Phase Transition Behaviour in
Constraint Satisfaction Problems

by

Stuart Alexander Grant

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computer Studies

October 1997

The candidate confirms that the work submitted is his own and tlat appropriate
credit has been given where reference has been made to the waf others.

Abstract

Many problems in artificial intelligence and computer scieiean be formulated as constraint
satisfaction problemscSPs). A CSP consists of a set of variables among which a set of con-
straints are imposed, with a solution corresponding to an assigrfioreevery variable such that
no constraints are violated. Most forms@$P are NP-complete.

Recent research has shown that@®&P exhibits aphase transitioras a control parameter is
varied. This transition lies between a region where most groblare easy and soluble, and a
region where most problems are easy but insoluble. In the ieémg phase transition region, the
average problem difficulty is greatest. Phase transition behagan be exploited to create test
beds of hard and easy problems &8P algorithms. In this thesis, we study the phase transition
of the binaryCSP and examine various aspects of complete search algorithnits for

The phenomenon of exceptionally hard problenehgs’) is examined in detail: these are
rare searches on easy problems which become exceptionabysixp for a particular complete
algorithm following a poor early search move. An explanationthe occurrence oéhps is
proposed, and the relative susceptibility of certain algarghio the phenomenon is explored.

We then show that the phase transition paradigm can be appliwd tasks of polynomial cost
complexity: attempting to establish arc and path consistenaZ®P. Phase transition behaviour
analogous to that found when searching for a solution is demaiedtfor these tasks, and the
effectiveness and cost of establishing arc and path consisteaggngined.

The theme of establishing consistencyd8Ps is extended by studying an algorithm which
maintains arc consistency during search. Its performancenigpared with that of an algorithm
which maintains a lower level of consistency, and it is shown tif@ higher level of consistency
reduces average search cost ahpl behaviour on many types afSP.

Finally, the subject of dynamically selecting the variablartstantiate at each stage in the
search process is considered. We compare a number of heuristics attempt to select the
variable most likely to lead to failure, and show that the suppgsinciple behind these appears
to be fundamentally flawed.

Acknowledgements

I would like to thank Barbara Smith, my supervisor, for her cansling guidance, support and
cooperation over the last three years. Our close collabortisnproved to be both productive
and enjoyable, and | have received a standard of supervisiahwhis been the envy of my peers.
I am also grateful to the School of Computer Studies for fugdiy studentship, and to my PhD
examiners, Edward Tsang and Tony Cohn, for their constructiveneents.

Special thanks go to Patrick Prosser, who some four years agedpry eyes not only to the
field of constraint satisfaction, but also to the whole idea ofrgifie research. Even when things
looked to have gone all wrong, Patrick gave me encouragerardtiook how things ended up!

Being a (founder) member of the APES group has provided mk aitremendous forum to
discuss ideas, and also to see how good research is done. Many fmatik$éan Gent, Toby

Walsh, Craig Brind, Dave Clark, Ewan Macintyre, Isla Ross, P&aiwsand lain Buchanan, as
well as Barbara and Patrick.

This work has been partly funded by British Telecom plc, anduld like to thank Nader Azarmi,
David Lesaint, Barry Crabtree and Hyacinth Nwana for thelphsupport and advice (and their
money).

Respect and thanks go to all my friends, particularly Steveeq Aviark, Russ and Nana, who are
all in the same boat, and Leigh and David, who've seen me in this store than once.

This work is dedicated to my parents, Mary and Lindsay, and tesister, Suzy. Without their
love and support it would not have been possible.

Declarations

Some parts of the work presented in this thesis have been patlistihe following articles:

Chapter 3
I. P. Gent, S. A. Grant, E. Maclintyre, P. Prosser, P. Shaw, B. Srith and T. Walsh. 1997. How
Not To Do It. Research Report 97.27, School of Computer Ssudlaiversity of Leeds.

Chapter 5

B. M. Smith and S. A. Grant. 1995. Sparse Constraint Graphs and Exceptionally Hard Prob-
lems. In C. S. Mellish., edRroceedings of the 14th International Joint Conference oifididl
Intelligence - IJCAI-95volume 1, 646—651. Morgan Kaufmann.

B. M. Smith and S. A. Grant. 1994. Sparse Constraint Graphs and Exceptionally Hard Prob-
lems. Research Report 94.36, School of Computer Studies, tditivef Leeds.

B. M. Smith and S. A. Grant. 1995. Where the Exceptionally Hard Problems ArePhoceed-
ings of the CP-95 Workshop on Studying and Solving Really Heotdl®ms 172-182. Labora-
toire d’Informatique de Marseille, France.

Chapter 6

S. A. Grant and B. M. Smith. 1996. The Arc and Path Consistency Phase Transitions. In
E. C. Freuder., edRrinciples and Practice of Constraint Programming - CP-96lume 1118 of
Lecture Notes in Computer Scienéd1-542. Springer-Verlag. Extended abstract with poster.

S. A. Grant and B. M. Smith. 1996. The Arc and Path Consistency Phase Transitions. Research
Report 96.09, School of Computer Studies, University of Leeds.

Chapter 7

S. A. Grant and B. M. Smith. 1995. The Phase Transition Behaviour of Maintaining Arc
Consistency. Research Report 95.25, School of Computer Studinéversity of Leeds.

S. A. Grant and B. M. Smith. 1996. The Phase Transition Behaviour of Maintaining Arc
Consistency. In W. Wahlster., ed®roceedings of the 12th European Conference on Artificial
Intelligence - ECAI-96175-179. John Wiley & Sons, Ltd.

Chapter 8
B. M. Smith and S. A. Grant. 1997. Trying Harder to Fail-First. Research Report 97.45p8th
of Computer Studies, University of Leeds.

Vi

Vii

Contents

Abstract [
Acknowledgments iii
Declarations v
Contents Vi
List of Figures Xiii
List of Tables XVii
Abbreviations Used XiX

1 The Constraint Satisfaction Problem and its Phase Transition
1.1 The Ubiquity of Constraint Problems
1.2 The Constraint Satisfaction Problem
1.2.1 Formaldefinitions.
1.2.2 IssuesinvolvedwiththeCSP
1.2.3 Computational complexity
1.2.4 Constraintpropagation.,
1.3 SearchingCSPs.
1.3.1 Complete algorithms.
1.3.2 Incompletemethods oL
1.4 Phase Transition Behaviour,
1.5 Exceptionally Hard Problems
1.6 Applications of Phase Transition Behaviour.
1.7 OVeIVIEW. e

2 Complete Algorithms for the CSP
2.1 SearchAlgorithms e
2.1.1 Backtracking and backjumping
2.1.2 Lookingahead

0O 0 N O 01 O A B B W

e
N w P

viii

2.1.3 Hybridcombinations L 19
2.1.4 Theoreticalevaluation 19
2.2 Implementing BacktrackingSearch L. 20
2.3 Finding All Solutions e 21
2.3.1 Driving the search forall solutions. 21
2.3.2 Backtracking and Backjumping oo 21
2.3.3 Conflict-directed backjumping. 23
234 Remarks. 25
2.4 SearchHeuristics. 25
2.4.1 Implementing dynamic variable ordering 26
242 DVOwithabacktracker, 26
243 DVOwithabackjumper 28
2.5 Consistency Algorithms. L o 28
Random Problem Generation 31
3.1 Justification for Random Problems L. 31
3.2 CSP Parameters and Properties. 32
3.2.1 Propertiesofn,m,p;,p2) CSPs. o oo 33
3.3 Models for Problem Generation 33
3.4 Constraint Graph Connectivity. L 35
3.5 Random Number Generation 35
3.5.1 Requiredproperties 35
3.5.2 The Linear Congruential Method 36
3.6 Random Problem Generator Implementation. 36
3.7 Extensions to the Random Generation Model 36
The Empirical Study of Algorithms 39
4.1 Experimental Nomenclature L oL 39
411 CSPnomenclature. 39
4.1.2 Algorithmnomenclature 40
4.2 Experimentation Environment 40
4.3 Phase Transition Experiments. L. 41
4.4 MeasuringSearch. 41
44.1 Consistencychecks 0oL 42
442 Nodesvisited. 42
443 CPUtime 42
4.4.4 Permanentnogoodvalues. 42
445 Temporarynogoodvalues. 43
44.6 Labellings. 43
4.4.7 Unlabellings. 43
45 PresentingSearchData 43

451 Summarystatistics. 44

45.2 Searchprofiing.
453 Costpercentiles.
45.4 Costagainstconstrainedness,.

5 Exceptionally Hard Problems

51 RelatedWork
5.2 CriteriaUsed
5.3 BasicEhpBehaviour.
5.3.1 Naive chronological backtracking.
5.3.2 InsideaBTehp.
5.3.3 Improving BT's variable ordering
5.4 Strategies for AvoidingEhps. oL
55 LookingForward
55.1 Forwardchecking.
5.5.2 The effect of adding search heuristics.
5.5.3 Largesparseproblems.
5.5.4 Maintainingarcconsistencyo
555 Summary
5.6 JumpingBack.
5.7 Combining Techniques.
5.8 InsideEhps
5.8.1 Two forward checkingehps
5.8.2 Extendinglookahead. L.
5.8.3 Additional backjumping
5.8.4 Profleofanehp L
5.9 Conclusions.
5.10 Acknowledgements.

Phase Transition Behaviour in Arc and Path Consistency
6.1 RelatedWork
6.2 Terminology. e
6.3 The Empirical Studies.
6.4 The 2-Consistency Phase Transition
6.5 TheCostof AC3. e
6.5.1 AC3onthesimplestproblems.
6.5.2 AC3onarcconsistentproblems.
6.5.3 AC3onthehardestproblems
6.6 The 3-Consistency Phase Transition
6.7 Interpretation of the AC and PC Phase Transitions.
6.8 Discussion.
6.9 SubsequentStudies

49
50
51
51
52
53
55
56
56
57
58
60
61
61
63
63
65
66
67
67
68
68
71

7 The Phase Transition Behaviour of Maintaining Arc Consistency 89
7.1 RelatedWork 89
7.2 StructureofthisStudy 91
7.3 Reuvisiting the Exceptionally Hard Problems. 92
7.4 TheAlgorithms 92
7.5 The Empirical Studies. 93

751 Themainexperiments. 93
7.6 Macroscopic Performance of MAC. 95
7.6.1 General and extreme behaviour. 95
7.6.2 Backtrack-freesearch 97
7.6.3 ComparisonwithFC 101
7.6.4 Overallperformance 104
7.7 Macroscopic Performance of MAC-CBJ. 104
7.7.1 General and extreme behaviour. 104
7.7.2 ComparisonwithFC-CBJ 107
7.8 The Search Treesof MACandFC. 110
7.9 Discussion. 116
7.10 Acknowledgements. 117

8 Dynamic Variable Ordering Heuristics 119

8.1 RelatedWork 120
8.1.1 Alternative fail-first DVO heuristics 120
8.1.2 Minimising subproblem constrainedness. 121

8.2 Studyingthe Fail-FirstPrinciple 122

8.3 A Theoretical Interpretation of Fail-First. 122
8.3.1 Three new fail-first heuristics. 122
8.3.2 Testing the fail-first principle. 125

8.4 The Experimental Environment L 125

8.5 Effect of the Initial Instantiation. 126
8.5.1 Effecton static variable ordering. L. 126
8.5.2 Effecton dynamic variable ordering. 127
853 Summary 128

8.6 ASimpleBeautyContest. 128
8.6.1 Newfail-firstheuristics. 129
8.6.2 Heuristics based on domain size and degree. 130
8.6.3 Failing first against minimising constrainedness. 131

8.7 Original Degree Versus Future Degree 131

8.8 Changing Base Algorithm, 133

8.9 Scaling Behaviour of Heuristics, 134

8.10 Comparative Ehp Behaviour. L. 136

8.11 Consequences for the Fail-First Principle. 136

8.11.1 Suggested limitations of fail-first. 138

8.13 Summary
8.14 Acknowledgements.

9 Conclusions
9.1 Contributions
9.1.1 Experimental methodology.
9.1.2 Exceptionally hard problems.
9.1.3 Phase transitions in polynomial problems
9.1.4 Positioning of the MAC algorithm
9.1.5 Scrutiny of the fail-firstprinciple

A An Online CSP Experimentation Laboratory

References

Xi

139
139
140
141

143
143
143
143
144
144
145
145
145

147

149

Xii

Xiii

List of Figures

1.1 Example solutions to the 8-queens problem and the |largsier, 12-queens prob-
lem. . . e 2
1.2 Animplicit binary constraint created by two explicitene

1.3 The three variable states during backtracking search.. 7
1.4 Anillustration of phase transition behaviour in a compatetl search problem. 10
1.5 Anillustration of exceptionally hard problem behavioua computational search
problem. 12
2.1 Hybrid combinations ofSP search algorithms. 19
2.2 Driver function for backtrackingsearch.. 0oL, 20
2.3 Driver function for backtracking search finding all sofuts. 22
2.4 Unlabelling function for th&T algorithm.. 23
2.5 Special backtrack function for tl algorithm.. 23
2.6 Unlabelling function for the€BJ algorithm. 24
2.7 Special backtrack function for tl@BJ algorithm. 25
2.8 Driver function for a backtracking search with dynamidahle ordering.. . . . 27
2.9 Dynamically selecting the next variable to instantiate. 27
2.10 Undoing the effects of a dynamic variableswap.. 28
4.1 Search profiles for two algorithms on an ensemble&s. 45
4.2 Plotting several phase transitions agamsitop) andk (bottom). 46

5.1 Ranges of consistency checking costgoron (20,10,0.2) and(20,10,1.0) CSPs. 52
5.2 Mean consistency checking cost Br on (20,10,0.2) and(20,10,1.0) CSPs. . 53
5.3 Ranges of consistency checking cos8ousing a minimum bandwith ordering)

0N (20,10,0.3) CSPS.« . o i 56
5.4 Ranges of consistency checking costdoron (20,10,1.0) CSPs. 57
5.5 Ranges of consistency checking costfOrrFdeg on four (20,10) CSPs. 59
5.6 Ranges of consistency checking costfOrFFdeg on (50,10,0.1) CSPs. 60
5.7 Ranges of consistency checking costM@&C-Frdeg on (50,10,0.1) CSPs. . . . 62

5.8 Ranges of consistency checking costdsd on (20,10,1.0) CSPs. 64

Xiv

5.9 Ranges of consistency checking costHGrCBJ-Frdeg and MAC-CBJ-FFdeg ON

(50,10,0.1) CSPS. . .« v v v i e 65
5.10 Profiles of fouK50,10,0.1) exceptional searches. 69
6.1 EffectsofAC30n(20,10,p1) CSPs. 76
6.2 Peaks of median and maximum cost&08 againstm. 81
6.3 Effects ofPC20n(20,10,p1) CSPs.« o i 82

6.4 Phase transitions in establishing arc consistency, path camsisand finding a
solution. The ‘inconsistency’ curves are superimposed and haweaange of

7.1 Observed satisfiability curves for tBSP classes listed in Tables 7.1 and 7.2. 95

7.2 Median cost oMAC overn = 30 series, in terms of consistency checks.. . . 96
7.3 Ranges of consistency checking costMiaC on threen = 30CSP classes.. . . 96
7.4 Median cost oMAC overy =~ 4.9 series, in terms of consistency checks.. . . 98
7.5 Ranges of consistency checking costMiaC on foury=~ 4.9 CSP classes.. . . 99

7.6 Median cost oMAC onn = 30 andy ~ 4.9 series, in terms of nodes visited. . 100
7.7 Comparison of median cost®AC versus~C for n = 30 series, in terms of both

consistency checksand nodesvisited. 102
7.8 Comparison of the median costMAC andFC for threey ~ 4.9 CSP classes, in
terms of consistencychecks..o oL 103
7.9 Comparison of median search cosM#C andFC at pagit for the niney ~ 4.92
CSPclasses.. e 103
7.10 Ranges of consistency checking costHoron foury~ 4.9 CSP classes.. . . . 105
7.11 Median cost ofMAC-CBJ overn = 30 series, in terms of consistency checks per-
formed.. 106

7.12 Ranges of consistency checking costMaiC-CBJ on threen = 30CSP classes. 107
7.13 Ranges of consistency checking costMaC-CBJ on foury = 4.9 CSP classes. 108
7.14 Ranges of consistency checking cosHO+CBJ on foury~ 4.9 CSP classes. . 109
7.15 Mean consistency checks at each search dep#cChyBJ on (30,10,y ~ 4.9)

problems. 111
7.16 Mean consistency checks at each search deptinlayCBJ on (30,10, y ~ 4.9)
problems. e 112

7.17 Mean nodes visited at each search depthd¢BJ on (30,10,y~ 4.9) problems. 114
7.18 Mean nodes visited at each search deptAg-CBJ on (30,10, y= 4.9) problems.115

8.1 FC with static variable orderings of20,10,0.2) and(20,10,0.5) CSPs. 127
8.2 FC with dynamic variable orderings of20,10,0.2) and(20,10,0.5) CSPs. . . . 128
8.3 Fail-first heuristics 020,10) CSPs. 129
8.4 Four DVO heuristics 0f20,10) CSPs. 130
8.5 \Variants oBz andpp with FC on (20,10) CSPs. 132

8.6 DVO heuristics WittMAC on(20,10) CSPs. 133

8.7 DVO heuristics withFC on (30,10,0.5) and(50,10,0.1) CSPs

8.8 DVO heuristics wittMAC on (30,10,0.5) and(50,10,0.1) CSPs
8.9 Relativeehp behaviour of four DVO heuristics o(b0,10,0.1) CSPs

XV

XVi

List of Tables

XVii

4.1

6.1
6.2
6.3

7.1
7.2

Sources, implementations and brief descriptions foCtbie algorithms used. .

Properties 0§20, 10, p1, p2) CSP ensembles at AC phase transition peaks. .
Data for thg20,m, 1.0, pz) CSP ensembles at AC phase transition peaks. . .
Properties of problems at PC costpeaks..

The set 0f30, 10, p;) problem classes studied.
The set ofn, 10,y ~ 4.9) problem classes studied..

XViii

Xix

Abbreviations Used

Basic Terms

CSP,CSPS . .t iiiiee Constraint Satisfaction Problem(s), usually binary
ST et e Boolean Satisfiability

B S AT SAT where all clauses contain exactly 3 literals
TP e Travelling Salesperson Problem
ehp, ehps ... Exceptionally hard problem(s)

BT et Chronological Backtracking
B . Backjumping
OB ot Conflict-Directed Backjumping
BV e e e Backmarking
P Forward Checking
MAC . e e Maintaining Arc Consistency

BM Backmarking with Backjumping
BM-CBJ ..ottt Backmarking with Conflict-Directed Backjumping
FC-BJ . Forward Checking with Backjumping
FC-CBJ . vttt Forward Checking with Conflict-Directed Backjumping
MAC-BJ ..o Maintaining Arc Consistency with Backjumping
MAC-CBJ.................. Maintaining Arc Consistency with Conflict-Directed Backjuimg

AC Arc Consistency / Arc Consistent
PC Path Consistency / Path Consistent
AC3,AC4, AC6, ACT ... Alternative arc consistency algorithms

PC2, PCA . i Alternative path consistency algorithms

XX

Variable Ordering Terms

DV Dynamic Variable Ordering
SV O Static Variable Ordering
P ettt e e Variable Ordering using the Fail-First principle
FRAeg, FF2, FF3, FFd . o vttt ettt et ittt et Variants of the Fail-First strategy

BZ, DD, KaPPA -+« « e vveeee e e e Alternative dynamic variable ordering strategies

Chapter 1

The Constraint Satisfaction Problem
and its Phase Transition

Consider the task of creating an examination timetable forgelaniversity. Every one of the
exams must be assigned a room, time and invigilating member fof $tzese assignments are
subject to a number aonstraintswvhich must not be violated, such as: the capacity of the rooms
must be sufficiently large to house all the candidates; two examsat run concurrently if one
or more students plan to sit both; staff must be available fogitation duty at the right time;
disabled students must be placed in rooms with sufficient fes)iand no student must sit more
than two exams in any one day and six exams in any one week. theglermutations ofroom,
time staff) assignments which can be given to the set of examinations, code thvhich satisfy
all of the constraints constitute valid solutions. Such a titvl@tg problem is an example of a
constraint satisfaction problem

Another problem which can be formulated as a constraint satisfaproblem is a simple
chess puzzle known as tihnequeens problem. The objective here is to assighess queens to
positions on am x n chess board, such that no two queens threaten each other. fiteaguts
specify, therefore, that no two queens must lie on the same adwyn or diagonal on the board.

The entities in a constraint satisfaction problem to which eslonust be assigned are visri-
ables Even small numbers of variables in a problem can create a vasttsgpace, and the
solutions to the problem, if there are any, may be widely smdtever this space. These two
factors combined can often make the time taken to search fduigounfeasibly long.

A vast search space does not necessarily mean an intractablemrdiowever, and many con-
straint satisfaction problems are in fact very easy. If the eration timetable described above
were to involve, say, only three exams involving a handful ofdshts with plenty of suitable
accommodation, staff and time available, then the consgraire so loose that a solution is very
easy to find. Similarly, if twenty exams must be scheduled intly owo days with one room
available, then the problem is hopelessly over-constrainddtémeasy to prove that no solutions
exist. The difficult problems lie between these extremes, whismbt so clear whether a solution
can be found or not.

2 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

Figure 1.1: Example solutions to the 8-queens problem and the largegreagiqueens problem.

Problem size is not necessarily a guide to difficulty, eithee Hgueens problem actually be-
comes less tightly constrained as the number of queens (asikthef the board) increases (Tsang
1993), which essentially makes the problem easier to solve. d@eratand this, consider that an
increase im from, say, eight to nine adds one queen to the problem, but Emmmdditional
board squares. Figure 1.1 illustrates an example solution t8-theeen and 12-queen problems.
A queen placed on the 8 row board can rule out as many as 27 @3memaining positions
(43%), while a queen on the 12 row board can rule out at most 4Beobther 143 positions
(30%). The very specific properties of this problem prompt Bs@nadvise the use of caution if
usingn-queens to benchmark the performance of search algorithms.

The behaviour of constraint satisfaction problems variestlytedepending on the problem
size and its level of constrainedness. Recentinsights intorttienestances under which problems
are easy or hard, and whether they have solutions or not, hakeased understanding of how
they can be searched more efficiently. This in turn has prodnoiare rigourous testing of search

1.1. The Ubiquity of Constraint Problems 3

techniques.

The behaviour of the constraint satisfaction problem and thdysbfi search techniques for
it form the basis of this thesis. We begin in this chapter by rptire importance of constraint
satisfaction in many areas of computer science, and by forrdafiping the constraint satisfac-
tion problem. The task of searching these problems is discussddharpattern of behaviour
known as thehase transitions introduced. The role of phase transitions in the study of $earc
techniques is then examined and an overview of the strucfuileeahesis is given. A number
of important terms are introduced which are used throughusthesis. These are introduced in
bold type.

1.1 The Ubiquity of Constraint Problems

The constraint satisfaction problem is a simple but extremelyepiul paradigm for representing

many types of problem which arise in the fields of artificiakitigence and computer science.
(Meseguer 1989), (Kumar 1992) and (Tsang 1993) discuss appfisaif the constraint satisfac-

tion problem in areas including:

¢ Belief Maintenance (Dechter and Pearl 1988)

e Configuration (Mittal and Falkenhainer 1990)

e Databases (Dechter and Pearl 1989)

e Design (Navinchandra and Marks 1987)

¢ Diagnosis (Sabiet al. 1995)

e Machine Vision (Montanari 1974)

¢ Planning (Kautz and Selman 1992)

e Scheduling (Fox 1987)

e Temporal Reasoning (Allen 1983)

e Truth Maintenance (de Kleer 1986; de Kleer 1989)

The power of formulating problems in terms of entities lidkey constraints lies in the ability to
create a representation that closely mirrors the actual pnobIlSuch an intuitive representation
makes solutions easier to understand, and assists the procesatwfgcsearch heuristics which
exploit characteristics of the problems.

The ubiquity of constraint satisfaction problems throughbetworld of computation makes
efficient techniques for solving them highly desirable. Thesice has led to the development of
constraint programming tools and languages, which providéeibconstraint handling functions
and the facilities to represent problems easily. Well knownst@int programming languages
include CHIP (Constraint Handling in Prolog) (Simonis and@ias 1987) and the more recent
C++ based ILOG Solver (Puget 1994).

4 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

1.2 The Constraint Satisfaction Problem

Constraint satisfaction problemggPs) appear in many forms, linked by a number of basic prop-
erties. To provide a context for our study of t88P, a number of important formal definitions
are given below. These are followed by discussion of the issudingeta finding solutions for
the problem, the conditions which make most forms of@is® fundamentally difficult to solve,
and strategies which can reduce the search space®Pagrior to search.

1.2.1 Formal definitions

The following series of definitions relating to the constraatisfaction problem and associated
properties are based on those provided by (Tsang 1993).

A constraint is defined by a paifV,R): V is a set of variable$vi, ..., v; }, each with alomain
of possible value®; Ris a relation such tha C D;j x ... x D;. Informally, a constraint specifies
the allowed tuples of values for the variables involved.

The arity of a constraint denotes the number of variables involvedaryirronstraints, for
example, involve pairs of variables, while ternary constsainvolve triples.

A generalconstraint satisfaction problem (CSP) is defined by the tuplé/,D,C): V is a set
of variables;D is a function mapping each variableVhto its domain of possible value€;is a
(possibly empty) set of constraints, each involving an arbitsaityset of/.

A finite constraint satisfaction problemimposes the restriction that the number of variables,
the sizes of their domains, and the number of constraints ate.firtor brevity, we use the
termsconstraint satisfaction problemndCSP to denote a finite constraint satisfaction problem
throughout the rest of this thesis.

A constraint graph, defined by a paifV, E), can be associated with a@sP: the vertices,

V, correspond to each problem variable; the edgesre placed between pairs of vertices whose
corresponding variables are mutually involved in one or nuamestraints of any arity. Properties
of the constraint graph for @SP include the density of the constraints, the degree of vertices
(variables) and the bandwidth.

A solution to aCSP is a total assignmen§, such that for each variablec V, S(v) € Dy and
for each constraint{vi,....v;},R), {S(vi),....,S(vj)} € R Informally, a solution is an assignment
to every variable of a value that is a member of its domain, thatldoes not violate any of the
constraints placed on the variables.

A CSP for which there exists one or more solutions is said tsbkible, while one without
solutions isnsoluble.

1.2.2 Issues involved with the CSP

The solubility or insolubility of any (finiteCSP is determinable, since the set of all total assign-
ments to the problem is finite. Thus, tB€P avails itself to asearch processvhich can look for
solutions.

Tasks associated with searchi@gPs include: determining whether or not a solution exists
(thedecision problen); finding a solution if one exists (tre=arch problen); finding all solutions

1.2. The Constraint Satisfaction Problem 5

(theenumeration problem); determining the number of solutions (theunting problem); and
finding the optimal solution, given an optimality critericihg¢ optimisation problem).

Thearity of aCSP is defined by the maximum arity among its constraints. The s$yualie-
sented in this thesis are restricted to dealing withkhmary constraint satisfaction problem. A
binary CSP involves only unary or binary constraints. However, since yrmanstraints on vari-
ables can be dealt with simply by removing disallowed valuemftheir domains, the binary
CSPs we will deal with in practice contain only binary constraints.

Concentrating solely on binai@SPs does not necessarily lead to a loss of generality in our
analysis. AnyCSP of higher arity can theoretically be reduced to a binagp, and (Tsang 1993)
presents two methods for this. It should be noted, howeverthkaepresentation of some high-
arity constraints may require a number of binary constralmisis exponential in the arity of the
original constraint.

1.2.3 Computational complexity

The CSP in its general form is NP-complete (Garey and Johnson 1979js fieans that it is
unlikely that an algorithm for the search problem exists tha#sinot have a worst-case time
complexity exponential in the size of the problem.CAP with n variables, each with domains
of sizem, hasm" total assignments, giving rise to a worst-case time complexityish@otentially
o(m").

Even heavily restricted forms afSP are NP-complete. To illustrate this, considecaP
consisting of Boolean variables (domain sizes of 2) and tercamgtraints (arity 3). This class of
CSP subsumes the 3-satisfiabilit§-6AT) problem, which was the first computational task shown
to be NP-complete by (Cook 1971). Cook showed that if the arfitg Boolean Satisfiability
(SAT) problem is greater than 2, the problem is NP-complete.

Similarly, the graph colouring problem is NP-complete wt&r more colours are avail-
able (Garey and Johnson 1979). 3-colouring can be transfommea ibinaryCSP with domain
sizes of 3. ACSP with arity 2 and only boolean variables has a worst-case timepbexity poly-
nomial in the problem size, but almost any relaxation of thiswake the problem NP-complete.

1.2.4 Constraint propagation

The complexity of theCSP stems from interaction between the explicitly defined comsisa
which produces many more implicit constraints. One approadainplifying, conceptually, the
search process is fwropagatethe effects of the explicit constraints around the probleiorgo
search. Such a preprocessing step establishes some leagisi$tencyin the CSP. The level of
consistency achieved by a constraint propagation process @eatehy the ternk-consistency
for which (Meseguer 1989) and (Kumar 1992) provide similarrdtifins, summarised here as:

A set of variables ik-consistent if for each set &— 1 variables with values sat-
isfying all the constraints among them, it is possible to find a malue for a new
variable such that all the constraints amongkhariables are satisfied. If the set of
variables isj-consistent for all alfj < k, then it isstrongly kconsistent.

6 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

v2

o

C(1,2) C(2,3)

Implicit C(1,3)

Figure 1.2: An implicit binary constraint created by two explicit ones.

Strong 2-consistency is known agc consistency Informally, all pairs of variables in an arc
consistenCSP are mutually consistent, in that any value in the domain of @r&ble is consis-
tent with at least one value in the domain of every other végiabstablishing arc consistency in
a CSP often results in the removal of inconsistent (orsupportefivalues from the domains of
variables, thereby reducing the size of the problem’s searotespalues that are unsupported
do not form part of any solution to theSP. If the process of making @SP arc consistent causes
adomain wipe-outfor a variable, then the problem is proven to be insoluble.

Strong 3-consistency is known path consistency Here, all triples of variables in thesp
are made mutually consistent. For a binagP, establishing path consistency effectively makes
explicit the implicit constraints that bind triples of vabias. Hence, this process may add ex-
tra explicit binary constraints to the problem in additionrémoving unsupported values from
variable domains. To illustrate this, consider three variablgsy, andvs, linked by two binary
constraints as shown in Figure 1.2. The path consistency proatsdates the implicit binary
constraint betweew andvs that arises from the combined effects of the two explicit caists
which indirectly link them. If this new constraint is nonuial, it is added to the problem and
takes part in the arc consistency phase of the process.

If a CSP is stronglyk-consistent, wheré is the number of variables in the problem, then
solutions may be obtained without any need for search. The fasktablishing such a level of
consistency is, however, NP-complete itself (Tsang 1993).

1.3 Searching CSPs

Three important properties are associated with any searclegsmoundnesscompletenesand
termination. Given a problem, an algorithm which is sound will find onlyidasolutions, and
one that is complete will find all solutions given enough tifke termination property is usually
a by-product of completeness.

Any credible algorithm for theCSP must be sound, though it need not necessarily be com-
plete. Complete algorithmsfor the CSP usually involve some systematic search process which
methodically explores the search space of the problémeomplete algorithms for the CSP
sacrifice the property of completeness in return for greatdrilitypto jump around areas of the
search space, usually using some stochastic exploration techBidqefreviews of complete and
incomplete methods for searching 6P are presented below.

1.3. Searching CSPs 7

var[1]
|
i Past variables
|
varfh]
var(i] Current variable
var[j]

|
|
| Future variables
|
|

Figure 1.3: The three variable states during backtracking search.

1.3.1 Complete algorithms

Many systematic search algorithms exist to find a solution@sga or show that it is insoluble.
These algorithms tend to be refinementdbatktracking search (Golomb and Baumert 1965).
Backtracking search aims to build and extgaaitial solutions until a complete solution is found.
This is achieved bynstantiating the problem variables with values from their domains, using a
pre-definednstantiation ordering.

At any stage in a backtracking search process, each variablemeiof three possible states:

e Past variableshave been instantiated with values from their domains theastansistent
with the instantiations of all other past variables.

e Thepresent variableis about to be instantiated with a value from its domain. Thism
be consistent with the instantiations of all past variables.

e Future variables have not yet been instantiated.

Figure 1.3 illustrates these variable states graphically.sBagch process consists of a number of
search movewwith the following characteristics:

e A forward search move successfully instantiates the present variable aresmn to the
next variable in the instantiation order.

e A dead endmove occurs when all values of the current variable are isispent with the
current partial solution.

e A backward search move follows a dead end. The search steps back to a pabtevarid
tries a new instantiation for it.

e A solution is found if the search moves forward past the finalaldé in the instantiation
order.

8 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

e The search is exhausted if it steps back beyond the first variklbihen terminates.
¢ Insolubility is proved if the search terminates without firglany solutions.

Each forward move in a backtracking search requires some fdroosistency checkingo
validate the instantiation being made. This can be perforeitbér by checking backward against
the instantiations of the past variables, or by checking foiveayainst the domains of the future
variables and making them consistent to some extent with threrdunstantiation. These styles
of forward move are known deokback andlookaheadrespectively.

Similarly, there are two possible styles of backward search m@keonological backtrack-
ing allows the search to step back only to the most recently instadtizariable, whileback-
jumping allows the search to jump back past a number of instantiatedblas.

The generic backtracking algorithm (Golomb and Baumerts)}@8es lookback consistency
checking and chronological backtracking. Refinementsitalgorithm which introduce back-
jumping capability include Backjumping (Gaschnig 1979) &uahflict-Directed Backjumping
(Prosser 1993). Algorithms which use lookahead techniquésahitonological backtracking in-
clude Backmarking (Gaschnig 1977; Gaschnig 1979), Forwareckihg (Haralick and Elliott
1980) and algorithms which maintain arc consistency duringche@aschnig 1979; Sabin and
Freuder 1994). The sophistication of lookahead and backjuggchniques can be combined
to produce hybrid algorithms (Prosser 1993). Complete algms for theCSP are discussed in
detail in Chapter 2.

1.3.2 Incomplete methods

CSPs with large numbers of variables often prove to be intracadablcomplete search methods,
due to the overwhelming search spaces involved. Incompletersézchniques, however, can
often find solutions to these problems within a reasonable atmafuiime by sacrificing com-
pleteness for efficiency.

Incomplete algorithms tend not to terminate naturally.sThieans that they may be have to be
terminated forcefully before they can find a solution, and at&ans that they are incapable of
proving insolubility in a problem.

Incomplete search algorithms tend to use stochastic techrémualegre often based on physical
models (eg. hill climbing and simulated annealing) or bictagmodels (eg. genetic algorithms
and neural networks). Well known hill climbing procedureslite GSAT (Selmanet al. 1992)
and the min-conflicts procedure (Mintat al. 1992). TheGENET system (Wang and Tsang
1991) is an example of a neural network for constraint satisfact

1.4 Phase Transition Behaviour

Many types of NP-complete search problems are known to explilsise transition behaviowas

a control parameter is varied. This behaviour can be obseémpdpulations of problems whose
characteristics, apart from those defined by the control paermemain relatively homogenous.
(Cheesemaet al. 1991) first identified the phase transition in graph colouringpbpgms as the

1.4. Phase Transition Behaviour 9

interface between a region where almost all problems haveymalutions and are relatively
easy to solve, and a region where almost all problems have nasohand their insolubility is
relatively easy to prove. In this intervening region, thelqaoility of problem solubility falls from
close to 1 to close to 0. Additionally, they observed empinctiht the average cost of searching
these problems reaches a peak in this region.

Phase transition behaviour has been reported in an increasmiger of computational prob-
lems, including boolean satisfiabilitg4AT) problems (Mitchellet al. 1992; Kirkpatrick and Sel-
man 1994; Crawford and Auton 1996; Gezital. 1996a), Hamiltonian paths (Cheesenadral.
1991), the travelling salesperson problens®) (Gent and Walsh 1995a) and number partition-
ing (Gent and Walsh 1996a). (Williams and Hogg 1993) suggesttiltaphenomenon exists for
many general problems of search, and phase transitions areafigielieved to be ubiquitous
amongst NP-complete problems.

Section 1.2.3 notes that graph colouring is a restricted chadimaryCSP. Phase transition
behaviour in the binarCSP was observed as early as (Gaschnig 1979), though only properly
recognised in the light of the seminal paper by Cheeseshah

The initial identification of phase transition behaviour hasnppted a flurry of subsequent
work on the phenomenon. (Williams and Hogg 1994) have deesl@pproximations to the cost
of finding the first solution and to the probability that a prablés soluble, both for specific
classes of constraint satisfaction problem (graph coloug®ng) and for the general case. These
approximations are based on the asymptotic behaviour of ti#gms as the number of variables
becomes large; an instantaneous phase transition is predhdtesllimit, where a step change in
the probability of problem solubility coincides with the fiidia the cost of finding a solution at a
critical value of the control parameter.

Phase transitions in finite-sized problems tend not to be iretaous, however, and occur over
a range of values of the control parameter. In drawing ancgyabetween the phase transition in
finite binaryCSPs and the physical phase transitions modelled by applied matieames, (Smith
1994) terms the region over which probability of problem &dlity falls from 1 to 0 themushy
region Significant theoretical work on predicting the locationtibé phase transition in binary
CSPs is presented by (Smith and Dyer 1996).

(Mitchell et al. 1992) empirically show that the peak in average cost to find thiesolution to
SAT problems occurs at the value of the control parameter wHd¥ed the instances sampled are
soluble. This feature has been demonstrated empiricallytfe@rdypes of problem, for instance
in binary CSPs by (Prosser 1996). Theoretical work on predicting the locatibthe point of
50% solubility is presented by (Crawford and Auton 1996), wéiort this point thecrossover
point.

An illustration of phase transition behaviour in a type of comagional problem is provided
by Figure 1.4. Thex-axis of both plots shows the control parameter of the problemhich in
this example are a type of bina@sP. Ensembles of sample problems are searched at each point
along the control parameter range, with jhaxis of the top plot showing how the median cost of
these searches varies as the control parameter cHarlgjesy-axis of the bottom plot shows the

IThey units used in this plot are not important, but can be regarded as ‘time’

Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

80000

Median Search Cost—

70000

60000

50000

40000

Search Cost

30000

20000

10000

Control Parameter

Satisfiability Curve —

0.8 .

Proportion of satisfiable problems

0.2 4

Control parameter

Figure 1.4: Anillustration of phase transition behaviour in a computagi@earch problem.

1.5. Exceptionally Hard Problems 11

proportion of soluble problems observed for each ensemble.

The plots show that low values of the control parameter comedpvith aneasy-solublee-
gion, and that high values correspond withemsy-insolubleegion. In between, search cost rises
to a sharp peak, and there is a mushy region where problem pimmslare a mixture of soluble
and insoluble instances. Comparison of the plots shows that texna peak in median search
cost does coincide with the point at which around half of ttabf@ms sampled are soluble. It is
noticeable that the median cost at the crossover point is almosbiders of magnitude greater
than that in the easy regions.

To summarise, at the heart of what we will term titease transition modés the notion that,
for certain types of problem, the likelihood that solutiomgsecan be governed by adjusting one
or more parameters. In cases where solutions are very likelghweld expect the cost of finding
one to be low. Similarly, where solutions are very unlikely @an expect the cost of proving that
there are none to be low. It is on the problems that are ag/ltkdbe soluble as insoluble that the
cost of resolving the issue may be very high.

1.5 Exceptionally Hard Problems

Recent studies have highlighted a phenomenon that congsitla phase transition model. The
existence oéxceptionally hard problen{sehps’) has been reported in graph colouring (Hogg and
Williams 1994),SAT (Gent and Walsh 1994a), and bina@gPs (Smith 1994; Frost and Dechter
1994). These studies show that although there is a well-defeaklip themediancost of finding

a solution in the region of the phase transition, this is oftehwoere the hardest individual
instances occur. Given a large sample of problems, individugddlpms which are very hard to
solve with a particular algorithm may occur in the region wherost problems are relatively easy
to solve. These searches may be so hard that their cost signifieffettys the value of the mean
cost; it is for this reason that authors reporting phase tramstiehaviour have often used the
median rather than the mean as a measure of average difficulty.

Figure 1.5 illustrates the phenomenon of exceptionally paotilems occurring outside of the
mushy region. The upper graph plots the mean and median cdsidiofy a solution (using a log
scale) against the control parameter. The lower graph showsel&n and higher cost percentile
levels, up to the maximum observed. The mean and median costisralear and stable, exceptin
the region leading up to the phase transition, where the mesirbecomes high and very erratic.
Looking at the higher percentiles, stable behaviour in cost afcteis observed right up to the
99% level at all values of the control parameter. In the redgading up to the phase transition,
however, it can be seen that there are some outlying searcheswhbset could be described as
exceptional. In particular, the most expensive search thabeaseen lies well into the easy-
soluble region of the control parameter. This search is mag #ix orders of magnitude more
expensive than 90% of all others seen at this point, and is rharean order of magnitude more
expensive than the hardest observed at the crossover point. Tvesxdeptional searches are
sufficiently expensive to affect the mean cost in the way thabeaseen.

