
A Mathematical Framework for a GeneralPurpose Constraint Management SystembySteven James Carden
Submitted in accordance with the requirementsfor the degree of Doctor of Philosophy.

The University of LeedsSchool of Computer Studies
June 1998The candidate con�rms that the work submitted is his own and thatappropriate credit has been given where reference has been made to thework of others.

AbstractThe use of constraints in engineering for designing complex models is very pop-ular. Current constraint solvers are divided into two broad classes: general anddomain speci�c. Those that are general can handle very general constraint prob-lems but are typically slow; while those that are domain speci�c can handle only aspeci�c type of problem but are typically fast. For example, numerical algorithmsare slow but general, whilst local propagation techniques are fast but limited tosimple problems.It is generally acknowledged that there is a close coupling between engineeringconstraints and geometric constraints in the design process and so the solution ofconstraint problems consisting of engineering and geometric constraints is an impor-tant research issue. Some authors attempt to overcome the expressive limitations ofdomain speci�c solvers by using hybrid systems which try to �nd a balance betweenthe speed of domain speci�c solvers and the generality of general solvers.Previous research at the University of Leeds has led to the development of a num-ber of domain speci�c solvers that are capable of solving geometric and engineeringconstraint problems separately. In particular, the Leeds solvers are incremental andcan �nd solutions when a new constraint is added very quickly. This thesis investi-gates the use of a hybrid of the various Leeds solvers with an aim to interactivelysolving constraint problems in engineering design. This hybrid would have the speedadvantages of the domain speci�c solvers and the expressiveness of a more generalsolver. In order for the hybrid to be constructed, commonalities of existing engineer-ing constraint solvers must be identi�ed. A characterisation of existing constraintsolvers leads to the identi�cation of a number of issues that need to be addressedbefore the hybrid can be built.In order to examine these issues, a framework for the constraint satisfactionprocess is presented that allows abstractions of constraint de�nition, constraint rep-resentation and constraint satisfaction. Using the constraint satisfaction framework,it is possible to study the quality of solution of constraint solvers. This leads to theidenti�cation of important problems in current constraint solvers.The constraint process framework leads to a study of the use of various paradigmsof collaboration within the hybrid, such as sequential, parallel and concurrent. Thestudy of the quality of solution allows concrete statements to be made about thehybrid collaborations. A new incremental constraint solver is presented that usesthe hybrid collaboration paradigms and provides a �rst step towards a powerfulengineering constraint solver. i

AcknowledgmentsFirst of all, I would like to thank Pete Dew, my supervisor. Although I wasjealous of more ordered projects, I enjoyed the relatively free hand with just enoughrope to hang myself. Pete was (usually) there with an encouraging word and justenough guidance to keep me on the right track. Either that or I �nally convincedhim that I was right!Terrence Fernando, my second supervisor, was also a great support to me, aswas the whole Virtual Working Environment group, especially Martin Thompson,Mingxian Fa, Yung-Teng Tsai and Edgard Lamounier.The people in BGT and the AI lab also kept me comparatively sane and cheerful,especially on trips to the Pennines.Russ Bubley was a huge help throughout the three years I have known him andshared an o�ce with him. We continually bounced ideas o� each other and whilstI tried not to be too ignorant of what he was talking about, he usually managedto put me straight on my project. His capitulation at squash was also particularlygratifying.My housemates, Mark, Fred and Stuart, were great fun to be with and we'vehad some great parties.My parents and siblings, Jim, Carol, Neil and Claire, put up with many a demon-stration at the dinner table about what constraints actually were. I think they'restill none the wiser.And �nally, I would like to thank Alice, who, besides being wonderful and sym-pathetic all the way through, also proof-read my thesis, even though it must havesounded like gobbledigook to her.

ii

Contents
1 Introduction 11.1 Objectives of this thesis . 31.2 Incremental constraint solvers . 51.3 Thesis organisation . 72 Related Work 92.1 The theory of constraints . 102.1.1 Dimensions . 122.1.2 Decomposition of constraint problems 132.1.3 Hybrid constraint solvers . 142.1.4 Solution spaces . 152.2 Constraints in engineering design . 162.3 Constraint solvers . 202.3.1 General constraint solvers . 232.3.1.1 Numerical solvers . 232.3.1.2 Symbolic solvers . 242.3.2 Finite domain constraint solvers 242.3.2.1 Backtracking . 252.3.2.2 Forward-checking . 252.3.2.3 Other �nite domain research 252.3.3 Geometric constraint solvers 262.3.3.1 Under-constrained geometric constraint solvers . . . 272.3.3.2 Well-constrained geometric constraint solvers 302.3.3.3 Over-constrained geometric constraint solvers 322.3.4 Functional constraint solvers 332.3.4.1 Over-constrained functional constraint solvers 372.3.5 Maintenance and physical constraint solvers 402.4 Conclusions . 40iii

3 Solving Problems by Decomposition 423.1 Examples of current constraint solvers 453.1.1 DCM . 453.1.2 INCES . 483.1.3 IGCS . 503.1.4 Connectivity Analysis . 513.2 Decomposition strategies . 553.2.1 Examples of decomposition strategies 563.2.2 Decomposition to domain speci�c subproblems 573.2.3 Advantages of decomposition strategies 583.2.4 Limitations of decomposition strategies 593.2.5 Incremental issues in decomposition strategies 623.2.6 Conclusions . 653.3 Ordering strategies . 653.3.1 Examples of ordering strategies 663.3.2 Ordering strategies for a constraint solver 673.3.3 Incremental issues in ordering strategies 693.3.4 Conclusions . 693.4 Solution of subproblems . 703.4.1 Examples of solution of subproblems 713.4.2 Solving using domain speci�c knowledge 713.4.3 Incremental issues in solving subproblems 723.4.4 Conclusions . 723.5 Conclusions . 724 Constraint De�nition 754.1 Entities . 774.2 Constraints . 794.3 Constraint problems . 844.4 Constraint solvers . 904.5 Dimensions . 914.5.1 De�nition of dimensions . 914.5.2 Constrainedness . 944.6 Conclusions . 98
iv

5 Constraint Representation 1005.1 Representing entities and constraints 1025.1.1 Finite-domain entities and constraints 1025.1.2 In�nite-domain entities and constraints 1035.2 Representing constraint problems . 1035.3 Example constraint representation schemes 1055.3.1 Algebraic representation . 1055.3.2 Relationship graph representation 1065.3.3 Undirected graph representation 1065.3.4 Hypergraph representation . 1075.3.5 Bipartite representation . 1085.3.6 Valid representation schemes 1095.4 Reductions . 1105.5 Conclusions . 1176 Constraint Satisfaction 1196.1 Constraint solution . 1206.1.1 Solution spaces . 1216.2 A framework for the solution process 1226.2.1 Solution steps . 1236.2.2 Properties of solution steps 1246.2.3 Solution processes . 1276.2.3.1 Solution processes always head towards a solution . . 1306.2.4 Solution process properties . 1316.2.5 Using local properties to draw conclusions about processes . . 1356.2.6 Consequences of the Local-Global Theorem 1366.3 Enrichment of the constraint satisfaction framework 1376.3.1 Constraint priorities . 1386.3.2 Variable-driven satisfaction 1406.3.3 Backtracking . 1416.3.4 Incremental satisfaction . 1436.4 Conclusions . 1457 Hybrid Collaboration 1487.1 Using domain speci�c knowledge in constraint solvers 1507.1.1 Using domain speci�c knowledge is fast 1527.1.2 Using domain speci�c knowledge is not enough 153v

7.2 Hybrid constraint solvers . 1547.2.1 BALI . 1587.2.2 Enhanced solution spaces . 1607.3 A simple example hybrid constraint solver 1617.4 Paradigms of collaboration . 1667.4.1 Sequential hybrids . 1667.4.1.1 Limitations of serial hybrids 1687.5 Solver collaboration language . 1707.6 An example of many solvers in serial 1727.6.1 Case study . 1727.6.2 The solvers used . 1727.6.3 Results . 1747.7 Conclusions . 1758 New Directions 1798.1 Decomposition strategy . 1808.2 Ordering strategy . 1868.3 Solution and recombination . 1878.4 Advantages of the Erep/IGCS hybrid 1908.5 Limitations of the Erep/IGCS hybrid 1908.6 Incremental implications of new solver 1918.7 Conclusions . 1959 Future Work 1979.1 The interactive constraint solver . 1979.1.1 The Erep/IGCS hybrid solver 1989.1.2 A standard interface for solvers 1989.1.3 Complex case studies . 1989.1.4 Incremental issues . 1999.2 The mathematical framework . 1999.2.1 Inequality constraints . 2009.2.2 Probabilistic constraints . 2009.3 The Virtual Environment . 2009.3.1 Parallel/concurrent collaboration 2019.3.2 Direct manipulation issues . 2019.4 Summary . 201vi

10 Conclusions 203A Dimensions 210B CRS Reductions 213C Local - Global Theorem 217D Enhanced solution spaces 226E Paradigms of collaboration 230E.1 Parallel hybrids . 230E.1.1 An example of solvers in parallel 236E.2 Concurrent hybrids . 239F Solver collaboration language 242G An example of many solvers in serial 247G.1 Case study . 247G.2 The solvers used . 248G.2.1 Expected behaviour of hybrid 249G.3 Results . 250G.4 Conclusions . 254H Glossary 257

vii

List of Figures2.1 A Racing Car in a Space with Obstacles 172.2 The Con�guration Space Map for the Racing Car 182.3 The Product Design Process . 192.4 A Hierarchy of Constraint Solvers . 222.5 An Arm with Two Joints and the Relationship Graph for the Problem 272.6 An Example of Locus Analysis . 292.7 A Pentagon De�ned by Distance and Angle Constraints 312.8 The Constraint Graph for the Pentagon 312.9 Equation Graph for Constraints C1 to C6 342.10 Tree-like Representation for Equation Graph 352.11 Typical result of Gaussian elimination on linearised constraint problem 362.12 Example of Incremental Insertion of Constraint. Arrows in GraphIndicate Order of Satisfaction . 382.13 Example Constraint Graph for Hierarchical Constraint Problem . . . 393.1 Constraint problem P describing a pentagon 463.2 Decomposed subproblems of problem P 473.3 Recombined subproblems of constraint problem P 473.4 Constraint/Entity graph of �gure 2.9 493.5 Decomposed subproblems of �gure 3.4 503.6 The inverse operation method in IGCS (from [112]) 513.7 A connectivity graph for constraint problem P 523.8 Residual sets for constraint problem P 533.9 Graph of trade-o� between complex decomposition and complex solvers 613.10 An rigid body composed of two triangles 643.11 An Arm with Two Joints and the Relationship Graph for the Problem 674.1 Placing a queen on a chessboard . 784.2 A point, a line and a line segment on a plane 79viii

4.3 An equality constraint and a distance constraint 834.4 A solution to constraint problem G 854.5 A solution to constraint problem F 865.1 A Puma Robot Arm . 1015.2 A Hierarchy of Constraint Representation Schemes 1025.3 An Example of a Relationship Graph with a Solution to the Graph . 1065.4 An example of an undirected constraint graph with a solution to thegraph. 1075.5 An example of a constraint hypergraph with a solution to the graph. 1085.6 Example of a Constraint/Entity Graph 1095.7 Constraint/Entity Representation for Constraint Problem 1135.8 New Construct for Constraint Edges 1155.9 New Construct for Constraint Loops 1155.10 Representing Quaternary Constraints in a Constraint/Entity Graph . 1165.11 A Hierarchy of Constraint Representation Schemes 1186.1 Solving the 4 queens problem . 1427.1 Two Blocks with an Against Constraint 1527.2 A Chain of Blocks with Against Constraints 1537.3 Two Rods . 1547.4 Problem G00 . 1557.5 A solution to constraint problem G of example 4.8 1567.6 Solutions of constraint problem G00 with l = 0; m = 8; n = 8 1577.7 The Internal Combustion Engine . 1637.8 A Serial Hybrid of INCES and IGCS 1647.9 Sequential Collaboration . 1667.10 INCES as a sequential hybrid . 1667.11 IGCS as a sequential hybrid . 1687.12 Two Rods . 1687.13 The 4 bar linkage problem . 1717.14 Case Study of n Piston Problems Linked Together 1737.15 Serial Hybrid used to Solve n Piston Problems Linked Together . . . 1737.16 A comparison of the C05NBC function and INCES algorithm withthe hybrid solver . 1748.1 Constraint problem Q using distance and angle constraints 182ix

8.2 Constraint/Entity graph for constraint problem Q 1828.3 Constraint problem R with three tangent circles 1838.4 Constraint/Entity graph for constraint problem R 1838.5 Decomposition of Constraint/Entity graph for problem R 1858.6 A constraint problem with �; � and constraints 1888.7 Two triangles with a common edge 1938.8 Constraint graph for �gure 8.7 . 1938.9 Iteration two of incremental solution of �gure 8.7 1938.10 Iteration ten of incremental solution of �gure 8.7 194E.1 Parallel Collaboration . 232E.2 A simpli�cation of the internal combustion engine 237E.3 Concurrent Collaboration . 240G.1 Case Study of n Piston Problems Linked Together 248G.2 Serial Hybrid used to Solve n Piston Problems Linked Together . . . 249G.3 NAG function with bad initial guess 250G.4 NAG function with good initial guess 251G.5 Solving with INCES . 252G.6 Hybrid solution using IGCS and INCES 252G.7 Solving the functional problem only using INCES without globalparametric constraint list . 253G.8 Solving the geometric problem only using IGCS without the depen-dency hierarchy list . 254G.9 Solution using a hybrid algorithm of IGCS without depH list andINCES without global parametric constraint list 255G.10 A comparison of the C05NBC function and INCES algorithm withthe hybrid solver . 256

x

List of Tables2.1 Some Relations between Two Finite Domain Variables 113.1 Control scheme for solving constraint problems 433.2 Control scheme for solving constraint problems using domain speci�cknowledge and hybrid constraint solvers 445.1 Valid Constraint Representation Schemes 1107.1 Two database tables (from [5]) . 1607.2 The result of joining the book and sales tables (from [5]) 1607.3 Results for Solving ICE engine 50000 times on an SGI Indy 1657.4 Solver collaboration language (adapted from BALI [84]) 1718.1 Constraints that can be handled by Erep and IGCS 181F.1 Solver collaboration language (adapted from BALI [84]) 242

xi

Nomenclature
General nomenclatureIR the set of real numbers,Q the set of rational numbers,Z the set of integer numbers,N the set of natural numbers,; the empty set,jAj the number of elements in set A,(D1 � � � � �Dn) the Cartesian Product of the sets ofD1; : : : ; Dn,[the union of two sets,\ the intersection of two sets,n the set minus of two sets,max the larger of two numbers,min the smaller of two numbers,2 is a member of,, if and only if,A 6= B A is not equal to BA � B A is a subset or equal to B,^ logical and.Constraint de�nitionD a domain, a set,E an entity,DE the domain of entity E,v a value for an entity, v 2 DE,xii

E = v an assignation for entity E to the value v,so that DE = fvg,E = S an assignation of entity E to the set of val-ues S, so that DE = S,aRb a binary relation R between a and b, R �Da �Db,S(a1; : : : ; an) an n-ary relation S between a1; a2; : : : ; an,S � Da1 � � � � �Dan ,f(x1; : : : ; xn) a boolean test function for a relation S,f(x1; : : : ; xn) = 1, (x1; : : : ; xn) 2 S,CTP Constraint test procedure, the boolean testfunction for a relation,C a constraint,fC(x1; : : : ; xn) a constraint test procedure for a constraintC, fC(x1; : : : ; xn) = 1 , (x1; : : : ; xn) 2C,� a set of entities,	 a set of constraints,P a constraint problem P = (�;),Pi a constraint subproblem (�i;	i), �i ��;	i � 	,fx1 = y1; : : : ; xn = yng a con�guration for a constraint problemP = (� = fx1; : : : ; xng;),CjE the enhanced constraint of C with respectto E, CjE = C � DEC , where DEC is thedomain of those entities not relevant to C,�C the imposed set of C,j�Cj the arity of C - the number of variablesthat a�ect C,dim a function from domains to the naturalnumbers,e usually an entity,c usually a constraint.Constraint representation xiii

CRS a Constraint Representation Scheme,�; � constraint representation schemes,A;B problems in representation schemes,� a function from representation scheme to representationscheme, a representation,� � � representation scheme � is equivalent to representationscheme �, a Constraint/Entity graph,E the set of entities in the algebraic representation,C the set of constraints in the algebraic representation,n;m usually used to represent integer counters,e an edge in a graph.Constraint satisfactionD a solution space, a set of con�gurations,D(0) the initial domain of the solution process,(D1 � � � � �Dn),k; i; j an integer, usually representing an inter-mediary step,	k a subset of 	, usually used to representintermediary constraints to consider,D(k) the domain of possible solutions at step k,D(k � 1) 	k�! D(k) a solution step with respect to 	k,TC2	C the intersection of all C in 	,	0 subset of 	, usually representing a local setof constraints,C(0) the set of solutions to all of the constraintsin 	0, equivalent to TC2	 C,� an integer, representing a terminal step ina process,D(�) �nal domain of the solution process, theterminal solution space,D(0) 	0�!� D(�) a sequence of solution steps, a solution pro-cess,fk(k;D(k � 1)) a function, equivalent to a soluton step.xiv

Constraint priorities�i a constraint priority strength, a lower i is more impor-tant,�0 a `required' constraint strength,�i a constraint priority variable,Hi a constraint hierarchy level,H the set of all constraints in the constraint hierarchy,better a comparator between two solutions,S0 the set of solutions to the required constraints,S the set of solutions to the constraint hierarchy usingthe comparator better,� a set of constraint priority constraints.Variable driven satisfaction�k a set of entities,D(k � 1) �k�! D(k) a variable driven solutoin step.Backtrackingr; s integers, used to represent intermediatesteps in a solution process,D(r) 	r;::: ;	(r�s+1) ��������� D(r � s) backtracking by s steps.Incremental solutionD(k � 1) C�! D(k) an incremental solution step, adding a newconstraint,D(k � 1) E�! D(k) an incremental solution step, adding a newentity.Hybrid constraint solversSi a constraint solver,D�(i) the domain at step i of the entities in �,xv

D�j�[�0 (i) the enhanced domain of D�(i) with re-spect to �0,D�j�0 (i) the embedded domain of �0 in � at step i,(geom; (x; y; z)) a geometric variable geom which has x ro-tational degrees of freedom, y scalar de-grees of freedom and z translational de-grees of freedom,Pgeom a geometric subproblem,Palg an algebraic subproblem,f a function for combining solution spacesfound in a parallel collaboration, a choice function for selecting solutionsspaces in a concurrent collaboration.A constraint management system(Pi;Si) A subproblem-solver pair. Pi isa subproblem, Si is a set of con-straint solvers.4ABC A triangle formed from three ver-tices, A, B and C.A;B;C;D;E; F;G;H; I; J Typically entities in a constraintproblem. Sometimes residual sets.< A partial order.(Pi;Si); (Pj;Sj) Sequential collaboration.(Pi;Si) k (Pj;Sj) Parallel collaboration.De A decomposition strategy. De-composes a constraint problemand a set of solvers into a set ofsubproblem-solver pairs.Destrong components Decompose a constraint probleminto subproblems that are stronglyconnected and subproblems thatare not strongly connected.
xvi

Deconnected components Decompose a constraint probleminto subproblems that are con-nected.Cl Typically a cluster of constraintsand entities describing a rigidbody.s Typically a constraint solver.s(Pi) : D �! D(i) Initiating constraint solver s onconstraint problem Pi using initialsolution space D results in solu-tion space D(i).y ; z A path from y to z in a graph.T A type of constraint.�; �; Types of constraint capable of be-ing solved by Erep or IGCS.Q;R Typically constraint problems.C1; C2; C3 Typically constraints.Circ1 A circle.

xvii

Glossary of Solvers
Solver Reference DescriptionConcept Modeler [100] Solves triangular systems of equations us-ing local propagation. Solves simulta-neous subproblems using numerical tech-niques.Connectivity Analysis [67] Solves geometric constraint problems bysplitting problems into residual sets andthen solving residual sets in order.DCM [86] Solves well-constrained geometric prob-lems by identifying subproblems consist-ing of only three objects that can be �xed.Erep [14] Very similar to DCM. Solves well-constrained geometric problems by build-ing up clusters of objects that can be rela-tively �xed and combining clusters to giverigid bodies.GCE [59] Geometric constraint solver using locusanalysis to solve simultaneous subprob-lems and action analysis to solve simplesubproblems by local propagation.Gr�obner bases [16] Symbolic algebraic solver acting on sys-tems of equations.ICBSM [27] Geometric constraint solver using localpropagation to solve 3D geometric prob-lems without loops using local propaga-tion.

xviii

Solver Reference DescriptionIGCS [112] Improvement of ICBSM to handle loopsand more complex problems.INCES [62] Incremenal version of Concept Modeler.Allows geometric constraint problems tobe described and solved.MechEdit [15] Geometric constraint system for solvingsystems of planar linkages. Uses localpropagation and numerical techniques.Newton-Raphson [70] Numerical solver that takes a system ofequations and �nds solution using itera-tive techniques.SkyBlue [94] Solves hierarchical constraint problemsusing local propagation. Can solve forconstraints added incrementally.

xix

Chapter 1IntroductionConstraints have become popular in the engineering design �eld as a means of de-signing and building complex product models [3]. The power of constraints as amodelling paradigm lies in their descriptive power and the implicit knowledge thatlies within a constraint's description. A constraint can vary from a nonlinear equa-tion to a complex description of the assembly of a geometric model. Consequently,constraints are used in a number of di�erent contexts and solutions to constraintproblems are found using many di�erent techniques, depending on the nature of theconstraints involved.A system of nonlinear equations for example, with no discernible structure, willtypically be solved using numerical [70] or symbolic techniques [16, 56]. Generalconstraint solvers such as numerical or symbolic techniques are slow but can �ndsolutions for a wide variety of constraint problem.On the other hand, a geometric constraint problem, consisting of relative posi-tioning instructions for lines, points and circles, can be solved relatively e�cientlyusing degrees of freedom analysis [27, 59] or ruler-and-compass construction tech-niques [14, 86]. The geometric constraint solver takes advantage of domain speci�cknowledge of the geometric problem domain. In the case of degrees of freedom anal-ysis, the domain speci�c knowledge is that the geometric objects - the lines, pointsand circles - can only translate and rotate in space in a very limited number of ways.Degrees of freedom analysis uses this knowledge to manipulate the rigid bodies tosatisfy the constraints applied to them. In the case of ruler-and-compass construc-tion, the domain speci�c knowledge used is that all geometric constraints can bedescribed using distance and angle constraints and that using such constraints, anyunknown object can be positioned relative to two known objects using two con-straints. Ruler-and-compass solvers then position the geometric objects one by one1

Chapter 1 2 Introductionuntil all of the constraints have been satis�ed. Constraint solvers that take advan-tage of knowledge implicit in their domain are referred to as domain speci�c in thisthesis.Domain speci�c constraint solvers include �nite domain solvers, scheduling con-straint solvers, functional constraint solvers and physical constraint solvers. Finitedomain constraint solvers take advantage of the �nite number of possible solutionsby using sophisticated exhaustive search techniques. Scheduling constraint solversuse the linear nature of time to help simplify the search for solutions. Functionalconstraint solvers simplify systems of equations to identify subproblems that aresimple to solve. Physical constraint solvers take advantage of inertia, momentumand other physical laws to simplify the calculation of new positions, reusing old in-formation as much as possible. For reasons of brevity, only �nite domain, geometricand functional constraint solvers are studied in detail in this thesis.It is generally acknowledged that there is a close coupling between functional con-straints and geometric constraints [3, 19, 64, 100] in the design process, particularlyin the early stages of conceptual design. A constraint solver for engineering designmust therefore be capable of handling both functional and geometric constraintssimultaneously. Similarly, �nite domain, scheduling and physical constraints areintegral parts of the design process and should be considered simultaneously also.The current state of the art is that domain speci�c constraint solvers will al-ways outperform general solvers for problems within their domain. Not surprisingly,domain speci�c solvers are inappropriate for problems outside this domain.Some authors attempt to overcome the expressive limitations of domain speci�csolvers by using a general solver as a backup for when the domain speci�c solvercannot �nd a solution [15, 62, 85, 87, 112]. Similar to the terminology adopted byProsser [91], solvers which use multiple solution techniques interacting with eachother are referred to as hybrid constraint solvers in this thesis.There has been a long-standing research project at the University of Leeds touse constraints to build complex engineering models within a Virtual Environment[29{32, 62, 78, 112]. Three main constraint solvers have been developed for thisproject:� ICBSM [31, 32] was developed by Fa et al. to build geometric constructs ofengineering models. The key innovations of ICBSM were the Allowable Mo-tion method of solving the constraint problem and the Automatic ConstraintRecognition method for using direct manipulation to build the model. Al-lowable Motion calculates the possible movements of geometric objects in the

Chapter 1 3 Introductionmodel depending on the constraints placed on the objects. Allowable Motionis described in more detail in section 2.3.3.1 and [27]. Automatic ConstraintRecognition utilised the user's manipulation of objects within the model tosuggest possible constraints that could be applied. This simpli�ed the con-struction of the geometric model.� In ICBSM, all geometric objects had to be applied one after the other in asequential fashion. ICBSM could not cope with the simultaneous de�nitionof geometric constraints. Consequently, IGCS [112] was designed to allowsimultaneous constraints to be solved.� ICBSM could only deal with geometric constraints, such as forcing two objectsto remain in contact with each other, or to have two cylinders concentric.INCES [62] was developed in order to solve systems of equations describingthe function of an engineering model rather than the physical form. INCEScould also solve the geometric constraints describing the engineering modelby converting them to equations. INCES cannot solve all such systems ofequations and so resorts to a numerical algorithm when it cannot succeed onits own.The purpose of this thesis was to investigate existing constraint solvers and tosee if Fa's Allowable Motion approach could be applied to more general problems. Inparticular, it was realised that, as it stood, Allowable Motion could not be applied toloops and functional problems. Since these are integral parts of engineering designconstraint problems, it was important that they be integrated into any constraintsolver that would handle engineering design constraint problems.A glossary is included in this thesis that can be used for reference. Words denotedby ay indicate de�nitions that can be found in the glossary. The glossary is includedin appendix H.1.1 Objectives of this thesisA broad objective of the Virtual Working Environment group in the University ofLeeds is to develop an interactive environment for developing engineering designswithin a Virtual Environment. The interactive constraint modelling subgroup ismainly involved with developing algorithms and prototypes that use constraints asa paradigm for describing and �nding solutions to engineering designs. Previously,the constraint modelling subgroup developed ICBSM, IGCS and INCES and these

Chapter 1 4 Introductionalgorithms are capable of describing and solving a variety of constraint problems.The objectives of the research in this thesis were to:� Investigate ways of generalising the techniques developed in ICBSM, IGCSand INCES in such a way that more problems can be solved at little or no lossof speed.� Study the state of the art in constraint solvers and identify commonalitiesamongst them that can be utilised.� Create an interactive constraint solver capable of dealing with the needs ofengineers using available technology.Progress on these research goals are reported in this thesis:� Current engineering design constraint solvers have been studied and theirstrengths and weaknesses identi�ed. This allows the creation of a taxonomy ofconstraint solvers by their strengths. The use of domain speci�c knowledge toimprove the e�ciency of these constraint solvers has been explored. Domainspeci�c knowledge has been identi�ed as an important means of improving thee�ciency of constraint solvers.� The characterisation of current constraint solvers has led to an identi�cationof the common processes adopted by these constraint solvers. The divide-and-conquer strategy adopted by virtually all current constraint solvers uses adecomposition strategy to identify subproblems to solve; an ordering strategyto decide in which order to solve the subproblems; and a set of solution tech-niques to solve the subproblems. The use of this divide-and-conquer strategyleads to a number of issues and questions that need to be addressed.� In order to address these issues, a mathematical description of the constraintprocess has been created which is capable of describing general engineering de-sign constraint problems, and the representation and solution of engineeringconstraint problems. The mathematical framework allows the description ofmost current constraint solvers and consequently provides a unifying frame-work for the constraint solvers. The framework also captures the concepts ofconsistency, soundness and completeness which describe the quality of solu-tion of the constraint solvers. A theorem has been devised that allows thequality of solution of constraint solvers to be deduced from the workings ofthe constraint solver.

Chapter 1 5 Introduction� Using the mathematical characterisation of the constraint problem and con-straint solution, a study of hybrid collaborations has been carried out. Theuse of hybrid collaborations, such as sequential, parallel and concurrent, al-lows existing solvers to be joined together in a formal way that allows newsolvers to be created. The mathematical framework developed allows concretestatements to be made about the nature of these solvers.� A new constraint solver has been de�ned that consists of a hybrid of Erepand IGCS. This constraint solver combines the ability of Erep to solve well-constrained geometric constraint problems with loops and the ability of IGCSto solve under-constrained geometric constraint problems.1.2 Incremental constraint solversConstraint solvers take a set of constraints and variables and �nd a number of so-lutions to the constraint problem de�ned by the constraints and variables. Mostconstraint solvers solve a constraint problem from scratch. That is the whole prob-lem is de�ned before solutions to the problem are found.However, this is not how designs are created. Most designs evolve over a periodof time as designers add new objects or new constraints. The specify-then-solveapproach of existing constraint solvers means that every time a new constraint isadded, the whole constraint problem needs to be resolved.To counter this problem, incremental constraint solvers have been developed.Incremental constraint solvers assume that a constraint problem will evolve over timeand that at every iteration of the design process, a set of variables and constraintsis added to the existing constraint problem and new solutions to the constraintproblem need to be found.The challenge for incremental solvers is to �nd solutions to the new problem asquickly as possible. Most current incremental constraint solvers try to do this byreusing the information found by solving the previous constraint problem.For example, assume that a constraint problem P1 has been solved for and a setof solutions S1 has been found. Then a set of new constraints and variables is addedto P1 to give P2. Solutions must now be found for P2 as quickly as possible.There are several sources of information that can be used to assist incrementalconstraint solution. The number, type and quality of solutions in S1 can help toindicate solutions to P2. For example, if P1 has no solutions and S1 is empty, then

Chapter 1 6 Introductionadding more entities and constraints cannot increase the number of solutions andso P2 will have no solutions either.The most useful source of information to assist incremental solution is the processwhereby P1 was solved. If P2 is a similar problem to P1 then it will probably besolved in a similar fashion. Consequently, it may be possible to reuse some of theinformation used to solve P1 in order to solve P2.For example, suppose P1 was solved by splitting it into a number of subproblemsthat were solved in the order: P 01; P 02; P 03; P 04:Suppose also that the new constraints and variables are added to subproblems P 03.Assuming that P2 can be solved in the same way as P1, then it can probably be splitinto a similar set of subproblemsP 01; P 02; P 003 ; P 004 ; P 005 :In particular, P 01 and P 02 are the same because they are not a�ected by the newconstraints and variables. Thus P 01 and P 02 do not need to be resolved, saving timeand e�ort.Incremental solvers such as INCES [62] and SkyBlue [94] try to take advantage ofthis structure and so speed up solution of each iteration of the design process. IGCS[112] tries to solve for a new constraint by manipulating objects whilst maintainingold constraints. Thus, when a new constraint is added, only that constraints needsto have solutions found for as all other constraints have already been solved for.In general, the aim of a specify-then-solve constraint solver is to be able tosolve a constraint problem in time O(n), where n is the number of constraints. Anincremental constraint solver aims to solve for a new constraint in time O(1).A constraint problem is well-constrained if it has as many constraints as vari-ables. A well-constrained problem usually has a �nite number of solutions. Aconstraint problem is under-constrained if it has more variables than constraints.An under-constrained problem usually has an in�nite number of solutions. A con-straint problem is over-constrained if it has more constraints than variables. Anover-constrained problem usually has no solutions. A more precise de�nition ofthese terms is left to later in this thesis.A constraint problem usually progresses from being under-constrained to beingwell-constrained to being over-constrained. Initially, a constraint problem has no

Chapter 1 7 Introductionvariables and no constraints. The user will then add a number of variables. Atthis point, the problem is under-constrained as no constraints have been created.Gradually, the user will add more and more constraints to the problem until itbecomes well-constrained. The user may then add more constraints and the problembecomes over-constrained.Thus an incremental solver that allows the user to add constraints and variablesone at a time must be able to deal with under-, well- and over-constrained prob-lems. However, few constraint solvers can do this. Most constraint solvers can onlysolve problems that are one of under-, well- and over-constrained. ICBSM [27], forexample, cannot cope with cycles in constraint graphs. In fact, cycles correspondto well-constrained subproblems and ICBSM is particularly well suited to under-constrained problems.Therefore, a good incremental constraint solver will be one that reuses previousinformation well and also can handle under-, well- and over-constrained problems.Since incremental solvers are an important means of solving constraint problemsquickly, and therefore in an interactive environment, they form a signi�cant part ofthis thesis.1.3 Thesis organisationThis thesis is divided into ten chapters including this introduction. Chapter 2presents a detailed study of current constraint solvers with an aim of categoris-ing them and understanding their underlying principles. Chapter 2 also discussessubsidiary research on set theory, dimensions and some basic relational algebra.Chapter 3 takes the characterisation of the constraint solvers in chapter 2 andidenti�es the common features of these constraint solvers. In particular, this chap-ter notes that most existing constraint solvers use a divide-and-conquer approach,whereby a decomposition strategy is used to identify subproblems; an ordering strat-egy is used to determine in which order subproblems are to be solved; and a set ofsolution techniques �nd solutions to the subproblems. A detailed study of eachstrategy leads to a number of issues that need to be addressed. In order to studythese issues thoroughly, it is �rst necessary to understand the constraint solutionprocess in detail. In particular the incremental issues associated with each strategyare identi�ed.Consequently, chapters 4, 5 and 6 formalise the constraint process with an aimof capturing the various properties of constraint solvers. Chapter 4 de�nes the

Chapter 1 8 Introductionconstraint problem in terms of its constituent parts. Chapter 4 also discusses thenotion of the dimension of a set and uses this to describe certain types of constraintproblem. Chapter 5 discusses the problems of representing a constraint problem on acomputer. The various di�erent representation schemes currently used are comparedand a representation scheme capable of describing general constraint problems isidenti�ed.Chapter 6 presents an abstraction of the constraint satisfaction process, wherebyconstraint solvers take as input a constraint problem and produce as output a setof solutions. The importance of properties such as consistency , completeness andsoundness of constraint solvers is highlighted and a theorem is presented that allowsstatements to be made about constraint solvers' properties depending on individualsteps. In order to prove the exibility of the constraint satisfaction abstraction, it isused to describe several advanced constraint solution techniques such as backtrack-ing , constraint priorities and incremental techniques.The constraint process abstraction built up over chapters 4, 5 and 6 is then usedin chapter 7 to discuss the use of domain speci�c knowledge in constraint solversand also the use of more than one constraint solver to build up hybrid systems. Thevarious paradigms available for joining solvers together are introduced in terms of thesatisfaction framework and demonstrated using examples. A hybrid collaborationlanguage is used to describe the interaction of constraint solvers in a hybrid.Chapter 8 uses the hybrid collaborations identi�ed in chapter 7 to build a newhybrid constraint solver consisting of IGCS and Erep. Since IGCS can solve under-constrained geometric constraint problems and Erep can solve well-constrained geo-metric constraint problems with loops, the hybrid should be able to solve constraintproblems consisting of well- and under-constrained subproblems. Correspondingly,the power of IGCS has been increased at little computational cost and a constraintsolver more appropriate for engineering design has been created.Chapter 9 discusses future work to realise the goal of an interactive constraintbased system for engineering design. Chapter 10 presents conclusions from the workin this thesis.

Chapter 2Related WorkThis thesis investigates the use of hybrid constraint solvers using domain speci�cknowledge using case studies in engineering design. This chapter describes the state-of-the-art in constraint-based design, hybrids and domain speci�c constraint solvers.A number of constraint solvers have been studied so that an abstract frameworkfor constraint solution can be developed which can then be used to study hybridconstraint solvers.The abstraction of the constraint satisfaction process leads to the study of di-mensions, decomposition of constraint problems, the study of solution spaces andthe use of hybrids to solve constraint problems. Work related to these topics iscovered in section 2.1.Section 2.2 discusses the state-of-the-art in constraint solution for engineeringdesign. Section 2.3 describes a number of constraint solvers. The solvers are cat-egorised and discussed in terms of �gure 2.4. General constraint solvers consist ofalgebraic or numerical techniques and are introduced in section 2.3.1.Finite domain constraint solvers are a well-understood type of domain speci�csolver where objects in constraint problems have only a �nite size. Although notcurrently used much in engineering design, �nite domain solution techniques have alarge body of literature and form a useful basis for discussing constraint satisfaction.Finite domain solvers are described in section 2.3.2.Geometric constraint solvers are used in engineering design to capture the de-signer's intent. For example, if a designer draws a line that happens to be vertical,then it is likely that the designer intended that line to be vertical no matter whatelse happened to the model. Consequently, the designer's intent, to have a verticalline, is retained through the use of constraints. The use of geometric constraints isbecoming more widespread and they are now available in commercial CAD packages9

Chapter 2 10 Related Worksuch as Unigraphics [117] and Pro/ENGINEER [20]. Geometric constraint solutionis discussed in section 2.3.3.Functional constraint solvers are also becoming popular in engineering design.Functional constraint solvers are used to describe the function of an engineeringdesign in terms of algebraic equations. These are discussed in section 2.3.4.Constraints are also being used in maintenance and physical simulation. This isan exciting new development for the use of constraints and is still a relatively newdevelopment. The state-of-the-art is covered in section 2.3.5.Section 2.4 presents conclusions from this chapter.2.1 The theory of constraintsA large number of problems in arti�cial intelligence and computer science can bedescribed as constraint satisfaction problems. As such, many researchers have in-vestigated e�cient methods of solving constraint satisfaction problems and a largebody of literature exists. Kumar [60], Dohmen [22] and Meseguer [81] present sur-vey papers on constraint satisfaction algorithms and Ja�ar and Maher [52] discussconstraint logic programming - the merger between constraint satisfaction and logicprogramming.A constraint problem consists of a set of objects and a set of restrictions onthe values the objects can take. A constraint satisfaction algorithm attempts to�nd solutions to the constraint problem using a number of heuristic techniques. Asimpli�cation of constraint satisfaction is that of relational algebra [5]. In relationalalgebra, a �nite number of objects with a �nite number of relations on them arequeried and the result is a set of solutions to the query.Finite domain constraint satisfaction [103,114] is equivalent to relational algebraalthough the relations used are more complex. For example, a relation between two�nite domain objects that can each take n values is represented by the n� n tableof values that are allowed. Table 2.1 demonstrates the de�nition of the standardrelations x = y and x 6= y, where x and y both have domains f0; 1; 2g. A 1 inposition x = a; y = b means that x = a; y = b is allowed in the relation. A 0 inthe same position means that x = a; y = b is not permitted. For example, for therelation x = y, when x = 1; y = 2, the value in the table is 0 and so this con�gurationis not allowed. The other two relations de�ned, x � y and x � y, indicate relationsthat cannot be simply described using relational algebra.The general concept of constraint problems allows objects to have in�nite do-

Chapter 2 11 Related Workx = y x x 6= y x0 1 2 0 1 20 1 0 0 0 0 1 1y 1 0 1 0 y 1 1 0 12 0 0 1 2 1 1 0x � y x x � y x0 1 2 0 1 20 1 1 1 0 0 0 1y 1 1 1 0 y 1 1 0 12 1 1 1 2 0 1 0
Table 2.1: Some Relations between Two Finite Domain Variablesmains. Likewise, constraints can be described using an in�nite number of tuplesand are also called in�nite domain. Such a de�nition allows many more di�cultproblems to be described using constraints, such as geometric problems [58,86,112],algebraic problems [62, 98] and scheduling problems [124]. However the use of in�-nite domain constraints negates the use of the search algorithms prevalent in �nitedomain constraint satisfaction become impractical for in�nite domain constraintsatisfaction.The use of techniques other than search form an important area of research forin�nite domain constraint problems. Solvers that tackle in�nite domain problemsare discussed in more detail later in this chapter.Some authors have compromised between �nite domain and in�nite domain con-straint satisfaction by using integer constraints. For example Ja�ar et al. [51] discussthe use of integer constraints and suggest that the restricted class of integer con-straint they use \can be solved more e�ciently than in the general case but whichremains reasonably expressive".Other authors have generalised constraints to allow more general structures.Bistarelli et al. [10] describe constraint satisfaction problems in terms of semiringbased structures. The advantage of such a generalisation is that it describes not onlythe type of constraint satisfaction problem discussed above, but also fuzzy problems,weighted problems and partial constraint satisfaction. The semiring formalisationis elegant but somewhat cumbersome for the purposes of this thesis.In order to combat problems that have too many constraints, Borning et al. [11]introduce constraint hierarchies which allow the creation of constraint problems

Chapter 2 12 Related Workwhere not all of the constraints need to be satis�ed. Constraint hierarchies havebecome an important weapon in a constraint programmer's arsenal and as such areused in many di�erent applications such as SkyBlue [94], Di�erential Manipula-tion [43] and Multi-Garnet [95]. Constraint hierarchies are described in more detailin section 2.3.4.1.The common link between all of these theories is that a constraint problem is a setof objects with domains and a set of constraints which are relations. Many constraintsatisfaction techniques take advantage of the size of the domains of the objects or ofdecomposing the constraint problem. Consequently, the dimension of a domain isdiscussed in section 2.1.1 and work using the decomposition of constraint problems isdiscussed in section 2.1.2. There exist a number of constraint satisfaction algorithmsthat �nd solutions by using hybrid solvers. These are investigated in section 2.1.3.The concept of a solution space is also signi�cant in this thesis and related work oncon�guration spaces is presented in section 2.1.4.2.1.1 DimensionsResearchers such as Latham and Middleditch [67], Fa et al. [26, 27, 31, 32], Tsai etal. [112] and Kramer [57{59] use the dimension of an object as a measurement ofprogress towards solution. Fa et al., Tsai et al. and Kramer also use the dimension ofgeometric objects to provide e�cient interactive constraint satisfaction. The notionof dimension is also associated closely with the constrainedness of a problem [67].The dimension of an object is a measure of the freedom of an object in terms of thenumber of possible values or positions that can be assigned to the object.For example, a 0-dimensional object only has a �nite number of possible values orpositions, whereas a 1-dimensional object can be assigned values from some subsetof the real line.Dimensions for simple geometric objects and constraints are straightforward andwell-understood. However, the generalisation of dimension to general constraintsand objects has received little attention. Latham and Middleditch assume thatconstraints and objects have a dimension but note that it is very di�cult to providea formal de�nition of dimensions for general sets due to the existence of Peano curvesand other space-�lling curves.For example, the dimension of a point moving in three dimensional space, IR3,is 3, as the point needs three parameters to fully de�ne it. Similarly, the dimensionof a variable that can take any value in the set of integers, Z, is 1, as the variable

Chapter 2 13 Related Workneeds one parameter to fully de�ne it. However, the dimension of a variable thatcan take any value in the set Z2 is more di�cult to de�ne. Space �lling curves, suchas the Peano curve, mean that it is possible to de�ne a mapping from Z2 to Z suchthat, for all intents and purposes, they are the same set. Consequently, Z2 couldhave dimension 1 or dimension 2. Such questions need to be dealt with to have acommon de�nition of the dimension function.For the purposes of this thesis, the identi�cation of the constrainedness of con-straint problems is very important. The constrainedness of a constraint problemis related to the number of solutions that the constraint problem has. Simply put,a constraint problem is well-constrained if the constraint problem has only a �nitenumber of solutions. A constraint problem is under-constrained if it has an in�nitenumber of solutions and is over-constrained if it has no solutions.An investigation has been made into the de�nition of a dimension function andmanifolds have been identi�ed as ful�lling the most important properties of thedimension function. Since the use of the dimension function is more important thanthe precise de�nition, the de�nition used in this thesis is given in full in appendix A.The reader is referred to [107] for a more detailed discussion of manifolds.2.1.2 Decomposition of constraint problemsMany constraint solvers attempt to solve constraint problems by decomposing alarge constraint problem into a number of smaller subproblems and solving themseparately. In practice, this is a variant of the Divide-and-Conquer strategy em-ployed in computer programming and is very e�ective. The decomposition allowsthe identi�cation of subproblems that can be solved quickly and easily. The resultsof solving these subproblems can then have e�ects for the rest of the problem, simpli-fying other subproblems. Decomposition of constraint problems forms an importantpart of the research in this thesis. In particular, decomposing a complex constraintproblem into a number of subproblems that can be solved simply using di�erentsolution techniques allows exible and e�cient solution.Solvers such as D-Cubed [86], Erep [39], Connectivity Analysis [67], INCES [62]and IGCS [112] use decomposition to subproblems to aid solution. For example, Erepidenti�es clusters of geometric objects that can be de�ned relative to each other.The clusters are then combined recursively to give solutions to the whole problem.INCES identi�es subproblems that cannot be solved using local propagation andthen uses numerical solution to solve them.

Chapter 2 14 Related WorkFor �nite domain constraint satisfaction problems, Freuder and Hubbe [36] havepresented an algorithm for extracting a particular subproblem from a constraintproblem. This algorithm can be used to extract a subproblem that is known tobe unsolvable and discard it, restricting the search for a solution to the remainingsubproblems.Latham and Middleditch [66,67] present an algorithm called Connectivity Anal-ysis that will decompose a constraint problem into a number of well-balanced sets.The well-balanced sets correspond to well-constrained subproblems. This allows theidenti�cation of under- and over-constrained subproblems as well as identifying pre-cisely which objects need to be more or less constrained by adding or subtractingconstraints respectively.Connectivity Analysis also provides an ordering for the well-balanced sets sothat the constraint satisfaction process can use information from previously solvedwell-balanced sets to aid solution of other well-balanced sets.2.1.3 Hybrid constraint solversThe decomposition of constraint problems means that a problem P is divided into anumber of subproblems P1; : : : ; Pn which are solved using the same algorithm. Thelogical extension of this paradigm is to still decompose P into P1; : : : ; Pn but tosolve the various Pi using di�erent solution algorithms. This technique is variouslycalled cooperation, combination or hybrid constraint solution. In this thesis, the useof multiple solvers to solve subproblems will be called hybrid constraint solution.The use of multiple constraint solvers dates back to the introduction of con-straints in Sketchpad [108] in 1963. There local propagation was used until it couldproceed no further and then the problem was `relaxed' using numerical techniques.Similar techniques followed until Prosser [91] suggested the use of hybrid algorithmsfor �nite domain constraint satisfaction.At that point, there existed several constraint satisfaction algorithms in use inthe �nite domain �eld. A collection of algorithms looked at the future e�ect of anaction to investigate possible failure. Another collection of algorithms looked atpast information to backtrack from current failure. Prosser presented algorithmsthat used both types of search. These hybrid algorithms proved very successfuland were both more e�cient [116] and less prone to extraordinary failure [105] thannon-hybrid solvers.Although Prosser's hybrid algorithms do not decompose constraint problems, the

Chapter 2 15 Related Workconcept of using multiple, co-operating constraint solvers to help solve the constraintproblems can be usefully applied to other types of constraint problem.The theory of hybrids has been examined by Baader and Schulz [6, 7], Mon-froy [84], Monfroy et al. [83, 85] and Kirchner and Ringeisson [55]. Baader andSchulz discuss the combination of constraint solvers using a highly complex studyof uni�cation theory. The principal theories of Baader and Schulz's work are thenotion of a free amalgamated product and a decomposition algorithm. The freeamalgamated product is used to de�ne a combined solution structure over whichconstraint problems are solved. The decomposition algorithm separates a probleminto subproblems that can be solved by the individual solvers. These problems arepresented in a di�erent and more approachable form in this thesis.Monfroy introduced BALI in [84]. BALI is a semantic de�nition of an environ-ment for solver cooperation using the three paradigms of sequential, parallel andconcurrent collaboration. BALI is a useful environment for describing solver collab-oration but it tries to solve the whole problem using one solver, only resorting toother solvers on failure. BALI does not take into account the strengths of individualsolvers and does not subdivide a constraint problem so that subproblems are solvedusing appropriate subsolvers.BALI has been used to combine a Gr�obner basis solver with a linear equationsolver to produce COSAC [85]. COSAC tries to use the more e�cient linear equationsolver as much as possible and only resorts to the Gr�obner basis solver as a lastresort. COSAC is an improvement on Gr�obner bases alone but is heavily dependenton the Gr�obner basis solver which is necessarily slow. Monfroy and Ringeisson alsopropose a method of extending the scope of constraint solvers to process new typesof constraint [82].The hybrid constraint solver presented in this thesis uses constraint solvers tobest e�ect by identifying the strengths of a constraint solver and then decomposingthe constraint problem in such a way that solvers are used on problems that theyare best suited to. Here we assume that the subdivision can be done su�cientlyquickly that the e�ciency of the constraint solver is still dominated by the e�ciencyof the slowest subsolver. This is discussed in more detail in chapter 3.2.1.4 Solution spacesFinite domain satisfaction techniques typically search through all of the possiblecombinations of object values in order to �nd combinations that are solutions. For

Chapter 2 16 Related Work�nite domain constraint problems, the number of possible combinations is large but�nite. In in�nite domain constraint problems, the number of possible combinationsis typically in�nite. However, the concept of a solution space - the set of possiblecombinations at a given time - forms a useful abstraction for studying constraintsatisfaction processes.The notion of solution spaces is equivalent to con�guration spaces used in pathplanning. Lozano-P�erez [72] uses con�guration spaces to help calculate constraintson the position of an object in space due to other objects. This allows the computerto arrange objects in space or to move objects without collisions. Problems arereduced from planning a path for a complex object to planning a path for a pointand so are much simpli�ed, though calculation of the con�guration space is verytime-consuming.Wise [121] has built on Lozano-P�erez's work and used it to build svLis-m 1, analgorithm that builds multi-dimensional con�guration spaces representing an objectin every conceivable position and orientation. Once the con�guration space has beencreated, it is simple to move objects around in the space detecting collisions. Forexample, the problem in �gure 2.1 is to move a racing car in the space withoutcolliding with any obstacles. The car can translate in the x and y directions.The con�guration space calculated for the car and obstacles is presented in �g-ure 2.2. The current position of the car is described using a reference point on the carand compared with the con�guration space map. If the (x; y) point indicating theposition of the car is dark grey in the con�guration space map then the car is insidean obstacle which is not allowed. If the point corresponds to a dark grey pixel, thenthe car is not in contact with any obstacle. If the point is a light grey pixel, then thecar is touching an obstacle. Thus the problem of checking for a collision has beenreduced to a very simple point membership test. Unfortunately creating the con�g-uration space map in the �rst place took some 15 minutes. This example was takenfrom http://www.bath.ac.uk/�ensab/G mod/Svm/Html ver/svm home.html.2.2 Constraints in engineering designEngineering design is currently undergoing a paradigm shift [47]. Classical designas espoused by Pahl and Beitz [88] typically involves an iterative model, wherebyspeci�cations and information are passed from one stage to another (�gure 2.3, takenfrom [64]). At each stage a large quantity of information needs to be transferred from1http://www.bath.ac.uk/�ensab/G mod/Svm/Html ver/svm home.html

Chapter 2 17 Related Work

Figure 2.1: A Racing Car in a Space with Obstaclesone stage to the next, typically in the form of blueprints or design speci�cations.The potential for loss of design intent and information is very great.Modern CAD packages are in common use by designers. Many designers useadvanced design support tools such as knowledge based engineering, 3D CAD and�nite element analysis. These support packages help to mitigate the loss of infor-mation by having consistent data structures and persistent and concurrent designdevelopment. However, they do not explicitly retain the designer's intent.One paradigm shift identi�ed by Ho�mann and Rossignac [47] is a move from theadvanced support tools of CAD packages within a traditional design methodologyto the use of constraint-based design paradigms [47]. Constraint-based design allowsthe design intent of a designer to be captured as constraint-based design is orientedmore towards the design process. As a design is modi�ed, the constraint solversattempt to consistently maintain the designer's intent.Anderl and Mendgen [3] discuss the use of constraints in modelling. They iden-tify the importance of geometric constraints and engineering constraints 2in themodelling process and discuss the de�nition, representation and solution of con-2Engineering and functional constraints are used interchangeably in this thesis. There is noconsensus in the literature as to which is the correct terminology.

Chapter 2 18 Related Work

Figure 2.2: The Con�guration Space Map for the Racing Car

Chapter 2 19 Related Work
Clarification of
the task

Design

Conceptual

Design

Embodiment

Detail
Design

Upgrading and Improvements

design specifications
(requirement list)

definitive layout

statement of the problem
(client’s needs)

concepts variants

documents for

production

Figure 2.3: The Product Design Processstraint problems, following a similar structure to this thesis. Anderl and Mendgenalso identify a number of typical applications of constraint-based design, such asfeature-modelling and design with engineering constraints. The open issues theyidentify include the automatic generation of constraints and the evaluation of de-sign alternatives as well as the constrainedness of problems.Anderl and Mendgen conclude thatModelling with constraints is a modelling technique which containsa high potential for e�cient working in all steps of the design cycle.Serrano and Gossard [101] and Lamounier et al [62] concentrate more on theconceptual design phase and the use of engineering constraints rather than geometricconstraints. These techniques are explored in more detail in section 2.3.4.Sapossnek [97] also advocates constraint-based design. He states that designcan be viewed as a constraint satisfaction process and notes that constraints canbe on functionality, structure or manufacturability. He de�nes a constraint-baseddesign system as one that explicitly represents and operates upon these constraints.Sapossnek identi�es the separation of solution techniques from problem speci�cationas being an important research issue. His concept of a general solver using multiple

Chapter 2 20 Related Worktechniques and separation of speci�cation from solution is addressed in this thesis.Dohmen [22] presents a survey of constraint satisfaction techniques for geometricmodelling. Dohmen identi�es geometric reasoning solvers using knowledge of theproblem domain in the satisfaction process. This is a key issue in this thesis.Constraint-based design allows the de�nition and solution of problems with tol-erances, a problem of great interest to engineers [54, 93]. The parameterisationassociated with tolerances is a natural use of constraint-based design and severalauthors allow the dimensioning and tolerance of designs [1, 69, 70].Gorti and Sriram [45] present a framework for conceptual design. The frame-work they propose allows for incremental, evolving descriptions in an object-orientedenvironment. Gorti and Sriram also decouple di�erent aspects of the overall prob-lem to allow multiple reasoning methodologies - similar to the concept of hybridsolvers discussed in section 2.1.3. The framework allows geometric constraints andthe investigation of alternative designs.The use of constraints in design necessitates constraint solvers capable of satisfy-ing the constraints. The current state-of-the-art in constraint solution is presentedin the next section.2.3 Constraint solversA constraint solver is an implementation of an algorithm that takes as input a con-straint problem and produces as output a set of solutions to the constraint problemor the empty set if no solutions are found to the problem. Currently, there existmany di�erent constraint solvers used to solve di�erent types of problem. A largenumber of constraint solvers from a number of di�erent �elds have been studied.The constraint solvers investigated are presented in this section.As the state-of-the-art was investigated, it became apparent that certain solverswere very good at solving particular types of problem. It is therefore reasonableto categorise solvers according to the type of problem they are best at solving.Lamounier [64] also categorised constraint solvers, but according to the type ofsolution algorithm used. The categorisation used by Lamounier is compatible withthat used in this section. The advantages of the categorisation used in this thesisare that1. It is hierarchical and can potentially be used to decompose a constraint prob-lem automatically.

