A Mathematical Framework for a General

Purpose Constraint Management System

by

Steven James Carden

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds
School of Computer Studies

June 1998

The candidate confirms that the work submitted is his own and that
appropriate credit has been given where reference has been made to the

work of others.

Abstract

The use of constraints in engineering for designing complex models is very pop-
ular. Current constraint solvers are divided into two broad classes: general and
domain specific. Those that are general can handle very general constraint prob-
lems but are typically slow; while those that are domain specific can handle only a
specific type of problem but are typically fast. For example, numerical algorithms
are slow but general, whilst local propagation techniques are fast but limited to
simple problems.

It is generally acknowledged that there is a close coupling between engineering
constraints and geometric constraints in the design process and so the solution of
constraint problems consisting of engineering and geometric constraints is an impor-
tant research issue. Some authors attempt to overcome the expressive limitations of
domain specific solvers by using hybrid systems which try to find a balance between
the speed of domain specific solvers and the generality of general solvers.

Previous research at the University of Leeds has led to the development of a num-
ber of domain specific solvers that are capable of solving geometric and engineering
constraint problems separately. In particular, the Leeds solvers are incremental and
can find solutions when a new constraint is added very quickly. This thesis investi-
gates the use of a hybrid of the various Leeds solvers with an aim to interactively
solving constraint problems in engineering design. This hybrid would have the speed
advantages of the domain specific solvers and the expressiveness of a more general
solver. In order for the hybrid to be constructed, commonalities of existing engineer-
ing constraint solvers must be identified. A characterisation of existing constraint
solvers leads to the identification of a number of issues that need to be addressed
before the hybrid can be built.

In order to examine these issues, a framework for the constraint satisfaction
process is presented that allows abstractions of constraint definition, constraint rep-
resentation and constraint satisfaction. Using the constraint satisfaction framework,
it is possible to study the quality of solution of constraint solvers. This leads to the
identification of important problems in current constraint solvers.

The constraint process framework leads to a study of the use of various paradigms
of collaboration within the hybrid, such as sequential, parallel and concurrent. The
study of the quality of solution allows concrete statements to be made about the
hybrid collaborations. A new incremental constraint solver is presented that uses
the hybrid collaboration paradigms and provides a first step towards a powerful

engineering constraint solver.

Acknowledgments

First of all, T would like to thank Pete Dew, my supervisor. Although I was
jealous of more ordered projects, I enjoyed the relatively free hand with just enough
rope to hang myself. Pete was (usually) there with an encouraging word and just
enough guidance to keep me on the right track. Either that or I finally convinced
him that I was right!

Terrence Fernando, my second supervisor, was also a great support to me, as
was the whole Virtual Working Environment group, especially Martin Thompson,
Mingxian Fa, Yung-Teng Tsai and Edgard Lamounier.

The people in BGT and the Al lab also kept me comparatively sane and cheerful,
especially on trips to the Pennines.

Russ Bubley was a huge help throughout the three years I have known him and
shared an office with him. We continually bounced ideas off each other and whilst
I tried not to be too ignorant of what he was talking about, he usually managed
to put me straight on my project. His capitulation at squash was also particularly
gratifying.

My housemates, Mark, Fred and Stuart, were great fun to be with and we've
had some great parties.

My parents and siblings, Jim, Carol, Neil and Claire, put up with many a demon-
stration at the dinner table about what constraints actually were. I think they're
still none the wiser.

And finally, I would like to thank Alice, who, besides being wonderful and sym-
pathetic all the way through, also proof-read my thesis, even though it must have
sounded like gobbledigook to her.

i

Contents

1

2

Introduction
1.1 Objectives of this thesis
1.2 Incremental constraint solvers

1.3 Thesis organisation Lo

Related Work
2.1 The theory of constraints L.
2.1.1 Dimensionso
2.1.2 Decomposition of constraint problems
2.1.3 Hybrid constraint solvers
2.1.4 Solution spaces
2.2 Constraints in engineering design
2.3 Constraint solvers
2.3.1 General constraint solvers
2.3.1.1 Numerical solvers
2.3.1.2 Symbolicsolvers
2.3.2 Finite domain constraint solvers
2.3.2.1 Backtracking o000
2.3.2.2 Forward-checking
2.3.2.3 Other finite domain research
2.3.3 Geometric constraint solvers
2.3.3.1 Under-constrained geometric constraint solvers
2.3.3.2 Well-constrained geometric constraint solvers
2.3.3.3 Over-constrained geometric constraint solvers
2.3.4 Functional constraint solvers
2.3.4.1 Over-constrained functional constraint solvers
2.3.5 Maintenance and physical constraint solvers

2.4 Conclusions s

il

13

23

3 Solving Problems by Decomposition 42

3.1 Examples of current constraint solvers 45
311 DCMo 45
3.1.2 INCES e 48
313 IGCS. 50
3.1.4 Connectivity Analysis o1

3.2 Decomposition strategieso Lo 25
3.2.1 Examples of decomposition strategies 56
3.2.2 Decomposition to domain specific subproblems a7
3.2.3 Advantages of decomposition strategies 58
3.2.4 Limitations of decomposition strategies 59
3.2.5 Incremental issues in decomposition strategies 62
326 Conclusions o 65

3.3 Ordering strategies L 65
3.3.1 Examples of ordering strategies 66
3.3.2 Ordering strategies for a constraint solver 67
3.3.3 Incremental issues in ordering strategies 69
3.3.4 Conclusions 69

3.4 Solution of subproblems L. 70
3.4.1 Examples of solution of subproblems 71
3.4.2 Solving using domain specific knowledge 71
3.4.3 Incremental issues in solving subproblems 72
3.4.4 Conclusions 72

3.5 Conclusions 72

4 Constraint Definition 75

4.1 Entities e 77

4.2 Constraints 79

4.3 Constraint problems L 84

4.4 Constraint solvers 90

4.5 Dimensions 91
4.5.1 Definition of dimensions 91
4.5.2 Constrainednesso 94

4.6 Conclusions 98

v

5 Constraint Representation

5.1 Representing entities and constraints

5.1.1 Finite-domain entities and constraints
5.1.2 Infinite-domain entities and constraints
5.2 Representing constraint problems
5.3 Example constraint representation schemes
5.3.1 Algebraic representation
5.3.2 Relationship graph representation
5.3.3 Undirected graph representation
5.3.4 Hypergraph representation
5.3.5 Bipartite representation
5.3.6 Valid representation schemes

5.4 Reductions

5.5 Conclusions

6 Constraint Satisfaction

6.1 Constraint solution

6.1.1

6.2 A framework for the solution process

6.2.1
6.2.2
6.2.3

6.2.4
6.2.5
6.2.6

6.3 Enrichment of the constraint satisfaction framework

6.3.1
6.3.2
6.3.3
6.3.4

6.4 Conclusions

Solution spaces

Solution steps
Properties of solution steps
Solution processes
6.2.3.1 Solution processes always head towards a solution .

Solution process properties L.

Using local properties to draw conclusions about processes

Consequences of the Local-Global Theorem

Constraint priorities
Variable-driven satisfaction
Backtracking o Lo o

Incremental satisfaction

7 Hybrid Collaboration

7.1 Using domain specific knowledge in constraint solvers

7.1.1
7.1.2

Using domain specific knowledge is fast

Using domain specific knowledge is not enough

100
102
102
103
103
105
105
106
106
107
108
109
110
117

119
120
121
122
123
124
127

. 130

131

. 135

136
137
138
140
141
143
145

148

. 152

7.2 Hybrid constraint solvers L. 154
721 BALL. 158
7.2.2 Enhanced solution spaces 160

7.3 A simple example hybrid constraint solver 161

7.4 Paradigms of collaboration 00000 166
7.4.1 Sequential hybrids 00, 166

7.4.1.1 Limitations of serial hybrids 168

7.5 Solver collaboration language 170

7.6 An example of many solvers in serial 172
76.1 Casestudy.o 172
7.6.2 Thesolversused 172
7.6.3 Results. 174

7.7 Conclusions e 175

New Directions 179

8.1 Decomposition strategy Lo 180

8.2 Ordering strategy 186

8.3 Solution and recombination 000000 187

8.4 Advantages of the Erep/IGCS hybrid 190

8.5 Limitations of the Erep/IGCS hybrid 190

8.6 Incremental implications of new solver 191

8.7 Conclusions 195

Future Work 197

9.1 The interactive constraint solver 197
9.1.1 The Erep/IGCS hybrid solver 198
9.1.2 A standard interface for solvers 198
9.1.3 Complex case studies 198
9.1.4 Incremental issues. 199

9.2 The mathematical framework 199
9.2.1 [Inequality constraints 200
9.2.2 Probabilistic constraints 0L 200

9.3 The Virtual Environment 200
9.3.1 Parallel/concurrent collaboration 201
9.3.2 Direct manipulation issues 201

9.4 Summary e 201

vi

10 Conclusions

A

B

Dimensions

CRS Reductions

Local - Global Theorem
Enhanced solution spaces

Paradigms of collaboration

E.1 Parallel hybrids
E.1.1 An example of solvers in parallel

E.2 Concurrent hybrids o

Solver collaboration language

An example of many solvers in serial

G.1 Casestudyo

G.2 Thesolversused
G.2.1 Expected behaviour of hybrid

G.3 Results. e

G.4 Conclusions

Glossary

vil

203

210

213

217

226

230
230
236
239

242

247
247
248
249
250
254

257

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2

A Racing Car in a Space with Obstacles 17
The Configuration Space Map for the Racing Car 18
The Product Design Process 19
A Hierarchy of Constraint Solvers 22
An Arm with Two Joints and the Relationship Graph for the Problem 27
An Example of Locus Analysis 29
A Pentagon Defined by Distance and Angle Constraints 31
The Constraint Graph for the Pentagon. 31
Equation Graph for Constraints C1to C6 34
Tree-like Representation for Equation Graph 35
Typical result of Gaussian elimination on linearised constraint problem 36

Example of Incremental Insertion of Constraint. Arrows in Graph

Indicate Order of Satisfaction 38
Example Constraint Graph for Hierarchical Constraint Problem . . . 39
Constraint problem P describing a pentagon 46
Decomposed subproblems of problem P 47
Recombined subproblems of constraint problem P 47
Constraint /Entity graph of figure 2.9 49
Decomposed subproblems of figure 3.4 50
The inverse operation method in IGCS (from [112]). 51
A connectivity graph for constraint problem P 52
Residual sets for constraint problem P 53

Graph of trade-off between complex decomposition and complex solvers 61
An rigid body composed of two triangles 64
An Arm with Two Joints and the Relationship Graph for the Problem 67

Placing a queen on a chesshoard 78

A point, a line and a line segment on a plane 79

viil

4.3
4.4
4.5

5.1
5.2
2.3
5.4

2.5
0.6
2.7
5.8
5.9
5.10
5.11

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

8.1

An equality constraint and a distance constraint 83

A solution to constraint problem G 85
A solution to constraint problem F' 86
A Puma Robot Arm 101
A Hierarchy of Constraint Representation Schemes 102
An Example of a Relationship Graph with a Solution to the Graph . 106

An example of an undirected constraint graph with a solution to the

graph. 107
An example of a constraint hypergraph with a solution to the graph. 108
Example of a Constraint/Entity Graph 109
Constraint /Entity Representation for Constraint Problem v 113
New Construct for Constraint Edges 115
New Construct for Constraint Loops 115
Representing Quaternary Constraints in a Constraint/Entity Graph . 116
A Hierarchy of Constraint Representation Schemes 118
Solving the 4 queens problem 142
Two Blocks with an Against Constraint 152
A Chain of Blocks with Against Constraints 153
Two Rods 154
Problem G" 155
A solution to constraint problem G of example 4.8 156
Solutions of constraint problem G” withl=0,m =8 n=8. 157
The Internal Combustion Engine 163
A Serial Hybrid of INCES and IGCS 164
Sequential Collaboration 166
INCES as a sequential hybrid 166
IGCS as a sequential hybrid 168
Two Rods 168
The 4 bar linkage problem 171
Case Study of n Piston Problems Linked Together 173
Serial Hybrid used to Solve n Piston Problems Linked Together . . . 173
A comparison of the COSNBC function and INCES algorithm with

the hybrid solvero 174
Constraint problem @ using distance and angle constraints 182

X

8.2 Constraint/Entity graph for constraint problem @ 182

8.3 Constraint problem R with three tangent circles 183
8.4 Constraint/Entity graph for constraint problem R 183
8.5 Decomposition of Constraint/Entity graph for problem R 185
8.6 A constraint problem with «, § and v constraints 188
8.7 Two triangles with a common edge 193
8.8 Constraint graph for figure 8.7 o000 193
8.9 Iteration two of incremental solution of figure 8.7 193
8.10 Iteration ten of incremental solution of figure 8.7. 194
E.1 Parallel Collaboration 232
E.2 A simplification of the internal combustion engine 237
E.3 Concurrent Collaboration 240
G.1 Case Study of n Piston Problems Linked Together 248
G.2 Serial Hybrid used to Solve n Piston Problems Linked Together . . . 249
G.3 NAG function with bad initial guess 250
G.4 NAG function with good initial guess 251
G.5 Solving with INCES 252
G.6 Hybrid solution using IGCS and INCES 252

G.7 Solving the functional problem only using INCES without global
parametric constraint list 0oL 253

G.8 Solving the geometric problem only using [GCS without the depen-

dency hierarchy list oo 254
G.9 Solution using a hybrid algorithm of IGCS without depH list and

INCES without global parametric constraint list 255
G.10 A comparison of the CO5NBC function and INCES algorithm with

the hybrid solvero oL 256

List of Tables

2.1

3.1
3.2

0.1

7.1
7.2
7.3
7.4

8.1

F.1

Some Relations between Two Finite Domain Variables 11
Control scheme for solving constraint problems. 43
Control scheme for solving constraint problems using domain specific

knowledge and hybrid constraint solvers 44
Valid Constraint Representation Schemes 110
Two database tables (from [5]) 160
The result of joining the book and sales tables (from [5]) 160
Results for Solving ICE engine 50000 times on an SGI Indy 165
Solver collaboration language (adapted from BALI [84]) 171
Constraints that can be handled by Erep and IGCS 181
Solver collaboration language (adapted from BALI [84]) 242

xi

Nomenclature

General nomenclature

R the set of real numbers,
Q the set of rational numbers,
V/ the set of integer numbers,
N the set of natural numbers,
e empty set,
0 th ty set
Al the number of elements in set A,
(Dy x ---x D,) the Cartesian Product of the sets of
Dla T Dn:
U the union of two sets,

the intersection of two sets,

\ the set minus of two sets,
max the larger of two numbers,
min the smaller of two numbers,
€ is a member of),

& if and only if,

A+#B A is not equal to B

ACB A is a subset or equal to B,
A logical and.

D a domain, a set,

E an entity,

Dpg the domain of entity F,

v a value for an entity, v € Dp,

xi1

CTP

fol@n, ...)

T e

yy

{.’T)] =Y,y .. 7Tn:yn}

C®

€c
el

dim

an assignation for entity F to the value v,
so that D = {v},

an assignation of entity F to the set of val-
ues S, so that D = S,

a binary relation R between a and b, R C
D, x Dy,

an n-ary relation S between ay,as, ... ,ay,,
SC Dy xX---xD,,

a boolean test function for a relation S,
flzy,...,zp) =1 (2q,... ,2,) €S,
Constraint test procedure, the boolean test
function for a relation,

a constraint,

a constraint test procedure for a constraint
C, folxy,...,z,) =1 & (2q1,...,1,) €
c,

a set of entities,

a set of constraints,

a constraint problem P = (®,¥),

a constraint subproblem (®;,V;), ®; C
¢, 0; C U,

a configuration for a constraint problem
P=(®={x,...,2,},7),

the enhanced constraint of C' with respect
to E, C|¥ = C x Dg,, where Dg, is the
domain of those entities not relevant to C',
the imposed set of C,

the arity of C' - the number of variables
that affect C,

a function from domains to the natural
numbers,

usually an entity,

usually a constraint.

Constraint representation

xiil

CRS a Constraint Representation Scheme,

o, 3 constraint representation schemes,

A, B problems in representation schemes,

d a function from representation scheme to representation
scheme, a representation,

a = [representation scheme « is equivalent to representation

scheme /3,

a Constraint/Entity graph,

the set of entities in the algebraic representation,

the set of constraints in the algebraic representation,

S OO th 2

3

usually used to represent integer counters,

D

an edge in a graph.

Constraint satisfaction

D a solution space, a set of configurations,

D(0) the initial domain of the solution process,
(Dy x -+ x Dy),

k,i,7 an integer, usually representing an inter-

mediary step,
v, a subset of W, usually used to represent

intermediary constraints to consider,

D(k) the domain of possible solutions at step £,
Dk —1) Ty D(k) a solution step with respect to Wy,

Neew © the intersection of all C' in ¥,

\a subset of W, usually representing a local set

of constraints,
C(v) the set of solutions to all of the constraints

in W', equivalent to [,y C,

K an integer, representing a terminal step in
a process,
D(k) final domain of the solution process, the
terminal solution space,
\Ill
D(0) —* D(k) a sequence of solution steps, a solution pro-

cess,

(¥, D(k — 1)) a function, equivalent to a soluton step.

X1v

Constraint priorities

Q; a constraint priority strength, a lower 7 is more impor-
tant,

Qg a ‘required’ constraint strength,

B; a constraint priority variable,

Hi a constraint hierarchy level,

H the set of all constraints in the constraint hierarchy,

better a comparator between two solutions,

S, the set of solutions to the required constraints,

S the set of solutions to the constraint hierarchy using
the comparator better,

T a set of constraint priority constraints.
Variable driven satisfaction

d,, a set of entities,

Dk —1) SN D(k) a variable driven solutoin step.

Backtracking

r,s integers, used to represent intermediate

steps in a solution process,
\I}Ty-" 7\])(7*754»'1)
%

D(r) D(r —s) backtracking by s steps.
Incremental solution

D(k —1) 5 D(k) an incremental solution step, adding a new
constraint,
D(k —1) RN D(k) an incremental solution step, adding a new

entity.

Hybrid constraint solvers

S; a constraint solver,

Do (i) the domain at step 7 of the entities in ®,

XV

D<I> |<I>u<1>’ (7)

Dole (i)
(geom, (z,y, 2))

the enhanced domain of Dg(i) with re-
spect to @',

the embedded domain of ®' in ® at step 7,
a geometric variable geom which has x ro-
tational degrees of freedom, y scalar de-
grees of freedom and z translational de-
grees of freedom,

a geometric subproblem,

an algebraic subproblem,

a function for combining solution spaces
found in a parallel collaboration,

a choice function for selecting solutions

spaces in a concurrent collaboration.

A constraint management system

(P, S))

ANABC

A subproblem-solver pair. P, is
a subproblem, S; is a set of con-
straint solvers.

A triangle formed from three ver-
tices, A, B and C.

A B,C,D,E,F,G,H,I,J Typically entities in a constraint

<

(P7=S7)7 (PjJSj)
(P S) || (P, S5)
De

Destrong components

problem. Sometimes residual sets.
A partial order.

Sequential collaboration.

Parallel collaboration.

A decomposition strategy. De-
composes a constraint problem
and a set of solvers into a set of
subproblem-solver pairs.
Decompose a constraint problem
into subproblems that are strongly
connected and subproblems that

are not strongly connected.

xXVvi

Deconnected components

Cl

s(P): D — D)

Y~z

a, 3,7

QR
01702703

Cire

Decompose a constraint problem
into subproblems that are con-
nected.

Typically a cluster of constraints
and entities describing a rigid
body.

Typically a constraint solver.
Initiating constraint solver s on
constraint problem P; using initial
solution space D results in solu-
tion space D(i).

A path from y to z in a graph.

A type of constraint.

Types of constraint capable of be-
ing solved by Erep or IGCS.
Typically constraint problems.
Typically constraints.

A circle.

xVii

Glossary of Solvers

Solver

Reference

Description

Concept Modeler

Connectivity Analysis

DCM

Erep

GCE

Grobner bases

ICBSM

[100]

[59]

[16]

[27]

Solves triangular systems of equations us-
ing local propagation. Solves simulta-
neous subproblems using numerical tech-
niques.

Solves geometric constraint problems by
splitting problems into residual sets and
then solving residual sets in order.
Solves well-constrained geometric prob-
lems by identifying subproblems consist-
ing of only three objects that can be fixed.
Very similar to DCM. Solves well-
constrained geometric problems by build-
ing up clusters of objects that can be rela-
tively fixed and combining clusters to give
rigid bodies.

Geometric constraint solver using locus
analysis to solve simultaneous subprob-
lems and action analysis to solve simple
subproblems by local propagation.
Symbolic algebraic solver acting on sys-
tems of equations.

Geometric constraint solver using local
propagation to solve 3D geometric prob-
lems without loops using local propaga-

tion.

xXViii

Solver Reference | Description

IGCS [112] Improvement of ICBSM to handle loops
and more complex problems.

INCES [62] Incremenal version of Concept Modeler.
Allows geometric constraint problems to
be described and solved.

MechEdit [15] Geometric constraint system for solving
systems of planar linkages. Uses local
propagation and numerical techniques.

Newton-Raphson [70] Numerical solver that takes a system of
equations and finds solution using itera-
tive techniques.

SkyBlue [94] Solves hierarchical constraint problems

using local propagation. Can solve for

constraints added incrementally.

XX

Chapter 1
Introduction

Constraints have become popular in the engineering design field as a means of de-
signing and building complex product models [3]. The power of constraints as a
modelling paradigm lies in their descriptive power and the implicit knowledge that
lies within a constraint’s description. A constraint can vary from a nonlinear equa-
tion to a complex description of the assembly of a geometric model. Consequently,
constraints are used in a number of different contexts and solutions to constraint
problems are found using many different techniques, depending on the nature of the
constraints involved.

A system of nonlinear equations for example, with no discernible structure, will
typically be solved using numerical [70] or symbolic techniques [16,56]. General
constraint solvers such as numerical or symbolic techniques are slow but can find
solutions for a wide variety of constraint problem.

On the other hand, a geometric constraint problem, consisting of relative posi-
tioning instructions for lines, points and circles, can be solved relatively efficiently
using degrees of freedom analysis [27,59] or ruler-and-compass construction tech-
niques [14,86]. The geometric constraint solver takes advantage of domain specific
knowledge of the geometric problem domain. In the case of degrees of freedom anal-
ysis, the domain specific knowledge is that the geometric objects - the lines, points
and circles - can only translate and rotate in space in a very limited number of ways.
Degrees of freedom analysis uses this knowledge to manipulate the rigid bodies to
satisfy the constraints applied to them. In the case of ruler-and-compass construc-
tion, the domain specific knowledge used is that all geometric constraints can be
described using distance and angle constraints and that using such constraints, any
unknown object can be positioned relative to two known objects using two con-

straints. Ruler-and-compass solvers then position the geometric objects one by one

Chapter 1 2 Introduction

until all of the constraints have been satisfied. Constraint solvers that take advan-
tage of knowledge implicit in their domain are referred to as domain specific in this
thesis.

Domain specific constraint solvers include finite domain solvers, scheduling con-
straint solvers, functional constraint solvers and physical constraint solvers. Finite
domain constraint solvers take advantage of the finite number of possible solutions
by using sophisticated exhaustive search techniques. Scheduling constraint solvers
use the linear nature of time to help simplify the search for solutions. Functional
constraint solvers simplify systems of equations to identify subproblems that are
simple to solve. Physical constraint solvers take advantage of inertia, momentum
and other physical laws to simplify the calculation of new positions, reusing old in-
formation as much as possible. For reasons of brevity, only finite domain, geometric
and functional constraint solvers are studied in detail in this thesis.

It is generally acknowledged that there is a close coupling between functional con-
straints and geometric constraints [3,19,64,100] in the design process, particularly
in the early stages of conceptual design. A constraint solver for engineering design
must therefore be capable of handling both functional and geometric constraints
simultaneously. Similarly, finite domain, scheduling and physical constraints are
integral parts of the design process and should be considered simultaneously also.

The current state of the art is that domain specific constraint solvers will al-
ways outperform general solvers for problems within their domain. Not surprisingly,
domain specific solvers are inappropriate for problems outside this domain.

Some authors attempt to overcome the expressive limitations of domain specific
solvers by using a general solver as a backup for when the domain specific solver
cannot find a solution [15,62,85,87,112]. Similar to the terminology adopted by
Prosser [91], solvers which use multiple solution techniques interacting with each
other are referred to as hybrid constraint solvers in this thesis.

There has been a long-standing research project at the University of Leeds to
use constraints to build complex engineering models within a Virtual Environment
[20-32, 62, 78, 112|. Three main constraint solvers have been developed for this

project:

e ICBSM [31,32] was developed by Fa et al. to build geometric constructs of
engineering models. The key innovations of ICBSM were the Allowable Mo-
tion method of solving the constraint problem and the Automatic Constraint
Recognition method for using direct manipulation to build the model. Al-

lowable Motion calculates the possible movements of geometric objects in the

Chapter 1 3 Introduction

model depending on the constraints placed on the objects. Allowable Motion
is described in more detail in section 2.3.3.1 and [27]. Automatic Constraint
Recognition utilised the user’s manipulation of objects within the model to
suggest possible constraints that could be applied. This simplified the con-

struction of the geometric model.

e In ICBSM, all geometric objects had to be applied one after the other in a
sequential fashion. ICBSM could not cope with the simultaneous definition
of geometric constraints. Consequently, IGCS [112] was designed to allow

simultaneous constraints to be solved.

e [CBSM could only deal with geometric constraints, such as forcing two objects
to remain in contact with each other, or to have two cylinders concentric.
INCES [62] was developed in order to solve systems of equations describing
the function of an engineering model rather than the physical form. INCES
could also solve the geometric constraints describing the engineering model
by converting them to equations. INCES cannot solve all such systems of
equations and so resorts to a numerical algorithm when it cannot succeed on

its own.

The purpose of this thesis was to investigate existing constraint solvers and to
see if Fa’s Allowable Motion approach could be applied to more general problems. In
particular, it was realised that, as it stood, Allowable Motion could not be applied to
loops and functional problems. Since these are integral parts of engineering design
constraint problems, it was important that they be integrated into any constraint
solver that would handle engineering design constraint problems.

A glossary is included in this thesis that can be used for reference. Words denoted
by a' indicate definitions that can be found in the glossary. The glossary is included

in appendix H.

1.1 Objectives of this thesis

A broad objective of the Virtual Working Environment group in the University of
Leeds is to develop an interactive environment for developing engineering designs
within a Virtual Environment. The interactive constraint modelling subgroup is
mainly involved with developing algorithms and prototypes that use constraints as
a paradigm for describing and finding solutions to engineering designs. Previously,
the constraint modelling subgroup developed ICBSM, IGCS and INCES and these

Chapter 1 4 Introduction

algorithms are capable of describing and solving a variety of constraint problems.

The objectives of the research in this thesis were to:

e Investigate ways of generalising the techniques developed in ICBSM, 1GCS
and INCES in such a way that more problems can be solved at little or no loss

of speed.

e Study the state of the art in constraint solvers and identify commonalities

amongst them that can be utilised.

e Create an interactive constraint solver capable of dealing with the needs of

engineers using available technology.
Progress on these research goals are reported in this thesis:

e Current engineering design constraint solvers have been studied and their
strengths and weaknesses identified. This allows the creation of a taxonomy of
constraint solvers by their strengths. The use of domain specific knowledge to
improve the efficiency of these constraint solvers has been explored. Domain
specific knowledge has been identified as an important means of improving the

efficiency of constraint solvers.

e The characterisation of current constraint solvers has led to an identification
of the common processes adopted by these constraint solvers. The divide-
and-conquer strategy adopted by virtually all current constraint solvers uses a
decomposition strategy to identify subproblems to solve; an ordering strategy
to decide in which order to solve the subproblems; and a set of solution tech-
niques to solve the subproblems. The use of this divide-and-conquer strategy

leads to a number of issues and questions that need to be addressed.

e In order to address these issues, a mathematical description of the constraint
process has been created which is capable of describing general engineering de-
sign constraint problems, and the representation and solution of engineering
constraint problems. The mathematical framework allows the description of
most current, constraint solvers and consequently provides a unifying frame-
work for the constraint solvers. The framework also captures the concepts of
consistency, soundness and completeness which describe the quality of solu-
tion of the constraint solvers. A theorem has been devised that allows the
quality of solution of constraint solvers to be deduced from the workings of

the constraint solver.

Chapter 1 5 Introduction

e Using the mathematical characterisation of the constraint problem and con-
straint solution, a study of hybrid collaborations has been carried out. The
use of hybrid collaborations, such as sequential, parallel and concurrent, al-
lows existing solvers to be joined together in a formal way that allows new
solvers to be created. The mathematical framework developed allows concrete

statements to be made about the nature of these solvers.

e A new constraint solver has been defined that consists of a hybrid of Erep
and IGCS. This constraint solver combines the ability of Erep to solve well-
constrained geometric constraint problems with loops and the ability of IGCS

to solve under-constrained geometric constraint problems.

1.2 Incremental constraint solvers

Constraint solvers take a set of constraints and variables and find a number of so-
lutions to the constraint problem defined by the constraints and variables. Most
constraint solvers solve a constraint problem from scratch. That is the whole prob-
lem is defined before solutions to the problem are found.

However, this is not how designs are created. Most designs evolve over a period
of time as designers add new objects or new constraints. The specify-then-solve
approach of existing constraint solvers means that every time a new constraint is
added, the whole constraint problem needs to be resolved.

To counter this problem, incremental constraint solvers have been developed.
Incremental constraint solvers assume that a constraint problem will evolve over time
and that at every iteration of the design process, a set of variables and constraints
is added to the existing constraint problem and new solutions to the constraint
problem need to be found.

The challenge for incremental solvers is to find solutions to the new problem as
quickly as possible. Most current incremental constraint solvers try to do this by
reusing the information found by solving the previous constraint problem.

For example, assume that a constraint problem P; has been solved for and a set
of solutions S; has been found. Then a set of new constraints and variables is added
to P; to give P;. Solutions must now be found for P, as quickly as possible.

There are several sources of information that can be used to assist incremental
constraint solution. The number, type and quality of solutions in S; can help to

indicate solutions to P,. For example, if P; has no solutions and S; is empty, then

Chapter 1 6 Introduction

adding more entities and constraints cannot increase the number of solutions and
so P, will have no solutions either.

The most useful source of information to assist incremental solution is the process
whereby P; was solved. If P, is a similar problem to P; then it will probably be
solved in a similar fashion. Consequently, it may be possible to reuse some of the
information used to solve P, in order to solve P;.

For example, suppose P; was solved by splitting it into a number of subproblems

that were solved in the order:
P{,PQ',P:;,Pj.

Suppose also that the new constraints and variables are added to subproblems Pj.
Assuming that P, can be solved in the same way as Pj, then it can probably be split

into a similar set of subproblems
! ! 1 n n
P17P27P3>P4>P5'

In particular, P{ and P, are the same because they are not affected by the new
constraints and variables. Thus P{ and Pj do not need to be resolved, saving time
and effort.

Incremental solvers such as INCES [62] and SkyBlue [94] try to take advantage of
this structure and so speed up solution of each iteration of the design process. IGCS
[112] tries to solve for a new constraint by manipulating objects whilst maintaining
old constraints. Thus, when a new constraint is added, only that constraints needs
to have solutions found for as all other constraints have already been solved for.

In general, the aim of a specify-then-solve constraint solver is to be able to
solve a constraint problem in time O(n), where n is the number of constraints. An
incremental constraint solver aims to solve for a new constraint in time O(1).

A constraint problem is well-constrained if it has as many constraints as vari-
ables. A well-constrained problem usually has a finite number of solutions. A
constraint problem is under-constrained if it has more variables than constraints.
An under-constrained problem usually has an infinite number of solutions. A con-
straint problem is over-constrained if it has more constraints than variables. An
over-constrained problem usually has no solutions. A more precise definition of
these terms is left to later in this thesis.

A constraint problem usually progresses from being under-constrained to being

well-constrained to being over-constrained. Initially, a constraint problem has no

Chapter 1 7 Introduction

variables and no constraints. The user will then add a number of variables. At
this point, the problem is under-constrained as no constraints have been created.
Gradually, the user will add more and more constraints to the problem until it
becomes well-constrained. The user may then add more constraints and the problem
becomes over-constrained.

Thus an incremental solver that allows the user to add constraints and variables
one at a time must be able to deal with under-, well- and over-constrained prob-
lems. However, few constraint solvers can do this. Most constraint solvers can only
solve problems that are one of under-, well- and over-constrained. ICBSM [27], for
example, cannot cope with cycles in constraint graphs. In fact, cycles correspond
to well-constrained subproblems and ICBSM is particularly well suited to under-
constrained problems.

Therefore, a good incremental constraint solver will be one that reuses previous
information well and also can handle under-, well- and over-constrained problems.
Since incremental solvers are an important means of solving constraint problems
quickly, and therefore in an interactive environment, they form a significant part of
this thesis.

1.3 Thesis organisation

This thesis is divided into ten chapters including this introduction. Chapter 2
presents a detailed study of current constraint solvers with an aim of categoris-
ing them and understanding their underlying principles. Chapter 2 also discusses
subsidiary research on set theory, dimensions and some basic relational algebra.

Chapter 3 takes the characterisation of the constraint solvers in chapter 2 and
identifies the common features of these constraint solvers. In particular, this chap-
ter notes that most existing constraint solvers use a divide-and-conquer approach,
whereby a decomposition strategy is used to identify subproblems; an ordering strat-
egy is used to determine in which order subproblems are to be solved; and a set of
solution techniques find solutions to the subproblems. A detailed study of each
strategy leads to a number of issues that need to be addressed. In order to study
these issues thoroughly, it is first necessary to understand the constraint solution
process in detail. In particular the incremental issues associated with each strategy
are identified.

Consequently, chapters 4, 5 and 6 formalise the constraint process with an aim

of capturing the various properties of constraint solvers. Chapter 4 defines the

Chapter 1 8 Introduction

constraint problem in terms of its constituent parts. Chapter 4 also discusses the
notion of the dimension of a set and uses this to describe certain types of constraint
problem. Chapter 5 discusses the problems of representing a constraint problem on a
computer. The various different representation schemes currently used are compared
and a representation scheme capable of describing general constraint problems is
identified.

Chapter 6 presents an abstraction of the constraint satisfaction process, whereby
constraint solvers take as input a constraint problem and produce as output a set
of solutions. The importance of properties such as consistency, completeness and
soundness of constraint solvers is highlighted and a theorem is presented that allows
statements to be made about constraint solvers’ properties depending on individual
steps. In order to prove the flexibility of the constraint satisfaction abstraction, it is
used to describe several advanced constraint solution techniques such as backtrack-
ing, constraint priorities and incremental techniques.

The constraint process abstraction built up over chapters 4, 5 and 6 is then used
in chapter 7 to discuss the use of domain specific knowledge in constraint solvers
and also the use of more than one constraint solver to build up hybrid systems. The
various paradigms available for joining solvers together are introduced in terms of the
satisfaction framework and demonstrated using examples. A hybrid collaboration
language is used to describe the interaction of constraint solvers in a hybrid.

Chapter 8 uses the hybrid collaborations identified in chapter 7 to build a new
hybrid constraint solver consisting of IGCS and Erep. Since IGCS can solve under-
constrained geometric constraint problems and Erep can solve well-constrained geo-
metric constraint problems with loops, the hybrid should be able to solve constraint
problems consisting of well- and under-constrained subproblems. Correspondingly,
the power of IGCS has been increased at little computational cost and a constraint
solver more appropriate for engineering design has been created.

Chapter 9 discusses future work to realise the goal of an interactive constraint
based system for engineering design. Chapter 10 presents conclusions from the work

in this thesis.

Chapter 2

Related Work

This thesis investigates the use of hybrid constraint solvers using domain specific
knowledge using case studies in engineering design. This chapter describes the state-
of-the-art in constraint-based design, hybrids and domain specific constraint solvers.
A number of constraint solvers have been studied so that an abstract framework
for constraint solution can be developed which can then be used to study hybrid
constraint solvers.

The abstraction of the constraint satisfaction process leads to the study of di-
mensions, decomposition of constraint problems, the study of solution spaces and
the use of hybrids to solve constraint problems. Work related to these topics is
covered in section 2.1.

Section 2.2 discusses the state-of-the-art in constraint solution for engineering
design. Section 2.3 describes a number of constraint solvers. The solvers are cat-
egorised and discussed in terms of figure 2.4. General constraint solvers consist of
algebraic or numerical techniques and are introduced in section 2.3.1.

Finite domain constraint solvers are a well-understood type of domain specific
solver where objects in constraint problems have only a finite size. Although not
currently used much in engineering design, finite domain solution techniques have a
large body of literature and form a useful basis for discussing constraint satisfaction.
Finite domain solvers are described in section 2.3.2.

Geometric constraint solvers are used in engineering design to capture the de-
signer’s intent. For example, if a designer draws a line that happens to be vertical,
then it is likely that the designer intended that line to be vertical no matter what
else happened to the model. Consequently, the designer’s intent, to have a vertical
line, is retained through the use of constraints. The use of geometric constraints is

becoming more widespread and they are now available in commercial CAD packages

Chapter 2 10 Related Work

such as Unigraphics [117] and Pro/ENGINEER [20]. Geometric constraint solution
is discussed in section 2.3.3.

Functional constraint solvers are also becoming popular in engineering design.
Functional constraint solvers are used to describe the function of an engineering
design in terms of algebraic equations. These are discussed in section 2.3.4.

Constraints are also being used in maintenance and physical simulation. This is
an exciting new development for the use of constraints and is still a relatively new
development. The state-of-the-art is covered in section 2.3.5.

Section 2.4 presents conclusions from this chapter.

2.1 The theory of constraints

A large number of problems in artificial intelligence and computer science can be
described as constraint satisfaction problems. As such, many researchers have in-
vestigated efficient methods of solving constraint satisfaction problems and a large
body of literature exists. Kumar [60], Dohmen [22] and Meseguer [81] present sur-
vey papers on constraint satisfaction algorithms and Jaffar and Maher [52] discuss
constraint logic programming - the merger between constraint satisfaction and logic
programming.

A constraint problem consists of a set of objects and a set of restrictions on
the values the objects can take. A constraint satisfaction algorithm attempts to
find solutions to the constraint problem using a number of heuristic techniques. A
simplification of constraint satisfaction is that of relational algebra [5]. In relational
algebra, a finite number of objects with a finite number of relations on them are
queried and the result is a set of solutions to the query.

Finite domain constraint satisfaction [103,114] is equivalent to relational algebra
although the relations used are more complex. For example, a relation between two
finite domain objects that can each take n values is represented by the n x n table
of values that are allowed. Table 2.1 demonstrates the definition of the standard
relations © = y and x # y, where x and y both have domains {0,1,2}. A 1 in
position x = a,y = b means that v = a,y = b is allowed in the relation. A 0 in
the same position means that © = a,y = b is not permitted. For example, for the
relation z = y, when x = 1,y = 2, the value in the table is 0 and so this configuration
is not allowed. The other two relations defined, x e y and z o y, indicate relations
that cannot be simply described using relational algebra.

The general concept of constraint problems allows objects to have infinite do-

Chapter 2 11 Related Work

T =1y x x#£y x
0 1 2 0 1 2
01 0 0 0[0 1 1
y 110 1 0 y 1|11 0 1
210 0 1 211 1 0
rTey T T oy T
0 1 2 0 1 2
01 1 1 00 0 1
Y 1({1 1 0 y 1|11 0 1
211 1 1 210 1 O

Table 2.1: Some Relations between Two Finite Domain Variables

mains. Likewise, constraints can be described using an infinite number of tuples
and are also called infinite domain. Such a definition allows many more difficult
problems to be described using constraints, such as geometric problems [58,86,112],
algebraic problems [62, 98] and scheduling problems [124]. However the use of infi-
nite domain constraints negates the use of the search algorithms prevalent in finite
domain constraint satisfaction become impractical for infinite domain constraint
satisfaction.

The use of techniques other than search form an important area of research for
infinite domain constraint problems. Solvers that tackle infinite domain problems
are discussed in more detail later in this chapter.

Some authors have compromised between finite domain and infinite domain con-
straint satisfaction by using integer constraints. For example Jaffar et al. [51] discuss
the use of integer constraints and suggest that the restricted class of integer con-
straint they use “can be solved more efficiently than in the general case but which
remains reasonably expressive”.

Other authors have generalised constraints to allow more general structures.
Bistarelli et al. [10] describe constraint satisfaction problems in terms of semiring
based structures. The advantage of such a generalisation is that it describes not only
the type of constraint satisfaction problem discussed above, but also fuzzy problems,
weighted problems and partial constraint satisfaction. The semiring formalisation
is elegant but somewhat cumbersome for the purposes of this thesis.

In order to combat problems that have too many constraints, Borning et al. [11]

introduce constraint hierarchies which allow the creation of constraint problems

Chapter 2 12 Related Work

where not all of the constraints need to be satisfied. Constraint hierarchies have
become an important weapon in a constraint programmer’s arsenal and as such are
used in many different applications such as SkyBlue [94], Differential Manipula-
tion [43] and Multi-Garnet [95]. Constraint hierarchies are described in more detail
in section 2.3.4.1.

The common link between all of these theories is that a constraint problem is a set
of objects with domains and a set of constraints which are relations. Many constraint
satisfaction techniques take advantage of the size of the domains of the objects or of
decomposing the constraint problem. Consequently, the dimension of a domain is
discussed in section 2.1.1 and work using the decomposition of constraint problems is
discussed in section 2.1.2. There exist a number of constraint satisfaction algorithms
that find solutions by using hybrid solvers. These are investigated in section 2.1.3.
The concept of a solution space is also significant in this thesis and related work on

configuration spaces is presented in section 2.1.4.

2.1.1 Dimensions

Researchers such as Latham and Middleditch [67], Fa et al. [26,27,31,32], Tsai et
al. [112] and Kramer [57 59] use the dimension of an object as a measurement of
progress towards solution. Fa et al., Tsai et al. and Kramer also use the dimension of
geometric objects to provide efficient interactive constraint satisfaction. The notion
of dimension is also associated closely with the constrainedness of a problem [67].
The dimension of an object is a measure of the freedom of an object in terms of the
number of possible values or positions that can be assigned to the object.

For example, a O-dimensional object only has a finite number of possible values or
positions, whereas a 1-dimensional object can be assigned values from some subset
of the real line.

Dimensions for simple geometric objects and constraints are straightforward and
well-understood. However, the generalisation of dimension to general constraints
and objects has received little attention. Latham and Middleditch assume that
constraints and objects have a dimension but note that it is very difficult to provide
a formal definition of dimensions for general sets due to the existence of Peano curves
and other space-filling curves.

For example, the dimension of a point moving in three dimensional space, IR?,
is 3, as the point needs three parameters to fully define it. Similarly, the dimension

of a variable that can take any value in the set of integers, 7Z, is 1, as the variable

Chapter 2 13 Related Work

needs one parameter to fully define it. However, the dimension of a variable that
can take any value in the set Z? is more difficult to define. Space filling curves, such
as the Peano curve, mean that it is possible to define a mapping from Z? to Z such
that, for all intents and purposes, they are the same set. Consequently, Z? could
have dimension 1 or dimension 2. Such questions need to be dealt with to have a
common definition of the dimension function.

For the purposes of this thesis, the identification of the constrainedness of con-
straint problems is very important. The constrainedness of a constraint problem
is related to the number of solutions that the constraint problem has. Simply put,
a constraint problem is well-constrained if the constraint problem has only a finite
number of solutions. A constraint problem is under-constrained if it has an infinite
number of solutions and is over-constrained if it has no solutions.

An investigation has been made into the definition of a dimension function and
manifolds have been identified as fulfilling the most important properties of the
dimension function. Since the use of the dimension function is more important than
the precise definition, the definition used in this thesis is given in full in appendix A.

The reader is referred to [107] for a more detailed discussion of manifolds.

2.1.2 Decomposition of constraint problems

Many constraint solvers attempt to solve constraint problems by decomposing a
large constraint problem into a number of smaller subproblems and solving them
separately. In practice, this is a variant of the Divide-and-Conquer strategy em-
ployed in computer programming and is very effective. The decomposition allows
the identification of subproblems that can be solved quickly and easily. The results
of solving these subproblems can then have effects for the rest of the problem, simpli-
fying other subproblems. Decomposition of constraint problems forms an important
part of the research in this thesis. In particular, decomposing a complex constraint
problem into a number of subproblems that can be solved simply using different
solution techniques allows flexible and efficient solution.

Solvers such as D-Cubed [86], Erep [39], Connectivity Analysis [67], INCES [62]
and IGCS [112] use decomposition to subproblems to aid solution. For example, Erep
identifies clusters of geometric objects that can be defined relative to each other.
The clusters are then combined recursively to give solutions to the whole problem.
INCES identifies subproblems that cannot be solved using local propagation and

then uses numerical solution to solve them.

Chapter 2 14 Related Work

For finite domain constraint satisfaction problems, Freuder and Hubbe [36] have
presented an algorithm for extracting a particular subproblem from a constraint
problem. This algorithm can be used to extract a subproblem that is known to
be unsolvable and discard it, restricting the search for a solution to the remaining
subproblems.

Latham and Middleditch [66,67] present an algorithm called Connectivity Anal-
ysis that will decompose a constraint problem into a number of well-balanced sets.
The well-balanced sets correspond to well-constrained subproblems. This allows the
identification of under- and over-constrained subproblems as well as identifying pre-
cisely which objects need to be more or less constrained by adding or subtracting
constraints respectively.

Connectivity Analysis also provides an ordering for the well-balanced sets so
that the constraint satisfaction process can use information from previously solved

well-balanced sets to aid solution of other well-balanced sets.

2.1.3 Hybrid constraint solvers

The decomposition of constraint problems means that a problem P is divided into a
number of subproblems Pj, ..., P, which are solved using the same algorithm. The
logical extension of this paradigm is to still decompose P into Py,..., P, but to
solve the various P; using different solution algorithms. This technique is variously
called cooperation, combination or hybrid constraint solution. In this thesis, the use
of multiple solvers to solve subproblems will be called hybrid constraint solution.

The use of multiple constraint solvers dates back to the introduction of con-
straints in Sketchpad [108] in 1963. There local propagation was used until it could
proceed no further and then the problem was ‘relaxed’ using numerical techniques.
Similar techniques followed until Prosser [91] suggested the use of hybrid algorithms
for finite domain constraint satisfaction.

At that point, there existed several constraint satisfaction algorithms in use in
the finite domain field. A collection of algorithms looked at the future effect of an
action to investigate possible failure. Another collection of algorithms looked at
past information to backtrack from current failure. Prosser presented algorithms
that used both types of search. These hybrid algorithms proved very successful
and were both more efficient [116] and less prone to extraordinary failure [105] than
non-hybrid solvers.

Although Prosser’s hybrid algorithms do not decompose constraint problems, the

Chapter 2 15 Related Work

concept of using multiple, co-operating constraint solvers to help solve the constraint
problems can be usefully applied to other types of constraint problem.

The theory of hybrids has been examined by Baader and Schulz [6, 7], Mon-
froy [84], Monfroy et al. [83,85] and Kirchner and Ringeisson [55]. Baader and
Schulz discuss the combination of constraint solvers using a highly complex study
of unification theory. The principal theories of Baader and Schulz’s work are the
notion of a free amalgamated product and a decomposition algorithm. The free
amalgamated product is used to define a combined solution structure over which
constraint problems are solved. The decomposition algorithm separates a problem
into subproblems that can be solved by the individual solvers. These problems are
presented in a different and more approachable form in this thesis.

Monfroy introduced BALI in [84]. BALI is a semantic definition of an environ-
ment for solver cooperation using the three paradigms of sequential, parallel and
concurrent collaboration. BALI is a useful environment for describing solver collab-
oration but it tries to solve the whole problem using one solver, only resorting to
other solvers on failure. BALI does not take into account the strengths of individual
solvers and does not subdivide a constraint problem so that subproblems are solved
using appropriate subsolvers.

BALI has been used to combine a Grobner basis solver with a linear equation
solver to produce COSAC [85]. COSAC tries to use the more efficient linear equation
solver as much as possible and only resorts to the Grobner basis solver as a last
resort. COSAC is an improvement on Grobner bases alone but is heavily dependent
on the Grobner basis solver which is necessarily slow. Monfroy and Ringeisson also
propose a method of extending the scope of constraint solvers to process new types
of constraint [82].

The hybrid constraint solver presented in this thesis uses constraint solvers to
best effect by identifying the strengths of a constraint solver and then decomposing
the constraint problem in such a way that solvers are used on problems that they
are best suited to. Here we assume that the subdivision can be done sufficiently
quickly that the efficiency of the constraint solver is still dominated by the efficiency

of the slowest subsolver. This is discussed in more detail in chapter 3.

2.1.4 Solution spaces

Finite domain satisfaction techniques typically search through all of the possible

combinations of object values in order to find combinations that are solutions. For

Chapter 2 16 Related Work

finite domain constraint problems, the number of possible combinations is large but
finite. In infinite domain constraint problems, the number of possible combinations
is typically infinite. However, the concept of a solution space - the set of possible
combinations at a given time - forms a useful abstraction for studying constraint
satisfaction processes.

The notion of solution spaces is equivalent to configuration spaces used in path
planning. Lozano-Pérez [72] uses configuration spaces to help calculate constraints
on the position of an object in space due to other objects. This allows the computer
to arrange objects in space or to move objects without collisions. Problems are
reduced from planning a path for a complex object to planning a path for a point
and so are much simplified, though calculation of the configuration space is very
time-consuming.

Wise [121] has built on Lozano-Pérez’s work and used it to build svLis-m !, an
algorithm that builds multi-dimensional configuration spaces representing an object
in every conceivable position and orientation. Once the configuration space has been
created, it is simple to move objects around in the space detecting collisions. For
example, the problem in figure 2.1 is to move a racing car in the space without
colliding with any obstacles. The car can translate in the x and y directions.

The configuration space calculated for the car and obstacles is presented in fig-
ure 2.2. The current position of the car is described using a reference point on the car
and compared with the configuration space map. If the (x,y) point indicating the
position of the car is dark grey in the configuration space map then the car is inside
an obstacle which is not allowed. If the point corresponds to a dark grey pixel, then
the car is not in contact with any obstacle. If the point is a light grey pixel, then the
car is touching an obstacle. Thus the problem of checking for a collision has been
reduced to a very simple point membership test. Unfortunately creating the config-
uration space map in the first place took some 15 minutes. This example was taken

from http://www.bath.ac.uk/~ensab/G_mod/Svm/Html_ver/svm_home.html.

2.2 Constraints in engineering design

Engineering design is currently undergoing a paradigm shift [47]. Classical design
as espoused by Pahl and Beitz [88] typically involves an iterative model, whereby
specifications and information are passed from one stage to another (figure 2.3, taken

from [64]). At each stage a large quantity of information needs to be transferred from

'http://www.bath.ac.uk/~ensab/G.mod/Svm/Html ver/svm_home.html

Chapter 2 17 Related Work

Figure 2.1: A Racing Car in a Space with Obstacles

one stage to the next, typically in the form of blueprints or design specifications.
The potential for loss of design intent and information is very great.

Modern CAD packages are in common use by designers. Many designers use
advanced design support tools such as knowledge based engineering, 3D CAD and
finite element analysis. These support packages help to mitigate the loss of infor-
mation by having consistent data structures and persistent and concurrent design
development. However, they do not explicitly retain the designer’s intent.

One paradigm shift identified by Hoffmann and Rossignac [47] is a move from the
advanced support tools of CAD packages within a traditional design methodology
to the use of constraint-based design paradigms [47]. Constraint-based design allows
the design intent of a designer to be captured as constraint-based design is oriented
more towards the design process. As a design is modified, the constraint solvers
attempt to consistently maintain the designer’s intent.

Anderl and Mendgen [3] discuss the use of constraints in modelling. They iden-
tify the importance of geometric constraints and engineering constraints %in the

modelling process and discuss the definition, representation and solution of con-

2Engineering and functional constraints are used interchangeably in this thesis. There is no
consensus in the literature as to which is the correct terminology.

Chapter 2 18 Related Work

Figure 2.2: The Configuration Space Map for the Racing Car

Chapter 2 19 Related Work

statement of the problem
(client’s needs)

design specifications
(requirement list)

Clarification of
the task

concepts variants
Conceptual

Design

) definitive layout
Embodiment

Design

documents for

Detail production

Design

Upgrading and Improvements ‘

Figure 2.3: The Product Design Process

straint problems, following a similar structure to this thesis. Anderl and Mendgen
also identify a number of typical applications of constraint-based design, such as
feature-modelling and design with engineering constraints. The open issues they
identify include the automatic generation of constraints and the evaluation of de-
sign alternatives as well as the constrainedness of problems.

Anderl and Mendgen conclude that

Modelling with constraints is a modelling technique which contains

a high potential for efficient working in all steps of the design cycle.

Serrano and Gossard [101] and Lamounier et al [62] concentrate more on the
conceptual design phase and the use of engineering constraints rather than geometric
constraints. These techniques are explored in more detail in section 2.3.4.

Sapossnek [97] also advocates constraint-based design. He states that design
can be viewed as a constraint satisfaction process and notes that constraints can
be on functionality, structure or manufacturability. He defines a constraint-based
design system as one that explicitly represents and operates upon these constraints.
Sapossnek identifies the separation of solution techniques from problem specification

as being an important research issue. His concept of a general solver using multiple

Chapter 2 20 Related Work

techniques and separation of specification from solution is addressed in this thesis.

Dohmen [22] presents a survey of constraint satisfaction techniques for geometric
modelling. Dohmen identifies geometric reasoning solvers using knowledge of the
problem domain in the satisfaction process. This is a key issue in this thesis.

Constraint-based design allows the definition and solution of problems with tol-
erances, a problem of great interest to engineers [54,93]. The parameterisation
associated with tolerances is a natural use of constraint-based design and several
authors allow the dimensioning and tolerance of designs [1,69,70].

Gorti and Sriram [45] present a framework for conceptual design. The frame-
work they propose allows for incremental, evolving descriptions in an object-oriented
environment. Gorti and Sriram also decouple different aspects of the overall prob-
lem to allow multiple reasoning methodologies - similar to the concept of hybrid
solvers discussed in section 2.1.3. The framework allows geometric constraints and
the investigation of alternative designs.

The use of constraints in design necessitates constraint solvers capable of satisfy-
ing the constraints. The current state-of-the-art in constraint solution is presented

in the next section.

2.3 Constraint solvers

A constraint solver is an implementation of an algorithm that takes as input a con-
straint problem and produces as output a set of solutions to the constraint problem
or the empty set if no solutions are found to the problem. Currently, there exist
many different constraint solvers used to solve different types of problem. A large
number of constraint solvers from a number of different fields have been studied.
The constraint solvers investigated are presented in this section.

