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AbstractDynamic load balancing (DLB) is a technique for the parallel implementation of prob-lems which generate unpredictable workloads by migrating work units to lightly loadedprocessors based on run-time workload measurement. Adaptive DLB is a re�nement whereaspects of the load balancing system itself are modi�ed in the light of measured workloads.This thesis investigates phase-based adaptive DLB, a version of adaptive DLB in whicha parallel computation moves through di�erent load balancing phases identi�ed on thebasis of run-time workloads. The idea is explored through a case study of parallel treecomputation, in which three distinct phases with intervening transitions are identi�ed.Two major variants of phase-based adaptivity are distinguished. In parametric adaptivity,parameters of the DLB algorithm are adapted between phases; in algorithmic adaptivity,di�erent DLB algorithms are utilised in each phase. These concepts are investigatedquantitatively through a simulator for parametric adaptivity and discussed in detail foralgorithmic adaptivity.The simulator permits a range of processor topologies, parameterises the performanceof the underlying network, includes two di�erent network performance models, and allows awide range of simulated tree-structured workloads, parameterised by depth, fan-out, nodegranularity and imbalance. It was extensively validated in relation to the performance oftwo DLB algorithms on a 512-processor Cray T3D.The simulator was used to evaluate the bene�t of parametric phase-based adaptiv-ity. Preliminary experiments with non-adaptive algorithms revealed performance to besensitive to the interval between load-balancing invocations, so this parameter was priori-tised for subsequent adaptivity experiments. A performance metric called ImprovementThrough Adaptivity (ITA) was discussed. Two DLB algorithms were used as test cases;the well-established Generalised Dimension Exchange Method and a novel Loadserver al-gorithm, whose implementation is described in the thesis.Results were obtained for all combination of the transitions, and the relationships be-tween ITA and various parameters (processor sizes, node granularity, tree imbalance andnetwork performance) were established. Similar relationships were observed for both algo-rithms, though with some di�erences in detail. Positive values of ITA were obtained withboth algorithms, for at least one transition combination, over a range of all the param-eters. Thus, the potential bene�ts of phase-based parametric adaptivity are con�rmed,justifying future work in implementing this technique.
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Chapter 1Introduction1.1 Dynamic Load BalancingParallel processing is believed by many to be the wave of the future in computing [39,23]. Fundamental physical limitations on processing speeds will eventually force high-performance computations to be targeted principally at the exploitation of parallelism.Just as the fastest cycle times are approaching their fundamental barriers, new generationsof parallel machines are emerging. Examples of such machines include Cray T3E, IBMSP2, Intel Paragon, Convex machines, Ncubes and Meiko CS2 [77].Achieving good performance from these machines is a non-trivial task. Factors suchas load imbalance, inherent serial sections, contention for shared resources, synchronisa-tion and communications may inhibit good performance. These issues are central to thedevelopment of many parallel applications. In the case of load imbalance, research has ledto many load balancing techniques to optimise the performance of parallel applications.The issue of load balancing exists not only in parallel systems, but also in distributedenvironments, with one common objective { to improve the performance. However, thenature of the performance objective di�ers. In a distributed system the objective is usuallyto reduce the average response time of a mix of independently submitted jobs, while in aparallel system the aim is usually to minimise the total execution time of a single program.For some applications it is possible to make a priori estimates of the work distribu-tion; for example, the standard dense matrix multiplication. The assignment of tasks toprocessors can be done before program execution begins. Such an o�-line a priori deter-mination is called static load balancing [60, 69]. By contrast, a strategy which attemptsto balance work during an execution is referred to as dynamic load balancing (DLB).1



CHAPTER 1. INTRODUCTION 2Such techniques are used when no prior estimate of load distribution is possible, so staticmethods are inappropriate. It is only during actual program execution that it becomesapparent how much work is being assigned to individual processors. This is due to thedynamic or non-uniform computational nature of the problem.The key feature of dynamic load balancing is that units of work are migrated fromheavily loaded processors to lightly loaded processors in order to achieve a well balancedload throughout the system. Some dynamic load balancing algorithms only aim to ensureno processor remain idle when there are useful work to be performed in the system. Thisobjective is normally referred as load sharing. The decisions as to when and where tomigrate tasks are typically based on run-time measurements of the system load. DLBalgorithms improve performance by exploiting short-term 
uctuation in this system state(or load). Since they must collect, store, and analyse state information, DLB algorithmsincur more overhead than their static counterparts, but this overhead is often well spent.The popularity of DLB is increasing with the continuous demands for better process-ing speed. The last decade has been one of the most exciting period for DLB in paral-lel computing. Extensive research has been done covering a wide range of topics fromtheoretical background [4, 11] to the practical state-of-the-art load balancing techniques[9, 32, 33, 37, 38, 74, 80, 82, 85, 88, 89]. DLB has become extremely important in manydisciplines. Some typical areas include combinatorial search [44], optimisation problems[17], climate modeling [80], �nite element methods [76], N-body problems [72], to namejust a few.1.2 Adaptivity in Dynamic Load BalancingDynamic load balancing can be characterised as adaptive or non-adaptive 1 (see Figure1.1). An adaptive dynamic load balancing algorithm automatically responds to the systemstate in order to be operating at (or close to) its optimal level [7]. An excellent descriptionof adaptive DLB system was provided by Shiva et al. in [70];\Adaptive load-distributing algorithms are a special class of dynamic algo-rithms. They adapt their activities by dynamically changing their parameters,or even policies, to suit the changing system state. For example, if some loaddistributing policy performs better than others under certain conditions, a1Some authors used the terms adaptive load balancing and dynamic load balancing interchangeably,whereas the �rst is best seen as a special class of the latter.



CHAPTER 1. INTRODUCTION 3
adaptive

dynamicstatic

non-adaptive

load balancing

Figure 1.1: The characteristics of load balancing algorithms.simple adaptive algorithm might choose between these policies based on ob-servations of the system state. Even when the system is uniformly so heavilyloaded that no performance advantage can be gained by transferring tasks,a non-adaptive dynamic algorithm might continue operating (and incurringoverhead). To avoid overloading such a system, an adaptive algorithm mightinstead curtail its load balancing activity when it observes this condition."Most research in adaptive DLB is in the context of distributed systems [3, 13, 20, 41, 64,68]. A seminal work on adaptive DLB in distributed system can be found in Krueger [41].In contrast, sporadic work have been carried out on adaptive DLB in parallel computing,examples include [9, 80, 89].Most of the adaptive work in the literature alters the DLB parameters to improve theperformance. These parameters include the workload threshold [13, 68, 89], the intervalin between DLB invocations [80, 89] and the migration factor [9], which determines theamount of load migrated between processors. There is little work which exploits adaptivityby changing the DLB algorithms. One example is by Ramamritham and Zhao [64] whichswitches between two DLB algorithms, bidding and focus-addressing, in a distributedreal-time system. Their work include both approaches to adaptivity, namely adaptingparameters and algorithms.1.3 Phases in Dynamic Load BalancingMost of the studies on DLB in distributed systems attempt to balance the workload at thesystem level where the load balancing involves the movement of generic processes without



CHAPTER 1. INTRODUCTION 4any knowledge of the application they represent. The workloads are typically processes(recognised by the operating system) which can be characterised as having di�erent sizesand varying arrival rates, but where nothing is known by the load balancing system aboutthe computational tasks represented by these processes. Hence, it is not feasible to useany knowledge of application characteristics in order to improve the performance of loadbalancing.The scenario in the parallel world is rather di�erent. Most DLB systems are builtdirectly into the application [17, 44, 76, 72, 80]. Migration usually involves tasks or unitof data speci�c to that particular application. Since the DLB is integrated within theapplication, there is a potential to optimise for that application.This thesis will consider the potential for one particular way in which DLB may beimproved by taking into account particular characteristics of the application. Speci�callywe will consider the possibility that the execution of an application may proceed in distinctphases, detectable at run-time, where di�erent load balancing approaches are applicablein each phase. This form of adaptivity will be called phase-based adaptive dynamic loadbalancing. Clearly, the approach requires a prior knowledge of workload characteristics inorder for phases to be identi�able.This idea will be pursued by consideration of a class of parallel application whichcan be characterised as tree computation, because the execution generates a tree of tasks.This class of computation includes divide-and-conquer and branch-and-bound algorithms.Parallel tree computation commonly make use of DLB because the shape of the tree oftasks is frequently not predictable and may be highly imbalanced. However, the knowledgethat the task graph will take the form of a tree may be exploited to identify di�erent phasesin the computation. In particular, this thesis will explore the use of three main phases:an initial phase in which the expansion of the task tree gradually leads to all processorsbeing utilised, a central phase in which DLB maintain all processors fully utilised, anda �nal phase in which the machine gradually empties as the number of remaining tasksreduces.Some previous work distinguishing the initial phase of tree computation has beendescribed in [62, 67]. Unfortunately, those two examples are limited to a speci�c applica-tions and do not consider more general possibilities for phase-based load balancing, andindeed do not use the notion of phases explicitly. Other work discussing load balancing orscheduling in phases more explicitly [24, 79] involves situations where the phases are dis-tinct and repeated parts of the computation, rather than representing di�erent workloadcharacteristics developing dynamically within a single computation.



CHAPTER 1. INTRODUCTION 51.4 Research ObjectivesThe overall goal of the research in this thesis is to explore the concept of phase-basedadaptivity in DLB as explained in the previous section.More speci�cally, the objectives of the study are:� To develop a conceptual framework for adaptive dynamic load balancing, includingphase-based adaptivity.� To investigate and evaluate the potential bene�ts of phase-based adaptivity usingsimulation.It is hoped that the study will provide a more systematic view of adaptive DLB in par-allel computing, reveal some insights on the new approach, and establish some relationshipbetween the performance bene�t and the selected application or machine characteristics.1.5 Thesis StructureThe thesis is divided into six chapters, including the introduction. Chapter 2 presentsthe background studies of the entire work; the tree computation, dynamic load balancingalgorithms in general and the speci�c algorithms used in this study. It also presents theimplementation of a new DLB approach. The programming environment, that is themessage passing library and the platform used, are also described.Chapter 3 proposes the conceptual framework of phase-based adaptivity in dynamicload balancing in the context of parallel tree computation. It introduces the notion ofphase-based adaptivity and the basic concepts involved. It then proceeds to explain themechanisms to adapt the DLB algorithm. The chapter continues by positioning the con-tribution of this thesis in relation to the related work on phases and adaptivity. A simpleformalism for adaptivity performance and some de�nition of parameters are also intro-duced followed by the reasons for adopting simulation to investigate the idea at the endof the chapter.Chapter 4 is concerned with the design and implementation of the simulator. It �rstdescribes the general parallel execution model and the components of the simulator. Thisis then followed by a discussion on the performance model used for the computation andthe load balancing operations, the calibration and validation process.Chapter 5 starts by presenting the results of three preliminary experiments, whoseobjectives are to verify the assumption made on the workload pattern, select the type of



CHAPTER 1. INTRODUCTION 6the traversal method and experiment the sensitivity of the DLB interval. It then proceedsby de�ning the metric used to assess the improvement gained from phase-based adaptivityand the experimental plans for parametric and algorithmic techniques. The results of theparametric approach for two applications and one machine parameters are then analysed.Chapter 6 presents the summary and evaluation of the work, and highlights the insightsgained from the whole study. Possible future plans are also detailed in this chapter.



Chapter 2BackgroundThis chapter serves as a background knowledge to the research presented. It discusses thedynamic load balancing algorithms of interest, the application concerned, and the parallelenvironment of the experimental work.The chapter starts by introducing the parallel environment in which the experimentalwork was carried out (in Section 2.1). It then proceeds to discussing the nature of theapplication used, that is tree-structured computation, in Section 2.2. Section 2.3 explainsin detail two DLB algorithms used in the next two chapters; Di�usion and DimensionExchange Method. Two other algorithms which are related to the work are also described.Section 2.4 discusses the components of a DLB algorithm. Finally, Section 2.5 discussesthe implementation of an alternative hybrid algorithm, the Loadserver.2.1 Characteristics of the Parallel EnvironmentThe experimental platform used in the study consists of the Cray T3D supercomputer, atEdinburgh Parallel Computing Centre (EPCC), and the Message Passing Interface (MPI)standard.The Cray T3D [21] is composed of 512 DEC Alpha 21064 processors each rated at 150MHz with 64 Mbyte of memory, giving an aggregate memory of 32 Gbyte and providingpeak performance of 76.8 G
op/s. The nodes (each node comprises two processing ele-ments) are arranged in a 3-d torus. All arithmetic operations, both integer and 
oatingpoints, are performed using 64-bit arithmetic.MPI [78] is a portable, public-domain library standard message passing, which adoptsmost if not all, common practices from existing communication libraries. A detaileddiscussion on the implementation of MPI on the T3D is available in [6]. MPI de�nes func-7



CHAPTER 2. BACKGROUND 8tions for sending messages from one process to another (point-to-point communication),for communication operations that involve groups of processes (collective communication,such as reduction, scatter, gather etc.), and for obtaining information about the envi-ronment in which a program executes (enquiry functions). The communicator constructcombines a group of processes and a unique tag space can be used to ensure that commu-nications associated with di�erent parts of a program are not confused. The rich supportof a collective operations is one of the key feature of MPI. It makes coding easier and lesserror-prone. Another advantage is performance { using a single collective communicationis faster than using a sequence of point-to-point operations.For convenience in programming, MPI also provides virtual topology; a high-levelmethod for managing process groups without dealing with them directly. One can con-ceptualise processes in an application-oriented topology using general graphs and grids.Virtual topology highlights the main communication patterns in a communicator by a`connection', but at the same time allowing any process within a communicator to com-municate with each other.Facility such as virtual topology is not supported in PVM (Parallel Virtual Machine),the main alternative public domain standard message passing library [73]. Relativelyminimal support of collective operations is provided on PVM. For these reasons MPI waspreferred over PVM for this work. An overview of message passing library, which includesMPI and PVM, and other portable libraries, is available in [52].2.2 Parallel Tree ComputationTree computation starts with a single node, the root, which represents the complete prob-lem to be solved. Nodes are dynamically generated and consumed, through expansion andsolving operations. Thus the computation can be viewed as a dynamically growing (andcontracting) tree of nodes. Each node forms an independent unit of work, hence multiplenodes can be executed in parallel. Since the shape of the tree is typically irregular, unbal-anced and unpredictable, static load balancing is not feasible and dynamic load balancingtechniques are commonly employed. Nodes are stored in task queues at each processorand are migrated between processors to improve load balance.There are many applications which exhibit tree characteristics. Those which use divide-and-conquer and branch-and-bound algorithms are typical examples of tree computation.



CHAPTER 2. BACKGROUND 92.2.1 Divide-and-conquerDivide-and-conquer (D&C) algorithms recursively partition a problem into smaller sub-problems until the sub-problems are small enough to be solved directly. The solutions ofthe sub-problems are combined into a solution for the original problem.D&C can be used to solve many problems, including mergesort and the well-knownfractal image { the Mandelbrot set [61]. The Mandelbrot set is de�ned as follows. A seriesof points on the complex plane can be computed using a function fc(z) = z2 + c, where cand z are a complex number and complex variable, respectively. Repeated application ofthe function determines whether each point is a member of the set. A point is said to bein the set if it remains bounded, otherwise it is not, that is when the value gets fartheraway from 0. The image of the set can be made by plotting the points on the screen.The computations at all points are independent, so the problem is highly parallelisable.D&C can be exploited by recursively dividing the plane into stripes or quadrants. Sincepoints near the middle of the plane need more iterations there is a need for dynamic loadbalancing.Various authors (e.g. [16, 46, 53]) show that D&C algorithms can be de�ned by fourfunctions: divide() splits a problem into subproblems, leaf() determines whether a problemis small enough to be solved directly, solve() computes the results of a `small' problem, andcombine() combines the results of sub-problems. Once these functions are de�ned, it ispossible to execute a complete D&C problem in parallel by means of a generic kernel whichcontrols the subdivision and combining, and organises load balancing, communication andsynchronisation as required. This implies that load balancing system can be developed forD&C which are independent of any one speci�c application, an important pre-requisitefor the work in this thesis.2.2.2 Branch-and-boundBranch-and-bound (B&B) algorithms represent an important technique in solving combi-natorial search problems [26]. The basic scheme is to reduce the problem search space bydynamically pruning unsearched areas which can not yield better results than solutionsalready found. Branching is performed by recursively partitioning the problem into sub-problems. A lower bound is computed for each subproblem to determine whether or notfurther exploration of the subproblem is worthwhile. In other word, B&B is an exhaustivetree search over the solution space using methods aimed at reducing the size of the searchtree.



CHAPTER 2. BACKGROUND 10Searching algorithms that use B&B techniques can be characterised by the searchheuristics used in searching for a solution. The search heuristics determine determines theorder in which the algorithm conducts the search in the tree. Popular heuristics includebest-�rst and depth-�rst searching. Best-�rst B&B requires large amounts of storage ofintermediate subproblems for non-trivial problem instances, which may either deteriorateits performance by use of secondary storage or prohibit its use altogether. Depth-�rstB&B has a modest storage requirements, but may search a larger part of the search tree,and never searches a smaller part than best-�rst search.A typical B&B problem is the Traveling Salesman Problem (TSP). Here a salesmanmust visit n cities, returning to the starting point, while minimising the total cost of thetrip. There are several solutions to the problem. One of the best known is due to Littleet al. [49]. Another example of B&B problem is the Knapsack Problem [51].Just as with D&C, generic interfaces have been devised for B&B problems. Corre-sponding kernels then organise the parallel implementation details [42, 74].2.2.3 A Comparison Between Parallel D&C and B&BBoth D&C and B&B generate a tree of independent tasks which may be executed inparallel. Kernels for these applications control the traversal of this tree, executing theinterface functions at nodes of the tree. In both cases the structure of the tree is typicallyirregular and data-dependent, hence it is impossible to determine a priori how the treenode computations may be scheduled amongst the processors. For this reason dynamicload-balancing techniques are used, based on run-time evaluation of the loads on di�erentprocessors. In this respect the load balancing problems of D&C and B&B can be seen asidentical.There are, however, some important di�erences in detail.� D&C requires two phases, decomposing problems and composing results, so the treestructure resulting from the computation must be maintained. This is not necessaryfor B&B.� B&B must maintain global data to be shared among all tree nodes (i.e. the lowerbound [26]), whereas there is no such requirement for D&C.� In D&C the task tree is normally traversed in depth-�rst order so as to minimisememory requirements [53], whereas alternative orders, such as best-�rst, can beapplied to B&B.



