Learning Deformable Shape Models for
Object Tracking

by

Anthony James Heap

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds
School of Computer Studies

September 1997

The candidate confirms that the work submitted is his own and the
appropriate credit has been given where reference has been made to the

work of others.

Abstract

The use of computer vision to locate or track objects in images has applications
in a diversity of domains. It is generally recognised that the analysis of objects of
interest is eased significantly by making use of models of objects. In many cases,
the strongest visual feature of an object is its shape. Also, many objects of interest
are non-rigid, or have a non-rigid appearance with respect to a particular viewpoint.
For these reasons, there is much interest in the construction of, and tracking with,
deformable shape models.

A common approach to building such a model is to apply statistics to a set of
real-life training examples of an object in order to learn shape and deformation
characteristics. Such methods have proved successful in many specific applications;
however, they can experience inadequacies in the general case. For example, objects
which exhibit non-linear deformations give rise to models which are not compact and
not specific: in the process of capturing the range of valid shapes, invalid shapes
also become incorporated into the model. This effect is particularly pronounced
when building models from automatically-gathered training data. Also, in tracking,
smooth movement and deformation is generally assumed, but is not always the case:
the apparent shape of an object can change discontinuously over time due to, for
example, rotations in 3D.

The work in this thesis addresses the above problems.

Two extensions to current statistical methods are described. The first makes
use of polar coordinates to improve the modelling of objects which bend or pivot.
The second uses a hierarchical approach to model more general complex deforma-
tions; non-linearities are broken down into smaller linear pieces in order to improve
model specificity. In particular, this greatly improves the modelling of objects from
automatically-gathered training data.

A new approach to tracking which complements the latter of these models is also
described. Learned object shape dynamics are combined with stochastic tracking to
produce a system which can track from automatically-generated models, as well as
being able to handle discontinuous shape changes.

Examples are given of the use of these techniques, predominantly in the domain
of hand tracking. In particular, it is shown how it is possible to track 3D objects
purely from 2D models of their silhouettes.

Also described is the construction of 3D deformable models, and the use of such
models in tracking. This approach eases the task of object pose inference, but is

much less robust than the 2D approach.

Acknowledgements

I would like to thank John Ridgeway and St James’ Hospital in Leeds for help
in the acquisition of Magnetic Resonance images, and also Andreas Lanitis and the
Wolfson Image Analysis Unit, University of Manchester, for kind provision of hand
model training data.

[would also like to thank my colleagues in the School of Computer Studies Vision
Group at the University of Leeds, for three years’ supply of friendly, productive
working environment and much stimulating discussion, and particularly David Hogg
for expert supervision, including help, ideas, proofreading and a fair modicum of
enlightenment.

Finally, I would like to thank Lucy for a plentiful supply of perception and

perspective.

i

Declarations

Some parts of the work presented in this thesis have been, or are due to be,

published in the following articles:

Heap, A. J. and Hogg, D. C., “Extending the Point Distribution Model using
Polar Coordinates”, Image & Vision Computing, 14 (1996) 589-599.

Heap, A. J. and Hogg, D. C., “3D Deformable Hand Models”, Progress in
Gestural Interaction (Proceedings of Gesture Workshop, York, April 1996)

Heap, A. J. and Hogg, D. C., “Towards 3D Hand Tracking using a Deformable
Model”, Proceedings of the Second International Conference on Automatic Face and

Gesture Recognition, Killington, October 1996.

Heap, A. J. and Hogg, D. C., “Improving Specificity in PDMs using a Hierar-
chical Approach”, to appear in Image & Vision Computing during 1998.

Heap, A. J. and Hogg, D. C., “Wormholes in Shape Space: Tracking through
Discontinuous Changes in Shape”, to appear in Proceedings of the Sixth International

Conference on Computer Vision, Bombay, January 1998.

11

Contents

1 Introduction 1
1.1 Problem Domain 1
1.1.1 Models of Objects. 2

1.1.2 Deformable Shape Models 3

1.2 Focus of This Work oo 4
1.2.1 Overview of Thesis 5

2 Background 7
2.1 Overview of Previous Work 7
2.1.1 Deformable Shape Models 7

2.1.2 Tracking Paradigms L oL 10

2.1.3 Hand Tracking 13

2.2 Relevant Techniques Studied in Depth 14
2.2.1 The Point Distribution Model (PDM) and Derivatives 14

2.2.1.1 Limitations of the PDM 15

2.2.1.2 Adaptations tothe PDM 16

2.2.2 Shape Space Constraint Surfaces 18

2.2.3 Active Shape Models o000 19

2.2.4 The CONDENSATION Algorithm 21

3 Shape Models for Objects that Pivot 24
3.1 Introduction L 24
3.2 The Cartesian-Polar Hybrid PDM 25
3.2.1 Removing Polar Bias 27

3.2.2 Coping with the Angle Discontinuity Problem 27

3.3 Designing a Mapping Lo 28
3.3.1 The ‘Compacter’ Mapping Algorithm 28

3.3.2 The ‘Annotator’ Mapping Algorithm 30

v

3.3.2.1 Finding Rigid Sets of Landmarks

3.3.2.2 Finding Potential Pivots Between Sets

3.3.2.3 Constructing the Pivotal Structure

34 Resultso
3.4.1 Comparing the Different Modelling Techniques
3.4.2 Comparing Mapping Generation Algorithms

3.5 Tracking o ..o
3.6 Extensionto3D oo
3.7 Conclusions Lo

Hierarchical Shape Models
4.1 Introductiono
4.2 Constraints in Shape Space L.
4.3 A Hierarchical PDMo oo
4.3.1 Implementation Details
4.3.2 Using the Hierarchical PDM
4.4 Evaluation oo
4.4.1 Synthetic Anglepoise Lamp
4.4.2 Other Synthetic Examples
4.4.3 Manually Collected Real Data
4.4.4 Automatically Collected Real Data
4.5 Tracking using HPDMs oo o
4.6 Conclusions

Models of Shape Dynamics

5.1 Introduction L
5.2 Modelling Discontinuous Changes in Shape
5.3 Tracking o Lo
54 Evaluationo
5.5 Improving CONDENSATION
5.6 Conclusions L

3D Shape Models

6.1 Introduction

6.2 3D Model Constructiono
6.2.1 Training Image Acquisition
6.2.2 Training Mesh Capture

44
44
46
47
48
49
52
52
38
39
61
64
66

68
63
70
71
74
77
79

6.2.3 Physically-Based Models L. 85

6.2.4 Simplex Meshes o o000 86
6.2.5 Initial Mesh Construction 87
6.2.6 Mesh Deformation 87
6.2.7 Example: 3D Hand Model 89
6.3 Tracking oL 90
6.3.1 Gathering image evidence 92
6.3.2 Updating the model position 93
6.3.3 Handling Self-occlusion 96
6.4 Evaluation 97
6.5 Extensions 100
6.5.1 Stereo 100
6.5.2 Polar Coordinates 102
6.6 Discussion and Conclusions 104
Conclusions 106
7.1 Summary of Work o 106
7.2 DIScussion e e e e e 107
7.3 Future Work 108

vi

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3

3.4

3.5

3.6

3.7
3.8

3.9

3.10
3.11
3.12
3.13

4.1

Examples of inadequacies in existing models of deformation.

Training a Point Distribution Model.
Learning a non-linear 1-dimensional surface
Generating suggested movements for landmarks
Propagation of a shape population with only one shape parameter

using the CONDENSATION algorithm.

Landmark point mappings used for an anglepoise lamp
Mlustration of terms used in the ‘annotator’ algorithm.
Modes of variation for an anglepoise lamp model under the standard
PDM. . . e
Modes of variation for an anglepoise lamp model under the quadritic
PDM. . . e
Modes of variation for an anglepoise lamp model under the hybrid
PDM. . . e
Graph showing how variation is accounted for under the standard,
quadratic, cubic and hybrid PDMs.
Modelling a golf swing. L.
Automatic mapping generation for a hand model using the ‘com-
pacter” algorithm.o o Lo oo
Automatic pivot generation for a hand model using the ‘annotator’
algorithm.o
A synthetic model of an object with a single pivot.
Pivot location accuracy under varying conditions.
Cylindrical and spherical polar coordinates for the 3D Hybrid PDM. .
First mode of variation for a 3D Hybrid PDM of a human hand. . . .

Example training data for a three gesture hand model.

Vil

36

38

4.2
4.3

4.4
4.5

4.6

4.7
4.8

4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23
4.24

4.25

Projections of the ‘three gesture’ training data in PDM shape space. . 45

Example shapes produced by a standard PDM on the ‘three gesture’
model. . . . 45
Constraining shape using hyperplanes and hyperellipsoids. 48
Constraining a general point to lie within a hyperellipsoid-bounded
F T T & 50
The valid shape regions produced under two different constraint al-
gorithms. Lo 52
Three examples from the synthetic anglepoise lamp training set. . . . 53

Two views of the lamp model training data transformed into global
PCA space. o 53
The three most significant modes of variation of the linear lamp PDM. 53
The lamp model global PCA space (2D projection), showing training
data and principal component axes for the constraint patches. 54
Three traversals through the VSR for the lamp HPDM. 54
Accuracy and specificity error graphs for anglepoise lamp HPDMs
with varying numbers of linear patches and degrees of overlap. 56

Accuracy and specificity error graphs for anglepoise lamp models built

under the various modelling techniques. 56
Effect of training set size on the accuracy of the lamp HPDM. 57
Comparison of the HPDM with constraint surface models. 58
Manually annotated training examples for a hand model. 59
The manually annotated hand training data in global PCA space and

the HPDM linear patches. 60

Modes of variation for the manually annotated hand PDM and equiv-

alent HPDM shape space traversals. 60
Maximally non-valid shapes for the manually-annotated hand model. 60
Automatically collected training examples for a hand model. 61
Several projections of the automatically collected hand training data

in global PCA space and HPDM linear patches. 61
Modes of variation for the automatically trained hand PDM and
equivalent HPDM shape space traversals. 62
Maximally non-valid shapes for the manually-annotated hand model. 63
Graph showing how the specificity of the hand HPDM compares with
a linear PDM, and how it varies with the number of clusters used. . . 63

Tracking examples using manually-trained hand models. 64

Vil

4.26

Tracking examples using the automatically-trained HPDM of the hand. 65

4.27 Tracking examples using the automatically-trained linear PDM of the

5.1

5.2
3.3

5.4

3.5

5.6
5.7
5.8

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Discontinuous changes in object boundary shape due to deformation
and rotation. Lo 69
A typical transition matrix.o o L0000 71
The automatically captured training examples (projected into the
two principal dimensions of global PCA space) and the HPDM linear
patch principal axes. oo Lo Lo T4
Some example conditional pdfs generated from single seeds via both
the (untrained) Fokker-Planck and Markov model algorithms. 75
Graph showing the fitness scores for the different tracking algorithms

on an image sequence containing sudden shape changes. 76
Coping with a sudden change. 77
Propagation of a 1D shape population using the hybrid tracker. . . . 78

Graphs comparing the hybrid tracker to a CONDENSATION tracker
and an Active Shape Model tracker, on moderate and high speed

hand movements. Lo L 79
Slices from a Magnetic Resonance scan of a human hand. 83
The Simplex Angle. o Lo 86
Deforming a Simplex Mesh from an initially random position to fit

MRI data of a human hand. 90
Deforming the first model to fit a second training image. 90
The first and second modes of variation of the 3D hand PDM. 91
Suggested landmark movements. 0oL 93
Self occlusion of a vertex by a facet. 97
Snapshots from hand tracking experiments using the 3D PDM. 98
Tracking against a cluttered background. 100
The stereo tracking environment. Lo 101
Calibration image for the stereo environment. 101
Snapshots from a 3D stereo tracking sequence. 103

Three views of the line drawing output from the 3D stereo tracker

SEQUENICE. . . v v v v e e e e e e e e e e e e e e 104

X

List of Tables

3.1 Machine cycles used to generate a model instance under different

typesof PDM.

Chapter 1

Introduction

1.1 Problem Domain

The use of computer vision to locate or track objects in images has applications in
a diversity of domains.

In some cases the goal is to assist humans in tedious or repetitive visual tasks.
In surveillance, human body tracking warns night watchmen of potential intruders;
in manufacturing, electronic component location is used to spot defects in printed
circuit boards on the production line.

Alternatively, there may be a need for accurate measurement or classification. In
medicine, x-rays of children’s hands are analysed to spot defects in bone growth; in
sports, whole-body tracking is used to analyse and improve the technique of javelin
throwers; in robotics, feedback from vision guides autonomous vehicles around ob-
stacles; in animal welfare, livestock tracking is used to monitor behaviour under
varying living conditions.

Otherwise, the application might simply be to improve the interaction between
man and machine. Hand tracking is the first step towards gesture analysis and the
interpretation of sign language; gaze analysis can be used to determine the user’s
point of focus on-screen.

In all these cases it is generally recognised that analysis of the objects of interest

is eased significantly, especially in the presence of noise or background clutter, by

Chapter 1 2 Introduction

making use of a priori knowledge of object shape and appearance. In short, we

require models of objects.

1.1.1 Models of Objects

“If we are to identify objects, we must have some a priori representation

for those objects.” Rodney Brooks, 1981 [13].

A model of an object is merely a description of its features. This very general
statement hides a number of underlying questions. Firstly, which features are to
be modelled? In the context of computer vision these should certainly be wvisual
features, such as surfaces, edges, corners or distinctive markings. Secondly, which
attributes of these features are to be described? Shape, colour or texture are all
possibilities. Thirdly, what is the nature of these descriptions? For models of rigid
objects, a single description of appearance is required. For models of classes of
objects, deformable objects or 2D projections of 3D objects, there might be either
a continuous range or discrete set of valid appearances. For models of dynamic
objects, a description of how appearance changes over time may also be necessary.

Only after these questions have been answered can an object model be con-
structed (i.e. have its features described). Simple models can be hand-crafted, with
the descriptions of appearance, deformation and dynamics all being hard-coded.
However, for more complex models, and also to provide a general framework, it is
useful to look to learning models from real-world examples.

The very fact that an object model is being constructed as an aid to object
location or tracking seems to negate the possibility of making object feature mea-
surements automatically from suitable images. However, it is sometimes possible
to automate or semi-automate the process by providing object examples under con-
strained conditions. For instance, it is very easy to locate the boundary of an object
placed against a homogeneous background.

It is perhaps interesting to note that in order to automate fully the construction
of object models, one must automate the design decisions (i.e. the questions posed
above) as well as the measurement process. Otherwise one can only ever build models
of objects which lend themselves to the particular chosen features and attributes.

Models of object shape and appearance are used for object location in images by
performing a match between model and image. Given a set of parameters describing
the model state (e.g. position, orientation or size), the problem reduces to one of

finding values for these parameters which result in the best match. If we select image

Chapter 1 3 Introduction

features and look for matching model features we are said to be using a bottom-up
approach. Conversely, if we select model features and search for matching image
features we are taking a top-down approach.

At the simplest level, object tracking can be thought of as repeated object lo-
cation. However, it would be foolish to ignore the object pose constraints which
exist from frame to frame in an image sequence: models of object dynamics can
be used. The most basic dynamic constraint is proximity; given a sufficient sample
rate, an object’s appearance in one frame will be very similar in the next frame. Ad-
ditionally, any object with mass will experience momentum and inertia, so velocity
constraints can be used. Higher order assumptions can also be made; for example,
acceleration models can predict oscillatory behaviour, but beyond that they become
less powerful.

Although certain object models lend themselves to particular tracking
paradigms, it is useful to draw a distinction between models and tracking. Tracking
should be thought of as an application of a model; there are other equally worthy
applications such as simulation or visualisation. Also, it it certainly possible for two
different tracking algorithms to make use of the same underlying object model—
indeed such trackers could possibly be combined to produce a hybrid tracker which
exhibits the best qualities of the two individuals.

Two of the most important factors when considering modelling or tracking tech-
niques are performance and reliability. Most of the applications outlined above
require real-time tracking, so any successful algorithm must be able to process sev-
eral frames per second on technology that is currently available or will be available
within, say, the next ten years. Also, a system should be robust enough such that
tracking failures rarely occur: humans have a very low tolerance for such failures.
Achieving either real-time performance or reliability in isolation is relatively simple;

achieving both together is much harder.

1.1.2 Deformable Shape Models

In many cases, the strongest visual features of an object are its contours (edges),
especially those that divide it from its surroundings (i.e. its boundary), and the most
useful, if not only, attribute of a contour is its shape. Also, many objects of interest
are either non-rigid, or else exhibit non-rigid changes in appearance with respect
to a particular viewpoint. For these reasons there has been much work published

on the subject of models of shape and deformation. The features used in such

Chapter 1 4 Introduction

work are almost exclusively contours, allowing the modelling of a very wide class of
objects (i.e. any object that has a reasonably distinctive boundary). Tracking with
such models is also generally very successful - edge features are easy to locate in
images, and a top-down approach with sparse image analysis can be used, resulting
in high-speed systems which are relatively robust.

One of the most successful approaches to modelling shape and deformation has
been to use training data to learn an object’s shape and how it can vary. This

generally gives realistic, compact models which perform well in many tracking tasks.

1.2 Focus of This Work

Although the use of deformable shape models has been demonstrated to be success-
ful when applied to certain specific examples, current models of deformation and
dynamics still experience inadequacies in the general case. Some common problems

are:

Models of deformation are not optimally compact, often representing non-

linear deformations as a combination of two or more linear ones (Figure 1.1a).

e Subsequently, non-valid shapes can be generated via inappropriate combina-

tions of these linear deformations — the model is not specific (Figure 1.1b).

o Automatically gathered training data can produce very poor quality models

(Figure 1.1c).

e Smooth, continuous dynamics are generally assumed. However, in some cases,
sudden shape changes can occur. When tracking a silhouette this can be due

to object deformations, or changes in view of a 3D object (Figure 1.1d).

The work in this thesis addresses the above problems. New techniques are de-
veloped which improve the specificity of models, and an approach to tracking is
described which complements these models and caters for a wide array of dynamic
behaviours, including non-smooth deformation. The development of 3D object mod-
els for tracking from 2D images is also detailed, and their relative merits are dis-
cussed.

Throughout this work, human hands have been used as the main case study for
the presented modelling and tracking techniques, with the rationale that the ability

to locate hands and recognise gestures would be of great practical use, for example

Chapter 1 5 Introduction

(@)

(b)

(©)

(d)

Figure 1.1: Examples of inadequacies in existing models of deformation: (a) non-
compact linear deformation modes, (b) subsequent non-valid shapes, (c¢) a model
generated from automatically-gathered training data and (d) a discontinuous shape
change.

in human-computer interaction and also because it is a difficult and challenging task.

The methods described also apply generally to other objects.

1.2.1 Overview of Thesis

The thesis is set out as follows: this chapter has been a general introduction and
overview of the subject; Chapter 2 is a review of background material; the remainder

constitutes the original work and is organised in the following way:

Chapter 1 6 Introduction

o Chapter 3 describes an extension to current statistical models: polar coordi-

nates are used to improve the modelling of objects which bend or pivot.

e Chapter 4 describes an alternative extension which uses a hierarchical ap-
proach to model more general non-linear deformation. This improves model
specificity, and also enables construction of models from automatically gath-

ered training data.

o Chapter 5 describes a new approach to tracking: a model of object shape
dynamics is combined with stochastic tracking to produce a system which can
cope with a wide array of dynamic behaviours, including discontinuous shape
changes. This facilitates the tracking of 3D objects from silhouettes and also

tracking from automatically generated shape models.

o Chapter 6 describes the construction of 3D deformable models and the use of
such models in tracking from 2D images. The relative merits and drawbacks

compared with 2D models are discussed.

Finally, some general conclusions are drawn, and there is a discussion of potential

future work.

Chapter 2

Background

This chapter is divided into two sections. Firstly, there is an overview of previous
work on deformable shape models and their use in tracking. Secondly, there is a

more in-depth study of techniques upon which the work in this thesis is based.

2.1 Overview of Previous Work

2.1.1 Deformable Shape Models

Deformable shape models date back at least to 1965 and the work of Roberts [64], in
which simple geometric primitives such as cubes and prisms are permitted to stretch
and skew in order to explain observed image features.

Many other authors make use of hand-crafted deformable shape models. In
the ACRONYM [13] system of Brooks, models are built from sets of generalised
cones with variable shape parameters, joined together via translation and orienta-
tion constraints. Hogg’s ‘Walker’ system [39] uses a 3D articulated ‘tin-can’ model
for tracking human motion, and Rehg and Kanade take a very similar approach to-
wards hand modelling [62]. Both systems incorporate a complex set of hard-coded
joint constraints. Lowe uses a similar system but for more general objects [52]. Yuille
describes deformable templates [75]: parameterised deformable shape models, con-
structed from geometric primitives such as circles and parabolas. Prior probabilities

are also defined for each parameter to indicate the possible range of values.

Chapter 2 8 Background

All of the above modelling techniques require the investment of time and ex-
pertise to produce a model. Deformable models require much more thought than
rigid models because a whole range of possible shapes must be described, preferably
in terms of a small number of parameters. In some cases, there are dependencies
amongst these parameters which must also be modelled (e.g. inter-dependent finger
joint angles). Additionally, the approximation of object shape by geometric primi-
tives, such as cylinders, lines, boxes or simple mathematical curves, is limited in its
expressiveness. For example, biological objects can rarely be effectively modelled in
this way.

The snake [45] of Kass et al provides a more appropriate framework for modelling
biological shapes. A snake is a flexible contour (represented by a set of control points)
which behaves like an elastic stick with internal physical properties. It can take on
almost any form, but it has a potential energy term which rises as it deforms away
from the rest shape. Snakes have no a priori knowledge of object shape; the only
device by which they may be customised to a particular shape is by relaxing or
tightening the stiffness constraints at particular nodes.

Deformable meshes are the 3D equivalent to snakes. They are surface meshes
consisting of a number of nodes, each connected via virtual springs to a number of
neighbouring nodes. Delingette [25] and Bulpitt and Efford [14] describe two such
meshes.

Curwen and Blake introduce coupled contours [24]—snakes coupled to fixed-
shape templates—to allow models to have a specific preferred rest state. Addition-
ally, they represent the contour as a cubic B-spline; this requires fewer control points
and also has implicit smoothness constraints. As with snakes, deformation is based
on an assumption of elastic properties.

Grenander et al [30] adopt a statistical approach to incorporating a priori knowl-
edge of shape into contours. Several example contour shapes are extracted manually
from training images and the distributions of the angles between adjacent contour
segments are learned and modelled as a Markov chain.

Much work has been published on modelling techniques which can be loosely
classed as ‘base-shape-plus-linear-deformations’ approaches. These generally consist
of a base shape X (usually coded as the (x,y) co-ordinates of a number of control
points) and a number of linearly-independent deformations vy ...v; which can be

added to the base shape in various proportions to produce all possible valid shapes:

t
XZK—I-ZZ)Z'VZ' (21)

Chapter 2 9 Background

The weightings b; are linear deformation parameters and form a ¢-dimensional shape
space. The advantages of such approaches are low deformational dimensionality and
the use of linear (and hence fast) algebra. The differences between the approaches
are really to do with the determination of X and the v;.

The simplest example of this is the set of affine-invariant deformations introduced
by Blake et al [8]. The model incorporates three degrees of affine deformation from
the base shape, allowing the modelling of planar objects viewed at any orientation.

Pentland and Horowitz [57] describe how it is possible to produce sensible linear
deformations from a single base shape by way of the Finite Element Method (FEM).
An FEM model is a physical model, treating the control points as point masses, and
including stiffness and damping coefficients between every pair of points. Such
models undergo free vibration when perturbed. Figenanalysis of the FEM model
components can be used to extract the free modes of vibration. These are used
directly as the model deformation vectors. Pentland and Horowitz demonstrate the
use of the technique on generic object shapes [57, 58], but it can also be applied to
specific object shapes [66].