Ehps appear to be a feature of a particular search algorithm begabnormally. Individual

12 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

1e+06 1]
. Mean Cost-----]
Median Cost—]
100000 |
o
[
(&)
(%]
(=]
o
@
o
O
‘S 10000}
< [
<]
n
1000 [
Control Parameter
le+10¢]
r Maximum Cost----]
| 99% Cost
I 90% Cost-----
le+09F i 75% Cost---- 7
r D Median Cost— 1
1e+08 | S i
S 1e+07f : 4
) ' N
2 L ‘ . |
o
‘g 1e+06 - ' 4
O [B LT N 4
=
IS
= L
& 100000+
10000
1000 il
100

Control Parameter

Figure 1.5: An illustration of exceptionally hard problem behaviour irt@mputational search
problem.

1.6. Applications of Phase Transition Behaviour 13

problems that are exceptionally hard for one algorithm terlge easy for any another algorithm.
This creates a clear distinction betwestips and the hard problems occurring at the phase transi-
tion: phase transition problems are thought to be fundamgmifficult, and expensive to search
with any algorithmgehps are easy problems which appear to highlight deficiencies artcolar
algorithm.

To date no complete search method has been shown to be compiataline fromehps, al-
though studies of various algorithms (Smith and Grant 199%@th and Grant 1995b; Davenport
and Tsang 1995; Baker 1995) have shown that their incidencenaigghitude varies greatly be-
tween search methods. It is clearly important, thereforeptsider relativeehp behaviour when
comparing the performance of complete algorithEigs appear to be a feature only of complete
search methods: no such behaviour has yet been reported fivleretomplete methods (Hogg
and Williams 1994; Gent and Walsh 1994b; Davenport and Tsa@§)13he issue of exception-
ally hard problem behaviour in complete search methods ieegbin detail in Chapter 5.

1.6 Applications of Phase Transition Behaviour

The existence of phase transition behaviour in NP-completagmis presents a great opportunity
for increasing knowledge of both hard computational searoblpms and the algorithms used to
search them. The phase transition model shows us that while aofla§3-complete problems
contains many instances that are fundamentally difficukénentractable, these problems reside
in a relatively narrow region of the class’ parameter spacesidef these regions, problems are
usually easy to solve or prove insoluble (though peculiar phemansuch ashp behaviour add

a level of uncertainty to this).

For well defined types of NP-complete problems, such as bibgRs, SAT and graph colour-
ing, the phase transition is well understood and theory alreaidys to make predictions about its
characteristics. These principles may, in future, be extetaletbre complex types of problems
containing ‘real world’ features. If this is achieved, theswgrful predictions about the nature of
any given search problem might be possible. As an example, @rresldrge scheduling problem
which might require days of computational effort to solve.thé underlying characteristics of
this problem could be mapped to a well known set of order patamehen it may be possible to
make predictions like:

¢ whether the problem has a solution or not.

the likely number and distribution of solutions.

how expensive it is likely to be to solve.

the best search method to apply to the problem.

if the problem is hard or insoluble, how constraints could Baxed to move the problem
into the ‘easy’ region.

The ability to make sound predictions about the charactesisti hard computational problems
before any search is attempted could take these tasks fromgkeéhtractability into the realm

14 Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

of real-time processing. However, current understanding afsphransition behaviour places
these goals beyond the foreseeable future.

A much more immediate application for the phase transitionehdwwever, lies in the testing
and comparison of search techniques. Knowledge of the phasstioas for many types of
problem has forced a major re-think of the way that algorithenformance is assessed. There
has been a rapid move away from attempting to classify algostbn the basis of limited testing
on sets of homogenous problems, such asntihe@eens or the zebra (Dechter and Pearl 1988)
problem, towards attempts to classify algorithms in termseafgrmance on large samples of
problems of varying size, topology and position in relatiorihte phase transition. (Tsamg al.
1995), for example, use a series of empirical studies to produoeap’ of good algorithm and
heuristic combinations for various types of bina@gP. This data has been used to produce a
technique ofadaptive constraint satisfactiofBorrettet al. 1996), which switches to the most
appropriate algorithm given the current problem charasties.

1.7 Overview

The objective of the work presented in this thesis is to studyptiese transition of the binary
constraint satisfaction problem, and to use the phase transitiolelnas a platform for conduct-
ing rigourous empirical studies of search techniques foraBe. The techniques studied are
restricted to complete search algorithms, heuristics and @nspropagation techniques, with
those covered introduced in detail in Chapter 2 . The empisicalies to be performed require
large populations of€SPs to which the various algorithms can be applied, and the nietised
for generating these problems is presented in Chapter 3.

Chapter 4 then introduces the framework and methodology tse@dnduct the empirical
studies, discussing the generic format of the experiments arnidsk®f collecting and presenting
the data produced. A major objective pursued throughouthtbsis, given its empirical nature,
is that implementation details and the experimental madtomy should be clear and consistent
throughout.

Chapters 5 to 8 present the results of our studies into phasetiariséhaviour in theCSP.
These studies focus initially on the problems and their behaybut gradually move towards the
algorithms and the effect of the phase transition on theirgoerédnce. Relevant literature and
related work specific to these individual chapters is revieimatktail at the beginning of each.

Chapter 5 looks in depth at the issue of exceptionally hardlenebwhich occasionally occur
for complete search methods. The circumstances under whish #iBormal searches arise are
investigated, and the relative susceptibility of certain gthms to the phenomenon is explored.
Chapter 6 reports the existence of phase transition behawdsaceted with the task of establish-
ing levels of consistency iBSPs, and exploits this to gain new insights into the performarfce o
consistency algorithms.

Exceptionally hard problems and the phase transitions foubath full search and establish-
ing consistency are considered in the study of ®&P search algorithms which maintain arc
consistency during search, presented in Chapter 7. The studes# tdgorithms in the context

1.7. Overview 15

of phase transitions shows that there are typea3#f for which they perform significantly better
than more commonly used techniques.

Having looked in depth at the behaviour of complete algargtior theCSP, Chapter 8 looks
at the heuristics with which they are often combined. A thBcaginterpretation of the principle
behind many popular heuristics is tested empirically and riingly, the results obtained suggest
that this principle may be fundamentally flawed.

Finally, Chapter 9 analyses the work that has been presentadind) conclusions and dis-
cussing future related work.

16

Chapter 1. The Constraint Satisfaction Problem and its Phase Transition

17

Chapter 2

Complete Algorithms for the CSP

The search techniques for constraint satisfaction problemsitbaised throughout this thesis are
complete methods, based on backtracking search. The partidgtaithms used are introduced
and discussed below, together with a framework for their imggletation that includes searching
for one solution, searching for all solutions, and searching uaiftitional heuristic techniques.
A number of algorithms which establish arc and path consistencgPs before search is under-
taken are also discussed.

2.1 Search Algorithms

The backtracking search paradigm is introduced in Secti®ri1Recall that this search process
involves forward moves, which instantiate variables withsistent values, and backward moves,
which undo instantiations when dead ends are reached. Fbsgarch moves may be made using
lookback or lookahead techniques, while backward moves mepie a chronological backtrack
or a jump back over several variables.

2.1.1 Backtracking and backjumping

Chronological BacktrackinggT) (Golomb and Baumert 1965) is the generic backtracking-algo
rithm, employing the most primitive forms of forward and ba@kd search move. To instantiate
the current variable, BT chooses a value from its domain and checks for consistency kgth t
instantiations of all past variables. If inconsistent, this gakiremoved from the domain oand

the next available value is tried. If the domaini @ exhausted, a dead end has been reached and
BT backtracks to the most recently instantiated variableThis instantiation is discarded and
removed from the domain df, and the search attempts to move forward again.

Backjumping BJ) (Gaschnig 1979) employs the same forward mov8®Bsbut attempts to
jump back to the cause of a dead end rather than simply to thépsevariable. The algorithm
records the most recently instantiated past varidhrhich precludes a value from the domain of
the current variabld, upon consistency checking.Bf cannot move forward pastthen it jumps

18 Chapter 2. Complete Algorithms for the CSP

back toh. The reasoning behingl is that re-instantiating any of the variables betweandh is
guaranteed to be fruitless since the reason for the dead emdllahot have been addressed.

Conflict-Directed BackjumpingdBJ) (Prosser 1993) is a refinement BS which attempts
to preserve knowledge about the cause of conflicts over a sdrigschward moves. Aonflict
setis maintained for each variable, which records every pasalibe precluding values from its
domain. If a dead end is reached with the current variapEBJ jumps back to the most recently
instantiated variable named in its conflict det,The search knowledge ofs carried upwards to
h by unifying their conflict sets, minusitself. Thus ifhitself cannot be re-instantiatedBJ will
then jump back to the deepest variable in conflict with eithrh.

2.1.2 Looking ahead

Backmarking BM) (Gaschnig 1977) adds a primitive level of lookahead to basiorwlogical
backtracking. It attempts to save consistency checking costdnyrding, for each instantiation
attempted during search, the most recently instantiatedblar{d any) which causes this to fail.
Each variable also maintains a record of the deepest variablddacked to since this information
was recorded. If an instantiation is re-attempted at somepaiat, consistency checks with past
instantiations that are unchanged become unneces&ms consistency checking still takes
place against past variables, but future variables are notfiedy time a backtrack occurs. A
considerable drawback of the algorithm is that a static orfl@nggantiation must be observed,
ruling out the use of dynamic variable ordering (see Sectidh 2.

Forward CheckingRC) (Haralick and Elliott 1980) performs its consistency chegkagainst
the future, rather than the past, and backtracks chron@tgido instantiate the current variable,
i, FC checks its selected value against the future (uninstantis#eidbles. Inconsistent values in
the domains of the future variables are removed: if this @ssaloes not result in annihilation of
a future variable domain, thefC moves forward to the next variable; otherwise, the effects of
checking forward are undone and a new value is tried.fdihe backward search move B€ is
the same as that f@T.

The FC algorithm can be seen as making the subproblem of future Vasamde consistent
with respect to the current partial solution, by removing imgistent values from domains. |If
further propagation of the effects of removing these incoasistalues is performed around the
subproblem, some form of arc consistency can be achieved. IRartik Ahead (Haralick and
Elliott 1980) extend$C by making additionally the variables in the future of eacinstantiated
variable consistent with its remaining domain, accordindiedurrent instantiation order.

This algorithm saves around half of the consistency checkisgafd-ull Look Ahead (Haral-
ick and Elliott 1980), which establishes full arc consistencthimmsubproblem of future variables
during search. Full Look Ahead was originally reported by &aig 1979) and more recently
by (Sabin and Freuder 1994), who term the algoritlisC, for Maintaining Arc Consistency,
which is the name that we use here.MAC algorithm uses an arc consistency technique (dis-
cussed later in Section 2.5) to propagate the effects of inatangt the current variable around the

1Gaschnig originally termed this algorithm DEEB (domain element elinimadiith backtracking).

2.1. Search Algorithms 19

Backward Move

BT BJ CBJ

rovard | B\ BMJ BM-CBJ
FC FC-BJ FC-CBJ

V MAC MAC-BJ MAC-CBJ

Figure 2.1: Hybrid combinations oESP search algorithms.

future subproblem. If a future domain is annihilat®thC tries the next value or chronologically
backtracks if no more values remain.

(Haralick and Elliott 1980) investigated these four styles afvfard search move foESP
algorithms, testing each one empirically on a set of problemisiiting then-queens. They con-
cluded that~C provides the most efficient search, striking a balance betwserffectiveness
and the cost of its lookahead technique. We challenge thislesion in Chapter 7, where the
performance ofC is compared to that afAC over a wider variety of test problems.

2.1.3 Hybrid combinations

(Prosser 1993) shows how the forward search move of a lookahgawithin may be combined
with the backward search move of a backjumper to produce thadhgombination8MJ, BM-
CBJ, FC-BJ andFC-CBJ. Later, in (Prosser 1995), he also shows hC andCBJ may combine
to form MAC-CBJ (and by assumption hoWAC andBJ may formMAC-BJ).

Figure 2.1 is similar to Figure 2 in (Prosser 1993). It shows habsiBT algorithm may be
refined through more sophisticated forward moves (vertice)at backward moves (horizontal
axis). Hybrid combinations lie at the intersections of the b&siward and backward styles. The
figure has been extended to include hybrid combinationgAds.

2.1.4 Theoretical evaluation

A theoretical evaluation of many backtracking search atbors is presented by (Kondrak and
van Beek 1997). They prove the correctnesBDfBJ, CBJ, BM, FC and all hybrid combinations
of these algorithms. Hierarchies of algorithm performanaaso produced, in terms of both
the search tree and the consistency checking cost. These hiesaagply to dynamic variable
ordering strategies (see Section 2.4) as well as static inst@mtiorderings.

It is shown that the search tree f6€BJ,BM-CBJ} is always a subset of the search tree for

20 Chapter 2. Complete Algorithms for the CSP
1. function bcssp(n, status)

2. begin

3. consi stent := TRUE

4, status ;= UNKNO/W,

5. i =1

6. whi l e status == UNKNOM do

7. begin

8. if consistent then i := |abel (i, consistent)
9, else i := unlabel (i,consistent);

10. if i >nthen status := SOLUTION

11. elseif i == 0 then status := | MPOSS| BLE
12. end

13. end

Figure 2.2: Driver function for backtracking search.

{BJ,BMJ}, which in turn is a subset of that f{¢BT,BM}. The search tree fagtC-CBJ is a subset
of that forFC, which is a subset of that fdiBJ,BMJ}.

In terms of consistency check&y costs no more thaRT, while BMJ costs no more thaBJ,
which costs no more thaBir. BM-CBJ costs no more tha@BJ, which costs no more thasy, and
FC-CBJ costs no more thaRC.

Kondrak and van Beek show that the search tree for an algorithphoging CBJ is always a
subset of that for an algorithm employing the same forward mate ethronological backtrack-
ing. We can therefore infer that the search treeMaiC-CBJ is a subset of that faviAC.

2.2 Implementing Backtracking Search

The nature of the backtracking search process suggests a recanplementation, with instan-
tiations being pushed onto or popped off from the solution Istaé disadvantage to this ap-
proach, however, is that all search ‘knowledge’ is hidderinithe procedure stack and becomes
inaccessible during search. This is undesirable if hybrid coatimns of algorithms are to be
constructed.

(Prosser 1993) describes an alternative iterative implertientaf backtracking search. This
encoding uses two functioni®bel and unlabel, which perform forward and backward search
moves respectively. These functions are called from a driwectfon which controls the search
process.

In order to solve the binary constraint satisfaction search proffthat is, to find the first
solution to aCSP), Prosser defines a driver functibnssp to implement a backtracking search.
Figure 2.2 describes this function in a pseudo-code form. ‘©de ased here is similar to, though
not exactly the same as, that used by Prosser. It is based on Pas¢a| and uses= as the
assignment operator ang as the equality operator.

Functionbcssp takes in aCSP containingn variables, returning a status flag denoting the
result of the search. The function assumes a static instantiatien aith the identifier denoting

2.3. Finding All Solutions 21

the current search variable. A successful call to the fundtatre! returns a positiveonsi st ent
flag and set$ to be the next variable in the instantiation order. An unsucoéssil to | abel
leaves unchanged and causes a calltd abel . This function set$ to be the variable that the
search steps (or jumps) back to. It returns a posttivesi st ent flag if a new instantiation is
found for this variable, otherwise it causes a further callrtbabel on the next iteration.

The central loop obcssp calls forward and backward search moves untihgbiroblem vari-
ables have been instantiated (and a solution has been fouritig search backtracks past the
first problem variable (and we have exhausted the search space).

2.3 Finding All Solutions

Descriptions ofCSP search algorithms are traditionally given in terms of finding first solution
to problems, at which point the algorithm terminates. In sonstaimces, however, it may be
desirable to find all solutions to@SP. One application of finding all solutions is in verifying the
correctness of an algorithm implementation by comparingitimber of solutions found with that
of another implementation (and this has been carried ouwlfarf the algorithm implementations
reported here). Another application is in selecting protdemith a desired number of solutions
for specific purposes. For example, when studying incompletelseaethods it is desirable to
know beforehand whether a problem has any solutions, and ifwareny there are.

To be capable of finding all solutions, a refinement must be madelacktracking algo-
rithm’s move upon finding each solution. Kondrak discusses thefsgements in his Masters
thesis (Kondrak 1994), and studies which include finding mangllosolutions toCSPs have
been reported (Kwaat al. 1995; Smith and Dyer 1996). Although the refinements that fest
made are not particularly difficult, precise implementati@iails are not readily available. For
this reason, we present implementation details below, shomomgProsser’s iterative description
of backtracking algorithms may be extended to enable alkiswisi to be found.

2.3.1 Driving the search for all solutions

We can amend thiecssp function, shown in Figure 2.2, to make it find all solutions te tinary
constraint satisfaction problem. The new driver functieesp, is shown in Figure 2.3. The new
function maintains a facility for finding only the first solutipmaking the description a little more
complex than is strictly necessary.

Lines 10 and 11 dficssp have been replaced with lines 11 to 24isp. In the new function,
when a solution is found and we wish to find more, a call is madedpegial instance of the
algorithm’s backward move (line 16), which we have terrbadkt r ack. This special move is
described for th&T, BJ andCBJ styles of backward move below.

2.3.2 Backtracking and Backjumping

The backward move which must be made upon finding a solutioreindke of a chronologically
backtracking algorithm is extremely simple. Prosser’s desioripf the chronological backtrack-

22

NMNNMNNOMNNONNNNRPRPERPRREPRPRPEPRRRERE
STRONFPOOP®NDPARWNEO®

ON O wWN P

Chapter 2. Complete Algorithms for the CSP

function bcsp(n, status, all_solutions?)
begin

consi stent : = TRUE;

status ;= UNKNOMN;

numsol utions : = 0;

=1
whil e status == UNKNOWN do
begin
if consistent then i := label(i,consistent)
else i := unlabel (i,consistent);
if i >n then
begin
if all_solutions? == TRUE then
begin
num sol utions := numsolutions + 1;
i := backtrack(i,consistent);
end
el se status := SOLUTI QN
end
else if i == 0 then
begin

if numsolutions == 0 then status := | MPOSSI BLE
el se status := SOLUTI O\,
end
end
end

Figure 2.3: Driver function for backtracking search finding all solutions.

2.3. Finding All Solutions 23

1. function bt_unl abel (i, consistent)
2. begin
3. h:=1i - 1
4, current_domain[i] := domain[i];
5. renove_fromset (instantiation[h], current_domain[h]);
6. consi stent := not_enpty(current_domain[h]);
7. return(h);
8. end
Figure 2.4: Unlabelling function for the3T algorithm.
1. function bt_backtrack(i, consistent)
2. begin
3. h:=i - 1,
4. renove_fromset (instantiation[h], current_domain[h]);
5. consi stent := not_enpty(current_domain[h]);
6. return(h);
7. end

Figure 2.5: Special backtrack function for tr&T algorithm.

ing algorithmBT uses the functioht _unl abel , shown in Figure 2.4. Having unsuccessfully tried
to instantiate variable, BT backtracks to the previous variable,in the instantiation order, re-
stores the domain of and removes the previous instantiatiorndfom its domain.

In the case of having found a solution taC&P with n variables, has the valuen+ 1 and
we must backtrack to variable Having done this, we then remove the current instantiation of
variablen, but do not restore the original domainmf Thus the search continues by attempting
to instantiate the next value in the current domain.dRemoving line 4 obt _unl abel produces
bt _backt rack, shown in Figure 2.5

In the case of the Backjumping algorithBy, its ability to jump back over problem variables
appears to give rise to the potential for pruning out solutisheuld this happen immediately after
a solution is found. However, as (Kondrak 1994) noB3s;an only jump back over variables if an
attempt to instantiate a variable fails, and in the case of lgaainnd a solution this is clearly not
the case. Therefore the backt rack function is also suitable for use by algorithms employing
BJ.

2.3.3 Conflict-directed backjumping

The backward move which must be made upon finding a solutioreicake of an algorithm em-
ploying CBJ is a little more complex. Kondrak discusses the problem of arirséit interpretation
on page 25 of his Masters thesis (Kondrak 1994):

The problem here is that the conflict sets of CBJ are meant fodtewhich in-
stantiations are responsible for some previously discovereasisiency. However,
after a solution is found, conflict sets cannot always be iméteol in this way. It is

24 Chapter 2. Complete Algorithms for the CSP

1. function cbj_unl abel (i, consistent)

2. begin

3 h := max_set(conflict_set[i]);

4 uni on_set (conflict_set[i], conflict_set[h]);
5. renove_fromset(h, conflict_set[h]);

6 for j :=(h+l) to i do

7 begin

8 clear_set(conflict_set[j]);

9. current_domain[j] := domain[j];

10. end

11. remove_fromset(instantiation[h], current_domain[h]);
12. consi stent := not_enpty(current_domain[h]);

13. return(h);

14. end

Figure 2.6: Unlabelling function for thecBJ algorithm.

the search for other solutions, rather than an inconsistendydites the algorithm
to backtrack.

We need to differentiate between these two causes of CBJ bhak&tr (1) de-
tecting an inconsistency, and (2) searching for other solutibnthe latter case the
backtrack must always be chronological, that is, to the imateti preceding vari-
able (otherwise we risk pruning out solutions).

(Prosser 1993) describes the backward movemf in terms of the functiortbj _unl abel ,
shown in Figure 2.6. This function jumps back from variable variableh, the deepest variable
named in the conflict set af. In the case of having found a solution, we cannot trust the con-
flict set, as the instantiations are consistent, and so we chiginalty backtrack froom+1 to
variablen and undo this instantiation. We now need to ensure that theitdgochronologically
backtracks on itéirst visit to each search level after each solution is found. Aftevellhas been
re-visited following each solution, it then becomes safe toguoack to that level on subsequent
visits. For example, suppose that in a search involving 20 vasafshich has search levels 0
to 20), a solution has been found and the algorithm has chogiuallly backtracked to level 14
before moving forward again to level 18. A ‘backjumping wavd between levels 20 and 14
now exists, and the algorithm may now safely backjump from 1&8do levels 14, 15, 16 or 17.
If the conflict set at level 18 indicates a backjump to a levghbri than 14, the algorithm must
backjump only to level 14 and chronologically backtracknfrthere.

Kondrak suggests an implementation of this which makes use afragcbf (chronological
backtrack flag) to record the shallowest level visited since disedolution. However, a simpler
way of achieving the same effect is simply to ‘fill’ the conflict s€variablen with variables 1 to
(n—1), forcing chronological backtracking to each level for thetftime after each solution. Thus
we have the functionbj _backt r ack, shown in Figure 2.7, which is the sametashackt r ack
but with the addition of lines 5 and 6.

2.4. Search Heuristics 25

1. function cbj_backtrack(i, consistent)

2. begin

3. h:=1i - 1

4, remove _fromset(instantiation[h], current_domain[h]);
5. for g:=1to (h-1) do

6. add to set(g, conflict_set[h]);

7. consistent := not_empty(current_domain[h]);

8. return(h);

9. end

Figure 2.7: Special backtrack function for th@BJ algorithm.

Note that an equivalent action upon finding each solution dibelto add to the conflict set of
each variablé the preceding variablék — 1) in the instantiation order (for 2 k < n and again
assuming a static ordering).

2.3.4 Remarks

Thebackt r ack functions that are presented here#ar, BJ andCBJ do not need to be modified in
any way for use with hybrid algorithm combinations (suclFasFC-BJ andMAC-CBJ). Also, the
descriptions presented here have assumed a static variabldigtstarorder purely for simplicity.
Dynamic variable ordering can easily be introduced, andi&e@t4 shows how this is done.

A situation in which it may be undesirable to attempt to find allisons to a problem clearly
arises when there is likely to be a very large number of solstiém example is when a problem
is highly underconstrained and so almost every assignment isstensiA theoretical expression
to calculate the expected number of solutions @62, plus data on the search effort involved in
finding all solutions, has been presented in (Smith and Dyer)1996

2.4 Search Heuristics

In its basic form, a backtracking algorithm is given a statigalale instantiation ordering (SVO)
which is unchanged during search. Significantly more efficgerarch can be achieved for cer-
tain algorithms, however, by allowing dynamic variable oidg (DVO). At each forward search
move, a DVO uses a heuristic method to select the next variablehveould be instantiated,
given the current search conditions.

(Bitner and Reingold 1975) first proposed the use of ‘dynamiccbemarrangement’ as a
technique to improve backtracking search. (Purdom 1983ppeed a theoretical analysis of
dynamic variable ordering for backtracking search, findithg@utions to sets of random conjuc-
tive normal form predicates. This type of problem has cleddfined parameter regions where
the average number of solutions is either polynomial or eeptial. Purdom showed that DVO
reduces from exponential to polynomial the average timeafayorithms on the problems con-
taining polynomial numbers of solutions. He also showed thabtWeehead associated with DVO
does not make it worthwhile on very easy instances, and comgctbat on the hard instances

26 Chapter 2. Complete Algorithms for the CSP

with exponential numbers of solutions, DVO achieves an expiislereduction in average cost
from that of static ordering, even though this reduced cosamesexponential.

More recent empirical studies of DVO include (Dechter andiME994). They showed em-
pirically that for backtracking search on bina®gPs, dynamic ordering was superior to every
one of a number of informed static orderings that were testedeS dynamic choice of the next
variable to instantiate is based on the changing state of theefstibproblem, it is obvious that
DVO is useful only with algorithms that perform a lookaheadestyf forward move, such &=C
andMAC. (Bacchus and van Run 1995) state this explicitly.

(Haralick and Elliott 1980) show that a simple and effective@Weuristic is to instantiate
the variable that has the fewest remaining values left ingimain. The reasoning behind this
‘smallest domain first’ strategy is that the most heavily const@ivariable at each stage of the
search should be tackled as a priority: if it leads to a failurd subsequent backtracking, it is
better that this is discovered sooner rather than later. Tai®m of selecting the variable to
instantiate which is most likely to lead to failure has becomevin as the ‘fail-first’ principle.

Other heuristics that may be used to guide backtracking seactirdie value ordering heuris-
tics, which order the domain elements of variables a way desigmreduce search cost (Dechter
and Pearl 1988). The scope of this thesis, however, is restriotdginamic variable ordering
heuristics. An implementation of DVO consistent with the desimis of backtracking search
algorithms presented by (Prosser 1993) is described below.

2.4.1 Implementing dynamic variable ordering

A DVO implementation should allow for ‘fair comparison of algthms employing the same
forward search move and DVO, but a different backward move.ekample, consider the case
of FC andFC-CBJ both employing some form of DVQrC-CBJ will always perform no more
consistency checks th&®C (Kondrak and van Beek 19973s long asthe algorithms always
have the same choices at each forward search move. When thrdrordeich future variables
are examined is not the same, any tie-breaking condition sndat the above requirement is
not satisfied, and the algorithms may follow entirely différerarch paths and find different
first solutions. Two or more algorithms employing the same styl®onfard search move and
DVO should therefore always examine future variables in tineesarder when selecting the next
variable to instantiate.

2.4.2 DVO with a backtracker

At search deptl, the next variable to be instantiated is selected and swaps$qgussih the order-
ing with the variable currently at positionTo present all algorithms employing the same forward
move with an identically ordered set of future variables athesearch depth, we must explicitly
record the swap (if any) that was most recently performed dt search level, and undo this swap
every time search backtracks past a particular level.

Functionbcssp_dvo is shown in Figure 2.8, and shows how functimssp (Figure 2.2) is
modified to enable dynamic variable ordering. Note that theablei of bcssp has been re-

2.4. Search Heuristics 27

NN R R RPRERRRERR R
POoOOWoo N AEWDNDE OO

ONSORwWN R

function bcssp_dvo(n, status)
begin

consi stent := TRUE;

status : = UNKNOMN;

=1
whil e status == UNKNOWN do
begin
if consistent then
begin

dvo_sel ect _next _variable(ii);
ii :=label(ii,consistent);
end
el se
begin
ii = unlabel (ii,consistent);
dvo_undo_l ast _swap((ii+1));
end
if ii >n then status := SOLUTI ON
elseif ii == 0 then status := | MPCSSI BLE;
end
end

Figure 2.8: Driver function for a backtracking search with dynamic vateordering.

named i in order to emphasize that its value represents the currentrsdapth only. Lines 10
and 16 have been added to the basigsp function to producécssp_dvo. Itis assumed that an
initial instantiation order has already been created.

Line 10 ofbcssp_dvo selects the next variable to be instantiated, according toulles, by

calling a functiordvo_sel ect _next _vari abl e to make the instantiation selection and record any
swap that must be made. This function is described in FigureTh8.call in Line 3 returns the
positionj j in the instantiation order of the future variable that hasnbeslected. If this variable

is not already the next in the instantiation order (Line 4nthie position is swapped with that of
the variable that is currently next (Line 6). If such a swap lwalsé made at the current search
level,ii, then the original position,j of the selected variable is recorded in elemientof a

©CoNoO WM R

function dvo_sel ect _next_variable(ii)

begin
jj := select_according to dvo criteria();
if jj !'=1ii then
begin
swap_instantiation_places(ii, jj);
swaps[ii] :=jj;
end
end

Figure 2.9: Dynamically selecting the next variable to instantiate.

N
oo

Chapter 2. Complete Algorithms for the CSP

function dvo_undo_| ast_swap(ii)
begin
if ii == 1 then return
else if swaps[ii] !'= 0 then
begin
swap_instantiation _places(ii, swaps[ii]);
swaps[ii] := 0;
end

WoNoORWNE

end

Figure 2.10: Undoing the effects of a dynamic variable swap.

one-dimensional arraswaps(Line 7).

Line 16 ofbcssp_dvo undoes any swap that has been made at a search level, in théhatent
the search backtracks past this depth, by calling a funati@nundo_| ast _swap. The call to
unl abel of Line 15 has reset the search depthand so the leve{i i +1) must be given to the
calltodvo_undo_l ast _swap. A pseudo-code description of this function is shown in Figul®?2
Once again, if search is at depth 1 then this operation doespdy (Line 3), otherwise if a swap
has been made at the given search level (Line 4) then the swapdde (Line 5) and the entry
in the arrayswapss cleared.

2.4.3 DVO with a backjumper

In the case of dynamic variable ordering being used by an algonvith backjumping capability,
the same process is carried out. However, as the search may okjurbg up past several search
levels, it must undo any swaps that have been madedohn intermediate search level, in order
To realise this, a minor refinement must be made to fundticssp_dvo, represented by the
following pseudo-code fragment:

14, begin

14b. mrk :=1ii;

15. ii :=unlabel(ii,consistent);

15b. for level := mark downto (ii+l) do
16. ff_undo_l ast _swap(level);

17. end

Line 14b marks the search depth we jump back from, and follgulie call tounl abel in Line
15,ii now represents the search level we have jumped back to. Litearih16 undo the swaps
made at levelsar k down to(i i +1) in that order.

2.5 Consistency Algorithms

Many algorithms have been described which use constraint gadipa (Section 1.2.4) to estab-
lish levels of consistency iBSPs. Although algorithms exist which can establisttonsistency

2.5. Consistency Algorithms 29

for any value ok (Cooper 1989), the high cost associated with even low-levedistency means
that for practical purposes only arc consistency and occa$yopath consistency are ever at-
tempted. In some circumstances, however, it might be feasilplopmagate the effects of particu-
lar constraints in the problem. Consistency is often introduo aCSP as a preprocessing step
to search, or as a lookahead component of the actual searasproc

A wide range of arc consistency algorithms exist, the most pojpmd useful of which are, ar-
guably,AC3, AC4 andAC6. AC3 is a relatively simple method, introduced by (Mackworth 1977
It places all binary constraints on a queue and propagatesffihets of each one in turn, adding
all constraints affected by each round of propagation to #ek wf the queue. The algorithm
terminates when the queue is empty. The genggal algorithm is shown by (Mackworth and
Freuder 1985) to have a worst-case time complexity that is dedifrom above by (m39) and
from below byQ (mPe), wheremis the size of the largest variable domain arisl the number of
constraints in th€SP. The algorithm’s space complexity@(e+ nm), wheren is the number of
variables.

AC4 is presented by (Mohr and Henderson 1986), and has a worst-caseaimplexity of
(@) (rr12e), which is optimal. This algorithm runs in two stages. For eaalue of each variable, a
record is made of all the values in the problem which suppsirinitlusion in the arc consistent
domain. Arc consistency is then enforced by removing unsupgdatbmain elements, and prop-
agating the effects of their removal by adjusting the relewapport records for other variable
domain members. The additional space overhead associatecheigupport counters make the
space complexity oAC4 O (nPe).

(Bessere and Rgin 1995) address the expensive space requiremeaGiofntroducingACe.
This algorithm eliminates some redundant support checkitigities carried out byAC4, reduc-
ing the space complexity 10 (me).

Although the worst-case time complexity A€4 is optimal, empirical study shows that its
averageperformance is poor, often close to the worst case, and is imfact expensive than
AC3 on many types ofSP (Wallace 1993). Bessie, meanwhile, demonstrates tat6 can
outperform the other two algorithms on many problems. He du#e, however, thabC3 is
“never really bad”, and tha&&C6 is not particularly suited to incorporation within a searcbgass.

Algorithms for path consistency tend to be derived from thosefo consistency. The most
common examples areC2 (Mackworth 1977), derived fromC3, andPC4 (Han and Lee 1988),
derived fromAC4. Path consistency algorithms are expensive, both in terms cespad time:
PC2 has worst case time complexi® (n°n®) and space complexit® (n®+n’n¥); PC4 has
worst case time complexit® (m®n?) and space complexi® (m*n?).

The algorithm to establisk-consistency which (Cooper 1989) proposks;1, is based on
PC4 and has worst case time complexity and space complexity thaoan® (3£ ; (,G.m')).

30

Chapter 2. Complete Algorithms for the CSP

31

Chapter 3

Random Problem Generation

Randomly generated bina@sPs form the basis of the empirical studies reported throughasit th
thesis. Thus, we require a random generation model which atlosvsreation of largensembles
of CSPs with similar properties, enabling conclusions to be made athmugeneral behaviour of
these problems.

The issue of random problem generation in empirical Al is camphknd recent literature
points to examples of how poor random generation modelsezahtb flawed results and conclu-
sions inSAT (Mitchell and Levesque 1996) a@EP (Gentet al. 1997a). Therefore, care must be
taken in generating suitable sets of random problems. Thidehdgscribes in detail the creation
and implementation of the random generation model used, sigay the options available and
justifying the choices made.

Before devising and implementing a rand@®P generator, we need to be satisfied that the use
of random problems to test algorithms is justified. Having dibg the set of parameters used to
produce thecSPs must be defined. From these parameters, a method of generapnlgpons of
CSPs which have consistent and known properties, but without biaaitds particular features,
can then be devised. Potential sources of variation withiufadions of problems should be kept
to a minimum, and those that remain must be understood and ledtrBinally, a good random
generation model also requires a good random number generato

These issues are discussed over the following sections, after vigéimplementation of the
resulting random problem generator is described. A numbeotagial extensions to the random
generation model are then discussed.

3.1 Justification for Random Problems

The use of randomly generated problems in the empirical stédigorithms has been criticised
in some quarters. Methodological discussions such as (MitchélLamesque 1996) and (John-
son 1996) warn that these problems may lack the features amalctbastics of the ‘real world’
problems for which an algorithm is ultimately intended. Clusions based on random problems
may be flawed unless sufficient structure is imposed upon the naggmeration model to give

32 Chapter 3. Random Problem Generation

the resulting problems an element of realism.

If random problems are to be avoided, the alternative issbakgorithms on ‘real’ benchmark
problems which can be found in various repositories. Howetiese problems may be similarly
criticised for being unrepresentative (Hooker 1994). A farttmportant caveat is that it is cur-
rently impossible to obtain populations of ‘real world’ prehis in sufficient quantities to enable
meaningful statistical analyses of their general behaviobne durrent state of the art means that
large populations of sample problems invariably entail soomefof random generation.

The whole dilemma of finding representative problems to tagiridthms on may not in fact
be as significant as it appears. (Hooker 1994) argues that whyleehoice of problem may be
criticised for being unrepresentative, the experiments eatdsigned around this. In particular:

One can investigateow algorithm performance depends on problem characteristics
The issue of problem choice, therefore, becomes one of expetahdesign. Rather
than agonise over whether a problem set is representativeafqeaaone picks prob-
lems that vary along one or more parameters.

We choose to follow this suggestion, developing a random géaenaodel for creating ensem-
bles of CSPs based on a set of variable parameters. The random generaticel progides an
effectively limitless supply o€SPs whose properties can be adjusted to simulate ‘real’ situations,
and whose sizes may be increased to arbitrary levels. The pamet@be used are introduced in
the following section.

3.2 CSP Parameters and Properties

A binaryCSP, as described in Chapter 1, consists of a set of variables, eadfiafivas a domain
of possible values, and a set of constraints defining allowed cwtibhns of values between
certain pairs of variables. The binagSPs that form the basis of our empirical studies are
characterised by four parameters:

n the number of problem variables.
m the number of values in each variable’s domain.

p1 the probability that there is a constraint between a pair gates (theconstraint
density.

p2 the conditional probability that a pair of values is incoreigtfor a pair of vari-
ables, given that there is a constraint between themcthstraint tightnegs

Using these parameters, we can generate ensembisPseiwith similar characteristics, denoted
by the 4-tuplen, m, p1, p2). Randomly generate@iSPs of this type have been studied extensively,
for example by (Freuder and Wallace 1992), (Dechter and iM&84), (Williams and Hogg
1994), (Frostand Dechter 1995), (Tsaigl. 1995), (Smith and Dyer 1996) and (Prosser 1996).
Some of these studies use alternative nomenclaturés, b p;, p2), between which (Prosser
1996) provides a series of translations.

3.3. Models for Problem Generation 33

3.2.1 Properties of (n,m, p1, p2) CSPs

It is known that a phase transition (Section 1.4) occurs fosel@SPs as p, is varied whilen,

m and p; are fixed (Smith and Dyer 1996). A significant amount of theoa¢study has been
devoted to making predictions about the location and pta@seof the phase transition for these
problems. (Smith and Dyer 1996) and (Williams and Hogg 19%4tdeveloped an expression
for the expected number of solutiois(N), for an{n,m, p1, p2) CSP. This is calculated as:

E(N)=m"(1-pp) p1.n(n-1)/2

which is the number of possible assignmentsofalues ton variables, multiplied by the proba-
bility that a randomly-chosen assignment is consistent.

(Smith and Dyer 1996) suggest thacaP for which E(N) = 1 can be expected to lie on
or near the crossover point at the phase transition. Making #ssmption, an estimate for the
critical value of constraint tightnespycrit, at which the crossover point for gn,m, p;) class of
CSP lies can be calculated as:

Pocrit = 1 — m%/P(n-1)

Empirical studies by (Prosser 1996) shpyyit to be an accurate prediction of the location of the
crossover point, except for sparsely constrained problems (@uittp;). For the sparse problems,
the prediction tends to be an overestimation, suggestindetfi for theseCSPs is greater than

1 at the crossover point; reasons for this are discussed in dep8ntiyh(and Dyer 1996).

More general work on phase transition behaviour in combiietproblems has lead to (Gent
et al. 1996b) formalising a notion of problemonstrainednessencapsulated by thgeneral
constrainedness parameter. This parameter generalizes the specific parameters defioimg
straints in several classes of NP-complete problem, suctssSAT and graph colouring. The
constrainedness of gn,m, p, p2) CSP containinge constraints, and for which a solution can be
represented iv_ bits, is calculated as:

 logy(E(N))
N

—elogy(1— py)

nlog, (m)

K = 1

The predicted crossover point occurxat 1, which is equivalent to the prediction of its occur-
rence aE(N) = 1. Thus, in general, under-constrained problems lkaxel and over-constrained
problems have > 1. Sincex is based orE(N), it tends to be underestimated for spaCSPs.

3.3 Models for Problem Generation

Having defined four parameters for the experime@aPs, we must choose the way in which
they are applied to produce ensembles of randomly generatddems. The constraint graph

34 Chapter 3. Random Problem Generation

(Section 1.2) of aCSP can be represented by a symmetrinat n matrix of boolean values,
where a binary constraint between variableandyv; is indicated by a ‘true’ value at positions
(i,J) and(j,i). Each binary constraint relation between two variables itmain sizem can
be represented with am x m boolean relation matrix. Here, each ‘true’ value indicadtes the
corresponding pair of values are disallowed by the constraint.

There are a number of ways in which we can use vapjemdp, to generate constraint graphs
and constraint relation matrices respectively. (Smith andrI@96), for instance, refer to two
models for matrix generation: ‘Model A" and ‘Model B’, based work by (Palmer 1985):

Model A treatsp; andp, as probabilities, selecting each of thign— 1) /2 possible edges in the
constraint graph independently with probability. Relation matrices for each constraint are then
generated, assigning ‘true’ values to each ofrtReralue pairs independently with probabilipg.
Problems generated using Model A should contain, on avegage,n — 1)/2 constraints, each
containing on averagg,.n¥ disallowed value pairs.