CHAPTER 2. BACKGROUND 11� Termination of the distributed computation is easily detected for D&C when the re-sult of the root problem is obtained, whereas B&B requires more complex distributedtermination detection.Despite these di�erences, it is possible to use essentially the same load balancingtechniques for these applications.2.3 Dynamic Load Balancing AlgorithmsWe are interested in DLB schemes which seek to minimise total execution time of a singleapplication on massively parallel systems. Such parallel systems often allow sharing ofdata through explicit message passing (e.g. MPI and PVM systems).Numerous load balancing schemes with di�erent characteristics have been proposed inthe literature [9, 11, 13, 40, 48, 50, 56, 71, 86, 89, 85, 82, 81, 84], of which two have beenstudied extensively; Di�usion and Dimension Exchange Method. These two algorithmswill be described in detail in this section since they are used in the subsequent chapters.Two other algorithms will also be described { a random algorithm and an adaptive DLBmethod. Between them these four algorithms introduce many of the key component ofDLB and are representatives of the much wider range of algorithms in the literature.2.3.1 Di�usionIn Di�usion [11, 82, 85] work is moved periodically from heavily loaded processors to morelightly-loaded ones. Since processors use load information only from neighbours and tasksare migrated only between neighbours, both the information domain and migration spaceare local. Each processor performs load balancing operations independently, leading to adi�usion of work throughout the machine.Several variants of di�usion have been implemented; one major distinction is betweensender-initiated di�usion (SID), in which a migration is initiated by a heavily-loaded pro-cessor and receiver-initiated di�usion (RID), in which a lightly-loaded processor initiatesthe load balancing. RID is reported to outperform SID and is anticipated to be suitablefor large parallel systems [82].We describe a detailed algorithm for RID as it appears in [82] { the same principleapplies to SID. In RID, the balancing process is initiated by a processor, i, whose loaddrops below a threshold LLOW . The average load of processor i and its neighbours, Li,is then calculated. If processor i's load, Li, is below the average load by more than



CHAPTER 2. BACKGROUND 12another threshold, Lthreshold, the execution proceeds to the next load balancing phase, i.e.calculating the neighbour's excess load (if any). Each neighbour j is assigned an excessweight wj as follows: wj = 8<: Lj � Li if Lj > Li ;0 otherwise:The total excess weight for all neighbours, Wi, is also computed,Wi = JXj=1wjThe amount of load requested by processor i from neighbour j, �j , is:�j = (Li � Li)wjWiThe load requests are sent to appropriate neighbours. A neighbour will transfer amaximum of half of the amount of the current load for each request. This is to avoidinstability and reduce the e�ect of information aging.All processors inform their near-neighbours of their load levels and update this infor-mation throughout execution. The accuracy of the load information highly depends on thefrequency of the load update. If the frequency is high the accuracy of the load estimationincreases, so does the overhead. The reverse is true for low frequency. Clearly, there exista tradeo� between the quality of load information and the overhead in achieving it.Since di�usion make load balancing decisions asynchronously, in overlapping balancingdomains, the balancing operation may su�er from an inaccurate load information, i.e.information aging. A processor may end up transferring an excessive or insu�cient numberof tasks from one processor to another. This situation is called processor thrashing whichwill lead to system instability. An adaptive RID strategy which automatically adjust theload di�usion factor according to the system load 
uctuation may help rectify the problem[9]. Di�usion has several bene�ts: it is entirely distributed, thus avoiding bottlenecks; itrequires communication only between neighbours; and it has provably-good long-termbalancing properties [11]. On the other hand, movement of work is slow; for instance anidle processor with no heavily-loaded neighbours can not immediately obtain work, evenif there are heavily-loaded processors elsewhere in the system.
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(2) (1)(1)Figure 2.1: Edge colouring for a 2-d torus.2.3.2 Dimension Exchange MethodDimension Exchange Method (DEM) was initially proposed as a load balancing algorithmfor the hypercube structure [11]. In DEM a single load balancing operation consists oflog p pairwise balancing steps, where p is the number of processors in the machine. Eachbalancing step corresponds to each of the log p dimensions. All node pairs of the samedimension exchange their load information and average out the number of tasks. Thewhole system is balanced after a single load balancing iteration.Hosseini et al. generalised the method to non-hypercube topology based on edgecolouring of undirected graphs [34]. With edge colouring, the edges of a given graph arecoloured with some minimum number of colours such that no two adjoining edges are ofthe same colour. A dimension is then de�ned to be a collection of all edges of the samecolour. Figure 2.1 shows an example of a colour graph of a 2-d torus. The maximumcolour is four. Hence, all processors complete one load balancing operation after fourconsecutive exchange steps.For a non-hypercube topology, DEM can no longer yield a uniform workload distri-bution in a single iteration, but will eventually converge to a uniform distribution [34].The number of iterations required is linearly proportional to the total processors for thechain and to the dimension order k for k-ary n-cubes topology, where k is the number ofprocessors along the dimension. To rectify the problem Wu and Shu [84] proposed a directmethod which balance the load in one iteration by allowing each node to obtain the globalsystem state through sum reduction operation.Xu & Lau parameterised DEM according to the amount of workload to be migratedbetween processor pairs [88]. They refer to the parameter as the workload exchange



CHAPTER 2. BACKGROUND 14for colour := 1 to max colour donode-pair, i and j, exchange load information li and ljif (li - lj) > 1 thensend b (�li - �lj) c tasks to node jendifif (lj - li) > 1 thensend b (�lj - �li) c tasks to node iendifendfor Figure 2.2: Dimension exchange algorithm.parameter, �. Optimal � (or �opt) leads to the fastest convergence of a balancing process.Equal splitting of the total workload (i.e. �opt = 1=2) between processor pairs only yieldsoptimum results for the hypercube structure. For other topologies and network sizes thevalue of �opt varies. For a mesh, �opt is 1=(1+sin(�=k)) and for torus is 1=(1+sin(2�=k))where k refers to the maximum dimension length of the topology.Figure 2.2 shows (with some notational changes) an integer version of DEM algorithmfor an arbitrary topology, as given in [84]. For integer workloads absolute load balancecan not be achieved; a pair of processors is regarded as balanced if the di�erence is nolarger than one, a very small di�erence in the case of real workloads.Although the theoretical results showed the supremacy of GDEM1 over Di�usion,GDEM is anticipated not to scale well for very large parallel system [82]. This is becausethe theoretical studies do not take into account the global synchronisation overhead whichincurs every time the load balancing is invoked.2.3.3 Other Example DLB AlgorithmsRandom AlgorithmRandom algorithms studied by several authors are quite simple and e�ective. There aretwo variants of random algorithms; a newly created task is sent to a randomly chosenprocessor in the system [8, 71] or a task is migrated only when the workload reachesabove a certain `heavy' limit as in [20]. The major advantages of this strategy are itssimplicity and topology independence. No (or minimum) load information needs to be1Since this thesis adopts the generalised DEM algorithm - in terms of the topology and the exchangeparameter - we use GDEM as our abbreviation for the rest of this thesis.



CHAPTER 2. BACKGROUND 15maintained, nor is any load information sent to any processors. Results have shown thatrandom algorithms have a respectable performance [71]. However the lack of locality maycause a performance degradation due to large overhead and communication tra�c sincethe probability of the task being transferred to remote processors is high. This is especiallytrue for a random algorithm which migrates task immediately upon creation.An Adaptive DLB MethodThe adaptive DLB method by Xu and Hwang [89] illustrates an adaptive system whichadapts two important DLB parameters, namely the frequency of load information updateand threshold value. The latter determines whether a processor is heavily loaded.The system uses a dedicated processor which acts as a load information collectorthat periodically collects and broadcasts load information. The frequency between twosuccessive updates is varied according to the current system load variation. The durationbetween two updates is referred as the time window.The transfer and location decisions are completely distributed and are based on twoheuristics; a processor with minimum load or the one which is the least migrated to so faris the candidate for receiver. The adaptive threshold value and the migration domain aredetermined based on a local or global range policy. A local policy dictates migration toimmediate neighbours only and the threshold value is the average load among neighboursincluding itself. Global policy consider the whole system load.Although the load information collector periodically updates the load information toall processors, the load balancing decision may not be based on accurate load information.Any load changes that occurs within a time window are only known to the processors thatare involved, but not the rest. For this reason the balancing decision may not be correct,let alone optimal.Melab et al. [55, 56] extend the method by adding the local delay apart from having theglobal delay. These values determines when the processor should send its load informationand when the information collector should broadcast the system state. This is to �nelydetect the changes in the local load which leads to the system load 
uctuation.



CHAPTER 2. BACKGROUND 162.4 Components of a Dynamic Load Balancing AlgorithmTypically a load balancing algorithm consist of three main components [3]:(i) Information policy.The information policy speci�es what information about the states of other proces-sors in the system is to be collected, when the information is to be collected, fromwhere and how it is to be collected.The information space de�nes the domain from where the load information is to becollected. A global information space dictates the maintenance of the whole systemstate. One example algorithm is the adaptive DLB systems proposed by Xu andHwang above. Many algorithms gather load information from directly connectedneighbours (e.g. Di�usion and GDEM). These algorithms are said to have a localinformation space. There exist algorithm which does not use any load informationat all; an example includes Random algorithm. The frequency of gathering the loadinformation (also referred as update frequency) can be periodic (e.g. Di�usion) oradaptive (as in the adaptive DLB approach).Most load balancing require evaluation of load on a per-processor basis. The measureof load can be some weighted tasks or just a simple queue length. A study in [47]concluded that a simple metric (e.g. queue length) is as e�ective as the more complexmetric such as the CPU or memory usage.(ii) Transfer policy.The transfer policy determines the condition under which migration should takeplace and whether the processor is a sender or a receiver.Many algorithms use a threshold-based transfer policy [43, 20]. These algorithms usethe knowledge of the individual load of the processor in deciding whether transfer isnecessary. No exchange of state information is required. A task will be transferredif the load is greater than the threshold value.RID and the local adaptive DLB method (by Xu and Hwang above) use the averageload between neighbours to initiate the migration. GDEM algorithm uses a relativetransfer policy { migration only occurs when the load di�erence between a pair ofprocessor is greater than one (assuming the workload is integer).



CHAPTER 2. BACKGROUND 17(iii) Location or placement policy.The location policy determines the `transfer partner' to which a task should be as-signed. The region of the transfer could be just the neighbouring processors, or acluster of processors or the entire system. The �rst two are typically referred as localmigration space while the third as having global migration space.The rule used to select a partner ranges from a simple random probability to adesignated processor. Random algorithms transfer the task to a randomly chosenprocessor. If the destination processor is itself the task will be processed locally.GDEM, on the other hand, transfers the tasks to the designated processor pair ineach dimension. In RID the underloaded processor receives tasks from any of thedirectly connected neighbours whose load are in excess.The load balancing activities may be centralised in a single processor or distributedamong all the processing elements that participate in the load balancing process. In acentralised approach, a dedicated node gathers global information about the state of thesystem and assigns tasks to individual nodes. In other word, the three mentioned policiesare executed by a single node. With a fully distributed approach each node executes itsown scheduling policy by exchanging state information with other nodes; all the threepolicies are fully distributed.2.5 A Hybrid Approach to DLBMost algorithms to date follow a purely centralised or purely distributed approach. Acommon example of the centralised approach is a master-slave model [59]. A dedicatedprocess, the master, distributes the workload to the slave processes which carry out theactual computation. When idle, a slave requests more work from the master. Such asystem will have limited scalability because of bottlenecks at the master. Any centralisedapproach will tend to su�er from similar problems.For this reason most dynamic load balancing follows a purely distributed model. Acommon technique in a purely distributed approaches is di�usion. The problem with thisapproach is it may lead to sub-optimal load migration decisions. A heavily-loaded processcannot o�oad to a lightly-loaded non-local process, hence a process may remain idle for asubstantial time, even when there are surplus tasks in the system. This e�ect is particularlysigni�cant for tree-structured computation because in both cases the computation starts



CHAPTER 2. BACKGROUND 18from a single task. Thus, global balancing may be relatively slower to achieve comparedto the centralised approach.Since both centralised and distributed approaches have limitations in terms of perfor-mance, recent researches have begun to consider hybrid approaches, aiming to combinethe scalability of distributed models with the better load information of centralised models[2, 83]. Ahmad and Ghafoor [2] presented a semi-distributed approach which partitions thenetwork into independent symmetric regions centred at some control points. The centralpoints are schedulers which optimally schedule tasks within their spheres. The schedulersconsider task migration to other spheres only if the load of the most lightly loaded nodein its sphere is greater than the threshold limit, threshold-1. Tasks are migrated based ona signi�cant di�erence (i.e. threshold-2) between the accumulative load of the local sphereand that of remote sphere.Wu and Kung [83] proposed an algorithm in which individual processes execute tasksubtrees locally in depth-�rst fashion, but maintain a global pool of tasks from which aprocess out of work can obtain a further task. Under certain simplifying assumptions theyshow that their algorithm is optimal in terms of the number of tasks which need to bemigrated, but the maintenance of the global pool is costly and di�cult to implement ona distributed memory machine. However, a subsequent simulation of a related algorithmby Nash et al. on a scalable shared memory platform showed good scalability [57].Wu and Kung's work shows that the distributed scheduling of tasks in combinationwith a limited centralised component has the potential for scalable performance, thoughthe speci�c algorithm is unrealistic for the current generation of distributed memory com-puters because of the complexity of the centralised function.The remainder of this section describes a novel hybrid algorithm, the Loadserver, whichalso combines distributed scheduling with a centralised component, but in a very di�erentway; the central component is extremely simple and lightweight. The aim is to make itfeasible for implementation on the current generation of distributed memory machineswhile bene�ting from the better load balancing made possible by global load information.This is consistent with the conclusion of Eager et al. [20] that very simple load balancingpolicies using small amount of information are the most promising.2.5.1 Loadserver AlgorithmThe Loadserver (LDSV) algorithm was originally proposed in [14] where an initial im-plementation was described. The distributed characteristic of the LDSV algorithm is



CHAPTER 2. BACKGROUND 19captured through its autonomous local decision making in scheduling the workload. Eachprocess maintains its own task queue, from which it selects tasks to execute and wherenewly divided tasks are placed. Migration of tasks between queues is facilitated by acentralised LIS which maintains information about the lightly loaded processors. LDSV isan example of an asynchronous load-balancing algorithm where each processor performsbalancing operations discretely based on their own local workload distributions and invo-cation policies. Note that in Chapter 4 we describe the implementation of the synchronousversion of LDSV for the purpose of experimenting adaptivity.
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CHAPTER 2. BACKGROUND 21the computation is complete and a FINISHED message is broadcast.
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CHAPTER 2. BACKGROUND 22centralised information and location policy, and distributed scheduling policy. Loadserveris an attempt to �nd a tradeo� between the better load-balancing decisions enabled byglobal information and migration, and the consequent overheads. The LIS provides aninevitable hot-spot but it is a very lightweight process and messages to and from it areshort and relatively infrequent. All decisions in regards to transfer are done locally, aimingat maintaining scalability.



Chapter 3Phase-based Adaptive DynamicLoad Balancing: A FrameworkThis chapter introduces the notion of phase-based adaptive dynamic load balancing andprovides a more systematic view of the area by means of the proposed framework.The chapter is organised as follows. Section 3.1 explains and motivates the use of phase-based adaptivity. Section 3.2 provides a simple formalism for adaptivity performance andpoints to future experiments. Section 3.3 compares the approach with existing relatedwork, both on phases and adaptivity. Section 3.4 discusses practical issues that may arise.Finally, Section 3.5 justi�es the method of further study.3.1 Phase-based Adaptivity: ConceptsIn this section we introduce three basic concepts in phase-based adaptivity: the workloadphases, transitions and the types of adaptivity. We illustrate our idea by reference totree-structured computation as generated by D&C and B&B algorithms (detail discussioncan be found in Section 2.2). Our discussion is based on the assumption that the workloadof the tree computation evolves in an idealised manner, that is a consistent increase fol-lowed by a consistent decrease in total workload forming a `bell-shape' pattern. Practicaldi�culties with this assumption are discussed in Section 3.4 and Chapter 5. We thenhighlight that the tree computation can be divided into distinct phases and each phasehas di�erent load balancing requirement and objective.23
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Phase IFigure 3.1: The workload phases of tree structured computation.3.1.1 Workload PhasesThe execution of a tree application typically produces a workload which evolves from onephase to another. Below we illustrate how phases can be identi�ed in such application.Suppose a tree application is executed on p processors and that at time t there arealtogether n(t) nodes available for execution; thus n(0) = 1, since the computation startswith the root task. It is possible to identify three main workload phases in the computation(see Figure 3.1).(i) Phase IDuring this phase the machine cannot be fully utilised, since n(t) < p. In this periodthe main objective of DLB is to migrate newly created tasks as quickly as possible,so as to make use of all processors. We call this the �lling phase.(ii) Phase IIWhen n(t) � p there is enough work for all processors potentially to be busy. Un-balanced growth of the computational tree means that some processors become idlewhile there is still a large amount of work to be done. In this time the main objectiveof DLB is therefore to ensure that all processors remain busy or at least that idleperiods are kept short. We call this the steady phase.(iii) Phase IIIEventually the workload becomes so low that it is not possible to use all processors;as in the �lling phase, n(t) < p. There seems little bene�t to be gained from loadbalancing during this time. We call this the emptying phase.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 25We will argue that for tree-structured computation there is a case for consideringload balancing in three distinct stages: a fast workload distribution for the �lling phase,maintaining the processors busy for the steady phase, and no load balancing for theemptying phase. It should, however, be emphasised that the ability to adapt a DLB atpredictable stages depends critically on the knowledge of the application as generating atree. Our above argument would not apply, for instance, to general purpose distributedprocessing, where prior knowledge of pattern of workload is not feasible. Our approachinvolves recognising the patterns or regularities of workload and using this knowledge tochange the behaviour of a DLB algorithm to optimise performance.3.1.2 TransitionsAs de�ned above there are three workload phases, hence we can identify two transitionpoints (Figure 3.1). The �rst transition, t1, marks the phase change from �lling to steadyphase, while the second transition, t2, between steady and emptying phase.In principle, both t1 and t2 are detected when the number of tasks reaches the totalnumber of processors; that is when n(t) � p for t1 and n(t) � p for t2. However, in practisethe best transition point may not be exactly at n(t) = p. It can be at any point earlieror later than n(t) � p or n(t) � p. Hence, we introduce two variables, c1 and c2, whichmay be used to adjust these transition points. Thus, the transitions are encountered whenn(t) = c1� p and n(t) = c2� p, for t1 and t2, respectively. The values of the two variablesare real positive numbers and the best values are determined experimentally.3.1.3 Types of AdaptivityBased on the types of adaptivity found in the literature, we classify the mechanisms foradaptivity into two categories: parametric and algorithmic adaptivity.Parametric AdaptivityParametric adaptivity simply means that the values of the load balancing parameters areadapted to the dynamically changing system workload. Below are the parameters whichare typically adjusted:� Workload threshold. The workload threshold determines the workload state of aprocessor. Some algorithms, for example, LDSV and Gradient Model [48], di�eren-tiate the processor state into two; light and heavy (or low- and high-water-mark in



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 26Gradient Model). Hence, we have light and heavy thresholds. The heavy thresholdusually indicates that the load balancing algorithm should proceed to a migrationphase while the light threshold indicates the node requires (more) work.Xu and Hwang [89] use an adaptive threshold to determine if a processor is heavilyloaded. The value of the threshold is periodically calculated using system loadinformation, which is broadcasted on an adaptive time window basis. A similar ideaon adaptive threshold can be found in [68]. The values of the threshold changesaccording to the large and fast load changes of distributed systems. Dasgupta in[13] used an adaptive threshold which adapts to the limited bandwidth of the sharedbus architecture.� Migration factor. The migration factor controls the amount of load to be migrated.It can be a `fraction' of the total workload or a single task count. GDEM aims atequally balance the workload. Hence, it requires `fraction' of the heavy processor'sload to be transferred to its light processor pair. LDSV migrates a single task at atime since its objective is only to ensure that no processor is idle.Adaptive RID strategy in [9] uses an adaptive migration factor which attempts toavoid thrashing problem due to information aging which stems from a long updateinterval. They refer to the migration factor as adaptive di�usion factor.� Load balancing interval. The interval is de�ned as the `duration' between two loadbalancing invocations. Wikstrom et al. [80] use an interval of time to control thefrequency of invocation. This frequency is determined based on the estimated timeof the total execution time, both during the present state and the perfectly balancedstate.For application such as the tree computation, time interval may not be applicablesince the tree workload consist of distinct indivisible nodes. An interval of thenumber of nodes is more appropriate [42]. Assuming that the interval is i, a processorwill invoke the load balancing after every i nodes.The key idea in using the parametric approach in the phase-based technique is toensure the objective at each phase is achieved by means of adjusting the values of theDLB parameter(s).Ensuring a fast load distribution during phase I suggests the use of a low interval value,possibly one. If the migration factor is to be adapted, this may mean that a small numberof tasks ought to be migrated (for example a single task). If the workload thresholds are to



