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Abstract

The simultaneous interpretation of object behaviour from real world image se-
quences is a highly desirable goal in machine vision. Although this is rather a sophis-
ticated task, one method for reducing the complexity in stylized domains is to provide
a context specific spatial model of that domain. Such a model of space is particularly
useful when considering spatial event detection where the location of an object could
indicate the behaviour of that object within the domain. To date, this approach has
suffered the drawback of having to generate the spatial representation by hand for each
new domain. An algorithm, complete with experimental results, is described for the
automatic generation of a hierarchical region based context specific model of space for
strongly stylized domains from the observation of objects moving within that domain
over extended periods.

The highest (hierarchical) level of region describes areas of behavioural significance
or the paths followed by moving objects. An extension to the region generation algorithm
allows these regions to be further sub-divided into equi-temporal regions (where it takes
an object approximately the same time to traverse each sub-division) that can be used
by an attention control mechanism to identify interacting objects.

By using a region based model, it becomes possible to convert the quantitative
object locations into qualitative locations which then enables the use of the rich family
of qualitative logics for real-world surveillance. To demonstrate the effectiveness of the
spatio-temporal model combined with qualitative object representations, an event learn-
ing strategy is demonstrated that allows the automatic generation of contextually relevant
event models, which are usually provided as part of the a priori system knowledge.
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Chapter 1

Introduction

The work described in this thesis was motivated by the desire to apply qualitative rea-
soning techniques to real-world situations. Qualitative knowledge refers to that aspect of
knowledge which critically influences decisions. The situation determines which aspect
of knowledge is critical, and the key to qualitative reasoning relies on the relevance of
the knowledge being modelled. Using such relevant qualitative knowledge, complete with
an appropriate reasoning system, enables a computer to conduct a behavioural analysis
of real-world situations in a qualitative manner. A rich selection of qualitative represen-
tation and reasoning systems already exist, although there are relatively few real-world

applications.

Humans (and other animals) tend to rely on visual stimuli when interacting or
observing actions in the real-world. However, the information provided from existing
tracking applications is, by nature, quantitative with the position and spatial extent
of dynamic scene objects usually provided in screen coordinates. For the qualitative
behavioural analysis we are interested in, the exact location is not required. Using the
approximate zone or region rather than the exact location will collapse broadly similar
behaviours into equivalence classes to provide a generic model. Unfortunately, it is not
possible to arbitrarily segment a scene into regions — such regions should be conceptually

relevant to the physical structure of the domain.



Although an appropriate spatial model has been located (Howarth & Buxton
1992a), such representations have, to date, been generated by hand. Our first inten-
tion is to demonstrate an effective learning strategy that can automatically generate a
similar spatial representation from the observation of object movements over extended

periods.

Following the success of our spatial representation learning strategy we turn our
attention to qualitative visual surveillance. With a conceptually relevant representation
of space, it becomes possible to determine abnormal behaviour patterns from the contin-
ued observation of objects travelling within the domain. The spatial model is obtained
from the statistical evidence of observed behaviours in which the quantity of “normal”
behaviour is significantly greater than that of abnormal behaviour. Thus, the locations
where “abnormal” behaviour have occurred during the learning cycle should not ad-
versely affect the spatial model construct. Should any unusual behaviour occur after the
training period (for example, a motor-way crash) the default behaviour and movement

of domain objects may change radically indicating an unusual situation.

However, visual surveillance is not just concerned with abnormal behaviour pat-
terns. To conduct a full behavioural analysis, the system has to be capable of recog-
nizing (and interpreting) interesting situations. Typically, systems designed to recognize
sequences of situated actions (events) are provided with a priori system knowledge of
event models that can be used to recognize instances of particular events. When ana-
lyzing a dynamic scene for objects involved in a particular event, an attentional control
mechanism can assist in determining interacting objects which are usually found within
the same vicinity. Rather than providing event models as a prior: system knowledge we
propose an event learning strategy that employs our own attention control mechanism

to identify potentially interacting objects.



1.1 Approach Taken

Our method to automatically generate semantic regions relies on the analysis of objects
moving within the domain. We employ an existing tracking application that provides
the position and spatial extent (shape descriptions) of moving objects as well as asso-
ciating each object with its own label (which is maintained throughout the period the
object remains within the scene). The domains of interest are typically natural outdoor
scenes (for example, see figure 1.1) where the movement of objects within the domain is
strictly stylized (i.e. domains in which objects tend to comply with a number of default
behaviours, like the movement of vehicles on a road which follows rules according to the

Highway Code).

Figure 1.1: Example of test domains viewed from a static camera.

