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Abstract

Dynamic load balancing (DLB) is a technique for the parallel implementation of prob-
lems which generate unpredictable workloads by migrating work units to lightly loaded
processors based on run-time workload measurement. Adaptive DLB is a refinement where
aspects of the load balancing system itself are modified in the light of measured workloads.

This thesis investigates phase-based adaptive DLB, a version of adaptive DLB in which
a parallel computation moves through different load balancing phases identified on the
basis of run-time workloads. The idea is explored through a case study of parallel tree
computation, in which three distinct phases with intervening transitions are identified.
Two major variants of phase-based adaptivity are distinguished. In parametric adaptivity,
parameters of the DLB algorithm are adapted between phases; in algorithmic adaptivity,
different DLB algorithms are utilised in each phase. These concepts are investigated
quantitatively through a simulator for parametric adaptivity and discussed in detail for
algorithmic adaptivity.

The simulator permits a range of processor topologies, parameterises the performance
of the underlying network, includes two different network performance models, and allows a
wide range of simulated tree-structured workloads, parameterised by depth, fan-out, node
granularity and imbalance. It was extensively validated in relation to the performance of
two DLB algorithms on a 512-processor Cray T3D.

The simulator was used to evaluate the benefit of parametric phase-based adaptiv-
ity. Preliminary experiments with non-adaptive algorithms revealed performance to be
sensitive to the interval between load-balancing invocations, so this parameter was priori-
tised for subsequent adaptivity experiments. A performance metric called Improvement
Through Adaptivity (ITA) was discussed. Two DLB algorithms were used as test cases;
the well-established Generalised Dimension FExchange Method and a novel Loadserver al-
gorithm, whose implementation is described in the thesis.

Results were obtained for all combination of the transitions, and the relationships be-
tween ITA and various parameters (processor sizes, node granularity, tree imbalance and
network performance) were established. Similar relationships were observed for both algo-
rithms, though with some differences in detail. Positive values of ITA were obtained with
both algorithms, for at least one transition combination, over a range of all the param-
eters. Thus, the potential benefits of phase-based parametric adaptivity are confirmed,

justifying future work in implementing this technique.
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Chapter 1

Introduction

1.1 Dynamic Load Balancing

Parallel processing is believed by many to be the wave of the future in computing [39,
23]. Fundamental physical limitations on processing speeds will eventually force high-
performance computations to be targeted principally at the exploitation of parallelism.
Just as the fastest cycle times are approaching their fundamental barriers, new generations
of parallel machines are emerging. Examples of such machines include Cray T3E, IBM
SP2, Intel Paragon, Convex machines, Ncubes and Meiko CS2 [77].

Achieving good performance from these machines is a non-trivial task. Factors such
as load imbalance, inherent serial sections, contention for shared resources, synchronisa-
tion and communications may inhibit good performance. These issues are central to the
development of many parallel applications. In the case of load imbalance, research has led
to many load balancing techniques to optimise the performance of parallel applications.

The issue of load balancing exists not only in parallel systems, but also in distributed
environments, with one common objective — to improve the performance. However, the
nature of the performance objective differs. In a distributed system the objective is usually
to reduce the average response time of a mix of independently submitted jobs, while in a
parallel system the aim is usually to minimise the total execution time of a single program.

For some applications it is possible to make a priori estimates of the work distribu-
tion; for example, the standard dense matrix multiplication. The assignment of tasks to
processors can be done before program execution begins. Such an off-line a priori deter-
mination is called static load balancing [60, 69]. By contrast, a strategy which attempts

to balance work during an execution is referred to as dynamic load balancing (DLB).
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Such techniques are used when no prior estimate of load distribution is possible, so static
methods are inappropriate. It is only during actual program execution that it becomes
apparent how much work is being assigned to individual processors. This is due to the
dynamic or non-uniform computational nature of the problem.

The key feature of dynamic load balancing is that units of work are migrated from
heavily loaded processors to lightly loaded processors in order to achieve a well balanced
load throughout the system. Some dynamic load balancing algorithms only aim to ensure
no processor remain idle when there are useful work to be performed in the system. This
objective is normally referred as load sharing. The decisions as to when and where to
migrate tasks are typically based on run-time measurements of the system load. DLB
algorithms improve performance by exploiting short-term fluctuation in this system state
(or load). Since they must collect, store, and analyse state information, DLB algorithms
incur more overhead than their static counterparts, but this overhead is often well spent.

The popularity of DLB is increasing with the continuous demands for better process-
ing speed. The last decade has been one of the most exciting period for DLB in paral-
lel computing. Extensive research has been done covering a wide range of topics from
theoretical background [4, 11] to the practical state-of-the-art load balancing techniques
[9, 32, 33, 37, 38, 74, 80, 82, 85, 88, 89]. DLB has become extremely important in many
disciplines. Some typical areas include combinatorial search [44], optimisation problems
[17], climate modeling [80], finite element methods [76], N-body problems [72], to name

just a few.

1.2 Adaptivity in Dynamic Load Balancing

Dynamic load balancing can be characterised as adaptive or non-adaptive ! (see Figure
1.1). An adaptive dynamic load balancing algorithm automatically responds to the system
state in order to be operating at (or close to) its optimal level [7]. An excellent description

of adaptive DLB system was provided by Shiva et al. in [70];

“Adaptive load-distributing algorithms are a special class of dynamic algo-
rithms. They adapt their activities by dynamically changing their parameters,
or even policies, to suit the changing system state. For example, if some load

distributing policy performs better than others under certain conditions, a

'Some authors used the terms adaptive load balancing and dynamic load balancing interchangeably,
whereas the first is best seen as a special class of the latter.
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load balancing

static dynamic

adaptive non-adaptive

Figure 1.1: The characteristics of load balancing algorithms.

simple adaptive algorithm might choose between these policies based on ob-
servations of the system state. Even when the system is uniformly so heavily
loaded that no performance advantage can be gained by transferring tasks,
a non-adaptive dynamic algorithm might continue operating (and incurring
overhead). To avoid overloading such a system, an adaptive algorithm might

instead curtail its load balancing activity when it observes this condition.”

Most research in adaptive DLB is in the context of distributed systems [3, 13, 20, 41, 64,
68]. A seminal work on adaptive DLB in distributed system can be found in Krueger [41].
In contrast, sporadic work have been carried out on adaptive DLB in parallel computing,
examples include [9, 80, 89].

Most of the adaptive work in the literature alters the DLB parameters to improve the
performance. These parameters include the workload threshold [13, 68, 89], the interval
in between DLB invocations [80, 89] and the migration factor [9], which determines the
amount of load migrated between processors. There is little work which exploits adaptivity
by changing the DLB algorithms. One example is by Ramamritham and Zhao [64] which
switches between two DLB algorithms, bidding and focus-addressing, in a distributed
real-time system. Their work include both approaches to adaptivity, namely adapting

parameters and algorithms.

1.3 Phases in Dynamic Load Balancing

Most of the studies on DLB in distributed systems attempt to balance the workload at the

system level where the load balancing involves the movement of generic processes without
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any knowledge of the application they represent. The workloads are typically processes
(recognised by the operating system) which can be characterised as having different sizes
and varying arrival rates, but where nothing is known by the load balancing system about
the computational tasks represented by these processes. Hence, it is not feasible to use
any knowledge of application characteristics in order to improve the performance of load
balancing.

The scenario in the parallel world is rather different. Most DLB systems are built
directly into the application [17, 44, 76, 72, 80]. Migration usually involves tasks or unit
of data specific to that particular application. Since the DLB is integrated within the
application, there is a potential to optimise for that application.

This thesis will consider the potential for one particular way in which DLB may be
improved by taking into account particular characteristics of the application. Specifically
we will consider the possibility that the execution of an application may proceed in distinct
phases, detectable at run-time, where different load balancing approaches are applicable
in each phase. This form of adaptivity will be called phase-based adaptive dynamic load
balancing. Clearly, the approach requires a prior knowledge of workload characteristics in
order for phases to be identifiable.

This idea will be pursued by consideration of a class of parallel application which
can be characterised as tree computation, because the execution generates a tree of tasks.
This class of computation includes divide-and-conquer and branch-and-bound algorithms.
Parallel tree computation commonly make use of DLB because the shape of the tree of
tasks is frequently not predictable and may be highly imbalanced. However, the knowledge
that the task graph will take the form of a tree may be exploited to identify different phases
in the computation. In particular, this thesis will explore the use of three main phases:
an initial phase in which the expansion of the task tree gradually leads to all processors
being utilised, a central phase in which DLB maintain all processors fully utilised, and
a final phase in which the machine gradually empties as the number of remaining tasks
reduces.

Some previous work distinguishing the initial phase of tree computation has been
described in [62, 67]. Unfortunately, those two examples are limited to a specific applica-
tions and do not consider more general possibilities for phase-based load balancing, and
indeed do not use the notion of phases explicitly. Other work discussing load balancing or
scheduling in phases more explicitly [24, 79] involves situations where the phases are dis-
tinct and repeated parts of the computation, rather than representing different workload

characteristics developing dynamically within a single computation.



CHAPTER 1. INTRODUCTION 5

1.4 Research Objectives

The overall goal of the research in this thesis is to explore the concept of phase-based
adaptivity in DLB as explained in the previous section.

More specifically, the objectives of the study are:

e To develop a conceptual framework for adaptive dynamic load balancing, including

phase-based adaptivity.

¢ To investigate and evaluate the potential benefits of phase-based adaptivity using

simulation.

It is hoped that the study will provide a more systematic view of adaptive DLB in par-
allel computing, reveal some insights on the new approach, and establish some relationship

between the performance benefit and the selected application or machine characteristics.

1.5 Thesis Structure

The thesis is divided into six chapters, including the introduction. Chapter 2 presents
the background studies of the entire work; the tree computation, dynamic load balancing
algorithms in general and the specific algorithms used in this study. It also presents the
implementation of a new DLB approach. The programming environment, that is the
message passing library and the platform used, are also described.

Chapter 3 proposes the conceptual framework of phase-based adaptivity in dynamic
load balancing in the context of parallel tree computation. It introduces the notion of
phase-based adaptivity and the basic concepts involved. It then proceeds to explain the
mechanisms to adapt the DLB algorithm. The chapter continues by positioning the con-
tribution of this thesis in relation to the related work on phases and adaptivity. A simple
formalism for adaptivity performance and some definition of parameters are also intro-
duced followed by the reasons for adopting simulation to investigate the idea at the end
of the chapter.

Chapter 4 is concerned with the design and implementation of the simulator. It first
describes the general parallel execution model and the components of the simulator. This
is then followed by a discussion on the performance model used for the computation and
the load balancing operations, the calibration and validation process.

Chapter 5 starts by presenting the results of three preliminary experiments, whose

objectives are to verify the assumption made on the workload pattern, select the type of
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the traversal method and experiment the sensitivity of the DLB interval. It then proceeds
by defining the metric used to assess the improvement gained from phase-based adaptivity
and the experimental plans for parametric and algorithmic techniques. The results of the
parametric approach for two applications and one machine parameters are then analysed.

Chapter 6 presents the summary and evaluation of the work, and highlights the insights

gained from the whole study. Possible future plans are also detailed in this chapter.



Chapter 2

Background

This chapter serves as a background knowledge to the research presented. It discusses the
dynamic load balancing algorithms of interest, the application concerned, and the parallel
environment of the experimental work.

The chapter starts by introducing the parallel environment in which the experimental
work was carried out (in Section 2.1). It then proceeds to discussing the nature of the
application used, that is tree-structured computation, in Section 2.2. Section 2.3 explains
in detail two DLB algorithms used in the next two chapters; Diffusion and Dimension
Exchange Method. Two other algorithms which are related to the work are also described.
Section 2.4 discusses the components of a DLB algorithm. Finally, Section 2.5 discusses

the implementation of an alternative hybrid algorithm, the Loadserver.

2.1 Characteristics of the Parallel Environment

The experimental platform used in the study consists of the Cray T3D supercomputer, at
Edinburgh Parallel Computing Centre (EPCC), and the Message Passing Interface (MPI)
standard.

The Cray T3D [21] is composed of 512 DEC Alpha 21064 processors each rated at 150
MHz with 64 Mbyte of memory, giving an aggregate memory of 32 Gbyte and providing
peak performance of 76.8 Gflop/s. The nodes (each node comprises two processing ele-
ments) are arranged in a 3-d torus. All arithmetic operations, both integer and floating
points, are performed using 64-bit arithmetic.

MPI [78] is a portable, public-domain library standard message passing, which adopts
most if not all, common practices from existing communication libraries. A detailed

discussion on the implementation of MPI on the T3D is available in [6]. MPI defines func-
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tions for sending messages from one process to another (point-to-point communication),
for communication operations that involve groups of processes (collective communication,
such as reduction, scatter, gather etc.), and for obtaining information about the envi-
ronment in which a program executes (enquiry functions). The communicator construct
combines a group of processes and a unique tag space can be used to ensure that commu-
nications associated with different parts of a program are not confused. The rich support
of a collective operations is one of the key feature of MPI. It makes coding easier and less
error-prone. Another advantage is performance — using a single collective communication
is faster than using a sequence of point-to-point operations.

For convenience in programming, MPI also provides virtual topology; a high-level
method for managing process groups without dealing with them directly. One can con-
ceptualise processes in an application-oriented topology using general graphs and grids.
Virtual topology highlights the main communication patterns in a communicator by a
‘connection’, but at the same time allowing any process within a communicator to com-
municate with each other.

Facility such as virtual topology is not supported in PVM (Parallel Virtual Machine),
the main alternative public domain standard message passing library [73]. Relatively
minimal support of collective operations is provided on PVM. For these reasons MPI was
preferred over PVM for this work. An overview of message passing library, which includes

MPI and PVM, and other portable libraries, is available in [52].

2.2 Parallel Tree Computation

Tree computation starts with a single node, the root, which represents the complete prob-
lem to be solved. Nodes are dynamically generated and consumed, through expansion and
solving operations. Thus the computation can be viewed as a dynamically growing (and
contracting) tree of nodes. Fach node forms an independent unit of work, hence multiple
nodes can be executed in parallel. Since the shape of the tree is typically irregular, unbal-
anced and unpredictable, static load balancing is not feasible and dynamic load balancing
techniques are commonly employed. Nodes are stored in task queues at each processor
and are migrated between processors to improve load balance.

There are many applications which exhibit tree characteristics. Those which use divide-

and-conquer and branch-and-bound algorithms are typical examples of tree computation.



CHAPTER 2. BACKGROUND 9

2.2.1 Divide-and-conquer

Divide-and-conquer (D&C) algorithms recursively partition a problem into smaller sub-
problems until the sub-problems are small enough to be solved directly. The solutions of
the sub-problems are combined into a solution for the original problem.

D&C can be used to solve many problems, including mergesort and the well-known
fractal image — the Mandelbrot set [61]. The Mandelbrot set is defined as follows. A series
of points on the complex plane can be computed using a function f.(z) = z? + ¢, where ¢
and z are a complex number and complex variable, respectively. Repeated application of
the function determines whether each point is a member of the set. A point is said to be
in the set if it remains bounded, otherwise it is not, that is when the value gets farther
away from 0. The image of the set can be made by plotting the points on the screen.

The computations at all points are independent, so the problem is highly parallelisable.
D&C can be exploited by recursively dividing the plane into stripes or quadrants. Since
points near the middle of the plane need more iterations there is a need for dynamic load
balancing.

Various authors (e.g. [16, 46, 53]) show that D&C algorithms can be defined by four
functions: divide() splits a problem into subproblems, leaf{) determines whether a problem
is small enough to be solved directly, solve() computes the results of a ‘small’ problem, and
combine() combines the results of sub-problems. Once these functions are defined, it is
possible to execute a complete D&C problem in parallel by means of a generic kernel which
controls the subdivision and combining, and organises load balancing, communication and
synchronisation as required. This implies that load balancing system can be developed for
D&C which are independent of any one specific application, an important pre-requisite

for the work in this thesis.

2.2.2 Branch-and-bound

Branch-and-bound (B&B) algorithms represent an important technique in solving combi-
natorial search problems [26]. The basic scheme is to reduce the problem search space by
dynamically pruning unsearched areas which can not yield better results than solutions
already found. Branching is performed by recursively partitioning the problem into sub-
problems. A lower bound is computed for each subproblem to determine whether or not
further exploration of the subproblem is worthwhile. In other word, B&B is an exhaustive
tree search over the solution space using methods aimed at reducing the size of the search

tree.
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Searching algorithms that use B&B techniques can be characterised by the search
heuristics used in searching for a solution. The search heuristics determine determines the
order in which the algorithm conducts the search in the tree. Popular heuristics include
best-first and depth-first searching. Best-first B&B requires large amounts of storage of
intermediate subproblems for non-trivial problem instances, which may either deteriorate
its performance by use of secondary storage or prohibit its use altogether. Depth-first
B&B has a modest storage requirements, but may search a larger part of the search tree,
and never searches a smaller part than best-first search.

A typical B&B problem is the Traveling Salesman Problem (TSP). Here a salesman
must visit n cities, returning to the starting point, while minimising the total cost of the
trip. There are several solutions to the problem. One of the best known is due to Little
et al. [49]. Another example of B&B problem is the Knapsack Problem [51].

Just as with D&C, generic interfaces have been devised for B&B problems. Corre-

sponding kernels then organise the parallel implementation details [42, 74].

2.2.3 A Comparison Between Parallel D& C and B&B

Both D&C and B&B generate a tree of independent tasks which may be executed in
parallel. Kernels for these applications control the traversal of this tree, executing the
interface functions at nodes of the tree. In both cases the structure of the tree is typically
irregular and data-dependent, hence it is impossible to determine a priori how the tree
node computations may be scheduled amongst the processors. For this reason dynamic
load-balancing techniques are used, based on run-time evaluation of the loads on different
processors. In this respect the load balancing problems of D&C and B&B can be seen as
identical.

There are, however, some important differences in detail.

e D&C requires two phases, decomposing problems and composing results, so the tree

structure resulting from the computation must be maintained. This is not necessary

for B&B.

¢ B&B must maintain global data to be shared among all tree nodes (i.e. the lower

bound [26]), whereas there is no such requirement for D&C.

e In D&C the task tree is normally traversed in depth-first order so as to minimise
memory requirements [53], whereas alternative orders, such as best-first, can be

applied to B&B.
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e Termination of the distributed computation is easily detected for D&C when the re-
sult of the root problem is obtained, whereas B&B requires more complex distributed

termination detection.

Despite these differences, it is possible to use essentially the same load balancing

techniques for these applications.

2.3 Dynamic Load Balancing Algorithms

We are interested in DLB schemes which seek to minimise total execution time of a single
application on massively parallel systems. Such parallel systems often allow sharing of
data through explicit message passing (e.g. MPI and PVM systems).

Numerous load balancing schemes with different characteristics have been proposed in
the literature [9, 11, 13, 40, 48, 50, 56, 71, 86, 89, 85, 82, 81, 84], of which two have been
studied extensively; Diffusion and Dimension FExchange Method. These two algorithms
will be described in detail in this section since they are used in the subsequent chapters.
Two other algorithms will also be described — a random algorithm and an adaptive DLB
method. Between them these four algorithms introduce many of the key component of

DLB and are representatives of the much wider range of algorithms in the literature.

2.3.1 Diffusion

In Diffusion [11, 82, 85] work is moved periodically from heavily loaded processors to more
lightly-loaded ones. Since processors use load information only from neighbours and tasks
are migrated only between neighbours, both the information domain and migration space
are local. Each processor performs load balancing operations independently, leading to a
diffusion of work throughout the machine.

Several variants of diffusion have been implemented; one major distinction is between
sender-initiated diffusion (SID), in which a migration is initiated by a heavily-loaded pro-
cessor and recejver-initiated diffusion (RID), in which a lightly-loaded processor initiates
the load balancing. RID is reported to outperform SID and is anticipated to be suitable
for large parallel systems [82].

We describe a detailed algorithm for RID as it appears in [82] — the same principle
applies to SID. In RID, the balancing process is initiated by a processor, 7, whose load
drops below a threshold Lyow. The average load of processor i and its neighbours, L;,

is then calculated. If processor ¢’s load, L;, is below the average load by more than
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another threshold, Lipyesnoid, the execution proceeds to the next load balancing phase, i.e.
calculating the neighbour’s excess load (if any). Each neighbour j is assigned an excess

weight w; as follows:

L‘—IZ' 'fL‘>IZ',
wj:{ J Ly

0 otherwise.

The total excess weight for all neighbours, W;, is also computed,

J
W; = Z w;
7=1

The amount of load requested by processor ¢ from neighbour j, ¢;, is:

8 = (Li - Li);vv—‘i

The load requests are sent to appropriate neighbours. A neighbour will transfer a
maximum of half of the amount of the current load for each request. This is to avoid
instability and reduce the effect of information aging.

All processors inform their near-neighbours of their load levels and update this infor-
mation throughout execution. The accuracy of the load information highly depends on the
frequency of the load update. If the frequency is high the accuracy of the load estimation
increases, so does the overhead. The reverse is true for low frequency. Clearly, there exist
a tradeoff between the quality of load information and the overhead in achieving it.

Since diffusion make load balancing decisions asynchronously, in overlapping balancing
domains, the balancing operation may suffer from an inaccurate load information, i.e.
information aging. A processor may end up transferring an excessive or insufficient number
of tasks from one processor to another. This situation is called processor thrashing which
will lead to system instability. An adaptive RID strategy which automatically adjust the
load diffusion factor according to the system load fluctuation may help rectify the problem
[9].

