The success of such a method

is not assured, however.

6.4.3 Analytical Search

The method of gradient search performs iterative refinerogtie initial parameters using a num-
ber of steps to find a minimurg?. At each iteration the gradient must be evaluated with retspe
to each of the parameters. It would be desirable to perforimglesstep from the initial estimate
and locate the minimum directly. This can be achieved byyaimbf thex? function, as given in

Equation 6.2.
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Thex? value of an initial set of parameteia,, is denoted by?,

Gj

The first order Taylor expansion gFf about this point is given by
0Xo
X2 X2+ le( X Jaa,) (6.6)

whereda; is an increment of the model parametgr Equation 6.6 is at a minimum when the
partial derivative with respect to each of the parametemei®. Therefore, at the minimumn,

equations are satisfied simultaneously,

x> _ 0x3 0°X5 _ _
EEJFJZ(aa,Oaka >O k=1,...,n (6.7)

Evaluation of the parameter incremends, that satisfy Equation 6.7 will provide the optimal

parametersa+ &a, which yield a minimummy?.

The first and second order partial derivativexgfare obtained from Equation 6.5:

x5 c 1 ( 6y(>q;ao)>
2a i; o2 i = y(xi0)] =5 (6.8)
X3 C 1 (9y(x;80) 9y(Xi; o) -\ 0%y (%; @)
da; 03y = 2_21? ( day da, —[vi —y(%i;20)] W) . (6.9)
The set of linear simultaneous equations of Equation 6.7/oanbe presented as a matrix equa-
tion,
B =daaqa, (6.10)
where,
_loxs 1 0%3
P="2%a’ "%~ 2508 (611)
The optimal parameter increments are given by solving thixneguation,
da=Bla] . (6.12)

The symmetric matrix of partial derivatives is termed thecurvature matrixand represents a

measure of thg? surface curvature.

Once convergence has been achieved by this method a medgsbheeamnfidence in the
result can be determined by inspection of the curvatureirmathe covariance of the fitted param-
eters is given bja}*l. Hence, the leading diagonal of this matrix gives a meastcerfidence

in each of the parameters [111].
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This parabolic approximation of thg? hypersurface is, in general, accurate close to the
minimum. However, if the initial parametera,, are far from the optimal parameters the approxi-
mation fails. A common approach used to rectify this probigto use the gradient search method
far from the solution and resort to the parabolic approxioratas the solution is approached.
This combination of the two methods is provided by the LewsgtMarquardt method [3, 83].
Many such Newton and quasi-Newton methods for non-linegiression exist. The Levenberg-
Marquardt method is considered here as being representitithose various methods. For the
purposes of this thesis, the implementation of the Leveparquardt method due to Press et al.

[111] has been used.

Section 6.3 has shown that tlgé hypersurface for an image sequence contains local min-
ima for certain illumination conditions and camera positiolt is therefore assumed that a search
based on gradient descent will not be suitable for the msation ofx? for all image sequences.

It will, however, provide an efficient method for the casesvaithe minimum is unique. The per-
formance of this method, for models with more than two paranse cannot be fully determined

by considering the examples given in Section 6.3.

6.4.4 Simulated Annealing

First developed as a physical simulation of the cooling gétiline structures, simulated anneal-
ing has become an established method for constraint sdisizand combinatorial optimisation
[138]. The algorithm, first developed by Metropolis et al6]8provides a simulation of a col-
lection of metallic atoms through stages of cooling. As #mmperature is lowered the material
structure attempts to achieve a state of thermal equilibsuch that the relative positions of the
atoms in the crystalline lattice minimise the potential rgge The success with which an opti-
mal, low energy, structure is reached is governed by theatat¢hich the material is cooled. By
slow cooling near the material’'s freezing point the matdsable to achieve itground stateof
minimal energy. Rapid cooling around this critical tempera will cause non optimal crystals to
form and the ground state will not be achieved. The resultiagerial may have defects and only
locally optimal structures. The process by which materasgiven time to achieve optimal low
energy states as they cool is ternathealing Metropolis’ algorithm provides a statistically based

simulation of the atoms’ behaviour as cooling occurs.
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Kirkpatrick et al. first recognised the similarity betweeatistical mechanics and combina-
torial optimisation [63]. The search for a global minimunméiguration to a constraint problem
is analogous to that of obtaining the ground state by ammgalin this context the energy of the
system is equated to the cost of a given combination of pasaseThe simulated annealing al-
gorithm for combinatorial problems requires an initialtstaf parameterss,, the energy of which
is evaluated by @ost function E. The state is given a random perturbatid®, and the resulting
change in energy evaluated,

AE = E(x+ AX) — E(x). (6.13)

If the new state has a lower energy it is accepted with prdibalii, else it is accepted with a

probability determined by the Boltzmann distribution,
p= ke AE/T), (6.14)

whereT is the current temperature akds the Boltzmann constant. As the temperature is de-
creased the probability of changing to a higher energy stateduced. Provided the system is
allowed to cool sufficiently slowly the optimal, minimal ¢pparameter combination should be
achieved. The efficiency of the algorithm in finding the glofménimum is penalised by the in-
creased number of cost function evaluations required dvatr associated with gradient based
optimisation methods. The technigue does, however, hasality to ignore local topology at
high temperatures to find the region of low cost. As tempeeaigireduced the solution is further

refined.

Though originally designed for the optimisation of probkemvhere each parameter may
take on a discrete value, the method of simulated anneatingsince been extended to problems
defined in a continuous domain [139]. Here, the annealindpatketan be used to locate the global
minimum of a function of many variables. The state of the eysis analogous to a position
on the function hypersurface. Randomly perturbing thisespsiovides a random walk about the
domain of the function. Using the Boltzmann distributidme state can be progressed out of local
minima such that the global minimum is located. The methalbbeen successfully employed
for a number of optimisation tasks [8, 15, 139]. It has alserbshown to provide a regression

technique for non-linear least-squares fitting problen39]1

Press et al. [111] present a variation on traditional sitealaannealing which is cited as

more efficient than the methods given above. They proposeisbeof a geometric simplex of
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points to represent the system state. This simplex lies emyipersurface of the function to be
minimised, in this case thg? function. As such, the simplex hast 1 vertices wheren is the
number of parameters. The simplex is allowed to undergo abeurof transformations. These
are depicted in Figure 6.23. In each case the highest veftthesimplex is translated toward
the lowest face. The magnitude of the translation is detezthby the relative decrease in cost
thus achieved. At zero temperature the simplex is allowethéwe such that it traverses the
hypersurface following the path of steepest descent. Atdrigemperatures the simplex is able
to accept translations which result in a higher cost. Thigcisieved by perturbing the simplex
vertices in relation to temperature and thus providing thgkex with a Brownian motion which
allows it to escape local minima. At each temperature th@kiris allowed to undergo a number

of moves to find a low energy state.

(@) (b) (c) (d)

Figure 6.23:Simplex translations: (a) original position of the simplex
vertex 1 has the highest cost; (b) reflection; (c) reflectioeh @xpansion;
(d) contraction.

The efficiency of any simulated annealing approach is g@ektyy correct selection of a
cooling schedule. This determines the initial start terapse, Ty, the rate at which this temper-
ature is reduced and the stop criterion for halting the $edrcthe case of the simplex approach
it also necessary to define how many translations the simpbgxundergo at any given tempera-
ture. Many cooling schedules have been proposed and treperfice of each is problem specific
[138]. This work uses the simple schedule proposed by Kirighaet al. [62]. Here, the initial

temperature is reduced by a constant fact@fter everyn translations of the simplex,
T,1=0aT i=0,12,..., (6.15)

wherea is a constant smaller than, but close to, one. The selectidgis again problem specific.
It should be high enough such that all states are reachabtetfre initial position of the simplex,
but not excessively high so as to cause unnecessary coipstft38]. Ideally the system should
be cooled slowly in the temperature region where the eneirtfyecsystem decreases most rapidly.
This is called thephase transitiomand is analogous to the freezing point of a material. Figu2d 6

shows the expected change of energy as a system is cooled.
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Figure 6.24:Graph of average system energy plotted against tempera-
ture, with phase transition region indicated.