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 27be manipulated, a low value of the heavy threshold (e.g. one) may be appropriate so thatthe heavy processor can quickly o�-loaded the task. A low value of the light threshold isrecommended too, for example a value of zero, possibly, to quickly receive the load. Thebasic idea behind the low values of DLB parameter is to minimise the idle time.During the steady phase, there is less need for load balancing, therefore, the frequencyof the DLB invocation ought to be reduced. This can be done by increasing the intervalor the heavy threshold. Using the latter may incurs the extra cost of load evaluation.So, increases the interval is probably to be preferred when possible. A larger value ofmigration factor may be necessary to reduce the level of load imbalance.During the emptying phase the interval (or the heavy threshold) can be set to in�nity(or in practise the value of MAX INT) to avoid invoking the load balancing completely.Manipulating the migration factor, however, will not give the disabling e�ect.It may well be that adapting any one parameter may not lead to the best performance.Perhaps the combination of a few (or all the parameters) may yield the best results.Algorithmic AdaptivityIn algorithmic adaptivity completely di�erent algorithms or di�erent DLB policies (e.g.receiver-initiated followed by sender-initiated policies) are used during a single programexecution.We shall now illustrate the use of algorithmic adaptivity in the context of parallel treecomputation by making use of the knowledge of phases de�ned earlier. During the �llingphase the DLB algorithm must facilitate rapid migration of work. The local informationand migration space of Di�usion is quite restrictive, whereas the global information andmigration space of LDSV are more e�ective.This can be simply demonstrated in the case that all node executions lead to expansion.Suppose that the diameter of the underlying communication network is D and the degree(or the fan-out) of the computation tree is f (i.e. each node expands to give f children).Suppose also, for simplicity, that the computation proceeds in `rounds', with each processorexecuting one task (if it has one) and then carrying out its load balancing operations. WithLDSV, in the �rst round (f � 1) tasks can be o�oaded to distinct processors, whateverthe topology, allowing f processors to expand during the second round. It is clear thatafter logfp rounds p tasks will have been generated and also that all processors will nowhave one task, so the machine is fully utilised. Thus, LDSV is optimal in terms of thenumber of rounds in the �lling stage. One may expect other DLB algorithms with a global
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Figure 3.2: Cost-bene�t of load balancing.information and migration space to be similarly optimal.With Di�usion, work moves through at most one hop per round, hence 
(D) roundsare needed to �ll the machine. Clearly, this is a worse result than for LDSV, especiallyfor larger values of f on D. Other approaches with a local migration space will performsimilarly.During the steady phase, however, the advantage appears to swing towards Di�usion.In LDSV , when all the processors are busy, they continue to make requests to LIS afterevery task execution, without ever gaining any bene�t from load balancing, and causingworst case contention at the LIS. By contrast, the distributed, local nature of Di�usionavoids global hot-spots; more signi�cantly, receiver-oriented Di�usion will make requestsonly when work is actually needed, signi�cantly reducing the overheads of load balancing.Similar results can be expected from other local algorithms, especially receiver-oriented.This accords with the observation by Eager et al. who provided evidence for the potentialalgorithmic adaptivity [19]. They reported that sender-initiated algorithms outperformedreceiver-initiated at light to moderate system loads, whereas receiver-initiated algorithmswere preferable at high system loads. For their case, perhaps the initiation policy couldbe adapted according to the system load level.During the emptying phase, it is impossible to keep all processors busy; if possible,load balancing should be switched o�, saving the overheads. More general, load balancingshould only be carried out when its bene�ts outweigh its costs, as shown in Figure 3.2.In the early stages of a tree computation there is a high bene�t from load balancing, butas time goes on this decreases to zero. On the other hand there is always a cost for loadbalancing, conceptually shown as constant. Thus, there will be a stage in any computation
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algorithmicFigure 3.3: The characteristics of adaptive dynamic load balancing algorithms.where further e�ort in load balancing no longer brings any net bene�t. Discontinuing loadbalancing at this stage should improve performance.We conclude that di�erent load balancing algorithms could be used in di�erent stagesof a parallel tree computation; an algorithm with global information and migration spacefor the �lling phase, a local algorithm during the steady phase and no load balancingduring the emptying phase.Our new framework described in this section is best seen as a further extension toand a re�nement of the present work on adaptive DLB. The relationship between theframework with the existing load balancing work is depicted in Figure 3.3. Notice thatthe upper part of the classi�cation is actually the taxonomy which appeared in Chapter1 (Figure 1.1).In our framework, we refer to all non-phase-based adaptive DLB as periodic approach,where the DLB algorithm is invoked periodically through out the execution. Clearly, thereis a potential for further characterisation of this class of DLB algorithms, which is beyondthe scope of this thesis.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 303.2 Parameter De�nitions and a Simple FormalismThis section attempts at providing a simple formalism for the performance of a tree ap-plication using the phase-based adaptivity approach described in the previous section.The performance of a parallel tree application is a complex issue; a function of many in-terrelated parameters. These parameters can be categorised into three categories, namely,machine, application and load balancing parameters. Apart from these, we also include adiscussion on parameters which are used in detecting transitions.For the machine parameters we consider:� Varying processor numbers, p, which determine the size of the network. The valueof p is an integer of a power of two, in the range of 1 to 512.� Varying network performance or speed, s, which is relative to the communicationperformance of the T3D. This parameter is de�ned precisely in Section 5.3.2. Intu-itively, a value of s improve network performance by a factor of s compared withthe T3D, i.e. increasing s gives a faster network.In order to support various kinds of task trees. We have the following parameters:� The level of depth, d, with the root node starting at depth one. In general, thedepth of a tree determines the total workload.� The node grain size, g, which is measured by the number of 
oating point operations.� The fan-out, f , which may be �xed or variable. In theory this can be variable, butwe have only used �xed fan-out which can either be 2, 4 or 8.� The degree of tree imbalance, m, which is in the range of 0.0 to 1.0. An imbalanceof 0.0 means the tree is completely balanced while an imbalanced of 1.0 implies theworst case of imbalance.Detailed discussion on application parameters can be found in Sections 4.2.3 and 4.3.1.For the load balancing we de�ne the following parameters:� The load balancing interval, i.� The low workload threshold, l.� The high workload threshold, h.� The migration factor, r.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 31All the above DLB parameters have been described in Section 3.1.3.We shall now de�ne the parameters used for detecting phase transition (further discussioncan be found in Section 3.1.2):� The condition for transition I is n(t) � c1�p, where c1 is a positive real value relativeto p. For instance, c1 values of 0.5, 1.0 or 1.5, mean that the transition occurs whenthe machine is half full, totally full or more than totally full, respectively.� The condition for transition II is n(t) � c2 � p, where c2 can be any positive realvalue. The larger c2 is the earlier the transition occurs.Assuming that a parallel tree application runs in a non-adaptive setting using the abovede�ned parameters, we could then formalise the total execution time of that application,TNA, as the following:TNA = tNA ( p; s;|{z}machine d; f; g;m;| {z }application i; h; l; r| {z }loadbalancing) (3.1)The total execution time in an adaptive environment, TA, depends on the adaptivemechanism used. For parametric adaptivity all DLB parameters may hold di�erent valuesduring each phase. The above equation then becomes:TPA = tPA (p; s; d; f; g;m; c1; c2; (i1; i2; i3) (h1; h2; h3) (l1; l2; l3) (r1; r2; r3) )(3.2)where the subscripts of the four DLB parameters refer to phase I, II and III. Note that theabove equation assumes that a DLB algorithm has high and low threshold values. If thealgorithm has only one threshold, only one of the parameters (either l or h) will appearin the equation.Due to the wide range of parameters, for this thesis we limit our investigation to oneDLB parameter only, that is the load balancing interval, i. The rest of the DLB parameterswill not be adapted. Thus, TPA, can be reduced to;TPA = tPA (p; s; d; f; g;m; c1; c2; (i1; i2;1) h; l; r) (3.3)where i1 and i2 are the best interval for phase I and II, respectively. i3 assumes in�nitywhich has the e�ect of disabling the algorithm during phase III.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 32For comparison purposes we use the same formalism to express the performance ofalgorithmic adaptivity, TAA, though recognising that algorithms are not parameters in thesame way as the rest of the parameters. Thus, the performance of algorithmic adaptivitycan be expressed as:TAA = tAA (p; s; d; f; g;m; c1; c2; (a1; i1; h1; l1; r1) (a2; i2; h2; l2; r2) (nil) )(3.4)where a1 and a2, are the two di�erent DLB algorithms used during phase I and II, re-spectively. Each algorithm assumes its own DLB parameters i, h, l and r, as de�ned inthe original algorithm. The last parameter \nil" means no DLB algorithm is used duringphase III.As a conclusion, we can say that the adaptivity performance, TA, assumes either theperformance of parametric or algorithmic adaptivity;TA = TPA or TA = TAA (3.5)3.3 Related WorkThe idea of phase-based adaptivity is the combination of two existing notions; phases andadaptivity. Hence, we separate the related work according to these two concepts.3.3.1 PhasesThere exist several works in the literature which make use of phases to optimise perfor-mance. Some of these identify phases based on the di�erent stages of computation whichexist in the application. There is also work which does not assume any knowledge ofthe application a priori, but phases are identi�ed by means of program trace after thecomputation ends.An example application which has a clearly identi�ed phases is parallel ray-tracingin Mistral in solid modeling system [14]. The execution of the application proceeded intwo distinct stages or phases (see Figure 3.4 (a)). In the �rst phase a distributed octreerepresentation of a solid is built using a D&C method with dynamic load balancing. Inthe second phase the ray-traced image of the solid is produced by a further dynamicallyload-balanced D&C method, using a quadtree decomposition of the image space. Between
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(b)Figure 3.4: (a) Clear-cut phases of Mistral. (b) Nested phases of PIC.the phases there is a redistribution of data to improve the performance of the secondphase.The system is similar to our proposed framework in that it involves two distinct phases,both based on dynamically load balanced tree computation (i.e. D&C). However, there aretwo signi�cant di�erences. Mistral has two separate tree computation, each with its ownDLB approach, our framework considers phases within a single tree computation. Thetwo phases are clearly evident in the application and are explicitly within the source code.In our framework, only one computation is visible to the programmer and the underlyingDLB system switches between phases depending on run-time load observations. Mistral'sphases can be considered explicit, in our framework they are implicit.Clearly, Mistral represents a wide range of program which have a clearly identi�edphases with di�erent pattern of parallelism. From the above observations it should beclear that this is not the scenario with which our framework is concerned.Problems involved in load balancing multi-phase parallel computation are addressed in[79]. The example here is a Particle-in-cell (PIC) application which is used for simulatinghighly rare�ed particles that 
ow in the presence of an electromagnetic �eld. A high levelview of the application is shown in Figure 3.4 (b), showing two main phases, with thesecond nested within the �rst phase. The two phases have quite di�erent load balancingrequirements and involve di�erent load metrics. A load balancing scheme is proposedwhich balances both phases together, by considering a vector of the loads for individualphases and using the Di�usion algorithm.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 34Application/System Key FeaturesMistral Algorithm-based phase identi�cation (explicit phase).Compile-time phase detection.Dynamically load balance in each phase.PIC Algorithm-based phase identi�cation (explicit phase).Compile-time phase detection.Dynamically load balance at the end of both phases.MARS Program trace-based phase identi�cation (explicit phase).Post-execution phase detection.Statically load balance in each phase.Our work Workload-based phase identi�cation (implicit phase).Run-time phase detection.Dynamically load balance in each phase.Table 3.1: A comparison between our approach and the related work on phases.As with Mistral the phases are explicitly identi�ed within the application and the samedi�erences from our framework apply.MARS (Metacomputer Adaptive Runtime System) is a framework for minimising theexecution time of distributed application on a wide-area-network [24, 25]. MARS utilisesapplication-speci�c information by identifying the program phases to improve task-to-processor mapping. An o�-line analysis is made from previous execution runs to builda task dependency graph from which phases can be identi�ed. A phase is de�ned asa sub-graph of the dependency graph which performs a closed subtask, such as loopsor frequently called function-bodies. Each phase is statically mapped to the underlyingprocessor network, but there may be remapping between phases implemented by dataredistribution. A cost model is used to evaluate whether the cost of remapping will beo�set by improved performance in the subsequent phase.In the case of MARS, phases are detected based on run-time measurements, as in oursystem. A major di�erence is that the phase detection is done o�-line from the programtrace, leading to an optimal static schedule. No dynamic load balancing is ever involved.MARS is therefore not suitable for the unpredictable problems which are handled by ourframework.Table 3.1 summarises the similarities and di�erences between our approach and therelated work on phases.Special mechanisms for the early stage of a parallel tree computation (equivalent toour �lling phase) are described in [62, 67]. Both systems use the Iterative Deepening



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 35A* algorithm [66] to solve the 15-puzzle problem. In [62], newly expanded node arealways migrated to free processors, though no indication is given of how it is known whichprocessors are free. Since this implies a global migration space, it supports our hypothesisthat global migration is useful for this stage. In [67] the root node is broadcast to allprocessors which redundantly expand the �rst few levels of the tree, obtain the same setof subtrees n1, n2, ... During the main phase of the computation, processor i then startsto expand its sub-tree ni; np+i; :::; n2p+i, ensuring that all processors expand di�erent sub-trees for most of the computation. It is worth noting that in both the above systems thereis a very large processor array (16 K-node SIMD and 1024-node MIMD, respectively)which makes the e�ects of the �lling phase quite signi�cant. Neither of these systemsexplicitly identi�es an emptying stage, though [62] includes an adaptive mechanism in itsmain computational phase which reduces the number of processors involved towards theend of the computation.3.3.2 AdaptivityA number of instances of adaptivity in DLB have been described in previous chapters,speci�cally in Sections 1.2, 2.3.3 and 3.1.3. We further describe two work that are relatedto ours. The �rst is an adaptive system which bears some similarities in terms of classifyingthe adaptive mechanisms. The second is adaptivity in the context of programming.Recognising that no single scheduling algorithm performs well in all situations, Ra-mamritham and Zhao proposed a higher level control of scheduling for distributed real-timesystem [64]. This added layer is referred as meta-level control, which controls the selectionof a local scheduling algorithm, a global scheduling algorithm and the section of schedul-ing parameters. The local algorithm is used for scheduling tasks on a node, while globalscheduling is to control cooperation among the nodes.Their work is similar to ours in the sense that both distinguish the mechanisms ofadaptivity, into parametric and algorithmic-related mechanisms. However, the context isvery di�erent, and the work is not dealing with phases which are identi�ed at run-time byworkload measurements.All the work on adaptivity described so far focuses on improving the performance {aiming for a faster, more reliable and stable system. The work by Gouda and Herman[29] attempts to reason about the behaviour of adaptive programs. They formalised thede�nition of adaptivity and present some logical properties of the de�nition and pro-vide operators for combining adaptive programs. They �rst study an adaptive sequential



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 36program and later adaptive distributed program. Their targeted applications include asystem of distributed processes that communicate via a shared bus, a distributed systemfor tra�c control and a resource allocation program to minimise the amortised cost ofresource allocation.The work is similar to ours in that it considers aspects of adaptivity between knownphases, based on run-time measurements. The emphasis, however is very di�erent, thework focuses on methods for constructing adaptive programs and ensuring correctness inthe transition between phases. Issues of performance and dynamic load balancing are notin consideration.3.4 Some Practical ImplicationsThe discussion so far has been based on an idealised workload represented by the bell-shaped curve in Figure 3.1. In practise it is unlikely that the workload curve will be asclear-cut; in particular the early and �nal stages of the curve might not be monotonic,making detection of precise transition points more di�cult.A further di�culty in detecting transition points arises because of the need to evaluatethe total workload in the system. Since most DLB algorithms do not maintain global loadinformation, some additional facilities must be introduced, adding to the complexity oftransition detection.Assuming that transition points are correctly detected there remains the challenge ofimplementing the transitions. For parametric adaptivity there appear no major problemin principle, but for algorithmic adaptivity there may be problems of making a cleartransition between DLB algorithms, such as supporting di�erent de�nition of processgroups and communication patterns, and ensuring any outstanding messages are handledproperly.3.5 Use of a SimulatorThe previous section indicates that the implementation of phase-based adaptivity is notstraight-forward and will involve tackling non-trivial problems. Before engaging in suchimplementation it is therefore important to be sure that there will be signi�cant perfor-mance bene�t, particularly as the implementation of phase changes is likely to introduceextra overheads. Clearly, it is not possible to gain such preliminary quantitative data bymeans of parallel implementation! Therefore, we are left with two methods of continuing



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 37the study, analytical modeling or simulation.Analytical modeling can gain quick results if the problem is tractable. Unfortunately,the complex behaviour of the parallel execution of a DLB algorithm is di�cult to captureanalytically, and this approach does not seem promising.Simulation, on the other hand, is a well-tried technique which avoids the need toresolve the implementation issues noted above, and does not require a full analyticalmodel of the parallel computation. It also permits the performance on di�erent hardwarecon�gurations to be obtained by parameterisation, and can study the e�ect of varyingworkload by appropriate parameterised models. Simulation also gives greater control oversome of the behaviour of the system under study. Some of the tree application (e.g.B&B) produces a di�erent search space from one run to another [65]. In simulationsuch behaviour can easily be controlled by the use of arti�cial tree which generates theworkload in a deterministic manner { the same shape, depth, fan-out and hence the sametotal workload. Furthermore, simulation allows unlimited number of factors which a�ectperformance to be monitored (or detail measurements to be collected) without any adverseside e�ect.Practical problems such as limited CPU time and interactive runs for parallel machinealso make simulation an attractive alternative. The maximum number of processors al-lowed on the T3D is only 32 processors (i.e. small scale processor size). Medium-scale(64 - 128) and large-scale (256 - 512) processor sizes must be submitted as batch jobs.The latter can only be run on a speci�ed day. Clearly, such limitation is inconvenience forextensive experimentation.The next chapter describes the design, implementation and validation of a suitablesimulator.



Chapter 4Simulation: Design,Implementation and ValidationThis chapter presents the design and implementation of a simulator for the purpose ofcarrying out systematic experiments on the various aspects of phase-based adaptivitydescribed in Chapter 3. Factors such as varying topologies, di�erent load balancing algo-rithms, varying workloads and di�erent cost models are also considered.The chapter begins with a description of the general model in Section 4.1 and thecomponents of the simulator in Section 4.2. This is then followed by a discussion onthe performance models used and the calibration of the models in Section 4.3. Section4.4 details the validation process. Finally, Section 4.5 discusses the limitations of thesimulator.4.1 The Model of Parallel ExecutionThe general model of parallel execution adopted in the simulator is similar to the BSPcomputational model. In BSP [54] computation is divided into a sequence of phases, calledsupersteps. Each superstep is delimited by a barrier operation, within which each processorperforms local computation and global communications independently. The results of thecommunication in a superstep are used in the subsequent superstep. In this thesis theterm iteration will be used instead of superstep.Figure 4.1 shows the outline operation of the simulator while Figure 4.2 depicts asequence of operations that may occur in an iteration (note that some processors may notexecute any computation in a speci�c iteration). The local computation in this case is the38



CHAPTER 4. SIMULATION 39while not �nished docompute ()load balance ()barrier ()end Figure 4.1: An overview of the simulator.execution of tree computation and the global communication is the information exchangeand data migration used in dynamic load balancing. This synchronous approach is simpleand easy to simulate, thus making a study on adaptivity tractable.
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Figure 4.2: Processor operations in a single iteration.The drawback of this approach is that it assumes a synchronous DLB algorithm. Anyasynchronous DLB algorithm, e.g. the LDSV, must be transformed to an equivalent syn-chronous version. This is achieved by adding barrier synchronisation which inevitablyyields poorer performance compared to the original asynchronous version. In short, a syn-chronous version induces a larger overhead. Despite this, the pattern of results for adap-tivity experiments is expected to be similar, whether a synchronous or an asynchronousalgorithm is used. The amount gained perhaps may be larger for the synchronous modeldue to the extra gain from the larger overhead, but this should not invalidate the results.The assumption is that the e�ects of adaptivity are essentially independent of the modeladopted.



CHAPTER 4. SIMULATION 404.2 The Load Balancing SimulatorThe simulator simulates the synchronous execution of a DLB algorithm on the Cray T3Dwith tree-based computation as the workload generator. It is written in C and MPI, witha parameterised performance model based on the T3D performance model. It supportsa range of topologies and is capable of simulating trees with varying depth, degree andimbalance. This constitutes the generality of the simulator as a load balancing testbed.In order to support the above capabilities, the simulator has been cleanly implementedin four separate modules with each having its own variants. The modules are:� the topology,� the load balancing,� the tree computation, and� the cost module.The remainder of Section 4.2 describes the implementation of the �rst three compo-nents and Section 4.3 discusses in detail the cost models used.4.2.1 The Topology ModuleThe topology module supports �ve di�erent topologies; chain, ring, 2-d mesh, 2-d torusand hypercube (Figure 4.3). They are from the k-ary n-cubes family, where n refers tothe dimension of the network and k is the number of processors along each dimension[12]. A ring is a one-dimensional structure with k processors along its only dimension.An n-dimensional hypercube (or binary n-cube), on the other hand, is a mesh with twoprocessors in each dimension. These two topologies de�ne the extremes, or the specialcases, of k-ary n-cubes. Stripping o� the wrap-around connections of a ring and torusresult in a chain and a mesh, respectively. The family of k-ary n-cubes forms the basis ofseveral commercial parallel computers. Examples include the hypercube-structured InteliPSC/860 and NCUBE/2, the two-dimensional mesh-structured T9000 and the three-dimensional torus Cray T3D [77].The above �ve topologies were supported using two main data structures, namely anarray of array of neighbouring processors and a structure of topology parameters (Figure4.4). The indices of the array were used as the processor ids, while the sub-arrays keptthe processor ids of the neighbours. The simulator adopts the MPI virtual topology stylein labeling the processor id, that is column-major ordering [30]. The topologies in Figure
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Figure 4.3: Topologies supported in the simulator.4.3 follow the MPI processor labeling convention. The characteristics of a topology, suchas type (e.g. 2-d torus, hypercube etc.), the total number of processors in the network,the length of each dimension and the maximum number of neighbours in the network, arekept in a single data structure.A load balancing algorithm which is topology-dependent (e.g. GDEM) requires alayer that maps the algorithm requirement to the topology interconnect. For example,GDEM on the 2-d torus uses the knowledge of the four neighbouring processors duringeach balancing operations. The four neighbours correspond to the four colours in the edge-colouring method (described in Section 2.3.2). Balancing in each dimension (or colour)involves all processor pairs in the same dimension. A separate routine is needed to identifythese processor pairs as the balancing operation proceeds.