Model B treatsp; and p; as fixed proportions, which specifyreciselyhow many constraints
and inconsistent value pairs each problem should contain. fistreat the constraint graph for

a problem we randomly selegs.n(n— 1)/2 pairs of variables as constraints, and for each of
these we randomly selepp.n? pairs of values as being disallowed. Where necessary, valaes ar
rounded to the nearest integer to give the actual number ati@nts and conflicts required.

Both models of constraint and conflict generation have beed insecent empirical studies;
for example, (Tsangt al. 1995) use Model A generation, while (Smith and Dyer 1996) use
Model B generation. A combination of models is also possibleirfstance Model A constraint
graph generation with Model B conflict generation. (Smitk &yer 1996) note that while the
expected number of solution§(N), for Model A and Model BCSPs is the same, the variance
in this quantity is not. They also note that Model B problemegation allowsp; to be varied in
steps no finer than/t?. The use of Model A generation simplifies theoretical analysis,
the use of probabilities. This use of probability, however,dioeply variations in the properties
of CSPs in an ensemble.

For most the experiments with randomly generats&iPs presented in this thesis, the Model
B method will be used for generating both constraint graphsralagion matrices, unless specif-
ically stated otherwise. Model B problem generation allovwesdimpirical studies to use sets of
problems containing identical numbers of constraints amdlicts, whereas Model A generation
produces ensembles of problems containing an unknown ambuatiation in these quantities.

The loss of control over basic properties of the experime@&ts that would occur using
Model A generation may obscure attempts to study the behawabproblems with particular
properties, threatening the validity of any conclusions araowever, use of Model A is appro-
priate when testing algorithms or heuristics whose reasonibgsed on probabilistic analysis of
CSPs. Several techniques of this kind are examined in Chapterr;hwuses a hybrid genera-
tion model that employs Model B to generate constraint graplssModel A to generate relation

3.4. Constraint Graph Connectivity 35

matrices.

3.4 Constraint Graph Connectivity

CSPs produced using the Model A or Model B random generation metlvathnot be guaranteed
to contain constraint graphs that are connectegl, i$ sufficiently small. If constraint densitpy,
is very low then a significant proportion of the random constrgiaphs may in fact consist of two
or more independent sub-graphs, forming the basis of two or mdependent sub-problems.

The appearance of disconnecteflPs in the experimental ensembles is undesirable, since
these problems would in practice be dealt with separatelygusifdivide and conquer’ strat-
egy (Tsang 1993). We feel that any conclusions based on disaednemnstraint graphs would
be flawed, and so choose to exclude them from our study. This cachiveved either by a method
of forcing the generation of connected constraint graphsy aimply discarding instances of dis-
connected graphs. It should be noted that the requiremenbiforacted constraint graphs imposes
a lower limit on values op;, since connectivity requires at least 1 constraints.

An example of a technique to guarantee the generation ofemted constraint graphs is pro-
vided by (Sabin and Freuder 1994), who randomly generateeadtr constraints, after which the
remaining constraints are added. However, we choose the siogien for excluding discon-
nectedCSPs. Each constraint graph produced is tested for connectivit, disconnected graphs
discarded and replacements generated until a connected tmend.

Excluding disconnectedSPs makes our populations of sparse constraint graphs unrepresen-
tative of all random graphs. However, the aim is to study thep@ries of randonCSPs not
random graphs, and the method of ensuring connectivity allesvi retain control of a vital
property of theCSPs whilst keeping the random generation model simple. Theaktork on
the connectivity of random graphs can be found in (Bollok285).

3.5 Random Number Generation

The key features of a random generation model for our exprielCSPs have been established,
designed to enable the generation of problems with consistepépies but without bias towards
particular features. To successfully implement this modeleseto a reliable source of random
numbers is essential. The issue of reliable random number gemers not simple, and the
dangers of poor use of random numbers in problem generatiom en documented (Gesit
al. 1997a). Therefore, the requirements for the random numéeemgtor are discussed below,
after which an appropriate source method of generation istsgle

3.5.1 Required properties

The chosen model for random matrix generation (Section @@)ires long streams of random
numbers. Streams of random numbers produced using a detstimmethod are of course only
pseuderandom, and as such will generate pseudo-ranGss.

36 Chapter 3. Random Problem Generation

(Knuth 1981) discusses the requirements of a ‘good’ pseudmrmamiumber generator in
depth. Essentially, a good generator must reasonably repredamvan probability function,
avoiding any built in trends, biases or periodicities. It is lyuexpected that a value generated
should not be correlated in any way with previous values irstheam.

3.5.2 The Linear Congruential Method

A simple and popular method for generating streams of pseutiiera numbers is the Linear
Congruential Method (Knuth 1981), which uses a recurreniegioa of the form:

Ik = (alk-14+c) modm

The values,, candmare constants, known as the multiplier, increment and modakgectively.
(Knuth 1981) notes that the choice of values for these corsstargrucial in determining the
quality of the generator.

We choose to use a Linear Congruential generator to produ@xperimentaCSPs using the
constant valuea = 16807,c = 0 andm= 2,147,483 647. This generator is proposed by (Park
and Miller 1988) as being the best choice for the productioBZbit pseudo random number
streams, and is known as th@nimal standardrandom number generator. The period of this
generator (the length of the number stream produced befpatitien) is 21 — 1, the maximum
possible, and this is appropriate for the problem generatptiation.

The minimal standard generator is commonly used by compiledssaftware applications.
However, to avoid any issues of platform dependency foilGaF problem generator, the random
number generator will be implemented internally.

3.6 Random Problem Generator Implementation

The framework required for the implementation of a suitalsieyzlo-random problem generator is
now complete. The experimentaPs will be generated from the parametérsm, p;, p2) using
either the Model A or B generation method, with disconnecteiblems excluded. Random
number streams will be provided from the minimal standard ocamdumber generator.

EachCSP at a particulafn, m, p1, p2) can be generated from a single integer ‘seed’ value, from
which the required stream of random numbers can be produdgslallows the easy identification
and reproduction of any individua@lSP or ensemble.

Our implementation of a rando@SP generator is publicly available on the World Wide Web,
as part of the software system used to conduct the empirical stubBliether details on this can
be found in Appendix A.

3.7 Extensions to the Random Generation Model

Section 3.1 discusses some of the criticisms that have beereldeithe use of randomly gener-
ated problems in the empirical study of algorithms. Resermatabout random generation tend

3.7. Extensions to the Random Generation Model 37

to centre around the risk that features of the resultant pnablean be unrepresentative of ‘real
world’ situations. Methodological discussions such as (Mitcaetl Levesque 1996) and (John-
son 1996) do suggest, however, that random problems might lea givme extra structure to

make them more representative. (Johnson 1996) also calls fblepnagenerators which allow

extra parameters to be set which allow the investigation dhoeproperties.

There are several extensions which can be madeSts generated using thé, m, p1, p2)
model which might add more realism to these problems. (@eratl. 1996a), for example,
propose two extensions to tkie, m, p1, p2) model designed to add elements of (controlled) non-
uniformity to the domain sizes and the tightness of constraints:

Varied domain sizes may be achieved by selecting one of a number of cardinalitiesdch
variable domain with certain probabilities. Gestt al. use this technique to experiment with
problems containing domain sizesraf= {10, 20}, where the probability of each value i50

Varied constraint tightness may be achieved in a similar way, with each constraint within a
problem generated with one of a number of tightness valuesrdic) to probability. Genet

al. use this technique to generate problems where- {0.2,0.8} with probabilities 08 and 02
respectively.

These modifications are compatible with the current randoneggion model, and it may
be appropriate to make use of them during the experiments. Yowthe introduction of an
additional two degrees of freedom to the experime@g&#s would increase the complexity of the
empirical studies to the extent that this is not feasible. @twee, we restrict the main experiments
to CSPs using(n,m, p1, p2) according to the basic random generation model.

38

Chapter 3. Random Problem Generation

39

Chapter 4

The Empirical Study of Algorithms

In calling for anempirical science of algorithmgHooker 1994) laments the infrequent use of ex-
perimental design principles, and the failure of most publigragirical studies to observe “even
minimal standards of reproducibility”. The methodologiciécussion presented by (Johnson
1996) warns of a number of common mistakes which can compraimésmtegrity of empirical
studies. A number of these opportunities for flawed studies vevatound the issue of irrepro-
ducibility, particularly the failure to disclose key implentation and environmental details.

In an attempt to address the criticisms levelled at empiricaliss of algorithms, we begin
here by laying out a clear framework for the experiments thiitbe conducted. A consistent
nomenclature for the description of the problems and algavit to be used is presented, and
the environment under which the experiments are perforrmeddorded. A generic format for
the main experiments, based on the phase transition model npthsented, and the issues of
collecting meaningful search data and presenting it luciddyaaldressed.

4.1 Experimental Nomenclature

To promote clarity and brevity when describing the empiristaldies reported throughout this
thesis, a consistent nomenclature for describing aspects of geximents has been devised.
This nomenclature covers the description of groupS®is and the combinations of algorithms
and heuristics used to process them.

4.1.1 CSP nomenclature

The termCSP refers to a pseudo-random binary constraint satisfaction enopgjenerated ac-
cording to the model presented in Chapter 3. Group83¥#s are described using the following
terms:

¢ An ensembl®f CSPs is generated for a particular value of the 4-tuftlem, p1, p2).

e Phase transitions from under- to over-constrained probleenstaserved ap, varies, while
n, mandp; are kept fixed (Section 3.2)lasseof CSPs with fixedn, mandp; and varying

40 Chapter 4. The Empirical Study of Algorithms

p2 are referred to by the tupke, m, p1).

e A measure of the ‘local’ density of constraints around ea&i® variable is theaverage
degreey. This is the average number of constraints incident upon eaghble, calculated
as (2 x numconstraintg/n. Thus, aCSP class might also be referred to by the tuple
(n,m,y=Xx).

¢ Discussion ofCSP sizerefers to the tuplén, m).

4.1.2 Algorithm nomenclature

An overview of completeCSP search algorithms is provided in Section 2.1, and many of these
are used in the empirical studies. Table 4.1 names all of the bixgicithms to be used, notes
the source of the original descriptions, and records the puddigmplementation details that are
used.

Algorithm Source Implementation Description

BT (Golomb and Baumert 1965) (Prosser 1993) Chronological backtracking
CBJ (Prosser 1993) (Prosser 1993) Conflict-directed backjumping
FC (Haralick and Elliott 1980) (Prosser 1993) Forward checking

FC-CBJ (Prosser 1993) (Prosser 1993) Hybrid combination

MAC (Gaschnig 1977) (Prosser 1995) Maintaining arc consistency
MAC-CBJ (Prosser 1995) (Prosser 1995) Hybrid combination

Table 4.1: Sources, implementations and brief descriptions foiade algorithms used.

Each reference to a named algorithm, suctMa€-CBJ corresponds to the implementation
recorded in Table 4.1. In addition to the baSigP algorithms, features such as dynamic variable
ordering heuristics (Section 2.4) are often used. The use dafigstie HEU with MAC-CBJ would
be denoted a®IAC-CBJ-HEU.

Some of the experimental studies may use other extensions tod&Bialgorithms, such as
preprocessing or a fixed initial variable ordering. Namingtsgges for these combinations will
be introduced pragmatically in the relevant chapters.

4.2 Experimentation Environment

The software system which conducts the empirical studies issimghted using theé language.
This system is comprised of three main modules: a problem gemecatpable of producing
ensembles of randoi@SPs; a suite of search algorithms, problem preprocessors and hesristi
which can be combined to process these problems; and a datetiooilmnodule which produces
statistics about individual searches and groups of searches.

Development of this system is carried out undeésNiX environment on a Sun SparcStation
platform. The system is then transferred t@iIX environment on a Silicon Graphics Indigo
platform, enabling the experiments to be distributed oveetvark of 75 workstations. Access
to this considerable computing resource in practice provajggoximately one CPU year of
available processing power per week.

4.3. Phase Transition Experiments 41

As has been mentioned in Section 3.6, software capable addaping the experiments re-
ported throughout this thesis is publicly available on theld/@Vide Web. Further details on this
can be found in Appendix A.

4.3 Phase Transition Experiments

The main purpose of the empirical studies is to investigate¢hi®pnance of different algorithms
on CSPs of varying size and constraint topology. This usually requtres application of the
algorithms to several classes@$P over a range of problem sizes.

The application of an algorithm to am,m, p;) problem class forms the basic building block
of most of the empirical studies, and we use the tphase transition experimetd describe such
an operation. A phase transition experiment is formed by wgrgbnstraint tightnesgp, in steps
of 1/m? over the rangél/n?..1]. At each of these points, an ensemblesPs is generated for
the current'n,m, p1, p2), and each member problem is searched by the algorithms beidigdt

By covering each possible value p§, a phase transition experiment will apply algorithms
to problems in the under-constrained ‘easy-soluble’ problegion, through the ‘*hard’ phase
transition region, and into the over-constrained ‘easy-indelyproblem region. In order to accu-
rately gauge the average and extremes of algorithm beha@ach(n,m, p1, p2) ensemble must
be sufficiently large. A typical ensemble consists ddd0 CSPs, while sample sizes of 1000
problems are often required if rare features of algorithrnawéour are being investigated.

To illustrate the typical format of an empirical study into a@lifhm behaviour, consider the
example of testing theC algorithm (Section 2.1) on problems of siz&0,10). To investigate
the performance of the algorithm as constraint density vapeks varied in steps of @ over the
range[0.1..1.0]. A phase transition experiment is then performed for e@h10, p1) class: p;
is varied in steps of 01 over the rangé.01..1.00]; ensembles of DO0CSPs are generated at
each of these points, and the problems searchéeCby

The above example entails the generation and search of oli@ndEPs, which may require
several CPU days of processing power. Such an experiment wortddnly a small part of a
comparative study of many algorithms on many type€®P, possibly involving a total invest-
ment of several CPU years.

4.4 Measuring Search

The cost of a search performed by an algorithm ars® may be measured and expressed in a
number of ways. These ‘instruments’ for measuring search cost rmgyrvtheir level of depen-
dency upon implementation and environment, and may alsoimaheir perceived relevance to

bution to the understanding of a search process, and methodaloggcussions such as (Get
al. 1997b) encourage empirical studies to “measure with manyuimsnts”.

In order to provide as many views of the search process as passlkn different aspects of
each search are measured in the empirical studies presented’hese measures are described

42 Chapter 4. The Empirical Study of Algorithms

below.

4.4.1 Consistency checks

When checking that a valuefor a variabley; is consistent with a valug for a variablev;, a
single consistency check is counted. If the variables invoaredchot constrained, then no check
is counted. The consistency checking cost of a search is reghydexhny as a good surrogate
for ‘real’ time.

Consistency checks are environment independent, but aré/tdghendent on implementa-
tion efficiency. Also, for some algorithm implementations, ayrbe neither possible nor sensible
to count consistency checks due to the way in which the consdrame implemented: for in-
stance theé\C4 arc consistency algorithm (Mohr and Henderson 1986), whicfopas all of its
consistency checking during an initialisation stage.

4.4.2 Nodes visited

Every trial instantiation of a variable made during searchesponds to a single node in the search
tree having been visited. This definition corresponds to thatngby (Kondrak and van Beek
1997).

This measure is both environment and implementation indégrgngiven the same variable
instantiation ordering, and so allows direct comparison betwany implementation of a particu-
lar algorithm. However, it may not reflect the varying levefsearch effort required during each
trial instantiation, and so is not as analogous to real timeasistency checks.

443 CPUtime

The amount of CPU time elapsed during each search is measurezkizpgtely. CPU time is
regarded by many as the true ‘bottom line’ of search cost, atehafs theonly relevant mea-
sure. However, execution time is highly environment and eangntation dependent, and is a
notoriously difficult measure to take accurately.

Circumstances may arise, though, when CPU time is the onlyldeiitaeasure of cost. These
include trying to estimate overheads that are not reflectéiemumber of consistency checks or
nodes visited: for example the conflict set maintenance costiasstevith theCBJ algorithm,
described in Section 2.1.

4.4.4 Permanent nogood values

SomeCSP algorithms are capable of removing values from the domafngodables that are
proven not to form part of any solution. These algorithms idelpreprocessors such as3
(Section 2.5).

For searches using these types of algorithm, the number of pemtig removed ‘nogoods’ is
recorded. This measure is both environment and implementatdependent.

4.5. Presenting Search Data 43

4.4.5 Temporary nogood values

The lookaheadSP search algorithms presented in Section 2.1, suchGand MAC remove
values from the domains of uninstantiated variables durorg/drd search moves, which may
later be reinstated upon backward search moves. These ‘tempagoods’ are counted during
searches with these algorithms.

While this measure is environment independent, the numbégroporary nogoods during
a search can be affected by sensitive implementation featurels,asuthe order in which the
effects of instantiations are propagated. Therefore, itccba said to be partially implementation
dependent.

4.4.6 Labellings

The number of forward search moves during which a variable ¢gesssfully instantiated, or
labelled, are counted. This measure differs from nodes digitehat the labelling of a variable
may require a number of trial instantiations before a valid @nfound, corresponding to several
nodes.

4.4.7 Unlabellings

The number of backward search moves, or unlabellings, made eqeountering dead ends are
recorded. This measure is environment and implementatdep@ndent, given the same instan-
tiation ordering.

The number of unlabellings during search might give a goottatibn of the effectiveness of
an algorithm'’s forward move. However, this measure will malicate the ‘length’ of jumps made
by backjumping algorithms.

4.5 Presenting Search Data

The phase transition experiments (Section 4.3) which formbéms of the empirical studies
involve the search of many thousands@8Ps. Each of these searches produces a number of
search cost measures, resulting in large quantities of raw ddite &amalysed. In order to draw
useful conclusions from all the data produced by the expetisnérs essential that it is collected
and presented in a manageable and comprehensible form: thet isust obtain a goodew of
the data.

There are essentially two types of view of a phase transitionrarpat that should be avail-
able. Observing general behaviour of an algorithm on a proldkass requires what might be
termed a ‘telescopic’ view of the search data, while an undedatg of the mechanics of indi-
vidual searches by an algorithm requires a ‘microscopic’ viéthe search process.

A number of techniques are employed to obtain search datarasém it in a way that pro-
vides the views required. These are described below.

44 Chapter 4. The Empirical Study of Algorithms

4.5.1 Summary statistics

The ‘telescopic’ view of a phase transition experiment is ptedi by a number of summary
statistics. The following statistics are calculated for eachsuesof search cost on each ensemble
of CSPs:

e the proportion of soluble problempsgz:.

e the proportion of problems shown to be inconsistent (and in$®)udy consistency meth-
ods, pinc, if applicable.

e the minimum and maximum costs.
e the mean cost.
e the standard deviation of cost.

¢ the median cost, plus higher cost percent{|é5% 90% 99% 99.9%, 99.99% 99.999%
as applicable.

¢ the separate median costs for soluble and insoluble problerne erisemble.

4.5.2 Search profiling

A ‘microscopic’ view of the search process for an algorithm isyided by a search profiling
facility. The total search cost incurred at each level in thedetee is measured, for each type of
cost measure, and can be used to form an individual profile foigdesi$P search, or a summary
profile for an ensemble @SPs.

The use of search profiling is not new, and has been presentedl kneen empirical studies
such as (Haralick and Elliott 1980). An illustration of the misis gained by looking inside search
using the profiling facility is shown by Figure 4.1. The two gabmpare the work done at each
search depth by two different algorithms on the same probletlgor&hm A can be seen to be
doing most of its work deeper into the search tree than AlgariBy which spends most of its
time at shallow search depths. Comparisons like this might loedplain differences in scaling
properties or extremes of behaviour between these algasithm

4.5.3 Cost percentiles

Investigation of the general behaviour of an algorithm welhd to focus on the mean and me-
dian values of various search costs. Occasionally, howevedistigbution and extreme values
of search cost over samples ©EPs are of interest. This particularly applies to the study of
exceptionally hard problem behaviour (Section 1.5).

Ehps by definition represent extreme behaviour in a populatiorralblems, and so will not be
evident in a plot of median cost to find a solution; they will affthe mean cost, but not in a way
which elucidates what is happening. For some problem classzsfohe, we plot the median and
higher percentiles of search cost, up to the maximum cost, éoséls of problems; this follows
graphs shown by (Hogg and Williams 1994) and (Gent and WalsAd)99

4.5. Presenting Search Data 45

1600

T T T T T T
Algorithm A —
1400 -]
L
8
o 1200 - —
O
3 1000 | -
c
2
2 800 [E
c
[e]
O 600 [—
c
3
s 400 - —
200 [—
0 1 1 1 1 L
1 5 10 15 20 25 30
Search Depth
16000 — T T T T T
Algorithm B —
14000 - —
i
[5}
2 12000 —
O
& 10000 [.
c
IS
2 8000 - -
c
[e]
O 6000 |- —
c
8
s 4000 | —
2000]
0 1 1 L 1 1 1
1 5 10 15 20 25 30
Search Depth

Figure 4.1: Search profiles for two algorithms on an ensemblegs.

4.5.4 Cost against constrainedness, K

Phase transition experiments (Section 4.30&®Ps take the general form of varying the control
parameterp,, for a number of relate@€SP classes. The location of the crossover point at the
phase transition usually lies at different valuespaffor each problem class studied, and the
‘width’ of the phase transition region often varies if the clasgwolved have different constraint
topologies.

Plotting search cost againpt for a number of differenCSP classes can obscure attempts
to compare their phase transition behaviour, given the variatin apparent location and width.
This problem can be alleviated, however, by plotting seaodtscfor the different types aSP
against the general constrainedness parametentroduced in Section 3.2.

Plotting the empirical data for afn,m, p;) problem class againsgt is effectively doing so
against a re-scaleph, and enables direct comparison of apparently diverse phasstica re-
gions. To illustrate the improved view of phase transition behavoffered by this technique,
Figure 4.2 plots the median consistency checking cost of amigigoapplied to nin€20, 10, p;)
problem classes. The upper graph plots cost againsthile the lower graph plots cost agaimst

Re-scaling of the nine phase transitions around the waiu& removes the overlapping curves
that appear in the upper graph, and shows the patterns ofathgitions to be more similar than

Median Consistency Checks (logscale)

Median Consistency Checks (logscale)

Chapter 4. The Empirical Study of Algorithms

1e+06 T T T T

<20,10,1.0>——]
<20,10,0.9>----- E
<20,10,0.8>-----
<20,10,0.7>
<20,10,0.6>--- |
N <20,10,0.5>- -
AR <20,10,0.4>---- -
' <20,10,0.3>----- E
<20,10,0.2> -]

100000}

10000 |

1000

100 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Constraint Tighness (p2)

1le+06 T T T T

<20,10,1.0>——]
<20,10,0.9>---]
<20,10,0.8>-----
<20,10,0.7>
<20,10,0.6>-—~ |
<20,10,0.5>- -
<20,10,0.4>- -
<20,10,0.3> - 7
<20,10,0.2> -]

100000

10000

1000

100 L L . e g

2
Constrainedness (K)

Figure 4.2: Plotting several phase transitions agaims(top) andk (bottom).

4.5. Presenting Search Data 47

the plots againsp, would suggest. The alignment of the phase transition peaks ifower
graph also makes the scaling relationshippasncreases a lot clearer. A slight limitation of
this technique, however, is that peaks for the more sparselgti@ned problem classes do not
quite line up at the value = 1 (this can be seen fgrn = {0.2,0.3} in Figure 4.2). Recall from
Section 3.2 thak tends to underestimate the constrainedness of spaRe

48

Chapter 4. The Empirical Study of Algorithms

49

Chapter 5

Exceptionally Hard Problems

The phenomenon of exceptionally hard problesmp) behaviour which is occasionally exhibited
by completeCSP search algorithms was introduced in Section 1.5. To reglags are extremely
expensive searches which sometimes occur for a particularitiligioat values of the control pa-
rameter where most problems are extremely easy. The magfuldese exceptional searches is
often sufficient to greatly distort the mean cost observed fgel@opulations of similar problems.

Exceptionally hard problems are believed to be a featurexeégtional behaviour being ex-
hibited by a particular algorithm, rather than the discoveira fundamentally difficult problem
instance in the region where most are easy. In the phase trangitasiems are hard on average
due to the fact that either an exhaustive search must be underifako solution exists, or an
extensive search must be undertaken if the problem has fewawutin some cases, though,
a particular algorithm may find the solution to a phase transipimblem very quickly due to a
favourable instantiation ordering (Smith and Dyer 1996)thia easy-soluble region, most prob-
lems are very easy because they are underconstrained and hayesohations. In some cases,
though, a particular algorithm may find a solution extremeffiatilt to find due to an exception-
ally unfavourable instantiation ordering which it cannatagnise as such.

This chapter examines the incidence and magnitudghptbehaviour for a number of com-
pleteCSP search algorithms. The study looksehips at both a ‘macroscopic’ level, considering
their incidence over populations of problems, and at a ‘nsicopic’ level, examining in detail the
search process for many individual instances. A review of pres/giudies of the phenomenon
is followed by a statement of the criteria used here to class#taimces othp behaviour. The
empirical study initially considers the basic backtrackirgpaithm,BT. The nature of exception-
ally hardBT searches is examined, and strategies to reduce the incidéebe behaviour are
proposed. These include the use of algorithms employing moreistaated forms of forward
and backward search move, and the use of a dynamic variablergydgrategy. Although their
incidence is greatly reduced, these search strategies stillipeosome level adhp behaviour for
many types ofCSP. We conclude by discussing the results of this study and the retevaf the
ehp phenomenon in the overall study of algorithms for ¢&P.

50 Chapter 5. Exceptionally Hard Problems

5.1 Related Work

(Hogg and Williams 1994) studied the application of depthktfirearch to large populations of
graph colouring problems, and found that the most expensivésgfarches were concentrated not
at the phase transition, but in an area before it, where prabsmeasy in the average case. They
identified the occurrence of these difficult problems with soselcpeak in the higher percentiles
of search cost, which corresponds to the transition betweempulial and exponential scaling
of the average search cost.

(Gent and Walsh 1994a) studied the performance of the DavizaRusatisfiability procedure
on populations 08-SAT problems, using two models of problem generation. They rapattthe
most erratic behaviour in search cost occurred in the easy regids class of problem, finding
searches there that were orders of magnitude more expensinghb hardest phase transition
problems. They attributed these exceptionally hard searcheither hard unsatisfiable instances
(which can occur in relatively under-constrained problegiars forSAT), or to a bad choice of
variable ordering producing a hard unsatisfiable subproblem.

In the case of binanCSPs, (Smith 1995) has reported a preliminary investigation iexe
ceptionally hard problems occurring in the easy-solubleaiegi Smith suggested that factors
contributing toehps could include an unusually small number of solutions, a clugiesihall
solutions in one region of the search space, or an unusually s&geh space induced by the
variable ordering strategy of the algorithm. (Frost and Dechi©94) also report evidence of
ehps in binary CSPs, noting that problems with many loose constraints can be maatieh than
those with fewer and tighter constraints.

Subsequent studies have empirically compared the levasplbehaviour between different
complete search algorithms. (Davenport and Tsang 1995) shdwaethe use of backjumping
techniques and sophisticated variable ordering techniqgesfisantly reduces the incidence of
ehp behaviour for the=C algorithm, applied to sets of graph colouring problems.

Similarly, (Baker 1995) applied various algorithms withryiag levels of backjumping ca-
pability to large sets of 100 variable 3-colouring problemBhp incidence was reduced by
more intelligent backjumping, and Baker made the claim, th@gsgely on empirical results, that
dependency-directed backtracking (Stallman and Sussmaf) &biminates the phenomenon on
these problems completelghp behaviour was attributed simply thrashingbehaviour (Mack-
worth 1977), which sees algorithms with more naive forms alard search move continue to
make the same mistakes in a pathological fashion. The exaaeratthis behaviour, however,
was not examined closély

Recently, (Gomest al. 1997) have analysed the distribution of search cost over papusat
of soluble combinatorial problems, and show that these distoibsitare invariably ‘heavy-tailed’
in nature. That is, given sufficiently large populations, théyang cases tend to be situated
extremely far from the average case. They show that this digitoito can in fact be modelled as
a stable distribution, using a technique that has been apmieeat-world chaotic phenomena
such as weather patterns and stock market behaviour. In@alditiey show that a strategy which

1Curiously, Baker erroneously claimed that Hogg & Williams and Gent & Wafé#red no explanation for thenp
behaviour that they observed.

5.2. Criteria Used 51

re-starts search from a different point after a certain cosit liras been reached is effective in
curbing the heavy-tailed distribution; that is, it reduces likelihood of an exceptionally hard
search on an easy soluble problem.

Ehps appear to be a feature only of complete search methods. Né¢klogg and Williams
1994), in looking at heuristic repair methods on graph cotauproblems, nor (Gent and Walsh
1994b) in applying th&SAT hill-climbing procedure to satisfiability problems, have fdusny
evidence okhp behaviour for these algorithms. Similarly, (Davenport andifsi995) found no
sign ofehps when applying th&sENET neural network to graph colouring problems.

5.2 Ciriteria Used

In the study presented in this chapter (and in later studies)plalgm instance is said to be an
exceptionally hard problenefp) if:

1. it occurs in the region where almost all problems are sojubid on average easy to solve
(that is, outside the mushy region);

2. itis much more difficult, by at least an order of magnitudhestalmost all other problems
with the same parameter values;

3. itis more difficult than almost all the problems occurringhie mushy region.

This is intended to be a description, rather than a preciseitiefin As will be seen, a problem
which is exceptionally hard for one algorithm may be very esgolve for another algorithm
(or even for the same algorithm with a different variable insittion order). Henceghps do
not appear to be exceptional problems, but rather to causetixeal behaviour in a specific
algorithm. So although we should consider individelgbs and why the algorithm gets into such
extreme difficulties with these problems, it is the incidentehms in populations of problems,
in relation to particular search algorithms, that is of mostiest.

For the purposes of the empirical study presented later, weeddfim mushy region (Sec-
tion 1.4) arbitrarily as the range of values pf for which the probability that a problem has a
solution lies between 0.01 and 0.99. This allows us to estiitateoundaries by finding the
largestp, for which more than 99% of problems are soluble and the smailefsr which fewer
than 1% of problems are soluble.

The empirical study okhp behaviour is presented in the following sections. The problems
used are binargSPs, generated according to the Model B random generation rdgihesented
in Chapter 3.

5.3 Basic Ehp Behaviour

The empirical study oéhp behaviour begins with the simple backtracking algoritBm, (Prosser
1993) notes that, “We should consid&r as describing the most primitive forward move (check-
ing against past variables) and the most primitive backward rfcvwenological backtracking)”.

52 Chapter 5. Exceptionally Hard Problems

(20,10,0.2) (20,10,0.5)
le+12 T T T T T T le+12 T T T T T
Maximum ------ Maximum -- ----
99th Percentile 99th Percentile
le+1lf 90th Percentile— | le+lll 90th Percentile— 7
75th Percentile----- 75th Percentile-----
le+10 k- Median — | le+10 k- Median — |
1e+09 - . . 1le+09 - i -
1e+08 1e+08

le+07 le+07 |

le+06 le+06 -

100000 100000

Consistency Checks (logscale)
Consistency Checks (logscale)

10000

10000 -

1000

1000 i

100 —

100 ./

10 1 1 1 1 1 1 10 1 1 1 1 1
01 02 03 04 05 06 07 08 0 005 01 015 02 025 03
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 5.1: Ranges of consistency checking costgaron (20,10,0.2) and(20,10,1.0) CSPs.

Three phase transition experiments were conducted usin@®#0,0.2), (20,10,0.5) and
(20,10,1.0) CSP classes. These problem classes were chosen to provide a range chiobnst
tightnesses over whicehp behaviour may vary considerably. The size of epgtstep for the
three classes is.01, and ensembles of 5,000 problems were generated at @0, p1, p2)
pointin order to increase the likelihood of observing extres@arch behaviouBT was applied to
eachCsP in the study using a static lexical (effectively random) valéahstantiation ordering.

5.3.1 Naive chronological backtracking

Figure 5.1 shows the median and higher percentiles of consistdrecking cost foBT over the
(20,10,0.2) and(20,10,1.0) problem classes. Costs are plotted against constraint tightness, ov
a range covering the region leading up to and beyond the pteassition.

Looking first at the median cost of solving these problems, the yshase transition behavior
is seen, with a peak at the point where half the problems ardlecnd half insoluble. In the
case 0f(20,10,1.0), whenp, < 0.2, all the problems searched have solutions, and when
0.24, none do. At small values @b for both classes, most problems are very easy to solve: up
to the point where the gradient of the median cost curve startrhb steeply, at least half the
problems can be solved without ever backtracking to a preweawiable.

However, the higher percentiles show that for most of the ealspkoregions, except for the
smallest values gfip, there is a small proportion of problems which is extremelstlyoto solve.
For both classes, the most expensive searches occurring to tbitheftphase transition are much
more costly (by at least an order of magnitude) than 99% of thergiroblems occurring in the

5.3. Basic Ehp Behaviour 53

(20,10,0.2) (20,10,0.5)
le+12 T T T T T T le+12 T T T T T
Mean — Mean —
le+l11| — le+1l| —
le+10 B le+10 B
) le+09 | — o) le+09 | b
<]
(8] (8]
S 1e+08f - & 1e+08f -
s ¢ 2 1le
R g
S 1e+07f - S le+07f
< <
() (@)
g 1e+06 3 1le+06f
a8]
& %)
2 100000 2 100000
/5] 5]
O O
10000 10000 -
1000 1000
100 100 B
10 1 1 1 1 1 1 10 1 1 1 1 1
01 02 03 04 05 06 07 038 0 005 01 015 02 025 0.3
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 5.2: Mean consistency checking cost 8T on (20,10,0.2) and(20,10,1.0) CSPs.

ensemble at the same valuemf much more costly (again, by at least an order of magnitude)
than 99% of the sample problems in the phase transition; and esgubelow the values of

p2 at which the first insoluble problems are found. Thus they fitdhscription given earlier
and areehps. These rare problems are sufficient to increase the mean cosheunsly: on the
(20,10,1.0) class for instance, the most expensive problems at arppird.1, which take more
than 10 consistency checks, are each sufficient to increase the mean 90208t a point where
the median cost is less than 1,000. This effeahqf behaviour on the mean costseif over the
(20,10,0.2) and(20,10,1.0) classes is illustrated by the plots in Figure 5.2.

It should again be emphasized that all of¢hes shown in Figure 5.1 are solub&sSPs. For all
the experiments reported in this thesis, no instances of inkodhps in the easy-soluble region
of anyCSP class have been found. Furthermore ghlps which we have studied in detail appear
to have many solutions, typical for such underconstrained pml As discussed in (Smith
1995), if an insoluble problem were to occur in the easy-solugen of aCSP class, it would
be extremely hard to prove insoluble. It seems, though etiyat of this type are exceptional even
amongskhps.

5.3.2 Inside a BT ehp

To gain some insight into what turnssd search into aehp, we examined in detail the progress
of the algorithm on one of the difficul®0, 10, 1.0) problems wherp, = 0.07; this problem took

31 million consistency checks to solv8T frequently finds partial solutions with 19 of the 20
variables instantiated, and then backtracks, since it camubafivalue for the last variable which

54 Chapter 5. Exceptionally Hard Problems

is consistent with the past assignments. This is due to the facththéddst variablevbg) has no
values that are consistent with the first 8 instantiations madenttally, the eighth instantiation
is changed, fronvg=1 tovg = 4, and a solution is found almost immediately.

It is clear that the reason for the high cost of solving this peobis that the algorithm is
thrashing (Mackworth 1977); repeatedly re-discovering essgnthe same failure. Attributing
ehp behaviour to thrashing is not new: (Baker 1995) makes a siraiiggestion, although his
explanation applies only to problems with disconnected camtgraphs. Mackworth pointed
out that a local inconsistency can cause thrashing in an algotliat is unable to detect it. But
from results on establishing consistencydsPs, presented later in Chapter 6, we know that
in this case thehp could not be avoided by making the problem node, arc or patisistent.
However, if, after the first 8 assignments, we were to form the sabdem consisting of the
future variables and those of their values which are consistéhtthe past assignments (as is
done explicitly by the forward checking algorithm), the stdigem could be thought of as being
node inconsistent, sinagg would then have no values remaining in its domasfi.is subject to
thrashing in this situation because it cannot detect this nocEnsistency without an exhaustive
search of the insoluble subproblem.

This ‘insoluble subproblem’ explanation fehp behaviour is very similar to the experience
reported by (Gent and Walsh 1994a); they found a satisfiabilitglpm which required more than
350 million branches to solve, using a simplified version of thei®&utnansAT algorithm. The
first choice made by the algorithm led to a very difficult unsatlgife problem, which required
almost all the search effort; the alternative choice led imatety to a solution. They conclude
that, “These difficult problems are either hard unsatisfiabtdbl@ms or are satisfiable problems
which give a hard unsatisfiable subproblem following a wrongt’splihey also report similar
experience with travelling salesman problems in (Gent andskVA995b); they were concerned
with the decision problem, i.e. whether there is a tour of targor less, and found that Ifis
increased from the minimum possible length, the problem can e become much more
difficult, rather than easier, as would be expected. This cabge a bad decision made early on
can lead to a long and unsuccessful search for an acceptabld tberemaining cities: the bound
is insufficiently tight to cut off search until nearly all theies have been considered, whereas a
tighter bound allows backtracking to be triggered muchiegarl

In order forBT to find a problem in the easy-soluble region exceptionallydiffiin this way,

a combination of circumstances must occur:

e the first few assignments must together conflict with every vafubelast variable in the
instantiation order (or perhaps, in larger problems, one ofakg;

e it must be easy to find values for the intervening variables i@ consistent with the
first few assignments.

The first condition ensures that an insoluble subproblem is @tleaThe second ensures that
searching the subproblem takes a very long time: the algoritbes not encounter any failure
causing it to backtrack to a previous assignment until the |lasihie is reached; and the search
tree has many branches, because the first variables in the sidiprioéive many values which are

5.3. Basic Ehp Behaviour 55

consistent with the past assignments.

These two conditions are contradictory, given the ModeL®° generation model used to
produce Figure 5.1. Hence, the combination is inherentty x&re. However, circumstances can
be imagined in which the conditions would be easier to meetnfiance, if the tightness of the
constraints varied, in such a way that the constraints betweefirst few variables and the last
were tighter than other constraints. As discussed in (Baker 199 graph is disconnected,
and the algorithm does not solve each component separatalghthg can occur relatively easily.

Recently, (Smith and Grant 1997) have looked at exceptiphalrd problem behaviour by
the BT algorithm in more detail. They use the insoluble subproblemamgiion as a basis for
constructing a model aéhp behaviour and its expected cost. Looking initiallyBat on CSPs
whose constraint graph is a clique (i.p1 = 1), the probability that the conditions leading to a
hard insoluble subproblem arise has been calculated, as hasimate for the resulting search
cost. From this, Smith and Grant derive a theoretical cost Higidn which suggests that the
hardest searches in the easy-soluble region will form a secordipéze higher cost percentiles
similar to that which (Hogg and Williams 1994) have observegieically. It is anticipated that
this model will be extended to other algorithms in future,lsas forward checking, and @SPs
with non-clique constraint graphs.

5.3.3 Improving BT’s variable ordering

The empirical study oBT described above deliberately uses what is effectively a randstan-
tiation ordering, so as to test the algorithm in perhaps its maste form. It may be the case,
however, that a more informed choice of instantiation orday imave an impact of the incidence
of ehps. To test this, a second study BT was conducted, using a heuristic technique described
by (Gibbset al. 1976) to give each search a small-bandwidth static variablerimgl The band-
width of an ordering is the maximum distance in the orderirtgvieen any pair of variables which
have a constraint between them. A small-bandwidth orderingldimoakeehps less likely to oc-
cur, and less costly if they do occur. This is because when thantiation of a variable causes
a domain wipeout in some future variable, the smaller the bahtdwthe smaller the distance
between these two variables, and therefore the smaller the etumhintervening variables over
which the algorithm has to backtrack.

Dense constraint graphs are not particularly relevant to sustudy, since if all variables
are constrained by nearly every other, then a small-bandwvaidtaring will not exist. A phase
transition experiment using this technique was thereforelgoted using the sparg20,10,0.3)
problem class. The size of eaph step was again.01, but this time ensembles of 10,000 prob-
lems were generated at eve0, 10,0.3, pz) point to further increase the chances of exceptional
searches.

Figure 5.3 plots the median and higher percentiles of comgigtehecking cost foBT over
the problem class, against constraint tightness. Compared {@@¥0,0.2) plot in Figure 5.1,
ehp behaviour using this version of the algorithm is as bad, if notsg, than the naive lexical
ordering. It appears that a more sophisticated approach @edee tackle the phenomenon.

56 Chapter 5. Exceptionally Hard Problems

le+10¢ T T T T T T T T T E|
I Maximum -]
L 99th Percentile 4
le+09| 90th Percentile—
[75th Percentile----
R g o - : Median —
1e+08} P i
1e+07 |

1e+06 |

100000}

Consistency Checks (logscale)

10000

1000

100 = ,_7

10 I 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Constraint Tightness (p2)

Figure 5.3: Ranges of consistency checking cost8ar(using a minimum bandwith ordering) on
(20,10,0.3) CSPs.