Chapter 2 21 Related Work2. There is a natural mapping between types of constraint problem and types ofsolution technique.The categorisation criteria identi�ed in constraint solution are the use or not ofdomain speci�c knowledge; the type of constraint problem; and the constrainednessof the constraint problem. The categorisation of constraint solvers is presented in�gure 2.4.The use or not of domain speci�c knowledge forms the most fundamental dis-tinction between solvers. Many constraint solvers restrict the type of problem theycan solve so that they can take advantage of the structure of the restricted problems.Thus geometric constraint problem solvers can take advantage of the Euclidean spaceand rigid bodies in the problem. Alternatively, solvers that do not use domain spe-ci�c knowledge, but instead handle constraints as a system of equations are calledgeneral and are discussed in section 2.3.1.The remaining constraint solvers take advantage of domain speci�c knowledgeand are called domain speci�c. The particular domain speci�c knowledge that thesolvers use identi�es the type of problem that they are best at handling.Finite domain solvers take advantage of the �nite nature of the problem sizeand typically use advanced search techniques in a �nite solution space. These arediscussed in section 2.3.2.Geometric solvers take advantage of geometric reasoning . There exist many ge-ometric constraint solvers currently and these can be further identi�ed as those thatsolve over-, well- and under-constrained problems. Geometric solvers are investi-gated in section 2.3.3.Functional (or engineering) constraint solvers are used to solve algebraic prob-lems and are typically aimed at describing the functional aspects of a design at theconceptual design stage. Functional solvers take advantage of the structure of theequations to aid solution. The state-of-the-art is presented in section 2.3.4.Maintenance and physical constraint solvers are used to simulate the physicalenvironment and are introduced in section 2.3.5.Chung and Schussel [19] compare variational and parametric solvers. They de�nea parametric solver as one that uses a prede�ned set of geometric constraints whichare applied to the geometry by the engineer. They de�ne a variational solver asone that makes no assumptions about the way in which geometric constraints arecombined. Variational solvers typically use numerical or functional techniques tosolve the system of equations, whilst parametric solvers correspond to geometricsolvers in this thesis. They conclude that the use of one particular type of solver

Chapter2
22

RelatedWork

Light [69]
Lin [70]
Lamure [66]

de Pennington [16]
Kondo[57]

Forward Checking [92, 104, 113]

Backtracking [92, 104, 113]

Arc Consistency [92, 104, 113]

ILOG Solver [93]

Well/Under-
Constrained constrained

Over- Under-
constrained

ICBSM [25,26,27]

IGCS [111, 112]

Gleicher [42, 45]

MechEdit [15]

Eggli [24]

Sohrt [107]

Tsai [110]

OTP [4]

Laakko [62]

GCE [58,59,60]

DCM [87]

Erep [14]

GCE [58,59,60]

Unigraphics [116]

Pro/ENGINEER [20]

Dufourd [23]

Verroust [117]

Yamaguchi [123]

Aldefeld [1]

ThingLab [12]

Skecthpad [108]

Well-
constrained

WAYT [76,77]

Shimizu [103]

constrained
Over-

Concept Modeler [99, 101]

INCES [63,65]

DeltaBlue [34]

SkyBlue [95]

Wolf [120]

Houria [81]

Gelle [41]

Hosobe [51]

Well-
constrained constrained

Over-

Baraff [8]
Isaac [40]
Thompson [109]

Constraint
Solvers

Algebraic Numerical

General Domain Specific

Finite Domain

Jussien [54]

Geometric Functional Physical

Figure2.4:AHierarchyofConstraintSolvers

Chapter 2 23 Related Workdepends on the design being created. Variational solvers tend to be more suitablefor preliminary work, whilst parametric solvers are more suitable for fairly simplegeometric design.2.3.1 General constraint solversGeneral constraint solvers handle constraint problems as systems of (typically) non-linear equations. The systems of equations are then solved using either numericalor symbolic techniques.2.3.1.1 Numerical solversNumerical solvers take a system of equations and �nd a solution by using iterativetechniques such as Newton-Raphson. The details of Newton-Raphson are not pre-sented here as they are covered in detail elsewhere [69, 90]. Light and Gossard [69]and Lin et al. [70] use numerical techniques for variational geometry in computer-aided design systems. Several authors use numerical techniques as a backup to otherapproaches, for example MechEdit [15], INCES [62] and IGCS [112].Numerical solution is general and solves a constraint problem as a whole entity.However, it su�ers from a number of disadvantages:1. Numerical solution is not robust and can fail to converge to a solution.2. Numerical solution typically only �nds one solution to a problem.3. Numerical solution is computationally expensive, typically
(n2) complexity,where n is the number of constraints,4. Numerical solution may converge to a root but it may not be the expectedsolution to the problem.Lamure and Michelucci [65] present a technique that resolves some of these prob-lems. Homotopy avoids the convergence of Newton-Raphson to unpredictable solu-tions as it is much more predictable. Using the initial guess of the user correspondingto the user's initial sketch of the geometric system, homotopy interpolates betweenthe system of polynomials describing the constraint problem and the system of poly-nomials describing the user's initial guess. The curve described by the interpolationcan then be used to guide the solution of the constraint problem so that the roots

Chapter 2 24 Related Workfound are more predictable. Homotopy can be combined with decomposition tech-niques to speed up resolution. However, the price to pay for a more robust algorithmis that homotopy is, on average, some 10 to 20 times slower than Newton-Raphson.2.3.1.2 Symbolic solversIn the symbolic approach, general solvers use symbolic algebraic methods, predom-inantly Gr�obner bases [17], to reduce a system of equations to a triangular systemof polynomials that can be solved simply. Kondo [56] and Buchanan and de Pen-nington [16] have used Gr�obner bases to solve systems of equations for geometricmodels.Gr�obner bases are particularly interesting as the �nal triangular system of equa-tions is complete in the sense that it describes all solutions to the constraint problem.However, Gr�obner bases are very computationally expensive and are therefore notappropriate for interactive applications.2.3.2 Finite domain constraint solversFinite domain constraint problems include scheduling, resource management andsome integer arithmetic. The domain speci�c knowledge used by �nite domainconstraint solvers is that there are only a �nite number of possible con�gurationsthat need to be studied in order to look for solutions. The number of con�gurationsmay be very large but it is invariably �nite. Thus it is possible to exhaustivelyexamine all of the con�gurations and search for solutions.Unfortunately, even very simple �nite domain constraint problems, such as 3-SAT, are NP-complete. Consequently, it is not usually practical to check all con-�gurations and knowledge of the structure of the problem is used to speed up theprocess. Tsang [114] provides a comprehensive description of the various strategiesadopted for �nite domain constraint satisfaction.Although �nite domain constraint problems are not often considered in the CADand engineering design community, they form a useful testbed for studying ideas onthe theory of constraint satisfaction for the simple reason that they are usually smalland well-understood. For this reason, two �nite domain satisfaction techniques willbe described here in detail as representative of the general process. The descriptionsof backtracking and forward-checking have been taken from Tsang [114], Smith [103]and Prosser [91].

Chapter 2 25 Related Work2.3.2.1 BacktrackingChronological backtracking is the simplest search algorithm used in �nite domainconstraint problems. A variable, v, is selected from the set of variables and a value,l, is selected from the domain of v. Variable v is then instantiated with the valuel, so that v := l. The current values of all of the variables are then checked againstthe set of constraints in the problem. If a check fails then the value is inconsistent,the algorithm backtracks so that v is not instantiated and another value is tried. Ifall checks succeed, then another variable is chosen. If all of the possible values for vfail then the algorithm backtracks to the last variable successfully instantiated andchooses another value for it. This continues until all variables have been instantiated,in which case a solution has been found, or all possible con�gurations have beenexhausted, in which case the problem has no solution.2.3.2.2 Forward-checkingThe forward-checking algorithm is a \look ahead" technique. A variable is instan-tiated with a value. Any values in the domains of other variables that conict withthis instantiation are removed from those domains and this process continues. Ifthe domain of a variable becomes empty by this process then the instantiation isinconsistent and is changed. Forward-checking therefore prunes large parts of thesearch space quickly.2.3.2.3 Other �nite domain researchResearch on �nite domain constraint satisfaction problems is a well-developed �eld(see [81] and [60] for survey papers on �nite domain constraint satisfaction) andhas led to many studies of the performance of algorithms. Tsang et al. [115, 116]have compared a number of di�erent algorithms and conclude that there is \nouniversally best choice of algorithm and heuristic combination." They recommendusing a number of criteria on the type of problem to determine which particularsolution algorithm to use. Although the criteria used in [115] are di�erent, thisprinciple is applied in this thesis to select algorithms to solve di�erent types ofconstraint problem.Freuder and Hubbe [35] present a control schema for solving constraint problems.Although Freuder and Hubbe's schema is primarily aimed at �nite domain problems,it does have implications for the work in this thesis. The schema is presented below:Place the initial problem on the Agenda

Chapter 2 26 Related WorkUntil Agenda empty:Remove a problem P from AgendaIf P has only instantiated variablesthen Exit with their valueselseDecompose P into a set of subproblems {Pi}Place each non-empty Pi onto the AgendaExit with no solutionFor all constraint satisfaction processes, the decomposition technique is the key.Freuder and Hubbe use the schema to formulate descriptions of common algorithmssuch as backtracking and forward-checking. Freuder and Hubbe note that a generalschema such as the one given \facilitates presentation and comparative analysisof ... algorithms and suggests new algorithmic possibilities". The work done inthis thesis, particularly in chapter 6, also allows the description of algorithms in acommon framework.Finite domain problems may also be inconsistent. Jussien and Boizamault [53]present a solution technique that takes advantage of the constraint hierarchies de-veloped by Borning et al. [11] by using an Assumption-based Truth MaintenanceSystem to decide when to relax a constraint, which constraint(s) to relax and howto delete a constraint.2.3.3 Geometric constraint solversThe original geometric constraint solver was Sketchpad [108] which used local propa-gation and relaxation to solve constraint problems. ThingLab [12] extended Sketch-pad by allowing information that was not purely graphical. ThingLab used Smalltalkand allowed constraints to apply to non-numeric objects such as text. ThingLab wasa signi�cant advance in geometric constraint modelling.Geometric constraint solvers take advantage of domain speci�c knowledge aboutrigid bodies, Euclidean space and the actions of geometric objects within Euclideanspace. Some solvers take advantage of local propagation techniques whilst some useruler-and-compass construction to solve constraint problems. However, there arethree identi�able strains of geometric constraint solver - those that handle under-constrained problems e�ciently, those that handle well-constrained problems e�-ciently and those that handle over-constrained problems e�ciently.

Chapter 2 27 Related Work
1

2 3
A

B

C Line 1 Line 2 Line 3

a) b)

Coincident Coincident

Figure 2.5: An Arm with Two Joints and the Relationship Graph for the ProblemUnder-constrained solvers are usually incremental, building up a model step-by-step, frequently taking advantage of the user's interaction to help guide the solutionprocess. Under-constrained solvers are discussed in section 2.3.3.1.Well-constrained solvers are more usually specify-then-solve. Instead of buildingup a set of constraints gradually, the set of constraints is speci�ed all at once. Theseare then solved using ruler-and-compass or rule-based methods to give solutions tothe problem. Well-constrained solvers are investigated in section 2.3.3.2.Over-constrained solvers also tend to be of the specify-then-solve variety. How-ever, over-constrained solvers specialise in identifying inconsistency in constraintproblems, probably caused by having too many constraints. The over-constrainedsolver will then select constraints that should be removed to make the system con-sistent. Over-constrained solvers are studied in section 2.3.3.3.2.3.3.1 Under-constrained geometric constraint solversFa et al. developed ICBSM, the Interactive Constraint-Based Solid Modeller [25{27,31, 32], at the University of Leeds. ICBSM allows the user to build a constraintmodel in a virtual environment using direct manipulation of geometric objects. Thekey advances introduced by ICBSM are the use of Allowable Motion and AutomaticConstraint Recognition. Allowable Motion is a local propagation technique thatpropagates changes of values of a geometric objects as it moves to other geometricobjects that are constrained to move with it.For example, consider the simple 2D arm shown in �gure 2.5 (a). In ICBSM,this has the corresponding relationship graph in �gure 2.5 (b). If line 3 is movedthen, as it has been constrained to remain connected to line 2, it can only move ina circle around point B. However, if line 2 moves then, as line 3 is connected to line2 and is free to move, line 3 rotates with line 2 around point A, as the movementsof line 2 are propagated to line 3.

Chapter 2 28 Related WorkAutomatic Constraint Recognition is the process whereby the user creates mod-els within the virtual environment. As an object is moved around in the virtualenvironment, possible constraints are continually being detected and the user is no-ti�ed of these. If the user wishes to activate one of these constraints then the objectis simply released and the constraint is created automatically.However, ICBSM is limited by the local propagation technique adopted andcannot handle cycles in the relationship graph. Tsai et al. have used locus analysisand other techniques to solve this problem, essentially turning ICBSM into thehybrid constraint solver IGCS, the Interactive Geometric Constraint System [112,113].ICBSM is also quite slow, with bottlenecks caused by the rendering of the modeland the Automatic Constraint Recognition. Feng Gao et al [29] have helped toalleviate this problem. Max�eld has expanded ICBSM into a collaborative, dis-tributed virtual engineering environment [78, 79] and Munlin has used ICBSM tobuild complex assemblies [30].ICBSM was heavily inuenced by the Degrees of Freedom Analysis approachused by Kramer in his Geometric Constraint Engine [2,9,57{59]. Degrees of FreedomAnalysis does not �t comfortably into being a well-constrained or under-constrainedapproach because it is a hybrid of two techniques: action analysis and locus analysisand can handle well-constrained problems using locus analysis. Action analysis is alocal propagation approach, equivalent to the Allowable Motion technique describedabove.Locus analysis is used to \determine where in global space certain classes ofpartially constraint (geometric objects) must lie" [58]. Locus analysis works byexamining the loci of geometric objects. The locus of an object is the set of possiblepositions that the object can take in space. If two objects are constrained to becoincident then the intersection of their loci satis�es the coincidence constraint.For example, consider the problem described in �gure 2.6 (taken from [58]).Here, line L2 must remain �xed at point P . Correspondingly, the locus of pointP2 is the circle LC . Also, the circle of variable radius C2 is constrained to remaintangent to circle C and line L. The locus of the centre of C2 is therefore curve LP .Suppose a new constraint is added, that the centre of C2 is coincident with point P2.Then there are two possible con�gurations that satisfy this new constraint, as wellas satisfying all of the previous constraints. These two con�gurations correspond tothe centre of circle C2 being at point P3 or point P4, found by intersecting LC andLP .

Chapter 2 29 Related Work
C

L

P

P

P

P

L

L

C

P

2

C

2

3

4

L
2

Figure 2.6: An Example of Locus AnalysisKramer's approach is very powerful and the combination of the two techniquesallows for much more exibility than one technique alone. The great bene�t ofDegrees of Freedom Analysis and Allowable Motion is that they reduce a system ofhighly nonlinear, highly coupled equations into a set of simpler, discrete, high-levelconstraints.Gleicher also investigates the use of direct manipulation in de�ning constraintproblems [41{44]. Gleicher uses di�erential manipulation to couple user controls tographical objects in a powerful manner that is closely linked to constraints. Theapproach provides abstractions that enable new interaction techniques.The constraint solution technique used is an equation solving method. However,in order to solve the equations quickly and e�ciently, di�erential manipulation con-trols the motion of the objects over time, adding a form of elasticity to the directmanipulation of objects. This domain speci�c knowledge helps to make di�erentialmanipulation practical.Brunkhart [15] has created MechEdit, a geometric constraint system for solvingsystems of planar linkages. MechEdit uses local propagation and contraction in orderto solve under-constrained systems of linkages quickly. Brunkhart has conductedexperiments that indicate that his hybrid symbolic/numeric solver is signi�cantlyfaster than a numeric solver alone, in some cases improving the number of refreshesper second from 0.02 to 222.Eggli et al. [24] use `Quick-Sketch' to infer 3D models given a freehand sketchwith some constraints that can be inferred from the sketch. The geometric con-

Chapter 2 30 Related Workstraint satisfaction technique uses a degrees of freedom approach [59] to guide theconstruction steps for the model.Sohrt and Br�uderlin [106] also use interactive manipulation with constraints.The constraint solver that they use consists of two stages. First the geometricconstraints are interpreted as prolog predicates and are translated using rewriterules until the geometry can be determined. This is a planning stage. Then thesymbolic solution created by the rewrite rules is numerically evaluated each timean object or constraint is altered. This allows fast interaction with the user whennothing changes. However, new objects or constraints require recalculation of thesymbolic solution.Tsai et al. [111] use local propagation techniques for incremental assembly. Theconstraint graph of a problem is analysed and this is used to decide on whether toreuse old information or to resolve the problem.Arbab and Wang's approach, Operational Transformation Planning (OTP) [4],uses a \high-level understanding of the semantics of constraints and the geometricimplications of operations for satisfaction planning". This use of domain speci�cknowledge allows OTP to satisfy a network of constraints incrementally.Laakko and Mantyla [61] use SkyBlue [94], a local propagation solver to creategeometric models in an incremental fashion. Their solver, EXTDesign, uses varioussubsolvers to handle cyclic subproblems. SkyBlue is discussed in more detail insection 2.3.4.1.2.3.3.2 Well-constrained geometric constraint solversWell-constrained geometric constraint solvers typically operate using a specify-then-solve paradigm. In this paradigm a set of geometric objects and a set of geometricconstraints are de�ned. The set of geometric constraints is su�cient for the con-straint problem to be well-constrained. Then all of the constraints are used to �ndsolutions to the problem.DCubed uses this technique [73{75,86]. The DCM algorithm takes a set of 2D or3D geometric objects and a set of distance and angle constraints. Using Hopcroft andTarjan's subdivision algorithm [49], the constraint graph representing the constraintproblem is divided into a number of split components. These split componentscan then be solved using simple ruler-and-compass construction techniques and thesolutions to the subproblems are combined to form a solution to the whole problem.For example, the pentagon in �gure 2.7 is well-constrained and can be representedusing the constraint graph in �gure 2.8, where lines represent distance or angle

Chapter 2 31 Related Work
P1

P2

P3

P4P5

10 10

10

10

10

100 1000 0

L2L1

L3

L4

L5

Figure 2.7: A Pentagon De�ned by Distance and Angle Constraints
L1

L2

L4

L3

L2
P2

P5 P4

P3P1

Figure 2.8: The Constraint Graph for the Pentagonconstraints. Then Tarjan's algorithm is used to identify the split components of thegraph. These split components can be solved immediately and then recombined togive the picture in �gure 2.7.DCM claims to have an approximately linear speed of solution though Boumaet al. claim it is in fact quadratic [14]. DCM can be used for under- and over-constrained problems though it is not best suited for such cases as the algorithmattempts to �nd an acceptable solution to an under-constrained problem by changingas few geometries as possible. However, although it guarantees to �nd solutions towell-constrained problems, it cannot guarantee to �nd any solution to an under-constrained problem, even though an in�nite number may exist. DCM deals withan over-constrained subproblem by placing it in a subgraph and then solving therest of the problem.Erep [37{39,48] is very similar to DCM. Erep studies the problem of under- andover-constrainedness in some detail. However, the key strengths of Erep lie in itsability to solve well-constrained problems and its ability to choose between solutionsto a problem to �nd the solution the user desires.

Chapter 2 32 Related WorkPabon et al [87] have extended Kramer's GCE engine to allow for feature andvariational modelling. The aim of Pabon et al.'s research is similar to the aims inthis thesis: to integrate di�erent forms of constraint technique. However, Pabonet al. do not demonstrate any theoretical basis for their work, nor any discussionof domain speci�c knowledge, nor how solvers interact generally. These topics arecovered in this thesis.Commercial CAD packages, such as Pro/ENGINEER [20] and Unigraphics [117]allow well-constrained geometric constraint problems to be de�ned and solved.Dufourd et al. [23] handle systems of geometric constraints using multiple con-straint solvers. They describe geometric constraint systems in terms of predicatesdescribing the constraints. By taking advantage of the invariance under displace-ment of constraint problems in a CAD environment, Dufourd et al. break suchconstraint problems into smaller ones which are easier to solve.The smaller constraint problems are then solved using one of three local solvers.Two of the three local solvers use rule-based methods to solve the geometric con-straint problems, whereas the third is a numerical technique. The �rst rule-basedmethod assumes that there are no loops in the constraint problem and so uses lo-cal propagation to solve the constraint problem. The second rule-based methodallows loops but involves a much more complete set of geometric construction rules.This second solver is not complete but Dufourd et al. claim that it is successfulin most cases in achieving sophisticated constructions. Dufourd et al.'s constraintsolver is similar in form to the hybrids discussed in this thesis. The domain speci�cknowledge that they take advantage of is the invariance under displacement of CADmodels.Verroust et al. [119] use an expert system to identify a sequence of computation.Yamaguchi and Kimura [125] develop a technique for simplifying the constructionof consistent and su�cient constraint problems in order to make problems well-constrained. A constraint problem is consistent if it has a solution. A constraintproblem is su�cient if it is well-constrained. Aldefeld [1] uses a rule-based methodto solve well-constrained problems.2.3.3.3 Over-constrained geometric constraint solversConstraint solvers that specialise in over-constrained problems tend to concentrateon resolving conicts between constraints. This can involve using constraint hierar-chies [11] or solving by other means.M�antyl�a has developed WAYT, Why-Are-You-There? [76,77]. WAYT is a mod-

Chapter 2 33 Related Workelling environment for assembling products. WAYT uses hierarchical descriptions ofmodels to capture design information and uses DeltaBlue [34] as the integral con-straint solver used to solve the constraints. DeltaBlue can solve only linear equalityconstraints but can take advantage of constraint hierarchies to resolve conicts.DeltaBlue and its brother SkyBlue are discussed in more detail in section 2.3.4.1.Shimizu and Numao [102] use a di�erent technique to resolve conicts betweenconstraints. They propose using an Automated Truth Maintenance System in orderto distinguish between redundant and conicting situations.Connectivity Analysis [67], DCubed [86] and Erep [14] also identify and resolveover-constrained problems.2.3.4 Functional constraint solversFunctional (or engineering) constraint solvers solve constraint problems that de-scribe the functionality of a design as compared to the physicality of the design. Assuch, they are primarily intended for use in the conceptual design phase when thefunctional description of the product is prepared. Generally, the functional descrip-tion consists of a system of nonlinear equations and as such little domain speci�cknowledge can be applied to solving the system. If no domain speci�c knowledgecan be applied, the system of equations must be solved by a general solver such asNewton-Raphson or Gr�obner bases.However, certain systems of equations have a structure that can be taken advan-tage of. For example, linear systems of equations can be solved by taking advantageof the sparseness of the matrix representing the system of equations and using LUDdecomposition [21] to solve the problem in a relatively e�cient fashion.Serrano has created a system called Concept Modeler [98{101] that takes advan-tage of triangular systems of equations. Concept Modeler takes as input a systemof equations, such as that given below (taken from [100]), and uses the constraints

Chapter 2 34 Related Work
Y H

B

I

E

K

M

F

L

σ

C1

C4

C3

C3
C1C1

C1

C1

C2

C2

C5

C5

C5

C5

C3

C2

C5

C5

C1

Φ

C6

C6

C6

C6

C6

C6C6

C6

C6

C6

Figure 2.9: Equation Graph for Constraints C1 to C6to build the equation graph given in �gure 2.9.C1 : � � MYI = 0;C2 : M � FL = 0;C3 : I � WH312 = 0;C4 : Y � H2 = 0;C5 : K � 3EIL3 = 0;C6 : �� FL2EI = 0:The user then speci�es which of the variables are known and which are not. Inthis case, variables M;�;K;E and � are known. Using graph matching techniquesthis allows the creation of the tree-like structure in �gure 2.10 which is used to derivethe sequence of constraint satisfaction for the problem.Serrano then uses the values calculated for variables earlier in the constraintsatisfaction sequence to give values for variables later in the sequence. However, thesubgraph given by the variables I; L; F in �gure 2.10 is cyclic and must be solved

Chapter 2 35 Related Work
W

H

I Y

L

F

E φ

M

E K
σ M

C3

C4

C1
C1

C1

C3

C5
C5

C5

C2

C6C6

C6

C6

C2

SC

Figure 2.10: Tree-like Representation for Equation Graphsimultaneously. It is therefore collapsed into a strong component y SC which issolved separately. The sequence of satisfaction for �gure 2.10 is SC � Y �H �W .Serrano presents two methods of �nding redundancies and conicts within strongcomponents. The �rst uses symbolic manipulation of the constraints within thestrong component so that each constraint is described in terms of one variable andthen constraints are successively eliminated by substitution into another constraint.For example, if a constraint problem consists of four constraints ff1; f2; f3; f4g:f1 : x1 � x3 = 0;f2 : x32 � 1 = 0;f3 : x21 + x4 � A = 0;f4 : x23 + x4 �B = 0;each constraint can be described simply in terms of a function of one variable. Inthis case, f1 can be rewritten as x1 = x3, f2 as x2 = 1, f3 as x4 = A� x21 and f4 asx3 = �pB � x4. Substitution leads to the expressionx1 = �qB � (A� x21):If A = B then the set of constraints ff1; f2; f3; f4g is redundant. If A 6= B then theset of constraints is conicting and has no solution. However, this technique is, ingeneral, insu�cient. Most constraint problems cannot be solved using substitution

Chapter 2 36 Related Work
0

r

nxn x -f

=

J DFigure 2.11: Typical result of Gaussian elimination on linearised constraint problemtechniques as constraints are not usually a simple function of a single variable.Gr�obner bases could be used to identify redundancies in the strong components andto solve the strong components. However, the utility of Serrano's approach is thenlimited to the use of Gr�obner bases.The second method Serrano uses for �nding redundancies and conicts involvesnumerical techniques. First, the strong component is linearised by constructing itsJacobian matrix to give the following system of equations:J�x = �f;where J is the Jacobian, �x is the vector of (xi � x0), where xi are the unknownsand x0 are the initial guesses, and f is the vector of the constraints evaluated at x0.Serrano notes that if the Jacobian is non-singular then the strong component isconsistent and can be solved using the above matrix equation for each iteration of aNewton-Raphson method. The Jacobian can never be structurally singular (whenthe Jacobian is non-square [69]) as the strong component will always contain asmany constraints as variables.The Jacobian can be numerically singular if the determinant of the Jacobian isequal to 0. In this case, Gaussian elimination would lead to a matrix of the form in�gure 2.11.If an entry in �f is zero for i; r < i � n, then the corresponding constraint torow i is redundant, otherwise the constraint is in conict with the other constraintsin the strong component.Numerical inaccuracies in adopting this technique may mean that the determi-nant of the Jacobian is close to 0 and is approximated to 0. Consequently, non-singular matrices may be identi�ed as being singular.Serrano's approach is very similar to Light and Gossard's [69]. The chief dif-ference is that Serrano only applies the numerical techniques described above tostrong components that the initial algorithm identi�es, whilst Light and Gossardapply their numerical approach to the entire constraint set. Serrano's approach

Chapter 2 37 Related Worktherefore does not use the more expensive numerical technique for acyclic subprob-lems. However, as will be proved later in this thesis, the decoupling of the cyclic andacyclic subproblems in Serrano's approach may lead to a failure to �nd solutionswhere Light and Gossard's algorithm will succeed.Serrano states that this graph-based approach has proven to be more e�cientthan numeric and symbolic techniques. However, the speed of the system is depen-dent on there being relatively few cycles in the graph.Lamounier [62{64] has improved on Serrano's algorithm by making it incremen-tal . Each time a constraint is added to Serrano's system, the entire satisfactionsequence must be derived from scratch. For very large sets of equations this willtake a long time. Lamounier has improved the algorithm by ordering the satisfactionprocess in such a way that when a new constraint is added, it only a�ects as smalla part of the graph as possible. For example, adding constraint c6 to the graphgiven in �gure 2.12 (taken from [63]) would only a�ect constraints c5 and c4 andthe variables i; h; f and g rather than the whole problem.Lamounier has also tried to describe more general constraint problems by allow-ing geometric constraints in INCES. However, to do this the geometric constraintsare reduced to systems of equations and this loses all domain speci�c knowledgeassociated with the geometric constraints.Serrano and Lamounier's work depend on local propagation. Local propagationis equivalent to triangular form in matrices or a tree structure in constraint graphs.Many solvers use local propagation as it is very e�cient [15, 27, 62, 94, 101, 112].However, local propagation cannot handle cycles or systems of equations that mustbe solved simultaneously. Serrano and Lamounier both deal with simultaneoussubproblems by passing them to a numerical solver. One of the issues identi�edby this thesis is that this may lead to the whole solver being inconsistent in thesense that it may fail to �nd solutions when they exist.2.3.4.1 Over-constrained functional constraint solversOver-constrained functional constraint solvers attempt to resolve the conicts causedby having too many constraints for the number of variables. In order to do thisBorning et al. [11] devised constraint hierarchies. Constraint hierarchies involve as-signing each constraint a strength, indicating how important it is that the constraintbe satis�ed. The constraint problem is then solved using the constraint hierarchyto satisfy the most important constraints. The precise trade-o� between strengthsis determined by a comparator .

Chapter 2 38 Related Work

b

c

c1 a c2

c

d c3

g

fc4h

c5

j

i

c6

b) After Inserting Constraint c6

b

c

c1 a c2

c

d c3

g

fc4h

c5

j

i

c6

a) Before Inserting Constraint c6

Figure 2.12: Example of Incremental Insertion of Constraint. Arrows in GraphIndicate Order of Satisfaction

Chapter 2 39 Related Work
a

c1

c c3 db

c2

strong

required

weak

weak

weak strong weak

Figure 2.13: Example Constraint Graph for Hierarchical Constraint ProblemConstraint hierarchies have become very popular as they formalise the means bywhich conicts in over-constrained systems can be resolved in a predictable fashion.One of the �rst constraint solvers to take advantage of constraint hierarchies wasDeltaBlue [34]. DeltaBlue is an incremental, local propagation constraint solver.It uses a bipartite constraint graph of constraints and variables to determine theow of propagation from variable to variable and uses the strengths of constraintsto determine which constraints need to be solved. Each constraint has a number ofmethods used to determine how a constraint is satis�ed. Only one of these methodsis active at any given time.For example, consider the graph in �gure 2.13. Constraints are squares andvariables are circles. The direction of the arrows indicates which method is to beused, and dashed arrows indicate that a method is not active. Here constraint c2has been sacri�ced so that c1 is satis�ed. In this case, once a and b are known, c1can be used to calculate c. Once c is known, c3 can be used to calculate d.DeltaBlue is fast as it is incremental: adding a new constraint will only a�ecta small part of the constraint graph. However, DeltaBlue is limited as it uses localpropagation. Any cycle in the constraint graph cannot be solved. DeltaBlue alsoonly allows single output variables.SkyBlue [94], the successor to DeltaBlue, allows solution of cycles by callingexternal cycle solvers. SkyBlue also allows multi-output constraints. SkyBlue andDeltaBlue have been used in several other constraint solvers [71, 95, 96]. Hosobe etal. [50] propose a similar approach to SkyBlue.Gelle and Smith [40] present a system for resolving over-constraint in a dynamicenvironment. They use a logic framework to determine solutions of the problem.Wolf [123] uses constraint hierarchies to transform an over-constrained constrainthierarchy problem into a `normal' constraint problem which can then be solved.Houria [80] is another solver that uses constraint hierarchies and local propaga-tion, but uses a global comparator and satis�es more constraints than other solvers.

Chapter 2 40 Related Work2.3.5 Maintenance and physical constraint solversMaintenance simulation involves a virtual representation of a real environment inwhich an engineer or a mechanic can use virtual tools to assemble and disassemblecomplex machinery. Physical simulation involves a virtual representation of the realworld, including gravity, friction, acceleration and forces. These two areas of studyare closely linked as forces are involved in maintenance simulation to detect, forexample, the amount of torque placed on a wrench to turn a screw.Constraints do not play a particularly large part in physical modelling. However,there do exist some constraint methods for physically based modelling. Physicallaws, such as gravity, friction and non-interpenetration of solid bodies, can be de-scribed using constraints, and such laws are very important for realistic engineeringdesign. For example, Platt [89] presents a method based on constraint stabilisa-tion and dynamic constraints that he uses to describe deformable models and forcollisions between the models.Project Isaac [118] is intended to combine accurate, e�cient and robust tech-niques for collision and contact detection in order to simulate large and complexgeometric models within a virtual environment. Others studying physical modellinginclude Bara� [8] and Witkin [122].Whilst much research has been done on physical modelling, little has been doneon investigating the support of maintenance analysis. Thompson [110] is currentlyinvestigating tools and techniques for supporting maintenance analysis within virtualenvironments. It is hoped that Thompson can extend the work done by Fa [25]and Munlin [30] so that dynamic maintenance analysis can be carried out in theconstraint-based virtual environment of ICBSM.2.4 ConclusionsThis chapter has presented the state-of-the-art in constraint satisfaction. The theoryunderlying constraints was investigated, including the links with relational algebraas well as dimensions, decomposition and solution spaces.Constraints are used in many di�erent �elds and constraint solvers tend to bebiased towards a particular �eld. The �elds identi�ed in this thesis are general,�nite domain, geometric, functional and physical. Other than the general constraintsolvers, solvers within a particular �eld tend to take advantage of domain speci�cknowledge about that �eld. Domain speci�c knowledge allows more e�cient solvers

Chapter 2 41 Related Workto be created as well as solvers that can identify desired solutions more easily andalso can be guaranteed to converge to solutions.In engineering design, the most used types of solvers are general, geometricand functional. Finite domain and physical solvers are still signi�cant in terms ofengineering design but form a subsidiary part of this thesis. Geometric and generalsolvers are frequently joined to form hybrids [15, 87, 112]. Functional and generalsolvers are also occasionally joined as hybrids [94]. However, it is rare that twodomain speci�c solvers are used in conjunction [62].Hybrids are useful as they allow a constraint solver to solve more constraintproblems than would be possible normally. In this thesis, hybrids will be describedas being more expressive. Domain speci�c solvers tend to be very e�cient but alsoquite restricted in the problems they can solve. This thesis investigates the use ofhybrids of domain speci�c solvers.However, in order to investigate hybrids of solvers, commonalities between dif-ferent types of solvers must be found. To this end, an abstraction of the constraintsatisfaction process is developed in the next four chapters. This abstraction allowscommon elements of constraint solvers to be identi�ed and then exploited when thesolvers are linked together.The criteria identi�ed for distinguishing constraint solvers as given in �gure 2.4allow the association of constraint solvers with problems that are particularly wellsuited to that constraint solver. This will allow the de�nition of a hybrid constraintsolver in chapter 7 that will take best advantage of domain speci�c solvers.

Chapter 3Solving Constraint Problems byDecompositionThis thesis investigates the de�nition, representation and solution of engineeringdesign constraint problems. This chapter investigates existing engineering designconstraint solvers and discusses the general method of solving constraint problemsthat these solvers use.The principle behind most existing constraint solvers is that it is easier to solvelots of small problems rather than one large problem. This is the divide-and-conquerconcept prevalent in computer science.Freuder and Hubbe's control scheme for solving constraint problems [35] is anexample of the divide-and-conquer approach to constraint solution and forms auseful basis for discussing most current constraint solvers. It is repeated here forconvenience.Place the initial problem on the AgendaUntil Agenda empty:Remove a problem P from AgendaIf P has only instantiated variablesthen Exit with their valueselseDecompose P into a set of subproblems {Pi}Place each non-empty Pi onto the AgendaExit with no solutionA prime consideration of in�nite-domain solvers, though often not explicitlystated, is that ordering a set of subproblems can signi�cantly simplify their solution.42

Chapter 3 43 Solving Problems by DecompositionGiven constraint problem P ,1. Decompose P into a set of subproblems fPig.2. Order the subproblems.3. Solve the subproblems in the order given.Table 3.1: Control scheme for solving constraint problemsFor example, consider the two problems P1 and P2:P1 = (f(x; IR); (y; IR); (z; IR)g; fx2 + y2 + z9 = 43; 3x2 + 4y2 + sin z = 256g);P2 = (f(z; IR)g; fz = 4g):Solving P1 �rst and then P2 is extremely hard. However, if P2 is solved �rst thenP1 is much simpli�ed. The order of solution of the subproblems has signi�cantlyimproved solution of the combined problem, P = P1 [P2.Finite domain solvers also bene�t from a careful ordering of subproblems asevidenced by the use of heuristics to help guide solution. Variable and value orderingcan frequently make a hard �nite domain constraint problem much simpler [103,114].Freuder and Hubbe's control scheme can be adapted to incorporate the order-ing of subproblems by dividing the solution process into three stages as shown intable 3.1.Note that Freuder and Hubbe do not use constraint solvers per se, but decom-pose until variables are instantiated. Thus, the decomposition solves the constraintproblem. Here decomposition is distinguished from solution so that existing con-straint solvers can be applied to subproblems when it becomes possible to do soand because decomposition to the level of instantiation is not usually possible inin�nite-domain problems.Note also that Freuder and Hubbe continuously decompose the subproblems untilthey can be solved. In part this is because the decomposition is used to solve thesubproblems. However, in part it is because the decomposition of subproblems canlead to other subproblems that can be decomposed further. The solution processpresented in table 3.1 assumes that the decomposition of P into subproblems fPigis comprehensive in the sense that any further decomposition of a Pi takes placeas part of the solution phase. In this way, the general constraint solver does notreinvent the wheel and can reuse any existing solvers.This approach means that the constraint solver described in table 3.1 should takeinto account the constraint solvers available. The constraint solver then decomposes

Chapter 3 44 Solving Problems by DecompositionGiven constraint problem P ,1. Decompose P into a set of subproblem-solver pairs f(Pi;Si)gsuch that Pi can be solved e�ciently by one of the domainspeci�c solvers in Si or Pi can be solved by a domain generalsolver in Si.2. Order the subproblem-solver pairs taking into account hy-brid collaborations and domain speci�c knowledge.3. Solve each subproblem using the solver selected and thehybrid collaboration chosen.Table 3.2: Control scheme for solving constraint problems using domain speci�cknowledge and hybrid constraint solversthe constraint problem according to the solvers available, orders the subproblemsand then initiates the solvers on the subproblems in the order decided. Clearly thedecomposition strategy , the ordering strategy and the available solvers become thekey elements of the constraint solver.As noted in chapter 1, the use of domain speci�c knowledge and hybrid col-laboration have been identi�ed as being powerful techniques to take advantage of.Consequently, it is of particular interest to identify how these two concepts �t intothe above constraint solver framework. In fact, the use of domain speci�c knowledgeand hybrid constraint solvers forms a natural extension of the solution process intable 3.1.The use of domain speci�c knowledge manifests itself in the availability of domainspeci�c solvers. The constraint solver should decompose the constraint probleminto subproblems that can be solved by the domain speci�c solvers advantageously.Consequently the constraint solver must know the strengths of the domain speci�csolvers available and how these can be identi�ed in the constraint problem.Hybrid constraint solvers are useful because they help to make explicit the order-ing of subproblems and also allow solvers to pass solutions amongst themselves in acontrolled fashion. Hybrid solvers are therefore particularly useful in stages 2 and 3of table 3.1. The use of hybrid collaborations in stage 3 will be studied extensivelyin chapter 7.The specialisation of table 3.1 to take into account domain speci�c knowledgeand hybrid constraint solvers can therefore be described as shown in table 3.2.This solution process has great potential for success. As discussed above, the keyelements of the process are the decomposition strategy, the ordering strategy andthe solvers available. Each of these elements is discussed in detail in the following

Chapter 3 45 Solving Problems by Decompositionsections.Section 3.1 presents four examples discussing currently existing constraint solversin terms of the processes discussed in table 3.1 and table 3.2. Section 3.2 discusses thedecomposition strategy and gives some examples of current decomposition strategies.In section 3.3, the ordering strategy is covered in detail, giving advantages anddisadvantages of ordering strategies.Section 3.4 discusses solution of the subproblems using domain speci�c solversand the advantages and disadvantages thereof. Section 3.5 presents conclusions fromthis chapter.3.1 Examples of current constraint solversThis section presents four examples of current constraint solvers, discussed in termsof the processes described in the previous section. The �rst example uses the DCMsolver introduced in [86]. The second example demonstrates the use of a hybrid ofa domain speci�c solver and a domain general solver using the process in table 3.2.This example uses the INCES solver introduced in [62]. The third example discussesIGCS [112] and the fourth example discusses Connectivity Analysis [67], which is ahybrid of many domain speci�c solvers.3.1.1 DCMThe two-dimensional constraint solver used by DCubed, DCM [86], solves constraintproblems consisting of two-dimensional points and lines and distance and angle con-straints. The algorithm works by decomposing the constraint problem into tricon-nected componentsy . The triconnected components will usually consist of trianglesin a constraint graph constructed of either real or virtual edges. Then, trianglesof constraints and entities consisting entirely of real edges are solved. This �xesthe three entities in the triangle relative to each other and allows further trianglesto be �xed and solved relative to these three entities. The DCM algorithm can bedescribed in three stages:1. Decompose the constraint problem P into a number of subproblems fPig,where each Pi is a triconnected component. The decomposition strategy cre-ates virtual edges when a complex subgraph is split into two other subgraphsalong an articulation pairy . The edge between the two vertices that form the

Chapter 3 46 Solving Problems by Decomposition
A

B
C

D E

F G H

J

A

B

C

E

I

HG J

F

D

I

Figure 3.1: Constraint problem P describing a pentagonarticulation pair is part of one subgraph and is repeated as a virtual edge inthe other subgraph.2. Order the subproblems so that triangle (A;B;C) is solved before triangle(A;B;D) if there is an edge (A;B) common to both triangles that is real in(A;B;C) and virtual in (A;B;D). This forms the ordering strategy of DCM.3. Each triangle is solved in turn, in the order dictated by the ordering strategy.Solvers �nd solutions to three simultaneous equations in three unknowns usingspecial case or numerical techniques. Since the number of possible triangles issmall and �nite, special case techniques can be used e�ciently.For example, consider the constraint problem P in �gure 3.1. The decompositionstrategy in [86] gives the set of subproblems depicted in �gure 3.2, where virtualedges are represented using dotted lines.The partial order generated for these triangles is4DFG < 4ADF < 4ABD; (3.1)4EHI < 4EIC < 4BEC: (3.2)The special case solvers would then be applied to the triangles in turn, maintain-ing this order. The special case solvers are e�ectively domain speci�c solvers. Forexample, assuming points D and G are �xed, a position for line F can be calculatedusing 4DFG. Since D and F are now �xed, a position for line A can be calculatedusing 4ADF . Finally, a position for B can be calculated using 4ABD. Eventuallyrelative positions for B;G and H would be determined, as shown in �gure 3.3.

Chapter 3 47 Solving Problems by Decomposition
A

B
C

D

E

F

G H

J

I

D

A

F

D

G

B

E

I

C

E

H

Figure 3.2: Decomposed subproblems of problem P

G H

J

A

B

D

F G

B

C

E

H I

Figure 3.3: Recombined subproblems of constraint problem P

Chapter 3 48 Solving Problems by DecompositionThese three components can then be placed relative to each other, �xing B;Gand H up to rigid body freedom.Note the close correspondence here with Erep. Erep would solve P in exactly thesame way, forming triangles DFG, ADF and ABD into a single cluster and trianglesEHI, EIC and BEC into another cluster and then �xing these two clusters withtriangle GHJ in similar fashion to that above. In fact, Erep and DCM have recentlybeen acknowledged to be very similar [14].3.1.2 INCESThe functional constraint solver INCES [62], developed by Lamounier at the Univer-sity of Leeds, solves constraint problems consisting of variables on the real line andequations. The INCES algorithm solves such problems by examining the constraintgraph of the problem and identifying strongly connected components y . Stronglyconnected components are equivalent to subproblems that must be solved simulta-neously. Such subproblems, once identi�ed, are renamed as a single entity in theconstraint graph so that the constraint graph becomes acyclic.The acyclic constraint graph is then solved using local propagation techniques sothat entities that are �xed are solved �rst and entities that are connected are solvednext, until a strongly connected subproblem is encountered.The strongly connected subproblem is solved using a domain general solver. Inthe current implementation of INCES this is a Newton-Raphson technique. Theresult of the Newton-Raphson solver is passed downstream to other entities in theacyclic graph by local propagation and the process continues.This is an example of the process described in table 3.2. This can be seen moreeasily if the INCES algorithm is described in three stages:1. Decompose constraint problem P into a number of subproblems fPig, whereeach Pi is either a strongly connected component or is a connected, acyclicconstraint graph.2. Order the subproblems so that �xed subproblems are solved �rst, followed bysubproblems that are connected to them, and so on.3. Solve the subproblems in the order dictated by the ordering strategy. Solveacyclic subproblems using the local propagation solver and strongly connectedsubproblems using the Newton-Raphson solver.

Chapter 3 49 Solving Problems by Decomposition
C1: s - MY = 0
 I
C2: M-FL = 0
C3: I - WH = 0
 12
C4: Y - H = 0
 2
C5: K - 3EI = 0
 L
C6: P - FL = 0
 EI
C7: P = 10
C8: M = 20
C9: E = 30
C10: K = 40
C11: s = 50

3

3

2

YC4 C1 M

C8

H s

C11 C2

FL

C6

P

C7

C3 I

W C5

K

C10

E

C9Figure 3.4: Constraint/Entity graph of �gure 2.9For example, consider the constraint problem in �gure 3.4, where each entityhas domain IR. INCES decomposes this to constraint problems P1; P2; P3 and P4 asshown in �gure 3.5. The order of solution is given by the partial order:P1 < P3;P3 < P4;P2 < P4:The ordering strategy used by INCES is to solve subproblems that �x entities �rstand then use the results from these subproblems to solve connected subproblems. In�gure 3.5, problems P1 and P2 are �xed and so are solved �rst. Problem P4 cannotbe solved before P3 as it is dependent on P3. Consequently, the ordering above isformed.Problem P3 is strongly connected and so is solved using Newton-Raphson. Prob-lems P1; P2 and P4 are solved using local propagation. Thus INCES is a hybrid ofthe domain speci�c local propagation algorithm and the domain general numericalsolver.

Chapter 3 50 Solving Problems by Decomposition

Y

C4
C1

M

C8

H

s

C11

C2

FL

C6

P

C7

C3

I
W

C5

K

C10

E

C9

P1

P3

P2

P4

Figure 3.5: Decomposed subproblems of �gure 3.43.1.3 IGCSLike INCES, IGCS [112] was developed at the University of Leeds. IGCS wasdesigned by Tsai as a geometric constraint solver that would serve as a successor toFa's ICBSM [27]. ICBSM was limited in that it could not solve geometric constraintproblems with loops and so IGCS was built with this in mind.IGCS consists of three separate solution techniques for a geometric constraintproblem: Allowable Motion, Locus Analysis and inverse operation. The AllowableMotion method is equivalent to ICBSM's Allowable Motion. This technique satis�esa new constraint by manipulating an object using its Allowable Motion (how it cantranslate and rotate in space). The Allowable Motion can then be used to maintainconstraints when the model is manipulated.Locus Analysis is as described by Kramer [59]. The Allowable Motion of two ge-ometric objects that have a constraint between them are examined. Each geometricobject has a locus of possible positions it can occupy without breaking its currentconstraints. The intersection of the two loci is the set of possible positions the twogeometric objects can occupy and satisfy the new constraint as well as all of the oldones.The �nal solution technique is the inverse operation method. This technique triesto satisfy a new constraint between objects A and B by examining the AllowableMotion and loci of objects connected to A and B. If the new constraint cannotbe satis�ed by manipulating A and B alone, then the inverse operation methodattempts to satisfy the constraint by manipulating objects connected to A and B

Chapter 3 51 Solving Problems by Decomposition
C

D

A

B

point-point coincident

(a)

C

D

A

B

(b)Figure 3.6: The inverse operation method in IGCS (from [112])that may give A and B more freedom.For example, consider �gure 3.6 (a). A point-point coincidence constraint isadded between the end-points of C and D. This cannot be satis�ed by moving Cand D alone. However, line B is free to move and so the inverse operation methodwill satisfy the new constraint by rotating B to a position where C and D can berotated to solve the constraint (see �gure 3.6 (b)).The algorithm adopted by IGCS is that it tries Allowable Motion to satisfy anew constraint �rst. If this fails, then it tries locus analysis and if locus analysisfails, then it tries the inverse operation method. Again, this is an example of thedecomposition framework:1. Decompose a constraint problem into subproblems consisting of individualconstraints and the objects associated with them.2. Order the subproblems according to the user's interaction.3. Solve the subproblems by applying Allowable Motion, then Locus Analysisand then the inverse operation method in order.Note that IGCS can solve loops in the constraint graph by using the locus analysisand inverse operation methods. Note also that IGCS is an incremental solver andcan deal with single constraints being added very quickly.3.1.4 Connectivity AnalysisConnectivity Analysis [67] was presented by Latham and Middleditch as a means ofsolving geometric constraint problems. Of the three algorithms presented by Lathamand Middleditch, one discusses the identi�cation of over- and under-constrainedness

Chapter 3 52 Solving Problems by Decomposition
d1(1)

h1(1)

a1(1)

L1(6)

L2(6)

e1(3)

e2(3)

e3(3)

P1(3)

P2(3)

f1(3)

f2(3)Figure 3.7: A connectivity graph for constraint problem Pof constraint problems and making over- and under-constrained problems well-constrained. The second algorithm uses constraint priorities to choose constraintsto remove to solve over-constraint. The third algorithm subdivides a large set ofconstraints into small subproblems that can be resolved independently. It is this�nal algorithm that has the most direct bearing on this thesis.Connectivity Analysis describes a constraint problem P using a bipartite con-nectivity graph (see �gure 3.7 taken from [67]). Each entity has a number associatedwith it which is the dimension of the entity. Each constraint also has its dimensionassociated with it.The entities in the problem are:L1 and L2 are each line segments with dimension 6;P1 and P2 are each points with dimension 3:The constraints are:f1 and f2 are constraints to �x the location of P1 and P2;e1; e2 and e3 are endpoint constraints to �x the endpoints of L1 and L2;d1 �xes the length of L1;a1 forces L1 and L2 to be orthogonal;h1 forces L1 to be horizontal.Each edge of the connectivity graph has a weight associated with it, such thatthe sum of the weights of all the edges incident to a node is not more than thedimension of the corresponding entity or constraint. Each edge is also directed. Ifthe weight of the edge is zero, then the direction of the edge is from an entity node to

Chapter 3 53 Solving Problems by Decomposition
d1(1)

h1(1)

a1(1)

L1(6)

L2(6)

e1(3)

e2(3)

e3(3)

P1(3)

P2(3)

f1(3)

f2(3)

0

0

0

0

1

1

1

3

33

3

A

C

B DFigure 3.8: Residual sets for constraint problem Pa constraint node. If the weight is non-zero, the edge is directed in both directions.Connectivity Analysis then proceeds by identifying a maximal weighting of theconnectivity graph. A maximal weighting is a weighting where the sum of weightson the edges is no smaller than the sum of weights in any other weighting. At thispoint, Connectivity Analysis detects residual sets which are strongly connected setsthat are not strict subgraphs of any other strongly connected sets. Figure 3.8 showsthe residual sets of �gure 3.7. Circles represent constraints and rectangles represententities.The Connectivity Analysis algorithm is presented below:BEGINPartition the constraint graph into residual setsCompute the partial order for the residual setsFOREACH residual set in orderSolve the constraints in the set, treating external entitiesas constantsENDFORENDThe Connectivity Analysis algorithm is dominated by the time taken to identify theresidual sets, which is nonlinear. The partial order of residual sets is that residualset Y is solved before residual set Z, Y < Z, if and only if:9y 2 Y; z 2 Z such that there exists a path y ; z 2 Ewhere E is the set of edges in the connectivity graph. Consequently, in �gure 3.8,

Chapter 3 54 Solving Problems by Decompositionthe partial order of residual sets is:D < B < A;C < B < A:The algorithm for Connectivity Analysis is essentially a speci�c case of that givenin table 3.2. The decomposition strategy is the identi�cation of residual sets. Theordering is given above and the solution is by solvers applied to the residual sets inthe order given. Latham and Middleditch do not discuss the speci�c solvers appliedto the residual sets in much detail but they do note that \individual balanced setscan be solved using special or general purpose algorithms" and that \special purposealgorithms are usually more e�cient than general purpose algorithms". In otherwords, Connectivity Analysis should use domain speci�c solvers to solve residualsets.Although Latham and Middleditch do not discuss hybrid constraint solvers, thepartial ordering used to order the residual sets lends itself naturally to hybrid col-laboration. For example, in �gure 3.8 residual sets D and C can be solved in paralleland then B and then A sequentially.If implemented in such a fashion, Connectivity Analysis would be a hybrid ofdomain speci�c solvers. Note, however, that the decomposition strategy used inConnectivity Analysis does not allocate solvers to subproblems.Recently Latham has generalised Connectivity Analysis to type analysis [68].Type analysis associates a type with each constraint and decomposes a constraintproblem into subproblems that can usually be satis�ed independently of other prob-lems. Here \usually" means not considering degenerate cases. Type analysis �ndscomplete constraint sets with respect to a certain type T . A constraint set is com-plete if the imposed set of entities is complete with respect to T .A set of entities is complete with respect to T if1. A new type T constraint is compatible with some sequence of entities in thatset.2. No sequence of entities in that set can have their allowable motion reduced bya new type T constraint.DCM [86], GCE [58] and Erep [14] all exploit distance-complete sets, i.e. subprob-lems that are well-constrained if only distance constraints are considered. Type

Chapter 3 55 Solving Problems by Decompositionanalysis detects other complete sets and so is more general. However, the time com-plexity of type analysis is O(n3), where n is the number of constraints in a problem.Correspondingly, type analysis is not suitable for the type of scaleable, interactiveapplication of interest to the Virtual Working Environment group at Leeds. Notethat type analysis also does not consider the allocation of solver to subproblem,although the use of types helps to narrow the choice of solvers appropriate to aparticular subproblem.3.2 Decomposition strategiesA decomposition strategy De is a function that takes a constraint problem and aset of available solvers and produces a set of subproblems with solvers assigned tothem. It is formally de�ned here.De�nition 3.1 (Decomposition Strategy) A decomposition strategy is a func-tion De : (P;S) �! f(Pi;Si)g;where P is a constraint problem, Pi are subproblems of P , S is a set of constraintsolvers and Si � S. �A decomposition strategy can be simple or complex. One of the most basicdecomposition strategies that is employed by virtually every constraint solver is :Deconnected components : (P;S) �! f(Pi;S)g;where the fPig are the connected components of the Constraint/Entity graph ofproblem P . Elements of a connected component do not a�ect any elements of adi�erent connected component, by the de�nition of imposed sets (see de�nition 4.9).Deconnected components applies the same set of solvers to the connected components ofP . Decomposition strategies are important because they divide a large and complexproblem into a number of smaller problems that can be more easily dealt with.However, there are a number of di�culties associated with decomposition. Theseare discussed in more detail in section 3.2.4.The remainder of this section presents some examples of decomposition strategiesin section 3.2.1. Section 3.2.2 discusses decomposition strategies to take advantage of

Chapter 3 56 Solving Problems by Decompositiondomain speci�c solvers. Section 3.2.3 notes the advantages of decomposition strate-gies, whilst section 3.2.4 acknowledges the limitations and dangers of this approach.Section 3.2.5 discusses the use of decomposition strategies in incremental constraintsolvers. Section 3.2.6 draws some conclusions from the use of decomposition strate-gies.3.2.1 Examples of decomposition strategiesMost constraint solvers use decomposition strategies in order to �nd solutions toconstraint problems. Note that a further decomposition strategy can be appliedto each of the results of a decomposition strategy and so decomposition strategiescan be composed . For example, Serrano's DESIGNPAK [100] decomposes prob-lems into strongly-connected componentsy and non-strongly-connected components.Call this decomposition strategy Destrong components. However, prior to applyingDestrong components, DESIGNPAK has already decomposed the constraint probleminto connected components using Deconnected components.Thus the DESIGNPAK decomposition strategy isDestrong components �Deconnected components;where the � notation is used to denote composition of decomposition strategies:(De2 �De1)(P;S) =[i fDe2(Pi;Si)g;where De1(P;S) = f(Pi;Si)g:Erep [14] uses a decomposition strategy that is very similar in outcome to DCMbut somewhat di�erent in application. Erep identi�es clusters of entities and con-straints. A cluster is a part of a constraint problem that can be fully described asa rigid body and can be manipulated as a rigid body. Erep has two distinct phasesto constraint solution. First it builds clusters by positioning an entity relative totwo �xed entities using two constraints. This procedure continues until no moreentities can be placed relative to any pair of entities in the cluster. At this point,the cluster is a rigid body. Clusters can then be placed relative to each other usingmanipulation of the rigid bodies. Three clusters Cl1; Cl2 and Cl3 can be placed

Chapter 3 57 Solving Problems by Decompositionrelative to each other if there exist three entities, x 2 Cl1, y 2 Cl2 and z 2 Cl3 andthree constraints, between x and y, y and z and z and x.The decomposition strategy used by Erep decomposes a constraint problem intoa number of clusters, which are solved using the cluster building technique, and setsof three clusters that can be positioned relative to each other.The decomposition strategies used by INCES, IGCS, DCM and ConnectivityAnalysis have been discussed in detail in section 3.1.3.2.2 Decomposition to domain speci�c subproblemsIn order to take advantage of the power of domain speci�c solvers, a constraintsolver must decompose a constraint problem into subproblems that can be solvede�ciently by the domain speci�c solvers available. Such subproblems are referred tohere as domain speci�c subproblems. In order to perform this decomposition, theconstraint solver must know the strengths of the domain speci�c solvers and howthe appropriate domain speci�c subproblems can be identi�ed within the originalconstraint problem. This is very di�cult to do thoroughly.In order to �nd domain speci�c subproblems, it is �rst necessary to identify thedomain speci�c knowledge being used by the domain speci�c solvers. This helpsto identify types of problem that the domain speci�c solvers can solve e�ciently.This in turn leads to methods of pulling out domain speci�c subproblems from theoriginal constraint problem.For example, the domain speci�c knowledge that Erep and DCM use is ruler-and-compass construction. More speci�cally, Erep and DCM use the domain spe-ci�c knowledge that distance and angle constraints between points and lines can besolved quickly and e�ciently because a point is �xed in space by two distance con-straints relative to two other �xed points and a number of similar rules. Erep andDCM exploit such domain speci�c knowledge by using the constraint graph of theconstraint problem to identify clusters of entities that form rigid bodies. Clusterscorrespond to constraint graphs with no articulation pairsy and both DCM and Erepexploit constraint graphs with this structure in order to identify ruler-and-compasssubproblems.IGCS, ICBSM and GCE use domain speci�c knowledge related to rigid bodies.They use the knowledge that rigid bodies are not deformable and can only translate,rotate and scale in space once created. Rigid body subproblems are characterisedby 3D and 2D objects, such as lines, planes, cuboids and spheres with high level

Chapter 3 58 Solving Problems by Decompositionagainst, coincidence and concentric constraints.Finite domain subproblems are characterised by entities and constraints with�nite domains. Scheduling subproblems are characterised by entities with a timedomain and constraints such as before, after or concurrently .INCES uses the domain speci�c knowledge that functional constraint problemsthat have a tree graph structure can be solved using local propagation.A decomposition strategy to take advantage of these domain speci�c subproblemswill be dependent on the solvers available and the problems to be solved. Theadvantages and limitations of such decomposition strategies are discussed in thefollowing sections.3.2.3 Advantages of decomposition strategiesThere are several advantages to using decomposition strategies in general and todomain speci�c decomposition strategies in particular.1. Smaller problems are simpler to deal with.2. Decomposing and solving is usually faster than dealing with problems as awhole.3. Decomposition reuses existing constraint solvers.4. Domain speci�c decomposition takes advantage of very e�cient solvers.The �nal point is the key issue of interest in this thesis. The advantages arecovered in more detail below.1. When solving large and complex problems, it is di�cult to comprehend thewhole problem all at once. Small parts of the problem are easier to dealwith and understand, both for the human operator and the computer. It issigni�cantly easier to spot patterns and problems in small problems than largeones.2. In a similar fashion, it is much easier, and therefore quicker, to �nd solutions tosmall problems than large problems. However, actually decomposing the con-straint problem may take signi�cantly longer than �nding the solutions to thesubproblems if a complex decomposition strategy is adopted. Consequently,it may be faster to solve the constraint problem as a whole.