Diffusion has several benefits: it is entirely distributed, thus avoiding bottlenecks; it
requires communication only between neighbours; and it has provably-good long-term
balancing properties [11]. On the other hand, movement of work is slow; for instance an
idle processor with no heavily-loaded neighbours can not immediately obtain work, even

if there are heavily-loaded processors elsewhere in the system.



CHAPTER 2. BACKGROUND 13

W N@NO A @
m@\w@w%Q_m
@f @[ | @

Q) (2)® W@

e —_
) <
N T =) o**l

G| @ | 6| @
L@)@G}@@Nnﬁ_ﬁa
@ @l @l @l

Figure 2.1: Edge colouring for a 2-d torus.

2.3.2 Dimension Exchange Method

Dimension Exchange Method (DEM) was initially proposed as a load balancing algorithm
for the hypercube structure [11]. In DEM a single load balancing operation consists of
log p pairwise balancing steps, where p is the number of processors in the machine. Each
balancing step corresponds to each of the log p dimensions. All node pairs of the same
dimension exchange their load information and average out the number of tasks. The
whole system is balanced after a single load balancing iteration.

Hosseini et al. generalised the method to non-hypercube topology based on edge
colouring of undirected graphs [34]. With edge colouring, the edges of a given graph are
coloured with some minimum number of colours such that no two adjoining edges are of
the same colour. A dimension is then defined to be a collection of all edges of the same
colour. Figure 2.1 shows an example of a colour graph of a 2-d torus. The maximum
colour is four. Hence, all processors complete one load balancing operation after four
consecutive exchange steps.

For a non-hypercube topology, DEM can no longer yield a uniform workload distri-
bution in a single iteration, but will eventually converge to a uniform distribution [34].
The number of iterations required is linearly proportional to the total processors for the
chain and to the dimension order k for k-ary n-cubes topology, where k is the number of
processors along the dimension. To rectify the problem Wu and Shu [84] proposed a direct
method which balance the load in one iteration by allowing each node to obtain the global
system state through sum reduction operation.

Xu & Lau parameterised DEM according to the amount of workload to be migrated

between processor pairs [88]. They refer to the parameter as the workload exchange
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for colour := 1 to max_colour do
node-pair, i and j, exchange load information /; and {;
if (lz - l]) > 1 then
send | (Al - Al;) | tasks to node j
endif
if ({; - I;) > 1 then
send | (Al; - Aly) | tasks to node ¢
endif

endfor

Figure 2.2: Dimension exchange algorithm.

parameter, A. Optimal A (or A,,¢) leads to the fastest convergence of a balancing process.
Equal splitting of the total workload (i.e. A, = 1/2) between processor pairs only yields
optimum results for the hypercube structure. For other topologies and network sizes the
value of A, varies. For a mesh, Ay is 1/(1+ sin(7/k)) and for torus is 1/(1+ sin(27 /k))
where k refers to the maximum dimension length of the topology.

Figure 2.2 shows (with some notational changes) an integer version of DEM algorithm
for an arbitrary topology, as given in [84]. For integer workloads absolute load balance
can not be achieved; a pair of processors is regarded as balanced if the difference is no
larger than one, a very small difference in the case of real workloads.

Although the theoretical results showed the supremacy of GDEM! over Diffusion,
GDEM is anticipated not to scale well for very large parallel system [82]. This is because
the theoretical studies do not take into account the global synchronisation overhead which

incurs every time the load balancing is invoked.

2.3.3 Other Example DLB Algorithms
Random Algorithm

Random algorithms studied by several authors are quite simple and effective. There are
two variants of random algorithms; a newly created task is sent to a randomly chosen
processor in the system [8, 71] or a task is migrated only when the workload reaches
above a certain ‘heavy’ limit as in [20]. The major advantages of this strategy are its

simplicity and topology independence. No (or minimum) load information needs to be

!Since this thesis adopts the generalised DEM algorithm - in terms of the topology and the exchange
parameter - we use GDEM as our abbreviation for the rest of this thesis.
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maintained, nor is any load information sent to any processors. Results have shown that
random algorithms have a respectable performance [71]. However the lack of locality may
cause a performance degradation due to large overhead and communication traffic since
the probability of the task being transferred to remote processors is high. This is especially

true for a random algorithm which migrates task immediately upon creation.

An Adaptive DLB Method

The adaptive DLB method by Xu and Hwang [89] illustrates an adaptive system which
adapts two important DLB parameters, namely the frequency of load information update
and threshold value. The latter determines whether a processor is heavily loaded.

The system uses a dedicated processor which acts as a load information collector
that periodically collects and broadcasts load information. The frequency between two
successive updates is varied according to the current system load variation. The duration
between two updates is referred as the time window.

The transfer and location decisions are completely distributed and are based on two
heuristics; a processor with minimum load or the one which is the least migrated to so far
is the candidate for receiver. The adaptive threshold value and the migration domain are
determined based on a local or global range policy. A local policy dictates migration to
immediate neighbours only and the threshold value is the average load among neighbours
including itself. Global policy consider the whole system load.

Although the load information collector periodically updates the load information to
all processors, the load balancing decision may not be based on accurate load information.
Any load changes that occurs within a time window are only known to the processors that
are involved, but not the rest. For this reason the balancing decision may not be correct,
let alone optimal.

Melab et al. [55, 56] extend the method by adding the local delay apart from having the
global delay. These values determines when the processor should send its load information
and when the information collector should broadcast the system state. This is to finely

detect the changes in the local load which leads to the system load fluctuation.
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2.4

Components of a Dynamic Load Balancing Algorithm

Typically a load balancing algorithm consist of three main components [3]:

(i)

Information policy.

The information policy specifies what information about the states of other proces-
sors in the system is to be collected, when the information is to be collected, from

where and how it is to be collected.

The information space defines the domain from where the load information is to be
collected. A global information space dictates the maintenance of the whole system
state. One example algorithm is the adaptive DLB systems proposed by Xu and
Hwang above. Many algorithms gather load information from directly connected
neighbours (e.g. Diffusion and GDEM). These algorithms are said to have a local
information space. There exist algorithm which does not use any load information
at all; an example includes Random algorithm. The frequency of gathering the load
information (also referred as update frequency) can be periodic (e.g. Diffusion) or

adaptive (as in the adaptive DLB approach).

Most load balancing require evaluation of load on a per-processor basis. The measure
of load can be some weighted tasks or just a simple queue length. A study in [47]
concluded that a simple metric (e.g. queue length) is as effective as the more complex

metric such as the CPU or memory usage.

Transfer policy.

The transfer policy determines the condition under which migration should take

place and whether the processor is a sender or a receiver.

Many algorithms use a threshold-based transfer policy [43, 20]. These algorithms use
the knowledge of the individual load of the processor in deciding whether transfer is
necessary. No exchange of state information is required. A task will be transferred

if the load is greater than the threshold value.

RID and the local adaptive DLB method (by Xu and Hwang above) use the average
load between neighbours to initiate the migration. GDEM algorithm uses a relative
transfer policy — migration only occurs when the load difference between a pair of

processor is greater than one (assuming the workload is integer).
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(iii) Location or placement policy.

The location policy determines the ‘transfer partner’ to which a task should be as-
signed. The region of the transfer could be just the neighbouring processors, or a
cluster of processors or the entire system. The first two are typically referred as local

migration space while the third as having global migration space.

The rule used to select a partner ranges from a simple random probability to a
designated processor. Random algorithms transfer the task to a randomly chosen
processor. If the destination processor is itself the task will be processed locally.
GDEM, on the other hand, transfers the tasks to the designated processor pair in
each dimension. In RID the underloaded processor receives tasks from any of the

directly connected neighbours whose load are in excess.

The load balancing activities may be centralised in a single processor or distributed
among all the processing elements that participate in the load balancing process. In a
centralised approach, a dedicated node gathers global information about the state of the
system and assigns tasks to individual nodes. In other word, the three mentioned policies
are executed by a single node. With a fully distributed approach each node executes its
own scheduling policy by exchanging state information with other nodes; all the three

policies are fully distributed.

2.5 A Hybrid Approach to DLB

Most algorithms to date follow a purely centralised or purely distributed approach. A
common example of the centralised approach is a master-slave model [59]. A dedicated
process, the master, distributes the workload to the slave processes which carry out the
actual computation. When idle, a slave requests more work from the master. Such a
system will have limited scalability because of bottlenecks at the master. Any centralised
approach will tend to suffer from similar problems.

For this reason most dynamic load balancing follows a purely distributed model. A
common technique in a purely distributed approaches is diffusion. The problem with this
approach is it may lead to sub-optimal load migration decisions. A heavily-loaded process
cannot offload to a lightly-loaded non-local process, hence a process may remain idle for a
substantial time, even when there are surplus tasksin the system. This effect is particularly

significant for tree-structured computation because in both cases the computation starts
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from a single task. Thus, global balancing may be relatively slower to achieve compared
to the centralised approach.

Since both centralised and distributed approaches have limitations in terms of perfor-
mance, recent researches have begun to consider hybrid approaches, aiming to combine
the scalability of distributed models with the better load information of centralised models
[2,83]. Ahmad and Ghafoor [2] presented a semi-distributed approach which partitions the
network into independent symmetric regions centred at some control points. The central
points are schedulers which optimally schedule tasks within their spheres. The schedulers
consider task migration to other spheres only if the load of the most lightly loaded node
in its sphere is greater than the threshold limit, threshold-1. Tasks are migrated based on
a significant difference (i.e. threshold-2) between the accumulative load of the local sphere
and that of remote sphere.

Wu and Kung [83] proposed an algorithm in which individual processes execute task
subtrees locally in depth-first fashion, but maintain a global pool of tasks from which a
process out of work can obtain a further task. Under certain simplifying assumptions they
show that their algorithm is optimal in terms of the number of tasks which need to be
migrated, but the maintenance of the global pool is costly and difficult to implement on
a distributed memory machine. However, a subsequent simulation of a related algorithm
by Nash et al. on a scalable shared memory platform showed good scalability [57].

Wu and Kung’s work shows that the distributed scheduling of tasks in combination
with a limited centralised component has the potential for scalable performance, though
the specific algorithm is unrealistic for the current generation of distributed memory com-
puters because of the complexity of the centralised function.

The remainder of this section describes a novel hybrid algorithm, the Loadserver, which
also combines distributed scheduling with a centralised component, but in a very different
way; the central component is extremely simple and lightweight. The aim is to make it
feasible for implementation on the current generation of distributed memory machines
while benefiting from the better load balancing made possible by global load information.
This is consistent with the conclusion of Eager et al. [20] that very simple load balancing

policies using small amount of information are the most promising.

2.5.1 Loadserver Algorithm

The Loadserver (LDSV) algorithm was originally proposed in [14] where an initial im-
plementation was described. The distributed characteristic of the LDSV algorithm is
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captured through its autonomous local decision making in scheduling the workload. Fach
process maintains its own task queue, from which it selects tasks to execute and where
newly divided tasks are placed. Migration of tasks between queues is facilitated by a
centralised LIS which maintains information about the lightly loaded processors. LDSV is
an example of an asynchronous load-balancing algorithm where each processor performs
balancing operations discretely based on their own local workload distributions and invo-
cation policies. Note that in Chapter 4 we describe the implementation of the synchronous

version of LDSV for the purpose of experimenting adaptivity.

Load Information Server (LI1S)

)

@ (b) ©

LIGHT_LOAD HEAVY_LOAD LIGHT_NODE
/—\
(d)
NEW_TASK e
Worker 1 Worker 2 Worker 3
(lightly loaded) (heavily loaded)

Figure 2.3: The principles of the Loadserver algorithm.

In LDSV one process maintains the LIS while all other processes run a worker process
which executes the application kernel. The principle of the algorithm is shown in Figure
2.3. When a worker’s load falls below a specified ‘light’ threshold it sends a LIGHT_LOAD
message (a) to LIS, which enqueues the sender’s id. After executing a task each worker
If so it sends a HEAVY_LOAD
message (b) to LIS, which dequeues the process id of a lightly loaded worker and returns a
LIGHT_NODE message (c). A task is then migrated to the lightly loaded worker using a
NEW_TASK message (d). Offloading is repeated until either the worker’s load falls below

checks whether its load is above a ‘heavy’ threshold.

the heavy threshold or there are no more lightly loaded processes, when the LIS replies
with NO_LIGHT _NODE. Initially the root task is executed on a selected worker and the
process id of the other workers are queued in LIS. After this task is subdivided the load
balancing mechanism ensures work is distributed to all the workers.

Thus, by using central load information, LDSV makes better load balancing decisions
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Figure 2.4: The process and thread structure of the D&C systems.

compared to purely distributed approaches. In particular, a lightly-loaded worker will
always be serviced if there is surplus work in the system. The cost of maintaining this
information is small: LIGHT_LOAD and HEAVY_LOAD messages are short, a lightly-
loaded process notifies the LIS only once, a heavily-loaded node stops trying to offload as
soon as a NO_LIGHT _NODE message is received, and the computation load of the LIS is
very small (enqueue/dequeue). Most scheduling is done locally, leading to good scalability,
with the extra benefit of preserving a high degree of data locality.

2.5.2 Implementation

LDSV has been incorporated in a D&C kernel using C with MPI to aid portability. To ex-
ploit maximum concurrency within the kernel it is desirable that the worker’s functionality
be divided among three separate processes as shown in Figure 2.4. Frecutor executes the
interface functions at the tree nodes, the message handler deals with incoming messages
containing tasks, their associated data and other system information, the load balancer
carries out load balancing operations. These processes need a common address space en-
abling them to share task queues and other data structures required by the kernel. Since
MPI has no lightweight thread facility and permits only one process per processor, an
in-house co-routine package [27] was used to provide this service. All processes are iden-
tical except the first and second process, which acts as a front-end and LIS processes,
respectively.

The task queues are double-ended; local scheduling operates in depth-first LIFO order,
to minimise memory usage. Task migration uses breadth-first FIFO order, thus choosing
the task likely to be largest.

Termination detection is straightforward. When the result of the root task is received
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the computation is complete and a FINISHED message is broadcast.
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Figure 2.5: The speed up of Loadserver algorithm for Mandelbrot problem.

The LDSV algorithm was tested on the Cray T3D with the Mandelbrot problem with
image size 512 x 512. Maximum iteration for each pixel is 1000. Figure 2.5 shows the
speedup achieved by the LDSV algorithm. Each point represents the results of the number
of processes instead of processors. Total worker processes is always lesser by two since one
processor acts as LIS and the other the front-end. Note that the graph uses a log-log scale
for x- and y-axis. Log-log plot captures the qualitative changes and relative performance
well for small and large processor sizes when compared to the commonly used linear plot

[10]. Hence, all the graphs on performance in this thesis used log-log plot.

2.6 Summary

In this chapter, several different existing dynamic load balancing algorithms for distributed-
memory computers have been discussed. The load balancing components and the appli-
cations of interest were also described.

The chapter concludes with the implementation of a hybrid approach which combines a
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centralised information and location policy, and distributed scheduling policy. Loadserver
is an attempt to find a tradeoff between the better load-balancing decisions enabled by
global information and migration, and the consequent overheads. The LIS provides an
inevitable hot-spot but it is a very lightweight process and messages to and from it are
short and relatively infrequent. All decisions in regards to transfer are done locally, aiming

at maintaining scalability.



Chapter 3

Phase-based Adaptive Dynamic

Load Balancing: A Framework

This chapter introduces the notion of phase-based adaptive dynamic load balancing and
provides a more systematic view of the area by means of the proposed framework.

The chapter is organised as follows. Section 3.1 explains and motivates the use of phase-
based adaptivity. Section 3.2 provides a simple formalism for adaptivity performance and
points to future experiments. Section 3.3 compares the approach with existing related
work, both on phases and adaptivity. Section 3.4 discusses practical issues that may arise.

Finally, Section 3.5 justifies the method of further study.

3.1 Phase-based Adaptivity: Concepts

In this section we introduce three basic concepts in phase-based adaptivity: the workload
phases, transitions and the types of adaptivity. We illustrate our idea by reference to
tree-structured computation as generated by D&C and B&B algorithms (detail discussion
can be found in Section 2.2). Our discussion is based on the assumption that the workload
of the tree computation evolves in an idealised manner, that is a consistent increase fol-
lowed by a consistent decrease in total workload forming a ‘bell-shape’ pattern. Practical
difficulties with this assumption are discussed in Section 3.4 and Chapter 5. We then
highlight that the tree computation can be divided into distinct phases and each phase

has different load balancing requirement and objective.

23
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Figure 3.1: The workload phases of tree structured computation.

3.1.1 Workload Phases

The execution of a tree application typically produces a workload which evolves from one
phase to another. Below we illustrate how phases can be identified in such application.
Suppose a tree application is executed on p processors and that at time ¢ there are
altogether n(t) nodes available for execution; thus n(0) = 1, since the computation starts
with the root task. It is possible to identify three main workload phasesin the computation

(see Figure 3.1).

(i) Phasel

During this phase the machine cannot be fully utilised, since n(t) < p. In this period
the main objective of DLB is to migrate newly created tasks as quickly as possible,

so as to make use of all processors. We call this the filling phase.

(ii) Phase II

When n(t) > p there is enough work for all processors potentially to be busy. Un-
balanced growth of the computational tree means that some processors become idle
while there is still a large amount of work to be done. In this time the main objective
of DLB is therefore to ensure that all processors remain busy or at least that idle

periods are kept short. We call this the steady phase.

(iii) Phase III
Eventually the workload becomes so low that it is not possible to use all processors;

as in the filling phase, n(t) < p. There seems little benefit to be gained from load
balancing during this time. We call this the emptying phase.



CHAPTER 3. PHASE-BASED ADAPTIVE DLB: A FRAMEWORK 25

We will argue that for tree-structured computation there is a case for considering
load balancing in three distinct stages: a fast workload distribution for the filling phase,
maintaining the processors busy for the steady phase, and no load balancing for the
emptying phase. It should, however, be emphasised that the ability to adapt a DLB at
predictable stages depends critically on the knowledge of the application as generating a
tree. Our above argument would not apply, for instance, to general purpose distributed
processing, where prior knowledge of pattern of workload is not feasible. Qur approach
involves recognising the patterns or regularities of workload and using this knowledge to

change the behaviour of a DLB algorithm to optimise performance.

3.1.2 Transitions

As defined above there are three workload phases, hence we can identify two transition
points (Figure 3.1). The first transition, ¢, marks the phase change from filling to steady
phase, while the second transition, {5, between steady and emptying phase.

In principle, both #; and t5 are detected when the number of tasks reaches the total
number of processors; that is when n(t) > p for ¢ and n(t) < p for t;. However, in practise
the best transition point may not be exactly at n(t) = p. It can be at any point earlier
or later than n(t) > p or n(t) < p. Hence, we introduce two variables, ¢; and ¢z, which
may be used to adjust these transition points. Thus, the transitions are encountered when
n(t) = 1 x p and n(t) = ¢z X p, for t; and ¢z, respectively. The values of the two variables

are real positive numbers and the best values are determined experimentally.

3.1.3 Types of Adaptivity

Based on the types of adaptivity found in the literature, we classify the mechanisms for

adaptivity into two categories: parametric and algorithmic adaptivity.

Parametric Adaptivity

Parametric adaptivity simply means that the values of the load balancing parameters are
adapted to the dynamically changing system workload. Below are the parameters which

are typically adjusted:

e Workload threshold. The workload threshold determines the workload state of a
processor. Some algorithms, for example, LDSV and Gradient Model [48], differen-

tiate the processor state into two; light and heavy (or low- and high-water-mark in
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Gradient Model). Hence, we have light and heavy thresholds. The heavy threshold
usually indicates that the load balancing algorithm should proceed to a migration

phase while the light threshold indicates the node requires (more) work.

Xu and Hwang [89] use an adaptive threshold to determine if a processor is heavily
loaded. The value of the threshold is periodically calculated using system load
information, which is broadcasted on an adaptive time window basis. A similar idea
on adaptive threshold can be found in [68]. The values of the threshold changes
according to the large and fast load changes of distributed systems. Dasgupta in
[13] used an adaptive threshold which adapts to the limited bandwidth of the shared

bus architecture.

e Migration factor. The migration factor controls the amount of load to be migrated.
It can be a ‘fraction’ of the total workload or a single task count. GDEM aims at
equally balance the workload. Hence, it requires ‘fraction’ of the heavy processor’s
load to be transferred to its light processor pair. LDSV migrates a single task at a

time since its objective is only to ensure that no processor is idle.

Adaptive RID strategy in [9] uses an adaptive migration factor which attempts to
avoid thrashing problem due to information aging which stems from a long update

interval. They refer to the migration factor as adaptive diffusion factor.

e Load balancing interval. The interval is defined as the ‘duration’ between two load
balancing invocations. Wikstrom et al. [80] use an interval of time to control the
frequency of invocation. This frequency is determined based on the estimated time
of the total execution time, both during the present state and the perfectly balanced

state.

For application such as the tree computation, time interval may not be applicable
since the tree workload consist of distinct indivisible nodes. An interval of the
number of nodes is more appropriate [42]. Assuming that the interval is i, a processor

will invoke the load balancing after every ¢ nodes.