5.4 Strategies for Avoiding Ehps

BT is of course an extremely naive algorithm, and we might exffedtmore sophisticated algo-
rithms will reduce the incidence ehps, as well as improving the average cost of search. In one
sense, it is trivial even foBT to avoid anehp in an individual problem: th&T ehps that have
been examined, including that described in Section 5.3i2e @hrough encountering insoluble
subproblems early in the search; if a different instantiatimteois used, the subproblem will not
be created. Another algorithm applied toetp may also find the problem easy simply because it
considers variables in a different order. What is requiresvdwver, is an algorithm which reduces
the incidence or difficulty oéhps overall.

There are, in theory, two potential ways for a search algaritb avoidehps which arise
through encountering insoluble subproblems early in the kearte is to avoid getting into such
subproblems in the first place, and the other is to detect tleastbproblem is insoluble more
quickly. Sections 5.5, 5.6 and 5.7 study these approachedatisy and then in tandem.

5.5 Looking Forward

Algorithms which perform a lookahead style of consistency khegr (Section 1.3.1) to some
extent make the future subproblem consistent with each inatammtimade. Such a process is
likely to detect the insolubility of many of the subproblemsigthlead toehp searches. Below,
we consider algorithms performing two levels of lookaheamwhard checking and maintaining

5.5. Looking Forward 57

le+10¢ : : . ; ; ,

I Maximum ----- |

F 99th Percentile

1le+09 | 90th Percentile—
[75th Percentile----
Median —

1e+08 |- -

1le+07
1e+06 |-

100000

Consistency Checks (logscale)

10000

1000

100 E

10 I 1 1 1 1 1
0 005 01 015 02 0.25 03
Constraint Tightness (p2)

Figure 5.4: Ranges of consistency checking costfaron (20,10,1.0) CSPs.

arc consistency. The effects of using these algorithms with iallarordering heuristic are also
examined.

5.5.1 Forward checking

BT may thrash when it encounters an insoluble subproblem earheisgarch. If node inconsis-
tencies are created in the subproblem following an instaatiathe forward checking algorithm
(FC) can avoid an exhaustive search. By removing those values tenddmains of future
variables which conflict with the past assignmeg,can detect when a future variable has no
remaining values, and hence recognize immediately that thygrshlem is insoluble.

FC, using a static lexical variable ordering, was applied to (@ 10,1.0) CSPs that were
searched bBT in the previous section. Sample sizes were increased to 1000Ems at each
p2, however, so an additional 5,0@%Ps were effectively added to each ensemble. Figure 5.4
shows the results of applyirgC to these problems, in a similar style to Figure 5.1. As expected,
FC reduces the incidence and severityebps considerably. However, there are still some prob-
lems which are extremely difficult by comparison with the naedilifficulty at the same constraint
tightness. Examination of individual problems of this kindmsoof which is presented later in
Section 5.8, shows that thedp is still due to an insoluble subproblem formed by the first few
instantiations. Once again, when the algorithm eventualtkipacks to this point and tries a dif-
ferent instantiation, a solution can be found almost immelyiatéowever, rather than a simple
node inconsistency in the subproblem, there is an arc inconsistevolving the last variable.
Although this will manifest itself eventually in a domain wipg of the last variable (whichC

58 Chapter 5. Exceptionally Hard Problems

can detect, and so do much better than BT even on these moreesoprpblems) it still has to
do a good deal of backtracking before proving that the oVetddproblem is insoluble.

5.5.2 The effect of adding search heuristics

CSP algorithms with lookahead capability, includifg, often use a dynamic variable ordering
(DVO) strategy (Section 2.4). A popular technique is to instda the the variable that has the
fewest remaining values left in its domain, in an attempt tlovo the ‘fail-first’ principle?. We
use a variant of this heuristic, proposed by (Frost and Dech&)Mhich selects thiirst variable

to instantiate as the one with the highest degree, i.e. the @am&raining the largest number of
other variables. Thereafter, the ‘smallest remaining domstiiaitegy is used. Frost and Dechter
use the generic termvo for this specific heuristic, but here we use the namig, for fail-first
with initial degree ordering.

Four phase transition experiments applying fl@errdeg algorithm were conducted, using the
(20,10,0.2), (20,10,0.3), (20,10,0.5) and(20,10,1.0) CSP classes studied earlier. For these ex-
periments, ensembles of 10,008Ps were generated and searched at e6/10, p1, p2). Fig-
ure 5.5 plots the median and higher percentiles of consistemegking cost, againgb, around
the phase transition regions for each of these problem classes.

Remarkably, the heuristic appears to have completely editaththrashing in the easy-soluble
regions of the densely constrained classes. It must meet arc istmwtssubproblems at roughly
the same rate &BT andFC (though not the same ones, since the instantiation order isetiffe
and it is surprising that simply considering next the variabl#nsmallest domain is sufficient to
detect the inconsistency wh&t cannot. To provide further verification for the eliminatioh
ehp behaviour on densely constrained problefGFrdeg was again applied to thg0,10,1.0)
class. This time samples of 50,000 problems were searched ata@aetofp,. A small increase
in the maximum cost was observed, but without any sigrehptbehaviour.

For the more sparsely constrained problem classes, hovegyeactivity can still be observed
with FC-Frdeg. Clearehps are to be found in the easy-soluble region of {&6,10,0.2) class,
while the instability of the maximum cost curve f@0,10,0.3) suggests thathps will be ob-
served with larger sample sizes. The incidencehpfbehaviour withFC-FFdeg on sparse€SPs is
clearly lower than that for botBT and plainFC, however. In Section 5.5.3, the incidencesbp
behaviour for this algorithm on larger sparse problems is éxad Later, Section 5.8 also looks
at the behaviour of specifihps for FC-Frdeg.

Ignoring the higher percentiles for a moment, the median costes in Figures 5.5 and 5.1
demonstrate how much more expensie is than FC-Frdeg, for most values ofp,. For the
(20,10,1.0) class, the peak in median cost occurs at the same valpgefof both algorithms, but
is about two orders of magnitude higher #F than forFC-Frdeg. Whenp, is small, however,
the median cost is lower f@T than forFC: when the constraints are very loose and solutions are
easy to find, the effort of checking all the values of the futtagables is often not worthwhile.

2Chapter 8 examines this principle, and DVO heuristics based on it, in morié deta

5.5. Looking Forward

59

(20,10,0.2) (20,10,0.3)
1le+07 T T T le+07 T T T T
Maximum ---- - Maximum ---- --
99th Percentile 99th Percentile
90th Percentile— 90th Percentile—
75th Percentile-——-- 75th Percentile--—--
Median — Median —
le+06 - b le+06 - b
@)
[¢]]
(&) [&]
(2] (%]
(o] (2]
o o
= 100000 |- B <= 100000 B
R 1 2
[8] [8]
(] Q
e ey
O (@]
> >
(&) (@]
c c
i) i)
@ 10000 [] @ 10000
2] r : 1] B
c c
o o
@] O
1000 | 1000 [
100 1 1 1 100 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7

Constraint Tightness (p2) Constraint Tightness (p2)

(20,10,0.5) (20,10,1.0)
1e+07 T T le+07 T
Maximum ---- - Maximum ---- -
99th Percentile 99th Percentile
90th Percentile— 90th Percentile—
75th Percentile----- 1 75th Percentile----- 1
Median — Median —
1e+06 C b 1e+06 C b
100000 - B 100000

10000 | 10000}

Consistency Checks (logscale)
Consistency Checks (logscale)

1000 1000F

100 . . 100 .
0.2 0.1 0.3

0.3 0.4 0.2
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 5.5: Ranges of consistency checking costfarrFrdeg on four(20,10) CSPs.

60 Chapter 5. Exceptionally Hard Problems

le+10 T T T T ™3]
r Maximum -----]
| 99th Percentile- |
} 90th Percentile-----
le+09 i 75th Percentile-—-- 7
F " Median — 1
le+08} L .
1e+07} A .

le+06

100000

Consistency Checks (logscale)

10000

1000 [

100 I 1 1 1 1 1 1
03 04 05 06 07 08
Constraint Tightness (p2)

Figure 5.6: Ranges of consistency checking costf@rrFrdeg on (50,10,0.1) CSPs.

5.5.3 Large sparse problems

From the plots of phase transition behaviour that have beesepted so far, it is clear that the
phase transition is less sharp in sparse problem classes than in dessegigen the same values
of nandm. It is also known from many empirical studies (for instance §8ev 1996)) that for
low values ofp;, the phase transition grows sharpenas increased.

It might be suspected, therefore, that &tes still seen forFC-Frdeg in the (20,10,0.2) prob-
lem class are a side-effect of this. It may be the case that inrlapgese problems, as the phase
transition becomes more abrupbps will disappear from these problems as well as the more
densely constrained ones (for this algorithm).

Therefore, another phase transition experiment usibigrdeg was conducted. This time, the
(50,10,0.1) CSP class was examined, witp, varied in steps of @1 and ensembles of 10,000
problems generated at each point. Figure 5.6 plots the mexdid higher percentiles of con-
sistency checking cost against constraint tightness. It is woiitlitipg out that data plotted in
Figure 5.6 is based on solving 230,000 individ@&lPs; since the peak median cost is approxi-
mately 1 million consistency checks, and since it takes hourd¥e some of the worst individual
problems, Figure 5.6 represents a considerable investmenudifrop.

As expected, thé50,10,0.1) problems show a much sharper peak in the median than the
(20,10,0.2) problems, and the mushy region is much narrower (using therierig@/en in Sec-
tion 5.2 its range is 0.53 - 0.59). So as far as the median b&lmais concerned, the increase
in n from 20 to 50 has caused the phase transition to become moretadwvap though the den-
sity is lower. However, far from disappearinghps are if anything more common, and are more

5.5. Looking Forward 61

extreme, than in the smaller problems. This suggests that ebp®aa transient phenomenon,
associated only with small problems, and thanhdacreases and the phase transition becomes
more abruptehps will continue to appear and will be increasingly extreme.

Figure 5.6 shows also a ‘spike’ in the maximum cost curve in thduld®region, ap, = 0.63.
This is extremely untypical behaviour: in the insoluble oegiall the maximum cost curves that
we have seen, with this one exception, decline smoothly fraptak. This problem is itself
insoluble, and not aahp by our criteria; it is so far unique in our experiments, and iareined
briefly in Section 5.8 as a possible exceptionally hard proldeourring in the insoluble region.

5.5.4 Maintaining arc consistency

As discussed in Section 5.5.1, forward checking avoids manlyesdtips that simple backtrack-
ing suffers from because it can detect immediately the infdagibf the subproblem in which
thrashing occursFC is itself subject toehps, however, and in those cases the reasons for the
infeasibility of the subproblems are clearly more complexthasimple domain wipeout.

When a future variable has no values consistent with the cupartial solution, the sub-
problem consisting of the future variables and their remanialues can be thought of as node
inconsistent. (Mackworth 1977) pointed out that a local irsistency of this kind can cause
thrashing in an algorithm that is not able to detect the instescy. Although node inconsisten-
cies do not occur in our experimentagPs, the basis of the forward checking algorithm is that
node inconsistencies can occur in subproblems, even when tfalgreblem is node consistent.
BT is subject to thrashing in problems whieks finds easy precisely because of this.

In the light of this, it is natural to suppose that some of é¢hps which FC suffers from are
caused by arc inconsistency in the insoluble subproblem. Weftimerimvestigated the impact
onehp behaviour of an algorithm which re-establishes arc consistetenever a subproblem is
created. Thus, theIAC algorithm (Section 2.1) was applied to tf&0, 10,0.1) CSPs examined
in the previous section. As fatC, MAC was combined witlrrdeg dynamic variable ordering to
produceMAC-FFdeg.

Figure 5.7 plots the median and higher percentiles of comsigtehecking cost against con-
straint tightness. As expectaddAC-Frdeg is less subject tehps thanFC-Frdeg. However, a very
prominentehp can be seen gi; = 0.49, which costs over 1.547 billion consistency checks and
38 million nodes to solve. This particular problem is exardiiie more detail in Section 5.8.
We assume that in at least somMaC ehps, the insoluble subproblem is path inconsistent. Re-
establishing path consistency in every subproblem would thenfigtiher reduce the risk of
thrashing (which is already very small), but probably at theemse of a vastly increased average
cost.

555 Summary

The approach of looking ahead into the future subproblenmdwsearch does indeed bring ben-
efits in terms okhp behaviour as well as average search cést.reduces the incidence ehp
behaviour over thé20, 10, p;) problem classes, although far from completely. Theises that

62 Chapter 5. Exceptionally Hard Problems

le+10 T T T T ™3]
r Maximum -----]
| 99th Percentile |
i 90th Percentile-----
le+09F i 75th Percentile-—-- 7
F § Median — 1
1e+08 | i 4
1e+07 | E

le+06

100000

Consistency Checks (logscale)

10000

1000 [

100 I 1 1 1 1 1 1
03 04 05 06 07 08
Constraint Tightness (p2)

Figure 5.7: Ranges of consistency checking cost¥C-Frdeg on (50,10,0.1) CSPs.

are found forFC still appear to be caused by insoluble subproblems that theitdgocannot
identify.

The addition of ‘fail-first’ dynamic variable ordering, hower, has a major effect oghp be-
haviour in densely constrained problem classes. There is no hif@-erdeg encounteringhps
in the (20,10,1.0) problem class, nor, we conjecture, in densely constrained gmublgener-
ally. Further experimentation carried out ¢20, 10, p1) problems shows little indication @hps
occurring forp; > 0.5. We have also examined larger dense problem clagé2e£0,1.0) and
(30,10,1.0)) and found similarly that the higher percentiles are all cltggether, as in Figure
5.5, with no sign othps. If these are typical, then f¢iC-Frdeg, ehps in dense problems must be,
at the least, extremely rare compared with those in sparse pnsble

Extending lookahead capability to thatMAC further reduceshps. TheMAC algorithm and
its effect on both the average and extremes of search cost amgireed in detail in Chapter 7,
where a far wider range @SP classes are examined.

In terms of whereehp behaviour occurs over a problem class, the experimentsBiitthow
that it is subject to thrashing over a much wider range of vabfg® than the lookahead algo-
rithms are. Because the median behaviouBdover the phase transition is so bad compared to
FC, the very difficult problems in the soluble region do not alwaieet all the criteria foghps
given earlier. However, it is clear that problems which aréeast as difficult as most of those
occurring in the phase transition occur at a higher rate, abasebver a much wider range of
values ofpy, for BT than forFC andMAC.

5.6. Jumping Back 63

5.6 Jumping Back

In searching for an algorithm which would avoid the thrashimagt BT is subject to, another pos-
sibility is to use some kind of informed backtracking, ratheartithronological backtracking as
in the algorithms considered so far. When an insoluble subpmoldereated and the infeasibility
detected as the last few variables are instantiated, such antlfg might be able to backtrack
immediately to the true cause of the failure, that is, the finstifestantiations.

(Baker 1995) suggests thait exceptionally hard problems can be defeated by a search strat-
egy which uses a sufficiently intelligent backtracker. He pnesexperiments on graph coloring
problems using dependency-directed backtracking, whicbrds all the nogoods it discovers
during search and uses these to avoid repeating work. Howegegumulates an ever-increasing
number of nogoods as it backtracks, which may not be pradédaldifficult cases.

As discussed in Section 2.1, the conflict-directed backjum@®y) algorithm maintains for
each variable @onflict set This is the set of past variables which it failed consistencyckbe
with. If no consistent instantiation can be found for a variab|éhe algorithm jumps back to the
deepest variabley, listed in its conflict set. In the individuaSP discussed in Section 5.3.2,
which cause®T to thrash, every value for the twentieth variable conflictthvane of the first
eight assignments. ApplyingBJ to this problem, the conflict set fakg contains (at most) the
first eight variables, and when no value can be foundvigr the algorithm jumps back tag,
and tries an alternative value for it. This leads directlytie solution whiclBT eventually finds.
Thus,CBJ can jump out of a node inconsistent subproblem as soon as théleasihich has no
consistent values left in its domain is reached for the first time

Figure 5.8 shows theBJ algorithm applied to the set @20, 10,1.0) problems solved earlier
usingBT (Figure 5.1) and is also comparable with Figures 5.4 and 5%foAthe experiment
with BT, the algorithm uses a static lexical instantiation order®gJ does much better thasir
everywhere, both on average and especially in avoiding. AlthoughCBJ is more expensive
than FC on average over the phase transition, its worst-case perforraniow values ofp,
is better. In the problems whickhC finds most difficult, the first few instantiations create an
arc inconsistent subproblem, with the last variable involvethaninconsistencyFC can only
detect an inconsistency later on when this causes a domain wtjpedhen has to backtrack
chronologically over several variables before arrivinglbatthe true cause of the inconsistency.
CBJ, on the other hand, cannot detect the inconsistency untifitives the domain wipeout; it
then jumps back to the immediate cause, which is the pointevf@mould detect it. However,
from there, if there are no more values for the current vagialh can often jump back to the
ultimate cause of the inconsistency, i.e. the first few instaatiat and thereby be&t.

5.7 Combining Techniques

If the two approaches of looking forward into insoluble sulippemns and jumping back out of
them are successful in reducing the occurrencehpk, then we might expect that combining
these techniques produce even better results. Hybrid condnisatuch asC-CBJ andMAC-CBJ
are discussed in Section 2.1, and here we study their effeahphbehaviour. As withFC and

64 Chapter 5. Exceptionally Hard Problems

le+12 T T T T T
Maximum ---- -
99th Percentile~-
le+llf 90th Percentile—]|
75th Percentile-----
Les10l Median — |
1e+09 |]

le+08 |- B

le+07

1le+06

100000

Consistency Checks (logscale)

10000

1000

100 —

10 1 1 1 1 1
0 005 01 015 02 025 03
Constraint Tightness (p2)

Figure 5.8: Ranges of consistency checking cost@®&J on (20,10, 1.0) CSPs.

MAC, the hybrids are used with thredeg heuristic to produc&C-CBJ-FFdeg andMAC-CBJ-FFdeg.

The implementation of dynamic variable ordering used by ladglorithms (discussed in Sec-
tion 2.4) means that the sets of nodes visite©yCBJ-FFdeg andMAC-CBJ-FFdeg are a subset of
those visited byFC-Frdeg andMAC-FFdeg respectively. Therefore the hybrid algorithms can only
find a problem exceptionally hard if the basic lookahead dlgar does so. Equally, if the basic
algorithm finds a problem exceptionally hard, the hybridbaitnm must meet the same insoluble
subproblem which causes the basic algorithm to thrash, and dgrawwnid thrashing if it can
jump out of it.

Figure 5.9 shows the results of running the two hybrid algamglover the(50,10,0.1) prob-
lem class, as used in Figures 5.6 and 5.7. Itis noticeable taatkiition ofCBJ to the algorithms
is effective in further reducing the occurrencestips, but does not reduce the average search cost
by any significant amount. The effects of addiT®J to FC andMAC are studied in greater detail
in Chapter 7.

We have looked at the performancerif-CBJ-Frdeg On @ number of individuaCSPs which
areehps for FC-Frdeg because of arc inconsistency in a subproblem. Sometimes thacang- i
sistency is particularly simple, i.e. two future variables kfe without any mutually consistent
values by the first few instantiationC-CBJ-Frdeg can then jump back to the true cause of the
difficulty as soon as it has tried to assign a value to one of thesevanables. In such cases,
FC-CBJ-FFdeg does better thamAC-FFdeg, because it does not have the overhead of the arc con-
sistency algorithm.

Often, however, the proof of arc inconsistency is complexplving many of the future vari-
ables. In such caseBC-CBJ-FFdeg cannot jump out of the subproblem as soon as it meets the

5.8. Inside Ehps 65

Consistency Checks (logscale)

FC-CBJ-FFdeg MAC-CBJ-FFdeg
le+10 T T T T] le+10 T T T T]
r Maximum -----] r Maximum -----]
| 99th Percentile— | | 99th Percentile— |
90th Percentile ---- 90th Percentile-----
le+09 75th Percentile----- le+09F 75th Percentile----- 7
F Median — 1 F Median — 1
1e+08 |- b 1le+08 |- ‘.
L] :0‘ L 4
<
L] o L i
[%2]
1e+07 |- . 8 1le+07} e
L , ' £ L o
[}
L o L
1e+06 |- E O le+t06} E
> L
Q
c
| Q |
R
100000 | b ¢ 100000 B
L 8 L
10000 - E 10000 | E
1000 |- S 1000 | .
100 I 1 1 1 1 1 1] 100 I 1 1 1 1 1 1
03 04 05 06 07 08 03 04 05 06 07 08
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 5.9: Ranges of consistency checking cost fa2-CBJ-Frdeg and MAC-CBJ-FFdeg ON
(50,10,0.1) CSPs.

inconsistency, because of the other variables involved. Hereven being able to jump back
over a few variables is an advantage over chronologicaltbacking.

The comparison betwe@mAC-Frdeg andMAC-CBJ-FFdeg is similar. The main benefit oIAC-
CBJ-FFdeg is that it improves the worst-case performanc#®efC-Frdeg in the easy-soluble region,
in some cases dramatically, as with the individual problemsat 0.49. Just aFC-CBJ-FFdeg
cannot directly detect arc inconsistency but can still do wllumping back in arc inconsistent
subproblemsMAC-CBJ-Frdeg can similarly do well even though it cannot detect whatevghér
level of inconsistency is present in the subproblem.

The effect of adding conflict-directed backjumping to bethandMAC is examined in detail
for some individuakhp cases in the following section.

5.8 Inside Ehps

To understand better the causeslais, we have examined carefully many individy&D, 10,0.1)
problems which=C-Frdeg andMAC-FFdeg found exceptionally hard. The focus ¢80,10,0.1) is
not significant, but as this is the largest clasCePs studied so far, we tend to see the most
extreme individuakhp behaviour here.

An analysis of threehps is presented here: two are found Bg-Frdeg, while the other is
encountered bWAC-FFdeg. The behaviour observed is typical of that seen for the othes
that have been analysed. The effect of increasing the levelobddhead on the twBC ehps is

66 Chapter 5. Exceptionally Hard Problems

also examined, as is the effect of introductigd to all three. Finally, graphical profiles of some
interesting individual searches are examined.

5.8.1 Two forward checking ehps

Section 3.6 notes that every experimer@8lP is generated from a single integer seed, so that
ensembles of problems effectively contain individually muaredCSPs. The examplehps are
described below are thus referred to by their seed value.

Problem 898 in the (50,10,0.1,0.47) ensemble is aahp for FC-FFdeg. The median search cost
over the ensemble is just over 1000 consistency checks, but ioabésthe algorithm makes over
190 million consistency checks and visits 56 million nodes kefimding a solution.

Re-solving problem 898 and printing out the current partiéon at regular intervals makes
the reason for its difficulty apparent. The first four instambia¢ made by the algorithm are
va1 = 13 va4 = 1, v41 = 4 andvs = 2. The subproblem created by these instantiations, consisting
of the future variables and their remaining values, is inseluttowever, proving insolubility
accounts for almost all of the consistency checks required i@gbk overall problem. During
the course of the search, partial solutions with 47 of the 5Caties instantiated are found: the
47th variable is always the sameyf). Invariably, the only future variable at that point which
conflicts withvys is vag; the instantiation ol5 evidently causes the domain afg to become
empty, so that the algorithm has to backtrack. Hence, theubgiy of the subproblem is due to
the constraint betweens andvsg: a minimal relaxation of this constraint to allow an additbn
pair of values is sufficient to make the subproblem soluble, arallow the algorithm to solve
the overall problem very quickly. Without this modificatidmowever, the algorithm eventually
proves that the subproblem is insoluble and then tries amalige instantiation fow,, which
immediately leads to a solution. The search considers only ossilfle instantiation of the first
variable,vs;.

In searching the insoluble subproblem, the algorithm cleartyshthrashing behaviour, re-
peatedly backtracking to variables betwegrandv,s and re-instantiating them. All of this work
is wasted, since it is only by going back to the first four varialtheat any progress can be made.
SinceFC-Frdeg cannot recognise this, however, it is doomed to keep on thrgshitil the sub-
problem has been exhaustively searched.

Problem 358 in the (50,10,0.1,0.48) ensemble is also ashp for FC-FFdeg. The first four in-
stantiations made by the algorithm age= 1, vig = 4, Vo2 = 9 andvs7 = 4. It eventually becomes
clear that this set of assignments leads to an insoluble subprot#owever, proving insolu-
bility takes more than 79 million consistency checks and 8iomilhodes visited; the algorithm
frequently finds partial solutions with 38 or more variablestantiated before detecting an infea-
sibility and backtracking. Once it has been proved that tisene solution to the subproblem, the
alternative assignment @47 = 10 is tried and leads almost immediately to a solution. The kearc
considers only one possible instantiation of the first variale,

3j.e. variable 31 is assigned the value 1.

5.8. Inside Ehps 67

Problems 898 and 358 are typical of forward checléhgs. In everyehp that we have exam-
ined in detail, the first few assignments lead to a subproblemhies no solutions, and almost
all the search effort is expended in proving this. Partial $oh# involving most of the variables
are found in the course of searching the subproblem, resultiagineat deal of backtracking. As
with the two problems above, the solution eventually founslthe first variable assigned its first
value, so that there are very probably many solutions in otteersaof the search space.

5.8.2 Extending lookahead

To examine the effects of increasing the level of lookaheasdridual ehps, problems 898 and
358 described above were searchedM®C-Frdeg. To ensure a fair comparison, re-establishing
arc consistency is suspended in MaC algorithm until the insoluble subproblem has been cre-
ated: for instance, if the first four instantiations lead to asolable subproblem, th®IAC al-
gorithm is constrained to behave like€ until depth 4 in the search tree, so that the same four
instantiations will be made.

Re-searching problem 898 usimgAC-Frdeg from depth 4, a solution is found after 6917
checks and 51 nodes. The algorithm clearly discovers that therslblem is arc-inconsistent
and performs a single backtrack before proceeding to theisnludn problem 358VAC-FFdeg
finds a solution after around 173,000 checks. In this case, goeitdm does perform some search
on the inconsistent subproblem, but backtracks quickly out of i

Occasionally, however, making the subproblem arc consistemttisufficient to show that it
is insoluble, and the cause is more complex:

Problem 4150 in the (50,10,0.1,0.49) ensemble is aehp for MAC-FFdeg, and is the search
that stands out prominently in Figure 5.7. Nearly all of th®4Z. billion consistency checks and
38 million nodes visited are spent searching an insoluble subgrobreated by the first seven
assignments.

5.8.3 Additional backjumping

The effects of introducing backjumping capability to thgaithms which produce the 898, 358
and 415Ghps was examined. Recall that the backjumping versions of thariéthgns visit a sub-
set of the nodes visited by the basic algorithm, and so are bousactmunter the same insoluble
subproblems.

In the case of the forward checkimgps, problems 898 and 358C-CBJ-Frdeg does not find
the insoluble subproblems exceptionally difficult. This ie@sely because the backjumping can
detect that the subproblems have no solutions much more guiekh chronological backtracking
can. There is a vestige of the earlier difficulty with probleB83FC-CBJ-Frdeg takes more than
3 million consistency checks to prove insolubility and thisne @f the most difficult problems at
that value ofp,. Problem 898, on the other hand, succumbSga very quickly: the subproblem
is proved insoluble in only 150,000 consistency checks. Prodl&s®, which is theMAC ehp,
was searched bBYIAC-CBJ-Frdeg in just over 150,000 consistency checks.

68 Chapter 5. Exceptionally Hard Problems

5.8.4 Profile of an ehp

Adopting the adage that a picture tells many words, Figur® présents a profile (Section 4.5)
of the consistency checking cost of four ‘interesting’ searcheseh search depth. The searches
examined are the threghps discussed above (problems 898, 358 and 4150), plus the unusually
hard insoluble(50,10,0.1,0.63) problem mentioned in Section 5.5.3. A linear scale is used on
they-axis of each plot to emphasise the imbalance of the cost disoitau

The profiles of the threehps show fairly consistent patterns. Nearly all of the search effort
is spread over a small subset of variables deep in the search tisecldar that the algorithms
consistently fall just short of finding a solution before runningpithe same dead end. The plots
in many ways drive home the enormity of the search spaces ovehwblutions are spread: the
subproblem created by the first four instantiations, for instaiscenly one of 16 possible; but
within this, most of the searching is actually done after arawehty-five variables are instanti-
ated; so this exceptionally long search process is actuallydgpgmost of its time in only a few
out of a possible 18} subproblems.

The behaviour of the unusually difficult insoluble search igfiesting. It is clear that partial
solutions of around twenty variables are consistently builbefore a dead end is reached. From
further analysis of the search trees of forward checking &lgos, presented in Chapter 7, we
know that it is unusual fo€SPs in this part of the insoluble region to have such a large subset
of mutually consistent variables. Given the sparseness of theraonist it may be the case that
the constraint graph for thiSSP is bipartite, dividing the problem into two subproblems whic
are connected by only a handful of constraints. The instaotiairder of the algorithm might
then mean it effectively searches one of the subproblems defamsidering the other. If the
first subproblem is relatively under-constrained, then mamnpéations of instantiations for its
variables would be possible. This is speculation, though, aoé ietailed analysis of this search
might prove more enlightening.

The profiles of other measures of search cost (listed in Sectrhdve also been considered,
and the patterns for each are similar to those seen for consistbacking.

5.9 Conclusions

Exceptionally hard problems in the easy-soluble region oatwen the first few variable instan-
tiations lead to the creation of a subproblem which is ins@utsie insoluble subproblem causes
the algorithm to thrash, repeatedly rediscovering the sanasistency, deep in the search tree.
However, once the algorithm escapes from the insoluble sulgmka solution can be found
almost immediately without further backtracking. These pgots are not inherently difficult; a
better algorithm will often find it trivial to prove the subfdri@m insoluble. This is quite different
from the behaviour of tree search algorithms on the most diffingoluble problems occurring
in the phase transition region, where searches take a long tmpdysbecause every path through
the search tree has to be followed and every one leads to a ddad e
All the ehps that we have seen in these experiments are themselves soluaieinsoluble

problem were to occur well below the phase transition, we edbet it would be extremely hard

5.9. Conclusions

4e+07

3e+07

2e+07

Consistency Checks

le+07

Problem 898 searched IBC-Frdeg

0 5 10 15

2e+07

1.5e+07

le+07

Consistency Checks

5e+06

20

25
Search Depth

30

35

40 45

Problem 358 searched IBC-Frdeg

50

0 5 10 15

6e+08

5e+08

4e+08

3e+08

Consistency Checks

2e+08

le+08

300000

250000

200000

150000

Consistency Checks

100000

50000

Figure 5.10: Profiles of four(50,10,0.1) exceptional searches.

Problem

20

25
Search Depth

30

50

4150 searched MAC-FFdeg

Hard insoluble p

25
Search Depth

30

35

40 45

50

roblem se

arched Bg-Frdeg

20

25
Search Depth

30

50

69

70 Chapter 5. Exceptionally Hard Problems

to prove insoluble, just as finding all solutions is extremelydha&ince a complete exploration
of the search space is required. However, it seems that ehpssdiypie are exceptional even
amongsthps, if they occur at all.

It is remarkable that the qualitative behaviour of the mediast, over a wide range of values
of pp, is the same for the different search algorithms considereel idren the behaviour of the
higher percentiles varies so markedly, sometimes trackiagrttdian closely, and in other cases
peaking much earlier and at a much higher level. We have shmatiitte occurrence ehps in the
easy-soluble region is highly algorithm dependent: we hauadecehps usin@T in populations
with both high and low constraint density, whereas the othgoréhms we have considered do
not appear to suffer frorahps in problems with dense constraints. Furtherm&®e hasehps at
values ofpy for which almost all problems require no backtracking: whettdr algorithms have
ehps, it is at values g, much closer to the phase transition. Using the most complex #igori
we have considered#AC-CBJ-FFdeg), we have found nehps in the experiments reported here.

The algorithms studied can be seen as using two different sieatéy avoiding thrashing
in the insoluble subproblems that occurdhps. One is to look ahead, in order to detect the
inconsistency without searching the subproblé@ &ndMAC); the other is to jump back when
the inconsistency is met, rather than stepping back chroraatigi(e.g.CBJ). The strategies can
be combined in the hybrid algorithnf-CBJ andMAC-CBJ.

The first strategy is guaranteed to be able to detect the incensisin the subproblem, pro-
vided that it is of the right kind (node inconsistency fg, arc inconsistency faviAC). Looking
ahead can also cope to a certain extent with higher levelscohigistency: for instanc&C is
much better thaBT even when the subproblem is arc rather than node inconsistentevér,
there is a danger that the algorithm will then do a great dieahnecessary backtracking, by step-
ping back chronologically to possibly irrelevant variablegcBuse they jump back to a variable
involved in the conflictCBJ-based algorithms reduce this danger. They also have someileapab
ity for handling a higher level of inconsistency. For instarc®) can handle node inconsistency
very well; FC-CBJ can jump out of subproblems with the simpler forms of arc incstesicy; and
presumablyMAC-CBJ can sometimes deal with path inconsistencies, since it can soessmive
very easily problems whiclAC finds exceptionally hard. Th&dAC-CBJ algorithm has almost
completely avoide@hps in our experiments, and shows the effectiveness of combiniadgvwb
strategies.

An area which needs further investigation is the role of thkfiist heuristic in avoiding
thrashing. It appears that when the constraint density is FiQHFdeg is virtually immune from
ehps: even arc inconsistent subproblems do not cause thrashing. dt islear how fail-first
achieves this, especially &-FFdeg is not immune fromehps when the constraints are sparse,
and the difficulties are then due to arc inconsistent subprablem

It should be noted that our graphs exhibitstgs show no sign of the double peak in the higher
percentiles found by (Hogg and Williams 1994), except peshior BT over the(20,10,1.0)
class (Figures 5.1 and 5.2). However, their experiments, col@dring problems, used far larger
samples than ours; they had between 10,000 and 1 million safopleach data point, and were
thus able to see smooth behaviour in the 99.95 percentile. Witth larger samples, binary

5.10. Acknowledgements 71

CSPs might well show a similar double peak. The recent theoretiecadysby (Smith and Grant
1997), described in Section 5.3.2, predicts the existencealotible peak, initially for the case of
BT on CSPs with complete constraint graphs.

Finally, the whole subject of exceptionally hard problema isource of much debate in the
CSP community. Many researchers consider the issue to be eitheiponiamt or irrelevant. An
argument justifying the irrelevance ehp behaviour is that, in practical terms, dealing with this
behaviour is in fact extremely easy: a strategy of randomlstaeting search after a time bound
is broken has been proposed by (Gonee¢sl. 1997); (Baker 1995) pushes the phenomenon
beyond the horizon of experimental scutiny in his empiricatists by using a complex form of
backjumping; and searchingGsP with a number of search ‘agents’, even if these agents use
fairly naive algorithms, will reduce the likelihood of engdering anehp to a negligible level
((Grant 1994) has conducted a study of ‘multi-agent cooperatarch’ for thecSP).

However, there is a compelling case for at least understandeigauses ofhp behaviour in
complete algorithms: all of the algorithms studied are esdgntédinements of simple backtrack-
ing search; failure to understand how and why these simple #hgasican perform in the most
unexpected ways places the development of more advancqaetermethods in a precarious po-
sition. If the precise search conditions which lead tehmeventually become well understood,
susceptible algorithms could be refined to incorporate thiss@dge. They would then be able
to detect dangerous situations and take very simple measuckange the nature of the search.
Such an approach seems eminently sensible: increasing the smgitustof the algorithms in
a ‘brute force’ approach will raise the average search cost obl@ms that are essentially very
simple; whereas by accepting that such anomalies may occanjocomplete search algorithm,
and learning to recognise and deal with their occurrence, plsiand effective approach can be
retained.

The investigation oéhps has given new insight into the behavior@$pP algorithms, including
some which have been in use for a long tirB& @ndFC). It has also given new understanding of
the phenomenon of thrashing behaviour: until its relatigms¥ith ehps was seen, thrashing was
not recognized as a localized phenomenon, occurring indbg-soluble region, which could be
seen as part of the phase transition behavi@s# algorithms.

5.10 Acknowledgements

This study of exceptionally hard problem behaviour has bemrdected jointly with Barbara
Smith. Some of the material presented here has appeared ith(@&@md Grant 1995a) and (Smith
and Grant 1995b). The recent study presented in (Smith and Ge&7), particularly the theo-
retical analysis, is due mainly to Smith, and so is only repohnier.

72

Chapter 5. Exceptionally Hard Problems

73

Chapter 6

Phase Transition Behaviour in Arc and
Path Consistency

Phase transition behaviour has made a major impact on theieatgtudy of algorithms for
NP-complete problems such as tbgP, leading to more rigourous experimentation and a better
understanding of where algorithms perform well or badly. Ateresting question that arises
is whether phase transition methodology can be applied topatjal classes of computational
task. In this chapter we demonstrate that it can, showing tlegidlynomial tasks of establishing
arc and path consistency @6Ps exhibit phase transition behaviour very much analogous to tha
associated with the NP-complete task of finding solutions to thestd@ems.

Previous studies of arc consistency techniques (Bes4i994; Borrett and Tsang 1995) sug-
gest that the cost of consistency follows an easy-hard-easy madigal we show here that this
pattern also exists for path consistency. These peaks in cosfadminith a transition between a
region where arc or path consistency can be established in &lgmns, and achieving this is easy,
and a region where attempting to enforce arc or path consisfaits for all problems, showing
each to be insoluble, and achieving this is easy. The peak lage&ost is observed to coincide
with the point where around 50% of problems can be made consiste

An empirical study applies the principles of phase transitesearch to examine where arc
and path consistency processing is useful in removing domaiesalthis reveals that the effec-
tiveness of establishing consistency rises and falls with the €bsbretical and empirical results
are also presented which show the average cost of@3earc consistency algorithm to be much
lower than its worst-case time complexity suggests.

6.1 Related Work

Popular algorithms to establish arc and path consistengsips are discussed in Section 2.5.
Empirical studies of these techniques have revealed somestitay behaviour.

(Bessere 1994) introduced theCé algorithm, and conducted an empirical study to position
it with respect to thedAC3 andAC4 procedures. The three algorithms were applied-tjueens

74 Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

problems, the Zebra problem (Dechter 1990), and three cla$sesro (20,5,0.3), (12,6,0.5)
and (18,9, p1, p2). The algorithms were set to do just enough work to achieve cemsigtor
prove insolubility. The analysis, done in terms of constrairgaiting cost, showed thac3 and
AC6 followed an easy-hard-easy pattern over @& classes. The cost @iC4 was consistently
high in the under-constrained regions, due to the high basidheae associated with setting up
support counters. Although these patterns suggested some foimagé fransition, Bessie did
not point this out.

(Borrett and Tsang 1995) conducted an empirical study, us@gy of where arc consistency
preprocessing is effective in terms of removing inconsisteltasfrom the domains of variables.
CSP classes of siz€10, 10) and(20, 10) were examined, covering a range of constraint densities.
Unlike Bessére’s studyAC6 was run to completion. Borrett and Tsang observed a coincalenc
between peaks in mean cost of the algorithm and the pointseatheralgorithm ceases to be
effective, but did not relate this to a form of phase transiti@haviour. They did conclude that
preprocessing of this kind is only generally effective on esenstrained problems.

6.2 Terminology

The termsarc consistency (ACpath consistency (PGndk-consistencyre used as defined in
(Tsang 1993) and Chapter 1.2.4. AC and PC are sometimes rkferes 2- and 3-consistency
respectively. We talk okstablishingarc consistency or path consistency in a problem as an
attempt to enforce AC or PC respectively. If a problenaiis-inconsistenbr path-inconsistent
then it is not possible to establish AC or PC respectively; atteargpb do so will show that
the problem has no solution. If a domain element of a probleriabke is arc consistenor
path consistenthen that element will not be removed upon establishing AC@rdspectively.

A domain element isrc- or path-inconsistenif it will be removed upon establishing AC or
PC respectively. EacBSP is therefore in one of three states: the problem is already AC or
PC, and so has no inconsistent domain elements; or the problpatastially AC or PC, and
establishing consistency will remove some inconsistent domainegits; or the problem is arc-

or path-inconsistent, and attempting to establish consisterityreive insolubility. Finding a
solution to a problenprovesthat it can be made-consistent.

6.3 The Empirical Studies

The experiments reported here were performed using randgengrated binarg SPs, generated
according to the Model B method described in Chapter 3. Ouiiricapstudy of establishing arc
consistency and path consistency in setS®#®s uses theAC3 andPC2 algorithms respectively,
introduced in Section 2.5, which are closely related. A uspfoperty of these algorithms for
our purposes is their relative simplicity: neither involves/aomplex initialisation stage that
creates a high basic overhead for each run. Thus the cost ofeflests the true complexity of
establishing consistency.