It is proposed that the method of simulated annealing isislgtfor all thex? examples
given in Section 6.3 since it can escape the local minimatthee been shown to exist in these
cases. Further to this, it should be equally applicable tdetsowith more than two parameters.
Whilst the Levenberg-Marquardt method may prove to be effigiit is expected that it will not

be suitable for all image sequences.

6.4.5 Limiting the Search Space

As stated in Section 3.4.5, each of the reflection model pet@rs has a finite range. It has been
found that the technique used to constrain each of the alsareltsmethods, so that resulting es-
timated parameters are kept within these ranges, has samtifaffect on performance. Bounding
the permitted parameter space by a plateau of Kfgkialue presents difficulties when the opti-
mal parameters lie on or near to a permitted range limit. is ¢ase the minimum presented at
the optimal parameters may not be adequately approximateddarabolic, as required by the
Levenberg-Marquardt method. Difficulties with such a bdngdechnigue have also been expe-
rienced in the use of simulated annealing. Again, it woulgdesp that the possibility of higi?
function values surrounding the region of a minimum compea® the ability of the simplex to

converge satisfactorily.

It has been found that the regression techniques exhibioand performance if the permit-
ted parameter space is bounded by a monotonically incgx8inin the case of the Levenberg-
Marquardt regression this can be shown to be more suitabl&dgarabolic surface assumption.

In the case of simulated annealing, the simplex is able toenh@yond the permitted parameter
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values but will descend the gradient towards the minimumsduadl therefore result in parameters

which are within the permitted values.

6.5 Summary

This chapter has shown that a sequence of images, obtaomadfstatic camera over a period of
time, may be used to determine the parameters of a reflectamteimvhich best characterise the
observed material. It is expected that the temporal chamgeage pixel values, due to changing
natural illumination, will provide suitable informatioroff such parameters to be derived. The
limitations of this assumption have been assessed and lideas shown that, in some cases, an

accurate estimate may not be possible using the proposdubdset

This chapter has presented a measure of the difference d&tiie temporal change in
image pixel values and that predicted by a model. This meagtirallows for the comparison of
image data with a model of the processes by which light reftefrom a scene creates an image.
The minimisation of the difference between such measurketsand those predicted by a model
allows a best fit model to be estimated. In this context, serfaflection is measured using an
image based system. Therefore, the data is comprised okipiagl values. As such, the model
used to describe the pixel values calls upon models of caraspmnse and natural illumination in
combination with models of surface reflection. With the paeters of these extra models known
a priori, the free parameters of the combined model are those of $katto describe the reflection
characteristics of the observed surface. Regressionitpem allow the estimation of these free

parameters and hence the surface reflection model for tren@zb material may be determined.

Based upon analysis of the® function for a variety of image sequences two regression
methods have been proposed. These methods should alldvefestimation of best fit parameters,
in a least-squares sense, to the observed data. The penfgnoé these two methods shall be

compared for an increasing number of free parameters irethdts.



Chapter 7

Results

This chapter presents results obtained using two regressaihods with synthetic as well as real
image sequences. The use of synthetic image sequences #fliewperformance of each of the
techniques to be understood in the context of clean dataneltan known conditions. Work

on synthetic sequences cannot, however, replace obs#rsatiade on real data obtained with a
camera. For this reason an image sequence obtained froraradelg and consisting of a number

of material types is considered.

The synthetic image sequences have been produced usiRattie@ncdighting simulation
system. This has been described in Chapters 4 and 6 and dovas accurate simulation of
illumination by sun and sky sources. The results presenged tocus on the analysis of scenes
illuminated by a clear sky. The illumination therefore @sponds to a visible sun and a CIE
clear sky, as presented in Chapter 4. The illumination nsodséd to generate the synthetic image
sequences are the same as those used in the regressioqueshrilso, these results only consider
the analysis of a single pixel in each image of a sequenceahéruo this, only horizontal planar
surfaces are analysed in each case. The effects of alterilhimination and surface orientations

have been described in Chapter 6.

Actual data obtained by a camera has been obtained from arsegof images viewing a
collection of planar horizontal surfaces. These mateaaiges have been illuminated by a natural

clear sky. Again, only a single pixel from the projection el sample is considered.

This chapter focuses on the use of Ward's reflection modeilsithe techniques developed

100
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in Chapter 6 for the estimation of model parameters are nkéd to a particular model, the Ward
model is chosen here for its applicability to a wide varietypuarface types. Three variants of the
basic Ward model, each with an increasing number of paramedee considered, and these are

summarised in Section 7.1.

7.1 Overview of the Reflection Model

The reflection model considered in this chapter is that du&dcd [141], as described in Section
3.4.5. It is briefly summarised here for convenience. Thérditional reflectance-distribution

function, f, is modelled by,

. Pd 1 exp(—tarf3/03)
fr(eia(ﬂ-era(pr):?‘i‘ps'\/m' 4_,_[0_(21 £ 3 (71)

wherepyq is the normal lobe reflectancgs is the forescatter lobe reflectaner, is the rms rough-
ness of the surface , arliiis the half angle This chapter considers three variants of this basic

model, each with an increasing number of parameters.

A two-parameter model requires th@af+ ps = 1 and as such the total reflectance of surfaces
modelled by this function are constant. The resulting patans to be estimated for this model

are, thereforeps anday.

A three-parameter achromatic model allows for the inclusiba total reflectance ternR.
This allows control over the total reflectance of a surfacevall as the proportion of reflection
into each of the reflection lobes. Agapy + ps = 1, and the three parameters to be estimated are

R, ps andoyg.

A five-parameter model replaces the total reflectance tBrwjth a material colour vector,
C. This vector gives the reflectance of the surface at thremets wavelengthsCred, Cgreenand
Chiue. How this colour vector is used in the model depends upon dhgevofps. It allows for
the modelling of coloured reflection from plastic and métadurfaces. The five parameters to be
estimated for this model are, therefo@ed, Cgreen Chive: Ps andoy. The permitted range fary

is (0.0 — 0.2) whilst all other parameters have a range of-{QLM).
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7.2 Levenberg-Marquardt Regression

The Levenberg-Marquardt method of regression (see Se6ti3) provides a gradient descent
based approach of the surface from an initial estimate of the parameters. It haskshown in
Chapter 6 that this regression method may be misled by logdhma in thex? surface; however,
in the two-parameter model these local minima were not agpan all cases. This section will
look at the performance of this technique when considetiegwo and three-parameter reflection

models.

7.2.1 Two-Parameter Reflection Model

This section considers the performance of the Levenbergitadt technique on three synthetic
test sequences. These are selected from those examinedie€ClB. Two of these examples
have been shown not to contain non-optimal minima and haaiemts which descend toward the
location of the optimal parameters. As such, it would be etgrbthat this method would perform

well in these cases. A third example, shown to exhibit localimma, is also considered.

Table 7.1 shows the performance of this technique when useleosequence observing a
Lambertian disc from the north. The values for this example are shown in Figure 6.5. Given that
the global minimum lies at the optimal parameters, and thiatrhinimum is unique in this case,
it would be expected that this gradient descent method woertbrm well. Two observations can
be made from these results. There are a number of cases Wkareethod has failed to converge

upon a solution and the method has not consistently foundgtiamal parameters.