CHAPTER 4. SIMULATION 42typedef struct { /* topology parameters */int type, /* topology type */p, /* total processors */x, /* total processors along x */y, /* and y dimension */k, /* maximum between x and y */neighbours; /* maximum neighbours */} to, *to_ptr;typedef struct { /* topology main structure */int neig[MAX_NEIG]; /* directly connected neighbours*/} proc, *proc_ptr;proc p[MAX_PROC]; /* all processors in the network*/Figure 4.4: Data structures that support the topologies.4.2.2 The Load Balancing ModuleThe load balancing module supports two di�erent load balancing algorithms, GDEMand LDSV, which have been described in Chapter 2. Both were implemented using thesynchronous model.The key issue in simulating these algorithms sequentially is how parallelism can besuccessfully achieved. The main idea is to `execute' the load balancing operation of eachprocessor in turn. However, the implementation depends on the speci�c load balancingalgorithm. Below are the description on how GDEM and LDSV are simulated. Thealgorithms exhibit a di�erent level of complexity and simulation characteristics.Generalised Dimension Exchange Method (GDEM)In the real implementation of GDEM, each processor calls the topology setup routineduring the initialisation stage, i.e. prior to executing any computation. It then executesthe for loop in Figure 4.5 to do the balancing, by pairing itself with its partner of thesame colour, exchanging the load information and migrating the excess workload (if any).The pairwise balancing is repeated for every colour (or dimension).The simulated GDEM (Figure 4.6) is very similar to the real version except for twoaspects. The �rst is that it has to have a module to support the topological requirementof the algorithm (see comments in Figure 4.6), which in the real version is provided by



CHAPTER 4. SIMULATION 43procedure Real Generalised Dimension Exchange (pid)i := pidfor colour := 1 to max colour do f load balance each dimension gj := get partner (i) f partner in the dimension gexchange load information (i, j)calculate load di�erence (i, j)if load di�erence > 1 thenif load (i) > load (j) thenmigrate task (i, j) f migrate packed of data gelse migrate task (j, i)endifendforendprocedureFigure 4.5: The real Generalised Dimension Exchange algorithm.procedure Simulated Generalised Dimension Exchange ()for colour := 1 to max colour doi := 0get �rst pair (i, j) f topology support routine gwhile not �nished visiting all pairs do f parallelise balancing operation gexchange load information (i, j)calculate load di�erence (i, j)if load di�erence > 1 thenif load (i) > load (j) thenmigrate task (i, j)else migrate task (j, i)endifget next pair (i, j) f topology support routine gendwhileendforendprocedureFigure 4.6: The simulated Generalised Dimension Exchange algorithm.



CHAPTER 4. SIMULATION 44the MPI virtual topology facilities. The second involves the parallelisation of the loadbalancing. This is achieved using a while loop which traverses through each processorpair of the same colour, simulating the parallel execution of pairwise balancing in the forloop of the real version. The processor pairs involved in load balancing are determinedprior to each balancing operation using function get �rst pair (i, j) and get next pair (i, j).Thus, the only di�erences between the simulated and the real GDEM are the additionaltopology routines which have to be implemented, and the parallelisation of the localisedpairwise load balancing.Loadserver (LDSV)In the real synchronous Loadserver algorithm (Figure 4.7) 1, each processor checks its loadstatus and if the load is below a `light' threshold it informs the Load Information Server(LIS), provided that it has not already done so. If the load is above the `heavy' threshold,the processor will keep on o�-loading its load as long as there exists a `light' processor.Once completed it waits for instructions allowing it to proceed from processor 0. Thisbroadcast `proceed' to the next stage does not exist in the original algorithm. Since themodel employed is a synchronous approach, it forces LDSV to be synchronised.The simulated LDSV does not di�er radically from the real version (Figure 4.8). Thesection for testing `light' load remains the same. The only section that di�ers is when`heavy' processors repeatedly o�-load tasks to `light' processors. In the real execution,all `heavy' processors execute the loop \while heavy load (pid)" in Figure 4.7 in parallel;with each processor making a request to LIS. Each will then continue making requestsif it is still in a `heavy' state. Simulating this behaviour sequentially requires the visitto each `heavy' processor be carried out in rounds until all processors know that eitherthe LIS is empty or all the heavy processors becomes `light'. In order to reduce thesequentialisation e�ects, the �rst processor to be `executed' is chosen at random each timethe load balancing is invoked.Notice that the loop \while not receive proceed" does not exist in the simulatedversion. This is simpli�ed since there is no actual message passing library is used. Thereceiver is costed according to the relevant cost function. One of the main advantages of thesequential simulation is that the complexities introduced by message-passing programmingare reduced.1Note that a discussion on the original asynchronous version of the LDSV, including its implementation,is described in Section 2.5.



CHAPTER 4. SIMULATION 45procedure Real Loadserver (pid, acknowledge LIS)f case `light' processor gif light load (pid) and not acknowledge lis thensend LIGHT to LIS (pid)acknowledge lis := TRUEelse f case `heavy' processor g�nished := FALSEwhile heavy load (pid) and not �nished dosend HEAVY to LIS (pid)tag received := receive reply from LIS ()if tag received = LIGHT NODEsend task (pid)else �nished := TRUEendwhileendifif pid = 0 thensend PROCEED to all processors ()endifreceive proceed := FALSEwhile not receive proceed do f loop for an incoming message gwait to receive message (message type)case message type ofTASK:enqueue (task)PROCEED:receive proceed := TRUEendcaseendwhileendprocedure Figure 4.7: The real Loadserver algorithm.In order to support the adaptivity experimentation, the structure de�nition shownin Figure 4.9 is employed. The variables t1 and t2 indicate whether the �rst and secondtransition for adaptivity is on, while c1 and c2 are their respective coe�cients. The \no lb"variable is a 
ag which indicates whether a load balancing algorithm is to be activated ornot.4.2.3 The Tree Computation ModuleWe need to model di�erent kinds of workloads. For the class of computation consid-ered, this means di�erent kinds of task trees are required. The following variations are



CHAPTER 4. SIMULATION 46procedure Simulated Loadserver ()for i = 0 to P do f assumed light pid exist in LIS gknow LIS empty[i] := FALSEloop again := TRUEwhile (loop again) do f parallelise access to LIS gloop again := FALSEfor all processors i in random order do f parallelise the load balancing gf case `light' processor gif light (i) and not registered to LIS (i) thenenqueue LIS (i) f case `heavy' processor gelse if heavy (i) not know LIS empty[i] thendestination := dequeue LIS ()if destination <> NO LIGHT NODE thenmigrate task (i, destination)loop again := TRUEelse know LIS empty[i] := TRUEendifendforendwhilep0 send proceedtoall processors ()endprocedure Figure 4.8: The simulated Loadserver algorithm.considered:� Di�erent degrees or fan-out, f , which may be �xed or varying. Trees of degree 2 orbinary tree (e.g. parallel mergesort), 4 (e.g. quadtree algorithms) or 8 (e.g. octreealgorithms) are common. Within any one computation, this degree is �xed.� Di�erent amounts of unbalance, m. Balanced trees are easy to simulate (and are in-cluded for completeness) but DLB is only useful when the workload is unpredictable,and the tree is therefore unbalanced.The simulator supports two kinds of unbalanced tree:(i) A random tree, in which the tree structure is guaranteed to be the same in eachrun of the same tree parameters, allowing easy comparison of results.(ii) An imbalance tree, in which the amount of imbalance is parameterised in therange of 0.0 to 1.0 (0.0 is fully balanced and 1.0 is completely unbalanced),



CHAPTER 4. SIMULATION 47typedef struct { /* load balancing parameters */int i, /* load balancing interval */t1, /* mark transition 1 and 2 */t2,curr_algo; /* the type of algorithm used */float c1, /* coefficients for transitions */c2;boolean no_lb; /* load balancing is switch off */} lb, *lb_ptr; Figure 4.9: Data structure to support load balancing.this allows a systematic study of the e�ects of varying imbalance to take place.However, the precise shape (and the number of nodes) of the tree may vary oneach run.� Di�erent total size as re
ected in the number of nodes. For a given degree andimbalance, this is primarily a�ected by depth. So, we have depth, d, as a parameter,beyond which no subdivision occurs.The Unbalanced TreeThe approach to generating both types of unbalanced tree is motivated by the intuitionthat the likelihood of dividing decreases as the depth of the tree grows.Random treeEach node in the random tree will divide or split if the random number generated islesser than the probability function used [58]. One choice of a probability function is alinear function which decreases with depth. It is possible to have the function to startdecreasing the probability only after a certain minimum depth. In other words, the treeexpands in full till the minimum depth, and only then starts splitting. Figure 4.10 showsthe number of nodes created for di�erent minimum splitting depths, with f = 2. Thetotal nodes is the minimum when splitting is allowed from depth 0.The repeatable characteristic is achieved by generating the same random number for agiven node id. The repetitive random number is generated by multiplying it with constantcoe�cient throughout the run. The result is then hashed to get a value within a speci�ed
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Figure 4.10: Total nodes created by the balance tree and the random tree in each depth(the latter with di�erent minimum depth of splitting).range. The random number is then compared with the value of the probability function.If it is smaller, then child node will be created. This repeatable characteristic ensurecorrectness and ease of experimentation.Imbalance treeThe basic idea behind the imbalance tree is that the root node and the right-mostchild node always do the splitting. The left child will only split if the random numbergenerated is lesser than or equal to the speci�ed degree of imbalance [15]. The imbalancevalue of 0.0 means that all interior nodes will split resulting in a completely balanced tree.An imbalance value of 1.0, on the other hand, produces the worst case of imbalance wherethe tree is slanted towards the right side with only two children at each level. Figure 4.11shows the total nodes created for varying imbalance with f = 2.Since the tree produced may di�er in size from one run to another, it is importantthat a measure of the program's performance should take into account the size of the tree.Clearly, the simple execution time is inadequate. An alternative is to use the execution rate
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Figure 4.11: Total nodes created by the imbalance tree for varying degrees of imbalancein each depth. Nodes Time Nodes/sec36195 0.8306 43576.76136695 0.8436 43497.74637025 0.8499 43562.36636695 0.8426 43548.77036695 0.8426 43548.77037025 0.8491 43603.49337025 0.8495 43583.68336075 0.8272 43609.15037237 0.8545 43577.65637025 0.8501 43553.8431162 0.0273 111.404Table 4.1: Variation of total nodes, time and speed (the last row being the di�erencebetween the largest and the smallest values).



CHAPTER 4. SIMULATION 50(i.e. speed), that is the number of nodes executed per second which could normalise thisdi�erence. Table 4.1 shows a sample of 10 runs for the worst case of variation. Notice thatthe percentage di�erence for the total nodes is 3.12%, the total execution time variation is3.2%, while the speed variation is only 0.26%. Our other experiments have shown that thespeed variation is always less than 1%. Hence, the speed is a more appropriate measure tobe adopted, since it has a normalising e�ect on the variation produced by the imbalancetree.Most of the experiments in this thesis used the random tree because of its repeatability.The imbalance tree was used only when experimenting the e�ects of imbalance on theperformance.typedef struct { /* tree parameters */int tree_type, /* balance or random */max_depth, /* maximum tree depth */min_depth, /* point to start splitting */operation, /* either stack or queue */imbalance; /* degree of tree imbalance */} tr, *tr_ptr;typedef struct { /* individual subtree */int degree, /* degree of expansion */num_tasks; /* tasks created so far */float load; /* load created by the tree */s_ptr stack; /* stack of tree nodes */} tree, *tree_ptr;tree t[MAX_PROC]; /* array of subtrees */Figure 4.12: Data structures that support the tree computation.As in the topology module, the tree computation is supported using two data struc-tures, namely an array of sub-trees and tree parameters describing the characteristics ofthe tree concerned (Figure 4.12). The tree array corresponds to the array of processors,that is each element in the tree array represents the subtree created by the correspondingelement in the processor array. A doubly linked-list was used to maintain the subtree. Thelinked-list can be used as a stack or queue using the standard stack or queue operations.This is to support the two basic tree traversal techniques, namely local depth-�rst and lo-cal breadth-�rst traversal. Local depth-�rst traversal processes nodes on any processor in



CHAPTER 4. SIMULATION 51a last-in-�rst-out order of stack while local breadth-�rst uses the �rst-in-�rst-out order ofqueue. For simplicity we refer to `local depth-�rst' as `depth-�rst' and `local breadth-�rst'as `breadth-�rst' in the rest of this thesis.In both techniques, the nodes nearer to the root are the candidates for migration; thatis nodes at the bottom of the stack for depth-�rst and nodes at the the front of the queuein the case of breadth-�rst. Parallel depth-�rst execution tends to expand the right sideof the tree (or higher siblings) �rst since these nodes are pop-ed out from the stack �rst.The reverse is true for parallel breadth-�rst.Simulating the parallelisation of the tree computation is simpler than for load balanc-ing. Local computation does not involve any other processors. Parallelisation is achievedby executing the node (or nodes of a sub-tree) of each processor in turn. Each node isretrieved from a local queue. If the node is a nonleaf node, it will be further divided.Otherwise the node will be discarded. In both cases, the node carries the same amount of
oating point operations. If there is no node left, the simulator continues by `executing'the subtree of the next processor. The same process is repeated for all processors.4.3 Performance Modeling and CalibrationModeling the performance of a BSP-like computation is simple. The time required tocomplete a superstep or an iteration is the time the last processor takes to complete itsassigned tasks. The barrier synchronisation between iterations ensures that all processorsstart an iteration at the same time, and that processors that complete early sit idle waitingfor the rest to �nish.If tij is the time processor j takes to complete its tasks during iteration i, the parallelruntime on p processors is Tpar = IXi=1 � pmaxj=1 (tij) + Tsy�where Tsy is the time to perform barrier synchronisation and I is the number of iterations.The total cost of a processor in an iteration prior to executing the barrier istij = Tcp(ij) + Tlb(ij)where Tcp is the time spent to execute tree computation, while Tlb is the time spentexecuting the load balancing operation. The total runtime cost model now becomes



CHAPTER 4. SIMULATION 52Tpar = IXi=1[ pmaxj (Tcp(ij) + Tlb(ij)) + Tsy]In order to calculate the above execution time, an array of costs is used to keep trackof the cost of each processor in each iteration. At the end of each iteration, all costs areset to the cost of the maximum processor. The total individual cost for compute, loadbalancing, synchronisation and idle time are also accumulated as the simulation proceeds.Idle time is the waiting time before executing the barrier. It does not include the timeprocessors wait for work during load balancing.The rest of this section describes the modeling of each of the components of the aboveformulation; compute, communication and the computation used in the load balancingand synchronisation.4.3.1 Modeling the Cost of ComputationWe assumed that the actual computation cost of executing a node, Ts, is equivalent tocarrying out g 
oating point operations, for both the leaf and the non-leaf node;Ts = g � TflThis allows for experimentation on the e�ects of varying g. It is also possible to vary thenode execution time to be proportional to data size, though, this has not been used in theexperiments in Chapter 5.The cost of executing a leaf node, Tl, is some house-keeping cost which is a constantvalue, Tc, and the cost of solving a single node;Tl = Tc + TsThe non-leaf node assumes the same cost as the leaf node, but with an additional cost ofexpanding f children. Therefore, the total cost of a non-leaf node, Tnl, can be written as:Tnl = Tc + Ts + Te � fThe cost of a single node expansion, Te, on the T3D, is 17.792 �sec, while that of the
oating point operation, Tfl, is 0.172 �sec. Basic house-keeping for each node is 7.433�sec.



CHAPTER 4. SIMULATION 53Operation CostSolve Ts = g � TflLeaf Tl = Tc + TsNon-leaf Tnl = Tc + Ts + Te � fTable 4.2: Computation cost models.Table 4.2 summarises the cost models used for the tree computation.4.3.2 Modeling the Cost of CommunicationThe simulator uses two point-to-point communication functions to support the load bal-ancing operation. Both functions, MPI Send () and MPI Recv (), are blocking operations.Only one collective communication routine is used - the MPI Allreduce (). The main func-tion of the Allreduce is to collect the status of each processor and to distribute the totalcount, as well as acting as a barrier.Howell in [35] proposed models to characterise the performance of MPI point-to-pointand collective communications. The following two sections describe the fundamental ideabehind the modeling of the two types of communications. Also discussed is the recalibra-tion of the MPI Allreduce model.Modeling the Point-to-point CommunicationIn Howell's model, Tsend is de�ned as the delay incurred on the sender when callingMPI Send (), while Trecv is the delay on the receiver executing MPI Recv (), when thesender and receiver start at the same time. If the message has already arrived beforeMPI Recv () is called, the delay is Trecvmin . A delay on the receiver can be computedusing the combination of these three models, that is, by taking the maximum of therelative timing when the sender posted the message, and the receiver initiated waiting forthat message. In other words, the delay on the receiver isreceiver delay = max(R(t) + T recvmin; S(t) + T recv)where R(t) and S(t) are the receiver and sender time respectively, prior to performing thecommunication. The simulator adopted this approach in costing the point-to-point com-munication. Note that the per-hop delay is not accounted for. Most current distributed-



CHAPTER 4. SIMULATION 54memory machines, including the T3D, use `worm-hole' routing techniques. Hence, thedelay is negligible [5].Another type of point-to-point communication used is the `ping-pong' communicationstyle. The delay on the sender is equivalent to the cost of sending a message and waitingfor a reply from the receiver. This type of communication is common in a master-slavekind of communication. The minimum cost incurred on the slave for each access to themaster is Tpingpong.Table 4.3 shows Howell's cost models, which are used to support the two types ofpoint-to-point communication. For a more accurate modeling, Howell di�erentiated thesize of the message into two categories; small and large. A message which is 32 integerand below is regarded as small and uses the corresponding `small' cost model; the reverseis the case for the larger messages.Collective CommunicationInitially the simulator was costed using Howell's MPI Allreduce model below,300 + 20� p+ 0:9� log(p)� data sizeHowever, the results of the total execution time of the application showed a large overes-timation compared to the actual measurement, but with a similar shape of curve. Sincethe total computational cost is proportional to the number of iterations, improving theMPI Allreduce cost model was expected to pull the curve closer to the real measurement.Hence, the MPI Allreduce model was recalibrated.MPI Barrier ()start t = MPI Wtime ()for (i = 0; i < MAX ITER; i++)MPI Allreduce ()local t = (MPI Wtime () - start t)/MAX ITERmax local t = max reduction ()Figure 4.13: The code to measure MPI Allreduce function.The code used to time the MPI Allreduce function is shown in Figure 4.13. The pro-



CHAPTER 4. SIMULATION 55cesses are �rst synchronised using theMPI Barrier (). The barrier only synchronises themlogically, but does not time-synchronise. In other words, they may not start executing thefor loop at the same time. The �nal time is obtained through a reduction as the maxi-mum of all p average timing values, one from each processor. Statistical regression [1] wasused to curve �t the actual measurements to Howell's general model of the MPI Allreducefunction; a+ b� p+ c� log(p)� dsizewhere a, b and c are the coe�cients that will give results close to the actual measurementand dsize is the length of the data in integer. The new coe�cients for the improvedmodel are shown in Table 4.4. The results of the new model are much closer to the realmeasurement when compared to Howell's model (see Figure 4.14).
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CHAPTER 4. SIMULATION 56Operation Small Message Large MessageTsend 70 + 3� dsize 100 + 0:09� dsizeTrecv 70 + 5� size 200 + 0:5� dsizeTrecvmin 50 + 3� dsize 100 + 0:4� dsizeTpingpong 200 + 8� dsizeTable 4.3: Point-to-point cost models for small and large data.Operation CostTallreduce 54:8 + 0:42� p+ 93:3� log(p)� dsizeTable 4.4: MPI Allreduce cost model.This calibration exercise has revealed the existence of a bug in the implementation of thefunction for MPI release 1.7a [31]. It is also interesting to note that the MPI Allreduceperformance on SP2 in [90] on page 18 demonstrates a similar pattern to the T3D's.Tables 4.3 and 4.4 summarises the communication cost models used in the simulator,Howell's point-to-point communication models and our improved MPI Allreduce model,respectively. Tallreduce and Tpingpong always use the `small' cost models, since the reductionoperation only involves a single integer 
ag (i.e. the status of each processor) and themessage sent to (and received from) the centralised resource is also one integer in length.4.3.3 Modeling the Cost of Load BalancingIn general, there are two aspects of modeling the cost of a load balancing algorithm,namely, computation and communication. Modeling computation includes modeling theenqueuing and dequeuing of data that involves in migration, while communication entailsthe load information acknowledgement and the actual migration of data. Some algorithmsmay require an additional \behaviour" to be modeled. In the case of the LDSV algorithm,the contention for service at the centralised Load Information Server was explicitly mod-eled. The modeling of this shared resource is discussed at the end of this section.Modeling the Computation Cost of Load BalancingThe processing overheads can be modeled based on the number of enqueing or dequeingoperations that occur in a single balancing operation since the processing time does dependon the number of occurrences of enqueueing/dequeueing. Each migration is a dequeue at