We examine the effects of processing th@Ps in terms of the amount of variable domain

6.4. The 2-Consistency Phase Transition 75

pruning that occurs (permanent nogood values - Sectionthghumber of consistency checking
operations, the CPU time taken, and also the proportion oflgnadin each sample which are
found to be inconsistent. As we are dealing with the practipalieation of AC and PC pro-
cessing, we also terminate the algorithms upon a domain wip@fmiremoval of every possible
value from a variable’s domain), in which case we know thatelae no solutions and that all
other variable domains would be wiped out if the algorithmtawued. This approach is simi-
lar to that of (Bessire 1994), but contrasts with that of (Borrett and Tsang 1986} run the
consistency algorithms to completion.

A number of phase transition experiments (Section 4.3) wedeitaken, applyindhC3 and
PC2 to CSPs of size (20,10). p; was varied in steps of.0 over the rang¢0.2..1.0] in order
to cover a full range of constraint densities. For eg2@ 10, p;) problem classp; was varied
in steps of 0.01 over the intervid.01..1.00]. Ensembles of D00 problems were generated at
each(20,10, p1, p2) point and processed withC3 andPC2. The(20,10,0.1) problem class was
omitted from the study: these sparse problems need only be maa®msistent in order to be
solved, since connected constraint graphs in this class areedl (Tsang 1993).

6.4 The 2-Consistency Phase Transition

The empirical study of AC processing by (Borrett and Tsang 1998yvell that its usefulness

is restricted to problems that are over-constrained. Theyrobde transition between a region
where constraints are very tight and, for all problems, proogssliminates the entire set of vari-
able domains (proving the problems to be insoluble withoetrfer search), and a region where
constraints are loose and no pruning of domains occurs. Intee/éning region, limited pruning

of some variable domains occurs on average, which in priacpbuld make search easier by re-
ducing the potential search spacBecause the AC algorithm was run to completion, the curves
of domain pruning were observed to rise to a plateau as condtigtitness was increased. How-
ever, if the algorithm is terminated as soon as a domain wigasocurs, the number of values
pruned and the effort required to prove insolubility decressthe constraint tightness increases.

Figure 6.1 shows the effects AE3 processing on the sets (#0, 10, p;, p2) problems. These
plots show the median curves of the consistency checking eiffarthe number of values pruned
from variable domains, together with a curve showing the pribgoof arc-inconsistent problems
found at each20, 10, p1, p2) ensemble. The three plots use the general constrainedness param
eter,k (Section 3.2), on th&-axes. The use of allows easy comparison of the location of the
peaks inAC3 cost with those predicted for full search.

The curves of the median pruning effects for each problesscthow that as constrainedness
increases, the number of values removed rises from zero, singeslowly at first but then rising
sharply to a peak, and then drops dowmigthe size of the variable domains). As these curves
are rising,AC3 is finding an increasing number of arc-inconsistent values idiameproblems,
although not enough to cause the complete wipe-out of anghardomain. At the peaks, domain

1t has, however, been demonstrated (Prosser 1994; Sabin and Freuder 1994) thinesgemiploying dynamic
variable ordering can occasionally perform more poorly as a result of the prurieaysedf constraint propagation.

76

Consistency Checks Number of values pruned

Proportion of arc-inconsistent problems

140

120

100

80

60

40

20

18000

16000

14000

12000

10000

Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

T T
<20,10,1.0> Median—
<20,10,0.9> Median----
<20,10,0.8> Median----
<20,10,0.7> Median
<20,10,0.6> Median----
<20,10,0.5> Median-----
<20,10,0.4> Median-
<20,10,0.3> Median-
<20,10,0.2> Median----

<20,10,1.0> Median—
<20,10,0.9> Median----
<20,10,0.8> Median----
<20,10,0.7> Median

<20,10,0.6> Median---
<20,10,0.5> Median----
<20,10,0.4> Median-
<20,10,0.3> Median-
<20,10,0.2> Median-----

T
<20,10,1.0>—
<20,10,0.9>----
<20,10,0.8>-----
<20,10,0.7>
<20,10,0.6>---
<20,10,0.5>----

4 5 6
Constrainedness (K)

Figure 6.1: Effects ofAC3 on (20,10, p;) CSPs.

6.4. The 2-Consistency Phase Transition 77

Problems K peak median effort pnc
(20,10,0.2,0.73) 1.08 4455 0.640
(20,10,0.3,0.68) 1.41 6363 0.431
(20,10,0.4,0.66) 1.78 8246 0.582
(20,10,0.5,0.64) 2.11 9887 0.559
(20,10,0.6,0.63) 2.46 11500 0.735
(20,10,0.7,0.61) 2.72 12234 0.408
(20,10,0.8,0.60) 3.02 13741 0.440
(20,10,0.9,0.60) 3.40 15565 0.721
(20,10,1.0,0.59) 3.68 16869 0.638

Table 6.1: Properties 0f20, 10, p1, p2) CSP ensembles at AC phase transition peaks.

wipe-outs occur for about 50% of problems, allowing the alhon to terminate early. As the
curves fall, the number of arc-inconsistent values4a8 to find is still increasing, and hence
domain wipe-outs are occurring more quickly, resulting ia &arlier termination of the algorithm.
When the curves fall ton, there are no arc consistent values in any variable domainsautice
algorithm immediately removes thm values in the domain of the first variable it examines, and
terminates.

The consistency checking curves show a similar pattern, as rogekpected, with a peak
in cost coinciding with the peak in values pruned by the athari The patterns of these peaks
as constraint density varies is the reverse of that for prurtiogiever: although problems with
high constraint density generally require fewer arc-incoesisies to cause a domain wipe-out,
as the effects of removing values tend to be greater, theagaton of these effects has a higher
overhead. This results in a greater consistency checkingt eéffoaverage than for less densely
constrained problem classes.

From the curves showing the proportions of arc-inconsistestilpms, it can be seen that3
is exhibiting behaviour exactly analogous to the phase ttiansiobserved for complete search.
The peaks in consistency checking and domain pruning occweleetregions where all problems
can be made arc consistent a@3 quickly establishes this, and regions where all problems are
arc-inconsistent andC3 quickly proves this. In the intervening ‘mushy’ region, a podjon
of problems are arc-inconsistent, and the peaks in checkidgraming approximately coincide
with the point where this is true for 50% of problems.

In order to demonstrate this behaviour more clearly, TaklesGows some properties of the
(20,10, p1, p2) ensembles for which the peaks in median consistency checkiog &fr AC3
occur. The values of constrainednesy @ctual peak median effort, and the proportions of arc-
inconsistent problems foungbif,c) are given for these sets of problems. From this data, it can be
seen that the peaks in median cost do indeed occur when apjptexyrhalf of the sampled prob-
lems are arc-inconsistent, and certainly in the transitioforegrhe deviations from proportions
close to 05 may be attributable to the coarseness of the experiments: ukbymegion is very
narrow and the changes pyc between consecutive valuesf can be very large; finer grained
experiments could be expected to show the location of the 58i#& more accurately.

Observation of the actual positions of the pruning curvesegvith the findings reported

78 Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

in (Borrett and Tsang 1995), in that AC preprocessing has vty éffect (in removing values)
unless the problems are highly constrained. For all of (@10, p;) problem classes studied
here, perhaps with the exception (#0,10,0.2), this means thafAC3 processing only has an
effect in the insoluble problem region; it is only for very spely constrained problems, where
the phase transition between solubility and insolubility osairhigh levels of constrainedness,
that AC processing has any effect on the hard problems in theymmagton. For the more densely
constrained20, 10, p;) problem classes, the regions where any domain pruning ocetftgiher
into the insoluble problem region.

These findings suggest that establishing arc consistency as aqaeging step before full
search is only generally effective on over-constrained gnmisl It should be noted, however, that
whether or not any values can be pruned depends upon theeagghof individual constraints, and
if this is not uniform then AC preprocessing may be worthwhillarer values of constrainedness
than is implied by the plots shown. The curves in Figure 6.1nfedian consistency checking
effort also show thalC3 is a relatively ‘cheap’ algorithm in most cases. ThereforeAad
preprocessing step will not usually add a significant overheadecatl search cost. In the next
section we consider the cost of tA€3 algorithm in greater detail.

6.5 The Cost of AC3

(Mackworth and Freuder 1985) sho¥C3 to have a worst-case time complexity bounded from
above by @m’e) and from below byQ (nmPe), wheree is the number of constraints. In Sec-
tion 2.5, we note that (Wallace 1993) presents a series of agtmiavouring the use @C3
overAC4. AlthoughAC4 has a better worst-case time complexity, Wallace demonstitzdeshe
worst-case conditions faxC3 are rarely encountered.

We look at the cost oRAC3 on theCSPs used in our experiments, considering the cost in the
simplest cases, the cost on problems that are already arc consistéitihe cost at the AC phase
transition peak where the hardest problems encounteradByare found.

6.5.1 AC3 on the simplest problems

For the implementation 0AC3 used here, there are two specific cases where the algorithm has a
small and fixed cost.

Firstly, whenp, = O (i.e. the constraints allow all pairs of values];3 requires neconsis-
tency checks: there are2rcs, and for an arc between variableandyvj, all mvalues forv; are
supported by the first value tried foy.

Secondly, when the constraints are very tight (eg. wiere- 1 and the constraints forbid
all pairs of values) the first arc considered,\(j), may cause a domain wipe-out of variable
because no value of supports any value of. The algorithm willimmediately terminate, having
performed? consistency checks.

6.5. The Cost of AC3 79

6.5.2 AC3 on arc consistent problems

Figure 6.1 shows that there are regions of constraint tightfigssach(20,10, p;) CSP class
where many problems are already arc consistent. Althougtffthie €pent here byAC3 is wasted,
this cost appears to be small. We look here at how the averagettst algorithm on AC
problems grows with domain sizen.

It is possible to derive an expression for the expected consisteraxking cost of AC3 for
the special case of problems that are already AC. Consider Wwae of an arc between two
variablesv;,vj), that is already consistent: each vakie domain will be supported by at least
one value irdomain. The probability that support for a particutarvalue will be found aftec
consistency checks is calculated as:

_ P 1-p)

"=y

forl<c<m

It should be noted thap, is treated here as a probability applied independently o gair of
values, so this is not quite accurate given that the expergrmre use Model B rather than Model
A problem generation. The expected number of consistencykstpaformed during revision of
a single consisteri;, v;) arc is then calculated as:

m

E(c) = ;CP(C)

el
C 1-p 1-pd

There are 2arcs in aCSP with e constraints, so the total expected number of consistency checks
performed byAC3 is calculated as:

2meE(c) = 2me<1fp2+m<l_1p?_l>)

2me
1-p2

for large m

Problems that are already arc consistent tend to havepoao even for smalin, the <ﬁ — 1)

term becomes negligible (this has been verified fordBes used in the empirical studies).
Hence, the average case complexitaGB applied to problems that are already arc consistent

is approximately linear im. These results strengthen the case for the us€dfis a preprocessor

to search: for the problems on whigit3 is ineffective in terms of removing values, proving arc

consistency can be done in time lineanin

6.5.3 AC3 on the hardest problems

To investigate whether the potentially cubic worst-case cerifyl of AC3 is encountered in prac-
tice, a further set of phase transition experiments were caadudesigned to measure the growth
in the peak median cost asis varied, withn and p; fixed. AC3 was applied taCSPs of size

80 Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

Problems K Pinc min max mean median
(20,5,1.0,0.35) 2.63 0.479 580 5900 3528 3404
(20,10,1.0,0.59) 3.68 0.638 7371 28261 16869 16528
(20,12,1.0,0.64) 3.89 0.510 12129 42264 25741 25042
(20,151.0,0.70) 4.25 0.724 22620 73515 46434 45873
(20,17,1.0,0.73) 4.39 0.688 31806 103242 65293 64957
(
(
(
(

20,20,1.0,0.77) 4.66 0.913 36359 152361 96301 96300

20,22,1.0,0.79) 4.79 0.958 55433 197838 120316 120110
20,25,1.0,0.81) 4.90 0.920 84893 274172 181515 180669
20,30,1.0,0.84) 5.12 0.975 122455 461194 281573 282203

Table 6.2: Data for the(20,m, 1.0, p2) CSP ensembles at AC phase transition peaks.

(20,m), with p; varied in steps of @ over the rang¢0.2..1.0] as before, and witim taking the
values{5,10,12 1517,20,22,25,30}. In order to reduce the processing cost of these experi-
ments,p, was varied in steps of.01 for allm > 10, rather than in steps of/r*. Ensembles

of 1,000 CSPs were generated and processed at ey2fym, p1, p2) point. For each20,m, p;)
problem class, the peak median consistency checking cost waseeco

Table 6.2 shows data for the eigf0,m, 1.0, p2) ensembles for which the peak median con-
sistency checking cost occurs at each valuenof Although pic rises further away from 6
asm increases, this can perhaps be attributed to the coarseness @f $teps combined with
the decreasing width of the phase transition regions. The rénggfields in the table show the
minimum, maximum, mean and median of consistency checkingaostach ensemble.

In order to determine the rate 83 cost growth asn increases, we attempted to fit the data
in Table 6.2 to a curve of the foran®. If the data can be accurately described using this model,
we would expect to find a rate of growth somewhere between qtiadmd cubic. Plotting the
cost againsin, using a logarithmic scale on both axes, we should expect a ctithe orman?
to appear linear (because lpg a+ blogm).

Figure 6.2 presents two such plots, with the upper plot using dak pnedian consistency
checks and the lower plot using the peak maximum values. It esseén that the curve is close
to linear over the eight points between= 10 andm= 30. The curvey = 40m?% andy = 65m?®
have been added to the respective plots: these close fittingscuwere selected by performing
linear regression using the method of least squares. This appearafirm that the cost growth
can be modelled banP, and that its rate is considerably less than cubic, even fomthst
expensive problems.

These results further support the useAaf3 as a preprocessor, and also support (Wallace
1993), who shows that the worst-case conditionsMoB rarely arise.

6.6 The 3-Consistency Phase Transition

Figure 6.3 shows the effects B2 processing on the sets (20,10, p1, p2) ensembles, plotted
against constrainedness. These plots show the median curves ofil@®End values pruned
from variable domains, together with a curve showing the pridqo of path-inconsistent prob-

6.6. The 3-Consistency Phase Transition

1le+07 T

1e+06 |-

100000

Median Consistency Checks

10000

1000 L

<20,m,1.0>—]

10

12 15 17 20 22 25
Domain Size (m)

30

1le+07 T

le+06 |

100000

Max Consistency Checks

10000

1000 L

<20,m,1.0>—]
y =65m"2.6---- 1

10

12 15 17 2022 25
Domain Size (m)

30

Figure 6.2: Peaks of median and maximum costaf3 againsim.

81

82

Number of values removed

CPU Time

Proportion of inconsistent problems

70

60

50

40

30

20

10

300

250

200

150

100

50

0.8

0.6

0.4

0.2

Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

pi=0.2

T

<20,10,1.0> Median—
<20,10,0.9> Median----
<20,10,0.8> Median----
<20,10,0.7> Median

<20,10,0.6> Median----
<20,10,0.5> Median-----
<20,10,0.4> Median-
<20,10,0.3> Median-
<20,10,0.2> Median----

2
Constrainedness (K)

p1=1.0

T

<20,10,1.0> Median—
<20,10,0.9> Median----
<20,10,0.8> Median----
<20,10,0.7> Median

<20,10,0.6> Median--— -
<20,10,0.5> Median----
<20,10,0.4> Median-
<20,10,0.3> Median-
<20,10,0.2> Median-----

3
Constrainedness (K)

p1=1.0

<20,10,1.0>—
<20,10,0.9>----
<20,10,0.8>-----
<20,10,0.7>
<20,10,0.6>---
<20,10,0.5>----

3
Constrainedness (K)

Figure 6.3: Effects ofPC2 on (20,10, p;) CSPs.

6.6. The 3-Consistency Phase Transition 83

Problems K med. cost fhe
(20,10,0.2,0.69) 0.97 172s 0.412
(20,10,0.3,0.59) 1.10 180s 0.628
(20,10,0.4,0.53) 1.25 185s 0.548
(20,10,0.5,0.49) 1.39 201s 0.548
(20,10,0.6,0.47) 1.57 225s 0.576
(
(
(
(

20,10,0.7,0.44) 1.67 241s 0.779
20,10,0.8,0.42) 1.80 254s 0.832
20,10,0.9,0.40) 1.90 260s 0.748
20,10,1.0,0.39) 2.04 269s 0.838

Table 6.3: Properties of problems at PC cost peaks.

lems found at eacki20, 10, p1, pz). It is worth pointing out, incidentally, that path consistgnc
preprocessing is usually performed in order to tighten the caimss in problems, and not just to
remove values from domains.

The general pattern of these curves is similar to thoseafts, with the medians of both
domain pruning and CPU time rising to a peak as constrainednessases, before falling again.
With PC2, these curves rise as an increasing number of path-inconsisteesvare being found,
although not enough to cause the complete wipe-out of anghardomain. At the peaks, domain
wipe-outs occur for about 50% of problems, allowing the aitpon to terminate early.

The peaks coincide with a transition between regions whéngrablems can be made path
consistent an@C2 quickly establishes this, and regions where all problems ateipaonsistent
andPC2 quickly proves this. Table 6.3 shows some properties of #e10, p;, pz) problems at
which the peaks in median CPU time occur, in a similar style tad&.1. As forAC3, thePC2
peaks coincide fairly closely with the 50% inconsistency pgialthough the coarseness of the
p2 steps limits accuracy in the more densely constrained problasses.

Observation of the actual positions of the pruning curves shbaisthe PC phase transitions
for each problem class occur at lower values of constrainedhassthose for AC. This is pre-
dictable, as the set of path-inconsistent problems subsumesttbgase-inconsistent problems
(i.e. a problem which is path-inconsistent must also be arcrisistent). For problems to be path
consistent, a lower level of constrainedness is required tretmthich allows the same problems
to be arc consistent, and so AC can occur in more highly constrgireblems than PC can. The
behaviour of thg20,10,0.2) transition is interesting, in that it is widely spread out: thatern
is similar to the phase transitions that occur between solylaititl insolubility for many sparsely
constrained problem classes (Prosser 1996). The location oxineughy region fof20, 10,0.2)
problems also straddles the point at whick: 1. Althoughk = 1 is not an accurate estimate for
the phase transition between solubility and insolubility forreacsparsely constrained problem
class (Genet al. 1996b), the PC phase transition would still appear to be closkatofor n-
consistency. This suggests that many of these problems whicha#itecpnsistent are in fact
n-consistent.

The curves in Figures 6.1 and 6.3 of the median amount of domaining show that the
actual numbers of values removed g2 on average are considerably smaller than468 on

84 Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

the same problems. This may appear slightly counter-intuaivirst, since values which are
arc-inconsistent are also path-inconsistent. However, the RGSeptransitions occur at lower
values of constrainedness than those for AC: where large nisnaberalues are being removed
by AC3, these problems are already path-inconsistent, areiC2owill find domain wipe-outs
and terminate more quickly, thus pruning fewer values. Tlopagated effects of removing path-
inconsistent values are also greater than those for removirgewasistent values, meaning that
fewer inconsistencies are needed to induce a domain wipe-out.

As a preprocessing step, the curves of CPU time show that our ingpigation ofPC2 is
clearly not feasible. The peak average cost for some problessadais over 200 seconds: the
comparative figures foAC3 are around 0.3s, while an average forward checking searcteat th
phase transition costs around 9s. It should be noted th&dhealgorithm for path consistency
(Section 2.5) has a significantly lower worst-case time conigl¢ixan PC2, although this is still
cubic in bothn andm.

6.7 Interpretation of the AC and PC Phase Transitions

In presenting the phase transition behaviour associated withlissiag arc consistency and path
consistency irCSPs, we have made the analogy with the phase transition behavhmereed
when finding asinglesolution to the same problems. This connection may at first glappear

to be incorrect: when establishing AC we must makearcs in the problem consistent; similarly
when establishing PC we must maklepaths of length 2 consistent; so should the analogy made
with n-consistency not be made with respect to findatigsolutions to the problem? However,

if we consider establishing a certain level of consistency in &lpra asperforming the mini-

mal amount of work necessary to prove that the problem can possessmsgibtencythen the
validity of the analogy becomes clear: when attempting tal@shk-consistency in a problem,
wherek < n, all paths of lengttk must be made consistent, and the effects of the removal of
inconsistent assignments must be propagated around the othser pat when attempting to es-
tablishn-consistency, only one path of lengtrexists (the variable ordering is immaterial), and
the discovery of one consistent set of labels for the variabldsifiorm of a solution is sufficient

to provethat the problem can be madeconsistent.

In order to relate the phase transition behaviour of establishin consistency and path con-
sistency with that of establishing the existence-@bnsistency, the ensemblg9, 10,0.5) prob-
lems that were processed B3 andPC2 were also searched by a complete search algorithm.
The algorithm selected was forward checkiC), using therrdeg dynamic variable ordering
heuristic introduced in Section 5.5.2, although any othenglete search method could have
been used. Figure 6.4 shows the phase transition behaviour ofigisitag AC usingAC3, PC
usingPC2, andn-consistency usingC-Frdeg. The curves of median consistency checking effort
for each algorithm are shown on the respective plots, togetitarsuperimposed curves show-
ing the proportions of inconsistent problems as constrairedvaries. These plots highlight the
similarities in the phase transition behaviour that occursefizh level of consistency. Starting
with the plot forFC-Frdeg, showing the phase transition between solubility and insotyhitican

6.7. Interpretation of the AC and PC Phase Transitions 85

12000

proportion of arc-inconsistent problems—
AC3 median consistency checks---

10000 -

8000 -

6000 |-

Consistency checks

4000 -

2000 """

25 3
Constrainedness (K)

7e+06

proportion of path-inconsistent problems—
PC2 median consistency checks--

6e+06

5e+06

4e+06

3e+06

Consistency checks

2e+06

le+06

2 25 3 35 4 45 5
Constrainedness (K)

35000

proportion of n-inconsistent problems—
FC median consistency checks---

30000

25000

20000

15000

Consistency checks

10000

5000

2 25 3 35 4 45 5
Constrainedness (K)

Figure 6.4. Phase transitions in establishing arc consistency, path consisteddinding a solu-
tion. The ‘inconsistency’ curves are superimposed and havesaange o0f0..1].

86 Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

be seen that this phase transition is firmly centered aroundainer = 1 and the mushy region
(where inconsistency levels lie between 0 and 1) is narrovweriog a range ok of around 02.
The PC phase transition occurs relatively close to thanfoonsistency, although the respec-
tive mushy regions do not overlap, and for PC this region ishdlljgwider, covering a range of
K slightly greater than @5. The phase transition region for AC occurs well into the aagpf
over-constrained problems, with a mushy region covering agarg of around 05.

From the patterns of behaviour observed in Figure 6.4, it seeasonable to conclude that
there must be a further series of phase transitions associate@stéhlishing increasing levels
of consistency, from that among subsets of 4 variables to thahgrewbsets of — 1 variables.
Each of these phase transitions must occur at decreasing valoesstfainedness, between that
for establishing PC and that for establishimgonsistency, forming hierarchyof phase transition
behaviour, and becoming increasingly narrow as the levebos$istency increases. It seems likely
that for manyCSP problem classes, the location of the phase transitions for estaimi high
levels of consistency will all but converge with that for esisttihg n-consistency, as problems
containing a higher degree of partial consistency are moedlito be soluble.

It might be noted that node consistency (consistency in all uoamngtraints on variables) is
not included in this hierarchy. For the bina®sPs generated as described in Chapter 3, prob-
lems have node consistency by construction, and so a study ofissafINC is not feasible.
Achieving NC is a trivial task for most conceivable types of straint problem (with a time com-
plexity that is @mn)), and so it seems unlikely that establishing NC in problems wilhshany
interesting phase transition behaviour.

6.8 Discussion

We have demonstrated phase transition behaviour analogadus weetl-established phase transi-
tion between soluble and insoluble problem regions, occufangwo problems of polynomial
complexity: establishing arc consistency and path consister@gms. In the case of establishing
AC usingAC3, the peak in cost coincides with the transition between a regioere AC already
exists or can be established for all problems, and a region whgneblems are arc-inconsistent.
The transition appears to coincide with a change in order efatferage cost of the algorithm,
and it has been shown in Section 6.5 that this change in ord®mnisa cost that is approximately
linear inmin the case of problems that are already AC, to a cost that hasdimerved to be
between quadratic and cubicrimat the AC phase transition peak. A similar pattern appears to be
evident in the case of establishing PC ughtp, although the cost levels are considerably greater
than forAC3. However, insufficient evidence is presented in the empistady reported here to
be able to establish the growth in average coft@2, and further study of the behaviour of this
algorithm is required.

In addition to reporting the phase transition behaviour foimdstablishing AC and PC, we
have also considere&C3 andPC2 in terms of their usefulness as preprocessors, to be used prior
to full search. Areas where establishing AC or PC in problemsrimasffect in reducingcSP
variable domains have been observed, as have regions whagesdois effective in this respect.

6.9. Subsequent Studies 87

However, we have derived an expression for the expected cast»bn these problems which
shows it to be approximately linear m. It has also been shown that for the hard problems at the
AC phase transition peak, both average cost and maximum costag@vate that is significantly
slower than cubic irm. These results supports the claims by (Wallace 1993)ARathas an
average-case cost significantly lower than its worst-case coihpénalysis suggests.

That AC3 appears to be cheap to perform in nearly all cases also addsrstppioe use of
the algorithm as a preprocessing step prior to search. The re$#S processing in Section 6.6
appear to rule out this method as a practical preprocessen giie very high average cost of the
PC2 algorithm. More efficient PC algorithms (Mohr and Henders888@) still have high time
complexities, and so a change of algorithm is also unlikely tkeC preprocessing practical.

Understanding of the phase transition behaviour of consist&atyntques is useful in under-
standing the phase transition behaviour of search techniquies wlrform consistency mainte-
nance. An example of such a technique ®IAC algorithm, which maintains arc consistency.
The phase transition behaviourMfC is explored in Chapter 7.

It should be remembered that the empirical studies are basezhdom problems, generated
according to the model described in Chapter 3. Problems witterstructured constraint graphs,
varying domain sizes and/or individual constraint tightnessayg well behave differently when
attempting to establish consistency. Quite how such changes affght the performance of the
consistency algorithms remains to be studied.

The results of this study of establishing AC and PC in problems Inearglevant to the notion
of a ‘constraint gap’, proposed by (Gent and Walsh 1996b) asdhditions arising in sparsely
constrained problem classes that give rise to the occasionatrence of exceptionally hard
problems éhps). They show that irBAT problemsgehps tend to occur in problem regions where
the propagation of ‘goods’ and ‘nogoods’ (i.e. values which ba shown to be valid in any
solution, and those which can be shown to form part of no solui®meffective. If such a
constraint gap exists f@sPs, the AC and PC data (concerning propagation of nogoods)heget
with data concerning the propagation of goods (sucb®B reduction operators (Rossi 1995))
may provide empirical evidence for it.

6.9 Subsequent Studies

The study of phase transition behaviour presented in this chapgefirst published in (Grant and
Smith 1996a) and (Grant and Smith 1996b). This work has siaea bllowed up by (Gerst al.
1997b), who have devised a new constrainedness paramgteilhey show that the AC phase
transitions for many classes @SP occur at the same value of this parameter. They also use
finite-size scaling techniques (Gegttal. 1995) to propose an alternative model for the growth
in cost of AC3. This model suggests that the growth in average cost at the ASeghansition is
cubic inm. Gentet al. go on to teskyc as the basis for a constraint ordering heuristic to increase
the efficiency ofAC3’s processing. The proposed heuristic processes first the consitaiise
propagation will minimise<y in the rest of the problem, and it is shown empirically that this
produces more efficie®C3 processing than a number of other constraint ordering strategie

88

Chapter 6. Phase Transition Behaviour in Arc and Path Consistency

89

Chapter 7

The Phase Transition Behaviour of
Maintaining Arc Consistency

The study of establishing arc consistency presented in Chaptem& shat it tends to be useful,
in terms of removing inconsistent values, only ©8Ps in the over-constrained problem region.
It is known, however, that re-establishing arc consistency endbproblem of uninstantiated
variables during search can be a worthwhile exercis€8Rs in all problem regions. In this
chapter, we examine two search algorithms which do this: Maiirtig Arc ConsistencyMAC,
and its hybrid combination with Conflict-Directed Backjuimg, MAC-CBJ.

The behaviour oMAC andMAC-CBJ is studied with respect to the phase transition behaviour
of binaryCSPs, enabling the algorithms to be applied to many problemsrioge range of sizes,
topologies and expected difficultieslAC performs a higher degree of lookahead than Forward
Checking EC), which maintains only node consistency in the future subgmbl In order to
study the effects of using this increased lookahead capabiléyalso compare the performance
of MAC with that of FC, and ofMAC-CBJ with the equivalent hybriéC-CBJ, over the same sets
of problems.

It is shown that compared teC, MAC develops a far smaller search tree, enables backtrack-
free search over a wider range of problems, and greatly redheesccurrence of exceptionally
hard problemsehps). The performance ofIAC also scales much better than thatraf as the
number of problem variables increases. The additicbgifto MAC further reduces the incidence
of ehps to produce stable performance in almost all populations dbleras, although its effect
on the average search cost is not significant.

7.1 Related Work

Maintaining arc consistency during search is a popular tecienigmployed by the constraint pro-
gramming community, and is used by many constraint solvingtsoath as ILOG Solver (Puget
1994). However, its application by the constraint satisfactiommunity has until very recently
been passed over in favour of the lesser level of lookahead mavwigFC. A likely explanation

90 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

for this stems from the previous lack of understanding of tleagdifference that exists between
the behaviour o€ESPs with high and low constraint density. More specifically, manytaf prob-
lems that have until recently formed the test bed for assessingafgawithm performance (in
particularn-queens and similar problems) have constraint graphs thatiquees (i.e. each vari-
able (queen) is constrained by every other): for these prableenwould expect the lookahead
cost ofMAC to be very high.

Much of FC’s prominence in recent years can be attributed to the studiyodhead search
techniques presented by (Haralick and Elliott 1980). Thedgistlithe basic backtracking algo-
rithm, BT, plus algorithms with four levels of lookahead: backmagkirBM; Forward Checking,
FC; Partial Look Ahead; and Full Look Ahead (which maintains @eonsistency). All of these al-
gorithms are discussed in Section 2.1. Haralick and Elliottiagphese algorithms to the task of
finding all solutions to th@-queens problem and ensembles of five random, 1,0.35) CSPs,
for the valuesn = 4,5,6,7,8,9,10. The results showed th&€C performed the fewest constraint
checks on these problems. The number of nodes visited duringhseas also examined, and
it was shown that greater levels of lookahead resulted in snmegdlgrch trees. Looking at pro-
files of nodes visited at each search depth, they showed thadakeHead algorithms do most
of their work at shallow levels of the search tree, carefullyiding up partial solutions, while
non-lookahead algorithms spend most of their effort deepénstiarch tree, trying to complete
the partial solutions that they build up quickly. Haralickdalliott also examined the effect of
dynamic variable ordering on lookahead search, showing hiatan improve efficiency further.
The role of dynamic variable ordering wit/tC andMAC is studied in detail in Chapter 8.

A further study of lookahead techniques for b8P was reported by (Nadel 1989). A num-
ber of procedures to establish partial levels of arc consistemrg proposed, and it was shown
how these can be incorporated into a backtracking search Wwarkeo produce algorithms with
various levels of lookahead. A number of such algorithms wested empirically: backmarking,
Forward Checking, Partial Look Ahead and Full Look Aheadussd by (Haralick and Elliott
1980); and a new algorithm called ‘Really Full Look Aheadhish makes the whole constraint
network arc consistent at every stage of search (rather thanhistubproblem of future vari-
ables). The set of test problems used werertlggieens problems, and the ‘confuseejueens
variant, in which all gueens must attack each other. Oncenatfg algorithms performing the
least amount of checking in the future subprobleRGandBM, proved to be the cheapest. Nadel
concluded that although higher lookahead reduces the nuofibedes visited, the extra work
required at each node more than cancels out any savings. Treses feirther cemented the
position of FC as the standard backtracking search strategy used by the cohsafisfaction
community.

The use ofMAC on CSPs covering a range of problem topologies was eventually rejplor
by (Sabin and Freuder 1994), who presented an implementadiged on th&C4 arc consistency
algorithm. They applied this algorithm to small samples ofnararsely-constraine@SPs with
50 variables and domain sizes of 8. Compared with Forward Kihgcand with AC preprocess-
ing followed by Forward CheckingyAC took considerably less time to search these problems.

1Backmarking can only loosely be said to perform lookahead: see Section 2.1.

7.2. Structure of this Study 91

Sabin and Freuder’s study BAC prompted the investigation of tec3-basedVAC andMAC-
CBJ algorithms presented here, some results of which were present&dant and Smith 1995)
and (Grant and Smith 1996¢). Subsequently, (Bssand Rgin 1996) presented a detailed
empirical study of amaC7-basedMAC, first described in (Besaieet al. 1995). Testing the
algorithm on fifty-variableCSPs, they showed tha¥lAC performed much better thaC-CBJ on
hard and sparsely-constrained ensembles. For constraint detstay approximatel%, MAC
is the better algorithm, while above this leveC-CBJ becomes cheaper. Be&g and Rgin
also suggested thaBJ is an unnecessary addition to a search algorithm which comhbigesd
lookahead technique with dynamic variable ordering.

Sabin and Freuder have recently revisit@dC. In (Sabin and Freuder 1997) they propose
an improved version ofMAC which takes advantage of constraint graph topology to inistient
a ‘cyclic cutset’ of variables. Removing this subset of variaiterm theCSP reduces the con-
straint graph of the remaining subproblem to a tree. We haeadjrnoted in Chapter 6 that such
problems need only be made arc consistent in order to be solwth¢T1993). The new algo-
rithm is termedVACE, for MAC Extended AC7-based versions ®IAC andMACE are compared
empirically over small ensembles (20, 20, p;, p2) and (40,10, p1, p2) CSPs drawn from phase
transition regionsMACE out-performavAC over all but the densely constrained problem sets.

7.2 Structure of this Study

This chapter presents a study of the performance oMhA€ and MAC-CBJ algorithms over a
large range ofCSP sizes and topologies, showing where the algorithms perforrhamel badly,
and how their performance compares with HezandFC-CBJ algorithms employing a lesser level
of lookahead. The relative performance of the algorithmsiims of the incidence and magnitude
of exceptionally hard problemslfps) is also investigated, following on from the studies reported
in Chapter 5.

The following section recaps the work on exceptionally haabjems presented in Chapter 5.
Features of thea\C3-basedMAC and MAC-CBJ algorithms are then considered, followed by a
description of the main empirical studies that were undertakxamination of the performance
of MAC at the population level shows that the extra lookahead pexllacge regions of backtrack-
free search, and that whikhps can still occur, their incidence is greatly reduced from tbfat
FC. The cost ofMAC is also observed to scale much better than that®fas the number of
problem variables increases. It is then shown that while th&ieddf CBJ to MAC gives little
improvement in performance in the average case, the incidehehps is further reduced to
the point where only one clear instance is found among seveifadmcandidate sparseSPs. A
study of the internal behaviour of the algorithms shows thastarch tree MAC is considerably
smaller than that ofC, and we conclude by discussing the further issues raised.

92 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

7.3 Reuvisiting the Exceptionally Hard Problems

Although we are interested naturally in studyiMg\C and MAC-CBJ in terms of achieving im-
proved general performance over other algorithms on aepi@blems, a further motivation arises
from the performance of the algorithms in reducing the iecice of exceptionally hard problems,
examined initially in Chapter 5.

Study ofehp behaviour for a number of algorithms showed that the unushély search cost
of these problems can be attributed to the early creation ahswiuble subproblem which the
algorithm cannot detect as such without conducting an exivaustarch. Algorithms employing
a lookahead style of forward move reduce the chances of beiagle to detect a subproblem’s
insolubility by checking for some level of consistency in it. Wenectured that thehps which
remain for lookahead algorithms contain subproblems wittvallof inconsistency that is beyond
that which is tested for. That ishps for FC contain arc-inconsistent subproblems, while those for
MAC contain path-inconsistent subproblems. The addition of baghjng capability appeared
to assist the lookahead algorithms in detecting these highelsle¥ inconsistency, effecting a
further reduction inehp behaviour. Another significant factor was the use of dynamiaide
ordering, which appeared to eliminatep behaviour completely from densely-constrairesP
classes. The most stable performance seen for all of the algorghrdi&ed in Chapter 5 was
that exhibited byMAC-CBJ-Frdeg, which combined the most advanced forms of lookahead and
backjumping with dynamic variable ordering.

The empirical studies reported in this chapter extend thectoscopic’ view of theehp be-
haviour exhibited byMAC andMAC-CBJ and alsa~C andFC-CBJ, by covering a broader range
of CSP classes than those examined in Chapter 5.

7.4 The Algorithms

It was noted in Section 7.1 that this study was prompted byrthadrted in (Sabin and Freuder
1994). TheMAC and MAC-CBJ algorithms presented by (Prosser 1995) are basedG®)
whereas thevAC algorithm reported by Sabin and Freuder is basedoa. AlthoughAC4 is
arguably a more efficient algorithm thaa3 (this is discussed in Chapter 6), tffectof estab-
lishing arc consistency is invariant of the technique used. Pragse notes that the cost of the
AC3-based algorithms may be measured in consistency checks, givingpartant advantage in
investigating the effects of increasing algorithm lookahezabin and FreudersC4 basedvAC
performs all consistency checking during the initialisatidrihe AC4 support counters. During
search, all the work of maintaining arc consistency is done sreace to these counters and
not to the original constraints. Thus Sabin and Freuder medishesperformance of themMAC
implementation in terms of CPU time rather than consistenegks

The initial stage of a algorithm which maintains arc consisgeiscnaturally to establish a
state of arc consistency in the problem. (Borrett and Tsang 18i86Jss the usefulness of AC
preprocessing, while Chapter 6 shows that establishing arc cemsysexhibits its own phase
transition behaviour, and study the average cost of us€g

7.5. The Empirical Studies 93

In all of the experiments reported heMAC, MAC-CBJ, FC andFC-CBJ use a dynamic vari-
able ordering heuristic based on the ‘fail-first’ principleettirst variable to be instantiated is that
which is most constrained, and thereafter, the next variabbetinstantiated is that with fewest
remaining values in its domain. This is theleg heuristic, used in Chapter 5 and studied further
in Chapter 8. For brevity we omit therdeg tag when naming the algorithms during the rest of
this chapter. The implementations B€-CBJ andMAC-CBJ, discussed in Chapter 2, are such
that the set of nodes visited is a subset of those visiteghgnd MAC respectively. Both base
algorithms consider the uninstantiated variables in the sader as theiCBJ hybrid at each for-
ward move, and it is only on backward moves that the algosthliffer. FC-CBJ andMAC-CBJ
therefore always find solutions in the same order and take ne gumsistency checks th&c
andMAC respectively. As a side effect, tlaBJ hybrids cannot find a problem exceptionally hard
unless their base algorithms also do.

7.5 The Empirical Studies

The objective of the empirical studies undertaken was to bsletthe behaviour of th®1AC and
MAC-CBJ algorithms over large populations of problems of varysimpandtopology The prob-
lems studied are binargSPs, generated according to the Model B random generation rdetho
presented in Chapter 3. For the3gPs, defined by(n,m, p1, p2), the effects of varying problem
topology may be studied by varyirg whilst holdingn andmconstant. In order to independently
study the effects of increasing problem size, the problem tapomust be maintained, and this
is achieved by holding the average degree (introduced itidded.1.1) constant whilst varying
nandm. It is not sufficient to fixp; whilst varying problem sizey increases linearly with the
number of variables if constraint density is constant, so foaimst as is doubled with constant
p1, Y also approximately doubles. Note that the predicted critteflie of constraint tightness,
Pacrit (Section 3.2), is identical foESP classes having the same valuesy@ndm. Thus, the
phase transitions of these classes are expected to coincide.

7.5.1 The main experiments

To show how the behaviour AC andMAC-CBJ varies as problem sizga, and average degreg,
are varied, two main groups of phase transition experiments a@nducted. The first hetdat 30
while varyingp; in steps of 0L over the rang¢0.1..1.0], and the second helgdat approximately
4.9 (allowing for some rounding errors since the number of coimgganust be an integer) while
varying n in steps of 5 over the rang@0..70]. Variable domain sizen was held at 10 in all
experiments. The decision to uge: 4.9 for the second set of experiments was taken in order
to give problems that are fairly sparsely constrained, and foickvat least one member class
of problems (50,10,0.1), studied in Chapter 5) is known to produce a numbestgf instances
usingFC andMAC.

The sets 0f30,10, p1) and(n,10,y ~ 4.9) CSP classes studied are listed in Tables 7.1 and
7.2 respectively, along with additional background infotima. The tables include the theoretical
critical value of constraint tightnesgycric introduced in Section 3.2, at which average search

94 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

Problems Y Pocrit P2range samples perp Algorithms
(30,10,0.1,p2) 2.934 0.80 0.50-0.90 10,000 All
(30,10,0.2,p2) 5.80 0.55 0.20-0.70 10,000 All
(30,10,0.3,p2) 8.73 0.41 0.20-0.50 10,000 All
(30,10,04,p2) 1160 0.33 0.15-0.40 10,000 All
(30,10,0.5,p2) 1453 0.27 0.10-0.40 1,000 All
(30,10,0.6,p2) 17.40 0.23 0.10-0.30 1,000 FC/FC-CBJ
(30,10,0.7,p2) 20.33 0.20 0.10-0.30 1,000 FC/FC-CBJ
(30,10,0.8,p2) 23.20 0.18 0.05-0.30 1,000 FC/FC-CBJ
(30,10,0.9,p2) 26.13 0.16 0.05-0.30 1,000 FC/FC-CBJ
(30,10,1.0,p2) 29.00 0.15 0.01-0.30 1,000 All

Table 7.1: The set 0f(30, 10, p;) problem classes studied.