Chapter 3 59 Solving Problems by Decomposition3. Since a constraint problem is decomposed to subproblems that are conse-quently solved using specialist solvers, the decomposition strategy can be de-signed in such a way as to utilise existing solvers. This means that the powerand expressibility of old solvers can be increased at little cost in developingnew code, beyond developing the decomposition strategy.4. Domain speci�c decomposition is a particular type of decomposition strategythat tries to take advantage of powerful domain speci�c solvers. As notedin chapter 2, domain speci�c solvers are very e�cient at solving some con-straint problems. Consequently they should be reused and adapted if possible.Domain speci�c decomposition provides a means of doing this. Domain spe-ci�c decomposition is a particular example of the divide and conquer strategyprevalent in computer science.3.2.4 Limitations of decomposition strategiesIn fact most of the advantages of decomposition can also be interpreted as disad-vantages. Limitations of decomposition and domain speci�c decomposition include:1. Small parts of a greater whole frequently provide no information about thegreater whole.2. Decomposition can fail to �nd solutions where some exist.3. Decomposition can be slower than solving a problem as a whole.4. Domain speci�c decomposition may lead to subproblems that cannot be de-composed further and cannot be solved by any existing domain speci�c solver.5. It may be extremely hard to identify the domain speci�c knowledge a domainspeci�c solver uses.6. It may be extremely hard to identify domain speci�c subproblems within aconstraint problem.7. Recombination of solutions to subproblems into solutions to the combinedproblem is hard.These limitations are discussed in more detail below:

Chapter 3 60 Solving Problems by Decomposition1. Studying small parts of a problem does not necessarily give any insight tothe whole. At one extreme, this has given rise to chaos theory. In terms ofconstraint problems, this means that decomposing to subproblems and thenstudying the subproblems does not necessarily lead to insight into the prob-lem as a whole. This point is discussed in more detail in chapter 6 and insection 7.4.1.2. One immediate e�ect of the di�culty in applying knowledge of small parts of aproblem to the larger whole is that solving independent subproblems may notlead to solutions of the whole problem. This is because one of the underlyingassumptions about decomposition is that there is little or no interdependencybetween subproblems. The classic manifestation of this in in�nite-domainconstraint problems is the existence or not of cycles in the constraint graph ofa problem. Constraint graphs that can be structured to form a tree usuallyhave subproblems that can be solved independently and in a certain order.Constraint graphs that contain cycles have constraints that are dependent oneach other and must be solved simultaneously. It is sometimes possible todevelop decomposition strategies whereby dependent subproblems can be putinto one subproblem which is solved as a whole. This behaviour is apparentin Serrano's DESIGNPAK [100] and Lamounier's INCES [62]. However, thisonly really sweeps the problem under the carpet, as the dependent subproblemto be solved simultaneously now forms the bulk of the e�ort necessary to solvethe constraint problem.3. The more complex a decomposition strategy and the smaller the subproblemsit produces, the faster solvers can �nd solutions to the subproblems. However,the bulk of the e�ort of the general constraint solver has simply been shiftedfrom the solvers to the decomposition strategy and little has been gained.Conceptually, this is like the graph in �gure 3.9. As more e�ort goes intothe decomposition strategy, less e�ort needs to be put into the solution of thesubproblems. At a certain point however, the decomposition strategy takesmore e�ort than the solution of the subproblems. It is at the trade-o� point,where equal e�ort is made by the decomposition strategy and the solvers, thatthe most e�cient general constraint solver should exist.No e�ort is made here to discuss the shape of the curves nor where the trade-o� point may be found, as this is beyond the scope of this thesis. It is simplynoted that such a point will probably exist.

Chapter 3 61 Solving Problems by Decomposition
Trade off point

Solver effort

Decomposition effort

Amount of

effort (time)

Complex solvers/

simple decomposition

Complex decomposition/

simple solversFigure 3.9: Graph of trade-o� between complex decomposition and complex solvers4. Decomposing to domain speci�c subproblems may lead to a situation wherebya subproblem is highly interdependent and can be decomposed no further.However, the subproblem is not suitable for any particular domain speci�csolver and so cannot be assigned to a domain speci�c solver. Such a situa-tion is dependent on the decomposition strategy used and may be countered byhaving a backup, domain general, solver that can be used to solve the subprob-lem. However, if the non-decomposable subproblem is large or a signi�cantproportion of the whole problem then solution of the constraint problem as awhole will be dominated by solution of the subproblem by the domain generalsolver, which will typically be very slow. This situation is evident in, for ex-ample, COSAC [85], where constraint problems with few linear equations willbe solved by the slow Gr�obner basis solver.5. Domain speci�c knowledge is a fairly nebulous concept. Some examples ofthe use of domain speci�c knowledge are presented in this thesis but theseare by no means comprehensive. However, it will not always be easy or evenpossible to identify the domain speci�c knowledge employed by a particularsolver. For example, what is the domain speci�c knowledge used by geneticalgorithms? If the domain speci�c knowledge used by a solver cannot bespeci�ed, then it will be extremely hard to characterise the type of problemsthat a particular solver can deal with. For example, what type of problemsare genetic algorithms particularly well-suited to solving?6. Given characterisations of the type of problems domain speci�c solvers can

Chapter 3 62 Solving Problems by Decompositionhandle, it may still be extremely hard to identify domain speci�c subproblemswithin a constraint problem. Latham identi�es an aspect of this problem as thedi�erence between identifying graph properties and real properties [68]. Forexample, the identi�cation of ruler-and-compass constructible subproblems isdi�cult without performing the decompositions used by Erep and DCM. Thisproblem is discussed in more detail in section 8.7. A side e�ect of decomposition strategies is the need for recombination of thesolutions to subproblems into solutions of the combined problem. In e�ect, therecombination is a constraint problem in its own right and is typically hard todo. This problem is discussed in more detail in chapter 3.4.3.2.5 Incremental issues in decomposition strategiesAn incremental constraint solver adds a set of constraints and entities to a previouslysolved constraint problem and tries to �nd solutions to the augmented constraintproblem by reusing the existing solution as much as possible.Most of the work carried out in incremental constraint solution takes place inthe decomposition strategy of the incremental solver. Recall that a decompositionstrategy takes a constraint problem and a set of constraint solvers and splits theconstraint problem into a number of subproblems which have constraint solversassociated with them.The decomposition strategy of an incremental solver will start with no con-straints and no entities. A set of constraints and entities is then added and theseare decomposed into subproblem-solver pairs. When a new set of constraints andentities is added, a new set of subproblem-solver pairs is constructed. However, theincremental solver will try to reuse the existing decomposition as much as possible.INCES [62] adopts this incremental approach. The decomposition strategy inINCES splits the constraint problem into connected components that are eitherstrongly connected or acyclic. If a new entity is added then it e�ectively forms itsown (disconnected) constraint subproblem. If a new constraints is added then oneof several possibilities occur:1. The constraint is connected to entities in a previously acyclic subproblem thatremains acyclic when the constraint is added. In this case the constraint issimply added to the acyclic subproblem which is resolved.2. The constraint is connected to a previously acyclic subproblem that becomes

Chapter 3 63 Solving Problems by Decompositionstrongly connected when the constraint is added. In this case, the constraintsand entities in the new strongly connected subproblem are put into a newstrongly connected subproblem and the remaining constraints and entities forma new acyclic subproblem.3. The constraint is connected to a previously strongly connected subproblemthat remains strongly connected when the constraint is added. In this casethe constraint is added to the strongly connected subproblem.4. The constraint is connected to a previously strongly connected subproblemthat is no longer strongly connected when the constraint is added. In this case,a new acyclic subproblem consisting of only the new constraint is created andadded to the subproblems found by the decomposition strategy.Thus, when a new constraint is added, very little new decomposition need be done.IGCS [112] is also an incremental solver. However, the incremental nature ofIGCS comes from the fact that it tries to solve a newly added constraint by manip-ulating the model without breaking any of the existing constraints. IGCS works bytrying to satisfy the new constraint by �rst manipulating the objects identi�ed bythe new constraint directly using Allowable Motion and locus analysis. If that doesnot work then the inverse operation method applies the same techniques to objectsthat are upstream in the constraint graph. IGCS has a very simple decompositionstrategy and the incremental decomposition strategy is exactly the same. All of theincremental work is done in the solution stage.DCM [86] (and by implication Erep [14]) is not incremental. DCM decomposesconstraint problems to triconnected components that represent rigid bodies. ThusDCM can only solve problems that consist of rigid bodies. By its nature, incrementalsolution adds constraints and entities one by one. Thus, adding a new entity leads toan under-constrained problem and adding new constraints gradually makes it moreand more constrained until it becomes well-constrained.Since rigid bodies are always well-constrained up to rigid body motion, DCMcan only solve well-constrained constraint problems. However, there are two waysthat it may be possible to make DCM at least partially incremental.Incremental constraint solution adds a number of constraints and entities to apreviously solved constraint problem. DCM can only solve well-constrained con-straint problems. Thus, if a number of constraints and entities were added toa well-constrained problem to give another well-constrained problem, then DCMwould be able to solve both the original problem as well as the new problem.

Chapter 3 64 Solving Problems by Decomposition
A BFigure 3.10: An rigid body composed of two trianglesFor example, triangle A in �gure 3.10 is well-constrained and DCM can solvethe constraint problem de�ning the triangle. Similarly, the whole �gure is well-constrained and so DCM can solve the associated constraint problem. Thus, DCMcould solve for triangle A �rst and then, when the remaining elements in �gure 3.10are added, DCM can solve for the �gure as a whole, incrementally.This incremental DCM could reuse the decomposition found for triangle A whensolving for the whole problem and thus save some e�ort.However, this approach is di�cult because the user will have to add a number ofconstraints and entities before being able to resolve the problem and getting feedbackfrom the solver. Though Erep is not incremental in the sense described here, themethod of de�ning constraint problems is the same and the author's experience withErep underlines the di�cult in de�ning constraint problems using this process.Also, in order to make the whole �gure well-constrained, a large number ofconstraints and entities need to be added and the subproblem that is triangle Abecomes a very small part of the whole problem. Consequently there has been littlegain in keeping the decomposition of triangle A.The second method of making DCM incremental is of particular interest in thisthesis. DCM is very good at �nding solutions to well-constrained geometric con-straint problems. However, it cannot solve under-constrained geometric constraintproblems and so cannot �nd a solution when a single constraint is added to an under-constrained problem. On the other hand, IGCS can �nd solutions when a single con-straint is added to an under-constrained problem. Gradually, the under-constrainedproblem has more and more constraints added to it and becomes well-constrained.At this point, IGCS is not particularly well-suited to solving the problem, but DCMis. The two techniques therefore complement each other very well and an obviousquestion is whether it is possible to combine the two techniques in such a way as toget the bene�ts of both. Investigating this possibility is one of the main objectives

Chapter 3 65 Solving Problems by Decompositionof this thesis.3.2.6 ConclusionsDecomposition has proved a powerful means of tackling problems in computer sci-ence. As demonstrated by the constraint solvers in section 3.1, decomposition allowsconstraint problems to be solved quickly and e�ciently. Generally, the advantagesof decomposition far outweigh the disadvantages.In particular, decomposing a constraint problem can allow problems that wouldtake exponential time to solve using a general constraint solver to be solved inpolynomial time.The limitations of decomposition strategies are serious however. Whilst this the-sis does not attempt to solve all of these problems, it does tackle some of them. Inparticular, chapters 6 and 7 examine the di�culties of using decomposition strate-gies to create and solve subproblems. Chapters 6 and 7 identify the key areas thatdecomposition strategies must address in order to �nd solutions to the constraintproblem.Chapter 8 examines the use of a simpler decomposition strategy with more com-plex constraint solvers.3.3 Ordering strategiesWhen a constraint problem has been decomposed to a number of subproblems, itremains to solve the subproblems and recombine the solutions to the subproblemsinto solutions to the whole problem. However, the order in which the subproblemsare solved in is frequently important. For example local propagation techniques suchas INCES [62], ICBSM [27] and SkyBlue [94] decompose a constraint problem intoa triangular format:Example 3.1 (Ordering strategies) Consider constraint problem P ,P = (f(x; IR); (y; IR); (z; IR)g; fx = 1; x+ y = 2; x+ y + z = 3g):

Chapter 3 66 Solving Problems by DecompositionLet the subproblems be: P1 = (f(x; IR)g; fx = 1g);P2 = (f(x; IR); (y; IR)g; fx = 1; x+ y = 2g);P3 = (f(x; IR); (y; IR); (z; IR)g; fx = 1; x+ y = 2; x+ y + z = 3g):The order of solution of P1; P2; P3 has signi�cant repercussions on the ease of solvingP . Solving in the order (P3; P2; P1) using local propagation is much harder thansolving in the order (P1; P2; P3). �Consequently, most constraint solvers use an ordering strategy on the subprob-lems once they have been decomposed. The ordering strategy produces a partialorder < on subproblems, such that < is irreexive, antisymmetric and transitive.Ordering strategies are dependent on the constraint solver used and the problemsbeing solved. Consequently, this section does not attempt to present a comprehen-sive study of ordering strategies. Section 3.3.1 gives examples of ordering strate-gies in use in current constraint solvers. Section 3.3.2 discusses the use of orderingstrategies in general constraint solvers and how hybrid constraint solvers and domainspeci�c knowledge can be used to help formulate an ordering strategy. Section 3.3.3discusses the use of ordering strategies in incremental solvers. Section 3.3.4 drawsconclusions from the use of ordering strategies.3.3.1 Examples of ordering strategiesFa's ICBSM [27] forces an ordering strategy on the user by means of the RelationshipGraph (see section 5.3.2). The Relationship Graph is a directed constraint graphthat forces one constraint to be solved before another and passes allowable motionfrom one entity to another. Consider for example the construct in �gure 3.11 withthe associated Relationship Graph.In constructing the �gure, line 1 is �xed at one end and its allowable motioncalculated to be rotation around the �xed end. Line 2 is then attached and itsallowable motion calculated to be rotation around the other end point of line 1.Similarly line 3 when attached is allowed to rotate about the end point of line 2.Equally, direct manipulation of line 1 is propagated to line 2, following the directionsin the Relationship Graph. The directed edges in the Relationship Graph form theordering strategy of ICBSM. In ICBSM, an edge is directed from A to B if the userdirects that A is the reference and B the target entities of a constraint. Consequently

Chapter 3 67 Solving Problems by Decomposition
1

2 3
A

B

C Line 1 Line 2 Line 3

a) b)

Coincident Coincident

Figure 3.11: An Arm with Two Joints and the Relationship Graph for the Problemthe ordering strategy in ICBSM is dictated by the user and this tends to place anadditional burden on the user.Serrano's DESIGNPAK [100] uses an ordering strategy of proceeding from knownto unknown entities. The general principle that Serrano advocates is \the manip-ulation of symbols (knowledge) in order to derive (infer, conclude) new facts fromexisting (known) facts". E�ectively, this means solving \simple" (in some sense)subproblems and using the information derived from solving the simple subprob-lems to solve the more di�cult subproblems later. This principle manifests itself byhaving �xing constraints of the form `x = 10' that fully de�ne an entity and makeit `known'.The ordering strategies employed by IGCS, INCES, DCM and ConnectivityAnalysis have been discussed in detail in section 3.1.3.3.2 Ordering strategies for a constraint solverA constraint solver using domain speci�c knowledge and hybrid constraint collab-oration should also take advantage of ordering strategies in order to improve thee�ciency of solution.The ordering strategies given in sections 3.3.1 and 3.1 can be summarised as1. User interaction,2. Find solutions to easy problems before harder ones,3. Simultaneous subproblems should be as small as possible.All of the above strategies can be usefully employed in any ordering strategy. Inparticular, the strategies become particularly useful if domain speci�c knowledge isemployed.

Chapter 3 68 Solving Problems by DecompositionUser interaction is a useful ordering strategy because it allows the user to statepreferences for solutions, albeit indirectly. Unfortunately, user interaction places anadditional burden on the user in an already complicated procedure. The interactionin ICBSM forces the user to consider not only which shapes and which constraints arenecessary to construct a model, but also in which order to add the constraints. Sincedi�erent orders of construction might lead to di�erent and unintuitive solutions, thisis clearly inadvisable.This problem is somewhat o�set by using rules to determine the order of con-struction and solution and to determine which solution the user intended. Forexample, DCM [86], Erep [14] and ICBSM [27] try to interpret the user's intent inorder to determine which of many solutions the user requires.It is sensible to solve easy problems before harder ones because solution of theeasier problems might simplify the harder ones signi�cantly. However, the de�nitionof `easy' and `hard' are domain speci�c and consequently domain speci�c knowl-edge must be brought to bear in order to identify the `easy' and `hard' problems.Consequently, the ordering strategy must employ a great deal of domain speci�cknowledge.INCES identi�es `�x' constraints that �x a variable with a certain value. Suchconstraints are trivial to solve and so form the `easy' subproblems. Fixing thevalue of the variable allows other constraints to be solved more easily. DCM andErep use much more sophisticated knowledge to identify `easy' subproblems. The`easy' subproblems in DCM and Erep are the triangles identi�ed by the clusterbuilding algorithm. Such triangles can be solved using simple calculations and soare considered to be the simplest class of problems that DCM and Erep identify.Note that �nding the triangles and then identifying the order in which they shouldbe solved is a complex process and uses the domain speci�c knowledge that a pointor line can be �xed relative to two other points or lines using two constraints.Tsai has identi�ed the need to make simultaneous subproblems as small as pos-sible. Since simultaneous subproblems will be the most time-consuming to solve,it is advantageous to keep them as small as possible. Note that it will not usuallybe possible to limit the size of simultaneous subproblems and so this technique hasonly limited potential.

Chapter 3 69 Solving Problems by Decomposition3.3.3 Incremental issues in ordering strategiesOnce an incremental solver has decomposed a constraint problem to subproblem-solver pairs, the incremental solver will usually apply an ordering strategy to thesubproblem-solver pairs as normal. However, there are a couple of issues that anincremental ordering strategy should take into account.The �rst is that the ordering strategy should not try and calculate the orderfrom scratch but should reuse the ordering previously calculated. This should savesome e�ort.Secondly, the ordering strategy should be aware that a newly inserted set ofconstraints and entities may only a�ect a small part of the constraint problem andthus solvers need only be applied to a small part of the constraint problem in orderto �nd solutions to the new constraint problem.For example, INCES orders subproblems so that solution proceeds from the �rstsubproblem to the last. Thus if the decomposition gives:(P1;S1); (P2;S2); (P3;S3); (P4;S4); (P5;S5);P1 is solved before P2 before P3, etc.If a new constraint is added and is incorporated into P3, then the nature ofINCES is such that the solutions of P1 and P2 are still valid solutions to the newconstraint problem and need not be resolved. Thus, the ordering strategy needs tonote that only P3; P4 and P5 need to be resolved.3.3.4 ConclusionsThe main advantage of an ordering strategy is that it can be used to help guidesolution of a constraint problem and hence speed up solution of the constraint prob-lem. With respect to hybrid constraint solvers, an ordering strategy can be usedto describe an appropriate collaboration. For example, suppose that an orderingstrategy produces an ordering < on subproblem-solver pairsf(P1;S1); (P2;S2); (P3;S3); (P4;S4)gsuch that (P1;S1) < (P2;S2) < (P3;S3);(P1;S1) < (P4;S4)

Chapter 3 70 Solving Problems by Decompositionthen the subproblems can be solved in a serial fashion in the order(P1;S1); (P2;S2); (P3;S3); (P4;S4):The limitations of ordering strategies are more dependent on their implemen-tation than the concept. For example, the Relationship Graph ordering used inICBSM forces the burden of deciding in which order to build a model onto the userand is an extra complication from a system that is trying to simplify the process.Inadequate ordering strategies may lead to orderings of subproblems that do notsimplify solution of the constraint problem, but instead complicate it, as seen inexample 3.1. Care should be taken when selecting an ordering strategy to ensurethat it is not too sensitive to the structure of the constraint problem and is appliedcorrectly.3.4 Solution of subproblemsUnder the constraint solver framework introduced in this chapter, a constraint prob-lem P is decomposed to a set of subproblem-solver pairs f(Pi;Si)g. The set ofsubproblem-solver pairs is then ordered using an ordering strategy to give a partialordering < on the subproblem-solver pairs. It remains to solve the subproblems andto use the solutions of the subproblems to �nd solutions to the original problem P .The set Si associated with subproblem Pi in the set of subproblem-solver pairsis a set of solvers that have been identi�ed by the decomposition strategy as beingsuitable candidates for solving Pi. Usually Si will contain only one candidate andconsequently choosing the solver to apply is trivial. However, it is possible that aconstraint solver will identify a number of potential subsolvers that can be appliedequally well. If this is the case, then a subsolver needs to be selected at this pointfor application.The solution and recombination of subproblems using hybrid collaboration willbe discussed in detail in chapter 7.Section 3.4.1 gives examples of constraint subsolvers and the solution of subprob-lems. The use of domain speci�c subsolvers to solve the subproblems is discussedin section 3.4.2. Section 3.4.3 discusses the solution of subproblems in incrementalsolvers. Conclusions are drawn from the solution of subproblems in section 3.4.4.

Chapter 3 71 Solving Problems by Decomposition3.4.1 Examples of solution of subproblemsIn ICBSM [27], subproblems are not decomposed per se. For each constraint thereis a subproblem consisting of that constraint and the imposed entities of the con-straint. Consider, for example, constraint aCb, where the ordering imposed by theRelationship Graph is [a; b]. Consequently, a is the reference of the constraint and bis the target . Solution of the subproblem (f(a; IR6); (b; IR6)g; faCbg) is by examiningthe allowable motion of the target entity and using that allowable motion to try andsatisfy the constraint. If b can be translated or rotated to satisfy constraint C, thenthe new allowable motion of b is dependent on C and the previous allowable motionof b. The solver used to solve the subproblem �nds the allowable motion of b andthe translation or rotation necessary to satisfy the new constraint. The solver thenapplies the translation or rotation to b and then updates the allowable motion of b.DESIGNPAK [100] decomposes a constraint problem to subproblems that areeither cyclic or acyclic. Cyclic subproblems are solved by a numerical technique suchas Newton-Raphson. Acyclic subproblems are solved using local propagation. Con-sequently, DESIGNPAK consists of two constraint subsolvers, Newton-Raphson andlocal propagation. Since both subsolvers produce only one solution, recombinationof solutions is trivial.COSAC [85] e�ectively decomposes constraint problems into subproblems thatconsist of linear equations, and so can be solved using simple Gaussian eliminationor similar subsolvers, and subproblems that cannot be solved using a linear equationsolver, which are solved using Gr�obner bases. Generally, the Gr�obner basis subsolverwill dominate the time to solve a constraint problem as most constraint problemswill not consist of many linear equations. Whilst COSAC is mostly a Gr�obner basissolver, it is the �rst hybrid solver designed using Monfroy's hybrid collaborationlanguage [84].3.4.2 Solving using domain speci�c knowledgeIn order to take advantage of domain speci�c knowledge, domain speci�c solversshould be used to solve the subproblems produced by the decomposition strategy.As noted by Latham and Middleditch [67], \Special purpose algorithms are usu-ally more e�cient and reliable than general purpose algorithms, and they providegeometrically meaningful information that facilitates useful user feedback and aidsselection from multiple solutions.". The special case solvers used by DCM and theallowable motion used in ICBSM are both examples of domain speci�c solvers. The

Chapter 3 72 Solving Problems by Decompositionlocal propagation technique used in INCES is not domain speci�c as such. However,it does require a speci�c structure of subproblem to be successful. In fact, localpropagation is generally used as a domain speci�c algorithm, as it is used in ICBSMspeci�cally for acyclic geometric problems and in INCES to solve acyclic equationproblems.The hard work of identifying the domain speci�c knowledge used by a domainspeci�c solver to produce subproblems appropriate for that domain speci�c solveris carried out by the decomposition strategy. Domain speci�c solvers are applied tothe subproblems to produce solutions quickly and e�ciently.3.4.3 Incremental issues in solving subproblemsThe use of subsolvers in an incremental constraint solver is usually the least of thethree phases. Nearly always, the bulk of the work in an incremental solver is carriedout by the decomposition and ordering strategies. The subsolvers generally act inthe same fashion as described in this section and �nd solutions to the subproblems.There are exceptions to this rule of course. IGCS, in particular, puts most of thee�ort of incremental solution into solving the constraints as they are added. Thealgorithms used by IGCS are described in more detail in section 3.1.3.3.4.4 ConclusionsSince a subproblem must be solved in order to �nd solutions to the whole problem,the advantages and limitations of solving subproblems are related to the advantagesand disadvantages of using domain speci�c solvers and hybrid constraint solvers.However, the advantages and disadvantages of domain speci�c solvers and hybridconstraint solvers are not obvious. The use of domain speci�c solvers is discussed insection 7.1. The use of hybrid constraint solvers is discussed in section 7.2.3.5 ConclusionsThis chapter has presented a discussion of the general nature of constraint solversand in particular the creation of constraint solvers that explicit domain speci�cknowledge and hybrid constraint solvers. The general outline of a constraint solvercan be described simply as a sequence of three strategies:1. A decomposition strategy takes as input a constraint problem and producesas output a set of subproblems and constraint solvers assigned to them. The

Chapter 3 73 Solving Problems by Decompositiondecomposition strategy is signi�cant as it splits a large, complicated constraintproblem into a number of smaller, more manageable subproblems. As notedby Latham [68], \the key to e�cient constraint solution is to partition a largeset of constraints into smaller sets that can be solved independently".2. An ordering strategy takes as input a set of subproblem-solver pairs and pro-duces as output a partial order in which the subproblems should be solved.The ordering strategy is not always necessary. However, the ordering strategydoes allow a constraint solver to inuence the sequence of solution of subprob-lems. Since the result of subproblems can be used to simplify solution of latersubproblems, an ordering strategy is an important tool to aid solution of thewhole constraint problem.3. A solution strategy takes the partially ordered set of subproblem-solver pairsand initiates a solver on the subproblem, maintaining the order given by theordering strategy. Solutions are passed from subproblem to subproblem inorder to take advantage of known solutions.This outline lends itself naturally to the use of domain speci�c knowledge andhybrid constraint solvers. The decomposition strategy can make use of domain spe-ci�c knowledge inherent in domain speci�c solvers and ensure that the subproblemsare selected to take best advantage of domain speci�c solvers available.The ordering strategy can then be used to order subproblems in order to takeadvantage of domain speci�c solvers hybrid collaboration strategies.The solution strategy then initiates the domain speci�c solvers on the appropriatesubproblems and the hybrid collaboration paradigms are used to make explicit therecombination of solutions to the subproblems.The advantages of using a decomposition strategy are that large and complexconstraint problems are subdivided into a number of smaller and more manageablesubproblems. This divide-and-conquer approach is frequently faster than trying todeal with a problem as a whole. Decomposing to subproblems amenable to domainspeci�c solution also speeds up the solution process.Conversely, decomposition strategies are subject to consistency problems as wellas di�culties identifying domain speci�c subproblems. Identifying domain speci�csubproblems is also hard, because it is frequently di�cult to identify the domainspeci�c knowledge used by a domain speci�c solver. Once the domain speci�c knowl-edge is identi�ed, it is hard to �nd domain speci�c subproblems that explicate thatdomain speci�c knowledge without solving the whole problem.

Chapter 3 74 Solving Problems by DecompositionOrdering strategies allow solvers to help guide solution of a constraint problemin order to improve the speed of the constraint solver. Ordering strategies also leadnaturally to the use of hybrid collaborations. Unfortunately, ordering strategies canbe very sensitive to the ordering chosen and care needs to be taken when selectinga strategy.Many examples of constraint solution by decomposition were given, such asDCM [86], INCES [62], IGCS [112], Connectivity Analysis [67] and Erep [14]. Thestrategies adopted by each such algorithm were explored in detail.Several issues and questions were raised by study of the decomposition frameworkin this chapter:� Is it possible to lose solutions by decomposing and recombining?� What e�ect does decomposition have on incremental techniques?� Is it more e�cient to decompose and recombine or solve as a whole?� Is it possible to have a fast decomposition strategy and a fast solution ofsubproblems or must one always dominate?In order to investigate these questions thoroughly, it was necessary to study theconstraint solution process in more detail. For this study, the decomposition of aconstraint problem is not necessary and it merely complicates the procedure. Theconstraint solution process is split into three stages: constraint de�nition, constraintrepresentation and constraint solution.Chapter 4 addresses constraint de�nition and identi�es the key terms and ele-ments that comprise a constraint problem. Chapter 5 studies the use of constraintrepresentation schemes which are methods of describing and storing constraint prob-lems. Chapter 6 uses the de�nition of constraint problems from chapter 4 to builda framework for constraint solution that can be used to study the above questions.

Chapter 4Constraint De�nitionConstraints are used in many di�erent situations. People frequently refer to con-straints on their �nancial position, social life or personal habits. In one week inJune 1997, the BIDS Uncover Service 1 found references in the following journalsmentioning the word `constraints'.Omega.Soil Biology and Biochemistry.Duke Mathematical Journal.Applied geochemistry : journal of the internationalAssociation of Geochemistry and Cosmochemistry.Physical review. e. statistical physics, plasmas, uids,and related interdisciplinary topics.Tectonophysics.Physical review d: particles, �elds, gravitation, and cosmology.International journal of control.Journal of symbolic computation.Journal of East Asian linguistics.Ecology.Pharmaceutical research.Geochimica et cosmochimica acta.The serials librarian.Eclogae geologicae Helvetiae.Physical review B: Condensed matter.Such a wide variety of subject areas and uses means that there are many di�erentde�nitions of a constraint, with di�erent means of describing and dealing with them.Even in the somewhat more limited context of this thesis, such diversity is ev-ident. In fact, most papers on the �nite domain constraint satisfaction problem1http://www.bids.ac.uk 75

Chapter 4 76 Constraint De�nitionde�ne the problem using a di�erent de�nition and terminology. The fact that noneof these de�nitions are contradictory leads to the concept of a �nite domain con-straint problem.Other types of constraints, such as geometric constraints or scheduling con-straints, however, do not, at �rst glance, appear to resemble the �nite domainde�nition at all.Example 4.1 (De�nitions of Constraint Problems) From [91], a de�nition ofa �nite domain constraint problem:The binary constraint satisfaction problem (bcsp) involves a set ofvariables fV1; V2; : : : g ... a set of binary constraints fC1;1; : : : ; Cn;mgwhere the constraint Ci;j is a relation between Vi and Vj and if Ci;j isnull then there is no constraint acting from Vi to Vj.From [102], a de�nition of a geometric constraint problem:Topological constraint. A topological constraint de�nes the topol-ogy of a primitive solid itself by specifying the connection between thegeometric elements. ...Structural constraint. A structural constraint gives the primitive solid(for example prisms and cylinders) the character of a particular feature.Groove, square hole and step features have the same topological structureof \4-sided prism" ...Dimensional constraint. Dimensional constraints de�ne the size andlocation of a feature. There are two constraints: the distance and anglebetween geometric elements. These correspond to dimensions in draw-ings.From [124], a de�nition of a scheduling problem:The process of driver scheduling is the construction of a set of legalshifts ... which together cover all the blocks in a particular vehicle sched-ule ... Blocks may be considered as being divided into units of work whichstart and �nish at relief opportunities pass agree change-over points. ...Driver scheduling is subject to a set of rules which is speci�c toan organisation. ... Typically, there are restrictions on the total timeworked, on the length of time that may be worked without a meal break,on the total spreadover (duration between beginning and end of a shift),etc.

Chapter 4 77 Constraint De�nition� It is in fact possible to de�ne constraints in such a way that all the di�erent typesof constraint are merely specialised cases of the general de�nition. This chapterpresents a formal de�nition of the general constraint problem. The set theoreticde�nition used is, in fact, not new. Finite domain constraint problems are frequentlyde�ned in terms of relations [91,103] and the de�nitions used there, carried to theirlogical extreme are equivalent to the de�nitions in this chapter.However, there has been very little research into the uni�cation of the variousdi�erent types of constraint problem. The de�nition presented here is capable ofdescribing all types of constraint problem and hence, to an extent, unifying thedi�erent de�nitions currently used.As well as de�ning the general constraint problem, this chapter presents thenotion of dimension, which is used to capture the size of a set. Dimensions form akey part of the theories espoused later in this thesis. Although used in many formsin the literature (for example, dimension is equivalent to degrees of freedom as usedby Kramer [59] and Fa [26]), no formal de�nition has been given in the literature.Section 4.5 presents a formal de�nition of dimensions and discusses the concept insome detail.This chapter de�nes the terms entity , constraint , constraint problem, constraintsolver and dimension. In order to demonstrate the e�ectiveness of the set theoreticapproach, examples of both �nite and in�nite domain problems will be given. How-ever, the chief bene�t of this chapter is that the set theoretic approach simpli�esthe results and proofs presented in the rest of this thesis.4.1 EntitiesA constraint problem is a compromise between objects giving freedom of action andobjects taking it away.Example 4.2 (Components of constraint problems) A �nite domain const-raint problem consists of variables and constraints. The variables provide freedomas they can take many values and they increase the possible choices available. Theconstraints restrict freedom as they reduce the number of values a variable is allowedto have.A geometric constraint problem consists of geometric entities and geometric con-straints. The geometric entities provide freedom as they can take many positions

Chapter 4 78 Constraint De�nition
1 3 5 7

10 12 14 16

17 19 21 23

26 28 30 32

33 35 37 39

42 44 46 48

49 51 53 55

58 60 62 64Figure 4.1: Placing a queen on a chessboardin space. The geometric constraints restrict freedom as they reduce the number ofpositions a geometric entity is allowed to take. �Entities are the objects providing freedom. In example 4.2, entities are thevariables in the �nite domain problem and the geometric entities in the geometricconstraint problem.De�nition 4.1 (Entities) An entity E is a pair (label; D), where label is a uniqueidenti�er for the entity and D is the domain of E, where D is any set. A value foran entity is an instance in the domain of the entity. An assignation for an entityis a formula of the form E = fvg, determining that entity E is to be assigned theset with the single value v, where v is in domain D. The notation E = S denotesthe fact that E is assigned the set S of values for E. �Where the meaning is unambiguous or the domain unimportant, an entity willsometimes be referred to in this thesis by its label alone.Throughout this thesis, two examples will be studied in detail. One is a �nitedomain problem, that of queens being placed on a chessboard. The other is ageometric problem, that of constructing a triangle. These examples will help todemonstrate the ideas espoused in the thesis.Example 4.3 (Finite domain) A queen can take 64 positions when placed on anempty chessboard. If the squares on the board are numbered 1 to 64, left to right,top to bottom, then the queen can take a value from 1 to 64. Thus the domain of thequeen is f1; 2; 3; : : : ; 64g (see �gure 4.1). Note, however, that there are many ways ofdescribing this domain. For example, by using rows and columns, the queen can takepositions f(1; 1); (1; 2); : : : ; (8; 8)g. In fact, for reasons that are apparent in �nite

Chapter 4 79 Constraint De�nition

L

LS

)ΠP = (2,

Figure 4.2: A point, a line and a line segment on a planedomain research, the latter method is a much more e�cient means of describing thechessboard.A value for the queen is any member of the domain, for example, (1; 3). Anassignation to this value would be of the form, Queen = f(1; 3)g. If the queen canbe positioned on any square in a row, then an assignation of the form Queen =f(2; 1); (2; 2); : : : ; (2; 8)g is appropriate. �Example 4.4 (Geometric domain) A point, (P; IR2), on a plane has domain IR2.A value for a point is any pair of numbers (x; y), such that x; y 2 IR, for example,(2; �). An assignation for P would be P = f(2; �)g (�gure 4.2).An in�nite line, (L; IR2), in a plane also has domain IR2, as it is uniquely deter-mined by the point on the line closest to the origin, provided that the line does notpass through the origin. A value for L is any pair (x; y); x; y 2 IR and an assignationis L = f(x; y)g.A line segment, (LS; IR4), on a plane has domain IR4, as it is uniquely determinedby its two end points. As each end point has domain IR2 and can move independentlyof the other, LS has domain IR4. �4.2 ConstraintsWhere entities provide freedom, constraints restrict it. Constraints are described inmany di�erent ways but these all reduce to the concept of relations in set theory. In

Chapter 4 80 Constraint De�nitionexample 4.2, the constraints are the relations in the �nite domain constraint problemand the geometric constraints in the geometric constraint problem.De�nition 4.2 (Relations) A relation, R, between a pair of entities a; b withdomains D1; D2 is a subset of the Cartesian product y of the domains, D1 � D2.For (a; b) 2 R, the notation aRb is used. An n-ary relation, S, on a set ofvariables a1; : : : ; an with domains D1; : : : ; Dn is a subset of the Cartesian productD1 � � � � �Dn. For (a1; : : : ; an) 2 S, the notation S(a1; : : : ; an) is used. �Since the sets de�ning a relation are typically in�nite, it is not usually possible toexplicitly list the members. Thus implicit means, such as set construction notationare normally used. In this thesis, the standard notation for relations will be used,whereby a relation is referred to using the symbol aRb rather than the list of tuplesde�ning the relation.A useful de�nition of a relation is in terms of a test function. Each relationS(a1; : : : ; an) has a boolean test function f : D1 � � � � � Dn �! f0; 1g associatedwith it, where f(x1; : : : ; xn) = 1 , (x1; : : : ; xn) 2 S. This de�nition is consistentwith Fra��ss�e [33].De�nition 4.3 (Constraints) A constraint (C;DC) on a set of entities E is arestriction of the possible values that the entities in E can simultaneously take. Cis a label representing the constraint and DC is a relation on E. A tuple of values(v1; : : : ; vn) for entities f(x1; D1); : : : ; (xn; Dn)g satis�es constraint (C;DC) if(v1; : : : ; vn) 2 DC :�Associated with every constraint is a constraint test procedure. A constraint testprocedure (CTP) for a constraint (C;DC) with respect to the set of entitiesf(x1; D1) : : : ; (xn; Dn)g is the boolean function fC : D1 � � � � �Dn �! f0; 1g asso-ciated with C such that fC(v1; : : : ; vn) = 1, (v1; : : : ; vn) 2 DC .In fact, it is normally very di�cult to de�ne constraints explicitly as relationsand they are normally described using only the CTP which also doubles as the labelfor the constraint. This convention will be adopted in the remainder of this thesisand so, where it is unambiguous, constraints will be denoted only by the functiondescribing them.

Chapter 4 81 Constraint De�nitionExample 4.5 (Finite domain) One of the simplest constraints possible is theequality constraint between two entities. Simply put, the equality constraint meansthat whatever value one entity takes, the second entity must also take. The CTPfor the equality constraint for two queens on a chessboard is:CTP= : f(Q1; Q2) = 1 if Q1 = Q2;= 0 if Q1 6= Q2:Function f has value 1 if and only if both queens are in the same position.The infamous n-queens problem [103], however, utilises the opposite of the equal-ity constraint, the disequality constraint. The disequality constraint between twoqueens is satis�ed if the two queens are not on the same square. The CTP for thedisequality constraint is:CTP 6= : f(Q1; Q2) = 1 if Q1 6= Q2;= 0 if Q1 = Q2:The n-queens problem involves positioning n queens on an n � n chessboard, sothat no queen attacks another. The constraints involved are usually split into thefollowing types:1. No queen is on the same square as another;2. No queen attacks another horizontally;3. No queen attacks another vertically;4. No queen attacks another diagonally.Intelligent de�nition of the domains of the queens typically removes constraint 1and one of 2 or 3. However, it is still necessary to describe the remaining two setsof constraints.For example, when n = 4, the 4-queens problem consists of the four entitiesf(Q1; D4); (Q2; D4); (Q3; D4); (Q4; D4)g with domains D4 = f1; 2; 3; 4g where thevalue of Qi represents the position of the queen in row i. Note that it is notnecessary to say which row each queen is in as they are in separate rows already.Q1 is in row 1, Q2 is in row 2, etc.

Chapter 4 82 Constraint De�nitionThe constraints necessary to prevent each queen being attacked vertically are:C1 : Q1 6= Q2;C2 : Q1 6= Q3;C3 : Q1 6= Q4;C4 : Q2 6= Q3;C5 : Q2 6= Q4;C6 : Q3 6= Q4:The constraints necessary to prevent each queen attacking along a diagonal are:C7 : Q1 6= 1) Q2 6= Q1� 1;C8 : Q1 6= 4) Q2 6= Q1 + 1;C9 : Q1 6= 3; 4) Q3 6= Q1 + 2;C10 : Q1 6= 1; 2) Q3 6= Q1� 2;C11 : Q1 = 1) Q4 6= 4;C12 : Q1 = 4) Q4 6= 1;C13 : Q2 6= 1) Q3 6= Q2� 1;C14 : Q2 6= 4) Q3 6= Q2 + 1;C15 : Q2 6= 3; 4) Q4 6= Q2 + 2;C16 : Q2 6= 1; 2) Q4 6= Q2� 2;C17 : Q3 6= 1) Q4 6= Q3� 1;C18 : Q3 6= 4) Q4 6= Q3 + 1:C7, for example, can be described as a set as follows:C7 � f(1; 1); (1; 2); (1; 3); (1; 4); (2; 2); (2; 3); (2; 4);(3; 1); (3; 3); (3; 4); (4; 1); (4; 2); (4; 4)g:Thus the only combinations of values for (Q1; Q2) not allowed by C7 are (2; 1); (3; 2)and (4; 3). �Example 4.6 (Geometric problem) The simplest geometric constraint is alsoan equality constraint, but is usually referred to as a coincident constraint. Forexample, two points (P1; IR2) and (P2; IR2) are coincident if and only if P1 = P2 (see

Chapter 4 83 Constraint De�nition
P

P P = P
1 23

4

Figure 4.3: An equality constraint and a distance constraint�gure 4.3).An extension of this is the distance constraint. Two points (P3; IR2) and (P4; IR2)satisfy a distance constraint d(P3; P4) = a if and only if jjP3�P4jj = a (see �gure 4.3).Here jj � jj is the normal metric in Euclidean spacejj(x1; y1)� (x2; y2)jj =p(x1 � x2)2 + (y1 � y2)2:Note that the equality constraint is a degenerate case of the distance constraint witha = 0.The equality constraint restricts the freedom of two independent points fromIR4 to IR2, as the two points are no longer independent. The distance constraintrestricts the freedom of the second point relative to the �rst to the 1D locus of acircle, radius a, around the �rst point. Since the �rst point is free in IR2, it hasdomain IR2. Since the second point relative to it has domain IR, the construction asa whole has domain IR3.Although the coincident constraint looks similar to the equality constraint of the�nite domain problem in example 4.5, the distance constraint does not. However,the distance constraint is a relation as it can be written in the following form:d(P3; P4) = a � n((x; y); (z; w))jp(x� z)2 + (y � w)2 = ao :Thus both �nite domain and geometric constraints can be described as relations. �

Chapter 4 84 Constraint De�nition4.3 Constraint problemsA constraint problem is the fundamental structure in this thesis. A constraintproblem consists of a set of entities and a set of constraints on those entities. Asolution to a constraint problem is a set of values for the entities that satis�es theconstraints.De�nition 4.4 (Constraint problems) A constraint problem is a pair (�;),where � is a set of entities and 	 is a set of constraints. �Finite domain constraint problems are sometimes de�ned as a triple of variables,domains and constraints [114]. This is equivalent to the above de�nition.Example 4.7 (Finite domain) The pairF = (f(Q1; D4); (Q2; D4); (Q3; D4); (Q4; D4)g; fC1; C2; C3; : : : ; C18g)describes the 4-queens constraint problem. �Example 4.8 (Geometric problem) Let LS1; LS2; LS3 be three line segmentswith end points LS1a; LS1b; LS2a; LS2b; LS3a; LS3b respectively. Then the con-straint problem,G = (f(LS1; IR4); (LS2; IR4); (LS3; IR4); (LS1a; IR2); (LS1b; IR2); (LS2a; IR2);(LS2b; IR2); (LS3a; IR2); (LS3b; IR2)g;fLS1a = (0; 0); LS1b = LS2a; LS2b = LS3a; LS3b = LS1a;d(LS1a; LS1b) = 3; d(LS2a; LS2b) = 5; d(LS3a; LS3b) = 4;endpoint(LS1; LS1a); endpoint(LS1; LS1b);endpoint(LS2; LS2a); endpoint(LS2; LS2b);endpoint(LS3; LS3a); endpoint(LS3; LS3b)g);describes the right angled triangle in a plane shown in �gure 4.4. Here the con-straint endpoint(LS; pt) is used to indicate that the endpoint of a line segment LSis coincident with a point pt. �A solution to a constraint problem is a set of values that the entities in theproblem take simultaneously such that all of the constraints in the problem aresatis�ed. This is formalised below.

Chapter 4 85 Constraint De�nition

(4,0)

(0,3)

LS1
LS2

LS3

Figure 4.4: A solution to constraint problem GDe�nition 4.5 (Solutions) A con�guration of problem P is a set of assignationsfor all of the entities in �. Con�guration fx1 = fy1g; : : : ; xn = fyngg is a solutionto a constraint problem P = (� = f(x1; D1); : : : ; (xn; Dn)g;) if and only if(y1; : : : ; yn) 2 \C2	C;or, equivalently, Ĉ2	 fC(y1; : : : ; yn) = 1;where fC is the CTP for constraint C. �Note that the intersection of the constraints requires that the tuples de�ningthe constraints are all in terms of the same entities. In general this is not so, asconstraints are described only in terms of the entities signi�cant to them. Thus, theabove de�nition requires enhanced constraints which are used to translate constraintsde�ned in terms of the entities signi�cant to them to constraints de�ned in terms ofthe whole set of entities in the constraint problem. Enhanced constraints are de�nedin the following paragraphs.De�nition 4.6 (Notation for Many Con�gurations) The notationfx1 = D1; x2 = D2; : : : ; xn = Dng

Chapter 4 86 Constraint De�nition
Figure 4.5: A solution to constraint problem Fis used to represent the setf(x1 = fy1g; x2 = fy2g; : : : ; xn = fyng)jy1 2 D1; y2 2 D2; : : : ; yn 2 Dng:�Example 4.9 (Finite domain) A con�guration for F isfQ1 = f1g; Q2 = f2g; Q3 = f3g; Q4 = f4gg:However, this is not a solution to F as Q1 = f1g; Q2 = f2g breaks constraint C8.A solution for F is the con�gurationfQ1 = f2g; Q2 = f4g; Q3 = f1g; Q4 = f3ggshown in �gure 4.5, as this satis�es all of the constraints in F .�Example 4.10 (Geometric problem) A con�guration for G isfLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3; 4; 0)g; LS3 = f(4; 0; 0; 0)g;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(4; 0)g; LS3a = f(4; 0)g; LS3b = f(0; 0)gg:This con�guration is a solution to G as it satis�es all of the constraints in G, asshown in �gure 4.4. In fact, there are an in�nite number of other solutions to G,found by rotating triangle A about the origin. Constraint problem G is, in fact,under-constrained, de�ned in section 4.5.2.If the constraint LS2a = (0; 3) is added to G to form G0, then only two con�gu-rations of G0 are solutions. These two solutions are the triangle in �gure 4.4 and itsreection in the y-axis. G0 is said to be well-constrained (see section 4.5.2). �

Chapter 4 87 Constraint De�nitionA constraint C is a subset of the Cartesian Product of the domains of the entitiesdescribing C. Each constraint is typically described in a local sense, in that eachconstraint is usually only described by a subset of the total set of entities E. Forexample, the constraint C7 in problem F of example 4.7 is de�ned only in terms ofentities Q1 and Q2. Thus, C7 is de�ned as a subset of the Cartesian Product of Q1and Q2. However, a constraint problem will have more than one constraint usually,and each constraint will have a di�erent set of entities relevant to it.According to de�nition 4.5, the solutions to two constraints are the intersectionof the two constraints. However, since the entities relevant to each constraint aredi�erent, there is no way of taking the intersection of the two constraints. Forexample, constraint C7 in problem F is de�ned using Q1 and Q2, but constraint C9is de�ned using Q1 and Q3. The intersection of the two constraints is meaningless.Consider problem P consisting of the three �nite domain entities, (x;D); (y;D)and (z;D) with domains D = f0; 1g and two constraints A and B de�ned byxAy , x = y;yBz , y 6= z:If A and B are enumerated explicitly, then the solutions to P are:A = f(0; 0); (1; 1)g;B = f(1; 0); (0; 1)g:However, the intersection of these sets is the empty set, ;. Clearly, there are solutionsfor P : fx = 1; y = 1; z = 0g is one, but simply taking the intersection of the twoconstraints is not enough to identify them. However, if constraint C is de�ned ina global sense, with respect to E, rather than just the set of entities that a�ect it,then it is possible to take the intersection of the constraints to �nd solutions.De�nition 4.7 (Enhanced constraints) If the set of entities not relevant to Cis EC , then the enhanced constraint C with respect to E, CjE, isCjE = C �DEC ;where DEC is the Cartesian Product of the domains of EC . �

Chapter 4 88 Constraint De�nitionFor the example above then, EA = fzg;EB = fxg;and the enhanced constraints areAjE = A�DEA= A�Dz= f(0; 0); (1; 1)g � f0; 1g= f(0; 0; 0); (0; 0; 1); (1; 1; 0); (1; 1; 1)g;BjE = B �DEB= B �Dx= f(1; 0); (0; 1)g � f0; 1g= f(1; 0; 0); (1; 0; 1); (0; 1; 0); (0; 1; 1)g:However, the intersection of AjE and BjE is still ;. The reason for this is that AjEand BjE are arranged in di�erent orders. AjE is in the order x; y; z, whilst BjE is inthe order y; z; x. In order for the intersection to make sense, they must both havethe same ordering of variables. In order to ensure this, we enforce an ordering, < onthe Cartesian Products, so that, in the example above, with ordering <� x < y < z,AjE< = ff(0; 0); (1; 1)g � f0; 1gg= f(0; 0; 0); (0; 0; 1); (1; 1; 0); (1; 1; 1)g;BjE< = ff0; 1g � f(1; 0); (0; 1)gg= f(0; 1; 0); (0; 0; 1); (1; 1; 0); (1; 0; 1)g:Clearly the intersection of AjE< and BjE< is sensible and the result,f(1; 1; 0); (0; 0; 1)g;is the set of all solutions to P and using <, the assignations for x; y; z can simplybe read o�. For simplicity, it is assumed that all constraints in P are enhancedconstraints with respect to E. The ordering on Cartesian products will be assumedfrom now on and omitted for clarity.