Key frames [10], described by Blake et al, are representative training examples of
an object being modelled. Deformation modes can be constructed as interpolations
from the base shape to each of the key frames, hence each key frame gives rise to one
degree of freedom. Key frames must be chosen carefully and control points located
with precision to ensure that a good model is produced. Ullman and Basri [73] show
how key frames can also be used in some cases to reconstruct (a limited range of)
unseen views of 3D objects.

The Point Distribution Model, or PDM [19] of Cootes et al (described in Sec-
tion 2.2.1) combines the idea of multiple training examples with statistical analysis
to produce models with good specificity. The use of principal component analysis
(PCA) [44] on the deviations of a large number of training examples from the mean
shape gives rise to a small number of deformations which are representative of the
training data. The accompanying eigenvalues provide a measure of significance for
each deformation mode. The main advantages over the use of key frames are that
training examples do not need to be chosen quite as carefully and the location of
control points need not be as accurate. Both are important factors when consid-
ering the possibility of automated training [3], which generally gives rise to large
volumes of noisy training data. PDMs have found many practical applications in
computer vision, including face recognition [49], person tracking [4], medical image

analysis [38] and car tracking (using 3D models) [67, 74].

Chapter 2 10 Background

The similarity of the above techniques means that they can easily be combined
to produce richer models. Blake et al combine the affine-invariant deformations with
key frames in a single model [10], and Cootes and Taylor show how PDMs and FEM
models can be combined to produce useful hybrid models in the case of having only
a few training examples [16].

In some cases the base-shape-plus-linear-deformation approach can fail. Valid ob-
ject shapes might form regions in shape space which are non-linear, cyclic, disjoint or
of variable dimensionality. Bregler and Omohundro describe constraint surfaces [12]
(see Section 2.2.2) which provide a means for learning arbitrary regions within high
dimensional spaces from training data. They go on to show how this technique can
be applied to shape modelling, using human lips as an example. Ahmad et al [1]
describe work along similar lines whereby training shapes of human hands are man-
ually categorised into five separate gestures and a local PCA is performed on each

one to produce a piecewise-linear hand gesture model.

2.1.2 Tracking Paradigms

There has been much work on location of objects; this is generally treated as a
global search problem and, as such, is computationally intensive. Most techniques
operate on a hypothesis/validation (generate-and-test) principle; promising candi-
date solutions are generated and then validated via image analysis. Efficiency is
highly dependent on the heuristics for the hypothesis stage. The simplest strategy
is pose sampling (effectively an exhaustive search), but this is only feasible for very
constrained search spaces. Techniques such as alignment, the generalised Hough
transform and geometric hashing [40] all depend on the reliable location of ‘inter-
est points’ in the image, such as edges or corners (i.e. they adopt a ‘bottom-up’
approach). This is time-consuming, and also not robust because low-level mistakes
affect high-level performance. Conversely, the Genetic Algorithm approach used by
Hill et al [34, 33] is entirely top-down: hypotheses are generated without reference
to the image; image analysis is only used in the verification stage.

Object tracking has the added advantage of the availability of temporal informa-
tion. The simple fact that object movement is generally small between consecutive
frames reduces the global search problem to a local one, implying that any object
location technique that is based on local optimisation is also useful for tracking.

One such technique is described by Lowe [52], using parameterised, articulated

models. The error between projected model edges and nearby image edge features is

Chapter 2 11 Background

measured, and Newton non-linear least-squares minimisation is used to optimise the
model parameters iteratively for this error. In Lowe’s implementation, however, the
speed benefits of local optimisation are cancelled out to some extent by the global
computation of image edges.

The snake of Kass et al [45] is the forerunner to a whole host of work on physics-
based tracking. As mentioned above, a snake is a flexible contour with certain
internal stiffness properties. It tracks by being ‘attracted’ to various image features.
The scenario is formulated in terms of energy: the image is abstracted as an energy
landscape, with desirable features (usually edges) having low energy. A snake, when
placed on such a landscape, locks onto features by sliding down into these energy
minima whilst simultaneously minimising its internal potential energy. In practical
terms, the energy gradient is evaluated (via image analysis) at a set of control points
along the snake (the image first undergoes a Gaussian blur in order to widen the
energy wells in the landscape) and the snake is deformed iteratively until it reaches a
stable position. The whole process can alternatively be thought of in terms of force-
based tracking: external gravity-like forces pull the snake downhill in the energy
landscape and internal forces maintain its smoothness. This is a local optimisation
process and so extends naturally from object location to object tracking. In addition,
the physical properties of the snake can be extended to momentum, thus providing
some form of temporal prediction. Terzopoulis and Szeliski reformulate the snake
dynamics within a probabilistic framework and introduce the Kalman snake [72]
(based on a Kalman filter) which, as well as predicting the snake’s position, can
provide confidence limits for such predictions.

The principles of snake deformation apply to 3D surface meshes in a very similar
manner, with force-based tracking predominantly being used. There is the additional
aspect of structural reorganisation of the mesh to cater for object topography; mesh
nodes can be added (refinement) or removed (decimation) in order to provide a more
even tessellation.

Curwen and Blake [24] show how snake technology can be used with B-spline
contours, and also introduce a more efficient method for feature search, whereby
image edges are sought along contour normals using a divide-and-conquer strategy.
This avoids the need for the Gaussian blur and 2D gradient calculations. In further
work [8], Blake et al also combine their approach with the Kalman Filter, which
affords several advantages. One benefit is that the spatial search scale is controlled
automatically according to certainty; if no feature is found, the search scale is in-

creased. Also, the temporal scale (i.e. memory) is adaptive; inertia is effectively

Chapter 2 12 Background

reduced when features are lost, allowing fast recovery. When features are found, the
memory is extended to exploit motion coherence.

Cootes and Taylor describe Active Shape Models (ASMs or ‘Smart Snakes’) [15,
20]: the application to tracking of the PDM. The approach is similar to Lowe’s
in that image measurements are projected into the model parameter space and
parameter errors are then minimised. However, in this case the minimisation is linear
least-squares, which has a closed form solution and is thus faster to calculate. The
maths involved is further simplified by the fact that the PDM’s deformation modes
are orthonormal. Also, because there are generally only a few model parameters,
this approach is faster than previous snake-like techniques. Performance and speed
can be improved further still by employing a multi-resolution search [21] whereby
earlier iterations proceed at lower image resolution and fewer shape parameters are
allowed to vary, with refinement being permitted in the later stages.

Baumberg and Hogg show how ASMs can be coupled with a Kalman filtering
framework to produce a more robust system [4]. This method is very efficient because
the filters for each shape parameter can be decoupled, allowing independent filtering
of each parameter and thus avoiding large matrix computations.

All of the approaches described so far have either non-specific or hard-coded
dynamical systems. Some of them (e.g. Kalman filters) are adaptive, but none have
any learned dynamics.

Hogg’s ‘Walker” model [39] is an early example of a non-trivial temporal model.
The kinematics are coupled to a pre-learned periodic walk sequence, modelled via
a series of cubic B-splines, which is used to derive predictions for plausible object
states in each successive frame.

Blake et al describe how dynamics can be learned from training sequences [10]
within a Kalman filter framework. Dynamics up to second order (such as constant
speed, oscillation or decay) can be learned using a simple tracker with default dy-
namics in a constrained environment. The trained tracker then improves robustness
on similar motions.

Baumberg and Hogg [6] show how to construct temporal models from training
sequences using FEM model analysis [57]. The models produced exhibit a number
of independent modes of vibration which reflect the motions experienced in the
training sequences. These motions can then be used directly as prediction models
for tracking, again, within a Kalman filtering framework. The use of modal analysis
means that, unlike Blake et al’s model, the Kalman filter can be decoupled for extra

speed.

Chapter 2 13 Background

Isard and Blake’s CoNDENSATION algorithm [43] (described in Section 2.2.4) pro-
vides a much richer environment for temporal prediction. The model state is repre-
sented not as a single, deterministic set of model parameters, but as a probability
density function over the whole parameter space. This allows for non-Gaussian (ar-
bitrary, in fact) uncertainty and multiple hypotheses. Propagation dynamics are
learned from training sequences; Isard and Blake demonstrate the construction of
second order models which can predict constant velocity, oscillatory and decaying

dynamics.

2.1.3 Hand Tracking

As the focus application of this thesis is hand tracking, it seems appropriate to give
a survey of previous work in this area. Pavlovic et al [56] have recently produced a
very thorough review of much of this work, also including details on gesture analysis,
which involves ascribing meaning to the movements of the hand(s).

All (noteworthy) previous work makes use of some form of model of the hand.
The types of models used vary enormously but can be categorised broadly as being
either full 3D models or 2D appearance models.

3D approaches have been based almost exclusively on skeletal models of the
hand. These manually-crafted models are fairly accurate in that the constraints
amongst joint angles and relative bone lengths are coded explicitly from biological
data, but in each case a ‘generic’ hand model is created: the differences from person
to person are not incorporated. They are also very tedious and time-consuming
to build. Tracking with such models involves collecting pieces of image evidence
and calculating changes to the hand position and joint angles which best satisfy
the evidence. Both Dorner [27] and Lee and Kunii [50] simplify the image analysis
task by using colour-coded gloves. Rehg and Kanade’s DigitFEyes [62], however, can
track unadorned hands; the skeletal model is appended with jointed cylinders, and
edge detection is used to drive the deformation process. In later work by the same
authors [63] the subject of self-occlusion is discussed.

Systems using 2D appearance models have been more varied. Deformable
contour-based approaches are popular [46, 1, 9]; these use either key frame or sta-
tistical shape models, and tracking proceeds in a snake-like manner, with various
adaptations as described in Section 2.1.2.

Silhouette shape models have also been used extensively [47, 54, 23, 29, 60, 53].

These generally involve a fixed number of static hand poses, indexed into a ‘gesture

Chapter 2 14 Background

library’ via some set of measured features, such as silhouette width, height, centroid
position, first and second order moments, or even eigenimage decomposition. Under
such systems, hands are not so much tracked through video sequences as located
in every frame. A bottom-up approach is used; background subtraction, image
thresholding or colour segmentation techniques are applied to segment the hand
silhouette, which is then compared to the library to find a match. This comparison
in itself can be non-trivial; Kjeldsen, for example, makes use of a neural network [47]
for matching. Such approaches can be very susceptible to background noise and

changes in hand scale or orientation.

2.2 Relevant Techniques Studied in Depth

2.2.1 The Point Distribution Model (PDM) and Derivatives

A PDM is a model of shape built purely from the statistical analysis of a num-
ber of examples of the object to be modelled [19]. Given a collection of training
images of an object, the Cartesian coordinates of N strategically-chosen landmark
points are recorded for each image. Training example e is represented by a vector
Xe = (Tet, Yey - - - Tens Yen) (for a 2D model).

The examples are aligned (translated, rotated and scaled) using a weighted least-
squares algorithm, and the mean shape X is calculated by finding the mean position
of each landmark point. The modes of variation are found using principal com-
ponent analysis (PCA) [44] on the deviations of examples from the mean, and are
represented by N orthonormal ‘variation vectors’ py...pny. A deformed shape x is
generated by adding linear combinations of the ¢ most significant variation vectors

to the mean shape:

13
X=X+ bp; (2.2)

j=1
where b; is the weighting for the j* variation vector. Figure 2.1 illustrates the
training procedure.

Generally, the significant deformations are captured by only a handful of varia-
tion vectors; the rest represent noise in the training data. By choosing t < 2N, we
extract only the important deformations, discarding noise, and thus we can com-
pactly capture object shape and variation.

An instance X of the model can then be generated in the image frame by speci-

Chapter 2 15 Background

Unaligned training set

259 M
2=l e

— e
o

I M
<

Mean shape Modes of variation

Figure 2.1: Training a Point Distribution Model.

fying translation, scale and orientation:

X = M(s,0)[x] + X. (2.3)

where M (s, 0)[.] performs a rotation by angle 6 and a scaling by factor s, and
X. = (X, Y, X, Y,,..., X, Y.), where (X, Y.)T are the coordinates of the centroid
of the model instance.

The PDM affords several advantages over other shape modelling techniques.
The use of real-life training data makes for an accurate model of shape. Because
a whole set of these training examples is used, a realistic model of deformation is
also obtained, and without the need for hand-crafting. The statistical nature of the

approach means that a degree of noise in training data annotation is tolerable; this

noise is filtered by the PCA.

2.2.1.1 Limitations of the PDM

A good deformable model should be accurate, specific and compact. An accurate
model includes all valid shapes. A specific model excludes all invalid shapes. A

compact model uses the smallest number of parameters possible to describe a shape

Chapter 2 16 Background

(i.e. its dimensionality approaches the natural deformational dimensionality of the
object being modelled).

Model shape can be thought of in terms of points in an n-dimensional shape
space. In the case of a PDM the dimensions are the # and y coordinates of every
landmark point (so there are 2N dimensions). Within the shape space there is
generally a continuous region which corresponds to valid shapes; in this thesis this
is referred to as the valid shape region, or VSR.

The standard PDM assumes that the set of all valid shapes forms a Gaussian
distribution normally about some mean point in the shape space. By setting a max-
imum allowable Malhalanobis distance from the mean, the VSR can be thought of
as being bounded by a hyperellipsoid. In some cases, especially when model land-
marks have been chosen strategically, this approximation is sufficient to produce
a satisfactory model which is both compact and specific. However, in many real
objects, non-linear deformations (such as bending or pivoting) are a natural occur-
rence. The PDM is forced to model non-linear deformations by the combination of
two or more linear deformations. Such models are not compact because the dimen-
sionality is increased, and not specific because invalid shapes can be produced via
an inappropriate combination of linear deformations (see Figure 1.1a for examples).
This corresponds to the PDM owver-approximating the VSR, and covering a larger
region of shape space than is required. Poor accuracy is the result of the opposite
problem, whereby the PDM under-approximates the VSR, resulting in some valid

shapes not being included in the model.

2.2.1.2 Adaptations to the PDM

There has been some work on adaptations to the PDM to improve its accuracy,
specificity or compactness.

Accuracy is often poor in the case where not enough training data has been
provided; generally this results in only a subset of the true VSR being modelled
(i.e. the PDM is too highly constrained). Improvements can be made by somehow
allowing extra degrees of deformational freedom in the model.

Kervrann and Heitz [46] show how this is possible by way of a first-order Markov
process, similar to that used by Grenander et al [30]. Landmark points are allowed
to move slightly from their current position, but with neighbouring points being
encouraged to move in unison to some extent.

Cootes and Taylor show how a similar effect can be achieved via FEM model

analysis [16]; statistical and physical deformations are combined to produce a single

Chapter 2 17 Background

model, as described in Section 2.1.1. In later work they describe a simpler alternative
which attempts to introduce extra variability via direct tampering with the shape
covariance matrix [17].

All of these processes can be used to ‘bootstrap’ the construction of a PDM by
automatically locating new training examples in unseen poses.

Poor specificity arises generally in the case where the VSR is non-linear, forcing
the PDM to include non-valid shapes in the model. This also results in non-optimal
compactness (see Section 2.2.1.1 above). In such cases it is sometimes possible to
improve specificity and compactness by performing a non-linear mapping of the
shape space into some new space, in the hope of making it more linear. If this can
be done, fewer modes of variation are needed and the model is more compact. Also
because non-linearities are not being modelled with two or more modes, specificity
is improved.

Sozou et al describe one such approach, the Polynomial Regression PDM [68],
in which the second and subsequent shape parameters, b;...b;, are determined by

fixed polynomial functions of the first parameter, b;:

b]‘ = ajo + Cljlbl + Cljzb% + -+ ajdb;l (2 <] < t) (24)

where d is the degree of the polynomial being used. The values of the a;; coeflicients
are determined by finding polynomials of best fit through the training data. Be-
cause, in general, not all legitimate variation can be captured with only one shape
parameter, it is necessary to perform this process iteratively on residual deviation
from the polynomial curves (hence the term ‘regression’), until the only remaining
variation is due to noise in the training data.

In later work, Sozou et al describe the use of a multi-layer perceptron (MLP)
to perform a non-linear mapping of the shape space [69]. A 5-layer perceptron is
constructed with a ‘bottleneck” in the middle layer. In training, the MLP is forced
to code training shapes in a number of dimensions equal to the number of neurons in
the middle layer, thus effecting the required non-linear dimensional reduction. The
process works well for one-dimensional deformations but less well in the presence of
two or more modes of deformational freedom.

In the case of modelling continuous contours, an alternative to constructing a
non-linear mapping is to look at the possibility of altering the training data itself.
Landmarks can be moved around a contour without altering its overall shape. If
done intelligently, this can improve model linearity. Hill and Taylor describe a

greedy algorithm which attempts to achieve this by minimising the overall model

Chapter 2 18 Background

variance [35]. Baumberg and Hogg [5] describe the use of an alternative component
analysis (i.e. not PCA) along with stochastic model perturbations in order to refine

training examples.

2.2.2 Shape Space Constraint Surfaces

Constraint surfaces (as described by Bregler and Omohundro [12]) provide a method
for learning an arbitrary surface within an n-dimensional space, using samples taken
from it. In this context, a surface is defined to be a geometric entity — embedded
within an n-dimensional space — which can have any topology and whose dimen-
sionality can vary arbitrarily over the space (but is generally much less than n).

The key to the approach is that a complex, non-linear surface approaches linear-
ity locally under magnification, and hence can be approximated by a combination
of a number of smaller linear ‘patches’ (i.e. a piecewise linear approach).

To build the linear patches, a k-means cluster analysis is performed on the train-
ing data in shape space to find a number of prototypes. For each prototype, a
number of nearest neighbours are taken from the training set and a PCA is per-
formed on them. This produces the desired lower-dimensional linear sub-space in
the region of each cluster (the dimensionality of which is determined by the number
of significant principal components, according to an arbitrary cut-off point). The
whole non-linear surface is represented via a combination of these linear patches.

For example, a constraint function (' can be applied to a general shape x as follows:

- i Gi(x) Pi(x)
) = > Gi(x)

where P;(x) is the shape x as projected into the subspace of linear patch ¢ and G is

(2.5)

the influence function for patch :. G is a Gaussian and is centred on the k-means
prototype for patch 7, with a variance “determined by the local sample density” (no
rigorous mathematics is given to explain this exactly). Figure 2.2 illustrates the
learning process.

This technique applies directly to object shape modelling. If the training samples
are examples of valid object shapes then the surface produced is representative of all
valid shapes. Bregler and Omohundro demonstrate modelling the shape of human
lips in this way [12].

Note that in building such a constraint surface there are various design choices
to be made: the number of linear patches to build, how many nearest neighbours

to use for each local PCA (this is related to how much the patches should overlap)

Chapter 2 19 Background

L Sie W . - - -
,;"" A s, ’ \
:’l{ "',‘ d ‘.\'.‘
i .3 '.
3 / N J
LY A -
‘\"\- PR ~ * ———
(@ (b) (©)

Figure 2.2: Learning a non-linear 1-dimensional surface; (a) the training data, (b)
the local linear patches, (c) the learned surface.

and, crucially, the cut-off ratio for deciding the dimensionality of each patch (i.e.
how significant a dimension must be for it to be included).

Constraint surface models suffer some disadvantages, mostly related to the use of
non-bounded hyperplanes to represent each linear patch. This is discussed in more

detail in Chapter 4.

2.2.3 Active Shape Models

Active Shape Models [15, 20] are the application of the PDM to object location
and tracking. The approach is similar to the snake algorithm, but with the shape
constraints coming from the PDM.

The starting point is a PDM instance X in the image frame, defined in terms

of centroid coordinates (X.,Y.), orientation 6, scale s and deformation weights

b= (by,...,b)7":

X = M(s,0)[x+ Pb] + X. (2.6)

where X. = (X, Y., X.,Y,,..., X, Y.) and P = (p1,p2,...,P:) is the matrix of
variation vectors (this is a combination of equations 2.2 and 2.3). For each control
point ¢, a suggested movement dX; = (dX;,dY;) is discovered by analysing a line of
pixels normal to the model boundary and locating the strongest edge (see Figure 2.3).

The aim is not to update the positions of the control points directly, but to find
changes to the model parameters X, Y., s, # and b which move the control points
as close as possible to their desired locations. The changes in pose (dX., dY., ds

and df) are calculated as follows:

1 X 1
dX.= =5 "dX; dY, = =S dY; 2.
o 3 (2.7

Chapter 2 20 Background

model
boundary

Figure 2.3: Generating suggested movements for each landmark by searching for
edges along a line normal to the model boundary.

1 X (dX; —dX,) - (X — X,)

ds = — (2.8)
N ; 1% — X ||?
1 X (dX; — dX.) R(X; — X,)
df = — (2.9)
N ; X5 — X ||?
0 —1
where R = () (2.10)
1 0

The residual suggested movements are then projected into the model frame:

dx = M((s(1 +ds))™", —(0 + dO))[M(s, 0)[x] + dX — dX.] — x (2.11)

Subsequently the change in shape weights db is given by:

db = P1dx (2.12)

It can be shown that equation 2.12 is equivalent to a least-squares approximation.

The process is applied iteratively to ensure a good fit to the image data. As
is the case for other local optimisation-based object location techniques, this one
extends to tracking by initialising the model in an image frame at the final rest
position from the previous frame.

Improved performance can be achieved in some cases using a multi-resolution

Chapter 2 21 Background

search [21], whereby a coarse scale is used in the initial stages and finer resolution
is gradually introduced to allow for refinement in the later stages. More accurate
model fitting is also achieved if use is made of grey-level information around the
landmark points [22].

Hill et al [36] describe another extension which uses directional constraints to
help combat the aperture problem, which relates to the uncertainty in the correct
position of a landmark along an image edge. The task of finding the best changes
to the shape parameters is reformulated in terms of errors in normal and tangential
directions separately. This allows landmarks to ‘slide’ along image edges more freely,

and model fitting subsequently proceeds in fewer iterations.

2.2.4 The CONDENSATION Algorithm

In the CoNDENsATION (Stochastic Conditional Density Propagation) tracking al-
gorithm [43], the location of an object in an image is represented not by a single set
of model parameters, but by a probability density function (pdf) over the model pa-
rameter space. A model of conditional probability (learned from training sequences)
is used to propagate the pdf over time. In other words, given the pdf at time ¢ there
is a mechanism to predict the pdf at time ¢t + 1, based on a simple model of ob-
ject motion. The new pdf is consolidated and refined using measurements from
the current image frame. Specifically, a fitness function is used to determine the
goodness-of-fit of model to image for any given set of model parameters.

In practice, the pdf is represented by a population of samples drawn from the
parameter space. Each one has its fitness calculated and factored sampling is used

to choose seeds for propagation. The algorithm proceeds as follows:

1. To initialise, generate a population of N candidate model shapes s;...sy at

random positions in the shape parameter space.

2. Tterate:

(a) Calculate the fitness f; = F(s;) of each shape.
(b) To produce each shape in the new population:
i. Select a member of the old population randomly, with probability of
selecting shape j being equal to f;/3>; fi
ii. Apply the propagation function P(s) to produce the new shape. Isard
and Blake use a ‘Fokker-Planck’ (drift-and-diffuse) stochastic differ-

ential equation [65]:

Chapter 2 22 Background

P(s) = As + Bw (2.13)

where w is a vector of independent standard normal random variables,
and A and B are constant matrices learned from training sequences
of characteristic movements; A defines the deterministic ‘drift’ in the

model and B is used to scale and orientate w.