Problems Y Dot p2range samples perp Algorithms
(20,10,0.2579 p,) 4.90 0.61 0.3-0.8 10,000 All
(25,10,0.2067,p;) 4.96 0.60 0.3-0.8 10,000 All
(30,10,0.1701 p;) 4.93 0.61 0.3-0.8 10,000 All
(35,10,0.1445p;) 4.91 0.61 0.3-0.8 10,000 All
(40,10,0.1256 p;) 4.90 0.61 0.3-0.8 10,000 All
(45,10,0.1121 p;) 4.93 0.61 0.3-0.8 10,000 All
(50,10,0.1000 p2) 4.92 0.61 0.3-0.8 10,000 All
(60,10,0.0836 p2) 4.93 0.61 0.3-0.8 1,000 All
(70,10,0.0712py) 491 061 0.3-0.8 1,000 All

Table 7.2: The set of(n, 10,y =~ 4.9) problem classes studied.

effort is expected to be maximal.

The phase transition experiments on e&gm, p;) CSP class varied, in steps of Q1. En-
sembles of 100 problems were generated at evarym, ps, p2) point for sparsely constrained
classes (wherehps are likely), while smaller sample sizes afdDO problems were used for more
densely constrained classesSPs generated were searched whNiAC, MAC-CBJ, FC andFC-
CBJ. The use of large sample sizes, particularly on the sparsely-eamsticlasses, was intended
to increase the probability of seeing the extremes of searcivmir for each of the algorithms.

During the running of the experiments shown in Table 7.1, @dmee clear that the overhead
of MAC becomes very high for densely constrained problems. For thsoreMAC and MAC-
CBJ were not run on the classes of problems where- {0.6,0.7,0.8,0.9}. (Borrett and Tsang
1995) and Chapter 6 show that the range of constraint tightneshich arc-inconsistent values
are found in problems shrinks as constraint density increaseasnWigle, the cost oAC3 grows
linearly with the number of constraints. It is this combinatiaf increasing cost and decreasing
effect that provides a likely explanation for the high cosvi@iC on densely constrained problems.

Figure 7.1 shows the observed satisfiability curvegyas varied, for each of th€30,10, p;)
problem classes angh, 10,y ~ 4.9) problem classes studied. The left graph plots satisfiability
against constrainedness,in order to line up the phase transitions around one locafiba.right
hand graph simply plots against constraint tightness, since thseptiansitions for problems

7.6. Macroscopic Performance of MAC 95

1 T \ \‘XX T T T 1 T T T T
[t <30,10,1.0>—— <70,10,0.0712>--- --
Lo <30,10,0.9>----- <60,10,0.0836>-- ---
‘.‘ ¥ <30,10,0.8>----- <50,10,0.1000>- -- --
! <30,10,0.7> <45,10,0.1121>----
i <30,10,0.6>--- <40,10,0.1256>---~
08l ‘g <30,10,0.5>----- 08} <35,10,0.1445>- |
v <30,10,0.4>-- - <30,10,0.1701>----
0 it <30,10,0.3>-- - ® <25,10,0.2067>---
£ b <30,10,0.2>- - £ <20,10,0.2579>——
3 | <30,10,0.1>----- =
o | o
=3 : =1
o 0.6 | | .) 0.6 |
o ! o
8 I 8
o - o
® b ®
%] | %]
S i S
c ‘l ! c
S o4t X 1 £ oa4r .
5] . 5]
[oX [[oX
o Vi o
0.2 ". — 0.2 —
0 1 \\lk 1 1 0 1 1 1
0 0.5 1 1.5 2 25 0.4 0.5 0.6 0.7 0.8 0.9
Constrainedness (K)

Constraint Tightness (p2)

Figure 7.1: Observed satisfiability curves for tigSP classes listed in Tables 7.1 and 7.2.

with similar average degree occur at similar valuepaf As expected (Section 3.2), the phase
transitions of the smaller or more sparsely constrained classttegla Figure 7.1 do not line up
exactly with those for the larger or more densely constrainasises.

The complete set of experiments outlined here represent kingtstment of around 1,200
days (28,000 hours) of cpu time.

7.6 Macroscopic Performance of MAC

In analysing the performance ®fAC at the population level, the behaviour of the algorithm is
studied both in isolation, and in comparison Wit over the same populations of problems. To
investigate the general behaviour of the algorithm, we gietrhedian search costs in terms of
consistency checks. Howevehps by definition represent extreme behaviour in a population

of problems, and so for som&SP classes we plot the median and higher percentiles of cost, as
discussed in Section 4.5.

7.6.1 General and extreme behaviour

Figure 7.2 shows the median behaviounAC, in terms of consistency checks, on a selection
of then = 30 problem classes, while Figure 7.3 shows the median and highepercentiles for
three of these problem classes. All graphs plot cost agpinstWe can see the clear differences in
phase transition behaviour as the constraint dengityof the problems (and the average degree,
y) decreases. The behaviour of t{&0,10,1.0) problem class is typical of problems with high

Consistency Checks (logscale)

Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

le+08 T T .
<30,10,1.0> Median—
<30,10,0.5> Median----
<30,10,0.4> Median----
<30,10,0.3> Median--

1le+07 | <30,10,0.2> Median-——- 4

<30,10,0.1> Median--- -

1e+06 |

100000 -

Consistency Checks (logscale)

10000 |-

1000

100 L L
0.5 1 15 2
Constrainedness (K)

Figure 7.2: Median cost oMAC overn = 30 series, in terms of consistency checks.

(30,10,1.0) (30,10,0.5) (30,10,0.1)

le+10 le+10 le+10
Maximum ---- - Maximum -- - Maximum -----
99th Percentile- 99th Percentile- 99th Percentile-
90th Percentile— 90th Percentile— 90th Percentile—
75th Percentile----- 75th Percentile----- 75th Percentile----
le+09p Median — le+09p Median — le+09p Median —
le+08 |- 5 B 1le+08 | b 1le+08 | b
@ @
[+ ©
1e+07 E 3 le+07| E 3 le+07| E
<3 =3
2 ' 2
i @ P
i =< <
; S S
; 2 2
1e+06 |- ; B O le+06[b O le+06f b
i > >
; 3 3
; 2 e
; 2 2
f 2 2
; 4] 4]
L ; E S 100000 E S 100000 E
100000 /‘J 3 38
10000 |- B 10000 | B 10000 B
1000 B 1000 B 1000 B
100 I I I I 100 I I I I I 100 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9
Constraint Tightness (p2) Constraint Tightness (p2) Constraint Tightness (p2)

Figure 7.3: Ranges of consistency checking cost¥eC on threen = 30 CSP classes.

7.6. Macroscopic Performance of MAC 97

constraint density: in this casp; = 1, i.e. the constraint graph is complete. In terms of median
search cost, a sharp transition occurs as constraint tightnesages, from the region where
problems have very many solutions and are easy to solve, thithegtrossover point, and into
the insoluble region where the cost gradually decreases. Lgakitne maximum cost, a similarly
smooth curve is seen, with values not greatly above those ofd¢agam. In particular, in the easy-
soluble region wherehps may occur, even the most difficult problem at each valup.ab still
easy, compared with those in the mushy region.

As problems become more sparsely constrained, the peaks iramedarch cost become
less sharply defined, although for each problem class therdlia stear phase transition peak.
However, the maximum cost becomes highly erratic for the sga#ems. Atp; = 0.1 we begin
to observe instances of exceptionally hard problems in the-salsple problem regions that are
much more difficult (by at least an order of magnitude) than @9%e other problems occurring
in the sample at the same constraint tightness, and much moreildiffigain by at least an order
of magnitude) than 99% of the sample problems in the phaseticansi\s in Chapter 5, nehps
were found in the easy-soluble regions that are insoluble pnogl we continue to conjecture
that in the case ofSPs such problems must be exceptionally rare, even anabipg (although
it should be noted that this is not necessarily true for othessela of problem such &T (Gent
and Walsh 1994a)).

Figure 7.4 shows the median behaviouM#C, in terms of consistency checks, on a selection
of they ~ 4.9 problem classes, while Figure 7.5 shows the median and higheeriges for
four of these problem classes As expected, the median consistency checking effort incsease
steadily asincreases, and the phase transition regions are in approxintlaéetame location, as
indicated by the satisfiability curves of Figure 7.1. s relatively low for these problem classes
we would expect to see sonedp activity, and indeed cleathps are visible from the plots of
Figure 7.5. However, the incidence effp behaviour is low, particularly in comparison wittC
on the same problems, as is shown later in Section 7.6.3. Thermedications in these plots that
the incidence and magnitudeefps increases asis increased; this pattern is more evident in ex-
periments with algorithms that are more susceptibkehims, such asC. The single most difficult
problem encountered byAC in the whole study is still that which occurs €0, 10,0.1,0.49),
which was analysed in detail in Chapter 5. Solving this pnobtakesMAC over 1.547 billion
consistency checks — over five orders of magnitude greatetiieamedian at that point, and over
100 times more difficult than the hardest phase transition probl

7.6.2 Backtrack-free search

Looking at the performance ofiIAC in terms of search nodes visited, it can be seen that there
are sets of problems for which no backtracking during searchgsired, on average. When a
problem has a solution, a backtrack-free search will succegshgtantiate the first value tried
for each variable, resulting in nodes visited. For problems with no solution, we can identify
regions where no backtracking is required on average, weither. AC preprocessing wipes
out an entire variable domain, in which case no search is redi@ind so no nodes are visited;

2|t should be noted that th0, 10,y =~ 4.9) plot also appears in Figure 5.7 of Chapter 5.

98 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

le+07 r T T T T T T T]
<70,10,0.0712> Median--- --]
<60,10,0.0836> Median-- -
<50,10,0.1000> Median- -- -
<45,10,0.1121> Median - -
<40,10,0.1256> Median---
1le+06 |- <35,10,0.1445> Median-— -
<30,10,0.1701> Median----
<25,10,0.2067> Median----
N <20,10,0.2579> Median—
3
(2]
D
(=]
= 100000 —
P]
(8]
(O]
=
(@]
>
(8]
fey
[J]
@ 10000 [-
@]
c
(o]
O
1000 - —
100 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Constraint Tightness (p2)

Figure 7.4: Median cost oMAC overy = 4.9 series, in terms of consistency checks.

or preprocessing removes some inconsistent values and then estmtiation tried for the first
variable is inconsistent, in which cakenodes are visited, wheteis the size of the reduced
domain of the first variablepr preprocessing has no effect in removing values, butMhA€
lookahead shows every value of the first variable’s domain tabensistent, in which casm
nodes are visited. It should be noted that the definition of tvack-free search on insoluble
problems is not strictly correct, as the undoing of each inistantiation made for this variable is
technically a backward search move.

Figure 7.6 shows the median behaviourM&C in terms of nodes visited, for each of the
n= 30 andy =~ 4.9 problem classes to which it was applied. As for Figure 7.1 gtaph for the
n = 30 classes plots cost against constrainedness, while that fgrile9 classes plots against
constraint tightness. This places the phase transition peaksparf each other, illustrating the
differences in average behaviour more clearly. From thestsplt can be seen that for each
problem class there are parts of the easy-soluble problemrrdégiowhich at least half of all
searches are backtrack-free. On the other side of the phasititrarthe median curves again
fall, to mor less, and for some of the problem classes with ya@nd where a sufficiently wide
range ofp, has been covered) we can see that for much of the insolubledwiti of all searches
are backtrack-free.

An interesting observation from the left hand set of graphs gufé 7.6 is that the regions
where backtracking search occurs on average are ‘squeezedlds This shows the opposite
trend to that of consistency checks, where the peaks coincidiihghe phase transitions spread
out asy falls. In fact, the region of backtracking search is all but sqpeel out of existence for
the (30,10,0.1) problem class. There is a barely perceptible rise just albavethe median as

7.6. Macroscopic Performance of MAC

Consistency Checks (logscale)

Consistency Checks (logscale)

(20,10,y~ 4.9)

le+10¢
le+09 |
1le+08 |

1le+07 |

1le+06

100000 ¢

10000

1000 ¢

Maximum ---- -
99th Percentile
90th Percentile----- 7
75th Percentile-——--
Median — -

0.4 0.5 0.6 0.7
Constraint Tightness (p2)

0.8

(40,10,y~ 4.9)

le+10¢

1e+09

le+08 |
le+07 |
le+06 |

100000 ¢

10000 £ oozasssns

1000 ¢

100

Maximum ---- -
99th Percentile]
90th Percentile----- 7
75th Percentile----]

Median — 1

0.3

Figure 7.5:

0.4 0.5 0.6 0.7
Constraint Tightness (p2)

0.8

Consistency Checks (logscale)

Consistency Checks (logscale)

le+10 F
1e+09 i
1e+08
le+07
1le+06
100000
10000

1000

(30,10, y~ 4.9)

Maximum ------]
3 99th Percentile
L 90th Percentile----- |
75th Percentile-—---]
Median —

1 1 1 1
0.3 0.4 0.5 0.6 0.7
Constraint Tightness (p2)
(50,10,y ~ 4.9)
le+10 T T T T
I Maximum -----]
L 99th Percentile— 1
le+09 : 90th Percentile-----
L 75th Percentile-----]
Median —
le+08 | E
1e+07 | 4

1e+06
100000}
10000 s

1000

0.4 0.5 0.6 0.7

Constraint Tightness (p2)

Ranges of consistency checking costiAC on foury~ 4.9 CSP classes.

99

100 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

100000 T T T T T T T]
<30,10,1.0> Median— |
<30,10,0.5> Median-----
<30,10,0.4> Median ----
<30,10,0.3> Median- 1
<30,10,0.2> Median---

10000 <30,10,0.1> Median----- -
)
<
@
28 1000
kel
ke
g
Kz
S
[%]
S 100
S [
4
10 - P]
\ I
N |
I I
I I
1 1
1]] i]])]]
0.6 0.8 1 1.2 1.4 1.6 1.8 2
Constrainedness (K)
T T T T
<50,10,0.1000> Median- -- -
<45,10,0.1121> Median - - 1
<40,10,0.1256> Median---
<35,10,0.1445> Median-——
K <30,10,0.1701> Median----
100 | <25,10,0.2067> Median----
L S | <20,10,0.2579> Median— |
)
<
(8]
(2]
(=]
o
ke)
Q
Ko
>
(%]
(] -
k]
g]
4
l 1 1 1 1
0.3 0.4 0.5 0.7 0.8

0.6
Constraint Tightness (p2)

Figure 7.6: Median cost oMAC onn = 30 andy = 4.9 series, in terms of nodes visited.

7.6. Macroscopic Performance of MAC 101

the constrainedness increases, followed by a sharp drop Imedoa quickly to zero. The sudden
drop in the curve clearly corresponds with the crossover psapgarating the regions where more
than half of the problems are soluble and more than half ardéubkn

7.6.3 Comparison with FC

The relative performance ofiIAC andFC can be compared by plotting the median behaviour in
terms of both consistency checks and nodes visited, and by stuthg relative incidence ehps
over the same populations of problems. It should be noted thvatdmparison of performance
between standamlAC andFC searches oimdividual problems is difficult, as the nature of the
fail-first principle means that the algorithms do not necegs#ollow the same search paths —
thus problems that are hard for one algorithm are not necésbkarid for the other.

Figure 7.7 plots the relative median cost of the algorithresresi p, over each of then = 30
problem classes studied, in terms of both checks and nodesdvigitem these plots, it can be
seen thaMAC performs more poorly on average, in terms of consistency chdok each class.
The differences are particularly large over the easy-soltgg@ns, although this is partly to be
expected as the extra lookaheadwiC (and indeed the lesser lookaheadrq) is redundant
effort on most of these very easy problems.

However, a significant improvement occurs on averageMaC over FC in terms of nodes
visited over each problem class. Significantly, it can be sed¢mtha extends the part of the easy-
soluble region in which no backtracking during search is nemli{for at least half of the problem
samples) further towards the crossover point. This agrees hgtbliservations of both (Haralick
and Elliott 1980) and (Nadel 1989). Study of the effects of g€processing in Chapter 6 show
that it has little effect in removing values from the domadfssariables in problems that lie in
the easy-soluble region. It is therefore clear that it is theg®blishing of arc consistency that
extends the region of backtrack-free search, and not thalipiteprocessingMAC also extends
the part of the insoluble problem region in which no search dguired for at least half of the
problems further towards the crossover point. This is undsdligtdue in large part, however, to
the AC preprocessing becoming effective when the constrametsight. In short, the plots of
nodes visited show that by usiMAC rather thar~C, the range of values over which any search
is required for at least half of the problems is squeezed tosvidrel phase transition.

Figure 7.8 compares the median consistency checking cest©fandFC for three of they ~
4.9 problem classes. For smallFC always outperforms this implementationAC. However,
as problems become larger, it can be seen that the rate oftgadivgearch effort foMAC on
the hard phase transition problems is less than thaf@orat n = 60 MAC outperformsFC on
average around the crossover point, and&at70 MAC is almost an order of magnitude better on
these hard problems. To investigate this scaling relationshéprespective median consistency
checking costs foMAC andFC at theobserved g, values (Section 3.2) were compared for
eachy = 4.92 problem class. A plot of these values agaimstin be seen in Figure 7.9. With
a logarithmic scale along the y-axis, the curvesN#®C andFC are roughly linear, and it can
clearly be seen that the curve fdAC has a lower gradient than that fec.

Figure 7.10 shows the median and higher percentiles of consistdhecking for FC on four

102 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

le+09¢ T T T T

MAC Median -----]
FC Median —

1e+08 |
1e+07 |
1e+06 |

100000}

Consistency Checks (logscale)

10000 |

1000

100 1 1 1 1
0 0.2 0.4 0.6
Constraint Tightness (p2)

le+06 T T T T

MAC Median ----- 1
p1=1.0 FC Median —

100000

10000

1000 |

Nodes Visited (logscale)

100 |

10

l 1 1 1
0 0.2 0.4 0.6
Constraint Tightness (p2)

Figure 7.7: Comparison of median cost ®AC versusFC for n = 30 series, in terms of both
consistency checks and nodes visited.

7.6. Macroscopic Performance of MAC 103

(20,10,y~ 4.9) (50,10,y ~ 4.9) (70,10,y~ 4.9)
1e+07 T T T 1le+07 T T T T 1le+07 T T T T
MAC Median ---- MAC Median ----- MAC Median -----
FC Median — FC Median — FC Median —

1e+06 |- b 1le+06 | b 1le+06
@ @ @
© < ©
S S S
@ @ @
8 100000 B & 100000 8 100000
o o 2
] S k]
@ [} Q
F<4 £ F=<4
(8] o [8)
) 3 oy
I~ c <
2 2 - 2 -
2 2 T 2
2 10000} E 2 10000} " 2 10000
o / AN o o
o o o

1000 1000 1000
| | | 100 | | | | | | |

100 L 100 L
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6
Constraint Tightness (p2) Constraint Tightness (p2) Constraint Tightness (|

07 08
p2)

Figure 7.8: Comparison of the median costiAC andFC for threey~ 4.9 CSP classes, in terms
of consistency checks.

le+07 F T T T T T T T T T
MAC Median -----
FC Median —

1e+06 |- -
E [
[
3]
7]
)
o
Y
)
2
O 100000} i
>
3 [
c
IS
Q0
7]
c
o
O

10000 |- i

1000 1 1 1 1 1 1 1 1 1

20 25 30 35 40 45 50 60 70
Number of problem variables (n)

Figure 7.9: Comparison of median search cosMAC andFC at parit for the niney ~ 4.92CSP
classes.

104 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

of they ~ 4.9 problem classes. These plots can be directly compared with gihuseing the
performance ofMAC over the same problems, in Figure 7.5. Making this comparidocan
clearly be seen that althoughAC has been shown to still be susceptiblebps, their incidence

is greatly reduced from that ¢fC over the same populations of problems. Whether the use of
MAC also reduces the magnitude of the exceptionally hard seaticheit does encounter is not
entirely clear, however: although the heights of the ‘peaks’ that can be seen in the plots for
MAC are generally lower than those fB€, someMAC ehps such as that at50,10,0.1,y ~ 4.9)
(Figure 7.5) are more extreme than nearlyrtlehps in the same problem class.

7.6.4 Overall performance

Since the number of consistency checks performed maa algorithm will depend on the arc
consistency algorithm used, it should be considered in conppmetith the number of nodes vis-
ited when assessing the maintenance of arc consistency as a grategly. We have se@mC
perform poorly in terms of consistency checks on densely canstigproblems, where Sabin and
Freuder reported significant gains in terms of cpu time byrtheision ofMAC, based orAC4
over FC. However, when comparinglAC andFC in terms of nodes visited — an implementa-
tion independent measure MAC performs much better thafC on problems of all constraint
densities. Naturally, the efficiency of thAC implementation will be a very important issue in
practical situations.

On sparsely constrained problenAC performs much more favourably in terms of consis-
tency checking. It has been seen that the growth in cost at tieefihansition peak as the number
of problem variables increases, with problem topology maet# is considerably slower than
that for FC. It may be the case that a similar scaling relationship holds émsdly constrained
problems, but the high costs of an empirical study have pradbitvestigation of this.

In terms of exceptionally hard problems, the value of usingangased lookahead withAC
has been demonstrated in its ability to greatly reduce thidémce ofehps compared td-C over
the same populations of sparse problems.

7.7 Macroscopic Performance of MAC-CBJ

The performance ofIAC-CBJ in isolation is observed in terms of its average cost, and thie inc
dence and magnitude of exceptionally hard problems is coedpaith that forMAC in order to
determine the effects of introducing backjumping. A conmgmar with FC-CBJ is then made in
order to study the the effect that extra lookahead has whekjuraping is also available.

7.7.1 General and extreme behaviour

Figure 7.11 shows the median behavioumXC-CBJ, in terms of consistency checks, plotted
against constrainedness for a selection ofrtke 30 problem classes, while Figure 7.12 shows
the median and higher percentiles for three of these problasses plotted against constraint
tightness, and Figure 7.13 shows a similar analysis for a seleaftitney ~ 4.9 problem classes.

7.7. Macroscopic Performance of MAC-CBJ

Consistency Checks (logscale)

Consistency Checks (logscale)

(20,10,y~ 4.9)

le+10¢
le+09 |
1le+08 |

1le+07 |

1le+06

100000

10000

1000 ¢

Maximum ---- -
99th Percentile
90th Percentile----- 7
75th Percentile-——--
Median — -

0.4 0.5 0.6 0.7
Constraint Tightness (p2)

0.8

(40,10,y~ 4.9)

le+10¢

1e+09

1le+08 —
le+07 —
1le+06 —
100000

10000 ¢

1000 koo

100

Maximum ---- -
99th Percentile]
90th Percentile----- 7
75th Percentile----]

Median — 1

0.3

0.4 0.5 0.6 0.7
Constraint Tightness (p2)

0.8

Consistency Checks (logscale)

Consistency Checks (logscale)

105

(30,10, y~ 4.9)

le+10¢
1le+09
1le+08 |

1le+07 |

le+06

100000

10000

1000

100

Maximum -----
99th Percentile
90th Percentile-----
75th Percentile-——--
Median — -

0.3

0.4 0.5 0.6 0.7
Constraint Tightness (p2)

0.8

(50,10, y~ 4.9)

le+10F—

1e+09 L

1e+08 —
le+07 —
1e+06
100000 :
10000 |

1000

100 .

Maximum ---- -
99th Percentile—]
90th Percentile-----
75th Percentile----]

Median — 1

0.5 0.6 0.7
Constraint Tightness (p2)

0.8

Figure 7.10: Ranges of consistency checking costfaron foury~ 4.9 CSP classes.

106 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

le+08 T T

<30,10,1.0> Median— |
<30,10,0.5> Median----
<30,10,0.4> Median---- |
<30,10,0.3> Median-—-
<30,10,0.2> Median--- —
<30,10,0.1> Median-----

1e+07 |

1e+06 |

100000}

Consistency Checks (logscale)

10000 |-

1000 |

100 L 1
0.5 1 1.5 2
Constrainedness (K)

Figure 7.11: Median cost ofMAC-CBJ overn = 30 series, in terms of consistency checks per-
formed.

These figures can be directly compared with those showing theademt data foMAC, shown
in Figures 7.2, 7.3 and 7.5 respectively.

By comparing the sets of plots, it is evident that the behavafumAC and MAC-CBJ is
very similar at the median and higher percentile levels afgam the maximum, for all prob-
lem classes. This suggests th@J’s biggest effect is on the most difficult problems, and that its
performance is otherwise similar to chronological backtnagkwhen ‘fail-first’ dynamic variable
ordering is used. The set of plots also agree with the observati@hapter 5 that the addition
of CBJ does significantly reduce the difficulty of tleéps thatMAC finds in populations of prob-
lems. We observe from the maximum curves for ineC-CBJ plots that backjumping greatly
moderates the extreme problem behaviour for all of the spacssistrained problem classes, in-
cluding even the extremely spar&0, 10,0.1) populations of problems, for which highly erratic
maximum behaviour wittMAC still occurs. It should be remembered th#AC and MAC-CBJ
have been implemented so that they both follow the same seaith FdusMAC-CBJ must en-
counter the same subproblems which |&&&C into exceptionally hard search, but clearly deals
with them much more quickly than the chronological backieacan.

These results are similar to those reported in (Smith and Gra@8e)9 where the effects of
addingCBJ to FC were studied. However, the difference in performance betweeC andMAC-
CBJ on the non-exceptional problems is less than that betw&:and FC-CBJ. A noticeable
improvement was observed witfC-CBJ at the 99% level of behaviour (and at lower levels in
some cases) for sparsely constrained classes of problems. Howewetjceable differences in
performance can be seen at the 99% level wiBn is added toMAC for any of the sparsely

7.7. Macroscopic Performance of MAC-CBJ 107

(30,10,1.0) (30,10,0.5) (30,10,0.1)
1le+10 T T T T le+10 T T T T T le+10 T T T T
Maximum ----- Maximum ---- - Maximum ---- -
99th Percentile 99th Percentile 99th Percentile
90th Percentile— 90th Percentile— 90th Percentile—
75th Percentile---- 75th Percentile----- 75th Percentile-----
le+09 Median — 1e+09 |- Median — 1e+09 Median — 7

le+08 |- 5 B le+08 |- b le+08

1le+07 le+07 X b le+07f

1e+06 |-

100000} /J 100000}

10000 (- b 10000 |- b 10000

1e+06 | 1le+06 -

Consistency Checks (logscale)
Consistency Checks (logscale)
Consistency Checks (logscale)

100000

1000 b 1000 | b 1000

100 ! ! ! ! 100 ! ! L 1 L 100 L L L !
0 0.5 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9
Constraint Tightness (p2) Constraint Tightness (p2)

0.1 0.2 0.3 0.4 1
Constraint Tightness (p2)

Figure 7.12: Ranges of consistency checking costM®C-CBJ on threen = 30 CSP classes.

constrained problem classes studied here. We investigate thensefor this in Section 7.8, by
studying the relative structures of the search treedAt andFC searches.

7.7.2 Comparison with FC-CBJ

Figure 7.14 shows the median and higher percentiles of consistehecking effort folFC-CBJ
on the sameg ~ 4.9 problem classes shown f&fAC-CBJ in Figure 7.13, with which it can be
directly compared. Once again, it should be noted that faimmarison of performance between
standardMAC-CBJ andFC-CBJ searches on individual problems is not possible as the algusith
will generally not follow the same search paths, as explainedkiction 7.6. An improvement in
terms of maximum and median consistency checksBAg-CBJ over FC-CBJ similar to that of
MAC over FC is observed. In particular, for the maximum curves it can b skat whileFC-
CBJ clearly suffers from instances of exceptionally hard proldethe extra lookahead &fAC
combined with the backjumping @BJ results in cleaehp behaviour being almost eliminated
from the populations of sparse problems. However, a small anadwhip behaviour can still be
observed foMAC-CBJ: the spike in the maximum curve for tijé0,10,0.1256 problem class at
p2 = 0.5, which can be seen in Figure 7.13, clearly fits¢hp criteria given in Section 5.2. These
results indicate that whil®IAC-CBJ shows the most stable performance in respect of the occur-
rence of exceptionally hard problems, a very few instancestiiarise in sparsely constrained
problem classes.

108 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

(20,10,y~ 4.9) (30,10,y ~ 4.9)
le+10¢ T T T T] le+09¢ T T T T

I Maximum ----- | r Maximum ---- 1

r 99th Percentile--] | 99th Percentile

le+09 | 90th Percentile----- 3 90th Percentile-----

r 75th Percentile-----] le+08 | 75th Percentile----- -
™ H Median — o L Median —
< 1let08F r ©
[&] F 4 (8] -

(2] %]
8 3 1 E le+07 | 7
5 let07f E - L
4 r 1 4
(8] (8]
2 2 I
O 1e+06 | - O 1e+06 |- -
> > :
(] (8] B
c c
[J] ()
@ 100000F E o I
2 2 100000F b
8 i S :
10000 '
10000F .-
1000 E
100 i 1 1 1 1] 1000 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
Constraint Tightness (p2) Constraint Tightness (p2)
(40,10,y ~ 4.9) (50,10,y ~ 4.9)
le+10¢ T T T T] 1le+09 — T T T | —
I Maximum ---- | r Maximum ---- 1
99th Percentile- 1 | 99th Percentile
le+09 | 90th Percentile----- 3 90th Percentile-----
75th Percentile-----] le+08 75th Percentile----- -
m F Median — 1 o L Median —
< le+08F E <
Q - 4 [&] o
(%] n
_g’ L 1 _8’ 1le+07 | =
\‘; 1e+07 | . E \m" L
< F ' 1 <
[} [S]
2 i 2 [P ‘
O 1let06¢ O 1le+06} 4
> 3 > S |
(8] [S] r 1
c | c
[J] Q
@ 100000F ko r
@ L 2 100000 | E
3 - s 8 [
10000 === -
1000 E L
100 i 1 1 1 1] 1000 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8

Constraint Tightness (p2) Constraint Tightness (p2)

Figure 7.13: Ranges of consistency checking cost¥M®C-CBJ on foury = 4.9 CSP classes.

7.7. Macroscopic Performance of MAC-CBJ 109

(20,10,y~ 4.9) (30,10,y~ 4.9)
1e+10 ¢ T T T T] le+09 ¢ T T T T
| Maximum ----- | I Maximum - -]
99th Percentile—] L 99th Percentile
le+09 90th Percentile----- 3 1e+08 90th Percentile------
75th Percentile-——— 1 [75th Percentile-----]
™ F Median — m Median —
< le+08F . < 3 |
2 H 1 g le+07F -
(=] (2] L
S I S
o le+07 2 E " L ,. |
S S 1le+06f N -
_s:) L i g | s]
(@] 1e+06 | - (@]
) I 1 & I
c | c 100000 E
[J] | [J]
‘@ 100000F i E] r
(%] - LA n
5 5 10000 -
o I O F
10000 ¢ [
1000 } 1000¢ ™
100 I 1 1 1 1] 100 I 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
Constraint Tightness (p2) Constraint Tightness (p2)
(40,10,y~ 4.9) (50,10,y ~ 4.9)
1e+10 T T T T] le+09r T T T T T]
I Maximum - -] I Maximum - -~ |
r 99th Percentile—] L 99th Percentile
le+09 90th Percentile----- 3 1e+08 90th Percentile-----
I 75th Percentile----] [75th Percentile-----
F Median — Median —
1e+08 | - i 1
b 1 1le+07 | E
1e+07 | E L
[] 1e+06 | E
1e+06 |- E I

L 100000
100000 ¢ I

Consistency Checks (logscale)
Consistency Checks (logscale)

10000

10000
100 I 1 1 1 1] 100 I 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 7.14: Ranges of consistency checking costf@-CBJ on foury = 4.9 CSP classes.

110 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

7.8 The Search Trees of MAC and FC

In sections 7.6 and 7.7, we compared the overall search costa@®based algorithms witRC-
based algorithms. However, these measurements give littlesitidin of the comparative structure
of the algorithms’ search trees, which must surely be differeng. hAve seen that for many of
the problem classes examing®; outperformsMAC in terms of consistency checks, while the
opposite is true in terms of search nodes visited. This suggestSIAT tends to do more work
earlier on in search tharC does.

In order to investigate the relative structures of k&C andFC search trees, the search effort
spent at each depth in the search tree was studied, focusing (80th6,y ~ 4.9) problem class.
Looking inside the search process in this fashion is not new: glit¢hrand Elliott 1980) per-
formed a similar investigation into the search depths wheredheus lookahead algorithms they
studied did most of their work. For implementation reasons, teammumbers of consistency
checks and nodes visited at each search depth for each set t#psolvere recorded, rather than
the median. As a result, data from the-CBJ andMAC-CBJ searches was used instead of that
from FC andMAC, so as to minimise any effects on the mean behaviour caused bptextally
hard problems.

Figure 7.15 presents a three-dimensional plot, showing wh@ereBJ spends its consistency
checking effort. The vertical and horizontal axes show thealer of checks againgt, while
the axis projecting from the page shows the depth in the sesreh The range of search depth
values is[0..30], for consistency with later plots oiIAC-CBJ, where depth 0 represents the AC
preprocessing stage. FBC-CBJ there are no values at depth 0, since no preprocessing is done.
Below the 3-d plot, a two-dimensional profile of the surface @, looking along the constraint
tightness axis.

The left hand side of the surface in Figure 7.15 represents thesduble problem region.
Here, the highest number of checks occur at depth 1, where theghe maximum number of
future variables (A 7(n— 1)) to check against. Progressively less checking occurs at losyghd,
as the number of forward checks to make decreases. As thetkeistino backtracking necessary
on these problems, the mean number of checks falls smoothlyrdoazelepthn. Moving into
the clear phase transition region, we see a great deal of corsisteacking deep into the search
tree. From the lower profile plot, the peak in this effort legsdepth 8, and not zero. It appears
to be the case than when Forward Checking on these sparse protiierfisst few instantiations
are fairly easy to make. Making further instantiations becemere difficult, resulting in a lot
of backtracking to the higher levels of the search tree. Iniiseluble region, to the right, the
majority of checking occurs at the top of the search tree. iBrdsie to insolubility being detected
early in these problems, given their over-constrainedness. Uimdar of checks at depth 1 in this
region starts off relatively high near the phase transitiorengmany future variables must still be
examined, but falls ap, increases. A, approaches 1 (not shown in Figure 7.15), insolubility
will be determined by examining only one constraint, requjri? checks.

Figure 7.16 is similar to Figure 7.15, showing the consisten®ckimg behaviour ofMAC-
CBJ over the same problems. It should be noted, however, thatA&sCBJ includes anAC3
preprocessing stage, we see consistency checking activity atzkpt We also see the additional

7.8. The Search Trees of MAC and FC 111

Consistency Checks

1500+

1000

| g/ \\\\\
A
i

i

\
R
TR
=== =W
=Seo0mineaauas
0.8
30
0.3 04 Constraint Tightness (p2)
1400+
1200+
P 1000+
j:
O
2 800
5
8 600
"
400 \“
N O\
0—0 T 10 20 25 30

15
Search Depth

Figure 7.15: Mean consistency checks at each search depeCb®BJ on (30,10,y~ 4.9) prob-
lems.

112 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

Consistency Checks

18000
16000
140004
120004
100004
8000 ‘ k\
6000 - \
4000 \\ \‘\
DRSS
20001 REEEEEER N
==
0 0 - N “%:i{iﬁ“‘%“‘
5

5 R oo 0.7 08
30 < 04 0.5
0.3 Constraint Tightness (p2)
18000
16000+
]
4
[S]
]
<
O
>
o
c
[J]
9
[%2]
c
[e]
O
I T T
15 20 25 30

Search Depth

Figure 7.16: Mean consistency checks at each search deptii4y-CBJ on (30,10,y ~ 4.9)
problems.

7.8. The Search Trees of MAC and FC 113

transition associated with establishing arc consistency, discus§dhpter 6, which lies well into
the insoluble problem region as expected.

It is immediately apparent from Figure 7.16 tha&aC-CBJ expends the majority of its effort at
shallower depths of the search tree tlF&CBJ. The profile plot shows that the peak in checking
at the phase transition now occurs at depth 1, compared witth @ejor FC-CBJ. However, the
amount of effort involved is considerably larger: the vaatiaxis in Figure 7.16 has a range more
than an order of magnitude greater than that in Figure 7.bbisTwhileMAC-CBJ could be said
to do less searching, this takes more effort. In the insoluldblpm region, we can see the point
at which AC preprocessing becomes sufficient to prove insotyhiti all problems, where no
consistency checking occurs at depth 1 or beyond. Immediptilyto this,MAC-CBJ can detect
insolubility at depth 1 on many problems.

Figure 7.17 examines the same set of problem&@CBY, this time plotting the search effort
on the vertical axis in terms of nodes visited. In the easy-deldgion, the flat area lies at height
1 on the vertical axis. This represents the backtrack-fredomproblems, where one search node
is visited at each depth in instantiating a variable. Mearaylii the easy-insoluble region there
are few nodes visited at great depths. We therefore observepaisteodes visited from 1 to O
at maximum search depth, at the phase transition crossover poihie phase transition region,
we see a similar pattern to that observed in Figure 7.15, alththegpeak in nodes visited occurs
at depth 11, rather than 8 where the peak in consistency checksso This difference may be
attributed to the fact that at depth 11 there is a smaller settofd variables to check against than
at depth 8, so although more nodes are visited here, the ambregudtant checking is slightly
less. Only slightly fewer nodes are visited at depth 8 than 11.

Figure 7.18 shows the search nodes visitedMAC-CBJ at each search depth, in a similar
style to Figure 7.17. This time there are no values at deptm@esgio nodes are visited during
preprocessing. It is noticeable that the range on the vewidalis only 10, while that foFC-
CBJ is 80. This coarseness results in very pronounced contoursednAB-CBJ surface. The
step in the surface between the soluble and insoluble regiohg atréater depths is clear, as is
the point at which preprocessing eliminates the need for angls@a the insoluble region. At
the phase transition, the peak in nodes visited again occurspdih d, and it can be seen that
the mean number of nodes falls to exactly one at depth 11. shuws that on 1@00 of the
hardest problems in this class, the lookaheata€-CBJ means that inconsistent subproblems
are detected after at most 11 instantiations.

The brief look inside the search processafCBJ andMAC-CBJ presented here has demon-
strated that the size of the search trees producddAy-based searches is considerably smaller
than those produced 5C-based searches. In Section 7.7, it was observed that the adalitio
CBJ to MAC leads to only a tiny improvement in search cost that is difficmhotice even at the
99% level of behaviour. The likely explanation for this isththe comparative shallowness of
MAC search trees provides very limited scope for effective bankjug. It appears that the large
amount of effort expended bYAC in making its early search moves means that later moves are
less likely to fail, so that backtracking from deep in the tresimilarly unlikely.

114 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

Nodes Visited

20 -
10 + \ RN
Z MR wY
— NN
7 \\\\\\\\\\\\“‘%‘S&»\
= A
IS Y =

oo
DRSS ISR
S
S

10

= A} S
“,‘:-“"‘.““““““'
O S S S S S OO S S S SIS S SSOUSOSS
ETSoSS S SSOUTUSSSOOTSS S S
N S <

25 S 0.7
s 0.6
30 0.4 0.5
0.3 Constraint Tightness (p2)

80

Nodes Visited

30

Search Depth

Figure 7.17: Mean nodes visited at each search deptF®CBJ on (30,10,y = 4.9) problems.

7.8. The Search Trees of MAC and FC 115

*] //M‘N\

"\\\
{

il
i)

i
e

—_—
oo
SN EEa TN

00-

S S SO S SO
S
ESSSUOTT eSS

=

25 06 0.7 0.8
30 0.4 '
0.3 Constraint Tightness (p2)
10
el
o
2
p=
[%2]
[0}
ke)
o
z
T T T T
10 15 20 25 30

Search Depth

Figure 7.18: Mean nodes visited at each search deptmMBg-CBJ on (30,10,y~ 4.9) problems.

116 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

7.9 Discussion

We have examined two algorithms which maintain arc consigtesmad attempted to position
their performance in terms of the average and extremes @\bedr. This has involved rigorous
empirical experimentation over a broad range of problemssizel topologies in a manner which
has until recently been extremely rare. In doing so, the figglthat have been reported throw up
a number of subsidiary issues, which warrant major studies in thgirright and so lie beyond
the scope of this investigation. These are briefly discussedealditér in this section.