Chapter 4 89 Constraint De�nitionIf a constraint is presented as an enhanced constraint, then it is important tobe able to identify the entities that are signi�cant to that constraint. The entitiesthat are signi�cant to a constraint and whose values a�ect a constraint are calledthe imposed entities.De�nition 4.8 (Imposed entities) Assuming that constraints are described interms of tuples with an ordering (v1; v2; v3; : : : ; vn) corresponding to variables f(x1;D1); (x2; D2); (x3; D3); : : : ; (xn; Dn)g respectively, then constraint C is imposed onentity (xi; Di) if and only if9(v1; : : : ; vi�1; v; vi+1; : : : ; vn) 2 C such that9u 2 Di; such that (v1; : : : ; vi�1; u; vi+1; : : : ; vn) =2 C:� The intuitive explanation of this is that the constraint C is imposed on xi if andonly if varying the value of xi may violate the constraint.In fact, it is somewhat clearer to examine the negative statement. A constraintC is not imposed on an entity (xi; Di) if and only if(v1 : : : ; vi�1; v; vi+1; : : : ; vn) 2 C)8u 2 Di; (v1; : : : ; vi�1; u; vi+1; : : : ; vn) 2 C:Thus, C is not imposed on xi if the value of xi does not really a�ect C. In this case,we need not include xi in our description of C as it is essentially superuous.In the example above, constraint AjE is imposed on x as (1; 1; 1) is in AjE, but(0; 1; 1) is not. However, AjE is not imposed on z as (0; 0; z) and (1; 1; z) are in AjE,whether z is 0 or 1.Normally constraints are described only in terms of the entities they are imposedon. There is thus a subset of fx1; : : : ; xng associated with each constraint consistingof the entities imposed on by the constraint. This subset is denoted by the symbol�.De�nition 4.9 (Imposed sets) The set �(C) of imposed entities for a constraintC is called the imposed set of C. �In the example above, the imposed set of AjE, �(AjE), is fx; yg and the imposed setof BjE is fy; zg.

Chapter 4 90 Constraint De�nitionThe size of �(C) for a constraint C, j�(C)j, is usually referred to as the arity ofC (see, for example [103]). A constraint is called unary if j�j = 1, binary if j�j = 2,etc. Intuitively, a unary constraint only a�ects and is a�ected by one entity, binaryconstraints a�ect and are a�ected by two entities, etc. Unary constraints are simplya restriction on the domain of the imposed entity and as such are usually dealt withby pre-processing.Since a constraint C is normally only described in terms of the imposed set ofC, �(C), it is important that �(C) is known for each C. Since the ordering for �(C)is also important, this too is associated with each constraint.This thesis studies the use of subproblems of constraint problems. A subproblemis a constraint problem that is part of a larger constraint problem.De�nition 4.10 (Subproblems of constraint problems) Constraint problemP1 = (�1;	1) is a subproblem of constraint problem P = (�;) if1. �1 � �.2. 	1 � 	.3. For each c 2 	1, �(c) � �1.� Notation will be abused in this thesis so that set operations can be performedon subproblems. In particular:P1 [P2 = (�1 [�2;	1 [2):4.4 Constraint solversA constraint solver is an algorithm or technique that takes as input a constraintproblem and produces as output a set of solutions that satisfy that constraint prob-lem. This set can be empty, consist of one, all, some or the best solution, dependingon the algorithm used.Example 4.11 (Finite domain) Constraint solvers for the n-queens problem in-clude forward checking (FC) and backtracking (BT). These algorithms have beendescribed in section 2.3.2. �Example 4.12 (Geometric problem) Constraint solvers for geometric problemsinclude D-Cubed [86], Erep [37], ICBSM [27] and IGCS [112]. These algorithmshave been described in sections 2.3.3.1 and 2.3.3.2. �

Chapter 4 91 Constraint De�nition4.5 DimensionsDegrees of freedom analysis [59] uses the degrees of freedom associated with geomet-ric objects to help guide the solution. The degrees of freedom describe the motionof a rigid body to translate, rotate and scale in space. As the solution of a problemprogresses, the overall degrees of freedom decrease. When the solver terminates,there may be no degrees of freedom left, in which case the solution space describesa rigid body, or there are degrees of freedom left in which case the terminal solutionspace is said to be under-constrained . An under-constrained solution space containsan in�nite number of con�gurations.Example 4.13 (Geometric problem) The triangle described in problem G inexample 4.8 is underconstrained as it is allowed to rotate about the origin and hasone degree of freedom. The triangle described in problem G0 has no degrees offreedom left, although it has two possible solutions.�Middleditch and Latham [67] use concepts similar to Kramer, which they re-fer to as over-constrained, well-constrained and under-constrained geometric con-straint problems. The issue of whether a constraint problem is over-, under- orwell-constrained is referred to as the constrainedness of the constraint problem inthis thesis. The identi�cation of constrainedness of a problem is very importantas it a�ects the choice of solver used to solve the problem. For example, ICBSMis optimised for solving underconstrained problems, whilst D-Cubed is primarilyaimed at solving well-constrained problems and Skyblue at solving over-constrainedproblems.This section presents a formal de�nition of dimensions and constrainedness. Di-mensions form the extension of the concept of degrees of freedom to the generalconstraint problem. With dimensions it is possible to de�ne constrainedness strictly,as shown in section 4.5.2. Since certain constraint solvers are better suited to under-constrained problems and others are better suited to well-constrained problems, itis important to be able to identify the constrainedness of a constraint problem.4.5.1 De�nition of dimensionsDegrees of freedom are de�ned as the translation, rotation and scaling a geometricentity is allowed to perform in IR3. In a sense, this is equivalent to describing thesize of the domain of the entity.

Chapter 4 92 Constraint De�nitionFor example, consider a cube in IR3. The cube can translate anywhere in IR3, sohas a translational domain of IR3 and 3 translational degrees of freedom. The cubecan also rotate in IR3 and has rotational domain of IR3 and 3 rotational degrees offreedom. Since it is a cube, all sides must have the same length. However, the cubeis free to be as large as desired and so can be scaled by any factor. It therefore has ascaling domain of IR and 1 scaling degree of freedom. Overall the cube has domainIR7 and 7 degrees of freedom.Unfortunately, simply counting the power of IR in the domain of an entity is notsu�cient for the general constraint problem.Consider, for example, an entity x which takes values in Z2. The size of thedomain of this entity is unspeci�ed. Following the example of the cube above, sinceZ � IR and Z2 � IR2, a size of 2 would not be unreasonable. However Z is acountable set as is Z2, and so Z and Z2 are in fact equivalent in a certain sense andshould have the same size. In this case, the domain of x would have size 1.This ambiguity means that, for the general constraint problem, a stricter de�ni-tion of the size of a domain is needed. This is the dimension of a set. In fact, thisis di�cult to determine. Ideally the dimension function should be a functiondim : domain �! Nwith the following propertiesdim(IR) = dim(Q) = dim(Z) = dim(N) = 1dim(;) = dim(A) = 0;where A is an arbitrary �nite set.These properties agree with the de�nitions of degrees of freedom and constrained-ness used elsewhere. It is also important for the dim function to have the followingadditional properties:dim(D1 �D2) = dim(D1) + dim(D2); (4.1)dim(A [B) = max(dim(A); dim(B)); (4.2)dim(A \B) � min(dim(A); dim(B)); (4.3)dim(A nB) � dim(A): (4.4)These properties mean that, for example, if a set A is a subset of another set B,

Chapter 4 93 Constraint De�nitionthen the dimension of A is no bigger than the dimension of B.If the domain is a linear space then the de�nition of dimension should be thesame as the de�nition of dimension for linear spaces, i.e. the size of the smallestlinearly independent spanning set.As was noted above it is very di�cult to de�ne dim in such a way that prop-erty 4.1 is satis�ed. This is precisely because Z and Z2 are equivalent in a mathe-matical sense and so dim(Z2) = 1, not 2 as required by property 4.1.Manifolds can be used to deal with this problem, providing it is assumed thatthe sets used in constraint problems are within a metric space. In practice this is nota serious restriction. Manifolds are discussed in brief in appendix A. The reader isreferred to [107] for more discussion of manifolds. Dimensions as used in this thesisare therefore de�ned as follows:De�nition 4.11 (Dimensions) A set S in a metric space M has dimension n,dim(S) = n, if and only if n is the smallest number such that S is an n-manifold inM . �This de�nition gets over the problem discussed above to do with countable sets.However, property 4.1 must be slightly altered todim(D1 �D2) = dim(D1) + dim(D2) i�D1 �D2 is not homeomorphic to a proper subset of IR(dim(D1)+dim(D2))Notice that both entities and constraints are characterised by sets. However, thedimension of entities and constraints as commonly used are slightly di�erent.De�nition 4.12 (Dimension of entities) The dimension of an entity (E;DE),dim(E) is given by dim(E) = dim(DE):�De�nition 4.13 (Dimension of constraints) The dimension of a constraint(C;DC), dim(C) is given bydim(C) = dim(Dx1 �Dxn)� dim(DC);where �(C) = f(x1; Dx1); : : : ; (xn; Dxn)g. �

Chapter 4 94 Constraint De�nition4.5.2 ConstrainednessThe constrainedness of a problem is related to the number of constraints in theproblem. Since constraints are sets also, they too have a dimension. Whilst entitiesprovide extra dimension for a problem, constraints consume dimensions.Example 4.14 (Geometric problem) Problem G consists of 9 entities and 13constraints. The three line segment entities each have dimension 4 as the domain ofline segments is IR4. The six point entities each have dimension 2 as the domain ofthe points is IR2. The 13 constraints consume di�erent numbers of dimensions. Fixedpoint constraints such as LS1a = 0, when described as enhanced constraints, havedimension 10 and consume 2 dimensions from LS1, as once the constraint is satis�edit has one end point �xed. By tradition, the dimension of a constraint is described asthe number of dimensions it consumes. Equality constraints, such as LS1b = LS2asimilarly consume 2 dimensions. Distance constraints, such as d(LS1a; LS1b) = 3consume only 1 dimension. The endpoint constraints each consume 2 dimensionsas they restrict the freedom of a point relative to a line segment so that the pointmust move with the line segment.Thus G creates a total of 24 dimensions but consumes only 23. The remainingsingle degree of freedom accounts for the in�nite number of solutions to G.Problem G0 creates 24 dimensions but consumes 25. This does not correspondto the fact that solutions to G0 do exist, though there are a �nite number of them.� Given the de�nition of dimensions in section 4.5.1, it is now possible to de�nethe terms well-constrained , under-constrained and over-constrained . These termsare very important and are used to give an indication of the number of solutionsto the constraint problem. The de�nitions presented here are adapted from thede�nitions used by Middleditch and Latham [66].A constraint problem is well-constrained if the dimension consumed by every setof constraints is exactly equal to the dimension created by the set of entities in theimposed sets of the constraints. A well-constrained problem would be expected tohave a �nite number of solutions, though it is possible for a well-constrained problemto have no solutions or an in�nite number of solutions. By de�nition 4.11, �nitedomain constraints and entities always have a dimension of 0 and so �nite domainconstraint problems are always well-constrained. Finite domain constraint problemscan have no solutions and they are then sometimes referred to as over-constrained.This should not be confused with the de�nition below.

Chapter 4 95 Constraint De�nitionDe�nition 4.14 (Well-constrained constraint problem) Constraint problemP = (�;) is well-constrained if8C � 	;E = fe 2 �je 2 �(c); c 2 Cg;Xe2E (dim(e)) = Xc2C (dim(c)) :� A constraint problem is under-unconstrained if the dimension created by any setof entities is greater than the dimension consumed by the set of constraints imposedon by the entities. An under-constrained problem would be expected to have anin�nite number of solutions, though it is possible for an under-constrained problemto have no solutions.De�nition 4.15 (Under-constrained constraint problem) Constraintproblem P = (�;) is under-constrained if9E � �;C = fc 2 	je 2 �(c); e 2 Eg;Xe2E (dim(e)) > Xc2C (dim(c)) :� A constraint problem is over-constrained if the dimension consumed by any setof constraints is greater than the dimension created by the set of entities imposedon the constraints. An over-constrained problem would be expected to have nosolutions, though it may have any number.De�nition 4.16 (Over-constrained constraint problem) Constraintproblem P = (�;) is over-constrained if9C � 	;E = fe 2 �je 2 �(c); c 2 Cg;Xc2C (dim(c)) > Xe2E (dim(e)) :�

Chapter 4 96 Constraint De�nitionAccording to these de�nitions, as noted by Middleditch, it is possible for a con-straint problem to be both over-constrained and under-constrained at the sametime. This is because a part of the constraint problem can be over-speci�ed andtherefore be over-constrained whilst another part of the constraint problem can beunder-speci�ed and therefore under-constrained.Example 4.15 (Constrainedness of problems) In example 4.8, problem G isunder-constrained as,E = f(LS1; IR4); (LS2; IR4); (LS3; IR4); (LS1a; IR2); (LS1b; IR2);(LS2a; IR2); (LS2b; IR2); (LS3a; IR2); (LS3b; IR2)g;C = fLS1a = (0; 0); LS1b = LS2a; LS2b = LS3a; LS3b = LS1a;d(LS1a; LS1b) = 3; d(LS2a; LS2b) = 5; d(LS3a; LS3b) = 4;endpoint(LS1; LS1a); endpoint(LS1; LS1b);endpoint(LS2; LS2a); endpoint(LS2; LS2b);endpoint(LS3; LS3a); endpoint(LS3; LS3b)g:Xe2E (dim(e)) = dim(LS1) + dim(LS2) + dim(LS3) + dim(LS1a) +dim(LS1b) + dim(LS2a) + dim(LS2b) + dim(LS3a) +dim(LS3b)= 4 + 4 + 4 + 2 + 2 + 2 + 2 + 2 + 2= 24:Xc2C (dim(c)) = dim(LS1a = (0; 0)) + dim(LS1b = LS2a) + dim(LS2b = LS3a)+dim(LS3b = LS1a) + dim(d(LS1a; LS1b) = 3) +dim(d(LS2a; LS2b) = 5) + dim(d(LS3a; LS3b) = 4) +dim(endpoint(LS1; LS1a)) + dim(endpoint(LS1; LS1b)) +dim(endpoint(LS2; LS2a)) + dim(endpoint(LS2; LS2b)) +dim(endpoint(LS3; LS3a)) + dim(endpoint(LS3; LS3b))= 2 + 2 + 2 + 2 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2= 23< Xe2E (dim(e)) :Thus problem G should have an in�nite number of solutions and this is true asthe triangle formed can be rotated about the origin. In fact the di�erence between

Chapter 4 97 Constraint De�nition24 and 23 indicates that there should be one degree of freedom in the solution, whichis provided by rotation about the origin.Problem G0 is over-constrained asE = f(LS1; IR4); (LS2; IR4); (LS3; IR4); (LS1a; IR2); (LS1b; IR2);(LS2a; IR2); (LS2b; IR2); (LS3a; IR2); (LS3b; IR2)g;C = fLS1a = (0; 0); LS1b = LS2a; LS2b = LS3a; LS3b = LS1a;d(LS1a; LS1b) = 3; d(LS2a; LS2b) = 5; d(LS3a; LS3b) = 4;LS2a = (0; 3); endpoint(LS1; LS1a); endpoint(LS1; LS1b);endpoint(LS2; LS2a); endpoint(LS2; LS2b);endpoint(LS3; LS3a); endpoint(LS3; LS3b)g:Xe2E (dim(e)) = dim(LS1) + dim(LS2) + dim(LS3) + dim(LS1a) +dim(LS1b) + dim(LS2a) + dim(LS2b) + dim(LS3a) +dim(LS3b)= 4 + 4 + 4 + 2 + 2 + 2 + 2 + 2 + 2= 24:Xc2C (dim(c)) = dim(LS1a = (0; 0)) + dim(LS1b = LS2a) + dim(LS2b = LS3a)+dim(LS3b = LS1a) + dim(d(LS1a; LS1b) = 3) +dim(d(LS2a; LS2b) = 5) + dim(d(LS3a; LS3b) = 4) +dim(LS2a = (0; 3)) +dim(endpoint(LS1; LS1a)) + dim(endpoint(LS1; LS1b)) +dim(endpoint(LS2; LS2a)) + dim(endpoint(LS2; LS2b)) +dim(endpoint(LS3; LS3a)) + dim(endpoint(LS3; LS3b))= 2 + 2 + 2 + 2 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2= 25> Xe2E (dim(e)) :However, problem G0 has a �nite number of solutions, when over-constrainedproblems typically have none. This is because some of the constraints in G0 areredundant , in that they are simply repeating information that can be deduced fromother constraints. More speci�cally, the constraint d(LS1a; LS1b) = 3 is redundantas it can be deduced from the constraints LS2a = (0; 3), LS1a = (0; 0) and LS2a =

Chapter 4 98 Constraint De�nitionLS1b. In fact, this is the only redundant constraint in the example. If the constraintd(LS1a; LS1b) = 3 is removed from G0, then �c2C = 24, and the problem becomeswell-constrained. �A constraint is redundant if it adds no information beyond what can be deducedfrom other constraints.Identi�cation of the constrainedness of a constraint problem is a non-trivial task.Middleditch and Latham present an algorithm for doing this in [66]. This algorithmis fast and incremental and operates on a bipartite graph y representation scheme(see chapter 5).4.6 ConclusionsThis chapter has presented a formal de�nition of constraint problems. The settheoretic approach adopted means that the de�nition used is rich enough to describeall kinds of constraint problem, as demonstrated by the �nite and in�nite-domainexamples running through the chapter.Entities are de�ned in terms of the values that they are allowed to take. Thismeans that entities are not restricted to objects that have numeric values, but canalso include objects such as strings or enumerated values. This general descriptionmeans that entities can describe many di�erent types of objects.Constraints restrict the values that entities can take. The de�nition of con-straints as relations allows constraints from many di�erent �elds to be described.Although constraints are normally described locally, in terms of a few entities, thede�nition of enhanced constraints allows description of con�gurations and solutionsof sets of constraints.Constraint problems consist of a set of entities and a set of constraints. Sets ofmany con�gurations form a kind of search space that constraint solvers use to �ndsolutions to constraint problems.The dimension of a set forms an important guide as to how close a constraintsolver is to �nding a solution to the constraint problem. If there are an in�nite num-ber of con�gurations under consideration then the constraint solver is probably notnear �nding a solution to the problem. If there are a �nite number of con�gurationsunder consideration then the constraint solver is probably near to �nding a solution.As constraint solution progresses, the dimension of the search space under consid-eration will gradually shrink until (hopefully) only a �nite number of con�gurationsremain.

Chapter 4 99 Constraint De�nitionDimensions of constraint problems also form an important method of categorisingconstraint problems in terms of constrainedness. The precise de�nition of dimen-sions is complex due to the existence of space �lling curves and mappings betweencountable sets. However, dimensions as de�ned in this thesis will become increas-ingly important in later chapters.As dimensions categorise constraint problems in terms of constrainedness, itis apparent that certain constraint solvers are better at dealing with problems ofa certain constrainedness. For example, ICBSM [27] is targeted more at solvingunder-constrained problems, i.e. those with an in�nite number of solutions, whilstDCM [86] is targeted more at solving well-constrained problems, i.e. those with a�nite number of solutions. This categorisation will be exploited in chapter 3.Middleditch and Latham's Connectivity Analysis [67] is an important meansof identifying well-, over- and under-constrained subproblems within a constraintproblem. Connectivity Analysis identi�es balanced sets of constraints and enti-ties that are e�ectively well-constrained. Connectivity Analysis also identi�es over-and under-constrained subproblems and the possible means of making them well-constrained. Connectivity Analysis will be used in chapter 3 to identify subproblemsof a constraint problem according to constrainedness in order to exploit the cate-gorisation of solvers according to constrainedness given in chapter 2.Not only does the set-theoretic approach provide a unifying structure for diverseconstraint problems, but it also makes it possible to identify the key structuresnecessary for constraint representation and makes the abstraction of the constraintsolution process logical and transparent, as will become clear in the next two chap-ters.

Chapter 5Constraint RepresentationConstraint problems are meant to be solved. Solution may involve �nding oneor a number of con�gurations that satisfy the constraints in the problem. It isimportant to realise that human beings deal with constraint problems all the time:simply travelling from A to B involves negotiating a path subject to the constraintsof available time, transport, routes, tra�c and weather. A problem of this natureis very di�cult to describe and solve on a computer. Paradoxically, the movementsnecessary for a Puma robot arm (see �gure 5.1, taken from [79]) to reach an objectmay be di�cult for a human but simple to describe and solve on a computer. Thesigni�cance of this is that not all constraint problems can or should be solved on acomputer and that it should never be assumed that any given problem will be bestsolved by a computer. For the purposes of this thesis, however, it is assumed thatthere are interesting constraint problems to be solved that are better solved on acomputer.Once a constraint problem is de�ned using the building blocks of the previouschapter, it is necessary to represent the problem in some way so that a computercan understand the problem and then solve it. Di�erent constraint solvers usedi�erent representation schemes and these schemes are not obviously equivalent. Infact, some schemes seem to be only appropriate for speci�c types of problem. Forexample, �nite domain problem solvers use a representation scheme that appearsto be totally unsuitable for in�nite domain problems and Lamounier's EquationGraph [62] is very di�erent from Fa's Relationship Graph [112].As the title suggests, this thesis is primarily interested in solving a general con-straint problem, one not restricted to particular types of problem. In order to solve ageneral problem, it is �rst necessary, then, to represent the problem on a computer.To this end, this chapter presents research to �nd generic methods of describing100

Chapter 5 101 Constraint Representation

Figure 5.1: A Puma Robot Armconstraint problems. Section 5.1 discusses the problems of representing the basicconstituents of constraint problems, entities and constraints. Section 5.2 presents aformal de�nition of constraint representation schemes and the properties necessaryfor a valid constraint representation scheme. Constraint representation schemes willbe used to represent constraint problems. Section 5.2 also introduces the notion ofa generic constraint representation scheme. Section 5.3 discusses CRS schemes cur-rently in use, including an algebraic representation which is generic. Other schemesstudied are Relationship Graphs [27, 112], undirected graphs [37, 86, 103], bipar-tite graphs [62, 66, 100] and hypergraphs [100]. This section also introduces theConstraint/Entity graph, a bipartite graph representation that includes all of theproperties necessary for a constraint representation scheme.Section 5.4 presents reductions, a technique developed to compare constraintrepresentation schemes and to prove if a scheme is generic. Reductions have beenused to compare the constraint representation schemes in section 5.3 and identifygeneric constraint representation schemes. Using reductions it is possible to form ahierarchy of constraint representation schemes in terms of expressiveness. Figure 5.2presents the hierarchy of constraint representation schemes in section 5.3. It is worth

Chapter 5 102 Constraint Representation
P

P

P P

70

3 4

2

1

d

d

1

2

P

P

P P

d

d

1

2

3 4
2

1

coincident
L

L

L

1

2

1

L
2

angle

Figure 5.2: A Hierarchy of Constraint Representation Schemesnoting that more than one generic representation scheme exists.The signi�cance of �gure 5.2 is discussed in section 5.5 and conclusions drawnfrom this chapter.5.1 Representing entities and constraintsThe representation of entities and constraints on a computer is fundamentally theproblem of representing sets on a computer, since entities and constraints are bothe�ectively sets. Sets are di�cult to represent on a computer because they are usuallyin�nite and thus impossible to represent explicitly on a �nite machine. Some successhas been achieved by representing �nite entities and constraints and this has led tomuch research being focused on �nite constraint problems.5.1.1 Finite-domain entities and constraintsFinite entities are usually described by simply listing the domain of the entitiesexplicitly. Thus an entity E that can take values f1; 2; 3; 4g will typically be rep-resented using a data structure such as a one dimensional array. If the domainis fragmented or non-sequential, such as the set f1; 4; 6; 10; 11; 12g, then it will benecessary to store the domain in such a way that it is possible to quickly and e�-ciently check whether the entity is allowed a certain value in the domain. This willentail the use of a sorted array or hash table or perhaps a linked list. Finite domainalgorithms will frequently use a large array which is simply left blank at locationsnot in the domain.

Chapter 5 103 Constraint RepresentationFinite constraints can always be expressed as binary constraints, as noted in[114]. The key component of a constraint is to know which of the tuples in theCartesian product satisfy the constraint and which do not. It must therefore bepossible to say quickly whether a particular tuple satis�es the constraint or not.In random �nite domain problems, this is usually a matter of constructing a twodimensional array so that an entry (1; 2) is 1 if the tuple (1; 2) satis�es the constraintand 0 if the tuple does not satisfy the constraint.The array data structure is useful because it allows fast lookup of entries, issimple to construct and also allows random constraints to be constructed easily andwith certain properties [104, 105].However the array will frequently be sparse, in the sense that it will have manymore 0s than 1s. For example, only ten tuples satisfy the constraint x = y forthe entities x; y with domains f1; 2; : : : ; 10g. Correspondingly, a 10 � 10 arrayis constructed which is 90% full of 0s. Sparse matrix techniques would help thisproblem.5.1.2 In�nite-domain entities and constraintsWhilst it is possible to explicitly enumerate the domains of �nite entities and con-straints, it is impossible to do so for in�nite entities and constraints. It is thereforeimportant to identify implicit means of describing these structures.Since sets are de�ned using a test function (see section 4.2), the simplest methodof describing an in�nite set is to code a function that implements the test function. Itis therefore possible to query whether a particular tuple is in the set and is thereforein the domain of the entity or satis�es the constraint.More sophisticated techniques involve taking advantage of the type of constraintor entity, i.e. by using domain-speci�c knowledge appropriate to the constraint orentity. For example, it is possible to capture the movements of rigid bodies in spaceby describing them in terms of degrees of freedom [59]. Using degrees of freedomreduces an in�nite domain to a �nite one and greatly simpli�es description of theproblem space.5.2 Representing constraint problemsA constraint representation scheme (CRS) is a method of describing a constraintproblem, typically using graph y techniques. A CRS should be such that, given a

Chapter 5 104 Constraint Representationproblem in the CRS, no more information is needed to examine, understand andattempt to solve that problem, other than that provided by the scheme. A problemin a valid CRS will therefore always be well-posed in the sense that there is su�cientinformation to solve the problem given that a solution exists. Thus, objects rep-resenting constraints would be linked to the actual constraints themselves in someway and objects representing entities would be linked to the actual entities. Havingexamined several CRSs in the literature with respect to the very formal frameworkfor the constraint problem de�ned in the previous chapter, it is apparent that thereexists a common set of properties that a CRS should have.De�nition 5.1 (Constraint representation schemes) A data structure for de-scribing constraint problems is aConstraint Representation Scheme. It satis�esall of the following properties:1. There should be an identi�able set of entities, together with their domains;2. There should be an identi�able set of constraints, with a constraint test pro-cedure, imposed set and an ordering associated with each constraint;3. There is a `connection' between a subset of entities if and only if there is aconstraint imposed on the subset, i.e. a connection corresponds to the imposedset of a constraint;4. There should be a one-to-one correspondence between the constraints and theconnections in the representation;5. There should be a de�nition of what a solution in the representation looks like.�The de�nition of `connection' will vary from scheme to scheme. For example in theconstraint graph representation of Owen [86], a connection is just an edge, whilst inthe Constraint/Entity graph representation (section 5.3.5), a connection is the setof edges incident to a particular constraint vertex.A generic constraint representation scheme is a representation scheme capable ofdescribing all constraint problems. Generic representation schemes are important asthey allow a general purpose constraint management system to store and representgeneral constraint problems.

Chapter 5 105 Constraint RepresentationDe�nition 5.2 (Generic representation schemes) A generic CRS is a CRS inwhich every constraint problem can be described, where a constraint problem is asde�ned in section 4.3. The algebraic CRS presented in section 5.3.1 is generic as allconstraints can be described in terms of relations. A generic constraint represen-tation scheme will be useful as it can be used to describe all problems that will beencountered. �5.3 Example constraint representation schemesThis section provides sample CRSs and introduces the Constraint/Entity graph.5.3.1 Algebraic representationThe algebraic representation of a constraint problem is the pair (E ; C), where E =f(x1; D1); : : : ; (xn; Dn)g is the set of entities with domains and the setC = f(c1; fc1; �c1; <c1); : : : ; (cm; fcm; �cm; <cm)gis the set of constraints, where fci is the Constraint Test Procedure for constraintci, �ci is the imposed set of constraint ci and <ci is an ordering on �ci.A connection between elements of F � E exists i� 9ci 2 C such that �ci = F .The n-tuple (v1; : : : ; vn) is a solution of an algebraic representation i�8ci 2 C; �f 0ci(v1; : : : ; vn) = 1� ^ (8j; vj 2 Dj) ;where f 0ci(v1; : : : ; vn) = fci(vi1 ; : : : ; vim);�ci = fxi1 ; : : : ; ximg;and xi1 <ci xi2 <ci � � � <ci xim :From here, notation will be abused so that fci is equivalent to f 0ci.Given the de�nition of generic CRSs in section 5.2, the algebraic representationscheme above is generic.

Chapter 5 106 Constraint Representation
A B

C

D

on(A,B)

on(B,C)

on(A,D)

A

C
D

B

Figure 5.3: An Example of a Relationship Graph with a Solution to the Graph5.3.2 Relationship graph representationThe Relationship Graph introduced by Fa et al. [25] is a directedy graph consistingof vertices V and directed edges E.The set V is the set of entities and associated with each vertex is the domain ofthe relevant entity.The set E is the set of directed edges. Each edge [u; v] represents a constraintbetween vertex u and vertex v. The CTP for the constraint is the function associatedwith the geometric constraint represented by the edge. The imposed set of theconstraint is fu; vg with ordering u < v preserved by the direction of the edge.Thus non-symmetric constraints can be reconstructed from the graph.A solution of the Relationship Graph is a con�guration such that the CTP ofeach edge is satis�ed. Figure 5.3 shows an example of a relationship graph and asolution to the relationship graph.5.3.3 Undirected graph representationUndirected y graphs are used in both in�nite and �nite domain constraint solvers.In�nite domain solvers that use undirected graph structures, such as D-Cubed [86]and Erep [37], currently only handle symmetric constraints y , such as distanceor angle constraints. Any change to the representation to handle un-symmetricconstraints would necessitate introducing an ordering and would e�ectively changethe undirected graph into a directed graph. It is therefore appropriate to treat theundirected graphs of D-Cubed and Erep as separate constructions from directedgraphs, such as Relationship Graphs and investigate them as such.Finite domain solvers do not appear to distinguish between symmetric and un-symmetric constraints. Since the matrices used to describe constraints can handleunsymmetric constraints, it is therefore assumed that the `undirected' graphs used

Chapter 5 107 Constraint Representation
L

P

P

P P

P

L

LL

10
10

10

10

10

108 108

LFigure 5.4: An example of an undirected constraint graph with a solution to thegraph.in �nite domain problems do, in fact, contain an ordering and are e�ectively directedgraphs.An undirected graph G consists of a set of vertices V and a set of undirectededges E. A vertex v represents an entity with its domain. An undirected edge (u; v)represents a constraint between vertices u and v with the CTP associated with theconstraint. The imposed set of the constraint is fu; vg with no ordering, i.e. u andv are interchangeable.A solution to an undirected graph is a con�guration such that the CTP of eachedge is satis�ed. Figure 5.4 shows a simpli�ed example of an undirected constraintgraph and a solution to the graph (from [86]). Note that the actual constraint graphwill contain descriptions of the constraints that are represented by the edges in thegraph and will also have the domains of the entities.5.3.4 Hypergraph representationSerrano [100] uses a hypergraph representation for constraint problems. A hyper-graph y CRS is a pair (V;HE), where V is a set of vertices and HE is a set of

Chapter 5 108 Constraint Representation
Y H

B

I

E

K

M

F

L

σ

1

4

3

3

3

11

1 1

1

2

2

2

5

5

5

5

5

5

F

L B

H

Figure 5.5: An example of a constraint hypergraph with a solution to the graph.hyperedgesy .A vertex v represents an entity with its domain.A hyperedge he = fv1; v2; : : : ; vng represents a constraint with a CTP associatedwith the constraint and imposed set fv1; v2; : : : ; vng. Serrano does not mention anordering on the edges, but it must exist as the constraints he describes are notsymmetric. Hence an ordering is assumed to exist on fv1; v2; : : : ; vng.A solution to a hypergraph is a con�guration such that the CTP of each hyper-edge is satis�ed. Figure 5.5 shows a simpli�ed example of a constraint hypergraphand a solution to the graph (from [100]). The hypergraph shown does not show thedescriptions of the constraints or the domains of the entities in order to simplify thepicture.5.3.5 Bipartite representationThe Constraint/Entity graph (C/E graph) is a labelled, y undirected, y bipartite, yconnected graph (C; V; E) with two types of vertices: constraints and entities. Notethat the Constraint/Entity representation is adapted from the bipartite representa-tions used by Serrano [100] and Latham and Middleditch [66]. An example Con-straint/Entity graph is given in �gure 5.6.The set C is the set of constraint vertices. Each c = (label; fc) 2 C consistsof a unique label identifying the constraint and a CTP for checking possible solu-tions. Constraint vertices are represented as circles in the graph. For example, Cin �gure 5.6 is a constraint vertex, with CTP fC(x; y).

Chapter 5 109 Constraint Representation
y

D
y

x

D
x

z

D
z

w

D
w

f (x,y,z)
A

B

A

C

f (z,w)
B

C
f (x,y)

1

1 2

2

3

1 2

Figure 5.6: Example of a Constraint/Entity GraphThe set V is the set of entity vertices. Each v = (label; Dv) 2 V consists ofa unique identifying label and the domain of the entity, Dv. Entity vertices arerepresented as squares in the graph. for example, x in �gure 5.6 is an entity vertex,with domain Dx.The set E is the set of labelled, undirected edges in the graph. In a C/E graphthere exists an edge between a constraint node and an entity node i� the associatedconstraint is imposed on the associated entity, i.e. (c; v; n) 2 E , c = (label; fc) andv is a parameter of fc. Each edge is labelled with a number, n, between 1 and thenumber of parameters of fc, denoting the position of the adjacent entity vertex inthe list of parameters of fc. The set of entity nodes adjacent to constraint node cis denoted �c. For example, in �gure 5.6, the edge (A; z; 3) is labelled 3 as z is thethird parameter in fA.A solution of a Constraint/Entity graph is a value (v1; : : : ; vn) 2 D1 � � � � �Dnsuch that fc(v1; : : : ; vn) = 1 8c 2 C.5.3.6 Valid representation schemesTable 5.1 illustrates the various schemes discussed in this section and catalogues theproperties necessary for a valid CRS. All of the schemes presented in this sectionare valid CRSs.

Chapter 5 110 Constraint RepresentationScheme Reference Entities Constraints Imposed SetAlgebraic Section 5.3.1 E C Imposed set of CC/E Section 5.3.5 V C The set of edgesincident to con-straint vertexDirected [27] V E EdgeUndirected [86] V E EdgeHypergraph [101] V Set of edges withdi�erent label Set of edges withsame labelTable 5.1: Valid Constraint Representation Schemes5.4 ReductionsThe various graph representation schemes have signi�cant advantages over the al-gebraic CRS. For example the �nite domain arc consistency and path consistencysolution techniques take advantage of an undirected graph structure and ICBSM'sAllowable Motion [27] takes advantage of the directed graph nature of the Rela-tionship Graph to help guide solution. Erep [14] and DCM [86] take advantage ofthe structure of undirected graphs, Concept Modeler [100] takes advantage of thehypergraph representation and Connectivity Analysis [67] takes advantage of thestructure of a bipartite graph representation.Whilst the algebraic CRS is generic, it is not immediately obvious which of theother CRSs are. It is also useful to be able to compare the expressiveness of CRSsdirectly so that the relative expressiveness of constraint solvers can be identi�ed.This section presents a method of comparing CRSs such that not only can moreexpressive schemes be identi�ed, but also so that there exists a method of translatingone scheme to another. To this end the concept of reducing one CRS to anotheris introduced. The concept of reduction is analogous to reductions in complexitytheory.De�nition 5.3 (Reductions) A CRS � can be reduced to a representation � if1. There exists a mapping � from � to �; 8A 2 �; 9B 2 � such that �(A) = B;2. Every solution of A is also a solution of B and every solution of B is also asolution of A. In other words A and B (the reduced problem) have the samesolutions;3. � and � are valid constraint representation schemes;

Chapter 5 111 Constraint Representation4. The reduction can be done in polynomial time.The last criterion is necessary to ensure that the problem does not become in-tractable due to the reduction. �Reductions form a tool by which it is possible to compare and contrast constraintrepresentation schemes in terms of their expressiveness.The intuitive notion of reductions is that any problem in � can be describedin �, and that every solution of the reduced problem is a solution of the originalproblem. Thus the reduced problem is describing the same problem as the original.Since every problem in � can be described in �, � is capable of describing at leastas many problems as � and possibly more. This is usually denoted by saying that� is at least as powerful as �. It is natural therefore to wonder when two constraintrepresentation schemes are equally powerful.De�nition 5.4 (Equivalent constraint representation schemes) The tworepresentations � and � are equivalent if and only if � can be reduced to � and �can be reduced to �. The notation � � � is used to denote equivalence. �Since generic representation schemes are the goal of this chapter, constraint rep-resentation schemes that are equivalent to generic representation schemes will beparticularly important.Theorem 5.1 If � � � and � is generic, then � is generic. �Proof If � � �, then 9� such that 8B 2 �; 9A 2 �; �(B) = A. Hence B can bedescribed and solved in �, and since B is arbitrary, � is generic. 2Two example reductions are given below. These reductions are important asthey prove that there are constraint representation schemes other than the algebraicrepresentation scheme that are generic and also that there are constraint represen-tation schemes that are not generic. This allows the construction of a hierarchyof constraint representation schemes in terms of expressiveness. The two samplereductions prove that1. The algebraic representation is equivalent to the Constraint/ Entity represen-tation.2. The Relationship Graph representation is not as expressive as the Constraint/Entity representation.

Chapter 5 112 Constraint RepresentationThese reductions allow construction of part of �gure 5.2. The remaining reductionsnecessary to produce �gure 5.2 are presented in appendix B.The reductions presented in theorem 5.2 and theorem 5.3, combined with the re-ductions presented in appendix B lead to the conclusion that the Constraint/Entitygraph presented in section 5.3.5 is generic. Since this thesis studies the solution ofgeneral engineering design constraint problems, a generic constraint representationscheme is necessary to represent the general problem. The Constraint/Entity graphis also equivalent to the Connectivity graph used by Middleditch and Latham [67]and so can be used for Connectivity Analysis. The identi�cation of the constrained-ness of subproblems is an important issue in this thesis and the direct use of Con-nectivity Analysis is a signi�cant advantage for the Constraint/Entity graph. Con-sequently, the Constraint/Entity graph will be the constraint representation schemeof choice for this thesis.Theorem 5.2 The algebraic representation is equivalent to the Constraint/ Entitygraph representation. �Proof The proof is in two parts. First a reduction is formed from the AlgebraicRepresentation to the Constraint/Entity Representation.A mapping is de�ned as follows:For every (xi; Di) 2 E, create (xi; Di) in V .For every (c; fc; �c; <c) 2 C, create (c; fc) in C.Create E such that ((c; fc); (x;Dx); n) 2 E , x 2 �c and x is inposition n in <c.By inspection, the resulting graph is a Constraint/Entity graph. As an exam-ple, consider the simple constraint problem below. The Constraint/Entity graphresulting from the reduction is as in �gure 5.7. = (f(x;Dx); (y;Dy); (z;Dz); (w;Dw)g;f(A; fA; �A; <A); (B; fB; �B; <B); (C; fC; �C ; <C)g);such that �A = fx; y; zg; �B = fy; z; wg; �C = fx; wg;and <A= [x; y; z]; <B= [y; z; w]; <C= [x; w]:The entity vertices fx; y; z; wg, the constraint vertices fA;B;Cg and the edgesf(A; x; 1); (A; y; 2); (A; z; 3); (B; y; 1); (B; z; 2); (B;w; 3); (C; x; 1); (C;w; 2)g

Chapter 5 113 Constraint Representation

x

y

z

w

C

A

B

D

D

D

D
w

x

y

z

f (y,z,w)

f (x,w)

f (x,y,z)A

C

B

1

2

3

1

2

3

1

2Figure 5.7: Constraint/Entity Representation for Constraint Problem are created. The reduction criteria are demonstrated below:1. Mapping is de�ned above.2. A solution (y1; : : : ; yn) of (E ; C) is a solution of the Constraint/ Entity graphby the de�nition of a solution of the Constraint/ Entity graph and that of thealgebraic representation, and vice versa.3. Both are valid CRSs, by table 5.1.4. For every constraint in the constraint problem, a constraint vertex is created,taking O(m), where m is the number of constraints. For every entity in theconstraint problem, an entity vertex is created, taking O(n), where n is thenumber of entities. For every constraint in the constraint problem an edge foreach entity the constraint is imposed on is created, taking O(mn). Hence thereduction is polynomial.Secondly the reverse reduction, from a Constraint/Entity graph to the algebraicrepresentation, is proved, using the following mapping:

Chapter 5 114 Constraint RepresentationGiven Constraint/Entity graph (C; V; E), construct E = V . Con-struct �c for each c 2 C by�c = fxi1 ; xi2 ; : : : ; xikg;such that ((c; fc); (xij ; Dxij); n) 2 E. Then construct <c for each c 2 Cby x <c y , (c; x; n) 2 E and (c; y;m) 2 E and n < m:Then de�ne C = f(c; fc; �c; <c)j(c; fc) 2 Cg:Then the pair (E ; C)is the algebraic representation as de�ned in section 5.3.1.The reduction criteria are now checked to make sure the reduction is valid.1. Map is de�ned above.2. By the de�nition of the solutions of a Constraint/Entity graph and of thealgebraic representation, the solutions are the same.3. Both are valid CRSs, from table 5.1.4. For each entity vertex in the C/E graph, an entity in E is created, taking O(n),where n is the number of entities. For each constraint in the C/E graph, aconstraint in C is created. There may be O(n) edges incident to each constraintand O(m) constraints, so reconstructing the imposed sets is O(mn). Hencethe reduction is polynomial.Therefore the algebraic representation for constraint problems is equivalent tothe Constraint/Entity graph representation. This is as expected and means thatevery problem that can be described in terms of relations can be described as aConstraint/Entity graph. So Constraint/Entity graphs are generic. 2

Chapter 5 115 Constraint Representation
Cu v

D D
u v

f (u,v)
C

1 2Figure 5.8: New Construct for Constraint Edges
uC

D
u

f (u)
C

1Figure 5.9: New Construct for Constraint LoopsTheorem 5.3 The Relationship Graph [27] is not equivalent to the Constraint/Entity graph and is strictly less powerful than it. �Proof The proof is in two parts. First a reduction is formed from the Rela-tionship Graph to the Constraint/Entity representation, demonstrating that theConstraint/Entity Graph is at least as powerful as the Relationship Graph. TheRelationship Graph is a directed graph, in which constraints are represented bydirected edges and entities are represented by circular vertices.The mapping used to reduce a directed constraint graph (V;E) to a C/E graph(VB; CB; EB) is as follows:Create VB = V .For each edge e in E, with CTP fe, create constraint vertex (e; fe) inCB.For each edge e = [u; v] in E, create edges (e; u; 1) and (e; v; 2) inEB. E�ectively, this means replacing all edges ((u;Du); (v;Dv)) withthe construct in �gure 5.8, where ((u;Du); (v;Dv)) represents constraintC, with �C = fu; vg and <C= [u; v], C has CTP f . As edges in theRelationship Graph are directed, there is an implicit ordering which iscaptured by having the edge from C to u labelled with a 1 and (C; v)labelled with a 2.For each edge e = [u; u] in E, create edge (e; u; 1) in EB. E�ectivelythis means replacing all edges ((u;Du); (u;Du)) with the construct in�gure 5.9.

Chapter 5 116 Constraint Representation
Entity

Const

Entity

EntityEntity

1

2

3

4

Figure 5.10: Representing Quaternary Constraints in a Constraint/Entity GraphThe resultant graph is clearly a C/E graph. Checking the reduction criterion:1. The mapping is de�ned above.2. A solution to the constraint graph will result in values being assigned to thevarious entity vertices. The assignment of the same values to the entity verticesin the reduced C/E graph will form a solution to the C/E graph problem, sincethe same CTPs are used in both schemes.3. Both are valid CRSs, as in table 5.1.4. The reduction can be done in linear time in the number of edges in the con-straint graph. It is therefore polynomial time.So the relationship graph can be reduced to a C/E graph.Secondly, it is necessary to prove that Constraint/Entity graphs cannot be re-duced to Relationship Graphs. This implies that Constraint/Entity graphs arestrictly more powerful than Relationship Graphs. The weakness of RGs lies inthe fact that only binary and unary constraints can be described.It is however possible to represent ternary or n-ary constraints in a Constraint/Entity graph by the number of edges e 2 E such that the constraint vertex is incidentto e (see �gure 5.10).Since more complex, non-geometric constraints will probably require n-ary con-straints, such a representation is clearly desirable.

Chapter 5 117 Constraint RepresentationSince n-ary constraints, n � 3 cannot be described using a Relationship Graph,it follows that the Constraint/Entity representation is more powerful or more generalthan Relationship Graphs. 25.5 ConclusionsThis chapter has discussed the problems of representing constraint problems on acomputer. The problems of representing constraints and entities correspond to theproblems of representing large or in�nite sets of values. Sparse matrix techniquescan be used in the case of �nite entities and constraints, provided that there are fewnon-zero values. In general, implicit set notation is used for in�nite domain entitiesand constraints. Equations and inequalities can be described using explicit symbolicmathematical descriptions, for example using Maple [18]. It is also possible to usedomain speci�c knowledge to simplify description of constraints and entities. Forexample, the movements of rigid bodies in space can be described using degrees offreedom [27,58], which allows description of an in�nite domain to be simpli�ed to a�nite one.Constraint problems are represented using constraint representation schemes.Constraint representation schemes are a means of abstracting out relevant informa-tion about a constraint problem, for example the imposed set of constraints, in sucha way that they can be exploited by a constraint solver. Most constraint representa-tion schemes take advantage of graph representations in order to use the large bodyof graph algorithms that already exist.For example the �nite domain arc consistency and path consistency solutiontechniques take advantage of an undirected graph structure and ICBSM's AllowableMotion [27] takes advantage of the directed graph nature of the Relationship Graphto help guide solution. Erep [14] and DCM [86] take advantage of the structureof undirected graphs, Concept Modeler [100] takes advantage of the hypergraphrepresentation and Connectivity Analysis [67] takes advantage of the structure of abipartite graph representation.Some constraint representation schemes are generic. A generic constraint rep-resentation scheme is capable of describing all constraint problems. The algebraicrepresentation scheme described in section 5.3.1 is generic, but there is no directmeans of identifying which of the other representation schemes presented are. Con-sequently, the notion of reductions was introduced. Reductions can be used toconvert between constraint representation schemes and also to compare two con-

Chapter 5 118 Constraint Representation
P

P

P P

70

3 4

2

1

d

d

1

2

P

P

P P

d

d

1

2

3 4
2

1

coincident
L

L

L

1

2

1

L
2

angle

Figure 5.11: A Hierarchy of Constraint Representation Schemesstraint representation schemes. Two constraint representation schemes � and � areequivalent if � can be reduced to � and vice versa.Theorem 5.1 proves that a constraint representation scheme that is equivalent toa generic representation scheme is generic. This theorem performs an important rolein identifying the constraint representation scheme that will be used to representthe general engineering design constraint problems of interest to this thesis.Using reductions, it is possible to form a hierarchy of constraint representationschemes in terms of expressiveness. The hierarchy described in �gure 5.2 is repro-duced here for convenience.This hierarchy indicates that the Constraint/Entity graph presented in sec-tion 5.3.5 is generic. The Constraint/Entity graph is also equivalent to the Connec-tivity graph used by Middleditch and Latham [67] and so can be used for Connectiv-ity Analysis. The identi�cation of the constrainedness of subproblems is an impor-tant issue in this thesis and the direct use of Connectivity Analysis is a signi�cantadvantage for the Constraint/Entity graph. Consequently, the Constraint/Entitygraph will be the constraint representation scheme of choice for this thesis.

Chapter 6Constraint SatisfactionOnce a constraint problem is de�ned and represented on a computer, it only remainsto �nd the required number of solutions to the problem, a process normally referredto as constraint satisfaction. Currently, there exist many di�erent constraint satis-faction techniques, ranging from trying every possible con�guration to sophisticatedheuristic and reasoning methods.The purpose of this thesis is to investigate the possibility of de�ning, representingand solving a general constraint problem e�ciently on a computer. No single algo-rithm currently available can handle all constraint problems. Even versatile numer-ical algorithms, such as Newton-Raphson [90], cannot solve all constraint problemsas not all constraint problems can be described using equations (see Kramer [59],p23). As noted in [90],There are no good, general methods for solving systems of more thanone nonlinear equation. Furthermore, it is not hard to see why (verylikely) there never will be any good, general methods.Consequently, because the general constraint problem may consist of a number ofnonlinear equations and inequalities, it is unlikely that any single algorithm will beable to solve the general constraint problem. However, there exist many algorithmscapable of solving speci�c types of constraint problem. It is logical therefore towonder whether the specialised constraint solvers could be combined in some fashionand what kind of problem the combined solver could handle.This gives rise to the concept of hybrid constraint solvers, which is discussed inmore depth in chapter 7. However, in order to study hybrid solvers, it is necessaryto investigate the constraint satisfaction process, to identify common properties ofsatisfaction algorithms that will allow hybrids to be constructed.119

Chapter 6 120 Constraint SatisfactionConsequently, this chapter presents a mathematical framework of the constraintsatisfaction process. This framework has several bene�ts beyond the identi�cationof common properties:1. The framework helps to clarify current constraint satisfaction algorithms.2. The framework allows formal de�nition of properties such as consistency,soundness and completeness, and provides a powerful method of proving theirexistence in a given algorithm.3. The framework is su�ciently rich to allow the integration of previously un-connected topics such as constraint priorities, backtracking, variable-drivenalgorithms and incremental techniques.Section 6.1 presents a de�nition of constraint satisfaction solvers and discusses so-lution spaces in this context. Solution spaces are the set of con�gurations to besearched for solutions at any given time. An extensive study of constraint satisfac-tion algorithms has led to the concept of solution steps and these are introducedin section 6.2. Solution steps may have the properties of consistency , soundness orcompleteness associated with them and these properties are de�ned also. A satisfac-tion scheme, however, is not typically a single solution step, but is instead a sequenceof solution steps. Consequently, the notion of a solution process is de�ned. Thesealso may be consistent, sound or complete and the link between individual steps hav-ing a property and a process having a property is a powerful tool for categorising aconstraint satisfaction scheme.Section 6.3.1 demonstrates the power of the framework as it allows the descriptionof techniques used to improve the power of constraint satisfaction, such as constraintpriorities, backtracking, variable-driven and incremental techniques.Section 6.4 presents conclusions from this chapter.6.1 Constraint solutionAs de�ned in section 4.4, a constraint solver is an algorithm or technique that takesas input a constraint problem and produces as output a set of solutions that satisfythat constraint problem. This set can be empty, consist of one, all, some or the bestsolution, depending on the algorithm used.Constraint solvers typically work by searching through a large, possibly in�nite,space of possible con�gurations trying to �nd speci�c con�gurations that satisfy the

Chapter 6 121 Constraint Satisfactionconstraints. The set of con�gurations being explored is usually called the solutionspace of the problem.6.1.1 Solution spacesThe purpose of a constraint solver is to identify a number of solutions from within amuch larger set of con�gurations, most of which are not solutions. As the constraintsolver progresses, it gradually narrows down the set of con�gurations by eliminatingcon�gurations.The set of con�gurations at any given point in the solution process is the solutionspace. This is a generalisation of nodes in search trees in �nite domain problems [103]and C-spaces [72, 121] in spatial planning problems.Search trees are (semi-)graphical representations of a search algorithm as it ex-amines the possible con�gurations of a �nite domain problem. The branches of thetree correspond to di�ering choices of values for variables at that point. Nodes cor-respond to partial solutions to the constraint problem and are equivalent to a set ofcon�gurations. Since in�nite domain problems will typically not use explicit searchtechniques, search trees are not appropriate.A con�guration space, or C-space, is the multi-dimensional space of possible con-�gurations of an object [72]. C-spaces are of particular interest in spatial planningproblems. If an object in a domain is to avoid a set of obstacles, then the problemof �nding a position for the object reduces to the problem of identifying a pointnot within any of the projections of the object with respect to the obstacles intoC-space.Solution spaces will be used to describe the current state of a solution process.De�nition 6.1 (Solution space) A solution space is a set of con�gurations.Solution spaces will be denoted by the symbol D. �Once a constraint problem is de�ned, there is an initial solution space of allpossible con�gurations.Example 6.1 (Solution space) Consider constraint problem G of example 4.8.The set of all possible con�gurations of LS1; LS2; LS3; LS1a; LS1b; LS2a; LS2b;LS3a; LS3b isD(0) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = IR2; LS1b = IR2;LS2a = IR2; LS2b = IR2; LS3a = IR2; LS3b = IR2g:

Chapter 6 122 Constraint SatisfactionThis is the initial solution space of G. D(0) represents the three line segments beingallowed to take any position in the plane. Note that, since this is the initial solutionspace, the notation D(0) is used, to indicate the solution space at time 0. Thereason for this notation will become clear in section 6.2.3. �As a constraint problem is solved, and con�gurations are eliminated, the solutionspace shrinks. Eventually, the constraint solver terminates and outputs a solutionspace. The contents of this solution space depend on the constraint solver. Itmay consist of all, one or no solutions. It may contain con�gurations that are notsolutions. It may �nd no solutions though some exist or it may �nd `solutions' wherenone exist.Example 6.2 (Geometric terminal solution space) Using a constraint solversuch as D-Cubed on problem G0 would result in a terminal solution space of theformD(�) = ffLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3; 4; 0)g; LS3 = f(4; 0; 0; 0)g;fLS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(4; 0)g; LS3a = f(4; 0)g; LS3b = f(0; 0)gg;fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3;�4; 0)g; LS3 = f(�4; 0; 0; 0)g;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)ggg:�The notationD(�) will be used to denote a terminal solution space in the remainderof this thesis.6.2 A framework for the solution processAs discussed in section 6.1, constraint solvers convert an initial solution space to aterminal solution space, hopefully consisting of solutions to the constraint problem.Although all constraint solvers work in di�erent ways, it is possible to examine theinner workings of a variety of constraint solvers and extrapolate common featuresto give a framework for describing constraint satisfaction.This section presents the results of such a study. Having examined the algorithmsfor all of the constraint solvers in chapter 2, it seemed that all of the constraint

Chapter 6 123 Constraint Satisfactionsolvers studied worked in an incremental fashion, gradually re�ning their knowledgeof the constraint problem until it was possible to identify solutions. This principletranslates well into the language of solution spaces. The framework that was devel-oped to describe the constraint satisfaction process allows concrete statements to bemade not only about individual constraint solvers, but also about the combinationof constraint solvers to handle the general constraint problem.Note that this is very similar to the description of incremental solvers such asINCES [62] and IGCS [112]. Incremental solvers try to reuse as much previousknowledge of the solution of a constraint problem as possible when a new constraintis added. Incremental solvers are discussed as a re�nement of the satisfaction frame-work in section 6.3.4.This section introduces the solution step, the basic structure in any solutionprocess. Solution processes consist of a series of solution steps combined to graduallyre�ne the solution space of a problem. The de�nition of solution steps allows anatural description of the properties of consistency, soundness and completeness,important properties of constraint solvers.As a solution process is a series of solution steps, it is natural to apply theproperties of consistency, soundness and completeness to solution processes. Thelink between properties of solution steps and solution processes forms an importanttool in making statements about constraint solvers.6.2.1 Solution stepsA solution step is the building block of constraint solvers. A solution step takes asolution space and uses a set of constraints to re�ne the solution space by eliminatingsome con�gurations.De�nition 6.2 (Solution step) A solution step is a mapping 	k�!,D(k � 1) 	k�! D(k)where 	k is a set of constraints C1; : : : ; Cm and D(i) is the solution space of the setof entities � at step i. For each step,D(k) � D(k � 1): (6.1)�

Chapter 6 124 Constraint SatisfactionExample 6.3 (Solution step) Consider the �rst solution step taken by Kramer'sdegrees of freedom analysis constraint solver [59] to solve problemG0 of example 4.10.The initial solution space is:D(0) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = IR2; LS1b = IR2;LS2a = IR2; LS2b = IR2; LS3a = IR2; LS3b = IR2g:as all three line segments oat freely in space. Let the �rst solution step beD(0) LS1a=0����! D(1);whereD(1) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g; LS1b = IR2;LS2a = IR2; LS2b = IR2; LS3a = IR2; LS3b = IR2g:This solution step can be read thus:From an initial solution space of D(0), the constraint that one pointis �xed at the origin is processed and this results in a solution space ofD(1). D(0) can be interpreted that all three line segments and all sixpoints are free to move in the plane, whereas D(1) can be interpreted sothat one of the points is �xed at the origin.This is a solution step as f(0; 0)g � IR2 and so D(1) � D(0). �6.2.2 Properties of solution stepsConstraint solvers are frequently described in terms of properties that they have.These properties usually describe the format of the terminal solution space producedby the constraint solver and it is very useful to be able to say that a solver willproduce a terminal solution space with a particular property no matter what problemis solved. Another desirable property is that a constraint solver terminate at all.The most common properties desired of constraint solvers are1. Consistency. The terminal solution space contains a solution to the problemgiven if any solution exists.2. Soundness. The terminal solution space consists only of solutions to the prob-lem given.