The key idea in using the parametric approach in the phase-based technique is to
ensure the objective at each phase is achieved by means of adjusting the values of the
DLB parameter(s).

Ensuring a fast load distribution during phase I suggests the use of a low interval value,
possibly one. If the migration factor is to be adapted, this may mean that a small number

of tasks ought to be migrated (for example a single task). If the workload thresholds are to
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be manipulated, a low value of the heavy threshold (e.g. one) may be appropriate so that
the heavy processor can quickly off-loaded the task. A low value of the light threshold is
recommended too, for example a value of zero, possibly, to quickly receive the load. The
basic idea behind the low values of DLB parameter is to minimise the idle time.

During the steady phase, there is less need for load balancing, therefore, the frequency
of the DLB invocation ought to be reduced. This can be done by increasing the interval
or the heavy threshold. Using the latter may incurs the extra cost of load evaluation.
So, increases the interval is probably to be preferred when possible. A larger value of
migration factor may be necessary to reduce the level of load imbalance.

During the emptying phase the interval (or the heavy threshold) can be set to infinity
(or in practise the value of MAX_INT) to avoid invoking the load balancing completely.
Manipulating the migration factor, however, will not give the disabling effect.

It may well be that adapting any one parameter may not lead to the best performance.

Perhaps the combination of a few (or all the parameters) may yield the best results.

Algorithmic Adaptivity

In algorithmic adaptivity completely different algorithms or different DLB policies (e.g.
receiver-initiated followed by sender-initiated policies) are used during a single program
execution.

We shall now illustrate the use of algorithmic adaptivity in the context of parallel tree
computation by making use of the knowledge of phases defined earlier. During the filling
phase the DLB algorithm must facilitate rapid migration of work. The local information
and migration space of Diffusion is quite restrictive, whereas the global information and
migration space of LDSV are more effective.

This can be simply demonstrated in the case that all node executions lead to expansion.
Suppose that the diameter of the underlying communication network is D and the degree
(or the fan-out) of the computation tree is f (i.e. each node expands to give f children).
Suppose also, for simplicity, that the computation proceeds in ‘rounds’, with each processor
executing one task (if it has one) and then carrying out its load balancing operations. With
LDSV, in the first round (f — 1) tasks can be offloaded to distinct processors, whatever
the topology, allowing f processors to expand during the second round. It is clear that
after log¢p rounds p tasks will have been generated and also that all processors will now
have one task, so the machine is fully utilised. Thus, LDSV is optimal in terms of the

number of rounds in the filling stage. One may expect other DLB algorithms with a global
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Figure 3.2: Cost-benefit of load balancing.

information and migration space to be similarly optimal.

With Diffusion, work moves through at most one hop per round, hence (D) rounds
are needed to fill the machine. Clearly, this is a worse result than for LDSV, especially
for larger values of f on D. Other approaches with a local migration space will perform
similarly.

During the steady phase, however, the advantage appears to swing towards Diffusion.
In LDSV | when all the processors are busy, they continue to make requests to LIS after
every task execution, without ever gaining any benefit from load balancing, and causing
worst case contention at the LIS. By contrast, the distributed, local nature of Diffusion
avoids global hot-spots; more significantly, receiver-oriented Diffusion will make requests
only when work is actually needed, significantly reducing the overheads of load balancing.
Similar results can be expected from other local algorithms, especially receiver-oriented.
This accords with the observation by Eager et al. who provided evidence for the potential
algorithmic adaptivity [19]. They reported that sender-initiated algorithms outperformed
receiver-initiated at light to moderate system loads, whereas receiver-initiated algorithms
were preferable at high system loads. For their case, perhaps the initiation policy could
be adapted according to the system load level.

During the emptying phase, it is impossible to keep all processors busy; if possible,
load balancing should be switched off, saving the overheads. More general, load balancing
should only be carried out when its benefits outweigh its costs, as shown in Figure 3.2.
In the early stages of a tree computation there is a high benefit from load balancing, but
as time goes on this decreases to zero. On the other hand there is always a cost for load

balancing, conceptually shown as constant. Thus, there will be a stage in any computation
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Figure 3.3: The characteristics of adaptive dynamic load balancing algorithms.

where further effort in load balancing no longer brings any net benefit. Discontinuing load
balancing at this stage should improve performance.

We conclude that different load balancing algorithms could be used in different stages
of a parallel tree computation; an algorithm with global information and migration space
for the filling phase, a local algorithm during the steady phase and no load balancing
during the emptying phase.

Our new framework described in this section is best seen as a further extension to
and a refinement of the present work on adaptive DLB. The relationship between the
framework with the existing load balancing work is depicted in Figure 3.3. Notice that
the upper part of the classification is actually the taxonomy which appeared in Chapter
1 (Figure 1.1).

In our framework, we refer to all non-phase-based adaptive DLB as periodic approach,
where the DLB algorithm is invoked periodically through out the execution. Clearly, there
is a potential for further characterisation of this class of DLB algorithms, which is beyond

the scope of this thesis.
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3.2 Parameter Definitions and a Simple Formalism

This section attempts at providing a simple formalism for the performance of a tree ap-
plication using the phase-based adaptivity approach described in the previous section.

The performance of a parallel tree application is a complex issue; a function of many in-
terrelated parameters. These parameters can be categorised into three categories, namely,
machine, application and load balancing parameters. Apart from these, we also include a
discussion on parameters which are used in detecting transitions.

For the machine parameters we consider:

e Varying processor numbers, p, which determine the size of the network. The value

of p is an integer of a power of two, in the range of 1 to 512.

e Varying network performance or speed, s, which is relative to the communication
performance of the T3D. This parameter is defined precisely in Section 5.3.2. Intu-
itively, a value of s improve network performance by a factor of s compared with

the T3D, i.e. increasing s gives a faster network.
In order to support various kinds of task trees. We have the following parameters:

o The level of depth, d, with the root node starting at depth one. In general, the

depth of a tree determines the total workload.
¢ The node grain size, g, which is measured by the number of floating point operations.

e The fan-out, f, which may be fixed or variable. In theory this can be variable, but

we have only used fixed fan-out which can either be 2, 4 or 8.

o The degree of tree imbalance, m, which is in the range of 0.0 to 1.0. An imbalance
of 0.0 means the tree is completely balanced while an imbalanced of 1.0 implies the

worst case of imbalance.

Detailed discussion on application parameters can be found in Sections 4.2.3 and 4.3.1.

For the load balancing we define the following parameters:
e The load balancing interval, i.
e The low workload threshold, I.

e The high workload threshold, h.

e The migration factor, r.
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All the above DLB parameters have been described in Section 3.1.3.
We shall now define the parameters used for detecting phase transition (further discussion

can be found in Section 3.1.2):

¢ The condition for transition L is n(¢) > ¢1 X p, where ¢; is a positive real value relative
to p. For instance, ¢y values of 0.5, 1.0 or 1.5, mean that the transition occurs when

the machine is half full, totally full or more than totally full, respectively.

¢ The condition for transition II is n(?) < ¢z X p, where ¢ can be any positive real

value. The larger ¢; is the earlier the transition occurs.

Assuming that a parallel tree application runs in a non-adaptive setting using the above
defined parameters, we could then formalise the total execution time of that application,

Tn 4, as the following:

Tna = itna ( P, S, dvagvmv i,h,l,T ) 3.1
SSANEACAEU AN (3.1)
machine application loadbalancing
The total execution time in an adaptive environment, T4, depends on the adaptive
mechanism used. For parametric adaptivity all DLB parameters may hold different values

during each phase. The above equation then becomes:

Tpa= tpa (p.s, d,f,g,m, cr,co, (ir,in.is) (ha,ho,hs) (I, lo,0s) (r1,72,73) )
(3.2)
where the subscripts of the four DLB parameters refer to phase I, II and III. Note that the
above equation assumes that a DLB algorithm has high and low threshold values. If the
algorithm has only one threshold, only one of the parameters (either [ or h) will appear
in the equation.
Due to the wide range of parameters, for this thesis we limit our investigation to one
DLB parameter only, that is the load balancing interval, . The rest of the DLB parameters
will not be adapted. Thus, Tp4, can be reduced to;

TPA: lpa (pv‘Sv dvagvmv €1, €2, (7:177:2700) h,l,T) (33)

where ¢; and 25 are the best interval for phase I and II, respectively. ¢3 assumes infinity

which has the effect of disabling the algorithm during phase III.
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For comparison purposes we use the same formalism to express the performance of
algorithmic adaptivity, T'44, though recognising that algorithms are not parameters in the
same way as the rest of the parameters. Thus, the performance of algorithmic adaptivity

can be expressed as:

Tag= taa (p,s, d,f,g,m, c1,c2, (a1,i1,h1,0,7m1) (ag,i2,ha,ly, ) (nil) )
(3.4)
where a1 and ag, are the two different DLB algorithms used during phase I and II, re-
spectively. Each algorithm assumes its own DLB parameters ¢, h, [ and r, as defined in
the original algorithm. The last parameter “n#l” means no DLB algorithm is used during
phase III.
As a conclusion, we can say that the adaptivity performance, T4, assumes either the

performance of parametric or algorithmic adaptivity;

Ty=Tpa or Tg=Tas (3.5)

3.3 Related Work

The idea of phase-based adaptivity is the combination of two existing notions; phases and

adaptivity. Hence, we separate the related work according to these two concepts.

3.3.1 Phases

There exist several works in the literature which make use of phases to optimise perfor-
mance. Some of these identify phases based on the different stages of computation which
exist in the application. There is also work which does not assume any knowledge of
the application a priori, but phases are identified by means of program trace after the
computation ends.

An example application which has a clearly identified phases is parallel ray-tracing
in Mistral in solid modeling system [14]. The execution of the application proceeded in
two distinct stages or phases (see Figure 3.4 (a)). In the first phase a distributed octree
representation of a solid is built using a D&C method with dynamic load balancing. In
the second phase the ray-traced image of the solid is produced by a further dynamically

load-balanced D&C method, using a quadtree decomposition of the image space. Between
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program Mistral program Particle-in-Cell
computation1l } Phase I loop
computation2 } Phase II computation1l } Phase I
loop
endprogram computation 2 } Phase II
endloop
endloop
endprogram
(a) (b)

Figure 3.4: (a) Clear-cut phases of Mistral. (b) Nested phases of PIC.

the phases there is a redistribution of data to improve the performance of the second
phase.

The system is similar to our proposed framework in that it involves two distinct phases,
both based on dynamically load balanced tree computation (i.e. D&C). However, there are
two significant differences. Mistral has two separate tree computation, each with its own
DLB approach, our framework considers phases within a single tree computation. The
two phases are clearly evident in the application and are explicitly within the source code.
In our framework, only one computation is visible to the programmer and the underlying
DLB system switches between phases depending on run-time load observations. Mistral’s
phases can be considered explicit, in our framework they are implicit.

Clearly, Mistral represents a wide range of program which have a clearly identified
phases with different pattern of parallelism. From the above observations it should be
clear that this is not the scenario with which our framework is concerned.

Problems involved in load balancing multi-phase parallel computation are addressed in
[79]. The example here is a Particle-in-cell (PIC) application which is used for simulating
highly rarefied particles that flow in the presence of an electromagnetic field. A high level
view of the application is shown in Figure 3.4 (b), showing two main phases, with the
second nested within the first phase. The two phases have quite different load balancing
requirements and involve different load metrics. A load balancing scheme is proposed
which balances both phases together, by considering a vector of the loads for individual

phases and using the Diffusion algorithm.
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‘ Application/System ‘ Key Features ‘

Mistral Algorithm-based phase identification (explicit phase).
Compile-time phase detection.

Dynamically load balance in each phase.

PIC Algorithm-based phase identification (explicit phase).
Compile-time phase detection.

Dynamically load balance at the end of both phases.

MARS Program trace-based phase identification (explicit phase).
Post-execution phase detection.
Statically load balance in each phase.

Our work Workload-based phase identification (implicit phase).
Run-time phase detection.
Dynamically load balance in each phase.

Table 3.1: A comparison between our approach and the related work on phases.

As with Mistral the phases are explicitly identified within the application and the same
differences from our framework apply.

MARS (Metacomputer Adaptive Runtime System) is a framework for minimising the
execution time of distributed application on a wide-area-network [24, 25]. MARS utilises
application-specific information by identifying the program phases to improve task-to-
processor mapping. An ofl-line analysis is made from previous execution runs to build
a task dependency graph from which phases can be identified. A phase is defined as
a sub-graph of the dependency graph which performs a closed subtask, such as loops
or frequently called function-bodies. Each phase is statically mapped to the underlying
processor network, but there may be remapping between phases implemented by data
redistribution. A cost model is used to evaluate whether the cost of remapping will be
offset by improved performance in the subsequent phase.

In the case of MARS, phases are detected based on run-time measurements, as in our
system. A major difference is that the phase detection is done off-line from the program
trace, leading to an optimal static schedule. No dynamic load balancing is ever involved.
MARS is therefore not suitable for the unpredictable problems which are handled by our
framework.

Table 3.1 summarises the similarities and differences between our approach and the
related work on phases.

Special mechanisms for the early stage of a parallel tree computation (equivalent to

our filling phase) are described in [62, 67]. Both systems use the Iterative Deepening
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A* algorithm [66] to solve the 15-puzzle problem. In [62], newly expanded node are
always migrated to free processors, though no indication is given of how it is known which
processors are free. Since this implies a global migration space, it supports our hypothesis
that global migration is useful for this stage. In [67] the root node is broadcast to all
processors which redundantly expand the first few levels of the tree, obtain the same set
of subtrees ny, ny, ... During the main phase of the computation, processor ¢ then starts
to expand its sub-tree n;, np4y, ..., N2pys, ensuring that all processors expand different sub-
trees for most of the computation. It is worth noting that in both the above systems there
is a very large processor array (16 K-node SIMD and 1024-node MIMD, respectively)
which makes the effects of the filling phase quite significant. Neither of these systems
explicitly identifies an emptying stage, though [62] includes an adaptive mechanism in its
main computational phase which reduces the number of processors involved towards the

end of the computation.

3.3.2 Adaptivity

A number of instances of adaptivity in DLB have been described in previous chapters,
specifically in Sections 1.2, 2.3.3 and 3.1.3. We further describe two work that are related
to ours. The first is an adaptive system which bears some similarities in terms of classifying
the adaptive mechanisms. The second is adaptivity in the context of programming.

Recognising that no single scheduling algorithm performs well in all situations, Ra-
mamritham and Zhao proposed a higher level control of scheduling for distributed real-time
system [64]. This added layer is referred as meta-level control, which controls the selection
of a local scheduling algorithm, a global scheduling algorithm and the section of schedul-
ing parameters. The local algorithm is used for scheduling tasks on a node, while global
scheduling is to control cooperation among the nodes.

Their work is similar to ours in the sense that both distinguish the mechanisms of
adaptivity, into parametric and algorithmic-related mechanisms. However, the context is
very different, and the work is not dealing with phases which are identified at run-time by
workload measurements.

All the work on adaptivity described so far focuses on improving the performance —
aiming for a faster, more reliable and stable system. The work by Gouda and Herman
[29] attempts to reason about the behaviour of adaptive programs. They formalised the
definition of adaptivity and present some logical properties of the definition and pro-

vide operators for combining adaptive programs. They first study an adaptive sequential
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program and later adaptive distributed program. Their targeted applications include a
system of distributed processes that communicate via a shared bus, a distributed system
for traffic control and a resource allocation program to minimise the amortised cost of
resource allocation.

The work is similar to ours in that it considers aspects of adaptivity between known
phases, based on run-time measurements. The emphasis, however is very different, the
work focuses on methods for constructing adaptive programs and ensuring correctness in
the transition between phases. Issues of performance and dynamic load balancing are not

in consideration.

3.4 Some Practical Implications

The discussion so far has been based on an idealised workload represented by the bell-
shaped curve in Figure 3.1. In practise it is unlikely that the workload curve will be as
clear-cut; in particular the early and final stages of the curve might not be monotonic,
making detection of precise transition points more difficult.

A further difficulty in detecting transition points arises because of the need to evaluate
the total workload in the system. Since most DLB algorithms do not maintain global load
information, some additional facilities must be introduced, adding to the complexity of
transition detection.

Assuming that transition points are correctly detected there remains the challenge of
implementing the transitions. For parametric adaptivity there appear no major problem
in principle, but for algorithmic adaptivity there may be problems of making a clear
transition between DLB algorithms, such as supporting different definition of process

groups and communication patterns, and ensuring any outstanding messages are handled

properly.

3.5 Use of a Simulator

The previous section indicates that the implementation of phase-based adaptivity is not
straight-forward and will involve tackling non-trivial problems. Before engaging in such
implementation it is therefore important to be sure that there will be significant perfor-
mance benefit, particularly as the implementation of phase changes is likely to introduce
extra overheads. Clearly, it is not possible to gain such preliminary quantitative data by

means of parallel implementation! Therefore, we are left with two methods of continuing
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the study, analytical modeling or simulation.

Analytical modeling can gain quick results if the problem is tractable. Unfortunately,
the complex behaviour of the parallel execution of a DLB algorithm is difficult to capture
analytically, and this approach does not seem promising.

Simulation, on the other hand, is a well-tried technique which avoids the need to
resolve the implementation issues noted above, and does not require a full analytical
model of the parallel computation. It also permits the performance on different hardware
configurations to be obtained by parameterisation, and can study the effect of varying
workload by appropriate parameterised models. Simulation also gives greater control over
some of the behaviour of the system under study. Some of the tree application (e.g.
B&B) produces a different search space from one run to another [65]. In simulation
such behaviour can easily be controlled by the use of artificial tree which generates the
workload in a deterministic manner — the same shape, depth, fan-out and hence the same
total workload. Furthermore, simulation allows unlimited number of factors which affect
performance to be monitored (or detail measurements to be collected) without any adverse
side effect.

Practical problems such as limited CPU time and interactive runs for parallel machine
also make simulation an attractive alternative. The maximum number of processors al-
lowed on the T3D is only 32 processors (i.e. small scale processor size). Medium-scale
(64 - 128) and large-scale (256 - 512) processor sizes must be submitted as batch jobs.
The latter can only be run on a specified day. Clearly, such limitation is inconvenience for
extensive experimentation.

The next chapter describes the design, implementation and validation of a suitable

simulator.



Chapter 4

Simulation: Design,

Implementation and Validation

This chapter presents the design and implementation of a simulator for the purpose of
carrying out systematic experiments on the various aspects of phase-based adaptivity
described in Chapter 3. Factors such as varying topologies, different load balancing algo-
rithms, varying workloads and different cost models are also considered.

The chapter begins with a description of the general model in Section 4.1 and the
components of the simulator in Section 4.2. This is then followed by a discussion on
the performance models used and the calibration of the models in Section 4.3. Section
4.4 details the validation process. Finally, Section 4.5 discusses the limitations of the

simulator.

4.1 The Model of Parallel Execution

The general model of parallel execution adopted in the simulator is similar to the BSP
computational model. In BSP [54] computation is divided into a sequence of phases, called
supersteps. Each superstep is delimited by a barrier operation, within which each processor
performs local computation and global communications independently. The results of the
communication in a superstep are used in the subsequent superstep. In this thesis the
term iteration will be used instead of superstep.

Figure 4.1 shows the outline operation of the simulator while Figure 4.2 depicts a
sequence of operations that may occur in an iteration (note that some processors may not

execute any computation in a specific iteration). The local computation in this case is the

38
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while not finished do
compute ()
load balance ()
barrier ()

end

Figure 4.1: An overview of the simulator.

execution of tree computation and the global communication is the information exchange
and data migration used in dynamic load balancing. This synchronous approach is simple

and easy to simulate, thus making a study on adaptivity tractable.

Po|  compute | load balance | idie [barrier
P1 [ load balance | idle | barrier |
P2 | compute load balance | barrier |
P3| compute load balance | idle | barrier |

Figure 4.2: Processor operations in a single iteration.

The drawback of this approach is that it assumes a synchronous DLB algorithm. Any
asynchronous DLB algorithm, e.g. the LDSV, must be transformed to an equivalent syn-
chronous version. This is achieved by adding barrier synchronisation which inevitably
yields poorer performance compared to the original asynchronous version. In short, a syn-
chronous version induces a larger overhead. Despite this, the pattern of results for adap-
tivity experiments is expected to be similar, whether a synchronous or an asynchronous
algorithm is used. The amount gained perhaps may be larger for the synchronous model
due to the extra gain from the larger overhead, but this should not invalidate the results.
The assumption is that the effects of adaptivity are essentially independent of the model

adopted.
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4.2 The Load Balancing Simulator

The simulator simulates the synchronous execution of a DL.B algorithm on the Cray T3D
with tree-based computation as the workload generator. It is written in C and MPI, with
a parameterised performance model based on the T3D performance model. It supports
a range of topologies and is capable of simulating trees with varying depth, degree and
imbalance. This constitutes the generality of the simulator as a load balancing testbed.
In order to support the above capabilities, the simulator has been cleanly implemented

in four separate modules with each having its own variants. The modules are:
¢ the topology,
e the load balancing,
e the tree computation, and
e the cost module.

The remainder of Section 4.2 describes the implementation of the first three compo-

nents and Section 4.3 discusses in detail the cost models used.