In studying the general behaviour of tRiAC andMAC-CBJ algorithms, and comparing them
with the FC andFC-CBJ algorithms, an emphasis has been placed on the number of seaeh n
visited as a good measure with which to compare performanbasibeen observed from study-
ing nodes visited that the lookaheadMAC produces backtrack-free searches on average over a
greater range of values of the control parameter than therllegd@head ofC can. This has been
the case for all of theSP problem classes studied. As might be expected, as the searcossde
harder the extra lookahead BAC also allows the algorithm to visit far fewer search nodes on
average tharC, again over all observed problem classes. Looking at consistérecking effort
(an implementation-dependent measure), wevsge perform poorly compared tBC on smaller
problems of all constraint densities, due to the high arc comsigteverheads. However, by
studying the independent effects of altering problem sizetapdiogy it has been shown that as
problem size increases, tR€ consistency checking effort on the hard phase transition pmable
grows at a greater rate than that fAC, which becomes by far the cheaper algorithm on larger
problems over these regions. Study of the effects of combikiag with CBJ show that little
benefit is gained, except for the very hardeistC searches, in a similar fashion to that of com-
bining FC andCBJ. All of these observations appear to reinforce the increagipigdvalent view
that ‘champion’ algorithms which perform extremely well ath types of problem do not exist.
Algorithms should clearly be chosen to suit the problem charestics, based on the knowledge
gained from empirical studies such as those presented here @hshinget al. 1995).

An area for future study is a more detailed investigation otéydow algorithm performance
scales as problem size increases. We have been able to shavathgterformance scales at a
better rate tharFrC as problems become larger, but at present the rates of incceas®t be
specified exactly. The application of techniques such as BiEtescaling (Gergt al. 1995) may
make this possible in future, and this would constitute a majeaace in the development of an
‘empirical science of algorithms’.

Throughout the main empirical studies that have been coaduttteMAC andMAC-CBJ algo-
rithms have employed ‘fail-first’ dynamic variable orderjrgnd have maintained arc consistency
from search depth zero (i.e. as a preprocessing step, and atsagh stage). It is clear that
many alternative choices may be made for these aspects obibritlain specifications, and these
may affect their behaviour. The use of a number of alternatjweamic variable ordering heuris-
tics with bothFC andMAC is studied in Chapter 8. Varying the depth from which we choose t
maintain arc consistency may have the most interesting effagisidormance: for instance it has
been shown in (Borrett and Tsang 1995) and Chapter 6 that AGquegsing has no effect on
problems with very loose constraints, and so it would clearly Iosibée to only enforce arc con-

7.10. Acknowledgements 117

sistency from search depth 1, or perhaps lower, on such probléstsould also be remembered
that that all of the experiments are based on random problemsrgted according to the model
described in Chapter 3. Problems with more structured constyaaphs, varying domain sizes
and/or individual constraint tightnesses may well behavesdfitly. Quite how such changes
might affect the performance of the algorithms, or the innimk=ofehps, remains to be studied.

The study reported in Section 7.8 could be said to have takenceosgiope to the search
process oMAC andFC, albeit still considering behaviour at the population le@om this, we
have enhanced our understanding of the performance of anitalgovhich has until recently
been rejected by the constraint satisfaction community. Tésole appears to be that to truly
understand the nature of search, we must study it using both tlescteic’ means of large
population studies and the ‘microscopic’ means of lookingdesndividual searches.

7.10 Acknowledgements

Some of the material presented here has appeared in (GrarSraitd 1995) and (Grant and
Smith 1996c). We acknowledge the contribution of PatricksBer in suggesting the study of
search trees presented in Section 7.8.

118 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

119

Chapter 8

Dynamic Variable Ordering Heuristics

It is well known that the efficiency of complete search aldoris for theCSP can be increased
considerably by the use of dynamic variable ordering (DVO)ristias (Section 2.4). The most
popular DVO heuristics aim to instantiate the variable whostaintiation is most likely to lead to
a dead end, in an attempt to observe the ‘fail-first’ principieoduced by (Haralick and Elliott
1980). This principle recommends instantiation of the \@aamost likely to lead to failure,
so that dead ends are detected as early as possible. Harali&Klemidexpressed the fail-first
principle as “To succeed, try first where you are most likely it .farhey implemented it by a
DVO heuristic which chooses next the variable with smallest reimg domain.

‘Smallest remaining domain’ is still a popular variable ofdgrheuristic, and is often seen
as synonymous with the fail-first principle. It is not the onhayvof implementing the fail-
first principle as a DVO, however, and many subsequent heuragosattempt to instantiate the
variable most likely to result in failure. The empirical stugli@ported in Chapters 5 and 7, for
instance, use a popular variant of Haralick and Elliott’s istia, which selects the first variable
to be instantiated as that with the greatest degree in the edmgyraph, and thereafter selects the
next variable to be instantiated as that with the smallest r@mgdomain.

The fail-first principle has become an item ©§P folklore, to which the success of many
DVO heuristics has been informally attributed. However, ®mvincing insights into the reasons
for the success of fail-first DVO heuristics have been made, andi@ehniques which claim to
implement the principle have tended to be introduced praigaiby.

There are dangers associated with failure to understand thentature of algorithms and
heuristics. (Hooker and Vinay 1995), for example, showed thatrotivation behind a well
known DVO heuristic for boolean satisfiabilitg4&T) problems did not explain its performance.
The reasons for its success were considerably more complexhbainple principle behind it,
which produced an effective heuristic only by coincidenagsuich a situation, any attempts at
refining this heuristic would have been based on false assump#adssuccessful refinements
would have worked only by accident.

This chapter takes a new look at the use of the fail-first priedipdesigning DVO heuristics.

1in SAT terms, the equivalent to DVO heuristics are calieanching rules

120 Chapter 8. Dynamic Variable Ordering Heuristics

A theoretical interpretation of the principle is devisedddrom this a series of new heuristics is
obtained which uses probabilistic methods to select the Variabst likely to fail. An empirical
study of these new heuristics, along with several existing fait-f’VOs, suggests that the fail-
first principle is not as effective as has been assumed.

The study reported in this chapter began as an attempt to fiptoirad dynamic variable
ordering heuristics based on the fail-first principle for a clafs8SPs. This attempt failed, which
leads us to some unexpected conclusions about the fail-firstiple itself.

8.1 Related Work

Intuitively, the rationale for the fail-first principle is & if the current path in the search tree will
not lead to a solution, it is best to find this out as soon as possibiedelay means wasted effort.
In terms of variable ordering, Haralick and Elliott argubdtchoosing next the variable to which
the search algorithm is least likely to be able to assign a valueesstully will minimise the
expected length of each branch in the search tree. Doing socstemce both the expected cost
of search and the variance of this average.

Making the assumption that every value in a variable's domaiequally likely to succeed,
Haralick and Elliott showed that choosing the variable with lssaremaining domain will min-
imise the expected branch length. They conducted a small igapstudy, finding all solu-
tions to then-queens problem and ensembles of five randam, 1,0.35) CSPs, for the values
n=4,5,6,7,82910. Compared to static random variable ordering, the fal-id’\VO heuristic
significantly improved the search efficiency of the lookahdgdrihms examined, includingC
and Full Looking Ahead.

The fail-first principle can be applied to static variable aodg (SVO) strategies as well as
DVO heuristics. An SVO which considers variables in order ofrdasing degree (Dechter and
Meiri 1994) aims to cause failures early, as does an orderimghwminimises the width of the
constraint graph (Freuder 1982). However, studies such aslgRul983; Dechter and Meiri
1994) have supported the general conclusion that dynamiablarordering is superior to static
variable ordering.

8.1.1 Alternative fail-first DVO heuristics

We give Haralick and Elliott’s original fail-first DVO heuristof selecting smallest domain first
the termrr. A number of variants on ther heuristic have been proposed, which we experi-
mentally evaluate in the following sections. These variangstased on the intuitive idea that
a variable which constrains a large number of future varmidealso likely to cause a domain
wipeout, so that the degree of the variables should be takeragtount as well as their domain
sizes.
A shortcoming of theF heuristic is that when all variables have the same initial dorsize,

the choice of first variable becomes effectively random. Aartrused by (Frost and Dechter
1994) selects the first variable to instantiate as the one wéthhigfhest degree, i.e. the one con-

8.1. Related Work 121

straining the largest number of other variables. Thereaftergmallest remaining domain’ strat-
egy is used. This is the heuristic used in Chapters 5 and 7, wreatowtinue to termardeg.

A DVO heuristic originally developed for graph colouring ptems by (Belaz 1979) can
also be applied to CSPs. Theé&az heuristicpz, selects the variable with the smallest remain-
ing domain and breaks ties by selecting the variable with tgkdstfuture degregi.e. the one
constraining the largest number of future variables.

(Bessere and Rgin 1996) show that the SVO mentioned earlier which considatigibles
in descending order of degree gives good results in comparigbrrmwwhen the constraints are
sparse, but performs very badly on complete constraint graphenw degenerates to lexico-
graphic ordering. Converselyr does much better when the constraints are dense, since the fact
that it ignores the degrees of the variables becomes lesgtampo They introduce a heuristic,
dom/deg, which combines the two by selecting the variable which misés the ratio of current
domain size:degree. Beést and Rgin report that using the ‘global’ degree of variables over
the entireCSP is roughly as effective as calculating their degree in thari subproblem. We
therefore focus on the version of this heuristic that uses ¢jidégrees$ and use the termp for
brevity.

None of these fail-first DVO heuristics have been presented withamalytical explanation
of their behaviour, although all have been shown empiricallperform well on many types of
CSP. More recent work, however, has taken a more theoreticalogoh to the design of search
heuristics.

8.1.2 Minimising subproblem constrainedness

DVO heuristics based on an entirely different principle arespnted in (Gengt al. 1996a).
These are based on minimising thenstrainednesgSection 3.2) of the future subproblem. The
heuristics use three very general theoretical measures thatbdwen developed fatSPs and
other types of problem: the expected number of soluti&fbl); the expected solution density,
and the general constrainedness parametexhich combines these measures. By maximising
the first two measures, or minimising the third, during searcls, litdped that the search process
will be guided towards under-constrained subproblems withynsalutions which will be easy to
solve.

Although minimising the constrainedness of the subproblemfigeaed by selecting the most
constrained variable, this approach cannot be said to folawfdil-first principle, as it attempts
to select search paths that are most likely to succeed rathefathahlowever, these three new
heuristics are empirically shown to perform better than exgsttersions of fail-first DVOs on
some types ofSP, particularly those that are densely constrained or have s constraint
tightness.

The success of these new heuristics leads us to consider one gfthianvhich minimiseg,
along with the fail-first heuristics studied. We term this hsticikappa.

2The variant oflom/deg which uses future degrees is considered in Section 8.7.

122 Chapter 8. Dynamic Variable Ordering Heuristics

8.2 Studying the Fail-First Principle

Our discussion of DVO heuristics based on the fail-first principlpresented in the context of
the binaryCSPs used throughout this thesis. It is assumed that all variabldallpihave the
same domain size, and that all constraints are uniformly tigbain, similar assumptions have
been almost universal in experimental studies. Dynamic variafilering is only considered in
the context of the lookahead algorithS andMAC: Section 2.4 notes that DVO has no effect
without a search algorithm that has a lookahead capability.

The following section presents the theoretical analysis dffifsit, from which three new
heuristics are derived. The framework under which the emglistudies are conducted is then
laid out, followed by analysis of the series of results obtaindte consequences of these results
for the fail-first principle are discussed, and future trendhimdesign of DVO heuristics for the
CSP are considered. We conclude with a summary and evaluationsoivirk.

8.3 A Theoretical Interpretation of Fail-First

(Hooker 1996) heavily criticises the useadmpetitive testingvhen evaluating the performance
of a new search heuristic. He suggests that such an approach,ah tukinew heuristic tends to
be accepted or disregarded on the basis of its performanaasag#tier heuristics, tells us “which
algorithms are better, but not why”. Purely competitiveitesbf a heuristic (or of any algorithm)
fails to provide insights into its behaviour which might alig:tdevelopment of better techniques.
Hooker suggests an alternative approachasftrolled experimentation

Based on one’s insights into an algorithm, for instance, onéntr@gpect good per-

formance to depend on a certain problem characteristic. tédimdl out? Design a

controlled experiment that checks how the presence or abétiais characteristic

affects performance. Even better, build an explanatonheraatical model that cap-
tures the insight, as is done routinely in other empiricalrsoiés, and deduce from it
precise consequences that can be put to the test.

We attempt here to follow this approach and construct a madkieat ‘theory’ for the fail-first
principle. This theory is designed to specify the circumstances under which the sateatia
particular variable to instantiate might to lead to failufiéghe analysis is based on binabgPs

using the(n,m, p1, p2) model defined in Section 3.2, and assumes an algorithm withkalead
capability.

8.3.1 Three new fail-first heuristics

In deriving the ‘smallest-remaining-domain’ heuristre) as an implementation of the fail-first
principle, (Haralick and Elliott 1980) assume that the proliglihat the assignment of a value
to a variable fails (in the context of forward checking or mtaining arc consistency, results

3As acknowledged in Section 8.14, Barbara Smith is responsible for the prohiakilistlysis of the fail-first
principle presented below.

8.3. A Theoretical Interpretation of Fail-First 123

in a domain wipeout) is the same for all available values olialssigned variables. On that
assumption, the probability that the variable chosen will(iaél. the probability that every value
will lead to a domain wipeout) is maximised by choosing the alzlg with smallest domain.
However, it is clear that other factors, such as the numbertafdéwariables which each variable
constrains, also affect this probability. The variantsefdiscussed in Section 8.1 take some
account of the future degree of each variable. However, ifsamlt to follow the fail-first principle,

it would be better to incorporate these other factors whecutating the probability of failure.

We assume that in the origin@sP each variable has possible values. When there is a con-
straint between two variables, the constraint tightness is stantp; for all constraints. Suppose
that after a number of successful past assignments, we have a futym@isiem consisting of
a setF of unassigned variables, each variable F having current domain sizey. If there is
a constraint between two of these variablgsandv;, then due to the values which have been
removed from their domains by the past instantiations, thesatitightness of this constraint is
pij, measured by the proportion of the remaining pairs of valugishvare not allowed.

The fail-first principle says that we should choose next the i F which is most likely
to fail, i.e. which maximises the probability that every orféte possible values will result in a
domain wipeout.

If we consider a variable; € F with current domain sizen,

Pr{every assignment of fails} = (Pr{v; = x; fails})™

wherex; is any value in the current domain af
If there is a constraint betweem € F andyv; and the current tightness of this constrainpiis

Pr{vi = x; is consistent with at least one valuew}
= 1-Pr{v; = x is inconsistent with every value of}

= (1-pj)

approximately, if we take the current constraint tightnpgsas applying independently to each
pair of values. If there is no constraint betwegandyv; thenp;j = 0.
Using the above,

Pr{v; = x; fails}
=1- r| Pr{vi = x; is consistent with at least one valuewp}
Vj€eF, |#i
=1-] @-p}) (8.1)
vjeF,j#i

Therefore, to choose the variable that is most likely to leafhilare in the future subproblem,
we should choose the variablewhich maximises

(1- 1 @-p'n™ (82)
vjeF,j#i

124 Chapter 8. Dynamic Variable Ordering Heuristics

Depending on how much we estimate versus how much we accuna¢algure in the environment
of each variable;, this gives us a series of heuristics:

First approximation: If we assume, as Haralick and Elliott did, that the term (8.1hé&ssame
for every value of every variable, then to maximise (8.2) we should minimise the number of
such terms (since they are all1) and hence minimisey. Thus, we choose the variable that has
the smallest current domain, giving theheuristic.

Second approximation: We could estimate the current tightness of the constraintsematw
and the other future variables by their original tightness. @ orp,) and use the initial domain
size,m, as the estimate for the current domain size of each variablen,to maximise (8.2), we
maximise:

(1-(1-p)H)m

whered; is the degree of; in the future subproblem, i.e. the number of future varialbhes it
constrains. This gives a heuristic that, likeandpp, chooses the next variable to instantiate on
the basis of both its domain size and its future degree.

Third approximation: We could use the true current domain size of all future vargbbeit
estimate the current constraint tightnesgby Then we want to maximise:

m
- M a-)"
vjeF,v; constraing;
If two variables have the same current domain size, this leattsprefer the one which minimises
M- pg”). As well as maximising the number of terms in the product, ltm'sdmisespg” and
hence minimisem;. Thus, we favour variablesdjacent to future variables with small domains

Fourth approximation: Finally, we can also measure the current tightness of the camistra
and calculate (8.2) accurately for each variable, sele¢tiagone that maximises this term. Then
to maximisepir}1j we should maximisgy; (as well as minimisingn;). This chooses a variable
involved in tight constraintother things being equal.

It is intuitive that if we want to choose a variable such thabélts available values are likely
to cause a domain wipeout in some future variable we should look fariable which has few
remaining values and which is involved in many tight consiiaiwith future variables which
themselves have few remaining values. The final heuristic utéseak factors in selecting the
next variable.

We term the second, third and fourth heuristieg, FF3 and Fr4 respectively, and in later
sections we present experimental evidence on their perfarenatative taer.

8.4. The Experimental Environment 125

8.3.2 Testing the fail-first principle

SincerF, FF2, FF3 andFF4 are based on increasingly accurate estimates of the prolyathitit

a variable will fail, we should expect, if the fail-first primgte is sound, to see this reflected in
decreasing search effort on the part of the forward checkiggrithm for CSPs of the type on
which the probabilities are based. The new fail-first heusstiontain a number of attractive
features which might be expected to yield good results:

e There are several obvious criteria to consider when choosamttst constrained variable:
a small current domain size; a high degree in the future subpmubidjacent variables
with small current domains; and involvement in tight constisitt is not obvious how to
combine these factors, but the theoretical framework showsithoan be done.

e The second heuristierz, is almost the Belaz heuristic. Howeverz uses the degree of
each variable only as a tie-breaker. In some circumstameesnight choose a variable
with highest degree in preference to one with smallest doméliis Jeems to requirp}’
to be relatively large. For example, i’ = 0.1 (corresponding approximately » = 0.8,
m= 10, say) a variable with domain size 5 and degree 3 is prefetaldevariable with
domain size 4 and degree 2. On highly-constrained problemartm®msed heuristic might
beatsz (sincep; is large, so the above condition may be met.)

e We know of no variable ordering heuristic which takes intoastt the domain size of
adjacent variables. The proposed third heuristia, provides a relatively cheap way of
doing this. Furthermore there is currently no cheap heutistter than simpler available
when the constraint graph is a clique, simegeg andsz are the same as in such cases.

The new heuristics are, of course, also increasingly expensiapply (and we have ignored
this cost in the experiments reported below) but we might hypérrF2 or FF3 provides good
performance without the necessity of recalculating the tighs of every constraint after each
instantiation, as required fer4, which is particularly time-consuming.

Should the proposed heuristics not perform well on this clagsaiflem, this would call into
question the fail-first principle itself. The experiments wiilerefore provide more than just a
ranking of the heuristics under investigation, which is thprapch criticised by (Hooker 1996).
Instead, they will serve to confirm or refute the predictiorat thave made about the new fail-first
heuristics, and by extension put the whole fail-first principlétte test.

8.4 The Experimental Environment

Having devised a mathematical interpretation of the fadtfprinciple, we must now devise a
controlled experimentation environment under which theéeseof suggested heuristics can be
tested and compared against existing fail-first strategies.

The experiments reported in this chapter @&Ps generated according to a hybrid of the
Model A and Model B methods, specified in Chapter 3. This hybédegation method treats
constraint tightnessps, as a fixed proportion (Model B), but treats constraint dengity as a

126 Chapter 8. Dynamic Variable Ordering Heuristics

probability (Model A). Thus, the experimenita$Ps have a specific number of constraints, whose
individual densities may vary according to probability. s the model used by the analysis in
Section 8.3 to create the new fail-first heuristics, and so is tbst mppropriate with which to
generate th€SPs to test them.

In all, there are seven dynamic variable ordering heuristiolvare studiedrr, Frdeg, Bz,

DD, FF2, FF3 andrr4. The basiaCSP search algorithm with which each of the heuristics is used is
initially forward checking EC), and later maintaining arc consisten®AC). Algorithm-heuristic
combinations are described using the tef@sF, MAC-FF3, etc.

The cost of each search is measured in terms of consistency chatkearch nodes visited
by the base algorithm. These measures, discussed in detail inrsddtiorelate only to the
cost of the base algorithm and ignore the heuristic overheaa chief aim is not to test the
implementation efficiency of the heuristics, only their effen the search process, which is why
we do not incorporate their cost into the main analysis.

The results of the empirical studies are presented in the follpwections. A study on the
effects of the choice of first variable to instantiate is fol&mvby a broad comparison of each of
the DVO heuristics. The issue of whether tseandpp heuristics should base their decisions
on the degrees of variables in the global problem or curreopsablem is then considered. The
effects of changing the base algorithm fr&@ to MAC and of scaling up problem sizes are also
reported, followed by a brief analysis of how exceptionalydproblem ¢hp) behaviour varies
with each heuristic.

8.5 Effect of the Initial Instantiation

The basicrr DVO heuristic offers no tie-breaking strategy if more than maeiable has the
smallest current domain size. In the cas€8Ps where all variables have the same domain sizes,
this makesF’s initial choice of variable to instantiate effectively dom. Heuristicsrdeg andsz

do offer tie-breaking strategies, and focaP with uniform domain sizes will select the variable
with highest degree as the first to instantiate. These heuristieslieen shown to improve search
efficiency overrr (Frost and Dechter 1994; Gesttal. 1996a).

A simple initial test of the fail-first hypothesis can be made byestigating the effects on
search cost of the choice of first variable to instantiate. FordhdomCSPs that are used in the
experiments, the tightness of every constraint is initialgritical, making the most constrained
variable in every problem that which has the highest degrdgs provides an ideal controlled
situation in which the effect of starting search with the mosst@ined variable can be compared
against starting with a random choice of variable.

We investigate the influence that the initial choice of vaedims, in terms of both dynamic
variable ordering strategies and static variable orderingSstrategies.

8.5.1 Effect on static variable ordering

Two phase transition experiments were conducted using20€.0,0.2) and (20,10,0.5) CSP
classes. The use of these relatively sparsely constrained problasnstgnded to provide suf-

8.5. Effect of the Initial Instantiation 127

(20,10,0.2) (20,10,0.5)
1e+06 T T T] 1le+06 T T T T
[random ordering—] [random ordering— 1
degree ordering---- 1 H degree ordering---- 1

100000 100000

10000 10000 [

Consistency Checks (logscale)
Consistency Checks (logscale)

1000 F ./ 1000 |

100 1 1 1 100 1 1 1 1
0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 8.1: FC with static variable orderings of20,10,0.2) and(20,10,0.5) CSPs.

ficient variety in the degrees of variables, in order to male ibmber of variables with joint
highest degree reasonably low. The size of gachtep for both classes is@l, and ensembles
of 1,000 problems were generated at ev@, 10, p1, p2) point.

Two versions of thé=C algorithm employing a static variable ordering were apptie@ach
CSP in the study: one version places the variables in order of dsang degree; the other uses a
lexical (effectively random) ordering.

Figure 8.1 compares the median consistency checking cda€ afsing degree and lexical
SVO'’s on the(20,10,0.2) and(20,10,0.5) problem classes. Cost is plotted against constraint
tightnessp,, and the regions plotted include the phase transitions. Fbrdlasses, we see that
using a degree SVO leads to a large saving in search cost comparsidg a lexical SVO. In the
case 0f(20,10,0.2) the saving at the phase transition is more than an order of matgithile
for (20,10,0.5) the improvement is by a factor of six.

8.5.2 Effect on dynamic variable ordering

The same sets dR0,10,0.2) and(20,10,0.5) problems used above were searched-Byusing

the DVO heuristicsr andrrdeg. Figure 8.2 compares the median consistency checking cost of
FC-FF andFC-FFdeg over the phase transition regions of both problem classes. Iraeeaf these
DVO heuristics, the improvement seen is due entirely to thefit choices ofirst variable to
instantiate FC-Frdeg is roughly half as expensive &€-Fr at both phase transition peaks.

128 Chapter 8. Dynamic Variable Ordering Heuristics

(20,10,0.2) (20,10,0.5)
100000 T T T . 100000 T T T T .
I FF —] I FF —]
FFdeg ---—] i FFdeg ---—]

10000 | 10000 |

Consistency Checks (logscale)
Consistency Checks (logscale)

1000 | 1000 |

100 1 1 1 100 1 1 1 1
0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 8.2: FC with dynamic variable orderings af20, 10,0.2) and(20,10,0.5) CSPs.

8.5.3 Summary

Closer inspection of the data produced shows that the use of degfiee ordering withFC re-

duces the median search cost over lexical ordering by a fatd4 @t the(20,10,0.2) phase
transition peak, and.Z at the(20,10,0.5) peak. Equivalent figures f&¥C-Frdeg over FC-FF are

1.83 and 16 These results clearly suggest that choosing the most constrairiadle to instanti-
ate is a good idea, at least in the case of the first variable.

8.6 A Simple Beauty Contest

In order to gain some idea of the performance of the eight DV@rikics under examination,
and create an initial ranking, three phase transition expaErtsnonCSPs of size (20,10) were
conducted.(20,10,0.2), (20,10,0.5) and(20,10,1.0) problems were examined, witbp varied
in steps of 001, and ensembles of 1,000 problems generated at é2@r¥0, p1, p2) point. Every
problem was then searched Bg-Fr, FC-FF2, FC-FF3, FC-FF4, FC-FFdeg, FC-Bz andFC-DD.

The three values op; were selected in order to test the heuristics on problems where t
constraint graph is a clique (and all variables have the samee€ele where the constraint graph
is of medium density, and where the constraint graph is verysspar

The data from these experiments is presented below, with tinéskies grouped into two sets
to aid the clarity of the plots. A ranking of the heuristics oe fitroblems used is then obtained
and discussed.

Consistency Checks

8.6. A Simple Beauty Contest 129

(20,10,0.2) (20,10,0.5) (20,10,1.0)
6000 T T T T T 1.8e+06— T T T
FF FF4 - FF4 -
FF4 - 70000 |- FF — FFIFF2 —
FF3 ----- FF3 ----- 1.6e+06} FF3 ----- .
FF2 -——- FF2 --—-
5000 |- -
60000) 1.4e+06} .
4000 50000 - 1.2e+06| -
1e+06 - -
40000 -
3000
800000 -
30000 - ; -
2000 600000 - -
20000+ /. O\ A
S 400000 -
1000 \
10000+ /// NS
Y = 200000 -
0 1 I I 0 / 1 1 = i 1 1 1
05 06 07 08 09 035 04 045 0.18 0.2 0.22 0.24 0.26

Constraint Tightness (p2)

Figure 8.3: Fail-first heuristics o{20,10) CSPs.

8.6.1 New fail-first heuristics

Figure 8.3 plots the median consistency checking cosi0r, FC-FF2, FC-FF3 and FC-FF4 on

the (20,10,0.2), (20,10,0.5) and(20,10,1.0) problem classes. Cost is plotted against constraint
tightnesspy, in each case and linear scales are used on both axes. In eachelaty indicates
the ranking of each heuristic at the phase transition.

In section 8.3, we predicted that we should see successive impeotgin performance from
the heuristicgr2, FF3 andrra compared tar: FF4, which puts the greatest effort into accurately
calculating the probability of failure for each variable shbgive the greatest improvement in
search cost. The first feature we note from these plots, howe\iie isoor performance of the
FF4 heuristic. It is consistently bad on all three classes, which isrisimg and somewhat disap-
pointing. In the case of the cliqug0, 10,1.0) class,FC-Fr4 is around six times more expensive
at the phase transition than simpe-rFr. It is worth emphasising that this cost is the search cost,
and does not includers’s expensive probability calculations.

TheFrr4 heuristic attempts to ‘literally’ fail first by choosing the valole which has the highest
probability of causing a future domain wipe-out. Its poorfpanance suggests that unless the
probability model is wrong then the fail-first strategy is a fahapproach to DVO heuristics.

The original heuristicrr, performs badly, though we observe in Section 8.5 that thishea
attributed to the effectively random choice of starting &hle onCSPs with uniform domain
sizes.

FF3 does not perform as well as2, despite doing significantly more work. However, on

130 Chapter 8. Dynamic Variable Ordering Heuristics

(20,10,0.2) (20,10,0.5)
2400 T T 32000 T T T
FFdeg — FFdeg —
BZ - BZ -
DD ----- L FF2 -—--]
FFp 30000 on
2200 —
28000 E
@
S 2000} .
& 9 26000 ,
o 3]
~ (3]
g 5
[
2 3 24000 .
O 1800} - =
o) k%
5 2
2 & 22000 .
c
8 1600 .
20000 [E
1400 |- | i 18000 | .
[, 16000 - -
1200 [1 1 i : 1 1 .
0.6 0.65 0.7 0.75 0.36 0.38 0.4 0.42
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 8.4: Four DVO heuristics 0§20,10) CSPs.

the clique(20,10,1.0) problems,Fr3 gives a very slight improvement over2 andrr, which
become identical whep; = 1. This appears to show us that there may be some value in taking
into account the domain sizes of adjacent future variables) éonly when future degrees are
identical and provide no leads.

The only one of the new heuristics which merits further consitien isFr2. As well as being
the cheapest of them to implement, it is the best of the hewistiown in Figure 8.3, except
whenp; = 1. In the following section we compare this heuristic with ttkeers which take into
account the degrees of variablesdeg, Bz andpb).

The plots in Figure 8.3 strongly suggest that putting more effao choosing the variable
which is most likely to fail does not pay off. This leads us tdide that the fail-first principle is
not one which should be followed in designing variable ordgheuristics, and that the success
of heuristics which are believed to implement this principlay be due to some other factor. This
conclusion is discussed further in Section 8.11.

8.6.2 Heuristics based on domain size and degree

Figure 8.4 plots the median consistency checking cost0afrdeg, FC-Bz, FC-DD andFC-FF2 0N
the (20,10,0.2) and(20,10,0.5) problem classes, in a similar fashion to Figure 8.3. These four
heuristics use both the domain size and future degree (eroepthich uses global degree) in
selecting the next variable. Th@0,10,1.0) class has been omitted since these heuristics are
identical torr when the constraint graph is complete.

The four heuristics give very similar performancez2 is marginally the best whep, = 0.2,

8.7. Original Degree Versus Future Degree 131

butpp is better whem, = 0.5. It is noteworthy that the simplest of these heuristieseg, which
uses degree information only in selecting the first variablepiapetitive with the others. From
Section 8.5 we know that this initial choice is a key factothis heuristic's performance.

8.6.3 Failing first against minimising constrainedness

We noted in Section 8.1 that (Geettal. 1996a) devise a number of new DVO heuristics which
aim to minimise the constrainedness of the future subproblemglaearch. The effects of these
new heuristics on forward checking searches are comparedieailyi with those of the fail-first
heuristicsrr andsz. Since their studies use similar populations(®®, 10) CSPs to those used
here, we can compare both sets of results.

Figure 1 of (Gentket al. 1996a) plots the mean (not median) consistency checking cbsts o
FC-FF, FC-Bz andFC-kappa, plus two other DVO heuristics which maximise the expectedimem
of solutions,E(N), and maximise the expected solution dengityHeuristickappa is beaten by
Bz over the(20,10,0.2) and(20,10,0.5) classes, and we have shown above that bettandop
in turn out-performez on theseCSPs.

On the clique(20,10,1.0) problems, however, bot&(N) andkappa are significantly better
thanez. They will also be better than all of the heuristics examine heone of which improve
greatly uporsz on this type oiCSP.

8.7 Oiriginal Degree Versus Future Degree

The empirical study reported in Section 8.6 shows that detaitealysis of the subproblem of
uninstantiated variables does not appear be effectivenmstef delivering a good heuristic choice
of variable to instantiate. The fail-first DVO heuristic thatrfieems the most work on the sub-
problem,rr4, is comprehensively outperformed by much more naive heamséthods.

Perhaps a lesson to be learned from the failurerefis that it is a mistake to consider sub-
problems in isolation when considering search moves. It may éedke that heuristics should
base some or all of their decisions on tilebal problem structure, and here we conduct a brief
experiment to test this hypothesis.

Thesz andop heuristics both perform well on th@0, 10) CSPs studied above. Whilez con-
siders the degree of variables in the future subproblem whegkiorg tiespp uses the global de-
gree of variables in its calculations. We have implementtsirative versions of these heuristics
which use global and subproblem degrees respectively — hessst andpbs — and here com-
pare their performance witkz andpbp. These variants have been reported befem:by (Frost
and Dechter 1995), who use the temwo; andbps by (Bessére and Rgin 1996), who investigate
alternative versions of what they tesm/deg.

The fail-first principle suggests thatg andop should be worse thagz andbps respectively,
on the kind of problems we are considering. Since the constraine binary, the future subprob-
lem is a self-contained@SP; the effect of the past variables on the future variables Iraady
been accounted for in their domains, and the past variablesri@iurther bearing on whether or

132 Chapter 8. Dynamic Variable Ordering Heuristics

(20,10,0.2) (20,10,0.5)
2400 T T 32000 T T T
DDs ----- BZ
BZ - BZg -
B9 30000 DOs - 4
2200 —
28000 E
P 2000] 9 26000 .
(8] [8]
Q (3]
< <
O O
3 3 24000 .
§ 1800F . 5
R R}
[%2] %]
5 S 220001 .
O O
1600 - b
20000 [E
1400 |- i 18000 | .
16000 - —
1200 ’ : il :
0.6 0.65 0.7 0.75 0.36 0.38 0.4 0.42
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 8.5: Variants ofsz andpp with FC on (20, 10) CSPs.

not a future variable will fail. The original degree is thine less relevant to the probability of
failure than the future degree is.

An experiment to compare the performance of the alternagvsions of thesz andpp heuris-
tics was conducted, using th20,10,0.2) and(20,10,0.5) problems used in Section 8.6. The
(20,10,1.0) problems were not used for the obvious reason that the degrgasables offer no
tie-breaking capability on cliqueSPs.

Figure 8.5 plots the median consistency checking cosCaz, FC-Bzg, FC-DD andFC-DDs 0N
the (20,10,0.2) and(20, 10,0.5) problem classes, in a similar fashion to the figures of Section 8.6.
The behaviour that can be seen in these plots is rather surprisitipth cases the consistency
checking cost of the global degree heuristic is better tharoffthe subproblem version, although
the differences in cost are very small. On {26, 10, 0.2) problemspzg becomes better than both
Bz andpbs, with b showing the lowest median cost at the phase transition. O(2h&0,0.2)
problemspzg lies betweemz andbps while bb remains the most effective heuristic.

The level of improvement experienced by using the globaleleg)of variables rather than the
subproblem degrees is not particularly large in terms of &tescy checks. However, the simpli-
fied heuristics remove a significant overhead associated withadating subproblem degrees,
doing more useful work for less effort.

These results are consistent with the poor performance afFhBVO heuristic, which looks
in detail at the structure of the subproblem @@®P at each search move. As a consequence, they
raise further doubts about the wisdom of instantiating theatdei that is most likely to lead to
failure in the resultant subproblem.

8.8. Changing Base Algorithm 133

(20,10,0.2) (20,10,0.5)
6000 T T T T 110000 T T T
MAC-BZ - MAC-BZ -
MAC-FF3 ----- MAC-FFdeg —
MAC-FFdeg — 105000 MAC-FF2 ----- N
5900 |- MAC-FF2 -~ 7 . MAC-FF3 -----
MAC-DD --- T MAC-DD ---
100000 : 4 b
5800 -
95000 [—
£ 5700 2
] © 90000 .
< <
O O
g 2y
§ 5600 - § 85000 - —
R R
2 2
S S 80000 | —
© 5500} ©
75000 [—
5400 -
70000 [b
5300 -
65000 [—
5200 60000 - ——
0.62 0.64 0.66 0.68 0.7 0.36 0.38 0.4 0.42
Constraint Tightness (p2) Constraint Tightness (p2)

Figure 8.6: DVO heuristics withmAC on (20,10) CSPs.

If we consideBz andszg, which only refer to the degree information if more than oaeable
has the minimum current domain size, this must mean that som&iins better not to choose
the variable which constrains the largest number of futuréalsées, but instead one which is
constrained by more past variables. This seems to be inexmizatgdrms of the fail-first principle
and appears to provide further evidence that this prindgah@t a good basis for dynamic variable
ordering.

8.8 Changing Base Algorithm

The experiments of Section 8.6 were repeated, this time ubiagersion ofMAC studied in
Chapter 7 as the base algorithm. Due to their lack of competi&ss, heuristios- andrrs were
omitted from experimentation witRIAC.

Figure 8.6 plots the median consistency checking cagid-Frdeg, MAC-FF2, MAC-FF3, MAC-
Bzg and MAC-pD on the (20,10,0.2) and (20,10,0.5) problem classes. Cost is plotted against
constraint tightnesq, in each case and linear scales are used on both axes. Once iagaich) i
plot the key indicates the ranking of each heuristic at thesphimnsition. Data fo{20,10, 1.0)
CSPs is not presented due to the convergence of many of these hesiosticlique problems.

It can be seen that there is almost nothing between the diffeciiemes over th20,10,0.2)
problems. This is a little misleading, though, as it is knowaonirChapter 7 thatlAC visits few
nodes on problems of this size and constraint density.

On the(20,10,0.5) problems, the costs of each scheme at the phase transition start&a sp

134 Chapter 8. Dynamic Variable Ordering Heuristics

out more, enabling some ranking. The order of the heuristibsaadly consistent with that seen
in Section 8.6 usingC, in thatop performs better than the new fail-first heuristics, which perfo
better than thez. Looking more closely, though, we observe theg now out-performsrdeg and
FF2.

The results presented here do not add a great deal to our krgevigfdthe various DVO
heuristics, although equally they do not significantly coritethat we have seen in Section 8.6.
The main points that arise are that the extra look-ahead ofk@ algorithm may reduce the
need for good heuristics, and that a scaling-up of these expatsrn@larger and hard&SPs is
needed if a more consistent ranking of the heuristics is to béymed. We address the latter issue
in the following section.

8.9 Scaling Behaviour of Heuristics

The empirical studies using tf20, 10) CSPs provide a preliminary picture of the relative effec-
tiveness of the DVO heuristics being studied. In order to addjdb these rankings, however,
we must examine the scaling behaviour of these heuristics bpdeabiem on large€SPs.

Two new phase transition experiments were conducted, using$keclasses(30,10,0.5)
and(50,10,0.1). The former was chosen to test the heuristics on larger, medamsity CSPs,
while the latter is the large sparse class that has been studmtsasely in Chapters 5and 7. The
size of eaclp, step for both classes is@l, and ensembles of 1,000 problems were generated at
each(n, 10, p1, p2) point. The ensembles were then searched by BotandMAC using the four
‘best’ heuristics from the studies 20, 10) problems.

Figure 8.7 plots the median consistency checking cosCain both classes of problem, using
four DVO heuristics. Cost is plotted against constraint tightngssn each case and linear scales
are used on both axes. As before, the key in each plot indidaaanking of the heuristics at the
phase transition.

This figure can be compared with Figure 8.4, as(®@ 10,0.5) problems are broadly similar
in nature to(20,10,0.5), as are th&50, 10,0.1) problems ta(20,10,0.2). In doing so, we observe
that the ranking of the heuristics in both cases change [ittie.rankings for30, 10,0.5) are the
same as foK20,10,0.5), with the gap betweenp and the others showing some growth. The
average cost of searches on #,10,0.1) problems has spread out considerably compared
to (20,10,0.2), with pp the best heuristic by some margifC-pp searches are almost half as
expensive as the next beBG-Fr2, and one-third as expensive BB-Frdeg.

Figure 8.8 plots the median consistency checking costat on both classes of problem,
using four DVO heuristics, in a similar fashion to Figure 8.7. Tigsire can be compared with
Figure 8.6 as above. Once again, the ranking of heuristicsoiadty preserved, although on
the large sparse problens:3 out-performsrdeg. On the(30,10,0.5) problemspb once again
draws clear of the other heuristics, while 0,10,0.1) there is a broader spread wibb again
the best.

The scaling-up of the empirical comparison of various DVO stios makes the overall pic-
ture clearer. Heuristiop is consistently better than the others studied, oicaks except those

8.9. Scaling Behaviour of Heuristics

Consistency Checks

Consistency Checks

800000 T T T T T
700000
600000
500000
400000
300000
200000

100000

2.5e+06

2e+06

1.5e+06

1le+06

500000 £

(30,10,0.5)

L DD 4

0
0.22 024 026 028 03 0.32 034

Constraint Tightness (p2)

Consistency Checks

135

(50,10,0.1)
180000 T T T T T T T
FFdeg —
BZ -
160000 FF2 ——-
DD -----

140000

120000

100000

80000

60000

40000

20000

L=
1 1 1 1 1 1 1

0
0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
Constraint Tightness (p2)

Figure 8.7: DVO heuristics withFC on (30,10,0.5) and(50,10,0.1) CSPs.