Chapter 6 125 Constraint Satisfaction3. Completeness. The terminal solution space contains all solutions to the prob-lem given.For example, numerical solution is not consistent, as it may fail to converge to asolution. Many �nite domain techniques, such as forward checking, backtracking orbackmarking [114], search through the entire solution space and are consistent, soundand complete. However, it is not always obvious whether a particular constraintsolver has any or all of the above properties.It is very desirable to be able to characterise constraint solvers with these prop-erties both so that concrete statements can be made about the terminal solutionspace found by the constraint solver and also to help categorise combined solvers.Consequently, it is important that the framework for constraint satisfaction beable to capture the three properties described above. This section presents theformal de�nitions of consistency, soundness and completeness of solution steps.A solution step is consistent if it always retains at least one solution to the prob-lem, if any solution exists. Solvers such as forward checking or backtracking areconsistent as they search exhaustively for a solution, but hillclimbing [114] is not.Hillclimbing is a constraint solution technique that tries to �nd solutions using opti-misation techniques. Hillclimbing examines the constraint problem and then (typi-cally) uses the derivatives of the nonlinear equations to identify the most promisingdirection for a solution. However, hillclimbing can get stuck on local minima andwill then not proceed to a solution as it does not think one exists. Consequently,hillclimbing is not consistent.De�nition 6.3 (Consistent solution step) A solution step 	k�! is locallyconsistent if 	k = fC	k1 ; C	k2 ; : : : ; C	kmg, andC	k1 \ C	k2 \ � � � \ C	km 6= ;) C	k1 \ C	k2 \ � � � \ C	km \D(k) 6= ;:That is there is always at least one solution that satis�es the local set of constraints.A solution step 	k�! is (globally) consistent if 	 = fC1; C2; : : : ; Crg, andC1 \ C2 \ � � � \ Cr 6= ;) C1 \ C2 \ � � � \ Cr \D(k) 6= ;:That is there is always at least one solution that satis�es the global set of constraints.�

Chapter 6 126 Constraint SatisfactionIn the rest of this thesis, the shorthand notationC(0) = \C2	0C = C	01 \ C	02 \ � � � \ C	0krepresents the intersection of all the constraints in a constraint subset, 	0. Thisintersection represents all the values that satisfy all the constraints in the subset.A solution space D(k) contains many possible solutions of the constraint prob-lem. Depending on the problem, many of these possible solutions may be valid orvery few may be or none at all. Given that D(k) may be in�nite, it would not bedesirable to search through D(k) to �nd all of the valid solutions. It is thereforedesirable that the �nal solution space D(�) contain only valid solutions. This givesrise to the notion of soundness.A solution step 	k�! is locally sound if D(k) contains only valid solutions of 	kin D(k � 1). A solution step is sound if D(k) contains only valid solutions of theconstraint problem.De�nition 6.4 (Sound solution step) A solution step 	k�! is locally sound if	k = fC	k1 ; C	k2 ; : : : ; C	kmg, andD(k) � C(k) \D(k � 1):That is only local solutions in D(k � 1) are in D(k).A solution step 	k�! is (globally) sound if 	 = fC1; C2; : : : ; Crg, andD(k) � C() \D(k � 1):That is only global solutions in D(k � 1) are in D(k). �The property of completeness of a solution step is signi�cant as it means thatno solutions to the problem have been lost as a result of the solution step. Insome circumstances we may only want one solution to a problem, in which casecompleteness is not an issue, and we need only enforce consistency.De�nition 6.5 (Complete solution step) A solution step 	k�! is locally com-plete if 	k = fC	k1 ; C	k2 ; : : : ; C	kmg, andC(k) \D(k � 1) � D(k):That is all local solutions in D(k � 1) are in D(k).

Chapter 6 127 Constraint SatisfactionA solution step 	k�! is (globally) complete if 	 = fC1; C2; : : : ; Crg, andC() \D(k � 1) � D(k):That is all global solutions in D(k � 1) are in D(k). �Example 6.4 (Properties of solution steps) The solution step LS1a=0����! in ex-ample 6.3 is locally consistent as the constraint LS1a = 0 is satis�ed in D(1). Itis also locally sound, as there are no con�gurations in D(1) that do not satisfyLS1a = 0. It is locally complete as well, as any con�guration in D(0) not in D(1)will not satisfy the constraint LS1a = 0.Unfortunately, it is much harder to gauge global properties of the solution stepfor this example. Without knowing what the solutions of the problem are, it is notusually possible to say in this way whether the solution step is consistent, sound orcomplete. In fact, the solutions of G0 are known. They areffLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3; 4; 0)g; LS3 = f(4; 0; 0; 0)g;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(4; 0)g; LS3a = f(4; 0)g; LS3b = f(0; 0)gg;fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3;�4; 0)g; LS3 = f(�4; 0; 0; 0)g;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)ggg:Thus the solution step is, in fact, (globally) consistent, sound and complete. How-ever, it is not usually easy to �nd all of the solutions to a problem and consequently,it is not usually possible to say whether a solution step has a global property. �6.2.3 Solution processesA solution process is constructed from a sequence of solution steps. A solutionprocess forms the basis for most constraint satisfaction algorithms.De�nition 6.6 (Solution process) Given constraint problem P = (�;), with� a set of entities, f(x1; D1) : : : ; (xn; Dn)g with domains D1; : : : ; Dn, 	 a set of

Chapter 6 128 Constraint Satisfactionconstraints on � and 	0 � 	, a solution process 	0�!� is a sequence of mappingsD(0) = (D1 � � � � �Dn) 	1�! D(1)	2�! D(2)� � �	��! D(�)such that � is �nite,	1;	2; : : : ;	� � 	0;	i \ 	j = ;; 8i; j; i 6= j; i = 1::�; j = 1::�;Smi=1	i = 	0:�Example 6.5 (Solution process) Constraint solvers such as degrees of freedomanalysis, D-Cubed, Erep, ICBSM, FC, MAC are solution processes.For example, solving constraint problem G0 of example 4.10 using degrees of

Chapter 6 129 Constraint Satisfactionfreedom analysis may give a solution process of the form below.D(0) = fLS1 = IR4; LS2 = IR4; LS3 = IR4 LS1a = IR2;LS1b = IR2; LS2a = IR2; LS2b = IR2; LS3a = IR2; LS3b = IR2gLS1a=0����! D(1) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = IR2; LS2a = IR2; LS2b = IR2; LS3a = IR2; LS3b = IR2gLS1b=LS2a������! D(2) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = IR2; LS3a = IR2;LS3b = IR2; x; y 2 IRgLS2b=LS3a������! D(3) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = f(z; w)g;LS3a = f(z; w)g; LS3b = IR2; x; y; z; w 2 IRgLS3b=LS1a������! D(4) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = f(z; w)g;LS3a = f(z; w)g; LS3b = f(0; 0)g; x; y; z; w 2 IRgd(LS1a;LS1b)=3���������! D(5) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = f(z; w)g;LS3a = f(z; w)g; LS3b = f(0; 0)g; x; y; z; w 2 IR; x2 + y2 = 9gd(LS2a;LS2b)=5���������! D(6) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = f(z; w)g;LS3a = f(z; w)g; LS3b = f(0; 0)g; x; y; z; w 2 IR; x2 + y2 = 9;(x� z)2 + (y � w)2 = 25gd(LS3a;LS3b)=4���������! D(7) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(x; y)g; LS2a = f(x; y)g; LS2b = f(z; w)g;LS3a = f(z; w)g; LS3b = f(0; 0)g; x; y; z; w 2 IR; x2 + y2 = 9;(x� z)2 + (y � w)2 = 25; z2 + w2 = 16gLS2=(0;3)������! D(8) = fLS1 = IR4; LS2 = IR4; LS3 = IR4; LS1a = f(0; 0)g;LS1b = f(0; 3)g; LS2a = f(0; 3)g; LS2b = f(�4; 0)g;LS3a = f(�4; 0)g; LS3b = f(0; 0)gg;

Chapter 6 130 Constraint Satisfactionendpoint(LS1;LS1a)�����������! D(9) = fLS1 = f(0; 0; IR; IR)g; LS2 = IR4; LS3 = IR4;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)gg;endpoint(LS1;LS1b)�����������! D(10) = fLS1 = f(0; 0; 0; 3)g; LS2 = IR4; LS3 = IR4;LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)gg;endpoint(LS2;LS2a)�����������! D(11) = fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3; IR; IR)g;LS3 = IR4; LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)gg;endpoint(LS2;LS2b)�����������! D(12) = fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3;�4; 0)g;LS3 = IR4; LS1a = f(0; 0)g; LS1b = f(0; 3)g; LS2a = f(0; 3)g;LS2b = f(�4; 0)g; LS3a = f(�4; 0)g; LS3b = f(0; 0)gg;endpoint(LS3;LS3a)�����������! D(13) = fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3;�4; 0)g;LS3 = f(�4; 0; IR; IR)g; LS1a = f(0; 0)g; LS1b = f(0; 3)g;LS2a = f(0; 3)g; LS2b = f(�4; 0)g; LS3a = f(�4; 0)g;LS3b = f(0; 0)gg;endpoint(LS3;LS3b)�����������! D(14) = fLS1 = f(0; 0; 0; 3)g; LS2 = f(0; 3;�4; 0)g;LS3 = f(�4; 0; 0; 0)g; LS1a = f(0; 0)g; LS1b = f(0; 3)g;LS2a = f(0; 3)g; LS2b = f(�4; 0)g; LS3a = f(�4; 0)g;LS3b = f(0; 0)gg:Note that D(14) � D(13) � � � � � D(1) � D(0);as required. �6.2.3.1 Solution processes always head towards a solutionIn most cases, it is desirable for a solution process to head towards a solution spacethat is manageable. In terms of dimension, this will involve having a solution spacewhose dimension is as small as possible. The actual size of the solution space foundwill depend on the algorithm and problem solved. However, it is possible to provethat the dimension of a solution space tends to decrease due to a solution step.

Chapter 6 131 Constraint SatisfactionLemma 6.1 proves this.Corollary 6.1 A � B) dim(A) � dim(B). �Proof Assume A � B, then B = A [C, for some CA � B) B = A [C) dim(B) = dim(A [C)= max(dim(A); dim(C))� dim(A):2Lemma 6.1 If there is a solution stepD(i� 1) 	i�! D(i)then dim(D(i)) � dim(D(i� 1)):�Proof Immediate sinceD(i) � D(i� 1)) dim(D(i)) � dim(D(i� 1)):26.2.4 Solution process propertiesThe de�nitions for solution properties for solution steps given in section 6.2.2 do notnecessarily allow corresponding properties to be inferred about solution processes.In fact, a solution process can be interpreted as a single solution step as lemma 6.2demonstrates.Lemma 6.2 A solution process D(0) 	�!� D(�) is a single solution step. �Proof A solution step is a function f such thatD(k) = f(k;D(k � 1)):

Chapter 6 132 Constraint SatisfactionA solution process is a sequence of functions fk such thatD(k) = fk(k;D(k � 1)); k = 1::�:Thus, for solution process �!�D(�) = f�(�;D(�� 1));D(�� 1) = f��1(��1;D(�� 2));� � �D(1) = f1(1;D(0)):For each fk, create f 0k such thatf 0k(;D(k � 1)) = fk(k;D(k � 1)):Then it is possible to rede�ne D(�) so thatD(�) = f 0� �	; f 0��1 (; : : : f 01 (;D(0)))� :Since a composition of functions is a function, there exists a function g such thatD(�) = g(;D(0)):It remains only to show that D(�) � D(0)which follows immediately due to the nature of the solution process. 2Consequently, it is natural to wish to ascribe certain properties to solution pro-cesses. However, since processes can be interpreted as both a single solution stepand as a sequence of solution steps, there exist two possible ways of de�ning theproperties desired.One method is to interpret a solution process as a solution step and this givesrise to consistency, soundness and completeness of solution processes and the cor-responding local properties.The other method is to interpret a solution process as a sequence of solution stepsand examine the properties of each solution step in the process. This gives rise tostrong consistency, strong soundness and strong completeness of solution processes

Chapter 6 133 Constraint Satisfactionas well as corresponding local properties.De�nition 6.7 (Solution process consistency) A solution process � is (glob-ally) consistent i� for all constraint problems P = (�;),(D1 � � � � �Dn) 	0�!� D(�)is consistent, where � = f(x1; D1); : : : ; (xn; Dn)g and 	 = fC1; : : : ; Crg. That isC() 6= ;) C() \D(�) 6= ;:A solution process � is (globally) strongly consistent i� for all constraint prob-lems P , each solution step is consistent.Process � is locally consistent i� for all constraint problems P and subsets	0 � 	, (D1 � � � � �Dn) 	0�!� D(�)is locally consistent. That is, for 	0 = fC	01; : : : ; C	0mg andC(0) 6= ;) C(0) \D(�) 6= ;:Process � is strongly locally consistent i� for all constraint problems P , eachsolution step is locally consistent. �De�nition 6.8 (Solution process soundness) A solution process � is (glob-ally) sound i� for all constraint problems P = (�;),(D1 � � � � �Dn) 	0�!� D(�)is sound, where � = f(x1; D1); : : : ; (xn; Dn)g and 	 = fC1; : : : ; Crg. That is,D(�) � C() \ (D1 � � � � �Dn) :A solution process � is (globally) strongly sound i� for all constraint problemsP , each solution step is sound.Solution process � is locally sound i� for all constraint problems P and subsets

Chapter 6 134 Constraint Satisfaction	0 � 	, (D1 � � � � �Dn) 	0�!� D(�)is sound. That is, 	0 = fC	01; : : : ; C	0mg andD(�) � C(0) \ (D1 � � � � �Dn) :Solution process � is strongly locally sound i� for all constraint problems P , eachsolution step is locally sound. �De�nition 6.9 (Solution process completeness) A solution process � is(globally) complete i� for all constraint problems P = (�;),(D1 � � � � �Dn) 	0�!� D(�)is complete, where � = f(x1; D1); : : : ; (xn; Dn)g and 	 = fC1; : : : ; Crg. That is,C() \ (D1 � � � � �Dn) � D(�):Solution process � is (globally) strongly complete i� for all constraint problemsP , each solution step is complete.Solution process � is locally complete i� for all constraint problems P andsubsets 	0 � 	, (D1 � � � � �Dn) 	0�!� D(�)is locally complete. That is, 	0 = fC	01; : : : ; C	0mg andC(0) \ (D1 � � � � �Dn) � D(�):Solution process � is strongly locally complete i� for all constraint problems P ,each solution step is locally complete. �Example 6.6 (Degrees of freedom analysis) The most desirable solution pro-cess would be one that was consistent, sound and complete as the terminal solutionspace would consist only of solutions and would contain all solutions. However, itis extremely di�cult to prove that a process has a property directly. Although it

Chapter 6 135 Constraint Satisfactionseems likely that degrees of freedom analysis is sound, for example, there is no easyway of justifying that statement.On the other hand, it is possible to examine a single, arbitrary, solution step. Indegrees of freedom analysis, for example, the solution stepD(k � 1) 	k�! D(k)is always locally sound as only solutions to 	k are retained in D(k). Since anarbitrary solution step is locally sound, each solution step in a sequence is locallysound. Correspondingly, degrees of freedom analysis is strongly, locally sound. �Unfortunately, without a method of linking strong local properties to globalproperties, knowing that a process is strongly, locally sound is not particularly useful.6.2.5 Using local properties to draw conclusions about pro-cessesAs discussed in section 6.2.4, it is desirable to be able to say whether a solutionprocess has a certain global property. Unfortunately, it is not usually possible tomake concrete statements about global properties directly. It is, however, frequentlypossible to comment on local properties of individual solution steps.Theorem 6.1 provides the link between strong local properties and global prop-erties. Theorem 6.1 means, for example, that if a solution process is strongly, locallycomplete, then it is globally complete. Theorem 6.1 allows concrete statements tobe made about solution processes.

Chapter 6 136 Constraint SatisfactionTheorem 6.1 For solution process �!�,a. Strongly Consistent , Consistent.b. Locally Consistent) Strongly Locally Consistent.Strongly Locally Consistent ; Locally Consistent.c. Locally Consistent , Consistent.d. Strongly Sound , Sound.Sound ; Strongly Sound.e. Locally Sound ; Strongly Locally Sound.Strongly Locally Sound) Locally Sound.f. Locally Sound , Sound.g. Strongly Complete , Complete.h. Locally Complete ; Strongly Locally Complete.Strongly Locally Complete) Locally Complete.i. Locally Complete , Complete.�Proof Proof is deferred to appendix C. 2Example 6.7 (Degrees of freedom analysis) Since degrees of freedom analysisis strongly, locally sound, by theorem 6.1, it is globally sound. This means that anycon�guration in a terminal solution space found by Degrees of Freedom Analysis isa solution. �6.2.6 Consequences of the Local-Global TheoremTheorem 6.1 forms a signi�cant contribution to the understanding of constraintsolvers. The quality of solution of a constraint process is an important issue fordesigners. The three properties of consistency, soundness and completeness capturethe concepts of a solution, only solutions and all solutions and as such describe vitalproperties of constraint solvers.

Chapter 6 137 Constraint SatisfactionFor example, if a designer is using a sound constraint solver, then they canguarantee that any results from the solver are solutions to the constraint problem.However, if the constraint solver is not consistent, then the designer cannot drawany conclusions from the fact that the solver failed to �nd a solution to the problem.Previously, it was di�cult to be able to make concrete statements about con-straint solvers. Statements about the properties of �nite domain constraint solversdepended on being able to say that the solver exhaustively searched the solutionspace. Owen [86] used Galois theory to prove that the DCM algorithm was soundand complete. Theorem 6.1 allows for signi�cantly simpler proofs of the propertiesof constraint solvers as demonstrated in example 6.7.However, the power of theorem 6.1 does not lie solely in the ability to statewhether simple constraint solvers are consistent, sound or complete. Hybrid con-straint solvers can also be studied using theorem 6.1 and this allows several impor-tant and interesting conclusions to be drawn about existing hybrid solvers and alsoabout hybrids in general. For example, INCES [62], IGCS [112] and MechEdit [15]are not consistent. The use of theorem 6.1 to study hybrid constraint solvers isdiscussed in more detail in section 7.4.6.3 Enrichment of the constraint satisfactionframeworkAlthough the constraint satisfaction framework in section 6.2 is rich enough to de-scribe many constraint solvers, there exist some techniques that cannot be describedusing the framework as it stands. In fact, the techniques of constraint priorities,backtracking, variable-driven and incremental satisfaction are powerful enhance-ments of the general constraint problem. The satisfaction framework's inability tohandle them unaltered should not be taken as a weakness. Just as the de�nition ofwhat a constraint problem is must be enhanced to describe these cases, the basicsatisfaction framework can be enhanced to describe all four special cases and this isan indication of the power of the framework.This section describes the enhancements that can be made to the constraintsatisfaction framework in order to incorporate constraint priorities, variable-driven,backtracking and incremental satisfaction.

Chapter 6 138 Constraint Satisfaction6.3.1 Constraint prioritiesBorning et al. [11] introduced the concept of constraint priorities in order to allowover constrained problems to be solved. Intuitively, a strength is associated with eachconstraint. This strength is an indication of how important it is that the constraintbe satis�ed. Thus, less important constraints are sacri�ced and not satis�ed sothat the more important constraints are satis�ed. This is a means of dealing withproblems that are over-constrained.De�nition 6.10 (Constraint priority problem) Given an ordering �0 > �1 >: : : > �z of strengths, a constraint priority problem is a pair (�;), where �is a set of entities and 	 a set of constraints. The set 	 is enhanced so that eachmember of 	 is a pair (C; �), where C is a constraint and � 2 f�0; : : : ; �zg is thestrength associated with constraint C.�The concept of a solution to a constraint priority problem is somewhat di�erentto the concept given in de�nition 4.5.De�nition 6.11 (Solution to a constraint priority problem) Givenconstraint priority problemP = (� = f(x1; D1); : : : ; (xn; Dn)g;	 = f(C1; �1); : : : ; (Cm; �m)g);de�ne sets of constraints Hi as followsHi = f(Cj; �j)j�j = i; (Cj; �j) 2 	g;H = [i Hi:E�ectively this gathers the constraints into sets of equal strength. Given a com-parator, better, con�guration u is a solution to P i�S0 = fvj8(Cj; �0) 2 H0; v 2 Cjg = C(H0);S = fvjv 2 S0 ^ 8w 2 S0;:better(w; v;H)g;u 2 S:�

Chapter 6 139 Constraint SatisfactionThe choice of comparator better signi�cantly a�ects the solutions to the problem.Borning et al. [11] give examples of several such comparators and demonstrate thedi�erences in the solution spaces for various problems. Consequently, this will not begone into in detail here. However, it is worth noting that constraints with strength�0 (called required in [11]) will always be satis�ed if possible.Proposition 6.1 If possible, all constraints with priority �0 will be satis�ed. �Proof Any constraint with priority �0 will be in the set S0. By the constructionof set S, any solution to the constraint priority problem must be in C(H0) andconsequently must satisfy all constraints with priority �0. 2The properties associated with solution steps and processes are slightly di�erent,as it is possible for a new constraint to be processed incrementally and for this toalter the solution space. For example, consider the constraint priority problemP = (f(a; IR); (b; IR)g; f(a = 2; required); (b = 2; weak); (b = 3; strong)g). Theinitial solution space is D(0) = IR2. Suppose that there exists a solution process asfollows D(0) a=2��! D(1) = fa = f2g; b = IRgb=2��! D(2) = fa = f2g; b = f2ggb=3��! D(3):Since the strength of the constraint b = 3 is greater than the strength of the con-straint b = 2, the former should be satis�ed to the detriment of the latter. However,this violates the de�nition of a solution process as no matter what choice is madeto satisfy b = 3, D(3) * D(2).The de�nitions of solution steps and processes are much the same for constraintpriority problems as de�ned in section 6.2, except that property 6.1 is relaxed asfollows. Thus, each solution space in a process is only a subset of the initial solutionspace and not the previous solution space, as �nding solutions to a new constraintmay violate previous constraints without upsetting the constraint process.De�nition 6.12 (Solution step for constraint priority problems) Forconstraint priority problem P = (�;) a solution step is a mapping 	k�!,D(k � 1) 	k�! D(k)

Chapter 6 140 Constraint Satisfactionwhere 	k � 	 is a set of constraints and D(i) is the solution space of the set ofentities � at step i. For each step,D(k) � D(0):� For solution step properties, the comparator better is used to indicate correctsolutions. The case of consistent solution steps is presented here; sound and completesolution steps and solution processes are similar.De�nition 6.13 (Consistent solution step for set of constraints) Given asolution process for constraint priority problem P = (�;), with 	0 � 	,(D1 � � � � �Dn) 	0�!� D(j � 1)��! D(j)where � = f(C1; �1); : : : ; (Ck; �k)g, with comparator better, the solution step,D(j � 1) ��! D(j)is (globally) consistent if S0 6= ;) S \D(j) 6= ;:�6.3.2 Variable-driven satisfactionThe constraint satisfaction framework presented in section 6.2 can be described asconstraint-driven; as the solution progresses, a set of constraints is chosen to beprocessed to produce the next solution space. Thus, the choice of constraints drivesthe solution process. However, �nite domain algorithms such as FC typically workslightly di�erently. Finite domain techniques can be described as variable-driven asit is the choice of variable to be processed next that drives the solution process. It isrelatively easy to describe the variable-driven constraint satisfaction process. Onlythe variable-driven solution step is described here; extension to the other structuresof the constraint satisfaction process is trivial.

Chapter 6 141 Constraint SatisfactionDe�nition 6.14 (Solution step (variable-driven)) For constraint problemP = (�;), a (variable-driven) solution step is a mapping �k�!D(k � 1) �k�! D(k)where �k � � is a set of variables that are instantiated with subsets of their appro-priate domains. �In fact, variable-driven satisfaction is a subset of constraint-driven satisfaction asthe variable chosen for the variable-driven solution step is instantiated with a value.For example, if a variable x in �k is assigned the set fvg, then this is a constraint ofthe form x = v and can easily be described using a constraint-driven solution step.However, the constraints processed in variable-driven satisfaction are not normallyknown when the constraint problem is created and are added dynamically as theconstraint problem is solved. This means that variable-driven constraint satisfactioninvolves some degree of incremental satisfaction (see section 6.3.4).6.3.3 BacktrackingBacktracking is a popular method of searching through a solution space. Finitedomain constraint solvers use backtracking extensively. Backtracking itself is verysimple to describe, but its inclusion in the basic satisfaction framework complicatesdescriptions of proofs and for this reason it is included here. Backtracking involvesundoing a solution step and restoring the previous solution space. In some tech-niques, such as backjumping, it is necessary to jump back several solution steps.Consequently the de�nition of backtracking allows undoing several steps.De�nition 6.15 (Backtracking) For constraint problem P = (�;), with � =f(x1; D1); : : : ; (xn; Dn)g, assume there exists a sequence of solution steps(D1 � � � � �Dn) 	1�! D(1)	2�! D(2)...	r�! D(r)with 	i � 	; i = 1::r.

Chapter 6 142 Constraint Satisfaction

(d)(c)

(a) (b)

Figure 6.1: Solving the 4 queens problemThen the solution process backtracks by s steps by introducing the stepD(r) 	r;	r�1;::: ;	(r�s+1) ������������ D(r � s):The process can then proceed with a di�erent choice of 	r�s+1. �Example 6.8 (Finite domain backtracking) Consider the 4-queens problem,de�ned in example 4.5. This involves placing 4 queens on a 4 by 4 chessboard. Theinitial solution space, D(0), is that none of the 4 queens has been placed on thechessboard. A solution step could be placing the �rst queen in the �rst column (see�gure 6.1 (a)),D(0) Q1:=1���! D(1) = fQ1 = f1g; Q2 = D4; Q3 = D4; Q4 = D4g:The next solution step could then involve placing the second queen so that it doesnot attack the �rst queen, for example in the third column, (�gure 6.1 (b)),D(1) Q2:=3���! D(2) = fQ1 = f1g; Q2 = f3g; Q3 = D4; Q4 = D4g:However, it is now not possible to place the third queen without attacking anyother queen. The solution process has reached a dead end. Finite domain searchtechniques backtrack at this point to a previous state. Since there is another choice

Chapter 6 143 Constraint Satisfactionfor Q2, there are another two possible steps, (see �gure 6.1 (c)),D(2) Q2:=3 ���� D(1)Q2:=4���! D(3) = fQ1 = f1g; Q2 = f4g; Q3 = D4; Q4 = D4g:There is one possible choice for positioning Q3, (see �gure 6.1 (d)),D(3) Q3:=3���! D(4) = fQ1 = f1g; Q2 = f4g; Q3 = f3g; Q4 = D4g:However, there are no positions to place Q4 without violating the constraints. Sincethere are no further choices for Q3 or Q2 it is necessary to backtrack further,D(4) Q3:=3;Q2:=4 �������� D(1);and proceed with another choice of Q1. Thus the solution process so far isD(0) Q1:=1���! D(1) = fQ1 = f1g; Q2 = D4; Q3 = D4; Q4 = D4gD(1) Q2:=3���! D(2) = fQ1 = f1g; Q2 = f3g; Q3 = D4; Q4 = D4gD(2) Q2:=3 ���� D(1)Q2:=4���! D(3) = fQ1 = f1g; Q2 = f4g; Q3 = D4; Q4 = D4gQ3:=3���! D(4) = fQ1 = f1g; Q2 = f4g; Q3 = f3g; Q4 = D4gQ3:=3;Q2:=4 �������� D(1)� � �� Currently, the introduction of backtracking to a solution process means thattheorem 6.1 cannot be applied to the process as D(k) * D(k � 1) after applyinga backtracking solution step. However, since all that a backtracking solution stepdoes is reintroduce an old solution step, it is not hard to see how theorem 6.1 canbe generalised to cover backtracking.6.3.4 Incremental satisfactionMany constraint solvers use an incremental paradigm to improve e�ciency, suchas [27,34,62,94,112]. The incremental paradigm means that as new constraints areadded they are solved immediately, rather than waiting for the whole constraint

Chapter 6 144 Constraint Satisfactionproblem to be de�ned and then solved. The solution process framework presentedabove easily captures the concept of incremental addition of constraints as this isan integral part of the framework. As each constraint is added, the next solutionstep is to process the newly added constraint to �nd the next solution space. Thus,constraint C is added incrementally to constraint problem P = (�;),D(0) 	�! D(k)C�! D(k + 1);and constraint problem P 0 = (�;	 [C) is formed.Adding a new entity, E, is slightly more complex as this will a�ect the rest ofthe constraint problem and the solution spaces. The constraint problem is alteredso that the new entity is added to � to give �0 = � [E. Since constraints arealready de�ned as enhanced constraints with respect to � (section 4.7), the new setof constraints, 	0 is given by 	0 = fC �DEjC 2 	g :These changes become part of the solution process, so that when a new entity isadded to the constraint problem, a new solution space is calculated to take intoaccount the new entity.D(k � 1) E�! D(k) = D(k � 1)�DE:Example 6.9 (Incremental geometric constraint satisfaction) Considersolving problem G of example 4.8. In an incremental solver, such as ICBSM [27],the initial constraint problem would be an empty set and constraints and entitieswould be added to it. Thus, the initial problem P1 = (;; ;) and the initial solutionspace, D(0) = ;. If line segment LS1 is added to the problem, then P2 = (fLS1g; ;)and solution space D(1) = DLS1 = fLS1 = IR4g.

Chapter 6 145 Constraint SatisfactionA possible solution process then would be of the form:D(0) LS1��! D(1) = fLS1 = IR4gLS2��! D(2) = fLS1 = IR4; LS2 = IR4gLS1a=0����! D(3) = fLS1 = f(0; 0; IR; IR)g; LS2 = IR4gLS1b=LS2a������! D(4) = fLS1 = f(0; 0; x; y)g; LS2 = f(x; y; IR; IR)g;x; y 2 IRgLS3��! D(5) = fLS1 = f(0; 0; x; y)g; LS2 = f(x; y; IR; IR)g;LS3 = IR4; x; y 2 IRgLS2b=LS3a������! D(6) = fLS1 = f(0; 0; x; y)g; LS2 = f(x; y; z; w)g;LS3 = f(z; w; IR; IR)g; x; y; z; w 2 IRg� � ��6.4 ConclusionsThis chapter has presented a formal abstraction of the constraint satisfaction pro-cess. This abstraction is su�ciently rich to describe all of the constraint solversdescribed in chapter 2. The concept of solution spaces was introduced. Solutionspaces consist of the set of possible con�gurations of a constraint problem underconsideration at a particular time. Solution spaces are equivalent to the searchspaces used in �nite domain constraint satisfaction [103, 114] and the con�gurationspaces used in spatial planning [71, 121].Extensive study of the constraint solution algorithms of chapter 2 led to com-monalities of their approaches. All of the constraint algorithms studied graduallyre�ne an initial solution space, consisting of all the possible con�gurations in theconstraint problem, using solution steps, until a terminal solution space is reached.The terminal solution space then consists of a number of con�gurations that may ormay not be solutions. The sequence of solution steps transforming an initial solutionspace to a terminal solution space is a solution process.The quality of the terminal solution space is critical for a constraint solver. Itis not hard to identify constraint processes that will work e�ciently but do not�nd solutions to the constraint problem. In such cases, the terminal solution spaceconsists of con�gurations that are not solutions to the constraint problem. The most

Chapter 6 146 Constraint Satisfactionimportant properties of solution spaces are to know whether they contain a solution;whether they contain only solutions; and whether they contain all of the solutions.A consistent solution step ensures that the solution space contains a solution ifone exists. A sound solution step ensures that the solution space contains only solu-tions. A complete solution step ensures that the solution step contains all solutionsto the constraint problem.However, a constraint process consists of a number of solution steps. It was byno means certain that because one solution step has a property then the solutionprocess has that property. It was not even certain that if all solution steps in theprocess have a property then the solution process has that property. Consequentlythe properties of solution processes were examined.Theorem 6.1 can be used to identify properties of constraint processes givenproperties of solution steps. The key results of theorem 6.1 are that� Even if every solution step retains a local solution to the current set of con-straints, the terminal solution space may not have a solution to the wholeconstraint problem, even though many may exist.� If every solution step retains only solutions to the current set of constraints,then the terminal solution space will consist only of solutions to the wholeconstraint problem.� If every solution step retains all of the solutions to the current set of con-straints, then the terminal solution space will contain all of the solutions tothe whole constraint problem.Theorem 6.1 is a signi�cant and powerful tool in describing the quality of resultsof a constraint process. However, note that theorem 6.1 cannot be used to describeconstraint priority and backtracking solvers directly, as these solvers do not have tosatisfy all of the constraints they impose.The descriptive power of the framework is apparent as it can be used to de-scribe a number of powerful enhancements of the basic constraint de�nition andsatisfaction models. Using the framework presented in this chapter it is possible todescribe backtracking, constraint priority problems, incremental constraint solutionand variable-driven constraint solution. The framework also makes transparent thesimilarities and common elements between constraint solvers.With the abstraction built up over the past four chapters, it is now possible tostudy in detail the use of domain speci�c knowledge in constraint solvers and also

Chapter 6 147 Constraint Satisfactionthe use of hybrid constraint solvers. In particular, theorem 6.1 developed in thischapter allows concrete statements to be made about the nature of hybrid constraintsolvers that were not previously possible.

Chapter 7Hybrid Collaboration inConstraint SolversAs mentioned in chapter 1, one of the purposes of this thesis is to investigate theuse of a hybrid of domain speci�c constraint solvers to solve complex engineeringdesign constraint problems e�ciently on a computer.A hybrid constraint solver is a constraint solver that employs more than onemethod to solve a constraint problem. The strategy of a hybrid is usually to decom-pose a problem into a number of smaller subproblems and then apply the varioussolution methods to solve the subproblems. Using solutions to the subproblems,solutions to the original constraint problem can be found.Hybrid constraint solvers are a particular example of the divide-and-conquerstrategy frequently employed in Computer Science. There are many advantages tousing hybrids, including speeding up solution, increasing the number of constraintproblems that can be solved and making more exible constraint solvers.Non-hybrid constraint solvers include ICBSM [27], Gr�obner basis and Newton-Raphson solvers. Hybrid constraint solvers include DCM [86], Connectivity Analysis[67], Erep [14], MechEdit [15], INCES [62] and IGCS [112].DCM, Connectivity Analysis and Erep use very small, specialised solvers tohandle the subproblems created. Most of the work done in these algorithms goesinto the decomposition strategy that identi�es the subproblems. On the other hand,MechEdit, INCES and IGCS use fairly simple decomposition techniques to identifylarge subproblems that are then handled by complex constraint solvers.For example, DCM reduces a geometric constraint problem to a number of tri-angular subproblems consisting of lines and points �xed by three constraints. Verysimple and fast routines are used to �nd the solutions to each triangular subproblem.148

Chapter 7 149 Hybrid CollaborationMost of the e�ort in DCM goes into identifying the subproblems in the �rst place.The decomposition strategy used by INCES is to determine cyclic and acyclicsubproblems of the constraint problem. Acyclic subproblems are solved using alocal propagation constraint solver, whereas cyclic subproblems are solved using aspecialised simultaneous equation solver, typically Newton-Raphson.Although hybrids are extensively used in the literature, they are rarely identi�edas such. This chapter uses the framework built up over the previous four chaptersto investigate hybrids and study the key aspects of hybrid constraint solvers.Using the description of the constraint solution framework in chapter 3, hybridconstraint solvers work along the following lines:1. Decompose a constraint problem into a number of subproblems.2. Order the subproblems.3. Solve the subproblems in order and recombine solutions to the subproblemsinto solutions to the original problem.This chapter concentrates on the process of solving constraint problems using hybridconstraint solvers and then recombining solutions. Eric Monfroy has studied meansof combining constraint solvers and he has created the BALI framework [84] fordescribing solver collaborations.BALI has been adapted for use in this chapter as a means of formalising the wayin which a hybrid constraint solver solves subproblems and recombines solutionsto the subproblems. BALI is a particular means of describing this relation. It isprimarily useful because it makes explicit the types of collaboration available andthe way they interact.It is assumed for the purposes of this chapter that decomposition and orderingstrategies already exist. This chapter is primarily concerned with methods of solv-ing subproblems and recombining solutions. Decomposition strategies and orderingstrategies are covered in more detail in chapter 3.Section 7.1 discusses using domain speci�c knowledge in constraint solution anduses the particular example of geometric reasoning to show why domain speci�cknowledge helps to create e�cient constraint solvers.Section 7.2 discusses hybrid constraint solvers. Hybrid constraint solvers are thecombination of more than one constraint solver acting together. Hybrid solvers canpotentially be used to solve problems that cannot typically be handled e�cientlyby other solvers. There is very little on hybrid solvers in the research literature.

Chapter 7 150 Hybrid CollaborationMonfroy has developed a framework called BALI [84] which is discussed and adaptedto produce a description of hybrid constraint solvers that decompose constraintproblems.Section 7.3 presents an example demonstrating the power of a hybrid constraintsolver constructed from two domain speci�c solvers developed at Leeds. This simplestudy of an internal combustion engine demonstrates the feasibility of combiningdomain speci�c constraint solvers and gives some empirical evidence that the hybridsolver is, as hoped, very e�cient.Section 7.4 discusses the paradigms for collaboration introduced by Monfroy.These are serial, parallel and concurrent collaboration. The serial paradigm is de-scribed using the constraint satisfaction abstraction and the pros and cons of theparadigm are discussed in detail. Appendix E debates the parallel and concurrentcollaboration approaches.Section 7.5 introduces the solver collaboration language used by Monfroy inBALI. The collaboration language is extended so that decomposition strategies canbe used by the hybrid and a new operation, the conditional branch is introduced sothat di�erent solver expressions can be used depending on the result of a test.Section 7.6 presents an example demonstrating the asymptotic behaviour of thehybrid system developed in section 7.3. This involves using the serial collaborationparadigm to combine many instances of the two domain speci�c solvers together.When these failings are addressed and handled, empirical evidence obtained fromthe case studies indicate that the hybrid solver is very fast when compared to othersolvers.Section 7.7 draws conclusions from this chapter.7.1 Using domain speci�c knowledge inconstraint solversUsing knowledge that is implicit in a problem is a common way of e�ciently solvingthat problem. For example, suppose one wishes to �nd the word `toadstool' in adictionary. If one opens the dictionary at a page with the word `mushroom' in it,then one can use one's implicit knowledge of the alphabet and dictionaries to reasonthat `toadstool' is probably after `mushroom' in the dictionary. This is not usuallyactually stated but the implicit knowledge is used to direct the search.Many constraint solvers use domain speci�c knowledge to help aid solution. For

Chapter 7 151 Hybrid Collaborationexample, FC uses domain speci�c knowledge of the nature of �nite domains andthat a failed partial instantiation implies a failed full instantiation. ICBSM [27]and Degrees of Freedom Analysis [58] use the implicit knowledge that rigid bodiescan only translate and rotate in space. In this thesis, solvers that take advantageof implicit knowledge are called domain speci�c. Solvers that do not are called(domain) general .A domain general solver may use, for example, numerical solution. Generalsolvers are typically more expressive than domain speci�c solvers. Numerical solu-tion of linear and nonlinear equations, though subject to convergence and numericalconditioning restrictions, is nevertheless capable of �nding a solution to a muchwider variety of problems than, say, a solver that uses implicit geometric knowledgeon geometric constraint problems.However, there are four chief disadvantages to numerical solution:1. Convergence. Numerical solvers are not robust, in the sense that they canfail to converge to a solution when one exists. They also su�er from numericalconditioning problems [90] and the use of oating point arithmetic leads to nu-merical accuracy problems. These problems can be addressed at a considerablecost in computational e�ort.2. Multiple roots. Numerical solvers typically only �nd one solution at a time toa problem. Users frequently wish to look through all of the solutions in orderto identify the most desirable (Erep [13] is an excellent example of a solverthat allows multiple roots and solutions). Numerical solvers can be adjustedto �nd more than one root but it would be very di�cult to create an algorithmthat could guarantee to �nd all roots due to convergence di�culties (see [90],pp 240-242), unless the constraint problem consists of polynomials.3. E�ciency. Generally speaking, numerical solution is O(n2) complexity, wheren is the number of constraints, whilst domain speci�c solvers are faster, fre-quently O(n) complexity. For example, NAG's C05NBC function can be con-sidered typical for our purposes and is
(n2) [46]. The use of exact arithmeticto counter the inaccuracies resulting from oating point arithmetic will resultin an increase in the complexity of the numerical solver.4. Unintuitive. Numerical solvers may converge to a root but it may not be theexpected solution to the problem.

Chapter 7 152 Hybrid Collaboration
A BFigure 7.1: Two Blocks with an Against ConstraintThe third criterion is of great interest if e�cient general purpose solvers are tobe constructed. In particular, this thesis concentrates on the solution of engineeringconstraint problems that are to be solved quickly and the results presented in realtime. Because of this, domain speci�c solvers are very important. Domain generalsolvers are still important as a fall-back position.Example 7.1 (Geometric constraint solvers) Solvers that take advantage ofthe nature of rigid bodies 1 and Euclidean space, such as [13, 27, 86, 112] are do-main speci�c. Typically problems are described in terms of geometric entities andconstraints.For example, consider two blocks A and B with an against constraint so thatthe blocks remain in contact (�gure 7.1). Blocks A and B are rigid bodies and assuch have the following implicit knowledge associated with them:1. The size of A or B cannot be altered,2. A and B can translate in X; Y; Z directions,3. A and B can rotate about the X; Y; Z axes,4. A and B have no other allowable con�gurations.It is the use of this implicit knowledge that marks out a domain speci�c solver.Degrees of freedom analysis [59], ICBSM [27] and IGCS [112] make use of thisknowledge to convert a complex, nonlinear, continuous domain problem into a com-pact, discrete problem [59]. Erep [13] and D-Cubed [86], also take advantage of thisinformation, though in a di�erent way. �7.1.1 Using domain speci�c knowledge is fastNumerical solution to the problem in �gure 7.1 is possible, as the constraint is simpleto describe as an equation: the distance between A and B is 0 and they have thesame orientation. However, the implicit geometric knowledge is lost in making this1The restriction to rigid bodies is not always necessary (see Kramer's GCE for example [58]),but for the purposes of this example only rigid bodies are allowed, for simplicity.

Chapter 7 153 Hybrid Collaboration
A

A A A n-1 A

0

1 2 3 A nFigure 7.2: A Chain of Blocks with Against Constraintsstep. Domain speci�c solvers can use the implicit geometric knowledge and aretypically much faster and more robust, but are restricted to a smaller variety ofproblems than general solvers.Example 7.2 (Solution of blocks) Consider a long chain of blocks joined byagainst constraints (�gure 7.2).Commonly used numerical techniques would solve this problem in
(n2) time[46], where n is the number of constraints in the constraint problem. Kramer'saction analysis [59] uses local propagation to �nd the positions of the blocks. Actionanalysis is a domain speci�c solver as it uses the geometric knowledge of the possiblepositions and orientations of the blocks in order to position them. Action analysiscan �nd positions for the blocks in linear time. On top of this, adding a newconstraint in degrees of freedom analysis can be an O(1) operation, provided certainconditions hold. The incremental addition of block An+1 to the chain, for example,would involve only satisfying against(An; An+1) in O(1) time. �7.1.2 Using domain speci�c knowledge is not enoughDomain speci�c constraint solvers are very important as they are fast. However,they are not usually expressive in the sense that they are restricted to a relativelysmall class of problems with speci�c structures. For example action analysis cannotsolve the simple example below.Example 7.3 (Coincident rods) Consider two rods grounded at points G1 andG2 respectively (�gure 7.3). If coincident constraints are placed on the two oppositeend-points, A and B, then there are two possible con�gurations of the rods thatsatisfy that constraint. However, knowing that either rod can rotate about theirgrounded end-point is not enough to allow calculation of those two positions. Forexample, line 1 can rotate through 2� radians and not have A coincident with B.The problem must be solved simultaneously in order to �nd the two positions. Line1 is rotated a little bit and line 2 a little bit in order to solve the constraint.In fact, this example shows a problem with most constraint solvers. Fast algo-rithms can be developed for simple cases, such as action analysis, local propagation

Chapter 7 154 Hybrid Collaboration
A

1

G

2

G
2

B

P

P

1

1

2Figure 7.3: Two Rodsor triangular form. More complex problems must usually be solved simultaneouslyand this is much less e�cient and, in general, harder. �Kramer had to enhance action analysis with locus analysis in order to solveproblems such as in the above example. Both action analysis and locus analysis aredomain speci�c, but neither is e�ective on its own. Action analysis cannot solveproblems simultaneously, whilst locus analysis must deal with the loci of objectswhich may be complicated and time-consuming.7.2 Hybrid constraint solversA constraint solver that consists of two or more constituent solvers acting togetheris called a hybrid solver. This section studies the underlying structure of hybridsolvers. Using the framework of chapter 6, it is possible to describe hybrid solversin a simple and elegant manner, and to draw conclusions about properties of hybridsolvers.This section discusses hybrid solvers in terms of the framework and comparesthis approach with that of Monfroy. The example below introduces the concept ofhybrid constraint solvers.Example 7.4 (Geometric constraint problem) At the University of Leeds twoconstraint solvers have been developed independently. INCES [62] was developedby Lamounier et al and is capable of �nding a solution to a system of equations,though it is most e�cient at �nding solutions to a triangular system of equations.IGCS [112] was developed by Tsai et al and is capable of �nding all solutions to ageometric constraint problem, though it is best suited to problems without cycles.

Chapter 7 155 Hybrid Collaboration

LS3

LS1 LS2
LS2

LS2

LS1LS1

LS3

LS3

l

m

n

a

bFigure 7.4: Problem G00A hybrid of these two solvers would hopefully be able to solve any system ofequations and any geometric problem that can be solved by INCES and IGCS indi-vidually. However, the hybrid should also be capable of solving a constraint problemthat contains both variables and geometric entities, and both equations and geomet-ric constraints.Consider, for example, a modi�ed version of problem G of example 4.8, as de-picted in �gure 7.4,G00 = (f(LS1; IR4); (LS2; IR4); (LS3; IR4); (LS1a; IR2); (LS1b; IR2); (LS2a; IR2);(LS2b; IR2); (LS3a; IR2); (LS3b; IR2); (l; IR); (m; IR); (n; IR)g;fLS1a = (0; 0); LS1b = LS2a; LS2b = LS3a; LS3b = LS1a;d(LS1a; LS1b) = l; d(LS2a; LS2b) = m; d(LS3a; LS3b) = n;endpoint(LS1; LS1a); endpoint(LS1; LS1b);endpoint(LS2; LS2a); endpoint(LS2; LS2b);endpoint(LS3; LS3a); endpoint(LS3; LS3b)g);and the simple system of equations,E 00 = (f(l; IR); (m; IR); (n; IR)g; fl2 + n2 = m2; l +m = 8; 4m� 3n = 8g):In words, G00 consists of three line segments and six points in 2D space. The �rstconstraint �xes a point at the origin. The next three constraints make three pairsof points coincident. The next three constraints set the lengths of the three linesegments and the �nal six constraints associate points with the ends of the linesegments. E 00 uses a system of equations to �x the variables that describe the

Chapter 7 156 Hybrid Collaboration

(4,0)

(0,3)

LS1
LS2

LS3

Figure 7.5: A solution to constraint problem G of example 4.8lengths of the line segments in G00.IGCS can �nd an underconstrained solution space for G00, but this solution spaceis not particularly useful as it is simply the set of all triangles with one vertex atthe origin (see �gure 7.5 for one such solution). INCES can �nd all of the solutionsto E 00, but on their own, these are not particularly useful either.However, consider the combined problem,H 00 = E 00 [G00= (f(LS1; IR4); (LS2; IR4); (LS3; IR4); (LS1a; IR2); (LS1b; IR2); (LS2a; IR2);(LS2b; IR2); (LS3a; IR2); (LS3b; IR2); (l; IR); (m; IR); (n; IR)g;fLS1a = (0; 0); LS1b = LS2a; LS2b = LS3a; LS3b = LS1a;d(LS1a; LS1b) = l; d(LS2a; LS2b) = m; d(LS3a; LS3b) = n;endpoint(LS1; LS1a); endpoint(LS1; LS1b);endpoint(LS2; LS2a); endpoint(LS2; LS2b);endpoint(LS3; LS3a); endpoint(LS3; LS3b);l2 + n2 = m2; l +m = 8; 4m� 3n = 8g):IGCS cannot �nd solutions to H 00 as it cannot solve the set of equations which arefrom E 00. INCES can solve H 00, but only by converting the geometric constraints inG00 into equations, losing all domain-speci�c knowledge in the process. However, ifINCES is used to �nd all solutions of E 00, then the values of l; m; n found could be

Chapter 7 157 Hybrid Collaboration
8

(0,0)

LS2 = LS3

LS1 =
LS1 =
LS2 =
LS3

a

a

b

b

ab

Figure 7.6: Solutions of constraint problem G00 with l = 0; m = 8; n = 8used by IGCS to solve G00.In this case, INCES would �nd the following solutions to E 00:fl = f3g; m = f5g; n = f4gg or fl = f0g; m = f8g; n = f8gg:Using either of these solutions IGCS can solve G00 when l; m and n are instantiatedto the values in the solutions. Solving for the �rst solution gives the same solutionsas problem G. Using the second solution results in a degenerate case for G00, withsolutions as shown in �gure 7.6. For this problem, the hybrid has found all solutionsto the combined problem H 00 e�ciently, where the constituent solvers were eithernot expressive enough or would be much slower. �In this example, the combined problem H 00 was split into two subproblems G00and E 00 by manual inspection. In general, the decomposition of a constraint problemis a non-trivial task. However, decomposition of a problem to subproblems is one ofthe most important issues that a hybrid will face. This chapter does not discuss thedecomposition issue, but assumes that decomposition of the constraint problem hasalready taken place. Chapter 3 deals with decomposition techniques in more detail.In a similar vein, in general recombination of the solutions to subproblems is alsoa di�cult task. In the above example, there were only two solutions to E 00. Bothsolutions could be studied by using them as input to problem G00 and then solvingG00. In general, there may be an in�nite number of solutions to a problem or it may

Chapter 7 158 Hybrid Collaborationnot be possible to use solutions as input to another problem. The recombinationproblem depends on the hybrid collaboration used and this is discussed in moredetail in section 7.4.7.2.1 BALIMonfroy has studied the problem of hybrid solvers for continuous domain constraintproblems. This has resulted in an environment called BALI for describing solvercollaborations [84]. Monfroy de�nes solver collaboration as either combination orcooperation. Solver combination focuses on a solver for the union of constraintproblems, that is a solver combination of two solvers operates on mixtures of theconstraint problems the solvers individually operate on. Solver cooperation concen-trates on communications problems between solvers on a single domain but dealingwith di�erent sets of constraints.Monfroy de�nes constraint systems as a language for describing constraint prob-lems. A constraint system consists of a quadruple (�; D; V; `), where� is the set of symbols in the language,D is the domain of the union of all the domains of the symbols in �,V is the set of variables in the language,` is the set of constraints in the language, consisting of all possiblequanti�er freey , �rst order formulaey built over � and V .A solver in Monfroy's notation is a functionS : `n �! ` such that8c 2 `n; D j= S(c), D j= cand 8c 2 `n; 9n 2 N ; Sn+1(c) = Sn(c):The notation D j= S(c) is used to represent S(c) being a valid solution in D. Thus,a solver is a function which produces a valid solution, terminates and has a �xedpoint at Sn(c).The de�nition of a solver is interpreted thus:A solver S is a function that maps a conjunction of constraints to asingle constraint such that, for all conjunctions of constraints, if S(c) is a

Chapter 7 159 Hybrid Collaborationvalid solution to the conjunction of constraints, then so is c. Also, thereexists a number n 2 N such that, if the solver S is applied n+1 times to c,then the result is the same as if S were applied n times. Consequently,no re�nement is achieved by applying S more than n times and so Sterminates when applied n times and Sn(c) is a �xed point of S.A constraint C in Monfroy's de�nition is reduced to a \simpler" constraint bythe application of a constraint solver. However, Monfroy's constraints are the con-junction of a number of formulae. In the terms of this thesis, a single constraint ofMonfroy is equivalent to the set of constraints 	 in a constraint problem.Under de�nition 6.6, a constraint solver does not transform a set of constraintsto a simpler set but instead transforms a solution space to a simpler solution space.Since a conjunction of constraints is equivalent to a solution space, Monfroy's de�-nition of a component solver is equivalent to the followingDe�nition 7.1 (Component solvers) A component solver is a function SS : D(k � 1) �!� D(k);such that 8C 2 `n;D(k) � D(0), D(k � 1) � D(0):� The de�nition of a constraint process in chapter 6 does not enforce the termi-nation or �xed point conditions of Monfroy's constraint solvers explicitly. However,since the set 	 of constraints in the process is �nite and since each 	i is pairwisedisjoint, the number of steps in a solution process is �nite and the solver will alwaysterminate if each step takes a �nite amount of time.Further application of solution processes to the terminal solution space D(�)will not re�ne D(�) any further. Consequently, D(�) represents the �xed point ofthe solution process. The de�nitions of constraint solvers are therefore equivalent.Note however, that Monfroy does not discuss the structure of the solution space.The advantage of the solution framework developed in chapters 4, 5 and 6 is thatthe nature of the solution space can be investigated and conclusions drawn from it.Monfroy also forces the output of a constraint solver to be \smaller", in thefollowing sense (taken from [84]).