A A caculate)
stochastic new
propagation fitnesses
£ g £
[T i
Shape parameter Shape parameter Shape parameter

Figure 2.4: Propagation of a shape population with only one shape parameter using
the CoNDENSATION algorithm. Each vertical line represents a candidate shape in the
population. The fitness peaks indicate promising solutions.

Figure 2.4 illustrates the algorithm, and a more detailed explanation is given
in [43]. A major issue is the question of what the ‘correct” object shape is, given
a pdf represented by a discrete population of candidate shapes. One possibility is
to take the modal (highest fitness) shape, but this can sometimes produce a noisy

output. Alternatively the statistical mean can be found, using:

2 fisi (2.14)

However, this has the undesirable feature of interpolating between peaks in the
pdf. Neither solution is perfect but both are simple to calculate.

The fitness function F(s) should be designed to produce a value which indicates
the ‘goodness of fit” of a shape to an object in the image. For a contour model, a
simple such algorithm examines image pixels along a line normal to the contour at
each control point and returns a score proportional to the number, proximity and
strength of edges found in the image. More details can be found in [32].

The benefits of CONDENSATION are as follows:

e It can support multiple hypotheses; this is represented by a pdf with multiple
peaks.

o [t recovers well from failure; the stochastic nature of the algorithm allows it

to escape from local maxima.

Chapter 2 23 Background

e [t incorporates a level of prediction, which improves the speed of convergence

and the quality of results over, for example, a Genetic Algorithm.

The prediction aspect is embedded in the propagation equations. Currently these
have two elements; a deterministic term which allows for simple drifting of the pdf,
and a stochastic term which encourages spreading of the pdf. Although the tracker
can escape from local maxima (due to the stochastic term), the underlying dynamical
model is still based on an assumption of smooth, continuous object movement. Such

an assumption is not always valid.

Chapter 3

Statistical Shape Models for
Objects which Bend or Pivot

3.1 Introduction

As discussed in Section 2.2.1.1, the standard PDM is based purely on linear statistics:
for any particular mode of variation, the positions of landmark points can vary only
along straight lines. Non-linear variation is achieved by combining two or more
modes. This situation is not ideal, firstly because the most compact representation
of shape variability is not achieved, and secondly because implausible shapes can be
generated, due to the incorrect assumption that the variation modes are independent
(i.e. models are not specific). The specificity is particularly poor when the object
being modelled can bend or pivot.

Since bending and pivoting are such major features of so many classes of object,
it is reasonable that these actions should be modelled directly. This can be achieved
within the framework of a PDM by the use of polar coordinates. Objects with both
linear and angular deformation are best served by a hybrid model in which each
landmark can exist either in Cartesian or polar space.

There has been much work in the past describing the use of articulated models
for vision tasks [62, 39, 27]. The approach described here has two advantages over

such systems: it is more general, not being limited to purely pivotal motion, and also

24

Chapter 3 25 Shape Models for Objects that Pivot

the constraints amongst the pivots are captured automatically during the training
process. Overall there is less hard-coding of parameters to be done.

The remainder of this chapter gives more details on these ideas. The construc-
tion of a Cartesian-Polar Hybrid PDM is explained and an experimental compar-
ison of the new technique with both the standard PDM and the Polynomial Re-
gression PDM of Sozou et al (see [68] and Section 2.2.1.2) is made. In addition,
we present two different algorithms for automatically determining pivot positions
within a model, via analysis of the training set, and we test them on both real and

synthetic data.

3.2 The Cartesian-Polar Hybrid PDM

The Cartesian-Polar Hybrid PDM attempts to overcome limitations of the standard
PDM by allowing angular movement to be modelled directly. This is achieved by a
reparameterisation of coordinates according to some predefined mapping function.
Landmarks which appear to pivot about some other landmark in the model are
transformed into polar coordinates, with the suspected pivot as origin and some
other landmark chosen strategically to define the polar reference axis. Landmarks
which have no such angular behaviour remain in the Cartesian domain.

A shape x = (z1,91,...,2N,yn), Where (z;,y;) are the Cartesian coordi-
nates of landmark ¢, is reparameterised by a mapping P into a parameter vector
q=(¢1,92,-.-,928-1,q2n) Whereby each (&, y) pair in x is either mapped in a Carte-

sian or polar fashion as follows:

Cartesian map

(Zp,Yp) S G2p—1 = Tp
q2p = Y
polar map Gap—1 = Tp = \/(xp —)+ (Yp — ¥e)?
(xp7 yp) centre lﬁnark =c = 0 —
axis landmark =a q2p - P ¢p + ¢a
where ¢; = tan~! Li=le

By allowing angles to be measured relative to axis reference landmarks, it is
possible to model objects which have series of jointed parts (such as in an angle-
poise lamp), or continuous bending regions (such as the tadpoles and chromosomes
described by Sozou et al [68]) to a greater degree of accuracy.

The axis reference landmark a for a polar-mapped landmark p should be chosen

Chapter 3 26 Shape Models for Objects that Pivot

with care. If p is pivoting off some locally rigid structure within the object (about a
centre landmark ¢) then a should be a landmark within this structure. For maximum
stability, a should be as distant from ¢ as possible (averaged over the training set),

and also cyclic dependencies must be avoided. Figure 3.1 gives an example labelling.

Point | Mapping | Centre pt. | Axis ref. pt.
1 Cartesian - -
2 Cartesian - -
3 Cartesian - -
4 Cartesian - -
5 polar 4 2
6 polar 5 4
7 polar 6 5
8 polar 6 5
9 polar 6 5
10 polar 6 5

Figure 3.1: Landmark point mappings used for an anglepoise lamp

In training, the parameter mapping is applied to every training example. The
mean shape in parametric form q is found simply by averaging each parameter over
the training set. PCA is used on the training parameter vectors in order to find the
major modes of variation (after removing any polar bias — see Section 3.2.1 below).

Generating a shape from shape parameters by ...b; is a two-stage process. In
the first stage the parameter vector q is generated as for the standard PDM, using

(2.1). In the second stage, q is mapped into Cartesian coordinates:

2p—1 Cartesian ma Ty, = (op_1
q2p sear p P q2p
QZp yp = q2p
G2p—1 (=) pol(gnap r, = x.+r,cos(0,+)
@ (Z0p) BT Yo = Yot rpsin(f, +1))
where 1) = tan~! Ya=¥c
Ta—Tc

The order in which landmarks are mapped is important: because the position
of landmark p is dependent on the positions of landmarks ¢ and «a, the latter two

landmarks must be mapped before landmark p.

Chapter 3 27 Shape Models for Objects that Pivot

3.2.1 Removing Polar Bias

A successtul PCA requires all dimensions in the shape space to be comparable in
that they have equal levels of significance. For example, angles span a total range
of 27 radians, whereas displacements could have a range of up to, say, 50 pixels.
Quantities measured in these two domains are not directly comparable. Also, a
polar-mapped landmark which is close to its pivot gives rise to a large angular
movement for a relatively small displacement, so angles measured at different radii
are not directly comparable.

We combat both of these problems with a single solution. Using the relationship
s = rf (where s is the arc length of an angle 6 at radius r) we can convert angles
into arc lengths, which are comparable with displacements. For the conversion
of landmark p into polar coordinates, a constant scale factor R, is used. R, is
calculated as being the average distance of landmark p from its centre landmark
over the training set; this ensures that every training example is scaled by the same
factor.

Recent work by Sumpter et al [70] describes a more general approach to finding
suitable linear scalings for non-comparable parameters prior to performing a PCA.
Therein, the information content of the model is maximised via the calculation of

etgen-entropy.

3.2.2 Coping with the Angle Discontinuity Problem

Another problem encountered with the use of polar coordinates is that the PCA
gives unexpected results when the range of angles measured crosses the 0°/360°
angle discontinuity. For example, the samples {1°, 2°, 359°, 358°} have a mean of
180° and not the desired 0°.

This problem can be avoided in all but the most pathological of cases. For any
polar-mapped point, the angle is calculated twice for each training example — once
in the range 0 < # < 360° and once in the range —180° < § < 180°. The standard
deviation of the angles over the training set is calculated separately for both ranges.
If the standard deviation is the same for both ranges then no boundary crossing has
occurred. If it is larger for one range, it is assumed that this involved a boundary

crossing and angles from the other range are used when performing the PCA.

Chapter 3 28 Shape Models for Objects that Pivot

3.3 Designing a Mapping

Of chief importance to the Hybrid PDM is the choice of a suitable parameter map-
ping. Fach landmark must be classified as either Cartesian- or polar-mapped; in the
latter case, a choice of centre and axis reference is also needed. This can be done
by hand when the pivots are obvious and the model has relatively few landmarks;
however, for larger models, automation is desirable.

Two different algorithms are proposed for this. The first is a simple approach,
but is limited in that it assumes that all desired pivots on the object correspond to
existing landmarks. This is not always the case; the second algorithm has no such

restriction, and is consequently more complex.

3.3.1 The ‘Compacter’ Mapping Algorithm

For a given set of training data, the ideal mapping would provide the most compact
model. Compactness can be measured in terms of the total variance existing in
the model. The modes of variation produced by the PCA are in fact eigenvectors
of a covariance matrix and the corresponding eigenvalues provide a measure of the
variance captured by each individual mode. The sum of the magnitudes of these
eigenvalues thus gives a measure of the overall variance present in the model. The
smaller this value, the more compact the model. Hence the best mapping is the one
which minimises this eigenvalue sum. Trying every possible combination of map-
pings takes exponential time and is thus not feasible for large models. A heuristic

alternative is suggested below.
1. Construct a base set of relatively stable landmarks as follows:

(a) Align the training set to a common axis, as for standard PDM training.
(b) Find the mean Cartesian shape X.

(c¢) For each landmark, find its average displacement (over the training set)

from its mean position.

(d) Include the landmark in the base set if this average distance is less than

a specified threshold value!.

(e) Assign an axis reference partner to each base set landmark. This can

be any other base set landmark; choosing the one which maximises the

10.05 times the total model size has been used in this work.

Chapter 3 29 Shape Models for Objects that Pivot

average distance from a landmark to its partner provides the most stable

axes.

2. Assign a Cartesian mapping to all base set landmarks. This is acceptable as

there is little deformation in the base set.

3. Attempt to assign mappings to the remaining landmarks; the strategy is to
select potential mappings intelligently and use the compactness measure to
find the best one:

(a) Choose the next unassigned landmark. Call this landmark «.

(b) Assign a Cartesian mapping to landmark « and perform PCA on the
base set plus landmark a. The sum of the eigenvalues produced gives
a measure of the total variance of the model when a is mapped in the

Cartesian domain.

(c) Take each base set landmark in turn; call it landmark b. Calculate the
distance between a and b for every training example. Find the variance
of these distances. If this variance is below a fixed threshold? then it is
possible that a pivots about b. To test this hypothesis, assign a polar
mapping to landmark a, with landmark b as centre landmark and using
landmark b’s axis reference partner. Perform PCA on the base set plus

landmark a, and record the sum of the eigenvalues produced.

(d) Once all base set landmarks have been tested against landmark a, find
the lowest recorded eigenvalue sum. Assign the corresponding mapping
to landmark @ (be it Cartesian or polar), and add it to the base set.
However, if no base set landmarks were tested against landmark a then
do not add it to the base set. This allows for cases where « is best pivoted

around an as-yet unassigned landmark.

(e) Iterate steps (a) to (d) until no more mapping assignments are possible.

4. Assign a Cartesian mapping to all remaining unassigned landmarks.

This process is computationally intensive, taking several minutes to run even
for a relatively small model (60 landmarks). However, it is performed off-line, so
speed is not critical. The technique is heuristic, so is not guaranteed to find the best
solution. Also, the algorithm can only produce sensible results if all pivots present

in the object have been landmarked.

20.04 times the total model size has been used in this work.

Chapter 3 30 Shape Models for Objects that Pivot

3.3.2 The ‘Annotator’ Mapping Algorithm

The above algorithm is restricted in that landmarks may only pivot about other
existing landmarks. The technique suggested below applies a geometric approach
to overcome this problem. Statistical analysis of the training data is used to spot
trends in the movement of landmarks; broadly speaking, if a landmark appears to
move in an arc then it should be classified as polar and its centre of rotation should
be marked. To allow for chains of pivots this idea is extended: polar movement
relative to other landmarks or sets of landmarks is detected. The method employed
is to construct sets of landmarks which appear to represent different roughly-rigid

parts of the object, and look for pivotal relationships between pairs of sets.

3.3.2.1 Finding Rigid Sets of Landmarks

Sets of landmarks are to be found which appear to be rigid in the sense that they
appear to ‘move together’ over the training set. In order to achieve this, the N by

N normalised distance variance matrix D for the training set is first calculated:

\/(:ch’6 — i)? 4 (Ve — yi,e)Q) (3.1)

[D]Z] = VELI’|6E:1 (Se

where E is the number of training examples, (z; ., ;) are the coordinates of land-
mark 2 in training example e, Var is the variance operator, and S, is a measure of

the overall size of example e, given by:

1 N N
Se= 22 2o (@ie = 2ie)? + (e — vie)? (3.2)

=1 j5=1
A small value for [D];; indicates that landmarks ¢ and j move together over the

training set. Hence D can be used as a basis for ‘growing’ rigid sets as follows:

1. Start with each landmark as a singleton set.

2. For each set, attempt to add a landmark. If G is the set under consideration,

then choose the landmark & ¢ G which minimises Sy in:

S = maX([D]iﬂi,j eGuU {k}) (33)

It Sk i1s below a fixed threshold then add landmark & to the set, otherwise no
landmark is added.

Chapter 3 31 Shape Models for Objects that Pivot

3. Remove any duplicate sets formed as a result of step 2.
4. Iterate steps 2 and 3 until sets have stopped growing.

5. Finally, discard sets with two landmarks or less. It follows that any landmarks
which do not form part of a rigid body are not assigned to a set, and are

excluded from the subsequent pivot search.

The threshold used for set inclusion is deliberately quite stringent, making sets
smaller than they might otherwise be: two sets which should ideally be one can be
merged later when they are discovered to have a similar pivot, but one set which
should ideally be two can give poor results at the pivot-finding stage.

The use of thresholding can, in some cases, cause problems since different model
components often require different thresholds for good results. For example, in
objects such as the human hand, which consist of a large main body (i.e. the palm)
and smaller, pivoting sections (i.e. the fingers, and in particular the thumb, which
has two separate rigid portions), a larger threshold is generally required for the
main body than for the smaller sections. The method used to combat this involves

a three-stage process:

1. The training set is aligned using a weighted least-squares technique [19] (the
same alignment process is used prior to PCA in the training process). Land-
marks whose standard deviation from their mean position is less than a fixed
threshold (1.5% of the model size) are deemed fairly static and are thus in-

cluded in a base set of landmarks.

2. Set-growing is then performed as described above, but using only the land-

marks not in the base set.

3. When the iteration has converged, base set landmarks are reintroduced, and
the iterative process is again allowed to converge. This final step allows overlap

between the base set and other sets.

3.3.2.2 Finding Potential Pivots Between Sets

Having identified rigid sets of landmarks, the next step is to find plausible pivots and
augment training examples with additional landmarks at the pivots. A pivot will
generally have different coordinates in each training example — even if the examples

are globally aligned, a pivot in a chain will not occupy a fixed position. It is therefore

Chapter 3 32 Shape Models for Objects that Pivot

necessary to construct a local coordinate frame for each rigid set in each training
example, such that landmarks in the set are roughly static in local coordinates over
all training examples. Static pivot positions can be located in the local coordinate
frames, and then mapped back into global coordinates. The details of the procedure

are as follows:

1. For each set ¢ in each training example e, it is necessary to find a suitable
coordinate frame transformation C, . = (S4.¢,15.c, Py, g.c), Where a point (z,y)

in local coordinates is transformed onto (2/,y’) in global coordinates by:

z Pge —dge Sge z
y/ = Gge Pge lge Y (34)
1 0 0 1 1

The transformation matrix in (3.4) is labelled R, .

An easy way to produce the C . is to perform a least-squares alignment of set
¢’s member landmarks over the training set (this is the same process used for
training set alignment in PDM construction [19]). We can then say that R, .

is the inverse of the transformation required to align example e.

2. For each pair of sets a and b, the best pivot is found. Define this point
to be at (u4,v,) in a’s local coordinates and at (up,vp) in b’s local coordi-
nates. Ideally, for each training example, these two points would both trans-
form onto the same global position, i.e. if R, .(u,, vy, 1)T = (u, ., v,.,1)T then

Ve (Ug,e,Vae) R (Upe,vp). Figure 3.2 illustrates.

A training example e A training example f

Welpe o Ut Uyt

Figure 3.2: Hlustration of terms used in the ‘annotator’ algorithm.

Hence, we find the values of u,, v,, uy and v, which minimise £, the sum of

the squares of the distances between the pairs of global coordinates:

Chapter 3 33 Shape Models for Objects that Pivot

E

&= Z(ub,e - ua,e)2 + (vb,e - va,e)2 (35)

e=1

Using (ugc,vye, 1)T = R, (uy,v,,1)T, we obtain:

E= (((pb,eua — Gb,eUb + Sb,e) - (pa,eua — Ga,eVq + Sa,e))2‘|’ (36)

E
- ((Qb,eua + Pb,eUp + tb,e) - (Qa,eua + Pa,eVa + ta,e))z)

e=1

To minimise &, equate the partial derivatives 0€/du,, 0E/dv,, 0E/du, and
OE | Ovy to zero, and hence obtain four simultaneous linear equations, the so-

lution of which simplifies to:

I I
(Uas Vay upyv) T = D (T T+ KIK)™ D (850 — Sa0) e + (the — ta) Ke (3.7)

e=1 e=1
where J. = (Pac, —qares Poes —Goe) aNd Ko = (Gares Pares Gbes Phoe)-
From here, the pivot point in global coordinates (¢qp.e,dype) can be found for

each training example e by transforming the two points into global coordinates

and averaging them:

Ca,b,e 1 Ug,e Up,e
Py =2 S 3.8

The variability V, ;, of the pivot can be measured as the average separation of

these two points over the training set, when mapped into global coordinates:

1 E
‘/a,b = E ; \/(ub,e - ua,e)2 + (vb,e - va,e)2 (39)

3. Declare a pivot between sets a and b if all of the following are true:

o The variability V,; of the pivot is less than 5 pixels.

o The standard deviation of the distribution of angles between the coordi-

nate frames for @ and b over the training set is at least 5°.

e The normalised deviation (standard deviation divided by mean) in the
distribution of the size ratios of the two coordinate frames is less than

0.1 (i.e. the relative size of the two sets remains fairly constant).

Chapter 3 34 Shape Models for Objects that Pivot

The thresholds have been chosen to be tolerant, as false pivots can still be

rejected in the final stage.

3.3.2.3 Constructing the Pivotal Structure

Once a set of potential pivots has been found, a mapping for use by the Hybrid
PDM must be constructed, noting that the formulation of polar mappings relies on
having no cyclic dependencies amongst landmarks. Hence, sets are organised into
one or more tree-like structures, where child sets pivot off parent sets, and the root
set(s) provide(s) a relatively stable reference.

The algorithm that has been used in this work caters for most cases. A single
tree is constructed: the root is taken to be the largest rigid set found, and a breadth-
first search is used to attach child sets which have a common pivot with the parent
set. Using the breadth-first search ensures that the structure found has the shortest
possible pivotal chains.

The mapping is then constructed in an obvious fashion: landmarks which are in
a set with no parent (i.e. at the tree root or not included in the tree), and landmarks
not in a set, are assigned a Cartesian mapping.

Landmarks in parented sets are assigned a polar mapping. New landmarks are
generated in all training examples to represent the pivots, as described in 5.2.2 above.
If a new pivot is consistently sufficiently close (5 pixels) to any existing landmark, it
is removed and the existing landmark used instead. A suitable landmark from the

parent set is chosen as an axis reference.

3.4 Results

3.4.1 Comparing the Different Modelling Techniques

In this section the performance of the Cartesian-Polar Hybrid PDM is compared
with that of the standard PDM and the Polynomial Regression PDM (PRPDM)
of Sozou et al (as described in [68] and Section 2.2.1.2). Thirty training images of
an anglepoise lamp (chosen for its multiple jointed pivots) were captured in various
positions. The lamp was positioned such that all rotations were parallel to the
image plane i.e. no 3D effects were experienced. The locations of 10 landmarks
were recorded for each training image, as defined in Figure 3.1. Models were then
generated using each of four methods: a standard PDM, a quadratic PRPDM, a
cubic PRPDM and a Hybrid PDM. Figures 3.3, 3.4 and 3.5 show the first four modes

Chapter 3 35 Shape Models for Objects that Pivot

of variation for three of these models. A range of £2 s.d. is shown, with the darkest

central figure being the mean in each case.

Figure 3.3: The first four modes of variation under the standard PDM.

S

Figure 3.5: The first four modes of variation under the hybrid PDM.

Figure 3.6 gives a statistical comparison of the modelling techniques. The graph

shows, for each model, what proportion of the total standard deviation is captured

Chapter 3 36 Shape Models for Objects that Pivot

with respect to the number of modes used. Unlike the other models, the curve for
the hybrid model does not start at the origin; this is because the reparameterisation
process captures (or eliminates) a percentage (58.5%) of the deviation as experienced
by the other models (indicated by a lower value for the sum-of-eigenvalues in the

case of the hybrid model).

100 ——
Ko B Sandard PDM. ——
or Xl Quadratic PRPDM —+— |
F Cubic PRPDM -&-
gor by Hybrid PDM -

70 -

60 &

g

100

50 -
9 r
4’07
98 -

or o7 |

205 96 F -

Cumulative standard deviation captured (%)

10 |-/ %5

0

0 1 2 3 4 5 6 7
Number of modes of variation used

Figure 3.6: Graph showing how variation is accounted for under the various models.

As can clearly be seen from Figure 3.3, the standard PDM fails to capture the
pivotal nature of the object. Landmarks move in straight lines for each variation
mode, the lamp head changes size and the pivotal arms are stretched and com-
pressed, thus implausible shapes can be generated. The anglepoise has only three
pivots, so any variation seen in the fourth mode must be acting purely to compen-
sate for inaccuracies in earlier modes. Statistically, this model is the least compact,
the cumulative deviation captured being the lowest at every stage.

The Quadratic PRPDM improves on the standard PDM; the most significant
mode of variation captures some bending, but the circular arc is approximated by
a parabola. Again, some stretching is seen, but not to the same degree as for the
standard PDM. There is still a fair amount of compensatory variation in the fourth
mode. The Cubic PRPDM performs better statistically than the Quadratic version,
and in general, performance increases with polynomial degree.

The Cartesian-Polar Hybrid PDM captures the pivotal nature of the object pre-
cisely. The modes of variation show no changes in lamp head size or stretching
of arms. It is also interesting to note that the major mode captures the fact that
the lamp head generally remains facing in the same direction as the lamp body is
moved. Statistically, the mere reparameterisation of the model explains over 50% of

the standard deviation. The Hybrid PDM is most compact up until the introduction

Chapter 3 37 Shape Models for Objects that Pivot

of mode 5, by which time the remaining variation is due purely to noise.

Table 3.1 shows how the techniques compare in terms of computational complex-
ity. The values shown in the middle column are numbers of machine cycles required
to generate a model instance (this affects the speed of feature location/tracking).
The tests were performed on a MIPS R4400 processor, with a MIPS R4010 FPU. A
machine speed of 25MHz is assumed; statistics were captured using the code-profiler,
pirie. As expected, the standard PDM is the fastest, but note that the hybrid model
is not much slower. Also, and most importantly, the two PRPDMs are substantially

slower (about 6 times).