(30,10,0.5)
I I I MAC-IFFdegI— E

MAC-FF3 -
MAC-FF2 —--

0.25 0.26 0.27 0.28 0.29 03 0.31

Constraint Tightness (p2)

Consistency Checks

(50,10,0.1)
120000 T T T T T T T T
MAC-FFdeg —
MAC-FF3 -
MAC-FF2 ----
MAC-DD -----
100000 R, .
/ \
80000]
60000 B
40000 |] .
Iy
i/
i
.’v.f
13!
20000 i 1 1 1 1 1 1 1 1

0.530.540.550.560.570.580.59 0.6 0.610.62
Constraint Tightness (p2)

Figure 8.8: DVO heuristics withvAC on (30,10,0.5) and(50,10,0.1) CSPs.

136 Chapter 8. Dynamic Variable Ordering Heuristics

that are very densely constrained. Its performance also scalésand this has implications for

the study oMAC presented in Chapter 7. Section 7.6.3 shows that the averagstamcy check-

ing cost ofMAC-FFdeg at the phase transition of tq80,10,0.1) problem class is lower than that

for FC-Frdeg. Using heuristiob, the opposite becomes the case, and the point at which the cost
of MAC falls below that ofFC must now occur at some larger valuerpfif at all. This exposes

a shortcoming of the previous empirical studyMAC: the effect of the choice of DVO heuristic

on the relative cost scaling 6C andMAC was not considered, and it was naive to use only one
heuristic,Frdeg, in the experiments.

8.10 Comparative Ehp Behaviour

The relative incidence of exceptionally hard probleshp) behaviour is an important criterion in
assessing the performance of an algorithm-heuristic combimalibe studies oéhp behaviour
presented in Chapters 5 and 7 investigate the use of only one @U@slic,Frdeg. We briefly
consider whether the different flavours of DVO heuristic thetdnbeen examined in this chapter
exhibit noticeably different patterns ehp behaviour.

Figure 8.9 shows the median and higher percentiles of consistérecking cost foFC-Frdeg,
FC-FF2, FC-Bz andFC-pp on the(50,10,0.1) problem class examined earlier. Our existing knowl-
edge ofehps teaches us to expect only sparsely constrained classeSrto containehp in-
stances when forward checking is combined with dynamic légiardering. As expecteéhp
behaviour clearly occurs in the easy-soluble region for ea¢f [Despite the relatively limited
sample sizes of, D00 problems, searches which are orders of magnitude moresi¥pehan the
average are found. The most prominehp in Figure 8.9 is found foFC-pbp, the scheme which
shows the best avera§€ performance of those we have studied.

Overall, the patterns oéhp behaviour appear similar for all four heuristics. The affected
regions of constraint tightness are identical, and we pradgt with larger sample sizes, the
incidence and magnitude of the most extreme cases would bdlprmansistent. Although the
introduction of a DVO heuristic eliminateshp behaviour forFC on all but the most sparsely
constrained classes GEP (Chapter 5), we do not suspect that there is a good choice ofiogde
strategy that on its own can eliminate ethlps.

8.11 Consequences for the Fail-First Principle

This investigation into the nature of the fail-first principd@s partly inspired by (Hooker and
Vinay 1995), who conducted a similar investigation into biang rules for a well-knowrsAT
algorithm, the Davis-Putnam procedure. We noted at the heyggrof this chapter that Hooker and
Vinay refuted the simple principle behind this heuristic ¢ahing rules forSAT are analogous

to variable ordering heuristics f@SP algorithms). They took the accepted explanation for one
branching rule, derived a new branching rule which, assunfie@xplanation was correct, should
have been superior to the original rule in terms of the numlberodes generated, and carried
out an experiment to test this hypothesis. The new rule provdzktevorse than the original,

Consistency Checks (logscale)

Consistency Checks (logscale)

8.11. Consequences for the Fail-First Principle

1le+09

le+08 |

le+07

1e+06 |
100000 |
10000 |

1000 prenl=

FC-FFdeg

T T T T T
maximum ----- |

99.9% -----
99% -]

1 1 1 1 1
03 035 04 045 05 055 0.6
Constraint Tightness (p2)
FC-Bz
T T T T T
maximum ----- |
99.9% -~
le+09 |- 99% -]
90% -----
75% -
median —
le+08 E
1e+07_—]

1e+06 |

100000

10000 |

1000 F

0.3

035 04 045 05 055 0.6
Constraint Tightness (p2)

Consistency Checks (logscale)

Consistency Checks (logscale)

137

FC-FF2

le+09 |

1e+08 |

1e+07 |

1e+06 |

100000 -

10000 ¢

T T T T T
maximum ----- |

99.9% -----
99% -]

1000
1 1 1 1 1
03 035 04 045 05 055 06
Constraint Tightness (p2)
FC-DD
T T T T T
maximum ----- |
99.9% ---
le+09 99% -
90% -----
75% -----
median —
le+08 e
le+07 B
1le+06

100000

10000

1000 f

0.3

035 04 045 05 055 0.6
Constraint Tightness (p2)

Figure 8.9: Relativeehp behaviour of four DVO heuristics o(b0,10,0.1) CSPs.

138 Chapter 8. Dynamic Variable Ordering Heuristics

thus refuting the explanation as the true reason for the sucédbe original rule. They then

went a stage further than the work presented here on fail-firs$,doy proposing an alternative
explanation for the rule, making new predictions on the basithis explanation and showing
that these predictions were borne out by experiment. Thigiged evidence in favour of the new
explanation, as well as giving a new branching rule which segserior to the original.

There are several remaining challenges, if our conclusionrigectthat the fail-first principle
is not a good basis for variable ordering. The first is to explaliny it is not, especially since
heuristics supposedly based on it have been successfully used sitceAtalternative explana-
tion for the relative performance of variable ordering hstics is then needed. A sound principle
for variable ordering, which can be used to make reliable iptigths about the performance of
proposed heuristics, would provide the means to develop nevisties without resorting to trial
and error, as is largely the case at present. This might alsaugitikee basis for developing good
general heuristics for problems with non-binary constraitststallest remaining domain’ is often
not appropriate for such problefhs

8.11.1 Suggested limitations of fail-first

Haralick and Elliott argued that a variable ordering heigishould try to minimise the expected
branch length in the search tree, and that this would be agthiby trying to choose a variable
whose instantiation will lead to an immediate failure, assunairgearch algorithm performing
some form of lookahead. We suggest that the basic premise herengwninimising expected
branch length will not necessarily minimise the cost of searckilegtree. Conceivably, a tree
with many short branches could take longer to search than aheever longer branches.

Moreover, consider a hard insoluble problem in the phase transivhich is the kind of
problem in which an improvement in the performance of vdgatdering heuristics would have
the greatest potential benefit. These problems are hard beitasismt easy to discover that a
set of assignments cannot lead to a solution. The cause of bddhtydnere is rarely due to the
immediate failure of a variable instantiation; it more commtyofollows the complete search of
the subtrees resulting from each assignment. It is not cleaeftite, that there can be much
benefit in maximising the probability of an event which carehaoccur.

We suggest that the reason why the new fail-first heuristics fayl beabecause they simply
try to terminate the current branch as soon as possible and duaga@nough attention to what
happens next, i.e. to backtracking. Tik@ andMAC algorithms backtrack chronologically, and
if the previous variable has nothing to do with the failuneplering alternative values for it will
be a waste of effort. The previous variable is one of the ctddar the failure if there is a
constraint between the previous and current variables aswlthke assignment to the previous
variable reduced the domain of the current variable. To soxtenethe ‘smallest remaining
domain’ heuristic tends to follow a chain of variables, eaclwbich reduces the domain of the
next, because the variable which now has the smallest domais terbe one whose domain
has just been reduced by the most recent assignment. Howewemadlyi not always be true,

4An article discussing variable ordering heuristics fieary CSPs can be found online in the Constraints Archive
athttp://ww. cirl.uoregon. edu/ constraints/links/heuristics.htni.

8.12. Future Directions for DVO Heuristics 139

particularly when the constraints are sparse. We suggest thastiesiwhich give some weight

to the past degree of each variable in selecting the one to assiglowetter when backtracking

than heuristics which only take into account the future degfe variable is constrained by many
past variables, the previous variable, or at least one of thentldnstantiated variables, is likely
to be one which has reduced the domain of the current varidiiis would account for the fact

thatezg andop perform slightly better thanz andpbs.

However, we make this suggestion tentatively; if the only redeothe failure of the fail-first
principle is that it does not pay enough attention to whapleag when the algorithm backtracks,
we should expect that the proposed new heuristics would do fredeid with an algorithm which
backtracks more intelligently; in that case, the algoritieeli takes responsibility for backtrack-
ing to one of the culprits for the failure. Further empiricests combiningr, FrF2, FF3 andrr4
with FC-CBJ, however, record similar relative performances to those pteskin Section 8.6.

8.11.2 An alternative strategy?

Although it is not entirely clear why the fail-first principle not a sound basis for variable order-
ing, there is already an alternative explanation for the ssgof the ‘smallest remaining domain’
FF heuristic, in comparison with random ordering. (Nudel 1983)gasted that a good variable
ordering heuristic is one which minimises the number of nodsied in the search tree. He
developed expressions fbk, the expected nhumber of nodes visited at ldvet the tree when
finding all solutions to &SP usingFC. It is suggested that the next variable selected should be
the one minimisingNz, the number of nodes at the top level of the new subtree,Nanetc.,

in the case of ties. Sindg,; is equal to the size of the first variable’'s domain, this impthest
that at each level in the tree we should next choose the vamatilesmallest remaining domain.
Although the expression fd¥, is more complex, fofn,m, p1, p2) CSPs to which no values have
yet been assigned, it reduces to a simpler form which impliesteteof the first variable as that
with largest degree. This implies tliedeg heuristic.

It is possible that minimising the expected number of nodesedsitill prove to be a more
robust principle for variable ordering than the fail-firstqeiple. However, using this idea to
generate better heuristics thamieg is not straightforward. MinimisingN; and thenN; + N, is
only an approximation to minimising the expected total numdfenodes visited, but calculating
N1 + N2+ .. + N, can only be done for a specific ordering of all the variableshé&oty we should
calculate this quantity for every possible ordering, assigrfitsevariable in the best ordering,
repeat the process for the remainimg 1 variables and so on. Clearly this is not practicable, but
we believe that Nudel's theory could even so be the basis favidgmew heuristics for binary
CSPs. If that enterprise were successful, it might also be possible tohgseame principle to
derive heuristics for non-binary problems as well.

8.12 Future Directions for DVO Heuristics

The heuristics which attempt to minimise the constrainednabgdbiture subproblems, proposed
by (Gentet al. 1996a), offer an alternative principle for devising var@loirdering heuristics.

140 Chapter 8. Dynamic Variable Ordering Heuristics

They report thexappa heuristic producing=C searches which are on average over 10% more
efficient than those using fail-first heuristics (20,10,1.0) CSPs. However, its performance on
the more sparsely constrain€$Ps is somewhat worse than heuristesandpp, which do not
support minimising constrainedness as a general principle.ebl@r, thekappa heuristic, like
FF4, requires the tightness of the constraints between futuii@blas to be updated after each
assignment, and the potentially high cost of doing this was acbunted for. Despite this, its
good performance on the cliqy20, 10, 1.0) CSPs, where most available heuristics degenerate to
FF (or, in the case ofF4, are much worse) makes it noteworthy.

Overall, the development of good new variable ordering iséias would be considerably
simplified if they could be based on an underlying principleahhivas:

e sound, in that the greater its degree of application, theb#te resulting heuristic; and
e applicable, in that cheap heuristics which make some levedsiiraption can be used.

The investigation of heuristics based on fail-first leads us lieveethat this principle is unsound.
However, given the array of successful heuristics which hava tesigned to follow the fail-first
principle, it could be said to be applicable.

8.13 Summary

The major conclusion from this investigation is that the fa#t principle is not a sound basis for
variable ordering heuristics f@sPs. We calculated the probability that a variable will fail whe
using a lookahead search algorithm to solve birg®ps. According to the fail-first principle,
choosing the variable which maximises this probability vahd to minimise the size of the search
tree explored by the algorithm. A series of new heuristics werdvdd, based on increasingly
accurate estimates of this probability, and it was predittedif the fail-first principle is sound,
the more accurate the estimate the better the performancéddbemuThe new heuristics, among
others, were then studied empirically using both B@&eand MAC algorithms on large, diverse
classes ofn,m, p1, p2) CSPs. These showed that the predictions about the new heuristies wer
not borne out.

Further evidence against the fail-first principle is providsdthe superiority of theszg and
pD heuristics, which consider the ‘global’ degrees of variablesy ez andbbs which calculate
subproblem degrees. Other things being equal, the futuredexra variable should be a better
indication of the likelihood that it will fail than its origial degree, so that according to the fail-first
principle Bz andbbps should out-perfornszg andop.

In spite of the poor results for the new fail-first heuristics, aistxg heuristic,pb, has been
shown to perform extremely well on many classe<6P, except where the constraint graph is
fully connected, in which case in degeneratesroThe scaling of this heuristic’s effectiveness
on FC andMAC searches is also superior than the other fail-first heuristicsmed, including
FFdeg, Which has been used in the empirical studies of Chapters 5 .amte’scaling behaviour
of heuristics rather than algorithms was not considered befmarticularly in Chapter 7, whose
results would be affected somewhat by the use obthbeuristic.

8.14. Acknowledgements 141

We tentatively suggest that the reason why trying harder tdifatldoes not pay off may be
because taking into account other factors such as the cuwastraint tightness and the current
domains of adjacent variables may make the ‘improved’ Is#igs less likely to choose a variable
whose domain was reduced by the previous variable. This magecannecessary work to be
done on backtracking. Three alternative principles forgigisig variable ordering strategies have
been discussed, although these too suffer from limitations mgaef their practical application.

The current position of designing variable ordering heursstippears somewhat precarious. If
‘failing-first’ is not in fact a sound principle, designing hétics based on this principle will only
work by accident, if they also happen to be an implementatfahetter principle. Until a reli-
able theory exists, supported by empirical results, which carskd to predict the performance
of different heuristics on different types of problem, pregs in the development of improved
heuristics will continue to be made only by trial and error.

8.14 Acknowledgements

This study of dynamic variable ordering heuristics has beadaoted jointly with Barbara Smith,
who is responsible for the probabilistic analysis of the fadtfprinciple, presented in Section 8.3,
and the discussion on Nudel’s theory, presented in Section 8.11.

142 Chapter 8. Dynamic Variable Ordering Heuristics

143

Chapter 9

Conclusions

The major results and contributions of the studies presentddsithesis are discussed below. A
note on the limitations of these studies is then followed by arsarg of the future work that has
been suggested in Chapters 5 to 8.

9.1 Contributions

A basic complete search algorithm forGsP combines some form of forward and backward
search move. In addition, a preprocessing phase may be addefibtoeesome level of consis-
tency in the problem before search, and dynamic variablerimglenay be used to improve the
efficiency of the search. The choice of a particular searchrithgo for a type of problem is
made easier by knowledge of its performance over a wide rahgmblem types, and its relative
susceptibility to unexpected behaviour. Every one of thesectspelating to complete search
algorithms has been examined in detail through rigouroysirécal study.

9.1.1 Experimental methodology

The empirical studies presented throughout have been desigttethe call by (Hooker 1994)
for an ‘empirical science of algorithms’ in mind. The implentetion of the search algorithms
was discussed in detail in Chapter 2, and methods of randomamnodpeneration were explained
in Chapter 3. A generic framework for the experiments was dait in Chapter 4, and a consistent
nomenclature for the description of problems and algorithas been adopted throughout. The
software used to conduct the empirical studies has also beenawaitigble via the World Wide
Web, as detailed in Appendix A.

9.1.2 Exceptionally hard problems

Chapter 5 examined the nature and relative incidence ofptxecelly hard problemehp) be-
haviour for a number of completeSP search algorithms. The study lookedetips at both a

144 Chapter 9. Conclusions

‘macroscopic’ level, considering their incidence over pepioins of problems, and at a ‘micro-
scopic’ level, examining in detail the search process for madividual instances.

An explanation for the occurrence of these exceptional searalas proposed: that the first
few variable instantiations lead to the creation of a submwbivhich is insoluble and causes
the algorithm to thrash. Although it had previously been suggksiat these problems are not
inherently difficult, the exact cause ehp behaviour inCSPs had not been examined in depth
before.

The effect orehp behaviour of more advanced forms of forward and backwardcbemove
were then studied empirically. Maintaining consistency indieof future variables was shown to
deal withehps resulting from subproblems with lower levels of inconsisteritwas also shown
that intelligent backjumping can be effective in quickly sdeng subproblems with higher levels
of inconsistency. A significant result was that the use of ‘fadtfidynamic variable ordering
appears to eliminatehp behaviour from more densely-constrained classe33st.

9.1.3 Phase transitions in polynomial problems

Chapter 6 demonstrated that phase transition methodology eapplied to the polynomial-
complexity computational tasks of establishing arc and patisiseency inCSPs. It was shown
that these tasks exhibit phase transition behaviour very mualogous to that associated with
the NP-complete task of finding solutions to these problems. dmédogy had not been made
before.

Arc and path consistency were also considered as preprocessisdstepe search. As had
been shown elsewhere, they are generally ineffective in the: prablem regions. However, we
derived an expression for the expected cost ofAi8 arc consistency procedure on problems
in these regions which showed it to be inexpensive. It was alsorskiwat around the AC phase
transition peak, both the average cost and maximum c@sL®frow at a rate that is significantly
slower than the worst-case analysis suggests, supporting previoiler silaims.

9.1.4 Positioning of the MAC algorithm

Chapter 7 positioned the behaviour of two algorithms whichntaén arc consistency during
search with respect to two which perform a lower level of locddath The empirical study in-
volved the search of over five millio@SPs of varying size, topology and expected difficulty by
the MAC, MAC-CBJ, FC andFC-CBJ algorithms.

As had been observed in previous studies, the extra lookahaastbfesults in smaller search
trees and more frequent instances of backtrack-free searbh.cdnsistency checking cost of
MAC was shown to be poor on smaller classe€8P, again in agreement with previous studies.
However, by studying the independent effects of alterindplanm size and topology it was shown
that as problem size increases, the consistency checking coa®fscales at a much more
favourable rate than that f&:C, and saVAC becomes significantly cheaper on large spases.
Study of the effects of combiningAC with CBJ showed that little benefit was gained, except for
problems thaMAC found exceptionally hardMAC-CBJ showed the most stable performance in

9.2. Limitations of these Studies 145

terms ofehp behaviour of all the algorithm that have been studied hetlkoagh a few examples
were still observed.

9.1.5 Scrutiny of the fail-first principle

Chapter 8 studied the “fail-first’ principle as a basis for theige of dynamic variable ordering
heuristics, and concluded that it is not sound for this purposepragbabilistic model of the
principle (provided by Barbara Smith) was used to derive a&searf new heuristics which applied
the principle more accurately and so should have led to mo@erifisearch. Empirical study of
these heuristics, and several others, on large, diverse classe®ethowed that the predictions
about the new heuristics were not borne out. Further evidagast the fail-first principle was
also provided by the apparent superiority of simplified versioisvo existing heuristics which
should have deteriorated search efficiency.

9.2 Limitations of these Studies

The scope of this thesis has been restricted to the study of cterg@arch methods applied to
random binanCSPs. While the focus on complete methods is an acceptable riésirjthe use of
relatively unstructured ensembles of test problems hinderapblicability of the results observed
to ‘real world’ constraint satisfaction problems. We have alseauggested that problems with
more structured constraint graphs, varying domain sizes aimtistidual constraint tightnesses
are likely to affect the performance of techniques to essaltionsistency (Chapter 6), and it is
also expected that they would have an impact on the effeesseaf variable ordering strategies
and backjumping techniques.

A first step towards more structured random problems would begkef an extended gener-
ation model for binaryCSPs, such as that considered in Section 3.7. This model, used byt (Gen
et al. 1996a), allows for variation of individual constraint tiglesses and domain sizes. As ex-
plained in Section 3.7, these extensions were not used here doue increase in the complexity
of the empirical studies that would have arisen from introdgdivo extra degrees of freedom.

Ultimately, the need to expose search techniques to ‘realdwsituations will require the
consideration of non-binaigSPs. At present, however, a method of generating non-bicays
with interesting properties in sufficient quantities is nadiy available. A move to non-binary
constraints would also require re-implementation of the sealgorithms used.

9.3 Future Work

Within the scope of complete search algorithms and bi@s¥ys, the studies reported in Chap-
ters 5 to 8 suggest a series of future studies. These are summarised bel

The role of dynamic variable ordering in eliminatiegp behaviour on densely-constrained
CSPs (Chapter 5) needs to be examined in more detail. Why thigiigcle is effective for dense
problems but not for sparse problems is still unclear. Investiganto the existence of a ‘double’
peak in the higher percentiles of search costd@sPs, similar to that observed by (Hogg and

146 Chapter 9. Conclusions

Williams 1994) in graph colouring, has been started by (St Grant 1997). This analysis
currently considers only theT algorithm on cliqueCSPs, but it is expected that this work will
be extended to other algorithms and wider varieties of bl

The work on phase transition behaviour in arc and path consis{@itapter 6) has already
been followed up by (Gerdt al. 1997b), who introduce the new constrainedness parankgter,
The development of a similar parameter to predict the looatibthe path consistency phase
transition remains an open task. Section 6.8 also suggests ¢hatCtland PC phase transitions
could be useful in the search forGsP ‘constraint gap’, which might explain the existence of
ehps.

A shortcoming of the study aflAC (Chapter 7) is that more efficient arc consistency tech-
niques exist, which could produce more effici®fXC searches. Subsequent studies using differ-
ent implementations MIAC (for instance (Beseére and Rgin 1996)) appear to confirm this. The
behaviour of theAC3-basedVIAC is still of some interest, however, and further investigation of
the scaling relationship between it aR@ on sparsecSPs is desirable. Chapter 8, for instance,
suggests that the choice of DVO heuristic used by the algoritemsffect this relationship.

The examination of heuristics for dynamic variable ordeti@hpapter 8) leaves open a chal-
lenge to develop a principle which properly explains the ulsefss of techniques assumed to
follow the ‘fail-first’ principle. If a new principle is devisgwhich is both sound and applicable,
then this should lead to the development of improved searctisties.

147

Appendix A

An Online CSP Experimentation
Laboratory

Software capable of reproducing the experiments repohtemlighout this thesis is available on
the World Wide Web ahtt p: // www. scs. | eeds. ac. uk/ csps/ . The contents of this page in-
clude:

¢ An online copy of this thesis and other publications whichehased the software.
e A pseudo-random problem generator module, implemented as-a&l@ss.

e A set of binary executable programs incorporating problemegation, search and statisti-
cal collection within a variety of experimental environni&nThe source language is C++,
and executables are provided for use under a number of popisating systems.

e Instructions for performing phase transition experimentsgiis software.
e Links to interestingCSP research pages.

e Links to otherCSP software repositories.

148 Appendix A. An Online CSP Experimentation Laboratory

149

References

J. F. Allen. 1983. Maintaining knowledge about temporal interva@mmunications of the
ACM26(11):832-843.

F. Bacchus and P. van Run. 1995. Dynamic Variable Ordering in CSPs. In U. Montinari
and F. Rossi., edsPrinciples and Practice of Constraint Programming - CP-986lume 976 of
Lecture Notes in Computer Scien@&8-275. Springer-Verlag.

A. B. Baker. 1995.Intelligent Backtracking on Constraint Satisfaction Prabke Experimental
and Theoretical Result$h.D. Dissertation, Department of Computer and Informaicience,
University of Oregon.

C. Bessere and J.-C. Regin. 1995. Using Bidirectionality to Speed Up Arc-Consistency Pro-
cessing. In M. Meyer., edConstraint Processingolume 923 ofLecture Notes in Computer
ScienceSpringer-Verlag. 157-169. Proceedings of the ECAI-94R&bop on Constraint Pro-
cessing.

C. Bessere and J.-C. Regin. 1996. MAC and Combined Heuristics: Two Reasons to Forsake
FC (and CBJ?) on Hard Problems. Mminciples and Practice of Constraint Programming -
CP-96 volume 1118 of_ecture Notes in Computer Sciené&—75. Springer-Verlag.

C. Bessere, E. C. Freuder and J.-C. Regin. 1995. Using Inference to Reduce Arc Consis-
tency Computation. In C. S. Mellish., e®roceedings IJCAI-95/0lume 1, 592-598. Morgan
Kaufmann.

C. Bessere. 1994. Arc consistency and arc consistency agairificial Intelligence65:179—
190.

J. R. Bitner and E. M. Reingold. 1975. Backtrack Programming TechniguEeammunications
of the ACM18:651-656.

B. Bollobas. 1985. Random GraphsAcademic Press.

J. E. Borrett and E. P. K. Tsang. 1995. Observations on the usefulness of arc consistency
preprocessing. Technical Report CSM-236, Department of CiwengBeience, University of
Essex, UK.

J. E. Borrett, E. P. K. Tsang and N. R. Walsh. 1996. Adaptive Constraint Satisfaction: The
Quickest First Principle. In W. Wahlster., e®roceedings ECAI-96160-164. John Wiley &
Sons, Ltd.

150 References

D. Brélaz. 1979. New methods to color the vertices of a graglemmunications of the ACM
22(4):251-256.

P. Cheeseman, B. Kanefsky and W. Taylor1991. Where the Really Hard Problems are. In
Proceedings IJCAI-92volume 1, 331-337. Morgan Kaufmann.

S. A. Cook. 1971. The Complexity of Theorem-Proving ProceduresProceedings of the 3rd
Annual ACM Sympaosium on the Theory of Compuytlsd—158.

M. C. Cooper. 1989. An Optimal k-Consistency Algorithrrtificial Intelligence41:89-95.

J. M. Crawford and L. D. Auton. 1996. Experimental Results on the Crossover Point in
Satisfiability ProblemsAtrtificial Intelligence81:31-57. Special Issue on Frontiers in Problem
Solving: Phase Transitions and Complexity.

A. Davenportand E. P. K. Tsang.1995. An empirical investigation into the exceptionallydhar
problems. Technical Report CSM-239, Department of Compbtegnce, University of Essex,
U.K.

J. de Kleer. 1986. An Assumption-Based TM@utificial Intelligence28:127-162.

J. de Kleer. 1989. A comparison of ATMS and CSP techniques.Plceedings IJCAI-89
volume 1, 290-296. Morgan Kaufmann.

R. Dechter and I. Meiri. 1994. Experimental evaluation of preprocessing algorithongén-
straint satisfaction problemdrtificial Intelligence68(2):211-242.

R. Dechter and J. Pearl.1988. Network-based heuristics for constraint-satisfactioblgms.
Artificial Intelligence34:1-38.

R. Dechter and J. Pearl. 1989. Tree clustering for constraint networktificial Intelligence
38:353-366.

R. Dechter. 1990. Enhancement Schemes for Constraint Processing: Baukigntearning
and Cutset Decompositioartificial Intelligence41:273-312.

M. S. Fox. 1987. Constraint-Directed Search: A Case Study of Job-Shop SdngdiMorgan-
Kaufmann.

E. Freuder and R. Wallace.1992. Partial constraint satisfactiofutificial Intelligence58:21—
70.

E. Freuder. 1982. A Sufficient Condition for Backtrack-Free Searclournal of the ACM
29(1):24-32.

D. Frost and R. Dechter.1994. In search of the best constraint satisfaction seardProlceed-
ings AAAI-94 301-306.

D. Frost and R. Dechter. 1995. Look-ahead Value Ordering for Constraint Satisfadiorb-
lems. In C. S. Mellish., edRroceedings IJCAI-95/0lume 1, 572-578. Morgan Kaufmann.

M. R. Garey and D. S. Johnson.1979. Computers and Intractability: A Guide to the Theory
of NP-Completenes®New York: W. H. Freeman and Company.

References 151

J. Gaschnig.1977. A General Backtrack Algorithm that Eliminates Most Rediant Tests. In
Proceedings IJCAI-7,A#olume 1, 457. Morgan Kaufmann.

J. Gaschnig.1979. Performance measurement and analysis of certain ségocihems. Tech-
nical Report CMU-CS-79-124, Carnegie-Mellon Universitiitsburgh USA.

I. P. Gent and T. Walsh. 1994a. Easy Problems are Sometimes Hakdificial Intelligence
70:335-345.

I. P. Gent and T. Walsh. 1994b. The Hardest Random SAT Problems. In B. Nebel and L.
Dreschler-Fischer., edsProceedings Kl-94: Advances in Atrtificial Intelligence. L&erman
Annual Conference on Artificial Intelligenc855-366. Springer-Verlag.

I. P. Gent and T. Walsh. 1995a. Computational Phase Transitions from Real Problems. In
Proceedings of the 8th International Symposium on Al (ISAJ-356—364.

I. P. Gent and T. Walsh. 1995b. The TSP Phase Transition. Technical Report 178-95, De-
partment of Computer Science, University of Strathclyde, Biesented at the 1st International
Workshop on Al and OR, Timberline, Oregon, June 1995.

I. P. Gentand T. Walsh.1996a. Phase Transitions and Annealed Theories: Number®arng
as a Case Study. In W. Wabhlster., €ergceedings ECAI-96.70-174. John Wiley & Sons, Ltd.

I. P. Gent and T. Walsh. 1996b. The Satisfiability Constraint GapArtificial Intelligence
81:59-80. Special issue on Frontiers in Problem Solving: Phasesitions and Complexity.

I. P. Gent, E. Maclintyre, P. Prosser and T. Walsh.1995. Scaling Effects in the CSP Phase
Transition. In U. Montinari and F. Rossi., edBrjnciples and Practice of Constraint Program-
ming - CP-95volume 976 ol_ecture Notes in Computer Scien@@—87. Springer-Verlag.

I. P. Gent, E. MaclIntyre, P. Prosser, B. M. Smith and T. Walsh.1996a. An Empirical Study of
Dynamic Variable Ordering Heuristics for the Constraint Sfatition Problem. In E. C. Freuder.,
ed.,Principles and Practice of Constraint Programming - CP-96lume 1118 of ecture Notes
in Computer Sciencd 79-193. Springer-Verlag.

I. P. Gent, E. Maclintyre, P. Prosser and T. Walsh.1996b. The Constrainedness of Search. In
Proceedings AAAI-96/0lume 1, 246-252. AAAI Press.

I. P. Gent, S. A. Grant, E. Maclintyre, P. Prosser, P. Shaw, B. Srith and T. Walsh. 1997a.
How Not To Do It. Research Report 97.27, School of Computedi€t,) University of Leeds.

I. P. Gent, E. Maclintyre, P. Prosser, P. Shaw and T. Walsh1997b. The Constrainedness of
Arc Consistency. IrPrinciples and Practice of Constraint Programming - CP-97 dfupear)
Lecture Notes in Computer Science, 328-341. Springeryerl

N. E. Gibbs, W. G. Poole and P. K. Stockmeyer.1976. An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matri8AM Journal of Numerical Analysis3:236—250.

S. W. Golomb and L. D. Baumert. 1965. Backtrack ProgrammingJournal of the ACM
12:516-524.

152 References

C. P. Gomes, B. Selman and N. Crato.1997. Heavy-Tailed Distributions in Combinatorial
Search. InPrinciples and Practice of Constraint Programming - CP-97 dfpear) Lecture
Notes in Computer Science, 121-135. Springer-Verlag.

S. A. Grant and B. M. Smith. 1995. The Phase Transition Behaviour of Maintaining Arc
Consistency. Research Report 95.25, School of Computer Studindversity of Leeds.

S. A. Grant and B. M. Smith. 1996a. The Arc and Path Consistency Phase Transitions. In
E. C. Freuder., edRrinciples and Practice of Constraint Programming - CP-86&cture Notes
in Computer Science, 541-542. Springer-Verlag. Extendsttact with poster presentation.

S. A. Grant and B. M. Smith. 1996b. The Arc and Path Consistency Phase Transitions.
Research Report 96.09, School of Computer Studies, Univerkitgeds.

S. A. Grant and B. M. Smith. 1996¢c. The Phase Transition Behaviour of Maintaining Arc
Consistency. In W. Wahlster., etProceedings ECAI-96L.75-179. John Wiley & Sons, Ltd.

S. A. Grant. 1994. Cooperative Search. Final Year Report for the dedr8eSt. in Computer
Science, Department of Computer Science, University otlsthade.

C.-C. Han and C.-H. Lee. 1988. Comments on mohr and henderson’s path consistency algo-
rithm. Artificial Intelligence36:125-130.

R. Haralick and G. Elliott. 1980. Increasing tree search efficiency for constraint satisfact
problems Artificial Intelligencel4:263—-313.

T. Hogg and C. P. Williams. 1994. The Hardest Constraint Problems: A Double Phase Transi-
tion. Artificial Intelligence69:359-377.

J. N. Hooker and V. Vinay. 1995. Branching Rules for Satisfiabilityournal of Automated
Reasonindl5:359-383.

J. N. Hooker. 1994. Needed: An Empirical Science of Algorithm&perations Research
42(2):201-212.

J. N. Hooker. 1996. Testing Heuristics: We Have It All Wrongournal of Heuristicsl:33—42.
D. S. Johnson. 1996. A Theoretician's Guide to the Experimental Analysis Ajf

gorithms. Invited talk at AAAI-96. Partial draft available an World Wide Web at
http://ww. research. att.conf ~dsj/ papers/exper. ps.

H. Kautz and B. Selman.1992. Planning as Satisfiability. Proceedings ECAI-92359-363.
John Wiley & Sons, Ltd.

S. Kirkpatrick and B. Selman. 1994. Critical Behaviour in the Satisfiability of Random
Boolean Expressionscience264:1297-1301.

D. E. Knuth. 1981.The Art of Computer Programmingolume 2: Seminumerical Algorithms.
Addison-Wesley.

G. Kondrak and P. van Beek. 1997. A Theoretical Evaluation of Selected Backtracking
Algorithms. Artificial Intelligence89:365-387.

References 153

G. Kondrak. 1994. A Theoretical Evaluation of Selected Backtrackingagkithms. Master's
thesis, Department of Computing Science, University of Albefidmonton, Alberta, Canada.

V. Kumar. 1992. Algorithms for Constraint Satisfaction Problems: A SyrvAl Magazine
13(1):32-44.

A. C. M. Kwan, E. P. K. Tsang and J. Borrett. 1995. Phase Transitions in Finding Multi-
ple Solutions in Constraint Satisfaction Problems.Phaceedings of the CP-95 Workshop on
Studying and Solving Really Hard Probleri49-129. Laboratoire d’Informatique de Marseille,
France.

A. K. Mackworth and E. C. Freuder. 1985. The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfaction ProbleAxificial Intelligence25:65-74.

A. Mackworth. 1977. Consistency in networks of relatiorsgtificial Intelligence8:99-118.
P. Meseguer1989. Constraint satisfaction problems : an overvidBhCommunicationg:3-17.

S. Minton, M. D. Johnston, A. B. Philips and P. Laird. 1992. Minimizing conflicts: a heuris-
tic repair method for constraint satisfaction and schedulirabl@ms. Artificial Intelligence
58:161-205.

D. G. Mitchell and H. J. Levesque. 1996. Some Pitfalls for Experimenters with Random
SAT. Atrtificial Intelligence81:111-125. Special Issue on Frontiers in Problem Solvings@h
Transitions and Complexity.

D. Mitchell, B. Selman and H. Levesque1992. Hard and Easy Distributions of SAT Problems.
In Proceedings AAAI-92159-465.

S. Mittal and B. Falkenhainer. 1990. Dynamic Constraint Satisfaction ProblemsPtaceed-
ings AAAI-90 25-32.

R. Mohr and T. Henderson. 1986. Arc and path consistency revisite&ttificial Intelligence
28:225-233.

U. Montanari. 1974. Networks of Constraints: Fundamental Properties angliégiions to
Image Processindnformation Scienc&:95-132.

B. Nadel. 1989. Constraint satisfaction algorithn@@omputational Intelligenc:188—-224.

D. Navinchandra and D. H. Marks. 1987. Design Exploration Through constraint Relaxation.
In Expert Systems in Computer-Aided Desiglsevier Science Publishers.

B. Nudel. 1983. Consistent-Labeling Problems and their Algorithms: dex@d-Complexities
and Theory-Based HeuristicArtificial Intelligence21:135-178.

E. M. Palmer. 1985. Graphical Evolution New York: Wiley.

S. K. Park and K. W. Miller. 1988. Random Number Generators: Good Ones are Hard to Find.
Communications of the ACBI1(10):1192—-1201.

P. Prosser. 1993. Hybrid Algorithms for the Constraint Satisfaction Hesh. Computational
Intelligence9(3):268-299.

154 References

P. Prosser.1994. Binary constraint satisfaction problems: some are handerdthers. In A. G.
Cohn., ed.Proceedings of ECAI-9495-99. John Wiley & Sons, Ltd.

P. Prosser.1995. MAC-CBJ: maintaining arc consistency with conflict-dtesl backjumping.
Technical Report 95-177, Department of Computer Scienoe/dusity of Strathclyde, UK.

P. Prosser. 1996. An Empirical Study of Phase Transitions in Binary Coristr8atisfaction
Problems. Artificial Intelligence81:81-109. Special Issue on Frontiers in Problem Solving:
Phase Transitions and Complexity.

J.-F. Puget. 1994. A C++ Implementation of CLP. IRroceedings of SPICIS-94 (Singapore
International Conference on Intelligent Systems)

P. W. Purdom. 1983. Search Rearrangement Backtracking and Polynomiaiafge Time.
Artificial Intelligence21(1):99-116.

F. Rossi. 1995. Redundant Hidden Variables in Finite Domain Congti@imblems. In M.
Meyer., ed.,Constraint ProcessingSpringer-Verlag. chapter 12, 205-233. Presented at the
ECAI-94 Workshop on Constraint Processing.

D. Sabin and E. Freuder.1994. Contradicting Conventional Wisdom in Constraint Satsbn.
In A. G. Cohn., ed.Proceedings ECAI-94125-129. John Wiley & Sons, Ltd.

D. Sabin and E. C. Freuder.1997. Understanding and Improving the MAC Algorithm. In G.
Smolka., ed.Principles and Practice of Constraint Programming - CP-97dfpear) Lecture
Notes in Computer Science, 167-181. Springer-Verlag.

D. Sabin, M. Sabin, R. D. Russel and E. C. Freuder1995. A Constraint-Based Approach
to Diagnosing Software Problems in Computer Networks. In UndMoari and F. Rossi., eds.,
Principles and Practice of Constraint Programming - CP-96lume 976 ofLecture Notes in
Computer Science63-480. Springer-Verlag.

B. Selman, H. Levesque and D. Mitchell.1992. A new method for solving hard satisfiability
problems. InProceedings AAAI-92140-446.

H. Simonis and M. Dincbas. 1987. Using an Extended Prolog for Digital Circuit Design. In
IEEE International Workshop on Al Applications to CAD Systemg&fectronics 165-188.

B. M. Smith and M. E. Dyer. 1996. Locating the Phase Transition in Constraint Satisfaction
Problems. Artificial Intelligence81:155-181. Special issue on Frontiers in Problem Solving:
Phase Transitions and Complexity.

B. M. Smith and S. A. Grant. 1995a. Sparse Constraint Graphs and Exceptionally Hard
Problems. In C. S. Mellish., ed?roceedings IJCAI-95/0lume 1, 646-651. Morgan Kaufmann.

B. M. Smith and S. A. Grant. 1995b. Where the Exceptionally Hard Problems Are. In
Proceedings of the CP-95 Workshop on Studying and SolvindyRéald Problems172-182.
Laboratoire d'Informatique de Marseille, France.

B. M. Smith and S. A. Grant. 1997. Modelling Exceptionally Hard Constraint Satisfaction
Problems. In G. Smolka., ed®rinciples and Practice of Constraint Programming - CP-97 (to
appear) Lecture Notes in Computer Science, 182—-195. Springeayer

References 155

B. M. Smith. 1994. Phase Transition and the Mushy Region in Constraint Satwsfdroblems.
In A. G. Cohn., ed.Proceedings ECAI-94100-104. John Wiley & Sons, Ltd.

B. M. Smith. 1995. In Search of Exceptionally Difficult Constraint Satedfan Problems. In
M. Meyer., ed. Constraint Processingspringer-Verlag. chapter 8, 139-155. Presented at the
ECAI-94 Workshop on Constraint Processing.

R. M. Stallman and G. J. Sussman. 1977. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysigtificial Intelligence9:135-
196.

E. P. K. Tsang, J. Borrett and A. C. M. Kwan. 1995. An attempt to map the performance
of a range of algorithm and heuristic combinations. In J. Hallad.,Proceedings AISB-95
203-216. I0S Press, Amsterdam.

E. P. K. Tsang. 1993. Foundations of Constraint SatisfactioAcademic Press.

R. J. Wallace. 1993. Why AC-3 is Almost Always Better than AC-4 for EstabligiiArc
Consistency in CSPs. Iproceedings IJCAI-93/olume 1, 239-245. Morgan Kaufmann.

C.J. Wang and E. P. K. Tsang.1991. Solving constraint satisfaction problems using neural-
networks. InProceedings IEE Second International Conference on Artifideural Networks
295-299.

C. P. Williams and T. Hogg. 1993. The Typicality of Phase Transitions in Sear€lmmputa-
tional Intelligence9(3):211-238.

C. P. Williams and T. Hogg. 1994. Exploiting the Deep Structure of Constraint Problems.
Artificial Intelligence70:73-117.