As the state-of-the-art was investigated, it became apparent that certain solvers
were very good at solving particular types of problem. It is therefore reasonable
to categorise solvers according to the type of problem they are best at solving.
Lamounier [64] also categorised constraint solvers, but according to the type of
solution algorithm used. The categorisation used by Lamounier is compatible with
that used in this section. The advantages of the categorisation used in this thesis
are that

1. It is hierarchical and can potentially be used to decompose a constraint prob-

lem automatically.

Chapter 2 21 Related Work

2. There is a natural mapping between types of constraint problem and types of

solution technique.

The categorisation criteria identified in constraint solution are the use or not of
domain specific knowledge; the type of constraint problem; and the constrainedness
of the constraint problem. The categorisation of constraint solvers is presented in
figure 2.4.

The use or not of domain specific knowledge forms the most fundamental dis-
tinction between solvers. Many constraint solvers restrict the type of problem they
can solve so that they can take advantage of the structure of the restricted problems.
Thus geometric constraint problem solvers can take advantage of the Euclidean space
and rigid bodies in the problem. Alternatively, solvers that do not use domain spe-
cific knowledge, but instead handle constraints as a system of equations are called
general and are discussed in section 2.3.1.

The remaining constraint solvers take advantage of domain specific knowledge
and are called domain specific. The particular domain specific knowledge that the
solvers use identifies the type of problem that they are best at handling.

Finite domain solvers take advantage of the finite nature of the problem size
and typically use advanced search techniques in a finite solution space. These are
discussed in section 2.3.2.

Geometric solvers take advantage of geometric reasoning. There exist many ge-
ometric constraint solvers currently and these can be further identified as those that
solve over-, well- and under-constrained problems. Geometric solvers are investi-
gated in section 2.3.3.

Functional (or engineering) constraint solvers are used to solve algebraic prob-
lems and are typically aimed at describing the functional aspects of a design at the
conceptual design stage. Functional solvers take advantage of the structure of the
equations to aid solution. The state-of-the-art is presented in section 2.3.4.

Maintenance and physical constraint solvers are used to simulate the physical
environment and are introduced in section 2.3.5.

Chung and Schussel [19] compare variational and parametric solvers. They define
a parametric solver as one that uses a predefined set of geometric constraints which
are applied to the geometry by the engineer. They define a variational solver as
one that makes no assumptions about the way in which geometric constraints are
combined. Variational solvers typically use numerical or functional techniques to
solve the system of equations, whilst parametric solvers correspond to geometric

solvers in this thesis. They conclude that the use of one particular type of solver

SIOA[OG JUTRIISUO.) JO AUDIRIAIY Y :'g 2In31

Constraint
Solvers

(gwrac) (o)

de Pennington [16]
Kondo[57]

Light [69]
Lin[70]
Lamure [66]

Commoman) Commae) Comers) - (o)

Baraff [8]
|saac [40]
Thompson [109]

Over-
constrained

\
Well/Under- Under- Well- Over- Well- Over-
Congtrained constrained constrained constrained constrained constrained
ILOG Solver [93] Jussien [54] ICBSM [25,26,27] Skecthpad [108] WAYT [76,77] Concept Modeler [99, 101] DeltaBlue [34]
Forward Checking [92, 104, 113] IGCS[111, 112] ThingLab [12] Shimizu [103] INCES [63,65] SkyBlue [95]
Backtracking [92, 104, 113] Gleicher [42, 45] DCM [87] Wolf [120]
Arc Consistency [92, 104, 113] MechEdit [15] Erep [14] Houria[81]
Eggli [24] GCE [58,59,60] Gelle[41]
Sohrt [107] Pro/ENGINEER [20] Hosobe [51]
Tsai [110] Unigraphics [116]
OTP[4] Dufourd [23]
Laakko [62] Verroust [117]
GCE [58,59,60] Y amaguchi [123]
Aldefeld [1]

g 193deyn)

GG

IO pore[ey

Chapter 2 23 Related Work

depends on the design being created. Variational solvers tend to be more suitable
for preliminary work, whilst parametric solvers are more suitable for fairly simple

geometric design.

2.3.1 General constraint solvers

General constraint solvers handle constraint problems as systems of (typically) non-
linear equations. The systems of equations are then solved using either numerical

or symbolic techniques.

2.3.1.1 Numerical solvers

Numerical solvers take a system of equations and find a solution by using iterative
techniques such as Newton-Raphson. The details of Newton-Raphson are not pre-
sented here as they are covered in detail elsewhere [69,90]. Light and Gossard [69]
and Lin et al. [70] use numerical techniques for variational geometry in computer-
aided design systems. Several authors use numerical techniques as a backup to other
approaches, for example MechEdit [15], INCES [62] and IGCS [112].

Numerical solution is general and solves a constraint problem as a whole entity.

However, it suffers from a number of disadvantages:
1. Numerical solution is not robust and can fail to converge to a solution.
2. Numerical solution typically only finds one solution to a problem.

3. Numerical solution is computationally expensive, typically Q(n?) complexity,

where n is the number of constraints,

4. Numerical solution may converge to a root but it may not be the expected

solution to the problem.

Lamure and Michelucci [65] present a technique that resolves some of these prob-
lems. Homotopy avoids the convergence of Newton-Raphson to unpredictable solu-
tions as it is much more predictable. Using the initial guess of the user corresponding
to the user’s initial sketch of the geometric system, homotopy interpolates between
the system of polynomials describing the constraint problem and the system of poly-
nomials describing the user’s initial guess. The curve described by the interpolation

can then be used to guide the solution of the constraint problem so that the roots

Chapter 2 24 Related Work

found are more predictable. Homotopy can be combined with decomposition tech-
niques to speed up resolution. However, the price to pay for a more robust algorithm

is that homotopy is, on average, some 10 to 20 times slower than Newton-Raphson.

2.3.1.2 Symbolic solvers

In the symbolic approach, general solvers use symbolic algebraic methods, predom-
inantly Grobner bases [17], to reduce a system of equations to a triangular system
of polynomials that can be solved simply. Kondo [56] and Buchanan and de Pen-
nington [16] have used Grébner bases to solve systems of equations for geometric
models.

Grobner bases are particularly interesting as the final triangular system of equa-
tions is complete in the sense that it describes all solutions to the constraint problem.
However, Grobner bases are very computationally expensive and are therefore not

appropriate for interactive applications.

2.3.2 Finite domain constraint solvers

Finite domain constraint problems include scheduling, resource management and
some integer arithmetic. The domain specific knowledge used by finite domain
constraint solvers is that there are only a finite number of possible configurations
that need to be studied in order to look for solutions. The number of configurations
may be very large but it is invariably finite. Thus it is possible to exhaustively
examine all of the configurations and search for solutions.

Unfortunately, even very simple finite domain constraint problems, such as 3-
SAT, are NP-complete. Consequently, it is not usually practical to check all con-
figurations and knowledge of the structure of the problem is used to speed up the
process. Tsang [114] provides a comprehensive description of the various strategies
adopted for finite domain constraint satisfaction.

Although finite domain constraint problems are not often considered in the CAD
and engineering design community, they form a useful testbed for studying ideas on
the theory of constraint satisfaction for the simple reason that they are usually small
and well-understood. For this reason, two finite domain satisfaction techniques will
be described here in detail as representative of the general process. The descriptions
of backtracking and forward-checking have been taken from Tsang [114], Smith [103]
and Prosser [91].

Chapter 2 25 Related Work

2.3.2.1 Backtracking

Chronological backtracking is the simplest search algorithm used in finite domain
constraint problems. A variable, v, is selected from the set of variables and a value,
[, is selected from the domain of v. Variable v is then instantiated with the value
[, so that v :=[. The current values of all of the variables are then checked against
the set of constraints in the problem. If a check fails then the value is inconsistent,
the algorithm backtracks so that v is not instantiated and another value is tried. If
all checks succeed, then another variable is chosen. If all of the possible values for v
fail then the algorithm backtracks to the last variable successfully instantiated and
chooses another value for it. This continues until all variables have been instantiated,
in which case a solution has been found, or all possible configurations have been

exhausted, in which case the problem has no solution.

2.3.2.2 Forward-checking

The forward-checking algorithm is a “look ahead” technique. A variable is instan-
tiated with a value. Any values in the domains of other variables that conflict with
this instantiation are removed from those domains and this process continues. If
the domain of a variable becomes empty by this process then the instantiation is
inconsistent and is changed. Forward-checking therefore prunes large parts of the

search space quickly.

2.3.2.3 Other finite domain research

Research on finite domain constraint satisfaction problems is a well-developed field
(see [81] and [60] for survey papers on finite domain constraint satisfaction) and
has led to many studies of the performance of algorithms. Tsang et al. [115,116]
have compared a number of different algorithms and conclude that there is “no

7

universally best choice of algorithm and heuristic combination.” They recommend
using a number of criteria on the type of problem to determine which particular
solution algorithm to use. Although the criteria used in [115] are different, this
principle is applied in this thesis to select algorithms to solve different types of
constraint problem.

Freuder and Hubbe [35] present a control schema for solving constraint problems.
Although Freuder and Hubbe’s schema is primarily aimed at finite domain problems,

it does have implications for the work in this thesis. The schema is presented below:

Place the initial problem on the Agenda

Chapter 2 26 Related Work

Until Agenda empty:
Remove a problem P from Agenda
If P has only instantiated variables
then Exit with their values
else
Decompose P into a set of subproblems {Pi}
Place each non-empty Pi onto the Agenda

Exit with no solution

For all constraint satisfaction processes, the decomposition technique is the key.
Freuder and Hubbe use the schema to formulate descriptions of common algorithms
such as backtracking and forward-checking. Freuder and Hubbe note that a general
schema such as the one given “facilitates presentation and comparative analysis
of ... algorithms and suggests new algorithmic possibilities”. The work done in
this thesis, particularly in chapter 6, also allows the description of algorithms in a
common framework.

Finite domain problems may also be inconsistent. Jussien and Boizamault [53]
present a solution technique that takes advantage of the constraint hierarchies de-
veloped by Borning et al. [11] by using an Assumption-based Truth Maintenance
System to decide when to relax a constraint, which constraint(s) to relax and how

to delete a constraint.

2.3.3 Geometric constraint solvers

The original geometric constraint solver was Sketchpad [108] which used local propa-
gation and relaxation to solve constraint problems. ThingLab [12] extended Sketch-
pad by allowing information that was not purely graphical. Thingl.ab used Smalltalk
and allowed constraints to apply to non-numeric objects such as text. ThingLab was
a significant advance in geometric constraint modelling.

Geometric constraint solvers take advantage of domain specific knowledge about
rigid bodies, Euclidean space and the actions of geometric objects within Euclidean
space. Some solvers take advantage of local propagation techniques whilst some use
ruler-and-compass construction to solve constraint problems. However, there are
three identifiable strains of geometric constraint solver - those that handle under-
constrained problems efficiently, those that handle well-constrained problems effi-

ciently and those that handle over-constrained problems efficiently.

Chapter 2 27 Related Work

_ Coincident m Coincident /
C Linel @ Line3

a b)

Figure 2.5: An Arm with Two Joints and the Relationship Graph for the Problem

Under-constrained solvers are usually incremental, building up a model step-by-
step, frequently taking advantage of the user’s interaction to help guide the solution
process. Under-constrained solvers are discussed in section 2.3.3.1.

Well-constrained solvers are more usually specify-then-solve. Instead of building
up a set of constraints gradually, the set of constraints is specified all at once. These
are then solved using ruler-and-compass or rule-based methods to give solutions to
the problem. Well-constrained solvers are investigated in section 2.3.3.2.

Over-constrained solvers also tend to be of the specify-then-solve variety. How-
ever, over-constrained solvers specialise in identifying inconsistency in constraint
problems, probably caused by having too many constraints. The over-constrained
solver will then select constraints that should be removed to make the system con-

sistent. Over-constrained solvers are studied in section 2.3.3.3.

2.3.3.1 Under-constrained geometric constraint solvers

Fa et al. developed ICBSM, the Interactive Constraint-Based Solid Modeller [25
27,31,32|, at the University of Leeds. ICBSM allows the user to build a constraint
model in a virtual environment using direct manipulation of geometric objects. The
key advances introduced by ICBSM are the use of Allowable Motion and Automatic
Constraint Recognition. Allowable Motion is a local propagation technique that
propagates changes of values of a geometric objects as it moves to other geometric
objects that are constrained to move with it.

For example, consider the simple 2D arm shown in figure 2.5 (a). In ICBSM,
this has the corresponding relationship graph in figure 2.5 (b). If line 3 is moved
then, as it has been constrained to remain connected to line 2, it can only move in
a circle around point B. However, if line 2 moves then, as line 3 is connected to line
2 and is free to move, line 3 rotates with line 2 around point A, as the movements

of line 2 are propagated to line 3.

Chapter 2 28 Related Work

Automatic Constraint Recognition is the process whereby the user creates mod-

els within the virtual environment. As an object is moved around in the virtual

tified of these. If the user wishes to activate one of these constraints then the object
is simply released and the constraint is created automatically.

However, ICBSM is limited by the local propagation technique adopted and
cannot handle cycles in the relationship graph. Tsai et al. have used locus analysis
and other techniques to solve this problem, essentially turning ICBSM into the
hybrid constraint solver IGCS, the Interactive Geometric Constraint System [112,
113].

ICBSM is also quite slow, with bottlenecks caused by the rendering of the model
and the Automatic Constraint Recognition. Feng Gao et al [29] have helped to
alleviate this problem. Maxfield has expanded ICBSM into a collaborative, dis-
tributed virtual engineering environment [78,79] and Munlin has used ICBSM to
build complex assemblies [30].

ICBSM was heavily influenced by the Degrees of Freedom Analysis approach
used by Kramer in his Geometric Constraint Engine [2,9,57-59]. Degrees of Freedom
Analysis does not fit comfortably into being a well-constrained or under-constrained
approach because it is a hybrid of two techniques: action analysis and locus analysis
and can handle well-constrained problems using locus analysis. Action analysis is a
local propagation approach, equivalent to the Allowable Motion technique described
above.

Locus analysis is used to “determine where in global space certain classes of
partially constraint (geometric objects) must lie” [58]. Locus analysis works by
examining the loci of geometric objects. The locus of an object is the set of possible
positions that the object can take in space. If two objects are constrained to be
coincident then the intersection of their loci satisfies the coincidence constraint.

For example, consider the problem described in figure 2.6 (taken from [58]).
Here, line L, must remain fixed at point P. Correspondingly, the locus of point
P; is the circle L. Also, the circle of variable radius C is constrained to remain
tangent to circle C' and line L. The locus of the centre of Cy is therefore curve Lp.
Suppose a new constraint is added, that the centre of C is coincident with point P;.
Then there are two possible configurations that satisfy this new constraint, as well
as satisfying all of the previous constraints. These two configurations correspond to
the centre of circle Cy being at point P; or point Pj, found by intersecting Lo and
Lp.

Chapter 2 29 Related Work

Figure 2.6: An Example of Locus Analysis

Kramer’s approach is very powerful and the combination of the two techniques
allows for much more flexibility than one technique alone. The great benefit of
Degrees of Freedom Analysis and Allowable Motion is that they reduce a system of
highly nonlinear, highly coupled equations into a set of simpler, discrete, high-level
constraints.

Gleicher also investigates the use of direct manipulation in defining constraint
problems [41-44]. Gleicher uses differential manipulation to couple user controls to
graphical objects in a powerful manner that is closely linked to constraints. The
approach provides abstractions that enable new interaction techniques.

The constraint solution technique used is an equation solving method. However,
in order to solve the equations quickly and efficiently, differential manipulation con-
trols the motion of the objects over time, adding a form of elasticity to the direct
manipulation of objects. This domain specific knowledge helps to make differential
manipulation practical.

Brunkhart [15] has created MechEdit, a geometric constraint system for solving
systems of planar linkages. MechEdit uses local propagation and contraction in order
to solve under-constrained systems of linkages quickly. Brunkhart has conducted
experiments that indicate that his hybrid symbolic/numeric solver is significantly
faster than a numeric solver alone, in some cases improving the number of refreshes
per second from (.02 to 222.

Eggli et al. [24] use ‘Quick-Sketch’ to infer 3D models given a freehand sketch

with some constraints that can be inferred from the sketch. The geometric con-

Chapter 2 30 Related Work

straint satisfaction technique uses a degrees of freedom approach [59] to guide the
construction steps for the model.

Sohrt and Briiderlin [106] also use interactive manipulation with constraints.
The constraint solver that they use consists of two stages. First the geometric
constraints are interpreted as prolog predicates and are translated using rewrite
rules until the geometry can be determined. This is a planning stage. Then the
symbolic solution created by the rewrite rules is numerically evaluated each time
an object or constraint is altered. This allows fast interaction with the user when
nothing changes. However, new objects or constraints require recalculation of the
symbolic solution.

Tsai et al. [111] use local propagation techniques for incremental assembly. The
constraint graph of a problem is analysed and this is used to decide on whether to
reuse old information or to resolve the problem.

Arbab and Wang’s approach, Operational Transformation Planning (OTP) [4],
uses a “high-level understanding of the semantics of constraints and the geometric
implications of operations for satisfaction planning”. This use of domain specific
knowledge allows OTP to satisfy a network of constraints incrementally.

Laakko and Mantyla [61] use SkyBlue [94], a local propagation solver to create
geometric models in an incremental fashion. Their solver, EXTDesign, uses various
subsolvers to handle cyclic subproblems. SkyBlue is discussed in more detail in
section 2.3.4.1.

2.3.3.2 Well-constrained geometric constraint solvers

Well-constrained geometric constraint solvers typically operate using a specify-then-
solve paradigm. In this paradigm a set of geometric objects and a set of geometric
constraints are defined. The set of geometric constraints is sufficient for the con-
straint problem to be well-constrained. Then all of the constraints are used to find
solutions to the problem.

DCubed uses this technique [73 75,86]. The DCM algorithm takes a set of 2D or
3D geometric objects and a set of distance and angle constraints. Using Hopcroft and
Tarjan’s subdivision algorithm [49], the constraint graph representing the constraint
problem is divided into a number of split components. These split components
can then be solved using simple ruler-and-compass construction techniques and the
solutions to the subproblems are combined to form a solution to the whole problem.

For example, the pentagon in figure 2.7 is well-constrained and can be represented

using the constraint graph in figure 2.8, where lines represent distance or angle

Chapter 2 31 Related Work

Figure 2.8: The Constraint Graph for the Pentagon

constraints. Then Tarjan’s algorithm is used to identify the split components of the
graph. These split components can be solved immediately and then recombined to
give the picture in figure 2.7.

DCM claims to have an approximately linear speed of solution though Bouma
et al. claim it is in fact quadratic [14]. DCM can be used for under- and over-
constrained problems though it is not best suited for such cases as the algorithm
attempts to find an acceptable solution to an under-constrained problem by changing
as few geometries as possible. However, although it guarantees to find solutions to
well-constrained problems, it cannot guarantee to find any solution to an under-
constrained problem, even though an infinite number may exist. DCM deals with
an over-constrained subproblem by placing it in a subgraph and then solving the
rest of the problem.

Erep [37 39,48] is very similar to DCM. Erep studies the problem of under- and
over-constrainedness in some detail. However, the key strengths of Erep lie in its
ability to solve well-constrained problems and its ability to choose between solutions

to a problem to find the solution the user desires.

Chapter 2 32 Related Work

Pabon et al [87] have extended Kramer’s GCE engine to allow for feature and
variational modelling. The aim of Pabon et al.’s research is similar to the aims in
this thesis: to integrate different forms of constraint technique. However, Pabon
et al. do not demonstrate any theoretical basis for their work, nor any discussion
of domain specific knowledge, nor how solvers interact generally. These topics are
covered in this thesis.

Commercial CAD packages, such as Pro/ENGINEER [20] and Unigraphics [117]
allow well-constrained geometric constraint problems to be defined and solved.

Dufourd et al. [23] handle systems of geometric constraints using multiple con-
straint solvers. They describe geometric constraint systems in terms of predicates
describing the constraints. By taking advantage of the invariance under displace-
ment of constraint problems in a CAD environment, Dufourd et al. break such
constraint problems into smaller ones which are easier to solve.

The smaller constraint problems are then solved using one of three local solvers.
Two of the three local solvers use rule-based methods to solve the geometric con-
straint problems, whereas the third is a numerical technique. The first rule-based
method assumes that there are no loops in the constraint problem and so uses lo-
cal propagation to solve the constraint problem. The second rule-based method
allows loops but involves a much more complete set of geometric construction rules.
This second solver is not complete but Dufourd et al. claim that it is successful
in most cases in achieving sophisticated constructions. Dufourd et al.’s constraint
solver is similar in form to the hybrids discussed in this thesis. The domain specific
knowledge that they take advantage of is the invariance under displacement of CAD
models.

Verroust et al. [119] use an expert system to identify a sequence of computation.
Yamaguchi and Kimura [125] develop a technique for simplifying the construction
of consistent and sufficient constraint problems in order to make problems well-
constrained. A constraint problem is consistent if it has a solution. A constraint
problem is sufficient if it is well-constrained. Aldefeld [1] uses a rule-based method

to solve well-constrained problems.

2.3.3.3 Over-constrained geometric constraint solvers

Constraint solvers that specialise in over-constrained problems tend to concentrate
on resolving conflicts between constraints. This can involve using constraint hierar-
chies [11] or solving by other means.

Méntyla has developed WAYT, Why-Are-You-There? [76,77]. WAYT is a mod-

Chapter 2 33 Related Work

elling environment for assembling products. WAY'T uses hierarchical descriptions of
models to capture design information and uses DeltaBlue [34] as the integral con-
straint solver used to solve the constraints. DeltaBlue can solve only linear equality
constraints but can take advantage of constraint hierarchies to resolve conflicts.
DeltaBlue and its brother SkyBlue are discussed in more detail in section 2.3.4.1.

Shimizu and Numao [102] use a different technique to resolve conflicts between
constraints. They propose using an Automated Truth Maintenance System in order
to distinguish between redundant and conflicting situations.

Connectivity Analysis [67], DCubed [86] and Erep [14] also identify and resolve

over-constrained problems.

2.3.4 Functional constraint solvers

Functional (or engineering) constraint solvers solve constraint problems that de-
scribe the functionality of a design as compared to the physicality of the design. As
such, they are primarily intended for use in the conceptual design phase when the
functional description of the product is prepared. Generally, the functional descrip-
tion consists of a system of nonlinear equations and as such little domain specific
knowledge can be applied to solving the system. If no domain specific knowledge
can be applied, the system of equations must be solved by a general solver such as
Newton-Raphson or Grobner bases.

However, certain systems of equations have a structure that can be taken advan-
tage of. For example, linear systems of equations can be solved by taking advantage
of the sparseness of the matrix representing the system of equations and using LUD
decomposition [21] to solve the problem in a relatively efficient fashion.

Serrano has created a system called Concept Modeler [98 101] that takes advan-
tage of triangular systems of equations. Concept Modeler takes as input a system

of equations, such as that given below (taken from [100]), and uses the constraints

Chapter 2

Related Work

Figure 2.9: Equation Graph for Constraints C'1 to C'6

to build the equation graph given in figure 2.9.

C1
C2

C3

C4

CH

C6

MY
o 7 U
M —FL =0,
3
;i 0
12
H
Y - = =0,
2
3E1
K= =0
FIL?
— = 0.
¢ FEI

The user then specifies which of the variables are known and which are not. In

this case, variables M, o0, K, E and ¢ are known. Using graph matching techniques

this allows the creation of the tree-like structure in figure 2.10 which is used to derive

the sequence of constraint satisfaction for the problem.

Serrano then uses the values calculated for variables earlier in the constraint

satisfaction sequence to give values for variables later in the sequence. However, the

subgraph given by the variables 7, L, F' in figure 2.10 is cyclic and must be solved

Chapter 2 35 Related Work

Figure 2.10: Tree-like Representation for Equation Graph

simultaneously. It is therefore collapsed into a strong component ' SC which is
solved separately. The sequence of satisfaction for figure 2.10 is SC —Y — H — W.

Serrano presents two methods of finding redundancies and conflicts within strong
components. The first uses symbolic manipulation of the constraints within the
strong component so that each constraint is described in terms of one variable and
then constraints are successively eliminated by substitution into another constraint.

For example, if a constraint problem consists of four constraints { fi, fo, f3, f1}:

Jfiix—a3 =0,
forad—1=0,
faia?4+mxy — A=0,
fi:x34+2*— B =0,

each constraint can be described simply in terms of a function of one variable. In
this case, f; can be rewritten as 1 = z3, fo as 2o = 1, fs as 24, = A — 2% and f; as

xr3 = £v/B — x4. Substitution leads to the expression

xy = +4/B—(A—2a?).

If A = B then the set of constraints {f1, fa, f3, f4} is redundant. If A # B then the
set of constraints is conflicting and has no solution. However, this technique is, in

general, insufficient. Most constraint problems cannot be solved using substitution

Chapter 2 36 Related Work

Nl

0
j hXnoAx f

Figure 2.11: Typical result of Gaussian elimination on linearised constraint problem

techniques as constraints are not usually a simple function of a single variable.
Grobner bases could be used to identify redundancies in the strong components and
to solve the strong components. However, the utility of Serrano’s approach is then
limited to the use of Grobner bases.

The second method Serrano uses for finding redundancies and conflicts involves
numerical techniques. First, the strong component is linearised by constructing its

Jacobian matrix to give the following system of equations:
JAx = — f,

where .J is the Jacobian, Ax is the vector of (z; — x,), where z; are the unknowns
and x(are the initial guesses, and f is the vector of the constraints evaluated at x.

Serrano notes that if the Jacobian is non-singular then the strong component is
consistent and can be solved using the above matrix equation for each iteration of a
Newton-Raphson method. The Jacobian can never be structurally singular (when
the Jacobian is non-square [69]) as the strong component will always contain as
many constraints as variables.

The Jacobian can be numerically singular if the determinant of the Jacobian is
equal to 0. In this case, Gaussian elimination would lead to a matrix of the form in
figure 2.11.

If an entry in —f is zero for ¢, < ¢ < n, then the corresponding constraint to
row ¢ is redundant, otherwise the constraint is in conflict with the other constraints
in the strong component.

Numerical inaccuracies in adopting this technique may mean that the determi-
nant of the Jacobian is close to 0 and is approximated to 0. Consequently, non-
singular matrices may be identified as being singular.

Serrano’s approach is very similar to Light and Gossard’s [69]. The chief dif-
ference is that Serrano only applies the numerical techniques described above to
strong components that the initial algorithm identifies, whilst Light and Gossard

apply their numerical approach to the entire constraint set. Serrano’s approach

Chapter 2 37 Related Work

therefore does not use the more expensive numerical technique for acyclic subprob-
lems. However, as will be proved later in this thesis, the decoupling of the cyclic and
acyclic subproblems in Serrano’s approach may lead to a failure to find solutions
where Light and Gossard’s algorithm will succeed.

Serrano states that this graph-based approach has proven to be more efficient
than numeric and symbolic techniques. However, the speed of the system is depen-
dent on there being relatively few cycles in the graph.

Lamounier [62 64] has improved on Serrano’s algorithm by making it incremen-
tal. Each time a constraint is added to Serrano’s system, the entire satisfaction
sequence must be derived from scratch. For very large sets of equations this will
take a long time. Lamounier has improved the algorithm by ordering the satisfaction
process in such a way that when a new constraint is added, it only affects as small
a part of the graph as possible. For example, adding constraint ¢6 to the graph
given in figure 2.12 (taken from [63]) would only affect constraints ¢5 and ¢4 and
the variables ¢, h, f and ¢ rather than the whole problem.

Lamounier has also tried to describe more general constraint problems by allow-
ing geometric constraints in INCES. However, to do this the geometric constraints
are reduced to systems of equations and this loses all domain specific knowledge
associated with the geometric constraints.

Serrano and Lamounier’s work depend on local propagation. Local propagation
is equivalent to triangular form in matrices or a tree structure in constraint graphs.
Many solvers use local propagation as it is very efficient [15,27, 62,94, 101, 112].
However, local propagation cannot handle cycles or systems of equations that must
be solved simultaneously. Serrano and Lamounier both deal with simultaneous
subproblems by passing them to a numerical solver. One of the issues identified
by this thesis is that this may lead to the whole solver being inconsistent in the

sense that it may fail to find solutions when they exist.

2.3.4.1 Over-constrained functional constraint solvers

Over-constrained functional constraint solvers attempt to resolve the conflicts caused
by having too many constraints for the number of variables. In order to do this
Borning et al. [11] devised constraint hierarchies. Constraint hierarchies involve as-
signing each constraint a strength, indicating how important it is that the constraint
be satisfied. The constraint problem is then solved using the constraint hierarchy
to satisfy the most important constraints. The precise trade-off between strengths

is determined by a comparator.

Chapter 2 38 Related Work

©
¢

e O O

© R
=g

a) Before Inserting Constraint c6

© ®

%@@%f
s

b) After Inserting Constraint c6

Figure 2.12: Example of Incremental Insertion of Constraint. Arrows in Graph
Indicate Order of Satisfaction

Chapter 2 39 Related Work

weak \ strong
(o) SO N))
;, -7

Figure 2.13: Example Constraint Graph for Hierarchical Constraint Problem

Constraint hierarchies have become very popular as they formalise the means by
which conflicts in over-constrained systems can be resolved in a predictable fashion.

One of the first constraint solvers to take advantage of constraint hierarchies was
DeltaBlue [34]. DeltaBlue is an incremental, local propagation constraint solver.
It uses a bipartite constraint graph of constraints and variables to determine the
flow of propagation from variable to variable and uses the strengths of constraints
to determine which constraints need to be solved. Each constraint has a number of
methods used to determine how a constraint is satisfied. Only one of these methods
is active at any given time.

For example, consider the graph in figure 2.13. Constraints are squares and
variables are circles. The direction of the arrows indicates which method is to be
used, and dashed arrows indicate that a method is not active. Here constraint c2
has been sacrificed so that ¢l is satisfied. In this case, once a and b are known, cl
can be used to calculate ¢. Once ¢ is known, ¢3 can be used to calculate d.

DeltaBlue is fast as it is incremental: adding a new constraint will only affect
a small part of the constraint graph. However, DeltaBlue is limited as it uses local
propagation. Any cycle in the constraint graph cannot be solved. DeltaBlue also
only allows single output variables.

SkyBlue [94], the successor to DeltaBlue, allows solution of cycles by calling
external cycle solvers. SkyBlue also allows multi-output constraints. SkyBlue and
DeltaBlue have been used in several other constraint solvers [71,95,96]. Hosobe et
al. [50] propose a similar approach to SkyBlue.

Gelle and Smith [40] present a system for resolving over-constraint in a dynamic
environment. They use a logic framework to determine solutions of the problem.

Wolf [123] uses constraint hierarchies to transform an over-constrained constraint
hierarchy problem into a ‘normal’ constraint problem which can then be solved.

Houria [80] is another solver that uses constraint hierarchies and local propaga-

tion, but uses a global comparator and satisfies more constraints than other solvers.

Chapter 2 40 Related Work

2.3.5 Maintenance and physical constraint solvers

Maintenance simulation involves a virtual representation of a real environment in
which an engineer or a mechanic can use virtual tools to assemble and disassemble
complex machinery. Physical simulation involves a virtual representation of the real
world, including gravity, friction, acceleration and forces. These two areas of study
are closely linked as forces are involved in maintenance simulation to detect, for
example, the amount of torque placed on a wrench to turn a screw.

Constraints do not play a particularly large part in physical modelling. However,
there do exist some constraint methods for physically based modelling. Physical
laws, such as gravity, friction and non-interpenetration of solid bodies, can be de-
scribed using constraints, and such laws are very important for realistic engineering
design. For example, Platt [89] presents a method based on constraint stabilisa-
tion and dynamic constraints that he uses to describe deformable models and for
collisions between the models.

Project Isaac [118] is intended to combine accurate, efficient and robust tech-
niques for collision and contact detection in order to simulate large and complex
geometric models within a virtual environment. Others studying physical modelling
include Baraff [8] and Witkin [122].

Whilst much research has been done on physical modelling, little has been done
on investigating the support of maintenance analysis. Thompson [110] is currently
investigating tools and techniques for supporting maintenance analysis within virtual
environments. It is hoped that Thompson can extend the work done by Fa [25]
and Munlin [30] so that dynamic maintenance analysis can be carried out in the

constraint-based virtual environment of ICBSM.

2.4 Conclusions

This chapter has presented the state-of-the-art in constraint satisfaction. The theory
underlying constraints was investigated, including the links with relational algebra
as well as dimensions, decomposition and solution spaces.

Constraints are used in many different fields and constraint solvers tend to be
biased towards a particular field. The fields identified in this thesis are general,
finite domain, geometric, functional and physical. Other than the general constraint
solvers, solvers within a particular field tend to take advantage of domain specific

knowledge about that field. Domain specific knowledge allows more efficient solvers

Chapter 2 41 Related Work

to be created as well as solvers that can identify desired solutions more easily and
also can be guaranteed to converge to solutions.

In engineering design, the most used types of solvers are general, geometric
and functional. Finite domain and physical solvers are still significant in terms of
engineering design but form a subsidiary part of this thesis. Geometric and general
solvers are frequently joined to form hybrids [15,87,112]. Functional and general
solvers are also occasionally joined as hybrids [94]. However, it is rare that two
domain specific solvers are used in conjunction [62].

Hybrids are useful as they allow a constraint solver to solve more constraint
problems than would be possible normally. In this thesis, hybrids will be described
as being more expressive. Domain specific solvers tend to be very efficient but also
quite restricted in the problems they can solve. This thesis investigates the use of
hybrids of domain specific solvers.

However, in order to investigate hybrids of solvers, commonalities between dif-
ferent types of solvers must be found. To this end, an abstraction of the constraint
satisfaction process is developed in the next four chapters. This abstraction allows
common elements of constraint solvers to be identified and then exploited when the
solvers are linked together.

The criteria identified for distinguishing constraint solvers as given in figure 2.4
allow the association of constraint solvers with problems that are particularly well
suited to that constraint solver. This will allow the definition of a hybrid constraint

solver in chapter 7 that will take best advantage of domain specific solvers.

Chapter 3

Solving Constraint Problems by

Decomposition

This thesis investigates the definition, representation and solution of engineering
design constraint problems. This chapter investigates existing engineering design
constraint solvers and discusses the general method of solving constraint problems
that these solvers use.

The principle behind most existing constraint solvers is that it is easier to solve
lots of small problems rather than one large problem. This is the divide-and-conquer
concept prevalent in computer science.

Freuder and Hubbe’s control scheme for solving constraint problems [35] is an
example of the divide-and-conquer approach to constraint solution and forms a
useful basis for discussing most current constraint solvers. It is repeated here for

convenience.

Place the initial problem on the Agenda
Until Agenda empty:
Remove a problem P from Agenda
If P has only instantiated variables
then Exit with their values
else
Decompose P into a set of subproblems {Pi}
Place each non-empty Pi onto the Agenda

Exit with no solution

A prime consideration of infinite-domain solvers, though often not explicitly

stated, is that ordering a set of subproblems can significantly simplify their solution.

42

Chapter 3 43 Solving Problems by Decomposition

Given constraint problem P,

1. Decompose P into a set of subproblems {P;}.
2. Order the subproblems.

3. Solve the subproblems in the order given.

Table 3.1: Control scheme for solving constraint problems

For example, consider the two problems P; and Ps:

P = ({(z,R), (y,R), (2, R)}, {z? + y? + 2” = 43,322 + 4y* + sin z = 256}),
Py = ({(z,R)}, {z = 4}).

Solving P, first and then P; is extremely hard. However, if P, is solved first then
P, is much simplified. The order of solution of the subproblems has significantly
improved solution of the combined problem, P = P; U Ps.

Finite domain solvers also benefit from a careful ordering of subproblems as
evidenced by the use of heuristics to help guide solution. Variable and value ordering
can frequently make a hard finite domain constraint problem much simpler [103,114].

Freuder and Hubbe’s control scheme can be adapted to incorporate the order-
ing of subproblems by dividing the solution process into three stages as shown in
table 3.1.

Note that Freuder and Hubbe do not use constraint solvers per se, but decom-
pose until variables are instantiated. Thus, the decomposition solves the constraint
problem. Here decomposition is distinguished from solution so that existing con-
straint solvers can be applied to subproblems when it becomes possible to do so
and because decomposition to the level of instantiation is not usually possible in
infinite-domain problems.

Note also that Freuder and Hubbe continuously decompose the subproblems until
they can be solved. In part this is because the decomposition is used to solve the
subproblems. However, in part it is because the decomposition of subproblems can
lead to other subproblems that can be decomposed further. The solution process
presented in table 3.1 assumes that the decomposition of P into subproblems {P;}
is comprehensive in the sense that any further decomposition of a P, takes place
as part of the solution phase. In this way, the general constraint solver does not
reinvent the wheel and can reuse any existing solvers.

This approach means that the constraint solver described in table 3.1 should take

into account the constraint solvers available. The constraint solver then decomposes

Chapter 3 44 Solving Problems by Decomposition

Given constraint problem P,

1. Decompose P into a set of subproblem-solver pairs {(P;,S;)}
such that P, can be solved efficiently by one of the domain
specific solvers in S; or P, can be solved by a domain general
solver in S;.

2. Order the subproblem-solver pairs taking into account hy-
brid collaborations and domain specific knowledge.

3. Solve each subproblem using the solver selected and the
hybrid collaboration chosen.

Table 3.2: Control scheme for solving constraint problems using domain specific
knowledge and hybrid constraint solvers

the constraint problem according to the solvers available, orders the subproblems
and then initiates the solvers on the subproblems in the order decided. Clearly the
decomposition strategy, the ordering strategy and the available solvers become the
key elements of the constraint solver.

As noted in chapter 1, the use of domain specific knowledge and hybrid col-
laboration have been identified as being powerful techniques to take advantage of.
Consequently, it is of particular interest to identify how these two concepts fit into
the above constraint solver framework. In fact, the use of domain specific knowledge
and hybrid constraint solvers forms a natural extension of the solution process in
table 3.1.

The use of domain specific knowledge manifests itself in the availability of domain
specific solvers. The constraint solver should decompose the constraint problem
into subproblems that can be solved by the domain specific solvers advantageously.
Consequently the constraint solver must know the strengths of the domain specific
solvers available and how these can be identified in the constraint problem.

Hybrid constraint solvers are useful because they help to make explicit the order-
ing of subproblems and also allow solvers to pass solutions amongst themselves in a
controlled fashion. Hybrid solvers are therefore particularly useful in stages 2 and 3
of table 3.1. The use of hybrid collaborations in stage 3 will be studied extensively
in chapter 7.

The specialisation of table 3.1 to take into account domain specific knowledge
and hybrid constraint solvers can therefore be described as shown in table 3.2.

This solution process has great potential for success. As discussed above, the key
elements of the process are the decomposition strategy, the ordering strategy and

the solvers available. Each of these elements is discussed in detail in the following

Chapter 3 45 Solving Problems by Decomposition

sections.

Section 3.1 presents four examples discussing currently existing constraint solvers
in terms of the processes discussed in table 3.1 and table 3.2. Section 3.2 discusses the
decomposition strategy and gives some examples of current decomposition strategies.
In section 3.3, the ordering strategy is covered in detail, giving advantages and
disadvantages of ordering strategies.

Section 3.4 discusses solution of the subproblems using domain specific solvers
and the advantages and disadvantages thereof. Section 3.5 presents conclusions from

this chapter.

3.1 Examples of current constraint solvers

This section presents four examples of current constraint solvers, discussed in terms
of the processes described in the previous section. The first example uses the DCM
solver introduced in [86]. The second example demonstrates the use of a hybrid of
a domain specific solver and a domain general solver using the process in table 3.2.
This example uses the INCES solver introduced in [62]. The third example discusses
IGCS [112] and the fourth example discusses Connectivity Analysis [67], which is a

hybrid of many domain specific solvers.

3.1.1 DCM

The two-dimensional constraint solver used by DCubed, DCM [86], solves constraint
problems consisting of two-dimensional points and lines and distance and angle con-
straints. The algorithm works by decomposing the constraint problem into tricon-
nected components’ . The triconnected components will usually consist of triangles
in a constraint graph constructed of either real or wvirtual edges. Then, triangles
of constraints and entities consisting entirely of real edges are solved. This fixes
the three entities in the triangle relative to each other and allows further triangles
to be fixed and solved relative to these three entities. The DCM algorithm can be

described in three stages:

1. Decompose the constraint problem P into a number of subproblems {P;},
where each P; is a triconnected component. The decomposition strategy cre-
ates virtual edges when a complex subgraph is split into two other subgraphs

along an articulation pair’ . The edge between the two vertices that form the

Chapter 3 46 Solving Problems by Decomposition

Figure 3.1: Constraint problem P describing a pentagon

articulation pair is part of one subgraph and is repeated as a virtual edge in

the other subgraph.

2. Order the subproblems so that triangle (A, B,C') is solved before triangle
(A, B, D) if there is an edge (A, B) common to both triangles that is real in
(A, B,C) and virtual in (A, B, D). This forms the ordering strategy of DCM.

3. Each triangle is solved in turn, in the order dictated by the ordering strategy.
Solvers find solutions to three simultaneous equations in three unknowns using
special case or numerical techniques. Since the number of possible triangles is

small and finite, special case techniques can be used efficiently.

For example, consider the constraint problem P in figure 3.1. The decomposition
strategy in [86] gives the set of subproblems depicted in figure 3.2, where virtual
edges are represented using dotted lines.

The partial order generated for these triangles is

ADFG < AADF < AABD, (3.1)
AEHI < AEIC < ABEC. (3.2)

The special case solvers would then be applied to the triangles in turn, maintain-
ing this order. The special case solvers are effectively domain specific solvers. For
example, assuming points D and G are fixed, a position for line F' can be calculated
using ADFG. Since D and F' are now fixed, a position for line A can be calculated
using AADF'. Finally, a position for B can be calculated using AABD. Eventually

relative positions for B, G and H would be determined, as shown in figure 3.3.

Chapter 3 47 Solving Problems by Decomposition

Figure 3.2: Decomposed subproblems of problem P

Figure 3.3: Recombined subproblems of constraint problem P

Chapter 3 48 Solving Problems by Decomposition

These three components can then be placed relative to each other, fixing B,
and H up to rigid body freedom.

Note the close correspondence here with Erep. Erep would solve P in exactly the
same way, forming triangles DFG, ADF and ABD into a single cluster and triangles
EHI, EIC and BEC into another cluster and then fixing these two clusters with
triangle GHJ in similar fashion to that above. In fact, Erep and DCM have recently

been acknowledged to be very similar [14].

3.1.2 INCES

The functional constraint solver INCES [62], developed by Lamounier at the Univer-
sity of Leeds, solves constraint problems consisting of variables on the real line and
equations. The INCES algorithm solves such problems by examining the constraint
graph of the problem and identifying strongly connected components® . Strongly
connected components are equivalent to subproblems that must be solved simulta-
neously. Such subproblems, once identified, are renamed as a single entity in the
constraint graph so that the constraint graph becomes acyclic.

The acyclic constraint graph is then solved using local propagation techniques so
that entities that are fixed are solved first and entities that are connected are solved
next, until a strongly connected subproblem is encountered.

The strongly connected subproblem is solved using a domain general solver. In
the current implementation of INCES this is a Newton-Raphson technique. The
result of the Newton-Raphson solver is passed downstream to other entities in the
acyclic graph by local propagation and the process continues.

This is an example of the process described in table 3.2. This can be seen more

easily if the INCES algorithm is described in three stages:

1. Decompose constraint problem P into a number of subproblems {P;}, where
each P; is either a strongly connected component or is a connected, acyclic

constraint graph.

2. Order the subproblems so that fixed subproblems are solved first, followed by

subproblems that are connected to them, and so on.

3. Solve the subproblems in the order dictated by the ordering strategy. Solve
acyclic subproblems using the local propagation solver and strongly connected

subproblems using the Newton-Raphson solver.

Chapter 3 49 Solving Problems by Decomposition

Cl:s-MY =0
| Y M
M-F

C2:M-FL=0
C3:1-WH=0 H

¥ S
C4Y-H=0
F

2 iy ;
C5:K-3ElI=0
L

Cé6:P-FL =0

C7:P=10 / P
C8: M =20

C9:E=30 K
C10: K = 40

C11:s=50 @ @

Figure 3.4: Constraint/Entity graph of figure 2.9

For example, consider the constraint problem in figure 3.4, where each entity
has domain IR. INCES decomposes this to constraint problems P, P,, P; and P, as

shown in figure 3.5. The order of solution is given by the partial order:

Pl < P37
P3 < P4,
P < P,

The ordering strategy used by INCES is to solve subproblems that fix entities first
and then use the results from these subproblems to solve connected subproblems. In
figure 3.5, problems P; and P, are fixed and so are solved first. Problem P, cannot
be solved before P as it is dependent on P3;. Consequently, the ordering above is
formed.

Problem Pj is strongly connected and so is solved using Newton-Raphson. Prob-
lems Py, P, and P, are solved using local propagation. Thus INCES is a hybrid of
the domain specific local propagation algorithm and the domain general numerical

solver.

Chapter 3 50 Solving Problems by Decomposition

Figure 3.5: Decomposed subproblems of figure 3.4

3.1.3 IGCS

Like INCES, IGCS [112] was developed at the University of Leeds. IGCS was
designed by Tsai as a geometric constraint solver that would serve as a successor to
Fa’s ICBSM [27]. ICBSM was limited in that it could not solve geometric constraint
problems with loops and so IGCS was built with this in mind.

IGCS consists of three separate solution techniques for a geometric constraint
problem: Allowable Motion, Locus Analysis and inverse operation. The Allowable
Motion method is equivalent to ICBSM’s Allowable Motion. This technique satisfies
a new constraint by manipulating an object using its Allowable Motion (how it can
translate and rotate in space). The Allowable Motion can then be used to maintain
constraints when the model is manipulated.

Locus Analysis is as described by Kramer [59]. The Allowable Motion of two ge-
ometric objects that have a constraint between them are examined. Each geometric
object has a locus of possible positions it can occupy without breaking its current
constraints. The intersection of the two loci is the set of possible positions the two
geometric objects can occupy and satisfy the new constraint as well as all of the old
ones.

The final solution technique is the inverse operation method. This technique tries
to satisfy a new constraint between objects A and B by examining the Allowable
Motion and loci of objects connected to A and B. If the new constraint cannot
be satisfied by manipulating A and B alone, then the inverse operation method

attempts to satisfy the constraint by manipulating objects connected to A and B

Chapter 3 51 Solving Problems by Decomposition

point-point coincident

(2) (b)

Figure 3.6: The inverse operation method in IGCS (from [112])

that may give A and B more freedom.

For example, consider figure 3.6 (a). A point-point coincidence constraint is
added between the end-points of C and D. This cannot be satisfied by moving C
and D alone. However, line B is free to move and so the inverse operation method
will satisfy the new constraint by rotating B to a position where C and D can be
rotated to solve the constraint (see figure 3.6 (b)).

The algorithm adopted by IGCS is that it tries Allowable Motion to satisfy a
new constraint first. If this fails, then it tries locus analysis and if locus analysis
fails, then it tries the inverse operation method. Again, this is an example of the

decomposition framework:

1. Decompose a constraint problem into subproblems consisting of individual

constraints and the objects associated with them.
2. Order the subproblems according to the user’s interaction.

3. Solve the subproblems by applying Allowable Motion, then Locus Analysis

and then the inverse operation method in order.

Note that IGCS can solve loops in the constraint graph by using the locus analysis
and inverse operation methods. Note also that IGCS is an incremental solver and

can deal with single constraints being added very quickly.

3.1.4 Connectivity Analysis

Connectivity Analysis [67] was presented by Latham and Middleditch as a means of
solving geometric constraint problems. Of the three algorithms presented by Latham

and Middleditch, one discusses the identification of over- and under-constrainedness

Chapter 3 52 Solving Problems by Decomposition

‘\ L2(6) P2(3) 4@

Figure 3.7: A connectivity graph for constraint problem P

of constraint problems and making over- and under-constrained problems well-
constrained. The second algorithm uses constraint priorities to choose constraints
to remove to solve over-constraint. The third algorithm subdivides a large set of
constraints into small subproblems that can be resolved independently. It is this
final algorithm that has the most direct bearing on this thesis.

Connectivity Analysis describes a constraint problem P using a bipartite con-
nectivity graph (see figure 3.7 taken from [67]). Each entity has a number associated
with it which is the dimension of the entity. Each constraint also has its dimension
associated with it.

The entities in the problem are:

L1 and L2 are each line segments with dimension 6,

P1 and P2 are each points with dimension 3.
The constraints are:

f1l and f2 are constraints to fix the location of P1 and P2,

el, e2 and e3 are endpoint constraints to fix the endpoints of L1 and L2,
d1 fixes the length of L1,

al forces L1 and L2 to be orthogonal,

h1 forces L1 to be horizontal.

Each edge of the connectivity graph has a weight associated with it, such that
the sum of the weights of all the edges incident to a node is not more than the
dimension of the corresponding entity or constraint. Each edge is also directed. If

the weight of the edge is zero, then the direction of the edge is from an entity node to

Chapter 3 53 Solving Problems by Decomposition

Figure 3.8: Residual sets for constraint problem P

a constraint node. If the weight is non-zero, the edge is directed in both directions.

Connectivity Analysis then proceeds by identifying a mazimal weighting of the
connectivity graph. A maximal weighting is a weighting where the sum of weights
on the edges is no smaller than the sum of weights in any other weighting. At this
point, Connectivity Analysis detects residual sets which are strongly connected sets
that are not strict subgraphs of any other strongly connected sets. Figure 3.8 shows
the residual sets of figure 3.7. Circles represent constraints and rectangles represent
entities.

The Connectivity Analysis algorithm is presented below:

BEGIN
Partition the constraint graph into residual sets
Compute the partial order for the residual sets
FOREACH residual set in order
Solve the constraints in the set, treating external entities
as constants
ENDFOR
END

The Connectivity Analysis algorithm is dominated by the time taken to identify the
residual sets, which is nonlinear. The partial order of residual sets is that residual

set Y is solved before residual set 7, Y < 7, if and only if:
Jy € Y,z € Z such that there exists a path y ~ 2z € E

where F is the set of edges in the connectivity graph. Consequently, in figure 3.8,

Chapter 3 54 Solving Problems by Decomposition

the partial order of residual sets is:

D < B < A,
C < B<A.

The algorithm for Connectivity Analysis is essentially a specific case of that given
in table 3.2. The decomposition strategy is the identification of residual sets. The
ordering is given above and the solution is by solvers applied to the residual sets in
the order given. Latham and Middleditch do not discuss the specific solvers applied
to the residual sets in much detail but they do note that “individual balanced sets
can be solved using special or general purpose algorithms” and that “special purpose
algorithms are usually more efficient than general purpose algorithms”. In other
words, Connectivity Analysis should use domain specific solvers to solve residual
sets.

Although Latham and Middleditch do not discuss hybrid constraint solvers, the
partial ordering used to order the residual sets lends itself naturally to hybrid col-
laboration. For example, in figure 3.8 residual sets D and C' can be solved in parallel
and then B and then A sequentially.

If implemented in such a fashion, Connectivity Analysis would be a hybrid of
domain specific solvers. Note, however, that the decomposition strategy used in
Connectivity Analysis does not allocate solvers to subproblems.

Recently Latham has generalised Connectivity Analysis to type analysis [68].
Type analysis associates a type with each constraint and decomposes a constraint
problem into subproblems that can usually be satisfied independently of other prob-
lems. Here “usually” means not considering degenerate cases. Type analysis finds
complete constraint sets with respect to a certain type T. A constraint set is com-
plete if the imposed set of entities is complete with respect to 7.

A set of entities is complete with respect to T if

1. A new type T constraint is compatible with some sequence of entities in that

set.

2. No sequence of entities in that set can have their allowable motion reduced by

a new type 7' constraint.

DCM [86], GCE [58] and Erep [14] all exploit distance-complete sets, i.e. subprob-

lems that are well-constrained if only distance constraints are considered. Type

Chapter 3 55 Solving Problems by Decomposition

analysis detects other complete sets and so is more general. However, the time com-
plexity of type analysis is O(n?), where n is the number of constraints in a problem.
Correspondingly, type analysis is not suitable for the type of scaleable, interactive
application of interest to the Virtual Working Environment group at Leeds. Note
that type analysis also does not consider the allocation of solver to subproblem,
although the use of types helps to narrow the choice of solvers appropriate to a

particular subproblem.

3.2 Decomposition strategies

A decomposition strategy De is a function that takes a constraint problem and a
set of available solvers and produces a set of subproblems with solvers assigned to

them. It is formally defined here.

Definition 3.1 (Decomposition Strategy) A decomposition strategy is a func-

tion
De: (P,S) — {(P;,S;)},

where P is a constraint problem, P; are subproblems of P, § is a set of constraint
solvers and S§; C §. O

A decomposition strategy can be simple or complex. One of the most basic

decomposition strategies that is employed by virtually every constraint solver is :

Deconnected components : (P, S) — {(PH S)}a

where the {P;} are the connected components of the Constraint/Entity graph of
problem P. Elements of a connected component do not affect any elements of a
different connected component, by the definition of imposed sets (see definition 4.9).
Deconnected components applies the same set of solvers to the connected components of
P.

Decomposition strategies are important because they divide a large and complex
problem into a number of smaller problems that can be more easily dealt with.
However, there are a number of difficulties associated with decomposition. These
are discussed in more detail in section 3.2.4.

The remainder of this section presents some examples of decomposition strategies

in section 3.2.1. Section 3.2.2 discusses decomposition strategies to take advantage of

Chapter 3 56 Solving Problems by Decomposition

domain specific solvers. Section 3.2.3 notes the advantages of decomposition strate-
gies, whilst section 3.2.4 acknowledges the limitations and dangers of this approach.
Section 3.2.5 discusses the use of decomposition strategies in incremental constraint
solvers. Section 3.2.6 draws some conclusions from the use of decomposition strate-

gies.

3.2.1 Examples of decomposition strategies

Most constraint solvers use decomposition strategies in order to find solutions to
constraint problems. Note that a further decomposition strategy can be applied
to each of the results of a decomposition strategy and so decomposition strategies
can be composed. For example, Serrano’s DESIGNPAK [100] decomposes prob-
lems into strongly-connected components’ and non-strongly-connected components.
Call this decomposition strategy Degirong components- However, prior to applying
Degirong components; DESIGNPAK has already decomposed the constraint problem
into connected components using Deconnected components-

Thus the DESIGNPAK decomposition strategy is

Destrong components o Deconnected components,

where the o notation is used to denote composition of decomposition strategies:

(Dey o Dey)(P,S) = U{Deg(Pi, S},

where
De (P, 8) ={(P;,S)}.