Failure to converge, in this case, is due to the curvatureixniatcoming singular, hence
the matrixa of Equation 6.12 may not be inverted to find the necessarynpetex incrementsda.
This has occurred owing to the nature of the Ward reflectioehoearps = 0. In the case of
the Ward model, wheps = 0 the roughness parametey, has no significance. It is therefore the
case that, as the method converges towatds 0, the partial derivativeg%j — 0. This leads to
an asymmetric curvature matrix and the method fails. Thgblights an inherent problem with
using regression methods that rely on the evaluation ofgbaitrivatives. If the data is such that
a change in value of a model parameter has no effect on the wélx?, the method is prone to

failure since it cannot determine the direction of steepestent.
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The results in Table 7.1 show that, as the distance of thialinitarting estimate from the
optimal parameters is increased, the performance of thbodedegenerates. This behaviour is
clearly shown in Figure 7.1. In this graph the error, basedistance in the parameter space from
the solution, of the initial estimate is compared with theeof the final result. Points below the
dashed diagonal indicate an improvement of the initiahete toward the expected result. It can
be seen that, for initial estimates which are close to ther@tparameters, the method converges
to the expected values. However, as the distance of thaliasttimate from the optimal parameters
is increased the error in the estimated parameters alseases. Such dependence upon the initial
parameter estimates is a characteristic of this methodt{dligh the extent to which it affects the

result is problem specific.

Table 7.1: Levenberg-Marquardt results for two-parameter model.
Optimal parameter values aoe= 0.0 wherea, has no significance.

Initial Result Variance X of X°
Ps Oq Ps  Oq Ps Oq result | evaluations
0.1 0.00| 0.04 0.00{ 0.095 0.101| 11 65

0.0 0.10 Fail - - - -
0.1 0.10 Fail - - - -
0.2 0.05 Fail - - - -

0.2 0.20|/ 0.01 0.20| 0.007 0.063| 41 39
0.4 0.05/0.00 0.00f 0.358 0.126| 11 52
04 0.15 Fail - - - -

0.6 0.05/ 0.00 0.00f 0.233 0.806| 11 52

0.6 0.20 Fail - - - -
0.8 0.00/ 0.07 0.00| 0.090 0.077| 1527 52

0.8 0.15/ 0.00 0.19| 0.023 1.362| 11 65
1.0 0.10 Fail - - - -
1.0 0.20| 0.00 0.20| 35.147 47.925 11 65

Table 7.2 considers a rough metallic disc observed from tithn Thex? values for this
example are shown in Figure 6.6(c). Again, as with the abozemgle, the surface descends
toward the optimal parameters pf = 1, a4 = 0.2. In this case failure to converge, owing to a
singular curvature matrix, has only occurred when theahiistimate of the parametersgs=
0. However, it can again be seen that, as the distance of it #stimate from the optimal
parameters is increased, the performance of the methodeéges. This behaviour can be clearly

seen in Figure 7.2.
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Figure 7.1:Error in resulting parameters against error of initial estte
for two-parameter model. Sequence observes a Lambertigatedrom

the north.

Table 7.2: Levenberg-Marquardt results for two-parameter model.

Optimal parameter values apoe= 1.0 andoy = 0.2.

Initial Result Variance X of X°
Ps Og Ps Og Ps Og result | evaluations
1.0 0.15| 1.00 0.20{ 0.023 0.002 15 52
0.9 0.20] 1.00 0.20| 25.219 119.174 15 39
0.9 0.10] 1.00 0.20f 22.188 11.951| 15 52
0.8 0.15]/ 1.00 0.19| 0.059 0.000 17 39
0.8 0.05|/ 0.80 0.05/ 0.001 0.009 | 103348 39
0.6 0.10] 1.00 0.20| 137.527 61.821| 15 52
0.6 0.00|{ 0.60 0.00] 0.002 0.026 | 130216 39
0.4 0.15] 1.00 0.20| 19.474 78.482| 15.23 39
0.4 0.05| 0.40 0.05/ 0.002 0.027 | 200227 39
0.2 0.20| 1.00 0.00/ 13.960 207.219 148269 52
0.2 0.05|/ 0.20 0.05| 0.003 0.062 | 289681 39
0.0 0.05 Fail - - - -
0.0 0.15 Fail - - - -
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Figure 7.2:Error in resulting parameters against error of initial estte
for two-parameter model. Sequence observes a rough reetaliface
from the north.

Table 7.3 considers the case of a smooth metallic disc obddrom the east. Figure 6.7(b)
showed that, in this case, there exists a non-optimal mimirituthe surface of thg? function.
The problems that this presents are shown in the resulthifoexperiment. It can be seen that, for
initial starting positions that are contained within thgioam of this local minimum, the gradient
descent method is unable to locate the global minimum. Taiske seen with many of the
poor results being in the region pf = 0.2,04 = 0.2. As with the above example, where the
optimal parameters are reachable using a gradient desathbd) the accuracy of the method
still depends upon the distance of the initial estimate ftbenoptimal parameter values. Figure
7.3 clearly shows this behaviour. This figure also shows stefwf results corresponding to the

non-optimal minimum.

Since the Levenberg-Marquardt method provides an estiofatiee confidence in the re-
sulting parameters it would be hoped that, in the cases when@sult has a high error, this would
be indicated by the values of the curvature matrix on corererg. However, as Figure 7.4 shows,
there is no observable correlation between the confidendeeimesulting parameters indicated
by the curvature matrix and the known error in the result.sTiRipartly to be expected since the
confidence values only give an indication of how well the lrgpgace at the minimum matches
the parabolic assumption. A non-optimal minimum in the gpdace may be more adequately

approximated by a parabolic than that of the optimal globalmum.
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Table 7.3: Levenberg-Marquardt results for two-parameter model.

Optimal parameter values apoe= 1.0 andoy = 0.0.

Initial Result Variance X of X2
Ps Oqg Ps Oy Ps Oy result | evaluations
1.0 0.05| 1.00 0.02| 0.069 0.002 116 52
0.9 0.00| 1.00 0.00| 0.064 0.005 8 39
0.9 0.10| 1.00 0.08| 0.019 0.001 203974 39
0.8 0.15| 0.45 0.20| 0.006 0.017 140935 39
0.8 0.05|1.00 0.02| 0.038 0.000, 116 52
0.6 0.10| 0.60 0.10{ 0.005 0.000] 34596 39
0.6 0.00| 1.00 0.00{ 0.000 0.000, 8 52
0.4 0.15| 0.28 0.20| 0.004 0.021 127466 39
0.4 0.05| 1.00 0.00| 0.004 0.006 8 39
0.2 0.20| 0.20 0.20| 0.006 0.007| 122432 39
0.2 0.05| 0.47 0.00| 0.018 0.166| 50783 39
0.0 0.05| 0.37 0.00| 0.022 0.052| 63979 39
0.0 0.15| 0.10 0.15| 0.004 0.004| 123292 39
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Figure 7.3:Error in resulting parameters against error of initial estte
for two-parameter model. Sequence observes a smooth installace

from the east.
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Figure 7.4:Variance of resulting parameter estimates. Note log saale o
ordinate axis.

7.2.2 Achromatic Reflection Model

This section considers the three-parameter achromatiectiefh model and synthetic greyscale
image sequences. The topology of fiesurface for such cases has not been considered in Chapter
6, though it can be assumed that it is at least as complex asvaltisns from the two-parameter

model suggested.

Figure 7.5 shows results obtained from a sequence obseavicgmbertian disc viewed
from the east. The optimal parameters for this sequencegt€0.33, ps = 0.0 ando, = 0.05.
As with the two-parameter results given in Section 7.2.4ait be seen that the performance of this
method is dependent upon the accuracy of the initial pamastimates. This trend is repeated
for the examples shown in Figure 7.6 and 7.7. In these exampinumber ok? evaluations

required for convergence were similar to those of the twajpeeter examples above.