Chapter 7 160 Hybrid Collaborationbook BookCode Author Title Price01 Dante Inferno 2027 Joyce Ulysses 3021 Tolstoy War and Peace 2754 Greene The Third Man 15sale Salesman BookCode QuantityJones 21 80Smith 54 50Robinson 54 50Smith 21 100Table 7.1: Two database tables (from [5])book 1 sale BookCode Author Title Price Salesman Qty21 Tolstoy War and Peace 27 Jones 8054 Greene The Third Man 15 Smith 5054 Greene The Third Man 15 Robinson 5021 Tolstoy War and Peace 27 Smith 100Table 7.2: The result of joining the book and sales tables (from [5])De�nition 7.2 (Component solver ordering) Let S be a component solver onthe constraint system CS = (�; D; V; `). Then the relation �S is de�ned on CS asfollows: C1 �S C2 if 9n 2 N s.t. C1 = Sn(C2). �Given the de�nition of component solvers above in the terms of this thesis, it isobvious that the relation � used on solution spaces is a �S ordering.Monfroy also identi�es the need to enrich constraint problems so that solversdesigned for simpler problems can be applied to problems designed for hybrid solverswithout losing any solutions. This concept is signi�cant in terms of the frameworkoutlined in this thesis and so is adapted in the next section.7.2.2 Enhanced solution spacesIn relational algebra, it is sometimes necessary to form queries on objects that arespread over two tables. In order to satisfy this query, the two tables are `joined'together and the query acts on the merged table. For example, given the two tablesin table 7.1, the join of the two tables is table 7.2.

Chapter 7 161 Hybrid CollaborationSimilarly, given two constituent constraint solvers � and �, solving constraintproblems P1 = (�1;	1) and P2 = (�2;	2) respectively, the hybrid of � and �operates on P3 = P1 [P2 = (�1 [�2;	1 [2). It is useful to be able to talk aboutthe solution space of P3.If �1 \ �2 is empty then P1 and P2 are unrelated and can be solved separately.In this case, there is no di�culty in using a hybrid constraint solver to deal with P3.However, if �1 \ �2 is non-empty , then P1 and P2 share common entities. In thiscase the solution space of P3 is not simple.For example, suppose that P1 = (�1 = f(x; f0; 1g); (y; f1; 2g)g;	1); P2 = (�2 =f(y; f1; 2g); (f2; 3g)g;	2). Then the solution space of P1;D(P1) isf0; 1g � f1; 2gand the solution space of P2;D(P2) isf1; 2g � f2; 3g:Here, �1\�2 = f(y; f1; 2g)g. The solution space of P3 is therefore notD(P1)�D(P2)as might be expected. Instead it is f0; 1g � f1; 2g � f2; 3g.Given �1 and �2 the solution space of P3 is called the enhanced solution space of�1 with respect to �2, denoted in this thesis asD�1 j�1[�2 (0). The enhanced solutionspace is de�ned in appendix D. Enhanced solution spaces and embedded solutionspaces, which are also de�ned in appendix D, are useful as they allow discussionof the structure of solution spaces used in hybrid constraint solvers. Embeddedsolution spaces are denoted as D�1[�2j�1 (0). For simplicity, however, the precisede�nition is left to the appendix.7.3 A simple example hybrid constraint solverA simple hybrid solver based on two existing solvers at the University of Leeds wasconstructed in order to study the interaction and communication necessary for thesolvers to work in concert and also as an exemplar case study to show some of thebene�ts of a hybrid of domain speci�c solvers.The two solvers combined were INCES [62] and IGCS [112]. INCES is a domainspeci�c solver for linear, triangular equations between entities in the real domain.IGCS is a domain speci�c solver for simple geometric objects in two dimensions.In his thesis [64], Lamounier described the implementation of an internal com-

Chapter 7 162 Hybrid Collaborationbustion engine in INCES. The internal combustion engine contained some geometricconstraints describing the geometric structure of the engine and some algebraic con-straints describing the operation of the engine. However, the geometric part ofthe problem had to be converted into algebraic equations in order to be solved byINCES. Unfortunately, this meant that INCES did not take advantage of the domainspeci�c knowledge incorporated into the geometric problem. This made both theinteractive manipulation of the entities di�cult and solution of the combined prob-lem dependent on the speed of INCES at solving geometric constraints convertedinto quadratic equations. IGCS could have handled the geometric problem quicklyand intuitively.A simple solution to this problem presented itself. This was to construct a hybridof IGCS and INCES which allowed direct manipulation of the geometric problemthrough IGCS and communicated values of entities in both problems between thetwo solvers.In the following example, the notation (x; y; z) is used to describe the degreesof freedom available for a geometric entity. The x component refers to the numberof rotational degrees of freedom, y to the number of scalar (dimensional) degreesof freedom and z to the number of translational degrees of freedom. This notationis used so that the geometric solver IGCS can take advantage of this information.Thus a point crank 1 is free to move about the plane IR2 and has a domain of IR2.However, the point has only two translation degrees of freedom, and no rotational orscalar degrees of freedom. Consequently, the domain of the point can be described as(0,0,2) representing 0 rotational degrees of freedom, 0 scalar degrees of freedom and2 translational degrees of freedom. For simplicity, all of the geometric objects in thefollowing case study are points. For this case study, let Pgeom = (�geom;	geom) bethe geometric constraint problem in �gure 7.7. The set �geom describes the entitiesin the problem, where:�geom = f(crank 1; (0; 0; 2)); (crank 2; (0; 0; 2)); (connecting rod 1; (0; 0; 2));(connecting rod 2; (0; 0; 2)); (piston 1; (0; 0; 2)); (piston 2; (0; 0; 2));(frame 1; (0; 0; 2)); (frame 2; (0; 0; 2)); (a; IR); (r; IR)g:

Chapter 7 163 Hybrid CollaborationThe set 	geom describes the constraints in the problem, where:	geom = fcrank 1 = (0; 0);crank 2 = connecting rod 1;connecting rod 2 = piston 1;piston 2 = frame 1;distance(crank 1; crank 2) = a;distance(frame 1; frame 2) = 10distance(connecting rod 1; connecting rod 2) = 10;distance(piston 1; piston 2) = rg:
Crank

Connecting Rod

Piston

Frame
a

r

Figure 7.7: The Internal Combustion EngineThe piston and frame are assumed to be of constant shape and length for thiscase study and so can be represented by line segments.

Chapter 7 164 Hybrid Collaboration
P

alg

P
geom

INCES IGCS
solutions for lines

using allowable
motion

One solution
for a,rFigure 7.8: A Serial Hybrid of INCES and IGCSLet Palg = (�alg;	alg) be the associated algebraic constraint problem, where�alg = f(power; IR); (�; IR); (displacement; IR); (c ratio; IR);(top gap; IR); (a; IR); (�; IR); (r; IR); (n; IR)g;	alg = fpower = �� displacement � c ratio;c ratio = 2� + top gaptop gap ;displacement = 2��r2n;power = 10;top gap = 10;displacement = 10;n = 10;� = 0:056;� = 3:14159265g:In �alg, � is a constant used in the computation of the engine power; c ratiois the approximate ratio between the maximal and minimal pressures during thecompression part of the cycle; displacement is the volume of mixed air and fuelconsumed per engine cycle; a is the length of the rotary part of the crankshaft;top gap is the length of the minimal distance between the top of the cylinder andthe piston top during the cycle; n is the number of engine cylinders; and r is theradius of the engine's cylinders.Communication between the two solvers depends on the common entities, �geom\�alg = f(a; IR); (r; IR)g. Since Palg has three equations in three unknowns, it is well-constrained and there are a �nite number of solutions for a and r (in fact only one).Consequently, a hybrid was constructed that solved Palg using INCES �rst and thenused the values of a and r found to solve Pgeom using IGCS (see �gure 7.8).Note that good use is made of the domain speci�c knowledge of the two constraintproblems so that domain speci�c solvers are used to best e�ect. Note also that thefact that Palg was well-constrained was used to decide the order in which Palg and

Chapter 7 165 Hybrid CollaborationHybrid INCES NAG Gr�obner basis0.0027s 0.013s 0.11s 2.3sTable 7.3: Results for Solving ICE engine 50000 times on an SGI IndyPgeom were solved.In general determining whether a particular subproblem is well-constrained ornot is di�cult. In particular, determining the constrainedness of a subproblem willtypically involve decomposing the subproblem to such an extent that it is alreadysolved, defeating the purpose of determining the constrainedness. Latham and Mid-dleditch's Connectivity Analysis [67] determines the constrainedness of subproblemsby decomposing to residual sets. However, the residual sets are su�ciently small thatthey are simple to solve. Consequently, most of the work has gone into decomposingthe constraint problem to determine the constrainedness. Using constrainedness asa guide to determining in which order subproblems should be solved is thereforecounter-productive. This issue is dealt with in more detail in chapter 3.The hybrid was constructed and solution timed on a Silicon Graphics Indy ma-chine. The hybrid was compared with INCES, a numerical solver from NAG [46] anda Gr�obner basis package within Maple [18]. See table 7.3 for the results of runningthe experiments. Although the hybrid is in fact an order of magnitude faster thanthe other constraint solvers and a thousand times as fast as the Gr�obner basis, no�rm conclusion should be drawn from this table, as timing is highly dependent onalgorithm, compiler and system use at the time.However, the numerical algorithm used, NAG's C05NBC, is probably one of thefastest available and it is relevant that an optimised numerical algorithm (a domaingeneral constraint solver) takes a hundred times as long as the simple hybrid.These results correspond to what one would expect. Gr�obner basis algorithmsare very slow, with an exponential complexity. The NAG algorithm is
(n2). INCESuses the NAG algorithm on cyclic subproblems but a linear algorithm for acyclicsubproblems. Consequently, the worst case complexity for INCES is O(n2), but theaverage case complexity is less than this. Similarly, the hybrid has worst case com-plexity O(n2) but has average case complexity less than INCES. This correspondsto table 7.3.

Chapter 7 166 Hybrid Collaboration
(Φ , Ψ)

2 2
D(1)Solver 1 Solver 2

(Φ , Ψ)
D(0)

(Φ , Ψ)1 1 Solutions SolutionsFigure 7.9: Sequential Collaboration
D(0) NAG

Constraint
Problem

Solutions Solutions

Subproblem Subproblem

CyclicTriangular
INCES D(1)Figure 7.10: INCES as a sequential hybrid7.4 Paradigms of collaborationMonfroy [84] cites three paradigms of collaboration that can be used to constructhybrid solvers: sequential, parallel and concurrent. In fact, these paradigms follownaturally from the satisfaction framework presented in this thesis. In this section,the sequential paradigm is discussed in detail in terms of the constraint satisfac-tion framework. The advantages and disadvantages of the paradigm are discussed,particularly in terms of practical issues.The parallel and concurrent collaborative paradigms are presented in appendix E.7.4.1 Sequential hybridsThe most obvious collaboration paradigm is sequential. In this case, solvers operateon the solution space produced by the preceding solver. Since solution processes canbe described as solution steps (lemma 6.1), sequential collaboration is the solutionprocess formed by using constituent solvers as solution steps (see �gure 7.9).Theorem 6.1 applies directly to sequential hybrids. Consequently, even if allconstituent solvers in a sequential hybrid are locally consistent, then the hybrid isnot necessarily consistent. If all constituent solvers are complete (sound) then thehybrid is complete (sound).This is particularly signi�cant for most current sequential hybrids. For example,INCES [62] solves linear, triangular algebraic constraint problems. However, whenINCES comes across equations that must be solved simultaneously, it resorts tonumerical solution of the simultaneous equations. Thus, INCES is a sequentialhybrid of the form in �gure 7.10.However, numerical solution is not globally consistent. Convergence problemsmean that numerical solution is not robust and sometimes the solver will not �nda solution even if one exists. Since the numerical subsolver used by INCES is notglobally consistent, by theorem 6.1 the hybrid is not globally consistent. It is also

Chapter 7 167 Hybrid Collaborationsigni�cant that numerical solution may converge to a solution but that this may notbe the right solution for the rest of the problem.Example 7.5 (Sequential hybrid inconsistency) For example, consider the se-quential hybrid of �gure 7.10, INCES. Let P be the constraint problem P = (�;),where � and 	 are as de�ned below.� = f(a; IR); (b; IR); (c; IR); (d; IR); (e; IR)g;	 = fa2 + b2 = c; a4 + b4 = 32; c = d� 10; d = 18; b+ e = 2; e = 4g:INCES will solve P by �rst creating an Equation Graph describing the problem.Study of the Equation Graph results in INCES solving the triangular problem P1 =(fc; IR); (d; IR)g; fc = d � 10; d = 18g) �rst to give solution d = f18g; c = f8g.INCES cannot solve the problem P2 = (fa; IR); (b; IR)g; fa2 + b2 = 8; a4 + b4 = 32g)using local propagation and so resorts to numerical solution. There are actually foursolutions to P1, fa = f2g; b = f2gg; fa = f�2g; b = f2gg;fa = f2g; b = f�2gg; fa = f�2g; b = f�2gg:However, numerical solution will only �nd one. The solution found depends onthe precise numerical technique used and the initial starting point. Let us assumethat the solution found is fa = f2g; b = f2gg. The remainder of P to be solved isnow triangular and is equivalent to P3 = (f(e; IR)g; f2 + e = 2; e = 4g), which isinconsistent.However, if the numerical solver had found solution fa = f2g; b = f�2gg orsolution fa = f�2g; b = f�2gg, then a consistent solution to P could have beenfound. This problem arises because the numerical solver is not globally consistent,nor is it locally complete. �Similarly, IGCS [112] is not consistent. IGCS consists of a number of di�erentalgorithms for dealing with certain situations. For example, IGCS uses allowablemotion to �nd solutions to simple problems by local propagation and locus analysisto solve simultaneous problems. Thus IGCS is a sequential hybrid of the form in�gure 7.11.However, the locus analysis used by IGCS is not locally complete. Considerexample 7.3 (repeated here as �gure 7.12 for convenience).

Chapter 7 168 Hybrid Collaboration
D(0)

Constraint
Problem

Solutions Solutions

Subproblem Subproblem

Cyclic
D(1)

Allowable
Motion

Locus

Analysis

AcyclicFigure 7.11: IGCS as a sequential hybrid
A

1

G

2

G
2

B

P

P

1

1

2Figure 7.12: Two RodsThere are two solutions to this problem. However, the locus analysis in IGCSwill only consider the solution which involves moving the rods the least, to P1. Locusanalysis is locally consistent and IGCS is not globally consistent. For example, ifthe only solution to the whole constraint problem involves the rods being coincidentat P2 then IGCS will not �nd it.Previously INCES and IGCS were not known to be inconsistent.7.4.1.1 Limitations of serial hybridsSerial solution is di�cult primarily because the output from one solver may notbe valid input to the next solver. For example, if a �nite domain solver producessolutions such that a line can take only lengths f1; 3; 5; 7g, then there are veryfew constraint solvers that allow this kind of line. It is, of course, possible to runthe second solver four times, for each of the solutions, but this approach is clearlyinfeasible if there are a large number of solutions. Such an approach would alsoeliminate many of the advantages of using a serial hybrid.In fact there is only a limited dependency between the two solvers. Any entityin the �rst problem not in the second problem does not need to be communicatedto the second solver. Correspondingly, the second solver only needs to use as inputsolutions for the intersection of entities between the two problems. Even so, thismay be many possible con�gurations.

Chapter 7 169 Hybrid CollaborationSerial collaboration will work best when only one solution is found to a subprob-lem P1 = (�1;	1) and passed on to the next subproblem P2 = (�2;	2). In thiscase, serial collaboration is very simple. All entities in �1 \�2 are assigned a valuefrom the solution to P1. Thus the size of P2 has been reduced by the number ofentities in �1 \ �2 which are now �xed. Hopefully some of the constraints in 	2will have been made trivial or easier by this reduction. Unfortunately, as is the casewith INCES and IGCS, this serial collaboration is not globally consistent.If a subproblem has only one solution, as is usually the case in linear program-ming, then serial collaboration is an obvious choice, as it will be globally consistent.The more solutions a subproblem can be expected to have, the less likely it is asolution will be chosen that is globally consistent. Therefore serial collaborationbecomes less attractive.In fact, many constraint solvers such as DCM [86], Erep [14] and MechEdit [15]use rules or heuristics to determine the likely intent of the user in constructing theconstraint problem.For example, Erep insists that when a user sets a distance between a point and aline, the point will have to be on the same side of the oriented line before and afterconstraint solution. Thus, a single solution is selected from two possible solutions.If such rules are applied throughout the constraint subproblem, a single solution isselected from amongst an exponential number. The key point here is that this singlesolution is the one most likely to satisfy the user's intent and so is a good candidateto be a globally consistent solution to the combined constraint problem.If a constraint subproblem can be expected to have an in�nite number of so-lutions then the use of serial collaboration becomes more problematic. Choosingjust one solution from an in�nite number is unlikely to provide a globally consistentsolution. Consequently all of the solutions should be passed to the next solver inthe collaboration. Whether this is possible or not depends on the nature of thesolutions and the allowable domains of entities in the second subproblem. If thesolutions provided by the �rst solver are continuous and simple then this transfermay be quite straightforward. For example, if �1 \ �2 = f(x; IR); (y; IR)g and thesolutions to P1 are f(x = f1g; y = IR)g, then P2 can be adjusted accordingly.However, if the solutions provided by the �rst solver are complex then it maynot be possible to transfer the solutions. For example, if �1 \�2 = f(x; IR); (y; IR)gand the solutions to P1 are f(x = fag; y = fbg)ja3 + b5 = 16g, then it is not simpleto alter P2 to take into account this information, other than adding it as anotherconstraint, at which point a parallel collaboration becomes more appropriate.

Chapter 7 170 Hybrid CollaborationIn conclusion, serial collaboration should be considered when:1. Global consistency is not important.2. Rules or heuristics can be used to bias solutions towards globally consistentsolutions.3. Only one or a small �nite number of solutions are expected from each sub-problem.4. An in�nite number of solutions are expected but these will be continuous andsimple.If serial collaboration is not appropriate then a parallel collaboration or concur-rent collaboration may be helpful. In some cases, however, no collaboration may beappropriate and the problem must be solved as a whole using a general solver suchas Newton-Raphson or Gr�obner bases.7.5 Solver collaboration languageMonfroy uses a solver collaboration language to build complex solvers using the col-laborative primitives introduced in the previous section and appendix E. However,Monfroy's collaboration language is predicated only by the solvers available and notby the constraint problem being solved. In order to take advantage of domain spe-ci�c knowledge implicit in a constraint problem, the problem must be solved usinga constraint solver capable of handling that domain speci�c knowledge. Since do-main speci�c solvers can also sometimes fail to �nd solutions, it is also important toprovide backup solvers should a �rst attempt fail. Domain speci�c solvers can failto �nd solutions when they are asked to solve problems that are not within theirspeciality. For example, local propagation algorithms cannot solve cyclic problemsand so ICBSM [27] cannot �nd solutions to the 4-bar linkage problem (�gure 7.5).Unfortunately, the only conditional statement in Monfroy's collaboration lan-guage is the conditional guard which calls another constraint solver when a previousexpression of constraint solvers terminates with a particular solver. Monfroy givesno example of the conditional guard in use and its purpose is di�cult to fathom.Decomposition strategies as discussed in chapter 3 assign a set of subsolversto a subproblem. The hybrid constraint solver then applies the subsolvers to thesubproblems using the sequential, parallel or concurrent collaboration.

Chapter 7 171 Hybrid Collaboration
A

B

C

D

coincident(A,B)
coincident(B,C)
coincident(C,D)
coincident(D,A)
fixed(D)

Figure 7.13: The 4 bar linkage problemId 2 Identi�ers,S � Solvers, 2 Conditional selection,P 2 Constraint problems,D 2 Solution spaces,Col ::= Id = E,E ::= �jIdjBjE1;E2jEP j repeat (E)j (EC)j if T then E1 else E2,T ::= E = D,B ::= (P; S)j(P; S) k B;EP ::= EjE k EP;EC ::= EjE?EC.Table 7.4: Solver collaboration language (adapted from BALI [84])Monfroy's solver collaboration language is an important means of designing andbuilding hybrid constraint solvers that use the hybrid collaboration paradigms. How-ever, Monfroy's language only uses solvers - it does not allow for subproblems to beassigned to speci�c sub-solvers.Monfroy's collaboration language has been extended so that subsolvers operateon speci�c subproblems rather than the whole problem. The extended solver col-laboration language used in the remainder of this thesis is explicated in table 7.4.An instance of this language is a solver collaboration. The addition of subsolversto act on subproblems is witnessed by the inclusion of constraint problems P in ta-ble 7.4 and the de�nition of basic solvers B which is enhanced to include constraintproblem-solver pairs.The language given in table 7.4 also includes a conditional branch statement thatcan be used to drive backup constraint solvers. The branch operator is described inmore detail in appendix F. For ease of comprehension, Monfroy's conditional guardhas been dropped from the language in table 7.4.A more detailed description of the collaboration language is given in appendix F.

Chapter 7 172 Hybrid CollaborationThe extended language in table 7.4 will be used to describe example constraintsolvers in the remainder of this thesis.7.6 An example of many solvers in serialThis section describes an experiment carried out to study the asymptotic behaviourof various constraint satisfaction algorithms on a simple case study. The algorithmsstudied were INCES [62], a numerical algorithm [46] and a sequential hybrid. Thepurpose of this experiment was to give empirical as well as theoretical evidencethat the hybrid algorithm was sound, complete and more e�cient than the othertwo algorithms as well as to investigate sequential collaboration. It was anticipatedthat the hybrid would be approximately linear in complexity, whilst the other twoalgorithms would be quadratic. This would help to underline the advantages ofusing hybrid algorithms.This section presents the case study used, discusses the algorithms used to solvethe case study and gives results. Appendix G presents a more detailed examinationof the case study.7.6.1 Case studyThe case study chosen was an extension of Lamounier's internal combustion enginecase study (see [64] and section 7.3). That problem studied the integration of somealgebraic equations with the geometric constraints describing the construction ofthe piston. The two problems were linked so that the size of the piston and thelength of the crankshaft were variables both in the functional problem and also inthe geometric problem. However, this is a �xed size of problem. In order to studythe asymptotic behaviour of the algorithms, n piston problems were joined together,as in �gure 7.6.1.In this case study, the n pistons are linked by coincident constraints at eachend of the piston. Thus the problems are all connected and the complexity of theproblem does increase as the size of n increases. The functional problems are notlinked and are e�ectively lots of small, �xed problems solved independently.7.6.2 The solvers usedThree solvers were examined. The NAG C05NBC function [46] was used as a numer-ical solver. It was passed the whole set of constraints and used numerical techniques

Chapter 7 173 Hybrid Collaboration
crankshaft

piston

crank

piston

crank

piston

Functional Problem

Functional Problem

Functional Problem

Figure 7.14: Case Study of n Piston Problems Linked Together
D(0) IGCS

Constraint Solutions Solutions

Subproblem
INCES D(1)

Geometric

Subproblem

Functional

ProblemFigure 7.15: Serial Hybrid used to Solve n Piston Problems Linked Togetherto converge towards a solution. The speed of convergence depended heavily on theinitial guess, but the best case complexity of the NAG function is
(n2), where n isthe number of constraints.Lamounier's INCES solver [62] is also capable of solving the problem as a whole.However, INCES deals only with equations and not geometric constraints. Geo-metric constraints can be handled if they are reduced to the constituent equations.INCES was expected to be quadratic, as it dealt with the problem as a whole andresorted to numerical solvers if loops appeared.These constraint solvers were compared with a hybrid formed from combiningthe functional solver INCES and the geometric solver IGCS, much as in case study1 (section 7.3). Each functional problem was solved using INCES and the resultswere passed to IGCS by varying the size of the lines in IGCS (see �gure 7.15). It washoped that the hybrid would be able to take best advantage of the domain-speci�cknowledge incorporated in the INCES and IGCS solvers and would be linear.The decomposition strategy, De, used in this case is to decompose problemP = (�;) into a set f(Si; Pi)g, where solver Si is IGCS if subproblem Pi is geometricand Si is INCES if subproblem Pi is algebraic. Decomposition is performed by �rstidentifying constraints as geometric or algebraic. These form two sets of constraints	01 and 	02. Constructing 	01 and 	02 takes time O(n), where n is the number ofconstraints.

Chapter 7 174 Hybrid Collaboration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Hybrid solution with dependency hierarchy list
Hybrid solution without dependency hierarchy list

Solution of combined problem using INCES
NAG c05nbc with consistently close guess

Figure 7.16: A comparison of the C05NBC function and INCES algorithm with thehybrid solverSet 	0i is then decomposed further into sets 	00j of connected components, where	1 2 	0i and 	2 2 	0i are connected if there is a path between 	1 and 	2 inthe constraint/entity graph of constraint problem (�;	 n 	0j); j 6= i. Finding theconnected components can be done in a simple graph traversal algorithm that takestime O(m), where m is the number of edges in the constraint/entity graph. Sincethe imposed sets of constraints are usually quite small,m will typically be a multipleof the number of constraints in P . Thus decomposition of P takes time O(n).With this decomposition strategy, the hybrid can be described in the solvercollaboration language of section 7.5 as((S1; P1); (S2; P2); (S3; P3); : : : ; (Sn; Pn)) :7.6.3 ResultsThe case study was run for problem sizes between 1 and 200. This gave problemswith between 19 and 3800 variables. All case studies were run on a Silicon GraphicsIndy with an R4600 100MHz IP22 processor and 32 Mbytes of memory. The resultsof the case study are presented in �gure 7.16. In the graph, the x-axis is the numberof variables in the problem and the y-axis is the amount of time taken to solve theproblem in seconds.From the graph, it is apparent that the hybrid constraint solver is very fast

Chapter 7 175 Hybrid Collaborationindeed. It is linear, whereas the other solvers compared were quadratic at best. It isthree or four orders of magnitude faster than the NAG function. Even for problemsof 100 or so variables, the hybrid is much faster.7.7 ConclusionsHybrid constraint solvers are an important means of solving constraint problems.Many current constraint solvers use hybrid techniques to solve constraint problems.Constraint solvers such as DCM [86], Erep [14] and Connectivity Analysis [67] de-compose a constraint problem into a large number of very small subproblems that aresolved using small, specialised domain speci�c solvers. Solvers such as MechEdit [15],INCES [62] and IGCS [112] decompose a problem to a small number of large sub-problems that are solved using more complex solvers.In general, constraint solvers work by decomposing a constraint problem intoa number of subproblems; ordering the subproblems; solving the subproblems andrecombining the solutions of the subproblems into solutions to the original problem.This chapter has investigated the last stage of this process - solving and recom-bining. In particular, the chapter has analysed the use of domain speci�c knowledgeand hybrid constraint solvers in solving complex constraint problems. Domain spe-ci�c knowledge is added knowledge that is implicit in a problem. Many constraintsolvers take advantage of domain speci�c knowledge to guide the satisfaction processtowards solutions. For example, Degrees of Freedom Analysis [27, 58] takes advan-tage of the nature of rigid bodies in Euclidean space and the fact that such bodies canonly rotate and translate in a very limited number of ways. Ruler-and-compass con-struction [14,86] takes advantage of the fact that angle and distance constraints canbe resolved using only simple construction steps. Finite domain solution techniquestake advantage of the �nite nature of the solution space to exhaustively explore it.Domain speci�c knowledge allows the construction of fast, e�cient solvers, suchas those described above. However, domain speci�c knowledge is very limited in theproblems that it can solve. Precisely because domain speci�c solvers take advantageof the structure of a problem domain, problems outside that domain cannot besolved easily.Hybrid constraint solvers use two or more constraint solvers in collaboration tosolve problems that the individual solvers could not solve on their own. The mostprevalent form of hybrid solver is one that uses domain speci�c knowledge to solveas much of a constraint problem as possible and then uses a general solver, such as a

Chapter 7 176 Hybrid Collaborationnumerical solver, to solve the remainder of the problem. Solvers such as COSAC [85],INCES [62] and MechEdit [15] adopt this approach. The advantage of this approachis that the domain speci�c solver helps to make the hybrid solver faster than thegeneral solver would have been on its own.Monfroy's BALI environment [84] is an abstract framework for describing col-laborations of multiple constraint solvers. The BALI framework provides a powerfulmeans of describing complex hybrid constraint solvers. BALI tries to solve the en-tire problem using a single constraint solver. When it can proceed no further, itswitches to another solver according to the semantics of the hybrid. Thus, BALIdoes not take into account the structure of the constraint problem and does not useany domain speci�c knowledge implicit in the constraint problem.Consequently, this chapter has used the de�nition, representation and satisfac-tion framework developed over the previous three chapters to describe a more sat-isfactory collaborative framework for constraint solvers. The advantages of thisframework are that it has all the descriptive power of BALI, but allows the con-straint problem to be decomposed using a decomposition strategy and then solvedusing a hybrid.In order to discuss the hybrid framework developed, the notions of enhancedand embedded solution spaces were introduced. Enhanced solution spaces allowthe discussion of constraint processes in relation to a wider problem. Embeddedsolution spaces allow the discussion of constraint processes in relation to smallersubproblems. Both de�nitions are evident in BALI and have been adapted to theframework developed in this thesis.The sequential, parallel and concurrent collaborative paradigms identi�ed byMonfroy were then described using the framework of this thesis. Using the threecollaborative paradigms it is possible to construct complex and elegant hybrid con-straint solvers. Several case studies of sequential collaboration were presented in thechapter and appendix E contains an example of parallel collaboration.It is then possible to use theorems 6.1 and E.1 to investigate the properties ofhybrid constraint solvers. Theorem 6.1 can be used to study sequential collaborationand is used to identify problems with INCES [62] and IGCS [112]. INCES turnsout to be not consistent, as the numerical subsolver used to handle cyclic sets ofconstraints only �nds one solution that may not be the solution necessary for asolution to the whole constraint problem. Similarly, IGCS is not consistent, as thelocus analysis of IGCS only takes into account one possible solution, when theremay be many.

Chapter 7 177 Hybrid CollaborationSerial collaboration is simple to implement and understand. It is also powerful asit can use knowledge from subproblems solved early to simplify subproblems solvedlater. However, serial collaboration is dependent on passing very few solutions fromone subproblem to the next and this means that it is much more likely that anyserial hybrid will su�er from global inconsistency.Parallel and concurrent collaborations are discussed in appendix E.Monfroy uses a solver collaboration language to describe the collaboration ofsolvers using the various paradigms of collaboration. However, Monfroy's languagedoes not allow solvers to work on subproblems, nor does it contain an operator forchoosing new solver expressions depending on the result of an expression. Conse-quently, BALI has been extended to allow solver expressions to act on subproblemsand a conditional branch statement has been added to increase the power of thelanguage.The main contributions of this chapter are: a deeper understanding of the na-ture of hybrid collaborations; identi�cation of the importance of domain speci�cknowledge; and the extension of BALI to conditional solution and subproblems.The mathematical framework built up in chapters 4, 5 and 6 provide insight intothe solver collaborations suggested by Monfroy. In particular, theorems 6.1 and E.1identify the importance of global consistency in serial and parallel collaboration. Theinability to guarantee global consistency for serial collaboration is a signi�cant pointas it means that most current constraint solvers that use hybrid techniques, suchas INCES, IGCS, Erep and DCM are not globally consistent. Similarly, parallelhybrids are typically not globally consistent. The choice of when to use serial,parallel, concurrent or no collaboration is dependent on the type and number ofsolutions expected.Domain speci�c knowledge is very important in constraint solution as it is intu-itive, fast and robust within the class of problems it can handle. Most constraintsolvers use domain speci�c knowledge as much as possible. In particular, solversthat decompose to small subproblems, such as Connectivity Analysis, DCM andErep, advocate the use of domain speci�c solvers to handle the subproblems.The addition of subproblems to Monfroy's BALI allows the description of thehybrid collaborations presented in this chapter to be formalised and made robust.This means that any hybrids constructed from the techniques in this chapter shouldbe well-de�ned. The conditional branch statement allows for complex hybrids to bebuilt that involve backup solvers when things go wrong.Chapter 3 asked a number of questions about the process of solving constraint

Chapter 7 178 Hybrid Collaborationproblems by decomposition. Some of these questions can now be answered.In fact, it is possible to lose solutions by decomposing and recombining. Theo-rems 6.1 and E.1 both conclude that solving subproblems individually will usuallylead to a hybrid constraint solver that is not consistent and may lose solutions ormay fail to �nd solutions when many exist. However, theorems 6.1 and E.1 also sug-gest that constraint solvers that retain all solutions (i.e. are locally complete) can besafely linked together using hybrid collaborations. However, few current constraintsolvers are locally complete. Gr�obner basis solvers are the most appropriate as theyare both sound and complete. However, they are too slow for interactive use.The question as to whether it is more e�cient to decompose and recombine orto solve as a whole is more di�cult to answer. To solve a constraint problem as awhole requires a general solver, such as Gr�obner bases or Newton-Raphson. Sincenumerical solvers such as NAG's C05NBC function are
(n2) complexity, where nis the number of constraints, decomposing and recombining must be at most O(n2)in order to compete.In fact, nearly all current constraint solvers, such as DCM, Erep, IGCS, INCESand MechEdit are O(n2) complexity and average-case complexity �(n). Incrementalconstraint solvers such as IGCS, INCES and SkyBlue have worst case complexityO(n) but average case complexity O(1) to add a new constraint. Empirical evidencetherefore suggests that decomposing and recombining is more e�cient than solvingas a whole.The use of domain speci�c knowledge has been identi�ed in this chapter as thekey element in making the solution of subproblems fast. The combination of domainspeci�c solvers using a well-de�ned hybrid collaboration leads to hybrid solvers thatare faster than solving as a whole.The fourth questions that was asked was whether it was possible to have afast decomposition strategy and fast solution of subproblems or must one alwaysdominate. Chapter 8 addresses this question by building a new constraint solverthat uses coarse-grain decomposition to identify subproblems and then solves thesubproblems using complex constraint solvers.

Chapter 8New DirectionsWith the exception of INCES, the solvers presented in the examples in this thesishave mostly concentrated on complex decomposition strategies. The subsolvers theyhave used have been small and simple. For example, the constraint subsolvers usedin DCM are the special case solvers for dealing with each set of three quadraticequations in three unknowns. The constraint subsolvers used in Connectivity Anal-ysis �nd solutions to each residual set. Although Middleditch and Latham do notexplore the issue in much detail, it seems likely that residual sets will be fairly smalland amenable to simple solvers.One of the questions asked in chapter 3 was whether it was better to have complexdecomposition and simple solution or simple decomposition and complex solution.Most existing constraint solvers adopt the former approach and put most of theire�ort into the decomposition strategy. However, this thesis is primarily concernedwith improving the performance of existing solvers, such as IGCS and ICBSM.Of particular interest, is the possibility of improving the performance of IGCSso that it can handle loops and well-constrained problems better. Study of exist-ing constraint solvers, such as Erep, suggest that the IGCS algorithms, such aslocal propagation and locus analysis are not as well-suited for solving loops andwell-constrained problems as Erep is. Chapter 7 suggests that the domain speci�cknowledge used by IGCS and Erep limit their use to their own particular specialities.However, chapter 7 also suggests that a hybrid of IGCS and Erep could potentiallyhandle constraint problems that are a mix of problems that IGCS and Erep canindividually solve.In general, it is di�cult for a decomposition strategy to identify domain speci�csubproblems as the strategy will need to employ domain speci�c knowledge to �ndthe subproblems. Using such domain speci�c knowledge will usually necessitate179

Chapter 8 180 New Directionsthe same complex decomposition that the domain speci�c solvers will themselvesundertake and this will duplicate the e�ort involved. However, if knowledge aboutthe combined problem can be exploited, it may be possible to perform a simpledecomposition to identify the domain speci�c subproblems.At this point, it is worth recalling that INCES adopts such an approach. Thedecomposition strategy used in INCES is very simple: a constraint problem P issplit into subproblems whose constraint graph is a tree and subproblems that formstrongly connected components. Tree subproblems are solved using local propaga-tion and strongly connected subproblems are solved using Newton-Raphson. Notethat most of the e�ort in �nding solutions to P is taken up by the constraint solvers,particularly the Newton-Raphson solver.This chapter explores the possibility of constructing a new hybrid constraintsolver composed of two existing constraint solvers, Erep [14] and IGCS [112]. Thehybrid will use coarse-grain decomposition to identify the domain speci�c subprob-lems suitable for Erep and IGCS. The natures of Erep and IGCS have been discussedextensively elsewhere in this thesis (see sections 2.3.3.2 and 3.1.3 for example) and soare not discussed in detail here. This section notes the reasons and processes behindthe design of such a solver in order to characterise the important steps in designinga new hybrid solver. Note that the proposed solver has not been implemented.The proposed solver will be a hybrid of Erep and IGCS. The solver must de�ne:1. a decomposition strategy,2. an ordering strategy and3. a solution strategy.8.1 Decomposition strategyThe decomposition strategy for the Erep/IGCS solver is the key to its success. Thestrategy must be simple enough that it is fast to implement and yet su�ciently usefulthat it can identify subproblems suitable to be solved by either Erep or IGCS. Inorder to identify subproblems that are best solved by either Erep or IGCS, it is �rstnecessary to identify the strengths of each solver, in particular the domain speci�cknowledge used by each solver.Erep uses a ruler-and-compass approach to solve constraint problems consistingof distance and angle constraints between points and lines. Typically ruler-and-

Chapter 8 181 New DirectionsErep IGCSnon-zero point-point distance point-point coincidence (0 point-point distance)point-line distance point-line coincidence (0 point-line distance)line-line angle line-line anglecircle-circle tangentcircle-line tangentTable 8.1: Constraints that can be handled by Erep and IGCScompass constructs manifest themselves as clusters (see [14] and section 2.3.3.2) ina constraint graph.IGCS uses rigid body allowable motion to solve constraint problems consist-ing of coincidence, tangent and angle constraints between points, circles and lines.Typically, such problems manifest themselves as trees or loops in constraint graphs.In particular, it is possible to describe the constraints that each solver can handleexplicitly. It is possible to decompose circle-circle tangent and circle-line tangentconstraints to distance constraints that Erep can handle. However, doing so losesdomain speci�c knowledge that IGCS exploits. Consequently, tangent constraintswill remain as high-level constructs. The constraints each solver can handle aredescribed in table 8.1.Note that these constraints can be divided into three groups, �; � and . Group� consists of non-zero point-point distance and non-zero point-line distance con-straints. Group � consists of point-point coincidence, circle-circle tangent and circle-line tangent constraints. Group consists of point-line coincidence and line-line an-gle constraints. Constraints in group � can only be solved using Erep. Constraintsin group � can only be solved by IGCS. Constraints in group can be solved usingeither Erep or IGCS. In this way the strengths of Erep and IGCS are identi�ed andcorrespondingly the subproblems that can best be handled by Erep or IGCS.Each constraint in a constraint problem can then be associated with a groupand therefore with the constraint solver(s) that can handle it. For example, �g-ure 8.2 shows the Constraint/Entity graph for the constraint problem Q in �gure 8.1(from [37]). Each constraint has a group identi�er associated with it to show whichconstraint solver can handle it. Note that all of the constraints in �gure 8.2 can besolved by Erep.The constraint problem R in �gure 8.3 has the Constraint/Entity graph in �g-ure 8.4. This problem consists of a number of constraints that can be solved in Erepand a number that can only be solved in IGCS.The decomposition strategy should place constraints of type � in subproblems

Chapter 8 182 New Directions
Pt4

Pt2

Sg5
Sg7

90

70 70Pt10

Pt1
Pt8

Sg3 Sg9

90 90

200200

Pt6

o

o
o

Figure 8.1: Constraint problem Q using distance and angle constraints
Pt4

p-l0

Sg7

Pt6

p-l 0

p-l 0

Sg9

p-l 0

Pt8

p-p90
Pt10

p-p90

Pt1

p-l 0

Sg3

p-l 0

Pt2

p-l 0

Sg5

p-l 0

l-l90

l-l70 l-l70

p-p200 p-p200

p-l90 p-l90

a a

aa

aa

g g

g

g

g

g

g
g

Figure 8.2: Constraint/Entity graph for constraint problem Q

Chapter 8 183 New Directions
P1

P2
P3

P4

LS1

LS2

200

200

C2
C1

C3

P1 coincident LS1
P2 coincident LS1
P3 coincident LS2
P4 coincident LS2
P2 coincident P3
C1 tangent LS1
C1 tangent LS2
C2 tangent LS1
C2 tangent C1
C3 tangent C2
C3 tangent LS2
C3 tangent C1
d(P1, P2) = 200
d(P3, P4) = 200Figure 8.3: Constraint problem R with three tangent circles

tangent
tangenttangenttangent

tangent

tangent

tangent

tangent

p-p200
p-l0

p-l0 p-l0

p-l0
p-p200

p-p0P2 P3

LS2

P4C3C2

C1

LS1

P1

a
a

b

b

b

b

bb

b

b

g

g

g

g

Figure 8.4: Constraint/Entity graph for constraint problem R

Chapter 8 184 New Directionsthat will be solved by Erep and constraints of type � in subproblems that will besolved in IGCS. It remains to decide what to do with constraints of type and howto form the subproblems.Erep solves constraint problems by identifying \clusters" of entities. Conse-quently, all type � constraints should be part of a cluster, so that Erep can �ndsolutions for them. In theory, clusters could be determined using the same cluster�nding techniques adopted by Erep itself, using type constraints when necessary.For example, �gure 8.2 can be divided into two clusters with type � and con-straints and one with only type constraints. Figure 8.4 has two clusters with type� and constraints. However, using the cluster �nding techniques of Erep to �ndthe subproblems to pass to Erep is a duplication of e�ort as the clusters will befound twice: once in the decomposition strategy and once in the solution strategy.It is di�cult to identify any simple decomposition strategy that will identifyclusters but not need to perform the cluster �nding algorithm using in Erep. Thisis a general point: the only way to identify domain speci�c subproblems may be todecompose the problems to such a degree that the decomposition strategy has ine�ect solved the subproblems and the solvers have no work to do.Consequently it is proposed that the Erep/IGCS hybrid uses a slightly less dis-criminatory decomposition strategy:Algorithm 8.1 Decomposition strategy for Erep/IGCS hybrid1. Remove all type � constraints.2. Place the remaining connected components into subproblems fPig.3. Restore all type � constraints.4. Remove all type � constraints.5. Place the remaining connected components into subproblems fP 0jg.6. Restore all type � constraints.� At this point each Pi contains subproblems consisting only of type � and type constraints. Each P 0j contains subproblems consisting only of type � and type constraints. Inevitably, there will be some type constraints that will be in both aPi and a P 0j. However, each type constraint will be in at most one Pi and at mostone P 0j.

Chapter 8 185 New Directions

tangent
tangenttangenttangent

tangent

tangent

tangent

tangent

p-l0

p-l0 p-l0

p-l0

p-p0P2 P3

LS2

P4C3C2

C1

LS1

P1

b

b

b

b

bb

b

b

g

g

g

g

p-p200

p-l0

p-l0

P3

LS2

P4

a

g

g

p-l0

p-l0

p-p200

P2

LS1

P1

a

g

g

P1

P3

P2

Figure 8.5: Decomposition of Constraint/Entity graph for problem RThe output of the decomposition strategy is therefore:f(Pi; fErepg)g [f(P 0j; fIGCSg)g:For example, the constraint problem in �gure 8.2 consists only of type � and type constraints. It will therefore be passed as a whole to Erep and solved using Ereponly, as would be expected.The constraint problem in �gure 8.4 is split into three subproblems, P1; P2 andP3 as shown in �gure 8.5. P1 and P2 are solved using Erep. P3 is solved using IGCS.The output of the decomposition strategy isf(P1; fErepg); (P2; fErepg); (P3; fIGCSg)g:Note that constraints such as P2 lying on LS1 will be solved for twice. Theordering and solution strategies will deal with this problem. Note also that thisdecomposition strategy takes O(n) time, where n is the number of constraints.This decomposition strategy is simple and powerful. In this example hybrid itis used to split a complicated problem into a number of subproblems, each of whichhas been associated with a constraint solver to solve it. A similar approach couldbe used to separate any constraint problem that has been labelled with constraintssuited to a particular solver.The most di�cult part of this decomposition strategy will be determining thedomain speci�c knowledge and specialities of the various constraint solvers in such

Chapter 8 186 New Directionsa way that constraints can be associated with particular solvers.The fact that the decomposition strategy takes linear time in the number ofconstraints means that the overall time for the hybrid will not be dominated by thedecomposition as is frequently the case. In fact, the time complexity of the hybridis dominated by the time complexities of the individual solvers Erep and IGCS.8.2 Ordering strategyA common ordering strategy is to go from known values to unknown values. Thatis to say, solve easy problems �rst and use the solutions to the easy problems to�nd solutions to harder problems. This strategy has been usefully applied to suchsolvers as DESIGNPAK [100], DCM [86], INCES [62], Erep [14] and MechEdit [15].Connectivity Analysis uses this approach in order to guide solution of residualsets. In e�ect, residual sets that are �xed are solved �rst, followed by residual setsthat can be �xed using solutions from previous residual sets, and so on.The `known to unknown' strategy generalises to solving over-constrained sub-problems �rst, followed by well-constrained subproblems and under-constrained sub-problems. Over-constrained subproblems should be solved �rst as they are mostlikely to have no solutions. If an over-constrained subproblem has no solution, thenthe problem as a whole has no solution and so the over-constrained subproblem mightas well be studied �rst. If an over-constrained subproblem does have solutions, it islikely that it will have only a very few of them. Over-constrained subproblems aremore `known' than well-constrained subproblems.In a similar vein, well-constrained subproblems will likely have only a �nitenumber of solutions and are more likely to have no solutions than under-constrainedsubproblems.It is possible to identify the constrainedness of the subproblems generated bythe decomposition strategy. However, the identi�cation of constrainedness is nearlyalways as much work as the decomposition adopted by subsolvers. For example,Connectivity Analysis e�ectively identi�es the residual sets of a constraint problemas a side-e�ect of investigating the constrainedness of the problem.In order to avoid this e�ort the ordering strategy for the proposed hybrid ofErep and IGCS is very simple. Since Erep only �nds solutions to well-constrainedsubproblems, it can be assumed that the subproblems passed to Erep are well-constrained (extraneous type constraints that are not part of a cluster confusethis argument, but this case is discussed in the next section). Similarly, subproblems

Chapter 8 187 New Directionssolved by IGCS can be considered to be under-constrained, as such problems play tothe strengths of IGCS. Consequently, all Erep subproblems should be solved beforeall IGCS subproblems.In the case of �gure 8.5 this results in a partial orderP1 < P3;P2 < P3:Note that this ordering strategy is very simple and does not capitalise on the struc-ture of the subproblems at all. This is because the ordering strategy, like the de-composition strategy, should be simple enough that it can be performed quickly andyet useful enough to help guide solution of the whole problem.8.3 Solution and recombinationRecall that each subproblem Pi to be solved using Erep may contain extraneous constraints that are not part of a cluster. It is assumed here that Erep should solvePi by trying to �nd as many clusters as possible, �nd solutions for each cluster andthen stop. Extraneous type constraints and imposed entities will therefore not besolved for and will be left oating.There are two situations whereby a type constraint may not be part of a clusterbut may be part of a subproblem to be solved using Erep. The �rst is that the constraint lies in a subgraph of only constraints between an � constraint and a� constraint and is not in a cluster. In this case, the constraint will also be in asubproblem P 0j due to be solved using IGCS and so can be dealt with there.Consider, for example, the constraint problem in �gure 8.6. Constraints C1; C2and C3 are not in cluster Cl but are in subproblem P1. When Erep tries to solve forC1; C2 and C3, it fails and leaves them. However, as C1; C2 and C3 are part of theall subgraph between C0 and C4, they are all also part of subproblem P 02, which isdue to be solved using IGCS. Consequently, Erep does not need to deal with them.The other circumstance whereby a constraint may not be part of a clusterbut may be a part of a subproblem due to be solved using Erep is when there isa subgraph consisting only of constraints connected to a cluster. For example, ifcircle Circ1 and constraint C4 are removed from �gure 8.6, then constraints C1; C2and C3 will not be solved by Erep and are also not part of a subproblem due to besolved by IGCS.

Chapter 8 188 New Directions

Circ1

P4 P3
P2

200
LS1

P1

P1 coincident LS1

P2 coincident LS1

P3 coincident LS2

P4 coincident LS2

P2 coincident P3

Circ1 tangent LS2

d(P1, P2) = 200LS2

p-l0

p-l0

p-l0

p-l0

tangent

p-p200

p-p0

P1 LS1

P2

P3LS2

Circ1

P4

a

g

g

g

g

g

b

Cl

P'
2

P
1

P
1

P'
2

Cl

C4

C1

C3

C0

C2

Figure 8.6: A constraint problem with �; � and constraints

Chapter 8 189 New DirectionsThe subgraph containing C1; C2 and C3 can be solved by IGCS. Correspondingly,C1; C2 and C3 should be made into a new subproblem that is due to be solved byIGCS and added to the stack of subproblems to be solved.If a subproblem Pi exists that contains a subgraph containing � constraintsthat is not part of a cluster, then Erep will not be able to �nd solutions to the �constraints in the subgraph. IGCS cannot solve � constraints and so cannot solvethe subgraph either. Consequently a hybrid of Erep and IGCS will not be able tosolve such subproblems unless a backup, domain general solver such as Newton-Raphson or Gr�obner bases is added. Such a situation is not addressed in this thesisbut could form a powerful constraint solver.The crudity of the ordering strategy means that no �ne control of the hybridcan be deduced. Since the partial order only dictates that all Erep subproblems besolved before all IGCS subproblems, the following hybrid can be deduced:((P1; fErepg) k (P2; fErepg) k (P3; fErepg) k : : : k (Pn; fErepg)) ;((P 01; fIGCSg) k (P 02; fIGCSg) k (P 03; fIGCSg) k : : : k (P 0m; fIGCSg))Note that each Pi is disjoint with each other Pi and similarly for each P 0j andso each Erep subproblem can be solved independently and each IGCS subproblemsolved independently.Recombination of solutions occurs when all Erep subproblems have been solved.At this point only one solution is produced by all of the applications of the Erepalgorithm and so choosing the solution to pass to the IGCS subproblems is trivial.Note that it will certainly be possible to use the root identi�cation algorithms ofErep to select other solutions to the Erep subproblems and that this will lead toother solutions of IGCS subproblems. Note also that the under-constrained natureand use of direct manipulation for the IGCS subproblems can be utilised with noe�ect on the Erep subproblems.The ordering strategy forces subproblems to be solved by Erep completely �rstand then subproblems by IGCS. Consequently, there can be no cycles between Erepsubproblems and IGCS subproblems.Note that clusters in Erep describe rigid bodies with two translational degrees offreedom and one rotational degree of freedom. Since IGCS acts on rigid bodies withdegrees of freedom, it seems likely that IGCS and Erep can be even more closelycoupled.