Erep [14] uses a decomposition strategy that is very similar in outcome to DCM
but somewhat different in application. Erep identifies clusters of entities and con-
straints. A cluster is a part of a constraint problem that can be fully described as
a rigid body and can be manipulated as a rigid body. Erep has two distinct phases
to constraint solution. First it builds clusters by positioning an entity relative to
two fixed entities using two constraints. This procedure continues until no more
entities can be placed relative to any pair of entities in the cluster. At this point,
the cluster is a rigid body. Clusters can then be placed relative to each other using

manipulation of the rigid bodies. Three clusters C'l1, 12 and CI3 can be placed

Chapter 3 57 Solving Problems by Decomposition

relative to each other if there exist three entities, x € Cl1, y € Cl2 and z € Cl3 and
three constraints, between z and y, y and z and 2z and =.

The decomposition strategy used by Erep decomposes a constraint problem into
a number of clusters, which are solved using the cluster building technique, and sets
of three clusters that can be positioned relative to each other.

The decomposition strategies used by INCES, IGCS, DCM and Connectivity

Analysis have been discussed in detail in section 3.1.

3.2.2 Decomposition to domain specific subproblems

In order to take advantage of the power of domain specific solvers, a constraint
solver must decompose a constraint problem into subproblems that can be solved
efficiently by the domain specific solvers available. Such subproblems are referred to
here as domain specific subproblems. In order to perform this decomposition, the
constraint solver must know the strengths of the domain specific solvers and how
the appropriate domain specific subproblems can be identified within the original
constraint problem. This is very difficult to do thoroughly.

In order to find domain specific subproblems, it is first necessary to identify the
domain specific knowledge being used by the domain specific solvers. This helps
to identify types of problem that the domain specific solvers can solve efficiently.
This in turn leads to methods of pulling out domain specific subproblems from the
original constraint problem.

For example, the domain specific knowledge that Erep and DCM use is ruler-
and-compass construction. More specifically, Erep and DCM use the domain spe-
cific knowledge that distance and angle constraints between points and lines can be
solved quickly and efficiently because a point is fixed in space by two distance con-
straints relative to two other fixed points and a number of similar rules. Erep and
DCM exploit such domain specific knowledge by using the constraint graph of the
constraint problem to identify clusters of entities that form rigid bodies. Clusters
correspond to constraint graphs with no articulation pairs’ and both DCM and Erep
exploit constraint graphs with this structure in order to identify ruler-and-compass
subproblems.

IGCS, ICBSM and GCE use domain specific knowledge related to rigid bodies.
They use the knowledge that rigid bodies are not deformable and can only translate,
rotate and scale in space once created. Rigid body subproblems are characterised

by 3D and 2D objects, such as lines, planes, cuboids and spheres with high level

Chapter 3 58 Solving Problems by Decomposition

against, coincidence and concentric constraints.

Finite domain subproblems are characterised by entities and constraints with
finite domains. Scheduling subproblems are characterised by entities with a time
domain and constraints such as before, after or concurrently.

INCES uses the domain specific knowledge that functional constraint problems
that have a tree graph structure can be solved using local propagation.

A decomposition strategy to take advantage of these domain specific subproblems
will be dependent on the solvers available and the problems to be solved. The
advantages and limitations of such decomposition strategies are discussed in the

following sections.

3.2.3 Advantages of decomposition strategies

There are several advantages to using decomposition strategies in general and to

domain specific decomposition strategies in particular.
1. Smaller problems are simpler to deal with.

2. Decomposing and solving is usually faster than dealing with problems as a

whole.
3. Decomposition reuses existing constraint solvers.
4. Domain specific decomposition takes advantage of very efficient solvers.

The final point is the key issue of interest in this thesis. The advantages are

covered in more detail below.

1. When solving large and complex problems, it is difficult to comprehend the
whole problem all at once. Small parts of the problem are easier to deal
with and understand, both for the human operator and the computer. It is
significantly easier to spot patterns and problems in small problems than large

ones.

2. In a similar fashion, it is much easier, and therefore quicker, to find solutions to
small problems than large problems. However, actually decomposing the con-
straint problem may take significantly longer than finding the solutions to the
subproblems if a complex decomposition strategy is adopted. Consequently,

it may be faster to solve the constraint problem as a whole.

Chapter 3 59 Solving Problems by Decomposition

3. Since a constraint problem is decomposed to subproblems that are conse-
quently solved using specialist solvers, the decomposition strategy can be de-
signed in such a way as to utilise existing solvers. This means that the power
and expressibility of old solvers can be increased at little cost in developing

new code, beyond developing the decomposition strategy.

4. Domain specific decomposition is a particular type of decomposition strategy
that tries to take advantage of powerful domain specific solvers. As noted
in chapter 2, domain specific solvers are very efficient at solving some con-
straint problems. Consequently they should be reused and adapted if possible.
Domain specific decomposition provides a means of doing this. Domain spe-
cific decomposition is a particular example of the divide and conquer strategy

prevalent in computer science.

3.2.4 Limitations of decomposition strategies

In fact most of the advantages of decomposition can also be interpreted as disad-

vantages. Limitations of decomposition and domain specific decomposition include:

1. Small parts of a greater whole frequently provide no information about the

greater whole.
2. Decomposition can fail to find solutions where some exist.
3. Decomposition can be slower than solving a problem as a whole.

4. Domain specific decomposition may lead to subproblems that cannot be de-

composed further and cannot be solved by any existing domain specific solver.

5. It may be extremely hard to identify the domain specific knowledge a domain

specific solver uses.

6. It may be extremely hard to identify domain specific subproblems within a

constraint problem.

7. Recombination of solutions to subproblems into solutions to the combined

problem is hard.

These limitations are discussed in more detail below:

Chapter 3 60 Solving Problems by Decomposition

1. Studying small parts of a problem does not necessarily give any insight to
the whole. At one extreme, this has given rise to chaos theory. In terms of
constraint problems, this means that decomposing to subproblems and then
studying the subproblems does not necessarily lead to insight into the prob-
lem as a whole. This point is discussed in more detail in chapter 6 and in

section 7.4.1.

2. One immediate effect of the difficulty in applying knowledge of small parts of a
problem to the larger whole is that solving independent subproblems may not
lead to solutions of the whole problem. This is because one of the underlying
assumptions about decomposition is that there is little or no interdependency
between subproblems. The classic manifestation of this in infinite-domain
constraint problems is the existence or not of cycles in the constraint graph of
a problem. Constraint graphs that can be structured to form a tree usually
have subproblems that can be solved independently and in a certain order.
Constraint graphs that contain cycles have constraints that are dependent on
each other and must be solved simultaneously. It is sometimes possible to
develop decomposition strategies whereby dependent subproblems can be put
into one subproblem which is solved as a whole. This behaviour is apparent
in Serrano’s DESIGNPAK [100] and Lamounier’s INCES [62]. However, this
only really sweeps the problem under the carpet, as the dependent subproblem
to be solved simultaneously now forms the bulk of the effort necessary to solve

the constraint problem.

3. The more complex a decomposition strategy and the smaller the subproblems
it produces, the faster solvers can find solutions to the subproblems. However,
the bulk of the effort of the general constraint solver has simply been shifted
from the solvers to the decomposition strategy and little has been gained.
Conceptually, this is like the graph in figure 3.9. As more effort goes into
the decomposition strategy, less effort needs to be put into the solution of the
subproblems. At a certain point however, the decomposition strategy takes
more effort than the solution of the subproblems. It is at the trade-off point,
where equal effort is made by the decomposition strategy and the solvers, that

the most efficient general constraint solver should exist.

No effort is made here to discuss the shape of the curves nor where the trade-
off point may be found, as this is beyond the scope of this thesis. It is simply
noted that such a point will probably exist.

Chapter 3 61 Solving Problems by Decomposition

Trade off point K

Amount of

effort (time) Solver effort

Decomposition effort

Complex solvers/ Complex decomposition/
simple decomposition simple solvers

Figure 3.9: Graph of trade-off between complex decomposition and complex solvers

4. Decomposing to domain specific subproblems may lead to a situation whereby
a subproblem is highly interdependent and can be decomposed no further.
However, the subproblem is not suitable for any particular domain specific
solver and so cannot be assigned to a domain specific solver. Such a situa-
tion is dependent on the decomposition strategy used and may be countered by
having a backup, domain general, solver that can be used to solve the subprob-
lem. However, if the non-decomposable subproblem is large or a significant
proportion of the whole problem then solution of the constraint problem as a
whole will be dominated by solution of the subproblem by the domain general
solver, which will typically be very slow. This situation is evident in, for ex-
ample, COSAC [85], where constraint problems with few linear equations will

be solved by the slow Grobner basis solver.

5. Domain specific knowledge is a fairly nebulous concept. Some examples of
the use of domain specific knowledge are presented in this thesis but these
are by no means comprehensive. However, it will not always be easy or even
possible to identify the domain specific knowledge employed by a particular
solver. For example, what is the domain specific knowledge used by genetic
algorithms? If the domain specific knowledge used by a solver cannot be
specified, then it will be extremely hard to characterise the type of problems
that a particular solver can deal with. For example, what type of problems

are genetic algorithms particularly well-suited to solving?

6. Given characterisations of the type of problems domain specific solvers can

Chapter 3 62 Solving Problems by Decomposition

handle, it may still be extremely hard to identify domain specific subproblems
within a constraint problem. Latham identifies an aspect of this problem as the
difference between identifying graph properties and real properties [68]|. For
example, the identification of ruler-and-compass constructible subproblems is
difficult without performing the decompositions used by Erep and DCM. This

problem is discussed in more detail in section 8.

7. A side effect of decomposition strategies is the need for recombination of the
solutions to subproblems into solutions of the combined problem. In effect, the
recombination is a constraint problem in its own right and is typically hard to

do. This problem is discussed in more detail in chapter 3.4.

3.2.5 Incremental issues in decomposition strategies

An incremental constraint solver adds a set of constraints and entities to a previously
solved constraint problem and tries to find solutions to the augmented constraint
problem by reusing the existing solution as much as possible.

Most of the work carried out in incremental constraint solution takes place in
the decomposition strategy of the incremental solver. Recall that a decomposition
strategy takes a constraint problem and a set of constraint solvers and splits the
constraint problem into a number of subproblems which have constraint solvers
associated with them.

The decomposition strategy of an incremental solver will start with no con-
straints and no entities. A set of constraints and entities is then added and these
are decomposed into subproblem-solver pairs. When a new set of constraints and
entities is added, a new set of subproblem-solver pairs is constructed. However, the
incremental solver will try to reuse the existing decomposition as much as possible.

INCES [62] adopts this incremental approach. The decomposition strategy in
INCES splits the constraint problem into connected components that are either
strongly connected or acyclic. If a new entity is added then it effectively forms its
own (disconnected) constraint subproblem. If a new constraints is added then one

of several possibilities occur:

1. The constraint is connected to entities in a previously acyclic subproblem that
remains acyclic when the constraint is added. In this case the constraint is

simply added to the acyclic subproblem which is resolved.

2. The constraint is connected to a previously acyclic subproblem that becomes

Chapter 3 63 Solving Problems by Decomposition

strongly connected when the constraint is added. In this case, the constraints
and entities in the new strongly connected subproblem are put into a new
strongly connected subproblem and the remaining constraints and entities form

a new acyclic subproblem.

3. The constraint is connected to a previously strongly connected subproblem
that remains strongly connected when the constraint is added. In this case

the constraint is added to the strongly connected subproblem.

4. The constraint is connected to a previously strongly connected subproblem
that is no longer strongly connected when the constraint is added. In this case,
a new acyclic subproblem consisting of only the new constraint is created and

added to the subproblems found by the decomposition strategy.

Thus, when a new constraint is added, very little new decomposition need be done.

IGCS [112] is also an incremental solver. However, the incremental nature of
IGCS comes from the fact that it tries to solve a newly added constraint by manip-
ulating the model without breaking any of the existing constraints. [GCS works by
trying to satisfy the new constraint by first manipulating the objects identified by
the new constraint directly using Allowable Motion and locus analysis. If that does
not work then the inverse operation method applies the same techniques to objects
that are upstream in the constraint graph. IGCS has a very simple decomposition
strategy and the incremental decomposition strategy is exactly the same. All of the
incremental work is done in the solution stage.

DCM [86] (and by implication Erep [14]) is not incremental. DCM decomposes
constraint problems to triconnected components that represent rigid bodies. Thus
DCM can only solve problems that consist of rigid bodies. By its nature, incremental
solution adds constraints and entities one by one. Thus, adding a new entity leads to
an under-constrained problem and adding new constraints gradually makes it more
and more constrained until it becomes well-constrained.

Since rigid bodies are always well-constrained up to rigid body motion, DCM
can only solve well-constrained constraint problems. However, there are two ways
that it may be possible to make DCM at least partially incremental.

Incremental constraint solution adds a number of constraints and entities to a
previously solved constraint problem. DCM can only solve well-constrained con-
straint problems. Thus, if a number of constraints and entities were added to
a well-constrained problem to give another well-constrained problem, then DCM

would be able to solve both the original problem as well as the new problem.

Chapter 3 64 Solving Problems by Decomposition

)

Figure 3.10: An rigid body composed of two triangles

For example, triangle A in figure 3.10 is well-constrained and DCM can solve
the constraint problem defining the triangle. Similarly, the whole figure is well-
constrained and so DCM can solve the associated constraint problem. Thus, DCM
could solve for triangle A first and then, when the remaining elements in figure 3.10
are added, DCM can solve for the figure as a whole, incrementally.

This incremental DCM could reuse the decomposition found for triangle A when
solving for the whole problem and thus save some effort.

However, this approach is difficult because the user will have to add a number of
constraints and entities before being able to resolve the problem and getting feedback
from the solver. Though Erep is not incremental in the sense described here, the
method of defining constraint problems is the same and the author’s experience with
Erep underlines the difficult in defining constraint problems using this process.

Also, in order to make the whole figure well-constrained, a large number of
constraints and entities need to be added and the subproblem that is triangle A
becomes a very small part of the whole problem. Consequently there has been little
gain in keeping the decomposition of triangle A.

The second method of making DCM incremental is of particular interest in this
thesis. DCM is very good at finding solutions to well-constrained geometric con-
straint problems. However, it cannot solve under-constrained geometric constraint
problems and so cannot find a solution when a single constraint is added to an under-
constrained problem. On the other hand, IGCS can find solutions when a single con-
straint is added to an under-constrained problem. Gradually, the under-constrained
problem has more and more constraints added to it and becomes well-constrained.
At this point, IGCS is not particularly well-suited to solving the problem, but DCM
is.

The two techniques therefore complement each other very well and an obvious
question is whether it is possible to combine the two techniques in such a way as to

get the benefits of both. Investigating this possibility is one of the main objectives

Chapter 3 65 Solving Problems by Decomposition

of this thesis.

3.2.6 Conclusions

Decomposition has proved a powerful means of tackling problems in computer sci-
ence. As demonstrated by the constraint solvers in section 3.1, decomposition allows
constraint problems to be solved quickly and efficiently. Generally, the advantages
of decomposition far outweigh the disadvantages.

In particular, decomposing a constraint problem can allow problems that would
take exponential time to solve using a general constraint solver to be solved in
polynomial time.

The limitations of decomposition strategies are serious however. Whilst this the-
sis does not attempt to solve all of these problems, it does tackle some of them. In
particular, chapters 6 and 7 examine the difficulties of using decomposition strate-
gies to create and solve subproblems. Chapters 6 and 7 identify the key areas that
decomposition strategies must address in order to find solutions to the constraint
problem.

Chapter 8 examines the use of a simpler decomposition strategy with more com-

plex constraint solvers.

3.3 Ordering strategies

When a constraint problem has been decomposed to a number of subproblems, it
remains to solve the subproblems and recombine the solutions to the subproblems
into solutions to the whole problem. However, the order in which the subproblems
are solved in is frequently important. For example local propagation techniques such
as INCES [62], ICBSM [27] and SkyBlue [94] decompose a constraint problem into

a triangular format:

Example 3.1 (Ordering strategies) Consider constraint problem P,

P=({(xR),(y,R), z,R)},{z=1z+y=2,2+y+2=3}).

Chapter 3 66 Solving Problems by Decomposition

Let the subproblems be:

P = ({(TvIR)}v {T = 1})a
Py=({(zR),(y,R)} {o=12+y=2}),
P = ({(.Z‘,IR), (yJIR‘)J (Z,IR,)}, {.Z‘ =lLz+ty=2,z+y+z= 3})

The order of solution of P;, P, P5 has significant repercussions on the ease of solving
P. Solving in the order (Ps, P», P;) using local propagation is much harder than
solving in the order (P, P, P3). O

Consequently, most constraint solvers use an ordering strategy on the subprob-
lems once they have been decomposed. The ordering strategy produces a partial
order < on subproblems, such that < is irreflexive, antisymmetric and transitive.

Ordering strategies are dependent on the constraint solver used and the problems
being solved. Consequently, this section does not attempt to present a comprehen-
sive study of ordering strategies. Section 3.3.1 gives examples of ordering strate-
gies in use in current constraint solvers. Section 3.3.2 discusses the use of ordering
strategies in general constraint solvers and how hybrid constraint solvers and domain
specific knowledge can be used to help formulate an ordering strategy. Section 3.3.3
discusses the use of ordering strategies in incremental solvers. Section 3.3.4 draws

conclusions from the use of ordering strategies.

3.3.1 Examples of ordering strategies

Fa’s ICBSM [27] forces an ordering strategy on the user by means of the Relationship
Graph (see section 5.3.2). The Relationship Graph is a directed constraint graph
that forces one constraint to be solved before another and passes allowable motion
from one entity to another. Consider for example the construct in figure 3.11 with
the associated Relationship Graph.

In constructing the figure, line 1 is fixed at one end and its allowable motion
calculated to be rotation around the fixed end. Line 2 is then attached and its
allowable motion calculated to be rotation around the other end point of line 1.
Similarly line 3 when attached is allowed to rotate about the end point of line 2.
Equally, direct manipulation of line 1 is propagated to line 2, following the directions
in the Relationship Graph. The directed edges in the Relationship Graph form the
ordering strategy of ICBSM. In ICBSM, an edge is directed from A to B if the user

directs that A is the reference and B the target entities of a constraint. Consequently

Chapter 3 67 Solving Problems by Decomposition

_ Coincident m Coincident /
C Linel @ Line3

a b)

Figure 3.11: An Arm with Two Joints and the Relationship Graph for the Problem

the ordering strategy in ICBSM is dictated by the user and this tends to place an
additional burden on the user.

Serrano’s DESIGNPAK [100] uses an ordering strategy of proceeding from known
to unknown entities. The general principle that Serrano advocates is “the manip-
ulation of symbols (knowledge) in order to derive (infer, conclude) new facts from
existing (known) facts”. Effectively, this means solving “simple” (in some sense)
subproblems and using the information derived from solving the simple subprob-
lems to solve the more difficult subproblems later. This principle manifests itself by
having fixing constraints of the form ‘x = 10’ that fully define an entity and make
it ‘known’.

The ordering strategies employed by IGCS, INCES, DCM and Connectivity

Analysis have been discussed in detail in section 3.1.

3.3.2 Ordering strategies for a constraint solver

A constraint solver using domain specific knowledge and hybrid constraint collab-
oration should also take advantage of ordering strategies in order to improve the
efficiency of solution.

The ordering strategies given in sections 3.3.1 and 3.1 can be summarised as
1. User interaction,

2. Find solutions to easy problems before harder ones,

3. Simultaneous subproblems should be as small as possible.

All of the above strategies can be usefully employed in any ordering strategy. In
particular, the strategies become particularly useful if domain specific knowledge is

employed.

Chapter 3 68 Solving Problems by Decomposition

User interaction is a useful ordering strategy because it allows the user to state
preferences for solutions, albeit indirectly. Unfortunately, user interaction places an
additional burden on the user in an already complicated procedure. The interaction
in [CBSM forces the user to consider not only which shapes and which constraints are
necessary to construct a model, but also in which order to add the constraints. Since
different orders of construction might lead to different and unintuitive solutions, this
is clearly inadvisable.

This problem is somewhat offset by using rules to determine the order of con-
struction and solution and to determine which solution the user intended. For
example, DCM [86], Erep [14] and ICBSM [27] try to interpret the user’s intent in
order to determine which of many solutions the user requires.

It is sensible to solve easy problems before harder ones because solution of the
easier problems might simplify the harder ones significantly. However, the definition
of ‘easy’ and ‘hard’ are domain specific and consequently domain specific knowl-
edge must be brought to bear in order to identify the ‘easy’ and ‘hard’ problems.
Consequently, the ordering strategy must employ a great deal of domain specific
knowledge.

INCES identifies ‘fix’ constraints that fix a variable with a certain value. Such
constraints are trivial to solve and so form the ‘easy’ subproblems. Fixing the
value of the variable allows other constraints to be solved more easily. DCM and
Erep use much more sophisticated knowledge to identify ‘easy’ subproblems. The
‘easy’ subproblems in DCM and Erep are the triangles identified by the cluster
building algorithm. Such triangles can be solved using simple calculations and so
are considered to be the simplest class of problems that DCM and Erep identify.
Note that finding the triangles and then identifying the order in which they should
be solved is a complex process and uses the domain specific knowledge that a point
or line can be fixed relative to two other points or lines using two constraints.

Tsai has identified the need to make simultaneous subproblems as small as pos-
sible. Since simultaneous subproblems will be the most time-consuming to solve,
it is advantageous to keep them as small as possible. Note that it will not usually
be possible to limit the size of simultaneous subproblems and so this technique has

only limited potential.

Chapter 3 69 Solving Problems by Decomposition

3.3.3 Incremental issues in ordering strategies

Once an incremental solver has decomposed a constraint problem to subproblem-
solver pairs, the incremental solver will usually apply an ordering strategy to the
subproblem-solver pairs as normal. However, there are a couple of issues that an
incremental ordering strategy should take into account.

The first is that the ordering strategy should not try and calculate the order
from scratch but should reuse the ordering previously calculated. This should save
some effort.

Secondly, the ordering strategy should be aware that a newly inserted set of
constraints and entities may only affect a small part of the constraint problem and
thus solvers need only be applied to a small part of the constraint problem in order
to find solutions to the new constraint problem.

For example, INCES orders subproblems so that solution proceeds from the first

subproblem to the last. Thus if the decomposition gives:
(P17 Sl); (P27 82)7 (P% S‘i): (P47 84)7 (P57 85)7

P, is solved before P, before Pj, etc.

If a new constraint is added and is incorporated into Pj;, then the nature of
INCES is such that the solutions of P, and P, are still valid solutions to the new
constraint problem and need not be resolved. Thus, the ordering strategy needs to

note that only P;, P, and Ps; need to be resolved.

3.3.4 Conclusions

The main advantage of an ordering strategy is that it can be used to help guide
solution of a constraint problem and hence speed up solution of the constraint prob-
lem. With respect to hybrid constraint solvers, an ordering strategy can be used
to describe an appropriate collaboration. For example, suppose that an ordering

strategy produces an ordering < on subproblem-solver pairs
{(Pla Sl); (P27 82)7 (P37 83)7 (P47 84)}
such that

(P, S81) < (P, 8,) < (P3,Ss),
(P1,81) < (P4, Sy)

Chapter 3 70 Solving Problems by Decomposition

then the subproblems can be solved in a serial fashion in the order
(P1a81)7 (P2782)7 (P3783)7 (P4784)-

The limitations of ordering strategies are more dependent on their implemen-
tation than the concept. For example, the Relationship Graph ordering used in
ICBSM forces the burden of deciding in which order to build a model onto the user
and is an extra complication from a system that is trying to simplify the process.

Inadequate ordering strategies may lead to orderings of subproblems that do not
simplify solution of the constraint problem, but instead complicate it, as seen in
example 3.1. Care should be taken when selecting an ordering strategy to ensure
that it is not too sensitive to the structure of the constraint problem and is applied

correctly.

3.4 Solution of subproblems

Under the constraint solver framework introduced in this chapter, a constraint prob-
lem P is decomposed to a set of subproblem-solver pairs {(F;,S;)}. The set of
subproblem-solver pairs is then ordered using an ordering strategy to give a partial
ordering < on the subproblem-solver pairs. It remains to solve the subproblems and
to use the solutions of the subproblems to find solutions to the original problem P.

The set S; associated with subproblem P; in the set of subproblem-solver pairs
is a set of solvers that have been identified by the decomposition strategy as being
suitable candidates for solving P;. Usually §; will contain only one candidate and
consequently choosing the solver to apply is trivial. However, it is possible that a
constraint solver will identify a number of potential subsolvers that can be applied
equally well. If this is the case, then a subsolver needs to be selected at this point
for application.

The solution and recombination of subproblems using hybrid collaboration will
be discussed in detail in chapter 7.

Section 3.4.1 gives examples of constraint subsolvers and the solution of subprob-
lems. The use of domain specific subsolvers to solve the subproblems is discussed
in section 3.4.2. Section 3.4.3 discusses the solution of subproblems in incremental

solvers. Conclusions are drawn from the solution of subproblems in section 3.4.4.

Chapter 3 71 Solving Problems by Decomposition

3.4.1 Examples of solution of subproblems

In ICBSM [27], subproblems are not decomposed per se. For each constraint there
is a subproblem consisting of that constraint and the imposed entities of the con-
straint. Consider, for example, constraint aCb, where the ordering imposed by the
Relationship Graph is [a, b]. Consequently, a is the reference of the constraint and b
is the target. Solution of the subproblem ({(a, R°), (b,IR®)}, {aCb}) is by examining
the allowable motion of the target entity and using that allowable motion to try and
satisfy the constraint. If b can be translated or rotated to satisfy constraint C', then
the new allowable motion of b is dependent on C and the previous allowable motion
of b. The solver used to solve the subproblem finds the allowable motion of b and
the translation or rotation necessary to satisfy the new constraint. The solver then
applies the translation or rotation to b and then updates the allowable motion of b.

DESIGNPAK [100] decomposes a constraint problem to subproblems that are
either cyclic or acyclic. Cyclic subproblems are solved by a numerical technique such
as Newton-Raphson. Acyclic subproblems are solved using local propagation. Con-
sequently, DESIGNPAK consists of two constraint subsolvers, Newton-Raphson and
local propagation. Since both subsolvers produce only one solution, recombination
of solutions is trivial.

COSAC [85] effectively decomposes constraint problems into subproblems that
consist of linear equations, and so can be solved using simple Gaussian elimination
or similar subsolvers, and subproblems that cannot be solved using a linear equation
solver, which are solved using Grobner bases. Generally, the Grobner basis subsolver
will dominate the time to solve a constraint problem as most constraint problems
will not consist of many linear equations. Whilst COSAC is mostly a Grobner basis
solver, it is the first hybrid solver designed using Monfroy’s hybrid collaboration
language [84].

3.4.2 Solving using domain specific knowledge

In order to take advantage of domain specific knowledge, domain specific solvers
should be used to solve the subproblems produced by the decomposition strategy.
As noted by Latham and Middleditch [67], “Special purpose algorithms are usu-
ally more efficient and reliable than general purpose algorithms, and they provide
geometrically meaningful information that facilitates useful user feedback and aids
selection from multiple solutions.”. The special case solvers used by DCM and the

allowable motion used in [CBSM are both examples of domain specific solvers. The

Chapter 3 72 Solving Problems by Decomposition

local propagation technique used in INCES is not domain specific as such. However,
it does require a specific structure of subproblem to be successful. In fact, local
propagation is generally used as a domain specific algorithm, as it is used in ICBSM
specifically for acyclic geometric problems and in INCES to solve acyclic equation
problems.

The hard work of identifying the domain specific knowledge used by a domain
specific solver to produce subproblems appropriate for that domain specific solver
is carried out by the decomposition strategy. Domain specific solvers are applied to

the subproblems to produce solutions quickly and efficiently.

3.4.3 Incremental issues in solving subproblems

The use of subsolvers in an incremental constraint solver is usually the least of the
three phases. Nearly always, the bulk of the work in an incremental solver is carried
out by the decomposition and ordering strategies. The subsolvers generally act in
the same fashion as described in this section and find solutions to the subproblems.

There are exceptions to this rule of course. IGCS, in particular, puts most of the
effort of incremental solution into solving the constraints as they are added. The

algorithms used by IGCS are described in more detail in section 3.1.3.

3.4.4 Conclusions

Since a subproblem must be solved in order to find solutions to the whole problem,
the advantages and limitations of solving subproblems are related to the advantages
and disadvantages of using domain specific solvers and hybrid constraint solvers.
However, the advantages and disadvantages of domain specific solvers and hybrid
constraint solvers are not obvious. The use of domain specific solvers is discussed in

section 7.1. The use of hybrid constraint solvers is discussed in section 7.2.

3.5 Conclusions

This chapter has presented a discussion of the general nature of constraint solvers
and in particular the creation of constraint solvers that explicit domain specific
knowledge and hybrid constraint solvers. The general outline of a constraint solver

can be described simply as a sequence of three strategies:

1. A decomposition strategy takes as input a constraint problem and produces

as output a set of subproblems and constraint solvers assigned to them. The

Chapter 3 73 Solving Problems by Decomposition

decomposition strategy is significant as it splits a large, complicated constraint
problem into a number of smaller, more manageable subproblems. As noted
by Latham [68], “the key to efficient constraint solution is to partition a large

set of constraints into smaller sets that can be solved independently”.

2. An ordering strategy takes as input a set of subproblem-solver pairs and pro-
duces as output a partial order in which the subproblems should be solved.
The ordering strategy is not always necessary. However, the ordering strategy
does allow a constraint solver to influence the sequence of solution of subprob-
lems. Since the result of subproblems can be used to simplify solution of later
subproblems, an ordering strategy is an important tool to aid solution of the

whole constraint problem.

3. A solution strategy takes the partially ordered set of subproblem-solver pairs
and initiates a solver on the subproblem, maintaining the order given by the
ordering strategy. Solutions are passed from subproblem to subproblem in

order to take advantage of known solutions.

This outline lends itself naturally to the use of domain specific knowledge and
hybrid constraint solvers. The decomposition strategy can make use of domain spe-
cific knowledge inherent in domain specific solvers and ensure that the subproblems
are selected to take best advantage of domain specific solvers available.

The ordering strategy can then be used to order subproblems in order to take
advantage of domain specific solvers hybrid collaboration strategies.

The solution strategy then initiates the domain specific solvers on the appropriate
subproblems and the hybrid collaboration paradigms are used to make explicit the
recombination of solutions to the subproblems.

The advantages of using a decomposition strategy are that large and complex
constraint problems are subdivided into a number of smaller and more manageable
subproblems. This divide-and-conquer approach is frequently faster than trying to
deal with a problem as a whole. Decomposing to subproblems amenable to domain
specific solution also speeds up the solution process.

Conversely, decomposition strategies are subject to consistency problems as well
as difficulties identifying domain specific subproblems. Identifying domain specific
subproblems is also hard, because it is frequently difficult to identify the domain
specific knowledge used by a domain specific solver. Once the domain specific knowl-
edge is identified, it is hard to find domain specific subproblems that explicate that

domain specific knowledge without solving the whole problem.

Chapter 3 74 Solving Problems by Decomposition

Ordering strategies allow solvers to help guide solution of a constraint problem
in order to improve the speed of the constraint solver. Ordering strategies also lead
naturally to the use of hybrid collaborations. Unfortunately, ordering strategies can
be very sensitive to the ordering chosen and care needs to be taken when selecting
a strategy.

Many examples of constraint solution by decomposition were given, such as
DCM [86], INCES [62], IGCS [112], Connectivity Analysis [67] and Erep [14]. The
strategies adopted by each such algorithm were explored in detail.

Several issues and questions were raised by study of the decomposition framework

in this chapter:

Is it possible to lose solutions by decomposing and recombining?

What effect does decomposition have on incremental techniques?

Is it more efficient to decompose and recombine or solve as a whole?

Is it possible to have a fast decomposition strategy and a fast solution of

subproblems or must one always dominate?

In order to investigate these questions thoroughly, it was necessary to study the
constraint solution process in more detail. For this study, the decomposition of a
constraint problem is not necessary and it merely complicates the procedure. The
constraint solution process is split into three stages: constraint definition, constraint
representation and constraint solution.

Chapter 4 addresses constraint definition and identifies the key terms and ele-
ments that comprise a constraint problem. Chapter 5 studies the use of constraint
representation schemes which are methods of describing and storing constraint prob-
lems. Chapter 6 uses the definition of constraint problems from chapter 4 to build

a framework for constraint solution that can be used to study the above questions.

Chapter 4
Constraint Definition

Constraints are used in many different situations. People frequently refer to con-
straints on their financial position, social life or personal habits. In one week in
June 1997, the BIDS Uncover Service ' found references in the following journals

mentioning the word ‘constraints’.

Omega.

Soil Biology and Biochemistry.

Duke Mathematical Journal.

Applied geochemistry : journal of the international
Association of Geochemistry and Cosmochemistry.
Physical review. e. statistical physics, plasmas, fluids,
and related interdisciplinary topics.

Tectonophysics.

Physical review d: particles, fields, gravitation, and cosmology.
International journal of control.

Journal of symbolic computation.

Journal of East Asian linguistics.

Ecology.

Pharmaceutical research.

Geochimica et cosmochimica acta.

The serials librarian.

Eclogae geologicae Helvetiae.

Physical review B: Condensed matter.

Such a wide variety of subject areas and uses means that there are many different
definitions of a constraint, with different means of describing and dealing with them.
Even in the somewhat more limited context of this thesis, such diversity is ev-

ident. In fact, most papers on the finite domain constraint satisfaction problem

1http://www.bids.ac.uk

75

Chapter 4 76 Constraint Definition

define the problem using a different definition and terminology. The fact that none
of these definitions are contradictory leads to the concept of a finite domain con-
straint problem.

Other types of constraints, such as geometric constraints or scheduling con-
straints, however, do not, at first glance, appear to resemble the finite domain

definition at all.

Example 4.1 (Definitions of Constraint Problems) From [91], a definition of

a finite domain constraint problem:

The binary constraint satisfaction problem (besp) involves a set of
variables {Vi,V5,...} ... a set of binary constraints {Ci.,...,Cp.}
where the constraint C;; is a relation between V; and V; and if C, ; is

null then there is no constraint acting from V; to Vj.
From [102], a definition of a geometric constraint problem:

Topological constraint. A topological constraint defines the topol-
ogy of a primitive solid itself by specifying the connection between the
geometric elements. ...

Structural constraint. A structural constraint gives the primitive solid
(for example prisms and cylinders) the character of a particular feature.
Groove, square hole and step features have the same topological structure
of “4-sided prism” ...

Dimensional constraint. Dimensional constraints define the size and
location of a feature. There are two constraints: the distance and angle
between geometric elements. These correspond to dimensions in draw-

ings.
From [124], a definition of a scheduling problem:

The process of driver scheduling is the construction of a set of legal
shifts ... which together cover all the blocks in a particular vehicle sched-
ule ... Blocks may be considered as being divided into units of work which
start and finish at relief opportunities pass agree change-over points. ...

Driver scheduling is subject to a set of rules which is specific to
an organisation. ... Typically, there are restrictions on the total time
worked, on the length of time that may be worked without a meal break,
on the total spreadover (duration between beginning and end of a shift),

etc.

Chapter 4 7 Constraint Definition

]

It is in fact possible to define constraints in such a way that all the different types
of constraint are merely specialised cases of the general definition. This chapter
presents a formal definition of the general constraint problem. The set theoretic
definition used is, in fact, not new. Finite domain constraint problems are frequently
defined in terms of relations [91,103] and the definitions used there, carried to their
logical extreme are equivalent to the definitions in this chapter.

However, there has been very little research into the unification of the various
different types of constraint problem. The definition presented here is capable of
describing all types of constraint problem and hence, to an extent, unifying the
different definitions currently used.

As well as defining the general constraint problem, this chapter presents the
notion of dimension, which is used to capture the size of a set. Dimensions form a
key part of the theories espoused later in this thesis. Although used in many forms
in the literature (for example, dimension is equivalent to degrees of freedom as used
by Kramer [59] and Fa [26]), no formal definition has been given in the literature.
Section 4.5 presents a formal definition of dimensions and discusses the concept in
some detail.

This chapter defines the terms entity, constraint, constraint problem, constraint
solver and dimension. In order to demonstrate the effectiveness of the set theoretic
approach, examples of both finite and infinite domain problems will be given. How-
ever, the chief benefit of this chapter is that the set theoretic approach simplifies

the results and proofs presented in the rest of this thesis.

4.1 Entities

A constraint problem is a compromise between objects giving freedom of action and

objects taking it away.

Example 4.2 (Components of constraint problems) A finite domain const-
raint problem consists of variables and constraints. The variables provide freedom
as they can take many values and they increase the possible choices available. The
constraints restrict freedom as they reduce the number of values a variable is allowed
to have.

A geometric constraint problem consists of geometric entities and geometric con-

straints. The geometric entities provide freedom as they can take many positions

Chapter 4 78 Constraint Definition

Figure 4.1: Placing a queen on a chessboard

in space. The geometric constraints restrict freedom as they reduce the number of

positions a geometric entity is allowed to take. [J

Entities are the objects providing freedom. In example 4.2, entities are the
variables in the finite domain problem and the geometric entities in the geometric

constraint problem.

Definition 4.1 (Entities) An entity F is a pair (label, D), where label is a unique
identifier for the entity and D is the domain of F, where D is any set. A value for
an entity is an instance in the domain of the entity. An assignation for an entity
is a formula of the form E = {v}, determining that entity E is to be assigned the
set with the single value v, where v is in domain D. The notation F = S denotes
the fact that F is assigned the set S of values for E. [

Where the meaning is unambiguous or the domain unimportant, an entity will
sometimes be referred to in this thesis by its label alone.

Throughout this thesis, two examples will be studied in detail. One is a finite
domain problem, that of queens being placed on a chessboard. The other is a
geometric problem, that of constructing a triangle. These examples will help to

demonstrate the ideas espoused in the thesis.

Example 4.3 (Finite domain) A queen can take 64 positions when placed on an
empty chessboard. If the squares on the board are numbered 1 to 64, left to right,
top to bottom, then the queen can take a value from 1 to 64. Thus the domain of the
queen is {1,2,3,...,64} (see figure 4.1). Note, however, that there are many ways of
describing this domain. For example, by using rows and columns, the queen can take

positions {(1,1),(1,2),...,(8,8)}. In fact, for reasons that are apparent in finite

Chapter 4 79 Constraint Definition

P=(2, M)

LS

Figure 4.2: A point, a line and a line segment on a plane

domain research, the latter method is a much more efficient means of describing the
chessboard.

A value for the queen is any member of the domain, for example, (1,3). An
assignation to this value would be of the form, Queen = {(1,3)}. If the queen can
be positioned on any square in a row, then an assignation of the form Queen =
{(2,1),(2,2),...,(2,8)} is appropriate. OJ

Example 4.4 (Geometric domain) A point, (P, IR?), on a plane has domain IR?.
A value for a point is any pair of numbers (z,y), such that z,y € IR, for example,
(2, 7). An assignation for P would be P = {(2,7)} (figure 4.2).

An infinite line, (L, IR2), in a plane also has domain IR?, as it is uniquely deter-
mined by the point on the line closest to the origin, provided that the line does not
pass through the origin. A value for L is any pair (z,y),z,y € IR and an assignation
is L= {(z,1)}.

A line segment, (LS, IR4), on a plane has domain IR, as it is uniquely determined
by its two end points. As each end point has domain IR? and can move independently
of the other, LS has domain R*. O

4.2 Constraints

Where entities provide freedom, constraints restrict it. Constraints are described in

many different ways but these all reduce to the concept of relations in set theory. In

Chapter 4 80 Constraint Definition

example 4.2, the constraints are the relations in the finite domain constraint problem

and the geometric constraints in the geometric constraint problem.

Definition 4.2 (Relations) A relation, R, between a pair of entities a,b with
domains Dy, D, is a subset of the Cartesian product® of the domains, D; x D,.
For (a,b) € R, the notation aRb is used. An n-ary relation, S, on a set of
variables a4, ... ,a, with domains D, ..., D, is a subset of the Cartesian product
Dy x ---x D,. For (ay,...,a,) € S, the notation S(ay, ... ,a,) is used. [J

Since the sets defining a relation are typically infinite, it is not usually possible to
explicitly list the members. Thus implicit means, such as set construction notation
are normally used. In this thesis, the standard notation for relations will be used,
whereby a relation is referred to using the symbol aRb rather than the list of tuples
defining the relation.

A useful definition of a relation is in terms of a test function. Each relation
S(ai,...,a,) has a boolean test function f : Dy x --- x D, — {0, 1} associated
with it, where f(z1,...,2,) =1 (x1,...,2,) € S. This definition is consistent
with Fraissé [33].

Definition 4.3 (Constraints) A constraint (C, D¢) on a set of entities E is a
restriction of the possible values that the entities in F can simultaneously take. C'
is a label representing the constraint and D¢ is a relation on E. A tuple of values
(v1,...,vy,) for entities {(x1, D1), ..., (z,, D,)} satisfies constraint (C, D) if

(’01,... ,’Un) € D(j.
O

Associated with every constraint is a constraint test procedure. A constraint test
procedure (CTP) for a constraint (C, D¢) with respect to the set of entities
{(z1,D1) ..., (x,, Dy)} is the boolean function fo : Dy x -+ x D,, — {0,1} asso-
ciated with C such that fo(vi,...,v,) =1 (v1,...,v,) € De.

In fact, it is normally very difficult to define constraints explicitly as relations
and they are normally described using only the CTP which also doubles as the label
for the constraint. This convention will be adopted in the remainder of this thesis
and so, where it is unambiguous, constraints will be denoted only by the function

describing them.

Chapter 4 81 Constraint Definition

Example 4.5 (Finite domain) One of the simplest constraints possible is the
equality constraint between two entities. Simply put, the equality constraint means
that whatever value one entity takes, the second entity must also take. The CTP

for the equality constraint for two queens on a chessboard is:

CTP_: f(Q1,Q2) = 1if Q1 =Q2,
= 0if Q1 # Q2.

Function f has value 1 if and only if both queens are in the same position.

The infamous n-queens problem [103], however, utilises the opposite of the equal-
ity constraint, the disequality constraint. The disequality constraint between two
queens is satisfied if the two queens are not on the same square. The CTP for the

disequality constraint is:

CTP,: f(Q1,Q2) = 1ifQL+#Q2
= 0if Q1 = Q2.

The n-queens problem involves positioning n queens on an n x n chessboard, so
that no queen attacks another. The constraints involved are usually split into the

following types:
1. No queen is on the same square as another;
2. No queen attacks another horizontally;
3. No queen attacks another vertically;
4. No queen attacks another diagonally.

Intelligent definition of the domains of the queens typically removes constraint 1
and one of 2 or 3. However, it is still necessary to describe the remaining two sets
of constraints.

For example, when n = 4, the 4-queens problem consists of the four entities
{(Q1, Dy),(Q2, Dy), (Q3,D,), (Q4, D)} with domains D, = {1,2,3,4} where the
value of ()i represents the position of the queen in row i. Note that it is not
necessary to say which row each queen is in as they are in separate rows already.

@1 is in row 1, ()2 is in row 2, etc.

Chapter 4 82 Constraint Definition

The constraints necessary to prevent each queen being attacked vertically are:

C1l:Q1+#Q2,
C2: Q1 #Q3,
C3: Q1 # Q4,
C4:0Q2 + 03,
Ch: Q2 # 4,
C6: Q3 # Q4.

The constraints necessary to prevent each queen attacking along a diagonal are:

CT:Ql#£1=Q2+£Q1 1,
C8:Ql£4=Q2+4Q1+1,
C9:Ql#3,4= Q3+ QL+2,
C10: Q1 £1,2= Q3 £ Q1 — 2,
Cl1:Ql=1= Q4 # 4,
C12:Ql=4= Q4 %1,
C13:Q241=Q3£Q2 1,
Cld:Q2#4= Q3+ Q2 +1,
C15:Q2#3,4= Q4+ Q2+2,
C16:Q2#1,2= Q4+ Q2 — 2,
C17T:Q341= Q4+ Q3 -1,
C18: Q344 = Q4 £ Q3+ 1.

C'7, for example, can be described as a set as follows:

= {(1L,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),
(3,1),(3,3),(3,4), (4, 1), (4,2), (4,4) }.

Thus the only combinations of values for (Q1, Q2) not allowed by C'7 are (2,1), (3,2)
and (4,3). O

Example 4.6 (Geometric problem) The simplest geometric constraint is also
an equality constraint, but is usually referred to as a coincident constraint. For

example, two points (P, IR?) and (P,, IR?) are coincident if and only if P, = P, (see

Chapter 4 83 Constraint Definition

7 eF
v \
/
/ \
/ \
/ \
I P3 ! Pl:PZ
| () | o
! I
\ /
\ /
\ /
\ /
N /
N s
N s

Figure 4.3: An equality constraint and a distance constraint

figure 4.3).
An extension of this is the distance constraint. Two points (Ps, IR?) and (P, IR?)
satisfy a distance constraint d(Ps, Py) = a if and only if || Ps— P4|| = a (see figure 4.3).

Here || - || is the normal metric in Euclidean space

@1 mn) = (@2, m2)l] = V(@1 — 22)2 + (1 — 32)?

Note that the equality constraint is a degenerate case of the distance constraint with
a = 0.

The equality constraint restricts the freedom of two independent points from
IR* to IR?, as the two points are no longer independent. The distance constraint
restricts the freedom of the second point relative to the first to the 1D locus of a
circle, radius a, around the first point. Since the first point is free in IR?, it has
domain IR?. Since the second point relative to it has domain IR, the construction as
a whole has domain IR?.

Although the coincident constraint looks similar to the equality constraint of the
finite domain problem in example 4.5, the distance constraint does not. However,

the distance constraint is a relation as it can be written in the following form:

d(Py, P) =a = {((m,y),(z,w))h/(m—z)2+(y—w)2:a,}.

Thus both finite domain and geometric constraints can be described as relations. [J

Chapter 4 84 Constraint Definition

4.3 Constraint problems

A constraint problem is the fundamental structure in this thesis. A constraint
problem consists of a set of entities and a set of constraints on those entities. A
solution to a constraint problem is a set of values for the entities that satisfies the

constraints.

Definition 4.4 (Constraint problems) A constraint problem is a pair (®, V),

where @ is a set of entities and WV is a set of constraints. [

Finite domain constraint problems are sometimes defined as a triple of variables,

domains and constraints [114]. This is equivalent to the above definition.

Example 4.7 (Finite domain) The pair
F = ({(Q1,D,),(Q2,D,),(Q3, D,), (Q4,D4)},{C1,C2,C3, ... ,C18})
describes the 4-queens constraint problem. []

Example 4.8 (Geometric problem) Let LS1,LS2, LS3 be three line segments
with end points LS1,, LS1y, LS2,, LS2,, LS3,, LS3, respectively. Then the con-

straint problem,

G = ({(LS1,RY),(LS2,RY), (LS3,R"), (LS1,,R?), (LS1,, R?), (LS2,, R?),
(LS2y, R?), (LS3,,R?), (LS3, IR?)},
{LS1, = (0,0, LS1, = LS2,, LS2, = LS3,, LS3, = LS1,,
d(LS1,, LS1y) = 3, d(LS24, LS2y) = 5, d(LS34, LS3) = 4,
endpoint(LS1, LS1,), endpoint(LS1, LS1y),
endpoint(LS2, LS2,), endpoint(LS2, LS2),
endpoint(LS3, LS3,), endpoint(LS3, LS3y)}),

describes the right angled triangle in a plane shown in figure 4.4. Here the con-
straint endpoint(LS, pt) is used to indicate that the endpoint of a line segment LS

is coincident with a point pt. [

A solution to a constraint problem is a set of values that the entities in the
problem take simultaneously such that all of the constraints in the problem are

satisfied. This is formalised below.

Chapter 4 85 Constraint Definition

0.3

LS2
LSY

LS3 (4,0)

Figure 4.4: A solution to constraint problem G

Definition 4.5 (Solutions) A configuration of problem P is a set of assignations
for all of the entities in ®. Configuration {x; = {y1},... , 2, = {yn}} is a solution
to a constraint problem P = (® = {(x1, Dy), ... ,(x,, D,)}, V) if and only if

(yla--- :yn)e ﬂ C,

Cev

or, equivalently,

N feln, .o p) =1,

Cev

where f¢ is the C'TP for constraint C. [

Note that the intersection of the constraints requires that the tuples defining
the constraints are all in terms of the same entities. In general this is not so, as
constraints are described only in terms of the entities significant to them. Thus, the
above definition requires enhanced constraints which are used to translate constraints
defined in terms of the entities significant to them to constraints defined in terms of
the whole set of entities in the constraint problem. Enhanced constraints are defined

in the following paragraphs.

Definition 4.6 (Notation for Many Configurations) The notation

{.Z'l :Dl,ZL‘QZDQ,... ;xn:Dn}

Chapter 4 86 Constraint Definition

Figure 4.5: A solution to constraint problem F

is used to represent the set

{(x1 ={wi}, 2o ={v},... sz ={yn})lys € D1,ys € Dy, ... ,y, € D,}.
OJ

Example 4.9 (Finite domain) A configuration for F is

{Q1={1},Q2= {2}, @3 = {3}, Q4 = {4}}.

However, this is not a solution to F' as Q1 = {1}, Q2 = {2} breaks constraint C8.

A solution for F'is the configuration

{Q1={2},Q2={4},Q3 ={1},Q4 = {3}}

shown in figure 4.5, as this satisfies all of the constraints in F'.
]

Example 4.10 (Geometric problem) A configuration for G is

{LS1 ={(0,0,0,3)}, LS2 ={(0,3,4,0)}, LS3 ={(4,0,0,0)},
LSla = {(0’0)}vL‘91b = {(ng)}’LSQG = {(ng)}a
LS2, = {(43 O)}a LS3, = {(43 O)}a LS3, = {(O’ 0)}}

This configuration is a solution to G as it satisfies all of the constraints in G, as
shown in figure 4.4. In fact, there are an infinite number of other solutions to G,
found by rotating triangle A about the origin. Constraint problem G is, in fact,
under-constrained, defined in section 4.5.2.

If the constraint LS2, = (0, 3) is added to G to form G’, then only two configu-
rations of G are solutions. These two solutions are the triangle in figure 4.4 and its

reflection in the y-axis. G’ is said to be well-constrained (see section 4.5.2). [J

Chapter 4 87 Constraint Definition

A constraint C'is a subset of the Cartesian Product of the domains of the entities
describing C'. Each constraint is typically described in a local sense, in that each
constraint is usually only described by a subset of the total set of entities E. For
example, the constraint C'7 in problem F' of example 4.7 is defined only in terms of
entities)1 and Q2. Thus, C'7 is defined as a subset of the Cartesian Product of 1
and Q2. However, a constraint problem will have more than one constraint usually,
and each constraint will have a different set of entities relevant to it.

According to definition 4.5, the solutions to two constraints are the intersection
of the two constraints. However, since the entities relevant to each constraint are
different, there is no way of taking the intersection of the two constraints. For
example, constraint C'7 in problem F'is defined using ()1 and)2, but constraint C'9
is defined using)1 and (3. The intersection of the two constraints is meaningless.

Consider problem P consisting of the three finite domain entities, (z, D), (y, D)
and (z, D) with domains D = {0, 1} and two constraints A and B defined by

rAy & x=y,
yBz & y# 2.

If A and B are enumerated explicitly, then the solutions to P are:

A = {(0,0),(1,1)},

B = {(1,0),(0,1)}.
However, the intersection of these sets is the empty set, (). Clearly, there are solutions
for P: {x =1,y = 1,2z = 0} is one, but simply taking the intersection of the two
constraints is not enough to identify them. However, if constraint C' is defined in

a global sense, with respect to E, rather than just the set of entities that affect it,

then it is possible to take the intersection of the constraints to find solutions.

Definition 4.7 (Enhanced constraints) If the set of entities not relevant to C

is E¢, then the enhanced constraint C' with respect to E, C|¥, is
C‘E =(C x DEO’

where Dp,, is the Cartesian Product of the domains of Ec. U

Chapter 4 88 Constraint Definition

For the example above then,

and the enhanced constraints are

Al¥ = Ax Dg,

= AxD,

= {(0,0),(1,1)} x{0,1}

= {(0,0,0),(0,0,1),(1,1,0), (1,1,1)},
B|¥ = Bx Dpg,

= BxD,

= {(1,0),(0,1)} x {0,1}

= {(1,0,0),(1,0,1),(0,1,0), (0,1,1)}.

However, the intersection of A|¥ and B|¥ is still). The reason for this is that A|”
and B|” are arranged in different orders. A|” is in the order x, v, z, whilst B|” is in
the order y, z, x. In order for the intersection to make sense, they must both have
the same ordering of variables. In order to ensure this, we enforce an ordering, < on

the Cartesian Products, so that, in the example above, with ordering <=1z < y < 2,

A2 = {{(0,0),(1,1)} x {0.1}}
= {(0,0,0),(0,0,1),(1,1,0),(1,1,1)},

BIZ = {{0,1} x {(1,0),(0,1)}}
= {(0,1,0),(0,0,1),(1,1,0), (1,0,1)}.

Clearly the intersection of A% and B|% is sensible and the result,

{(17 1’ 0)7 (07 07 1)}7

is the set of all solutions to P and using <, the assignations for z,y, 2 can simply
be read off. For simplicity, it is assumed that all constraints in P are enhanced
constraints with respect to . The ordering on Cartesian products will be assumed

from now on and omitted for clarity.

Chapter 4 89 Constraint Definition

If a constraint is presented as an enhanced constraint, then it is important to
be able to identify the entities that are significant to that constraint. The entities
that are significant to a constraint and whose values affect a constraint are called

the imposed entities.

Definition 4.8 (Imposed entities) Assuming that constraints are described in
terms of tuples with an ordering (vy, v, vs, ... ,v,) corresponding to variables {(z,
Dy), (x9, Dy), (x5, D3), ..., (x,, D,)} respectively, then constraint C' is imposed on
entity (x;, D;) if and only if

vy, ... 01,0, 041, ... ,0,) € C such that
Ju € D;, such that (vy,... v 1,u,Vi11,...,0,) & C.

The intuitive explanation of this is that the constraint C' is imposed on z; if and
only if varying the value of x; may violate the constraint.
In fact, it is somewhat clearer to examine the negative statement. A constraint

C'is not imposed on an entity (x;, D;) if and only if

(01 V1, 0 Vi1, e, 0y) € C =

Vu € Dy, (01, ... ,0i1,U, Vg1, .. ,0p) € C.

Thus, C is not imposed on z; if the value of x; does not really affect C'. In this case,
we need not include z; in our description of C as it is essentially superfluous.