7.2.3 Summary of Levenberg-Marquardt Performance

The number ok? evaluations required for convergence in these examplesvisbmpared to that
which would be required by a brute force search of the paransgiace. To sample the valueygf

at ten per cent increments in each dimension would requitead@ 16 samples with the two and
three-parameter reflection models respectively. The LaswpMarquardt method has required
significantly fewer evaluations to obtain a result. Howevbke quality of this result has been

shown to be dependent upon the initial estimate of the pammealues. Given that such initial



Chapter 7. Results

108

100

Result error (%)

75

50

25

-

N

s

red

0% Lo
o o

<&
ey L

QOO !

S0 o 08 °
o
o © ¢ 4o © ©°

25

50

Figure 7.5:Error in resulting parameters against error of initial estte
for three-parameter model. Sequence observes a plastaceuwith

Initial error (%)

parameter® = 0.33, ps = 0.2, a4 = 0.05 from the east.

100

100

Result error (%)

25

5

o 0 £
//?
/’0/
<& -
PR3
&
/»0
Lo~ 4
/<>‘(>
S 00 &
060 o o0 ©
¢ 8 6,0 ¢
UK o ° o
& ,@’Oo -
< < o
66
870
//0/
% D0 L 1 1
0 25 50 75

Figure 7.6:Error in resulting parameters against error of initial estte
for three-parameter model. Sequence observes a metatfaceuvith

Initial error (%)

parameter® = 0.66, ps = 0.8, o4 = 0.15 from the east.

100



Chapter 7. Results 109

100

T T T o
_»
X
g~
= 75F o -
g °
= o S
g 3 Q,OA/ 3 'S
o o, . o
= 50 @O’ <o 3 .
= e
7] . o
[0] <& e &
[a'd .
R o°
° So o
251 PN ¢ > .
o X o ©
> ©
P 6o © 8
- 8
2 e
0 - 8 |8 8 8 L
0 25 50 75 100

Initial error (%)

Figure 7.7:Error in resulting parameters against error of initial estte
for three-parameter model. Sequence observes a metatfaceuvith
parameter® = 1.0, ps = 1.0, 64 = 0.2 from the east.

estimates of the parameters are not available to the syttermethod proves to be inappropriate
for this application. This could be overcome by performieyeral repeated applications of the
method using uniformly distributed starting positions.isTiwould require an increased number of

x? evaluations and, depending on the density of the startisifipps, may not find the optimal

parameters.

It has also been shown that, in some cases, the method iunatunverge upon a solution.
Whilst this is due to the nature of the Ward model, similarditans may also apply to alternative
reflection models. Given the poor performance of the Levagbéarquardt regression method in
these experiments it has not been used in the case of thedftaeapter colour reflection model,

nor has it been used on the real image sequences.

7.3 Simulated Annealing

This section considers the performance of simulated amge&dr regression. The Levenberg-
Marquardt method has shown three distinct problems in thdieation: the dependence on the
initial parameter estimates; the possibility of a singalarvature matrix; and the problem of non-
optimal minima. Itis expected that simulated annealingcdbed in Section 6.4.4, will overcome

these three issues with respect to this application.

Since this method does not rely on the calculation of padeéaivatives the situation where
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ps = 0 does not present the problem it did for the Levenberg-Mandfumethod. If the simplex
does enter a plateau region, the thermal motion of the sinpli allow it to traverse thex?

surface.

The simulated annealing method will randomly search theeepairameter space. There-
fore, the accuracy of the solution should not be dependeon tipe initial parameter estimates.
This will be true provided that the selected cooling schedllows the simplex to escape local
minima and to traverse the® surface such that the global minimum is located. As statekir
tion 6.4.4, the method of simulated annealing is able tongtmcal topology at high temperatures

and is, therefore, able to locate the optimal parameterstiwyield a minimurmy? value.

7.3.1 Selection of Cooling Schedule

The performance of simulated annealing is highly dependarthe selection of an appropriate
cooling schedule. This section looks at the selection ofaing schedule suitable for the two-
parameter reflection model considered in the examples opteh&. As stated in Section 6.4.4,
the cooling schedule should be such that, at the initial taatpre, Ty, all points on the surface are

reachable with equal probability.

To understand the significance that the cooling scheduleohake performance of this
method, the case of a smooth metallic disc observed fromasii®considered. The? function
values for this example are shown in Figure 6.7(b). In eacthefexperiments that follow, the
initial position of the simplex is in the local, non-optimahinimum indicated in Figure 6.7(b).
Figure 7.8 shows the average energy of the simplex as themsyistcooled from three different
values ofTy. It can be seen that, if the initial temperature is too lowsta@wn in Figure 7.8(a), the
simplex is not provided with sufficient energy with which tcape the local minimum in which it
starts. In this example the optimal parameters are not cityrestimated by the method. Starting
the system with a high temperature, as in Figure 7.8(c) dib@s the simplex to escape the local
minimum and the global minimum is located as the system iedodlowever, the average energy
of the simplex remains high and rapidly reduces towards titea# the cooling. This is due to
the simplex having an initially high level of energy and éiting erratic behaviour regardless
of the gradient of thex? surface. At these high temperatures the simplex is randsantypling

points on thex? surface and is not attempting to refine the solution. Onlymihe temperature
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has sufficiently reduced is the simplex able to descend tbiter global minimum. Whilst such a
cooling schedule does enable the global minimum to be Idcé#tés at the expense of increased
evaluations of?. Figure 7.8(b) shows an improved cooling schedule. Hersithelex is started
at a sufficiently high temperature to escape the local mininbut is reduced sufficiently slowly

so as to refine the solution.

2.5x1! T T T 2.5x1! - - - - 2.5x10°

<Xz>/_/\/\/// <x23 <x2>

0 0 . . . . . . . .
0 20000 40000 60000 80000 1x1C0 0 2x10 4x18 6x10° 8x10° 1x10° Oo 2x10F 4x10° 6x10 8x10° 1x107
Temperature Temperature Temperature

@) (b) (©

Figure 7.8:Effect of initial temperature on simulated annealing perfo
mance: (alo = 10°; (b) To = 10°; (c) To = 10'.

The rate of cooling from the initial temperature should wallsufficient time in the phase
transition region shown in Figure 6.24. This is controllgotlvo parameters of the cooling sched-
ule: the rate at which the system is cooled,and the number of iterations;, that are allowed
at each temperature. As stated in Section 6.4.4, the tetopeiia reduced by a factar at each
stage of the cooling. Figure 7.8(b) shows cooling wita: 0.7 andm= 10. Alternative values for

these two parameters are shown in Figure 7.9.

Figure 7.9(a) shows cooling whereby increased iteratioesabowed at each temperature.
This has shown no improvement in the accuracy of the resdlhas come at an increased number
of evaluations of?. Figure 7.9(b) shows cooling witim= 5. In this case the system has not been
allowed sufficient iterations with which to attempt to findeguilibrium at each temperature. The
inability to refine the solution has resulted in the final siexpposition not being at the global
minimum. This can again be seen in Figure 7.9(c), howevisrhdes been the result of cooling too
rapidly witha = 0.6. Here, the system has been quenched and has not been adtléetonto the
optimal state. Figure 7.9(d) shows cooling with= 0.8. Here the temperature is reduced slowly
but the solution is not improved over that obtained witk= 0.7. The consequence of using a

reduced cooling rate has been the increased numberefaluations required.

This section has shown the importance of the selection opproariate cooling schedule

in the performance of the method. Incorrect selection ofvéimous parameters may lead to non
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Figure 7.9:Effect of cooling rate on simulated annealing performance:
(@a=07, m=20; (b)a=07 m=5; (c)a=08 m=10; (d)
o =0.6, m=10.

optimal solutions or to unnecessary evaluations ofithéunction. Where a sequence contains
a large number of images, or a number of pixels are considsitih each image, the repeated

evaluations of? may prove to be computationally expensive.