4.2.1 The Topology Module

The topology module supports five different topologies; chain, ring, 2-d mesh, 2-d torus
and hypercube (Figure 4.3). They are from the k-ary n-cubes family, where n refers to
the dimension of the network and £ is the number of processors along each dimension
[12]. A ring is a one-dimensional structure with k& processors along its only dimension.
An n-dimensional hypercube (or binary n-cube), on the other hand, is a mesh with two
processors in each dimension. These two topologies define the extremes, or the special
cases, of k-ary m-cubes. Stripping off the wrap-around connections of a ring and torus
result in a chain and a mesh, respectively. The family of k-ary n-cubes forms the basis of
several commercial parallel computers. Examples include the hypercube-structured Intel
iPSC/860 and NCUBE/2, the two-dimensional mesh-structured T9000 and the three-
dimensional torus Cray T3D [77].

The above five topologies were supported using two main data structures, namely an
array of array of neighbouring processors and a structure of topology parameters (Figure
4.4). The indices of the array were used as the processor ids, while the sub-arrays kept
the processor ids of the neighbours. The simulator adopts the MPI virtual topology style

in labeling the processor id, that is column-major ordering [30]. The topologies in Figure
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Figure 4.3: Topologies supported in the simulator.

4.3 follow the MPI processor labeling convention. The characteristics of a topology, such
as type (e.g. 2-d torus, hypercube etc.), the total number of processors in the network,
the length of each dimension and the maximum number of neighbours in the network, are
kept in a single data structure.

A load balancing algorithm which is topology-dependent (e.g. GDEM) requires a
layer that maps the algorithm requirement to the topology interconnect. For example,
GDEM on the 2-d torus uses the knowledge of the four neighbouring processors during
each balancing operations. The four neighbours correspond to the four colours in the edge-
colouring method (described in Section 2.3.2). Balancing in each dimension (or colour)
involves all processor pairs in the same dimension. A separate routine is needed to identify

these processor pairs as the balancing operation proceeds.
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typedef struct { /* topology parameters */
int  type, /* topology type */

P, /* total processors */

X, /* total processors along x */

v, /* and y dimension */

k, /* maximum between x and y */

neighbours; /* maximum neighbours */

} to, *to_ptr;

typedef struct { /* topology main structure */
int neig[MAX_NEIG]; /* directly connected neighbours*/
} proc, *proc_ptr;

proc p[MAX_PROC]; /* all processors in the network*/

Figure 4.4: Data structures that support the topologies.

4.2.2 The Load Balancing Module

The load balancing module supports two different load balancing algorithms, GDEM
and LDSV, which have been described in Chapter 2. Both were implemented using the
synchronous model.

The key issue in simulating these algorithms sequentially is how parallelism can be
successfully achieved. The main idea is to ‘execute’ the load balancing operation of each
processor in turn. However, the implementation depends on the specific load balancing
algorithm. Below are the description on how GDEM and LDSV are simulated. The

algorithms exhibit a different level of complexity and simulation characteristics.

Generalised Dimension Exchange Method (GDEM)

In the real implementation of GDEM, each processor calls the topology setup routine
during the initialisation stage, i.e. prior to executing any computation. It then executes
the for loop in Figure 4.5 to do the balancing, by pairing itself with its partner of the
same colour, exchanging the load information and migrating the excess workload (if any).
The pairwise balancing is repeated for every colour (or dimension).

The simulated GDEM (Figure 4.6) is very similar to the real version except for two
aspects. The first is that it has to have a module to support the topological requirement

of the algorithm (see comments in Figure 4.6), which in the real version is provided by
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procedure Real Generalised_Dimension _Exchange (pid)

1:= pud
for colour := 1 to maz_colour do { load balance each dimension }
J = get_partner (1) { partner in the dimension }

exchange_load_information (¢, 5)
calculate_load _difference (i, 5)
if load difference > 1 then

if load (i) > load (j) then

migrate_task (i, j) { migrate packed of data }
else migrate_task (j, ©)
endif
endfor
endprocedure

Figure 4.5: The real Generalised Dimension Ixchange algorithm.

procedure Simulated_Generalised_Dimension_Exchange ()
for colour := 1 to maz_colour do
1:=0
getfirst_pair (4, j) { topology support routine }
while not finished visiting all pairs do  { parallelise balancing operation |}
exchange_load_information (¢, 5)
calculate_load _difference (¢, 5)
if load difference > 1 then
if load (¢) > load (j) then
migrate_task (i, j)
else migrate_task (j, )
endif
get_next_pair (i, §) { topology support routine }
endwhile
endfor
endprocedure

Figure 4.6: The simulated Generalised Dimension Exchange algorithm.
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the MPI virtual topology facilities. The second involves the parallelisation of the load
balancing. This is achieved using a while loop which traverses through each processor
pair of the same colour, simulating the parallel execution of pairwise balancing in the for
loop of the real version. The processor pairs involved in load balancing are determined
prior to each balancing operation using function get_first_pair (i, j) and get_next_pair (i, j).
Thus, the only differences between the simulated and the real GDEM are the additional
topology routines which have to be implemented, and the parallelisation of the localised

pairwise load balancing.

Loadserver (LDSV)

In the real synchronous Loadserver algorithm (Figure 4.7) 1, each processor checks its load
status and if the load is below a ‘light’ threshold it informs the Load Information Server
(LIS), provided that it has not already done so. If the load is above the ‘heavy’ threshold,
the processor will keep on off-loading its load as long as there exists a ‘light’ processor.
Once completed it waits for instructions allowing it to proceed from processor 0. This
broadcast ‘proceed’ to the next stage does not exist in the original algorithm. Since the
model employed is a synchronous approach, it forces LDSV to be synchronised.

The simulated LDSV does not differ radically from the real version (Figure 4.8). The
section for testing ‘light’ load remains the same. The only section that differs is when
‘heavy’ processors repeatedly off-load tasks to ‘light’ processors. In the real execution,
all ‘heavy’ processors execute the loop “while heavy_load (pid)” in Figure 4.7 in parallel;
with each processor making a request to LIS. Each will then continue making requests
if it is still in a ‘heavy’ state. Simulating this behaviour sequentially requires the visit
to each ‘heavy’ processor be carried out in rounds until all processors know that either
the LIS is empty or all the heavy processors becomes ‘light’. In order to reduce the
sequentialisation effects, the first processor to be ‘executed’ is chosen at random each time
the load balancing is invoked.

Notice that the loop “while not receive_proceed” does not exist in the simulated
version. This is simplified since there is no actual message passing library is used. The
receiver is costed according to the relevant cost function. One of the main advantages of the
sequential simulation is that the complexities introduced by message-passing programming

are reduced.

!Note that a discussion on the original asynchronous version of the LDSV, including its implementation,
is described in Section 2.5.
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procedure Real Loadserver (pid, acknowledge_LIS)

{ case ‘light’ processor }
if light load (pid) and not acknowledge_lis then
send_LIGHT _to_LIS (pid)
acknowledge_lis := TRUE
else { case ‘heavy’ processor }
finished := FALSE
while heavy_load (pid) and not finished do
send_ HEAVY _to_LIS (pid)
tag-received = receive_reply from LIS ()
if tag_received = LIGHT_NODE
send_task (pid)
else finished == TRUE
endwhile
endif
if pid = 0 then
send_PROCEED _to_all_processors ()

endif
recewwe_proceed := FALSE
while not receive_proceed do { loop for an incoming message }

wait_to_receive_message (message_type)
case message_type of
TASK:
enqueue (task)
PROCEED:
recewwe_proceed == TRUE
endcase
endwhile
endprocedure

Figure 4.7: The real Loadserver algorithm.

In order to support the adaptivity experimentation, the structure definition shown
in Figure 4.9 is employed. The variables t1 and t2 indicate whether the first and second
transition for adaptivity is on, while c1 and c2 are their respective coefficients. The “no_lb”
variable is a flag which indicates whether a load balancing algorithm is to be activated or

not.

4.2.3 The Tree Computation Module

We need to model different kinds of workloads. For the class of computation consid-

ered, this means different kinds of task trees are required. The following variations are
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procedure Simulated Loadserver ()
for i = 0 to P do { assumed light pid exist in LIS }
know_LIS_empty[i] := FALSE

loop_again := TRUE

while (loop_again) do { parallelise access to LIS }
loop_again := FALSE

for all processors ¢ in random order do { parallelise the load balancing }

{ case ‘light’ processor }

if light (¢) and not registered_to_LIS (7) then
enqueue_LIS (4)
{ case ‘heavy’ processor }
else if heavy (i) not know_LIS_empty[:] then
destination := dequeue_LIS ()
if destination <> NO_LIGHT_NODE then
migrate_task (i, destination)
loop_again := TRUE
else know_LIS_empty[i] := TRUE

endif
endfor
endwhile
pO_send_proceedtoall processors ()
endprocedure
Figure 4.8: The simulated Loadserver algorithm.
considered:

o Different degrees or fan-out, f, which may be fixed or varying. Trees of degree 2 or
binary tree (e.g. parallel mergesort), 4 (e.g. quadtree algorithms) or 8 (e.g. octree

algorithms) are common. Within any one computation, this degree is fixed.

e Different amounts of unbalance, m. Balanced trees are easy to simulate (and are in-
cluded for completeness) but DLB is only useful when the workload is unpredictable,

and the tree is therefore unbalanced.
The simulator supports two kinds of unbalanced tree:
(i) A random tree, in which the tree structure is guaranteed to be the same in each
run of the same tree parameters, allowing easy comparison of results.

(ii) An imbalance tree, in which the amount of imbalance is parameterised in the

range of 0.0 to 1.0 (0.0 is fully balanced and 1.0 is completely unbalanced),



CHAPTER 4. SIMULATION 47

typedef struct { /* load balancing parameters */
int i, /* load balancing interval */
t1, /* mark transition 1 and 2 */
£2,
curr_algo; /* the type of algorithm used  */
float ci, /* coefficients for transitions */
c2;
boolean no_lb; /* load balancing is switch off */

} 1b, #1b_ptr;

Figure 4.9: Data structure to support load balancing.

this allows a systematic study of the effects of varying imbalance to take place.
However, the precise shape (and the number of nodes) of the tree may vary on

each run.

o Different total size as reflected in the number of nodes. For a given degree and
imbalance, this is primarily affected by depth. So, we have depth, d, as a parameter,

beyond which no subdivision occurs.

The Unbalanced Tree

The approach to generating both types of unbalanced tree is motivated by the intuition

that the likelihood of dividing decreases as the depth of the tree grows.
Random tree

Each node in the random tree will divide or split if the random number generated is
lesser than the probability function used [58]. One choice of a probability function is a
linear function which decreases with depth. It is possible to have the function to start
decreasing the probability only after a certain minimum depth. In other words, the tree
expands in full till the minimum depth, and only then starts splitting. Figure 4.10 shows
the number of nodes created for different minimum splitting depths, with f = 2. The
total nodes is the minimum when splitting is allowed from depth 0.

The repeatable characteristic is achieved by generating the same random number for a
given node id. The repetitive random number is generated by multiplying it with constant

coeflicient throughout the run. The result is then hashed to get a value within a specified
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Figure 4.10: Total nodes created by the balance tree and the random tree in each depth
(the latter with different minimum depth of splitting).

range. The random number is then compared with the value of the probability function.
If it is smaller, then child node will be created. This repeatable characteristic ensure

correctness and ease of experimentation.
Imbalance tree

The basic idea behind the imbalance tree is that the root node and the right-most
child node always do the splitting. The left child will only split if the random number
generated is lesser than or equal to the specified degree of imbalance [15]. The imbalance
value of 0.0 means that all interior nodes will split resulting in a completely balanced tree.
An imbalance value of 1.0, on the other hand, produces the worst case of imbalance where
the tree is slanted towards the right side with only two children at each level. Figure 4.11
shows the total nodes created for varying imbalance with f = 2.

Since the tree produced may differ in size from one run to another, it is important
that a measure of the program’s performance should take into account the size of the tree.

Clearly, the simple execution time is inadequate. An alternative is to use the execution rate
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Figure 4.11: Total nodes created by the imbalance tree for varying degrees of imbalance
in each depth.

| Nodes | Time | Nodes/sec

36195 | 0.8306 | 43576.761
36695 | 0.8436 | 43497.746
37025 | 0.8499 | 43562.366
36695 | 0.8426 | 43548.770
36695 | 0.8426 | 43548.770
37025 | 0.8491 | 43603.493
37025 | 0.8495 | 43583.683
36075 | 0.8272 | 43609.150
37237 | 0.8545 | 43577.656
37025 | 0.8501 | 43553.843

| 1162 [0.0273 | 111.404 |

Table 4.1: Variation of total nodes, time and speed (the last row being the difference
between the largest and the smallest values).
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(i.e. speed), that is the number of nodes executed per second which could normalise this
difference. Table 4.1 shows a sample of 10 runs for the worst case of variation. Notice that
the percentage difference for the total nodes is 3.12%, the total execution time variation is
3.2%, while the speed variation is only 0.26%. Our other experiments have shown that the
speed variation is always less than 1%. Hence, the speed is a more appropriate measure to
be adopted, since it has a normalising effect on the variation produced by the imbalance
tree.

Most of the experiments in this thesis used the random tree because of its repeatability.

The imbalance tree was used only when experimenting the effects of imbalance on the

performance.
typedef struct { /* tree parameters */
int tree_type, /* balance or random */
max_depth, /* maximum tree depth */
min_depth, /* point to start splitting */
operation, /* either stack or queue */
imbalance; /* degree of tree imbalance */
} tr, *tr_ptr;
typedef struct { /* individual subtree */
int degree, /* degree of expansion */
num_tasks; /* tasks created so far */
float load; /* load created by the tree */
s_ptr stack; /* stack of tree nodes */

} tree, *tree_ptr;

tree t[MAX_PROC]; /* array of subtrees */

Figure 4.12: Data structures that support the tree computation.

As in the topology module, the tree computation is supported using two data struc-
tures, namely an array of sub-trees and tree parameters describing the characteristics of
the tree concerned (Figure 4.12). The tree array corresponds to the array of processors,
that is each element in the tree array represents the subtree created by the corresponding
element in the processor array. A doubly linked-list was used to maintain the subtree. The
linked-list can be used as a stack or queue using the standard stack or queue operations.
This is to support the two basic tree traversal techniques, namely local depth-first and lo-

cal breadth-first traversal. Local depth-first traversal processes nodes on any processor in
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a last-in-first-out order of stack while local breadth-first uses the first-in-first-out order of
queue. For simplicity we refer to ‘local depth-first’ as ‘depth-first’ and ‘local breadth-first’
as ‘breadth-first’ in the rest of this thesis.

In both techniques, the nodes nearer to the root are the candidates for migration; that
is nodes at the bottom of the stack for depth-first and nodes at the the front of the queue
in the case of breadth-first. Parallel depth-first execution tends to expand the right side
of the tree (or higher siblings) first since these nodes are pop-ed out from the stack first.
The reverse is true for parallel breadth-first.

Simulating the parallelisation of the tree computation is simpler than for load balanc-
ing. Local computation does not involve any other processors. Parallelisation is achieved
by executing the node (or nodes of a sub-tree) of each processor in turn. Each node is
retrieved from a local queue. If the node is a nonleaf node, it will be further divided.
Otherwise the node will be discarded. In both cases, the node carries the same amount of
floating point operations. If there is no node left, the simulator continues by ‘executing’

the subtree of the next processor. The same process is repeated for all processors.

4.3 Performance Modeling and Calibration

Modeling the performance of a BSP-like computation is simple. The time required to
complete a superstep or an iteration is the time the last processor takes to complete its
assigned tasks. The barrier synchronisation between iterations ensures that all processors
start an iteration at the same time, and that processors that complete early sit idle waiting
for the rest to finish.

If t;; is the time processor j takes to complete its tasks during iteration ¢, the parallel

runtime on p processors is
I
p
Tpar =) [f?_af(tij) + 1, sy]

=1

where T, is the time to perform barrier synchronisation and I is the number of iterations.

The total cost of a processor in an iteration prior to executing the barrier is

ti; = Tep(tg) + Ti(i)

where T, is the time spent to execute tree computation, while 73 is the time spent

executing the load balancing operation. The total runtime cost model now becomes
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I
Tyur = S l0lax(Top (i) + Til 1))+ )

=1
In order to calculate the above execution time, an array of costs is used to keep track
of the cost of each processor in each iteration. At the end of each iteration, all costs are
set to the cost of the maximum processor. The total individual cost for compute, load
balancing, synchronisation and idle time are also accumulated as the simulation proceeds.
Idle time is the waiting time before executing the barrier. It does not include the time

processors wait for work during load balancing.

The rest of this section describes the modeling of each of the components of the above
formulation; compute, communication and the computation used in the load balancing

and synchronisation.

4.3.1 Modeling the Cost of Computation

We assumed that the actual computation cost of executing a node, Ty, is equivalent to

carrying out ¢ floating point operations, for both the leaf and the non-leaf node;
TS =g X Tf[

This allows for experimentation on the effects of varying g. It is also possible to vary the
node execution time to be proportional to data size, though, this has not been used in the
experiments in Chapter 5.

The cost of executing a leaf node, T}, is some house-keeping cost which is a constant

value, T., and the cost of solving a single node;
T =T.+T,

The non-leaf node assumes the same cost as the leaf node, but with an additional cost of

expanding f children. Therefore, the total cost of a non-leaf node, T,;, can be written as:
Tnl:Tc‘|’Ts‘|’TeXf

The cost of a single node expansion, T,, on the T3D, is 17.792 usec, while that of the
floating point operation, T, is 0.172 psec. Basic house-keeping for each node is 7.433

pLsec.
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‘ Operation ‘ Cost ‘
Solve T =gxTy
Leaf Ti=T.+1T,
Non-leaf Tu=T.-+T,+T.x f

Table 4.2: Computation cost models.

Table 4.2 summarises the cost models used for the tree computation.

4.3.2 Modeling the Cost of Communication

The simulator uses two point-to-point communication functions to support the load bal-
ancing operation. Both functions, MPI_Send () and MPI_Recv (), are blocking operations.
Only one collective communication routine is used - the MPI_Allreduce (). The main func-
tion of the Allreduce is to collect the status of each processor and to distribute the total
count, as well as acting as a barrier.

Howell in [35] proposed models to characterise the performance of MPI point-to-point
and collective communications. The following two sections describe the fundamental idea

behind the modeling of the two types of communications. Also discussed is the recalibra-

tion of the MPI_Allreduce model.

Modeling the Point-to-point Communication

In Howell’s model, Ts.,q is defined as the delay incurred on the sender when calling
MPI_Send (), while T¢., is the delay on the receiver executing MPI_Recv (), when the
sender and receiver start at the same time. If the message has already arrived before
MPI_Recv () is called, the delay is Tyecpmin- A delay on the receiver can be computed
using the combination of these three models, that is, by taking the maximum of the
relative timing when the sender posted the message, and the receiver initiated waiting for

that message. In other words, the delay on the receiver is

recetver_delay = max(R(t) + T _recvmin, S(t) + T _recv)

where R(t) and S(t) are the receiver and sender time respectively, prior to performing the
communication. The simulator adopted this approach in costing the point-to-point com-

munication. Note that the per-hop delay is not accounted for. Most current distributed-
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memory machines, including the T3D, use ‘worm-hole’ routing techniques. Hence, the
delay is negligible [5].

Another type of point-to-point communication used is the ‘ping-pong’ communication
style. The delay on the sender is equivalent to the cost of sending a message and waiting
for a reply from the receiver. This type of communication is common in a master-slave
kind of communication. The minimum cost incurred on the slave for each access to the
master is Tpingpong-

Table 4.3 shows Howell’s cost models, which are used to support the two types of
point-to-point communication. For a more accurate modeling, Howell differentiated the
size of the message into two categories; small and large. A message which is 32 integer
and below is regarded as small and uses the corresponding ‘small’ cost model; the reverse

is the case for the larger messages.

Collective Communication

Initially the simulator was costed using Howell’s MPI_Allreduce model below,
300 + 20 X p + 0.9 X log(p) X data_size

However, the results of the total execution time of the application showed a large overes-
timation compared to the actual measurement, but with a similar shape of curve. Since
the total computational cost is proportional to the number of iterations, improving the
MPI_Allreduce cost model was expected to pull the curve closer to the real measurement.

Hence, the MPI_Allreduce model was recalibrated.

MPI_Barrier ()
start_t = MPI_Wtime ()

for (i = 0; 1 < MAXITER; i++)
MPI_Allreduce ()

local .t = (MPI_Wtime () - start_t)/MAX_ITER

max_local_t = max_reduction ()

Figure 4.13: The code to measure MPI_Allreduce function.

The code used to time the MPI_Allreduce function is shown in Figure 4.13. The pro-
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cesses are first synchronised using the MPI_Barrier (). The barrier only synchronises them
logically, but does not time-synchronise. In other words, they may not start executing the
for loop at the same time. The final time is obtained through a reduction as the maxi-
mum of all p average timing values, one from each processor. Statistical regression [1] was
used to curve fit the actual measurements to Howell’s general model of the MPI_Allreduce

function;

a+bxp+4cxlog(p) X dsize

where a, b and ¢ are the coeflicients that will give results close to the actual measurement
and dsize is the length of the data in integer. The new coeflicients for the improved
model are shown in Table 4.4. The results of the new model are much closer to the real

measurement when compared to Howell’s model (see Figure 4.14).