Model Cycles Time/ms
Standard PDM 215621 8.6
Quadratic PRPDM 1326126 53.0
Cubic PRPDM 1417455 56.7
Hybrid PDM 221105 8.8

Table 3.1: Machine cycles used to generate a model instance under each technique.

Figure 3.7 gives another example of a case where the Hybrid PDM is useful.
As can be seen, the standard PDM modelling of a golf swing (constructed from a
single continuous sequence of 30 training images) suffers because of the large angular

movements involved. The Hybrid PDM again performs much better.

Figure 3.7: Modelling a golf swing; one of the training images (left), the most
significant mode of variation for the standard PDM (middle) and the Hybrid PDM
(right).

3.4.2 Comparing Mapping Generation Algorithms

Results are presented for experiments using training data from human hands. Thirty

training examples were captured, all of hands positioned with the palm down and

Chapter 3 38 Shape Models for Objects that Pivot

fingers outstretched, and the positions of 61 landmarks were extracted manually
from each one. Both of the automatic mapping generation algorithms described in

Section 3.3 were applied to the data. Figures 3.8 and 3.9 illustrate the results.

(@ (b) (©) (d)

Figure 3.8: Automatic mapping generation for a hand model using the ‘compacter’
algorithm; (a) the base set of landmarks, (b) sets of polar-mapped landmarks and
their centres of rotation, (c¢) & (d) two modes of variation of the trained model.

Figure 3.9: Automatic pivot generation for a hand model using the ‘annotator’
algorithm; (a) rigid area sets, (b) the augmented pivots, (¢) & (d) two modes of
variation.

Figure 3.8 gives results for the ‘compacter’ algorithm, in which existing land-
marks are used as pivots. Plot (a) shows which landmarks were included in the base
set, and plot (b) shows how other landmarks were mapped. Several landmarks were
generally assigned the same pivot — this is indicated by a ring around the landmarks
and a line connecting the ring to the chosen pivot. Plots (¢) and (d) show two modes
of variation after training under this particular mapping.

The base set of landmarks includes most of the palm of the hand, as expected.
It also extends part way into the middle finger; this is because following training set
alignment, the middle finger is fairly static. Remaining landmarks generally pivot
about the closest base set landmark, indicating that this strategy gives the most

compact model.

Chapter 3 39 Shape Models for Objects that Pivot

Figure 3.9 gives results for the ‘annotator’ algorithm, in which pivots are located
and augmented onto training examples. Plot (a) shows the landmark sets that have
been constructed and plot (b) shows the pivots thus generated. Each finger has a
single landmark set, and the thumb has been split into two sets, giving two rigid
sections. Landmarks near the wrist have not been assigned to the ‘palm’ set because
the wrist angle varies significantly over the training set. They have not been assigned
their own set because there are too few landmarks for such a set.

All pivots (1 to 6) have been placed roughly where one would expect them; the
pivotal structure of the thumb is such that pivot 6 is parented by pivot 5.

Plots (¢) and (d) show examples of the variation modes produced after training
using the annotated data. Pivotal motion is visible, especially in the thumb.

These results are encouraging: the natural structures present in the human hand
have been captured accurately and the pivots have been positioned approximately
as expected.

Quantitative data was obtained in a second experiment. A synthetic model was
constructed, comprising a fixed body and a pivoting arm (see Figure 3.10). Training
sets were generated with each example having the arm pivoted at a different angle,
and with additive Gaussian noise applied to the position of each landmark. The idea
was to study the accuracy of finding the pivot whilst varying the following input

parameters:

e The range of angles of the pivoted arm (a Gaussian distribution with standard

deviation of o, degrees).

e The amount of noise used to displace landmarks (additive Gaussian, with

standard deviation o, pixels).
e The number of training examples used, F.

e The total number of landmarks in the model, P.

n points L= pivot

Figure 3.10: A synthetic model of an object with a single pivot.

Chapter 3 40 Shape Models for Objects that Pivot

Running the ‘annotator’ pivot finder on the synthetic data produces the coor-
dinates of a single pivot. The distance of this pivot from ground truth can be
calculated as a measure of accuracy. Several hundred trials were performed for each
choice of parameters to give the mean output error with tight confidence limits.

The angle range o, is an inherent property of the object being modelled and the
noise o, is dependent on the accuracy of the image capture technique. Figure 3.11(a)
shows how they both affect accuracy of the pivot position®. As expected, the accu-

racy decreases as the angle decreases, and as the level of noise increases.

25 5
input noise s
g, (pixels)

15 7

d,

18 anglerange s.d.,
O, (degrees)

(b)

S P
e 25 9 12
EAZO EAJ'O
=) 59 4
8T foro)
5.2 5X 6
oQl oo
N N 4
§ 5 2 § 5 0
g o g o5 20

. ° 0 104 116
points per example, P

30tr_aining set
size, E

Figure 3.11: Pivot location accuracy under varying conditions of (a) input noise and
angle range; (b) training set size and number of points per training example.

The remaining parameters £ and P can be seen as measures that could be
employed to improve accuracy. As can be seen in Figure 3.11(b), accuracy improves
with an increase in both the training set size and the number of landmarks®*. More
specifically, increasing the training set size only helps to a certain extent (in this
instance, above 25 examples there is little improvement), but increasing the number

of landmarks per example gives a more steady decrease in error.

3.5 Tracking

Tracking proceeds as for the standard PDM, via Active Shape Models (see [15] and
Section 2.2.3). However, in the calculation of the change in shape, some of the
suggested landmark movements must be mapped into their polar equivalent in the
model frame. This can be achieved by applying a mapping to the vector dx of

residual landmark movements from Equation 2.11:

3The control values used were P = 32 and £ = 20.
*The control values used were o, = 3 pixels and o, = 8°.

Chapter 3 41 Shape Models for Objects that Pivot

dgq = M(dx,x) (3.10)

where M maps individual (dx,, dy,) pairs into dga,—1 and dgz, as follows:

Cartesian map
—

(dzy, dy,) dgap—1 = daxy
dqap = dy,
_ _ rdrp+ydyp
olar ma dgzp-1 = dr, = R,—F—
(dzy, dy,) P 4 b 24y’
centre landmark =c d — db ~ Tdyptydzp
axis landmark =a 92p — P TaErrg

where @ = 2y — 2., y = yi — y. and R, is the constant scale factor which converts
the angle measurement for landmark p into an arc length (see Section 3.2.1 on polar
bias).

In order to test tracking performance, a real time ASM tracker was imple-
mented [32]. A controlled test environment was constructed; a camera was mounted
on a tripod, pointing down at a homogeneous dark surface. The various models
were exercised rigorously in this environment.

Tracking with the Hybrid PDM proved promising. Experiments were performed
for hand tracking, a task at which the standard PDM has already been success-
ful [32]. However, because the hybrid model requires fewer modes of variation, the

system runs faster.

3.6 Extension to 3D

Extension of the Cartesian-Polar Hybrid PDM into 3D can be achieved using either
cylindrical (r, 6, z) or spherical (r, 8, ¢) polar coordinates. In either case, three
reference landmarks are required for each polar-mapped landmark. Figure 3.12
illustrates how they are arranged. 3D hybrid models can thus contain up to three
different mappings—Cartesian, cylindrical polar and spherical polar—each being
chosen where most appropriate. Figure 3.13 shows a 3D human hand model which
has been constructed using a mixture of Cartesian and cylindrical polar coordinates.

Tracking in 3D, using the hand model illustrated in Figure 3.13, was less success-
ful than in 2D (see Section 6.5.2). The polar-mapped regions of the model (i.e. the
fingers) sometimes tracked well, but often exhibited unexpected deformations from

which it was difficult to recover. Extensive investigation did not reveal the exact

Chapter 3 42 Shape Models for Objects that Pivot

(cylindrical) P (spherical) P

r\e W

C A C A

Figure 3.12: Cylindrical and spherical polar coordinates. P is the polar-mapped
landmark, C' is the origin reference landmark, A is the primary axis reference land-
mark and B is the secondary axis reference landmark.

Figure 3.13: First mode of variation for a 3D Hybrid PDM of a human hand.

nature of the instability. The most likely cause is the combination of projective
transformations and polar mappings giving rise to unstable pose change calcula-
tions. This is an artifact of the data-driven approach employed; use of a fitness-
based approach, such as a Genetic Algorithm or the CoNDENSATION algorithm (see

Section 2.2.4) might alleviate such a problem.

3.7 Conclusions

In this chapter it has been shown how the Cartesian-Polar Hybrid PDM can, in
some cases, improve the compactness and specificity of a deformable shape model.

It is possible that improvements could be made to the mapping algorithms. The
‘compacter’ algorithm is heuristic, so there is no certainty that it is finding the
best mapping. The ‘annotator’ algorithm constructs a pivot ‘tree’ based on a very
simple breadth-first search, in which only one set can act as a root. This caters for
most cases, but objects with several distinct pivoting structures will cause problems.
Both algorithms make use of several manually-fixed thresholds; a method requiring

no thresholding would be preferable in order to handle a wider range of tasks.

Chapter 3 43 Shape Models for Objects that Pivot

Another important issue concerns modelling objects which rotate uniformly
through a full 360°; whether or not it is ‘correct’ to have an arbitrary mean po-
sition with 180° variation on either side.

Whilst the hybrid model was designed with pivotal or bending deformation in
mind, it is possible that it can approximate other types of deformation too. More
importantly, the concept of a hybrid model can be extended to incorporate other
types of reparameterisation — such as polynomial, elliptical or sinusoidal — simply
by providing suitable mapping functions.

It is clear, however, that there are many classes of deformable objects that can-
not be effectively modelled using the Hybrid PDM. Also, the Hybrid PDM is in
some sense a hand-crafted model; there is an explicit representation of angular de-
formation, and this is counter to the desire to construct models of arbitrary objects
fully automatically. In the next chapter a technique which is able to model a wider

class of deformations is described.

Chapter 4

Hierarchical Statistical Shape
Models

4.1 Introduction

Consider the construction of a PDM of a human hand which can perform only three
gestures: a flat palm, a fist or a pointing gesture. The training set would consist
of the three gestures and the transitions between them, as illustrated in Figure 4.1.
Each outline consists of 100 evenly-spaced landmarks, extracted automatically from

the images using a simple boundary-finding algorithm.

Outlines

oY

Figure 4.1: Example training data for a three gesture hand model.

44

Chapter 4 45 Hierarchical Shape Models

A PDM can be constructed from this training data. Figure 4.2 shows projections
of the distribution of the training shapes transformed into such a PDM’s shape
space. As would be expected, the data forms a hollow triangle, with each vertex
corresponding to one of the gestures and the edges being the transitions. The triangle

is also non-planar, bending through the third dimension of shape space.

o,

Figure 4.2: Projections of the ‘three gesture’ training data in PDM shape space. by,
by, and by are the three most significant axes of the space.

The region in shape space which corresponds to valid shapes (the valid shape
region, or VSR, as defined in Section 2.2.1.1) in this case occupies only a very small
proportion of the shape space. The model produced is not specific and is thus
capable of generating invalid shapes as well as valid ones (see Figure 4.3). Even the
mean shape is invalid, and although the invalid shapes are not drastically malformed

in this case, in a more complex example they might well be.

SO

Figure 4.3: Example shapes produced by a standard PDM on the ‘three gesture’
model; good (left) and poor (right).

Chapter 4 46 Hierarchical Shape Models

Whilst it may be possible to linearise the bending seen in the plot of b, against
bo (perhaps using one of the techniques outlined in Section 2.2.1.2), none of the
approaches developed so far can cope with a hollow loop topology such as that seen
in the plot of b, against by. Another situation which causes difficulty is where an
object can take on two or more distinct shapes, but not any of the shapes in between.
This results in a VSR with two or more disjoint parts.

A method is required for modelling VSRs which have an arbitrary shape and
topology.

4.2 Constraints in Shape Space

Bregler and Omohundro describe the use of shape space constraint surfaces for
modelling complex VSRs [12]. The technique is described more fully in section 2.2.2,
but the essence is the use of a piecewise-linear approach. The shape space is split into
a number of regions using k-means cluster analysis on the training data. A principal
component analysis (PCA) is performed separately on each cluster to produce a
number of linear subspaces with arbitrary orientation and dimensionality. The VSR
is represented as a complex, non-linear surface, constructed from a combination of
these linear patches. To apply shape space constraints to a particular shape instance,
a weighted sum of the projections into each subspace is used (see Equation 2.5).

Bregler and Omohundro give examples of the technique applied to synthetic
data, and also demonstrate its use in building shape models of human lips [12]. The
modelling of complex topology VSRs is possible, including non-linearities, loop-like
structures, changing dimensionality and (theoretically) disjoint regions, although
the latter is not demonstrated.

The use of a piecewise-linear approach is promising, however constraint surface

models suffer from the following problems:

e The linear patches are modelled as hyperplanes embedded in the shape space.
This has the following disadvantages:

— The hyperplanes are not limited in extent; they stretch off to infinity.
When modelling a continuous smooth surface this is not a problem, but
at discontinuities or extremities, the hyperplanes cause the surface to be

‘extended’ to infinity.

— The model cannot cope with surfaces of finite thickness; each hyperplane

dimension is either infinite or zero.

Chapter 4 A7 Hierarchical Shape Models

— The dimensionality of each hyperplane is determined via an arbitrary

cut-off point; this may need to be fine-tuned for a particular problem.

e The cluster analysis and PCA (and hence all constraint calculations) are per-
formed in a very high dimensional space (2 times the number of model land-

marks). This makes for much slower computation than, for example, a PDM.

These problems are illustrated in Figure 4.4(a) below.

4.3 A Hierarchical PDM

Proposed here is an approach to modelling complex, non-linear shape spaces,
which is related to the constraint surface models described above. The PCA-based

piecewise-linear approach is still used, but there are two important differences:

o The linear patches are represented as hyperellipsoid-bounded regions as op-
posed to hyperplanes. This seems more natural, given that the PCA is effec-
tively finding a best-fit Gaussian for each patch. The axes for each hyperellip-
soid are the principal components from the corresponding PCA, and the size
is proportional to the significance of each component (i.e. the hyperellipsoid is

a surface of fixed Malhalanobis radius).

o A two-level hierarchy of PCAs is used. The first level is a global PCA, identical
to that used for a standard PDM. The second level introduces the piecewise-

linear element.

The first of these points leads to the most noticeable improvements over Bregler
and Omohundro’s approach. The use of finite-sized hyperellipsoid-bounded regions
removes three problems in one: extremities in the VSR are no longer extended to
infinity, finite thicknesses can be modelled and there is no need to choose an arbitrary
cut-off point to determine the dimensionality for each patch. Figure 4.4 illustrates
these improvements.

The benefits of using a two-level hierarchical approach are more subtle. The
main advantage is the decrease in computation time resulting from performing the
constraint calculations in a much lower dimensional shape space (for example, in
the examples we show later, the dimensionality is reduced from 200 to 16). Another

advantage is that the initial global PCA helps to remove noise in the training data

Chapter 4 48 Hierarchical Shape Models

(b)
Nz
’%‘;‘l"f“*’

; / jH

Figure 4.4: Constraining shape using (a) hyperplanes and (b) hyperellipsoids. The
grey spots are the training data and the arrows show how four general points are
constrained under each model. The hyperplane approach cannot model finite thick-
nesses and also extends the VSR at extremities.

caused by outliers, which can otherwise greatly affect the calculation of the linear
patches.
To summarise, the Hierarchical PDM, or HPDM, produces a VSR which is both

more accurate and more efficient in application than a constraint surface model.

4.3.1 Implementation Details

Given a set of FE pre-aligned training shape vectors {xi,Xs,...,xp}, where
Xe = (Te1,Yedy - Le Ny Yen) contains the Cartesian coordinates of each of the NV

landmarks for shape e, an HPDM can be constructed as follows:

1. Perform a PCA on all the training data, to find the origin X and the ¢ most
significant axes py ... p; of the global PCA space (these are exactly equivalent
to the mean and modes of variation respectively for a linear PDM). In general,

t < 2N, giving a significant dimensional reduction.

2. Transform each training vector x. into its global PCA space equivalent b..

b. = P'(x. — X) (4.1)
where P = (p1...p¢).

3. Decide on a value for k, the number of linear patches to use.

The choice of k is data-dependent. The more complex and non-linear the
VSR, the larger the number of linear patches required to model it accurately.
However, there is a trade-off between accuracy and speed. If speed is not an

issue then k can be increased in the limit to . For noiseless training data

Chapter 4 49 Hierarchical Shape Models

increasing k produces the smoothest model; however any noise that is present

is liable to be included in the model.

In these experiments & has been chosen manually, based on knowledge about
the expected shape of the VSR. It seems likely that it would be possible to
find a sensible value for k automatically via some optimisation technique.

Experimentation suggests that a good first guess would be k& = £/10.

4. Perform k-means cluster analysis on the training data in global PCA space,

to produce k exemplars eq...e;.

5. For each exemplar e;:

(a) Decide a number n; of nearest neighbours to use in the local PCA.

Our current strategy is to specify a fixed degree of cluster overlap, O, and
set n; = Om,;, where m; is the number of members in the corresponding
k-means cluster. The argument for overlap is that it results in smoother
transitions between the linear pieces. Initial experimentation suggests
that O = 1.5 produces a good balance between accuracy (allowing all

valid shapes) and specificity (disallowing invalid shapes).

(b) determine this set of nearest neighbours, using the distance metric
b — eil.

(¢) Perform alocal PCA on these n; training examples (the global PCA space
versions b;, as opposed to the original versions X;), to produce a linear
patch, defined in terms of its origin b;, axes py ...p:«, and associated
variances A;i... Ay, (these are the eigenvalues produced by the PCA).
Note that in general, b; + €.

The values for ¢ and t;...1; are determined exactly as for the linear PDM [15],
by ensuring that a sensible proportion (at least 90%) of the shape variation has been

captured.

4.3.2 Using the Hierarchical PDM

For our representation of the VSR to be of practical use, it must be possible to apply
a ‘nearest point’ query: “Given a general point in shape space, where is the nearest
point in the VSR?” This translates as “Given a general shape x, what is the nearest
valid shape x'?7” and hence facilitates the application of constraints to ensure that

only valid shapes are allowed in the context of tracking.

Chapter 4 50 Hierarchical Shape Models

For the HPDM, applying such constraints is a two-stage process, corresponding
to the two levels in the PCA hierarchy. First it is necessary to convert the shape
x (as described by the & and y coordinates of its landmarks) into a corresponding

vector b in global PCA space exactly as for the training data (see Equation 4.1):

b =P (x -x) (4.2)

Following this, the piecewise-linear model constraints must be applied.

The simplest (but not only) way to apply these stage-two constraints is to find the
nearest linear patch (using the Euclidian distance metric |b—b;|, where b; is the ori-
gin for patch i), and constrain b to lie within the associated hyperellipsoid-bounded
region. Finding the closest position within such a region involves a time-consuming
gradient descent computation; however a good approximation is to consider the re-
gion to be a hypercuboid. The other (fast) alternative of moving the point directly
towards the patch origin is grossly inaccurate in the case of eccentric hyperellipsoids.

Figure 4.5 illustrates the different possibilities.

SIS

Figure 4.5: Constraining a general point to lie within a hyperellipsoid-bounded
region; (a) the correct way, (b) a bad approximate method and (c) a better approx-

imate method.
The function C;(b) for constraining into linear patch ¢ is defined as follows:

Ci(b) = P;L;[PT (b —b;)] + b; (4.3)

where b; is the origin for patch i, P; = (ps,. .., Pi,) is a matrix of the axes for patch
2, and L; is the limiter function for patch 7, which, in the case of our hypercuboid

approximation, is defined thus:

Li[(ylvy%"'vyti)T] = (y17y§77y;)T
where y! = —My/X; if oy < —=M/\;
f (4.4)
Y; Yy if —M«/)\Z']‘ <y; < M)\”

Chapter 4 51 Hierarchical Shape Models

The A;; are the significances for each axis and M is the Malhalanobis radius of
the linear patches. We use M = 2.0 which, statistically, should encompass over 95%
of valid shapes. A larger value generally leads to an underconstrained VSR.

A more general stage-two constraint function €' on a shape b can be defined as

follows:

_ 2iGi(b)Ci(b)
Clb) = > Gi(b)

where C;(b) is as defined in (4.3) and G is the influence function for patch ¢. Setting

(4.5)

G; = 1 if patch ¢ is closest and ; = 0 otherwise results in the simple nearest-patch
algorithm described above. Alternatively, G; can be a Gaussian, centred on patch

s origin:

Gi(b) = exp (”szif]”?) (4.6)

where b; is the cluster mean and the denominator is a scale factor related to the
overall ‘size’ of cluster . It is important to note that in the above equation, the
Fuclidian distance (as opposed to the Malhalanobis distance) is used; otherwise the
influence function decays too quickly off-axis for eccentric hyperellipsoids.

For a particular b, GG;(b) will be very small for the majority of ¢. The calculation
of C'(b) can be made more efficient by only including terms for which G;(b) is
significant. A cut-off point of one tenth of the maximum value is suitable.

Using the Gaussian influence functions has the effect of performing an interpo-
lation at positions between neighbouring patches, giving smoother joins, especially
in cases where the patches do not actually overlap. (see Figure 4.6). However, a
side effect is that the notion of a concrete divide between valid and invalid shapes
is lost, insofar that if C'(b) = b’ then it is not necessarily the case that C'(b’) = b'.
It is thus important to apply the constraint function only once each time the shape
needs constraining. The other disadvantage is that this method is slower than the
nearest-patch method.

Whichever constraint function is used, finding the ‘valid’ shape x’ is a matter of

transforming b’ out of global PCA space:

x'=Pb' +x (4.7)

Chapter 4 52 Hierarchical Shape Models

LN\

Figure 4.6: The valid shape regions produced under two different constraint algo-
rithms; (a), (b) the ‘nearest cluster’ algorithm and (c), (d) the Gaussian combination
algorithm.

4.4 Evaluation

We examined four different modelling tasks. A synthetic anglepoise lamp model was
used for a comparison with the linear PDM and for various other quantitative tests.
Synthetic 2D shape spaces were constructed for a comparison with constraint surface
models. Models of human hands were built from both manually and automatically

collected training data in order to demonstrate performance on real world problems.

4.4.1 Synthetic Anglepoise Lamp

As in Chapter 3, an anglepoise lamp was used as an example of an object for which
the linear PDM produces poor models, however in this experiment the training
shapes were synthesised. The lamp shape was represented in 2D using 49 landmarks.
Training examples were generated by choosing uniformly-distributed random values
for the three pivot angles (see Figure 4.7). A global PCA was performed. Figure 4.8
shows scattergrams of the position in global PCA space of 500 training examples and
Figure 4.9 shows the three most significant modes of variation for the corresponding
PDM. As can be seen, even along the principal axes several invalid shapes have been
generated.

A Hierarchical PDM was then constructed from the same training data. Fig-
ure 4.10 shows the training set with the linear constraint patches superimposed,
giving some idea of the VSR that has been learned. The concept of a mode of
variation does not exist within the context of a HPDM; the nearest equivalent is to
‘drag’ the model through shape space, whilst applying shape constraints, to produce
shape space traversals. This is achieved by fixing one of the global PCA parameters

Chapter 4 53 Hierarchical Shape Models

Figure 4.7: Three examples from the synthetic anglepoise lamp training set.

el

on

Figure 4.8: Two views of the lamp model training data transformed into global PCA
space.

Figure 4.9: The three most significant modes of variation of the linear lamp PDM.
Many invalid shapes can be seen.

at uniform increments and applying the constraint function to obtain suitable val-
ues for all the other parameters. Figure 4.11 illustrates three such traversals. The
results are much improved over the linear PDM; points are seen to move along arcs,
not straight lines, and for the most part the lamp head remains a constant size.