7.3.2 Two-Parameter Reflection Model

The performance of simulated annealing for the two-parametodel and synthetic image se-
guences is now considered. In each of the examples predeetedthe cooling schedule used is
To=10°, a = 0.7, m= 10. Section 7.3.1 has shown this to be a suitable coolingistiaéor this

model.

Table 7.4 shows results for a Lambertian disc viewed frormtitéh. These results should be
compared with those presented in Table 7.1. It can be seeththaptimal parameters have been
correctly estimated by this method, and that the accuratiyeofesult has not been determined by
the initial estimate of the parameters. Note that the vafug,ds not significant whemps = 0, as
it does in this example. It can be seen, however, that usisgctioling schedule has required a
significantly increased number gf evaluations over that required by the Levenberg-Marquardt

method.
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Table 7.4: Simulated annealing results for two-parameter model.
Optimal parameter values ape= 0.0 wherea, has no significance.

Initial Result X

Ps Og Ps Oy | evaluations
0.90 0.18]/ 0.00 0.19 464
0.58 0.02| 0.00 0.14 463
0.78 0.00( 0.00 0.00 462
0.16 0.02| 0.00 0.04 461
0.62 0.01| 0.00 0.07 434
0.34 0.16| 0.00 0.11 463

Table 7.5 and Table 7.6 show results for differing materidlsese results should be com-
pared to Tables 7.2 and 7.3 respectively which considergaheesmage sequences. Again, it can
be seen that the accuracy of the result is not dependent heanitial estimate. It can also be
seen that the method has not been misled by local, non-dptimr@ima. These results show little

variance in the estimated parameters.

Table 7.5: Simulated annealing results for two-parameter model.
Optimal parameter values ape= 1.0 andoy = 0.2.

Initial Result X°

Ps Oy | Ps Oq | evaluations
0.40 0.04| 1.0 0.20 311
0.33 0.04| 1.0 0.20 376
0.31 0.10| 1.0 0.20 409
0.02 0.07| 1.0 0.20 390
0.86 0.01| 1.0 0.19 364
0.65 0.18/ 1.0 0.20 367

Figure 7.10 shows a typical random walk for the smooth metdisc sequence considered
for Table 7.6. It can be seen that, despite being started ata minimum, the nature of the

annealing process has allowed the simplex to escape arté kheaglobal minimum.

7.3.3 Achromatic Reflection Model

This section considers the performance of the simulateéaimy method on the achromatic re-

flection model and synthetic greyscale image sequences. r@thection model has three param-
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Table 7.6: Simulated annealing results for two-parameter model.
Optimal parameter values apoe= 1.0 andoy = 0.0.

Initial Result X

Ps Oy | Ps Oq | evaluations
0.03 0.01/1.0 0.0 354
0.78 0.18/ 1.0 0.01 334
0.31 0.10/ 1.0 0.0 321
0.23 0.0711.0 0.0 401
0.87 0.12/ 1.0 0.0 364
0.11 0.05/ 1.0 0.0 334
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Figure 7.10:Typical random walk over g2 surface.
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eters and therefore requires the simplex to traverse a hidjheension space as that considered
above. Owing to this higher dimensionality, it has been tbtmat slower cooling has provided
consistent results for this reflection model. For these gtasithe selected cooling schedule has

beenTy = 1%, a = 0.8 andm = 10.

Table 7.7 shows results for a plastic disc with Ward reflectitodel paramete® = 0.33,
ps = 0.20 andog = 0.05. It can be seen that, in each case, the method has corsttiyated the
optimal parameters regardless of the initial estimate efgarameters. These results should be
compared to those shown in Figure 7.5 for the Levenberg-Mamf method on the same image

sequence.

Table 7.7: Simulated annealing results for three-parameter model.
Optimal parameter values dre= 0.33, ps = 0.2 andoy = 0.05.

Initial Result X2
R Ps Og R Ps Oq | evaluations

0.64 0.22 0.05 0.33 0.21 0.05 719
0.77 0.49 0.14 0.33 0.20 0.05 725
0.50 0.08 0.16 0.33 0.20 0.05 717
0.60 0.22 0.17, 0.33 0.20 0.05 719
0.85 0.80 0.03 0.33 0.20 0.05 721
0.11 0.20 0.14 0.33 0.20 0.05 728

Table 7.8 shows results for a metallic disc with Ward modehpeetersR = 0.66, ps = 0.80
andoy = 0.15. It can be seen that, in each case, the method has coresttlyated the optimal
parameters. Again, these results should be compared teetfampance of the gradient descent

method on this image sequence, shown in Figure 7.6.

Table 7.8: Simulated annealing results for three-parameter model.
Optimal parameter values dre= 0.66, ps = 0.8 anday = 0.15.

Initial Result X2
R Ps Og R Ps Oq | evaluations

0.40 0.15 0.20 0.66 0.80 0.15 718
0.48 0.80 0.14 0.66 0.80 0.15 715
0.32 0.03 0.09 0.66 0.80 0.15 711
0.88 0.85 0.10 0.66 0.80 0.15 712
0.18 0.78 0.06 0.66 0.81 0.15 719
0.09 0.48 0.17 0.67 0.80 0.15 719
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Table 7.9 shows results for a metallic disc with Ward modeapeetersR = 1.0, ps = 1.0
andogy = 0.0. Again, it can be seen that, in each case, the method hasctgrestimated the
optimal parameters. These results should be comparedde 8fwwn in Figure 7.7 for the same

image sequence.

Table 7.9: Simulated annealing results for three-parameter model.
Optimal parameter values are= 1.0, ps = 1.0 andoy, = 0.0.

Initial Result X°
R Ps Og R Ps Oq | evaluations
054 0.01 0.06 1.0 1.0 0.0 725
0.74 0.63 0.08 099 1.0 0.0 736
0.77 0.72 011 1.0 10 o0.0 730
0.28 0.84 0.014 1.0 099 0.0 718
042 0.78 0.16 1.0 1.0 0.01 727
087 0.24 013 1.0 10 0.0 730

These results have shown significant improvement over theigmt descent method con-
sidered in Section 7.2.1. As with the two-parameter modhelse results show little variation in

the final estimated parameter values.

7.3.4 Colour Reflection Model

The performance of simulated annealing with colour imagebthe five-parameter colour reflec-
tion model is now considered. In this five dimensional pat@mspace it has been found that a
cooling schedule ofy = 10, a = 0.8 andm = 20 provides consistent results. Each of the image
sequences considered here has been synthetically gehdRasults for three such sequences are

presented.

Tables 7.10, 7.11 and 7.12 show results for horizontal iplasitfaces with differing reflec-
tion model parameters. It can be seen that, in each case,dtimdhhas correctly estimated the
optimal parameter values. As with the previous reflectiomlei@xamples, there is little variation

in the estimated parameter values in each case.
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Table 7.10: Simulated annealing results for five-parameter model.
ps= 0.2 andoy = 0.05.