In the example above, constraint A|” is imposed on z as (1,1,1) is in A|¥, but
(0,1,1) is not. However, A|” is not imposed on z as (0,0, z) and (1,1, z) are in A|”,
whether z is 0 or 1.

Normally constraints are described only in terms of the entities they are imposed
on. There is thus a subset of {x1,... ,z,} associated with each constraint consisting

of the entities imposed on by the constraint. This subset is denoted by the symbol
€.

Definition 4.9 (Imposed sets) The set £(C) of imposed entities for a constraint
C' is called the imposed set of C'. []

In the example above, the imposed set of A|¥, £(A[F), is {z,y} and the imposed set
of B|¥ is {y, z}.

Chapter 4 90 Constraint Definition

The size of £(C) for a constraint C, [£(C)], is usually referred to as the arity of
C' (see, for example [103]). A constraint is called unary if |{] = 1, binary if |{| = 2,
etc. Intuitively, a unary constraint only affects and is affected by one entity, binary
constraints affect and are affected by two entities, etc. Unary constraints are simply
a restriction on the domain of the imposed entity and as such are usually dealt with
by pre-processing.

Since a constraint C' is normally only described in terms of the imposed set of
C, £(C), it is important that £(C') is known for each C. Since the ordering for £(C)
is also important, this too is associated with each constraint.

This thesis studies the use of subproblems of constraint problems. A subproblem

is a constraint problem that is part of a larger constraint problem.

Definition 4.10 (Subproblems of constraint problems) Constraint problem
P, = (®4,¥,) is a subproblem of constraint problem P = (®, V) if

1. &, C @.
2.0, C .

3. For each ¢ € Uy, £(c) C ®y.
]

Notation will be abused in this thesis so that set operations can be performed

on subproblems. In particular:

P]U_PQ:(@]U@Q,\IJ]U\IJQ).

4.4 Constraint solvers

A constraint solver is an algorithm or technique that takes as input a constraint
problem and produces as output a set of solutions that satisfy that constraint prob-
lem. This set can be empty, consist of one, all, some or the best solution, depending

on the algorithm used.

Example 4.11 (Finite domain) Constraint solvers for the n-queens problem in-
clude forward checking (FC) and backtracking (BT). These algorithms have been
described in section 2.3.2. [

Example 4.12 (Geometric problem) Constraint solvers for geometric problems
include D-Cubed [86], Erep [37], ICBSM [27] and IGCS [112]. These algorithms
have been described in sections 2.3.3.1 and 2.3.3.2. [

Chapter 4 91 Constraint Definition

4.5 Dimensions

Degrees of freedom analysis [59] uses the degrees of freedom associated with geomet-
ric objects to help guide the solution. The degrees of freedom describe the motion
of a rigid body to translate, rotate and scale in space. As the solution of a problem
progresses, the overall degrees of freedom decrease. When the solver terminates,
there may be no degrees of freedom left, in which case the solution space describes
a rigid body, or there are degrees of freedom left in which case the terminal solution
space is said to be under-constrained. An under-constrained solution space contains

an infinite number of configurations.

Example 4.13 (Geometric problem) The triangle described in problem G in
example 4.8 is underconstrained as it is allowed to rotate about the origin and has
one degree of freedom. The triangle described in problem G’ has no degrees of

freedom left, although it has two possible solutions.
O

Middleditch and Latham [67] use concepts similar to Kramer, which they re-
fer to as over-constrained, well-constrained and under-constrained geometric con-
straint problems. The issue of whether a constraint problem is over-, under- or
well-constrained is referred to as the constrainedness of the constraint problem in
this thesis. The identification of constrainedness of a problem is very important
as it affects the choice of solver used to solve the problem. For example, [CBSM
is optimised for solving underconstrained problems, whilst D-Cubed is primarily
aimed at solving well-constrained problems and Skyblue at solving over-constrained
problems.

This section presents a formal definition of dimensions and constrainedness. Di-
mensions form the extension of the concept of degrees of freedom to the general
constraint problem. With dimensions it is possible to define constrainedness strictly,
as shown in section 4.5.2. Since certain constraint solvers are better suited to under-
constrained problems and others are better suited to well-constrained problems, it

is important to be able to identify the constrainedness of a constraint problem.

4.5.1 Definition of dimensions

Degrees of freedom are defined as the translation, rotation and scaling a geometric
entity is allowed to perform in IR®. In a sense, this is equivalent to describing the

size of the domain of the entity.

Chapter 4 92 Constraint Definition

For example, consider a cube in IR?. The cube can translate anywhere in IR?, so
has a translational domain of IR® and 3 translational degrees of freedom. The cube
can also rotate in IR* and has rotational domain of IR* and 3 rotational degrees of
freedom. Since it is a cube, all sides must have the same length. However, the cube
is free to be as large as desired and so can be scaled by any factor. It therefore has a
scaling domain of IR and 1 scaling degree of freedom. Overall the cube has domain
IR” and 7 degrees of freedom.

Unfortunately, simply counting the power of IR in the domain of an entity is not
sufficient for the general constraint problem.

Consider, for example, an entity 2 which takes values in Z% The size of the
domain of this entity is unspecified. Following the example of the cube above, since
7Z C IR and Z* C IR?, a size of 2 would not be unreasonable. However Z is a
countable set as is Z2, and so Z and Z? are in fact equivalent in a certain sense and
should have the same size. In this case, the domain of x would have size 1.

This ambiguity means that, for the general constraint problem, a stricter defini-
tion of the size of a domain is needed. This is the dimension of a set. In fact, this

is difficult to determine. Ideally the dimension function should be a function
dim : domain — N

with the following properties

dim(R) = dim(Q) = dim(Z) = dim(N) =1
dim(0) = dim(A) = 0,

where A is an arbitrary finite set.
These properties agree with the definitions of degrees of freedom and constrained-
ness used elsewhere. It is also important for the dim function to have the following

additional properties:

dim(D; x Dy) = dim(Dy) + dim(D,), (
dim(A U B) = max(dim(A), dim(B)), (
dim(A N B) < min(dim(A), dim(B)), (

dim(A\ B) < dim(A). (

These properties mean that, for example, if a set A is a subset of another set B,

Chapter 4 93 Constraint Definition

then the dimension of A is no bigger than the dimension of B.

If the domain is a linear space then the definition of dimension should be the
same as the definition of dimension for linear spaces, i.e. the size of the smallest
linearly independent spanning set.

As was noted above it is very difficult to define dim in such a way that prop-
erty 4.1 is satisfied. This is precisely because Z and Z? are equivalent in a mathe-
matical sense and so dim(ZQ) =1, not 2 as required by property 4.1.

Manifolds can be used to deal with this problem, providing it is assumed that
the sets used in constraint problems are within a metric space. In practice this is not
a serious restriction. Manifolds are discussed in brief in appendix A. The reader is
referred to [107] for more discussion of manifolds. Dimensions as used in this thesis

are therefore defined as follows:

Definition 4.11 (Dimensions) A set S in a metric space M has dimension n,
dim(S) = n, if and only if n is the smallest number such that S is an n-manifold in
M. O

This definition gets over the problem discussed above to do with countable sets.

However, property 4.1 must be slightly altered to

Dy x Dy is not homeomorphic to a proper subset of R(4m(P1)+dim(Dz))

Notice that both entities and constraints are characterised by sets. However, the

dimension of entities and constraints as commonly used are slightly different.

Definition 4.12 (Dimension of entities) The dimension of an entity (E, Dg),

dim(FE) is given by
dim(E) = dim(Dg).

O

Definition 4.13 (Dimension of constraints) The dimension of a constraint
(C, D¢), dim(C) is given by

dim(C) = dim(D,, x D,) — dim(D¢),

where £(C) = {(21,Dy,), ..., (2n, Dy,)}. O

Chapter 4 94 Constraint Definition

4.5.2 Constrainedness

The constrainedness of a problem is related to the number of constraints in the
problem. Since constraints are sets also, they too have a dimension. Whilst entities

provide extra dimension for a problem, constraints consume dimensions.

Example 4.14 (Geometric problem) Problem G consists of 9 entities and 13
constraints. The three line segment entities each have dimension 4 as the domain of
line segments is IR*. The six point entities each have dimension 2 as the domain of
the points is IR%. The 13 constraints consume different numbers of dimensions. Fixed
point constraints such as LS1, = 0, when described as enhanced constraints, have
dimension 10 and consume 2 dimensions from LS1, as once the constraint is satisfied
it has one end point fixed. By tradition, the dimension of a constraint is described as
the number of dimensions it consumes. Equality constraints, such as LS1, = LS2,
similarly consume 2 dimensions. Distance constraints, such as d(LS1,, LS1,) = 3
consume only 1 dimension. The endpoint constraints each consume 2 dimensions
as they restrict the freedom of a point relative to a line segment so that the point
must move with the line segment.

Thus G creates a total of 24 dimensions but consumes only 23. The remaining
single degree of freedom accounts for the infinite number of solutions to G.

Problem G’ creates 24 dimensions but consumes 25. This does not correspond
to the fact that solutions to G’ do exist, though there are a finite number of them.
O]

Given the definition of dimensions in section 4.5.1, it is now possible to define
the terms well-constrained, under-constrained and over-constrained. These terms
are very important and are used to give an indication of the number of solutions
to the constraint problem. The definitions presented here are adapted from the
definitions used by Middleditch and Latham [66].

A constraint problem is well-constrained if the dimension consumed by every set
of constraints is exactly equal to the dimension created by the set of entities in the
imposed sets of the constraints. A well-constrained problem would be expected to
have a finite number of solutions, though it is possible for a well-constrained problem
to have no solutions or an infinite number of solutions. By definition 4.11, finite
domain constraints and entities always have a dimension of 0 and so finite domain
constraint problems are always well-constrained. Finite domain constraint problems
can have no solutions and they are then sometimes referred to as over-constrained.
This should not be confused with the definition below.

Chapter 4 95 Constraint Definition

Definition 4.14 (Well-constrained constraint problem) Constraint problem
P = (®,¥) is well-constrained if

vC C U,
E = {e€dle€f(c),ceC},

> (dim(e)) = > (dim(c)).

eck ceC

A constraint problem is under-unconstrained if the dimension created by any set
of entities is greater than the dimension consumed by the set of constraints imposed
on by the entities. An under-constrained problem would be expected to have an
infinite number of solutions, though it is possible for an under-constrained problem

to have no solutions.

Definition 4.15 (Under-constrained constraint problem) Constraint

problem P = (®, V) is under-constrained if

iF C &

= 3

C = {ceVleel(e), e€ E},
Z (dim(e)) > Z(dzm(c))

eclk ceC

A constraint problem is over-constrained if the dimension consumed by any set
of constraints is greater than the dimension created by the set of entities imposed
on the constraints. An over-constrained problem would be expected to have no

solutions, though it may have any number.

Definition 4.16 (Over-constrained constraint problem) Constraint

problem P = (®, V) is over-constrained if

IC c v,

E = {eedlecf(c),ceC},
> (dim(c)) > > (dim(e)).

ceC eck

Chapter 4 96 Constraint Definition

According to these definitions, as noted by Middleditch, it is possible for a con-
straint problem to be both over-constrained and under-constrained at the same
time. This is because a part of the constraint problem can be over-specified and
therefore be over-constrained whilst another part of the constraint problem can be

under-specified and therefore under-constrained.

Example 4.15 (Constrainedness of problems) In example 4.8, problem G is

under-constrained as,

E = {(LS1,RY),(LS2,R"), (LS3,RY), (LS1,,R?), (LS1,,IR?),
(LS2,,IR?), (LS2,, R?), (LS3,,R?), (LS3,,IR?)},

C = {LS1, =(0,0), LS1, = LS2,, LS2, = LS3,, L83, = LS1,,
d(LS1,, LS1y) = 3, d(LS2,, LS2;) = 5, d(LS34, LS3y) = 4,
endpoint(LS1, LS1,), endpoint(LS1, LS1,),
endpoint(LS2, LS2,), endpoint(LS2, LS2,),
endpoint(LS3, LS3,), endpoint(LS3, LS3;)}.

> (dim(e)) = dim(LS1) + dim(LS2) + dim(LS3) + dim(LS1,) +

eck

dim(LS1y) + dim(LS2,) + dim(LS2,) + dim(LS3,) +
dim(LS3,)
= 4444+44+24+24+24+24+242
= 24
> (dim(c)) = dim(LS1, = (0,0)) + dim(LS1, = LS2,) + dim(LS2, = LS3,)

ceC

v dim(LS3y = LS1,) + dim(d(LS1,, LS1y) = 3) +
dim(d(LS2,, LS24) = 5) + dim(d(LS3q, LS3,) = 4) +
dim(endpoint(LS1, LS1,)) + dim(endpoint(LS1, LS1y)) +
dim(endpoint(LS2, LS2,)) + dim(endpoint(LS2, LS2)) +
dim(endpoint(LS3, LS3,)) + dim(endpoint(LS3, LS3}))

= 242424241 +14+14+2+2+2+242+2

= 23

<) (dim(e)).

eck

Thus problem G should have an infinite number of solutions and this is true as

the triangle formed can be rotated about the origin. In fact the difference between

Chapter 4

97 Constraint Definition

24 and 23 indicates that there should be one degree of freedom in the solution, which

is provided by rotation about the origin.

Problem G’ is over-constrained as

E

Z (dim(e))

eck

> (dim(c))

ceC

{(LS1,RY), (LS2,RY), (LS3,R"), (LS1,,IR?), (LS1,, IR?),
(LS2,,IR?), (LS2,, R?), (LS3,,R?), (LS3,,IR?)},

{LS1, = (0,0), LS1, = LS2,, LS2, = LS3,, LS3, = LS1,,
d(LS1,, LS1,) = 3,d(LS24, LS2,) = 5,d(LS3q, LS3y) = 4.
LS2, = (0,3), endpoint(LS1, LS1,), endpoint(LS1, LS1y),
endpoint(LS2, LS2,), endpoint(LS2, LS2;),
endpoint(LS3, LS3,), endpoint(LS3, LS3,)}.

dim(LS1) + dim(LS2) + dim(LS3) + dim(LS1,) +

dim(LS1y) + dim(LS2,) + dim(LS2;) + dim(LS3,) +
dim(LS3,)

44+44+44+24+24+2424242

24.

dim(LS1, = (0,0)) + dim(LS1y = L§2,) + dim(LS2, = LS3,)

S+ dim(LS3y = LS1,) + dim(d(LS1a, LS1,) = 3) +
dim(d(LS2q, LS2,) = 5) + dim(d(LS3,, LS3,) = 4) +
dim(L52, = (0,3)) +

dim(endpoint(LS1, LS1,)) + dim(endpoint(LS1, LS1y)) +
dim(endpoint(LS2, LS2,)) + dim(endpoint(LS2, LS2)) +
dim(endpoint(LS3, LS3,)) + dim(endpoint(LS3, LS3y))
242424241 +14+14+2424+24+24+24+2+2

25

> (dimfe)).

eckl

However, problem G’ has a finite number of solutions, when over-constrained

problems typically have none. This is because some of the constraints in G’ are

redundant, in that they are simply repeating information that can be deduced from

other constraints. More specifically, the constraint d(LS1,, LS1,) = 3 is redundant
as it can be deduced from the constraints LS2, = (0,3), LS1, = (0,0) and LS2, =

Chapter 4 98 Constraint Definition

LS1,. In fact, this is the only redundant constraint in the example. If the constraint
d(LS1,, LS1,) = 3 is removed from G’, then o.cc = 24, and the problem becomes

well-constrained. O

A constraint is redundant if it adds no information beyond what can be deduced
from other constraints.

Identification of the constrainedness of a constraint problem is a non-trivial task.
Middleditch and Latham present an algorithm for doing this in [66]. This algorithm
is fast and incremental and operates on a bipartite graph’ representation scheme

(see chapter 5).

4.6 Conclusions

This chapter has presented a formal definition of constraint problems. The set
theoretic approach adopted means that the definition used is rich enough to describe
all kinds of constraint problem, as demonstrated by the finite and infinite-domain
examples running through the chapter.

Entities are defined in terms of the values that they are allowed to take. This
means that entities are not restricted to objects that have numeric values, but can
also include objects such as strings or enumerated values. This general description
means that entities can describe many different types of objects.

Constraints restrict the values that entities can take. The definition of con-
straints as relations allows constraints from many different fields to be described.
Although constraints are normally described locally, in terms of a few entities, the
definition of enhanced constraints allows description of configurations and solutions
of sets of constraints.

Constraint problems consist of a set of entities and a set of constraints. Sets of
many configurations form a kind of search space that constraint solvers use to find
solutions to constraint problems.

The dimension of a set forms an important guide as to how close a constraint
solver is to finding a solution to the constraint problem. If there are an infinite num-
ber of configurations under consideration then the constraint solver is probably not
near finding a solution to the problem. If there are a finite number of configurations
under consideration then the constraint solver is probably near to finding a solution.
As constraint solution progresses, the dimension of the search space under consid-
eration will gradually shrink until (hopefully) only a finite number of configurations

remain.

Chapter 4 99 Constraint Definition

Dimensions of constraint problems also form an important method of categorising
constraint problems in terms of constrainedness. The precise definition of dimen-
sions is complex due to the existence of space filling curves and mappings between
countable sets. However, dimensions as defined in this thesis will become increas-
ingly important in later chapters.

As dimensions categorise constraint problems in terms of constrainedness, it
is apparent that certain constraint solvers are better at dealing with problems of
a certain constrainedness. For example, ICBSM [27] is targeted more at solving
under-constrained problems, i.e. those with an infinite number of solutions, whilst
DCM [86] is targeted more at solving well-constrained problems, i.e. those with a
finite number of solutions. This categorisation will be exploited in chapter 3.

Middleditch and Latham’s Connectivity Analysis [67] is an important means
of identifying well-, over- and under-constrained subproblems within a constraint
problem. Connectivity Analysis identifies balanced sets of constraints and enti-
ties that are effectively well-constrained. Connectivity Analysis also identifies over-
and under-constrained subproblems and the possible means of making them well-
constrained. Connectivity Analysis will be used in chapter 3 to identify subproblems
of a constraint problem according to constrainedness in order to exploit the cate-
gorisation of solvers according to constrainedness given in chapter 2.

Not only does the set-theoretic approach provide a unifying structure for diverse
constraint problems, but it also makes it possible to identify the key structures
necessary for constraint representation and makes the abstraction of the constraint
solution process logical and transparent, as will become clear in the next two chap-

ters.

Chapter 5
Constraint Representation

Constraint problems are meant to be solved. Solution may involve finding one
or a number of configurations that satisfy the constraints in the problem. It is
important to realise that human beings deal with constraint problems all the time:
simply travelling from A to B involves negotiating a path subject to the constraints
of available time, transport, routes, traffic and weather. A problem of this nature
is very difficult to describe and solve on a computer. Paradoxically, the movements
necessary for a Puma robot arm (see figure 5.1, taken from [79]) to reach an object
may be difficult for a human but simple to describe and solve on a computer. The
significance of this is that not all constraint problems can or should be solved on a
computer and that it should never be assumed that any given problem will be best
solved by a computer. For the purposes of this thesis, however, it is assumed that
there are interesting constraint problems to be solved that are better solved on a
computer.

Once a constraint problem is defined using the building blocks of the previous
chapter, it is necessary to represent the problem in some way so that a computer
can understand the problem and then solve it. Different constraint solvers use
different representation schemes and these schemes are not obviously equivalent. In
fact, some schemes seem to be only appropriate for specific types of problem. For
example, finite domain problem solvers use a representation scheme that appears
to be totally unsuitable for infinite domain problems and Lamounier’'s Equation
Graph [62] is very different from Fa’s Relationship Graph [112].

As the title suggests, this thesis is primarily interested in solving a general con-
straint problem, one not restricted to particular types of problem. In order to solve a
general problem, it is first necessary, then, to represent the problem on a computer.

To this end, this chapter presents research to find generic methods of describing

100

Chapter 5 101 Constraint Representation

Figure 5.1: A Puma Robot Arm

constraint problems. Section 5.1 discusses the problems of representing the basic
constituents of constraint problems, entities and constraints. Section 5.2 presents a
formal definition of constraint representation schemes and the properties necessary
for a valid constraint representation scheme. Constraint representation schemes will
be used to represent constraint problems. Section 5.2 also introduces the notion of
a generic constraint representation scheme. Section 5.3 discusses CRS schemes cur-
rently in use, including an algebraic representation which is generic. Other schemes
studied are Relationship Graphs [27,112], undirected graphs [37, 86, 103], bipar-
tite graphs [62, 66, 100] and hypergraphs [100]. This section also introduces the
Constraint/Entity graph, a bipartite graph representation that includes all of the
properties necessary for a constraint representation scheme.

Section 5.4 presents reductions, a technique developed to compare constraint
representation schemes and to prove if a scheme is generic. Reductions have been
used to compare the constraint representation schemes in section 5.3 and identify
generic constraint representation schemes. Using reductions it is possible to form a
hierarchy of constraint representation schemes in terms of expressiveness. Figure 5.2

presents the hierarchy of constraint representation schemes in section 5.3. It is worth

Chapter 5 102 Constraint Representation

VRO
]
|
| L,
d
1\
I
! -
I N
| 70
VRO N
\
\' L2
€ ' S
=" dz ****** =K

Figure 5.2: A Hierarchy of Constraint Representation Schemes

noting that more than one generic representation scheme exists.
The significance of figure 5.2 is discussed in section 5.5 and conclusions drawn

from this chapter.

5.1 Representing entities and constraints

The representation of entities and constraints on a computer is fundamentally the
problem of representing sets on a computer, since entities and constraints are both
effectively sets. Sets are difficult to represent on a computer because they are usually
infinite and thus impossible to represent explicitly on a finite machine. Some success
has been achieved by representing finite entities and constraints and this has led to

much research being focused on finite constraint problems.

5.1.1 Finite-domain entities and constraints

Finite entities are usually described by simply listing the domain of the entities
explicitly. Thus an entity E that can take values {1,2,3,4} will typically be rep-
resented using a data structure such as a one dimensional array. If the domain
is fragmented or non-sequential, such as the set {1,4,6,10,11,12}, then it will be
necessary to store the domain in such a way that it is possible to quickly and effi-
ciently check whether the entity is allowed a certain value in the domain. This will
entail the use of a sorted array or hash table or perhaps a linked list. Finite domain
algorithms will frequently use a large array which is simply left blank at locations

not in the domain.

Chapter 5 103 Constraint Representation

Finite constraints can always be expressed as binary constraints, as noted in
[114]. The key component of a constraint is to know which of the tuples in the
Cartesian product satisfy the constraint and which do not. It must therefore be
possible to say quickly whether a particular tuple satisfies the constraint or not.
In random finite domain problems, this is usually a matter of constructing a two
dimensional array so that an entry (1,2) is 1 if the tuple (1, 2) satisfies the constraint
and 0 if the tuple does not satisfy the constraint.

The array data structure is useful because it allows fast lookup of entries, is
simple to construct and also allows random constraints to be constructed easily and
with certain properties [104,105].

However the array will frequently be sparse, in the sense that it will have many
more Os than 1s. For example, only ten tuples satisfy the constraint x = y for
the entities =,y with domains {1,2,...,10}. Correspondingly, a 10 x 10 array
is constructed which is 90% full of 0s. Sparse matrix techniques would help this

problem.

5.1.2 Infinite-domain entities and constraints

Whilst it is possible to explicitly enumerate the domains of finite entities and con-
straints, it is impossible to do so for infinite entities and constraints. It is therefore
important to identify implicit means of describing these structures.

Since sets are defined using a test function (see section 4.2), the simplest method
of describing an infinite set is to code a function that implements the test function. It
is therefore possible to query whether a particular tuple is in the set and is therefore
in the domain of the entity or satisfies the constraint.

More sophisticated techniques involve taking advantage of the type of constraint
or entity, i.e. by using domain-specific knowledge appropriate to the constraint or
entity. For example, it is possible to capture the movements of rigid bodies in space
by describing them in terms of degrees of freedom [59]. Using degrees of freedom
reduces an infinite domain to a finite one and greatly simplifies description of the

problem space.

5.2 Representing constraint problems

A constraint representation scheme (CRS) is a method of describing a constraint

problem, typically using graph’ techniques. A CRS should be such that, given a

Chapter 5 104 Constraint Representation

problem in the CRS, no more information is needed to examine, understand and
attempt to solve that problem, other than that provided by the scheme. A problem
in a valid CRS will therefore always be well-posed in the sense that there is sufficient
information to solve the problem given that a solution exists. Thus, objects rep-
resenting constraints would be linked to the actual constraints themselves in some
way and objects representing entities would be linked to the actual entities. Having
examined several CRSs in the literature with respect to the very formal framework
for the constraint problem defined in the previous chapter, it is apparent that there

exists a common set of properties that a CRS should have.

Definition 5.1 (Constraint representation schemes) A data structure for de-
scribing constraint problems is a Constraint Representation Scheme. It satisfies

all of the following properties:
1. There should be an identifiable set of entities, together with their domains;

2. There should be an identifiable set of constraints, with a constraint test pro-

cedure, imposed set and an ordering associated with each constraint;

3. There is a ‘connection’ between a subset of entities if and only if there is a
constraint imposed on the subset, i.e. a connection corresponds to the imposed

set of a constraint;

4. There should be a one-to-one correspondence between the constraints and the

connections in the representation;
5. There should be a definition of what a solution in the representation looks like.

]

The definition of ‘connection’ will vary from scheme to scheme. For example in the
constraint graph representation of Owen [86], a connection is just an edge, whilst in
the Constraint/Entity graph representation (section 5.3.5), a connection is the set
of edges incident to a particular constraint vertex.

A generic constraint representation scheme is a representation scheme capable of
describing all constraint problems. Generic representation schemes are important as
they allow a general purpose constraint management system to store and represent

general constraint problems.

Chapter 5 105 Constraint Representation

Definition 5.2 (Generic representation schemes) A generic CRS isa CRS in
which every constraint problem can be described, where a constraint problem is as
defined in section 4.3. The algebraic CRS presented in section 5.3.1 is generic as all
constraints can be described in terms of relations. A generic constraint represen-
tation scheme will be useful as it can be used to describe all problems that will be

encountered. [

5.3 Example constraint representation schemes

This section provides sample CRSs and introduces the Constraint/Entity graph.

5.3.1 Algebraic representation

The algebraic representation of a constraint problem is the pair (£,C), where £ =
{(z1,D1), ..., (xn, Dy)} is the set of entities with domains and the set

C - {(C]?fCI’é-Cl? <Cl)’ s ’(CTTL’ fcmﬂfcmﬂ <Cm)}

is the set of constraints, where f., is the Constraint Test Procedure for constraint
¢i, &, 1s the imposed set of constraint ¢; and <., is an ordering on &,.,.
A connection between elements of F C £ exists iff 3¢; € C such that &, = F.

The n-tuple (vq,...,v,) is a solution of an algebraic representation iff
Ve, €C, (fl(vr,... . vn) =1) A (Y], v; € Dy),

where

e (V1 vn) = fe (Vi v,),
567: = {.’177;1 Jx’im}7
and Tiy <oy Tig <y " <ej Tiyy -

From here, notation will be abused so that f., is equivalent to f. .
Given the definition of generic CRSs in section 5.2, the algebraic representation

scheme above is generic.

Chapter 5 106 Constraint Representation

(o) o\
B D
on(B,0)
g

B—=

Figure 5.3: An Example of a Relationship Graph with a Solution to the Graph

5.3.2 Relationship graph representation

The Relationship Graph introduced by Fa et al. [25] is a directed! graph consisting
of vertices V' and directed edges E.

The set V' is the set of entities and associated with each vertex is the domain of
the relevant entity.

The set E is the set of directed edges. Each edge [u, v] represents a constraint
between vertex u and vertex v. The CTP for the constraint is the function associated
with the geometric constraint represented by the edge. The imposed set of the
constraint is {u,v} with ordering u < v preserved by the direction of the edge.
Thus non-symmetric constraints can be reconstructed from the graph.

A solution of the Relationship Graph is a configuration such that the CTP of
each edge is satisfied. Figure 5.3 shows an example of a relationship graph and a

solution to the relationship graph.

5.3.3 Undirected graph representation

Undirected ! graphs are used in both infinite and finite domain constraint solvers.
Infinite domain solvers that use undirected graph structures, such as D-Cubed [86]
and Erep [37], currently only handle symmetric constraints T | such as distance
or angle constraints. Any change to the representation to handle un-symmetric
constraints would necessitate introducing an ordering and would effectively change
the undirected graph into a directed graph. It is therefore appropriate to treat the
undirected graphs of D-Cubed and Erep as separate constructions from directed
graphs, such as Relationship Graphs and investigate them as such.

Finite domain solvers do not appear to distinguish between symmetric and un-
symmetric constraints. Since the matrices used to describe constraints can handle

unsymmetric constraints, it is therefore assumed that the ‘undirected’ graphs used

Chapter 5 107 Constraint Representation

Figure 5.4: An example of an undirected constraint graph with a solution to the
graph.

in finite domain problems do, in fact, contain an ordering and are effectively directed
graphs.

An undirected graph G consists of a set of vertices V' and a set of undirected
edges E. A vertex v represents an entity with its domain. An undirected edge (u, v)
represents a constraint between vertices v and v with the CTP associated with the
constraint. The imposed set of the constraint is {u, v} with no ordering, i.e. u and
v are interchangeable.

A solution to an undirected graph is a configuration such that the CTP of each
edge is satisfied. Figure 5.4 shows a simplified example of an undirected constraint
graph and a solution to the graph (from [86]). Note that the actual constraint graph
will contain descriptions of the constraints that are represented by the edges in the

graph and will also have the domains of the entities.

5.3.4 Hypergraph representation

Serrano [100] uses a hypergraph representation for constraint problems. A hyper-
graph T CRS is a pair (V, HE), where V is a set of vertices and HE is a set of

Chapter 5 108 Constraint Representation

|

Figure 5.5: An example of a constraint hypergraph with a solution to the graph.

hyperedges’ .

A vertex v represents an entity with its domain.

A hyperedge he = {vy, vy, ... ,v,} represents a constraint with a CTP associated
with the constraint and imposed set {vy, vy, ... ,v,}. Serrano does not mention an
ordering on the edges, but it must exist as the constraints he describes are not
symmetric. Hence an ordering is assumed to exist on {vy,vq,... ,v,}.

A solution to a hypergraph is a configuration such that the CTP of each hyper-
edge is satisfied. Figure 5.5 shows a simplified example of a constraint hypergraph
and a solution to the graph (from [100]). The hypergraph shown does not show the
descriptions of the constraints or the domains of the entities in order to simplify the

picture.

5.3.5 Bipartite representation

The Constraint/Entity graph (C/E graph) is a labelled, T undirected, T bipartite, '
connected graph (C,V, E) with two types of vertices: constraints and entities. Note
that the Constraint/Entity representation is adapted from the bipartite representa-
tions used by Serrano [100] and Latham and Middleditch [66]. An example Con-
straint/Entity graph is given in figure 5.6.

The set C is the set of constraint vertices. Each ¢ = (label, f.) € C consists
of a unique label identifying the constraint and a CTP for checking possible solu-
tions. Constraint vertices are represented as circles in the graph. For example, C'

in figure 5.6 is a constraint vertex, with CTP fo(z,y).

Chapter 5 109 Constraint Representation

D f (z,w) D

z B w

Figure 5.6: Example of a Constraint/Entity Graph

The set V' is the set of entity vertices. Each v = (label, D,) € V consists of
a unique identifying label and the domain of the entity, D,. Entity vertices are
represented as squares in the graph. for example, z in figure 5.6 is an entity vertex,
with domain D,,.

The set E is the set of labelled, undirected edges in the graph. In a C/E graph
there exists an edge between a constraint node and an entity node iff the associated
constraint is imposed on the associated entity, i.e. (¢, v,n) € E < ¢ = (label, f.) and
v is a parameter of f.. Each edge is labelled with a number, n, between 1 and the
number of parameters of f., denoting the position of the adjacent entity vertex in
the list of parameters of f.. The set of entity nodes adjacent to constraint node ¢
is denoted &.. For example, in figure 5.6, the edge (A, z,3) is labelled 3 as z is the
third parameter in f,.

A solution of a Constraint/Entity graph is a value (vy,... ,v,) € Dy X --- x D,
such that f.(vy,...,v,) =1 VYee C.

5.3.6 Valid representation schemes

Table 5.1 illustrates the various schemes discussed in this section and catalogues the
properties necessary for a valid CRS. All of the schemes presented in this section
are valid CRSs.

Chapter 5 110 Constraint Representation
Scheme Reference | Entities | Constraints Imposed Set
Algebraic Section 5.3.1 £ C Imposed set of C
C/E Section 5.3.5 V C The set of edges

incident to con-
straint vertex
Directed 127] V E Edge
Undirected 186] V E Edge
Hypergraph [101] 1% Set of edges with | Set of edges with
different label same label

Table 5.1: Valid Constraint Representation Schemes

5.4 Reductions

The various graph representation schemes have significant advantages over the al-
gebraic CRS. For example the finite domain arc consistency and path consistency
solution techniques take advantage of an undirected graph structure and ICBSM’s
Allowable Motion [27] takes advantage of the directed graph nature of the Rela-
tionship Graph to help guide solution. Erep [14] and DCM [86] take advantage of
the structure of undirected graphs, Concept Modeler [100] takes advantage of the
hypergraph representation and Connectivity Analysis [67] takes advantage of the
structure of a bipartite graph representation.

Whilst the algebraic CRS is generic, it is not immediately obvious which of the
other CRSs are. It is also useful to be able to compare the expressiveness of CRSs
directly so that the relative expressiveness of constraint solvers can be identified.

This section presents a method of comparing CRSs such that not only can more
expressive schemes be identified, but also so that there exists a method of translating
one scheme to another. To this end the concept of reducing one CRS to another
is introduced. The concept of reduction is analogous to reductions in complexity

theory.

Definition 5.3 (Reductions) A CRS « can be reduced to a representation [3 if

1. There exists a mapping ¢ from a to 3, VYA € a, 3B € (3 such that ¢(A) = B;

2. Every solution of A is also a solution of B and every solution of B is also a
solution of A. In other words A and B (the reduced problem) have the same

solutions;

3. « and (3 are valid constraint representation schemes;

Chapter 5 111 Constraint Representation

4. The reduction can be done in polynomial time.

The last criterion is necessary to ensure that the problem does not become in-

tractable due to the reduction. U

Reductions form a tool by which it is possible to compare and contrast constraint
representation schemes in terms of their expressiveness.

The intuitive notion of reductions is that any problem in « can be described
in 3, and that every solution of the reduced problem is a solution of the original
problem. Thus the reduced problem is describing the same problem as the original.
Since every problem in « can be described in 3, 3 is capable of describing at least
as many problems as « and possibly more. This is usually denoted by saying that
0 1s at least as powerful as c. It is natural therefore to wonder when two constraint

representation schemes are equally powerful.

Definition 5.4 (Equivalent constraint representation schemes) The two
representations o and 3 are equivalent if and only if o can be reduced to 3 and (3

can be reduced to o. The notation o = (3 is used to denote equivalence. [

Since generic representation schemes are the goal of this chapter, constraint rep-
resentation schemes that are equivalent to generic representation schemes will be

particularly important.
Theorem 5.1 If & = 3 and [is generic, then « is generic. [J

Proof If a = (3, then 3¢ such that VB € 3,34 € o, ¢(B) = A. Hence B can be
described and solved in «a, and since B is arbitrary, a is generic. O

Two example reductions are given below. These reductions are important as
they prove that there are constraint representation schemes other than the algebraic
representation scheme that are generic and also that there are constraint represen-
tation schemes that are not generic. This allows the construction of a hierarchy
of constraint representation schemes in terms of expressiveness. The two sample

reductions prove that

1. The algebraic representation is equivalent to the Constraint/ Entity represen-

tation.

2. The Relationship Graph representation is not as expressive as the Constraint/

Entity representation.

Chapter 5 112 Constraint Representation

These reductions allow construction of part of figure 5.2. The remaining reductions
necessary to produce figure 5.2 are presented in appendix B.

The reductions presented in theorem 5.2 and theorem 5.3, combined with the re-
ductions presented in appendix B lead to the conclusion that the Constraint/Entity
graph presented in section 5.3.5 is generic. Since this thesis studies the solution of
general engineering design constraint problems, a generic constraint representation
scheme is necessary to represent the general problem. The Constraint/Entity graph
is also equivalent to the Connectivity graph used by Middleditch and Latham [67]
and so can be used for Connectivity Analysis. The identification of the constrained-
ness of subproblems is an important issue in this thesis and the direct use of Con-
nectivity Analysis is a significant advantage for the Constraint/Entity graph. Con-
sequently, the Constraint/Entity graph will be the constraint representation scheme

of choice for this thesis.

Theorem 5.2 The algebraic representation is equivalent to the Constraint/ Entity

graph representation. [

Proof The proof is in two parts. First a reduction is formed from the Algebraic
Representation to the Constraint/Entity Representation.
A mapping is defined as follows:
For every (x;, D;) € &, create (z;, D;) in V.
For every (¢, fe, &, <.) € C, create (¢, f.) in C.
Create E such that ((c, f.),(z,D,),n) € E & x € & and x is in

position n in <.

By inspection, the resulting graph is a Constraint/Entity graph. As an exam-
ple, consider the simple constraint problem below. The Constraint/Entity graph

resulting from the reduction is as in figure 5.7.

v = ({(=,D,),(y,D,),(2,D,), (w,Dy)},
{(Aa anan<A)v(BafBa€Bv<B)v(Cv fCafCa<C’)})a
such that Ea={x,y,2},¢8 ={y, z,w}, & = {z, w},

and <a= [z, y, 2], <=y, z,w], <c= [z, w].
The entity vertices {z,y, z, w}, the constraint vertices {A, B, C'} and the edges

{(A,2,1),(A,y,2),(A, 2,3),(B,y,1),(B,2,2),(B,w,3),(C,z,1), (C,w,2)}

Chapter 5 113 Constraint Representation

<O

2
R(xy.2)

f(x,w)
C

Figure 5.7: Constraint/Entity Representation for Constraint Problem ~y

are created. The reduction criteria are demonstrated below:

1. Mapping is defined above.

2. A solution (y1,...,y,) of (£,C) is a solution of the Constraint/ Entity graph
by the definition of a solution of the Constraint/ Entity graph and that of the

algebraic representation, and vice versa.
3. Both are valid CRSs, by table 5.1.

4. For every constraint in the constraint problem, a constraint vertex is created,
taking O(m), where m is the number of constraints. For every entity in the
constraint problem, an entity vertex is created, taking O(n), where n is the
number of entities. For every constraint in the constraint problem an edge for
each entity the constraint is imposed on is created, taking O(mn). Hence the

reduction is polynomial.

Secondly the reverse reduction, from a Constraint/Entity graph to the algebraic

representation, is proved, using the following mapping:

Chapter 5 114 Constraint Representation

Given Constraint/Entity graph (C,V, E), construct & = V. Con-
struct &. for each ¢ € C' by

gc = {milamiga"' 1mik}a

such that ((c, f.), (zi;, Dmii), n) € E. Then construct <. for each ¢ € C
by

r<.y< (c,x,n) € E and (¢,y,m) € E and n < m.

Then define

C = {(c, fes&e: <o)l(e, fo) € CF
Then the pair
(£,C)
is the algebraic representation as defined in section 5.3.1.

The reduction criteria are now checked to make sure the reduction is valid.

1. Map is defined above.

2. By the definition of the solutions of a Constraint/Entity graph and of the

algebraic representation, the solutions are the same.
3. Both are valid CRSs, from table 5.1.

4. For each entity vertex in the C/E graph, an entity in £ is created, taking O(n),
where n is the number of entities. For each constraint in the C/E graph, a
constraint in C is created. There may be O(n) edges incident to each constraint
and O(m) constraints, so reconstructing the imposed sets is O(mn). Hence

the reduction is polynomial.

Therefore the algebraic representation for constraint problems is equivalent to
the Constraint/Entity graph representation. This is as expected and means that
every problem that can be described in terms of relations can be described as a

Constraint/Entity graph. So Constraint/Entity graphs are generic. O

Chapter 5 115 Constraint Representation

Figure 5.8: New Construct for Constraint Edges

f (u)
C D

C

Figure 5.9: New Construct for Constraint Loops

Theorem 5.3 The Relationship Graph [27] is not equivalent to the Constraint/
Entity graph and is strictly less powerful than it. [J

Proof The proof is in two parts. First a reduction is formed from the Rela-
tionship Graph to the Constraint/Entity representation, demonstrating that the
Constraint/Entity Graph is at least as powerful as the Relationship Graph. The
Relationship Graph is a directed graph, in which constraints are represented by
directed edges and entities are represented by circular vertices.

The mapping used to reduce a directed constraint graph (V, E') to a C/E graph
(Vg, Cp, Ep) is as follows:

Create Vg = V.

For each edge e in E, with CTP f., create constraint vertex (e, f.) in
Cg.

For each edge e = [u,v] in E, create edges (e,u,1) and (e,v,2) in
Eg. FEffectively, this means replacing all edges ((u, D,), (v, D,)) with
the construct in figure 5.8, where ((u, Dy), (v, D,)) represents constraint
C, with £&o = {u,v} and <c= [u,v], C has CTP f. As edges in the
Relationship Graph are directed, there is an implicit ordering which is
captured by having the edge from C to wu labelled with a 1 and (C,v)
labelled with a 2.

For each edge e = [u,u] in E, create edge (e,u,1) in Eg. Effectively
this means replacing all edges ((u, Dy), (u, Dy,)) with the construct in
figure 5.9.

Chapter 5 116 Constraint Representation

Entity

Entity Entity

Entity

Figure 5.10: Representing Quaternary Constraints in a Constraint/Entity Graph

The resultant graph is clearly a C/E graph. Checking the reduction criterion:

1. The mapping is defined above.

2. A solution to the constraint graph will result in values being assigned to the
various entity vertices. The assignment of the same values to the entity vertices
in the reduced C/E graph will form a solution to the C/E graph problem, since

the same CTPs are used in both schemes.
3. Both are valid CRSs, as in table 5.1.

4. The reduction can be done in linear time in the number of edges in the con-

straint graph. It is therefore polynomial time.

So the relationship graph can be reduced to a C/E graph.

Secondly, it is necessary to prove that Constraint/Entity graphs cannot be re-
duced to Relationship Graphs. This implies that Constraint/Entity graphs are
strictly more powerful than Relationship Graphs. The weakness of RGs lies in
the fact that only binary and unary constraints can be described.

It is however possible to represent ternary or n-ary constraints in a Constraint/
Entity graph by the number of edges e € E such that the constraint vertex is incident
to e (see figure 5.10).

Since more complex, non-geometric constraints will probably require n-ary con-

straints, such a representation is clearly desirable.

Chapter 5 117 Constraint Representation

Since n-ary constraints, n > 3 cannot be described using a Relationship Graph,
it follows that the Constraint /Entity representation is more powerful or more general
than Relationship Graphs. O

5.5 Conclusions

This chapter has discussed the problems of representing constraint problems on a
computer. The problems of representing constraints and entities correspond to the
problems of representing large or infinite sets of values. Sparse matrix techniques
can be used in the case of finite entities and constraints, provided that there are few
non-zero values. In general, implicit set notation is used for infinite domain entities
and constraints. Equations and inequalities can be described using explicit symbolic
mathematical descriptions, for example using Maple [18]. Tt is also possible to use
domain specific knowledge to simplify description of constraints and entities. For
example, the movements of rigid bodies in space can be described using degrees of
freedom [27,58], which allows description of an infinite domain to be simplified to a
finite one.

Constraint problems are represented using constraint representation schemes.
Constraint representation schemes are a means of abstracting out relevant informa-
tion about a constraint problem, for example the imposed set of constraints, in such
a way that they can be exploited by a constraint solver. Most constraint representa-
tion schemes take advantage of graph representations in order to use the large body
of graph algorithms that already exist.

For example the finite domain arc consistency and path consistency solution
techniques take advantage of an undirected graph structure and ICBSM’s Allowable
Motion [27] takes advantage of the directed graph nature of the Relationship Graph
to help guide solution. Erep [14] and DCM [86] take advantage of the structure
of undirected graphs, Concept Modeler [100] takes advantage of the hypergraph
representation and Connectivity Analysis [67] takes advantage of the structure of a
bipartite graph representation.

Some constraint representation schemes are generic. A generic constraint rep-
resentation scheme is capable of describing all constraint problems. The algebraic
representation scheme described in section 5.3.1 is generic, but there is no direct
means of identifying which of the other representation schemes presented are. Con-
sequently, the notion of reductions was introduced. Reductions can be used to

convert between constraint representation schemes and also to compare two con-

Chapter 5 118 Constraint Representation

VRO
]
|
| L,
d
1\
I
! -
I N
| 70
VRO N
\
\' L2
€ ' S
=" dz ****** =K

Figure 5.11: A Hierarchy of Constraint Representation Schemes

straint representation schemes. Two constraint representation schemes « and 3 are
equivalent if o can be reduced to § and vice versa.

Theorem 5.1 proves that a constraint representation scheme that is equivalent to
a generic representation scheme is generic. This theorem performs an important role
in identifying the constraint representation scheme that will be used to represent
the general engineering design constraint problems of interest to this thesis.

Using reductions, it is possible to form a hierarchy of constraint representation
schemes in terms of expressiveness. The hierarchy described in figure 5.2 is repro-
duced here for convenience.

This hierarchy indicates that the Constraint/Entity graph presented in sec-
tion 5.3.5 is generic. The Constraint/Entity graph is also equivalent to the Connec-
tivity graph used by Middleditch and Latham [67] and so can be used for Connectiv-
ity Analysis. The identification of the constrainedness of subproblems is an impor-
tant issue in this thesis and the direct use of Connectivity Analysis is a significant
advantage for the Constraint/Entity graph. Consequently, the Constraint/Entity

graph will be the constraint representation scheme of choice for this thesis.

Chapter 6
Constraint Satisfaction

Once a constraint problem is defined and represented on a computer, it only remains
to find the required number of solutions to the problem, a process normally referred
to as constraint satisfaction. Currently, there exist many different constraint satis-
faction techniques, ranging from trying every possible configuration to sophisticated
heuristic and reasoning methods.

The purpose of this thesis is to investigate the possibility of defining, representing
and solving a general constraint problem efficiently on a computer. No single algo-
rithm currently available can handle all constraint problems. Even versatile numer-
ical algorithms, such as Newton-Raphson [90], cannot solve all constraint problems
as not all constraint problems can be described using equations (see Kramer [59],
p23). As noted in [90],

There are no good, general methods for solving systems of more than
one nonlinear equation. Furthermore, it is not hard to see why (very

likely) there never will be any good, general methods.

Consequently, because the general constraint problem may consist of a number of
nonlinear equations and inequalities, it is unlikely that any single algorithm will be
able to solve the general constraint problem. However, there exist many algorithms
capable of solving specific types of constraint problem. It is logical therefore to
wonder whether the specialised constraint solvers could be combined in some fashion
and what kind of problem the combined solver could handle.

This gives rise to the concept of hybrid constraint solvers, which is discussed in
more depth in chapter 7. However, in order to study hybrid solvers, it is necessary
to investigate the constraint satisfaction process, to identify common properties of

satisfaction algorithms that will allow hybrids to be constructed.

119

Chapter 6 120 Constraint Satisfaction

Consequently, this chapter presents a mathematical framework of the constraint
satisfaction process. This framework has several benefits beyond the identification

of common properties:
1. The framework helps to clarify current constraint satisfaction algorithms.

2. The framework allows formal definition of properties such as consistency,
soundness and completeness, and provides a powerful method of proving their

existence in a given algorithm.

3. The framework is sufficiently rich to allow the integration of previously un-
connected topics such as constraint priorities, backtracking, variable-driven

algorithms and incremental techniques.

Section 6.1 presents a definition of constraint satisfaction solvers and discusses so-
lution spaces in this context. Solution spaces are the set of configurations to be
searched for solutions at any given time. An extensive study of constraint satisfac-
tion algorithms has led to the concept of solution steps and these are introduced
in section 6.2. Solution steps may have the properties of consistency, soundness or

completeness associated with them and these properties are defined also. A satisfac-

of solution steps. Consequently, the notion of a solution process is defined. These
also may be consistent, sound or complete and the link between individual steps hav-
ing a property and a process having a property is a powerful tool for categorising a
constraint satisfaction scheme.

Section 6.3.1 demonstrates the power of the framework as it allows the description
of techniques used to improve the power of constraint satisfaction, such as constraint
priorities, backtracking, variable-driven and incremental techniques.

Section 6.4 presents conclusions from this chapter.

6.1 Constraint solution

As defined in section 4.4, a constraint solver is an algorithm or technique that takes
as input a constraint problem and produces as output a set of solutions that satisfy
that constraint problem. This set can be empty, consist of one, all, some or the best
solution, depending on the algorithm used.

Constraint solvers typically work by searching through a large, possibly infinite,

space of possible configurations trying to find specific configurations that satisfy the

Chapter 6 121 Constraint Satisfaction

constraints. The set of configurations being explored is usually called the solution

space of the problem.

6.1.1 Solution spaces

The purpose of a constraint solver is to identify a number of solutions from within a
much larger set of configurations, most of which are not solutions. As the constraint
solver progresses, it gradually narrows down the set of configurations by eliminating
configurations.

The set of configurations at any given point in the solution process is the solution
space. This is a generalisation of nodes in search trees in finite domain problems [103]
and C-spaces [72,121] in spatial planning problems.

Search trees are (semi-)graphical representations of a search algorithm as it ex-
amines the possible configurations of a finite domain problem. The branches of the
tree correspond to differing choices of values for variables at that point. Nodes cor-
respond to partial solutions to the constraint problem and are equivalent to a set of
configurations. Since infinite domain problems will typically not use explicit search
techniques, search trees are not appropriate.

A configuration space, or C-space, is the multi-dimensional space of possible con-
figurations of an object [72]. C-spaces are of particular interest in spatial planning
problems. If an object in a domain is to avoid a set of obstacles, then the problem
of finding a position for the object reduces to the problem of identifying a point
not within any of the projections of the object with respect to the obstacles into
C-space.

Solution spaces will be used to describe the current state of a solution process.

Definition 6.1 (Solution space) A solution space is a set of configurations.

Solution spaces will be denoted by the symbol D. UJ

Once a constraint problem is defined, there is an initial solution space of all

possible configurations.

Example 6.1 (Solution space) Consider constraint problem G of example 4.8.
The set of all possible configurations of LS1, LS2, LS3, LS1,, LS1y, LS2,, LS2,,
LS3,,LS3, is

D(0) = {LS1 =R" LS2 =R* LS3 =R* LS1, = R? LS1, = R?
LS2, = R? LS2, = R? LS3, = R, LS3, = R*}.

Chapter 6 122 Constraint Satisfaction

This is the initial solution space of G. D(0) represents the three line segments being
allowed to take any position in the plane. Note that, since this is the initial solution
space, the notation D(0) is used, to indicate the solution space at time 0. The

reason for this notation will become clear in section 6.2.3. [

As a constraint problem is solved, and configurations are eliminated, the solution
space shrinks. Eventually, the constraint solver terminates and outputs a solution
space. The contents of this solution space depend on the constraint solver. It
may consist of all, one or no solutions. It may contain configurations that are not
solutions. It may find no solutions though some exist or it may find ‘solutions’ where

none exist.

Example 6.2 (Geometric terminal solution space) Using a constraint solver
such as D-Cubed on problem G’ would result in a terminal solution space of the

form

D(k) = {{LS1=1{(0,0,0,3)},LS2 = {(0,3,4,0)}, L83 = {(4,0,0,0)},
{LS1, = {(0,0)}, LS1, = {(0,3)}, LS2, = {(0,3)},
LS2y = {(4,0)}, LS3, = {(4,0)}, LS3, = {(0,0)}},
{LS1 ={(0,0,0,3)}, LS2 = {(0,3, —4,0)}, LS3 = {(—4,0,0,0)},
LS1, = {(0.0)}, LS1, = {(0,3)}, LS2, = {(0,3)},
LS2y = {(—4,0)}, LS3, = {(—4,0)}, LS3;, = {(0,0)} } }.

]

The notation D(k) will be used to denote a terminal solution space in the remainder

of this thesis.

6.2 A framework for the solution process

As discussed in section 6.1, constraint solvers convert an initial solution space to a
terminal solution space, hopefully consisting of solutions to the constraint problem.
Although all constraint solvers work in different ways, it is possible to examine the
inner workings of a variety of constraint solvers and extrapolate common features
to give a framework for describing constraint satisfaction.

This section presents the results of such a study. Having examined the algorithms

for all of the constraint solvers in chapter 2, it seemed that all of the constraint

Chapter 6 123 Constraint Satisfaction

solvers studied worked in an incremental fashion, gradually refining their knowledge
of the constraint problem until it was possible to identify solutions. This principle
translates well into the language of solution spaces. The framework that was devel-
oped to describe the constraint satisfaction process allows concrete statements to be
made not only about individual constraint solvers, but also about the combination
of constraint solvers to handle the general constraint problem.

Note that this is very similar to the description of incremental solvers such as
INCES [62] and IGCS [112]. Incremental solvers try to reuse as much previous
knowledge of the solution of a constraint problem as possible when a new constraint
is added. Incremental solvers are discussed as a refinement of the satisfaction frame-
work in section 6.3.4.

This section introduces the solution step, the basic structure in any solution
process. Solution processes consist of a series of solution steps combined to gradually
refine the solution space of a problem. The definition of solution steps allows a
natural description of the properties of consistency, soundness and completeness,
important properties of constraint solvers.

As a solution process is a series of solution steps, it is natural to apply the
properties of consistency, soundness and completeness to solution processes. The
link between properties of solution steps and solution processes forms an important

tool in making statements about constraint solvers.

6.2.1 Solution steps

A solution step is the building block of constraint solvers. A solution step takes a
solution space and uses a set of constraints to refine the solution space by eliminating

some configurations.
Definition 6.2 (Solution step) A solution step is a mapping %,
Wy
Dk —1) — D(k)

where Wy, is a set of constraints C1, . .. ,Cy, and D(i) is the solution space of the set

of entities ® at step 1. For each step,

D(k) C D(k - 1). (6.1)

Chapter 6 124 Constraint Satisfaction

Example 6.3 (Solution step) Consider the first solution step taken by Kramer’s
degrees of freedom analysis constraint solver [59] to solve problem G’ of example 4.10.

The initial solution space is:

D(0) = {LS1 =R* LS2 =R*, LS3 = R*, LS1, =R’ LS1, = R?,
LS52, = R?, LS2, = IR? L83, = R?, L.53, = IR*}.

as all three line segments float freely in space. Let the first solution step be

LS14=0
s

D(0) D(1),

where

D(1) = {LS1=R" LS2=R" LS3 =R LS1, = {(0,0)}, LS1, = IR?,
LS2, = R* LS2, = R? LS3, = R? LS3, = R?}.