A quantitative analysis was undertaken in order to compare the performance of

the HPDM with previous approaches, to determine the optimum choice of various

Chapter 4 54 Hierarchical Shape Models

Figure 4.10: The lamp model global PCA space (2D projection), showing training
data and principal component axes for the constraint patches.

Figure 4.11: Three traversals through the VSR for the lamp HPDM.

parameters and to see how performance varies with the number of training examples
provided. To this end, quantitative measurements have been devised for model
accuracy and model specificity.

Model accuracy measures a model’s ability to allow wvalid object shapes to be
modelled without distortion. This is also a test of a model’s ability to generalise
from the training data as it involves testing on wunseen shapes. To measure the

degree of accuracy:

1. Generate or collect a large number [of valid shapes x;...x7, where

Xe = (Tet,Yedy- -+ Te Ny Ye N), and ensure they are correctly aligned.

2. Apply shape constraints to each one to produce xj ...x}.

3. Find the average landmark displacement D over all the shapes:

Chapter 4 55 Hierarchical Shape Models

1 1
72 oVl e (vl — ye)? (4.8)

e=1 =1

D=

4. Express D as a percentage of the average model size:

A D x 100

b= :
13k (max |; ye; — min |; ye;)

(4.9)

Model specificity measures a model’s ability to exclude invalid shapes from the

VSR. This directly affects robustness of tracking. The notion is to generate ran-

dom shapes, apply constraints and then see how far away from ground truth the

constrained shapes are. Ground truth is approximated via a large number of valid

shapes, since calculating the analytical ground truth is not always possible. The

algorithm proceeds as follows:

1.

Generate a large number L of entirely random positions in global PCA space

by ...by.

. Apply shape constraints to each one to produce bf ...b}.

Generate a large number K of valid shapes yy ...y for use as ground truth,

and ensure they are correctly aligned.

Transform the ground truth shapes into global PCA space, using (4.2), to

produce ¢q...cy.

For each test shape b’,, find the distance t. to the nearest ground truth shape:

te = min |]‘ |b/6 — C]‘| (410)

The specificity error is defined as the 90th percentile of the ¢, values. This
gives a measure of the maximum possible distance from ground truth, whilst

avoiding statistical outliers.

Figure 4.12 shows accuracy and specificity error graphs for HPDMs of the angle-

poise lamp with varying numbers of linear patches and varying degrees of overlap.

The degree of overlap is fixed for each curve shown, so as the number of patches

increases, the size of each patch decreases accordingly.

In all cases, accuracy error decreases up to about 30 patches and then increases

monotonically. The monotonic increase is due to the successive decrease in patch size

Chapter 4 56 Hierarchical Shape Models

1 T
overlap=1.0 — 5 1% 1

09 overlap=15 - E i overlap=10 —
- overlap=2.0 - -
N
‘D
T 4r
8 =
E g
s E
g 3 37
5 =
5 &
g g 2t
=1 (=]
§ =
3
S 1+
=

02 U

01 0

0 20 40 60 80 100 0 10 20 30 40 50 60
Number of linear patches, k Number of linear patches, k

Figure 4.12: Accuracy (left) and specificity (right) error graphs for anglepoise lamp
HPDMs with varying numbers of linear patches and degrees of overlap (see text).

resulting in decreased accuracy in the local PCAs. As would be expected, specificity
error decreases as the number of patches increases: the model becomes more specific
as the non-linear VSR is better approximated with more linear pieces. In this case,
there is little to be gained by having more than 30 patches, especially as this incurs
both degraded accuracy and a speed penalty.

An increase in overlap effectively increases the size of each linear patch. As
expected, this results in an increase in accuracy but a decrease in specificity. In this
case it seems that an overlap of 1.5 is optimal as the improvement in accuracy above
this value is small, but lowering it would hamper specificity.

Figure 4.13 shows how accuracy and specificity compares under the various dif-

ferent modelling techniques.

5 T
HPDM —— 5+ .
Constraint surface ------ Conrai tHI;’fDM —

. | Linear PDM - onstraint surface -——-
.’;’, 41 4 Nearest neighbour 4 Linear PDM -
T L 4 N
°
: 3
S 3t =
s 5 3
5 =
B &

2|
g g 2t
g s
&
T
3 1r 1k
=

0 i ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100 0 10 20 30 40 50 60
Number of linear patches, k Number of linear patches, k

Figure 4.13: Accuracy (left) and specificity (right) error graphs for anglepoise lamp
models built under the various modelling techniques (see text).

The most accurate model is the linear PDM, with zero accuracy error; this is

Chapter 4 57 Hierarchical Shape Models

because the linear PDM shape space covers the whole of the VSR (which in the
case of the lamp model is only 6 dimensional). The HPDM and constraint surface
models introduce extra constraints within this space and thus can potentially create
accuracy error by excluding parts of the VSR. Both the HPDM and the constraint
surface model have an accuracy error of less than 1% when over 30 linear patches
are used; this is sufficient for tracking purposes. A ‘nearest neighbour’ accuracy plot
is also shown; this involves constraining a shape by moving it to the nearest training
example shape. Both the constraint surface and the HPDM out-perform the nearest
neighbour algorithm, suggesting that they have learned to generalise the training
set, and should thus perform well on unseen data.

The specificity graph clearly shows that the HPDM out-performs both the linear
PDM and the constraint surface model. At k = 20 its specificity error is approxi-
mately half that of the constraint surface and a quarter that of the linear PDM.

Figure 4.14 shows how the size of the training set affects the accuracy of the
lamp HPDM. Values of £ = 20 and O = 1.5 were used.

12

10

Model accuracy error
(2]

~—~—

—]

0 50 100 150 200 250 300 350
Number of training examples, E

Figure 4.14: Effect of training set size on the accuracy of the lamp HPDM.

As might be expected, accuracy improves with an increase in training set size.
The graph begins to level out at around £ = 100, and by £ = 200 the error is below
1%.

Intuitively, a HPDM will require more training data than a linear PDM. Since
a HPDM with k linear patches is effectively & separate PDMs, then arguably each
patch should have enough training data to build a satisfactory PDM. If the overlap
is O then a HPDM should notionally require k/O times as many training examples
as a linear PDM. Of course, this assumes that all patches are equally well repre-
sented, which is rarely the case in practice, so the true figure may be much higher.

The inescapable truth is that the HPDM performs poorly given sparse training

Chapter 4 58 Hierarchical Shape Models

data; models produced under these conditions are too specific, often excluding valid

shapes.

4.4.2 Other Synthetic Examples

In this section we show some synthetic examples which illustrate how the HPDM
provides an improvement over constraint surface models.

In Figure 4.15, the first column shows two different sets of training data; a
circle and a ‘U’ shape, both of finite thickness. The second column shows two
corresponding sets of test data; this data is to be constrained under each model in
order to illustrate the model’s performance. Three HPDMs and three corresponding
constraint surface models were built: the circle data was modelled with both 10 and
15 linear patches, and the ‘U’ shape was modelled with 15 patches. Columns 3 and

4 show the results of constraining the test data under the various models.

Training data Test data Constraint surfaces | Hierarchical PDM

10 patches

15 patches

15 patches

Figure 4.15: Comparison of the HPDM with constraint surface models (see text).

In the 10-patch circle model, the constraint surface model has approximated the

circle as a one-dimensional surface; consequently the VSR produced is too thin. The

Chapter 4 59 Hierarchical Shape Models

HPDM has correctly captured its finite thickness. In both models there is a degree
of polygonisation of the circle. Increasing the number of patches to 15 improves the
HPDM, but the smaller patches in this case have caused the constraint surface to
interpret parts of the circle as two-dimensional, and the VSR is under-constrained.
The ‘U’ shape model illustrates how the Constraint Surface tends to extend the VSR
at extremities (as described in Section 4.2), whereas the HPDM correctly limits its

extent.

4.4.3 Manually Collected Real Data

The first real data model built using the HPDM was a 2D multi-gesture hand model.
105 examples of hands in five different poses (open, fist, point (thumb out), point
(thumb in) and crossed fingers) were each annotated manually with 89 landmarks
around the boundary!. Figure 4.16 shows some examples.

A HPDM was built using 20 clusters and an overlap factor of 1.5. Figure 4.17
shows a scatter graph of the training data projected into the first two dimensions
of global PCA space (left) and the calculated linear patches (right). Figure 4.18
compares deformations for the linear PDM (top row) and HPDM (bottom row).

™y oMy M 0%

Figure 4.16: Manually annotated training examples for a hand model.

Figure 4.17 shows that the VSR for the hand model features a loop. The HPDM
has captured this topology with a series of overlapping patches. It is less obvious
from Figure 4.18 than for the lamp example that the HPDM has more accurately
captured the VSR, however, Figure 4.19 shows some maximally non-valid shapes?
both from the linear PDM (top row) and the HPDM (bottom row). The linear PDM
is capable of producing a wide variety of implausible shapes, but the HPDM’s worst

shapes are still all sensible.

!Thanks are due to Andreas Lanatis of the Wolfson Image Analysis Unit, University of Manch-
ester, for providing the data.
?Maximally non-valid shapes are shapes with large specificity errors.

Chapter 4 60 Hierarchical Shape Models

Figure 4.17: The manually annotated hand training data projected into the first
two dimensions of global PCA space (left) and the HPDM linear patches (right).

Figure 4.18: Modes of variation for the manually annotated hand PDM (top row)
and equivalent HPDM shape space traversals (bottom row).

e, Ml
GNATSTUNLTY

Figure 4.19: Maximally non-valid shapes for the manually-annotated hand model;

linear PDM (top row) and HPDM (bottom row).

Chapter 4 61 Hierarchical Shape Models

4.4.4 Automatically Collected Real Data

The main motivation for this work was the desire to build models from automatically
collected training data. In this experiment, hand shapes were sampled directly from
a live video stream. Various gestures were performed against a black background;
the image was thresholded and the hand outline extracted using a simple boundary-
finding algorithm. 100 landmarks were positioned at equal intervals around the
boundary. This method of data collection suffers greatly from the problem that
landmarks rarely mark the same physical object feature across training examples.
For example, when the fingers are outstretched the boundary is much longer than
for a pointing gesture; the landmarks spread out more and tend to ‘slide’ around
the boundary. There were just over a thousand training shapes in all; Figure 4.20

shows some examples.

TIVATACAYAY

Figure 4.20: Automatically collected training examples for a hand model.

by b, b,

B
g /\ > M >
L)) b

Figure 4.21: Several projections of the automatically collected hand training data
in global PCA space (top row) and HPDM linear patches (bottom row).

B L}

Chapter 4 62 Hierarchical Shape Models

Figure 4.22: Modes of variation for the automatically trained hand PDM (top row)
and equivalent HPDM shape space traversals (bottom row).

A HPDM was constructed from the training data, using 80 linear patches. Fig-
ure 4.21 shows several projections of the training data in the global PCA space,
along with the patches calculated, and Figure 4.22 shows the four major modes of
variation for a linear PDM (top row) and the four equivalent shape space traversals
for the HPDM (bottom row).

Figure 4.21 clearly illustrates that the training data is virtually one-dimensional
in nature, representing transitions between the various gestures. However, the paths
through the global PCA space are highly non-linear, spiraling through at least 3
dimensions.

Figure 4.22 demonstrates how, in this case, the linear PDM fails to produce a
model which would be specific enough for object tracking or location. The HPDM
traversals include only valid object shapes. There appear to be discontinuities in
some of the traversals; this is expected because the VSR is not necessarily continuous
parallel to any one axis in the global PCA space, and is a side-effect of the ‘dragging’
technique used to generate the traversals.

Figure 4.23 shows some maximally non-valid shapes. As can be seen, the linear
PDM is capable of producing shapes which are barely even recognisable as hands,
whereas the HPDM’s worst shapes are only slightly distorted versions of plausible
hand shapes.

Chapter 4 63 Hierarchical Shape Models

it
St oy

Figure 4.23: Maximally non-valid shapes for the manually-annotated hand model;

linear PDM (top row) and HPDM (bottom row).

In terms of quantitative analysis; Figure 4.24 shows how the automatically-
trained hand HPDM’s specificity compares to the linear PDM, and how it varies

with the number of clusters used?.

18

16 <

Linear PDM ——

14 |~ HPDM ------ 4
124

1 .

0.8

Model specificity error

06 | Y e

04

02

0

60 80 100

0 20 40
Number of linear patches, k

Figure 4.24: Graph showing how the specificity of the hand HPDM compares with
a linear PDM, and how it varies with the number of clusters used.

The trend is very similar to that of the synthetic examples. The graph also shows
that in this case there is not much improvement in specificity gained by using 80

clusters (as we did) over 20 clusters.

3An overlap factor of 1.5 was used for this experiment.

Chapter 4 64 Hierarchical Shape Models

4.5 Tracking using HPDMs

The chief test of the success of a HPDM is whether it can be used to good effect
for object location or tracking. Tracking with a HPDM is straightforward, being
the same as for the linear PDM (i.e. using Active Shape Models, or ASMs [20]), but
with shape constraints being applied after each iterative deformation.

Qualitative tracking experiments were performed using both the manually- and
automatically-trained hand models described above. In both cases, the HPDM
was compared with a linear PDM built from the same training data. A real-time
tracker (as described in Section 3.5) was exercised under each of the models; various
gestures were performed in a controlled environment and the models’ performance
was observed. The following observations were made:

Tracking using the manually trained HPDM proved to be very promising. In
comparison to the linear PDM, the HPDM experienced fewer distractions and track-

ing was generally more robust (see Figure 4.25).

Figure 4.25: Tracking examples using manually-trained hand models; (a), (c) the
linear PDM and (b), (d) the HPDM.

Tracking using the automatically-trained hand HPDM was less successful. Some

Chapter 4 65 Hierarchical Shape Models

deformations were tracked well, such as movement of the thumb and ‘waggling’ of the
fingers (Figure 4.26(a)). Other deformations were tracked less well. For example, the
transition from fingers outstretched to a pointing gesture (Figure 4.26(b)) requires
the movement of landmarks around the boundary, because the overall length of the
boundary decreases, causing the evenly spaced landmarks to draw together. The
ASM tracker has difficulty coping with such shape changes; there are no image cues
to encourage movement of landmarks along a boundary (this is a manifestation of
the aperture problem [36]). Another transition which was poorly tracked is that
from fingers outstretched to a flat palm (Figure 4.26(c)). In this case there is a
discontinuous change in the boundary shape as the fingers close together. The ASM

tracker, which uses a local optimisation paradigm, cannot cope with such changes.

100%
success
rate

50%
success
rate

(approx)

0%
success
rate

Figure 4.26: Tracking examples using the automatically-trained HPDM of the hand.

These problems might be alleviated by improved training data collection. The
movement of landmarks around the boundary is due to the fact that the landmarks
are evenly spaced, be the boundary long or short, as opposed to fixed on particular
features. A slightly smarter tool for collecting training data might be able to spot
features, such as areas of high curvature, and produce training data with a better

correspondence between landmarks and object features. Hill et al [35, 37] have

Chapter 4 66 Hierarchical Shape Models

suggested two possible algorithms for this. However this approach appears to be
fairly object-specific; it is uncertain whether it would work in the general case. The
sudden boundary shape changes are harder to cope with. In this example, they
occurred when the fingers closed together. The simple boundary-finding algorithm
used for training has no knowledge of expected hand shape, and consequently locates
only the tops of the fingers of a closed palm, as opposed to dipping into the finger
webs; hence a very different boundary shape is produced than for a hand with fingers
outstretched. A possible solution is to use the bootstrapping algorithm described by
Cootes and Taylor [16] to collect training data; new training examples are located in
images using a model built from previous examples, but with extra variation included
via a physical (FEM) model. In this way some shape knowledge is incorporated into
the training. However, this process almost certainly requires manual guidance in all
but the simplest of cases, and will also not work for objects which can take on a
number of distinct shapes (this often occurs due to a change in viewpoint).

To put this performance in context, tracking using a linear PDM built from the
same training data is very poor indeed. The model is underconstrained to such an

extent that tracking is rarely successful (see Figure 4.27).

Figure 4.27: Tracking examples using the automatically-trained linear PDM of the
hand.

4.6 Conclusions

The construction of Hierarchical PDMs has been described; use was made of a
piecewise-linear PCA strategy. Qualitative and quantitative analyses on synthetic

data have been undertaken, and performance on automatically-collected real data

Chapter 4 67 Hierarchical Shape Models

has been examined with promising results. The HPDM is a great improvement over
both the linear PDM and constraint surface models, and is a viable solution to the
problem of constructing deformable models fully automatically.

The piecewise-linear approach requires a large amount of training data to build
good models. However, this problem is negated by the fact that training data can be
collected automatically. In the example given of the hand, it took less than 5 minutes
to collect all the training data and build the model. More intelligent training data
collection (e.g. Hill and Taylor’s approach [37]) might give rise to a less complex
global PCA space which could then be modelled with fewer linear pieces.

Another issue is that of speed. When applying the shape constraints it is nec-
essary to calculate distances to every linear patch. This process is order n in the
number of patches. Bregler and Omohundro suggest the use of ‘Bumptrees’ [55] (a
tree-like data structure for representing functions and constraints) to decrease the
number of calculations. A related approach would be to extend the hierarchical
model to more than two levels, inserting intermediate-sized PCA spaces between
the coarsest (global) and finest levels to give a multi-level tree structure. Search for
the nearest patch(es) would descend through the tree giving, at worst, order nlogn
performance and maybe better in the case of only a partial tree descent.

There are very strong parallels with this work in the statistics literature. The
VSR can alternatively be thought of as a probability density function, and approxi-
mated as a Gaussian mixture. Instead of using k-means to determine the Gaussians,
an Frpectation-Mazimisation algorithm [26] can be used with equal, if not better,
success. This approach has very recently been taken by Cootes and Taylor [18];
their results are similar to those presented here. However, because their end appli-
cation is static object location, little consideration is given to issues of speed, and
the importance of a hierarchical approach is not emphasised.

To summarise, HPDMs are a definite improvement over linear PDMs. For man-
ually collected training data, the improved models produced can be applied directly
to ASM tracking with good effect. For automatically collected training data, the
models produced are a vast improvement, but ASM tracking performance is less than
satisfactory. In the next chapter an alternative approach to tracking is described
which, when combined with HPDMs, provides an ideal solution to the problem of

building deformable shape models automatically for tracking.

Chapter 5

Learning Models of Shape

Dynamics

5.1 Introduction

Existing tracking algorithms which use deformable shape models generally rely on
the assumption that objects move and deform smoothly over time. Object features
and edges are detected in an image via a local search from the object’s previous
position. There are cases where this continuous behaviour is not adhered to, the
main example being when tracking the silhouette of a 3D object.

Object silhouettes change shape smoothly for most of the time, but in certain
situations there can be a discontinuous shape change. For example, in the case of
human hands, this occurs when the fingers close together and the gaps between them
disappear or when the hand turns sideways (see Figure 5.1). Similar effects are seen
on the arms and legs of a walking person. Sometimes these sudden changes are a
side effect of temporal sampling (as a result of using, for example, a 25Hz camera)
but there are also cases where there is an intrinsic temporal discontinuity (e.g. the
touching together of the thumb and forefinger).

Local optimisation-based approaches generally cannot track objects through such
discontinuities; they usually become trapped in a local maximum and sometimes fail

more catastrophically.

63

Chapter 5 69 Models of Shape Dynamics

Figure 5.1: Discontinuous changes in object boundary shape due to deformation
(top row) and rotation (bottom row).

In the case of models built from automatically-collected training data (by way
of the Hierarchical PDM), as described in Chapter 4, the non-intelligent placement
of landmarks means that shape discontinuities are fairly common. In addition, even
during smooth shape changes, landmarks can in some cases ‘slide’ around the object
boundary; existing trackers do not perform well in such situations (as discussed in
Section 4.5).

A recent development, the CONDENSATION algorithm (Section 2.2.4), improves
matters by providing a stochastic framework for tracking. Performance on the types
of deformations described above is superior to previous trackers, mainly due to a
departure from the deterministic hill-climbing approach; CONDENSATION is effec-
tively able to traverse hills and also jump over (small) valleys. However, there is still
an underlying assumption of smooth dynamics, and abrupt changes are not tracked
well.

In this chapter a novel method for modelling shape dynamics is proposed,
which encompasses both continuous and discontinuous shape changes in a non-
deterministic framework. Continuous shape deformations correspond to continuous
movements through the model shape space, whereas discontinuous shape changes
require ‘jumps’ through shape space. Use has been made of the Hierarchical PDM,
wherein allowable shapes are represented as a union of (learned) bounded regions
within such a space. Shape changes are described in terms of movement within
and between these regions; discontinuous shape changes involve transitions between
non-adjacent regions. Transition probabilities are learned from training sequences
and stored as a Markov model. In this way ‘wormholes’ in shape space are created.

Tracking with such models is via an adaptation of the CONDENSATION algorithm.
CONDENSATION tracks by propagating a probability distribution in model state

Chapter 5 70 Models of Shape Dynamics

space over time. The propagation algorithm is substituted with an adapted Markov
process, driven by the new model of shape transition.

The remainder of the chapter is set out as follows. Firstly the method for mod-
elling shape transitions is described. Secondly it is shown how to adapt the CON-
DENSATION algorithm, based on the new model, in order to cope with the tracking
of discontinuous shape changes. Following this the new technique is evaluated in
comparison to previous approaches. Finally an extension to the CONDENSATION
algorithm is described which gives an improvement in performance, and some con-

clusions are drawn.

5.2 Modelling Discontinuous Changes in Shape

The discontinuous shape changes described above are entirely predictable: they
occur repeatedly between certain pairs of shapes. As such, they can be learned from
training sequences containing examples of characteristic object movement.

The Hierarchical PDM (HPDM), as described in Chapter 4, has been used. The
HPDM produces a model of shape which is represented by a set of local patches that
cover all the valid regions in shape space. The key to our approach is the observation
that these patches are generally small enough to cover only minor variations in object
shape, and can thus be looked on as being discrete states for the object shape. This
situation allows for the use of a Markovian representation of object shape dynamics,
with each state representing a different shape and the state transition probabilities
reflecting typical shape changes.

To this end, a Markov state transition matrix T can be constructed as follows:
FE pairs of consecutive shapes, x. and y., are collected from one or more continuous
training sequences of characteristic object movement!. A preliminary matrix T’ is

first calculated using:

T = p(x)ply)” (5.1)

e=1
where p(x) is a vector of probabilities (p(x,1)...p(x, k)T, with p(x,c) being the
probability that shape x is a member of patch ¢. The simple rule that p(x,¢) = 1 if
¢ is the nearest patch and p(x, ¢) = 0 otherwise has been used, but a more complex

function could be derived based on relative distances to patches.

!From a training sequence of N frames of object movement it is possible to generate N — 1 such
pairs: l and 2,2 and 3, ..., N—2and N -1, N —1 and N.

Chapter 5 71 Models of Shape Dynamics

The preliminary matrix T’ is then normalised with respect to each row so that

[T].» gives the probability of a transition from patch a to patch b:

[T]op = [Tas/ 3_[Tas (5.2)

The matrix T provides a probabilistic model of object shape transitions. T would
be expected to have large values along its diagonal, indicating that for the majority
of the time a shape remains in the same patch. Large off-diagonal values represent
learned shape transitions, many of which will be to adjacent patches. However, if a
specific discontinuous change appears repeatedly in the training data, this too will

give rise to a high transition probability. Figure 5.2 illustrates a typical transition

matrix.
Shape space with linear patches Transition matrix
12345678

1 -
™~ remainin

2 same patch

3

4 adjacent

5 |~ patch

6 N

; . wormhole

8

Figure 5.2: A typical transition matrix. The transition probabilities are represented
by shaded blocks; a darker shade corresponds to a higher probability.