Initial Result X°
Cred Cgreen Chbiue Ps Ou | Cred Cgreen Cblue Ps Oy | evaluations
0.67 048 047 0.09 0.120.25 050 0.75 0.20 0.06 1561
099 094 064 031 011025 050 0.74 020 0.06 1574
0.13 0.78 0.18 0.23 0.080.25 050 0.74 020 0.06 1574
0.30 030 0.18 0.15 0.160.25 050 0.75 0.21 0.06 1405
085 065 061 0.18 0.080.25 050 0.75 0.20 0.05 1561
065 051 073 0.87 0.01024 050 0.75 0.21 0.05 1574
Table 7.11: Simulated annealing results for five-parameter model.
Optimal parameter values at@eq = 0.75, Cgreen= 0.50, Cpjye = 0.25,
ps= 0.8 ando, = 0.15.
Initial Result X2
Cred Cgreen Cobiue Ps Ou | Cred Cgreen Cbiue Ps Oq | evaluations
092 057 087 020 0.1p0.75 050 0.25 0.81 0.15 1401
069 031 095 053 0.050.75 049 0.24 080 0.15 1575
0.88 085 052 040 0.060.75 050 0.25 0.81 0.15 1478
0.11 064 077 070 0.150.75 050 0.25 0.81 0.15 1575
091 089 0.16 0.26 0.190.74 049 0.25 0.82 0.15 1575
0.09 038 086 094 0.190.74 049 024 081 0.15 1575
Table 7.12: Simulated annealing results for five-parameter model.
Optimal parameter values af@eq = 1.0, Cyreen= 1.0, Cpiye = 1.0,
ps= 1.0 andoy = 0.0.
Initial Result X°
Cred Cgreen Coiue Ps Oy | Cred Cgreen Chiue Ps Oq | evaluations
0.15 054 0.08 0.17 0.08099 1.0 1.0 1.0 0. 1564
0.01 o0.21 1.0 0.70 0.100.99 1.0 1.0 1.0 0. 1574
099 0.28 00 024 01410 0.98 1.0 1.0 0. 1575
046 059 032 0.29 0.020.98 0.98 1.0 1.0 0.0 1574
066 068 084 075 010099 1.0 099 1.0 0.0 1575
0.73 062 077 033 0.1B1.0 1.0 1.0 1.0 0. 1574
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7.3.5 Summary of Simulated Annealing Performance

This section has demonstrated the effectiveness of sietlktinealing for the estimation of re-
flection model parameters. The results are much improvedtbese obtained using the gradient
descent approach shown in Section 7.2 and do not exhibit ribl@lggns encountered with that

method.

The quality of these results is to be expected, however. &hreds have been performed
using synthetic image sequences, observing surfacesagedersing the same reflection model. It
is also the case that, in each example, the camera and ititisinrmodels used are the same. There
is, therefore, no reason why, given a suitable cooling saleedhis method shall fail to estimate
the optimal parameter values in each of the above cases. @imepurpose of these experiments

has been to validate the regression technique in this aioiic

The improved results obtained by simulated annealing hawgecat the expense of an in-
creased number gf function evaluations over that required by the Levenbeayddardt method.
However, the number of evaluations should be compared héthrequired by a brute force search
of the parameter space. In the case of the five-parametenrca@tiection model, a brute force
search would require 2¢? function evaluations to sample the parameters at incresva#ritO per
cent in each dimension. This can be compared with the averag®48 function evaluations re-
quired by simulated annealing. In the case of simulatedamgewith the five-parameter model,

a typical execution time is in the order of four hotrs

7.4 Real Image Sequence

This section considers real data obtained using a photbigrapamera, with images subsequently
scanned to provide a digital image. Whilst the camera moeletidped in Chapter 5 is not directly
applicable to these images, it has been found that the ingdgamed by this method are suitable
for analysis. Calibration of these images has been achidwedigh the use of an ANSI IT8
colour target within each image. This has been used to erisi@ity in response and colour

reproduction across the image sequence.

1Timings obtained on SiliconGraphics Indy.
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The image sequence consists of thirteen images, takehdatfy. The scene was observed
on August 16 with the first image taken at 12:00 BST (Britisim@&wer Time) and the final image
at 18:00 BST. The location of the scene wasM31°W and with sky conditions described as a
clear sky with little observable pollution. The camera isdted in the east and looks down upon
the sample area at an angle of 3@ the surface normal. The scene is composed of eight miateria
samples, horizontally orientated, to which the full sky ghere is visible. A typical image from
the sequence is shown in Figure 7.11. The eight material Issngpserved in this sequence are

described in Table 7.13.

Figure 7.11:An example image from a sequence observing a selection
of sample materials on a clear day. The camera is situatéréigdst.

Table 7.13:Description of sample materials.

White paper.

Pale blue paper.
White gloss paint.
Polished mild steel.
Mild steel roughened using a 400 grit abrasive.
Mild Steel roughened using a 40 grit abrasiv
Yellow gloss paint.

Red gloss paint.

©
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Figure 7.12 shows the change in colour pixel value, for alsipixel within each of the
material samples, across the image sequence. It can behsgahd data contains noise but a
difference in each of the graphs can be observed. It shosidla noted that there is an increased

blue pixel response. This is due to the predominantly bluenihation obtained from a clear sky.
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These pixel values shall be analysed and parameters estirfat both achromatic and colour

reflection models.

7.4.1 Achromatic Analysis

This section uses simulated annealing to estimate the tessnof the achromatic reflection
model for each of the material samples. For this purposentiagé sequence has been converted
to a greyscale sequence. The cooling schedule used for #hgsenof this data is that used in

Section 7.3.3. The resulting estimated parameter valweshamwn in Table 7.14.

Table 7.14:Estimated achromatic model parameters for material sanple

Sample| Estimated Parametefs x? of X2
number| R Ps Oq result | evaluations
1 0.44 0.28 0.00 | 6179 618
0.51 051 0.09 | 4535 629
066 0.51 0.01 | 6253 620
0.17 0.50 0.07 | 6813 570
0.61 0.83 0.13 | 5647 608
0.30 0.79 0.18 | 49817 479
0.36 0.50 0.00 | 1414 727
0.17 050 0.01| 510 722

QN[OOI BWN

The correct parameter values cannot be determined witlhauowgh analysis of the re-
flection characteristics of each material sample. Howetierresults are broadly consistent with
expectations. In the case of the painted samples (3, 7 ame &stimated parameters differ only
in the total reflectance, which would be expected since dmycblour of the paint differs. The
mild steel samples (4, 5 and 6) do exhibit increasing valde®ughness, though the polished
steel sample would be reasonably expected to have a highgr obps than that estimated. In
general, the metallic samples have estimgigehlues higher than those of the other, non-metallic

materials.

7.4.2 Colour Analysis

This section uses simulated annealing to estimate the paeasrof the colour reflection model for

each of the eight material samples. Here the cooling schadidd for the analysis is that used in
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Section 7.3.4. The resulting estimated parameter valugeshanwn in Table 7.15.

Table 7.15:Estimated colour model parameters for material samples.

Sample Estimated Parameters X of X
number| Cred Cgreen Cobiue Ps Oy | result | evaluations
1 0.46 045 046 0.30 0.0p 7974 1403
055 058 054 052 0.004472 1433
0.61 061 056 0.46 0.0L 6536 1383
0.21 024 025 0.47 0.0p 6692 1425
0.63 060 0.60 0.80 0.13 8111 1428
0.37 036 034 0.78 0.1745225 1221
056 048 0.06 0.50 0.08 3155 1498
0.44 0.08 0.02 0.50 0.04 1325 1575

QN[OOI BlWN

The predicted pixel values for each sample across the imegeesce are shown in Figure
7.14. These have been calculated using the estimated madeheters found by simulated an-
nealing. It can be seen that there is, in most cases, a sthmilgrity between the actual pixel
values shown in Figure 7.12. Only in samples 3 and 4 has thehhad difficulty in matching the
actual pixel values. The estimatpglanda values for this colour reflection model exhibit a simi-
larity to those found for the achromatic model. This showsmsstency in the results obtained by
this method. It can also be seen that the method has coresttipated the colour of the painted
samples, as well as the dominance of the blue pixel valueadh ease. However, in the case of
the pale blue paper (sample 2) the system has been unabseéorda colour difference. As stated
above, the correct parameter values for each sample carberdgtermined by thorough analysis
of the materials. However, Figure 7.14 shows that the estidhparameters are sufficient for an
accurate reproduction of the measured data. A reconsiruofithe image sequence, created using

the estimated parameter values, is shown in Figure 7.13.