This solution step can be read thus:

From an initial solution space of D(0), the constraint that one point
is fixed at the origin is processed and this results in a solution space of
D(1). D(0) can be interpreted that all three line segments and all six
points are free to move in the plane, whereas D(1) can be interpreted so

that one of the points is fixed at the origin.

This is a solution step as {(0,0)} € IR? and so D(1) C D(0). O

6.2.2 Properties of solution steps

Constraint solvers are frequently described in terms of properties that they have.
These properties usually describe the format of the terminal solution space produced
by the constraint solver and it is very useful to be able to say that a solver will
produce a terminal solution space with a particular property no matter what problem
is solved. Another desirable property is that a constraint solver terminate at all.

The most common properties desired of constraint solvers are

1. Consistency. The terminal solution space contains a solution to the problem

given if any solution exists.

2. Soundness. The terminal solution space consists only of solutions to the prob-

lem given.

Chapter 6 125 Constraint Satisfaction

3. Completeness. The terminal solution space contains all solutions to the prob-

lem given.

For example, numerical solution is not consistent, as it may fail to converge to a
solution. Many finite domain techniques, such as forward checking, backtracking or
backmarking [114], search through the entire solution space and are consistent, sound
and complete. However, it is not always obvious whether a particular constraint
solver has any or all of the above properties.

It is very desirable to be able to characterise constraint solvers with these prop-
erties both so that concrete statements can be made about the terminal solution
space found by the constraint solver and also to help categorise combined solvers.

Consequently, it is important that the framework for constraint satisfaction be
able to capture the three properties described above. This section presents the
formal definitions of consistency, soundness and completeness of solution steps.

A solution step is consistent if it always retains at least one solution to the prob-
lem, if any solution exists. Solvers such as forward checking or backtracking are
consistent as they search exhaustively for a solution, but hillclimbing [114] is not.
Hillclimbing is a constraint solution technique that tries to find solutions using opti-
misation techniques. Hillclimbing examines the constraint problem and then (typi-
cally) uses the derivatives of the nonlinear equations to identify the most promising
direction for a solution. However, hillclimbing can get stuck on local minima and
will then not proceed to a solution as it does not think one exists. Consequently,

hillclimbing is not consistent.

Definition 6.3 (Consistent solution step) A solution step Ly i locally
consistent if ¥, = {C\pkl,qukQ, ..., Cy, }, and

Cy,, NCy,, N---NCy, #0=Cy, NCy, N---NCy, ND(k)F#0.

k

That is there is always at least one solution that satisfies the local set of constraints.
A solution step BLNEN (globally) consistent if ¥ = {C,Cs, ... ,C.}, and

CinCyn---NC, #0=CiNnCyN---NC, ND(k) # 0.

That is there is always at least one solution that satisfies the global set of constraints.
O]

Chapter 6 126 Constraint Satisfaction

In the rest of this thesis, the shorthand notation

C(¥)= (] C=CynCyn---NCy

Cew’

represents the intersection of all the constraints in a constraint subset, W'. This
intersection represents all the values that satisfy all the constraints in the subset.

A solution space D(k) contains many possible solutions of the constraint prob-
lem. Depending on the problem, many of these possible solutions may be valid or
very few may be or none at all. Given that D(k) may be infinite, it would not be
desirable to search through D(k) to find all of the valid solutions. It is therefore
desirable that the final solution space D(k) contain only valid solutions. This gives
rise to the notion of soundness.

A solution step RN locally sound if D(k) contains only valid solutions of W
in D(k — 1). A solution step is sound if D(k) contains only valid solutions of the

constraint problem.

Definition 6.4 (Sound solution step) A solution step LINS® locally sound if
\I’k = {C‘I’kl s C‘I’k27 A ,Cq;km}, and

D(k) C C(T,)ND(k - 1).

That is only local solutions in D(k — 1) are in D(k).
A solution step RINFN (globally) sound if ¥ = {C,,C,, ... ,C,}, and

D(k) C C(¥)ND(k—1).

That is only global solutions in D(k — 1) are in D(k). O

The property of completeness of a solution step is significant as it means that
no solutions to the problem have been lost as a result of the solution step. In
some circumstances we may only want one solution to a problem, in which case

completeness is not an issue, and we need only enforce consistency.

Definition 6.5 (Complete solution step) A solution step BLNSN locally com-
plete if U; = {C’\I,k1 Cyy s ,Cy, }, and

CU)NDk 1) C Dk).

That is all local solutions in D(k — 1) are in D(k).

Chapter 6 127 Constraint Satisfaction

A solution step RINEN (globally) complete if U = {C;,C,, ... ,C,}, and
C(V)ND(k—1) C D(k).
That is all global solutions in D(k — 1) are in D(k). O

Example 6.4 (Properties of solution steps) The solution step L0 4 exe
ample 6.3 is locally consistent as the constraint LS1, = 0 is satisfied in D(1). It
is also locally sound, as there are no configurations in D(1) that do not satisfy
LS1, = 0. It is locally complete as well, as any configuration in D(0) not in D(1)
will not satisfy the constraint LS1, = 0.

Unfortunately, it is much harder to gauge global properties of the solution step
for this example. Without knowing what the solutions of the problem are, it is not
usually possible to say in this way whether the solution step is consistent, sound or

complete. In fact, the solutions of G' are known. They are

{{LS1={(0,0,0,3)},LS2={(0,3,4,0)},LS3 = {(4,0,0,0)},
LS1, = {(0,0)}, LS1, = {(0,3)}, L52, = {(0,3)},

LS2 = {(4,0)}, LS3, = {(4,0)}, 153, = {(0,0)}},

{LS1 = {(0,0,0,3)}, L52 = {(0,3, —4,0)}, LS3 = {(~4,0,0,0)},
LS1, = {(0,0)}, LS1, = {(0,3)}, L.52, = {(0,3)},

LS2y = {(—4,0)}, LS3, = {(~4,0)}, LS3, = {(0,0)}}}.

Thus the solution step is, in fact, (globally) consistent, sound and complete. How-
ever, it is not usually easy to find all of the solutions to a problem and consequently,

it is not usually possible to say whether a solution step has a global property. [

6.2.3 Solution processes

A solution process is constructed from a sequence of solution steps. A solution

process forms the basis for most constraint satisfaction algorithms.

Definition 6.6 (Solution process) Given constraint problem P = (®, V), with
® a set of entities, {(z1,D1) ..., (vn, D,)} with domains Dy, ... ,D,, ¥ a set of

Chapter 6 128 Constraint Satisfaction

\T’I
constraints on ® and W' C W, a solution process —* is a sequence of mappings

D) = (D, x---x D,) % D(1)

Wy

— D(2)
T D(k)
such that
Kk is finite,
\Ijla\IJQa"' 7\I]ﬁ g \Ijla
U,NY, = 0, Vi, j,i# 5,1 =1..k,7= 1.k,
U;il \117 = \II’.
O

Example 6.5 (Solution process) Constraint solvers such as degrees of freedom
analysis, D-Cubed, Erep, ICBSM, FC, MAC are solution processes.

For example, solving constraint problem G’ of example 4.10 using degrees of

Chapter 6 129 Constraint Satisfaction

freedom analysis may give a solution process of the form below.

D(0) = {LS1 =R" LS2 =R* LS3=R"'LS1, = R?,
LS1, = R* LS2, = R? LS2, = R* LS3, = R* LS3, = R*}

L8Zh p(1) = {LS1 =R* LS2 =R* L83 =R*, LS1, = {(0,0)},

LS1, =R* LS2, = R LS2, = R* LS3, = R* LS3, = R*}

LLTES p(2) = {LS1 = R, LS2 = R*, LS3 = R*, LS1, = {(0,0)},
LS1, = {(x,y)},LS2, = {(z,y)}, LS2, = R? LS3, = IR?,
LS3, =R* z,y € R}

L= p(3) = {LS1 = R*, LS2 = R*, LS3 = R*, LS1, = {(0,0)},
LS1, = {(z,y)}, LS2, = {(z,y)}, LS2, = {(z,w)},
LS3, ={(z,w)},LS3, =R, z,y,z,w € R}

LIWZESe p(4) = {LS1 = R*, LS2 = R*, LS3 = R, LS1, = {(0,0)},

LS1, = {(z,y)}, LS2, = {(z,y)}, LS2, = {(2, w)},

LS3, ={(z,w)}, LS3, = {(0,0)},z,y,z,w € R}

D(5) = {LS1=R" LS2=R" LS3 =" LS1, = {(0,0)},

LS1, = {(z,y)}, LS2, = {(z,y)}, LS2, = {(z,w)},

LS3, = {(z,w)},LS3, = {(0,0)}, 2,9y, z,w € R, 2> +3* = 9}
D(6) = {LS1 =R* LS2 =R* LS3=TR" LS1, = {(0,0)}
LS1, = {(z,y)}, LS2, = {(z,y)}, LS2, = {(z,w)},

LS3, = {(z,w)},LS3, = {(0,0)},z,y, z,w € R,2* + y*> = 9,
(x— 2)*+ (y — w)® =25}

D(7) = {LS1 =R" LS2 =R* LS3 =1R* LS1, = {(0,0)},
LS1y, = {(z,y)}, LS2, = {(z,y)}, LS2, = {(z,w)},

LS3, = {(z,w)},LS3, = {(0,0)}, 2,9y, z,w € R, 2> +y* =9,
(x—2)* + (y —w)® =25, 22 + w? = 16}

D(8) = {LS1 =R" LS2 =1R* LS3=1R* LS1, = {(0,0)}
LS1, ={(0,3)},LS2, = {(0,3)}, LS2, = {(+4,0)}
LS3, = {(£4,0)}, L53, = {(0,0)}}

d(LS1,,L.81,)=3
—

d(1.524,1.52,)=5
—

3

d(LS34,L53,)=4
—

1.52=(0,3)
—

’
’

’

Chapter 6 130 Constraint Satisfaction

endpoint(L.S1,1.S14)

% D(9) ={LS1=1{(0,0,IR,R)}, LS2 = R* LS3 = R*,
LS1, = {(0,0)}, LS1, = {(0,3)}, LS2, = {(0,3)}.
152, = {(+4,0)}, LS3, = {(+4,0)}, LS3, = {(0,0)}}.
endpomlESLESID, - p(10) = {LS1 = {(0,0,0,3)}, LS2 = R*, LS3 = R*,
151, = {(0,0)}, 151, = {(0,3)}, 152, = {(0,3)},
152, = {(+4,0)}, .53, = {(+4,0)}, 153, = {(0,0)}},
D(11) = {L51 = {(0,0,0,3)}, L52 = {(0,3, R, R)},
LS3 =1R" LS1, = {(0,0)},LS1, = {(0,3)}, LS2, = {(0,3)},
152, = {(+4,0)}, LS3, = {(+4,0)}, LS3, = {(0,0)}}.
ndpointLSELSM), - py(19) = (LS1 = {(0,0,0,3)}, LS2 = {(0,3, +4,0)},
LS3 =R LS1, = {(0,0)}, LS1, = {(0,3)}, LS2, = {(0,3)}
152, = {(+4,0)}, L83, = {(£4,0)}, LS3, = {(0,0)}},
ndpoint PSS 153, py(13) = {LS1 = {(0,0,0,3)}, LS2 = {(0,3, +4,0)},
LS3 = {(£4,0,R, R)}, LS1, = {(0,0)}, LS1, = {(0,3)}
LS2, = {(0,3)}, LS2y = {(£4,0)}, LS3, = {(£4,0)},
LS3, = {(0,0)}},
ndpointLSSLSW), - py(14) = {LS1 = {(0,0,0,3)}, LS2 = {(0,3, +4,0)},
LS3 = {(4,0,0,0)}, LS1, = {(0,0)}, LS1, = {(0,3)},
152, = {(0,3)}, LS2 = {(+4,0)}, LS3, = {(+4,0)},
LS3, = {(0,0)}}.

endpoint(ﬂSQ,LSQa)\

3

’

Note that
D(14) CD(13) C--- CD(1) C D(0),
as required. [

6.2.3.1 Solution processes always head towards a solution

In most cases, it is desirable for a solution process to head towards a solution space
that is manageable. In terms of dimension, this will involve having a solution space
whose dimension is as small as possible. The actual size of the solution space found
will depend on the algorithm and problem solved. However, it is possible to prove

that the dimension of a solution space tends to decrease due to a solution step.

Chapter 6 131 Constraint Satisfaction

Lemma 6.1 proves this.
Corollary 6.1 A C B = dim(A) < dim(B). O

Proof Assume A C B, then B = AU C, for some C'

ACB = B=AUC
= dim(B) = dim(AUC(C)
= max(dim(A),dim(C))
> dim(A).

O
Lemma 6.1 If there is a solution step
. v, .
D(i—1) — D(i)
then
dim(D(i)) < dim(D(i — 1)).
OJ

Proof Immediate since

D(i) C D(i — 1) = dim(D(i)) < dim(D(i — 1)).

6.2.4 Solution process properties

The definitions for solution properties for solution steps given in section 6.2.2 do not
necessarily allow corresponding properties to be inferred about solution processes.
In fact, a solution process can be interpreted as a single solution step as lemma 6.2

demonstrates.
v
Lemma 6.2 A solution process D(0) —* D(k) is a single solution step. [

Proof A solution step is a function f such that

D(k) = f(¥y, D(k —1)).

Chapter 6 132 Constraint Satisfaction

A solution process is a sequence of functions f; such that
D(k) = fr (Y, Dk — 1)), k=1.k.
Thus, for solution process —*

D(k) = fo(Ve,D(k—1)),
Dk—1) = fo1(Vuo1,D(k —2)),

D(1) = fi(¥1,D(0)).

For each fg, create f; such that
(U, D(k = 1)) = fi(T, D(k —1)).
Then it is possible to redefine D(k) so that
D(r) = fp (¥, fr_1 (V... f{ (¥, D(0)))).
Since a composition of functions is a function, there exists a function g such that
D(x) = g(¥,D(0)).

It remains only to show that

D(x) C D(0)
which follows immediately due to the nature of the solution process. O

Consequently, it is natural to wish to ascribe certain properties to solution pro-
cesses. However, since processes can be interpreted as both a single solution step
and as a sequence of solution steps, there exist two possible ways of defining the
properties desired.

One method is to interpret a solution process as a solution step and this gives
rise to consistency, soundness and completeness of solution processes and the cor-
responding local properties.

The other method is to interpret a solution process as a sequence of solution steps
and examine the properties of each solution step in the process. This gives rise to

strong consistency, strong soundness and strong completeness of solution processes

Chapter 6 133 Constraint Satisfaction

as well as corresponding local properties.

Definition 6.7 (Solution process consistency) A solution process « is (glob-

ally) consistent iff for all constraint problems P = (&, V),

\IJI

(Dy x -+ x D,) —" D(k)
is consistent, where ® = {(x, D1), ..., (zn, Dy)} and W = {C4, ... ,C,}. That is
C(¥)#0=C(V)ND(kr) #0.

A solution process « is (globally) strongly consistent iff for all constraint prob-
lems P, each solution step is consistent.

Process « is locally consistent iff for all constraint problems P and subsets
v Cw,

\Ill

(Dy x -+ x D,) —" D(k)
is locally consistent. That is, for V' = {Cy:,... ,Cy: } and
CU")#£0=C(¥)ND(k) #0.

Process « is strongly locally consistent iff for all constraint problems P, each

solution step is locally consistent. [

Definition 6.8 (Solution process soundness) A solution process « is (glob-

ally) sound iff for all constraint problems P = (®, W),

\T]’
(Dy x ---x D,) —" D(k)

is sound, where ® = {(xy,Dy),... ,(x,, D,)} and ¥ = {C, ... ,C,}. That is,
D(k) CC(Y)N(Dy X -+ X Dy).

A solution process « is (globally) strongly sound iff for all constraint problems
P, each solution step is sound.

Solution process « is locally sound iff for all constraint problems P and subsets

Chapter 6 134 Constraint Satisfaction

v C v,

\Ill

(Dy x -+ x D,) —" D(k)
is sound. That is, V' = {Cyr,... ,Cy: } and
D(k) CC(¥)YN(Dy x ---x D,).

Solution process « is strongly locally sound iff for all constraint problems P, each

solution step is locally sound. []

Definition 6.9 (Solution process completeness) A solution process « is
(globally) complete iff for all constraint problems P = (®, V),

\T]’
(Dy x ---x D,) —" D(k)

is complete, where ® = {(z1, D1), ..., (vn, D,)} and ¥ = {C4,... ,C.}. That is,

C(¥)N(Dy x ---x D,) C D(k).
Solution process « is (globally) strongly complete iff for all constraint problems
P, each solution step is complete.
Solution process « is locally complete iff for all constraint problems P and
subsets W' C U,

\IJI

(Dy x --- x D,) —* D(k)
is locally complete. That is, V' = {Cyr,... ,Cy } and

C(V')N (D, x --- x D,) C D(k).

Solution process « is strongly locally complete iff for all constraint problems P,

each solution step is locally complete. []

Example 6.6 (Degrees of freedom analysis) The most desirable solution pro-
cess would be one that was consistent, sound and complete as the terminal solution
space would consist only of solutions and would contain all solutions. However, it

is extremely difficult to prove that a process has a property directly. Although it

Chapter 6 135 Constraint Satisfaction

seems likely that degrees of freedom analysis is sound, for example, there is no easy
way of justifying that statement.
On the other hand, it is possible to examine a single, arbitrary, solution step. In

degrees of freedom analysis, for example, the solution step
Dk — 1) 2 D(k)

is always locally sound as only solutions to W, are retained in D(k). Since an
arbitrary solution step is locally sound, each solution step in a sequence is locally

sound. Correspondingly, degrees of freedom analysis is strongly, locally sound. [

Unfortunately, without a method of linking strong local properties to global

properties, knowing that a process is strongly, locally sound is not particularly useful.

6.2.5 Using local properties to draw conclusions about pro-

cesses

As discussed in section 6.2.4, it is desirable to be able to say whether a solution
process has a certain global property. Unfortunately, it is not usually possible to
make concrete statements about global properties directly. It is, however, frequently
possible to comment on local properties of individual solution steps.

Theorem 6.1 provides the link between strong local properties and global prop-
erties. Theorem 6.1 means, for example, that if a solution process is strongly, locally
complete, then it is globally complete. Theorem 6.1 allows concrete statements to

be made about solution processes.

Chapter 6 136 Constraint Satisfaction

Theorem 6.1 For solution process —*,

a. Strongly Consistent < Consistent.

b. Locally Consistent = Strongly Locally Consistent.

Strongly Locally Consistent # Locally Consistent.
c. Locally Consistent < Consistent.

d. Strongly Sound < Sound.

Sound # Strongly Sound.

e. Locally Sound #- Strongly Locally Sound.

Strongly Locally Sound = Locally Sound.
f. Locally Sound < Sound.
g. Strongly Complete < Complete.

h. Locally Complete # Strongly Locally Complete.

Strongly Locally Complete = Locally Complete.

i. Locally Complete < Complete.
O
Proof Proof is deferred to appendix C. O

Example 6.7 (Degrees of freedom analysis) Since degrees of freedom analysis
is strongly, locally sound, by theorem 6.1, it is globally sound. This means that any
configuration in a terminal solution space found by Degrees of Freedom Analysis is

a solution. O

6.2.6 Consequences of the Local-Global Theorem

Theorem 6.1 forms a significant contribution to the understanding of constraint
solvers. The quality of solution of a constraint process is an important issue for
designers. The three properties of consistency, soundness and completeness capture
the concepts of a solution, only solutions and all solutions and as such describe vital

properties of constraint solvers.

Chapter 6 137 Constraint Satisfaction

For example, if a designer is using a sound constraint solver, then they can
guarantee that any results from the solver are solutions to the constraint problem.
However, if the constraint solver is not consistent, then the designer cannot draw
any conclusions from the fact that the solver failed to find a solution to the problem.

Previously, it was difficult to be able to make concrete statements about con-
straint solvers. Statements about the properties of finite domain constraint solvers
depended on being able to say that the solver exhaustively searched the solution
space. Owen [86] used Galois theory to prove that the DCM algorithm was sound
and complete. Theorem 6.1 allows for significantly simpler proofs of the properties
of constraint solvers as demonstrated in example 6.7.

However, the power of theorem 6.1 does not lie solely in the ability to state
whether simple constraint solvers are consistent, sound or complete. Hybrid con-
straint solvers can also be studied using theorem 6.1 and this allows several impor-
tant and interesting conclusions to be drawn about existing hybrid solvers and also
about hybrids in general. For example, INCES [62], IGCS [112] and MechEdit [15]
are not consistent. The use of theorem 6.1 to study hybrid constraint solvers is

discussed in more detail in section 7.4.

6.3 Enrichment of the constraint satisfaction

framework

Although the constraint satisfaction framework in section 6.2 is rich enough to de-
scribe many constraint solvers, there exist some techniques that cannot be described
using the framework as it stands. In fact, the techniques of constraint priorities,
backtracking, variable-driven and incremental satisfaction are powerful enhance-
ments of the general constraint problem. The satisfaction framework’s inability to
handle them unaltered should not be taken as a weakness. Just as the definition of
what a constraint problem is must be enhanced to describe these cases, the basic
satisfaction framework can be enhanced to describe all four special cases and this is
an indication of the power of the framework.

This section describes the enhancements that can be made to the constraint
satisfaction framework in order to incorporate constraint priorities, variable-driven,

backtracking and incremental satisfaction.

Chapter 6 138 Constraint Satisfaction

6.3.1 Constraint priorities

Borning et al. [11] introduced the concept of constraint priorities in order to allow
over constrained problems to be solved. Intuitively, a strength is associated with each
constraint. This strength is an indication of how important it is that the constraint
be satisfied. Thus, less important constraints are sacrificed and not satisfied so
that the more important constraints are satisfied. This is a means of dealing with

problems that are over-constrained.

Definition 6.10 (Constraint priority problem) Given an ordering «g > oy >
... > a, of strengths, a constraint priority problem is a pair (®, V), where ®
is a set of entities and ¥ a set of constraints. The set ¥ is enhanced so that each
member of ¥ is a pair (C,3), where C' is a constraint and 3 € {ag,... ,a,} is the

strength associated with constraint C'.
O

The concept of a solution to a constraint priority problem is somewhat different

to the concept given in definition 4.5.

Definition 6.11 (Solution to a constraint priority problem) Given

constraint priority problem

P=(®={(x1,D1),...,(xn, Dp)}, ¥ ={(C1,51), .., (Cm; Bm)}),

define sets of constraints H,; as follows

H, = {(C},)8, =1,(Cy, 8;) € V1,

Effectively this gathers the constraints into sets of equal strength. Given a com-

parator, better, configuration u is a solution to P iff

S = {7)|v(0jv50) € Ho,v € 07} = C(%o),
S = {vjv € S AVw € Sy, ~better(w,v, H)},

u € S.

Chapter 6 139 Constraint Satisfaction

The choice of comparator better significantly affects the solutions to the problem.
Borning et al. [11] give examples of several such comparators and demonstrate the
differences in the solution spaces for various problems. Consequently, this will not be
gone into in detail here. However, it is worth noting that constraints with strength

ap (called required in [11]) will always be satisfied if possible.
Proposition 6.1 If possible, all constraints with priority ag will be satisfied. [J

Proof Any constraint with priority oy will be in the set §;. By the construction
of set S, any solution to the constraint priority problem must be in C(H,) and
consequently must satisfy all constraints with priority ag. O

The properties associated with solution steps and processes are slightly different,
as it is possible for a new constraint to be processed incrementally and for this to
alter the solution space. For example, consider the constraint priority problem
P = ({(a,IR), (b,R)},{(a = 2,required), (b = 2,weak), (b = 3,strong)}). The
initial solution space is D(0) = IR”. Suppose that there exists a solution process as

follows

a=2
—

D(0) D(1) = {a = {2},b =R}

2 D) ={a={2},b={2}}
= D(3),

Since the strength of the constraint b = 3 is greater than the strength of the con-
straint b = 2, the former should be satisfied to the detriment of the latter. However,
this violates the definition of a solution process as no matter what choice is made
to satisfy b = 3, D(3) € D(2).

The definitions of solution steps and processes are much the same for constraint
priority problems as defined in section 6.2, except that property 6.1 is relaxed as
follows. Thus, each solution space in a process is only a subset of the initial solution
space and not the previous solution space, as finding solutions to a new constraint

may violate previous constraints without upsetting the constraint process.

Definition 6.12 (Solution step for constraint priority problems) For

constraint priority problem P = (®, W) a solution step is a mapping ﬂn

Dk — 1) 2 D(k)

Chapter 6 140 Constraint Satisfaction

where W, C W is a set of constraints and D(i) is the solution space of the set of

entities ® at step 1. For each step,

D(k) C D(0).

For solution step properties, the comparator better is used to indicate correct
solutions. The case of consistent solution steps is presented here; sound and complete

solution steps and solution processes are similar.

Definition 6.13 (Consistent solution step for set of constraints) Given a

solution process for constraint priority problem P = (®, V), with W' C U,

\Ill

(Dy x ---x D,) —* D(j—1)
Y :
— D(j)
where T = {(C4, 31), ..., (C, Bk)}, with comparator better, the solution step,

D(j 1) = D(j)
is (globally) consistent if
So #0=SND(j) # 0.

O

6.3.2 Variable-driven satisfaction

The constraint satisfaction framework presented in section 6.2 can be described as
constraint-driven; as the solution progresses, a set of constraints is chosen to be
processed to produce the next solution space. Thus, the choice of constraints drives
the solution process. However, finite domain algorithms such as FC typically work
slightly differently. Finite domain techniques can be described as variable-driven as
it is the choice of variable to be processed next that drives the solution process. It is
relatively easy to describe the variable-driven constraint satisfaction process. Only
the variable-driven solution step is described here; extension to the other structures

of the constraint satisfaction process is trivial.

Chapter 6 141 Constraint Satisfaction

Definition 6.14 (Solution step (variable-driven)) For constraint problem

P = (®,¥), a (variable-driven) solution step is a mapping RN
Dk —1) 2% D(k)

where &, C ® is a set of variables that are instantiated with subsets of their appro-

priate domains. []

In fact, variable-driven satisfaction is a subset of constraint-driven satisfaction as
the variable chosen for the variable-driven solution step is instantiated with a value.
For example, if a variable = in @y is assigned the set {v}, then this is a constraint of
the form x = v and can easily be described using a constraint-driven solution step.
However, the constraints processed in variable-driven satisfaction are not normally
known when the constraint problem is created and are added dynamically as the
constraint problem is solved. This means that variable-driven constraint satisfaction

involves some degree of incremental satisfaction (see section 6.3.4).

6.3.3 Backtracking

Backtracking is a popular method of searching through a solution space. Finite
domain constraint solvers use backtracking extensively. Backtracking itself is very
simple to describe, but its inclusion in the basic satisfaction framework complicates
descriptions of proofs and for this reason it is included here. Backtracking involves
undoing a solution step and restoring the previous solution space. In some tech-
niques, such as backjumping, it is necessary to jump back several solution steps.

Consequently the definition of backtracking allows undoing several steps.

Definition 6.15 (Backtracking) For constraint problem P = (&, V), with & =

{(z1, D1), ..., (xn, Dy)}, assume there exists a sequence of solution steps
(D) x -+ x D,) 2% D(1)
= D(2)
v,

with U, C U, i=1.r.

Chapter 6 142 Constraint Satisfaction

Figure 6.1: Solving the 4 queens problem

Then the solution process backtracks by s steps by introducing the step

(U2 ST S
Vi

D(r) +

D(r — s).
The process can then proceed with a different choice of ¥, ;.. [J

Example 6.8 (Finite domain backtracking) Consider the 4-queens problem,
defined in example 4.5. This involves placing 4 queens on a 4 by 4 chessboard. The
initial solution space, D(0), is that none of the 4 queens has been placed on the
chessboard. A solution step could be placing the first queen in the first column (see
figure 6.1 (a)),

1:=1
Qi)

D(0) D(1) ={Q1 ={1},Q2 = Dy,Q3 = Dy, Q4 = D4}.

The next solution step could then involve placing the second queen so that it does

not attack the first queen, for example in the third column, (figure 6.1 (b)),

D(1) L2 D2) = {Q1 = {1},Q2 = {3},Q3 = D, Q4 = D).

However, it is now not possible to place the third queen without attacking any
other queen. The solution process has reached a dead end. Finite domain search

techniques backtrack at this point to a previous state. Since there is another choice

Chapter 6 143 Constraint Satisfaction

for ()2, there are another two possible steps, (see figure 6.1 (c)),

There is one possible choice for positioning)3, (see figure 6.1 (d)),

D3) L D) ={Q1={1},Q2 = {4},Q3 = {3},Q4 = D,}.

However, there are no positions to place Q4 without violating the constraints. Since

there are no further choices for Q3 or Q)2 it is necessary to backtrack further,

Q3:=3,Q02:=4
%

D(4) D(1),

and proceed with another choice of Q1. Thus the solution process so far is

D0) " D) ={Q1={1},Q2=Dy,Q3 = D;, Q4 = D}

{
= {Ql = {1}7 Q2 = {3}= Q3 =Dy, Q4 = D4}

(1)
D(1) X D
D(2) < D)
QL DB ={Q1={1},Q2={4},Q3 = D,,Q4 = D,}
T D)= {Q1={1}.Q2= {(4).Q3= (3}.Q4 = D.}
SEEEL D)

Currently, the introduction of backtracking to a solution process means that
theorem 6.1 cannot be applied to the process as D(k) € D(k — 1) after applying
a backtracking solution step. However, since all that a backtracking solution step
does is reintroduce an old solution step, it is not hard to see how theorem 6.1 can

be generalised to cover backtracking.

6.3.4 Incremental satisfaction

Many constraint solvers use an incremental paradigm to improve efficiency, such
as [27,34,62,94,112]. The incremental paradigm means that as new constraints are

added they are solved immediately, rather than waiting for the whole constraint

Chapter 6 144 Constraint Satisfaction

problem to be defined and then solved. The solution process framework presented
above easily captures the concept of incremental addition of constraints as this is
an integral part of the framework. As each constraint is added, the next solution
step is to process the newly added constraint to find the next solution space. Thus,

constraint C' is added incrementally to constraint problem P = (&, ¥),

D(0) D(k)

v
_)
c
— D(k+1),

and constraint problem P’ = (&, ¥ U () is formed.

Adding a new entity, F, is slightly more complex as this will affect the rest of
the constraint problem and the solution spaces. The constraint problem is altered
so that the new entity is added to ® to give &' = & U E. Since constraints are
already defined as enhanced constraints with respect to ® (section 4.7), the new set

of constraints, ¥’ is given by
V' ={C x Dg|C € ¥}.

These changes become part of the solution process, so that when a new entity is
added to the constraint problem, a new solution space is calculated to take into

account the new entity.

Dk —1) & Dk)=Dk—1) x Dg.
Example 6.9 (Incremental geometric constraint satisfaction) Consider
solving problem G of example 4.8. In an incremental solver, such as ICBSM [27],
the initial constraint problem would be an empty set and constraints and entities
would be added to it. Thus, the initial problem P; = (),) and the initial solution
space, D(0) = (). If line segment LS1 is added to the problem, then P, = ({LS1},0)
and solution space D(1) = Dys; = {LS1 = R'}.

Chapter 6 145 Constraint Satisfaction

A possible solution process then would be of the form:

Do) % D) ={LS1=R"}
L% D) ={LS1=R' LS2=R"
L8 p(3) = {51 = {(0,0,R,R)}, LS2 = R"}
LELZE2 p(4) = {LS1 = {(0,0,2,y)}, LS2 = {(z,y, R, R)},
z,y € R}
IS D(5) = {LS1 = {(0,0,2,)}, LS2 = {(z,y, R, R)},

LS3=R" 7,y € R}
D(6) = {LS1 = {(0,0,2,)}, 152 = {(1,5, 2 w)},
LS3={(z,w,R,R)},z,y,z,w € R}

1.82,=T1.53,
f N

6.4 Conclusions

This chapter has presented a formal abstraction of the constraint satisfaction pro-
cess. This abstraction is sufficiently rich to describe all of the constraint solvers
described in chapter 2. The concept of solution spaces was introduced. Solution
spaces consist of the set of possible configurations of a constraint problem under
consideration at a particular time. Solution spaces are equivalent to the search
spaces used in finite domain constraint satisfaction [103,114] and the configuration
spaces used in spatial planning [71,121].

Extensive study of the constraint solution algorithms of chapter 2 led to com-
monalities of their approaches. All of the constraint algorithms studied gradually
refine an initial solution space, consisting of all the possible configurations in the
constraint problem, using solution steps, until a terminal solution space is reached.
The terminal solution space then consists of a number of configurations that may or
may not be solutions. The sequence of solution steps transforming an initial solution
space to a terminal solution space is a solution process.

The quality of the terminal solution space is critical for a constraint solver. It
is not hard to identify constraint processes that will work efficiently but do not
find solutions to the constraint problem. In such cases, the terminal solution space

consists of configurations that are not solutions to the constraint problem. The most

Chapter 6 146 Constraint Satisfaction

important properties of solution spaces are to know whether they contain a solution;
whether they contain only solutions; and whether they contain all of the solutions.

A consistent solution step ensures that the solution space contains a solution if
one exists. A sound solution step ensures that the solution space contains only solu-
tions. A complete solution step ensures that the solution step contains all solutions
to the constraint problem.

However, a constraint process consists of a number of solution steps. It was by
no means certain that because one solution step has a property then the solution
process has that property. It was not even certain that if all solution steps in the
process have a property then the solution process has that property. Consequently
the properties of solution processes were examined.

Theorem 6.1 can be used to identify properties of constraint processes given

properties of solution steps. The key results of theorem 6.1 are that

e Even if every solution step retains a local solution to the current set of con-
straints, the terminal solution space may not have a solution to the whole

constraint problem, even though many may exist.

e If every solution step retains only solutions to the current set of constraints,
then the terminal solution space will consist only of solutions to the whole

constraint problem.

e If every solution step retains all of the solutions to the current set of con-
straints, then the terminal solution space will contain all of the solutions to

the whole constraint problem.

Theorem 6.1 is a significant and powerful tool in describing the quality of results
of a constraint process. However, note that theorem 6.1 cannot be used to describe
constraint priority and backtracking solvers directly, as these solvers do not have to
satisfy all of the constraints they impose.

The descriptive power of the framework is apparent as it can be used to de-
scribe a number of powerful enhancements of the basic constraint definition and
satisfaction models. Using the framework presented in this chapter it is possible to
describe backtracking, constraint priority problems, incremental constraint solution
and variable-driven constraint solution. The framework also makes transparent the
similarities and common elements between constraint solvers.

With the abstraction built up over the past four chapters, it is now possible to

study in detail the use of domain specific knowledge in constraint solvers and also

Chapter 6 147 Constraint Satisfaction

the use of hybrid constraint solvers. In particular, theorem 6.1 developed in this
chapter allows concrete statements to be made about the nature of hybrid constraint

solvers that were not previously possible.

Chapter 7

Hybrid Collaboration in

Constraint Solvers

As mentioned in chapter 1, one of the purposes of this thesis is to investigate the
use of a hybrid of domain specific constraint solvers to solve complex engineering
design constraint problems efficiently on a computer.

A hybrid constraint solver is a constraint solver that employs more than one
method to solve a constraint problem. The strategy of a hybrid is usually to decom-
pose a problem into a number of smaller subproblems and then apply the various
solution methods to solve the subproblems. Using solutions to the subproblems,
solutions to the original constraint problem can be found.

Hybrid constraint solvers are a particular example of the divide-and-conquer
strategy frequently employed in Computer Science. There are many advantages to
using hybrids, including speeding up solution, increasing the number of constraint
problems that can be solved and making more flexible constraint solvers.

Non-hybrid constraint solvers include ICBSM [27], Gr6bner basis and Newton-
Raphson solvers. Hybrid constraint solvers include DCM [86], Connectivity Analysis
[67], Erep [14], MechEdit [15], INCES [62] and IGCS [112].

DCM, Connectivity Analysis and Erep use very small, specialised solvers to
handle the subproblems created. Most of the work done in these algorithms goes
into the decomposition strategy that identifies the subproblems. On the other hand,
MechEdit, INCES and IGCS use fairly simple decomposition techniques to identify
large subproblems that are then handled by complex constraint solvers.

For example, DCM reduces a geometric constraint problem to a number of tri-
angular subproblems consisting of lines and points fixed by three constraints. Very

simple and fast routines are used to find the solutions to each triangular subproblem.

148

Chapter 7 149 Hybrid Collaboration

Most of the effort in DCM goes into identifying the subproblems in the first place.

The decomposition strategy used by INCES is to determine cyclic and acyclic
subproblems of the constraint problem. Acyclic subproblems are solved using a
local propagation constraint solver, whereas cyclic subproblems are solved using a
specialised simultaneous equation solver, typically Newton-Raphson.

Although hybrids are extensively used in the literature, they are rarely identified
as such. This chapter uses the framework built up over the previous four chapters
to investigate hybrids and study the key aspects of hybrid constraint solvers.

Using the description of the constraint solution framework in chapter 3, hybrid

constraint solvers work along the following lines:
1. Decompose a constraint problem into a number of subproblems.
2. Order the subproblems.

3. Solve the subproblems in order and recombine solutions to the subproblems

into solutions to the original problem.

This chapter concentrates on the process of solving constraint problems using hybrid
constraint solvers and then recombining solutions. Eric Monfroy has studied means
of combining constraint solvers and he has created the BALI framework [84] for
describing solver collaborations.

BALI has been adapted for use in this chapter as a means of formalising the way
in which a hybrid constraint solver solves subproblems and recombines solutions
to the subproblems. BALI is a particular means of describing this relation. It is
primarily useful because it makes explicit the types of collaboration available and
the way they interact.

It is assumed for the purposes of this chapter that decomposition and ordering
strategies already exist. This chapter is primarily concerned with methods of solv-
ing subproblems and recombining solutions. Decomposition strategies and ordering
strategies are covered in more detail in chapter 3.

Section 7.1 discusses using domain specific knowledge in constraint solution and
uses the particular example of geometric reasoning to show why domain specific
knowledge helps to create efficient constraint solvers.

Section 7.2 discusses hybrid constraint solvers. Hybrid constraint solvers are the
combination of more than one constraint solver acting together. Hybrid solvers can
potentially be used to solve problems that cannot typically be handled efficiently

by other solvers. There is very little on hybrid solvers in the research literature.

Chapter 7 150 Hybrid Collaboration

Monfroy has developed a framework called BALI [84] which is discussed and adapted
to produce a description of hybrid constraint solvers that decompose constraint
problems.

Section 7.3 presents an example demonstrating the power of a hybrid constraint
solver constructed from two domain specific solvers developed at Leeds. This simple
study of an internal combustion engine demonstrates the feasibility of combining
domain specific constraint solvers and gives some empirical evidence that the hybrid
solver is, as hoped, very efficient.

Section 7.4 discusses the paradigms for collaboration introduced by Monfroy.
These are serial, parallel and concurrent collaboration. The serial paradigm is de-
scribed using the constraint satisfaction abstraction and the pros and cons of the
paradigm are discussed in detail. Appendix E debates the parallel and concurrent
collaboration approaches.

Section 7.5 introduces the solver collaboration language used by Monfroy in
BALI. The collaboration language is extended so that decomposition strategies can
be used by the hybrid and a new operation, the conditional branch is introduced so
that different solver expressions can be used depending on the result of a test.

Section 7.6 presents an example demonstrating the asymptotic behaviour of the
hybrid system developed in section 7.3. This involves using the serial collaboration
paradigm to combine many instances of the two domain specific solvers together.
When these failings are addressed and handled, empirical evidence obtained from
the case studies indicate that the hybrid solver is very fast when compared to other
solvers.

Section 7.7 draws conclusions from this chapter.

7.1 Using domain specific knowledge in

constraint solvers

Using knowledge that is implicit in a problem is a common way of efficiently solving
that problem. For example, suppose one wishes to find the word ‘toadstool’” in a
dictionary. If one opens the dictionary at a page with the word ‘mushroom’ in it,
then one can use one’s implicit knowledge of the alphabet and dictionaries to reason
that ‘toadstool’ is probably after ‘mushroom’ in the dictionary. This is not usually
actually stated but the implicit knowledge is used to direct the search.

Many constraint solvers use domain specific knowledge to help aid solution. For

Chapter 7 151 Hybrid Collaboration

example, FC uses domain specific knowledge of the nature of finite domains and
that a failed partial instantiation implies a failed full instantiation. TICBSM [27]
and Degrees of Freedom Analysis [58] use the implicit knowledge that rigid bodies
can only translate and rotate in space. In this thesis, solvers that take advantage
of implicit knowledge are called domain specific. Solvers that do not are called
(domain) general.

A domain general solver may use, for example, numerical solution. General
solvers are typically more ezpressive than domain specific solvers. Numerical solu-
tion of linear and nonlinear equations, though subject to convergence and numerical
conditioning restrictions, is nevertheless capable of finding a solution to a much
wider variety of problems than, say, a solver that uses implicit geometric knowledge
on geometric constraint problems.

However, there are four chief disadvantages to numerical solution:

1. Convergence. Numerical solvers are not robust, in the sense that they can
fail to converge to a solution when one exists. They also suffer from numerical
conditioning problems [90] and the use of floating point arithmetic leads to nu-
merical accuracy problems. These problems can be addressed at a considerable

cost in computational effort.

2. Multiple roots. Numerical solvers typically only find one solution at a time to
a problem. Users frequently wish to look through all of the solutions in order
to identify the most desirable (Erep [13] is an excellent example of a solver
that allows multiple roots and solutions). Numerical solvers can be adjusted
to find more than one root but it would be very difficult to create an algorithm
that could guarantee to find all roots due to convergence difficulties (see [90],

pp 240-242), unless the constraint problem consists of polynomials.

3. Efficiency. Generally speaking, numerical solution is O(n?) complexity, where
n is the number of constraints, whilst domain specific solvers are faster, fre-
quently O(n) complexity. For example, NAG’s CO5NBC function can be con-
sidered typical for our purposes and is Q(n?) [46]. The use of exact arithmetic
to counter the inaccuracies resulting from floating point arithmetic will result

in an increase in the complexity of the numerical solver.

4. Unintuitive. Numerical solvers may converge to a root but it may not be the

expected solution to the problem.

Chapter 7 152 Hybrid Collaboration

A B

Figure 7.1: Two Blocks with an Against Constraint

The third criterion is of great interest if efficient general purpose solvers are to
be constructed. In particular, this thesis concentrates on the solution of engineering
constraint problems that are to be solved quickly and the results presented in real
time. Because of this, domain specific solvers are very important. Domain general

solvers are still important as a fall-back position.

Example 7.1 (Geometric constraint solvers) Solvers that take advantage of
the nature of rigid bodies ! and Euclidean space, such as [13,27,86,112] are do-
main specific. Typically problems are described in terms of geometric entities and
constraints.

For example, consider two blocks A and B with an against constraint so that
the blocks remain in contact (figure 7.1). Blocks A and B are rigid bodies and as

such have the following implicit knowledge associated with them:
1. The size of A or B cannot be altered,
2. A and B can translate in X, Y, Z directions,
3. A and B can rotate about the X,Y, Z axes,
4. A and B have no other allowable configurations.

It is the use of this implicit knowledge that marks out a domain specific solver.
Degrees of freedom analysis [59], ICBSM [27] and IGCS [112] make use of this
knowledge to convert a complex, nonlinear, continuous domain problem into a com-
pact, discrete problem [59]. Erep [13] and D-Cubed [86], also take advantage of this

information, though in a different way. [J

7.1.1 Using domain specific knowledge is fast

Numerical solution to the problem in figure 7.1 is possible, as the constraint is simple
to describe as an equation: the distance between A and B is 0 and they have the

same orientation. However, the implicit geometric knowledge is lost in making this

'The restriction to rigid bodies is not always necessary (see Kramer’s GCE for example [58]),
but for the purposes of this example only rigid bodies are allowed, for simplicity.

Chapter 7 153 Hybrid Collaboration

Al A A Ant An

Figure 7.2: A Chain of Blocks with Against Constraints

step. Domain specific solvers can use the implicit geometric knowledge and are
typically much faster and more robust, but are restricted to a smaller variety of

problems than general solvers.

Example 7.2 (Solution of blocks) Consider a long chain of blocks joined by
against constraints (figure 7.2).

Commonly used numerical techniques would solve this problem in Q(n?) time
[46], where n is the number of constraints in the constraint problem. Kramer’s
action analysis [59] uses local propagation to find the positions of the blocks. Action
analysis is a domain specific solver as it uses the geometric knowledge of the possible
positions and orientations of the blocks in order to position them. Action analysis
can find positions for the blocks in linear time. On top of this, adding a new
constraint in degrees of freedom analysis can be an O(1) operation, provided certain
conditions hold. The incremental addition of block A, to the chain, for example,

would involve only satisfying against(A,, A,11) in O(1) time. O

7.1.2 Using domain specific knowledge is not enough

Domain specific constraint solvers are very important as they are fast. However,
they are not usually expressive in the sense that they are restricted to a relatively
small class of problems with specific structures. For example action analysis cannot

solve the simple example below.

Example 7.3 (Coincident rods) Consider two rods grounded at points G; and
G respectively (figure 7.3). If coincident constraints are placed on the two opposite
end-points, A and B, then there are two possible configurations of the rods that
satisfy that constraint. However, knowing that either rod can rotate about their
grounded end-point is not enough to allow calculation of those two positions. For
example, line 1 can rotate through 27 radians and not have A coincident with B.
The problem must be solved simultaneously in order to find the two positions. Line
1 is rotated a little bit and line 2 a little bit in order to solve the constraint.

In fact, this example shows a problem with most constraint solvers. Fast algo-

rithms can be developed for simple cases, such as action analysis, local propagation

Chapter 7 154 Hybrid Collaboration

e
p
2

Figure 7.3: Two Rods

or triangular form. More complex problems must usually be solved simultaneously

and this is much less efficient and, in general, harder. [

Kramer had to enhance action analysis with [ocus analysis in order to solve
problems such as in the above example. Both action analysis and locus analysis are
domain specific, but neither is effective on its own. Action analysis cannot solve
problems simultaneously, whilst locus analysis must deal with the loci of objects

which may be complicated and time-consuming.

7.2 Hybrid constraint solvers

A constraint solver that consists of two or more constituent solvers acting together
is called a hybrid solver. This section studies the underlying structure of hybrid
solvers. Using the framework of chapter 6, it is possible to describe hybrid solvers
in a simple and elegant manner, and to draw conclusions about properties of hybrid
solvers.

This section discusses hybrid solvers in terms of the framework and compares
this approach with that of Monfroy. The example below introduces the concept of

hybrid constraint solvers.

Example 7.4 (Geometric constraint problem) At the University of Leeds two
constraint solvers have been developed independently. INCES [62] was developed
by Lamounier et al and is capable of finding a solution to a system of equations,
though it is most efficient at finding solutions to a triangular system of equations.
IGCS [112] was developed by Tsai et al and is capable of finding all solutions to a

geometric constraint problem, though it is best suited to problems without cycles.

Chapter 7 155 Hybrid Collaboration

LS2
° L °
m
/ L
LSl LSl gLs3,
@ ;
<
@ LS3 LS

Figure 7.4: Problem G"

A hybrid of these two solvers would hopefully be able to solve any system of
equations and any geometric problem that can be solved by INCES and IGCS indi-
vidually. However, the hybrid should also be capable of solving a constraint problem
that contains both variables and geometric entities, and both equations and geomet-
ric constraints.

Consider, for example, a modified version of problem G of example 4.8, as de-

picted in figure 7.4,

G" = ({(LS1,RY),(LS2,RY), (LS3,RY), (LS1,,R?), (LS1,,IR?), (LS2,,R?),
(LS2y, R?), (LS3,,R?), (LS3,,IR?), (I,IR), (m, R), (n,R)},
{LS1, = (0,0), LS1, = LS24, LS2, = LS3., LS3, = LS1,,
d(LS1,, LS1y) = I, d(LS24, LS2,) = m, d(LS3,, LS3y) = n,
endpoint(LS1, LS1,), endpoint(LS1, LS1,),
endpoint(LS2, LS2,), endpoint(LS2, LS2;),
endpoint(LS3, LS3,), endpoint(LS3, LS3,)}),

and the simple system of equations,
E" = ({(I,R), (m,R), (n,R)}, {I* +n* = m?, | +m = 8,4m — 3n = 8}).

In words, G" consists of three line segments and six points in 2D space. The first
constraint fixes a point at the origin. The next three constraints make three pairs
of points coincident. The next three constraints set the lengths of the three line
segments and the final six constraints associate points with the ends of the line

segments. E" uses a system of equations to fix the variables that describe the

Chapter 7 156 Hybrid Collaboration

0.3

LS2
LSY

LS3 (4,0)

Figure 7.5: A solution to constraint problem G of example 4.8

lengths of the line segments in G”.

IGCS can find an underconstrained solution space for G”, but this solution space
is not particularly useful as it is simply the set of all triangles with one vertex at
the origin (see figure 7.5 for one such solution). INCES can find all of the solutions
to E”, but on their own, these are not particularly useful either.

However, consider the combined problem,

H" = E'"UG"
= ({(LS1,RY), (LS2,RY), (LS3,RY), (LS1,,R?), (LS1,,IR?), (LS2,,R?),

(LS2y, R?), (LS3,,R?), (LS3,,IR?), (I,IR), (m, R), (n,R)},

{LS1, = (0,0), LS1, = LS24, LS2, = LS3,, LS3, = LS1,,

d(LS1,, LS1y) = I, d(LS24, LS2,) = m, d(LS3,, LS3y) = n,
endpoint(LS1, LS1,), endpoint(LS1, LS1,),

endpoint(LS2, LS2,), endpoint(LS2, LS2),

endpoint(LS3, LS3,), endpoint(LS3, LS3),
P+n*=m?1+m=84m— 3n=_8}).

IGCS cannot find solutions to H"” as it cannot solve the set of equations which are
from E”. INCES can solve H”, but only by converting the geometric constraints in
G" into equations, losing all domain-specific knowledge in the process. However, if
INCES is used to find all solutions of E”, then the values of [, m,n found could be

Chapter 7 157 Hybrid Collaboration

/// 8 \\
/ LS]a: \\
/

, LSL, = |
,I LS%: | LSZb: LSSa
I 1S3, @ ®
|
\ (0,0))

\ !

\ /
\ /
\ /
\ /

Figure 7.6: Solutions of constraint problem G” with [=0,m =8,n =8

used by IGCS to solve G".
In this case, INCES would find the following solutions to E":

{l={3},m={5},n={4}} or {l = {0}, = {8},n = {8}}.

Using either of these solutions IGCS can solve G" when [, m and n are instantiated
to the values in the solutions. Solving for the first solution gives the same solutions
as problem (G. Using the second solution results in a degenerate case for G, with
solutions as shown in figure 7.6. For this problem, the hybrid has found all solutions
to the combined problem H" efficiently, where the constituent solvers were either

not expressive enough or would be much slower. []

In this example, the combined problem H" was split into two subproblems G”
and E” by manual inspection. In general, the decomposition of a constraint problem
is a non-trivial task. However, decomposition of a problem to subproblems is one of
the most important issues that a hybrid will face. This chapter does not discuss the
decomposition issue, but assumes that decomposition of the constraint problem has
already taken place. Chapter 3 deals with decomposition techniques in more detail.

In a similar vein, in general recombination of the solutions to subproblems is also
a difficult task. In the above example, there were only two solutions to E”. Both
solutions could be studied by using them as input to problem G” and then solving

G". In general, there may be an infinite number of solutions to a problem or it may

Chapter 7 158 Hybrid Collaboration

not be possible to use solutions as input to another problem. The recombination
problem depends on the hybrid collaboration used and this is discussed in more

detail in section 7.4.

7.2.1 BALI

Monfroy has studied the problem of hybrid solvers for continuous domain constraint
problems. This has resulted in an environment called BALI for describing solver
collaborations [84]. Monfroy defines solver collaboration as either combination or
cooperation. Solver combination focuses on a solver for the union of constraint
problems, that is a solver combination of two solvers operates on mixtures of the
constraint problems the solvers individually operate on. Solver cooperation concen-
trates on communications problems between solvers on a single domain but dealing
with different sets of constraints.

Monfroy defines constraint systems as a language for describing constraint prob-

lems. A constraint system consists of a quadruple (3, D,V ¢), where

is the set of symbols in the language,
is the domain of the union of all the domains of the symbols in ¥,

is the set of variables in the language,

~ = O ™

is the set of constraints in the language, consisting of all possible

quantifier freet | first order formulae® built over ¥ and V.
A solver in Monfroy’s notation is a function

S : 4" — { such that
Vee ", D=S(c)e D Ec
and Ve € (", 3n € N, S""(c) = S"(c).

The notation D = S(c) is used to represent S(c) being a valid solution in D. Thus,
a solver is a function which produces a valid solution, terminates and has a fixed
point at S™(c).

The definition of a solver is interpreted thus:

A solver S is a function that maps a conjunction of constraints to a

single constraint such that, for all conjunctions of constraints, if S(c) is a

Chapter 7 159 Hybrid Collaboration

valid solution to the conjunction of constraints, then so is ¢. Also, there
exists a number n € N such that, if the solver S is applied n+1 times to c,
then the result is the same as if S were applied n times. Consequently,
no refinement is achieved by applying S more than n times and so S

terminates when applied n times and S™(c) is a fixed point of S.

A constraint C' in Monfroy’s definition is reduced to a “simpler” constraint by
the application of a constraint solver. However, Monfroy’s constraints are the con-
junction of a number of formulae. In the terms of this thesis, a single constraint of
Monfroy is equivalent to the set of constraints W in a constraint problem.

Under definition 6.6, a constraint solver does not transform a set of constraints
to a simpler set but instead transforms a solution space to a simpler solution space.
Since a conjunction of constraints is equivalent to a solution space, Monfroy’s defi-

nition of a component solver is equivalent to the following

Definition 7.1 (Component solvers) A component solver is a function S
S:D(k—1) —" D(k),
such that

YC € (", D(k) C D(0) < D(k — 1) C D(0).

The definition of a constraint process in chapter 6 does not enforce the termi-
nation or fixed point conditions of Monfroy’s constraint solvers explicitly. However,
since the set W of constraints in the process is finite and since each W; is pairwise
disjoint, the number of steps in a solution process is finite and the solver will always
terminate if each step takes a finite amount of time.

Further application of solution processes to the terminal solution space D(k)
will not refine D(k) any further. Consequently, D(k) represents the fixed point of
the solution process. The definitions of constraint solvers are therefore equivalent.