CHAPTER 4. SIMULATION 57Operation Sender (S) Receiver (R)Processing Tpr = Tdq Tpr = TeqInformation Exchange Tie = Tsend Tie = max(R(t) + T recvmin; S(t) + T recv)Data Migration Tdm = Tsend Tdm = max(R(t) + T recvmin; S(t) + T recv)Table 4.5: Load balancing cost models.the sender and an enqueue at the receiver. Hence, the processing time, Tpr, at the sender,is the total dequeue cost of the data to be migrated, while the cost at the receiver is thetotal enqueue cost of the received data (Table 4.5).A single enqueue of a tree node, Teq, is 4.015 �sec and a dequeue, Tdq, is 0.9 �sec.The enqueue is more expensive since it involves memory allocation and copying, while adequeue only manipulates pointer variables.This method does not account for execution of other load balancing codes such asmigration decision or calculating the load level. The time taken for such operations isexpected to be small. Furthermore, the computation cost of load balancing is assumed tobe relatively small, anyway. However, this might not apply if more complex load balancingdecisions are required.Modeling the Communication Cost of Load BalancingThe source of communication overheads in load balancing usually originate from loadinformation exchange and task migration. The message size for information exchangeis usually small compared to tasks migration. The simulator used the same blockingpoint-to-point communication operations for both, that is MPI Send() and MPI Recv().The method of costing these functions was discussed earlier in Section 4.3.2. Table 4.5summarises the load balancing cost models used in the simulator. Tie is the time forinformation exchange and Tdm represents data migration time.Modeling the Cost of Contention in the Loadserver AlgorithmLoadserver algorithm uses a centralised server (LIS) to keep the information on the under-loaded nodes. This centralised server is a potential source of bottleneck. The contentionat LIS occurs when `heavy' processors compete for service (as discussed in Section 2.5).It can be modeled in three di�erent ways:



CHAPTER 4. SIMULATION 58(i) Optimistic caseNo two (or more) processors access LIS at the same time. Let the round-trip time(i.e. the acknowledgement and receipt of reply), be Trt, and the service time atLIS be Tsv . The total waiting time, Tw, of any heavy processor at any time isTw = Trt + Tsv.(ii) Pessimistic caseThis case assumes that each processor experiences contention during every access toLIS. Therefore, contention is proportional to p0, which is the number of contendingprocessors. Any reply is obtained after Trt + p0Tsv time.(iii) Intermediate caseThis case takes into account the number of contending processors and the possibilityof delay in acknowledging `heavy state' in the subsequent rounds.Suppose all heavy processors, p0, send messages during the �rst round and thesemessages are serviced in some sequential order;{ processor 1 receives its reply after Trt + Tsv since the time of its acknowledge-ment,{ processor 2 receives its reply after Trt + 2Tsv, and{ processor p0 receives its reply after Trt + p0Tsv.Assuming that some of them actually o�oad, they will continue sending `heavy'messages in round 2. The messages will be send o� staggered at intervals of Tsv ,resulting in no message queuing at LIS. Hence, the heavy processors will be servicedin Trt+Tsv time (i.e. back to the best case for round 2 and the subsequent rounds).In practise, the cost of assessing LIS is dominated by the communication cost, ratherthan the service at LIS. Trt is the `ping-pong' communication cost (see Table 4.3), which is208 �sec for one integer message size while Tsv is only 0.775 �sec, the cost of dequeing oneinteger. Thus, we would not expect the di�erent contention models to give signi�cantlydi�erent results.A series of experiments to evaluate the three cases of contention were carried out usinga binary tree with depth 16 on a 2-d torus. The results suggest that contention at LIS isunlikely to have a major e�ect on performance (Table 4.6). This con�rms our hypothesis.



CHAPTER 4. SIMULATION 59p Contention ModelOptimistic Pessimistic Intermediate4 18.9396 18.9619 18.94608 11.9549 11.9923 11.967316 8.5543 8.5980 8.572632 6.8079 6.8553 6.829764 5.8911 5.9401 5.9146128 5.4416 5.4914 5.4659256 5.2429 5.2929 5.2678512 5.2754 5.3252 5.3005Table 4.6: The total execution time (in sec) for the three cases of contention at LIS.4.3.4 Supporting Other ArchitecturesThe main issue in simulating the performance of a parallel architecture is the performancemodel. With this in mind, the simulator was implemented to be 
exible enough to supportthis purpose. Apart from simulating the T3D performance, it is able to simulate IBM-SP2and a network of Sun Sparc workstations. The performance models for the last two canbe found at [75] and [36], respectively. The general cost model of point-to-point commu-nication for the three architectures remain the same. The only di�erence is the constantvalues which re
ect the performance of the speci�c machine. For the MPI Allreduce, theT3D and SP2 assume the same cost model (again with di�erent constant values), since thearchitectures of both machines are similar; a distributed memory parallel machine. Thecost model for the Sun workstations is rather di�erent, since it involves a very di�erentcommunication systems.The IBM-SP2 machine is not at the disposal of the author for any validation or ex-perimentation to be carried out on it. Hence, all the adaptivity experiments in this thesisemploy the T3D performance model only.4.4 Validation of the SimulatorIf the simulator is to be used with con�dence, it is essential that a validation processis conducted in order to con�rm that the simulation results are su�ciently close to theperformance of the real computations which are simulated.The method used here is to validate the results obtained from the simulator with theactual performance results on the targeted machine in two stages:



CHAPTER 4. SIMULATION 60p Simulated T3D2 32768 327684 16385 163858 8194 819416 4099 409932 2053 205364 1031 1031128 522 522256 269 269512 148 148Table 4.7: Total iteration counts for GDEM.� iteration count validation; and� total cost validation.For the purposes of validation, both algorithms, GDEM and LDSV, were implementedon the T3D. The implementation of the simulated and the real algorithms were both en-sured to be very similar. Both algorithms used the same computational model, exactlythe same tree module, and the same topology type. The load balancing module of thesimulator used the same communication structure as the real implementation. The sim-ulation results were validated against the T3D results in both stages. All validation wascarried out on a 2-d torus, using binary tree of depth 16 (216 � 1 nodes), and performingload balancing after every node execution.4.4.1 Validation of the Iteration Counts with the Real ImplementationOne of the advantages of the BSP computational style is that iteration counts areeasily obtained. This assists in validation. The validation process started by comparingthe total iteration counts for simulated and real algorithms. For the GDEM algorithm,the iteration results are exactly the same for all processor sizes (Table 4.7). This is due tothe nature of the algorithm where balancing occurs between two isolated processor pairs.Furthermore, from our observation, the total communication and migration counts are alsothe same. We concluded that the simulator simulated the GDEM algorithm correctly.Unlike the real GDEM, the real LDSV algorithm is less deterministic because theo�oading of heavy processor(s) may occur in a di�erent order. This di�erent orderingmay yield a slightly di�erent iteration results in every run (as shown in Table 4.8). If thesimulator went through the same execution route, for example balancing involved the same



CHAPTER 4. SIMULATION 61p Simulated T3DRun 1 Run 2 Run 32 65535 65535 65535 655354 21846 21846 21854 218528 9365 9366 9367 936516 4372 4372 4372 437232 2119 2185 2185 218564 1046 1046 1062 1062128 523 527 527 527256 264 266 266 266512 137 140 140 145Table 4.8: Total iterations counts for LDSV.processor each time, then the simulator will produce the same results. For this reason, thesimulated results are not always the same as the real one. However, there are occurrenceswhere the two are identical (see Table 4.8). In the instances where the results di�er, thedi�erence is very small. On this basis, we concluded that the the LDSV algorithm wassimulated correctly as well.4.4.2 Validation of the Total Cost with the Real ImplementationOnce the iteration counts were correct, the validation proceeded to the second stage {validating the cost model by comparing the real and the executed simulation times. Fig-ures 4.15 and 4.16 show the performance of both algorithms for computation dominatedand communication dominated application, with individual node grain size being 10000and 100, respectively. There is a consistent overestimation of the simulation results forcomputation dominated problem. This is largely due to the non-linear cache performance[18] of the T3D. The simulator, on the other hand, simulates the 
oating point operationlinearly by multiplying the number of operations with a single operation cost.For computation dominated problem on 1 to 128 processors, the simulation resultsare within 15% accurate from the actual measurements (Table 4.9). Communicationdominated problems, with the same processor range, achieved a lower accuracy, that iswithin 25% (Table 4.10). The projected times closely match the measured times for up to128 processors.For 256 and 512 processors, the projections deviate far from the measured results,within 40% and 60% respectively (with greater accuracy for the LDSV algorithm). This
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Figure 4.16: Communication dominated problemp GDEM (%) LDSV (%)1 86.4 90.82 74.6 90.84 97.5 95.98 98.5 96.116 83.8 98.032 87.7 99.364 93.7 93.9128 82.2 85.8256 61.8 71.5512 40.4 51.1Table 4.10: Percentage accuracy for communication dominated problem.



CHAPTER 4. SIMULATION 64Ring 16 16-ary 2-cube Chain 8 Mesh 8 � 4Xu & Lau 9.82 8.58 9.19 8.25Simulator 10.66 8.6 9.6 8.6Table 4.11: Average iterations for optimal � (�opt = 0:723).was anticipated because Howell's models were based on 32-processor experiments. Thus,the cost models are expected to be applicable for up to medium processor size. Theresults for large processors may perhaps be improved by using two di�erent cost models,one for small and medium, and the other for large processor sizes. However, this requiresremodeling of all point-to-point communication models, which is beyond the scope of thisresearch. The results of 256 and 512 processors are treated with lesser con�dence whencompared to 1 to 128 processors.To the best of the knowledge of the author, no reported work on MPI simulationextends up to 512 or even to 128 processors. Howell's simulation results achieved within afactor of two for communication dominated program and a factor of ten for computationdominated [35]. The maximum processor size used is 32. The MPISIM by Prakash [63]achieved within 20% of the target execution time. However, the processor range is up to 16only. The two mentioned works (Howell's and Prakash's) are both full parallel simulationengine for MPI. The �rst is for T3D while the latter is for IBM-SP2.4.4.3 Validation of GDEM with Published ResultsFurther validation is possible by comparing the simulation results with published re-sults available in the literature.Xu and Lau [88] carried out an experiment for a range of the workload exchangeparameter, � (i.e. � = 0:5 to 0.95), for four di�erent topologies and processor sizes; ring16, 16-ary 2-cube, chain 8 and mesh 8 � 4. The results of each value of � is an averagetotal iterations of 100 runs. For a more detailed de�nition of �, refer to Section 2.3.2.We reproduced similar experiments using the same topologies and the same rangeof �. We limited the number of runs to three since our purpose was simply to verifythe correctness of the simulated GDEM. Similar patterns of average iteration counts, astabulated on page 81 of [88] were produced for each lambda value. Using the optimallambda, �opt = 0.723, for the four topologies, the simulator yielded very close results toXu and Lau's (see Table 4.11). On the hypercube topology, the simulator produced auniform load distribution in a single iteration from any initial workload distribution - a



CHAPTER 4. SIMULATION 65distinctive characteristic of GDEM as discussed in [11].The above two experiments act as a con�rmation to the correctness and reliability ofthe simulator, as well as adding credence to the simulation results.4.5 Limitations of the SimulatorThe following are the limitations of the simulator:� The simulator adopts a BSP-like model which is synchronous in nature. Any asyn-chronous load balancing algorithm (e.g. LDSV) has to be transformed to the cor-responding synchronous version in order to suit the model. This has its toll on theperformance, and surely does not re
ect the actual potential of the asynchronousalgorithm. In the synchronous version of the LDSV algorithm, facilities such as abroadcast to `proceed' and a barrier have to be incorporated. These additional func-tions contribute to a slower execution time. A synchronous algorithm like GDEM,on the other hand, bene�ts from the BSP-like computational model.� There is a limit in simulating parallelism using a sequential simulator. Algorithmswhich are more deterministic and whose balancing domain does not overlap witheach other, such as LDSV and GDEM (especially the latter), have the advantage.The predicted results are reasonably close. The Di�usion algorithm is di�erent. Bal-ancing normally involves a subset of processors, and these subset of processors mayoverlap with one another. It may be di�cult to avoid sequentialisation e�ect whensimulating such behaviour using a sequential simulator. For this reason, GDEM isused instead of Di�usion in the subsequent experimental work.4.6 Summary and Concluding RemarksThis chapter has described the design and implementation of the simulator for the purposeof evaluating phase-based adaptive dynamic load balancing algorithms for tree applica-tion. The simulator adopts the iterative BSP-style for simplicity. The main functionalcomponents of the simulator and the cost models were described. Extensive iteration andcost validation were performed on the simulator resulting in a close predicted results tothe real execution times. The prediction time for both GDEM and LDSV algorithms for1 to 128 processors is within 25% of the actual timing, and within 40% and 60%, for 256



CHAPTER 4. SIMULATION 66and 512 processors, respectively. Although it is a sequential simulator, it is able to achievehigh accuracy - as good as, or even better than, its parallel counterparts in the literature.Thus, it is now possible to begin systematic performance experiments, with a highdegree of con�dence in the reliability of the simulation results. The next chapter takes upthis task.



Chapter 5Experimental ResultsThis chapter proceeds to describing the phase-based adaptivity experiments. It presentsthe results for parametric adaptivity techniques and establishes the relationship betweenthe performance improvement and the individual node grain size, the network speed andthe degree of tree imbalance, and discusses the potential algorithmic adaptivity results.The chapter starts by presenting the results of an introductory experiment whichaimed at verifying our earlier assumptions on the workload pattern of tree computationand determine the choice of the traversal method (in Section 5.1). This is then followed bySection 5.2 which explains the experimental methodology and the organisation of phase-based adaptivity experiments. Section 5.3 presents the results of the parametric approachand the relationships between the performance gained and the selected application andmachine parameters. Section 5.4 discusses the results of the algorithmic approach. Finally,Section 5.5 concludes with a summary of results.5.1 Preliminary ExperimentsThis section begins by discussing two preliminary experiments which help verify the as-sumptions made on the workload pattern, and raises the issue of the sensitivity of theDLB interval. One conclusion of the experiments is to consider only depth-�rst traversalfor the later adaptivity experiments.5.1.1 Verifying the Workload PatternRecall in Chapter 3 the workload pattern is the shape of the curve formed from the startuntil the end of a tree computation. The curve re
ects the total workload with respect to67



CHAPTER 5. EXPERIMENTAL RESULTS 68time (see Figure 3.1). It is an idealised workload pattern under the assumption that theworkload grows smoothly in a `bell-shape' curve. In practise, this may not be preciselytrue.Therefore, we set out an experiment to verify our assumption by studying the e�ectsof the traversal methods on the workload pattern using the two di�erent DLB algorithms,namely GDEM and LDSV, on three di�erent processor sizes.The tree type and the tree parameter settings were set to be the same throughout;random tree with depth, d = 16, and fan-out, f = 2. The same applies to DLB parameters,where the interval, i, is 16. The grain size, g, of each node is 100, though g is unimportantin this context since we are only interested in the node count and not the execution time.The results are as follows. Breadth-�rst (BF) traversal generates workload patternclose to a `bell-shape' curve for both algorithms for most processor sizes (see Figures 5.1and 5.2). The exception is with p = 128 for LDSV algorithm which exhibits a combinationof two bell-curves. Depth-�rst (DF) follows a similar workload pattern, but the curve is`
atter' and more `jagged' (see Figures 5.3 to 5.6).The smoother curve of BF is due to the early expansion of nodes near the top of thetree. Nodes higher up the tree have higher probability of expansion compared to thosenear the bottom. This leads to a steady increase in the total workload at the beginningof the execution, that is when the top part of the tree is being executed. This is thenfollowed by a steady decline of the total load as the computation goes to the bottom,generating a smooth `bell-shape' curve.DF produces a di�erent e�ects because the execution moves right to the bottom of thetree. Some of the leaf nodes are executed �rst before the nodes near the top of the tree.When the leaf nodes are executed, there is no new node generated. The total number ofnodes drops creating a rather `jagged' curves. This is more prominent for smaller p sincethe number of nodes expanded is relatively smaller in comparison to the number of nodesconsumed. For the same reason the total maximum number of nodes generated by DF isalways smaller in comparison with BF for the same DLB algorithm and processor size.Note that the total processors that actively carries out the computation for LDSValgorithm is p - 1. One processor is reserved as the load information server. Hence, thetotal workload grows more slowly than GDEM.The workload pattern produced by BF and DF traversal con�rms the general validityof our assumption. However, the relatively more `jagged' workload pattern of DF is likelyto make detecting transition points more complex than the relatively monotonic workloadof BF.
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Figure 5.1: The workload pattern produced by GDEM using breadth-�rst traversal.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 30 60 90 120 150 180

T
ot

al
 c

ur
re

nt
 ta

sk
s

Iteration

p=16
p=32

p=128

Figure 5.2: The workload pattern produced by LDSV using breadth-�rst traversal.
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Figure 5.3: The workload pattern produced by GDEM using depth-�rst traversal for largeand medium processor sizes.
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Figure 5.4: The workload pattern produced by GDEM using depth-�rst traversal for smallprocessor size.
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Figure 5.5: The workload pattern produced by LDSV using depth-�rst traversal for largeprocessor sizes.
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Figure 5.6: The workload pattern produced by LDSV using depth-�rst traversal for smallprocessor size.



CHAPTER 5. EXPERIMENTAL RESULTS 725.1.2 Sensitivity of the Execution Time to DLB IntervalOur preliminary experiments also revealed that the performance of a tree computationis very sensitive to DLB interval (see Figures 5.7 to 5.12). This is true for both DLBalgorithms. For this reason we chose to �rst investigate the e�ect of adapting the interval(instead of other DLB parameters) for our parametric adaptivity technique. The sensi-tiveness also means that �nding the best interval for each phase is important. Section5.2.2 continues the discussion on the load balancing interval.Figures 5.7 to 5.9 show the performance of GDEM and LDSV using BF traversal.Notice that the performance of LDSV is more sensitive to i. A slightly di�erent interval(from the optimal) may lead to poor performance. We can give no adequate explanationfor such behaviour. When DF is used the performance gets more stable; see Figures5.10 to 5.12. A wider range of i yields results which are reasonably close to the bestperformance. This degree of sensitiveness has an in
uence on the choice of the traversalmethod. GDEM, on the other hand, seem not to be signi�cantly a�ected by the di�erentmethods of traversal. Both algorithms perform better using DF traversal; there is a slightimprovement for GDEM and a greater improvement for LDSV.5.1.3 The Choice of the Traversal MethodWe recognise that BF produces a workload pattern which is closer to our idealised con-ceptual diagram which makes phase detection easier. Nevertheless, we have chosen to useDF in future experiments. We outline the reasons for our choice:� LDSV performance is very sensitive to the interval when BF is used and shows astable performance with DF. GDEM does not show sensitivity problem with eithermethod. In short, both algorithms seems to be stable with DF traversal. Further-more, the total execution time for both algorithms are better for DF and this ismore apparent for the LDSV algorithm.� DF traversal is widely use in tree search algorithms [44, 45, 67]. Using it means thatwe are following the common practice.� DF consumes less memory space [53]. Moreover, our experience have shown thatobtaining simulation results using DF take a shorter time.All the subsequent adaptivity experiments therefore use DF traversal method.
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Figure 5.7: The sensitivity of i for breadth-�rst traversal (p = 4).
0.5

1

2

4

8

16

32

64

1 4 16 64 256 1024

T
im

e 
(s

ec
)

Interval

GDEM
LDSV

Figure 5.8: The sensitivity of i for breadth-�rst traversal (p = 32).
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Figure 5.9: The sensitivity of i for breadth-�rst traversal (p = 128).
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Figure 5.10: The sensitivity of i for depth-�rst traversal (p = 4).
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Figure 5.11: The sensitivity of i for depth-�rst traversal (p = 32).
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Figure 5.12: The sensitivity of i for depth-�rst traversal (p = 128).