Chapter 8 190 New Directions8.4 Advantages of the Erep/IGCS hybridThere are a number of advantages of the Erep/IGCS hybrid:1. Reuses existing constraint solvers. The hybrid reuses existing solvers and sohas less risk than developing a new system from scratch. It also allows for fastdevelopment.2. Fast and e�cient. The hybrid uses very simple decomposition and orderingstrategies that each take time O(n), where n is the number of constraints. Incontrast, Erep and IGCS take time O(n2) each.3. Simple to implement. Since the decomposition and ordering strategies are sosimple, the hybrid should be simple to implement. The hybrid has not beenimplemented because the author has no access to the internal workings of Erepand has not had the time to construct the Erep algorithm from scratch.4. Keeps strengths of individual solvers. The hybrid allows the use of both theroot identi�cation of Erep and the direct manipulation of IGCS. Both tech-niques have proved extremely popular and useful in exploring the solutionspace of a constraint problem.5. Success when individual solvers fail. The hybrid will �nd solutions to con-straint problems containing both type � and type � constraints. Individually,neither constraint solver handles both types and so the hybrid can handlemore constraint problems. Although Erep can solve type � constraints bydescribing � constraints using degenerate distance constraints, this approachis discounted because it loses the domain speci�c knowledge that can be usedto advantage in IGCS.8.5 Limitations of the Erep/IGCS hybridThere are limitations to the Erep/IGCS hybrid:1. Inconsistent. Since only one solution is found for the Erep subproblems andpassed on to the IGCS subproblems, by theorem 6.1, the hybrid is inconsistent.2. Nonlinear time complexity. Although the decomposition and ordering strate-gies are fast, the solution of the subproblems dominates the hybrid. Since both

Chapter 8 191 New Directionsalgorithms have O(n2) complexity, where n is the number of constraints, thecomplexity of the hybrid is O(n2).Although the time complexity of the Erep/IGCS hybrid is equivalent to thetime complexities of Erep and IGCS, it is important to remember that IGCSis not equivalent to the hybrid as IGCS cannot solve many of the constraintsthe hybrid can. Erep can solve all of the constraints the hybrid can but onlyif tangent constraints are reduced to distance constraints and the zero point-point distance constraint is removed by pre-processing. Both activities removedomain speci�c knowledge from the constraint problem that IGCS exploits.Thus one would expect the average case time complexity of the hybrid solverto be better than n2 as it can exploit that domain speci�c knowledge.8.6 Incremental implications of new solverIn section 3.2.5, the possibility of an incremental version of DCM was suggested.The solver developed in this chapter satis�es this vision of an incremental DCM.For the purposes of this discussion, Erep and DCM are used interchangeably. Infact, Erep and DCM are equivalent, as reported in [14].An incremental constraint solver starts with a blank sheet of no entities and noconstraints. A this point entities are added so that the constraint problem becomesunder-constrained. Then constraints are added one by one so that the constraintproblem becomes more and more constrained until it becomes well- and then over-constrained.The Erep/IGCS hybrid cannot be made fully incremental for the same reasonsthat DCM cannot be made fully incremental. However, the hybrid as described inthis chapter can take advantage of the incremental nature of IGCS and the compat-ibility of Erep and IGCS.Starting with no entities and no constraints the incremental Erep/IGCS hybridworks as follows:If a new entity is added, it forms a separate, disconnected constraint subproblemand is treated as such.If a new constraint is added of type �, then the new constraint can only be solvedby Erep. A new subproblem is therefore formed consisting of the new constrainttogether with any subproblems due to be solved by Erep connected to the newconstraint. This new subproblem must be solved by Erep also. Consequently, thedecomposition strategy is simple and uses most of the previous decomposition, and

Chapter 8 192 New Directionsthe order of solution is much the same.Solution of the new subproblem may not be possible in Erep as the subproblemmay not form a rigid body. If this is so, then the subproblem is left in an unde�nedstate until more constraints are added. A problem consisting entirely of type �constraints processed in this way will lead to the �rst type of incremental DCMdescribed in section 3.2.5.In a similar fashion, a new type � constraint is put into a new subproblemconsisting of the new constraint plus any connected subproblems due to be solvedusing IGCS. Solution of the new subproblem can happen incrementally as IGCSprocesses the new constraint alone and tries to solve it.If the new constraint is of type then it can be solved by either Erep or IGCS.Similar to the above two techniques, the new constraint is used to form two newsubproblems to be solved using Erep and IGCS respectively. The Erep subproblemis solved �rst and will lead to some of the constraints in the subproblem beingsatis�ed to give rise to rigid body clusters.These rigid body clusters are well-constrained and are unlikely to be changed inthe future. However, the rest of the subproblem will be solved by IGCS and willalmost certainly change as the constraint problem evolves.Therefore the rigid body cluster should be separated from the under-constrainedpart of the subproblem and put into a separate subproblem to be solved using Erepalone. In this way the rigid body is not resolved every time the under-constrainedpart is changed. This will save a great deal of e�ort on the part of the solver.Thus, a constraint problem evolves from being under-constrained to being well-constrained and more of the problem becomes well-de�ned rigid bodies that havebeen solved using Erep and need not be resolved.For example, consider the constraint problem in �gure 8.7. For the purposes ofthis example, since all constraints are binary, the constraint graph of the problemis described using edges as constraints and vertices as entities. This helps to makethe problem concise and clear in this case. The constraint graph for the problem ispresented in �gure 8.8.This problem is well-constrained and can be solved entirely using Erep. Apartfrom the distance constraint between p1 and p2, it can also be solved entirely usingIGCS. However, it can also be solved incrementally using both solvers. This incre-mental method is both intuitively obvious to a user and also an e�cient means ofreusing past solutions.At the �rst iteration, the constraint graph consists of no entities and no con-

Chapter 8 193 New Directions
l

l

1

4

l2

l3
l5

p
2 p

3

p
4

p
1Figure 8.7: Two triangles with a common edge

l

l

1

4

l2

l3

l5

p
2

p
3

p
4

p
1 C

1 C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17Figure 8.8: Constraint graph for �gure 8.7straints. At the second iteration, all of the entities are added. On the third it-eration, the point-point distance constraint C1 is added to give a new subproblemP1 = (fp1; p2g; fC1g) (see �gure 8.9.On the next eight iterations, the line-line angle constraints C2; C3 and C4 and thepoint-line coincident constraints C5; C6; C7; C8 and C9 are added so that the graphnow looks like �gure 8.10. Currently, there are two subproblems consisting ofP1 = (fp1; p2; p4; l1; l2; l3g; fC1; : : : ; C9g);

l

l

1

4

l2

l3

l5

p
2

p
3

p
4

p
1

C
1

Figure 8.9: Iteration two of incremental solution of �gure 8.7

Chapter 8 194 New Directions
l

l

1

4

l2

l3

l5

p
2

p
3

p
4

p
1 C

1 C
2

C
3

C
4

C
5

C
6

C
7

C
8

CFigure 8.10: Iteration ten of incremental solution of �gure 8.7to be solved using Erep, andP2 = (fp1; p2; p4; l1; l2; l3g; fC2; : : : ; C9g);to be solved using IGCS.At this point, Erep cannot solve P1 at all and so P2 is being solved using IGCS.This allows the user to directly manipulate the lines and points as desired and soexplore the solution space. The status of C1 is unde�ned.On the next iteration, constraint C10 is added and the decomposition strategyplaces C10 in both P1 and P2. P1 can now be solved fully using Erep to give a rigidbody, the left most triangle in �gure 8.7. IGCS no longer solves any of the problem.Note that the constraint problem has suddenly gone from being under-constrainedto being well-constrained.Since the triangle is a rigid body and unlikely to be changed, it need never beresolved. Unfortunately, the sudden switch from the under-constrained geometrysolved by IGCS to the well-constrained geometry solved by Erep means that all ofthe previous work done by IGCS has been discarded in place of the solution foundby Erep. A better idea would be to use the information developed by IGCS to assistthe solution found by Erep.In successive iterations, constraints C11; C12; C13; C14; C15 and C16 are added. Atthis point, there exist two subproblems,P1 = (fp1; : : : ; p4; l1; : : : l5g; fC1; : : : ; C16g);and P2 = (ftriangle; p3; l2; l5g; fC11; : : : ; C16g):

Chapter 8 195 New DirectionsC11; : : : ; C16 are solved using IGCS so that the user can still manipulate the linesand points and the triangles as a rigid body. However, when C17 is added, thegeometry is again well-constrained and is all solved using Erep.However, note that the decomposition to identify the cluster representing the leftmost triangle has already been done and need not be recalculated. Only the con-straints that are added need be solved for. This is equivalent to the �rst incrementalDCM suggested in section 3.2.5.This is a powerful incremental algorithm and is a natural extension of the hybriddeveloped in this chapter.8.7 ConclusionsThis chapter has presented the design of a new hybrid constraint solver. This solveris a hybrid of two previously existing constraint solvers, Erep and IGCS. Erep can�nd solutions for well-constrained geometric constraint problems, whereas IGCS can�nd solutions for under-constrained geometric constraint problems. The advantageof a hybrid between these two solvers is that it can �nd solutions to geometricconstraint problems consisting of well- and under-constrained subproblems.However, the identi�cation of well- and under-constrainedness of subproblemsis di�cult. Middleditch and Latham [67] identify under- and over-constrained sub-problems as part of identifying the residual sets used to solve the constraint problem.Since identifying the constrainedness of subproblems appears to be just as di�cultas decomposing to residual sets, it was decided that the hybrid of Erep and IGCSwould not try and identify well- and under-constrained subproblems.Instead, the domain speci�c knowledge employed by each constraint solver wascaptured and studied. It was obvious from the list of constraints that each solvercould handle that there were some constraints that Erep alone could solve, somethat IGCS alone could solve and some that both could solve. The decompositionstrategy assigns Erep constraints to subproblems to be solved using Erep and IGCSconstraints to subproblems to be solved using IGCS.It remained to determine what to do with constraints that could be solved byeither constraint solver. Again, the domain speci�c knowledge used by both solverscould be used to solve this dilemma. Since Erep builds up subproblems into clus-ters and e�ectively clusters are the most basic elements of an Erep solution, Erepsubproblems must have all of the constraints necessary to build a cluster. Sinceidentifying a cluster would e�ectively mean solving it, all constraints that can be

Chapter 8 196 New Directionssolved by both Erep and IGCS are placed in both Erep and IGCS subproblems.In this way, Erep will always have all of the constraints that it can possibly useto build a cluster and any that are left over will be solved using IGCS.The ordering strategy that is used by the hybrid is that all Erep subproblems aresolved �rst, followed by all IGCS subproblems. This is because all Erep subproblemsare assumed to be well-constrained and therefore have fewer solutions than theunder-constrained IGCS subproblemsThe subproblems can then be solved using the appropriate solvers and solutionsrecombined to give solutions to the original constraint problem.The advantages of the Erep/IGCS hybrid are that it reuses currently existingconstraint solvers; has fast decomposition and ordering strategies and good averagetime complexity for solving constraint problems; retains the root identi�cation ofErep and the direct manipulation of IGCS and will solve more problems than the in-dividual solvers will. The disadvantages are that the hybrid may fail to �nd solutionsto a constraint problem when some exist. It also has nonlinear time complexity.Whilst the Erep/IGCS hybrid is new and powerful, it is untested. The processthat this chapter followed to build the Erep/IGCS hybrid is signi�cant as it has high-lighted the principle areas that anyone constructing a coarse-grain decompositionhybrid must consider.The incremental version of the hybrid constraint solver is also very powerful.The incremental version allows both the direct manipulation of IGCS and the rootidenti�cation of Erep in an incremental context. The incremental hybrid allows con-straint problems to be de�ned and evolved in an intuitive manner but also providesan e�cient means of solving the constraint problem as it is created.Chapter 3 asked whether it was better to have a complex decomposition strategyand simple solvers or a simple decomposition strategy and complex solvers. Thischapter has demonstrated that it is possible to build e�cient coarse-grain decompo-sition hybrid constraint solvers. However, the complexity of the Erep/IGCS hybrid isdominated by the complexity of Erep and IGCS themselves, which is O(n2), wheren is the number of constraints. Consequently, it is unlikely that the Erep/IGCShybrid lies on the trade-o� point of �gure 3.9.

Chapter 9Future WorkThe work presented in this thesis represents a step towards the goal of the VirtualWorking Environment group at the University of Leeds. This goal is to develop aninteractive environment for developing engineering designs within a Virtual Environ-ment. This chapter introduces further research that must be carried out before thisgoal can eventually be realised. The research necessarily can be divided into threeareas: the interactive constraint solver, the mathematical framework and the VirtualEnvironment used to develop the engineering designs. These areas are discussed inmore detail below.9.1 The interactive constraint solverThe interactive constraint solver suggested in this thesis takes advantage of domainspeci�c knowledge as much as possible. Hopefully, this will make the constraintsolver su�ciently fast that it will be possible to use it for interactive use. However,there are a number of factors that need to be studied further before the interactiveconstraint solver can be realised.As a proof of concept the Erep/IGCS hybrid solver should be implemented anda number of case studies should be tested on it to see how it performs. This workis explored in section 9.1.1.In order to have an interactive constraint solver consisting of subsolvers commu-nicating with each other, there must be a common standard for describing constraintproblems. This is discussed in section 9.1.2.The case studies presented in this thesis help to demonstrate the power of hybridconstraint solvers. However, more complex case studies need to be explored in orderto examine the constraint solver under pathological conditions. This is discussed in197

Chapter 9 198 Future Workmore detail in section 9.1.3.The incremental nature of constraint solvers such as INCES [62] and IGCS [112]help to improve the e�ciency of the solver. Since the interactive constraint solverrequires very e�cient constraint solution, the use of incremental constraint solvers aspart of the interactive constraint solver should be studied in detail. This is describedin section 9.1.4.9.1.1 The Erep/IGCS hybrid solverThe Erep/IGCS hybrid introduced in chapter 8 is an example of the type of inter-active constraint solver proposed in this thesis. As such, it should be implemented,if only as a proof of concept solver. In fact, the Erep/IGCS hybrid promises to bequite a powerful solver and so should be tested on a number of case studies.In particular, the Erep/IGCS hybrid's performance should be studied for con-straint problems consisting mainly of constraints that can be solved only by Erep(type � constraints); mainly of constraints that can only be solved IGCS (type �constraints); mainly of constraints that can be solved by either solver (type con-straints); and mixtures of all three constraints. Problem cases will probably beconstraint problems consisting of mainly constraints that the constraint solversolves twice.9.1.2 A standard interface for solversIn order for an interactive constraint solver comprising of a hybrid of domain speci�csolvers to be implemented there must �rst be some form of standardised commu-nication between the interactive constraint solver and the subsolvers used to solvethe subproblems. Just as graphical standards were used to allow pictures to beshared and engineering design standards were developed to allow CAD designs tobe shared, it will be necessary to have a standard format for describing constraints,entities and constraint problems so that they too can be shared amongst designers.9.1.3 Complex case studiesThe case studies presented in this thesis are not trivial. Case study 2 (section 7.6)has upwards of 2000 entities and 2000 constraints. Case study 2 is also very simple,as the constraints can all be solved using local propagation. However, in order tostudy the scalability of the concepts in this thesis, even larger case studies must be

Chapter 9 199 Future Workconsidered. Also, more pathological case studies are necessary. The case studiespresented here had only a few solutions from each subproblem passed onto the next.Case studies with 100s of solutions from each subproblem should be considered sothat techniques of communication and collaboration of such cases can be explored.9.1.4 Incremental issuesFor performance reasons, incremental constraint solvers are becoming signi�cant [62,112]. Incremental constraint solution involves using previous knowledge to solve aconstraint problem when a new constraint is inserted. Typically this means thatthe constraint problem is analysed so that the smallest part possible of the problemneeds to be resolved when a new constraint is inserted or deleted. For obviousreasons, the incremental approach is ideal for interactive constraint solution. Notonly do incremental approaches allow for a better average-case speed, but they alsoprovide a natural paradigm for users to progressively add and remove constraintsand entities. The other alternative to incrementally de�ning a model is the specify-then-solve approach used by many other constraint solvers [14, 86].Incremental constraint solvers have been studied in detail in this thesis. Theyhave great potential for improving the performance of constraint solvers and also ofproviding more useful feedback to users. In particular, constraint solvers that canfollow a constraint problem from being under-constrained to being well-constrainedto being over-constrained will be valuable. The constraint solver described in chap-ter 8 can handle geometric constraint problems as they progress from being under-constrained to being well-constrained. The incremental version of the Erep/IGCSalgorithm should therefore be implemented and tested. The next stage would thenbe to enhance the incremental Erep/IGCS hybrid so that over-constrained constraintproblems can be dealt with.9.2 The mathematical frameworkThe mathematical framework presented in this thesis is capable of capturing manydi�erent types of constraint problem and constraint solver. However, there remaincertain types of constraint that are di�cult to describe and di�cult to solve. Theseinclude inequality constraints and probabilistic constraints, which are discussed insections 9.2.1 and 9.2.2.

Chapter 9 200 Future Work9.2.1 Inequality constraintsAs noted by Lamounier [64], during the design process many design speci�cationsand performance measures are de�ned as inequalities. For example, in mathemat-ical programming, many of the constraints are described using inequalities. In theframework given in this thesis the dimension of an inequality constraint is frequently0 as there will often be a homeomorphism from the original solution space to therestricted solution space caused by the inequality. For example, if a constraintx < 10 is imposed on the real line (�1;+1) to give a solution space of (�1; 10),then there is a simple homeomorphism x 7! �e�x + 10; (�1; 10) 7! (�1;+1).Consequently the dimension of the constraint x < 10 is 0.The fact that most inequality constraints have a dimension of 0 means that theyare rarely used to progress towards a well-constrained solution. Instead, inequalityconstraints are usually used to re�ne solutions and to select between them. Con-sequently they form an important type of constraint to deal with. However, littleresearch has been done on the implications of inequality constraints within a largerproblem.9.2.2 Probabilistic constraintsBistarelli et al. [10] use the general semiring framework to describe many di�erenttypes of constraint problem. One of the types of constraint problem covered by thesemiring formalisation is fuzzy constraint problems. Fuzzy constraint problems areequivalent to the constraint priority constraint problems presented in section 6.3.1.Bistarelli at al. also use the semiring construction to describe probabilistic constraintproblems. Probabilistic constraints have a certain probability to be part of the givenproblem. This allows reasoning about problems which are only partly known. Itshould be possible to model probabilistic constraint problems and solutions usingthe framework in this thesis.9.3 The Virtual EnvironmentAlthough the Virtual Environment used is not directly signi�cant to this thesis, thereare a number of issues that are relevant to both the Virtual Environment and theframework presented in this thesis. These include the use of parallel and concurrentcollaboration, discussed in section 9.3.1 and the use of direct manipulation to interactwith the interactive constraint solver, explored in section 9.3.2.

Chapter 9 201 Future Work9.3.1 Parallel/concurrent collaborationSequential collaboration is quite common and most hybrids currently in use adoptthis paradigm [15, 62, 87, 112]. However, there are advantages to parallel and con-current collaboration. Parallel collaboration can be simply implemented on parallelarchitectures with the obvious performance advantages available from such a move.Concurrent collaboration allows the investigation of design alternatives, an impor-tant issue for designers.The implementation of a parallel collaboration would require careful considera-tion of the intersection of the solution spaces found by the parallel solvers. Imple-mentation of a concurrent collaboration would require study of the use of the choicefunction and how it could be incorporated into a real-time algorithm.9.3.2 Direct manipulation issuesOne of the great advantages of ICBSM [26,32] is that it allows direct manipulationof geometric entities to build up complex assemblies. This proved to be a powerfulmeans for designers to build models. Consequently it would be advantageous if thedirect manipulation approach could be used for the interactive constraint solver.Obviously direct manipulation only applies to entities that have some sort of visualrepresentation.The Erep/IGCS hybrid developed in chapter 8 retains the use of the directmanipulation of IGCS and the root identi�cation of Erep for the subproblems theyrespectively solve. Research needs to be done to see how well these two approachesinteract and whether either can be applied to other constraint problems.9.4 SummaryThe work presented in this thesis describes work done towards the goal of develop-ing an interactive environment for developing engineering designs within a VirtualEnvironment. The mathematical framework developed here allows the descriptionof complex hybrid constraint solvers consisting of a number of collaborating domainspeci�c constraint solvers. The sound mathematical framework developed allows foran investigation of the structure of hybrid constraint solvers and of the quality ofsolution provided by hybrid constraint solvers.The next key step in this research will be to investigate incremental hybrid con-straint solvers of domain speci�c solvers, such as the Erep/IGCS hybrid developed

Chapter 9 202 Future Workin chapter 8. This will involve complex engineering design case studies which canbe used to investigate the interaction of the domain speci�c solvers and the powerof the hybrid constraint solver.

Chapter 10ConclusionsThe construction of constraint problems in engineering design is supplanting moretraditional design techniques [47]. Consequently, many constraint solvers have beendeveloped to handle the constraint problems being constructed. The constraintsolvers range from geometric constraint solvers, capable of �nding solutions to com-plex descriptions of geometry and relative positioning of geometric constructs, tofunctional constraint solvers, capable of �nding solutions to descriptions of the func-tion of designs.It is generally acknowledged that there is a close link between geometric andfunctional constraint problems [3, 19, 64, 100]. It is inadvisable to separate the ge-ometric and functional parts of the constraint problem as they a�ect each otherclosely. Correspondingly, practitioners attempt to solve the combined constraintproblem as a whole. In a similar vein, other types of constraint problem, such as�nite domain, scheduling and physical constraint problems, should be consideredwithin a general framework.Constraint solvers handle complex combinations of di�erent types of constraintproblem in one of two ways. Either the combined problem is converted into a largesystem of equations and inequalities and then solved using numerical or symbolictechniques or a part of the combined problem is tackled by a solver good at solvingthat particular type of problem and when the solver gets stuck, it is assisted bynumerical or symbolic techniques.Numerical solution is slow and prone to numerical convergence problems, as wellas a tendency to converge to non-intuitive solutions and only to �nd one solution.Symbolic solution, using Gr�obner bases [17], whilst being much more robust and�nding all solutions to the combined problem, is far too slow for use in interactivedesign [16]. 203

Chapter 10 204 ConclusionsThe use of a domain speci�c constraint solver as far as possible leads to a sig-ni�cantly faster algorithm [15]. However, the domain speci�c solver used is usuallyquite limited in the problems it can handle and the symbolic or numerical backupsolver will be consulted frequently. Using two collaborating constraint solvers in thisway results in a hybrid constraint solver.The use of domain speci�c solvers leads to very fast constraint solvers such as Fa'sICBSM [27]. ICBSM is capable of solving geometric constraint problems withoutloops in time O(n), where n is the number of constraints in the problem. It istherefore suitable for interactive use. In addition, ICBSM is incremental and will�nd solutions to the constraint problem when a new constraint is added in timeO(1).However, ICBSM is very restricted in the type of geometric constraint problemsit can solve. ICBSM cannot solve geometric constraint problems with loops in them.ICBSM is also unable to solve functional constraint problems and so is not an idealcandidate for an engineering design constraint solver.The purpose of this thesis was to study ways of applying Fa's Allowable Motionto more general constraint problems. In particular, engineering design constraintproblems consist of loops and functional constraints.In order to study the possible applications of Allowable Motion to more generalconstraint problems, it was �rst necessary to investigate the current state-of-the-art in constraint solution. Chapter 2 presents the result of this study. Constraintsolvers in the �nite domain, geometric, functional and physical �elds were examinedin detail and the strengths and weaknesses of each solver were identi�ed. This studyidenti�ed the specialisation of current solvers in terms of type of problem solved andalso the constrainedness of problem handled.The characterisation of constraint solvers in chapter 2 brought to light the com-mon nature of most constraint solvers. In particular, most existing constraint solversuse a divide-and-conquer approach to solve a constraint problem. First a decom-position strategy is used to split the constraint problem into smaller subproblems.Then the subproblems are ordered. Finally, the subproblems are solved in the ordergiven by the ordering strategy.Several issues were raised by the divide-and-conquer approach and in order tostudy these issues the constraint process was examined in detail by dividing it intoconstraint de�nition, constraint representation, constraint satisfaction and repre-sentation of solutions. Since the representation of solutions to constraint problemsis a complex issue in itself, it was not studied in this thesis. The reader is referred

Chapter 10 205 Conclusionsto [14] for a discussion of the root identi�cation problem in geometric constraintproblems.The constraint de�nition phase of the constraint process was studied in chapter 4.Intensive study of many di�erent types of constraint solver and the problems that thesolvers can handle led to a coherent, comprehensive de�nition of general constraintproblems. This de�nition is capable of describing many di�erent types of constraintproblem as well as constraint problems that consist of a number of di�erent types ofconstraint. The set-theoretic approach used in the de�nition allows the developmentof a detailed and abstract framework for the constraint satisfaction process. Thedimension of a constraint was also introduced as a means of identifying the progresstowards solution of a constraint process.Chapter 5 explored the second phase of the constraint process, constraint repre-sentation. In order to solve constraint problems e�ciently, many constraint solversrely on a constraint representation scheme that allows structure of a constraintproblem to be investigated. Most such constraint representation schemes use graphtechniques as there already exists a comprehensive selection of literature on theproperties of graphs. However, di�erent constraint solvers use di�erent constraintrepresentation schemes. If a constraint solver capable of solving general engineer-ing design constraint problems were to be developed, it would ideally be capable ofdescribing general constraint problems, using the de�nition developed in chapter 4.Consequently, chapter 5 studied the various constraint representation schemescurrently in use and how they were related to each other. This led to the identi�ca-tion of a generic constraint representation scheme, one capable of describing generalconstraint problems. Using reductions it was possible to identify which constraintrepresentation schemes were generic and which were not. Reductions can also beused to translate between representation schemes as and when required.Di�erent constraint solvers use di�erent solution techniques depending on thestructure and type of constraint problem being solved. However, the investigationof the state-of-the-art in chapter 2 indicated that all of the constraint solution tech-niques studied followed much the same underlying pattern. Chapter 6 explicitlycaptured this underlying structure by de�ning solution steps and solution processes.Using the notion of a solution space, it was then possible to describe the propertiesof a solution process.The quality of solution of a solution process is very important to a designer andis dependent on the properties of the solution process. For example, if a solutionprocess is consistent , then the designer knows that there is a solution to the con-

Chapter 10 206 Conclusionsstraint problem in the terminal solution space. If a solution process is sound thenthe terminal solution space contains only solutions to the constraint problem. Ifthe solution process is complete then the terminal solution space contains all so-lutions to the constraint problem. However, it was very di�cult to determine if aspeci�c constraint solver was sound, complete or even consistent. Theorem 6.1 canbe used to identify the quality of solution of a solution process. Theorem 6.1 isalso a signi�cant tool in the study of hybrid constraint solvers as it allows design-ers to identify the quality of solution of hybrid constraint solvers, as well as simpleconstraint solvers.The power of the satisfaction abstraction was demonstrated by using it to de-scribe a number of di�erent extensions of the basic constraint problem, includingconstraint priority problems, incremental constraint satisfaction, backtracking andvariable-driven constraint satisfaction.Using the abstractions of the constraint de�nition, representation and satisfac-tion phases, chapter 7 studied the use of hybrids and domain speci�c constraintsolvers. Domain speci�c solvers were identi�ed as being fast and e�cient but notgeneral enough for general engineering design. Hybrid constraint solvers were inves-tigated using an adaptation of Monfroy's BALI environment [84]. Monfroy identi�esthree di�erent paradigms for the collaboration of constraint solvers. These are se-quential, parallel and concurrent collaboration. All three collaboration paradigmswere de�ned in terms of the satisfaction framework of chapter 6. Theorem 6.1 canthen be used to study the quality of solution found by sequential collaboration,whilst an equivalent theorem, theorem E.1, can be used to study the quality ofsolution found by parallel collaboration.Several examples were then explored using these collaboration paradigms. Theexample in section 7.3 demonstrated that even a very simple hybrid constraint solverof two domain speci�c solvers could produce a marked increase in speed for solving aconstraint problem consisting of functional and geometric constraints. The examplein section 7.6 investigated the asymptotic behaviour of the sequential collaborationand found that the hybrid of domain speci�c solvers was linear in complexity whereasother solvers were not. A constraint problem with 2000 constraints was solved in0.25 seconds using the hybrid but 60 seconds using INCES [62] and 180 secondsusing a numerical algorithm.The discussion of the incremental version of DCM in section 3.2.5 along with thesolution framework presented in chapter 3 and the work done on hybrid constraintsolvers and domain speci�c solvers in chapter 7 naturally suggested a collaboration

Chapter 10 207 Conclusionsof two existing constraint solvers, IGCS [112] and Erep [14]. The Erep/IGCS hybridwas de�ned in terms of a simple decomposition strategy, a simple ordering strategyand a description of how solution would proceed. The Erep/IGCS hybrid has notcurrently been implemented but serves as a useful demonstration of the process ofconstructing a new constraint management system as discussed in chapter 3. It alsohas the potential to be a powerful solver in its own right.In particular, the Erep/IGCS hybrid can be implemented to give a powerfulincremental constraint solver. This incremental solver allows a constraint problemto be developed an manipulated from an initial state of being under-constrainedto being well-constrained. The incremental solver retains the root identi�cation ofErep and the direct manipulation of IGCS and so allows the user to explore thesolution space of the problem as desired.In chapter 3, a number of issues were raised regarding the decomposition frame-work:1. Is it possible to lose solutions by decomposing and recombining?2. What e�ect does decomposition have on incremental techniques?3. Is it more e�cient to decompose and recombine or solve as a whole?4. Is it possible to have a fast decomposition strategy and a fast solution ofsubproblems or must one always dominate?These questions have been addressed throughout this thesis. Progress on the answersare presented below:1. Is it possible to lose solutions by decomposing and recombining? It is possibleto lose solutions be decomposing and recombining. Theorems 6.1 and E.1prove that if a constraint solver is not globally consistent then it cannot belinked with other constraint solvers and expect to be globally consistent. Infact, few current constraint solvers are globally consistent and so few hybridconstraint solvers are globally consistent. In particular, INCES and IGCS wereboth identi�ed as being inconsistent.2. What e�ect does decomposition have on incremental techniques? It is possibleto apply an incremental approach to decomposition, ordering and solution.Incremental decomposition strategies need to reuse information from a previ-ous decomposition as much as possible. Incremental ordering strategies needto order any new subproblems in such a way as to not need to resolve as

Chapter 10 208 Conclusionsmany subproblems as possible. Incremental subsolvers can �nd solutions toproblems with newly added constraints quickly. The Erep/IGCS hybrid is agood example of an incremental constraint solver and it makes good use ofthe natures of both Erep and IGCS to give a powerful solver that can be usedinteractively.3. Is it more e�cient to decompose and recombine or solve as a whole? Generallyspeaking, it is better to decompose and recombine than to solve as a whole.General constraint solvers such as Gr�obner bases or numerical techniques aretoo slow for interactive use. However, the choice of which approach to takemay not be predicated by speed alone. The lack of global consistency inhybrid constraint solvers means that general constraint solvers may be moreappropriate for some problems.4. Is it possible to have a fast decomposition strategy and a fast solution of sub-problems or must one always dominate? The hybrid Erep/IGCS constraintsolver is an example of a constraint solver with a fast decomposition strategybut slow solution. Most other constraint solvers have a slow decompositionstrategy but fast subsolvers. The graph in �gure 3.9 suggests that there maybe a trade-o� point where solvers have fast decomposition strategies and fastsubsolvers, but the Erep/IGCS hybrid is probably not at this trade-o� point.The contribution of this thesis is the study of hybrids of domain speci�c con-straint solvers using coarse-grain decomposition for solving general engineering de-sign constraint problems. To this end� A new categorisation of constraint solvers in terms of type of problem solvedand constrainedness of the solver was introduced and used to categorise anumber of current constraint solvers.� The characterisation of constraint solvers led to the identi�cation of the divide-and-conquer approach used by most current constraint solvers and the prosand cons of this approach were studied in detail.� An abstraction of the constraint process was created that allows the de�ni-tion, representation and satisfaction of general engineering design constraintproblems in a high-level, general fashion.� A study of the quality of solution provided by constraint processes led totheorem 6.1 which allows statements to be made about the quality of solution

Chapter 10 209 Conclusionsof constraint solvers and sequential hybrid constraint solvers by examining theindividual steps used by the solver. Theorem E.1 allows similar statements tobe made about parallel hybrid solvers.� A study of the various hybrid collaboration paradigms suggested by Monfroy[84] was made and the advantages and disadvantages of each investigated. Themathematical framework developed allows concrete statements to made aboutthe nature of these collaborations. Monfroy's solver collaboration language wasextended to allow for the decomposition framework and to allow conditionalapplication of solvers.� A new constraint solver has been de�ned that consists of a hybrid of Erepand IGCS. This constraint solver combines the ability of Erep to solve well-constrained geometric constraint problems with loops and the ability of IGCSto solve under-constrained geometric constraint problems.The framework developed in this thesis can be used to help bridge the gap be-tween geometric and functional constraints and consequently forms an importanttool towards e�cient, interactive engineering design by constraints. However, theframework is su�ciently general that it is not restricted to geometric and func-tional constraints and can also include relational algebra, �nite domain constraints,scheduling constraints and physical constraints.

Appendix ADimensionsThis appendix presents a de�nition of the dimension function dim : domain �! N .The dimension function should have the following propertiesdim(IR) = dim(Q) = dim(Z) = dim(N) = 1dim(;) = dim(A) = 0; A is a �nite set;dim(D1 �D2) = dim(D1) + dim(D2);dim(A [B) = max(dim(A); dim(B));dim(A \ B) � min(dim(A); dim(B));dim(A nB) � dim(A):The dimension function de�ned here is taken from [107]. It uses manifolds tocapture the above properties. It is assumed that all of the relations and sets usedin the constraint problem exist within a metric space M with metric d. It is alsoassumed that the reader is familiar with the concept of metric spaces. Readersunfamiliar with metric spaces are referred to [109]. Given the metric space M , thenthe following de�nitions are important for de�ning a manifold.De�nition A.1 (Open Ball) Given a metric space M = fA; dg, a point a in Aand a strictly positive real number �, the open �-ball neighbourhood of a in Mis the set B�(a) = fx 2 A : d(x; a) < �g:� An open ball in the real line is equivalent to an open interval of size 2�. The210

Appendix A 211 Dimensionsinterval (x� �; x+ �) in the metric space fIR; dg, where d(x; y) = jx� yj is an open�-ball in the neighbourhood of x. In IR2, open �-balls take the form of circles ofradius � about a point and in IR3, open �-balls take the form of spheres of radius �about a point.De�nition A.2 (Open Sets) A set U is open in metric spaceM if 8y 2 U; 9� > 0,such that B�(y) � U . �In the metric space fIR; dg as above, any open interval (a; b) is an open set. Anyhalf open interval, such as (a; b] or [a; b), or any closed interval [a; b] is not open.De�nition A.3 (Homeomorphisms) Bijection f : T1 ! T2 is a homeomor-phism if U open in T1 , f(U) open in T2:� Two sets which are homeomorphic to each other are equivalent in most respects.For example N is homemorphic to Z and Q , and the open interval (0; 1) is homem-orphic to the real line IR. However, IR is not homeomorphic to IR2.Given these de�nitions, it is possible to de�ne an n-manifold as follows:De�nition A.4 (n-manifold) An n-manifold is a metric space M such that forall x 2M , there is some neighbourhood U of x and some integer n � 0 such that Uis homeomorphic to IRn. �An n-manifold is said to have dimension n. Manifolds form an ideal candidatefor the dimension function desired.De�nition A.5 (Dimension) A set S in a metric space M has dimension n,dim(S) = n, if and only if n is the smallest number such that S is an n-manifold inM . �From this de�nition, it is immediate thatdim(N) = 1;dim(Z) = 1;dim(Q) = 1;dim(IR) = 1;dim(A) = 0; (asIR0 = �nite sets)dim(;) = 0:

Appendix A 212 DimensionsHowever, by this de�nition, if a set B is countable, thendim(B �B) = dim(N) = 1;as there is always a homeomorphism between a Cartesian product of countable setsand the set of natural numbers. This contradicts property A.1 above.Standard results from manifold theory can be used to prove that the dimensionfunction above does have all the properties desired. In particular, the followingtheorem can be used to satisfy property A.1 (taken from [107]).Theorem A.1 If M1 and M2 are manifolds of dimension n1 and n2 respectively,then M1 �M2 is an (n1 + n2)-manifold. �However, note that this theorem does not quite clear up the ambiguity of Z2.Spivak notes the example of a torus which is the Cartesian product of two circles.Spivak says that the torus is homeomorphic to a subset of IR4, thus making it a4-manifold. However, it is also homeomorphic to a subset of IR3, meaning that it isalso a 3-manifold.The dimension function clears up this amibiguity by insisting that the set S hasdimension equal to the smallest n-manifold that it is homeomorphic to. Correspond-ingly, not all Cartesian products satisfy property A.1 and the property is amendedto reect this (see section 4.5.1).

Appendix BConstraint Representation SchemeReductionsThis appendix presents the details of the remaining reductions necessary to formthe hierarchy of constraint representation schemes in �gure 5.2. They are:� Undirected graph �! directed graph,� Bipartite graph ! hypergraph,� Bipartite graph ! binary graph in �nite case.Theorem B.1 Undirected constraint graphs, for example those used by Owen [86]and Erep [48], are strictly less powerful than the directed graphs used by, for exampleICBSM [27]. �Proof The proof is in two parts. First a reduction is formed from the undirectedconstraint graph to the directed constraint graph, demonstrating that the directedgraph can describe at least as many problems as the directed graph.The weakness of the undirected graph is that it cannot describe non-symmetricconstraints. y The vast majority of constraints are non-symmetric. However, thereare a signi�cant number of symmetric geometric constraints and some constraintrepresentation schemes, such as undirected constraint graphs ([48,86]) take advan-tage of this.The signi�cance of symmetric constraints is that the ordering associated withthe constraint is only a partial ordering. For example, for the constraint x = y, itdoes not matter which order the values of x and y are checked in, the constraint isstill the same. Testing (3; 4) and (4; 3) gives the same result.213

Appendix B 214 CRS ReductionsIn an undirected graph there is no concept of ordering of binary constraints.It is not therefore possible to describe anything but symmetric constraints and soit is assumed that all constraints in an undirected constraint graph are symmetricconstraints. It is this fact that will be exploited in this proof.The mapping used to reduce an undirected constraint graph (V;E) to a directedconstraint graph (VD; ED) is as follows:Create VD = V .For each edge e 2 E, choose an orientation of that edge randomly sothat, for example, (u; v) in the undirected graph becomes [v; u]. Place thedirected edge in ED.By inspection, the resultant graph is a directed constraint graph. Checking thereduction criterion:1. The mapping is de�ned above.2. Since the constraints in the undirected graph are symmetric and both graphsuse the same CTP, any solution to the directed graph is a solution to theundirected graph. Similarly, any solution to the directed graph must be asolution of the undirected graph.3. Both are valid CRSs.4. The reduction can be done in linear time in the number of edges in the undi-rected constraint graph. It is therefore polynomial time.So the undirected graph can be reduced to a directed graph representation.Secondly, it is necessary to prove that the directed graph cannot be reduced tothe undirected graph. This implies that directed graph representations are strictlymore powerful than undirected graph representations as required. It su�ces to �nda counter example. The weakness of undirected graph representations is that theyrequire all of the constraints to be symmetric.Consider then, the following problem:P = (E;C);E = f(x; IR); (y; IR); (z; IR)g;C = fx < y; y = z; z < xg:

Appendix B 215 CRS ReductionsThere is an obvious directed graph representation of the problem, but no obvi-ous undirected representation as the two constraints x < y and z < x are non-symmetric. It is necessary to retain an ordering in order to describe these con-straint non-ambiguously. Since an undirected graph does not preserve order, notall problems that can be described using a directed graph can be described in anundirected constraint graph representation. Thus, it follows that the directed graphrepresentation is more powerful than the undirected graph representation as desired.2Theorem B.2 The bipartite graph CRSs, such as the Constraint/Entity graph inthis report and the schemes of Tsang [114] and Middleditch and Latham [66], areequivalent to hypergraph representation schemes, such as Serrano's ConnectivityNetwork [101]. �Proof Again the proof is in two parts. First a reduction is formed from a bipartitegraph representation scheme to a hypergraph representation scheme. The mappingused is as follows:Given the bipartite graph (C; V; E), create hypergraph (VH ; HE).For each vertex xi 2 V create entity vertex xi in VH .For each ci 2 C, construct �ci such that �ci = fxi1 ; xi2 ; : : : ; xikg, theset of entity vertices adjacent to ci in E. Then construct the hyperedgehe in HE, he = �ci;labelled as constraint ci with CTP fci and ordering <ci.By inspection, the resulting graph is a hypergraph. Checking the reductioncriterion.1. Map is de�ned above.2. Since the relation ci is borrowed and the ordering of the entities retained,the same problem is being solved, so all solutions in the bipartite graph aresolutions in the hypergraph and vice versa.3. Both are valid CRSs.

Appendix B 216 CRS Reductions4. For each entity in E a vertex in the hypergraph is created, taking O(n). Foreach constraint in C one hyperedge is created, taking O(mn) in all. This is apolynomial time algorithm.Secondly, a reduction is formed from the hypergraph to the bipartite graph asfollows: Given the hypergraph (V;HE), create bipartite graph (VB; CB; EB).For each variable xi 2 V , construct entity vertex xi in VB.For each constraint ci 2 HE, construct a constraint vertex labeled ciin CB.Create edge (xi; cj; k); xi 2 VB; cj 2 CB; k 2 Z if he 2 HE; xi 2 he,cj 2 he and xi is in the kth position of <cj .The resultant graph is a bipartite graph. Checking the reduction criterion.1. Map de�ned above.2. Since the constraints are tested using the same test procedures in both repre-sentations, a solution in one will be a solution in the other.3. Both are valid CRSs.4. For each entity in V , an entity vertex in the bipartite graph is created, takingO(n). For each constraint in C, a constraint vertex in the bipartite graph iscreated, taking O(m). Each constraint is imposed on at most O(n) entities soat most O(n) edges per constraint are created, hence O(mn) in total. Hencethe reduction is polynomial.Hence the bipartite and hypergraph representation schemes are equivalent. 2Theorem B.3 When dealing only with �nite domain problems, hypergraph graphrepresentations and binary constraint graph representations are equivalent. �Proof This is a proof oft-quoted in the literature, though not explicitly called areduction. It is usually discussed as a method of describing n-ary constraints inbinary graphs, but can be interpreted as a reduction from a hypergraph represen-tation scheme to a binary graph representation scheme (see Tsang [114], p12, forexample). The reverse reduction is, of course, trivial, as binary graphs are alreadyhypergraphs. 2

Appendix CUsing local properties to drawconclusions about processesTheorem C.1 We wish to prove the following:a. Strongly Complete , Completeb. Locally Complete ; Strongly Locally CompleteStrongly Locally Complete) Locally Completec. Locally Complete , Completed. Strongly Consistent , Consistente. Locally Consistent) Strongly Locally ConsistentStrongly Locally Consistent ; Locally Consistentf. Locally Consistent , Consistentg. Strongly Sound , SoundSound ; Strongly Soundh. Locally Sound ; Strongly Locally SoundStrongly Locally Sound) Locally Soundi. Locally Sound , Sound� 217

Appendix C 218 Local - Global TheoremLemma C.1 Given solution process D(0) 	�!� D(�) and constraint problem P =(�;)a D(l) � D(l � 1); l = 1::�b A � B) C \ A � C \Bc A � B) C(B) � C(A); A; B � 	�Proofa Trivial from de�nition of solution processb Assume A � Bx 2 C \ A) x 2 C ^ x 2 A) x 2 C ^ x 2 B (as A � B)) x 2 C \ B) C \ B � C \ A (by de�nition of �)c Let A = f	A1; : : : ;	Akg; B = f	B1; : : : ;	Blg. ThenC(A) = \x2Ax; C(B) = \y2B yIf A � B then we can reorder C(B) such thatC(B) = C(A) \ \y2BnA yThen we have x 2 C(B)) x 2 \y2B y) x 2 C(A) \ \y2BnA y) x 2 C(A) (from de�nition of \)) C(B) � C(A)

Appendix C 219 Local - Global Theorem2Proof (of theorem C.1)a. Strongly Complete) CompleteGiven C() \D(l � 1) � D(l); 8l = 1::� (C.1)Required to prove C() \D(0) � D(�)Proof Assume C() \D(0) � D(l � 1); 8l = 1::� thenC() \ C() \D(0) � D(l � 1) \ C()) C() \D(0) � D(l � 1) \ C() (as S \ S = S)) C() \D(0) � D(l) (by C.1)Hence by induction, since C() \D(0) � D(0), we haveC() \D(0) � D(�)as required 2Complete) Strongly CompleteGiven C() \D(0) � D(�)Required to prove C() \D(l � 1) � D(l); 8l = 1::�Proof C() \D(l � 1) � C() \D(0) (since D(l � 1) � D(0))� D(k) (as the process is complete)� D(l) (by de�nition of solution process)

Appendix C 220 Local - Global Theoremas required 2b. Strongly Locally Complete) Locally CompleteGiven C(l) \D(l � 1) � D(l); 	l � 	0; 8l = 1::�Required to prove C(0) \D(0) � D(�)Proof Assume C(0) \D(0) � D(l � 1) thenC(0) \D(0) = C(0) \ C(0) \D(0)� C(l) \ C(0) \D(0) (since 	l � 	0) C(0) � C(l))� C(l) \D(l � 1) (induction step)� D(l) (strong local completeness)Hence C(0) \D(0) � D(�), as required 2Locally Complete ; Strongly Locally CompleteProof Consider a solution process with stepD(k � 1) 	k�! D(k)where we include (v1; : : : ; vn) 2 D(k � 1) in D(k) i�(v1; : : : ; vn) 2 D(k � 1) \ C(0)However, if C(0) � C(k)then 9(u1; : : : ; un)j(u1; : : : ; un) 2 C(0); (u1; : : : ; un) =2 C(k)and by the de�nition of local completeness, this solution step is not locallycomplete. However, the solution process itself is obviously locally complete.

Appendix C 221 Local - Global Theorem2c. Locally Complete , CompleteTrivially true if 	0 = 	d. Strongly Consistent) ConsistentTrivial. Given C() \D(l) 6= ;, let l = �.Consistent) Strongly ConsistentGiven C() 6= ;) C() \D(�) 6= ;Required to prove C() 6= ;) C() \D(l) 6= ;; 8l = 0::�Proof C() \D(�) � C() \D(l) (as D(�) � D(l))Hence 9x 2 C() \D(�)) x 2 C() \D(l)) C() \D(l) 6= ;as required 2e. Strongly Locally Consistent ; Locally ConsistentProof Consider the problem ff(x;Z)g; fx � 5; x � 1gg and the solutionprocess D(0) = Z x�1��! D(1) = f0; 6gx�5��! D(2) = f0; 6gThis is an acceptable solution process by the de�nition of section 6.6 andC() 6= ;. In fact, C() = f1; 2; 3; 4g. The process is strongly locally consis-

Appendix C 222 Local - Global Theoremtent, as (x � 1) \D(1) = f6g 6= ;and (x � 5) \D(2) = f0g 6= ;But the process is not locally consistent because(x � 1) \ (x � 5) \D(2) = ;2Locally Consistent) Strongly Locally ConsistentGiven C(0) 6= ;) C(0) \D(�) 6= ;Required to proveC(l) 6= ;) C(l) \D(l) 6= ;; 8l = 0::�ProofC(0) \D(�) � C(l) \D(l) (as D(�) � D(l) and C(0) � C(l))Hence 9x 2 C(0) \D(�)) x 2 C(l) \D(l)) C(l) \D(l) 6= ;as required 2f. Consistent , Locally ConsistentTrue if 	 = 	0g. Strongly Sound) SoundGiven D(l) � C() \D(l � 1); 8l = 1::�

Appendix C 223 Local - Global TheoremRequired to prove D(�) � C() \D(0)Proof Assume D(l � 1) � C() \D(0) thenD(l) � C() \D(l � 1) (strongly sound)� C() \ C() \D(0) (induction step)� C() \D(0) (as S \ S = S)Therefore, D(�) � C() \D(0) as required 2Sound ; Strongly SoundProof Consider the simple solution process � where a solution step is asfollows D(k � 1) 	k�! D(k)where D(k) = C(k) \D(k � 1)Such a process is obviously sound as [k	k = 	, however it will almost certainlynot be strongly sound as C() � C(k) and if C() is a strict subset of C(k),then D(k � 1) \ C() � D(k � 1) \ C(k)) D(k � 1) \ C() � D(k)That is, there will be values in D(k) which are not valid solutions in C() andso the solution step is not sound and � is not strongly sound. 2h. Strongly Locally Sound) Locally SoundGiven D(l) � C(l) \D(l � 1); 8l = 1::�Required to prove D(�) � C(0) \D(0); 	0 = [i

Appendix C 224 Local - Global TheoremProof D(�) � C(��1) \D(�� 1)� C(��1) \ C(��2) \D(�� 2)� � � �� C(��1) \ � � � \ C(1) \D(0)But C(��1) \ C(��2) \ � � � \ C(1) = C(0), as 	0 = [i and by de�nitionof C.Hence, D(�) � C(0) \D(0). 2Locally Sound ; Strongly Locally SoundProof Consider the following solution process.Find (v1; : : : ; vn) such that (v1; : : : ; vn) =2 C(0) and order 	0 = f	01; : : : ;	0�gsuch that (v1; : : : ; vn) =2 C(0 n 	01) , ie (v1; : : : ; vn) is not a valid solution tothe constraint problem. We then de�ne the following solution process:D(0) 	01�! D(1)	02�! D(2)�!� � � �	0��! D(�)Where D(1) = (D(0) \ C(01)) [(v1; : : : ; vn)D(i) = (D(i� 1) \ C(0i)) ; 8i = 2::�

Appendix C 225 Local - Global TheoremSuch a process is locally sound asD(�) = D(�� 1) \ C(0�)= D(�� 2) \ C(0��1) \ C(0�)= � � �= ((D(0) \ C(01)) [(v1; : : : ; vn)) \ C(02) \ � � � \ C(0�)= (D(0) [(v1; : : : ; vn)) \ (C(01) [(v1; : : : ; vn))\C(02) \ � � � \ C(0�)= D(0) \ ((C(01) \ � � � \ C(0�)) [((v1; : : : ; vn) \ C(02) \ � � � \ C(0�)))(as D(0) [(v1; : : : ; vn) = D(0))= D(0) \ (C(0) [((v1; : : : ; vn) \ C(02) \ � � � \ C(0�)))(by de�nition of C)= D(0) \ (C(0) [;) (by de�nition of (v1; : : : ; vn))= D(0) \ C(0)� D(0) \ C(0)However, the process is not strongly locally sound as D(1) contains a valuenot in C(01) \D(0). 2i. Locally Sound , SoundTrivially true if 	0 = 	.2

Appendix DEnhanced solution spacesThis appendix de�nes enhanced and embedded solution spaces. Enhanced solutionspaces allow discussion of a solution space within a larger solution space. Embeddedsolution spaces allow discussion of subsets of solution spaces.De�nition D.1 (Enhancement of solution spaces) Given two sets of entities� and �0 with solution spaces D�(0) and D�0(0) respectively, the enhancementof D�(0) with respect to �0 is the solution space of � within the solution space� [�0. This is writtenD�j�[�0 (0) = D�(0)�D�0n�(0);D�j�[�0 (k) = D�(k)�D�0n�(0):Since it is natural to want D�j�[�0 (0) = D�0 j�[�0 (0) ;an ordering, <, is enforced on the labels in � [�0 so thatD�j�[�0 (0) = �D�(0)�D�0n�(0)�<= �D�0(0)�D�n�0(0)�<= D�0j�[�0 (0) :In this thesis the ordering is implied unless explicitly stated. It is omitted for clarity.Conversely, it is sometimes necessary to take the enhanced solution space of asuperset � and examine the solution space of a subset �0 of �. This is called theembedded solution space of �0 in � and is equivalent to the embedded domains226

Appendix D 227 Enhanced solution spacesin [84]. The embedded solution space of �0 in � is denoted D�j�0 (0) as belowD�j�0 (0) = O fD�(0)j� 2 �0g :� For relational algebra, the enhanced solution space is equivalent to a natural join.The embedded solution space is similar to a projection. The ordering is similar tothe notion of an attribute. Enhanced solution spaces are also extensions of Monfroy'sstructure embedding and constraint system enrichment [84].Example D.1 Let � = f(x;Dx); (y;Dy); (z;Dz)g and �0 = f(y;Dy); (z;Dz); (w;Dw); (a;Da)g, with a lexicographic ordering <lex= a < w < x < y < z. ThenD�(0) = Dx �Dy �Dz;D�0(0) = Dy �Dz �Dw �Da= Da �Dw �Dy �Dz; under <lex.Consequently,D�j�[�0 (0) = Dx �Dy �Dz �Dw �Da= Da �Dw �Dx �Dy �Dz; under <lex;D�0j�[�0 (0) = Da �Dw �Dy �Dz �Dx= Da �Dw �Dx �Dy �Dz; under <lex:� A stated aim of Monfroy's enrichments is that no solutions should be lost. How-ever, Monfroy treats constraint solvers as black boxes and does not consider solutionspaces at all. The terminal solution space produced by a solver may contain anynumber of solutions. However, all solutions that it does contain should be preserved.Consequently, the enhanced solution space within a solution process is de�ned asfollows.De�nition D.2 (Enhancement of solution spaces) Given two constraint pro-

Appendix D 228 Enhanced solution spacescesses � and � such that for constraint problems P1 = (�;) and P2 = (�0;	0),D�(0) 	�!�� D�(k)D�0(0) 	0�!�� D�0(l);the enhanced solution space at step k in process � and step l in process� is: D�j�[�0 (k; l) = �D�(k)�D�0n�(0)� \ �D�n�0(0)�D�0(l)� :�Example D.2 Let � = f(w; IR); (x; IR); (y; IR)g with solution spacesD�(0) = IR� IR� IR;D�(10) = ffw = f1g; x = f2g; z = f3gg; fw = f3g; x = f4g; z = f5gg;fw = f5g; x = f6g; z = f7ggg;and �0 = f(x; IR); (y; IR); (z; IR)g with solution spacesD�0(0) = IR� IR� IR;D�0(11) = ffx = f1g; y = f2g; z = f3gg; fx = f2g; y = f3g; z = f4gg;fx = f3g; y = f4g; z = f5gg; fx = f4g; y = f5g; z = f6ggg;with lexicographic ordering <lex= w < x < y < z. ThenD�j�[�0 (10; 11) = �D�(10)�D�0n�(0)� \ �D�n�0(0)�D�0(11)�= (ffw = f1g; x = f2g; y = f3gg; fw = f3g; x = f4g; y = f5gg;fw = f5g; x = f6g; y = f7ggg � IR) \(IR� ffx = f1g; y = f2g; z = f3gg;fx = f2g; y = f3g; z = f4gg; fx = f3g; y = f4g; z = f5gg;fx = f4g; y = f5g; z = f6ggg)= ffw = f1g; x = f2g; y = f3g; z = f4gg;fw = f3g; x = f4g; y = f5g; z = f6ggg:

Appendix D 229 Enhanced solution spacesThus D�j�[�0 (10; 11) only contains con�gurations that are possible solutions to thewhole problem. For example, f1; 2; 3; 5g is only a solution to � and not �0 andcannot be a solution to the whole problem. �

Appendix EParadigms of collaborationMonfroy [84] has presented three paradigms of collaboration for hybrid constraintsolvers. Section 7.4.1 has discussed the serial collaboration paradigm in detail. Thisappendix discusses the parallel and concurrent paradigms in terms of the constraintsatisfaction framework. The advantages and disadvantages of each paradigm arediscussed, particularly in terms of practical issues.E.1 Parallel hybridsThe second collaboration paradigm suggested by Monfroy is parallel collaboration.In terms of the framework of chapter 6, parallel solvers work in a slightly di�erentfashion to sequential solvers. A parallel hybrid splits a large constraint problem intoa number of subproblems and then subsolvers solve the subproblems independentlyof all other subproblems in parallel. The solution spaces found by the subsolversare combined into a solution space for the problem as a whole using a combinationfunction.In diagrammatical form (see �gure E.1) constraint problem P = (�;) is splitinto subproblems P1 = (�1;	1); P2 = (�2;	2); : : : ; Pn = (�n;	n) to be solved bysolvers (S1; S2; : : : ; Sn). For the purposes of this section, the decomposition of P tothe various Pi is assumed. Entities �i are found by taking the imposed sets �(i).The initial solution space D(0) of P is used as input to the subsolvers. However,the solvers are each only concerned with the embedded solution spaces D�j�i (0).Each solver then initiates the solution processD�j�i (0) 	i�!Si D�j�i (�) :230

Appendix E 231 Paradigms of collaborationThe combination function, f , combines the terminal solution spaces of the subprob-lems into a solution space for P . Choosing the subproblems Pi is critical for ane�cient hybrid. The combination function is also vital to determining the terminalsolution space of the hybrid and also to the e�ciency of the hybrid. Monfroy doesnot discuss the practicalities of a parallel hybrid, but it seems likely that the combi-nation function will have complexity worse than linear in the number of constraints,thus destroying the advantages of using hybrids, as the combination function mayhave to �nd the intersection of two in�nite, implicitly de�ned sets. E�ectively thismeans solving another nonlinear system of equations. If there are only a �nitenumber of solutions to each subproblem, then the recombination function will be oflinear complexity in the number of solutions.A theorem similar to theorem 6.1 can be constructed for parallel constraintsatisfaction.Theorem E.1 (Relation between local and global properties for parallelcollaboration)Let solution process S act on problem P = (�;) such thatD�(0) 	�!�S D�(�):Let S be a parallel collaboration between two solvers S1 and S2 such that, for�1;�2 � � and 	1;	2 � 	,D�j�1 (0) 	1�!�S1 D�j�1 (�1) ;D�j�2 (0) 	2�!�S2 D�j�2 (�2) ;D�(�) = f(D�j�1 (�1) ;D�j�2 (�2));where f is a combination function.Then1. S is (globally) sound if S1, S2 and f are locally sound.2. S is (globally) complete if S1, S2 and f are locally complete.�Proof The proof of this theorem is presented after lemma E.1. 2

AppendixE
232

Paradigmsofcollaboration

D(0)

(Φ , Ψ)

Solver 1
(Φ , Ψ)1 1

Solver 2
(Φ , Ψ)

2 2

Solutions Solutions

Solutions

Solutions

Solutions

Solutions(Φ , Ψ)
n n

Solver n D (k)

D (k)

Combination
function f D(k)

D (k)

nn

22

11

Solutions

FigureE.1:ParallelCollaboration

Appendix E 233 Paradigms of collaborationThe reader is reminded that a solution processD(0) 	�!� D(�)is consistent if D(�) contains a solution to the constraint problem formed by theset of constraints 	. The process is sound if D(�) contains only solutions to theconstraint problem and the process is complete if it contains all of the solutionsto the constraint problem. For parallel collaboration, the combination function fsatis�es these properties if it preserves the properties of the solution spaces it actson.By theorem E.1, if the terminal solution spaces provided by processes S1; S2 andcombination function f contain only solutions to the subproblems then S containsonly solutions to the whole problem. Similarly, if the terminal solution spaces pro-vided by processes S1; S2 and combination function f contain all of the solutions tothe subproblems, then S contains all of the solutions to the whole problem.Notice that, unlike the sequential theorem, theorem 6.1, global consistency is notdecided by this theorem. Even if S1 and S2 are globally consistent, because they areoperating independently of each other it is possible that both solvers could �nd asingle globally consistent solution, but that both �nd a di�erent one. Consequently,S is not globally consistent. Building a globally consistent parallel hybrid will bedi�cult.Lemma E.1 A � B;C � D) A \ C � B \D: �Proof A � B) x 2 A) x 2 B:Similarly, C � D) x 2 C) x 2 D:Therefore x 2 A \ C) x 2 A ^ x 2 C) x 2 B ^ x 2 D) x 2 B \D:2 Proof (of theorem E.1)1. S1, S2 and f sound) S sound.