Note however, that Monfroy does not discuss the structure of the solution space.
The advantage of the solution framework developed in chapters 4, 5 and 6 is that
the nature of the solution space can be investigated and conclusions drawn from it.

Monfroy also forces the output of a constraint solver to be “smaller”, in the

following sense (taken from [84]).

Chapter 7 160 Hybrid Collaboration

book | BookCode Author Title Price
01 Dante Inferno 20
27 Joyce Ulysses 30
21 Tolstoy ~War and Peace 27
54 Greene The Third Man 15

sale | Salesman BookCode Quantity
Jones 21 80
Smith 54 50
Robinson o4 50
Smith 21 100

Table 7.1: Two database tables (from [5])

book X sale | BookCode Author Title Price Salesman Qty
21 Tolstoy War and Peace 27 Jones 80
54 Greene The Third Man 15 Smith 50
o4 Greene The Third Man 15 Robinson 50
21 Tolstoy War and Peace 27 Smith 100

Table 7.2: The result of joining the book and sales tables (from [5])

Definition 7.2 (Component solver ordering) Let S be a component solver on
the constraint system C'S = (3, D,V (). Then the relation <g is defined on C'S as
follows: Cy <g Cy if dn € N s.t. C; = S"(Cy). O

Given the definition of component solvers above in the terms of this thesis, it is
obvious that the relation C used on solution spaces is a <g ordering.

Monfroy also identifies the need to enrich constraint problems so that solvers
designed for simpler problems can be applied to problems designed for hybrid solvers
without losing any solutions. This concept is significant in terms of the framework

outlined in this thesis and so is adapted in the next section.

7.2.2 Enhanced solution spaces

In relational algebra, it is sometimes necessary to form queries on objects that are
spread over two tables. In order to satisfy this query, the two tables are ‘joined’
together and the query acts on the merged table. For example, given the two tables
in table 7.1, the join of the two tables is table 7.2.

Chapter 7 161 Hybrid Collaboration

Similarly, given two constituent constraint solvers o and [, solving constraint
problems P; = (®,¥;) and P, = (P59, ¥Uy) respectively, the hybrid of a and 3
operates on Py = P U Py = (& U ®y, ¥y U Wy). It is useful to be able to talk about
the solution space of Ps.

If ®; N 5y is empty then P; and P, are unrelated and can be solved separately.
In this case, there is no difficulty in using a hybrid constraint solver to deal with P;.
However, if ®; N &, is non-empty , then P; and P, share common entities. In this
case the solution space of P; is not simple.

For example, suppose that P, = (®; = {(z,{0,1}), (v,{1,2})},¥4), P, = (P9 =
{(y,{1,2}),({2,3})}, ¥3). Then the solution space of P;, D(P;) is

{0,1} x {1,2}

and the solution space of Py, D(P;) is

(1,2} x {2,3).

Here, ®:N®y = {(y, {1,2})}. The solution space of P is therefore not D(P;) xD(P;)
as might be expected. Instead it is {0,1} x {1,2} x {2, 3}.

Given ®; and P, the solution space of Pj is called the enhanced solution space of
®, with respect to @y, denoted in this thesis as Dg, |**V®2 (0). The enhanced solution
space is defined in appendix D. Enhanced solution spaces and embedded solution
spaces, which are also defined in appendix D, are useful as they allow discussion
of the structure of solution spaces used in hybrid constraint solvers. Embedded
solution spaces are denoted as Do, us,|s, (0). For simplicity, however, the precise

definition is left to the appendix.

7.3 A simple example hybrid constraint solver

A simple hybrid solver based on two existing solvers at the University of Leeds was
constructed in order to study the interaction and communication necessary for the
solvers to work in concert and also as an exemplar case study to show some of the
benefits of a hybrid of domain specific solvers.

The two solvers combined were INCES [62] and IGCS [112]. INCES is a domain
specific solver for linear, triangular equations between entities in the real domain.
IGCS is a domain specific solver for simple geometric objects in two dimensions.

In his thesis [64], Lamounier described the implementation of an internal com-

Chapter 7 162 Hybrid Collaboration

bustion engine in INCES. The internal combustion engine contained some geometric
constraints describing the geometric structure of the engine and some algebraic con-
straints describing the operation of the engine. However, the geometric part of
the problem had to be converted into algebraic equations in order to be solved by
INCES. Unfortunately, this meant that INCES did not take advantage of the domain
specific knowledge incorporated into the geometric problem. This made both the
interactive manipulation of the entities difficult and solution of the combined prob-
lem dependent on the speed of INCES at solving geometric constraints converted
into quadratic equations. IGCS could have handled the geometric problem quickly
and intuitively.

A simple solution to this problem presented itself. This was to construct a hybrid
of IGCS and INCES which allowed direct manipulation of the geometric problem
through IGCS and communicated values of entities in both problems between the
two solvers.

In the following example, the notation (z,y, z) is used to describe the degrees
of freedom available for a geometric entity. The x component refers to the number
of rotational degrees of freedom, y to the number of scalar (dimensional) degrees
of freedom and z to the number of translational degrees of freedom. This notation
is used so that the geometric solver IGCS can take advantage of this information.
Thus a point c¢rank_1 is free to move about the plane IR? and has a domain of IR?.
However, the point has only two translation degrees of freedom, and no rotational or
scalar degrees of freedom. Consequently, the domain of the point can be described as
(0,0,2) representing 0 rotational degrees of freedom, 0 scalar degrees of freedom and
2 translational degrees of freedom. For simplicity, all of the geometric objects in the
following case study are points. For this case study, let Pyeom = (Pgeom, ¥geom) be
the geometric constraint problem in figure 7.7. The set ®,,, describes the entities

in the problem, where:

= {(crank,(0,0,2)), (crank_2,(0,0,2)), (connecting_rod_1, (0, 0, 2)),
(connecting_rod_2,(0,0,2)), (piston_1, (0,0, 2)), (piston_2, (0,0, 2)),
(fTame—la (07 0, 2))7 (frame_Q, (07 0, 2))7 (CL, IR): (T, IR)}

(I)geom

Chapter 7 163 Hybrid Collaboration

The set W, describes the constraints in the problem, where:

Useom = {crank_1=(0,0),
crank_2 = connecting_rod_1,
connecting_rod_2 = piston_1,
piston_2 = frame_l,
distance(crank_1, crank_2) = a,
distance(frame_1, frame_2) = 10
distance(connecting_rod_1, connecting_rod_2) = 10,
(

distance(piston_1, piston_2) = r}.

Connecting Rod Frame

Crank \ r\l/ Piston

Figure 7.7: The Internal Combustion Engine

The piston and frame are assumed to be of constant shape and length for this

case study and so can be represented by line segments.

Chapter 7 164 Hybrid Collaboration

One solution
P for ar solutions for lines
—® _INCES IGCS
P using allowable
geom

motion

Figure 7.8: A Serial Hybrid of INCES and IGCS

Let Py = (Pug, Yay) be the associated algebraic constraint problem, where

Dy, = {(power,R), (o, R), (displacement,R), (c_ratio, R),
(topgap, R), (0, R), (v, R), (r, R), (n, R)},

Uy, = {power =a x displacement x c_ratio,

20 + top_gap

top_gap
displacement = 2amr’n,

c_ratio =

power = 10,
top_gap = 10,
displacement = 10,
n = 10,

a = 0.056,

m = 3.14159265}.

In ®,,, a is a constant used in the computation of the engine power; c_ratio
is the approximate ratio between the maximal and minimal pressures during the
compression part of the cycle; displacement is the volume of mixed air and fuel
consumed per engine cycle; a is the length of the rotary part of the crankshaft;
top_gap is the length of the minimal distance between the top of the cylinder and
the piston top during the cycle; n is the number of engine cylinders; and r is the
radius of the engine’s cylinders.

Communication between the two solvers depends on the common entities, ® ¢, M
D4, = {(a,IR), (r,IR)}. Since P, has three equations in three unknowns, it is well-
constrained and there are a finite number of solutions for a and r (in fact only one).
Consequently, a hybrid was constructed that solved P, using INCES first and then
used the values of @ and r found to solve Ppe,,, using IGCS (see figure 7.8).

Note that good use is made of the domain specific knowledge of the two constraint
problems so that domain specific solvers are used to best effect. Note also that the

fact that P, was well-constrained was used to decide the order in which P,, and

Chapter 7 165 Hybrid Collaboration

Hybrid | INCES | NAG | Grobner basis
0.0027s | 0.013s | 0.11s 2.3s

Table 7.3: Results for Solving ICE engine 50000 times on an SGI Indy

Pyeom were solved.

In general determining whether a particular subproblem is well-constrained or
not is difficult. In particular, determining the constrainedness of a subproblem will
typically involve decomposing the subproblem to such an extent that it is already
solved, defeating the purpose of determining the constrainedness. Latham and Mid-
dleditch’s Connectivity Analysis [67] determines the constrainedness of subproblems
by decomposing to residual sets. However, the residual sets are sufficiently small that
they are simple to solve. Consequently, most of the work has gone into decomposing
the constraint problem to determine the constrainedness. Using constrainedness as
a guide to determining in which order subproblems should be solved is therefore
counter-productive. This issue is dealt with in more detail in chapter 3.

The hybrid was constructed and solution timed on a Silicon Graphics Indy ma-
chine. The hybrid was compared with INCES, a numerical solver from NAG [46] and
a Grobner basis package within Maple [18]. See table 7.3 for the results of running
the experiments. Although the hybrid is in fact an order of magnitude faster than
the other constraint solvers and a thousand times as fast as the Grobner basis, no
firm conclusion should be drawn from this table, as timing is highly dependent on
algorithm, compiler and system use at the time.

However, the numerical algorithm used, NAG’s CO5NBC, is probably one of the
fastest available and it is relevant that an optimised numerical algorithm (a domain
general constraint solver) takes a hundred times as long as the simple hybrid.

These results correspond to what one would expect. Grobner basis algorithms
are very slow, with an exponential complexity. The NAG algorithm is Q(n?). INCES
uses the NAG algorithm on cyclic subproblems but a linear algorithm for acyclic
subproblems. Consequently, the worst case complexity for INCES is O(n?), but the
average case complexity is less than this. Similarly, the hybrid has worst case com-
plexity O(n?) but has average case complexity less than INCES. This corresponds
to table 7.3.

Chapter 7 166 Hybrid Collaboration

(®,¥) (@, %) Solutions (tDZ, w) Solutions
— Solver 1 Solver2 ———=

Figure 7.9: Sequential Collaboration

Constraint Triangular Solutions Cyclic Solutions
Problom INCES —— NAG
Subproblem Subproblem

Figure 7.10: INCES as a sequential hybrid

7.4 Paradigms of collaboration

Monfroy [84] cites three paradigms of collaboration that can be used to construct
hybrid solvers: sequential, parallel and concurrent. In fact, these paradigms follow
naturally from the satisfaction framework presented in this thesis. In this section,
the sequential paradigm is discussed in detail in terms of the constraint satisfac-
tion framework. The advantages and disadvantages of the paradigm are discussed,
particularly in terms of practical issues.

The parallel and concurrent collaborative paradigms are presented in appendix E.

7.4.1 Sequential hybrids

The most obvious collaboration paradigm is sequential. In this case, solvers operate
on the solution space produced by the preceding solver. Since solution processes can
be described as solution steps (lemma 6.1), sequential collaboration is the solution
process formed by using constituent solvers as solution steps (see figure 7.9).

Theorem 6.1 applies directly to sequential hybrids. Consequently, even if all
constituent solvers in a sequential hybrid are locally consistent, then the hybrid is
not necessarily consistent. If all constituent solvers are complete (sound) then the
hybrid is complete (sound).

This is particularly significant for most current sequential hybrids. For example,
INCES [62] solves linear, triangular algebraic constraint problems. However, when
INCES comes across equations that must be solved simultaneously, it resorts to
numerical solution of the simultaneous equations. Thus, INCES is a sequential
hybrid of the form in figure 7.10.

However, numerical solution is not globally consistent. Convergence problems
mean that numerical solution is not robust and sometimes the solver will not find
a solution even if one exists. Since the numerical subsolver used by INCES is not

globally consistent, by theorem 6.1 the hybrid is not globally consistent. It is also

Chapter 7 167 Hybrid Collaboration

significant that numerical solution may converge to a solution but that this may not

be the right solution for the rest of the problem.

Example 7.5 (Sequential hybrid inconsistency) For example, consider the se-
quential hybrid of figure 7.10, INCES. Let P be the constraint problem P = (®, ¥),

where ® and ¥ are as defined below.

® = {(a,R), (b, R), (¢, R), (d,R), (e, R)},
U = {a®+V =c,a"+b0"=32,c=d—10,d=18,b+e =2,e = 4}.

INCES will solve P by first creating an Equation Graph describing the problem.
Study of the Equation Graph results in INCES solving the triangular problem P, =
({c,R),(d,IR)},{c = d — 10,d = 18}) first to give solution d = {18},c = {8}.
INCES cannot solve the problem P, = ({a,R), (b,R)}, {a® +V* = 8,a* + b* = 32})
using local propagation and so resorts to numerical solution. There are actually four

solutions to P,

fa={2}.0= {2} {a={-2}.0= {2}}.
fa={2},b={-2}}.fa = {-2},b = {-2}}.

However, numerical solution will only find one. The solution found depends on
the precise numerical technique used and the initial starting point. Let us assume
that the solution found is {a = {2},b = {2}}. The remainder of P to be solved is
now triangular and is equivalent to P; = ({(e,IR)},{2 + ¢ = 2,e = 4}), which is
inconsistent.

However, if the numerical solver had found solution {a = {2},b = {-2}} or
solution {a = {—2},b = {—2}}, then a consistent solution to P could have been
found. This problem arises because the numerical solver is not globally consistent,

nor is it locally complete. [J

Similarly, IGCS [112] is not consistent. IGCS consists of a number of different
algorithms for dealing with certain situations. For example, IGCS uses allowable
motion to find solutions to simple problems by local propagation and locus analysis
to solve simultaneous problems. Thus IGCS is a sequential hybrid of the form in
figure 7.11.

However, the locus analysis used by IGCS is not locally complete. Consider

example 7.3 (repeated here as figure 7.12 for convenience).

Chapter 7 168 Hybrid Collaboration

Constraint Acydlic | Ajjowable | Solutions Cydlic Locus Solutions
Problem Subproblem| Motion Subproblem | Analysis

Figure 7.11: IGCS as a sequential hybrid

S
p
2

Figure 7.12: Two Rods

There are two solutions to this problem. However, the locus analysis in IGCS
will only consider the solution which involves moving the rods the least, to P;. Locus
analysis is locally consistent and IGCS is not globally consistent. For example, if
the only solution to the whole constraint problem involves the rods being coincident
at P, then IGCS will not find it.

Previously INCES and IGCS were not known to be inconsistent.

7.4.1.1 Limitations of serial hybrids

Serial solution is difficult primarily because the output from one solver may not
be valid input to the next solver. For example, if a finite domain solver produces
solutions such that a line can take only lengths {1,3,5,7}, then there are very
few constraint solvers that allow this kind of line. It is, of course, possible to run
the second solver four times, for each of the solutions, but this approach is clearly
infeasible if there are a large number of solutions. Such an approach would also
eliminate many of the advantages of using a serial hybrid.

In fact there is only a limited dependency between the two solvers. Any entity
in the first problem not in the second problem does not need to be communicated
to the second solver. Correspondingly, the second solver only needs to use as input
solutions for the intersection of entities between the two problems. Even so, this

may be many possible configurations.

Chapter 7 169 Hybrid Collaboration

Serial collaboration will work best when only one solution is found to a subprob-
lem P, = (®1,V¥;) and passed on to the next subproblem P, = (®,, ¥y). In this
case, serial collaboration is very simple. All entities in ®; N ®, are assigned a value
from the solution to P;. Thus the size of P, has been reduced by the number of
entities in ®; N &y which are now fixed. Hopefully some of the constraints in W,
will have been made trivial or easier by this reduction. Unfortunately, as is the case
with INCES and IGCS, this serial collaboration is not globally consistent.

If a subproblem has only one solution, as is usually the case in linear program-
ming, then serial collaboration is an obvious choice, as it will be globally consistent.
The more solutions a subproblem can be expected to have, the less likely it is a
solution will be chosen that is globally consistent. Therefore serial collaboration
becomes less attractive.

In fact, many constraint solvers such as DCM [86], Erep [14] and MechEdit [15]
use rules or heuristics to determine the likely intent of the user in constructing the
constraint problem.

For example, Erep insists that when a user sets a distance between a point and a
line, the point will have to be on the same side of the oriented line before and after
constraint solution. Thus, a single solution is selected from two possible solutions.
If such rules are applied throughout the constraint subproblem, a single solution is
selected from amongst an exponential number. The key point here is that this single
solution is the one most likely to satisfy the user’s intent and so is a good candidate
to be a globally consistent solution to the combined constraint problem.

If a constraint subproblem can be expected to have an infinite number of so-
lutions then the use of serial collaboration becomes more problematic. Choosing
just one solution from an infinite number is unlikely to provide a globally consistent
solution. Consequently all of the solutions should be passed to the next solver in
the collaboration. Whether this is possible or not depends on the nature of the
solutions and the allowable domains of entities in the second subproblem. If the
solutions provided by the first solver are continuous and simple then this transfer
may be quite straightforward. For example, if ®; N &y = {(z,R), (y,R)} and the
solutions to Py are {(x = {1},y = R)}, then P, can be adjusted accordingly.

However, if the solutions provided by the first solver are complex then it may
not be possible to transfer the solutions. For example, if &; N &, = {(z,R), (y,R)}
and the solutions to P, are {(x = {a},y = {b})]a® + b° = 16}, then it is not simple
to alter P, to take into account this information, other than adding it as another

constraint, at which point a parallel collaboration becomes more appropriate.

Chapter 7 170 Hybrid Collaboration

In conclusion, serial collaboration should be considered when:

1. Global consistency is not important.

2. Rules or heuristics can be used to bias solutions towards globally consistent

solutions.

3. Only one or a small finite number of solutions are expected from each sub-

problem.

4. An infinite number of solutions are expected but these will be continuous and

simple.

If serial collaboration is not appropriate then a parallel collaboration or concur-
rent collaboration may be helpful. In some cases, however, no collaboration may be
appropriate and the problem must be solved as a whole using a general solver such

as Newton-Raphson or Grobner bases.

7.5 Solver collaboration language

Monfroy uses a solver collaboration language to build complex solvers using the col-
laborative primitives introduced in the previous section and appendix E. However,
Monfroy’s collaboration language is predicated only by the solvers available and not
by the constraint problem being solved. In order to take advantage of domain spe-
cific knowledge implicit in a constraint problem, the problem must be solved using
a constraint solver capable of handling that domain specific knowledge. Since do-
main specific solvers can also sometimes fail to find solutions, it is also important to
provide backup solvers should a first attempt fail. Domain specific solvers can fail
to find solutions when they are asked to solve problems that are not within their
speciality. For example, local propagation algorithms cannot solve cyclic problems
and so ICBSM [27] cannot find solutions to the 4-bar linkage problem (figure 7.5).
Unfortunately, the only conditional statement in Monfroy’s collaboration lan-
guage is the conditional guard which calls another constraint solver when a previous
expression of constraint solvers terminates with a particular solver. Monfroy gives
no example of the conditional guard in use and its purpose is difficult to fathom.
Decomposition strategies as discussed in chapter 3 assign a set of subsolvers
to a subproblem. The hybrid constraint solver then applies the subsolvers to the

subproblems using the sequential, parallel or concurrent collaboration.

Chapter 7 171 Hybrid Collaboration

coincident(A,B)
coincident(B,C)

A c coincident(C,D)
coincident(D,A)
fixed(D)

D
Figure 7.13: The 4 bar linkage problem
Id € Identifiers,
S C Solvers,
¥ € Conditional selection,
P € Constraint problems,
D € Solution spaces,
Col == Id=F,
E = o|Id|B|E;; E5|EP| repeat (E)|(EC)| if T then E; else Ey,
T = E=D,
B = (P.5)(P.5)] B,
EP = E|E| EP,
EC = E|E?EC.

Table 7.4: Solver collaboration language (adapted from BALI [84])

Monfroy’s solver collaboration language is an important means of designing and
building hybrid constraint solvers that use the hybrid collaboration paradigms. How-
ever, Monfroy’s language only uses solvers - it does not allow for subproblems to be
assigned to specific sub-solvers.

Monfroy’s collaboration language has been extended so that subsolvers operate
on specific subproblems rather than the whole problem. The extended solver col-
laboration language used in the remainder of this thesis is explicated in table 7.4.
An instance of this language is a solver collaboration. The addition of subsolvers
to act on subproblems is witnessed by the inclusion of constraint problems P in ta-
ble 7.4 and the definition of basic solvers B which is enhanced to include constraint
problem-solver pairs.

The language given in table 7.4 also includes a conditional branch statement that
can be used to drive backup constraint solvers. The branch operator is described in
more detail in appendix F. For ease of comprehension, Monfroy’s conditional guard
has been dropped from the language in table 7.4.

A more detailed description of the collaboration language is given in appendix F.

Chapter 7 172 Hybrid Collaboration

The extended language in table 7.4 will be used to describe example constraint

solvers in the remainder of this thesis.

7.6 An example of many solvers in serial

This section describes an experiment carried out to study the asymptotic behaviour
of various constraint satisfaction algorithms on a simple case study. The algorithms
studied were INCES [62], a numerical algorithm [46] and a sequential hybrid. The
purpose of this experiment was to give empirical as well as theoretical evidence
that the hybrid algorithm was sound, complete and more efficient than the other
two algorithms as well as to investigate sequential collaboration. It was anticipated
that the hybrid would be approximately linear in complexity, whilst the other two
algorithms would be quadratic. This would help to underline the advantages of
using hybrid algorithms.

This section presents the case study used, discusses the algorithms used to solve
the case study and gives results. Appendix G presents a more detailed examination

of the case study.

7.6.1 Case study

The case study chosen was an extension of Lamounier’s internal combustion engine
case study (see [64] and section 7.3). That problem studied the integration of some
algebraic equations with the geometric constraints describing the construction of
the piston. The two problems were linked so that the size of the piston and the
length of the crankshaft were variables both in the functional problem and also in
the geometric problem. However, this is a fixed size of problem. In order to study
the asymptotic behaviour of the algorithms, n piston problems were joined together,
as in figure 7.6.1.

In this case study, the n pistons are linked by coincident constraints at each
end of the piston. Thus the problems are all connected and the complexity of the
problem does increase as the size of n increases. The functional problems are not

linked and are effectively lots of small, fixed problems solved independently.

7.6.2 The solvers used

Three solvers were examined. The NAG CO5NBC function [46] was used as a numer-

ical solver. It was passed the whole set of constraints and used numerical techniques

Chapter 7 173 Hybrid Collaboration

Functional Problem
Functional Problem

piston l

crank L

Functional Problem

crankshaft

crank

Figure 7.14: Case Study of n Piston Problems Linked Together

Constraint Functional cEs Solutions Geometric acs Solutions
Problem Subproblem INCE !
Subproblem

Figure 7.15: Serial Hybrid used to Solve n Piston Problems Linked Together

to converge towards a solution. The speed of convergence depended heavily on the
initial guess, but the best case complexity of the NAG function is Q(n?), where n is
the number of constraints.

Lamounier’s INCES solver [62] is also capable of solving the problem as a whole.
However, INCES deals only with equations and not geometric constraints. Geo-
metric constraints can be handled if they are reduced to the constituent equations.
INCES was expected to be quadratic, as it dealt with the problem as a whole and
resorted to numerical solvers if loops appeared.

These constraint solvers were compared with a hybrid formed from combining
the functional solver INCES and the geometric solver IGCS, much as in case study
1 (section 7.3). Each functional problem was solved using INCES and the results
were passed to IGCS by varying the size of the lines in IGCS (see figure 7.15). It was
hoped that the hybrid would be able to take best advantage of the domain-specific
knowledge incorporated in the INCES and IGCS solvers and would be linear.

The decomposition strategy, De, used in this case is to decompose problem
P = (®,¥) into aset {(S;, P;) }, where solver S; is IGCS if subproblem P; is geometric
and S; is INCES if subproblem P; is algebraic. Decomposition is performed by first
identifying constraints as geometric or algebraic. These form two sets of constraints
U and W,,. Constructing W) and ¥, takes time O(n), where n is the number of

constraints.

Chapter 7 174 Hybrid Collaboration

5 T T T T T T T
Hybrid solution with dependency hierarchy list ¢
Hybrid solution without dependency hierarchy list +
45 | X Solution of combined problem using INCES O |
) O NAG c05nbc with consistently close guess <
4 x 4
X
35 | o E
o
xo o
g 3T T
8 <7 3
& R i
= oo®
3
Q
£ 0
(= Prad h
&
>
°
+ +
g R
bt
R e
5 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Number of constraints

Figure 7.16: A comparison of the CO5NBC function and INCES algorithm with the
hybrid solver

Set W! is then decomposed further into sets \11;’ of connected components, where
U, € V! and Wy, € W are connected if there is a path between W; and W, in
the constraint/entity graph of constraint problem (®,W \ ¥’),j # i. Finding the
connected components can be done in a simple graph traversal algorithm that takes
time O(m), where m is the number of edges in the constraint/entity graph. Since
the imposed sets of constraints are usually quite small, m will typically be a multiple
of the number of constraints in P. Thus decomposition of P takes time O(n).

With this decomposition strategy, the hybrid can be described in the solver

collaboration language of section 7.5 as

((SUP]); (SQ’PQ); (537P3); cee 7(Snapn)) :

7.6.3 Results

The case study was run for problem sizes between 1 and 200. This gave problems
with between 19 and 3800 variables. All case studies were run on a Silicon Graphics
Indy with an R4600 100MHz P22 processor and 32 Mbytes of memory. The results
of the case study are presented in figure 7.16. In the graph, the x-axis is the number
of variables in the problem and the y-axis is the amount of time taken to solve the
problem in seconds.

From the graph, it is apparent that the hybrid constraint solver is very fast

Chapter 7 175 Hybrid Collaboration

indeed. It is linear, whereas the other solvers compared were quadratic at best. It is
three or four orders of magnitude faster than the NAG function. Even for problems

of 100 or so variables, the hybrid is much faster.

7.7 Conclusions

Hybrid constraint solvers are an important means of solving constraint problems.
Many current constraint solvers use hybrid techniques to solve constraint problems.
Constraint solvers such as DCM [86], Erep [14] and Connectivity Analysis [67] de-
compose a constraint problem into a large number of very small subproblems that are
solved using small, specialised domain specific solvers. Solvers such as MechEdit [15],
INCES [62] and IGCS [112] decompose a problem to a small number of large sub-
problems that are solved using more complex solvers.

In general, constraint solvers work by decomposing a constraint problem into
a number of subproblems; ordering the subproblems; solving the subproblems and
recombining the solutions of the subproblems into solutions to the original problem.

This chapter has investigated the last stage of this process - solving and recom-
bining. In particular, the chapter has analysed the use of domain specific knowledge
and hybrid constraint solvers in solving complex constraint problems. Domain spe-
cific knowledge is added knowledge that is implicit in a problem. Many constraint
solvers take advantage of domain specific knowledge to guide the satisfaction process
towards solutions. For example, Degrees of Freedom Analysis [27, 58] takes advan-
tage of the nature of rigid bodies in Euclidean space and the fact that such bodies can
only rotate and translate in a very limited number of ways. Ruler-and-compass con-
struction [14,86] takes advantage of the fact that angle and distance constraints can
be resolved using only simple construction steps. Finite domain solution techniques
take advantage of the finite nature of the solution space to exhaustively explore it.

Domain specific knowledge allows the construction of fast, efficient solvers, such
as those described above. However, domain specific knowledge is very limited in the
problems that it can solve. Precisely because domain specific solvers take advantage
of the structure of a problem domain, problems outside that domain cannot be
solved easily.

Hybrid constraint solvers use two or more constraint solvers in collaboration to
solve problems that the individual solvers could not solve on their own. The most
prevalent form of hybrid solver is one that uses domain specific knowledge to solve

as much of a constraint problem as possible and then uses a general solver, such as a

Chapter 7 176 Hybrid Collaboration

numerical solver, to solve the remainder of the problem. Solvers such as COSAC [85],
INCES [62] and MechEdit [15] adopt this approach. The advantage of this approach
is that the domain specific solver helps to make the hybrid solver faster than the
general solver would have been on its own.

Monfroy’s BALI environment [84] is an abstract framework for describing col-
laborations of multiple constraint solvers. The BALI framework provides a powerful
means of describing complex hybrid constraint solvers. BALI tries to solve the en-
tire problem using a single constraint solver. When it can proceed no further, it
switches to another solver according to the semantics of the hybrid. Thus, BALI
does not take into account the structure of the constraint problem and does not use
any domain specific knowledge implicit in the constraint problem.

Consequently, this chapter has used the definition, representation and satisfac-
tion framework developed over the previous three chapters to describe a more sat-
isfactory collaborative framework for constraint solvers. The advantages of this
framework are that it has all the descriptive power of BALI, but allows the con-
straint problem to be decomposed using a decomposition strategy and then solved
using a hybrid.

In order to discuss the hybrid framework developed, the notions of enhanced
and embedded solution spaces were introduced. Enhanced solution spaces allow
the discussion of constraint processes in relation to a wider problem. Embedded
solution spaces allow the discussion of constraint processes in relation to smaller
subproblems. Both definitions are evident in BALI and have been adapted to the
framework developed in this thesis.

The sequential, parallel and concurrent collaborative paradigms identified by
Monfroy were then described using the framework of this thesis. Using the three
collaborative paradigms it is possible to construct complex and elegant hybrid con-
straint solvers. Several case studies of sequential collaboration were presented in the
chapter and appendix E contains an example of parallel collaboration.

It is then possible to use theorems 6.1 and E.1 to investigate the properties of
hybrid constraint solvers. Theorem 6.1 can be used to study sequential collaboration
and is used to identify problems with INCES [62] and IGCS [112]. INCES turns
out to be not consistent, as the numerical subsolver used to handle cyclic sets of
constraints only finds one solution that may not be the solution necessary for a
solution to the whole constraint problem. Similarly, IGCS is not consistent, as the
locus analysis of IGCS only takes into account one possible solution, when there

may be many.

Chapter 7 177 Hybrid Collaboration

Serial collaboration is simple to implement and understand. It is also powerful as
it can use knowledge from subproblems solved early to simplify subproblems solved
later. However, serial collaboration is dependent on passing very few solutions from
one subproblem to the next and this means that it is much more likely that any
serial hybrid will suffer from global inconsistency.

Parallel and concurrent collaborations are discussed in appendix E.

Monfroy uses a solver collaboration language to describe the collaboration of
solvers using the various paradigms of collaboration. However, Monfroy’s language
does not allow solvers to work on subproblems, nor does it contain an operator for
choosing new solver expressions depending on the result of an expression. Conse-
quently, BALI has been extended to allow solver expressions to act on subproblems
and a conditional branch statement has been added to increase the power of the
language.

The main contributions of this chapter are: a deeper understanding of the na-
ture of hybrid collaborations; identification of the importance of domain specific
knowledge; and the extension of BALI to conditional solution and subproblems.

The mathematical framework built up in chapters 4, 5 and 6 provide insight into
the solver collaborations suggested by Monfroy. In particular, theorems 6.1 and E.1
identify the importance of global consistency in serial and parallel collaboration. The
inability to guarantee global consistency for serial collaboration is a significant point
as it means that most current constraint solvers that use hybrid techniques, such
as INCES, 1GCS, Erep and DCM are not globally consistent. Similarly, parallel
hybrids are typically not globally consistent. The choice of when to use serial,
parallel, concurrent or no collaboration is dependent on the type and number of
solutions expected.

Domain specific knowledge is very important in constraint solution as it is intu-
itive, fast and robust within the class of problems it can handle. Most constraint
solvers use domain specific knowledge as much as possible. In particular, solvers
that decompose to small subproblems, such as Connectivity Analysis, DCM and
Erep, advocate the use of domain specific solvers to handle the subproblems.

The addition of subproblems to Monfroy’s BALI allows the description of the
hybrid collaborations presented in this chapter to be formalised and made robust.
This means that any hybrids constructed from the techniques in this chapter should
be well-defined. The conditional branch statement allows for complex hybrids to be
built that involve backup solvers when things go wrong.

Chapter 3 asked a number of questions about the process of solving constraint

Chapter 7 178 Hybrid Collaboration

problems by decomposition. Some of these questions can now be answered.

In fact, it is possible to lose solutions by decomposing and recombining. Theo-
rems 6.1 and E.1 both conclude that solving subproblems individually will usually
lead to a hybrid constraint solver that is not consistent and may lose solutions or
may fail to find solutions when many exist. However, theorems 6.1 and E.1 also sug-
gest that constraint solvers that retain all solutions (i.e. are locally complete) can be
safely linked together using hybrid collaborations. However, few current constraint
solvers are locally complete. Grobner basis solvers are the most appropriate as they
are both sound and complete. However, they are too slow for interactive use.

The question as to whether it is more efficient to decompose and recombine or
to solve as a whole is more difficult to answer. To solve a constraint problem as a
whole requires a general solver, such as Grobner bases or Newton-Raphson. Since
numerical solvers such as NAG’s CO5NBC function are Q(n?) complexity, where n
is the number of constraints, decomposing and recombining must be at most O(n?)
in order to compete.

In fact, nearly all current constraint solvers, such as DCM, Erep, IGCS, INCES
and MechEdit are O(n?) complexity and average-case complexity ©(n). Incremental
constraint solvers such as IGCS, INCES and SkyBlue have worst case complexity
O(n) but average case complexity O(1) to add a new constraint. Empirical evidence
therefore suggests that decomposing and recombining is more efficient than solving
as a whole.

The use of domain specific knowledge has been identified in this chapter as the
key element in making the solution of subproblems fast. The combination of domain
specific solvers using a well-defined hybrid collaboration leads to hybrid solvers that
are faster than solving as a whole.

The fourth questions that was asked was whether it was possible to have a
fast decomposition strategy and fast solution of subproblems or must one always
dominate. Chapter 8 addresses this question by building a new constraint solver
that uses coarse-grain decomposition to identify subproblems and then solves the

subproblems using complex constraint solvers.

Chapter 8
New Directions

With the exception of INCES, the solvers presented in the examples in this thesis
have mostly concentrated on complex decomposition strategies. The subsolvers they
have used have been small and simple. For example, the constraint subsolvers used
in DCM are the special case solvers for dealing with each set of three quadratic
equations in three unknowns. The constraint subsolvers used in Connectivity Anal-
ysis find solutions to each residual set. Although Middleditch and Latham do not
explore the issue in much detail, it seems likely that residual sets will be fairly small
and amenable to simple solvers.

One of the questions asked in chapter 3 was whether it was better to have complex
decomposition and simple solution or simple decomposition and complex solution.
Most existing constraint solvers adopt the former approach and put most of their
effort into the decomposition strategy. However, this thesis is primarily concerned
with improving the performance of existing solvers, such as IGCS and ICBSM.

Of particular interest, is the possibility of improving the performance of IGCS
so that it can handle loops and well-constrained problems better. Study of exist-
ing constraint solvers, such as Erep, suggest that the IGCS algorithms, such as
local propagation and locus analysis are not as well-suited for solving loops and
well-constrained problems as Erep is. Chapter 7 suggests that the domain specific
knowledge used by IGCS and Erep limit their use to their own particular specialities.
However, chapter 7 also suggests that a hybrid of IGCS and Erep could potentially
handle constraint problems that are a mix of problems that IGCS and Erep can
individually solve.

In general, it is difficult for a decomposition strategy to identify domain specific
subproblems as the strategy will need to employ domain specific knowledge to find

the subproblems. Using such domain specific knowledge will usually necessitate

179

Chapter 8 180 New Directions

the same complex decomposition that the domain specific solvers will themselves
undertake and this will duplicate the effort involved. However, if knowledge about
the combined problem can be exploited, it may be possible to perform a simple
decomposition to identify the domain specific subproblems.

At this point, it is worth recalling that INCES adopts such an approach. The
decomposition strategy used in INCES is very simple: a constraint problem P is
split into subproblems whose constraint graph is a tree and subproblems that form
strongly connected components. Tree subproblems are solved using local propaga-
tion and strongly connected subproblems are solved using Newton-Raphson. Note
that most of the effort in finding solutions to P is taken up by the constraint solvers,
particularly the Newton-Raphson solver.

This chapter explores the possibility of constructing a new hybrid constraint
solver composed of two existing constraint solvers, Erep [14] and IGCS [112]. The
hybrid will use coarse-grain decomposition to identify the domain specific subprob-
lems suitable for Erep and IGCS. The natures of Erep and IGCS have been discussed
extensively elsewhere in this thesis (see sections 2.3.3.2 and 3.1.3 for example) and so
are not discussed in detail here. This section notes the reasons and processes behind
the design of such a solver in order to characterise the important steps in designing
a new hybrid solver. Note that the proposed solver has not been implemented.

The proposed solver will be a hybrid of Erep and IGCS. The solver must define:
1. a decomposition strategy,
2. an ordering strategy and

3. a solution strategy.

8.1 Decomposition strategy

The decomposition strategy for the Erep/IGCS solver is the key to its success. The
strategy must be simple enough that it is fast to implement and yet sufficiently useful
that it can identify subproblems suitable to be solved by either Erep or IGCS. In
order to identify subproblems that are best solved by either Erep or IGCS, it is first
necessary to identify the strengths of each solver, in particular the domain specific
knowledge used by each solver.

Erep uses a ruler-and-compass approach to solve constraint problems consisting

of distance and angle constraints between points and lines. Typically ruler-and-

Chapter 8 181 New Directions

Erep IGCS
non-zero point-point distance | point-point coincidence (0 point-point distance)
point-line distance point-line coincidence (0 point-line distance)
line-line angle line-line angle

circle-circle tangent

circle-line tangent

Table 8.1: Constraints that can be handled by Erep and IGCS

compass constructs manifest themselves as clusters (see [14] and section 2.3.3.2) in
a constraint graph.

IGCS uses rigid body allowable motion to solve constraint problems consist-
ing of coincidence, tangent and angle constraints between points, circles and lines.
Typically, such problems manifest themselves as trees or loops in constraint graphs.

In particular, it is possible to describe the constraints that each solver can handle
explicitly. It is possible to decompose circle-circle tangent and circle-line tangent
constraints to distance constraints that Erep can handle. However, doing so loses
domain specific knowledge that IGCS exploits. Consequently, tangent constraints
will remain as high-level constructs. The constraints each solver can handle are
described in table 8.1.

Note that these constraints can be divided into three groups, «, # and v. Group
« consists of non-zero point-point distance and non-zero point-line distance con-
straints. Group [consists of point-point coincidence, circle-circle tangent and circle-
line tangent constraints. Group <y consists of point-line coincidence and line-line an-
gle constraints. Constraints in group a can only be solved using Erep. Constraints
in group [can only be solved by IGCS. Constraints in group 7 can be solved using
either Erep or IGCS. In this way the strengths of Erep and IGCS are identified and
correspondingly the subproblems that can best be handled by Erep or IGCS.

Each constraint in a constraint problem can then be associated with a group
and therefore with the constraint solver(s) that can handle it. For example, fig-
ure 8.2 shows the Constraint/Entity graph for the constraint problem @) in figure 8.1
(from [37]). Each constraint has a group identifier associated with it to show which
constraint solver can handle it. Note that all of the constraints in figure 8.2 can be
solved by Erep.

The constraint problem R in figure 8.3 has the Constraint/Entity graph in fig-
ure 8.4. This problem consists of a number of constraints that can be solved in Erep
and a number that can only be solved in IGCS.

The decomposition strategy should place constraints of type a in subproblems

Chapter 8 182 New Directions

Pt4

Pt2

(0]
70 PO 70 Pt6
9 @ ‘90\
Sg3 Sg9
200 g 200
Pt1

Pt8

Figure 8.1: Constraint problem () using distance and angle constraints

Pt6
3

p-10

N @ -190
V
Y

Ptl Pt8

/
o \P-PI0lpiyorP-PY) o

Figure 8.2: Constraint/Entity graph for constraint problem)

Chapter 8 183 New Directions

200 >0 P1 coincident LS1
LS1 P3 P2 coincident LS1

I% P3 coincident LS2
P4 coincident LS2
} 4 00 P2 coincident P3

LS2 C1 tangent LS1
C1 tangent LS2
C2 tangent LS1

C2 tangent C1

C3tangent C2
C3tangent LS2

P4 C3tangent C1
d(P1, P2) = 200
d(P3, P4) = 200

A

Figure 8.3: Constraint problem R with three tangent circles

P2 @
NG
o
LOF
LSl L52
P Clangent
y P C1 Y
o)
B B p P /
Pl cz C3 P4

p

Figure 8.4: Constraint/Entity graph for constraint problem R

Chapter 8 184 New Directions

that will be solved by Erep and constraints of type (3 in subproblems that will be
solved in IGCS. It remains to decide what to do with constraints of type v and how
to form the subproblems.

Erep solves constraint problems by identifying “clusters” of entities. Conse-
quently, all type « constraints should be part of a cluster, so that Erep can find
solutions for them. In theory, clusters could be determined using the same cluster
finding techniques adopted by Erep itself, using type 7 constraints when necessary.
For example, figure 8.2 can be divided into two clusters with type « and v con-
straints and one with only type 7 constraints. Figure 8.4 has two clusters with type
a and 7 constraints. However, using the cluster finding techniques of Erep to find
the subproblems to pass to Erep is a duplication of effort as the clusters will be
found twice: once in the decomposition strategy and once in the solution strategy.

It is difficult to identify any simple decomposition strategy that will identify
clusters but not need to perform the cluster finding algorithm using in Erep. This
is a general point: the only way to identify domain specific subproblems may be to
decompose the problems to such a degree that the decomposition strategy has in
effect solved the subproblems and the solvers have no work to do.

Consequently it is proposed that the Erep/IGCS hybrid uses a slightly less dis-

criminatory decomposition strategy:
Algorithm 8.1 Decomposition strategy for Erep/IGCS hybrid
1. Remove all type (constraints.
2. Place the remaining connected components into subproblems {P;}.
3. Restore all type [constraints.
4. Remove all type « constraints.
5. Place the remaining connected components into subproblems {P/}.

6. Restore all type a constraints.

At this point each P; contains subproblems consisting only of type o and type
v constraints. Each P; contains subproblems consisting only of type § and type v
constraints. Inevitably, there will be some type 7 constraints that will be in both a
P; and a Pj. However, each type 7 constraint will be in at most one P; and at most

one P]()

Chapter 8 185 New Directions

Figure 8.5: Decomposition of Constraint/Entity graph for problem R

The output of the decomposition strategy is therefore:

{(Pi,{Erep})} U{(P}, {IGCS})}.

For example, the constraint problem in figure 8.2 consists only of type a and type
v constraints. It will therefore be passed as a whole to Erep and solved using Erep
only, as would be expected.

The constraint problem in figure 8.4 is split into three subproblems, P;, P, and
P; as shown in figure 8.5. P, and P, are solved using Erep. Pj is solved using IGCS.
The output of the decomposition strategy is

{(P,{Erep}), (Ps,{Erep}), (P, {IGCS})}.

Note that constraints such as P, lying on LS1 will be solved for twice. The
ordering and solution strategies will deal with this problem. Note also that this
decomposition strategy takes O(n) time, where n is the number of constraints.

This decomposition strategy is simple and powerful. In this example hybrid it
is used to split a complicated problem into a number of subproblems, each of which
has been associated with a constraint solver to solve it. A similar approach could
be used to separate any constraint problem that has been labelled with constraints
suited to a particular solver.

The most difficult part of this decomposition strategy will be determining the

domain specific knowledge and specialities of the various constraint solvers in such

Chapter 8 186 New Directions

a way that constraints can be associated with particular solvers.

The fact that the decomposition strategy takes linear time in the number of
constraints means that the overall time for the hybrid will not be dominated by the
decomposition as is frequently the case. In fact, the time complexity of the hybrid

is dominated by the time complexities of the individual solvers Erep and 1GCS.

8.2 Ordering strategy

A common ordering strategy is to go from known values to unknown values. That
is to say, solve easy problems first and use the solutions to the easy problems to
find solutions to harder problems. This strategy has been usefully applied to such
solvers as DESIGNPAK [100], DCM [86], INCES [62], Erep [14] and MechEdit [15].

Connectivity Analysis uses this approach in order to guide solution of residual
sets. In effect, residual sets that are fixed are solved first, followed by residual sets
that can be fixed using solutions from previous residual sets, and so on.

The ‘known to unknown’ strategy generalises to solving over-constrained sub-
problems first, followed by well-constrained subproblems and under-constrained sub-
problems. Over-constrained subproblems should be solved first as they are most
likely to have no solutions. If an over-constrained subproblem has no solution, then
the problem as a whole has no solution and so the over-constrained subproblem might
as well be studied first. If an over-constrained subproblem does have solutions, it is
likely that it will have only a very few of them. Over-constrained subproblems are
more ‘known’ than well-constrained subproblems.

In a similar vein, well-constrained subproblems will likely have only a finite
number of solutions and are more likely to have no solutions than under-constrained
subproblems.

It is possible to identify the constrainedness of the subproblems generated by
the decomposition strategy. However, the identification of constrainedness is nearly
always as much work as the decomposition adopted by subsolvers. For example,
Connectivity Analysis effectively identifies the residual sets of a constraint problem
as a side-effect of investigating the constrainedness of the problem.

In order to avoid this effort the ordering strategy for the proposed hybrid of
Erep and IGCS is very simple. Since Erep only finds solutions to well-constrained
subproblems, it can be assumed that the subproblems passed to Erep are well-
constrained (extraneous type v constraints that are not part of a cluster confuse

this argument, but this case is discussed in the next section). Similarly, subproblems

Chapter 8 187 New Directions

solved by IGCS can be considered to be under-constrained, as such problems play to
the strengths of IGCS. Consequently, all Erep subproblems should be solved before
all IGCS subproblems.

In the case of figure 8.5 this results in a partial order

P1<]D37
P, < Pj.

Note that this ordering strategy is very simple and does not capitalise on the struc-
ture of the subproblems at all. This is because the ordering strategy, like the de-
composition strategy, should be simple enough that it can be performed quickly and

yet useful enough to help guide solution of the whole problem.

8.3 Solution and recombination

Recall that each subproblem P; to be solved using Erep may contain extraneous -y
constraints that are not part of a cluster. It is assumed here that Erep should solve
P; by trying to find as many clusters as possible, find solutions for each cluster and
then stop. Extraneous type 7 constraints and imposed entities will therefore not be
solved for and will be left floating.

There are two situations whereby a type v constraint may not be part of a cluster
but may be part of a subproblem to be solved using Erep. The first is that the
constraint lies in a subgraph of only v constraints between an « constraint and a
[constraint and is not in a cluster. In this case, the v constraint will also be in a
subproblem P; due to be solved using IGCS and so can be dealt with there.

Consider, for example, the constraint problem in figure 8.6. Constraints C;, Cy
and Cj3 are not in cluster C' but are in subproblem P;. When Erep tries to solve for
C1,C5y and C}, it fails and leaves them. However, as 4, Cy and C5 are part of the
all v subgraph between C; and Cj, they are all also part of subproblem Pj, which is
due to be solved using IGCS. Consequently, Erep does not need to deal with them.

The other circumstance whereby a 7 constraint may not be part of a cluster
but may be a part of a subproblem due to be solved using Erep is when there is
a subgraph consisting only of v constraints connected to a cluster. For example, if
circle Cire; and constraint Cy are removed from figure 8.6, then constraints C, Cs

and C3 will not be solved by Erep and are also not part of a subproblem due to be
solved by 1GCS.

Chapter 8 188 New Directions

P1 coincident LS1
P2 coincident LS1
LS1 200 P3 coincident LS2
Circl P4 coincident LS2
P2 coincident P3
Circl tangent LS2

iy ® P2
P4 LS2 P3 d(P1, P2) =200
P, \\
' 1
P, ‘
Cl |

Figure 8.6: A constraint problem with a, 8 and v constraints

Chapter 8 189 New Directions

The subgraph containing C, C5 and C3 can be solved by IGCS. Correspondingly,
C1,Cy and C5 should be made into a new subproblem that is due to be solved by
IGCS and added to the stack of subproblems to be solved.

If a subproblem P; exists that contains a subgraph containing « constraints
that is not part of a cluster, then Erep will not be able to find solutions to the «
constraints in the subgraph. IGCS cannot solve « constraints and so cannot solve
the subgraph either. Consequently a hybrid of Erep and IGCS will not be able to
solve such subproblems unless a backup, domain general solver such as Newton-
Raphson or Grobner bases is added. Such a situation is not addressed in this thesis
but could form a powerful constraint solver.

The crudity of the ordering strategy means that no fine control of the hybrid
can be deduced. Since the partial order only dictates that all Erep subproblems be
solved before all IGCS subproblems, the following hybrid can be deduced:

(P, {Erep}) || (Po, {Erep}) | (Ps, {Erep}) || || (P, {Erep}));
(P {IGCS}) || (P, {1GCS}) [| (P, {IGCS}) || .. || (B, {1GCS}))

Note that each P; is disjoint with each other P; and similarly for each P} and
so each Erep subproblem can be solved independently and each IGCS subproblem
solved independently.

Recombination of solutions occurs when all Erep subproblems have been solved.
At this point only one solution is produced by all of the applications of the Erep
algorithm and so choosing the solution to pass to the IGCS subproblems is trivial.
Note that it will certainly be possible to use the root identification algorithms of
Erep to select other solutions to the Erep subproblems and that this will lead to
other solutions of IGCS subproblems. Note also that the under-constrained nature
and use of direct manipulation for the IGCS subproblems can be utilised with no
effect on the Erep subproblems.

The ordering strategy forces subproblems to be solved by Erep completely first
and then subproblems by IGCS. Consequently, there can be no cycles between Erep
subproblems and IGCS subproblems.

Note that clusters in Erep describe rigid bodies with two translational degrees of
freedom and one rotational degree of freedom. Since IGCS acts on rigid bodies with
degrees of freedom, it seems likely that IGCS and Erep can be even more closely

coupled.

Chapter 8 190 New Directions

8.4 Advantages of the Erep/IGCS hybrid

There are a number of advantages of the Erep/IGCS hybrid:

1.

Reuses existing constraint solvers. The hybrid reuses existing solvers and so
has less risk than developing a new system from scratch. It also allows for fast

development.

Fast and efficient. The hybrid uses very simple decomposition and ordering
strategies that each take time O(n), where n is the number of constraints. In
contrast, Erep and IGCS take time O(n?) each.

Simple to implement. Since the decomposition and ordering strategies are so
simple, the hybrid should be simple to implement. The hybrid has not been
implemented because the author has no access to the internal workings of Erep

and has not had the time to construct the Erep algorithm from scratch.

Keeps strengths of individual solvers. The hybrid allows the use of both the
root identification of Erep and the direct manipulation of IGCS. Both tech-
niques have proved extremely popular and useful in exploring the solution

space of a constraint problem.

Success when individual solvers fail. The hybrid will find solutions to con-
straint problems containing both type « and type 3 constraints. Individually,
neither constraint solver handles both types and so the hybrid can handle
more constraint problems. Although Erep can solve type [constraints by
describing 3 constraints using degenerate distance constraints, this approach
is discounted because it loses the domain specific knowledge that can be used

to advantage in IGCS.

8.5 Limitations of the Erep/IGCS hybrid

There are limitations to the Erep/IGCS hybrid:

1.

2.

Inconsistent. Since only one solution is found for the Erep subproblems and

passed on to the IGCS subproblems, by theorem 6.1, the hybrid is inconsistent.

Nonlinear time complexity. Although the decomposition and ordering strate-

gies are fast, the solution of the subproblems dominates the hybrid. Since both

Chapter 8 191 New Directions

algorithms have O(n?) complexity, where n is the number of constraints, the

complexity of the hybrid is O(n?).

Although the time complexity of the Erep/IGCS hybrid is equivalent to the
time complexities of Erep and IGCS, it is important to remember that IGCS
is not equivalent to the hybrid as IGCS cannot solve many of the constraints
the hybrid can. Erep can solve all of the constraints the hybrid can but only
if tangent constraints are reduced to distance constraints and the zero point-
point distance constraint is removed by pre-processing. Both activities remove
domain specific knowledge from the constraint problem that IGCS exploits.
Thus one would expect the average case time complexity of the hybrid solver

to be better than n? as it can exploit that domain specific knowledge.

8.6 Incremental implications of new solver

In section 3.2.5, the possibility of an incremental version of DCM was suggested.
The solver developed in this chapter satisfies this vision of an incremental DCM.
For the purposes of this discussion, Erep and DCM are used interchangeably. In
fact, Erep and DCM are equivalent, as reported in [14].

An incremental constraint solver starts with a blank sheet of no entities and no
constraints. A this point entities are added so that the constraint problem becomes
under-constrained. Then constraints are added one by one so that the constraint
problem becomes more and more constrained until it becomes well- and then over-
constrained.

The Erep/IGCS hybrid cannot be made fully incremental for the same reasons
that DCM cannot be made fully incremental. However, the hybrid as described in
this chapter can take advantage of the incremental nature of IGCS and the compat-
ibility of Erep and IGCS.

Starting with no entities and no constraints the incremental Erep/IGCS hybrid
works as follows:

If a new entity is added, it forms a separate, disconnected constraint subproblem
and is treated as such.

If a new constraint is added of type «, then the new constraint can only be solved
by Erep. A new subproblem is therefore formed consisting of the new constraint
together with any subproblems due to be solved by Erep connected to the new
constraint. This new subproblem must be solved by Erep also. Consequently, the

decomposition strategy is simple and uses most of the previous decomposition, and

Chapter 8 192 New Directions

the order of solution is much the same.

Solution of the new subproblem may not be possible in Erep as the subproblem
may not form a rigid body. If this is so, then the subproblem is left in an undefined
state until more constraints are added. A problem consisting entirely of type «
constraints processed in this way will lead to the first type of incremental DCM
described in section 3.2.5.

In a similar fashion, a new type [constraint is put into a new subproblem
consisting of the new constraint plus any connected subproblems due to be solved
using IGCS. Solution of the new subproblem can happen incrementally as IGCS
processes the new constraint alone and tries to solve it.

If the new constraint is of type v then it can be solved by either Erep or IGCS.
Similar to the above two techniques, the new constraint is used to form two new
subproblems to be solved using Erep and IGCS respectively. The Erep subproblem
is solved first and will lead to some of the v constraints in the subproblem being
satisfied to give rise to rigid body clusters.

These rigid body clusters are well-constrained and are unlikely to be changed in
the future. However, the rest of the subproblem will be solved by IGCS and will
almost certainly change as the constraint problem evolves.