16384 T T T T T T T T
Improved model <— 1
Howell model -+--.~
T3D result -5~
#
4096 PO
/*//
//*///
7 104 ’
o
0
£
g i
= 256
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1 2 4 8 16 32 64 128 256 512

Processors

Figure 4.14: The original and the improved model with the T3D measurement.

Note that the timing of the MPI_Allreduce on the T3D in Figure 4.14 exhibits an
anomaly, with a slower timing for the odd power of two processors (2, 8, 32, 128, 512).

In these cases, a non-optimised algorithm is employed leading to strange timing results.
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‘ Operation ‘ Small Message ‘ Large Message ‘
Tsend 70 + 3 x dsize | 100 + 0.09 X dsize
Trecow 704+ 5 X size 200 + 0.5 x dsize
Ty ecomin 50 + 3 x dsize 100 4+ 0.4 x dsize
Toingpong 200 + 8 x dsize

Table 4.3: Point-to-point cost models for small and large data.

‘ Operation ‘ Cost ‘
| Tatireduce | 5484 0.42 X p + 93.3 x log(p) x dsize |

Table 4.4: MPI_Allreduce cost model.

This calibration exercise has revealed the existence of a bug in the implementation of the
function for MPI release 1.7a [31]. It is also interesting to note that the MPI_Allreduce
performance on SP2 in [90] on page 18 demonstrates a similar pattern to the T3D’s.
Tables 4.3 and 4.4 summarises the communication cost models used in the simulator,
Howell’s point-to-point communication models and our improved MPI_Allreduce model,
respectively. Tyireduce and Thingpong always use the ‘small’ cost models, since the reduction
operation only involves a single integer flag (i.e. the status of each processor) and the

message sent to (and received from) the centralised resource is also one integer in length.

4.3.3 Modeling the Cost of Load Balancing

In general, there are two aspects of modeling the cost of a load balancing algorithm,
namely, computation and communication. Modeling computation includes modeling the
enqueuing and dequeuing of data that involves in migration, while communication entails
the load information acknowledgement and the actual migration of data. Some algorithms
may require an additional “behaviour” to be modeled. In the case of the LDSV algorithm,
the contention for service at the centralised Load Information Server was explicitly mod-

eled. The modeling of this shared resource is discussed at the end of this section.

Modeling the Computation Cost of Load Balancing

The processing overheads can be modeled based on the number of enqueing or dequeing
operations that occur in a single balancing operation since the processing time does depend

on the number of occurrences of enqueueing/dequeueing. Each migration is a dequeue at
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| Operation | Sender (S) | Receiver (R) ‘
Processing Tor = Ty Thr =Ty
Information Exchange | T, = Tsend Tie = maz(R(t) + T _recomin, S(t) + T recv)
Data Migration Tam = Tsend | Tam = max(R(t) + T recomin, S(t) + T_recv)

Table 4.5: Load balancing cost models.

the sender and an enqueue at the receiver. Hence, the processing time, 7T}, at the sender,
is the total dequeue cost of the data to be migrated, while the cost at the receiver is the
total enqueue cost of the received data (Table 4.5).

A single enqueue of a tree node, T, is 4.015 psec and a dequeue, Ty,, is 0.9 psec.
The enqueue is more expensive since it involves memory allocation and copying, while a
dequeue only manipulates pointer variables.

This method does not account for execution of other load balancing codes such as
migration decision or calculating the load level. The time taken for such operations is
expected to be small. Furthermore, the computation cost of load balancing is assumed to
be relatively small, anyway. However, this might not apply if more complex load balancing

decisions are required.

Modeling the Communication Cost of Load Balancing

The source of communication overheads in load balancing usually originate from load
information exchange and task migration. The message size for information exchange
is usually small compared to tasks migration. The simulator used the same blocking
point-to-point communication operations for both, that is MPI_Send() and MPI_Recv().
The method of costing these functions was discussed earlier in Section 4.3.2. Table 4.5
summarises the load balancing cost models used in the simulator. 7. is the time for

information exchange and Ty, represents data migration time.

Modeling the Cost of Contention in the Loadserver Algorithm

Loadserver algorithm uses a centralised server (LIS) to keep the information on the under-
loaded nodes. This centralised server is a potential source of bottleneck. The contention
at LIS occurs when ‘heavy’ processors compete for service (as discussed in Section 2.5).

It can be modeled in three different ways:
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(i)

(iif)

Optimistic case

No two (or more) processors access LIS at the same time. Let the round-trip time
(i.e. the acknowledgement and receipt of reply), be T,;, and the service time at
LIS be Ts,. The total waiting time, T, of any heavy processor at any time is

Ty =T+ Ts.

Pessimistic case

This case assumes that each processor experiences contention during every access to
LIS. Therefore, contention is proportional to p’, which is the number of contending

processors. Any reply is obtained after T,; + p'T,, time.

Intermediate case

This case takes into account the number of contending processors and the possibility

of delay in acknowledging ‘heavy state’ in the subsequent rounds.

Suppose all heavy processors, p’, send messages during the first round and these

messages are serviced in some sequential order;

— processor 1 receives its reply after T,; + T, since the time of its acknowledge-

ment,
— processor 2 receives its reply after T,; + 27T, and

— processor p' receives its reply after T,; + p'Ts,.

Assuming that some of them actually offload, they will continue sending ‘heavy’
messages in round 2. The messages will be send off staggered at intervals of T,
resulting in no message queuing at LIS. Hence, the heavy processors will be serviced

in T,y 4+ T, time (i.e. back to the best case for round 2 and the subsequent rounds).

In practise, the cost of assessing LIS is dominated by the communication cost, rather

than the service at LIS. T} is the ‘ping-pong’ communication cost (see Table 4.3), which is

208 usec for one integer message size while T, is only 0.775 psec, the cost of dequeing one

integer. Thus, we would not expect the different contention models to give significantly

different results.

A series of experiments to evaluate the three cases of contention were carried out using

a binary tree with depth 16 on a 2-d torus. The results suggest that contention at LIS is

unlikely to have a major effect on performance (Table 4.6). This confirms our hypothesis.
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p Contention Model
Optimistic | Pessimistic | Intermediate

4 18.9396 18.9619 18.9460
8 11.9549 11.9923 11.9673
16 8.5543 8.5980 8.5726
32 6.8079 6.8553 6.8297
64 5.8911 5.9401 5.9146
128 5.4416 5.4914 5.4659
256 5.2429 5.2929 5.2678
512 5.2754 5.3252 5.3005

Table 4.6: The total execution time (in sec) for the three cases of contention at LIS.

4.3.4 Supporting Other Architectures

The main issue in simulating the performance of a parallel architecture is the performance
model. With this in mind, the simulator was implemented to be flexible enough to support
this purpose. Apart from simulating the T3D performance, it is able to simulate IBM-SP2
and a network of Sun Sparc workstations. The performance models for the last two can
be found at [75] and [36], respectively. The general cost model of point-to-point commu-
nication for the three architectures remain the same. The only difference is the constant
values which reflect the performance of the specific machine. For the MPI_Allreduce, the
T3D and SP2 assume the same cost model (again with different constant values), since the
architectures of both machines are similar; a distributed memory parallel machine. The
cost model for the Sun workstations is rather different, since it involves a very different
communication systems.

The IBM-SP2 machine is not at the disposal of the author for any validation or ex-
perimentation to be carried out on it. Hence, all the adaptivity experiments in this thesis

employ the T3D performance model only.

4.4 Validation of the Simulator

If the simulator is to be used with confidence, it is essential that a validation process
is conducted in order to confirm that the simulation results are sufficiently close to the
performance of the real computations which are simulated.

The method used here is to validate the results obtained from the simulator with the

actual performance results on the targeted machine in two stages:
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‘ P ‘Simulated‘ T3D ‘

2 32768 32768
4 16385 16385
8 8194 8194
16 4099 4099
32 20563 20563
64 1031 1031

128 522 522
256 269 269
512 148 148

Table 4.7: Total iteration counts for GDEM.

e iteration count validation; and

e total cost validation.

For the purposes of validation, both algorithms, GDEM and LDSV, were implemented
on the T3D. The implementation of the simulated and the real algorithms were both en-
sured to be very similar. Both algorithms used the same computational model, exactly
the same tree module, and the same topology type. The load balancing module of the
simulator used the same communication structure as the real implementation. The sim-
ulation results were validated against the T3D results in both stages. All validation was

carried out on a 2-d torus, using binary tree of depth 16 (2! — 1 nodes), and performing

load balancing after every node execution.

4.4.1 Validation of the Iteration Counts with the Real Implementation

One of the advantages of the BSP computational style is that iteration counts are
easily obtained. This assists in validation. The validation process started by comparing
the total iteration counts for simulated and real algorithms. For the GDEM algorithm,
the iteration results are exactly the same for all processor sizes (Table 4.7). This is due to
the nature of the algorithm where balancing occurs between two isolated processor pairs.
Furthermore, from our observation, the total communication and migration counts are also
the same. We concluded that the simulator simulated the GDEM algorithm correctly.

Unlike the real GDEM, the real LDSV algorithm is less deterministic because the
offloading of heavy processor(s) may occur in a different order. This different ordering
may yield a slightly different iteration results in every run (as shown in Table 4.8). If the

simulator went through the same execution route, for example balancing involved the same
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p | Simulated T3D
Run 1 |Run2 | Run 3

2 65535 65535 | 65535 | 65535
4 21846 21846 | 21854 | 21852
8 9365 9366 9367 9365
16 4372 4372 4372 4372
32 2119 2185 2185 2185
64 1046 1046 1062 1062
128 523 527 527 527
256 264 266 266 266
512 137 140 140 145

Table 4.8: Total iterations counts for LDSV.

processor each time, then the simulator will produce the same results. For this reason, the
simulated results are not always the same as the real one. However, there are occurrences
where the two are identical (see Table 4.8). In the instances where the results differ, the
difference is very small. On this basis, we concluded that the the LDSV algorithm was

simulated correctly as well.

4.4.2 Validation of the Total Cost with the Real Implementation

Once the iteration counts were correct, the validation proceeded to the second stage —
validating the cost model by comparing the real and the executed simulation times. Fig-
ures 4.15 and 4.16 show the performance of both algorithms for computation dominated
and communication dominated application, with individual node grain size being 10000
and 100, respectively. There is a consistent overestimation of the simulation results for
computation dominated problem. This is largely due to the non-linear cache performance
[18] of the T3D. The simulator, on the other hand, simulates the floating point operation
linearly by multiplying the number of operations with a single operation cost.

For computation dominated problem on 1 to 128 processors, the simulation results
are within 15% accurate from the actual measurements (Table 4.9). Communication
dominated problems, with the same processor range, achieved a lower accuracy, that is
within 25% (Table 4.10). The projected times closely match the measured times for up to
128 processors.

For 256 and 512 processors, the projections deviate far from the measured results,

within 40% and 60% respectively (with greater accuracy for the LDSV algorithm). This
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Figure 4.15: Computation dominated problem

| » | GDEM (%) | LDSV (%) |
1 89.9 87.7
2 97.3 87.7
4 90.6 90.9
8 91.1 91.7
16 86.3 94.1
32 87.6 96.7
64 89.6 98.9
128 94.8 89.9
256 74.9 3.7
512 54.7 71.3

Table 4.9: Percentage accuracy for computation dominated problem.
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Figure 4.16: Communication dominated problem

| p [ GDEM (%) [ LDSV (%) |
1 86.4 90.8
2 74.6 90.8
4 97.5 95.9
8 98.5 96.1
16 83.8 98.0
32 87.7 99.3
64 93.7 93.9
128 82.2 85.8
256 61.8 71.5
512 40.4 51.1

Table 4.10: Percentage accuracy for communication dominated problem.
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‘ ‘ Ring 16 ‘ 16-ary 2-cube ‘ Chain 8 ‘ Mesh 8 x 4 ‘
Xu & Lau 9.82 8.58 9.19 8.25
Simulator 10.66 8.6 9.6 8.6

Table 4.11: Average iterations for optimal A (A,,; = 0.723).

was anticipated because Howell’s models were based on 32-processor experiments. Thus,
the cost models are expected to be applicable for up to medium processor size. The
results for large processors may perhaps be improved by using two different cost models,
one for small and medium, and the other for large processor sizes. However, this requires
remodeling of all point-to-point communication models, which is beyond the scope of this
research. The results of 256 and 512 processors are treated with lesser confidence when
compared to 1 to 128 processors.

To the best of the knowledge of the author, no reported work on MPI simulation
extends up to 512 or even to 128 processors. Howell’s simulation results achieved within a
factor of two for communication dominated program and a factor of ten for computation
dominated [35]. The maximum processor size used is 32. The MPISIM by Prakash [63]
achieved within 20% of the target execution time. However, the processor range is up to 16

only. The two mentioned works (Howell’s and Prakash’s) are both full parallel simulation

engine for MPI. The first is for T3D while the latter is for IBM-SP2.

4.4.3 Validation of GDEM with Published Results

Further validation is possible by comparing the simulation results with published re-
sults available in the literature.

Xu and Lau [88] carried out an experiment for a range of the workload exchange
parameter, A (i.e. A = 0.5 to 0.95), for four different topologies and processor sizes; ring
16, 16-ary 2-cube, chain 8 and mesh 8 x 4. The results of each value of A is an average
total iterations of 100 runs. For a more detailed definition of A, refer to Section 2.3.2.

We reproduced similar experiments using the same topologies and the same range
of A. We limited the number of runs to three since our purpose was simply to verify
the correctness of the simulated GDEM. Similar patterns of average iteration counts, as
tabulated on page 81 of [88] were produced for each lambda value. Using the optimal
lambda, A, = 0.723, for the four topologies, the simulator yielded very close results to
Xu and Lau’s (see Table 4.11). On the hypercube topology, the simulator produced a

uniform load distribution in a single iteration from any initial workload distribution - a
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distinctive characteristic of GDEM as discussed in [11].
The above two experiments act as a confirmation to the correctness and reliability of

the simulator, as well as adding credence to the simulation results.

4.5 Limitations of the Simulator
The following are the limitations of the simulator:

e The simulator adopts a BSP-like model which is synchronous in nature. Any asyn-
chronous load balancing algorithm (e.g. LDSV) has to be transformed to the cor-
responding synchronous version in order to suit the model. This has its toll on the
performance, and surely does not reflect the actual potential of the asynchronous
algorithm. In the synchronous version of the LDSV algorithm, facilities such as a
broadcast to ‘proceed’ and a barrier have to be incorporated. These additional func-
tions contribute to a slower execution time. A synchronous algorithm like GDEM,

on the other hand, benefits from the BSP-like computational model.

e There is a limit in simulating parallelism using a sequential simulator. Algorithms
which are more deterministic and whose balancing domain does not overlap with
each other, such as LDSV and GDEM (especially the latter), have the advantage.
The predicted results are reasonably close. The Diffusion algorithm is different. Bal-
ancing normally involves a subset of processors, and these subset of processors may
overlap with one another. It may be difficult to avoid sequentialisation effect when
simulating such behaviour using a sequential simulator. For this reason, GDEM is

used instead of Diffusion in the subsequent experimental work.

4.6 Summary and Concluding Remarks

This chapter has described the design and implementation of the simulator for the purpose
of evaluating phase-based adaptive dynamic load balancing algorithms for tree applica-
tion. The simulator adopts the iterative BSP-style for simplicity. The main functional
components of the simulator and the cost models were described. Extensive iteration and
cost validation were performed on the simulator resulting in a close predicted results to
the real execution times. The prediction time for both GDEM and LDSV algorithms for
1 to 128 processors is within 25% of the actual timing, and within 40% and 60%, for 256
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and 512 processors, respectively. Although it is a sequential simulator, it is able to achieve
high accuracy - as good as, or even better than, its parallel counterparts in the literature.

Thus, it is now possible to begin systematic performance experiments, with a high
degree of confidence in the reliability of the simulation results. The next chapter takes up

this task.



Chapter 5
Experimental Results

This chapter proceeds to describing the phase-based adaptivity experiments. It presents
the results for parametric adaptivity techniques and establishes the relationship between
the performance improvement and the individual node grain size, the network speed and
the degree of tree imbalance, and discusses the potential algorithmic adaptivity results.
The chapter starts by presenting the results of an introductory experiment which
aimed at verifying our earlier assumptions on the workload pattern of tree computation
and determine the choice of the traversal method (in Section 5.1). This is then followed by
Section 5.2 which explains the experimental methodology and the organisation of phase-
based adaptivity experiments. Section 5.3 presents the results of the parametric approach
and the relationships between the performance gained and the selected application and
machine parameters. Section 5.4 discusses the results of the algorithmic approach. Finally,

Section 5.5 concludes with a summary of results.

5.1 Preliminary Experiments

This section begins by discussing two preliminary experiments which help verify the as-
sumptions made on the workload pattern, and raises the issue of the sensitivity of the
DLB interval. One conclusion of the experiments is to consider only depth-first traversal

for the later adaptivity experiments.

5.1.1 Verifying the Workload Pattern

Recall in Chapter 3 the workload pattern is the shape of the curve formed from the start

until the end of a tree computation. The curve reflects the total workload with respect to

67
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time (see Figure 3.1). It is an idealised workload pattern under the assumption that the
workload grows smoothly in a ‘bell-shape’ curve. In practise, this may not be precisely
true.

Therefore, we set out an experiment to verify our assumption by studying the effects
of the traversal methods on the workload pattern using the two different DLB algorithms,
namely GDEM and LDSV, on three different processor sizes.

The tree type and the tree parameter settings were set to be the same throughout;
random tree with depth, d = 16, and fan-out, f = 2. The same applies to DL.B parameters,
where the interval, ¢, is 16. The grain size, g, of each node is 100, though ¢ is unimportant
in this context since we are only interested in the node count and not the execution time.

The results are as follows. Breadth-first (BF) traversal generates workload pattern
close to a ‘bell-shape’ curve for both algorithms for most processor sizes (see Figures 5.1
and 5.2). The exception is with p = 128 for LDSV algorithm which exhibits a combination
of two bell-curves. Depth-first (DF') follows a similar workload pattern, but the curve is
‘flatter” and more ‘jagged’ (see Figures 5.3 to 5.6).

The smoother curve of BF is due to the early expansion of nodes near the top of the
tree. Nodes higher up the tree have higher probability of expansion compared to those
near the bottom. This leads to a steady increase in the total workload at the beginning
of the execution, that is when the top part of the tree is being executed. This is then
followed by a steady decline of the total load as the computation goes to the bottom,
generating a smooth ‘bell-shape’ curve.

DF produces a different effects because the execution moves right to the bottom of the
tree. Some of the leaf nodes are executed first before the nodes near the top of the tree.
When the leaf nodes are executed, there is no new node generated. The total number of
nodes drops creating a rather ‘jagged’ curves. This is more prominent for smaller p since
the number of nodes expanded is relatively smaller in comparison to the number of nodes
consumed. For the same reason the total maximum number of nodes generated by DF is
always smaller in comparison with BF for the same DLB algorithm and processor size.

Note that the total processors that actively carries out the computation for LDSV
algorithm is p - 1. One processor is reserved as the load information server. Hence, the
total workload grows more slowly than GDEM.

The workload pattern produced by BF and DF traversal confirms the general validity
of our assumption. However, the relatively more ‘jagged’ workload pattern of DF is likely
to make detecting transition points more complex than the relatively monotonic workload

of BF.
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Figure 5.1: The workload pattern produced by GDEM using breadth-first traversal.
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Figure 5.2: The workload pattern produced by LDSV using breadth-first traversal.
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Figure 5.3: The workload pattern produced by GDEM using depth-first traversal for large
and medium processor sizes.

350 T T T T

p=t o

300

250

200

150

Total current tasks

100

50 [

0 1 1 1 1
0 100 200 300 400 500
Iteration

Figure 5.4: The workload pattern produced by GDEM using depth-first traversal for small
processor size.
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Figure 5.5: The workload pattern produced by LDSV using depth-first traversal for large
processor sizes.
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Figure 5.6: The workload pattern produced by LDSV using depth-first traversal for small

processor size.
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5.1.2 Sensitivity of the Execution Time to DLB Interval

Our preliminary experiments also revealed that the performance of a tree computation
is very sensitive to DLB interval (see Figures 5.7 to 5.12). This is true for both DLB
algorithms. For this reason we chose to first investigate the effect of adapting the interval
(instead of other DLB parameters) for our parametric adaptivity technique. The sensi-
tiveness also means that finding the best interval for each phase is important. Section
5.2.2 continues the discussion on the load balancing interval.

Figures 5.7 to 5.9 show the performance of GDEM and LDSV using BF traversal.
Notice that the performance of LDSV is more sensitive to 2. A slightly different interval
(from the optimal) may lead to poor performance. We can give no adequate explanation
for such behaviour. When DF is used the performance gets more stable; see Figures
5.10 to 5.12. A wider range of ¢ yields results which are reasonably close to the best
performance. This degree of sensitiveness has an influence on the choice of the traversal
method. GDEM, on the other hand, seem not to be significantly affected by the different
methods of traversal. Both algorithms perform better using DF traversal; there is a slight

improvement for GDEM and a greater improvement for LDSV.