These results show some promise for the proposed methodledtien model parameter
estimation. Failure to accurately model the observed dathué to inadequacies in the models.
Each of the models employed by the method presents an apmban of the process involved.
As such, the accuracy of the parameter estimation is linbtethe accuracy of the models used

for camera response, illumination and surface reflection.
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®

Figure 7.13:Reconstruction of the real image sequence using estimated
parameters: (a) 12:00; (b) 13:00; (c) 14:00; (d) 15:00; @pa; (f)
17:00.

7.5 Summary

This chapter has examined the performance of two regressimiques on synthetic and real
image sequences. For synthetic image sequences, whicil@itie most suitable conditions for
parameter estimation, the Levenberg-Marquardt regreseigthod has been shown to have serious
deficiencies. These have been due to both the charactenigtibe method and of the application
in which it has been used. The failings of this method in treeaa simple models with two and

three parameters have been clearly demonstrated.

It has been shown that the method of simulated annealingda®wonsistent results, pro-
vided that a suitable cooling schedule is devised. Thetafatess of this method has been demon-
strated in the case of simulated image sequences and m&flentidels with two, three and five
parameters. The method has been shown to be successfusiahses where traditional regres-

sion methods have failed.

In the case of a real image sequence, simulated annealingeleaisused to estimate the
parameters of both an achromatic and a colour reflection mdtlere has been some consistency

in the results for each of these reflection models, thoughattwairacy of the values cannot be
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Figure 7.14:Pixel values for each material sample modelled using the
estimated colour reflection model parameters: (a) samplle) sample

2; (c) sample 3; (d) sample 4; (e) sample 5; (f) sample 6; (gpdar 7;

(h) sample 8.
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evaluated without using material samples of known reflearHowever, the results show that
the estimated colour reflection model parameters are $eiifab an accurate simulation of the
observed data. Such results would enable the simulatidreadtbserved scene in differing illumi-
nation conditions and from alternative camera locatiorfss Type of simulation could be used as

a virtual environment depicting the observed scene.



Chapter 8

Conclusions

The aim of this thesis has been to develop a method for estignat model of reflection for
an object observed under natural illumination by a statimexa. Further to this, it has been
required that the results obtained are quantitative, sbhahthey may be used for subsequent
lighting calculations or simulations. Such results may sedufor a variety of applications. These
include object recognition, material analysis, or aut@datirtual environment generation from
existing natural scenes. This latter application has beesubject of some study. It has been noted
that the apparent realism of a virtual environment is nofbjrachieved by accurate modelling of
object shape [6, 26]. Realism is enhanced through the usecafate surface reflection models

which provide a sense of texture, gloss and colour.

Chapter 3 has shown how the reflection characteristics offacgimay be encapsulated
in a functional model. Such computational models allow thpraximation of a bidirectional
reflectance-distribution function (BRDF) for a surfacehdis been shown that many such models
exist, each formulated for a particular application or acef type. One model has been selected
for evaluation in this thesis, that being the model due tod¥a#d1]. It has been shown that this
model is applicable to many material types and that it hasitivantage of being computationally
convenient. Three variations of this basic reflection mdaele been considered, each with an
increasing number of parameters to be estimated, and aegdar both achromatic and colour

reflection.

This thesis has considered natural illumination congisthtwo main sources: direct il-
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lumination from the sun and diffuse illumination from theyskMany computer graphics and
machine vision applications have neglected the complefitthese sources. Typically the sun
is modelled inaccurately as a point source. llluminatianfrthe sky is often either neglected,
substituted by an ambient term, or assumed to be a hemisphedurce of uniform brightness.
Neither of these naive simplifications adequately dessribe complexity of natural illumination.
Chapter 4 has presented physically-based models of surkgridist which have been developed
by the solar energy research community. As such, they adymaodel the distribution and mag-
nitude of radiance from both the sun and sky. It has also bbewrs that, by consideration of
the scattering processes which light undergoes as it passegyh the atmosphere, the spectral
distribution of light may be modelled. Models have been @nésd which describe how natural
illumination changes with time, terrestrial location, andather conditions. Methods have also

been compared which allow these illumination models to legl irs the context of machine vision.

This research has used images obtained by a camera to meaga reflection. In order
that measurements can be made from the values of image,pideds been necessary to derive
a sensor model suitable for this application. Such a modebkan presented in Chapter 5. This
has considered the camera optics required to project aneirmag the process by which an image
is discretised to form a colour digital image. The use of aoaetric camera model allows image
pixel values to be interpreted in the context of a surfacecéfig incident irradiance. Measure-
ments made from image data can, therefore, be used in theiffation of a BRDF model for an

observed surface.

Chapter 6 has shown that, by considering a sequence of intagea over a period of time,
a scene may be observed in a variety of illumination conaiitidl his is due to the changing nature
of daylight illumination over time. It has been shown thag¢ temporal change in image pixel
values, over the duration of an image sequence, providégisaf information for the surface
reflection characteristics to be modelled. It has been shbatnsuch analysis may be performed

using a single pixel, or multiple pixels, within each imadgesequence.

The estimation of reflection model parameters from obseived)e data has been achieved
through the use of regression techniques. Such methodsptte find model parameters which
reduce the least-squares difference between observedodta model. This difference is eval-
uated using 2 metric. It has been shown that minimisation of tigisfunction will yield the

optimal reflection model parameters, in the least-squageses The use of thg? metric also
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provides a tolerance of image noise due to sensor error.

Two methods of regression have been considered. The firsbéas the Levenberg--
Marquardt method which is commonly used for parameter egion. The second method is
the probabilistic approach of simulated annealing. Theaid&e latter method of regression is
novel in this area of study. These two methods have beentedley considering the nature of
the reflection models. The expected performance of eachaudths been analysed by consid-
ering a large number of synthetic image sequences. Thegedfiawed the performance of each

technique to be assessed in precisely controlled condition

The presented methods have requigegriori knowledge of scene geometry, camera pa-
rameters and illumination conditions for each image in aisage. This has been required so that
the free parameters of the complete model, used to predagénpixel values, are those of the
selected reflection model alone. Whilst these are signifiaasumptions, it has been shown that
parameters other than those of the reflection model may baatet using existing methods. In

particular, scene geometry may be determined using a nuofilsbiape recovery techniques.

8.1 Performance

Chapter 7 has presented results for the three variants aWgrd reflection model that have been
considered. Each of these models has had an increasing nombarameters to be estimated.
The performance of the two proposed methods of regressistbéan evaluated using synthetic
image sequences. These have allowed a thorough compafittom techniques to be made for a

variety of sequences captured under precisely known dondit

It has been shown that the Levenberg-Marquardt method isuiiatble for this application.
Chapter 6 showed that the function for some examples contained local minima corradpwy
to non-optimal parameters. Such parameters do not yielddbe least-squares, fit between mea-
sured and modelled data. The gradient descent approaclofteitl identify these local minima
as solutions. It has also been shown that, even in the sinaglesovhere only a global optimal
minimum exists, the accuracy of the estimated parametelsgpsndent upon the initial parameter
estimates. Therefore, this technique requires an estiofdte reflection model parameters to be

made that is sufficiently close to the optimal values for aaturesults to be obtained. Such initial
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estimates are not available without prior analysis of thagedata.