Therefore the rigid body cluster should be separated from the under-constrained
part of the subproblem and put into a separate subproblem to be solved using Erep
alone. In this way the rigid body is not resolved every time the under-constrained
part is changed. This will save a great deal of effort on the part of the solver.

Thus, a constraint problem evolves from being under-constrained to being well-
constrained and more of the problem becomes well-defined rigid bodies that have
been solved using Erep and need not be resolved.

For example, consider the constraint problem in figure 8.7. For the purposes of
this example, since all constraints are binary, the constraint graph of the problem
is described using edges as constraints and vertices as entities. This helps to make
the problem concise and clear in this case. The constraint graph for the problem is
presented in figure 8.8.

This problem is well-constrained and can be solved entirely using Erep. Apart
from the distance constraint between p; and p,, it can also be solved entirely using
IGCS. However, it can also be solved incrementally using both solvers. This incre-
mental method is both intuitively obvious to a user and also an efficient means of
reusing past solutions.

At the first iteration, the constraint graph consists of no entities and no con-

Chapter 8 193 New Directions

Figure 8.8: Constraint graph for figure 8.7

straints. At the second iteration, all of the entities are added. On the third it-

eration, the point-point distance constraint C; is added to give a new subproblem

P = ({p1,p2},{C1}) (see figure 8.9.
On the next eight iterations, the line-line angle constraints Cy, C's and C4 and the

point-line coincident constraints Cs, C, C7, Cg and Cy are added so that the graph

now looks like figure 8.10. Currently, there are two subproblems consisting of

P1 - ({p17p27p47l1a12al3}a{Ch--- aCQ})a

O O O

O
o) Q
O

Figure 8.9: Iteration two of incremental solution of figure 8.7

Chapter 8 194 New Directions

Figure 8.10: Iteration ten of incremental solution of figure 8.7

to be solved using Erep, and

PQ - ({p17p27p47l11121l3}a {CQa s aCQ})a

to be solved using IGCS.

At this point, Erep cannot solve P; at all and so P, is being solved using IGCS.
This allows the user to directly manipulate the lines and points as desired and so
explore the solution space. The status of C; is undefined.

On the next iteration, constraint €0 is added and the decomposition strategy
places Cyg in both P; and P,. P; can now be solved fully using Erep to give a rigid
body, the left most triangle in figure 8.7. IGCS no longer solves any of the problem.
Note that the constraint problem has suddenly gone from being under-constrained
to being well-constrained.

Since the triangle is a rigid body and unlikely to be changed, it need never be
resolved. Unfortunately, the sudden switch from the under-constrained geometry
solved by IGCS to the well-constrained geometry solved by Erep means that all of
the previous work done by IGCS has been discarded in place of the solution found
by Erep. A better idea would be to use the information developed by IGCS to assist
the solution found by Erep.

In successive iterations, constraints Cq, Co, Ci3, C14, C15 and Cig are added. At

this point, there exist two subproblems,

P1 = ({p]a 1p4al]1"'l5}a{01a--- 3016}),

and

Py = ({triangle, ps, 1,15}, {C1, ... ,Cis}).

Chapter 8 195 New Directions

Ci1,...,C are solved using IGCS so that the user can still manipulate the lines
and points and the triangles as a rigid body. However, when C'; is added, the
geometry is again well-constrained and is all solved using Erep.

However, note that the decomposition to identify the cluster representing the left
most triangle has already been done and need not be recalculated. Only the con-
straints that are added need be solved for. This is equivalent to the first incremental
DCM suggested in section 3.2.5.

This is a powerful incremental algorithm and is a natural extension of the hybrid

developed in this chapter.

8.7 Conclusions

This chapter has presented the design of a new hybrid constraint solver. This solver
is a hybrid of two previously existing constraint solvers, Erep and IGCS. Erep can
find solutions for well-constrained geometric constraint problems, whereas IGCS can
find solutions for under-constrained geometric constraint problems. The advantage
of a hybrid between these two solvers is that it can find solutions to geometric
constraint problems consisting of well- and under-constrained subproblems.

However, the identification of well- and under-constrainedness of subproblems
is difficult. Middleditch and Latham [67] identify under- and over-constrained sub-
problems as part of identifying the residual sets used to solve the constraint problem.
Since identifying the constrainedness of subproblems appears to be just as difficult
as decomposing to residual sets, it was decided that the hybrid of Erep and IGCS
would not try and identify well- and under-constrained subproblems.

Instead, the domain specific knowledge employed by each constraint solver was
captured and studied. It was obvious from the list of constraints that each solver
could handle that there were some constraints that Erep alone could solve, some
that IGCS alone could solve and some that both could solve. The decomposition
strategy assigns Erep constraints to subproblems to be solved using Erep and IGCS
constraints to subproblems to be solved using IGCS.

It remained to determine what to do with constraints that could be solved by
either constraint solver. Again, the domain specific knowledge used by both solvers
could be used to solve this dilemma. Since Erep builds up subproblems into clus-
ters and effectively clusters are the most basic elements of an Erep solution, Erep
subproblems must have all of the constraints necessary to build a cluster. Since

identifying a cluster would effectively mean solving it, all constraints that can be

Chapter 8 196 New Directions

solved by both Erep and IGCS are placed in both Erep and IGCS subproblems.

In this way, Erep will always have all of the constraints that it can possibly use
to build a cluster and any that are left over will be solved using IGCS.

The ordering strategy that is used by the hybrid is that all Erep subproblems are
solved first, followed by all IGCS subproblems. This is because all Erep subproblems
are assumed to be well-constrained and therefore have fewer solutions than the
under-constrained IGCS subproblems

The subproblems can then be solved using the appropriate solvers and solutions
recombined to give solutions to the original constraint problem.

The advantages of the Erep/IGCS hybrid are that it reuses currently existing
constraint solvers; has fast decomposition and ordering strategies and good average
time complexity for solving constraint problems; retains the root identification of
Erep and the direct manipulation of IGCS and will solve more problems than the in-
dividual solvers will. The disadvantages are that the hybrid may fail to find solutions
to a constraint problem when some exist. It also has nonlinear time complexity.

Whilst the Erep/IGCS hybrid is new and powerful, it is untested. The process
that this chapter followed to build the Erep/IGCS hybrid is significant as it has high-
lighted the principle areas that anyone constructing a coarse-grain decomposition
hybrid must consider.

The incremental version of the hybrid constraint solver is also very powerful.
The incremental version allows both the direct manipulation of IGCS and the root
identification of Erep in an incremental context. The incremental hybrid allows con-
straint problems to be defined and evolved in an intuitive manner but also provides
an efficient means of solving the constraint problem as it is created.

Chapter 3 asked whether it was better to have a complex decomposition strategy
and simple solvers or a simple decomposition strategy and complex solvers. This
chapter has demonstrated that it is possible to build efficient coarse-grain decompo-
sition hybrid constraint solvers. However, the complexity of the Erep/IGCS hybrid is
dominated by the complexity of Erep and IGCS themselves, which is O(n?), where
n is the number of constraints. Consequently, it is unlikely that the Erep/IGCS
hybrid lies on the trade-off point of figure 3.9.

Chapter 9

Future Work

The work presented in this thesis represents a step towards the goal of the Virtual
Working Environment group at the University of Leeds. This goal is to develop an
interactive environment for developing engineering designs within a Virtual Environ-
ment. This chapter introduces further research that must be carried out before this
goal can eventually be realised. The research necessarily can be divided into three
areas: the interactive constraint solver, the mathematical framework and the Virtual
Environment used to develop the engineering designs. These areas are discussed in

more detail below.

9.1 The interactive constraint solver

The interactive constraint solver suggested in this thesis takes advantage of domain
specific knowledge as much as possible. Hopefully, this will make the constraint
solver sufficiently fast that it will be possible to use it for interactive use. However,
there are a number of factors that need to be studied further before the interactive
constraint solver can be realised.

As a proof of concept the Erep/IGCS hybrid solver should be implemented and
a number of case studies should be tested on it to see how it performs. This work
is explored in section 9.1.1.

In order to have an interactive constraint solver consisting of subsolvers commu-
nicating with each other, there must be a common standard for describing constraint
problems. This is discussed in section 9.1.2.

The case studies presented in this thesis help to demonstrate the power of hybrid
constraint solvers. However, more complex case studies need to be explored in order

to examine the constraint solver under pathological conditions. This is discussed in

197

Chapter 9 198 Future Work

more detail in section 9.1.3.

The incremental nature of constraint solvers such as INCES [62] and IGCS [112]
help to improve the efficiency of the solver. Since the interactive constraint solver
requires very efficient constraint solution, the use of incremental constraint solvers as
part of the interactive constraint solver should be studied in detail. This is described

in section 9.1.4.

9.1.1 The Erep/IGCS hybrid solver

The Erep/IGCS hybrid introduced in chapter 8 is an example of the type of inter-
active constraint solver proposed in this thesis. As such, it should be implemented,
if only as a proof of concept solver. In fact, the Erep/IGCS hybrid promises to be
quite a powerful solver and so should be tested on a number of case studies.

In particular, the Erep/IGCS hybrid’s performance should be studied for con-
straint problems consisting mainly of constraints that can be solved only by Erep
(type « constraints); mainly of constraints that can only be solved IGCS (type [
constraints); mainly of constraints that can be solved by either solver (type 7 con-
straints); and mixtures of all three constraints. Problem cases will probably be
constraint problems consisting of mainly v constraints that the constraint solver

solves twice.

9.1.2 A standard interface for solvers

In order for an interactive constraint solver comprising of a hybrid of domain specific
solvers to be implemented there must first be some form of standardised commu-
nication between the interactive constraint solver and the subsolvers used to solve
the subproblems. Just as graphical standards were used to allow pictures to be
shared and engineering design standards were developed to allow CAD designs to
be shared, it will be necessary to have a standard format for describing constraints,

entities and constraint problems so that they too can be shared amongst designers.

9.1.3 Complex case studies

The case studies presented in this thesis are not trivial. Case study 2 (section 7.6)
has upwards of 2000 entities and 2000 constraints. Case study 2 is also very simple,
as the constraints can all be solved using local propagation. However, in order to

study the scalability of the concepts in this thesis, even larger case studies must be

Chapter 9 199 Future Work

considered. Also, more pathological case studies are necessary. The case studies
presented here had only a few solutions from each subproblem passed onto the next.
Case studies with 100s of solutions from each subproblem should be considered so

that techniques of communication and collaboration of such cases can be explored.

9.1.4 Incremental issues

For performance reasons, incremental constraint solvers are becoming significant [62,
112]. Incremental constraint solution involves using previous knowledge to solve a
constraint problem when a new constraint is inserted. Typically this means that
the constraint problem is analysed so that the smallest part possible of the problem
needs to be resolved when a new constraint is inserted or deleted. For obvious
reasons, the incremental approach is ideal for interactive constraint solution. Not
only do incremental approaches allow for a better average-case speed, but they also
provide a natural paradigm for users to progressively add and remove constraints
and entities. The other alternative to incrementally defining a model is the specify-
then-solve approach used by many other constraint solvers [14, 86].

Incremental constraint solvers have been studied in detail in this thesis. They
have great potential for improving the performance of constraint solvers and also of
providing more useful feedback to users. In particular, constraint solvers that can
follow a constraint problem from being under-constrained to being well-constrained
to being over-constrained will be valuable. The constraint solver described in chap-
ter 8 can handle geometric constraint problems as they progress from being under-
constrained to being well-constrained. The incremental version of the Erep/IGCS
algorithm should therefore be implemented and tested. The next stage would then
be to enhance the incremental Erep/IGCS hybrid so that over-constrained constraint

problems can be dealt with.

9.2 The mathematical framework

The mathematical framework presented in this thesis is capable of capturing many
different types of constraint problem and constraint solver. However, there remain
certain types of constraint that are difficult to describe and difficult to solve. These
include inequality constraints and probabilistic constraints, which are discussed in
sections 9.2.1 and 9.2.2.

Chapter 9 200 Future Work

9.2.1 Inequality constraints

As noted by Lamounier [64], during the design process many design specifications
and performance measures are defined as inequalities. For example, in mathemat-
ical programming, many of the constraints are described using inequalities. In the
framework given in this thesis the dimension of an inequality constraint is frequently
0 as there will often be a homeomorphism from the original solution space to the
restricted solution space caused by the inequality. For example, if a constraint
z < 10 is imposed on the real line (—oo, +00) to give a solution space of (—oo, 10),
then there is a simple homeomorphism z +— —e™* + 10, (—o0,10) — (—o0, +00).
Consequently the dimension of the constraint z < 10 is 0.

The fact that most inequality constraints have a dimension of 0 means that they
are rarely used to progress towards a well-constrained solution. Instead, inequality
constraints are usually used to refine solutions and to select between them. Con-
sequently they form an important type of constraint to deal with. However, little
research has been done on the implications of inequality constraints within a larger

problem.

9.2.2 Probabilistic constraints

Bistarelli et al. [10] use the general semiring framework to describe many different
types of constraint problem. One of the types of constraint problem covered by the
semiring formalisation is fuzzy constraint problems. Fuzzy constraint problems are
equivalent to the constraint priority constraint problems presented in section 6.3.1.
Bistarelli at al. also use the semiring construction to describe probabilistic constraint
problems. Probabilistic constraints have a certain probability to be part of the given
problem. This allows reasoning about problems which are only partly known. It
should be possible to model probabilistic constraint problems and solutions using

the framework in this thesis.

9.3 The Virtual Environment

Although the Virtual Environment used is not directly significant to this thesis, there
are a number of issues that are relevant to both the Virtual Environment and the
framework presented in this thesis. These include the use of parallel and concurrent
collaboration, discussed in section 9.3.1 and the use of direct manipulation to interact

with the interactive constraint solver, explored in section 9.3.2.

Chapter 9 201 Future Work

9.3.1 Parallel/concurrent collaboration

Sequential collaboration is quite common and most hybrids currently in use adopt
this paradigm [15,62,87,112]. However, there are advantages to parallel and con-
current collaboration. Parallel collaboration can be simply implemented on parallel
architectures with the obvious performance advantages available from such a move.
Concurrent collaboration allows the investigation of design alternatives, an impor-
tant issue for designers.

The implementation of a parallel collaboration would require careful considera-
tion of the intersection of the solution spaces found by the parallel solvers. Imple-
mentation of a concurrent collaboration would require study of the use of the choice

function and how it could be incorporated into a real-time algorithm.

9.3.2 Direct manipulation issues

One of the great advantages of ICBSM [26, 32] is that it allows direct manipulation
of geometric entities to build up complex assemblies. This proved to be a powerful
means for designers to build models. Consequently it would be advantageous if the
direct manipulation approach could be used for the interactive constraint solver.
Obviously direct manipulation only applies to entities that have some sort of visual
representation.

The Erep/IGCS hybrid developed in chapter 8 retains the use of the direct
manipulation of IGCS and the root identification of Erep for the subproblems they
respectively solve. Research needs to be done to see how well these two approaches

interact and whether either can be applied to other constraint problems.

9.4 Summary

The work presented in this thesis describes work done towards the goal of develop-
ing an interactive environment for developing engineering designs within a Virtual
Environment. The mathematical framework developed here allows the description
of complex hybrid constraint solvers consisting of a number of collaborating domain
specific constraint solvers. The sound mathematical framework developed allows for
an investigation of the structure of hybrid constraint solvers and of the quality of
solution provided by hybrid constraint solvers.

The next key step in this research will be to investigate incremental hybrid con-

straint solvers of domain specific solvers, such as the Erep/IGCS hybrid developed

Chapter 9 202 Future Work

in chapter 8. This will involve complex engineering design case studies which can

be used to investigate the interaction of the domain specific solvers and the power

of the hybrid constraint solver.

Chapter 10
Conclusions

The construction of constraint problems in engineering design is supplanting more
traditional design techniques [47]. Consequently, many constraint solvers have been
developed to handle the constraint problems being constructed. The constraint
solvers range from geometric constraint solvers, capable of finding solutions to com-
plex descriptions of geometry and relative positioning of geometric constructs, to
functional constraint solvers, capable of finding solutions to descriptions of the func-
tion of designs.

It is generally acknowledged that there is a close link between geometric and
functional constraint problems [3,19,64,100]. It is inadvisable to separate the ge-
ometric and functional parts of the constraint problem as they affect each other
closely. Correspondingly, practitioners attempt to solve the combined constraint
problem as a whole. In a similar vein, other types of constraint problem, such as
finite domain, scheduling and physical constraint problems, should be considered
within a general framework.

Constraint solvers handle complex combinations of different types of constraint
problem in one of two ways. Either the combined problem is converted into a large
system of equations and inequalities and then solved using numerical or symbolic
techniques or a part of the combined problem is tackled by a solver good at solving
that particular type of problem and when the solver gets stuck, it is assisted by
numerical or symbolic techniques.

Numerical solution is slow and prone to numerical convergence problems, as well
as a tendency to converge to non-intuitive solutions and only to find one solution.
Symbolic solution, using Grobner bases [17], whilst being much more robust and
finding all solutions to the combined problem, is far too slow for use in interactive
design [16].

203

Chapter 10 204 Conclusions

The use of a domain specific constraint solver as far as possible leads to a sig-
nificantly faster algorithm [15]. However, the domain specific solver used is usually
quite limited in the problems it can handle and the symbolic or numerical backup
solver will be consulted frequently. Using two collaborating constraint solvers in this
way results in a hybrid constraint solver.

The use of domain specific solvers leads to very fast constraint solvers such as Fa’s
ICBSM [27]. ICBSM is capable of solving geometric constraint problems without
loops in time O(n), where n is the number of constraints in the problem. Tt is
therefore suitable for interactive use. In addition, ICBSM is incremental and will
find solutions to the constraint problem when a new constraint is added in time
O(1).

However, ICBSM is very restricted in the type of geometric constraint problems
it can solve. ICBSM cannot solve geometric constraint problems with loops in them.
ICBSM is also unable to solve functional constraint problems and so is not an ideal
candidate for an engineering design constraint solver.

The purpose of this thesis was to study ways of applying Fa’s Allowable Motion
to more general constraint problems. In particular, engineering design constraint
problems consist of loops and functional constraints.

In order to study the possible applications of Allowable Motion to more general
constraint problems, it was first necessary to investigate the current state-of-the-
art in constraint solution. Chapter 2 presents the result of this study. Constraint
solvers in the finite domain, geometric, functional and physical fields were examined
in detail and the strengths and weaknesses of each solver were identified. This study
identified the specialisation of current solvers in terms of type of problem solved and
also the constrainedness of problem handled.

The characterisation of constraint solvers in chapter 2 brought to light the com-
mon nature of most constraint solvers. In particular, most existing constraint solvers
use a divide-and-conquer approach to solve a constraint problem. First a decom-
position strategy is used to split the constraint problem into smaller subproblems.
Then the subproblems are ordered. Finally, the subproblems are solved in the order
given by the ordering strategy.

Several issues were raised by the divide-and-conquer approach and in order to
study these issues the constraint process was examined in detail by dividing it into
constraint definition, constraint representation, constraint satisfaction and repre-
sentation of solutions. Since the representation of solutions to constraint problems

is a complex issue in itself, it was not studied in this thesis. The reader is referred

Chapter 10 205 Conclusions

to [14] for a discussion of the root identification problem in geometric constraint
problems.

The constraint definition phase of the constraint process was studied in chapter 4.
Intensive study of many different types of constraint solver and the problems that the
solvers can handle led to a coherent, comprehensive definition of general constraint
problems. This definition is capable of describing many different types of constraint
problem as well as constraint problems that consist of a number of different types of
constraint. The set-theoretic approach used in the definition allows the development
of a detailed and abstract framework for the constraint satisfaction process. The
dimension of a constraint was also introduced as a means of identifying the progress
towards solution of a constraint process.

Chapter 5 explored the second phase of the constraint process, constraint repre-
sentation. In order to solve constraint problems efficiently, many constraint solvers
rely on a constraint representation scheme that allows structure of a constraint
problem to be investigated. Most such constraint representation schemes use graph
techniques as there already exists a comprehensive selection of literature on the
properties of graphs. However, different constraint solvers use different constraint
representation schemes. If a constraint solver capable of solving general engineer-
ing design constraint problems were to be developed, it would ideally be capable of
describing general constraint problems, using the definition developed in chapter 4.

Consequently, chapter 5 studied the various constraint representation schemes
currently in use and how they were related to each other. This led to the identifica-
tion of a generic constraint representation scheme, one capable of describing general
constraint problems. Using reductions it was possible to identify which constraint
representation schemes were generic and which were not. Reductions can also be
used to translate between representation schemes as and when required.

Different constraint solvers use different solution techniques depending on the
structure and type of constraint problem being solved. However, the investigation
of the state-of-the-art in chapter 2 indicated that all of the constraint solution tech-
niques studied followed much the same underlying pattern. Chapter 6 explicitly
captured this underlying structure by defining solution steps and solution processes.
Using the notion of a solution space, it was then possible to describe the properties
of a solution process.

The quality of solution of a solution process is very important to a designer and
is dependent on the properties of the solution process. For example, if a solution

process is consistent, then the designer knows that there is a solution to the con-

Chapter 10 206 Conclusions

straint problem in the terminal solution space. If a solution process is sound then
the terminal solution space contains only solutions to the constraint problem. If
the solution process is complete then the terminal solution space contains all so-
lutions to the constraint problem. However, it was very difficult to determine if a
specific constraint solver was sound, complete or even consistent. Theorem 6.1 can
be used to identify the quality of solution of a solution process. Theorem 6.1 is
also a significant tool in the study of hybrid constraint solvers as it allows design-
ers to identify the quality of solution of hybrid constraint solvers, as well as simple
constraint solvers.

The power of the satisfaction abstraction was demonstrated by using it to de-
scribe a number of different extensions of the basic constraint problem, including
constraint priority problems, incremental constraint satisfaction, backtracking and
variable-driven constraint satisfaction.

Using the abstractions of the constraint definition, representation and satisfac-
tion phases, chapter 7 studied the use of hybrids and domain specific constraint
solvers. Domain specific solvers were identified as being fast and efficient but not
general enough for general engineering design. Hybrid constraint solvers were inves-
tigated using an adaptation of Monfroy’s BALI environment [84]. Monfroy identifies
three different paradigms for the collaboration of constraint solvers. These are se-
quential, parallel and concurrent collaboration. All three collaboration paradigms
were defined in terms of the satisfaction framework of chapter 6. Theorem 6.1 can
then be used to study the quality of solution found by sequential collaboration,
whilst an equivalent theorem, theorem E.1, can be used to study the quality of
solution found by parallel collaboration.

Several examples were then explored using these collaboration paradigms. The
example in section 7.3 demonstrated that even a very simple hybrid constraint solver
of two domain specific solvers could produce a marked increase in speed for solving a
constraint problem consisting of functional and geometric constraints. The example
in section 7.6 investigated the asymptotic behaviour of the sequential collaboration
and found that the hybrid of domain specific solvers was linear in complexity whereas
other solvers were not. A constraint problem with 2000 constraints was solved in
0.25 seconds using the hybrid but 60 seconds using INCES [62] and 180 seconds
using a numerical algorithm.

The discussion of the incremental version of DCM in section 3.2.5 along with the
solution framework presented in chapter 3 and the work done on hybrid constraint

solvers and domain specific solvers in chapter 7 naturally suggested a collaboration

Chapter 10 207 Conclusions

of two existing constraint solvers, IGCS [112] and Erep [14]. The Erep/IGCS hybrid
was defined in terms of a simple decomposition strategy, a simple ordering strategy
and a description of how solution would proceed. The Erep/IGCS hybrid has not
currently been implemented but serves as a useful demonstration of the process of
constructing a new constraint management system as discussed in chapter 3. It also
has the potential to be a powerful solver in its own right.

In particular, the Erep/IGCS hybrid can be implemented to give a powerful
incremental constraint solver. This incremental solver allows a constraint problem
to be developed an manipulated from an initial state of being under-constrained
to being well-constrained. The incremental solver retains the root identification of
Erep and the direct manipulation of IGCS and so allows the user to explore the
solution space of the problem as desired.

In chapter 3, a number of issues were raised regarding the decomposition frame-

work:
1. Is it possible to lose solutions by decomposing and recombining?
2. What effect does decomposition have on incremental techniques?
3. Is it more efficient to decompose and recombine or solve as a whole?

4. Is it possible to have a fast decomposition strategy and a fast solution of

subproblems or must one always dominate?

These questions have been addressed throughout this thesis. Progress on the answers

are presented below:

1. Is it possible to lose solutions by decomposing and recombining? 1t is possible
to lose solutions be decomposing and recombining. Theorems 6.1 and E.1
prove that if a constraint solver is not globally consistent then it cannot be
linked with other constraint solvers and expect to be globally consistent. In
fact, few current constraint solvers are globally consistent and so few hybrid
constraint solvers are globally consistent. In particular, INCES and IGCS were

both identified as being inconsistent.

2. What effect does decomposition have on incremental techniques? It is possible
to apply an incremental approach to decomposition, ordering and solution.
Incremental decomposition strategies need to reuse information from a previ-
ous decomposition as much as possible. Incremental ordering strategies need

to order any new subproblems in such a way as to not need to resolve as

Chapter 10 208 Conclusions

many subproblems as possible. Incremental subsolvers can find solutions to
problems with newly added constraints quickly. The Erep/IGCS hybrid is a
good example of an incremental constraint solver and it makes good use of
the natures of both Erep and IGCS to give a powerful solver that can be used

interactively.

3. Is it more efficient to decompose and recombine or solve as a whole? Generally
speaking, it is better to decompose and recombine than to solve as a whole.
General constraint solvers such as Grobner bases or numerical techniques are
too slow for interactive use. However, the choice of which approach to take
may not be predicated by speed alone. The lack of global consistency in
hybrid constraint solvers means that general constraint solvers may be more

appropriate for some problems.

4. Is it possible to have a fast decomposition strateqy and a fast solution of sub-
problems or must one always dominate? The hybrid Erep/IGCS constraint
solver is an example of a constraint solver with a fast decomposition strategy
but slow solution. Most other constraint solvers have a slow decomposition
strategy but fast subsolvers. The graph in figure 3.9 suggests that there may
be a trade-off point where solvers have fast decomposition strategies and fast
subsolvers, but the Erep/IGCS hybrid is probably not at this trade-off point.

The contribution of this thesis is the study of hybrids of domain specific con-
straint solvers using coarse-grain decomposition for solving general engineering de-

sign constraint problems. To this end

e A new categorisation of constraint solvers in terms of type of problem solved
and constrainedness of the solver was introduced and used to categorise a

number of current constraint solvers.

e The characterisation of constraint solvers led to the identification of the divide-
and-conquer approach used by most current constraint solvers and the pros

and cons of this approach were studied in detail.

e An abstraction of the constraint process was created that allows the defini-
tion, representation and satisfaction of general engineering design constraint

problems in a high-level, general fashion.

e A study of the quality of solution provided by constraint processes led to

theorem 6.1 which allows statements to be made about the quality of solution

Chapter 10 209 Conclusions

of constraint solvers and sequential hybrid constraint solvers by examining the
individual steps used by the solver. Theorem E.1 allows similar statements to

be made about parallel hybrid solvers.

e A study of the various hybrid collaboration paradigms suggested by Monfroy
[84] was made and the advantages and disadvantages of each investigated. The
mathematical framework developed allows concrete statements to made about
the nature of these collaborations. Monfroy’s solver collaboration language was
extended to allow for the decomposition framework and to allow conditional

application of solvers.

e A new constraint solver has been defined that consists of a hybrid of Erep
and IGCS. This constraint solver combines the ability of Erep to solve well-
constrained geometric constraint problems with loops and the ability of IGCS

to solve under-constrained geometric constraint problems.

The framework developed in this thesis can be used to help bridge the gap be-
tween geometric and functional constraints and consequently forms an important
tool towards efficient, interactive engineering design by constraints. However, the
framework is sufficiently general that it is not restricted to geometric and func-
tional constraints and can also include relational algebra, finite domain constraints,

scheduling constraints and physical constraints.

Appendix A

Dimensions

This appendix presents a definition of the dimension function dim : domain — N.

The dimension function should have the following properties

dim(R) = dim(Q) = dim(Z) = dim(N) = 1
dim(0) = dim(A) = 0, A is a finite set,
dim(Dy x Dq) = dim(Dy) + dim(D,),
dim(A U B) = max(dim(A), dim(B)),
dim(A N B) < min(dim(A), dim(B)),

dim(A\ B) < dim(A).

The dimension function defined here is taken from [107]. It uses manifolds to
capture the above properties. It is assumed that all of the relations and sets used
in the constraint problem exist within a metric space M with metric d. It is also
assumed that the reader is familiar with the concept of metric spaces. Readers
unfamiliar with metric spaces are referred to [109]. Given the metric space M, then

the following definitions are important for defining a manifold.

Definition A.1 (Open Ball) Given a metric space M = {A,d}, a point a in A
and a strictly positive real number €, the open e-ball neighbourhood of ¢ in M

is the set

Bi(a) ={zx € A:d(z,a) < €}.

An open ball in the real line is equivalent to an open interval of size 2¢. The

210

Appendix A 211 Dimensions

interval (x — €,z + €) in the metric space {IR, d}, where d(z,y) = |x — y| is an open
e-ball in the neighbourhood of z. In IR?, open e-balls take the form of circles of
radius € about a point and in IR*, open e-balls take the form of spheres of radius e

about a point.

Definition A.2 (Open Sets) A set U isopen in metric space M ifVy € U, Je > 0,
such that B.(y) C U. O

In the metric space {IR, d} as above, any open interval (a, b) is an open set. Any

half open interval, such as (a, b] or [a,b), or any closed interval [a, b] is not open.

Definition A.3 (Homeomorphisms) Bijection f : Ty — T, is a homeomor-

phism if

U open in Ty < f(U) open in Ts.

Two sets which are homeomorphic to each other are equivalent in most respects.
For example N is homemorphic to Z and Q, and the open interval (0, 1) is homem-
orphic to the real line IR. However, IR is not homeomorphic to IR%

Given these definitions, it is possible to define an n-manifold as follows:

Definition A.4 (n-manifold) An n-manifold is a metric space M such that for
all € M, there is some neighbourhood U of x and some integer n > 0 such that U

is homeomorphic to R". [

An n-manifold is said to have dimension n. Manifolds form an ideal candidate

for the dimension function desired.

Definition A.5 (Dimension) A set S in a metric space M has dimension n,
dim(S) = n, if and only if n is the smallest number such that S is an n-manifold in
M. O

From this definition, it is immediate that

= 0, (asR” = finite sets)

Appendix A 212 Dimensions

However, by this definition, if a set B is countable, then
dim(B x B) = dim(N) = 1,

as there is always a homeomorphism between a Cartesian product of countable sets
and the set of natural numbers. This contradicts property A.1 above.

Standard results from manifold theory can be used to prove that the dimension
function above does have all the properties desired. In particular, the following

theorem can be used to satisfy property A.1 (taken from [107]).

Theorem A.1 If M; and M, are manifolds of dimension n; and n, respectively,

then M; x M, is an (n; + ny)-manifold. OJ

However, note that this theorem does not quite clear up the ambiguity of Z*.
Spivak notes the example of a torus which is the Cartesian product of two circles.
Spivak says that the torus is homeomorphic to a subset of IR*, thus making it a
4-manifold. However, it is also homeomorphic to a subset of IR?, meaning that it is
also a 3-manifold.

The dimension function clears up this amibiguity by insisting that the set S has
dimension equal to the smallest n-manifold that it is homeomorphic to. Correspond-
ingly, not all Cartesian products satisfy property A.1 and the property is amended

to reflect this (see section 4.5.1).

Appendix B

Constraint Representation Scheme

Reductions

This appendix presents the details of the remaining reductions necessary to form

the hierarchy of constraint representation schemes in figure 5.2. They are:
e Undirected graph — directed graph,
e Bipartite graph <— hypergraph,
e Bipartite graph <— binary graph in finite case.

Theorem B.1 Undirected constraint graphs, for example those used by Owen [86]
and Erep [48], are strictly less powerful than the directed graphs used by, for example
ICBSM [27]. OO

Proof The proof is in two parts. First a reduction is formed from the undirected
constraint graph to the directed constraint graph, demonstrating that the directed
graph can describe at least as many problems as the directed graph.

The weakness of the undirected graph is that it cannot describe non-symmetric
constraints. T The vast majority of constraints are non-symmetric. However, there
are a significant number of symmetric geometric constraints and some constraint
representation schemes, such as undirected constraint graphs ([48,86]) take advan-
tage of this.

The significance of symmetric constraints is that the ordering associated with
the constraint is only a partial ordering. For example, for the constraint = = y, it
does not matter which order the values of x and y are checked in, the constraint is

still the same. Testing (3,4) and (4, 3) gives the same result.

213

Appendix B 214 CRS Reductions

In an undirected graph there is no concept of ordering of binary constraints.
It is not therefore possible to describe anything but symmetric constraints and so
it is assumed that all constraints in an undirected constraint graph are symmetric
constraints. It is this fact that will be exploited in this proof.

The mapping used to reduce an undirected constraint graph (V, E) to a directed

constraint graph (Vp, Ep) is as follows:

Create Vp = V.
For each edge e € E, choose an orientation of that edge randomly so
that, for example, (u,v) in the undirected graph becomes [v,u|. Place the

directed edge in Fp.

By inspection, the resultant graph is a directed constraint graph. Checking the

reduction criterion:
1. The mapping is defined above.

2. Since the constraints in the undirected graph are symmetric and both graphs
use the same CTP, any solution to the directed graph is a solution to the
undirected graph. Similarly, any solution to the directed graph must be a

solution of the undirected graph.
3. Both are valid CRSs.

4. The reduction can be done in linear time in the number of edges in the undi-

rected constraint graph. It is therefore polynomial time.

So the undirected graph can be reduced to a directed graph representation.

Secondly, it is necessary to prove that the directed graph cannot be reduced to
the undirected graph. This implies that directed graph representations are strictly
more powerful than undirected graph representations as required. It suffices to find
a counter example. The weakness of undirected graph representations is that they
require all of the constraints to be symmetric.

Consider then, the following problem:

P = (E,C),
E = {(Tle)v (va)a (Z,IR)},
C = {e<yy=2z22<z}

Appendix B 215 CRS Reductions

There is an obvious directed graph representation of the problem, but no obvi-
ous undirected representation as the two constraints x+ < y and z < x are non-
symmetric. It is necessary to retain an ordering in order to describe these con-
straint non-ambiguously. Since an undirected graph does not preserve order, not
all problems that can be described using a directed graph can be described in an
undirected constraint graph representation. Thus, it follows that the directed graph
representation is more powerful than the undirected graph representation as desired.
]

Theorem B.2 The bipartite graph CRSs, such as the Constraint/Entity graph in
this report and the schemes of Tsang [114] and Middleditch and Latham [66], are

equivalent to hypergraph representation schemes, such as Serrano’s Connectivity
Network [101]. O

Proof Again the proof is in two parts. First a reduction is formed from a bipartite
graph representation scheme to a hypergraph representation scheme. The mapping

used is as follows:

Given the bipartite graph (C,V, E), create hypergraph (Vy, HE).
For each vertex x; € V' create entity verter x; in V.
For each ¢; € C, construct &, such that &, = {z;,xi,,... ,x; }, the

set of entity vertices adjacent to ¢; in E. Then construct the hyperedge
he in HE,

he = fcia

labelled as constraint c; with CTP f.. and ordering <.,.

By inspection, the resulting graph is a hypergraph. Checking the reduction

criterion.

1. Map is defined above.

2. Since the relation ¢; is borrowed and the ordering of the entities retained,
the same problem is being solved, so all solutions in the bipartite graph are

solutions in the hypergraph and vice versa.

3. Both are valid CRSs.

Appendix B 216 CRS Reductions

4. For each entity in E a vertex in the hypergraph is created, taking O(n). For
each constraint in C' one hyperedge is created, taking O(mn) in all. This is a

polynomial time algorithm.

Secondly, a reduction is formed from the hypergraph to the bipartite graph as

follows:
Given the hypergraph (V, HE), create bipartite graph (Vz,Cp, Ep).
For each variable x; € V', construct entity vertex x; in Vg.
For each constraint ¢; € HE, construct a constraint vertex labeled c;
mn CB-

Create edge (x;,c;, k), x; € Vg,¢; € Cp,k € Z if he € HE, z; € he,
¢; € he and x; is in the kth position of <ej-

The resultant graph is a bipartite graph. Checking the reduction criterion.

1. Map defined above.

2. Since the constraints are tested using the same test procedures in both repre-

sentations, a solution in one will be a solution in the other.
3. Both are valid CRSs.

4. For each entity in V| an entity vertex in the bipartite graph is created, taking
O(n). For each constraint in C, a constraint vertex in the bipartite graph is
created, taking O(m). Each constraint is imposed on at most O(n) entities so
at most O(n) edges per constraint are created, hence O(mn) in total. Hence

the reduction is polynomial.
Hence the bipartite and hypergraph representation schemes are equivalent. O

Theorem B.3 When dealing only with finite domain problems, hypergraph graph

representations and binary constraint graph representations are equivalent. []

Proof This is a proof oft-quoted in the literature, though not explicitly called a
reduction. It is usually discussed as a method of describing n-ary constraints in
binary graphs, but can be interpreted as a reduction from a hypergraph represen-
tation scheme to a binary graph representation scheme (see Tsang [114], p12, for
example). The reverse reduction is, of course, trivial, as binary graphs are already

hypergraphs. O

Appendix C

Using local properties to draw

conclusions about processes

Theorem C.1 We wish to prove the following:
a. Strongly Complete < Complete

b. Locally Complete # Strongly Locally Complete

Strongly Locally Complete = Locally Complete
c. Locally Complete < Complete
d. Strongly Consistent < Consistent

e. Locally Consistent = Strongly Locally Consistent

Strongly Locally Consistent # Locally Consistent
f. Locally Consistent < Consistent

g. Strongly Sound < Sound

Sound = Strongly Sound

h. Locally Sound #- Strongly Locally Sound

Strongly Locally Sound = Locally Sound

i. Locally Sound < Sound

217

Appendix C 218 Local - Global Theorem

v
Lemma C.1 Given solution process D(0) —* D(k) and constraint problem P =
(®, W)

a D) CD(I-1), Il=1.k
b ACB=CNACCNB
c ACB=C(B)CC(A), ABCVU
O
Proof

a Trivial from definition of solution process

b Assume A C B

recCNA = zeCAzcA
= ze€CAxe€B(as ACB)
= ze€(CNB
= CNBCCNA (by definition of C)

c Let A={W,,..., 94}, B={¥p,...,¥Yp}. Then

cA) =Nz cB)= [y

T€EA yeB

If A C B then we can reorder C(B) such that

c(B)y=cA)n () v

yeEB\A
Then we have
reCB) = ze()y
yeEB
= zec(A)n (] v
yeB\A

Appendix C 219 Local - Global Theorem

O
Proof (of theorem C.1)

a. Strongly Complete = Complete

Given
CV)ND(I—-1)CD(),Vi=1.k (C.1)
Required to prove
C(V)ND(0) C D(k)
Proof Assume C(¥)ND(0) C D(l—1), VI = 1..k then

CY)NC(Y)ND(0) CD(l—1)NC(Y)
= C(¥)NDO)CD(I—-1)NC(¥) (as SNS=19)
= C(¥)ND(0) CD(l) (by C.1)

Hence by induction, since C(¥) N D(0) C D(0), we have
C(V)ND(0) C D(k)

as required O
Complete = Strongly Complete

Given
C(¥)ND(0) C D(k)
Required to prove

CW)ND(-1)CDI),VI=1.r

Proof

CY)ND(—1)

N

C(¥)ND(0) (since D(I — 1) C D(0))

N

D(k) (as the process is complete)
D(

N

[) (by definition of solution process)

Appendix C 220 Local - Global Theorem

as required O

b. Strongly Locally Complete = Locally Complete

Given
C(¥)ND(I—-1)CD(), ¥y, C¥ Vi=1.k
Required to prove
C(¥')ND(0) C D(k)
Proof Assume C(¥')ND(0) C D(l — 1) then

C(¥')NDO) = C(¥)NnCc(¥)ND(0)
C(¥;)NC(Y')ND(0) (since ¥, C V' = C(¥') C C(V)))
C(¥,)ND(l — 1) (induction step)

N 1N

IN

D(l) (strong local completeness)

Hence C(U') N D(0) C D(k), as required O
Locally Complete # Strongly Locally Complete

Proof Consider a solution process with step
Dk —1) 2 D(k)
where we include (v1,...,v,) € D(k —1) in D(k) iff
(v1,...,v,) € D(k—1)NC(¥)

However, if

C(V') C C(Vy)
then

F(ury oo yun)|(ur, .o un) € C(U), (U, ... u,) ¢ C(Wg)

and by the definition of local completeness, this solution step is not locally

complete. However, the solution process itself is obviously locally complete.

Appendix C 221 Local - Global Theorem

O

c. Locally Complete < Complete
Trivially true if ' = W

d. Strongly Consistent = Consistent
Trivial. Given C(¥) ND(l) # 0, let | = k.
Consistent = Strongly Consistent

Given

CW)#AD=C(VY)ND(k) #0
Required to prove

C(W) £ 0= C(¥)ND() # 0,V = 0.k

Proof
C(¥)ND(k) CC(¥)ND(l) (as D(k) C D(I))
Hence

dJr e C(¥)ND(k) = z€C(¥)ND()
= C(U)ND() #0
as required O

e. Strongly Locally Consistent # Locally Consistent
Proof Consider the problem {{(z,Z)},{x < 5,2 > 1}} and the solution

process
DO)=Z =5 D(1)={0.6}
2% D(2) = {0,6}

This is an acceptable solution process by the definition of section 6.6 and
C(U) # (. In fact, C(¥) = {1,2,3,4}. The process is strongly locally consis-

Appendix C 222 Local - Global Theorem

tent, as

(z>1)ND(1) = {6} #0
and (2 <5)ND(2) = {0} #0

\ \/
—_

But the process is not locally consistent because
(x>1)N(x<5ND2)=0

O
Locally Consistent = Strongly Locally Consistent

Given

CUV)#£0D=CV)ND(k) #0
Required to prove

C(W) £ 0= C(¥)ND() £ 0, = 0.k

Proof
CUYND(k) CC(V)ND(l) (as D(k) € D(I) and C(¥') C C(T,))
Hence

dJr e C(U)YND(k) = xeC(¥)ND()
= C(U)ND()#D
as required O

f. Consistent < Locally Consistent

True if O = ¥/

g. Strongly Sound = Sound

Given

D) CC(W)ND(1),V =1.x

Appendix C 223 Local - Global Theorem

Required to prove
D(r) C C(¥)ND(0)
Proof Assume D(l — 1) C C(¥) N D(0) then

D(1)

N

C(¥)ND(l — 1) (strongly sound)
C(¥)NC(¥)ND(0) (induction step)
C(U)ND(0) (as SNS =09)

N

N

Therefore, D(k) C C(¥) N D(0) as required O
Sound # Strongly Sound

Proof Consider the simple solution process 3 where a solution step is as

follows

Dk — 1) 2 D(k)
where D(k) = C(¥,) ND(k — 1)

Such a process is obviously sound as U, W, = W, however it will almost certainly
not be strongly sound as C(¥) C C(¥y,) and if C(W) is a strict subset of C(¥y),
then

D(k —1)NC(V) c D(k — 1) N C(Vy)
= D(k — 1) NC(¥) C D(k)

That is, there will be values in D(k) which are not valid solutions in C(¥) and

so the solution step is not sound and (is not strongly sound. O

h. Strongly Locally Sound = Locally Sound

Given
D) CC(¥)ND(l—1),Vi=1..x
Required to prove

D(x) C C(¥') N D(0), ¥ = UV,

Appendix C 224 Local - Global Theorem

Proof
D(k) C C(¥,)ND(k—1)
C C(V, 1)NC(V, 2)ND(k—2)
C
C C(¥,q)N---NC(¥)ND(0)

But C(¥, 1) NC(¥, o) N---NC(Vy) = C(V), as ¥' = U¥; and by definition
of C.

Hence, D(k) C C(V')ND(0). O

Locally Sound # Strongly Locally Sound

Proof Consider the following solution process.
Find (vy,...,v,) such that (vy,...,v,) ¢ C(V') and order @' = {¥| ... ¥’}
such that (vy,...,v,) ¢ C(¥'\ ¥)) , ie (vy,...,v,) is not a valid solution to

the constraint problem. We then define the following solution process:

DO) 2% D(1)
Y p(2)
L

!

Where

Appendix C 225 Local - Global Theorem

Such a process is locally sound as

D(k) = D(k—1)NC(¥})
= Dk-2)NC(Y. _,)NC(V)

= ((DO)NC(¥))) U (v1,...,v,))NC(¥Y)N---NC(V))
= (D (01, 0,)) N(C(EY) U (1, .. ,0,))
N---NC(Y)
= DO)N((C(¥)N---NC(¥,))uU
((v1,...,0,) NC(TY) N ---NC(T))))
(as D(0) U (vy,...,v,) = D(0))
= DO)NCY)U ((v1,...,v,) NC(TH) N---NC(V))))
(by definition of C)

(0)u
NC(Ws)

!
)

= DO)N(C(Y)YUD) (by definition of (vy,...,v,))
= D(0)NC(V)
C D0)NC(Y)

However, the process is not strongly locally sound as D(1) contains a value
not in C(V}) N D(0). O

i. Locally Sound < Sound
Trivially true if ¥/ = W,

Appendix D

Enhanced solution spaces

This appendix defines enhanced and embedded solution spaces. Enhanced solution
spaces allow discussion of a solution space within a larger solution space. Embedded

solution spaces allow discussion of subsets of solution spaces.

Definition D.1 (Enhancement of solution spaces) Given two sets of entities
® and @' with solution spaces Dg(0) and Dqe (0) respectively, the enhancement
of D4 (0) with respect to @' is the solution space of ® within the solution space
® U ®'. This is written

Dy [® (0) = Dy(0) x Dana(0),
Dq)‘d)u(b, (k) = D@(k’) X D¢/\¢.(0).

Since it is natural to want
Do (0) = Do ** (0],
an ordering, <, is enforced on the labels in ® U ®' so that

Do |™™ (0) = (Ds(0) x Dana(0))
= (Dar(0) x Dayar (0))
_ Dd)l‘d)Ud)’ (O)

In this thesis the ordering is implied unless explicitly stated. It is omitted for clarity.
Conversely, it is sometimes necessary to take the enhanced solution space of a
superset ® and examine the solution space of a subset ®' of ®. This is called the

embedded solution space of ®' in ® and is equivalent to the embedded domains

226

Appendix D 227 Enhanced solution spaces

in [84]. The embedded solution space of ®' in ® is denoted Dgl|qe (0) as below

Dole (0) = Q) {Ds(0)|¢ € ¥'}.

For relational algebra, the enhanced solution space is equivalent to a natural join.
The embedded solution space is similar to a projection. The ordering is similar to
the notion of an attribute. Enhanced solution spaces are also extensions of Monfroy’s

structure embedding and constraint system enrichment [84].

Example D.1 Let ® = {(z,D,), (y,D,), (2,D,)} and ®' = {(y, D,), (2, D,), (w,
D), (a, D,)}, with a lexicographic ordering <;.,=a < w < z < y < z. Then

Ds(0) = D, x D, x D,,
Dy (0) = Dy x D, x D, x D,

= D, x D, x Dy x D,, under <.
Consequently,

Ds|** (0) = D, x D, x D, x D,, x D,

= Dy x Dy, x Dy x D, x D,, under <,
Dy |*® (0) = D, x D, x D, x D, x D,

= Dy x Dy, x Dy x D, x D,, under <;e,.

A stated aim of Monfroy’s enrichments is that no solutions should be lost. How-
ever, Monfroy treats constraint solvers as black boxes and does not consider solution
spaces at all. The terminal solution space produced by a solver may contain any
number of solutions. However, all solutions that it does contain should be preserved.
Consequently, the enhanced solution space within a solution process is defined as

follows.

Definition D.2 (Enhancement of solution spaces) Given two constraint pro-

Appendix D 228 Enhanced solution spaces

cesses o and [3 such that for constraint problems Py = (®, W) and P, = (9', ¥),

w

Dq)(O) —>*a Dq)(k')
\Il’

Dy (0) —*5 Da(l),

ﬁth_e enhanced solution space at step k£ in process o and step [in process
is:

Dy |* (k,1) = (Da(k) x Dana(0)) N (Dayar (0) x Dar(l)) .
O

Example D.2 Let & = {(w,R), (z,IR), (y,R)} with solution spaces

Ds(0) = R xR xR,
Dy(10) = {{w={1},z={2},z2= {31}, {w= {3}z = {4}, 2 = {5}},
fw= {5}, = {6},2 = {T}}}.

and ®' = {(z,IR), (y,R), (2,IR)} with solution spaces

Dy (0) = RxR xR,
Do (11) = {{o={1},y ={2},2 = {31} {z = {2}y = {3}, 2 = {4}},
{zr={8Ly={4}. 2= {5}} . {o = {4}y = {5}, 2 = {6} }},

with lexicographic ordering <;.,= w < x < y < z. Then

Dy |*" (10,11) = (Ds(10) X Dgns(0)) N (Darar (0) x Do (11))

= ({{w={1}z={2}y={3}} {w={3}, 2 ={4},y = {5}},
{w={5}a={6},y={T}H}} xR)N
(R x {{z = {1},y = {2}, 2= {3}},
{o={2}y={3}z={4}}{z = {38},y = {4}, 2 = {5}},
{r={4},y={5}. 2 ={6}}})

= {{w={1t.a={2},y={3},» = {4}},
{w= {3}z ={4},y = {5}, 2= {6}}}.

Appendix D 229 Enhanced solution spaces

Thus Dg|®“® (10, 11) only contains configurations that are possible solutions to the
whole problem. For example, {1,2,3,5} is only a solution to ® and not &' and

cannot be a solution to the whole problem. []

Appendix E

Paradigms of collaboration

Monfroy [84] has presented three paradigms of collaboration for hybrid constraint
solvers. Section 7.4.1 has discussed the serial collaboration paradigm in detail. This
appendix discusses the parallel and concurrent paradigms in terms of the constraint
satisfaction framework. The advantages and disadvantages of each paradigm are

discussed, particularly in terms of practical issues.

E.1 Parallel hybrids

The second collaboration paradigm suggested by Monfroy is parallel collaboration.
In terms of the framework of chapter 6, parallel solvers work in a slightly different
fashion to sequential solvers. A parallel hybrid splits a large constraint problem into
a number of subproblems and then subsolvers solve the subproblems independently
of all other subproblems in parallel. The solution spaces found by the subsolvers
are combined into a solution space for the problem as a whole using a combination
function.

In diagrammatical form (see figure E.1) constraint problem P = (&, V) is split
into subproblems P, = (&1, Uy), Py, = ($y, ¥y), ..., P, = (®,,¥,) to be solved by
solvers (Sy, Sa,...,S,). For the purposes of this section, the decomposition of P to
the various P; is assumed. Entities ®; are found by taking the imposed sets &(;).

The initial solution space D(0) of P is used as input to the subsolvers. However,
@; (0)

the solvers are each only concerned with the embedded solution spaces D¢

Each solver then initiates the solution process

Ds|o, (0) isl D¢|¢'i (%)

230

Appendix E 231 Paradigms of collaboration

The combination function, f, combines the terminal solution spaces of the subprob-
lems into a solution space for P. Choosing the subproblems F; is critical for an
efficient hybrid. The combination function is also vital to determining the terminal
solution space of the hybrid and also to the efficiency of the hybrid. Monfroy does
not discuss the practicalities of a parallel hybrid, but it seems likely that the combi-
nation function will have complexity worse than linear in the number of constraints,
thus destroying the advantages of using hybrids, as the combination function may
have to find the intersection of two infinite, implicitly defined sets. Effectively this
means solving another nonlinear system of equations. If there are only a finite
number of solutions to each subproblem, then the recombination function will be of
linear complexity in the number of solutions.

A theorem similar to theorem 6.1 can be constructed for parallel constraint

satisfaction.

Theorem E.1 (Relation between local and global properties for parallel
collaboration)

Let solution process S act on problem P = (®, V) such that

Dq) (0) —\IJ)*S Dq) (K) .

Let S be a parallel collaboration between two solvers S; and Sy such that, for
Oy, P, C @ and ¥y, ¥, C U,

1

Dsle, (0) —*s, Dasle, (K1),
Uy

Dols, (0) —"s, Dals, (K2),

D@(K) = f(ch‘d)l (/ﬁ) aD¢|¢2 (K‘Q))a

where f is a combination function.
Then

1. S is (globally) sound if Sy, S, and f are locally sound.

2. S is (globally) complete if Sy, Sy and f are locally complete.

O

Proof The proof of this theorem is presented after lemma E.1. O

UOIRIOR[[0)) [A[[eIRJ :T'5] 2In31q

(®,¥)

Combination
function f

(B, W) Solutions Solutions
Solverl =
(@, ¥,) Solutions Solutions
Solver2 =
| |
(oo) \ \
| |
| |
| |
| |
1 |
(@, %) Solutions Solutions
Solvern =

Solutions
—

A xipuaddy

¢EC

OI)RIOQR[[0D JO SULSIPRIR]

Appendix E 233 Paradigms of collaboration

The reader is reminded that a solution process

D(0) > D(r)

is consistent if D(k) contains a solution to the constraint problem formed by the
set of constraints W. The process is sound if D(k) contains only solutions to the
constraint problem and the process is complete if it contains all of the solutions
to the constraint problem. For parallel collaboration, the combination function f
satisfies these properties if it preserves the properties of the solution spaces it acts
on.

By theorem E.1, if the terminal solution spaces provided by processes Sy, So and
combination function f contain only solutions to the subproblems then S contains
only solutions to the whole problem. Similarly, if the terminal solution spaces pro-
vided by processes S, S and combination function f contain all of the solutions to
the subproblems, then S contains all of the solutions to the whole problem.

Notice that, unlike the sequential theorem, theorem 6.1, global consistency is not
decided by this theorem. Even if S; and S, are globally consistent, because they are
operating independently of each other it is possible that both solvers could find a
single globally consistent solution, but that both find a different one. Consequently,
S is not globally consistent. Building a globally consistent parallel hybrid will be
difficult.

Lemma E.1 ACB,CCD=ANCCBND. O

Proof ACB=xr¢c A= x¢c B.

Similarly,
CCD=xe(C=uxe€D.
Therefore

reANC = zeANxeC
= xe€BANzxeD
= xe€BND.