For practical use, it is convenient to construct a cumulative version of the tran-

sition matrix; this makes for more efficient probability sampling:

b

Cop= 3 [Tl (5.3)

=1
This model of shape transition can be used for generation or prediction of object
deformation over time; the latter case is now illustrated by applying it to model-

based object tracking.

5.3 Tracking

The model of shape transition described above is based on probabilities and, as such,
lends itself to a non-deterministic approach to tracking. For this reason, use was

made of Isard and Blake’s CONDENSATION algorithm.

Chapter 5 72 Models of Shape Dynamics

A more detailed description of CONDENSATION (Stochastic Conditional
Density Propagation) is given in Section 2.2.4, but the essence of the approach
is the representation of an object’s location not by a single point in the model pa-
rameter space, but by a probability density function (pdf) over the space. A model
of conditional probability (learned from training sequences) is used to propagate
the pdf over time. In other words, given the pdf at time ¢ there is a mechanism
to predict the pdf at time ¢ 4+ 1, based on a simple model of object motion. The
new pdf is consolidated and refined by referring to the current image. Specifically,
a fitness function is used to determine the goodness-of-fit of model to image at any
position in the parameter space.

In practice, the pdf is represented by a population of samples drawn from the
parameter space. Fach one has its fitness calculated and factored sampling [30] is
used to choose seeds for propagation.

The benefits of CONDENSATION are as follows:

e It can support multiple hypotheses; this is represented by a pdf with multiple
peaks.

o [t provides an improvement over deterministic hill-climbing trackers in that it

can effectively traverse hills (in this sense it is a non-greedy algorithm).

o [t recovers well from failure; the stochastic nature of the algorithm allows it

to escape from local maxima.

e [t incorporates a level of prediction (learned from training data) which im-
proves the speed of convergence and the quality of results over, for example,

a Genetic Algorithm.

The prediction aspect is embedded in the propagation equations. Isard and Blake
use a ‘Fokker-Planck’ style stochastic differential equation (see Section 2.2.4) which
consists of two elements: a deterministic term which allows for simple drifting of
the pdf, and a stochastic term which encourages spreading of the pdf. Although
the tracker can escape from local maxima (due to the stochastic term), the under-
lying dynamical model is still based on an assumption of smooth, continuous object
movement.

The tracking of sudden shape changes is possible via a modification to the prop-
agation step of CONDENSATION. The specification for propagation is quite general;
the abstract notion is a conditional pdf p(shape at time t+1]| shape at time ¢) which

Chapter 5 73 Models of Shape Dynamics

propagates the shape pdf over time. The algorithmic requirement is a function
which, given a vector s, being the shape at time ¢, returns a new vector s’, being a
possible shape at time ¢ 4+ 1, sampled from the conditional pdf.

Our learned model of object shape transitions can be used to provide the control
parameters for a Markov process-based propagation algorithm, using the cumulative
transition matrix defined in (5.3). This proceeds as follows, noting that s and s’ are

vectors representing shapes within the HPDM global PCA space:

1. Determine the HPDM patch membership of the source shape s. Currently it
is assumed that s is member of the nearest patch (but, as for the transition
matrix learning algorithm, a more complex function could be derived based

on relative distances to patches). Label this patch a.

2. Use row a of the cumulative transition matrix C to select probabilistically the
destination patch 6. To do this, generate a random number z from a uniform

distribution over the range [0, 1] and choose the smallest b such that C,; > z.

3. Set s’ (the destination shape) at a position within patch b. If b = a then 8’ is
set to s plus a random perturbation. If b # a then s’ is set to the centre of
cluster b plus a random perturbation. In either case, the random perturbation
is normally distributed, and scaled and orientated with respect to the principal

axes of linear patch 6. Put more formally:

(5.4)

' S—I—PbAbQ : a=2b
Eb—I-PbAbQ . a;éb

where by, Py and A, = diag(v/Ap1 - . .1/ Awe,) are the patch centroid, orientation
axes and variances respectively, as defined in Section 4.3.1, and €2 is a vector

of ¢, independent standard normal random variables.

This final stage makes the propagation model more than just a discrete-state
process; by including a ‘spread’ function the model becomes continuous (in

fact it becomes very similar to a Hidden Markov Model).

The result of using the above algorithm is that a small number of samples from
the shape population ‘jump’ through wormholes in shape space at every iteration.
In most cases these jumps will result in low fitness candidates which are unlikely to
survive into the following iteration. However, if a sudden shape change has occurred

then a high fitness candidate will be produced and other population members will

Chapter 5 T4 Models of Shape Dynamics

quickly migrate to the new fitness peak. This has the desired effect of tracking such

discontinuous shape changes.

5.4 Evaluation

In order to demonstrate the new tracker, a comparative evaluation was performed
with two other trackers: a simple CONDENSATION tracker and the snake-like Active
Shape Model (ASM) tracker used previously.

The underlying shape model used for all three trackers was the same: a HPDM
of the human hand, similar to that illustrated in Figure 4.22, but with a gesture
set chosen specifically to produce discontinuities in the shape space. Training data
was collected by recording a sequence of gestures performed against a homogeneous
background, and applying a simple boundary-finding algorithm to each frame in the
sequence. Fach training example consisted of 100 evenly spaced landmarks around
the hand silhouette boundary.

The HPDM was then constructed as described in Chapter 4. Figure 5.3 shows
the training data (as projected into the two principal dimensions of global PCA

space) and the 20 linear patches which were constructed from it.

Figure 5.3: The automatically captured training examples (projected into the two
principal dimensions of global PCA space) and the HPDM linear patch principal

axes.

The same training data could also be used to build the Markov transition matrix
which models the conditional pdf; this was possible because the training examples
were collected as a continuous sequence. Figure 5.4 shows some example conditional
pdfs for both Fokker-Planck (top row) and Markov model (bottom row) propagation
algorithms, generated by choosing a single ‘seed’ position in global PCA space,

calculating a large number of destination positions and compiling a 2D histogram.

Chapter 5 75 Models of Shape Dynamics

The Fokker-Planck algorithm used was in fact ‘untrained’: a zero-velocity as-
sumption was made and a simple Gaussian spread used. A trained tracker would

in theory perform better, but would still be incapable of modelling non-continuous

dynamics.
seed 1 Seed 2 seed 3 seed 4
X
[&]
T o
T o =
~
0 iy
D
©
= 1) -
> ™ - | e
E
=

Figure 5.4: Some example conditional pdfs generated from single seeds via both
the Fokker-Planck and Markov model algorithms. The crosses indicate the seed
positions.

The Fokker-Planck algorithm essentially produces a Gaussian distribution
around the seed, truncated by the HPDM constraints. The Markov model algo-
rithm uses the transition matrix to generate more general conditional pdfs. This
model has captured valid jumps through shape space, indicated by the multiple dark
areas. Note that the Fokker-Planck algorithm in this example is untrained; training
would alter the shape of the pdf, but only in terms of orientation and eccentricity
of the Gaussian. More complex pdfs are not possible under this model.

To compare the trackers’ performance, an unseen sequence of hand movement
was filmed. The sequence featured many gestures, including the types of sudden
shape changes which have caused problems for our previous trackers. Figure 5.5
shows a graph of the fitness score?® for each tracker over the video sequence. Note

that a hybrid version of the CONDENSATION algorithm was used in this experiment;

?The fitness function used examines image pixels along a line normal to the contour at each
control point and returns a score proportional to the number, proximity and strength of edges
found. More details can be found in [32].

3For the CONDENSATION-based algorithms the modal fitness value was used.

Chapter 5 76 Models of Shape Dynamics

this is detailed in Section 5.5. The failure threshold gives the approximate fitness

value (manually determined) above which a good fit is deemed to have occurred.

55000 Y Y Y Y Y
as000 1 |
g 0000
3 | |
S 35000 ffi 4
= ;
30000 |/ 1
i Active Shape Model —
25000 ¢ Hybrid Condensation (Fokker-Planck) —-- 1
Hybrid Condensation (Markov Model) -
Failure threshold
20000 L L L L 1
0 50 100 150 200 250 300
Frame number

Figure 5.5: Graph showing the fitness scores for the different tracking algorithms on
an image sequence containing sudden shape changes.

The positions of the sudden shape changes in the sequence (approximately ev-
ery 30 frames) can easily be identified as the fitness for all three trackers changes
suddenly. The ASM tracker is unable to respond at all to the shape changes; there
are no image edges to follow in order to deform the model shape in the right way.
This is indicated by the large fluctuations in the fitness score. The Fokker-Planck
tracker has slightly better performance: the same large fitness fluctuations are seen,
but in some cases the tracker starts to recover (e.g. frames 125 to 150) until another
shape change occurs. The Markov model tracker, however, clearly out-performs the
other two in this example. Its fitness level does initially drop after a shape change,
but it quickly manages to return to full strength, indicating that the underlying
population has managed to ‘migrate’ to the correct shape.

Figure 5.6 provides a more detailed analysis of how the two different stochastic
propagation algorithms handle a sudden shape change. A section of the above
experiment was isolated and snapshots were taken every five frames showing the
input image and the positions in shape space (projected into 2D) of the populations
for both the Fokker-Planck and Markov model propagation algorithms.

Initially, the populations for both trackers are clustered around the correct po-
sition in shape space (towards the right hand side). Note that the Markov model
population is more focussed, but with a small number of members in distant areas;

these areas are potential destinations of a sudden shape space jump. As soon as the

Chapter 5 77 Models of Shape Dynamics

Image

%
e

.5 . ,-"C ve t
. ;ti‘ . «\.'5:.'-_:{?' . "-‘.}f(q'.

Markov Model Fokker-Planck

frame 235 frame 240 frame 245 frame 250 frame 255

Figure 5.6: Coping with a sudden change: the image sequence, and the popula-
tion distributions for the (untrained) Fokker-Planck and Markov model tracking
algorithms, as projected into the first two dimensions of global PCA space.

shape change occurs, the Markov model population begins to migrate to the left,
and by frame 245 a new cluster has formed on the left hand side. The Fokker-Planck
population is much slower to move, and even after 20 frames it is only approximately

half way there.

5.5 Improving CONDENSATION

A drawback of the CONDENSATION algorithm over a deterministic local optimisa-
tion (i.e. snake-like) tracker is that of speed. This is because in every frame there is
a population of up to several hundred candidate shapes to process, whereas deter-
ministic trackers process only one shape.

The construction of a hybrid tracker which makes use of both stochastic and
deterministic tracking has been investigated. This produces a system which is robust
but also faster and more accurate than a purely stochastic tracker.

The hybrid tracker is based on a CONDENSATION tracker as described above,
but after each new candidate shape is produced via the propagation function, one
or more iterations of local optimisation are performed (using an ASM) in order to

refine the shape and hence improve its fitness. The number of iterations applied to

Chapter 5 78 Models of Shape Dynamics

each shape is proportional to its fitness so that more CPU cycles are allocated to
promising shapes and fewer to poor shapes. A fixed number of iterations are shared
out in order to keep the tracker running at a steady rate. The result is that the
peaks in the pdf are better represented, and consequently a much smaller population
is required for accurate tracking. A similar approach has been used to good effect
by Hill et al in combining Genetic Algorithms with ASMs [33].

Figure 5.7 illustrates the propagation of a population of shapes under the hybrid
algorithm. The local optimisation step results in better clustering of samples around

the fitness peaks and higher overall fitness levels.

A A
stochastic local
propagation optimisation
g / g
T iT i
Shape parameter Shape parameter Shape parameter

Figure 5.7: Propagation of a 1D shape population using the hybrid tracker.

Figure 5.8 shows a comparison of three different tracking algorithms—purely
stochastic (CONDENSATION), purely deterministic (ASM) and hybrid—on a typical
sequence of hand movement. The graph on the left shows comparative performance
on moderate speed hand movement and the graph on the right is for the same
sequence at high speed (only every eighth frame is used). The failure threshold
shown is a (manually determined) level below which a tracking failure is deemed to
have occurred. The CONDENSATION tracker had a population of 150 shapes, this
number being chosen to give a reasonable level of performance. The hybrid tracker
was allowed only 50 shapes and 50 cycles of local optimisation were shared out per
iteration. In total it was approximately 1.5 times as fast as the CONDENSATION
tracker. The ASM tracker was appended with a (very slow) failure recovery mech-
anism which was activated if the fitness dropped below the failure threshold. This
was for the purpose of illustration only.

The hybrid algorithm clearly out-performs the purely stochastic tracker, despite
having a smaller population. At moderate speeds the ASM and hybrid trackers’
performance is comparable. At high speeds the ASM tracker is not robust, requiring
re-initialisation every few frames, whereas the hybrid tracker experiences only one
perceived failure (in frame 78), and it recovers from this without any help. Note

that the ASM only performs better than pure CONDENSATION because the hand

Chapter 5 79 Models of Shape Dynamics

40000 40000

(moderate speed object movement) (high speed object movement)
35000 |- : 35000 -
30000 [30000 [V |
g 25000 i g 25000
s s
£ 20000 | § £ 20000 |
=] =)
o o
= 15000 |- = 15000 |-
10000 - E 10000 - E
Active Shape Model —— Active Shape Model ——
5000 - Condﬂﬁ;ﬁg """ 1 5000 - Hybrid -1
' Failure threshold -
Failure threshold alurethresno
0 ‘ ‘ ‘ ‘) ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 0 20 40 60 80 100
Frame number Frame number

Figure 5.8: Graphs comparing the hybrid tracker to a CONDENSATION tracker and
an Active Shape Model tracker, on moderate (left) and high (right) speed hand
movements. The failure threshold was chosen manually.

movement is relatively slow and the scene is uncluttered.

In summary, the hybrid tracker is faster and more accurate than the purely
stochastic tracker, and more robust but slower than the deterministic ASM tracker.
It is worth noting that the hybrid approach may not be suitable for all applications
because in some cases it might counteract the stochastic process which makes the
tracker robust to tracking ambiguities such as clutter.

There is some commonality between the ASM and CONDENSATION algorithms—
they both require the same image measurements to be made—so a substantial speed

increase can be gained by coding the combined algorithm optimally.

5.6 Conclusions

This chapter has described the modelling of shape dynamics using a union-of-regions
representation of shape along with a learned Markov model containing transition
probabilities between the regions. Transitions between non-adjacent regions cor-
respond to ‘wormholes’ in the shape space. Tracking of temporal discontinuities
has been enabled using this model in combination with an adaptation of the CON-
DENSATION algorithm. It has been shown how the new method can give improved
performance over previous approaches.

These results are interesting for two reasons:

o The tracking of 3D objects using 2D shape models on their silhouettes is made
possible.

Chapter 5 80 Models of Shape Dynamics

o Tracking using models which have been trained fully automatically is more
successful. Previously, manual annotation of training examples was highly
desirable in order to ensure that the models produced were sufficiently specific

and continuous for tracking purposes.

Although the described experiments were performed in a controlled, uncluttered
environment, Isard and Blake [43] have demonstrated that CONDENSATION is effec-
tive in a cluttered environment and so it is anticipated that the adapted version will
also cope with such situations.

A substantial amount of training data is required to build the underlying HPDM
shape model and the transition matrix. However, training data capture is automatic
and thus a large number of training shapes can be collected in a short time. In the
case of the hand models, the training phase involved performing several gestures
repeatedly under a rostrum camera; this took around five minutes.

There are some useful extensions that could be made to the dynamic model as

described:

e In the construction of the transition matrix the patch membership of each
training example is currently decided in a nearest-neighbour fashion. A bet-
ter alternative might be to provide a probabilistic membership function; this

would be especially useful for shapes which lie halfway between two patches.

e The stochastic propagation model could be further refined by combining the
Markov model with learned Fokker-Planck ‘drift and diffuse’ dynamics. It
would be possible to learn a different dynamic behaviour for each linear patch,

or even for each transition pair or patches.

Finally, it is worth noting the similarity of our model to a Hidden Markov Model
(HMM) [61]. A HMM differs from a standard Markov Model in that each state
is associated not with a single output value, but with a distribution over either a
discrete alphabet or a continuous space. In our case the distribution for each state
is a Gaussian within the (continuous) global PCA space, and the states themselves
are in effect ‘hidden’; only the PCA space is visible. With this observation in mind,
it is likely that techniques used in the HMM literature will also be applicable to our

model; this is certainly worthy of investigation.

Chapter 6

Tracking with 3D Deformable
Shape Models

6.1 Introduction

So far the emphasis of this work has been on a 2D approach to shape modelling;
the models built have essentially been appearance models, based on the projection
of objects into a 2D plane. The rationale for this has been their suitability to the
particular sensor technology being used (i.e. standard video cameras producing 2D
images), as well as the associated benefits of efficiency and simplicity.

One of the disadvantages of having a 2D abstraction is that it is sometimes
difficult to infer the 3D pose of an object given only 2D information such as its
silhouette boundary. In particular, the modes of variation of a silhouette model
only indirectly represent the physical deformations of a 3D object. An obvious
alternative is to attempt to build 3D models of objects and use them directly for
tracking. Pose inference then becomes trivial, and the need for complex models of
discontinuous shape change is alleviated. The questions that arise instead are how
can such models to be constructed, and how is it possible to track with them from
only 2D images.

In this chapter both these issues are addressed. It is shown how it is possible to

build 3D models as surface meshes, with deformation being achieved via a 3D Point

81

Chapter 6 82 3D Shape Models

Distribution Model. It is then described how the Active Shape Model approach to
tracking can be modified to enable the fitting of 3D models to 2D image sequences.

Finally some qualitative results are presented and discussed.

6.2 3D Model Construction

In previous work, deformable 3D models used in tracking systems have exclusively
been hand-crafted, making use of primitives such as cylinders connected by hard piv-
otal constraints. Building such models is generally laborious, and attaining accuracy
is also very difficult.

Experiences with 2D modelling suggest that statistical shape models may pro-
vide a viable alternative. The use of real-life training examples makes for accurate
models and deformation characteristics are learned automatically; no hard-coding
is required.

Point Distribution Models (PDMs) extend naturally into 3D. A PDM is repre-
sented in terms of the Cartesian coordinates of a number of landmarks on an object.
The extension to 3D involves the inclusion of the z coordinate as well as the = and
y coordinates in the model.

When working in 2D, the shape of an object has been modelled in terms of
its boundary because this feature is easy to locate in training images, is good for
visualisation, and is well-suited to tracking by way of simple edge detection methods.
An analogous approach is taken in 3D: an object is modelled in terms of a mesh
over the whole of its surface for exactly the same reasons.

The main difficulty in the construction of such models is the collection of training
data. There are two aspects to this problem: the acquisition of 3D image data for
a number of example object shapes and the extraction of a suitable surface mesh

from each of these images.

6.2.1 Training Image Acquisition

The acquisition of good quality 3D image data is certainly not trivial. A variety of
sensor technologies exist, but each has its drawbacks.

It s possible to generate 3D data by way of 2D images using stereo or multiple
views. Shape can be deduced quite accurately from multiple views of an object’s sil-
houette [67]; careful calibration and/or constrained circumstances are necessary for

this. Uncalibrated systems have also been demonstrated [31, 7]; these generally use

Chapter 6 83 3D Shape Models

feature correspondence and so require an abundance of distinctive object features,
and in any case often produce less than accurate results.

One level up in technology are laser range finders, which produce a depth image
of the target object. Careful calibration is not required and results are more accurate
than from multiple 2D images. However, scans can take up to several minutes and
also, a full 3D image is not obtained — only one side of an object is captured. For
a full 3D image it is necessary to scan an object from two or more directions and
attempt to ‘stitch’ the two scans together [25]. Another disadvantage is that at
present laser technology is not widely affordable. A cheaper alternative is to use
structured lighting. The theory is similar, but the hardware is much less expensive;
however, the resolution of images produced is lower.

The best results are generated from medical 3D imaging apparatus. Magnetic
resonance (MR), computer tomography (CT) and 3D ultrasound can all produce
accurate gray-scale voxel (3D wvolume pizel) maps of various types of object. Such
machines are very expensive and are generally only found in large hospitals, and so
availability is scarce.

Strong links with St. James’ Hospital in Leeds have meant that it has been
possible as part of this work to obtain a small number (8) of MR scans of human
hands in various poses. Figure 6.1 shows some slices (parallel to the z axis) from

one of these images.

Figure 6.1: Slices from a Magnetic Resonance scan of a human hand.

Each volume image consists of 256 x 256 x 20 voxels, with Imm resolution in
the 2 and y axes and 2.4mm resolution in the z axis. The images are 256 level
grey-scale; the sensor responds to water in objects and hence skin, tissues and bone
marrow appear quite light, whereas bones are much darker.

The images were post-processed to make them more suitable for training mesh
capture. Firstly, they were re-sampled along the z axis (with each new voxel being

interpolated from the original image) to give a 256 x 256 x 48 image with Imm

Chapter 6 84 3D Shape Models

cubic voxels. Following this they were passed through a 3D median filter to reduce
the level of image noise, and finally thresholded to give a binary image in which the
hand was completely white and the background was completely black. Removing the

internal hand features in this way avoided distractions in the mesh-fitting process.

6.2.2 Training Mesh Capture

The collection of training data for a PDM essentially involves finding the coordinates
of perhaps several hundred landmarks for each of the training images of the object
being modelled. For 2D models, this process is often performed by hand, with the
aid of some visualisation tool. It is time-consuming and laborious, and inevitably
leads to inaccuracy and error. Gathering landmark data manually for 3D models
is near-impossible due both to the problem of image visualisation and the sheer
quantity of data involved.

There are, of course, many established methods for capturing the positions of
image features automatically. Lorensen and Cline [51] describe a “Marching Cubes”
algorithm which triangulates a surface from 3D voxel data. More recently, work on
physically-based deformable meshes [25, 14, 11] has provided more robust methods
of capturing surface information.

However, for the purposes of building a PDM there should ideally be a direct
correspondence between similar landmarks across the whole training set (i.e. a par-
ticular landmark should mark the same feature on each training example), so apply-
ing any of the above techniques independently to each training example is unlikely
to be of much use.

Attempts have been made to address this problem. Hill and Taylor [35] and
Baumberg and Hogg [3] both describe methods for 2D models which work in the case
where it is possible to obtain a single clean pixelated boundary from each training
image. Hill and Taylor apply a pairwise corresponder in a hierarchical fashion to find
approximate matches between training boundaries, whereas Baumberg and Hogg
constrain the problem by assuming constant object orientation. Both employ some
form of iterative optimisation to improve the models produced. It may be possible to
extend these ideas into 3D: in other work, Hill and Taylor [38] show how to capture
3D data by way of 2D slice contours.

In this work, a semi-automated process, based on 3D physically-based modelling
techniques, is used. There are two stages to the process. Firstly a surface mesh

model of the object is constructed; this can be done manually, or automatically

Chapter 6 85 3D Shape Models

with the aid of one of the training examples. Following this, the mesh is deformed
to fit each training example in turn: a few key features are located manually and
various forces are applied to drive the mesh into position. Internal forces keep the
mesh smooth and even, and image forces help to give an accurate fit.

This idea is not entirely new: Cootes and Taylor [16] describe how to combine
physical and statistical shape models in such a way as to rely initially on physical
modelling but to place emphasis more on statistical modelling as the number of
training examples increases. They demonstrate how such a system can be used to
‘bootstrap” a PDM. Syn and Prager [71] develop this idea into a more robust and
practical tool by allowing guided model fitting, whereby key features are located
by hand. The algorithm described here also makes use of guided fitting, but a
slightly different approach to modelling is adopted by drawing a separation between
the physical and statistical domains. This allows the use of any physical modelling

technique, not just the Finite Element Method used in the aforementioned works.