The method of simulated annealing has shown itself to bailkafthis application. Whilst
it requires a significantly increased number of computatitmbe made, the method shows none
of the failings of the Levenberg-Marquardt method. The téghe is not misled by local, non-
optimal, minima and provides consistent results indepethg®f the initial starting parameters.
Despite the increased numbengffunction evaluations that are required, it has been shoan th
the computational complexity of the method is less than dhat naive brute force search of the
parameter space. It has been shown that, given a suitadlageohedule, simulated annealing is
able to consistently estimate parameters for the achraeraatl colour reflection models. This has

been shown through the analysis of synthetic image segsience

The analysis of real images presents a significant test ofrehine vision system. In this
case, a single clear sky sequence showing a variety of eighdapsurface samples has been used.
This sequence has been analysed and model parameterstedtiioraboth the achromatic and
colour reflection models. The estimated parameters for esftdction model have been shown
to be consistent for each of the eight surface samples. Témswated parameter values have
correctly indicated surface roughness, surface gloss atdrial colour. However, the accuracy

of the estimated parameters cannot be determined witheuts of calibrated materials.

8.2 Future Work

The current method assumaspriori knowledge of weather conditions, camera parameters and
surface orientation. These assumptions represent a sayntifamount of information which is
required for each image of a sequence. However, each of thetses are merely parameters of
the various models used to describe illumination, camespamrse and surface orientation. Given
that the method of simulated annealing scales well with areasing number of parameters, it
might be possible to estimate these in the regression po¢es example, the method could be
extended to a situation in which surface normal is unknownthls case, the regression would

estimate not only the parameters of the reflection modellbotthe orientation of the surface.

Chapter 3 has shown that there is no single reflection modieha$ suitable for character-

ising the reflection from all types of surface material. Tisigspecially true for the many natural
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surfaces, such as vegetation or sand, which may be expedena terrestrial scene. Given that
the regression methods developed here are independer séldcted reflection models, it would
be possible to select the model most suited to the obsenastk sdn this case the system would
select the model, as well as the associated parameterd; yibid a minimum least-squares dif-
ference. However, there could be many problems associaitbdsuch a generalised approach.
Primarily, the effect on the regression method of a tramisibetween reflection models, possibly
resulting in a change of parameter space, would need to lstodd. The use of many reflection

models could result in a global minimum which is not the deisolution.

The presented methods have considered static scenesadbbgra static camera. However,
a moving camera or animated scene would be expected to pravithcreased variation in image
pixel values. As has been demonstrated, an observed Higldayves to distinguish between
matte and glossy surfaces. Changing the orientation offacguwith respect to the camera would
provide an increased probability of observing such a hgittli This improvement would not
require any change to the regression method or to the dimeio$ithe parameter space, provided

that camera and object position are recorded for each frame.

The observed shading of a surface is not due only to direshihation from light sources
but also interreflection from other surfaces. All the scer@ssidered in this work have been such
that interreflection could not take place. It may be posdiblextend the methods to account for
interreflection using global illumination techniques. Hawer, this presents a considerably more
complex problem than that presented here. In the case of eoded surface reflecting light
onto a visible surface, it would not be possible to deterntireequantity of light being mutually

reflected, if the reflectivity of both surfaces is unknown.

The method of simulated annealing requires a significantusanof computing time in
order to converge to a solution. This is due to the repeatatliation of thex? function for each
hypothesised set of parameter values. Bgatvaluation requires the irradiance upon the sensor to
be evaluated for each considered pixel in the sequence.sltisarly a computationally intensive
task, the performance of which could be improved with furiheestigation. One approach would
be to parallelise the algorithm. In the simulated anneatimge, each vertex of the simplex could
be evaluated independently. Similarly, the calculatiorthef difference between predicted and

measured pixel values, for each image in the sequence, beudtributed.
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8.3 Closing Comments

This thesis has shown that the estimation of reflection mpdeimeters is possible for surfaces
visible in images of naturally illuminated scenes. This isignificant departure from the study
of laboratory scenes, in which the problem of modelling #lace is usually much simpler.
This work has shown that existing, physical, models of ratililumination may be successfully
employed in machine vision. These models allow quantiatdsults to be obtained, which can

then be used for a variety of applications.



Appendix A

Radiometry and Photometry for

Machine Vision

To simplify the sharing of data and methods between sciertimmunities a standard set of
metrics and definitions are required. Where possible thesithhas used recognised notation as
defined by the lllumination Engineering Society [54]. Thppandix defines some of the terms

presented in this thesis.

Radiometry is the science of the physical measurement ofretaagnetic radiation. A ra-
diometric measurement afdiant energys expressed in Joules [J]. The amount of energy at each
wavelength of light can be measured using a spectroradeniBie resulting measurements pro-
vide the spectrum of the light source. Photometry, howésdine psychophysical measurement of
the visual sensation experienced by a human observer tmtiie Pierre Bouguer (1760), founder
of the field of photometry, first noted that a human observeitccaot provide a quantitative de-
scription of perceived brightness but was able to compagebtightness of two light sources.
Since the human visual system has varying response to wablesources of equal radiant en-
ergy but differing spectrum may have different perceiveidiitnesses. This relative sensitivity to
wavelength can be plotted on a curve termeddbectral luminous efficacy curyeee Figure A.1.

Brightness, oluminous energyis measured in units of talbots.

The rate of flow of radiant energyadiant powerbetween two points is measured in Joules

per second or Watts [W]. The photometric equivalent is the od flow of luminous energyiu-
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Figure A.1: Spectral luminous efficacy curve.

minous poweris measured in talbots per second or lumens. Since radigiisanore physically
fundamental than photometry, radiometric quantities maycbmputed from their photometric
equivalents. This is possible by considering #fficacy of the light at each wavelength. Effi-
cacy is measured in lumens per Watt and defines the energympenlfor light of a particular
wavelength. For example, considering the visible wavelengf light, the radiant powef, of a
source with luminous power and luminous efficack is;

T L
q)_./xzssonm (A) dA. (A

In measuring radiant power, or flux, it is necessary to cardide direction of flow. This is
given as solid angle of directions measured in steradiahsjsolid angle is the three dimensional
equivalent of angle in plane geometry. A solid anglg,is measured in terms of the area on a
sphere intercepted by a cone whose apex is at the spheré&’s.c&munit solid angle intercepts an
area equal to the square of the sphere’s radi(®4]. A hemisphere, therefore, has a solid angle

of 4rr?/2r? = 2msr. A differential solid angle of directionslw, may be termed eay.

The projected area of a surface is the apparent area of tfaezeigeen by an observer from
a particular direction. This projected arabA , is the surface aredA multiplied by the cosine
of the angle® which the surface normal makes with the obserdk, = dAcosd [103]. The
projected area of a surface is, therefore, dependent ugorelditive orientation with the observer.

The solid angle subtended by a surface about a particulat pmy be derived in terms of the
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projected area. A surface of projected atha , at a distance from a point, subtends a solid
angled:
dA_  dAcosd
The following are radiometric quantities which may be dedvrom the basic units pre-

sented above. Each is accompanied, where applicable, leptresponding photometric term.

Radiant intensity [Wsr1] : The power per unit solid angle radiated about a particuil@ction.

The corresponding photometric quantityligninous intensitjfCandela).

Radiance Wm~?sr 1] : Radiancel, is the power per unit projected area perpendicular to the

ray per unit solid angle in the direction of the ray. Radiahae two useful properties [12]:
1. The radiance in the direction of a ray remains constarit @®pagates along the ray.
This is valid provided there are no losses due to scatterirapsorption.
2. The response of a sensor is proportional to the radiantieec$urface visible to the
sensor.

The corresponding photometric quantityligninance[Nit].

Irradiance [Wm~2] : The total radiant energy per unit area incident on a suréddixed ori-
entation from the hemisphere of incident directions is tgimrradianceE. Irradiance is

calculated by integrating incident radiantg, over the visible hemispherg;
E— / L, cosb; doo, (A3)
JQ

where®; is the angle of incidence relative to the zenith. The cowedmg photometric

guantity isilluminance[Lux].

Radiosity [Wm™2] : Whereas irradiance is due to incident radiance, radioBitys the energy
per unit area that leaves a surface. The corresponding ipiedtic quantity isluminosity
[Lux].
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