O Proof (of theorem E.1)

1. S, Sy and f sound = S sound.

Appendix E 234 Paradigms of collaboration

If S; is sound then
C(¥1) NDsls, (0) 2 Dals, (k1) -
Similarly, S and f sound implies that

C(\Ijg) N D¢|¢2 (0) Dd)‘d)g (KQ))
Doy, (k1) N Doly, (k2) 2 Do(k),

U

where
Dolg (k) = (Dalo (k) |-
Given these, it remains to prove that S is sound, i.e.
C(V)NDs(0) O Dy(k).
By the definition of enhanced solution spaces

C(¥)NDylg, (0) 2O Doy, (K1),
C(¥3) NDylg, (0) 2 Doy, (k2)-

Also by the definitions of enhanced and embedded solution spaces,

Dsls, (0) = Dos(0), i=1,2.

Consequently,
C(¥1) N De(0) 2 Dolg, (k1)
C(¥2) N Da(0) 2 Dolg, (2) .
Then
C(V) = C(¥)NC(¥y) NDy(0)

U

Dol3, (k1) N Dalg, (k2) (By lemma E.1 and commutativity of N)

U

Dy (k) (By combination function f).

2. 51, Sy and f complete = S complete.

Appendix E 235 Paradigms of collaboration

If Sy is complete then
C(¥1) N Dsle, (0) € Dolo, (k1) .
Similarly, S and f complete implies that

C(¥3) NDsls, (0) C Dola, (k2),
Doy, (k1) N Doly, (k2) € Do(r).

Given these, it remains to prove that S is complete, i.e.
C(V)NDs(0) C Dy(k).
By the definition of enhanced solution spaces

C(¥)NDylg, (0) € Dol3, (K1),
C(¥3) NDylg, (0) € Doy, (k2)-

Consequently,
C(¥1) NDs(0) € Dolg, (k1)
C(P2) N Dy(0) C Dalg, (12) .
Then
C(V) = C(¥)NC(¥y) NDy(0)
C Dsl3, (k1) N Dalg, (k2) (By lemma E.1 and commutativity of N)
C Ds(k) (By combination function f).

Parallel solution does not suffer from the same problems as sequential satisfac-
tion. Since the output of the various solvers is combined using the function f, it
does not matter whether inputs and outputs of solvers are compatible - only that f
can handle the various types of output.

Unfortunately, this means that the operation of f is critical. The most power-
ful combination function is simply the intersection of the various solution spaces.

Intersection is sound and complete. However, the intersection of infinite sets is a

Appendix E 236 Paradigms of collaboration

non-trivial problem .

Another possible combination function is to find a single member of the inter-
section of solution spaces. This would be a solution to the overall problem, P.

The combination function is a constraint solver in itself. It takes as input two
embedded solution spaces and tries to produce a solution space that is an intersection
of these two solution spaces. The two solution spaces provided as input can be
thought of as constraints and so the combination function is trying to find solutions
to two complicated constraints. Consequently, the operation of the combination
function is vital to the operation of the parallel hybrid. The construction of a
combination function is very hard in general.

The chief advantage of a parallel hybrid is that it is trivial to implement on a
parallel processor. Since the subproblems are solved independently, they can be
solved on separate processors and then recombined as necessary. Consequently, if
the combination function is fast and efficient, then the hybrid should be fast and
efficient.

Parallel collaboration should be considered if:

1. Use of parallel processors to improve performance is possible and important.
2. Subproblems are expected to be relatively independent of each other.

3. An efficient combination function is available.

The following section presents an example of a parallel collaboration.

E.1.1 An example of solvers in parallel

When joining two solvers in parallel, the most important issues to consider are the
intersection of the entities of the two problems and the nature of the recombination
function. The intersection of the two sets of entities gives an indication as to how
difficult it will be to find solutions to the general problem. The recombination
function, as discussed in section E.1 is critical for identifying solutions to the general
problem.

Consider the geometric problem Pyepm = (Pgeom, Ygeom) described in figure E.2,

Appendix E 237 Paradigms of collaboration

line_1 line_2

(0,0) line 3

c radius

Figure E.2: A simplification of the internal combustion engine

defined by the constraint problem below

Pyeom = {(line_1_end_1,(0,0,2)), (line_1_end_2, (0,0, 2),
(line_2_end_1, (0,0, 2)), (line2_end_2, (0,0, 2)),
(line_3_end_1, (0,0, 2)), (line_-3_end_2, (0,0, 2))
(radius_end_1, (0,0, 2)), (radius_end_2, (0,0, 2)),

(a,R), (b, R), (¢, R), (r,R)},

Upeom = {line_1_end_1 = (0,0),line_1_end_2 = line_2_end_1,
line_2_end_2 = line_3_end_1, line_3_end_2 = line_1_end_1,
midpoint(radius_end_1, radius_end_2) = line_2_end_2,
distance(line_1_end_1, line_1_end_2) = a,
distance(line_2_end_1, line_2_end_2) = b,

distance(line_3_end_1, line_3_end_2) = ¢,

(
distance(radius_end_1, radius_end 2) = 2r,b = 10, c = 15},

where ® ., is a set of entities and U, is a set of constraints.
Simple geometric reasoning, by considering the furthest possible points on line_1,

determines that

a<c+b,
a>c—b,

which in this case corresponds to a range of values for a such that 5 < a < 25. There

Appendix E 238 Paradigms of collaboration

is no restriction on the size of r from the geometric problem. Correspondingly, there
are an infinite number of solutions to this problem corresponding to the line line_2
rotating about the point (15,0) and line_1 stretching so that it remains coincident.
The length of radius is undetermined.

Consider also the algebraic problem, Py, = (P, ¥aiy) with

bag = {(p,R), (@, R), (d,R), (7, R), (r,R), (,R), (7, R), (n, R)},

2 t
o+t cd=2armr’n,1 <a<3,4<n<12,

Uy, = {p=aderr e =

p=1,d=1t=1},

where @, is a set of entities and ¥, is a set of constraints.

Solving this problem results in values for ¢r, r and a, as below

200+t

t
= 2a+1

cr =

= 3<er <.

1 = alecerr

= —<a< —.

Now consider the general problem, P = (®, V), ® = &y U Py, ¥ = Wy, U
U,0- An interval solver such as ILOG Solver [92] can solve P but only by convert-
ing the geometric constraints in P, into a system of equations, thus losing any
geometric knowledge implicit in the problem.

However, the problem can be solved using domain specific knowledge in a more
efficient manner. If P, is studied using ICBSM or IGCS, then the range of

solutions found will be

The domain specific knowledge used here is that the rigid bodies can only move

according to their allowable motions. Consequently, the solutions to the problem

Appendix E 239 Paradigms of collaboration

consist of all the allowable motions of the rigid bodies.

If P, is solved in parallel, independently of Py, then the solutions to P, are

3<er <7,
1 1
ﬁ<7"<§,

aa
87 *

3
§<U/<

The recombination function f is then used to find solutions to P by finding the

intersection of the solutions to Py.,n, and Py,

3<er <7,

1 1

21 <r< 3

<a< ‘gﬂ.

™

Parallel solution of P is very efficient and makes good use of domain specific knowl-
edge.

The decomposition strategy used in this case study is to split P = (®, V) into

Py = Pyeor, and Py = Py,. The hybrid can then be described in the solver collabo-

ration language of appendix F as

((IGCS, Pyeom)||(ILOG Solver, Pyy)) .

E.2 Concurrent hybrids

The third collaboration primitive that Monfroy suggests is concurrency. A concur-
rent hybrid takes as input a constraint problem P = (&, W¥). The hybrid has a
number of solvers at its disposal as well as a choice function . The hybrid solves
problem P simultaneously on all of the subsolvers. The choice function v is then
used to decide at run-time which solver and terminal solution space to use. For
example, a choice function may be to take the solution space of the first subsolver
that terminates or the most complete solution space, which will be the largest if all
solvers are sound.

In diagrammatical form (see figure E.3) constraint problem P = (®, ¥) is copied
to subsolvers Si,...,S,. The subsolvers are initiated on P. The choice function is

then used to decide when to terminate and what solution space is the output of the
hybrid.

UOTIRIOR[[0)) JUIIINIUOY) :¢'5] oInJ1]

(®,¥)

(®, W)

(@, W)

Solutions
Solverl [—=
Solver 2
|
|
|
|
|
|
|
Solutions
Solvern [———=

Solutions @ Solutions
—

Solutions

Choice
function Y

Solutions

Choice of
solution
space

A xipuaddy

0vc

OI)RIOQR[[0D JO SULSIPRIR]

Appendix E 241 Paradigms of collaboration

Similar to the parallel hybrid, the choice function ¢ is critical to the terminal
solution space of the hybrid. However, in this case the v function only selects a
solution space from amongst n possible solution spaces. Indeed, since 1) is also time
dependent, in that it may wish to choose the first solver to terminate with a certain
property, it is not possible to say with certainty what properties the terminal solution
space may have, unless the ¢ function enforces a property such as consistency or
completeness. Enforcing such a property will mean that the choice function becomes
a constraint solver itself and this will be difficult to implement.

The advantages of concurrent hybrids are that they can guarantee certain prop-
erties of the terminal solution space, by judicious use of the ¢ function, and that,
since the solvers act independently, the concurrent subsolvers can be run in parallel.
If a choice function is selected that selects the first solver to finish and solvers are
run in parallel, then the concurrent collaboration will reduce the real time needed
to solve a problem. Note that if knowledge of the problem can be used to deter-
mine the best solver to be used before solution commences, this sort of concurrent
collaboration is wasted.

However, concurrent hybrids involve massive duplication of effort. Since effec-
tively each solver is trying to do the same job as every other solver, that is find
solutions to P, then they will find the same solutions and duplicate the effort.

Concurrent hybrids also do not improve the expressiveness of individual solvers.
Since concurrent solvers are only dealing with the same problems, it is not possible
to improve the expressiveness of an individual solver using the concurrent paradigm,
unlike sequential and parallel hybrids.

Currently no concurrent hybrids exist in the literature.

Concurrent collaboration should be considered if:
1. It is unknown which of many solvers will work best.
2. A particular property of a solution space is desired.

3. Speed is important and there is spare parallel processing power.

Appendix F

Solver collaboration language

The extended solver collaboration language used in this thesis is presented in this
appendix. The extended solver collaboration language is based on Monfroy’s solver
collaboration language [84] but has been extended to allow subsolvers to act on
subproblems and also includes a conditional branch statement to initiate backup
solvers when a first attempt fails.

The extended solver collaboration language is presented in table F.1. The lan-
guage is discussed in more detail below.

The set Id of identifiers is used to name solver collaborations and identify them.
The symbol S denotes a set of constraint solvers. Note that Monfroy uses only a
single solver in each basic part of a collaboration. It is more suitable here to have a
number of constraint solvers as a decomposition strategy may identify a number of
possible constraint solvers that can be applied to a subproblem.

1) represents a choice function used in a concurrent collaboration to select from

Id € Identifiers,
S C Solvers,
1 € Conditional selection,
P € Constraint problems,
D € Solution spaces,
Col == Id=F,
E = o|ld|B|Ey; Ey|EP| repeat (E)|Y(EC)| if T then E; else Ey,
T = E=D,
B = (va)‘(va) || B,
EP := E|E| EP,
EC = EFE|E?EC.

Table F.1: Solver collaboration language (adapted from BALI [84])

242

Appendix F 243 Solver collaboration language

a number of solution spaces as described in appendix E.2. The symbol P represents
a constraint problem. In the terms of solver collaboration, each P will typically be
a subproblem of a larger constraint problem. Consistent with the rest of this thesis,
solution spaces form an important part of solver collaboration and are shown as a
D.

The remaining terms in table F.1 define how the basic symbols can be formed into
solver collaborations. A solver collaboration is described in the solver collaboration
language as an expression, F. An expression is assigned a name using the form

‘Id = E’. An expression consists of one of the following:
e The identity solver ¢ which does not refine a constraint problem at all.
e An identifier indicating a previously defined solver collaboration.

e A parallel collaboration. A parallel collaboration consists of a sequence of
constraint problem-solver pairs or more complicated expressions, linked with
a ‘||” symbol. This is interpreted that each constraint problem-solver pair
is solved independently and the solution spaces combined, as described in

section E.1. Thus in the parallel collaboration
(Pr, S1) || (P, S2) || (P, S3),

problem P; is solved by a solver in S;; problem P; is solved by a solver in S,
and problem Pj is solved by a solver in S3 independently of each other. Solu-
tions are then recombined to give a solution space for the combined constraint
problem formed by P, U P, U Ps.

e A serial collaboration. A serial collaboration consists of a sequence of con-
straint problem-solver pairs or more complicated expressions linked with a ;’
symbol. This is interpreted that each constraint problem-solver pair is solved
in sequence and that information from the first solution is used to solve the
second and so on as described in section 7.4.1. Thus, in the serial collaboration

(P1, S1); (P2, S2); (Ps, Sa),

i

problem P; is solved by a solver in S;; problem P, is solved by a solver in Sy
and problem Pj is solved by a solver in S3. P; is solved first and information

obtained from this is used in solving P, and so on. Solutions to P are then

Appendix F 244 Solver collaboration language

combined with the solutions obtained from P; and P, to give solutions to
PLUP,U P

e Repeated application of a solver collaboration. Sometimes information can be
obtained during a solution process that can be used to refine the solution even
further. However, this information is only apparent after the solution process
has completed. Repeated application of a solver collaboration, Repeat(FE), can
be used to force a solver to repeat a solution process until it can progress no

further. Monfroy demonstrates this in [84] by defining the solver collaboration
Sine = Maple_N F'; Repeat(Ling,).

Maple_NF' transforms polynomials so they can be used by Ling,. Ling, is a
solver for linear equalities and inequations using an extension of Gaussian elim-
ination. It is repeatedly applied until it cannot simplify the linear equations

any more.

e A concurrent collaboration. A concurrent collaboration consists of a number
of constraint problem-solver pairs or more complex expressions linked by a ‘7’
symbol and selected from using a choice function ¢. This is equivalent to the

concurrent collaboration presented in section E.2. Thus,
be ((P1,S1)?(P1,Sg)?(P], 53))

is a concurrent collaboration where P; is solved by one of S;, one of Sy and
one of S3 concurrently. The choice function s selects the concurrent solution

space given by the first solver to terminate.

e A conditional branch. The conditional branch statement has been included in
the language to allow the possibility that a constraint solver expression may
produce a value different than expected. Should this occur, the user of the

constraint solver may wish to activate backup solvers.

For example, suppose that two solvers S; and Sy can be applied to find so-
lutions to problem P. Solver S; is much more efficient than Sy but can miss
solutions occassionally, whereas solver Sy is much more thorough but consid-

erably slower. In this case, the user may wish to build a hybrid constraint

Appendix F 245 Solver collaboration language

solver as below
S = [if (51, P) = () then (Sy, P) else o],

where ¢ is the identity solver (P, D) = D.

The hybrid solver § will attempt to solve problem P using solver S;. However,
if no solutions are found, then S5 is used to find solutions to P. Note that

several assumptions are made in the definition of S:

1. S; is sound. If S; is not sound then it may return a solution space which
is not identically empty but also does not contain any solutions to P.
If Sy is sound and returns an empty set, then S; has failed to find any

solutions and S, should be used.

2. Finding a single solution to P is sufficient. The conditional test does not
count the number of solutions in order to activate S,. It is possible to
imagine a conditional branch statement that is predicated by the number
of elements in the solution space, and in particular by the number of
solutions in the terminal solution space of solver S;. However, such a
test would likely be extremely expensive, as estimating the number of

solutions to even simple constraint problems is difficult.

Note that, other than the conditional guard operator which has been omitted
for clarity, the language in table F.1 contains Monfroy’s BALI.

The operational semantics of the statements in table F.1 are straight-forward
to convert from Monfroy’s descriptions into the terminology of chapters 4- 6. The
conditional branch is described below as an example and because it is not part of

Monfroy’s basic language.

Appendix F 246 Solver collaboration language

Definition F.1 (Conditional branch) Successful branch:

D(k) —* D(k+1), D(k+1)=D

P : (if Ey = D then F; else Fy; E, D(k)) — P.(Ey,D(k)) : (E1; E,D(k))
Unsuccessful branch:

D(k) —* D(k+1), D(k+1) %D

P : (if Ey = D then E; else Eqy; E,D(k)) —
P.(Ey,D(k)) : (Ey; E,D(k + 1))

]

Note that if the conditional branch test is satisfied, the solver expression F; operates
on the old solution space D(k). If the test fails, the solver expression E, operates
on the new solution space D(k + 1). This produces the desired outcome as in the
example above.

The solver collaboration can be used as Monfroy does to produce hybrid con-
straint solvers. Some examples of this use are demonstrated in section G and E.1.1.
Moreover, the extensions to the solver collaboration language discussed in this sec-
tion, combined with a decomposition strategy, allow more complex and potentially

more powerful hybrids.

Appendix G

An example of many solvers in

serial

This appendix describes in more detail the experiment described in section 7.6.
This experiment was carried out to study the asymptotic behaviour of various con-
straint satisfaction algorithms on a simple case study. The algorithms studied were
INCES [62], a numerical algorithm [46] and a sequential hybrid. The purpose of
the experiment was to give empirical as well as theoretical evidence that the hybrid
algorithm was sound, complete and more efficient than the other two algorithms
as well as to investigate sequential collaboration. It was anticipated that the hy-
brid would be approximately linear in complexity, whilst the other two algorithms
would be quadratic. This would help to underline the advantages of using hybrid
algorithms.

For convenience, the description of the case study is repeated in the following
section. A detailed description of the manner in which the experiment was conducted

is then explained and the problems encountered are described in full.

G.1 Case study

The case study chosen was an extension of Lamounier’s internal combustion engine
case study (see [64] and section 7.3). That problem studied the integration of some
algebraic equations with the geometric constraints describing the construction of
the piston. The two problems were linked so that the size of the piston and the
length of the crankshaft were variables both in the functional problem and also in
the geometric problem. However, this is a fixed size of problem. In order to study

the asymptotic behaviour of the algorithms, n piston problems were joined together,

247

Appendix G 248 An example of many solvers in serial

Functional Problem
Functional Problem

crankshaft
piston

Functional Problem

crank L

crank

Figure G.1: Case Study of n Piston Problems Linked Together

as in figure G.1.

In this case study, the n pistons are linked by coincident constraints at each
end of the piston. Thus the problems are all connected and the complexity of the
problem does increase as the size of n increases. The functional problems are not

linked and are effectively lots of small, fixed problems solved independently.

G.2 The solvers used

Three solvers were examined. The NAG CO5NBC function [46] was used as a numer-
ical solver. It was passed the whole set of constraints and used numerical techniques
to converge towards a solution. The speed of convergence depended heavily on the
initial guess, but the best case complexity of the NAG function is Q(n?), where n is
the number of constraints.

Lamounier’s INCES solver [62] is also capable of solving the problem as a whole.
However, INCES deals only with equations and not geometric constraints. Geo-
metric constraints can be handled if they are reduced to the constituent equations.
INCES was expected to be quadratic, as it dealt with the problem as a whole and
resorted to numerical solvers if loops appeared.

These constraint solvers were compared with a hybrid formed from combining
the functional solver INCES and the geometric solver IGCS, much as in case study
1 (section 7.3). Each functional problem was solved using INCES and the results
were passed to IGCS by varying the size of the lines in IGCS (see figure G.2). It was
hoped that the hybrid would be able to take best advantage of the domain-specific

Appendix G 249 An example of many solvers in serial

Constraint Functional cEs Solutions Geometric acs Solutions
Probler Subproblem INCE !
Subproblem

Figure G.2: Serial Hybrid used to Solve n Piston Problems Linked Together

knowledge incorporated in the INCES and IGCS solvers and would be linear. The
theoretical complexity analysis of the hybrid system is presented in the next section.

The decomposition strategy, De, used in this case is to decompose problem
P = (®,¥)into aset {(S;, P;)}, where solver S; is IGCS if subproblem P; is geometric
and S; is INCES if subproblem P; is algebraic. Decomposition is performed by first
identifying constraints as geometric or algebraic. These form two sets of constraints
U and U). Constructing ¥} and ¥, takes time O(n), where n is the number of
constraints.

Set U’ is then decomposed further into sets \IJ;(of connected components, where
U, € V! and Wy, € V. are connected if there is a path between W; and W, in
the constraint/entity graph of constraint problem (&, W\ W), j # i. Finding the
connected components can be done in a simple graph traversal algorithm that takes
time O(m), where m is the number of edges in the constraint/entity graph. Since
the imposed sets of constraints are usually quite small, m will typically be a multiple
of the number of constraints in P. Thus decomposition of P takes time O(n).

With this decomposition strategy, the hybrid can be described in the solver

collaboration language of section 7.5 as

((SUP]); (SQ’PQ); (537P3); cee 7(Snapn)) :

G.2.1 Expected behaviour of hybrid

Each functional problem is solved individually and independently of any other and
the results of each problem are then used as input to the appropriate line segments
of the geometric problem. Since each problem is independent, it is solved in con-
stant time. Therefore n such problems take O(n) time, where n is the number of
constraints.

The geometric problem increases in complexity as the number of problem in-
stances increases. However adding a new instance of the problem, due to the nature
of IGCS, should only take a constant amount of time to translate each new line
segment so that it is coincident to the previous line segment. Since the constraints
are processed in the order they are positioned, the algorithm should take O(n) time

overall, where n is the number of constraints.

Appendix G 250 An example of many solvers in serial

1400 T T T T T T T T T
NAG c05nbc with progressively worse initial guess ¢
o
1200 -
o ©
1000 —
o
<
00
€ 800} o .
S o
@ ©
"
£
g 0°
IS 600 —
® o LN
400 o -
o
o <
00 ®
<
200 & —
s 00 4
000
WQQOQ
XX 1 1 1 1 1 1 1
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of constraints

Figure G.3: NAG function with bad initial guess

Since there are no loops in each constraint subproblem, the hybrid of INCES and
IGCS should have a linear behaviour. Since the functional problems only provide
one solution to the geometric problem, the hybrid solver should be O(n). This

compares favourably with the other two constraint solvers.

G.3 Results

The case study was run for problem sizes between 1 and 200. This gave problems
with between 19 and 3800 variables. For all of the following graphs, the x-axis is the
number of variables in the problem and the y-axis is the amount of time taken to
solve the problem in seconds. All case studies were run on a Silicon Graphics Indy
with an R4600 100MHz IP22 processor and 32 Mbytes of memory.

The NAG CO5NBC function gave the results in figure G.3 and in figure G.4.
Figure G.3 shows that with an initial guess that is progressively further and further
away from the solution, the time that the NAG algorithm takes to solve the problem
increases in a nonlinear fashion. Divergent results, such as those at n = 1000 were
identified by the NAG algorithm as ‘Not Improving’” and had not converged to a
solution by the time the algorithm terminated. However, underlying the divergent
behaviour, a nonlinear pattern is apparent. For a problem size of 1900 variables,
the NAG solver takes approximately 1100 seconds, more than 20 minutes.

Figure G.4 shows the NAG CO5NBC function with a consistently good guess.

Appendix G 251 An example of many solvers in serial

180 T T T T T T T T T
NAG c05nbc with consiste@tly close guess ¢
160 —
° o
o
140 —
o
120 o B
o
12}
=]
S 100 [o E
g o
£ o °
o
£ 80 | E
= o
o o
©
60 o -
o P
o
40 - @ E
o
o &°
o
20 & E
ot
9%
0 MAWW 1 1 1 1 ! ! !
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of constraints

Figure G.4: NAG function with good initial guess

The curve shown is much more regular but the numerical solver still diverges occa-
sionally, for example when n = 988. However, even with a good initial guess, the
NAG function is still nonlinear, probably quadratic. For a problem size of 1900, the
NAG function takes 155 seconds.

Figure G.5 shows the results for the INCES solver on the problem. Again, the
solver is obviously nonlinear, but the solution is always found. Note that the INCES
algorithm appears to be about 3 times as fast as the NAG solver. For a problem
size of 1900, INCES took about 55 seconds.

Figure G.6 shows the results for the hybrid solver. Even though the curve is
nonlinear, the time taken to solve a 1900 variable problem is less than a second, two
orders of magnitude faster than the INCES algorithm. However, the nonlinear curve
does not agree with the expected behaviour of the hybrid as a linear function was
expected. Further analysis of the INCES and IGCS algorithms discovered that the
parametric constraint list and dependency hierarchy lists respectively were reducing
the two algorithms to quadratic behaviour.

In INCES, the parametric constraint list is used as a global data structure to
describe the entire constraint problem. Whenever a constraint is referenced, the
INCES solver searches through the parametric constraint list to find the reference
to the appropriate constraint. INCES is an incremental solver and correspondingly,
each time a constraint is added, the parametric constraint list is checked. The

constraint list is of O(n) size, where n is the number of constraints in the problem,

Appendix G 252 An example of many solvers in serial

60 T T T T T T T T T
Solution of combined problem using INCES ¢
>
&
50 | © i
o
3
<><><>
&
40 > 1
«©
3
» i
£
g o
@ 30 o 7
o ©
£ o
= O
o
QOO
20 | o i
R
o
0000
N4
ol
10 | 0 i
&
Y4
et
o
P
v aand
0 20000 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of constraints
Figure G.5: Solving with INCES
35 T T T T T T T
Hybrid solution with dependency hierarchy list <
o
3+ 4
o
3
&
©
25 —
o
0
0000
(2} <
e 2 F o OOO T
3 o
3 o
= © &
[
£ 15 | o © 4
= - &
0
«°
o
0000
1+ © -
o %QOO
0o
<&
o 50 o
05 o .
o
O
0%
s
1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000

Number of constraints

Figure G.6: Hybrid solution using [GCS and INCES

Appendix G 253 An example of many solvers in serial

0.35 T T T T T T T
Solution of only parametric model ¢
o 00
o © @
03 o 0 000 B
o 00 @
< OO O O
® < <
® S 0O &
0.25 o @ .
o ® o0
o ° o 00
O 000 00 O
» ©0 o
) 0.2 | 3O PO WO ODO B
S o © 00 o o
2 000 &
= 0B O O
o @O O © 00
E o 0o oo o -
0O WK 0O
0O O o
oW O O
SO <
0.1 X X O -
O FWOO O <
o o® @
BO® XD O O
OVOOO OO
0.05 O & .
® 00O ©
® ® 00
@R B D
o ©
0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Number of constraints

Figure G.7: Solving the functional problem only using INCES without global para-
metric constraint list

and since each time a constraint is added the parametric constraint list is studied, by
the time n constraints have been added to the problem, the parametric constraint
list has been consulted n times. The first such consultation takes 1 lookup, the
second 2 lookups, until the final constraint insertion takes n lookups. Thus, just
studying the parametric constraint list takes O(n?).

Removing the parametric constraint list each time the functional problem was
solved resulted in the graph in figure G.7 showing the time taken to solve only the
algebraic model.

In IGCS, the dependency hierarchy list is used to search for loops in the con-
straint graph. The dependency hierarchy of an entity is the list of entities for which
solutions must be found before solutions to the entity itself can be found. In order
to find whether a constraint problem has a loop or not, when a constraint between
two entities is added, the dependency hierarchy of both entities is compared. If they
share a common ancestor in the dependency hierarchy, then a loop has been created.
Unfortunately, the implementation of this dependency hierarchy list results in the
quadratic behaviour of IGCS.

As a new constraint is added between two entities, the dependency hierarchy lists
of the two entities are compared. In the long chain of constraints used in this case
study, the constraint is always between an entity with a dependency hierarchy of

the whole problem and an entity with a dependency hierarchy of only a few entities.

Appendix G 254 An example of many solvers in serial

0.22 T T T T T T T
Geometric part only solved with IGCS without dependency hierarchy §ist ¢

0.2 - —
o0
0.18 - QDD B
O RO

0.16 |- i3 © DD -
o © DD

0.14 DR -
ORI O

0.12 |- O Q0 WAROBO -
© OB O

0.1 RO 4

Time in seconds

fogcii g

0.08 RO -
O PO O

0.06 OERREOD O -

0.04 - R B

0.02 - DO -

0 ! ! ! ! ! ! !

0 500 1000 1500 2000 2500 3000 3500 4000
Number of constraints

Figure G.8: Solving the geometric problem only using IGCS without the dependency
hierarchy list

However, IGCS as currently implemented searches through the whole set of entities
in each dependency hierarchy to find common elements. This takes O(m), where m
is the number of entities in the problem. This is repeated for each new constraint
as it is inserted and since there are n constraints, the operation as a whole takes
O(mn). Since the number of constraints is usually similar to the number of entities
simply consulting the dependency hierarchy list in IGCS takes O(n?).

Removing the dependency hierarchy list altogether resulted in the graph of fig-
ure .8 showing the time taken to solve only the geometric problem. Note that
both of these graphs are roughly linear. Irregularities can be associated with the
coarseness of the timing function available.

Recombining the new, linear versions of IGCS and INCES results in a hybrid
algorithm with results as in figure G.9. Note that the hybrid is approximately
linear in complexity and that the time taken to solve a 1900 variable problem is
approximately 0.25 seconds, an order of magnitude improvement over the previous

version.

G.4 Conclusions

The hybrid constraint solver is very fast indeed. It is linear, whereas the other

solvers compared were quadratic at best. It is three or four orders of magnitude

Appendix G 255 An example of many solvers in serial

0.6 T T T T T T T
Hybrid solution without dependency hierarchy list® ¢

04 &> food -

03 |

Time in seconds

0.2 - o O -

0.1 OO .

o B2 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of constraints

Figure G.9: Solution using a hybrid algorithm of IGCS without depH list and INCES
without global parametric constraint list

faster than the NAG function. Figure G.10 shows the various graphs in relation
to each other. Even for problems of 100 or so variables, the hybrid is much faster.
It is also significant that the hybrid with the depH list, whilst nonlinear, is still
much faster than INCES and CO5NBC. The depH list is used to identify loops
and, as [GCS cannot handle loops without it, something equivalent will have to be
implemented. Disjoint forests [21] would increase the complexity of the current O(n)
algorithm to O(nlogn) for example, rather than O(n?), where n is the number of

constraints.

Appendix G 256 An example of many solvers in serial

5 TTT T T T T T T
Hybrid solution with dependency hierarchy list <
Hybrid solution without dependency hierarchy list +
45 X Solution of combined problem using INCES O |
. o NAG c05nbc with consistently close guess X
4 x @ B
X
35 o E
[u}
X 4
3k 4
x B ©

Time in seconds

0 500 1000 1500 2000 2500 3000 3500 4000
Number of constraints

Figure G.10: A comparison of the COSNBC function and INCES algorithm with the
hybrid solver

Appendix H

Glossary

Articulation pair

Bijections
Bipartite graph
Cartesian product

Connected graph
Countable sets

Directed edges

First order formulae
Graph

Hyperedge

A pair of vertices (A, B) in a graph G are an articu-
lation pair if removal of A and B from G, along with
all edges incident to A or B, disconnects G.

A bijection is a function that is injective and surjec-
tive. If f is bijective then f has well-defined inverse.
A bipartite graph is a graph (V, E) such that V =
UUW,UNW =0 andV(a,b) € E, (ac UANbe W).
The Cartesian product of two sets A and B is the set
of all ordered pairs (a,b) where a € A and b € B.

A graph G = (V, F) is connected if for every pair of
vertices u and v in V, there exists a path from u to
.

A set A is countable if it is finite or if there exists a
bijection f: N — A.

An edge e of graph G is directed if there is an order
placed on the vertices in the edge. Directed edges
are represented using the notation [u, v] where u and
v are vertices in G.

First order predicate logic formulae,

Let V' be a finite set of vertices and E be a subset of
the unordered pairs of vertices. Then a graph is the
ordered pair (V, E).

A hyperedge is a finite set of vertices.

257

Appendix H 258 Glossary

Hypergraph A hypergraph (V, HE) is an ordered pair of a finite
set of vertices V and a finite set of hyperedges HFE.

Injective functions A function f : A — B is injective if f(z) = f(y)
implies © = y.

Labelled graph A graph G = (V, E) is labelled if each edge e € E is
labelled with a symbol.

Loop A loop in a graph G is an edge (u,u) where u is a
vertex in G.

Path A path in a graph G = (V,E) is an alternating
sequence of vertices and edges vy, eq,v1,...,€n, U
where e; = (v;, v;41), all edges are different and no
vertices are repeated except possibly that the last
and the first are the same.

Quantifier free A first order formula lacking the symbols V and 4,

Simple graphs A simple graph has at most one edge between any
two vertices.

Strongly connected com- A graph is a strongly connected component if there

ponents exists a path from every vertex to every other vertex.
Surjective functions A function f : A — B is surjective if f(A) = B,
where f(A) = {/(a),a € A},

Symmetric constraints A constraint C' is symmetric if £(C) = {z;,,... , 7}
is the imposed set on C, v;,...,v; are values in

D;,, ..., D;; of z;,, ..., x; respectively and

(V1,00 Vi ey iy, Un) €C =

(v, m(i), mvy), o) €C
for all permutations m; of (vj,,... ,v;;). A constraint

is non-symmetric if it is not symmetric.

Undirected edges An edge e of graph G is undirected if there is no
order placed on the vertices in the edge. Undirected
edges are represented using the notation (u, v) where
u and v are vertices in G.

Triconnected components A graph is a triconnected component if it contains

no articulation pairs.

Bibliography

1]

2]

B. Aldefeld. Variation of geometries based on a geometric-reasoning method.
Computer-Aided Design, 1988.

Ram Anantha, Glenn A. Kramer, and Richard H. Crawford. Assembly mod-
elling by geometric constraint satisfaction. Computer-Aided Design, 28(9):707—
722, 1996.

R. Ander]l and R. Mendgen. Modelling with constraints: Theoretical founda-
tion and application. Computer-Aided Design, 28(3):155 168, 1996.

Farhad Arbab and Bin Wang. A constraint-based design system based on
operational transformation planning. In Proceedings of the 4th International

Conference on the Applications of Artificial Intelligence in Engineering, pages
405-426, Cambridge, UK, July 1989.

P. Atzeni and V. De Antonellis. Relational Database Theory. The Ben-
jamin/Cummings Publishing Company Inc, 1993.

F. Baader and K. Schulz. On the combination of symbolic constraints, solu-
tion domains and constraint solvers. In Proceedings of the first International
Conference on Principles and Practice of Constraint Programming - CP95,
volume 976 of Lecture Notes in Computer Science, pages 380-397. Springer-
Verlag, 1995.

F. Baader and K. U. Schulz. Combination of constraint solving techniques:
An algebraic point of view. In Proceedings of the 6th International Conference
on Rewriting Techniques and Applications, volume 914 of Lecture Notes in

Computer Science, pages 50—-65. Springer-Verlag, 1995.

D. Baraff. Interactive simulation of solid rigid bodies. IEEE Computer Graph-
ics and Applications, pages 63-74, May 1995.

259

260 BIBLIOGRAPHY

9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[19]

[20]

Sanjay Bhansali, Glenn A. Kramer, and Tim J. Hoar. A principled approach
towards symbolic geometric constraint satisfaction. Journal of Artificial In-
telligence Research, 4:419-443, 1996.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfac-
tion and optimization. Journal of the ACM, 44(2):201, March 1997.

A. Borning, B. Freeman-Benson, and M. Wilson. Constraint Hierarchies. Lisp
and Symbolic Computation, 5:223-270, 1992.

Alan Borning. Thinglab - a constraint-oriented simulation laboratory. Tech-
nical Report SSL-79-3, Xerox Palo Alto Research Center, July 1979.

W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A Geometric Con-
straint Solver. Technical Report CSD-Tr-93-054, Department of Computer
Science, Purdue University, August 1993.

W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric con-
straint solver. Computer-Aided Design, 27(6):487 501, June 1995.

Mark W. Brunkhart. Interactive geometric constraint systems. Master’s thesis,
Computer Science Division, Deparment of Electrical Engineering and Com-

puter Science, University of California, Berkeley, 1994.

S.A. Buchanan and A. de Pennington. Constraint Definition System: a
Computer-Algebra based Approach to Solving Geometric-Constraint Prob-
lems. Computer-Aided Design, 25(12):741 750, December 1993.

B. Buchberger. Grobner bases: an algorithmic method in polynomial ideal
theory. In N. K. Bose, editor, Multidimensional systems theory, pages 184
232. D. Reidel Publishing Company, 1985.

Bruce W Char, Keith O Geddes, Gaston H Gonnet, Benton L Leone, Michael B
Monagan, and Stephen M Watt. Maple V Library Reference Manual. Springer-
Verlag, 1991.

J.C.H. Chung and M.D. Schussel. Technical evaluation of variational and
parametric design. In Proceedings of Autofact '89, pages 5/27 5/44, 1989.

C. Clarke. Pro-engineer. CAD/CAM, 12(1), January 1993.

261 BIBLIOGRAPHY

[21]

22]

23]

[24]

[25]

[26]

[27]

31]

Thomas H. Cormen, Charles E. Leiserson, and Ronald .. Rivest. Introduction
to Algorithms. MIT Press, 1992.

Maurice Dohmen. A survey of constraint satisfaction techniques for geometric
modeling. Computers and Graphics, 19(6):831 845, 1995.

Jean-Francois Dufourd, Pascal Mathis, and Pascal Schrek. Formal resolution of
geometric constraint systems by assembling. In Proceedings of Solid Modelling
97, 1997.

Lynn Eggli, Ching yao Hsu, Beat Briiderlin, and Gershon Elber. Inferring
3d models from freehand sketches and constraints. Computer-Aided Design,
20(2):101 112, 1997.

M. Fa. Interactive Constraint-based Solid Modelling. PhD thesis, School of
Computer Studies, University of Leeds, September 1993.

M. Fa, T. Fernando, and P. M. Dew. Direct 3D Manipulation Techniques
for Interactive Constraint-based Solid Modelling. Computer Graphics Forum,
Proc. of EuroGraphics’93, 12(3):237-248, September 1993.

M. Fa, T. Fernando, and P. M. Dew. Interactive Constraint-based Solid Mod-
elling using Allowable Motion. Proc. of ACM/SIGGRAPH Symposium on
Solid Modelling and Applications, pages 243 252, May 1993.

J.-C. Faugere. Résolution des systemes d’équations algébriques. PhD thesis,
Université Paris 6, 1994.

L.T.P. Fernando, P.M. Dew, and F. Gao. Constraint-based interaction tech-
niques for supporting a distributed collaborative engineering environment. In
Proceedings of the First Workshop on Simulation and Interaction in Virtual
Environments - SIVE 95, pages 265-270, 1995.

L.T.P. Fernando, M. Fa, P.M. Dew, and M. Munlin. Constraint-based 3d ma-
nipulation techniques within virtual environments. In R.A. Earnshaw, editor,

Virtual Reality Applications, pages 71 89. Academic Press, 1995.

T. Fernando, P. M. Dew, M. Fa, J. Maxfield, and N. Hunter. A Shared Virtual
Workspace for Constraint-based Solid Modelling. FuroGraphics Workshop on

Virtual Environments, September 1993.

262 BIBLIOGRAPHY

32]

[33]

[34]

[35]

[37]

[38]

[39]

[40]

[41]

[42]

T. Fernando, M. Fa, P. M. Dew, and Mudarmeen Munlin. Constraint-based 3D
Manipulation Techniques for Virtual Environments. In Proc. of International
State of the Art Conference (BCS) on Applications of Virtual Reality, Ed. by
R. A. Earnshaw, J. Vince and H. Jones, 1994.

R. Fraissé. Theory of Relations, volume 118 of Studies in Logic and the Foun-

dations of Mathematics. Elsevier Science Publishers, Amsterdam, 1986.

B. N. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Con-
straint Solver. Communications of the ACM, 33(1), January 1990.

E. Freuder and P. Hubbe. A disjunctive control schema for constraint sat-
isfaction. In V. J. Saraswat and P. Van Hentenryck, editors, Principles and

Practice of Constraint Programming. MIT Press, 1995.

E. C. Freuder and P.D. Hubbe. Extracting constraint satisfaction subproblems.
In 14th International Joint Conference on Artificial Intelligence, 1995.

I. Fudos. Editable Representations for 2D Geometric Design. Master’s thesis,
School of Computer Studies, Purdue University, 1993.

I. Fudos and C. Hofflmann. Correctness Proof of a Geometric Constraint Solver.
Technical Report CSD 93-076, Department of Computer Science, Purdue Uni-
versity, December 1993.

loannis Fudos and Christoph Hoffmann. A graph-constructive approach to
solving systems of geometric constraints. ACM Transactions on Graphics,
16(2):179, April 1997.

Esther Gelle and Ian Smith. Dynamic constraint satisfaction with conflict
management in design. In Michael Jampel, Eugene Freuder, and Michael
Mabher, editors, Qver-Constrained Systems, number 1106 in LNCS, pages 237—
252. Springer, 1996.

M. Gleicher. Integrating Constraints and Direct Manipulation. 1992 Sympo-
stum on Interactive 3D Graphics, pages 171 174, 1992.

M. Gleicher. A Graphics Toolkit Based on Differential Constraints. UIST 93,
pages 109 120, November 1993.

M. Gleicher and A.Witkin. Differential manipulation. Graphics Interface,
pages 61 67, June 1991.

263 BIBLIOGRAPHY

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

Michael Gleicher. A Differential Approach to Graphical Interaction. PhD
thesis, School of Computer Science, Carnegie Mellon University, November
1994. CMU-CS-94-217.

Sreenivasa R Gorti and Ram D Sriram. From symbol to form: a framework for
conceptual design. Computer-Aided Design, 28(11):853-870, November 1996.

Nottingham Algorithms Group. Nag library manual : Mark 5, 1976. Fortran
Edition.

Christoph Hoffmann and Jaroslaw Rossignac. A road map to solid model-
ing. IEEE Transactions on Visualization and Computer Graphics, 2(1):3 10,
March 1996.

C.M. Hoffmann and R.Juan. Erep - An Editable, High-level Representation for
Geometric Design and Analysis. Technical report, Department of Computer

Sciences, Purdue University, 1994.

J.E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. STAM Journal of Computation, 2(3):135 158, September 1973.

H. Hosobe, K. Miyashita, S. Takahashi, S. Matuoka, and A. Yonezawa. Locally
simultaneous constraint satisfaction. In Alan Borning, editor, PPCP’9/: Sec-

ond Workshop on Principles and Practice of Constraint Programming, Seattle
WA, May 1994.

J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Beyond finite domains. In Alan
Borning, editor, PPCP’9j: Second Workshop on Principles and Practice of
Constraint Programming, Seattle WA, May 1994.

Joxan Jaffar and Michael Maher. Constraint logic programming: a sur-
vey. Journal of Logic Programming, Special 10th Anniversary Issue,, 19/20,
May/July 1994.

Narendra Jussien and Patrice Boizumault. Implementing constraint relaxation
over finite domains using ATMS. In Michael Jampel, Eugene Freuder, and
Michael Maher, editors, Ouver-Constrained Systems, number 1106 in LNCS,
pages 265—-280. Springer, 1996.

N.P. Juster. Modelling and Representation of Dimensions and Tolerances : A
Survey. Computer-Aided Design, 24(1):3 17, January 1992.

264 BIBLIOGRAPHY

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

H. Kirchner and C. Ringeissen. Combining symoblic constraint solvers on
algebraic domains. Journal of Symbolic Computation, 18(2):113 155, 1994.

K. Kondo. Algebraic Method for Manipulation of Dimensional Relationships
in Geometric Models. Computer-Aided Design, 24(3):141 147, March 1992.

G. A. Kramer. Using Degrees of Freedom Analysis to Solve Geometric Con-
straints. In J. Rossignace and J. Turner, editors, Proceedings Symposium
on Solid Modeling Foundations and CAD/CAM Applications, pages 371-378,
1991.

G. A. Kramer. A Geometric Constraint Engine. Artificial Intelligence, 58:327—
360, 1992.

Glenn A. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

Vipin Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey.
Al Magazine, pages 32 44, Spring 1992.

Timo Laakko and Martti Mantyla. Incremtnal constraint modelling in a fea-
ture modelling system. In J. Rossignac and F. Sillion, editors, FUROGRAPH-
ICS ’96, volume 15. Eurographics Association, Blackwell Publishers, 1996.

E. Lamounier, T. Fernando, and P. Dew. An Incremental Constraint Equa-
tion Solver for Variational Design. In Proceedings of the Fourth International
Conference on Computational Graphics and Visualization Techniques (COM-
PUGRAPHICS’95), pages 81 90, December 1995.

Edgard Lamounier. First Year Report. Technical report, School of Computer
Studies, University of Leeds, 1994.

Edgard Lamounier. An incremental constraint-based approach to support engi-
neering design. PhD thesis, School of Computer Studies, University of Leeds,
1996.

Hervé Lamure and Dominique Michelucci. Solving geometric constraints by
homotopy. IFEE Transactions on Visualization and Computer Graphics,
2(1):28 33, March 1996.

R. Latham and A. Middleditch. Connectivity Analysis : A Tool for Processing
Geometric Constraints. Technical report, Brunel University, UK, August 1994.

265 BIBLIOGRAPHY

[67]

[68]

[70]

[71]

[72]

73]

[75]

[76]

Richard Latham and Alan Middleditch. Connectivity analysis: a tool for
processing geometric constraints. Computer-aided Design, 28(11):917 928,
November 1996.

Richard Samuel Latham. Combinatorial algorithms for the analysis and sat-
isfaction of geometric constraints. PhD thesis, Brunel University, 1996. PhD
LL356.

Robert Light and David Gossard. Modification of geometric models through
variational geometry. Computer-Aided Design, 14(4):209 214, July 1982.

V.C. Lin, D.C. Gossard, and R.A. Light. Variational Geometry in Computer
Aided Design. Computer Graphics, 15(3):171 175, August 1981.

G. Lopez, B. Freeman-Benson, and A. Borning. Kaleidoscope : A Constraint
Imperative Programming Language. Technical Report UW-CSE-93-09-04,
University of Washington, 1993.

Tomds Lozano-Pérez. Spatial planning: A configuration space approach. IEEE
Transactions on Computers, 32(2):108-120, February 1983.

D-Cubed Ltd. The 2-d dem technical overview. 68 Castle Street, Cambridge,
CB3 0AJ, England.

D-Cubed Ltd. 3-d dem technical overview. 68 Castle Street, Cambridge, CB3
0AJ, England.

D-Cubed Ltd. An overview of d-cubed and the dem. 68 Castle Street, Cam-
bridge, CB3 0AJ, England.

M. Mantyla. A Modelling System for Top-down Design of Assembled Products.
IBM J. Res. Develop., 34(5):636 658, 1990.

M. Mantyla. WAYT: Towards a Modelling Environment for Assembled Prod-
ucts. Intelligent CAD III, pages 187 203, 1991.

J. Maxfield, L.T.P. Fernando, and P.M. Dew. A distributed virtual envi-
ronment for collaborative engineering. In Proceedings Virtual Reality Annual
International Symposium - VRAIS’95, pages 162-170, 1995.

266 BIBLIOGRAPHY

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

John Maxfield. A Distributed Virtual Environment for Synchronous Collabo-
ration in Simultaneous Engineering. PhD thesis, School of Computer Studies,
University of Leeds, July 1996.

M.Bouzoubaa, B. Neveu, and G.Hasle. Houria : A solver for equational con-
straints in a hierarchical system. In Proceedings of the OCS workshop in
conjunction with CP-95, Cassis, France, 1995.

Pedro Meseguer. Constraint Satisfaction Problems: An Overview. Al Com-
munications, 2(1):3 17, March 1989.

E. Monfroy and C. Ringeissen. Domain-independent constraint solver ex-
tension. Technical report, Centre de Recherche en Informatique de Nancy,

Vandoeuvre-ls-Nancy, 1996.

E. Monfroy, M. Rusinowitch, and R. Schott. Implementing non-linear con-
straints with cooperative solvers. Technical Report Technical Report 95-R-
110, Centre de Recherche en Informatique de Nancy, Vandoeuvre-Is-Nancy,
1995. Also as INRIA Technical Report RR-2747.

Eric Monfroy. An environment for designing/executing constraint solver col-
laborations. Technical report, Centre de Recherche en Informatique de Nancy,

Vandoeuvre-1s-Nancy, 1996.

Eric Monfroy, Michael Rusinowitch, and Rene Schott. Implementing non-
linear constraints with cooperative solvers. In K. M. George, J. H. Carrol-
land D. Oppenheim, and J. Hightower, editors, Proceedings of ACM Sympo-
stum on Applied Computing, SAC ’96, pages 63 72, February 1996.

J. Owen. Algebraic Solution for Geometry from Dimensional Constraints.
Symposium on Solid Modelling Foundations and CAD/CAM Applications,
June 1991.

J. Pabon, R. Young, and W. Keirouz. Integrating Parametric Geometry, Fea-
tures and Variational Modeling for Conceptual Design. International Journal
of Systems Automation: Research and Applications (SARA), 2:17 36, 1992.

G. Pahl and W. Beitz. Engineering Design. Design Council, 1984.

John Platt. A generalization of dynamic constraints. CVGIP: Graphical Mod-
els and Image Processing, 54(6):516 525, November 1992,

267 BIBLIOGRAPHY

[90]

[94]

[95]

[96]

[97]

[98]

[99]

100]

[101]

William H Press, Brian P Flannery, Saul A Teukolsky, and William T Vet-
terling. Numerical Recipes : The Art of Scientific Computing. Cambridge
University Press, 1986.

P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Com-
putational Intelligence, 9(3):268-299, 1993.

Jean-Francois Puget. A C++ Implementation of CLP. In Proceedings of
SPICIS-9/ (Singapore International Conference on Intelligent Systems), 1994.

A. A. G. Requicha. Representations of Tolerances in Solid Modelling: Issues
and Alternative Approaches. In Solid Modelling by Computers From Theory
to Applications, 1984.

M. Sanella. The SkyBlue Constraint Solver and its Applications. Proceedings
of the 1993 Workshop on Principles and Practice of Constraint Programminyg,
1994.

M. Sanella and R.A. Borning. Multi-Garnet - Integrating Multi-Way Con-
straints with Garnet. Technical Report UW-CSE-92-07-01, University of
Washington, 1992.

M. Sanella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-Way vs
One-Way Constraints in GUIs - Experience with the Deltablue Algorithm.
Technical Report UW-CSE-92-07-05a, University of Washington, 1993.

M. Sapossnek. Research on constraint-based design systems. In Applications
of AI ’89, 1989.

D. Serrano. Managing Constraints in Concurrent Design : First Steps. ASMFE
90, pages 159-164, 1990.

D. Serrano. Automatic dimensioning in design for manufacturing. SM 91,
pages 379-385, 1991.

David Serrano. Constraint Management in Conceptual Design. PhD thesis,

Department of Mechanical Engineering, MIT, 1987.

David Serrano and David Gossard. Tools and Techniques for Conceptual
Design. In Artificial Intelligence in Engineering Design, volume 1, chapter 3,
pages 71 116. Academic Press, Inc, 1992.

268 BIBLIOGRAPHY

[102]

[103]

104]

105]

[106]

107]

108]

109]

[110]

[111]

112]

Shuichi Shimizu and Masayuki Numao. Constraint-based Design for 3D
Shapes. Artificial Intelligence, 91(1):51 69, 1997.

Barbara Smith. A Tutorial on Constraint Programming. Technical Report
95-14, University of Leeds, April 1995.

Barbara Smith and Martin Dyer. Locating the phase transition in constraint
satisfaction problems. Artificial Intelligence, 81:155—-181, 1996. Special issue

on Frontiers in Problem Solving: Phase Transitions and Complexity.

Barbara Smith and Stuart Grant. Sparse constraint graphs and exceptionally
hard problems. In Proceedings of IJCAI-95, volume 1, pages 646—651, August
1995.

W. Sohrt and J.D. Bruderlin. Interaction with Constraints in 3D Modelling.
International Journal of Computational Geometry and Applications, 1(4):405
425, 1991.

Michael Spivak. A Comprehensive Introduction to Differential Geometry, vol-
ume One. Publish or Perish, Inc, 2nd edition, 1979.

Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication Sys-
tem. PhD thesis, MIT, Cambridge, Mass., 1963.

W. A. Sutherland. Introduction to Metric and Topological Spaces. Oxford
Science Publications, 1987.

Martin Thompson. Techniques for supporting maintenance analysis in vir-
tual environments. First Year Transfer Report, School of Computer Studies,
University of Leeds, 1996.

J-C Tsai, R. Konkar, and M.R. Cutkosky. Issues in Incremental Analysis of
Assemblies for Concurrent Design. 2nd International Conference on Al in
Design, 1992.

Y. T. Tsai, T. Fernando, and P.M. Dew. Exploiting degrees of freedom anal-
ysis for interactive constraint-based design. In N. M. Thalmann and V. Skala,
editors, The Fourth International Conference in Central Furope on Computer
Graphics andVisualization’96 (WSCG °96), pages 377 387, Plzen, Czech Re-
public, February 1996.

269 BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Yung-Teng Tsai. Incremental Geometric Constraint Satisfaction Algorithms.
PhD thesis, School of Computer Studies, University of Leeds, 1996.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

Edward Tsang and Alvin Kwan. Mapping constraint satisfaction problems to
algorithms and heuristics. Technical Report CSM-198, Department of Com-

puter Science, University of Essex, 1993.

Edward P. K. Tsang, James Borrett, and Alvin C. M. Kwan. An attempt to
map the performance of a range of algorithm and heuristic combinations. In
J. Hallam, editor, Proceedings AISB-95, pages 203-216. IOS Press, Amster-
dam, 1995.

EDS Unigraphics. Unigraphics cad/cam/cae. World Wide Web Page.
http://www.ug.eds.com/ug/.

G. Vanecek, Jr and J. F. Cremer. Project isaac: Building simulations for
virtual environments. Technical report, Department of Computer Science,
Purdue University, 1994.

A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for parame-
terised computer-aided design. Computer-Aided Design, 24(10):531-540, Oc-
tober 1992.

Roger Westbrook. Structural Engineering Design in Practice. Construction
Press, 1984.

Kevin Wise. Using multidimensional csg models to map where objects can
and cannot go. Technical Report 001/1996, University of Bath, January 1996.
http://www.bath.ac.uk/~enskdw/Tech_rep_001_96/trans_rep.html.

Andrew Witkin, David Baraff, and Michael Kass. An Introduction to Physi-
cally Based Modeling, chapter Constrained Dynamics. World Wide Web Page
http://www.cs.cmu.edu/~baraff/pbm/pbm.html, 1997.

Armin Wolf. Transforming ordered constraint hierarchies into ordinary con-
straint systems. In Michael Jampel, Eugene Freuder, and Michael Maher,
editors, Owver-Constrained Systems, number 1106 in LNCS, pages 171 188.
Springer, 1996.

270 BIBLIOGRAPHY

[124] Anthony Wren and Jean-Marc Rousseau. Bus driver scheduling - an overview.
Technical Report 93.31, School of Computer Studies, University of Leeds,
1993.

[125] Yasushi Yamaguchi and Fumihiko Kiumra. A constraint modeling system for
variational geometry. In J. Wozny, J. Turner, and K. Preiss, editors, Geometric
Modeling for Product Engineering, pages 221 233. North Holland, 1990.