6.2.3 Physically-Based Models

Physically-based models come in a variety of different forms. They all have in
common the ability to deform under the action of various forces. When applied to
feature location/tracking, a physical model is usually considered as a system of N
point masses whose motion over time is governed by standard Newtonian dynamics.

Two types of force are generally applied:

o Faxternal Forces: the point masses are ‘attracted’ towards particular image
features in order to fit the model to the image data. These forces might be
applied manually (in a guided system) or via some sort of feature detection

(e.g. edge detection).

o [nternal Forces: the point masses interact with one another to hold the model
in shape. These are usually elastic forces tending to drive the model towards

a stable rest configuration.

By allowing these forces to act over time it is hoped that the model will deform
to fit the image data. We can describe the dynamics of the system with the following
Newtonian law of motion:

d*P; dP;

m;—— = Fint—I'Fext

TE T (6.1)

Chapter 6 86 3D Shape Models

where P; is the instantaneous position of point ¢, Fj,; and F.,; are the instantaneous
internal and external forces on point z, m; is its mass and v is a damping factor.
If time is discretised in even steps and unit mass is assumed, integrating (6.1) with

respect to time gives the following:

PiH—l :Pit—I'Fint—l'Fext—l_(l_7)‘(Pit_Pit_1) (62)

where P! is the position of point ¢ at discrete time interval ¢. This equation can be
used to calculate the new position of the model, given its previous two positions.

Deformation of such a physical model thus progresses iteratively.

6.2.4 Simplex Meshes

The physical model used here is a basic version of the Simplex Mesh as described
by Delingette [25]. Simplex meshes are surface meshes which exist in a 3D space,
consisting of a number of vertices (of unit ‘mass’), each connected to exactly three
neighbouring vertices. It is possible to model any conceivable topology in this way.
Delingette describes many properties of Simplex Meshes; the most useful is the

concept of the simplex angle - this is measured as shown in Figure 6.2.

sphere, S

Figure 6.2: The Simplex Angle ¢; at vertex P; with neighbours Py, ,, Py, , and Py, ,.
¢ 1s a function of only r and R.

The simplex angle ¢; for a vertex P; is a measure of the surface curvature in
the locality of the vertex. It has the good properties that it is invariant to scale,
Py, , and Py, , on the circle U, and to the

position of P; on the sphere S. The simplex angle can be put to good use when

to the positions of its neighbours Py, ,

generating the model’s internal forces. For vertex P;, an elastic force is constructed

which drives the point towards a position such that:

e The simplex angle subtended is some specific angle ®;, and

Chapter 6 87 3D Shape Models

o P is equidistant from Py, ,, Py,, and Py, ,.

Full details are given in [25]. The choice of the ®; alters the ‘stable’ shape of the
mesh. For example, choosing Vi.®; = 0 encourages smoothness over the surface of
the mesh. Using Vi.®;, = ¢! (where ¢! is the value of ¢; at time ¢) sets the stable
shape to the shape at time ¢. Use is made of both of these settings at various stages

of the model fitting process.

6.2.5 Initial Mesh Construction

As mentioned in Section 1.1.1, the first stage in building a model of an object is to
decide which features of the object are to be modelled. It has already been decided
to model the surface of objects, via a mesh, but the structure of the mesh must be
determined: the number of vertices required, which part of the object each vertex
represents, and how they connect together.

For models of a few hundred vertices or less, it is possible to define the structure
by hand. However, this is very time-consuming, involving a great deal of pencil-and-
paper work, and is also error-prone (although errors are usually easily identified).

Alternatively, any of the mesh-fitting algorithms described in [51], [25], [14] or
[11] can be used to generate an initial structure for the model automatically by
applying them to one of the training images. However, it is not guaranteed that
particular object features will be landmarked and for more complex objects some
manual intervention may be required (particularly for Simplex Meshes).

The automatic mesh-fitting algorithms also provide an initial shape for the
model, whereas manual construction does not. However, this is not a large handicap
because the physical deformation can take place (admittedly more slowly) with the
vertices initialised at random coordinates, initially using manually-placed guiding
forces (as explained below). This is only necessary for the first training example;

the second and subsequent examples can be deformed from the first.

6.2.6 Mesh Deformation

Once a physical model has been constructed, it is deformed under the action of
various forces in order to fit each training example, using (6.2). Internal forces are
as described for the Simplex Mesh above, using various simplex angle constraints as

detailed below. External forces come from two sources:

Chapter 6 88 3D Shape Models

o Guiding forces. These are set up manually and are used to help the model find
its approximate destination in the early stages of deformation. The coordinates
of prominent object features are located in the training image by hand, and
virtual ‘springs’ are attached between these positions and the corresponding
model vertices. The stiffness of the springs can be altered to strengthen or

weaken the forces. The force S; on vertex ¢ is given by:

S; = ki(D; — P,) (6.3)

where P; is the vertex’s current position, D; is the ideal position and k; is
the spring stiffness coefficient. A value of k; = 0.7 provides relatively rapid

convergence whilst avoiding oscillation.

o [mage forces. These are forces exerted on vertices due to the 3D image data
itself. The aim is to drive each vertex towards a ‘good’ position locally with
respect to the image data. In the simple case we look for edges or surfaces in
the image data close to the vertex. The current implementation looks at pixels
along a normal to the model surface at each vertex (defined as the normal to
the plane containing the vertex’s three neighbours), finds the strongest edge
(intensity change) within a fixed distance and forces the vertex towards that
edge. This is an extension to 3D of a well-used technique first suggested by
Curwen and Blake [24].

For best results, strategic use of these forces is required. A three-stage deforma-

tion has been adopted as follows.

1. Gross location using guiding forces

The initial model is deformed under the action of guiding forces alone to move
it into approximately the right position This can be a trial-and-error process;
if the fit obtained is not close enough (as decided by the human eye) then more
guiding forces may be needed. This is especially the case when the vertices are
initially randomly positioned as described in Section 6.2.5 above. The model’s
‘stable’ position is chosen to suit the particular situation: if deforming from an
initially randomised position, the maximum continuity constraint (V:.®; = 0)
is used, however, it deforming from a previously discovered training example

shape, the initial shape can be used as the stable shape (Vi.®; = ¢?).

2. Refinement using image forces

Chapter 6 89 3D Shape Models

Image forces are introduced to drive every vertex into its ideal position. Ver-
tices which find no sufficient image data are pulled into position by their
neighbours. The guiding forces are kept in place during this stage to maintain
stability, and the maximum continuity constraint is used to ensure maximum

smoothness.

3. Fine tuning

The guiding forces are removed so that previously guided vertices can adjust to
their ideal location. This increases the tolerance for slightly misplaced guiding

forces.

6.2.7 Example: 3D Hand Model

The technique was applied to the 3D volume data of human hands, obtained via
MRI, as described in Section 6.2.1. A Simplex Mesh with 498 vertices was con-
structed by drawing a mesh on a surgical rubber glove stuffed with tissue paper,
labelling each vertex, then entering the connectivity data by manual inspection.
This was a laborious one-off task, but was deemed quicker and easier than imple-
menting a mesh-building algorithm.

The processes detailed above were applied to each of 8 training images. For the
first image, the mesh was deformed from an initially random position, as described
in Section 6.2.5 (see Figure 6.3). Manually-located guiding forces were required
for 80 vertices in order to ‘untangle’ the mesh. After 200 iterations, image forces
were introduced at all vertices to draw the mesh towards edge data, and after
400 iterations the original guiding forces were removed to allow guided points to
equilibrate (this is most noticeable around the wrist).

The resulting model was used as a starting position and stable shape for fitting
the mesh to subsequent training images. Consequently, fewer guiding forces were
needed (roughly 25 per example), and convergence was quicker (125 iterations as
opposed to 460). Figure 6.4 shows fitting to an image where the thumb has moved.
After 50 iterations (3rd frame) image forces were applied and after 100 iterations
(4th frame) the guiding forces were removed.

The eight meshes thus produced were used to construct a PDM; Figure 6.5
shows the two most significant modes of variation for the model produced. The
deformations are realistic, despite the small number of training examples.

It is worth noting that the small number of training examples used means that in

this case the examples are effectively being used as key frames [10], but with strictly

Chapter 6 90 3D Shape Models

|
\ %" /

i\,‘l!‘ /l/

Wil

\\\

W
!

Figure 6.3: Deforming a Simplex Mesh from an initially random position to fit MRI
data of a human hand (numbers show iterations).

Figure 6.4: Deforming the first model to fit a second training image.

orthogonal degrees of freedom. However, of the 7 modes of variation produced, only
5 represented significant deformations; consequently it was decided to remove the

last two from the model.

6.3 Tracking

There has been much work on using PDMs for object location and tracking in both
2D and 3D. In most of this previous work, the dimensionality of the model has
matched that of the input image (i.e. a 2D model for 2D images [48, 4, 32] or a 3D
PDM for 3D images [38]). Work on matching a 3D model to a 2D image has so far

assumed a ground plane constraint and only one degree of rotational freedom [67, 74].

Chapter 6 91 3D Shape Models

+2sd

Figure 6.5: The first (a) and second (b) modes of variation of the Point Distribution
Model produced.

In this work an attempt is being made to match a 3D PDM to a 2D image under
full 6 degrees of freedom (DoF') plus deformations.

An adaptation of the ASM (Section 2.2.3) is used for this task. The key to this
model-based approach is to find the set of model parameter values that cause the
model to fit best the image data. In this case the parameters are a translation
vector u = (u,v,w), a 3 x 3 orthonormal rotation matrix R, a scale factor s and the
five significant deformation parameters b; (giving a total of 12 DoF). Iterative pose
refinement is used: given a fair initial estimate at an object’s location, local image
information (e.g. edge data) is extracted and used to calculate a small change in the
model parameters which will improve the fit.

To compare model and image, it is necessary to project the model onto the
image. The model is first deformed from the mean shape X using the standard
PDM equation:

13
X=X+ bp; (6.4)

7=1
The deformed model x is then rotated, scaled and translated into the posed model

X, such that the position X; of the ¢** landmark is given by:

X; = sRx; + u (6.5)

X is projected into the 2D image using an orthographic projection (simply by

Chapter 6 92 3D Shape Models

discarding the z-coordinates). This allows projections and inverse projections to
be calculated quickly and, with a sufficiently distant camera, produces negligible
distortion. Of course, z-position information is lost but, assuming a fixed-size object
and known intrinsic camera properties, z-position can be inferred from scaling (this
is effectively a scaled orthographic projection).

As mentioned above, the intention is to find values for u, s, R and the b; which
give the best match between model and image. These parameters are updated
iteratively using image evidence, specifically by finding the best local movement
for individual model landmarks. The result is a collection of suggested landmark
movements (in the form of (dx, dy) pairs) which undergo statistical voting to change
the overall model pose.

Because the process is iterative, it extends naturally to tracking an object over
a time sequence of images: the model’s final position in one image is used as the

starting position for the next image.

6.3.1 Gathering image evidence

It is required to find suggested movements for individual landmarks by examining
image data. The evidence that can be gathered from a 2D image with respect
to a 3D model is limited. Firstly, it a hand is to be tracked unmarked, the only
reliable position evidence that can easily be extracted is from edge data. Also, only
a subset of the model landmarks will lie on the model’s boundary in any particular
2D projection; no movement evidence can be collected for any other landmarks as
there will be no corresponding edge in the 2D image (Shen observed this in his
work on vehicle model building [67]). The ASM tracker, as originally described by
Cootes and Taylor, does not cater for this situation; a landmark weighting scheme
has consequently been introduced in the algorithm described below. The aperture
problem [41, 36] is also experienced, in two separate guises. Firstly, the desired
position along any discovered edge (in the x-y plane) is uncertain. Secondly, because
a single 2D image is being used for input, no depth information is available i.e. the
z-coordinate of an edge is uncertain.

The data required are a suggested movement dX; for each model landmark z,
along with an associated weighting W, indicating how strong the evidence is for
this movement. Evidence is only collected for landmarks which lie on the projected
model boundary. For each landmark 7, the unit normal n; to the model surface

is found, defined as the normal to the plane containing landmark ¢’s three mesh

Chapter 6 93 3D Shape Models

neighbours. If n; subtends an angle of less than 30° to the z-y plane, landmark ¢ is
deemed to lie on or very near to the projected model boundary (this is imprecise,
but fast to calculate), and a corresponding image edge is likely. A line of pixels is
extracted from the image either side of the landmark and in the direction of the
projection of n; into the x-y plane. The greatest intensity change (i.e. strongest
edge) along this line is found and dX; is set accordingly (its z component is set to
zero). W, is set to the magnitude of the intensity change. If n; subtends an angle
of greater than 30° to the z-y plane, no image evidence is collected; dX; = 0 and
W, = 0 are accordingly set.

Figure 6.6 shows an enlargement of the feature extraction on part of the hand.
The model is shown in white and the suggested movements, where discovered, are
shown as black lines. To increase speed, not every pixel is sampled along the normal;

this explains why some of the black lines do not quite meet the image edges.

Figure 6.6: Suggested landmark movements.

6.3.2 Updating the model position

Given a suggested movement dX; = (dx;, dy;,0) for each landmark ¢, and an asso-
ciated weighting W, the task is to update the model parameters u, s, R and the
shape parameters b;. A weighted least-squares solution is used, which involves find-
ing values for v = u+du, s = s+ ds, R’ = dRR and b; = b; 4+ db; that minimise

£ in:

N
- SWX, o+ X - X (6.6
=0

where X is defined in terms of u’, s’, R’ and the b’ using equations (6.4) and (6.5).

Substituting in gives:

Chapter 6 94 3D Shape Models

N t

c = WX + X — (SRUE+ 3)+) (6.7)

i=0 j=1
Hill et al [36] describe an iterative solution to this problem, whereby the rigid
parameters (translation, rotation and scale) are calculated separately from the de-
formation parameters. Hill et al use a quaternion approach to solve for the rotation
matrix, as described by Horn [42]. Instead, an alternative approach is taken here,
using a singular valued decomposition (SVD), as described by Arun et al [2]. They
give an unweighted solution; this is very easily adapted into a weighted version be-
cause each component of the solution is some form of summation over the control

points, which can be replaced with a weighted summation!. The solutions for du,

ds, dR and the db; are as follows:

YN WidX;

du = SV W, (6.8)
=1 2

where W, = (W;, W;,0), and the products and divisions are performed element-wise.
du is then used in the calculation of ds and dR.:

NOWHIX; A+ dX — du)||?
dszdzuwu + X, — (u+ du)| 69)

it Wil X — u?

To calculate dR a weighted version of Arun’s SVD method [2] is used (the deriva-
tion of this method is beyond the scope of this work). The 3 x 3 matrix H is first

found.

N
H=> W(X; —u)(X; + dX; — (u+du))” (6.10)
i=1
and then the SVD of H is calculated:

H=UAV’ (6.11)

where, in this case, U and V are 3 x 3 orthonormal matrices and A is a 3 x 3

diagonal matrix (see [39] for more details). dR is then given by:

dR = VUT (6.12)

!The argument being that having an integer weight W is equivalent to having W control points
of unit weight at the same location; this can be extended to non-integer weights by considering
that the use of arbitrarily large integer weights gives exactly the same solution.

Chapter 6 95 3D Shape Models

Before calculating the db;, the effects of du, ds and dR are removed from each

dXZ
dXZ'/ = S/R/XZ' + ll/ — XZ + dXZ (613)
The db; are then calculated thus:

TWdx/
db; = 2s 2
P; Wp;

where W = diag(Wl, Wl, Wl, WQ, WQ, WQ, ceey WN)

As mentioned above, this solution is iterative. In fact only a single iteration

(6.14)

is performed for reasons of speed, given that the tracker is iterative over frames
anyway.

Although the weighted least-squares approach does find a suitable solution, it
has been noted that convergence can be hampered by the aperture problem: if an
edge is found along a model normal, the landmark is encouraged towards that point.
However the landmark’s true resting position might be further along the edge. Also,
when tracking from a 2D image, dz = 0 must be assumed, because there is no
evidence to the contrary. The true resting position of the landmark may require
dz # 0.

Hill et al propose a method to overcome these problems using directional
weights [36], whereby landmarks are made free to ‘slide’ along target edges or across
target planes. Hill et al’s solution involves the inversion of large weight matrices;
it would be useful to avoid this computationally expensive operation. It is possible
to improve on the ‘simply’ weighted least-squares approach (as described above)
without incurring too much computational cost. Directional information from the
suggested landmark movements can be used to determine how much the evidence
from a particular landmark should contribute towards updating a particular param-
eter. For example, if the normal to landmark ¢ is parallel to the = axis, its image
evidence should make no contribution in calculating the y component of du. This
tactic is put into practice as follows: the least-squares equations are as for the ‘sim-
ply” weighted approach; however, in calculating the change dg to a general model
parameter ¢, the weighting W; is replaced with W, ;, which is calculated from W;
and dX; specifically with respect to parameter gq.

The following calculations are used:

Chapter 6 96 3D Shape Models

8,0 — 1

. Xi—ul (010
Wr = W2 - W, (6.17)

Wb = dlag(W1|d$1|, W1|dy1|, 0, ceey WN|d$N|, WN|dyN|, 0) (618)

where W, is used in place of W in the calculation of the db;.

It is important to appreciate that the above weighting scheme does not fully
address the aperture problem: the weightings are calculated independently for each
model parameter; no allowance is made for the interdependency of the parameters.
However, it provides an improvement over the simply-weighted scheme at virtually

no extra computational cost.

6.3.3 Handling Self-occlusion

Previous work (due to Rehg [63]) has made use of layered templates to model self-
occlusion. A simpler method is adopted here whereby the visibility of each vertex
is determined individually by considering whether any model facets lie in front of it
(with respect to the image plane).

A facet bounded by a set of k vertices, F' = {xy,,Xy,,...,Xy,}, is said to be

occluding a vertex x, if:

Ty > Tmin and 2, < Tmax and
Yy > Ymin and Yy < Ymax and (619)
Zy > Zmin and Ve # f;

where x; = (2, y;, 2;) for the i'" vertex, and

Tmin = MIN |; T4 Tmax = Max |; 5,
Yuin = MN|; Y73 Ymax = Max |; y,; (6.20)
Zmin = MiN |; 24,3
Figure 6.7 illustrates this situation. This criterion is of course not precise; it
uses the bounding box for the facet, and thus over-estimates the extent of occlusion.
A non-occluded vertex which is deemed occluded does not cause a catastrophic
problem; it just means that no image evidence will be collected for that vertex, and

tracking might be slightly degraded. This is preferred over a false negative, which

Chapter 6 97 3D Shape Models

forces an attempt to track from an occluded vertex.

Zpin

ymax

==

pa

sz

camera s — e
X

" Ymin

Xmax

Figure 6.7: Self occlusion of a vertex x, by a facet I

The drawback of this approach is that it is very slow. A ‘brute-force’ imple-
mentation has been used here, whereby every potential boundary vertex is checked
against every facet. With approximately 200 such vertices in any one pose and
1000 facets this represents approximately 1 million comparisons per iteration. It is
almost certain that heuristics can be used to speed this up, either via a pre-learned
look-up table of all geometrically possible occlusions, or perhaps using some form
of hierarchical grouping of facets which allows whole groups to be eliminated from
the search all at once. Such techniques are commonly found in the field of computer

graphics [28].

6.4 Evaluation

An experimental mock-up of the tracker was constructed using a colour camera
pointing downwards at a homogeneous dark surface and connected to a Silicon
Graphics Indy workstation running at 134MHz. Images were captured from the
camera and the tracking algorithm was applied in real-time. Images were echoed to
the workstation screen, with the hand model superimposed. The tracking rate was
approximately 18 frames per second (without occlusion detection), not including
image echoing and graphical model rendering. To avoid the global search problem
(a hand must be found before it can be tracked), the model was initialised centrally
in the image and only began tracking when a hand was moved into position ‘under’

it. This event was detected by the presence of strong edges at over 80% of the

Chapter 6 98 3D Shape Models

model boundary landmarks. The user could see the model tracking his or her hand,

providing useful feedback.

The tracker was exercised rigorously, with a diversity of movements and defor-
mations being performed many times over. Figure 6.8 shows some snapshots from

these experiments.

Figure 6.8: Snapshots from hand tracking experiments using the 3D PDM.

A qualitative evaluation of the tracker is as follows:

e Changes in x and y translation, scale and rotation in the x-y plane were tracked

with no difficulty, irrespective of the hand pose.

e Rotations out of the x-y plane initially caused problems. In particular, the

transition from (a) to (c) in Figure 6.8 produced a decrease in scale instead

Chapter 6 99 3D Shape Models

of the expected rotation. This is because much of the evidence collected from
the 2D image (i.e. the sides of the hand moving inwards) is consistent with
such a change, and the only evidence to the contrary comes from the static
position of the fingertips (the wrist is unmarked and provides no evidence).
To circumvent this problem, the model size was fixed at a constant value. The
rotations were then tracked correctly, at the cost of not being able to track

gross movements towards or away from the camera.

e Rotations out of the z-y plane were tracked better with the size constraint.
However, success depended very much on the starting pose. Most problems
were caused by ambiguity: because the hand is roughly planar, positive and
negative rotations of the hand viewed from either a direct or sideways-on
viewpoint appear very similar in an orthogonal projection (e.g. the transition

from (a) to (c)). Consequently the model sometimes rotated the wrong way.

o Clearly visible deformations were tracked well; for example, the transition
from (a) to (b). Self-occluded deformations were tracked less well, since there
is little image evidence to support them. An example is the transition from
(a) to (d), which was always tracked accurately, but more slowly than visible

deformations.

e In the case where occlusion detection was not used (in order to increase speed),
there were problems: occluded vertices tended to be ‘attracted’ to the nearest
visible edge. This occurred in poses such as (e) and (f). When occlusion

detection was used, these problems were no longer experienced.

The system was also tested against a cluttered background. Figure 6.9 shows an
example. It is interesting to note here that the performance was almost as good as
for the homogeneous background, suggesting that the overall approach is generally
fairly robust to image clutter. However, this can be attributed at least partially to
the use of a colour filtering algorithm to lessen the effects of clutter [32].

To summarise, tracking was not a failure, but also not as robust and not as fast
as the 2D trackers described in previous chapters. This is perhaps to be expected

as a much more complex (perhaps too complex) model is being used.

Chapter 6 100 3D Shape Models

:
L.

Figure 6.9: Tracking against a cluttered background.

6.5 Extensions

6.5.1 Stereo

The use of two or more camera views can help to improve robustness of the tracker.
The silhouettes of an object as seen from different views generally correspond to
different sets of vertices in the model mesh, so the amount of image evidence that
can be collected is increased. More importantly, the combination of evidence from
two or more non-parallel image planes provides important depth information, and
also helps to resolve many of the ambiguities described in Section 6.4.

The nature of the system being used means that the extension to two or more
cameras is relatively simple. The object model is projected separately into each
camera view? and image evidence (in terms of suggested landmark movements)
is collected from each view. These movement vectors are transformed into world
coordinates and then combined into a single set of movements; the new model pose
is then calculated exactly as for the single camera system. In most cases, a particular
vertex will only have provided evidence in, at most, one view. In a few cases where
a vertex has measurements from two or more views, the strongest measurement is
used?.

An experiment was conducted using such a system. Two views were achieved
using a single camera by way of a carefully-placed mirror (see Figure 6.10), effectively

to produce a stereo tracker.

?Each camera must be calibrated in order to find the transformations from world coordinates
to camera coordinates and wvice versa.

3A more elaborate scheme might seek to combine evidence from different views by finding the
intersection of the uncertainty plane from each view, thus better constraining the vertex movement.