5.1.3 The Choice of the Traversal Method

We recognise that BE produces a workload pattern which is closer to our idealised con-
ceptual diagram which makes phase detection easier. Nevertheless, we have chosen to use

DF in future experiments. We outline the reasons for our choice:

e LDSV performance is very sensitive to the interval when BF is used and shows a
stable performance with DF. GDEM does not show sensitivity problem with either
method. In short, both algorithms seems to be stable with DF traversal. Further-
more, the total execution time for both algorithms are better for DF and this is

more apparent for the LDSV algorithm.

e DF traversal is widely use in tree search algorithms [44, 45, 67]. Using it means that

we are following the common practice.

e DF consumes less memory space [53]. Moreover, our experience have shown that

obtaining simulation results using DI take a shorter time.

All the subsequent adaptivity experiments therefore use DF traversal method.
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Figure 5.7: The sensitivity of ¢ for breadth-first traversal (p = 4).
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Figure 5.8: The sensitivity of ¢ for breadth-first traversal (p = 32).
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Figure 5.11: The sensitivity of 7 for depth-first traversal (p = 32).
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Figure 5.12: The sensitivity of 7 for depth-first traversal (p = 128).
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5.2 Experimental Methodology

This section starts by defining the metric used to assess the phase-based adaptive tech-
nique. This is then followed by a discussion on the load balancing interval and the de-
scription of parametric and algorithmic experiments. The values of the parameters used
in the experiments are described at the end of the section.

The performance of a parallel tree application depends on many parameters such
as machine, application and DLB parameters. The DLB parameters can be adapted
according to the workload phases to improve performance (as suggested in Chapter 3). In
order to gain insight on the effect of the individual parameter on the performance it is
necessary to fix all other parameters and varies only the one which is under investigation.

Since our preliminary results have shown that the performance is very sensitive to ¢ we
decided to experiment the interval first instead of other DLB parameters (e.g. threshold
and migration factor). This by no means implies other DLB parameters are not important
neither indicates ¢ as the most important. Only the experiments which are related to ¢
were carried out and discussed in this thesis. All other experiments (e.g. threshold and
migration factor) are identified as future work (detailed discussion can be found in Section

6.3).

5.2.1 Performance Metric

We introduce a metric called Improvement Through Adaptivity (ITA) to measure the
improvement gained from our proposed technique. I'TA measures the percentage improve-
ment of adaptive over a non-adaptive approach;

Ina—Ta

ITA=——= x 100,
Tna

where T4 and Ty were defined in Section 3.2. In the above case ITA refers to the total
execution time.

In Chapter 4 we have described that a suitable metric for imbalance tree would be the
rate of the execution (or speed) which normalised the different tree sizes. Speed is defined
as the total number of nodes over time taken to execute those amount of nodes, either in

adaptive or non-adaptive environment. For such cases ITA is defined as follows:

ITA = AT SN 100,
SN A
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where Sy 4 and S4 refer to the total speed in a non-adaptive and adaptive environment,
respectively. For parametric adaptivity ITA refers to the total execution time or the
number of nodes executed per second (i.e. speed). Detailed discussion is incorporated (in
the relevant section) whenever speed is used.

For algorithmic adaptivity the improvement should be measured relative to the best
execution time between the two individual algorithms.

In addition to ITA we also provide (when necessary) detailed measurements of per-
formance, such as idle time, synchronisation time, load balancing time and computation

time.

5.2.2 Load Balancing Intervals

Recall from Chapter 3 that there are three workload phases: filling, steady and emptying.
No load balancing is required for the emptying phase. Hence, we need to determine only
two load balancing intervals, ¢y and 9, for the first and the second phase, respectively.

Since the objective of the load balancing during phase I is to quickly fill the machine,
the most reasonable value for ¢; is one. This means that the load balancing is invoked
after every node expansion. Hence, the likelihood of the machine being full is high. The
total idle time processor waiting for work could be greatly reduced.

For i, we choose as a suitable value the best interval when carrying out the whole
computation in a non-adaptive environment. The reason is that phase II usually dominates
a computation. A single iy is used for the three processor sizes in both adaptive and non-
adaptive runs. The effect of a non-optimal value of ¢35 is belief to be similar in both
cases, hence we do not anticipate any major effect on ITA. The general pattern of ITA
is anticipated to be the same, whether a single i, or a different i3 are used for all three
processor sizes.

Detailed discussion on the method to determine suitable 5 is given in Section 5.3.1.

5.2.3 Parametric Adaptivity Experiment

We have explained the motivation of choosing the interval in investigating the benefit
of adaptivity in Section 5.1.2. This section continues by describing the motivation of
adapting the interval in relation to one machine and two application parameters. We then
outline the sub-experiments involved.

The computational granularity of a node may vary from one application to another.

This motivates us to investigate the effect of varying g. Some of the tree applications
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may have different degree of tree imbalance which produces irregular workload through-
out the computation. Dynamic load balancing is more useful for applications with an
unpredictable workload generation. Hence, we chose to study the effect of the tree imbal-
ance, m. Another parameter of interest is the network speed, s, which is relative to the
communication bandwidth of the T3D. Experimenting how the performance are affected
by different network performance would be beneficial.

For parameters g, s and m we carried out experiments to investigate how ITA varies
with the given parameter, keeping all other parameters fixed. These experiments were car-
ried out at three different processor sizes representing small, medium and large networks,
and for both GDEM and LDSV.

Thus for each of the parameters we carried out the following experiments:
(i) Determine the value of i5.

(ii) Determine ITA for a range of values of the parameters in the following cases:

(a) activating transition I only,
(b) activating transition II only and

(c) activating transition I and II.

From the results, the most beneficial forms of adaptivity are analysed.

5.2.4 Algorithmic Adaptivity

Studying algorithmic adaptivity requires the use of different DLB algorithms at different
stages of computation. Global information and migration characteristics of LDSV facil-
itate work distribution so as to quickly fill the machine during phase I. GDEM’s local
information and migration characteristics help maintain the steady state of phase II. Dur-
ing the emptying phase, effort in load balancing may no longer brings any benefit. Hence,
the load balancing is discontinued.

Because of the relatively poor performance of LDSV (due to artificial synchronisation),
it is not sensible to carry out these experiments at this stage. Further discussion is given

in Section 5.4.

5.2.5 Parameter Settings

As mentioned in Section 3.2 there are three categories of parameters that need to be

considered when running the simulator; machine, application and load balancing parame-
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ters. For each category we reason out the choice of the values made. We also include the
discussion on the phase transition parameters.

The values of the parameters are described below:

e Machine parameters.

We divided the processor sizes, p, into three main groups; small (2, 4, 8), medium
(16, 32, 64) and large (128, 256, 512). The middle figure of each group is used
except for large p where the simulation result for p = 256 is less accurate when
compared to p = 128 (as discussed in Section 4.4.2), so we chose p = 128, instead.
All experiments assumed T3D performance characteristics, with the exception of the

experiments which aim at investigating the effect of network performance.

e Application parameters.

All experiments (except those related to experimenting with the degree of tree im-
balance) use a random tree with f = 2, d = 16 and zero minimum depth of splitting
(which is explained in Section 4.2.3) producing a total of 29535 nodes, an amount of
workload which is enough to benefit from parallelism. The repeatable characteristic
of random tree enables easy comparison to be made (as opposed to the imbalance
tree). For experiments which do not involve varying the grain size we wished to use
a value of g which was neither excessively coarse-grain nor excessively fine-grain. An

appropriate intermediate value was considered to be g = 100.

¢ Load balancing parameters.

We recognise that there is scope for experimenting the combination of different values
of DLB parameters (as discussed in Section 3.1.3). However, in order to assess the
effects of adapting the interval we use the same values of h, [ and r (as used in
the original algorithms) throughout the experiments. For the LDSV, the values are:
h=1,1=0 and r = 1. The high and low workload threshold is not applicable for
GDEM while r = A ¢ (recall that Ay = 1/(1+sin(2n /k)) for 2-d torus as described
in Section 2.3.2).

e Transition parameters.

We proceed by discussing two important parameters, ¢; and ¢z, which determine the
two transition points, t; and ¢y, respectively. Recall that the condition for ¢y is met
when the number of tasks reaches ¢; X p while 5 is when the number of tasks drops

below ¢3 X p.
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P c
0.5 1.0 1.5

8 | 6.6772 | 6.6400 | 6.6453
32 | 1.7261 | 1.7082 | 1.7082
128 | 0.5061 | 0.5056 | 0.5085

Table 5.1: Total execution time (sec) with varying ¢; for GDEM.

We carried out an experiment to determine the optimal value for ¢;. Our results
showed that the best results is achieved (most of the time) when ¢q = 1. Table 5.1
presents a sample of such results. The highlighted values are the best execution time
and are the results of ¢; = 1. This means that the best transition point is when
t1 = p.

As for iy, we pointed out earlier that the ‘jaggedness’ of DF traversal has made ¢
difficult to be detected. We acknowledge that there is a room for further research
in this area. However, we have chosen to set 3 to a fix value (again to reduce the
number of experimentations) — a value which does guarantees a consistent decrease
in total workload after the cut-off point. This value may or may not lead to the best

switch off point.

From our observation, there is always a smooth drop in total workload at the end of
the computation (as previously shown in Figure 5.3 to 5.6), making the transition
detection more straight forward. Choosing ¢y = 1 ensures that the transition occurs
within this ‘safe’ region, that is outside the ‘jaggedness’ area. Clearly there is a case
for a larger value of ¢y, as noted in Section 3.2, but the ‘jagged’ effects would make

transition detection more complex.

Thus, the values of ¢; and ¢; were both set to 1 throughout the main experiments.

Section 5.3.1 briefly investigate the effect of increasing cs.

We started our experiments on a topology with ‘intermediate’ connectivity (i.e. torus
2-d). It remains to be discovered to what extent the results are affected by a lower or

higher connectivity, such as ring and hypercube.



CHAPTER 5. EXPERIMENTAL RESULTS 81

5.3 The Results of Parametric Adaptivity

This section presents the results of the improvement through adaptivity for each of the
parameter under investigation, that is g, s and m, when the interval is adapted using t;

alone, t5 alone and #1t5. The best technique and improvement are also identified.

5.3.1 Varying the Computational Grain Size

The purpose of this experiment is to investigate the performance improvement through
adaptivity for a range of grain size, g. The values for g can either be 10, 100, 1000 or
10000 floating point operations.

Determining i

In order to determine iy, we first varied ¢ in a wide range, from 1 to 1024, for each
value of p and ¢ for each algorithm. Figures 5.13 to 5.15 illustrate the performance of
GDEM with varying <. We then chose the interval which yields the best execution time
for each case. Table 5.2 shows the complete results for the best interval, iy, for each p and
g.

The following observations can be made from Table 5.2:
e 1, decreases with g¢.

e 15, also decreases with p.

¢ GDEM has a smaller ¢ if compared to LDSV.

GDEM incurs less load balancing overhead in each iteration when compared to LDSV.
Therefore, the interval is expected to be smaller. These different values means that the best
interval is algorithm dependent and there is no single best interval for all DLB algorithms.

The decrease of 7, with ¢ is expected because when ¢ increases the computational
granularity between two successive iterations will increase. Hence, ¢;, which is the number
of nodes executed between iterations must decrease (due to the increase in grain size of
the individual node). i, decreases with p to quickly distribute the nodes throughout the
machine — reducing the idle time waiting for work. The effect is significant for large p.

Although ¢, decreases with p, for simplicity and practicality we decided to fix the value
of i5. This is also true when carrying out the experiments for s and m. We do not expect
a fixed value of i3 to give a major effect on the ITA since the same values of 5 are used for

the adaptive and non-adaptive version. This means that the same amount of discrepancy
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Figure 5.13: Grain size: The effects of varying ¢ for GDEM (p = 4).
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Figure 5.14: Grain size: The effects of varying ¢ for GDEM (p = 32).
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Figure 5.15: Grain size: The effects of varying ¢ for GDEM (p = 128).

P g Best interval (i)
GDEM | LDSV
10 256 256
4 100 256 256
1000 64 128
10000 32 64
10 64 256
32 100 64 128
1000 32 64
10000 16 16
10 32 256
128 | 100 32 128
1000 8 32
10000 4 16

Table 5.2: Grain size: The best interval for a range of p and g¢.
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may effect both cases, which leads to the same ITA value. We leave the task of establishing
the relationship between i, and p as future work.

We now discuss the method used to determine iy for GDEM. We calculated the dis-
crepancy in performance between a selected 7 and the best 7. We then chose the value of
¢ which yield the smallest discrepancy over a range of p and g. The value of ¢35 for GDEM
is 16 with the worst discrepancies of 52.99% when p = 4 and g = 10 (see Figure 5.13).
The same method is repeated for LDSV. The value of i3 is 64 with the worst discrepancy
of 36.66% when p = 128 and g = 10000.

Transition I Only

Table 5.3 shows the improvement when ¢ is used while Figure 5.16 depicts the actual
graphs of the raw performance from which the results for p = 128 in Table 5.3 were
derived.

The following observations can be made:
e In all cases ITA always increases with g¢.

e Both GDEM and LDSV can significantly benefit (in some circumstances) from using
t.

Overall, GDEM benefits from ¢; more than LDSV.

Positive ITA for all g occurs for GDEM when p = 128, and for LDSV when p = 32.

Negative values of ITA are mainly obtained for small g.
o Negative values of ITA for all ¢ are obtained for LDSV when p = 4.

Discussion

The key idea in using ¢; is to invoke the load balancing frequently during phase I to
facilitate work migration to the whole system in order to minimised the idle time waiting
for work. This frequent invocation means that the number of iterations will increase and
possibly the cost of load balancing increases as well. For this reason an algorithm which
does not have a fast work distribution facility (e.g. GDEM on 2-d torus) is expected
to benefit more from the technique. The technique is deemed useful for large networks.
Another point to be anticipated is large improvement occurs for large g since the idle time

waiting for work is greatly reduced.
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Pl g 1TA (%)
GDEM | LDSV
10 | -0.13 | -0.79

4 100 -0.08 -0.62
1000 0.06 -0.31
10000 0.12 -0.21

10 -0.63 7.16
32 100 -0.19 8.68
1000 1.56 14.23
10000 2.80 17.29

10 14.24 | -13.03
128 | 100 15.49 -9.29
1000 21.02 15.22
10000 | 25.52 | 40.96

Table 5.3: Grain size: Improvement through adaptivity using ¢; only.

Tables 5.4 and 5.5 show detailed measurements for GDEM and LDSV, respectively,
when p = 128. Recall that T4 and T4 refers to the total execution time for non-adaptive
and adaptive runs. There is a consistent reduction of load balancing time and idle time for
GDEM as g increases. Notice that for GDEM algorithm, the total number of iterations
does not increase (as would be expected when ¢; is used). This contributes further to the
larger benefit of ty for GDEM on 128 processors. In the case of LDSV, ¢; always increases
idle time, while the cost of load balancing may increase or decrease. For cases where the
load balancing time decreases, ITA is positive.

Both algorithms show little (or negative) improvement for small p. This is anticipated
because the idea of rapidly distributing work is more important for larger networks.

As a summary, GDEM usually gives greater benefits of using ¢;. LDSV already has a
good load distribution capability, hence, it is expected not to benefit from the technique
as much. Using #; decreases the idle time for GDEM but increases for the LDSV. For
both algorithms, if the use of #; causes a decrease in the load balancing time (and a
decrease in idle time too in the case of GDEM), and the amount exceeds the increase
in synchronisation time, then there will be a benefit. The technique is expected to be

profitable for large p which normally suffers from a long waiting time for work.
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g ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) (sec)

10 14.24 | Tya 0.0648 0.0062 0.0296 0.0122 | 0.0168 | 30
T4 0.0556 0.0062 0.0255 0.0071 | 0.0168 | 30
100 1549 | Tya 0.0722 0.0098 0.0324 0.0133 | 0.0168 | 30
T4 0.0611 0.0098 0.0267 0.0078 | 0.0168 | 30
1000 21.02 | T4 0.1463 0.0456 0.0598 0.0241 | 0.0168 | 30
T4 0.1155 0.0456 0.0384 0.0146 | 0.0168 | 30
10000 | 2552 | Twna 0.8868 0.4038 0.3339 0.1323 | 0.0168 | 30
T4 0.6605 0.4038 0.1562 0.0835 | 0.0168 | 30

Table 5.4: Grain size: Detailed cost of GDEM using ¢; (p = 128).
g ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter

(sec) (sec) (sec) (sec) (sec)

10 -13.03 | Twva 0.1312 0.0063 0.0676 0.0512 | 0.0062 | 11
-13.03 | T4 0.1483 0.0063 0.0688 0.0654 | 0.0078 | 14
100 -9.29 TN A 0.1394 0.0099 0.0724 0.0509 | 0.0062 | 11
-9.29 T4 0.1524 0.0099 0.0693 0.0653 | 0.0078 | 14
1000 15.22 TN A 0.2321 0.0460 0.1256 0.0544 | 0.0062 | 11
15.22 | Ty 0.1968 0.0460 0.0763 0.0666 | 0.0078 | 14
10000 | 40.96 | Twya 1.2642 0.4070 0.6774 0.1736 | 0.0062 | 11
40.96 | Ty 0.7464 0.4070 0.1667 0.1648 | 0.0078 | 14

Table 5.5: Grain size: Detailed cost of LDSV using #; (p = 128).
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Figure 5.16: Grain size: Improvement through adaptivity using ¢; only for both algorithms
for all ¢ (p = 128).

Transition IT Only
Table 5.6 shows the benefit of using 2 only. The following observations can be made:
e In all cases ITA decreases with g.

e Both GDEM and LDSV can benefit (in some circumstances) from ¢;, though the

benefit is less than ;.

LDSV benefits more from t9 than GDEM.

There is zero ITA for p = 4 for both algorithms.

Positive ITA for all g occurs for LDSV when p = 128, and for GDEM when p = 32.

o Negative ITA for all g occurs for GDEM when p = 128.

Discussion
The main idea in using ¢5 is to reduce the cost of load balancing towards the end of
a computation when there is lesser number of work than the number of processors. The

benefit comes from a reduction of the load balancing and also synchronisation cost. The
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P g ITA (%)

GDEM | LDSV
10 | 0.00 | 0.00
4 | 100 | 0.00 | 0.00
1000 | 0.00 | 0.00
10000 | 0.00 | 0.00
10 155 | 3.18
32 | 100 | 1.37 | 1.89
1000 | 0.63 | -0.11
10000 | 0.10 | -0.52
10 | -26.19 | 14.43
128 | 100 | -46.20 | 13.15
1000 | -134.87 | 5.36
10000 | -207.11 | -2.48

Table 5.6: Grain size: Improvement through adaptivity using ¢ only.

trade-off is an increase in idle time. Large grain size node has the potential of inducing a
larger load imbalance, hence larger idle time.

LDSYV exhibits a better improvement towards switching off the load balancing; positive
improvement occurs for almost all ¢ when p = 32 and p = 128 (Table 5.6). GDEM, on the
other hand, shows an improvement for medium p only and with only a small percentage.

Tables 5.7 and 5.8 show the detailed measurement for both algorithms when %, is
used. The large improvement benefited by LDSV comes from the reduction of the three
sources of overhead; the synchronisation, load balancing and idle time. Notice that when
g = 10000 the improvement is less. This is due to the increase in idle time instead of a
decrease, as with other values of ¢g. Large g cause greater imbalance, hence, induces large
idle time.

For GDEM, the use of ¢, always increase the idle time (Table 5.8). If the increase
exceed the total decrease of load balancing and synchronisation time, there will be positive
results. Otherwise, there will be no benefit, as shown when p = 128.

Notice that there is zero improvement for both algorithms when p = 4 (Table 5.6).
Zero improvement simply means that in practice the load balancing is never disabled
yielding the same execution time. This behaviour can be best explained by means of a
workload trace. Since ¢; = 1, the second transition should be detected when n(¢) < p. For
cases where the total number of nodes is greater than p during the last iteration, as shown
in Table 5.9, then 5 is never met. Hence, there is no reduction in the total execution time

in using t,.
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g ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) (sec)

10 1443 | Tya 0.1312 0.0063 0.0676 0.0512 | 0.0062 | 11

T4 0.1123 0.0063 0.0557 0.0447 | 0.0056 | 10

100 13.15 | Tya 0.1394 0.0099 0.0724 0.0509 | 0.0062 | 11

T4 0.1211 0.0099 0.0595 0.0461 | 0.0056 | 10

1000 5.36 TN A 0.2321 0.0460 0.1256 0.0544 | 0.0062 | 11

T4 0.2197 0.0460 0.1020 0.0661 | 0.0056 | 10

10000 -2.48 TN A 1.2642 0.4070 0.6774 0.1736 | 0.0062 | 11

T4 1.2955 0.4070 0.5472 0.3357 | 0.0056 | 10

Table 5.7: Grain size: Detailed cost of LDSV using ¢, only (p = 128).

We carried out a short experiment to see the effect of increasing cg. Table 5.10 shows
the improvement when c¢3 = 5 and ¢; = 10. There are improvements in both cases but

they are not significant.

Transition I and II

Table 5.11 shows the combined effects of both transitions. The following observations

can be made:
e For both algorithms, ITA sometimes increases and sometimes decreases with g.
e Both algorithms can benefits from 15 (in some circumstances).
e Overall, GDEM benefits more from t;¢5 than LDSV.

o Positive ITA for all g occurs for GDEM when p = 128, and for LDSV when p = 32.