CHAPTER 5. EXPERIMENTAL RESULTS 765.2 Experimental MethodologyThis section starts by de�ning the metric used to assess the phase-based adaptive tech-nique. This is then followed by a discussion on the load balancing interval and the de-scription of parametric and algorithmic experiments. The values of the parameters usedin the experiments are described at the end of the section.The performance of a parallel tree application depends on many parameters suchas machine, application and DLB parameters. The DLB parameters can be adaptedaccording to the workload phases to improve performance (as suggested in Chapter 3). Inorder to gain insight on the e�ect of the individual parameter on the performance it isnecessary to �x all other parameters and varies only the one which is under investigation.Since our preliminary results have shown that the performance is very sensitive to i wedecided to experiment the interval �rst instead of other DLB parameters (e.g. thresholdand migration factor). This by no means implies other DLB parameters are not importantneither indicates i as the most important. Only the experiments which are related to iwere carried out and discussed in this thesis. All other experiments (e.g. threshold andmigration factor) are identi�ed as future work (detailed discussion can be found in Section6.3).5.2.1 Performance MetricWe introduce a metric called Improvement Through Adaptivity (ITA) to measure theimprovement gained from our proposed technique. ITA measures the percentage improve-ment of adaptive over a non-adaptive approach;ITA = TNA � TATNA � 100;where TNA and TA were de�ned in Section 3.2. In the above case ITA refers to the totalexecution time.In Chapter 4 we have described that a suitable metric for imbalance tree would be therate of the execution (or speed) which normalised the di�erent tree sizes. Speed is de�nedas the total number of nodes over time taken to execute those amount of nodes, either inadaptive or non-adaptive environment. For such cases ITA is de�ned as follows:ITA = SA � SNASNA � 100;



CHAPTER 5. EXPERIMENTAL RESULTS 77where SNA and SA refer to the total speed in a non-adaptive and adaptive environment,respectively. For parametric adaptivity ITA refers to the total execution time or thenumber of nodes executed per second (i.e. speed). Detailed discussion is incorporated (inthe relevant section) whenever speed is used.For algorithmic adaptivity the improvement should be measured relative to the bestexecution time between the two individual algorithms.In addition to ITA we also provide (when necessary) detailed measurements of per-formance, such as idle time, synchronisation time, load balancing time and computationtime.5.2.2 Load Balancing IntervalsRecall from Chapter 3 that there are three workload phases: �lling, steady and emptying.No load balancing is required for the emptying phase. Hence, we need to determine onlytwo load balancing intervals, i1 and i2, for the �rst and the second phase, respectively.Since the objective of the load balancing during phase I is to quickly �ll the machine,the most reasonable value for i1 is one. This means that the load balancing is invokedafter every node expansion. Hence, the likelihood of the machine being full is high. Thetotal idle time processor waiting for work could be greatly reduced.For i2, we choose as a suitable value the best interval when carrying out the wholecomputation in a non-adaptive environment. The reason is that phase II usually dominatesa computation. A single i2 is used for the three processor sizes in both adaptive and non-adaptive runs. The e�ect of a non-optimal value of i2 is belief to be similar in bothcases, hence we do not anticipate any major e�ect on ITA. The general pattern of ITAis anticipated to be the same, whether a single i2 or a di�erent i2 are used for all threeprocessor sizes.Detailed discussion on the method to determine suitable i2 is given in Section 5.3.1.5.2.3 Parametric Adaptivity ExperimentWe have explained the motivation of choosing the interval in investigating the bene�tof adaptivity in Section 5.1.2. This section continues by describing the motivation ofadapting the interval in relation to one machine and two application parameters. We thenoutline the sub-experiments involved.The computational granularity of a node may vary from one application to another.This motivates us to investigate the e�ect of varying g. Some of the tree applications



CHAPTER 5. EXPERIMENTAL RESULTS 78may have di�erent degree of tree imbalance which produces irregular workload through-out the computation. Dynamic load balancing is more useful for applications with anunpredictable workload generation. Hence, we chose to study the e�ect of the tree imbal-ance, m. Another parameter of interest is the network speed, s, which is relative to thecommunication bandwidth of the T3D. Experimenting how the performance are a�ectedby di�erent network performance would be bene�cial.For parameters g, s and m we carried out experiments to investigate how ITA varieswith the given parameter, keeping all other parameters �xed. These experiments were car-ried out at three di�erent processor sizes representing small, medium and large networks,and for both GDEM and LDSV.Thus for each of the parameters we carried out the following experiments:(i) Determine the value of i2.(ii) Determine ITA for a range of values of the parameters in the following cases:(a) activating transition I only,(b) activating transition II only and(c) activating transition I and II.From the results, the most bene�cial forms of adaptivity are analysed.5.2.4 Algorithmic AdaptivityStudying algorithmic adaptivity requires the use of di�erent DLB algorithms at di�erentstages of computation. Global information and migration characteristics of LDSV facil-itate work distribution so as to quickly �ll the machine during phase I. GDEM's localinformation and migration characteristics help maintain the steady state of phase II. Dur-ing the emptying phase, e�ort in load balancing may no longer brings any bene�t. Hence,the load balancing is discontinued.Because of the relatively poor performance of LDSV (due to arti�cial synchronisation),it is not sensible to carry out these experiments at this stage. Further discussion is givenin Section 5.4.5.2.5 Parameter SettingsAs mentioned in Section 3.2 there are three categories of parameters that need to beconsidered when running the simulator; machine, application and load balancing parame-



CHAPTER 5. EXPERIMENTAL RESULTS 79ters. For each category we reason out the choice of the values made. We also include thediscussion on the phase transition parameters.The values of the parameters are described below:� Machine parameters.We divided the processor sizes, p, into three main groups; small (2, 4, 8), medium(16, 32, 64) and large (128, 256, 512). The middle �gure of each group is usedexcept for large p where the simulation result for p = 256 is less accurate whencompared to p = 128 (as discussed in Section 4.4.2), so we chose p = 128, instead.All experiments assumed T3D performance characteristics, with the exception of theexperiments which aim at investigating the e�ect of network performance.� Application parameters.All experiments (except those related to experimenting with the degree of tree im-balance) use a random tree with f = 2, d = 16 and zero minimum depth of splitting(which is explained in Section 4.2.3) producing a total of 29535 nodes, an amount ofworkload which is enough to bene�t from parallelism. The repeatable characteristicof random tree enables easy comparison to be made (as opposed to the imbalancetree). For experiments which do not involve varying the grain size we wished to usea value of g which was neither excessively coarse-grain nor excessively �ne-grain. Anappropriate intermediate value was considered to be g = 100.� Load balancing parameters.We recognise that there is scope for experimenting the combination of di�erent valuesof DLB parameters (as discussed in Section 3.1.3). However, in order to assess thee�ects of adapting the interval we use the same values of h, l and r (as used inthe original algorithms) throughout the experiments. For the LDSV, the values are:h = 1, l = 0 and r = 1. The high and low workload threshold is not applicable forGDEM while r = �opt (recall that �opt = 1=(1+sin(2�=k)) for 2-d torus as describedin Section 2.3.2).� Transition parameters.We proceed by discussing two important parameters, c1 and c2, which determine thetwo transition points, t1 and t2, respectively. Recall that the condition for t1 is metwhen the number of tasks reaches c1� p while t2 is when the number of tasks dropsbelow c2 � p.



CHAPTER 5. EXPERIMENTAL RESULTS 80p c0.5 1.0 1.58 6.6772 6.6400 6.645332 1.7261 1.7082 1.7082128 0.5061 0.5056 0.5085Table 5.1: Total execution time (sec) with varying c1 for GDEM.We carried out an experiment to determine the optimal value for c1. Our resultsshowed that the best results is achieved (most of the time) when c1 = 1. Table 5.1presents a sample of such results. The highlighted values are the best execution timeand are the results of c1 = 1. This means that the best transition point is whent1 = p.As for t2, we pointed out earlier that the `jaggedness' of DF traversal has made t2di�cult to be detected. We acknowledge that there is a room for further researchin this area. However, we have chosen to set t2 to a �x value (again to reduce thenumber of experimentations) { a value which does guarantees a consistent decreasein total workload after the cut-o� point. This value may or may not lead to the bestswitch o� point.From our observation, there is always a smooth drop in total workload at the end ofthe computation (as previously shown in Figure 5.3 to 5.6), making the transitiondetection more straight forward. Choosing c2 = 1 ensures that the transition occurswithin this `safe' region, that is outside the `jaggedness' area. Clearly there is a casefor a larger value of c2, as noted in Section 3.2, but the `jagged' e�ects would maketransition detection more complex.Thus, the values of c1 and c2 were both set to 1 throughout the main experiments.Section 5.3.1 brie
y investigate the e�ect of increasing c2.We started our experiments on a topology with `intermediate' connectivity (i.e. torus2-d). It remains to be discovered to what extent the results are a�ected by a lower orhigher connectivity, such as ring and hypercube.



CHAPTER 5. EXPERIMENTAL RESULTS 815.3 The Results of Parametric AdaptivityThis section presents the results of the improvement through adaptivity for each of theparameter under investigation, that is g, s and m, when the interval is adapted using t1alone, t2 alone and t1t2. The best technique and improvement are also identi�ed.5.3.1 Varying the Computational Grain SizeThe purpose of this experiment is to investigate the performance improvement throughadaptivity for a range of grain size, g. The values for g can either be 10, 100, 1000 or10000 
oating point operations.Determining i2In order to determine i2, we �rst varied i in a wide range, from 1 to 1024, for eachvalue of p and g for each algorithm. Figures 5.13 to 5.15 illustrate the performance ofGDEM with varying i. We then chose the interval which yields the best execution timefor each case. Table 5.2 shows the complete results for the best interval, ib, for each p andg. The following observations can be made from Table 5.2:� ib decreases with g.� ib also decreases with p.� GDEM has a smaller ib if compared to LDSV.GDEM incurs less load balancing overhead in each iteration when compared to LDSV.Therefore, the interval is expected to be smaller. These di�erent values means that the bestinterval is algorithm dependent and there is no single best interval for all DLB algorithms.The decrease of ib with g is expected because when g increases the computationalgranularity between two successive iterations will increase. Hence, ib, which is the numberof nodes executed between iterations must decrease (due to the increase in grain size ofthe individual node). ib decreases with p to quickly distribute the nodes throughout themachine { reducing the idle time waiting for work. The e�ect is signi�cant for large p.Although ib decreases with p, for simplicity and practicality we decided to �x the valueof i2. This is also true when carrying out the experiments for s and m. We do not expecta �xed value of i2 to give a major e�ect on the ITA since the same values of i2 are used forthe adaptive and non-adaptive version. This means that the same amount of discrepancy
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Figure 5.13: Grain size: The e�ects of varying i for GDEM (p = 4).
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Figure 5.14: Grain size: The e�ects of varying i for GDEM (p = 32).
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Figure 5.15: Grain size: The e�ects of varying i for GDEM (p = 128).p g Best interval (ib)GDEM LDSV10 256 2564 100 256 2561000 64 12810000 32 6410 64 25632 100 64 1281000 32 6410000 16 1610 32 256128 100 32 1281000 8 3210000 4 16Table 5.2: Grain size: The best interval for a range of p and g.



CHAPTER 5. EXPERIMENTAL RESULTS 84may e�ect both cases, which leads to the same ITA value. We leave the task of establishingthe relationship between ib and p as future work.We now discuss the method used to determine i2 for GDEM. We calculated the dis-crepancy in performance between a selected i and the best i. We then chose the value ofi which yield the smallest discrepancy over a range of p and g. The value of i2 for GDEMis 16 with the worst discrepancies of 52.99% when p = 4 and g = 10 (see Figure 5.13).The same method is repeated for LDSV. The value of i2 is 64 with the worst discrepancyof 36.66% when p = 128 and g = 10000.Transition I OnlyTable 5.3 shows the improvement when t1 is used while Figure 5.16 depicts the actualgraphs of the raw performance from which the results for p = 128 in Table 5.3 werederived.The following observations can be made:� In all cases ITA always increases with g.� Both GDEM and LDSV can signi�cantly bene�t (in some circumstances) from usingt1.� Overall, GDEM bene�ts from t1 more than LDSV.� Positive ITA for all g occurs for GDEM when p = 128, and for LDSV when p = 32.� Negative values of ITA are mainly obtained for small g.� Negative values of ITA for all g are obtained for LDSV when p = 4.DiscussionThe key idea in using t1 is to invoke the load balancing frequently during phase I tofacilitate work migration to the whole system in order to minimised the idle time waitingfor work. This frequent invocation means that the number of iterations will increase andpossibly the cost of load balancing increases as well. For this reason an algorithm whichdoes not have a fast work distribution facility (e.g. GDEM on 2-d torus) is expectedto bene�t more from the technique. The technique is deemed useful for large networks.Another point to be anticipated is large improvement occurs for large g since the idle timewaiting for work is greatly reduced.



CHAPTER 5. EXPERIMENTAL RESULTS 85p g ITA (%)GDEM LDSV10 -0.13 -0.794 100 -0.08 -0.621000 0.06 -0.3110000 0.12 -0.2110 -0.63 7.1632 100 -0.19 8.681000 1.56 14.2310000 2.80 17.2910 14.24 -13.03128 100 15.49 -9.291000 21.02 15.2210000 25.52 40.96Table 5.3: Grain size: Improvement through adaptivity using t1 only.Tables 5.4 and 5.5 show detailed measurements for GDEM and LDSV, respectively,when p = 128. Recall that TNA and TA refers to the total execution time for non-adaptiveand adaptive runs. There is a consistent reduction of load balancing time and idle time forGDEM as g increases. Notice that for GDEM algorithm, the total number of iterationsdoes not increase (as would be expected when t1 is used). This contributes further to thelarger bene�t of t1 for GDEM on 128 processors. In the case of LDSV, t1 always increasesidle time, while the cost of load balancing may increase or decrease. For cases where theload balancing time decreases, ITA is positive.Both algorithms show little (or negative) improvement for small p. This is anticipatedbecause the idea of rapidly distributing work is more important for larger networks.As a summary, GDEM usually gives greater bene�ts of using t1. LDSV already has agood load distribution capability, hence, it is expected not to bene�t from the techniqueas much. Using t1 decreases the idle time for GDEM but increases for the LDSV. Forboth algorithms, if the use of t1 causes a decrease in the load balancing time (and adecrease in idle time too in the case of GDEM), and the amount exceeds the increasein synchronisation time, then there will be a bene�t. The technique is expected to bepro�table for large p which normally su�ers from a long waiting time for work.



CHAPTER 5. EXPERIMENTAL RESULTS 86g ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)10 14.24 TNA 0.0648 0.0062 0.0296 0.0122 0.0168 30TA 0.0556 0.0062 0.0255 0.0071 0.0168 30100 15.49 TNA 0.0722 0.0098 0.0324 0.0133 0.0168 30TA 0.0611 0.0098 0.0267 0.0078 0.0168 301000 21.02 TNA 0.1463 0.0456 0.0598 0.0241 0.0168 30TA 0.1155 0.0456 0.0384 0.0146 0.0168 3010000 25.52 TNA 0.8868 0.4038 0.3339 0.1323 0.0168 30TA 0.6605 0.4038 0.1562 0.0835 0.0168 30Table 5.4: Grain size: Detailed cost of GDEM using t1 (p = 128).
g ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)10 -13.03 TNA 0.1312 0.0063 0.0676 0.0512 0.0062 11-13.03 TA 0.1483 0.0063 0.0688 0.0654 0.0078 14100 -9.29 TNA 0.1394 0.0099 0.0724 0.0509 0.0062 11-9.29 TA 0.1524 0.0099 0.0693 0.0653 0.0078 141000 15.22 TNA 0.2321 0.0460 0.1256 0.0544 0.0062 1115.22 TA 0.1968 0.0460 0.0763 0.0666 0.0078 1410000 40.96 TNA 1.2642 0.4070 0.6774 0.1736 0.0062 1140.96 TA 0.7464 0.4070 0.1667 0.1648 0.0078 14Table 5.5: Grain size: Detailed cost of LDSV using t1 (p = 128).
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Figure 5.16: Grain size: Improvement through adaptivity using t1 only for both algorithmsfor all g (p = 128).Transition II OnlyTable 5.6 shows the bene�t of using t2 only. The following observations can be made:� In all cases ITA decreases with g.� Both GDEM and LDSV can bene�t (in some circumstances) from t2, though thebene�t is less than t1.� LDSV bene�ts more from t2 than GDEM.� There is zero ITA for p = 4 for both algorithms.� Positive ITA for all g occurs for LDSV when p = 128, and for GDEM when p = 32.� Negative ITA for all g occurs for GDEM when p = 128.DiscussionThe main idea in using t2 is to reduce the cost of load balancing towards the end ofa computation when there is lesser number of work than the number of processors. Thebene�t comes from a reduction of the load balancing and also synchronisation cost. The



CHAPTER 5. EXPERIMENTAL RESULTS 88p g ITA (%)GDEM LDSV10 0.00 0.004 100 0.00 0.001000 0.00 0.0010000 0.00 0.0010 1.55 3.1832 100 1.37 1.891000 0.63 -0.1110000 0.10 -0.5210 -26.19 14.43128 100 -46.20 13.151000 -134.87 5.3610000 -207.11 -2.48Table 5.6: Grain size: Improvement through adaptivity using t2 only.trade-o� is an increase in idle time. Large grain size node has the potential of inducing alarger load imbalance, hence larger idle time.LDSV exhibits a better improvement towards switching o� the load balancing; positiveimprovement occurs for almost all g when p = 32 and p = 128 (Table 5.6). GDEM, on theother hand, shows an improvement for medium p only and with only a small percentage.Tables 5.7 and 5.8 show the detailed measurement for both algorithms when t2 isused. The large improvement bene�ted by LDSV comes from the reduction of the threesources of overhead; the synchronisation, load balancing and idle time. Notice that wheng = 10000 the improvement is less. This is due to the increase in idle time instead of adecrease, as with other values of g. Large g cause greater imbalance, hence, induces largeidle time.For GDEM, the use of t2 always increase the idle time (Table 5.8). If the increaseexceed the total decrease of load balancing and synchronisation time, there will be positiveresults. Otherwise, there will be no bene�t, as shown when p = 128.Notice that there is zero improvement for both algorithms when p = 4 (Table 5.6).Zero improvement simply means that in practice the load balancing is never disabledyielding the same execution time. This behaviour can be best explained by means of aworkload trace. Since c2 = 1, the second transition should be detected when n(t) � p. Forcases where the total number of nodes is greater than p during the last iteration, as shownin Table 5.9, then t2 is never met. Hence, there is no reduction in the total execution timein using t2.



CHAPTER 5. EXPERIMENTAL RESULTS 89g ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)10 14.43 TNA 0.1312 0.0063 0.0676 0.0512 0.0062 11TA 0.1123 0.0063 0.0557 0.0447 0.0056 10100 13.15 TNA 0.1394 0.0099 0.0724 0.0509 0.0062 11TA 0.1211 0.0099 0.0595 0.0461 0.0056 101000 5.36 TNA 0.2321 0.0460 0.1256 0.0544 0.0062 11TA 0.2197 0.0460 0.1020 0.0661 0.0056 1010000 -2.48 TNA 1.2642 0.4070 0.6774 0.1736 0.0062 11TA 1.2955 0.4070 0.5472 0.3357 0.0056 10Table 5.7: Grain size: Detailed cost of LDSV using t2 only (p = 128).We carried out a short experiment to see the e�ect of increasing c2. Table 5.10 showsthe improvement when c2 = 5 and c2 = 10. There are improvements in both cases butthey are not signi�cant.Transition I and IITable 5.11 shows the combined e�ects of both transitions. The following observationscan be made:� For both algorithms, ITA sometimes increases and sometimes decreases with g.� Both algorithms can bene�ts from t1t2 (in some circumstances).� Overall, GDEM bene�ts more from t1t2 than LDSV.� Positive ITA for all g occurs for GDEM when p = 128, and for LDSV when p = 32.DiscussionThe net e�ect of both transitions are as follows. There is no improvement (or verylittle) for small processor size for both algorithms. This is anticipated because neither t1nor t2 has any signi�cant e�ect. The technique yields good improvement for very large gon medium and large processor size. No particular relationship can be established betweent1t2 and g for both algorithms.In terms of individual overhead, the techniques always increases the synchronisationand the idle time for LDSV, but the load balancing time only increases some of the time.With GDEM, there is no particular pattern in terms of the increase or decrease of each ofthe sources of overhead (see Table 5.12).