Chapter 6 101 3D Shape Models

camera

mirror

tabletop

Figure 6.10: The stereo tracking environment; two views are achieved from a single
camera using a mirror.

An object of known dimension was used to calibrate the system (see Figure 6.11);
four specific reference points were located manually in each view and the relevant
orthogonal transformation parameters calculated. Because a mirror was being used,

one of the transformations also included a reflection.

Figure 6.11: Calibration image for the stereo environment, with manually-located
calibration points shown.

A sequence of hand movement was pre-recorded and the stereo tracker was ap-

plied off-line, using full occlusion detection. The output from the tracker was used

Chapter 6 102 3D Shape Models

to drive a simple 3D drawing tool in which the index fingertip was the stylus and
the thumb position determined whether or not to commence drawing. Figure 6.12
shows some snapshots from the sequence, and Figure 6.13 shows several views of

the line drawing produced, demonstrating that it is indeed a 3D drawing.

6.5.2 Polar Coordinates

As described in Section 3.6, it is possible to apply the Cartesian-Polar Hybrid PDM
to 3D objects. Figure 3.13 shows the results of using the 3D hand training data in
this context. This approach is used in order to improve the specificity of the model
produced, and thus hopefully to improve tracking robustness. In practice however,
using such a model for tracking resulted in poor performance: instabilities occurred
such that the model fingers would flail uncontrollably with little regard to image
evidence.

There are no good explanations for this behaviour; however, several possibilities

(none of which are entirely satisfactory) are given below:

1. Polar-mapped vertices close to their centre of rotation are causing dispropor-
tionate suggested angular movement (although a weighting factor has been

included to counteract this behaviour).

2. Certain combinations of projective transformations and polar mappings may

give rise to unstable pose change calculations.

3. The particular model being used is unsuitable, perhaps due to the small num-
ber of training examples giving rise to poor polar modelling. However, to the

eye it appears to be an ideal model.

4. There is a bug in the code that the author has not been able to find.

Considerable effort has been expended on this problem, but to no avail. In
the case of the first two suggestions, the problem is associated with the use of a
data-driven tracking algorithm; use of a fitness-based approach, such as a Genetic
Algorithm or the CoNDENSATION algorithm (see Section 2.2.4) might alleviate such
a problem. This line of pursuit has not been investigated because of the apparent

limitations to the 3D modelling approach in general.

Chapter 6 103 3D Shape Models

Figure 6.12: Snapshots from a 3D stereo tracking sequence; the video input, which
uses a mirror to give two views of the hand (left), and the tracking result, shown
from a different angle (right).

Chapter 6 104 3D Shape Models

Figure 6.13: Three views of the line drawing output from the 3D stereo tracker
sequence.

6.6 Discussion and Conclusions

It has been shown how a 3D PDM can be constructed from 3D volumetric training
images via the use of physically-based models. The technique is not fully automatic
but guided; with a well-designed interface user effort would be minimal.

A specific procedure using a Simplex Mesh in 3D has been described. Some

obvious generalisations apply:

e The physical model used does not have to be a Simplex Mesh. Any physical
modelling technique could be used, for example the less constrained meshes
used in [14], or the Finite Element Method models used in [58].

e The technique can be applied in a 2D situation using a 2D physical model

such as a Snake.

o Where MRI data is not available it may be possible to use a sparser input
source, such as range data, since internal model forces keep non-visible vertices
in position (and in any case, statistical models are fairly robust to small errors
in point position). However, there is still the question of how to obtain an

initial shape.

A description has also been given of a system for tracking 3D objects in real time
from a single camera, using the aforementioned models.

It has been shown how information can be extracted from a 2D image to move
and deform a 3D model; the instances where this is most and least successful have
been highlighted and discussed.

The use of a 3D model means that pose inference becomes a trivial task. Also,
because the model is a PDM, object shape is described in terms of a small number
of scalars, providing a good starting point for shape inference. However, the cost of

these benefits is reduced speed and robustness as compared to a purely 2D tracker.

Chapter 6 105 3D Shape Models

An obvious extension is to use the 3D hand model in a CONDENSATION tracking
environment. This would perhaps improve tracker performance in the event of
ambiguity, as well as improving general robustness. There would of course be a

considerable speed penalty.

Chapter 7

Conclusions

7.1 Summary of Work

The focus of this work has been the generation of deformable shape models for com-
puter vision-based tracking, as well as suitable tracking algorithms to complement
such models.

Various forms of statistical models have been described; object shape being rep-
resented by a set of landmarks (generally joined together to form a contour) and
principal component analysis (PCA) being used as a basis for learning shape and
deformation.

The shortcomings of existing statistical shape models have been noted: lack of
specificity, lack of compactness, and the effort involved in collecting training data.
Extensions to existing methods have been developed to overcome these problems.

In Chapter 3 a method for better modelling objects which experience bending or
pivotal motion was described. This is made possible in a statistical framework by
explicitly remapping selected model landmarks into a polar domain, thus effectively
‘linearising’ polar deformations with respect to the PCA. It was noted that the polar
model is a useful extension to statistical modelling, but only in certain specific cases.

In Chapter 4 a more general approach was described, detailing how arbitrary
non-linearity in object deformation can be modelled. More specific models of shape

were achieved via a hierarchical PCA; the first level provides a dimensional reduction

106

Chapter 7 107 Conclusions

of the shape space, and the second level captures non-linear detail using a piecewise-
linear approximation, formulated as a union of hyperellipsoid-bounded regions. It
was observed that it is possible to build good Hierarchical PDMs from automatically-
captured training data, but that in this case, tracking performance using an Active
Shape Model is less than satisfactory.

In Chapter 5 an alternative tracking algorithm was described which enables
tracking from fully-automatically generated models, as well as being able to track
discontinuous shape changes. The Hierarchical PDM (HPDM) is used as the un-
derlying model of shape, and a model of shape dynamics is learned from training
sequences of characteristic object movement. The dynamic model is represented
as a Markov process, the Markov states being the linear patches from the HPDM.
The CONDENSATION algorithm provides a non-deterministic framework in which to
apply these dynamics. It was shown how this new system can be used for tracking
using automatically-captured training data.

In Chapter 6 it was noted that pose inference from 2D shape models is a non-
trivial task. Consequently, the construction of 3D statistical shape models was
described, as was tracking with such models, with a view to easing this task. It
was discovered that, although pose inference is eased, the speed and robustness of

tracking with such models is much poorer overall than with the 2D models.

7.2 Discussion

An underlying theme in this thesis had been the learning of various object features
from real-life training examples. This appears, in general, to be a very promising
approach to computer vision: the models produced are necessarily true-to-life and
the model building process lends itself to automation. The fact that this is how
the human visual system functions perhaps reinforces the argument. However, it is
important to think carefully about the models being built.

Taking too general an approach is certainly a mistake. Take, for example, the
apocryphal story of the neural net-based military tank detection system. Full colour,
high resolution images were fed straight into the neural net with two classifications
to learn: ‘tank’ or ‘no tank’. The 100% success rate was surprisingly high, until it
became apparent that all the ‘tank’ training examples were slightly darker and the
neural net was simply acting as an averaging thresholder.

Conversely, models which are too specific are only applicable in a limited domain

(e.g. using articulated skeleton models for hands or whole bodies), which is fine for

Chapter 7 108 Conclusions

a particular application, but not when attempting to develop general techniques.

The use of boundary features in models lies in the middle ground. The majority
of (interesting) objects have a coherent boundary, which is useful for both train-
ing and tracking; boundaries are also very distinctive (good for recognition) and
invariant to lighting conditions.

Statistics have also featured prominently throughout this work. The representa-
tion of real life is inherently imprecise (some might say chaotic); the field of statistics
provides the most rigorously formalised tools for dealing with uncertainty, and also
lends itself well to computation. It could be argued that neural networks might be
more appropriate for a task which is attempting to emulate a human process, but
present-day technology is several orders of magnitude away from true life biological
neuron counts, and at least with pure statistics there is some sort of order within
the chaos.

Finally, it is worth mentioning that the work in this thesis is presented in a
slightly different order to that in which it was conducted. The work on polar models
came first, followed by a strong belief that 2D models were not powertul enough for
tracking 3D objects; they were ‘too limited’, not by the use of boundary models, but
by the underlying statistical model. The 3D work followed on from that, together
with the discovery that tracking with 3D models was not necessarily the way forward.
Finally, the 2D emphasis returned and the more general HPDM models were derived,
along with a suitable tracking process. It is perhaps ironic that the best solution

(with respect to tracking) turned out to be the most simple and elegant one.

7.3 Future Work

There are many avenues that, given more time, it would be interesting to explore.
The models that have been built are quite general and, as such, might be useful as
‘enabling technology’ for many different applications. Simply exercising the HPDM
on different modelling tasks would be desirable, either to validate its generality or to
discover any weaknesses and refine the technique, and also to see how well it scales
up to larger problems.

A key issue has been the automation of the training process. So far, a rather
crude method of training data acquisition has been used. The fact that this is
possible gives credit to the power of the HPDM and it would be interesting to see
how far this power can stretch. For example, in 3D a fair amount of effort was

expended on developing algorithms to give a good point correspondence between

Chapter 7 109 Conclusions

training examples; however, if using an HPDM this might not be so crucial.

Also on the subject of automation is the issue of fitness function learning. The
fitness-based tracking algorithm described in Chapter 5 makes heavy use of a fitness
function which has been entirely hand-crafted, with no evaluation of how good
a discriminant it is between good and bad model/object matches. It would be
favourable to be able to learn a suitable fitness function in order to improve tracking
performance, or at least to prove that the existing ad hoc fitness function is in fact
the right one.

The most interesting possibility is a link-up between the 2D and 3D models used
in this work. The 2D models excel in tracking and the 3D models are useful for
object pose inference and graphical rendering. It would seem sensible to use each
model for its strengths: track with the 2D model, and infer pose and/or render using
the 3D model. For this it would be necessary to learn the mapping from 2D model
shape to 3D model shape and orientation. This might be possible by constructing
artificial training sequences of silhouettes with the 3D model in known poses, and

then using these to learn a suitable mapping.

Bibliography

1]

[5]

[6]

7]

T. Ahmad, C.J. Taylor, A. Lanitis, and T.F. Cootes. Tracking and recognising

hand gestures using statistical shape models. In Proc. BMVC, pages 403-412,
Birmingham, UK, 1995. BMVA Press.

K.S. Arun, T.5. Huang, and S.D. Blostein. Least-squares fitting of two 3D
point sets. [EEE Transactions on Pattern Analysis and Machine Intelligence,
9(5):698-700, 1987.

A. Baumberg and D. Hogg. Learning flexible models from image sequences. In

Proc. 3rd ECCV, pages 299-308, Stockholm, Sweden, 1993. Springer-Verlag.

A. Baumberg and D. Hogg. An efficient method for contour tracking using active
shape models. In IEEE Computer Society Press, editor, IEEE Workshop on
Motion of Non-rigid and Articulated Objects, pages 194-199, November 1994.
Also available as ftp://agora.leeds.ac.uk/scs/doc/reports/ 1994/94_11.ps.Z.

A. Baumberg and D.C. Hogg. An adaptive eigenshape model. In Proc. BMVC,
pages 87-96, Birmingham, UK, 1995. BMVA Press.

A. Baumberg and D.C. Hogg. Generating spatiotemporal models from exam-

ples. In Proc. BMVC, pages 413-422, Birmingham, UK, 1995. BMVA Press.

P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended
image sequences. In B. Buxton and R. Cipolla, editors, Computer Vision -
ECCVI6, volume 2 of Lecture Notes in Computer Science (1065), pages 683—
695, Cambridge, UK, 1996. Springer-Verlag.

A. Blake, R. Curwen, and A. Zisserman. A framework for spatiotemporal

control in the tracking of visual contours. International Journal of Computer

Vision, 11(2):127-145, 1993.

110

Chapter 7 111 BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[18]

[19]

[20]

A. Blake and M.A. Isard. 3D position, attitude and shape input using video
tracking of hands and lips. In Proc. ACM Siggraph, pages 185-192, 1994.

A. Blake, M.A. Isard, and D. Renyard. Learning to track the visual motion of
contours. Artificial Intelligence Journal, 78:179-212, 1995.

R. Bowden, T.A. Mitchell, and M. Sahardi. Real-time dynamic deformable
meshes for volumetric segmentation and visualisation. In Proc. BMVC, pages

310-319, Colchester, UK, 1997. BMVA Press.

C. Bregler and 5. Omohundro. Surface learning with applications to lipread-
ing. In J D Cowan, G Tesauro, and J Alspector, editors, Advances in neural

information processing systems 6, 1994.

R.A. Brooks. Symbolic reasoning among 3-D models and 2-D images. In
M. Brady, editor, Computer Vision, pages 285—-348. North-Holland Publishing
Company, 1981.

A.J. Bulpitt and N.D. Efford. An efficient 3D deformable model with a self-
optimising topology. In Proc. BMVC, Birmingham, UK, September 1995.

T.F. Cootes and C.J. Taylor. Active shape models - ‘Smart Snakes’. In Proc.
BMVC, pages 266-275, Leeds, UK, 1992. Springer-Verlag.

T.F. Cootes and C.J. Taylor. Combining point distribution models with shape
models based on finite element analysis. In Proc. BMVC, pages 419-428, York,
UK, 1994. BMVA Press.

T.F. Cootes and C.J. Taylor. Data driven refinement of active shape model
search. In Proc. BMVC, pages 383-392, Edinburgh, UK, 1996. BMVA Press.

T.F. Cootes and C.J. Taylor. A mixture model for representing shape variation.

In Proc. BMVC, Colchester, UK, 1997. BMVA Press.

T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Training models of
shape from sets of examples. In Proc. BMVC, pages 9-18, Leeds, UK, 1992.
Springer-Verlag.

T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active Shape Models
- their training and applications. Computer Vision and Image Understanding,

61(2), January 1995.

Chapter 7 112 BIBLIOGRAPHY

[21]

[22]

23]

[24]

28]

[29]

30]

31]

T.F. Cootes, C.J. Taylor, and A. Lanitis. Active shape models: Evaluation of
a multi-resolution method for improving image search. In Proc. BMVC, pages

327-336, York, UK, 1994. BMVA Press.

T.F. Cootes, C.J. Taylor, A. Lanitis, D.H. Cooper, and J. Graham. Building
and using flexible models incorporating grey-level information. In Proc. ICCV,
Berlin, Germany, 1993.

J.L. Crowley and J. Martin. Appearance-based techniques for recognition of
hand gestures. Technical report, Institut National Polytechnique de Grenoble,
1996.

R. Curwen and A. Blake. Dynamic contours: Real-time active splines. In
A. Blake and A. Yuille, editors, Active Vision, chapter 2, pages 39-57. MIT
Press, 1991.

H. Delingette. Simplex Meshes: a general representation for 3D shape recon-

struction. Technical Report 2214, INRIA, 1994.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
B39:1-38, 1977.

B. Dorner. Hand shape identification and tracking for sign language interpre-

tation. Looking at People Workshop, Chambery, France, 1993.

J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics.
Addison Wesley, 1990.

W.T. Freeman, K. Tanaka, J. Ohta, and K. Kyumu. Computer vision for
computer games. In Proc. 2nd International Face and Gesture Recognition

Conference, Killington, Vermont, 1996.

U. Grenander, Y. Chow, and D. M. Keenan. Hands. A Pattern Theoretic Study
of Biological Shapes. Springer-Verlag, 1991.

R.I. Hartley. Euclidean reconstruction from uncalibrated views. In Joseph L.
Mundy, Andrew Zisserman, and David Forsyth, editors, Applications of Invari-
ance in Computer Vision, volume 825 of Lecture Notes in Computer Science,
pages 239-256. Springer-Velag, Second Joint European-US Workshop, Ponta
Delgada, Azores, Portugal, October 1993.

Chapter 7 113 BIBLIOGRAPHY

32]

33]

38]

[39]

[40]

[41]

[42]

[43]

A.J. Heap. Real-time hand tracking and gesture recognition using Smart
Snakes. In Proc. Interface to Human and Virtual Worlds, Montpellier, France,
June 1995. Also available as ftp://ftp.cam-orl.co.uk/pub/docs/ORL/1995/

tr.95.1.ps.7Z.

AL Hill, T.F. Cootes, and C.J. Taylor. A generic system for image interpretation
using flexible templates. In Proc. BMVC, pages 276-285, Leeds, UK, 1992.
Springer-Verlag.

A. Hill and C.J. Taylor. Model-based image interpretation using genetic algo-
rithms. In Proc. BMVC, pages 266-274. Springer-Verlag, 1991.

A. Hill and C.J. Taylor. Automatic landmark generation for point distribution
models. In Proc. BMVC, pages 429-438, York, UK, 1994. BMVA Press.

A. Hill and C.J. Taylor. Active shape models and the shape approximation
problem. In Proc. BMVC, pages 157-166, Birmingham, UK, 1995. BMVA

Press.

A. Hill and C.J. Taylor. A method for non-rigid correspondence for automatic
landmark identification. In Proc. BMVC, pages 323-332, Edinburth, UK, 1996.
BMVA Press.

A. Hill, A. Thornham, and C.J. Taylor. Model-based interpretation of 3D
medical images. In Proc. BMVC, pages 339-348, Guildford, UK, 1993. BMVA

Press.

D. Hogg. Model-based vision: A program to see a walking person. Image and
Vision Computing, 1(1):5-20, 1983.

D.C. Hogg. Machine Vision, volume 14 of Handbook of Perception and Cogni-
tion, chapter 7, pages 183-227. Academic Press, 1996.

B.K.P. Horn. Robot Vision. MIT Press, 1986.

B.K.P. Horn. Closed-form solution of absolute orientation using quaternions.

Journal of the Optical Society of America, 4(4):629-642, April 1987.

M. Isard and A. Blake. Contour tracking by stochastic propogation of condi-
tional density. In B Buxton and R Cipolla, editors, Proc. ECCV ’96, volume I,
pages 343-356, 1996.

Chapter 7 114 BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[53]

[54]

[55]

I.T. Joliffe. Principal Component Analysis. Springer-Verlag, 1986.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. In
Proc. ICCV, pages 259-268, London, England, 1987.

C. Kervrann and H. Heitz. Robust tracking of stochastic deformable models
in long image sequences. In Proceedings of the IEEFE International Conference
on Image Processing, volume 111, pages 88-92, Austin, Texas, US, 1994. IEEE

Computer Society Press.

R. Kjeldsen and J. Kender. Knowledge based hand gesture recognition. In
IEEE Workshop on Context-Based Vision, ICCV, Cambridge, MA, 1995.

A. Lanitis, C.J. Taylor, and T.F. Cootes. A generic system for classitying
variable objects using flexible template matching. In Proc. BMVC, pages 329-
338, Guildford, UK, 1993. BMVA Press.

A. Lanitis, C.J. Taylor, and T.F. Cootes. An automatic face identification

system using flexible appearance models. In Proc. BMVC, pages 65-74, York,
UK, 1994. BMVA Press.

J. Lee and T.L. Kunii. Model-based analysis of hand posture. IEEFE Computer
Graphics and Applications, pages T7-86, September 1995.

W.E. Lorensen and H.E. Cline. Marching cubes: a high resolutions 3D surface
construction algorithm. Computer Graphics, 21(4):163-169, 1987.

D.G. Lowe. Fitting parameterized three-dimensional models to images. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 13(13):441-450,
1991.

B. Moghaddam and A. Pentland. Probablistic visual learning for object repre-
sentation. [EFEE Transactions on Pattern Analysis and Machine Intelligence,

19(7):696-710, July 1997.

P. Nesi and A. Del Bimbo. A vision-based 3-D mouse. Int. J. Human-Computer
Studies, 1996.

S. Omohundro. Bumptrees for efficient function, constraint, and classification
learning. In Touretzky Lippmanm, Moody, editor, Advances in neural infor-

mation processing systems 3, pages 693-699, San Mateo, CA., 1991.

Chapter 7 115 BIBLIOGRAPHY

[56]

[58]

V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual interpretation of hand ges-

tures for human-computer interaction: A review. [EEE Transactions on Pattern

Analysis and Machine Intelligence, 19(7):677-695, July 1997.

A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):730—
742, 1991.

A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape
modelling and recognition. [EEFE Transactions on Pattern Analysis and Ma-

chine Intelligence, 13(7):715-729, 1991.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, and B. Face. Nu-
merical Recipes in C. Cambridge University Press, 1992.

F.K.H. Quek and M. Zhao. Inductive learning in hand pose recognition. In
Proc. 2nd International Face and Gesture Recognition Conference, Killington,
Vermont, 1996.

L.R. Rabiner and B.H. Juang. An introduction to Hidden Markov Models.
IEEE ASSP Magazine, 1986.

J.M. Rehg and T. Kanade. Visual tracking of high DOF articulated structures:
An application to human hand tracking. In Proc. 3rd ECCV, volume II, pages
35-45, Stockholm, Sweden, 1994. Springer-Verlag.

J.M. Rehg and T. Kanade. Visual tracking of self-occluding articulated objects.
In Proc. ICCV, Boston, MA., 1995.

L.G. Roberts. Machine perception of three-dimensional solids. In J. Tippet,
editor, Optical and Electro-optical Information Processing, pages 159-197. MIT
Press, 1965.

7. Schuss. Theory and Applications of Stochastic Differential Fquations. John
Wiley & Sons, 1980.

A. Sclaroff and A. Pentland. Physically-based combinations of views: Repre-
senting rigid and nonrigid motion. In IEEE Computer Society Press, editor,
IEEE Workshop on Motion of Non-rigid and Articulated Objects, pages 158—
164, November 1994. Also available as ftp://agora.leeds.ac.uk/scs/doc/reports/
1994/94 _11.ps.Z.

Chapter 7 116 BIBLIOGRAPHY

[67]

[68]

[69]

[71]

[72]

73]

[75]

X. Shen and D.C. Hogg. Generic 3D shape model: Acquisitions and applica-
tions. In Proc. CAIP, Prague, Czech Republic, September 1995.

P.D. Sozou, T.F. Cootes, C.J. Taylor, and E.C. Di-Mauro. A non-linear gen-
eralisation of PDMs using polynomial regression. In Proc. BMVC, volume II,

pages 397-406, York, UK, 1994. BMVA Press.

P.D. Sozou, T.F. Cootes, C.J. Taylor, and E.C. Di-Mauro. Non-linear point dis-
tribution modelling using a multi-layer perceptron. In Proc. BMVC, volume I,

pages 107-116, Birmingham, UK, 1995. BMVA Press.

N. Sumpter, R.D. Boyle, and R.D. Tillett. Modelling collective animal be-
haviour using extended Point Distribution Models. In Proc. BMVC) Colchester,
UK, 1997. BMVA Press.

M. Syn and R. Prager. A model based approach to 3D freehand ultrasound
imaging. In Y. Bizais, C. Barillot, and R. Di Paola, editors, Information Pro-
cessing in Medical Imaging, Computational Imaging and Vision, pages 361-362.
Kluwer Academic, 1995.

D. Terzopoulis and R. Szeliski. Tracking with Kalman Snakes. In A. Blake and
A. Yuille, editors, Active Vision, chapter 1, pages 3—20. MIT Press, 1991.

S. Ullman and R. Basri. Recognition by linear combinations of models. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 13(10):992-1006,
1991.

A.D. Worrall, J.D. Ferryman, G.D. Sullivan, and K.D. Baker. Pose and struc-
ture recovery using active models. In Proc. BMVC, Birmingham, UK, Septem-
ber 1995.

A. Yuille and P. Hallinan. Deformable templates. In A. Blake and A. Yuille,
editors, Active Vision, chapter 2, pages 21-38. MIT Press, 1991.