Discussion

The net effect of both transitions are as follows. There is no improvement (or very
little) for small processor size for both algorithms. This is anticipated because neither t;
nor ¢, has any significant effect. The technique yields good improvement for very large g
on medium and large processor size. No particular relationship can be established between
t1t and g for both algorithms.

In terms of individual overhead, the techniques always increases the synchronisation
and the idle time for LDSV, but the load balancing time only increases some of the time.
With GDEM, there is no particular pattern in terms of the increase or decrease of each of

the sources of overhead (see Table 5.12).
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g ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter

(sec) (sec) (sec) (sec) (sec)
10 -26.19 | Tva 0.0648 0.0062 0.0296 0.0122 | 0.0168 | 30
Ty 0.0818 0.0062 0.0223 0.0404 | 0.0129 | 23
100 -46.20 | Tva 0.0722 0.0098 0.0324 0.0133 | 0.0168 | 30
Ty 0.1056 0.0098 0.0239 0.0590 | 0.0129 | 23
1000 | -134.87 | Tva 0.1463 0.0456 0.0598 0.0241 | 0.0168 | 30
Ty 0.3436 0.0456 0.0408 0.2443 | 0.0129 | 23
10000 | -207.11 | Tna 0.8868 0.4038 0.3339 0.1323 | 0.0168 | 30
T4 2.7236 0.4038 0.2093 2.0975 | 0.0129 | 23

Table 5.8: Grain size: Detailed cost of GDEM using ¢; only (p = 128).

Table 5.9: Total tasks during the last 10 iterations:

(GDEM, p = 4,9 = 10).

Iteration ‘ Tasks ‘

454
455
456
457
458
459
460
461
462
463

39
31
27
25
29
19
21
12
10
7

co | ITA(%) | Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) | (sec)

1 0.00 0.5081 0.1990 0.2134 0.0096 | 0.0860 | 463

5 0.51 0.5055 0.1990 0.2112 0.0101 | 0.0853 | 459

10 1.08 0.5026 0.1990 0.2091 0.0102 | 0.0844 | 454

a case when {5 condition is not met

Table 5.10: Greater improvement using ¢, when ¢y is adjusted (GDEM, p = 4,¢ = 10).
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P g ITA (%)
GDEM | LDSV
10 -0.13 -0.20
4 100 -0.08 -0.16
1000 0.06 -0.05
10000 0.12 -0.01
10 -0.14 5.25
32 100 0.24 5.10
1000 1.76 4.38
10000 2.83 4.38
10 21.43 -6.34
128 100 19.64 -6.11
1000 11.72 -4.21
10000 5.26 7.56
Table 5.11: Grain size: Improvement through adaptivity using ;5.
g ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) | (sec)
10 21.43 | Twna 0.0648 0.0062 0.0296 0.0122 | 0.0168 | 30
T4 0.0509 0.0062 0.0206 0.0100 | 0.0140 | 25
100 19.64 | Tya 0.0722 0.0098 0.0324 0.0133 | 0.0168 | 30
T4 0.0581 0.0098 0.0212 0.0130 | 0.0140 | 25
1000 11.72 | Tya 0.1463 0.0456 0.0598 0.0241 | 0.0168 | 30
T4 0.1292 0.0456 0.0271 0.0424 | 0.0140 | 25
10000 5.26 TN A 0.8868 0.4038 0.3339 0.1323 | 0.0168 | 30
T4 0.8402 0.4038 0.0857 0.3366 | 0.0140 | 25

The Best ITA and Techniques

Table 5.12: Grain size: Detailed cost for GDEM using t1t; (p = 128).

Tables 5.13 and 5.14 show which combination of transition gives the best ITA for all

combination of g and p. The following observations can be made:

¢ Adaptivity techniques bring improvements (in most circumstances) and it is more

significant for large networks.

e There is no single technique which is the best for a given algorithm or processor size.

e The techniques ¢1t5 or t; alone yield the best results for large g¢.

e GDEM seems to favour ¢t while LDSV favours t; and 9 individually.
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p ITA (%) and Technique

10 | 100 | 1000 | 10000
4 10.00 (£2) 0.00 () 0.06 (t1,t1t2) | 0.12 (t1,t1t2)
32 | 1.55 (t3) 1.37 (t3) 176 (t1t2) | 2.83 (t1t2)
128 | 21.43 (i1t) | 19.64 (t1t2) | 21.02 (1) 25.52 (t1)

Table 5.13: Grain size: The best improvement and techniques for GDEM.

p ITA (%) and Technique

10 | 100 | 1000 | 10000
4 10.00 (t2) |0.00(tz) |0.00(¢z) |0.00 (£2)
32 | 9.03 (t1t2) | 9.60 (t112) | 14.23 (t1) | 17.29 (t1)
128 | 14.43 (t3) | 13.15 (t2) | 16.61 (t3) | 40.97 (t1)

92

Table 5.14: Grain size: The best improvement and techniques for LDSV.

5.3.2 Varying the Network Performance

This section presents the results of the ITA when the network performance, s, measured
in terms of bandwidth, is varied relative to that of the T3D. To be precise, network speed,
s, means that the bandwidth of an individual link is s times that of a single link on
the T3D. By varying s while the cost of computational operation remains the same, it is
possible to investigate how ITA varies with the communication-to-computation ratio of
the underlying architecture. Since increasing ¢ and increasing s have similar impact on
the performance of the application, it would be expected that the ITA result would be
similar.

Recall from Section 4.3.2 there are four cost models (i.e. Tsepnd, Trecv, Trecvmins Lpingpong)
for the point-to-point communication and one cost model (i.e. Tyyireduce ) for collective op-
eration used in the simulator. Experimenting the network speed means varying s with the
term associated with the data size in all the models. Hence, the the general point-to-point

cost model becomes;

1
a+bxdsize X —
S

while the collective operation is;

1
a—l—b><p—|—c><log(p)><dsize><g
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P s | Best interval (i)
GDEM | LDSV
0.25 256 128
4 0.5 256 128
1.0 256 128
2.0 256 128
0.25 64 128
32 | 0.5 64 128
1.0 64 128
2.0 64 128
0.25 32 256
128 | 0.5 32 256
1.0 32 256
2.0 32 256

Table 5.15: Network performance: The best interval for a range of p and s.

As the value of s increases the network performance improves.

Determining i

The following observations can be made from Table 5.15.
e i, does not change with s (for the range of s that were used).
o i, decreases with p for GDEM and increases with p for LDSV.

For the range of s that were used 7, seems to be constant. In a separate experiment,
which induces a greater communication overhead, as the value of s increases, i, decreases.
Therefore, similar pattern of results are anticipated if a wider range of s are used for this
experiments. The decrease of ¢, with s simply means that parallelism is preferred for fast
machine. Load balancing should be invoked more frequently in fast machine to distribute
the work. The need for work distribution is even more clear for large network. Thus, the
interval gets smaller with p. However, this is not true for LDSV.

As with the grain size experiments we varied i from 1 to 1024 for each p and s to
find the best interval, #,. The complete results of ¢, is shown in Table 5.15. Next, iy is
determined (using the method established in Section 5.3.1). The value of iy for GDEM
is 64 with 37.45% largest discrepancy when p = 128 and s = 0.25. For LDSV, iy = 128,
with the worst discrepancy is 5.98% when p = 4 and s = 0.25.
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p s ITA (%)

GDEM | LDSV
0.25 0.38 0.98
4 0.5 0.53 1.06
1.0 0.61 1.11
2.0 0.65 1.13
0.25 7.27 11.45
32 | 0.5 8.93 14.16
1.0 10.20 15.66
2.0 11.00 16.47
0.25 | 45.14 -1.15
128 | 0.5 47.54 0.64
1.0 49.33 1.71
2.0 50.44 2.30

Table 5.16: Network performance: Improvement through adaptivity using ¢; only.

Transition I Only

Table 5.16 illustrates the benefit of adaptivity for varying s and p. The following obser-

vations can be made:
e ITA always increases with s.
e Both algorithms benefit from #; (in most circumstances).
¢ GDEM benefits more than the LDSV.

e The best ITA for all s for GDEM occurs when p = 128 and for LDSV when p = 32.

Discussion

As with g, both algorithms benefit from #; because the total time waiting for work
during filling phase is reduced. GDEM seems to benefit more because frequent work
distribution has reduced the imbalance too, hence the idle time (see Table 5.17). For
LDSV the technique increases the idle time in most cases. Again in here, we see the
benefit of parallelism (by means of a small interval value) during the filling phase as
the communication gets cheaper (i.e. faster network). The reason why GDEM seems to
perform best when p = 128 whereas LDSV performs best when p = 32 (as in the grain

size experiments) is not currently clear.
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s | ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) | (sec)
05| 13.23 | ITna 0.0744 0.0392 0.0265 0.0044 | 0.0043 | 22
Ty 0.0646 0.0392 0.0179 0.0029 | 0.0047 | 24
1.0 1020 |Tna 0.0888 0.0392 0.0356 0.0054 | 0.0086 | 22
Ty 0.0798 0.0392 0.0272 0.0039 | 0.0094 | 24
2.0 6.49 Tna 0.1178 0.0392 0.0538 0.0077 | 0.0172 | 22
Ty 0.1102 0.0392 0.0461 0.0061 | 0.0188 | 24
4.0 2.78 Tna 0.1761 0.0392 0.0903 0.0122 | 0.0345 | 22
Ty 0.1712 0.0392 0.0841 0.0103 | 0.0376 | 24

Table 5.17: Network performance: Detailed cost for GDEM using ¢; only (p = 32).

Transition IT Only

Table 5.18 shows the improvement of adaptivity using ¢3. The following observations can

be made:

ITA always decreases with s.

Both algorithms can benefit from ¢3 (in some circumstances), though the benefit is

less than ¢;.

LDSV benefits more from the approach than GDEM (similar with the results of g

experiment).

Negative ITA for all s occurs for GDEM when p = 128 (exhibiting the same be-
haviour as g). Almost all negative ITA for LDSV when p = 32.

Discussion

For both algorithms the benefit of {3 comes from the reduction of load balancing and

synchronisation cost. In the case of LDSV these reduction always exceeds the idle time

resulting a positive ITA. This is not true for GDEM. Positive ITA only obtained for small

p. The large negative ITA for GDEM when p = 128 is due to an early switch-off point,

which leads to a huge load imbalance, hence, idle time (see Table 5.19). The improvement

decreases with s shows that the technique is more beneficial for slower networks.
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p s ITA (%)
GDEM | LDSV
0.25 | 0.08 0.03
4 0.5 0.07 0.03
1.0 0.07 0.03
2.0 0.07 0.03
0.25 0.58 2.46
32 | 0.5 -1.79 1.83
1.0 -3.39 1.47
2.0 -4.33 1.28
0.25 | -190.78 | 6.66
128 | 0.5 | -264.67 | 5.62
1.0 | -319.73 | 5.00
2.0 | -354.53 | 4.66
Table 5.18: Network performance: Improvement through adaptivity using ¢ only.
s | ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) | (sec)
0.2 | -190.78 | Tna 0.1553 0.0098 0.0541 0.0454 | 0.0461 | 24
Ty 0.4517 0.0098 0.0131 0.4153 | 0.0134 | 7
0.5 | -264.67 | Tna 0.1211 0.0098 0.0500 0.0370 | 0.0243 | 24
Ta 0.4414 0.0098 0.0120 0.4126 | 0.0071 | 7
1.0 | -319.73 | Tna 0.1040 0.0098 0.0479 0.0328 | 0.0135 | 24
Ty 0.4363 0.0098 0.0114 0.4112 | 0.0039 | 7
2.0 | -354.53 | Tna 0.0954 0.0098 0.0469 0.0307 | 0.0080 | 24
Ty 0.4338 0.0098 0.0112 0.4105 | 0.0023 | 7

Table 5.19: Network performance: Detailed cost for GDEM using ¢, only (p = 128).
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p s ITA (%)

GDEM | LDSV
0.25 0.38 1.06
4 0.5 0.53 1.14
1.0 0.61 1.19
2.0 0.65 1.21
0.25 9.04 11.69
32 | 0.5 10.22 14.28
1.0 11.15 15.77
2.0 11.75 16.58
0.25 | 49.72 -1.15
128 | 0.5 50.52 0.64
1.0 51.11 1.71
2.0 51.46 2.30

Table 5.20: Network performance: Improvement through adaptivity using both #14,.

Transition I and II

Table 5.20 shows the results of the net effect of activating #; and ¢3;. The following

observations can be made:
e ITA always increases with s.
e Both algorithms can benefit from ¢35, in most circumstances.

o The benefit is more significant for medium and large processor sizes for GDEM and

only medium processor size for the LDSV.

Discussion
Both algorithms benefit from the technique because of the huge reduction of load

balancing time. For LDSV the combined technique always increases the idle time (see
Table 5.21) while it sometimes increases idle time for GDEM. For the cases where the idle
time decreases, the improvement is the largest (e.g. for GDEM when p = 128).
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s | ITA(%) Total Time | Compute | Load Balance | Idle | Synch | Iter
(sec) (sec) (sec) (sec) | (sec)

05| 1833 | Ina 0.0821 0.0099 0.0456 0.0241 | 0.0025 | 9
Ty 0.0671 0.0099 0.0287 0.0254 | 0.0031 | 11

1.0 1.71 Tna 0.1245 0.0099 0.0687 0.0409 | 0.0050 | 9
Ty 0.1224 0.0099 0.0552 0.0512 | 0.0062 | 11

20| -541 | Twna 0.2210 0.0099 0.1173 0.0837 | 0.0101 | 9
Ty 0.2329 0.0099 0.1081 0.1026 | 0.0123 | 11

4.0 -9.69 | Tna 0.4140 0.0099 0.2158 0.1681 | 0.0202 | 9
Ty 0.4541 0.0099 0.2141 0.2055 | 0.0246 | 11

Table 5.21: Network performance: Detailed cost of LDSV using t1t5 (p = 128).

The Best ITA and Techniques

Tables 5.22 and 5.23 show which combination of transition gives the best ITA for all

combination of s and p. The following observations can be made:

o Adaptivity always brings improvements and is more significant for large p for GDEM

and medium p for LDSV.

e 11ty yields the best results for GDEM.

o 1115 seems to be beneficial for LDSV too, but for very large p, 5 is preferable.

p ITA (%) and Technique

0.5 [ 1.0 [ 2.0 | 4.0
4 [ 038 (i1, l1l2) | 0.53 (11, latz) | 0.61 (11, 11l3) | 0.65 (L1, t1ls)
32 | 9.04 (t11y) | 10.22 (tats) | 1115 (tats) | 1175 (tly)
128 | 49.72 (1ty) | 50.52 (t1ty) | 5111 (tite) | 5146 (t112)

Table 5.22: Network performance: The best improvement and techniques for GDEM.
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p ITA (%) and Technique
0.5 [ 1.0 [ 2.0 | 4.0
1| 1.06 (t1s) | L.14 (fatz) | L10 (tatz) | L21 (tita)
32 | 11.60 (1115) | 14.28 (tts) | 15.77 (t1t2) | 16.58 (12)
128 | 6.66 (11t2) | 5.62 (12) | 5.00 (ta) | 4.66 (L)
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Table 5.23: Network performance: The best improvement and techniques for LDSV.

5.3.3 Varying the Tree Imbalance

This section presents the results of varying the degree of tree imbalance on ITA when the
same three adaptive techniques, t; alone, t; alone and the combination of ¢ and 5, were
applied.

As noted earlier, this set of experiments use imbalance tree instead of random tree be-
cause the degree of imbalance can be parameterised in the former. However, as highlighted
in Section 4.2.3, the imbalance tree is not repeatable — each run may produce different
tree size and shape. This has two implications; the first is on the pattern of ITA and the
second is how ITA is measured. In some cases, the pattern of ITA is not as consistent as
those of g and s, to enable a clear relationship being made. Despite that some general
pattern can still be established.

Recall from Section 5.2.1 the ITA for experimenting the imbalance refer to speed
instead of the execution time. Detail comparison in terms of the amount of improvement
made between ¢ and s, and m may not be appropriate but the comparison between the
general relationships established is still valid.

Note that an additional column for speed is incorporated in the detailed measurements.

Determining i

Table 5.24 shows the best interval for the whole parameter set. The following observations

can be made:
e 75, decreases with m.
e 1, decreases with p.

¢ GDEM has a smaller ¢ if compared to LDSV.

The value of i, decreases with m because as the degree of imbalance increases the work-

load gets more irregular resulting in a larger number of idle (or lightly loaded) processors.



CHAPTER 5. EXPERIMENTAL RESULTS

p | m | Best interval (i)
GDEM | LDSV

0.0 512 256

4 101 256 256
0.2 128 1024

0.3 64 128

0.0 128 256

32 | 0.1 64 128

0.2 32 128

0.3 32 64

0.0 32 128

128 1 0.1 32 64

0.2 16 64

0.3 16 64

Table 5.24: Tree imbalance: The best interval for a range of p and m.
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Load balancing is needed to distribute the workload to these processors. Therefore, the

invocation has to be more frequent for a tree with higher degree of imbalance. This is

especially true when larger processor sizes are used.

As with g and s, the value of ¢ is varied from 1 to 1024 to find ¢, for each p and m. We

then selected the best ¢ as ¢3. Since the size and the shape of the tree changes in each

run, finding ¢, with the least discrepancies is not sensible. For each algorithm we chose

the value of 4, which occurs most frequently (please refer to Table 5.24). The value of iy

for GDEM is 32 and LDSV is 128.

Transition I Only

Table 5.25 shows the benefit gained from #; for varying m. The following observations can

be made:

e ITA usually increases with m.

GDEM benefits more than LDSV.

Both algorithms can benefit from the techniques most of the time.

For both cases ITA increases consistently with m.

Positive ITA occurs for all m for GDEM when p = 128 and for LDSV when p = 32.
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p | m ITA (%)
GDEM | LDSV
0.0 8.77 1.20
4 0.1 -0.01 0.41
0.2 0.84 9.30
0.3 6.45 -8.84
0.0 0.40 1.45
32 10.1 3.28 6.31
0.2 | 13.60 36.64
0.3 -0.80 60.35
0.0 | 24.48 -6.33
128 | 0.1 25.07 31.21
0.2 | 62.03 45.29
0.3 | 145.32 -8.71

Table 5.25: Tree imbalance: Improvement through adaptivity using ¢; only.

Discussion

101

The increase of ITA with m is anticipated because when the degree of imbalance

increases the workload gets more irregular and some of the processors have no work.

Therefore, frequent invocation of load balancing will reduce idle time and improve the

performance.

Again, we see the same pattern of results of positive improvement on p = 128 for

GDEM and p = 32 for LDSV. We can provide no adequate explanation for such pref-

erences. From the detail measurements of the two results (in Tables 5.26 and 5.27) we

could derived that the large improvement for GDEM is due to a large decrease in load

balancing and idle time (though the synchronisation increases in most cases). LDSV tends

to have a decrease in load balancing time in most of the cases too. However, idle time and

synchronisation time increases.
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m | ITA(%) Speed Total | Compute | Load Idle | Synch | Iter
Time Balance

(node/sec) | (sec) (sec) (sec) (sec) | (sec)
0.0 2448 | Sya | 673040.4376 | 0.0974 | 0.0217 0.0383 | 0.0194 | 0.0180 | 32
Sa 837819.9228 | 0.0782 | 0.0217 0.0295 | 0.0095 | 0.0174 | 31
0.1 ] 25.07 | Snya | 558487.6674 | 0.0708 | 0.0131 0.0326 | 0.0122 | 0.0129 | 23
Sa 698495.5277 | 0.0620 | 0.0144 0.0261 | 0.0075 | 0.0140 | 25
0.2 62.03 | Sya | 294810.7026 | 0.0579 | 0.0057 0.0262 | 0.0154 | 0.0107 | 19
Sa 477673.6721 | 0.0433 | 0.0069 0.0202 | 0.0051 | 0.0112 | 20
0.3 ] 14532 | Sya | 148215.4330 | 0.0511 | 0.0025 0.0216 | 0.0175 | 0.0095 | 17
Sa 363596.5354 | 0.0384 | 0.0046 0.0186 | 0.0051 | 0.0101 | 18

Table 5.26: Tree imbalance: Detailed cost for GDEM using ¢, only (p = 128).
m | ITA(%) Speed Total | Compute | Load Idle | Synch | Iter

Time Balance

(node/sec) | (sec) (sec) (sec) (sec) | (sec)
0.0 1.45 Sna | 362186.0614 | 0.1809 | 0.0898 0.0586 | 0.0244 | 0.0082 | 21
Sa 367431.9807 | 0.1784 | 0.0898 0.0444 | 0.0345 | 0.0097 | 25
0.1 6.31 Sna | 263658.2041 | 0.0993 | 0.0359 0.0424 | 0.0164 | 0.0047 | 12
Sa 280289.5869 | 0.1419 | 0.0545 0.0469 | 0.0323 | 0.0082 | 21
0.2 ] 36.64 | Snya | 196081.4980 | 0.0825 | 0.0222 0.0418 | 0.0146 | 0.0039 | 10
Sa 267915.9652 | 0.0828 | 0.0304 0.0298 | 0.0171 | 0.0054 | 14
0.3 ] 60.35 | Snya | 130441.2734 | 0.0735 | 0.0131 0.0437 | 0.0133 | 0.0035| 9
Sa 209165.3837 | 0.0649 | 0.0186 0.0274 | 0.0142 | 0.0047 | 12

Table 5.27: Tree imbalance: Detailed cost for LDSV using ¢; only (p = 32).
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p | m ITA (%)

GDEM | LDSV
0.0 0.07 -27.66
4 101 0.13 -0.38
0.2 0.00 1.45
0.3 0.30 -0.31
0.0 0.86 2.69
32 1 0.1 0.72 -2.11
0.2 0.71 -16.10
0.3 0.94 25.42
0.0 | -38.95 | 10.19
128 | 0.1 2.94 -1.23
0.2 -4.31 23.29
0.3 | -78.83 | 11.62

Table 5.28: Tree imbalance: Improvement through adaptivity using ¢; only.