CHAPTER 5. EXPERIMENTAL RESULTS 90g ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)10 -26.19 TNA 0.0648 0.0062 0.0296 0.0122 0.0168 30TA 0.0818 0.0062 0.0223 0.0404 0.0129 23100 -46.20 TNA 0.0722 0.0098 0.0324 0.0133 0.0168 30TA 0.1056 0.0098 0.0239 0.0590 0.0129 231000 -134.87 TNA 0.1463 0.0456 0.0598 0.0241 0.0168 30TA 0.3436 0.0456 0.0408 0.2443 0.0129 2310000 -207.11 TNA 0.8868 0.4038 0.3339 0.1323 0.0168 30TA 2.7236 0.4038 0.2093 2.0975 0.0129 23Table 5.8: Grain size: Detailed cost of GDEM using t2 only (p = 128).Iteration Tasks454 39455 31456 27457 25458 29459 19460 21461 12462 10463 7Table 5.9: Total tasks during the last 10 iterations: a case when t2 condition is not met(GDEM, p = 4; g = 10).c2 ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)1 0.00 0.5081 0.1990 0.2134 0.0096 0.0860 4635 0.51 0.5055 0.1990 0.2112 0.0101 0.0853 45910 1.08 0.5026 0.1990 0.2091 0.0102 0.0844 454Table 5.10: Greater improvement using t2 when c2 is adjusted (GDEM, p = 4; g = 10).



CHAPTER 5. EXPERIMENTAL RESULTS 91p g ITA (%)GDEM LDSV10 -0.13 -0.204 100 -0.08 -0.161000 0.06 -0.0510000 0.12 -0.0110 -0.14 5.2532 100 0.24 5.101000 1.76 4.3810000 2.83 4.3810 21.43 -6.34128 100 19.64 -6.111000 11.72 -4.2110000 5.26 7.56Table 5.11: Grain size: Improvement through adaptivity using t1t2.g ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)10 21.43 TNA 0.0648 0.0062 0.0296 0.0122 0.0168 30TA 0.0509 0.0062 0.0206 0.0100 0.0140 25100 19.64 TNA 0.0722 0.0098 0.0324 0.0133 0.0168 30TA 0.0581 0.0098 0.0212 0.0130 0.0140 251000 11.72 TNA 0.1463 0.0456 0.0598 0.0241 0.0168 30TA 0.1292 0.0456 0.0271 0.0424 0.0140 2510000 5.26 TNA 0.8868 0.4038 0.3339 0.1323 0.0168 30TA 0.8402 0.4038 0.0857 0.3366 0.0140 25Table 5.12: Grain size: Detailed cost for GDEM using t1t2 (p = 128).The Best ITA and TechniquesTables 5.13 and 5.14 show which combination of transition gives the best ITA for allcombination of g and p. The following observations can be made:� Adaptivity techniques bring improvements (in most circumstances) and it is moresigni�cant for large networks.� There is no single technique which is the best for a given algorithm or processor size.� The techniques t1t2 or t1 alone yield the best results for large g.� GDEM seems to favour t1t2 while LDSV favours t1 and t2 individually.



CHAPTER 5. EXPERIMENTAL RESULTS 92p ITA (%) and Technique10 100 1000 100004 0.00 (t2) 0.00 (t2) 0.06 (t1; t1t2) 0.12 (t1; t1t2)32 1.55 (t2) 1.37 (t2) 1.76 (t1t2) 2.83 (t1t2)128 21.43 (t1t2) 19.64 (t1t2) 21.02 (t1) 25.52 (t1)Table 5.13: Grain size: The best improvement and techniques for GDEM.p ITA (%) and Technique10 100 1000 100004 0.00 (t2) 0.00 (t2) 0.00 (t2) 0.00 (t2)32 9.03 (t1t2) 9.60 (t1t2) 14.23 (t1) 17.29 (t1)128 14.43 (t2) 13.15 (t2) 16.61 (t2) 40.97 (t1)Table 5.14: Grain size: The best improvement and techniques for LDSV.5.3.2 Varying the Network PerformanceThis section presents the results of the ITA when the network performance, s, measuredin terms of bandwidth, is varied relative to that of the T3D. To be precise, network speed,s, means that the bandwidth of an individual link is s times that of a single link onthe T3D. By varying s while the cost of computational operation remains the same, it ispossible to investigate how ITA varies with the communication-to-computation ratio ofthe underlying architecture. Since increasing g and increasing s have similar impact onthe performance of the application, it would be expected that the ITA result would besimilar.Recall from Section 4.3.2 there are four cost models (i.e. Tsend; Trecv; Trecvmin; Tpingpong)for the point-to-point communication and one cost model (i.e. Tallreduce) for collective op-eration used in the simulator. Experimenting the network speed means varying s with theterm associated with the data size in all the models. Hence, the the general point-to-pointcost model becomes; a+ b� dsize� 1swhile the collective operation is;a+ b� p+ c� log(p)� dsize� 1s



CHAPTER 5. EXPERIMENTAL RESULTS 93p s Best interval (ib)GDEM LDSV0.25 256 1284 0.5 256 1281.0 256 1282.0 256 1280.25 64 12832 0.5 64 1281.0 64 1282.0 64 1280.25 32 256128 0.5 32 2561.0 32 2562.0 32 256Table 5.15: Network performance: The best interval for a range of p and s.As the value of s increases the network performance improves.Determining i2The following observations can be made from Table 5.15.� ib does not change with s (for the range of s that were used).� ib decreases with p for GDEM and increases with p for LDSV.For the range of s that were used ib seems to be constant. In a separate experiment,which induces a greater communication overhead, as the value of s increases, ib decreases.Therefore, similar pattern of results are anticipated if a wider range of s are used for thisexperiments. The decrease of ib with s simply means that parallelism is preferred for fastmachine. Load balancing should be invoked more frequently in fast machine to distributethe work. The need for work distribution is even more clear for large network. Thus, theinterval gets smaller with p. However, this is not true for LDSV.As with the grain size experiments we varied i from 1 to 1024 for each p and s to�nd the best interval, ib. The complete results of ib is shown in Table 5.15. Next, i2 isdetermined (using the method established in Section 5.3.1). The value of i2 for GDEMis 64 with 37.45% largest discrepancy when p = 128 and s = 0:25. For LDSV, i2 = 128,with the worst discrepancy is 5.98% when p = 4 and s = 0:25.



CHAPTER 5. EXPERIMENTAL RESULTS 94p s ITA (%)GDEM LDSV0.25 0.38 0.984 0.5 0.53 1.061.0 0.61 1.112.0 0.65 1.130.25 7.27 11.4532 0.5 8.93 14.161.0 10.20 15.662.0 11.00 16.470.25 45.14 -1.15128 0.5 47.54 0.641.0 49.33 1.712.0 50.44 2.30Table 5.16: Network performance: Improvement through adaptivity using t1 only.Transition I OnlyTable 5.16 illustrates the bene�t of adaptivity for varying s and p. The following obser-vations can be made:� ITA always increases with s.� Both algorithms bene�t from t1 (in most circumstances).� GDEM bene�ts more than the LDSV.� The best ITA for all s for GDEM occurs when p = 128 and for LDSV when p = 32.DiscussionAs with g, both algorithms bene�t from t1 because the total time waiting for workduring �lling phase is reduced. GDEM seems to bene�t more because frequent workdistribution has reduced the imbalance too, hence the idle time (see Table 5.17). ForLDSV the technique increases the idle time in most cases. Again in here, we see thebene�t of parallelism (by means of a small interval value) during the �lling phase asthe communication gets cheaper (i.e. faster network). The reason why GDEM seems toperform best when p = 128 whereas LDSV performs best when p = 32 (as in the grainsize experiments) is not currently clear.



CHAPTER 5. EXPERIMENTAL RESULTS 95s ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)0.5 13.23 TNA 0.0744 0.0392 0.0265 0.0044 0.0043 22TA 0.0646 0.0392 0.0179 0.0029 0.0047 241.0 10.20 TNA 0.0888 0.0392 0.0356 0.0054 0.0086 22TA 0.0798 0.0392 0.0272 0.0039 0.0094 242.0 6.49 TNA 0.1178 0.0392 0.0538 0.0077 0.0172 22TA 0.1102 0.0392 0.0461 0.0061 0.0188 244.0 2.78 TNA 0.1761 0.0392 0.0903 0.0122 0.0345 22TA 0.1712 0.0392 0.0841 0.0103 0.0376 24Table 5.17: Network performance: Detailed cost for GDEM using t1 only (p = 32).Transition II OnlyTable 5.18 shows the improvement of adaptivity using t2. The following observations canbe made:� ITA always decreases with s.� Both algorithms can bene�t from t2 (in some circumstances), though the bene�t isless than t1.� LDSV bene�ts more from the approach than GDEM (similar with the results of gexperiment).� Negative ITA for all s occurs for GDEM when p = 128 (exhibiting the same be-haviour as g). Almost all negative ITA for LDSV when p = 32.DiscussionFor both algorithms the bene�t of t2 comes from the reduction of load balancing andsynchronisation cost. In the case of LDSV these reduction always exceeds the idle timeresulting a positive ITA. This is not true for GDEM. Positive ITA only obtained for smallp. The large negative ITA for GDEM when p = 128 is due to an early switch-o� point,which leads to a huge load imbalance, hence, idle time (see Table 5.19). The improvementdecreases with s shows that the technique is more bene�cial for slower networks.



CHAPTER 5. EXPERIMENTAL RESULTS 96p s ITA (%)GDEM LDSV0.25 0.08 0.034 0.5 0.07 0.031.0 0.07 0.032.0 0.07 0.030.25 0.58 2.4632 0.5 -1.79 1.831.0 -3.39 1.472.0 -4.33 1.280.25 -190.78 6.66128 0.5 -264.67 5.621.0 -319.73 5.002.0 -354.53 4.66Table 5.18: Network performance: Improvement through adaptivity using t2 only.
s ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)0.2 -190.78 TNA 0.1553 0.0098 0.0541 0.0454 0.0461 24TA 0.4517 0.0098 0.0131 0.4153 0.0134 70.5 -264.67 TNA 0.1211 0.0098 0.0500 0.0370 0.0243 24TA 0.4414 0.0098 0.0120 0.4126 0.0071 71.0 -319.73 TNA 0.1040 0.0098 0.0479 0.0328 0.0135 24TA 0.4363 0.0098 0.0114 0.4112 0.0039 72.0 -354.53 TNA 0.0954 0.0098 0.0469 0.0307 0.0080 24TA 0.4338 0.0098 0.0112 0.4105 0.0023 7Table 5.19: Network performance: Detailed cost for GDEM using t2 only (p = 128).



CHAPTER 5. EXPERIMENTAL RESULTS 97p s ITA (%)GDEM LDSV0.25 0.38 1.064 0.5 0.53 1.141.0 0.61 1.192.0 0.65 1.210.25 9.04 11.6932 0.5 10.22 14.281.0 11.15 15.772.0 11.75 16.580.25 49.72 -1.15128 0.5 50.52 0.641.0 51.11 1.712.0 51.46 2.30Table 5.20: Network performance: Improvement through adaptivity using both t1t2.Transition I and IITable 5.20 shows the results of the net e�ect of activating t1 and t2. The followingobservations can be made:� ITA always increases with s.� Both algorithms can bene�t from t1t2, in most circumstances.� The bene�t is more signi�cant for medium and large processor sizes for GDEM andonly medium processor size for the LDSV.DiscussionBoth algorithms bene�t from the technique because of the huge reduction of loadbalancing time. For LDSV the combined technique always increases the idle time (seeTable 5.21) while it sometimes increases idle time for GDEM. For the cases where the idletime decreases, the improvement is the largest (e.g. for GDEM when p = 128).



CHAPTER 5. EXPERIMENTAL RESULTS 98s ITA(%) Total Time Compute Load Balance Idle Synch Iter(sec) (sec) (sec) (sec) (sec)0.5 18.33 TNA 0.0821 0.0099 0.0456 0.0241 0.0025 9TA 0.0671 0.0099 0.0287 0.0254 0.0031 111.0 1.71 TNA 0.1245 0.0099 0.0687 0.0409 0.0050 9TA 0.1224 0.0099 0.0552 0.0512 0.0062 112.0 -5.41 TNA 0.2210 0.0099 0.1173 0.0837 0.0101 9TA 0.2329 0.0099 0.1081 0.1026 0.0123 114.0 -9.69 TNA 0.4140 0.0099 0.2158 0.1681 0.0202 9TA 0.4541 0.0099 0.2141 0.2055 0.0246 11Table 5.21: Network performance: Detailed cost of LDSV using t1t2 (p = 128).The Best ITA and TechniquesTables 5.22 and 5.23 show which combination of transition gives the best ITA for allcombination of s and p. The following observations can be made:� Adaptivity always brings improvements and is more signi�cant for large p for GDEMand medium p for LDSV.� t1t2 yields the best results for GDEM.� t1t2 seems to be bene�cial for LDSV too, but for very large p, t2 is preferable.p ITA (%) and Technique0.5 1.0 2.0 4.04 0.38 (t1; t1t2) 0.53 (t1; t1t2) 0.61 (t1; t1t2) 0.65 (t1; t1t2)32 9.04 (t1t2) 10.22 (t1t2) 11.15 (t1t2) 11.75 (t1t2)128 49.72 (t1t2) 50.52 (t1t2) 51.11 (t1t2) 51.46 (t1t2)Table 5.22: Network performance: The best improvement and techniques for GDEM.



CHAPTER 5. EXPERIMENTAL RESULTS 99p ITA (%) and Technique0.5 1.0 2.0 4.04 1.06 (t1t2) 1.14 (t1t2) 1.19 (t1t2) 1.21 (t1t2)32 11.69 (t1t2) 14.28 (t1t2) 15.77 (t1t2) 16.58 (t2)128 6.66 (t1t2) 5.62 (t2) 5.00 (t2) 4.66 (t2)Table 5.23: Network performance: The best improvement and techniques for LDSV.5.3.3 Varying the Tree ImbalanceThis section presents the results of varying the degree of tree imbalance on ITA when thesame three adaptive techniques, t1 alone, t2 alone and the combination of t1 and t2, wereapplied.As noted earlier, this set of experiments use imbalance tree instead of random tree be-cause the degree of imbalance can be parameterised in the former. However, as highlightedin Section 4.2.3, the imbalance tree is not repeatable { each run may produce di�erenttree size and shape. This has two implications; the �rst is on the pattern of ITA and thesecond is how ITA is measured. In some cases, the pattern of ITA is not as consistent asthose of g and s, to enable a clear relationship being made. Despite that some generalpattern can still be established.Recall from Section 5.2.1 the ITA for experimenting the imbalance refer to speedinstead of the execution time. Detail comparison in terms of the amount of improvementmade between g and s, and m may not be appropriate but the comparison between thegeneral relationships established is still valid.Note that an additional column for speed is incorporated in the detailed measurements.Determining i2Table 5.24 shows the best interval for the whole parameter set. The following observationscan be made:� ib decreases with m.� ib decreases with p.� GDEM has a smaller ib if compared to LDSV.The value of ib decreases withm because as the degree of imbalance increases the work-load gets more irregular resulting in a larger number of idle (or lightly loaded) processors.



CHAPTER 5. EXPERIMENTAL RESULTS 100p m Best interval (ib)GDEM LDSV0.0 512 2564 0.1 256 2560.2 128 10240.3 64 1280.0 128 25632 0.1 64 1280.2 32 1280.3 32 640.0 32 128128 0.1 32 640.2 16 640.3 16 64Table 5.24: Tree imbalance: The best interval for a range of p and m.Load balancing is needed to distribute the workload to these processors. Therefore, theinvocation has to be more frequent for a tree with higher degree of imbalance. This isespecially true when larger processor sizes are used.As with g and s, the value of i is varied from 1 to 1024 to �nd ib for each p and m. Wethen selected the best ib as i2. Since the size and the shape of the tree changes in eachrun, �nding ib with the least discrepancies is not sensible. For each algorithm we chosethe value of ib which occurs most frequently (please refer to Table 5.24). The value of i2for GDEM is 32 and LDSV is 128.Transition I OnlyTable 5.25 shows the bene�t gained from t1 for varying m. The following observations canbe made:� ITA usually increases with m.� Both algorithms can bene�t from the techniques most of the time.� GDEM bene�ts more than LDSV.� Positive ITA occurs for all m for GDEM when p = 128 and for LDSV when p = 32.For both cases ITA increases consistently with m.



CHAPTER 5. EXPERIMENTAL RESULTS 101p m ITA (%)GDEM LDSV0.0 8.77 1.204 0.1 -0.01 0.410.2 0.84 9.300.3 6.45 -8.840.0 0.40 1.4532 0.1 3.28 6.310.2 13.60 36.640.3 -0.80 60.350.0 24.48 -6.33128 0.1 25.07 31.210.2 62.03 45.290.3 145.32 -8.71Table 5.25: Tree imbalance: Improvement through adaptivity using t1 only.DiscussionThe increase of ITA with m is anticipated because when the degree of imbalanceincreases the workload gets more irregular and some of the processors have no work.Therefore, frequent invocation of load balancing will reduce idle time and improve theperformance.Again, we see the same pattern of results of positive improvement on p = 128 forGDEM and p = 32 for LDSV. We can provide no adequate explanation for such pref-erences. From the detail measurements of the two results (in Tables 5.26 and 5.27) wecould derived that the large improvement for GDEM is due to a large decrease in loadbalancing and idle time (though the synchronisation increases in most cases). LDSV tendsto have a decrease in load balancing time in most of the cases too. However, idle time andsynchronisation time increases.



CHAPTER 5. EXPERIMENTAL RESULTS 102m ITA(%) Speed Total Compute Load Idle Synch IterTime Balance(node/sec) (sec) (sec) (sec) (sec) (sec)0.0 24.48 SNA 673040.4376 0.0974 0.0217 0.0383 0.0194 0.0180 32SA 837819.9228 0.0782 0.0217 0.0295 0.0095 0.0174 310.1 25.07 SNA 558487.6674 0.0708 0.0131 0.0326 0.0122 0.0129 23SA 698495.5277 0.0620 0.0144 0.0261 0.0075 0.0140 250.2 62.03 SNA 294810.7026 0.0579 0.0057 0.0262 0.0154 0.0107 19SA 477673.6721 0.0433 0.0069 0.0202 0.0051 0.0112 200.3 145.32 SNA 148215.4330 0.0511 0.0025 0.0216 0.0175 0.0095 17SA 363596.5354 0.0384 0.0046 0.0186 0.0051 0.0101 18Table 5.26: Tree imbalance: Detailed cost for GDEM using t1 only (p = 128).
m ITA(%) Speed Total Compute Load Idle Synch IterTime Balance(node/sec) (sec) (sec) (sec) (sec) (sec)0.0 1.45 SNA 362186.0614 0.1809 0.0898 0.0586 0.0244 0.0082 21SA 367431.9807 0.1784 0.0898 0.0444 0.0345 0.0097 250.1 6.31 SNA 263658.2041 0.0993 0.0359 0.0424 0.0164 0.0047 12SA 280289.5869 0.1419 0.0545 0.0469 0.0323 0.0082 210.2 36.64 SNA 196081.4980 0.0825 0.0222 0.0418 0.0146 0.0039 10SA 267915.9652 0.0828 0.0304 0.0298 0.0171 0.0054 140.3 60.35 SNA 130441.2734 0.0735 0.0131 0.0437 0.0133 0.0035 9SA 209165.3837 0.0649 0.0186 0.0274 0.0142 0.0047 12Table 5.27: Tree imbalance: Detailed cost for LDSV using t1 only (p = 32).



CHAPTER 5. EXPERIMENTAL RESULTS 103p m ITA (%)GDEM LDSV0.0 0.07 -27.664 0.1 0.13 -0.380.2 0.00 1.450.3 0.30 -0.310.0 0.86 2.6932 0.1 0.72 -2.110.2 0.71 -16.100.3 0.94 25.420.0 -38.95 10.19128 0.1 2.94 -1.230.2 -4.31 23.290.3 -78.83 11.62Table 5.28: Tree imbalance: Improvement through adaptivity using t2 only.Transition II OnlyTable 5.28 presents the results for t2 when m is varied. The following observations can bemade:� No clear relationship can be made between ITA and m since the improvement oscil-lates.DiscussionNo clear relationship can be noted between ITA and m for this case, but we analysedthe pattern of each of the sources of overhead. The results for g and s have shown aconsistent decrease in synchronisation and load balancing time due to the discontinuingof the load balancing. GDEM produces this same pattern (see Table 5.29). For caseswhere the increase in idle time exceed the bene�t of reduced load balancing time andsynchronisation, ITA is negative. For LDSV, the load balancing time decreases but theidle time increases as well (as shown in Table 5.30).