Appendix E 234 Paradigms of collaborationIf S1 is sound then C(1) \D�j�1 (0) � D�j�1 (�1) :Similarly, S2 and f sound implies thatC(2) \D�j�2 (0) � D�j�2 (�2) ;D�j��1 (�1) \D�j��2 (�2) � D�(�);where D�j��0 (k) = (D�j�0 (k)) j�:Given these, it remains to prove that S is sound, i.e.C() \D�(0) � D�(�):By the de�nition of enhanced solution spacesC(1) \D�j��1 (0) � D�j��1 (�1) ;C(2) \D�j��2 (0) � D�j��2 (�2) :Also by the de�nitions of enhanced and embedded solution spaces,D�j��i (0) = D�(0); i = 1; 2:Consequently, C(1) \D�(0) � D�j��1 (�1) ;C(2) \D�(0) � D�j��2 (�2) :ThenC() = C(1) \ C(2) \D�(0)� D�j��1 (�1) \D�j��2 (�2) (By lemma E.1 and commutativity of \)� D�(�) (By combination function f):2. S1, S2 and f complete) S complete.

Appendix E 235 Paradigms of collaborationIf S1 is complete then C(1) \D�j�1 (0) � D�j�1 (�1) :Similarly, S2 and f complete implies thatC(2) \D�j�2 (0) � D�j�2 (�2) ;D�j��1 (�1) \D�j��2 (�2) � D�(�):Given these, it remains to prove that S is complete, i.e.C() \D�(0) � D�(�):By the de�nition of enhanced solution spacesC(1) \D�j��1 (0) � D�j��1 (�1) ;C(2) \D�j��2 (0) � D�j��2 (�2) :Consequently, C(1) \D�(0) � D�j��1 (�1) ;C(2) \D�(0) � D�j��2 (�2) :ThenC() = C(1) \ C(2) \D�(0)� D�j��1 (�1) \D�j��2 (�2) (By lemma E.1 and commutativity of \)� D�(�) (By combination function f):2 Parallel solution does not su�er from the same problems as sequential satisfac-tion. Since the output of the various solvers is combined using the function f , itdoes not matter whether inputs and outputs of solvers are compatible - only that fcan handle the various types of output.Unfortunately, this means that the operation of f is critical. The most power-ful combination function is simply the intersection of the various solution spaces.Intersection is sound and complete. However, the intersection of in�nite sets is a

Appendix E 236 Paradigms of collaborationnon-trivial problem .Another possible combination function is to �nd a single member of the inter-section of solution spaces. This would be a solution to the overall problem, P .The combination function is a constraint solver in itself. It takes as input twoembedded solution spaces and tries to produce a solution space that is an intersectionof these two solution spaces. The two solution spaces provided as input can bethought of as constraints and so the combination function is trying to �nd solutionsto two complicated constraints. Consequently, the operation of the combinationfunction is vital to the operation of the parallel hybrid. The construction of acombination function is very hard in general.The chief advantage of a parallel hybrid is that it is trivial to implement on aparallel processor. Since the subproblems are solved independently, they can besolved on separate processors and then recombined as necessary. Consequently, ifthe combination function is fast and e�cient, then the hybrid should be fast ande�cient.Parallel collaboration should be considered if:1. Use of parallel processors to improve performance is possible and important.2. Subproblems are expected to be relatively independent of each other.3. An e�cient combination function is available.The following section presents an example of a parallel collaboration.E.1.1 An example of solvers in parallelWhen joining two solvers in parallel, the most important issues to consider are theintersection of the entities of the two problems and the nature of the recombinationfunction. The intersection of the two sets of entities gives an indication as to howdi�cult it will be to �nd solutions to the general problem. The recombinationfunction, as discussed in section E.1 is critical for identifying solutions to the generalproblem.Consider the geometric problem Pgeom = (�geom;	geom) described in �gure E.2,

Appendix E 237 Paradigms of collaboration
(0,0)

line_1 line_2

line_3

a

c radius

b
r

Figure E.2: A simpli�cation of the internal combustion enginede�ned by the constraint problem below�geom = f(line 1 end 1; (0; 0; 2)); (line 1 end 2; (0; 0; 2);(line 2 end 1; (0; 0; 2)); (line 2 end 2; (0; 0; 2));(line 3 end 1; (0; 0; 2)); (line 3 end 2; (0; 0; 2))(radius end 1; (0; 0; 2)); (radius end 2; (0; 0; 2));(a; IR); (b; IR); (c; IR); (r; IR)g;	geom = fline 1 end 1 = (0; 0); line 1 end 2 = line 2 end 1;line 2 end 2 = line 3 end 1; line 3 end 2 = line 1 end 1;midpoint(radius end 1; radius end 2) = line 2 end 2;distance(line 1 end 1; line 1 end 2) = a;distance(line 2 end 1; line 2 end 2) = b;distance(line 3 end 1; line 3 end 2) = c;distance(radius end 1; radius end 2) = 2r; b = 10; c = 15g;where �geom is a set of entities and 	geom is a set of constraints.Simple geometric reasoning, by considering the furthest possible points on line 1,determines that a � c+ b;a � c� b;which in this case corresponds to a range of values for a such that 5 � a � 25. There

Appendix E 238 Paradigms of collaborationis no restriction on the size of r from the geometric problem. Correspondingly, thereare an in�nite number of solutions to this problem corresponding to the line line 2rotating about the point (15,0) and line 1 stretching so that it remains coincident.The length of radius is undetermined.Consider also the algebraic problem, Palg = (�alg;	alg) with�alg = f(p; IR); (�; IR); (d; IR); (cr; IR); (r; IR); (t; IR); (�; IR); (n; IR)g;	alg = fp = �:d:cr:r; cr = 2�+ tt ; d = 2��r2n; 1 < � < 3; 4 < n < 12;p = 1; d = 1; t = 1g;where �alg is a set of entities and 	alg is a set of constraints.Solving this problem results in values for cr, r and a, as belowcr = 2� + tt= 2� + 1) 3 < cr < 7:1 = �:1:cr:r= �:cr:r) 13 > r > 121 :1 = 2�r2an) 38� < a < 4418� :Now consider the general problem, P = (�;);� = �geom [�alg;	 = 	geom [alg. An interval solver such as ILOG Solver [92] can solve P but only by convert-ing the geometric constraints in Pgeom into a system of equations, thus losing anygeometric knowledge implicit in the problem.However, the problem can be solved using domain speci�c knowledge in a moree�cient manner. If Pgeom is studied using ICBSM or IGCS, then the range ofsolutions found will be 5 � a � 25;r > 0:The domain speci�c knowledge used here is that the rigid bodies can only moveaccording to their allowable motions. Consequently, the solutions to the problem

Appendix E 239 Paradigms of collaborationconsist of all the allowable motions of the rigid bodies.If Palg is solved in parallel, independently of Pgeom, then the solutions to Palg are3 < cr < 7;121 < r < 13 ;38� < a < 4418� :The recombination function f is then used to �nd solutions to P by �nding theintersection of the solutions to Pgeom and Palg3 < cr < 7;121 < r < 13 ;5 � a < 4418� :Parallel solution of P is very e�cient and makes good use of domain speci�c knowl-edge.The decomposition strategy used in this case study is to split P = (�;) intoP1 = Pgeom and P2 = Palg. The hybrid can then be described in the solver collabo-ration language of appendix F as((IGCS; Pgeom)jj(ILOGSolver; Palg)) :E.2 Concurrent hybridsThe third collaboration primitive that Monfroy suggests is concurrency. A concur-rent hybrid takes as input a constraint problem P = (�;). The hybrid has anumber of solvers at its disposal as well as a choice function . The hybrid solvesproblem P simultaneously on all of the subsolvers. The choice function is thenused to decide at run-time which solver and terminal solution space to use. Forexample, a choice function may be to take the solution space of the �rst subsolverthat terminates or the most complete solution space, which will be the largest if allsolvers are sound.In diagrammatical form (see �gure E.3) constraint problem P = (�;) is copiedto subsolvers S1; : : : ; Sn. The subsolvers are initiated on P . The choice function isthen used to decide when to terminate and what solution space is the output of thehybrid.

AppendixE
240

Paradigmsofcollaboration

D(0)

(Φ , Ψ)

Solver 1

Solver 2

Solutions Solutions

Solutions

Solutions

Solutions

Solutions
Solver n D (k)

D (k)

Choice
function D (k)

D (k)

nn

22

11

(Φ, Ψ)

(Φ, Ψ)

(Φ, Ψ)

ψ
Choice of
solution
space

i i

FigureE.3:ConcurrentCollaboration

Appendix E 241 Paradigms of collaborationSimilar to the parallel hybrid, the choice function is critical to the terminalsolution space of the hybrid. However, in this case the function only selects asolution space from amongst n possible solution spaces. Indeed, since is also timedependent, in that it may wish to choose the �rst solver to terminate with a certainproperty, it is not possible to say with certainty what properties the terminal solutionspace may have, unless the function enforces a property such as consistency orcompleteness. Enforcing such a property will mean that the choice function becomesa constraint solver itself and this will be di�cult to implement.The advantages of concurrent hybrids are that they can guarantee certain prop-erties of the terminal solution space, by judicious use of the function, and that,since the solvers act independently, the concurrent subsolvers can be run in parallel.If a choice function is selected that selects the �rst solver to �nish and solvers arerun in parallel, then the concurrent collaboration will reduce the real time neededto solve a problem. Note that if knowledge of the problem can be used to deter-mine the best solver to be used before solution commences, this sort of concurrentcollaboration is wasted.However, concurrent hybrids involve massive duplication of e�ort. Since e�ec-tively each solver is trying to do the same job as every other solver, that is �ndsolutions to P , then they will �nd the same solutions and duplicate the e�ort.Concurrent hybrids also do not improve the expressiveness of individual solvers.Since concurrent solvers are only dealing with the same problems, it is not possibleto improve the expressiveness of an individual solver using the concurrent paradigm,unlike sequential and parallel hybrids.Currently no concurrent hybrids exist in the literature.Concurrent collaboration should be considered if:1. It is unknown which of many solvers will work best.2. A particular property of a solution space is desired.3. Speed is important and there is spare parallel processing power.

Appendix FSolver collaboration languageThe extended solver collaboration language used in this thesis is presented in thisappendix. The extended solver collaboration language is based on Monfroy's solvercollaboration language [84] but has been extended to allow subsolvers to act onsubproblems and also includes a conditional branch statement to initiate backupsolvers when a �rst attempt fails.The extended solver collaboration language is presented in table F.1. The lan-guage is discussed in more detail below.The set Id of identi�ers is used to name solver collaborations and identify them.The symbol S denotes a set of constraint solvers. Note that Monfroy uses only asingle solver in each basic part of a collaboration. It is more suitable here to have anumber of constraint solvers as a decomposition strategy may identify a number ofpossible constraint solvers that can be applied to a subproblem. represents a choice function used in a concurrent collaboration to select fromId 2 Identi�ers,S � Solvers, 2 Conditional selection,P 2 Constraint problems,D 2 Solution spaces,Col ::= Id = E,E ::= �jIdjBjE1;E2jEP j repeat (E)j (EC)j if T then E1 else E2,T ::= E = D,B ::= (P; S)j(P; S) k B;EP ::= EjE k EP;EC ::= EjE?EC.Table F.1: Solver collaboration language (adapted from BALI [84])242

Appendix F 243 Solver collaboration languagea number of solution spaces as described in appendix E.2. The symbol P representsa constraint problem. In the terms of solver collaboration, each P will typically bea subproblem of a larger constraint problem. Consistent with the rest of this thesis,solution spaces form an important part of solver collaboration and are shown as aD. The remaining terms in table F.1 de�ne how the basic symbols can be formed intosolver collaborations. A solver collaboration is described in the solver collaborationlanguage as an expression, E. An expression is assigned a name using the form`Id = E'. An expression consists of one of the following:� The identity solver � which does not re�ne a constraint problem at all.� An identi�er indicating a previously de�ned solver collaboration.� A parallel collaboration. A parallel collaboration consists of a sequence ofconstraint problem-solver pairs or more complicated expressions, linked witha `k' symbol. This is interpreted that each constraint problem-solver pairis solved independently and the solution spaces combined, as described insection E.1. Thus in the parallel collaboration(P1; S1) k (P2; S2) k (P3; S3);problem P1 is solved by a solver in S1; problem P2 is solved by a solver in S2and problem P3 is solved by a solver in S3 independently of each other. Solu-tions are then recombined to give a solution space for the combined constraintproblem formed by P1 [P2 [P3.� A serial collaboration. A serial collaboration consists of a sequence of con-straint problem-solver pairs or more complicated expressions linked with a `;'symbol. This is interpreted that each constraint problem-solver pair is solvedin sequence and that information from the �rst solution is used to solve thesecond and so on as described in section 7.4.1. Thus, in the serial collaboration(P1; S1); (P2; S2); (P3; S3);problem P1 is solved by a solver in S1; problem P2 is solved by a solver in S2and problem P3 is solved by a solver in S3. P1 is solved �rst and informationobtained from this is used in solving P2 and so on. Solutions to P3 are then

Appendix F 244 Solver collaboration languagecombined with the solutions obtained from P1 and P2 to give solutions toP1 [P2 [P3.� Repeated application of a solver collaboration. Sometimes information can beobtained during a solution process that can be used to re�ne the solution evenfurther. However, this information is only apparent after the solution processhas completed. Repeated application of a solver collaboration, Repeat(E), canbe used to force a solver to repeat a solution process until it can progress nofurther. Monfroy demonstrates this in [84] by de�ning the solver collaborationSinc =Maple NF ;Repeat(LinEq):Maple NF transforms polynomials so they can be used by LinEq. LinEq is asolver for linear equalities and inequations using an extension of Gaussian elim-ination. It is repeatedly applied until it cannot simplify the linear equationsany more.� A concurrent collaboration. A concurrent collaboration consists of a numberof constraint problem-solver pairs or more complex expressions linked by a `?'symbol and selected from using a choice function . This is equivalent to theconcurrent collaboration presented in section E.2. Thus, f ((P1; S1)?(P1; S2)?(P1; S3))is a concurrent collaboration where P1 is solved by one of S1, one of S2 andone of S3 concurrently. The choice function f selects the concurrent solutionspace given by the �rst solver to terminate.� A conditional branch. The conditional branch statement has been included inthe language to allow the possibility that a constraint solver expression mayproduce a value di�erent than expected. Should this occur, the user of theconstraint solver may wish to activate backup solvers.For example, suppose that two solvers S1 and S2 can be applied to �nd so-lutions to problem P . Solver S1 is much more e�cient than S2 but can misssolutions occassionally, whereas solver S2 is much more thorough but consid-erably slower. In this case, the user may wish to build a hybrid constraint

Appendix F 245 Solver collaboration languagesolver as below S = [if (S1; P) = ; then (S2; P) else �] ;where � is the identity solver �(P;D) = D.The hybrid solver S will attempt to solve problem P using solver S1. However,if no solutions are found, then S2 is used to �nd solutions to P . Note thatseveral assumptions are made in the de�nition of S:1. S1 is sound. If S1 is not sound then it may return a solution space whichis not identically empty but also does not contain any solutions to P .If S1 is sound and returns an empty set, then S1 has failed to �nd anysolutions and S2 should be used.2. Finding a single solution to P is su�cient. The conditional test does notcount the number of solutions in order to activate S2. It is possible toimagine a conditional branch statement that is predicated by the numberof elements in the solution space, and in particular by the number ofsolutions in the terminal solution space of solver S1. However, such atest would likely be extremely expensive, as estimating the number ofsolutions to even simple constraint problems is di�cult.Note that, other than the conditional guard operator which has been omittedfor clarity, the language in table F.1 contains Monfroy's BALI.The operational semantics of the statements in table F.1 are straight-forwardto convert from Monfroy's descriptions into the terminology of chapters 4- 6. Theconditional branch is described below as an example and because it is not part ofMonfroy's basic language.

Appendix F 246 Solver collaboration languageDe�nition F.1 (Conditional branch) Successful branch:D(k) E0�!� D(k + 1); D(k + 1) = DP : (if E0 = D then E1 else E2;E;D(k)) �! P: (E1;D(k)) : (E1;E;D(k))Unsuccessful branch: D(k) E0�!� D(k + 1); D(k + 1) 6= DP : (if E0 = D then E1 else E2;E;D(k)) �!P: (E2;D(k)) : (E2;E;D(k + 1))�Note that if the conditional branch test is satis�ed, the solver expression E1 operateson the old solution space D(k). If the test fails, the solver expression E2 operateson the new solution space D(k + 1). This produces the desired outcome as in theexample above.The solver collaboration can be used as Monfroy does to produce hybrid con-straint solvers. Some examples of this use are demonstrated in section G and E.1.1.Moreover, the extensions to the solver collaboration language discussed in this sec-tion, combined with a decomposition strategy, allow more complex and potentiallymore powerful hybrids.

Appendix GAn example of many solvers inserialThis appendix describes in more detail the experiment described in section 7.6.This experiment was carried out to study the asymptotic behaviour of various con-straint satisfaction algorithms on a simple case study. The algorithms studied wereINCES [62], a numerical algorithm [46] and a sequential hybrid. The purpose ofthe experiment was to give empirical as well as theoretical evidence that the hybridalgorithm was sound, complete and more e�cient than the other two algorithmsas well as to investigate sequential collaboration. It was anticipated that the hy-brid would be approximately linear in complexity, whilst the other two algorithmswould be quadratic. This would help to underline the advantages of using hybridalgorithms.For convenience, the description of the case study is repeated in the followingsection. A detailed description of the manner in which the experiment was conductedis then explained and the problems encountered are described in full.G.1 Case studyThe case study chosen was an extension of Lamounier's internal combustion enginecase study (see [64] and section 7.3). That problem studied the integration of somealgebraic equations with the geometric constraints describing the construction ofthe piston. The two problems were linked so that the size of the piston and thelength of the crankshaft were variables both in the functional problem and also inthe geometric problem. However, this is a �xed size of problem. In order to studythe asymptotic behaviour of the algorithms, n piston problems were joined together,247

Appendix G 248 An example of many solvers in serial
crankshaft

piston

crank

piston

crank

piston

Functional Problem

Functional Problem

Functional Problem

Figure G.1: Case Study of n Piston Problems Linked Togetheras in �gure G.1.In this case study, the n pistons are linked by coincident constraints at eachend of the piston. Thus the problems are all connected and the complexity of theproblem does increase as the size of n increases. The functional problems are notlinked and are e�ectively lots of small, �xed problems solved independently.G.2 The solvers usedThree solvers were examined. The NAG C05NBC function [46] was used as a numer-ical solver. It was passed the whole set of constraints and used numerical techniquesto converge towards a solution. The speed of convergence depended heavily on theinitial guess, but the best case complexity of the NAG function is
(n2), where n isthe number of constraints.Lamounier's INCES solver [62] is also capable of solving the problem as a whole.However, INCES deals only with equations and not geometric constraints. Geo-metric constraints can be handled if they are reduced to the constituent equations.INCES was expected to be quadratic, as it dealt with the problem as a whole andresorted to numerical solvers if loops appeared.These constraint solvers were compared with a hybrid formed from combiningthe functional solver INCES and the geometric solver IGCS, much as in case study1 (section 7.3). Each functional problem was solved using INCES and the resultswere passed to IGCS by varying the size of the lines in IGCS (see �gure G.2). It washoped that the hybrid would be able to take best advantage of the domain-speci�c

Appendix G 249 An example of many solvers in serial
D(0) IGCS

Constraint Solutions Solutions

Subproblem
INCES D(1)

Geometric

Subproblem

Functional

ProblemFigure G.2: Serial Hybrid used to Solve n Piston Problems Linked Togetherknowledge incorporated in the INCES and IGCS solvers and would be linear. Thetheoretical complexity analysis of the hybrid system is presented in the next section.The decomposition strategy, De, used in this case is to decompose problemP = (�;) into a set f(Si; Pi)g, where solver Si is IGCS if subproblem Pi is geometricand Si is INCES if subproblem Pi is algebraic. Decomposition is performed by �rstidentifying constraints as geometric or algebraic. These form two sets of constraints	01 and 	02. Constructing 	01 and 	02 takes time O(n), where n is the number ofconstraints.Set 	0i is then decomposed further into sets 	00j of connected components, where	1 2 	0i and 	2 2 	0i are connected if there is a path between 	1 and 	2 inthe constraint/entity graph of constraint problem (�;	 n 	0j); j 6= i. Finding theconnected components can be done in a simple graph traversal algorithm that takestime O(m), where m is the number of edges in the constraint/entity graph. Sincethe imposed sets of constraints are usually quite small,m will typically be a multipleof the number of constraints in P . Thus decomposition of P takes time O(n).With this decomposition strategy, the hybrid can be described in the solvercollaboration language of section 7.5 as((S1; P1); (S2; P2); (S3; P3); : : : ; (Sn; Pn)) :G.2.1 Expected behaviour of hybridEach functional problem is solved individually and independently of any other andthe results of each problem are then used as input to the appropriate line segmentsof the geometric problem. Since each problem is independent, it is solved in con-stant time. Therefore n such problems take O(n) time, where n is the number ofconstraints.The geometric problem increases in complexity as the number of problem in-stances increases. However adding a new instance of the problem, due to the natureof IGCS, should only take a constant amount of time to translate each new linesegment so that it is coincident to the previous line segment. Since the constraintsare processed in the order they are positioned, the algorithm should take O(n) timeoverall, where n is the number of constraints.

Appendix G 250 An example of many solvers in serial

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
in

 s
ec

on
ds

Number of constraints

NAG c05nbc with progressively worse initial guess

Figure G.3: NAG function with bad initial guessSince there are no loops in each constraint subproblem, the hybrid of INCES andIGCS should have a linear behaviour. Since the functional problems only provideone solution to the geometric problem, the hybrid solver should be O(n). Thiscompares favourably with the other two constraint solvers.G.3 ResultsThe case study was run for problem sizes between 1 and 200. This gave problemswith between 19 and 3800 variables. For all of the following graphs, the x-axis is thenumber of variables in the problem and the y-axis is the amount of time taken tosolve the problem in seconds. All case studies were run on a Silicon Graphics Indywith an R4600 100MHz IP22 processor and 32 Mbytes of memory.The NAG C05NBC function gave the results in �gure G.3 and in �gure G.4.Figure G.3 shows that with an initial guess that is progressively further and furtheraway from the solution, the time that the NAG algorithm takes to solve the problemincreases in a nonlinear fashion. Divergent results, such as those at n = 1000 wereidenti�ed by the NAG algorithm as `Not Improving' and had not converged to asolution by the time the algorithm terminated. However, underlying the divergentbehaviour, a nonlinear pattern is apparent. For a problem size of 1900 variables,the NAG solver takes approximately 1100 seconds, more than 20 minutes.Figure G.4 shows the NAG C05NBC function with a consistently good guess.

Appendix G 251 An example of many solvers in serial

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
in

 s
ec

on
ds

Number of constraints

NAG c05nbc with consistently close guess

Figure G.4: NAG function with good initial guessThe curve shown is much more regular but the numerical solver still diverges occa-sionally, for example when n = 988. However, even with a good initial guess, theNAG function is still nonlinear, probably quadratic. For a problem size of 1900, theNAG function takes 155 seconds.Figure G.5 shows the results for the INCES solver on the problem. Again, thesolver is obviously nonlinear, but the solution is always found. Note that the INCESalgorithm appears to be about 3 times as fast as the NAG solver. For a problemsize of 1900, INCES took about 55 seconds.Figure G.6 shows the results for the hybrid solver. Even though the curve isnonlinear, the time taken to solve a 1900 variable problem is less than a second, twoorders of magnitude faster than the INCES algorithm. However, the nonlinear curvedoes not agree with the expected behaviour of the hybrid as a linear function wasexpected. Further analysis of the INCES and IGCS algorithms discovered that theparametric constraint list and dependency hierarchy lists respectively were reducingthe two algorithms to quadratic behaviour.In INCES, the parametric constraint list is used as a global data structure todescribe the entire constraint problem. Whenever a constraint is referenced, theINCES solver searches through the parametric constraint list to �nd the referenceto the appropriate constraint. INCES is an incremental solver and correspondingly,each time a constraint is added, the parametric constraint list is checked. Theconstraint list is of O(n) size, where n is the number of constraints in the problem,

Appendix G 252 An example of many solvers in serial

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
in

 s
ec

on
ds

Number of constraints

Solution of combined problem using INCES

Figure G.5: Solving with INCES

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Hybrid solution with dependency hierarchy list

Figure G.6: Hybrid solution using IGCS and INCES

Appendix G 253 An example of many solvers in serial

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Solution of only parametric model

Figure G.7: Solving the functional problem only using INCES without global para-metric constraint listand since each time a constraint is added the parametric constraint list is studied, bythe time n constraints have been added to the problem, the parametric constraintlist has been consulted n times. The �rst such consultation takes 1 lookup, thesecond 2 lookups, until the �nal constraint insertion takes n lookups. Thus, juststudying the parametric constraint list takes O(n2).Removing the parametric constraint list each time the functional problem wassolved resulted in the graph in �gure G.7 showing the time taken to solve only thealgebraic model.In IGCS, the dependency hierarchy list is used to search for loops in the con-straint graph. The dependency hierarchy of an entity is the list of entities for whichsolutions must be found before solutions to the entity itself can be found. In orderto �nd whether a constraint problem has a loop or not, when a constraint betweentwo entities is added, the dependency hierarchy of both entities is compared. If theyshare a common ancestor in the dependency hierarchy, then a loop has been created.Unfortunately, the implementation of this dependency hierarchy list results in thequadratic behaviour of IGCS.As a new constraint is added between two entities, the dependency hierarchy listsof the two entities are compared. In the long chain of constraints used in this casestudy, the constraint is always between an entity with a dependency hierarchy ofthe whole problem and an entity with a dependency hierarchy of only a few entities.

Appendix G 254 An example of many solvers in serial

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Geometric part only solved with IGCS without dependency hierarchy list

Figure G.8: Solving the geometric problem only using IGCS without the dependencyhierarchy listHowever, IGCS as currently implemented searches through the whole set of entitiesin each dependency hierarchy to �nd common elements. This takes O(m), where mis the number of entities in the problem. This is repeated for each new constraintas it is inserted and since there are n constraints, the operation as a whole takesO(mn). Since the number of constraints is usually similar to the number of entitiessimply consulting the dependency hierarchy list in IGCS takes O(n2).Removing the dependency hierarchy list altogether resulted in the graph of �g-ure G.8 showing the time taken to solve only the geometric problem. Note thatboth of these graphs are roughly linear. Irregularities can be associated with thecoarseness of the timing function available.Recombining the new, linear versions of IGCS and INCES results in a hybridalgorithm with results as in �gure G.9. Note that the hybrid is approximatelylinear in complexity and that the time taken to solve a 1900 variable problem isapproximately 0.25 seconds, an order of magnitude improvement over the previousversion.G.4 ConclusionsThe hybrid constraint solver is very fast indeed. It is linear, whereas the othersolvers compared were quadratic at best. It is three or four orders of magnitude

Appendix G 255 An example of many solvers in serial

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Hybrid solution without dependency hierarchy list

Figure G.9: Solution using a hybrid algorithm of IGCS without depH list and INCESwithout global parametric constraint listfaster than the NAG function. Figure G.10 shows the various graphs in relationto each other. Even for problems of 100 or so variables, the hybrid is much faster.It is also signi�cant that the hybrid with the depH list, whilst nonlinear, is stillmuch faster than INCES and C05NBC. The depH list is used to identify loopsand, as IGCS cannot handle loops without it, something equivalent will have to beimplemented. Disjoint forests [21] would increase the complexity of the current O(n)algorithm to O(n logn) for example, rather than O(n2), where n is the number ofconstraints.

Appendix G 256 An example of many solvers in serial

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

on
ds

Number of constraints

Hybrid solution with dependency hierarchy list
Hybrid solution without dependency hierarchy list

Solution of combined problem using INCES
NAG c05nbc with consistently close guess

Figure G.10: A comparison of the C05NBC function and INCES algorithm with thehybrid solver

Appendix HGlossary
Articulation pair A pair of vertices (A;B) in a graph G are an articu-lation pair if removal of A and B from G, along withall edges incident to A or B, disconnects G.Bijections A bijection is a function that is injective and surjec-tive. If f is bijective then f has well-de�ned inverse.Bipartite graph A bipartite graph is a graph (V;E) such that V =U[W , U\W = ; and 8(a; b) 2 E, (a 2 U ^ b 2 W).Cartesian product The Cartesian product of two sets A and B is the setof all ordered pairs (a; b) where a 2 A and b 2 B.Connected graph A graph G = (V;E) is connected if for every pair ofvertices u and v in V , there exists a path from u tov.Countable sets A set A is countable if it is �nite or if there exists abijection f : N ! A.Directed edges An edge e of graph G is directed if there is an orderplaced on the vertices in the edge. Directed edgesare represented using the notation [u; v] where u andv are vertices in G.First order formulae First order predicate logic formulae,Graph Let V be a �nite set of vertices and E be a subset ofthe unordered pairs of vertices. Then a graph is theordered pair (V;E).Hyperedge A hyperedge is a �nite set of vertices.257

Appendix H 258 GlossaryHypergraph A hypergraph (V;HE) is an ordered pair of a �niteset of vertices V and a �nite set of hyperedges HE.Injective functions A function f : A ! B is injective if f(x) = f(y)implies x = y.Labelled graph A graph G = (V;E) is labelled if each edge e 2 E islabelled with a symbol.Loop A loop in a graph G is an edge (u; u) where u is avertex in G.Path A path in a graph G = (V;E) is an alternatingsequence of vertices and edges v0; e1; v1; : : : ; en; vnwhere ei = (vi; vi+1), all edges are di�erent and novertices are repeated except possibly that the lastand the �rst are the same.Quanti�er free A �rst order formula lacking the symbols 8 and 9,Simple graphs A simple graph has at most one edge between anytwo vertices.Strongly connected com-ponents A graph is a strongly connected component if thereexists a path from every vertex to every other vertex.Surjective functions A function f : A ! B is surjective if f(A) = B,where f(A) = ff(a); a 2 Ag.Symmetric constraints A constraint C is symmetric if �(C) = fxi1 ; : : : ; xijgis the imposed set on C, vi1 ; : : : ; vij are values inDi1 ; : : : ; Dij of xi1 ; : : : ; xij respectively and(v1; : : : ; vi1 ; : : : ; vij ; : : : ; vn) 2 C)(v1; : : : ; �l(vi1); : : : ; �l(vij); : : : ; vn) 2 Cfor all permutations �l of (vi1 ; : : : ; vij). A constraintis non-symmetric if it is not symmetric.Undirected edges An edge e of graph G is undirected if there is noorder placed on the vertices in the edge. Undirectededges are represented using the notation (u; v) whereu and v are vertices in G.Triconnected components A graph is a triconnected component if it containsno articulation pairs.

Bibliography[1] B. Aldefeld. Variation of geometries based on a geometric-reasoning method.Computer-Aided Design, 1988.[2] Ram Anantha, Glenn A. Kramer, and Richard H. Crawford. Assembly mod-elling by geometric constraint satisfaction. Computer-Aided Design, 28(9):707{722, 1996.[3] R. Anderl and R. Mendgen. Modelling with constraints: Theoretical founda-tion and application. Computer-Aided Design, 28(3):155{168, 1996.[4] Farhad Arbab and Bin Wang. A constraint-based design system based onoperational transformation planning. In Proceedings of the 4th InternationalConference on the Applications of Arti�cial Intelligence in Engineering, pages405{426, Cambridge, UK, July 1989.[5] P. Atzeni and V. De Antonellis. Relational Database Theory. The Ben-jamin/Cummings Publishing Company Inc, 1993.[6] F. Baader and K. Schulz. On the combination of symbolic constraints, solu-tion domains and constraint solvers. In Proceedings of the �rst InternationalConference on Principles and Practice of Constraint Programming - CP95,volume 976 of Lecture Notes in Computer Science, pages 380{397. Springer-Verlag, 1995.[7] F. Baader and K. U. Schulz. Combination of constraint solving techniques:An algebraic point of view. In Proceedings of the 6th International Conferenceon Rewriting Techniques and Applications, volume 914 of Lecture Notes inComputer Science, pages 50{65. Springer-Verlag, 1995.[8] D. Bara�. Interactive simulation of solid rigid bodies. IEEE Computer Graph-ics and Applications, pages 63{74, May 1995.259

260 BIBLIOGRAPHY[9] Sanjay Bhansali, Glenn A. Kramer, and Tim J. Hoar. A principled approachtowards symbolic geometric constraint satisfaction. Journal of Arti�cial In-telligence Research, 4:419{443, 1996.[10] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfac-tion and optimization. Journal of the ACM, 44(2):201, March 1997.[11] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint Hierarchies. Lispand Symbolic Computation, 5:223{270, 1992.[12] Alan Borning. Thinglab - a constraint-oriented simulation laboratory. Tech-nical Report SSL-79-3, Xerox Palo Alto Research Center, July 1979.[13] W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. A Geometric Con-straint Solver. Technical Report CSD-Tr-93-054, Department of ComputerScience, Purdue University, August 1993.[14] W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. A geometric con-straint solver. Computer-Aided Design, 27(6):487{501, June 1995.[15] Mark W. Brunkhart. Interactive geometric constraint systems. Master's thesis,Computer Science Division, Deparment of Electrical Engineering and Com-puter Science, University of California, Berkeley, 1994.[16] S.A. Buchanan and A. de Pennington. Constraint De�nition System: aComputer-Algebra based Approach to Solving Geometric-Constraint Prob-lems. Computer-Aided Design, 25(12):741{750, December 1993.[17] B. Buchberger. Gr�obner bases: an algorithmic method in polynomial idealtheory. In N. K. Bose, editor, Multidimensional systems theory, pages 184{232. D. Reidel Publishing Company, 1985.[18] Bruce W Char, Keith O Geddes, Gaston H Gonnet, Benton L Leone, Michael BMonagan, and Stephen MWatt. Maple V Library Reference Manual. Springer-Verlag, 1991.[19] J.C.H. Chung and M.D. Schussel. Technical evaluation of variational andparametric design. In Proceedings of Autofact '89, pages 5/27{5/44, 1989.[20] C. Clarke. Pro-engineer. CAD/CAM, 12(1), January 1993.

261 BIBLIOGRAPHY[21] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introductionto Algorithms. MIT Press, 1992.[22] Maurice Dohmen. A survey of constraint satisfaction techniques for geometricmodeling. Computers and Graphics, 19(6):831{845, 1995.[23] Jean-Francois Dufourd, Pascal Mathis, and Pascal Schrek. Formal resolution ofgeometric constraint systems by assembling. In Proceedings of Solid Modelling97, 1997.[24] Lynn Eggli, Ching yao Hsu, Beat Br�uderlin, and Gershon Elber. Inferring3d models from freehand sketches and constraints. Computer-Aided Design,29(2):101{112, 1997.[25] M. Fa. Interactive Constraint-based Solid Modelling. PhD thesis, School ofComputer Studies, University of Leeds, September 1993.[26] M. Fa, T. Fernando, and P. M. Dew. Direct 3D Manipulation Techniquesfor Interactive Constraint-based Solid Modelling. Computer Graphics Forum,Proc. of EuroGraphics'93, 12(3):237{248, September 1993.[27] M. Fa, T. Fernando, and P. M. Dew. Interactive Constraint-based Solid Mod-elling using Allowable Motion. Proc. of ACM/SIGGRAPH Symposium onSolid Modelling and Applications, pages 243{252, May 1993.[28] J.-C. Faugere. R�esolution des syst�emes d'�equations alg�ebriques. PhD thesis,Universit�e Paris 6, 1994.[29] L.T.P. Fernando, P.M. Dew, and F. Gao. Constraint-based interaction tech-niques for supporting a distributed collaborative engineering environment. InProceedings of the First Workshop on Simulation and Interaction in VirtualEnvironments - SIVE '95, pages 265{270, 1995.[30] L.T.P. Fernando, M. Fa, P.M. Dew, and M. Munlin. Constraint-based 3d ma-nipulation techniques within virtual environments. In R.A. Earnshaw, editor,Virtual Reality Applications, pages 71{89. Academic Press, 1995.[31] T. Fernando, P. M. Dew, M. Fa, J. Max�eld, and N. Hunter. A Shared VirtualWorkspace for Constraint-based Solid Modelling. EuroGraphics Workshop onVirtual Environments, September 1993.

262 BIBLIOGRAPHY[32] T. Fernando, M. Fa, P. M. Dew, and Mudarmeen Munlin. Constraint-based 3DManipulation Techniques for Virtual Environments. In Proc. of InternationalState of the Art Conference (BCS) on Applications of Virtual Reality, Ed. byR. A. Earnshaw, J. Vince and H. Jones, 1994.[33] R. Fra��ss�e. Theory of Relations, volume 118 of Studies in Logic and the Foun-dations of Mathematics. Elsevier Science Publishers, Amsterdam, 1986.[34] B. N. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Con-straint Solver. Communications of the ACM, 33(1), January 1990.[35] E. Freuder and P. Hubbe. A disjunctive control schema for constraint sat-isfaction. In V. J. Saraswat and P. Van Hentenryck, editors, Principles andPractice of Constraint Programming. MIT Press, 1995.[36] E. C. Freuder and P.D. Hubbe. Extracting constraint satisfaction subproblems.In 14th International Joint Conference on Arti�cial Intelligence, 1995.[37] I. Fudos. Editable Representations for 2D Geometric Design. Master's thesis,School of Computer Studies, Purdue University, 1993.[38] I. Fudos and C. Ho�mann. Correctness Proof of a Geometric Constraint Solver.Technical Report CSD 93-076, Department of Computer Science, Purdue Uni-versity, December 1993.[39] Ioannis Fudos and Christoph Ho�mann. A graph-constructive approach tosolving systems of geometric constraints. ACM Transactions on Graphics,16(2):179, April 1997.[40] Esther Gelle and Ian Smith. Dynamic constraint satisfaction with conictmanagement in design. In Michael Jampel, Eugene Freuder, and MichaelMaher, editors, Over-Constrained Systems, number 1106 in LNCS, pages 237{252. Springer, 1996.[41] M. Gleicher. Integrating Constraints and Direct Manipulation. 1992 Sympo-sium on Interactive 3D Graphics, pages 171{174, 1992.[42] M. Gleicher. A Graphics Toolkit Based on Di�erential Constraints. UIST '93,pages 109{120, November 1993.[43] M. Gleicher and A.Witkin. Di�erential manipulation. Graphics Interface,pages 61{67, June 1991.

263 BIBLIOGRAPHY[44] Michael Gleicher. A Di�erential Approach to Graphical Interaction. PhDthesis, School of Computer Science, Carnegie Mellon University, November1994. CMU-CS-94-217.[45] Sreenivasa R Gorti and Ram D Sriram. From symbol to form: a framework forconceptual design. Computer-Aided Design, 28(11):853{870, November 1996.[46] Nottingham Algorithms Group. Nag library manual : Mark 5, 1976. FortranEdition.[47] Christoph Ho�mann and Jaroslaw Rossignac. A road map to solid model-ing. IEEE Transactions on Visualization and Computer Graphics, 2(1):3{10,March 1996.[48] C.M. Ho�mann and R.Juan. Erep - An Editable, High-level Representation forGeometric Design and Analysis. Technical report, Department of ComputerSciences, Purdue University, 1994.[49] J.E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-nents. SIAM Journal of Computation, 2(3):135{158, September 1973.[50] H. Hosobe, K. Miyashita, S. Takahashi, S. Matuoka, and A. Yonezawa. Locallysimultaneous constraint satisfaction. In Alan Borning, editor, PPCP'94: Sec-ond Workshop on Principles and Practice of Constraint Programming, SeattleWA, May 1994.[51] J. Ja�ar, M. Maher, P. Stuckey, and R. Yap. Beyond �nite domains. In AlanBorning, editor, PPCP'94: Second Workshop on Principles and Practice ofConstraint Programming, Seattle WA, May 1994.[52] Joxan Ja�ar and Michael Maher. Constraint logic programming: a sur-vey. Journal of Logic Programming, Special 10th Anniversary Issue,, 19/20,May/July 1994.[53] Narendra Jussien and Patrice Boizumault. Implementing constraint relaxationover �nite domains using ATMS. In Michael Jampel, Eugene Freuder, andMichael Maher, editors, Over-Constrained Systems, number 1106 in LNCS,pages 265{280. Springer, 1996.[54] N.P. Juster. Modelling and Representation of Dimensions and Tolerances : ASurvey. Computer-Aided Design, 24(1):3{17, January 1992.

264 BIBLIOGRAPHY[55] H. Kirchner and C. Ringeissen. Combining symoblic constraint solvers onalgebraic domains. Journal of Symbolic Computation, 18(2):113{155, 1994.[56] K. Kondo. Algebraic Method for Manipulation of Dimensional Relationshipsin Geometric Models. Computer-Aided Design, 24(3):141{147, March 1992.[57] G. A. Kramer. Using Degrees of Freedom Analysis to Solve Geometric Con-straints. In J. Rossignace and J. Turner, editors, Proceedings Symposiumon Solid Modeling Foundations and CAD/CAM Applications, pages 371{378,1991.[58] G. A. Kramer. A Geometric Constraint Engine. Arti�cial Intelligence, 58:327{360, 1992.[59] Glenn A. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.[60] Vipin Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey.AI Magazine, pages 32{44, Spring 1992.[61] Timo Laakko and Martti M�antyl�a. Incremtnal constraint modelling in a fea-ture modelling system. In J. Rossignac and F. Sillion, editors, EUROGRAPH-ICS '96, volume 15. Eurographics Association, Blackwell Publishers, 1996.[62] E. Lamounier, T. Fernando, and P. Dew. An Incremental Constraint Equa-tion Solver for Variational Design. In Proceedings of the Fourth InternationalConference on Computational Graphics and Visualization Techniques (COM-PUGRAPHICS'95), pages 81{90, December 1995.[63] Edgard Lamounier. First Year Report. Technical report, School of ComputerStudies, University of Leeds, 1994.[64] Edgard Lamounier. An incremental constraint-based approach to support engi-neering design. PhD thesis, School of Computer Studies, University of Leeds,1996.[65] Herv�e Lamure and Dominique Michelucci. Solving geometric constraints byhomotopy. IEEE Transactions on Visualization and Computer Graphics,2(1):28{33, March 1996.[66] R. Latham and A. Middleditch. Connectivity Analysis : A Tool for ProcessingGeometric Constraints. Technical report, Brunel University, UK, August 1994.

265 BIBLIOGRAPHY[67] Richard Latham and Alan Middleditch. Connectivity analysis: a tool forprocessing geometric constraints. Computer-aided Design, 28(11):917{928,November 1996.[68] Richard Samuel Latham. Combinatorial algorithms for the analysis and sat-isfaction of geometric constraints. PhD thesis, Brunel University, 1996. PhDL356.[69] Robert Light and David Gossard. Modi�cation of geometric models throughvariational geometry. Computer-Aided Design, 14(4):209{214, July 1982.[70] V.C. Lin, D.C. Gossard, and R.A. Light. Variational Geometry in ComputerAided Design. Computer Graphics, 15(3):171{175, August 1981.[71] G. Lopez, B. Freeman-Benson, and A. Borning. Kaleidoscope : A ConstraintImperative Programming Language. Technical Report UW-CSE-93-09-04,University of Washington, 1993.[72] Tom�as Lozano-P�erez. Spatial planning: A con�guration space approach. IEEETransactions on Computers, 32(2):108{120, February 1983.[73] D-Cubed Ltd. The 2-d dcm technical overview. 68 Castle Street, Cambridge,CB3 0AJ, England.[74] D-Cubed Ltd. 3-d dcm technical overview. 68 Castle Street, Cambridge, CB30AJ, England.[75] D-Cubed Ltd. An overview of d-cubed and the dcm. 68 Castle Street, Cam-bridge, CB3 0AJ, England.[76] M. Mantyla. A Modelling System for Top-down Design of Assembled Products.IBM J. Res. Develop., 34(5):636{658, 1990.[77] M. Mantyla. WAYT: Towards a Modelling Environment for Assembled Prod-ucts. Intelligent CAD III, pages 187{203, 1991.[78] J. Max�eld, L.T.P. Fernando, and P.M. Dew. A distributed virtual envi-ronment for collaborative engineering. In Proceedings Virtual Reality AnnualInternational Symposium - VRAIS'95, pages 162{170, 1995.

266 BIBLIOGRAPHY[79] John Max�eld. A Distributed Virtual Environment for Synchronous Collabo-ration in Simultaneous Engineering. PhD thesis, School of Computer Studies,University of Leeds, July 1996.[80] M.Bouzoubaa, B. Neveu, and G.Hasle. Houria : A solver for equational con-straints in a hierarchical system. In Proceedings of the OCS workshop inconjunction with CP-95, Cassis, France, 1995.[81] Pedro Meseguer. Constraint Satisfaction Problems: An Overview. AI Com-munications, 2(1):3{17, March 1989.[82] E. Monfroy and C. Ringeissen. Domain-independent constraint solver ex-tension. Technical report, Centre de Recherche en Informatique de Nancy,Vandoeuvre-ls-Nancy, 1996.[83] E. Monfroy, M. Rusinowitch, and R. Schott. Implementing non-linear con-straints with cooperative solvers. Technical Report Technical Report 95-R-110, Centre de Recherche en Informatique de Nancy, Vandoeuvre-ls-Nancy,1995. Also as INRIA Technical Report RR-2747.[84] Eric Monfroy. An environment for designing/executing constraint solver col-laborations. Technical report, Centre de Recherche en Informatique de Nancy,Vandoeuvre-ls-Nancy, 1996.[85] Eric Monfroy, Michael Rusinowitch, and Rene Schott. Implementing non-linear constraints with cooperative solvers. In K. M. George, J. H. Carrol-land D. Oppenheim, and J. Hightower, editors, Proceedings of ACM Sympo-sium on Applied Computing, SAC '96, pages 63{72, February 1996.[86] J. Owen. Algebraic Solution for Geometry from Dimensional Constraints.Symposium on Solid Modelling Foundations and CAD/CAM Applications,June 1991.[87] J. Pabon, R. Young, and W. Keirouz. Integrating Parametric Geometry, Fea-tures and Variational Modeling for Conceptual Design. International Journalof Systems Automation: Research and Applications (SARA), 2:17{36, 1992.[88] G. Pahl and W. Beitz. Engineering Design. Design Council, 1984.[89] John Platt. A generalization of dynamic constraints. CVGIP: Graphical Mod-els and Image Processing, 54(6):516{525, November 1992.

267 BIBLIOGRAPHY[90] William H Press, Brian P Flannery, Saul A Teukolsky, and William T Vet-terling. Numerical Recipes : The Art of Scienti�c Computing. CambridgeUniversity Press, 1986.[91] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Com-putational Intelligence, 9(3):268{299, 1993.[92] Jean-Francois Puget. A C++ Implementation of CLP. In Proceedings ofSPICIS-94 (Singapore International Conference on Intelligent Systems), 1994.[93] A. A. G. Requicha. Representations of Tolerances in Solid Modelling: Issuesand Alternative Approaches. In Solid Modelling by Computers From Theoryto Applications, 1984.[94] M. Sanella. The SkyBlue Constraint Solver and its Applications. Proceedingsof the 1993 Workshop on Principles and Practice of Constraint Programming,1994.[95] M. Sanella and R.A. Borning. Multi-Garnet - Integrating Multi-Way Con-straints with Garnet. Technical Report UW-CSE-92-07-01, University ofWashington, 1992.[96] M. Sanella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-Way vsOne-Way Constraints in GUIs - Experience with the Deltablue Algorithm.Technical Report UW-CSE-92-07-05a, University of Washington, 1993.[97] M. Sapossnek. Research on constraint-based design systems. In Applicationsof AI '89, 1989.[98] D. Serrano. Managing Constraints in Concurrent Design : First Steps. ASME90, pages 159{164, 1990.[99] D. Serrano. Automatic dimensioning in design for manufacturing. SM '91,pages 379{385, 1991.[100] David Serrano. Constraint Management in Conceptual Design. PhD thesis,Department of Mechanical Engineering, MIT, 1987.[101] David Serrano and David Gossard. Tools and Techniques for ConceptualDesign. In Arti�cial Intelligence in Engineering Design, volume 1, chapter 3,pages 71{116. Academic Press, Inc, 1992.

268 BIBLIOGRAPHY[102] Shuichi Shimizu and Masayuki Numao. Constraint-based Design for 3DShapes. Arti�cial Intelligence, 91(1):51{69, 1997.[103] Barbara Smith. A Tutorial on Constraint Programming. Technical Report95-14, University of Leeds, April 1995.[104] Barbara Smith and Martin Dyer. Locating the phase transition in constraintsatisfaction problems. Arti�cial Intelligence, 81:155{181, 1996. Special issueon Frontiers in Problem Solving: Phase Transitions and Complexity.[105] Barbara Smith and Stuart Grant. Sparse constraint graphs and exceptionallyhard problems. In Proceedings of IJCAI-95, volume 1, pages 646{651, August1995.[106] W. Sohrt and J.D. Bruderlin. Interaction with Constraints in 3D Modelling.International Journal of Computational Geometry and Applications, 1(4):405{425, 1991.[107] Michael Spivak. A Comprehensive Introduction to Di�erential Geometry, vol-ume One. Publish or Perish, Inc, 2nd edition, 1979.[108] Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication Sys-tem. PhD thesis, MIT, Cambridge, Mass., 1963.[109] W. A. Sutherland. Introduction to Metric and Topological Spaces. OxfordScience Publications, 1987.[110] Martin Thompson. Techniques for supporting maintenance analysis in vir-tual environments. First Year Transfer Report, School of Computer Studies,University of Leeds, 1996.[111] J-C Tsai, R. Konkar, and M.R. Cutkosky. Issues in Incremental Analysis ofAssemblies for Concurrent Design. 2nd International Conference on AI inDesign, 1992.[112] Y. T. Tsai, T. Fernando, and P.M. Dew. Exploiting degrees of freedom anal-ysis for interactive constraint-based design. In N. M. Thalmann and V. Skala,editors, The Fourth International Conference in Central Europe on ComputerGraphics andVisualization'96 (WSCG '96), pages 377{387, Plzen, Czech Re-public, February 1996.

269 BIBLIOGRAPHY[113] Yung-Teng Tsai. Incremental Geometric Constraint Satisfaction Algorithms.PhD thesis, School of Computer Studies, University of Leeds, 1996.[114] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.[115] Edward Tsang and Alvin Kwan. Mapping constraint satisfaction problems toalgorithms and heuristics. Technical Report CSM-198, Department of Com-puter Science, University of Essex, 1993.[116] Edward P. K. Tsang, James Borrett, and Alvin C. M. Kwan. An attempt tomap the performance of a range of algorithm and heuristic combinations. InJ. Hallam, editor, Proceedings AISB-95, pages 203{216. IOS Press, Amster-dam, 1995.[117] EDS Unigraphics. Unigraphics cad/cam/cae. World Wide Web Page.http://www.ug.eds.com/ug/.[118] G. Vanecek, Jr and J. F. Cremer. Project isaac: Building simulations forvirtual environments. Technical report, Department of Computer Science,Purdue University, 1994.[119] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for parame-terised computer-aided design. Computer-Aided Design, 24(10):531{540, Oc-tober 1992.[120] Roger Westbrook. Structural Engineering Design in Practice. ConstructionPress, 1984.[121] Kevin Wise. Using multidimensional csg models to map where objects canand cannot go. Technical Report 001/1996, University of Bath, January 1996.http://www.bath.ac.uk/�enskdw/Tech rep 001 96/trans rep.html.[122] Andrew Witkin, David Bara�, and Michael Kass. An Introduction to Physi-cally Based Modeling, chapter Constrained Dynamics. World Wide Web Pagehttp://www.cs.cmu.edu/�baraff/pbm/pbm.html, 1997.[123] Armin Wolf. Transforming ordered constraint hierarchies into ordinary con-straint systems. In Michael Jampel, Eugene Freuder, and Michael Maher,editors, Over-Constrained Systems, number 1106 in LNCS, pages 171{188.Springer, 1996.

270 BIBLIOGRAPHY[124] Anthony Wren and Jean-Marc Rousseau. Bus driver scheduling - an overview.Technical Report 93.31, School of Computer Studies, University of Leeds,1993.[125] Yasushi Yamaguchi and Fumihiko Kiumra. A constraint modeling system forvariational geometry. In J. Wozny, J. Turner, and K. Preiss, editors, GeometricModeling for Product Engineering, pages 221{233. North Holland, 1990.