Transition IT Only

Table 5.28 presents the results for t; when m is varied. The following observations can be

made:

e No clear relationship can be made between ITA and m since the improvement oscil-

lates.

Discussion

No clear relationship can be noted between ITA and m for this case, but we analysed
the pattern of each of the sources of overhead. The results for ¢ and s have shown a
consistent decrease in synchronisation and load balancing time due to the discontinuing
of the load balancing. GDEM produces this same pattern (see Table 5.29). For cases
where the increase in idle time exceed the benefit of reduced load balancing time and
synchronisation, ITA is negative. For LDSV, the load balancing time decreases but the

idle time increases as well (as shown in Table 5.30).
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m | ITA(%) Speed Total | Compute | Load Idle | Synch | Iter
Time Balance
(node/sec) | (sec) (sec) (sec) (sec) | (sec)

0.0 0.86 Sna | 352631.4405 | 0.1858 0.0870 0.0631 | 0.0092 | 0.0266 | 68
S4 355677.4845 | 0.1843 0.0870 0.0604 | 0.0106 | 0.0262 | 67

0.1 0.72 Sna | 322581.7516 | 0.1261 0.0540 0.0477 | 0.0064 | 0.0180 | 46
S4 324898.2208 | 0.1253 0.0540 0.0436 | 0.0104 | 0.0172 | 44

0.2 0.71 Sna | 267746.0253 | 0.0686 0.0244 0.0296 | 0.0048 | 0.0098 | 25
S4 269653.4479 | 0.0682 0.0244 0.0241 | 0.0110 | 0.0086 | 22

0.3 0.94 Sna | 264760.4301 | 0.0529 0.0186 0.0237 | 0.0032 | 0.0074 | 19
S4 267259.6906 | 0.0524 0.0186 0.0206 | 0.0062 | 0.0070 | 18

Table 5.29: Tree imbalance: Detailed cost for GDEM using t5 only (p = 32).
m | ITA(%) Speed Total | Compute | Load Idle | Synch | Iter
Time Balance
(node/sec) (sec) (sec) (sec) (sec) (sec)

0.0 2.69 Sna | 362186.0614 | 0.1809 0.0898 0.0586 | 0.0244 | 0.0082 | 21
S4 371930.2329 | 0.1762 0.0898 0.0489 | 0.0298 | 0.0078 | 20

0.1 -2.11 Sna | 263658.2041 | 0.0993 0.0359 0.0424 | 0.0164 | 0.0047 | 12
S4 258098.6493 | 0.1136 0.0402 0.0502 | 0.0181 | 0.0050 | 13

0.2 | -16.10 | Sya | 196081.4980 | 0.0825 0.0222 0.0418 | 0.0146 | 0.0039 | 10
S4 164517.0066 | 0.0822 0.0185 0.0407 | 0.0195 | 0.0035 | 9

0.3 ] 2542 | Sya | 130441.2734 | 0.0735 0.0131 0.0437 | 0.0133 | 0.0035 | 9
S4 163594.2164 | 0.0615 0.0138 0.0332 | 0.0119 | 0.0027 | 7

Table 5.30: Tree imbalance: Detailed cost for LDSV using ¢; only (p = 32).




CHAPTER 5. EXPERIMENTAL RESULTS 105

p | m ITA (%)

GDEM | LDSV
0.0 25.21 | -25.30
4 101 -0.01 0.44
0.2 0.84 5.79
0.3 6.88 3.82
0.0 1.14 -15.08
32 1 0.1 4.16 24.60
0.2 14.51 40.70
0.3 5.45 64.08
0.0 11.92 5.61
128 1 0.1 | 25.92 39.77
0.2 | 67.77 | 47.76
0.3 | 166.97 | -4.66

Table 5.31: Tree imbalance: Improvement through adaptivity using both #1t5.

Transition I and II

Table 5.31 illustrates the net-benefit of both transitions when m is varied. The following

observations can be made:

o ITA usually increases with m (and is more significant for large p).
¢ Both algorithms can benefit from the technique (most of the time).
e Overall, GDEM benefits more from t;¢5 than LDSV.

o Positive ITA for all m for GDEM occurs when p = 32 and p = 128 and almost all
positive ITA occurs for LDSV for the same p.

Discussion

The pattern of results are similar to ¢ and s, where the benefits comes from the
reduction of the load balancing time. GDEM tends to benefit more because there is a
reduction in the syncronisation cost as well. As with g and s, the benefit from using ¢y is
more prominent, hence the observations made for ¢; alone applies to t1t5. Note that we
see the recurrences of preference of the algorithms on a particular p in this experiment as

well.
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p ITA (%) and Technique

0.0 [ 0.1 [ 0.2 [ 0.3
1 | 2521 (hhty) | 0.13 (1) | 0.84 (f1,trtz) | 6.88 (fata)
32 | L14 (thty) | 4.16 (tut2) | 1451 (tity) | 5.45 (t1t2)
128 | 2448 (1) | 25.92 (taty) | 67.77 (t1t2) | 166.97 (t115)

Table 5.32: Tree imbalance:

The best improvement and techniques for GDEM.

p ITA (%) and Technique

0.0 [ 0.1 [ 0.2 [ 0.3
1] 1.20 (1) | 044 (fitz) | 930 (f) | 3.82 (Lit2)
32 | 2.60 (1) | 24.60 (t1t2) | 40.70 (t1t5) | 64.08 (t11)
128 | 10.19 (t3) | 39.77 (tits) | 47.76 (t1t2) | 11.62 ()

Table 5.33: Tree imbalance:

The best improvement and techniques for LDSV.

The Best ITA and Techniques

Tables 5.32 and 5.33 show which combination of transition gives the best ITA for all

combination of m and p. The following observations can be made:

o Adaptivity always bring improvement, and is more significant for large p for GDEM
and medium p for LDSV.

o 1115 usually yields the best results for GDEM.

e 11ty sometimes yields the best results for LDSV.

5.4 Experimenting with Algorithmic Adaptivity

The non-adaptive results with GDEM and LDSV (see Figures 4.15 and 4.16) show that
LDSV execution time are much worse than GDEM’s. It was proposed in Chapter 3 that
algorithmic adaptivity using ¢; could employ LDSV in the filling phase and Diffusion (or
GDEM) in the steady phase. It is clearly impossible to carry out a sensible experiment at
this stage, since the poor absolute performance of LDSV means that ¢; would substantially
degrade performance compared with GDEM alone.

This does not mean that the hypothesis of using the algorithmic adaptivity at ¢; is
invalidated. The poor performance of LDSV relative to GDEM is accounted for by two
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factors. First, LDSV is essentially an asynchronous algorithm which has been artificially
synchronised by the simulator, whereas GDEM is inherently synchronous. Moreover,
LDSV is an experimental algorithm which has substantial scope for further optimisation
(see Section 6.3), whereas GDEM is a well-established and optimised algorithm. Proper
experimental work on ¢; must therefore await for a more optimal version of LDSV. Recall
that LDSV will always complete the filling stage in optimal number of iterations (see
Section 3.1.3), there is clearly scope for this further experimentation to yield positive
results for ¢ transition.

Transition 5 in algorithmic adaptivity is exactly the same as in parametric adaptivity,

the benefits of which have already been demonstrated in previous section.

5.5 Summary Results

The following are the general observations made:

e Parametric phase-based adaptivity can bring substantial performance improvement

for both GDEM and LDSV in many situations.
¢ Both algorithms show significant improvement for medium and large processor sizes.
e 1y is suitable for large grain node, fast network or high degree of tree imbalance.

o 15 is the reverse; it is suitable for small grain node, slow network and a more balance

tree.

o For GDEM ¢y is suitable for large processor sizes, and large grain node or slow
network or high degree of imbalance. For LDSV ;15 is more suitable for high degree

of imbalance, and small and medium processor sizes (regardless of network speed).
e Overall, t119 usually yields the best results if compared to ¢; alone or t5 alone.

e When t; is used, the best performance for GDEM always occur when p = 128 and
for the LDSV when p = 32.

e There is a symmetry in the performance of both algorithms.

— GDEM benefits more from #; where as LDSV from .

— There are preferences in techniques that yields the best results. GDEM always
favours t1ty followed by t; then t5,. LDSV usually favours ¢ty followed by %9
then #;.
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e The best interval decreases with the grain size, network speed and tree imbalance.

¢ Experimental investigation of algorithmic adaptivity can not sensibly be done until

equivalently optimised asynchronous version of the algorithm concerned is available.



Chapter 6

Conclusion

The final chapter presents a summary of the work described in this thesis, highlights the

main contributions and identifies possible future direction of the work.

6.1 Summary and Evaluation

This section briefly describes the framework for adaptivity, and the tool used to evaluate

the suggested techniques, followed by a summary of the results.

6.1.1 Conceptual Framework

The thesis defines a new conceptual framework for adaptive dynamic load balancing (DLB)
for parallel tree computation. It introduces the notion of phase-based adaptivity and its
variants - the parametric and algorithmic approach - and positions the new approach in
relation to the existing adaptivity and phase-based techniques. We refer to the existing
work on adaptivity as periodic approach.

The periodic adaptivity does not assume any prior knowledge of the workload of the
system. The DLB parameters (or policies or algorithms) are adjusted from time to time,
according to the current local (or global) state of the system. Such an approach is more ap-
plicable to system level load balancing where the nature of workload are usually processes
of varying sizes and arrival rate, recognised by the operating system.

On the contrary, phase-based adaptivity requires some knowledge of the “evolution” of
the workload. The DLB algorithms makes an adjustment according to this (prior) knowl-
edge of its “surroundings” to optimise the overall performance. Hence, the approach is

more applicable to parallel applications, whose general workload pattern could be antici-

109
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pated beforehand.

Phase-based adaptivity carries three basic concepts;
e the workload phases;

e transitions between these phases; and

e and the mechanisms to adapt at these transitions.

We chose tree computation to illustrate the above concepts. Tree computation starts
with a single node. At this stage, only one processor has work, while the rest are idle.
The aim of the DLB is to quickly distribute the work. As more nodes are created more
processors will have work and finally the whole machine is filled. We call this stage the
filling phase or phase 1. Once all processors are busy, the aim of the DLB is to maintain
this state as much as possible. This we called the steady phase or phase 1I. Eventually the
workload becomes so low that it is not possible to utilise all the processors. At this stage,
there is little benefit in using DLB. We name this stage the emptying phase or phase III.

From the above, there are three distinct phases, thus we can define two transitions
to switch between these phases. The transition can be defined by the number of tasks
currently in the whole system in relation to the number of processors used to execute
the application. The first transition, ¢;, occurs when the number of tasks generated start
exceeding (or at least equal to) the number of processors, while the second, i.e. #3, is when
the total tasks drop sufficiently low relative to the total processors.

There are two mechanisms that could be used to adapt at these two transitions:

e Parametric approach.

This technique adjusts the values of any of DLB parameters (e.g. the load balancing
interval, workload threshold or migration factor) according to the workload phases.
For example the interval value of one is used during phase I (or filling phase) to facil-
itate work distribution and the best interval is used in phase II (or steady phase) to
obtain the best possible execution time and an infinity during phase III (or emptying
phase) to avoid invoking the load balancing. The effect of a very large interval is

equivalent to disabling the dynamic load balancing algorithm.
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o Algorithmic approach.

Although the idea of algorithmic adaptivity already exists in the context of the
distributed systems, it has never been experimented nor discussed in relation to
the DLB algorithms used in this thesis. Algorithmic adaptivity entails the use of
completely different DLB algorithms at different workload phases. A global method,
for example the LDSV, is suggested during phase I to facilitate work distribution
so as to quickly fill the machine. A local method, such as Diffusion (or GDEM), is
preferred in phase II in order to maintain the steady state. This is followed by a

complete disabling of the algorithm in phase III.

The basic principles behind both techniques are to speed up the initial workload distri-
bution, maintain a steady state when the machine is full and remove the overhead of the
load balancing at the end of the computation. An example of a full-scale application that
may adopt the phase-based adaptivity technique is VLSI floorplan optimisation, which is
used in microprocessor and memory chip designs [22].

As it stands now, the conceptual framework presented in this thesis applies only to the
tree computation. The generality and the applicability of the idea has yet to be tested.

We leave this for future work.

6.1.2 The Simulator

In order to investigate the idea of phase-based adaptivity quantitatively, a simulator was
developed which allows different load balancing algorithms to be tested, with varying net-
work speeds (relative to the T3D), and simulated workloads representing trees of varying
depth, grain size and imbalance.

The use of a sequential simulator speeds up the experimental process when compared
with developing a full parallel testbed. More importantly, it allows the potential of both
types of adaptivities, algorithmic and parametric, to be cheaply and easily assessed without
the need for a global collection of processor workloads and distributed detection of phase
changes.

Extensive validations on the simulator were carried out in two stages, namely, iteration
count and cost validations. The predicted and the real iteration count results showed at
least a close, if not an exact, number of iterations between the two. The cost validation
showed a close prediction to the real measurement, with the predicted time within 25%,

for the processor range used in the experiments (i.e. 1 to 128). These results are better
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than (or at least as good as) the reported parallel simulation results in the literature.

Therefore, we conclude that the validity and reliability of the simulator are justified.

6.1.3 Experimental Results

The purpose of the experiments is to investigate the performance gained from parametric
phase-based adaptivity. There are three main experiments, each corresponds to experi-
menting with varying grain size, network speed and tree imbalance. Two load balancing
algorithms, GDEM and LDSV, are evaluated for all experiments.

Before investigating the effects of the adaptive approach, we first study the performance
impact of a sensitive parameter, the load balancing interval, in a non-adaptive situation.

The conclusions of the non-adaptive results are:

e The performance of the tree application is very sensitive to the value of the load
balancing interval. Therefore, it is important to obtain the interval value which

would yield the best result.

e The results also reveal that the best interval is algorithm dependent. Hence, there

is no single best value for all DLB algorithms.

e The best interval increases as the node grain size, the network speed and the tree

imbalance decreases.

After gaining the above insights, we proceeded to adaptivity experiments to investigate the

relationship between the performance improvement with the above mentioned application

and machine parameters by activating individual transition or the combination of both.
There are three sub-experiments which correspond to the three adaptive techniques for

each application or machine parameter (i.e. grain size, network speed and tree imbalance);
(a) t1 only - an interval of one is used during phase I followed by the best interval,

(b) t2 only - the best interval is used during phases I and II followed by no load balancing
during phase III and

(c) tqtq - interval one is used during phase I, followed by the best interval and a disabling

of the balancer, during phases II and III, respectively.
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The following are the insights obtained from the parametric phase-based adaptivity ex-

periments:

o The experiments show that the parametric adaptivity approach always bring ben-
efits. The benefits or improvements can either come from t; alone, ¢ alone or the
combination of the two. This confirms the importance of the two transitions defined

in the conceptual framework.

The relative merits of the techniques are as follows:

— t1 is suitable for an application with high computation to communication ra-
tio. In other words, large grain tree applications and high speed networks will
benefit most from this approach. The tree with high degree of imbalance is

expected to benefit as well, though the benefit may not always be consistent.

— t5 on the other hand, is beneficial if the application has a low computation to
communication ratio. Therefore, the opposite applies - small grain node and
slower networks benefit. As to the tree imbalance, there is no clear relationship
that could be established. The benefit gained from 5 is lesser than ¢; for all

the parameters.

— t1to exhibits a similar pattern of improvement to t; for all three parameters,
indicating a greater advantage gained from ¢; compared to ¢35 when both tech-
niques are combined. Hence, as the grain size and the network speed increases,
the benefit increases consistently. High tree imbalance, however, does not show

consistent advantage, but the pattern is similar to ;.

e I'rom the results it can be derived that the best overall technique (most of the time)
for the three parameters is t1t3. Our observations also show that GDEM favours
t1t2 more than LDSV. As to the single transition technique, ¢; gives more benefit to
GDEM and ¢5 to the LDSV. We can conclude that the performance of each technique

is algorithm dependent.

e The improvement gained through adaptivity increases with the grain size, network

speed, and processor size. It usually increases with the degree of imbalance.

o The benefit of parametric phase-based adaptivity is more significant for medium and

large processor sizes.
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For algorithmic adaptivity experiments, LDSV should be used during phase I, followed
by GDEM during phase Il and a disable of the load balancing in phase III. Both algorithms
are expected to use the best interval values during the first two phases.

However, due to the relatively poor performance of the unoptimised synchronous ver-
sion of LDSV algorithm as compared to GDEM, it is not sensible to proceed with algo-
rithmic adaptivity experiments.

The poor performance of LDSV shows that the synchronous simulator is not suitable
to be used to study algorithmic adaptivity. Since many DLB algorithms are asynchronous
in nature, implementing an asynchronous simulator (e.g. an event-driven simulation) can
be identified as a future work. Only then, a fuller experiments which encompass both

algorithmic adaptivity and parametric adaptivity can be carried out.

6.2 Contributions
The following are the main contributions of this thesis:

¢ A new conceptual framework for adaptivity in dynamic load balancing has been

proposed (explained in Chapter 3 and summarised in Section 6.1.1).

e A sequential simulator to explore this framework has been developed and closely

validated (described in Chapter 4 and a short summary is provided in Section 6.1.2).

e The results of the investigation are presented in Chapter 5 and Section 6.1.3. They

can be summarised as follows:

— The parametric phase-based adaptivity techniques have demonstrated good

performance improvement.

— The conditions under which each transition (or the combination of both) pro-

vide the most benefit have been identified.

— The best overall technique for all application and machine parameters consid-

ered (i.e. grain size, network speed and tree imbalance) has also been identified.

The following is subsidiary contribution (not directly related to adaptivity):

e A dynamic load balancing algorithm, Loadserver, initially proposed by Davy [14]
has been implemented on the T3D (Chapter 2).
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6.3 Future Work

The above research can be extended in two main directions:

6.3.1 Further Simulation Studies

The work reported in this thesis covered only one type of parametric phase-based adap-
tivity, that is the load balancing interval. There are other parameters that can be experi-
mented with, such as the workload threshold and load migration factor. These experiments
can easily be carried out using the existing simulator without any major changes.

Within the same scope, the effects of other application and machine parameters, such
as the fan-out and topology, can be investigated. Apart from 2-d torus, the simulator
currently supports ring, chain, mesh and hypercube. Experimenting with the effects of
varying fan-out or processor connectivity are straight forward since these facilities are
already incorporated within the simulator.

Another potential further work is experiments to optimise the performance of the
LDSV algorithm. An improvement to the LDSV can be undertaken in two ways. First,
using a larger migration factor instead of one. By doing so, more than one tasks may be
packed and sent to a single destination. There is also the possibility of having varying
number of tasks in a single pack. Second, more than one light node id can be returned
to the heavy node upon making a request for light node ids. Hence, the extra work could
be distributed to these light nodes, as in the case for a single request to the information
server. This may facilitate work distribution further and help minimise the cost during
filling phase. These two optimisations are expected to reduce the total cost of the LDSV
algorithm, and perhaps amplify the benefits gained from the algorithmic adaptivity ap-

proach.

6.3.2 Real Parallel Implementation

The simulation results have shown the potential performance benefit of phase-based adap-
tivity. Therefore, the natural step forward is to consider practical implementations with
a real parallel dynamic load balancing algorithm and a real application (e.g. divide-and-
conquer). The main challenges in real parallel implementation revolves around the issue
of acquiring the global system state (i.e. the number of tasks currently in the system) and
to detect phase transition in a distributed manner with minimum additional overhead.

Otherwise the benefit of adaptivity can not be justified.
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In the synchronous model (as in the simulator), one can take the advantage of the
termination detection algorithm. For example, the MPI_Allreduce () function can be used
to gather the status, as well as to collect the workload of the processors through the
same global reduction. No additional facility is needed. Transitions can be checked after
retrieving the workload state every time if the computation has not reached to an end.

Many DLB algorithms are asynchronous [9, 32, 50, 76, 82, 87]. Therefore, it is im-
portant to test the idea in this context. With the asynchronous parallel implementation,
the issue is more challenging. Acquiring the knowledge of the system state using message
passing may be implemented in two ways. First, through a global or centralised facility
if the algorithm uses one (e.g. LDSV algorithm). Second, again, through the termination
detection algorithm. The system workload could be coupled with the status of the pro-
cessor passed throughout the system as the case in token termination detection algorithm
described in [45]. However, both techniques may suffer from information aging. In the
centralised approach, additional communication is required for information collection and
distribution.

The high-level sharing facilities provided by the TallShip project [28] may help ease the
problem. The shared accumulator, for example, may be used to accumulate the current
workload status of the system without tedious implementation of message-passing. The
problem of information aging vanishes since information is collected only when it is needed.
However, the effect on overall performance has yet to be assessed.

The above mentioned issues pose various practical challenges which we will leave for

future investigation.
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