CHAPTER 5. EXPERIMENTAL RESULTS 104m ITA(%) Speed Total Compute Load Idle Synch IterTime Balance(node/sec) (sec) (sec) (sec) (sec) (sec)0.0 0.86 SNA 352631.4405 0.1858 0.0870 0.0631 0.0092 0.0266 68SA 355677.4845 0.1843 0.0870 0.0604 0.0106 0.0262 670.1 0.72 SNA 322581.7516 0.1261 0.0540 0.0477 0.0064 0.0180 46SA 324898.2208 0.1253 0.0540 0.0436 0.0104 0.0172 440.2 0.71 SNA 267746.0253 0.0686 0.0244 0.0296 0.0048 0.0098 25SA 269653.4479 0.0682 0.0244 0.0241 0.0110 0.0086 220.3 0.94 SNA 264760.4301 0.0529 0.0186 0.0237 0.0032 0.0074 19SA 267259.6906 0.0524 0.0186 0.0206 0.0062 0.0070 18Table 5.29: Tree imbalance: Detailed cost for GDEM using t2 only (p = 32).
m ITA(%) Speed Total Compute Load Idle Synch IterTime Balance(node/sec) (sec) (sec) (sec) (sec) (sec)0.0 2.69 SNA 362186.0614 0.1809 0.0898 0.0586 0.0244 0.0082 21SA 371930.2329 0.1762 0.0898 0.0489 0.0298 0.0078 200.1 -2.11 SNA 263658.2041 0.0993 0.0359 0.0424 0.0164 0.0047 12SA 258098.6493 0.1136 0.0402 0.0502 0.0181 0.0050 130.2 -16.10 SNA 196081.4980 0.0825 0.0222 0.0418 0.0146 0.0039 10SA 164517.0066 0.0822 0.0185 0.0407 0.0195 0.0035 90.3 25.42 SNA 130441.2734 0.0735 0.0131 0.0437 0.0133 0.0035 9SA 163594.2164 0.0615 0.0138 0.0332 0.0119 0.0027 7Table 5.30: Tree imbalance: Detailed cost for LDSV using t2 only (p = 32).



CHAPTER 5. EXPERIMENTAL RESULTS 105p m ITA (%)GDEM LDSV0.0 25.21 -25.304 0.1 -0.01 0.440.2 0.84 5.790.3 6.88 3.820.0 1.14 -15.0832 0.1 4.16 24.600.2 14.51 40.700.3 5.45 64.080.0 11.92 5.61128 0.1 25.92 39.770.2 67.77 47.760.3 166.97 -4.66Table 5.31: Tree imbalance: Improvement through adaptivity using both t1t2.Transition I and IITable 5.31 illustrates the net-bene�t of both transitions when m is varied. The followingobservations can be made:� ITA usually increases with m (and is more signi�cant for large p).� Both algorithms can bene�t from the technique (most of the time).� Overall, GDEM bene�ts more from t1t2 than LDSV.� Positive ITA for all m for GDEM occurs when p = 32 and p = 128 and almost allpositive ITA occurs for LDSV for the same p.DiscussionThe pattern of results are similar to g and s, where the bene�ts comes from thereduction of the load balancing time. GDEM tends to bene�t more because there is areduction in the syncronisation cost as well. As with g and s, the bene�t from using t1 ismore prominent, hence the observations made for t1 alone applies to t1t2. Note that wesee the recurrences of preference of the algorithms on a particular p in this experiment aswell.



CHAPTER 5. EXPERIMENTAL RESULTS 106p ITA (%) and Technique0.0 0.1 0.2 0.34 25.21 (t1t2) 0.13 (t2) 0.84 (t1,t1t2) 6.88 (t1t2)32 1.14 (t1t2) 4.16 (t1t2) 14.51 (t1t2) 5.45 (t1t2)128 24.48 (t1) 25.92 (t1t2) 67.77 (t1t2) 166.97 (t1t2)Table 5.32: Tree imbalance: The best improvement and techniques for GDEM.p ITA (%) and Technique0.0 0.1 0.2 0.34 1.20 (t1) 0.44 (t1t2) 9.30 (t1) 3.82 (t1t2)32 2.69 (t2) 24.60 (t1t2) 40.70 (t1t2) 64.08 (t1t2)128 10.19 (t2) 39.77 (t1t2) 47.76 (t1t2) 11.62 (t2)Table 5.33: Tree imbalance: The best improvement and techniques for LDSV.The Best ITA and TechniquesTables 5.32 and 5.33 show which combination of transition gives the best ITA for allcombination of m and p. The following observations can be made:� Adaptivity always bring improvement, and is more signi�cant for large p for GDEMand medium p for LDSV.� t1t2 usually yields the best results for GDEM.� t1t2 sometimes yields the best results for LDSV.5.4 Experimenting with Algorithmic AdaptivityThe non-adaptive results with GDEM and LDSV (see Figures 4.15 and 4.16) show thatLDSV execution time are much worse than GDEM's. It was proposed in Chapter 3 thatalgorithmic adaptivity using t1 could employ LDSV in the �lling phase and Di�usion (orGDEM) in the steady phase. It is clearly impossible to carry out a sensible experiment atthis stage, since the poor absolute performance of LDSV means that t1 would substantiallydegrade performance compared with GDEM alone.This does not mean that the hypothesis of using the algorithmic adaptivity at t1 isinvalidated. The poor performance of LDSV relative to GDEM is accounted for by two



CHAPTER 5. EXPERIMENTAL RESULTS 107factors. First, LDSV is essentially an asynchronous algorithm which has been arti�ciallysynchronised by the simulator, whereas GDEM is inherently synchronous. Moreover,LDSV is an experimental algorithm which has substantial scope for further optimisation(see Section 6.3), whereas GDEM is a well-established and optimised algorithm. Properexperimental work on t1 must therefore await for a more optimal version of LDSV. Recallthat LDSV will always complete the �lling stage in optimal number of iterations (seeSection 3.1.3), there is clearly scope for this further experimentation to yield positiveresults for t1 transition.Transition t2 in algorithmic adaptivity is exactly the same as in parametric adaptivity,the bene�ts of which have already been demonstrated in previous section.5.5 Summary ResultsThe following are the general observations made:� Parametric phase-based adaptivity can bring substantial performance improvementfor both GDEM and LDSV in many situations.� Both algorithms show signi�cant improvement for medium and large processor sizes.� t1 is suitable for large grain node, fast network or high degree of tree imbalance.� t2 is the reverse; it is suitable for small grain node, slow network and a more balancetree.� For GDEM t1t2 is suitable for large processor sizes, and large grain node or slownetwork or high degree of imbalance. For LDSV t1t2 is more suitable for high degreeof imbalance, and small and medium processor sizes (regardless of network speed).� Overall, t1t2 usually yields the best results if compared to t1 alone or t2 alone.� When t1 is used, the best performance for GDEM always occur when p = 128 andfor the LDSV when p = 32.� There is a symmetry in the performance of both algorithms.{ GDEM bene�ts more from t1 where as LDSV from t2.{ There are preferences in techniques that yields the best results. GDEM alwaysfavours t1t2 followed by t1 then t2. LDSV usually favours t1t2 followed by t2then t1.



CHAPTER 5. EXPERIMENTAL RESULTS 108� The best interval decreases with the grain size, network speed and tree imbalance.� Experimental investigation of algorithmic adaptivity can not sensibly be done untilequivalently optimised asynchronous version of the algorithm concerned is available.



Chapter 6ConclusionThe �nal chapter presents a summary of the work described in this thesis, highlights themain contributions and identi�es possible future direction of the work.6.1 Summary and EvaluationThis section brie
y describes the framework for adaptivity, and the tool used to evaluatethe suggested techniques, followed by a summary of the results.6.1.1 Conceptual FrameworkThe thesis de�nes a new conceptual framework for adaptive dynamic load balancing (DLB)for parallel tree computation. It introduces the notion of phase-based adaptivity and itsvariants - the parametric and algorithmic approach - and positions the new approach inrelation to the existing adaptivity and phase-based techniques. We refer to the existingwork on adaptivity as periodic approach.The periodic adaptivity does not assume any prior knowledge of the workload of thesystem. The DLB parameters (or policies or algorithms) are adjusted from time to time,according to the current local (or global) state of the system. Such an approach is more ap-plicable to system level load balancing where the nature of workload are usually processesof varying sizes and arrival rate, recognised by the operating system.On the contrary, phase-based adaptivity requires some knowledge of the \evolution" ofthe workload. The DLB algorithms makes an adjustment according to this (prior) knowl-edge of its \surroundings" to optimise the overall performance. Hence, the approach ismore applicable to parallel applications, whose general workload pattern could be antici-109



CHAPTER 6. CONCLUSION 110pated beforehand.Phase-based adaptivity carries three basic concepts;� the workload phases;� transitions between these phases; and� and the mechanisms to adapt at these transitions.We chose tree computation to illustrate the above concepts. Tree computation startswith a single node. At this stage, only one processor has work, while the rest are idle.The aim of the DLB is to quickly distribute the work. As more nodes are created moreprocessors will have work and �nally the whole machine is �lled. We call this stage the�lling phase or phase I. Once all processors are busy, the aim of the DLB is to maintainthis state as much as possible. This we called the steady phase or phase II. Eventually theworkload becomes so low that it is not possible to utilise all the processors. At this stage,there is little bene�t in using DLB. We name this stage the emptying phase or phase III.From the above, there are three distinct phases, thus we can de�ne two transitionsto switch between these phases. The transition can be de�ned by the number of taskscurrently in the whole system in relation to the number of processors used to executethe application. The �rst transition, t1, occurs when the number of tasks generated startexceeding (or at least equal to) the number of processors, while the second, i.e. t2, is whenthe total tasks drop su�ciently low relative to the total processors.There are two mechanisms that could be used to adapt at these two transitions:� Parametric approach.This technique adjusts the values of any of DLB parameters (e.g. the load balancinginterval, workload threshold or migration factor) according to the workload phases.For example the interval value of one is used during phase I (or �lling phase) to facil-itate work distribution and the best interval is used in phase II (or steady phase) toobtain the best possible execution time and an in�nity during phase III (or emptyingphase) to avoid invoking the load balancing. The e�ect of a very large interval isequivalent to disabling the dynamic load balancing algorithm.



CHAPTER 6. CONCLUSION 111� Algorithmic approach.Although the idea of algorithmic adaptivity already exists in the context of thedistributed systems, it has never been experimented nor discussed in relation tothe DLB algorithms used in this thesis. Algorithmic adaptivity entails the use ofcompletely di�erent DLB algorithms at di�erent workload phases. A global method,for example the LDSV, is suggested during phase I to facilitate work distributionso as to quickly �ll the machine. A local method, such as Di�usion (or GDEM), ispreferred in phase II in order to maintain the steady state. This is followed by acomplete disabling of the algorithm in phase III.The basic principles behind both techniques are to speed up the initial workload distri-bution, maintain a steady state when the machine is full and remove the overhead of theload balancing at the end of the computation. An example of a full-scale application thatmay adopt the phase-based adaptivity technique is VLSI 
oorplan optimisation, which isused in microprocessor and memory chip designs [22].As it stands now, the conceptual framework presented in this thesis applies only to thetree computation. The generality and the applicability of the idea has yet to be tested.We leave this for future work.6.1.2 The SimulatorIn order to investigate the idea of phase-based adaptivity quantitatively, a simulator wasdeveloped which allows di�erent load balancing algorithms to be tested, with varying net-work speeds (relative to the T3D), and simulated workloads representing trees of varyingdepth, grain size and imbalance.The use of a sequential simulator speeds up the experimental process when comparedwith developing a full parallel testbed. More importantly, it allows the potential of bothtypes of adaptivities, algorithmic and parametric, to be cheaply and easily assessed withoutthe need for a global collection of processor workloads and distributed detection of phasechanges.Extensive validations on the simulator were carried out in two stages, namely, iterationcount and cost validations. The predicted and the real iteration count results showed atleast a close, if not an exact, number of iterations between the two. The cost validationshowed a close prediction to the real measurement, with the predicted time within 25%,for the processor range used in the experiments (i.e. 1 to 128). These results are better



CHAPTER 6. CONCLUSION 112than (or at least as good as) the reported parallel simulation results in the literature.Therefore, we conclude that the validity and reliability of the simulator are justi�ed.6.1.3 Experimental ResultsThe purpose of the experiments is to investigate the performance gained from parametricphase-based adaptivity. There are three main experiments, each corresponds to experi-menting with varying grain size, network speed and tree imbalance. Two load balancingalgorithms, GDEM and LDSV, are evaluated for all experiments.Before investigating the e�ects of the adaptive approach, we �rst study the performanceimpact of a sensitive parameter, the load balancing interval, in a non-adaptive situation.The conclusions of the non-adaptive results are:� The performance of the tree application is very sensitive to the value of the loadbalancing interval. Therefore, it is important to obtain the interval value whichwould yield the best result.� The results also reveal that the best interval is algorithm dependent. Hence, thereis no single best value for all DLB algorithms.� The best interval increases as the node grain size, the network speed and the treeimbalance decreases.After gaining the above insights, we proceeded to adaptivity experiments to investigate therelationship between the performance improvement with the above mentioned applicationand machine parameters by activating individual transition or the combination of both.There are three sub-experiments which correspond to the three adaptive techniques foreach application or machine parameter (i.e. grain size, network speed and tree imbalance);(a) t1 only - an interval of one is used during phase I followed by the best interval,(b) t2 only - the best interval is used during phases I and II followed by no load balancingduring phase III and(c) t1t2 - interval one is used during phase I, followed by the best interval and a disablingof the balancer, during phases II and III, respectively.



CHAPTER 6. CONCLUSION 113The following are the insights obtained from the parametric phase-based adaptivity ex-periments:� The experiments show that the parametric adaptivity approach always bring ben-e�ts. The bene�ts or improvements can either come from t1 alone, t2 alone or thecombination of the two. This con�rms the importance of the two transitions de�nedin the conceptual framework.The relative merits of the techniques are as follows:{ t1 is suitable for an application with high computation to communication ra-tio. In other words, large grain tree applications and high speed networks willbene�t most from this approach. The tree with high degree of imbalance isexpected to bene�t as well, though the bene�t may not always be consistent.{ t2 on the other hand, is bene�cial if the application has a low computation tocommunication ratio. Therefore, the opposite applies - small grain node andslower networks bene�t. As to the tree imbalance, there is no clear relationshipthat could be established. The bene�t gained from t2 is lesser than t1 for allthe parameters.{ t1t2 exhibits a similar pattern of improvement to t1 for all three parameters,indicating a greater advantage gained from t1 compared to t2 when both tech-niques are combined. Hence, as the grain size and the network speed increases,the bene�t increases consistently. High tree imbalance, however, does not showconsistent advantage, but the pattern is similar to t1.� From the results it can be derived that the best overall technique (most of the time)for the three parameters is t1t2. Our observations also show that GDEM favourst1t2 more than LDSV. As to the single transition technique, t1 gives more bene�t toGDEM and t2 to the LDSV. We can conclude that the performance of each techniqueis algorithm dependent.� The improvement gained through adaptivity increases with the grain size, networkspeed, and processor size. It usually increases with the degree of imbalance.� The bene�t of parametric phase-based adaptivity is more signi�cant for medium andlarge processor sizes.



CHAPTER 6. CONCLUSION 114For algorithmic adaptivity experiments, LDSV should be used during phase I, followedby GDEM during phase II and a disable of the load balancing in phase III. Both algorithmsare expected to use the best interval values during the �rst two phases.However, due to the relatively poor performance of the unoptimised synchronous ver-sion of LDSV algorithm as compared to GDEM, it is not sensible to proceed with algo-rithmic adaptivity experiments.The poor performance of LDSV shows that the synchronous simulator is not suitableto be used to study algorithmic adaptivity. Since many DLB algorithms are asynchronousin nature, implementing an asynchronous simulator (e.g. an event-driven simulation) canbe identi�ed as a future work. Only then, a fuller experiments which encompass bothalgorithmic adaptivity and parametric adaptivity can be carried out.6.2 ContributionsThe following are the main contributions of this thesis:� A new conceptual framework for adaptivity in dynamic load balancing has beenproposed (explained in Chapter 3 and summarised in Section 6.1.1).� A sequential simulator to explore this framework has been developed and closelyvalidated (described in Chapter 4 and a short summary is provided in Section 6.1.2).� The results of the investigation are presented in Chapter 5 and Section 6.1.3. Theycan be summarised as follows:{ The parametric phase-based adaptivity techniques have demonstrated goodperformance improvement.{ The conditions under which each transition (or the combination of both) pro-vide the most bene�t have been identi�ed.{ The best overall technique for all application and machine parameters consid-ered (i.e. grain size, network speed and tree imbalance) has also been identi�ed.The following is subsidiary contribution (not directly related to adaptivity):� A dynamic load balancing algorithm, Loadserver, initially proposed by Davy [14]has been implemented on the T3D (Chapter 2).



CHAPTER 6. CONCLUSION 1156.3 Future WorkThe above research can be extended in two main directions:6.3.1 Further Simulation StudiesThe work reported in this thesis covered only one type of parametric phase-based adap-tivity, that is the load balancing interval. There are other parameters that can be experi-mented with, such as the workload threshold and load migration factor. These experimentscan easily be carried out using the existing simulator without any major changes.Within the same scope, the e�ects of other application and machine parameters, suchas the fan-out and topology, can be investigated. Apart from 2-d torus, the simulatorcurrently supports ring, chain, mesh and hypercube. Experimenting with the e�ects ofvarying fan-out or processor connectivity are straight forward since these facilities arealready incorporated within the simulator.Another potential further work is experiments to optimise the performance of theLDSV algorithm. An improvement to the LDSV can be undertaken in two ways. First,using a larger migration factor instead of one. By doing so, more than one tasks may bepacked and sent to a single destination. There is also the possibility of having varyingnumber of tasks in a single pack. Second, more than one light node id can be returnedto the heavy node upon making a request for light node ids. Hence, the extra work couldbe distributed to these light nodes, as in the case for a single request to the informationserver. This may facilitate work distribution further and help minimise the cost during�lling phase. These two optimisations are expected to reduce the total cost of the LDSValgorithm, and perhaps amplify the bene�ts gained from the algorithmic adaptivity ap-proach.6.3.2 Real Parallel ImplementationThe simulation results have shown the potential performance bene�t of phase-based adap-tivity. Therefore, the natural step forward is to consider practical implementations witha real parallel dynamic load balancing algorithm and a real application (e.g. divide-and-conquer). The main challenges in real parallel implementation revolves around the issueof acquiring the global system state (i.e. the number of tasks currently in the system) andto detect phase transition in a distributed manner with minimum additional overhead.Otherwise the bene�t of adaptivity can not be justi�ed.



CHAPTER 6. CONCLUSION 116In the synchronous model (as in the simulator), one can take the advantage of thetermination detection algorithm. For example, the MPI Allreduce () function can be usedto gather the status, as well as to collect the workload of the processors through thesame global reduction. No additional facility is needed. Transitions can be checked afterretrieving the workload state every time if the computation has not reached to an end.Many DLB algorithms are asynchronous [9, 32, 50, 76, 82, 87]. Therefore, it is im-portant to test the idea in this context. With the asynchronous parallel implementation,the issue is more challenging. Acquiring the knowledge of the system state using messagepassing may be implemented in two ways. First, through a global or centralised facilityif the algorithm uses one (e.g. LDSV algorithm). Second, again, through the terminationdetection algorithm. The system workload could be coupled with the status of the pro-cessor passed throughout the system as the case in token termination detection algorithmdescribed in [45]. However, both techniques may su�er from information aging. In thecentralised approach, additional communication is required for information collection anddistribution.The high-level sharing facilities provided by the TallShip project [28] may help ease theproblem. The shared accumulator, for example, may be used to accumulate the currentworkload status of the system without tedious implementation of message-passing. Theproblem of information aging vanishes since information is collected only when it is needed.However, the e�ect on overall performance has yet to be assessed.The above mentioned issues pose various practical challenges which we will leave forfuture investigation.
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