Dynamic scene data is used to construct a database of paths used by objects trav-
elling through the scene. Statistical analysis indicates which entries are too infrequent
to be included in the spatial model. Leaf regions for the spatial model are obtained
from the combination of the remaining paths stored in the database. A previous (less
successful) approach generated a mapping of the scene representing the frequency and
distribution of all object movements over the training period. The intention was to em-
ploy traditional (image) segmentation techniques on the scene mapping to obtain the
desired region model. Although the method did not provide sufficiently accurate results,

it did indicate a number of shortcomings that assisted in the design of the second method.

Some form of attentional control mechanism is often employed in visual surveillance

applications to identify interesting objects — it is not necessary (or practical) to examine



every pair of objects in the scene. By using an attention control mechanism it becomes
possible to focus on a more limited subset of those object pairs. This thesis is no excep-
tion, although our approach is somewhat different. The basis of our attention control
mechanism relies on extending our spatial model to incorporate temporal information.
When we construct the database of paths used by objects travelling through the scene
we also incorporate point coordinates at regular time intervals that can be used later
to form regions which sub-divide the composite regions within the spatial model into
equi-temporal regions (ETRs). The spatial extent of an ETR is controlled by the velocity
of objects as well as the distance from the camera (i.e. size due to camera perspective).
However, the main feature is that it takes approximately the same time for an object to
traverse each ETR in a composite ETR path. If the (approximate) time between two
objects is known then “close” objects can easily be identified. Essentially, that is how

the attention control mechanism functions.

To demonstrate the effectiveness of the spatio-temporal model, we present a quali-
tative event learning strategy (in contrast to the usual method of providing event models
as a priori system information) that uses the contextually relevant features of the spatio-
temporal model. Using the attention control mechanism “close” objects are identified
and the qualitative relationships for relative position and relative direction of motion
are maintained in object relationship history lists. When an object leaves the domain
the associated history lists are verified and added to a database. On completion of the
training period, the database can be statistically analyzed to determine which sequences
of relationships occur sufficiently frequently to be considered as the basis for an event

model.

1.2 Overview of the thesis

In this introduction we have provided a broad outline of the research conducted as part
of this thesis. The next chapter (chapter 2) provides a review of the related bodies of
work concerning qualitative reasoning methods, obtaining conceptual descriptions from

the observation of moving objects over extended periods, as well as providing a brief



overview of various machine learning paradigms. In the remaining chapters, we describe
the original work of the thesis including relevant results from real image sequences. The

work is organized as follows:

e Chapter 3

We describe an existing region-based model of space that supports the behavioural
analysis of objects moving through the domain. Two methods for automatically
constructing a similar spatial representation are discussed — one being more suc-

cessful than the other.

e Chapter 4
An extension to our method for generating a semantic region-based model of space
to include temporal sized sub-divisions (or regions) is demonstrated. Such temporal
regions support an attentional control mechanism that allows objects within the
same general vicinity to be identified.

e Chapter 5
To demonstrate the effectiveness of our spatio-temporal model, details of a quali-
tative event learning system are provided and supported by experimental results.

e Chapter 6

Finally, conclusions and aspects of possible future work are discussed.



Chapter 2

Overview of Related Work

2.1 Introduction

This chapter deals with the underlying foundations found in previous related work. It
has been our intention to learn conceptual knowledge automatically from the input of
video image sequences. In fact, we take this a step further and desire not just conceptual
knowledge learning but to learn qualitative conceptual knowledge from dynamic scene
data. Qualitative knowledge may be viewed as that aspect of knowledge which criti-
cally influences decisions. The particular aspect of knowledge which is critical depends
on the situation, and the key to qualitative representation and reasoning relies on the
relevance of the knowledge being modelled. Given the relevant knowledge and an ap-
propriate reasoning system it becomes possible for a computer to predict, diagnose and
explain physical behaviour of real-world situations in a qualitative manner, even when a
quantitative description is unavailable or computationally intractable. A wide range of
qualitative representation and reasoning systems now exist in this arena for both tem-
poral and spatial aspects. We provide a review of the various systems in section 2.2. To
show the type of conceptual knowledge we want to learn, we provide an overview of the
existing vision systems in section 2.3 along with a brief overview of traditional machine

learning techniques in section 2.4.



2.2 Aspects of Qualitative Reasoning

As discussed in Chapter 1, the work described in this thesis is motivated by the desire to
apply qualitative reasoning techniques to real-world situations — in particular, we wish
to apply such techniques to visual surveillance. Before we are in a position to do that,
it is necessary to understand what qualitative representation and reasoning systems are

currently available and the intended purpose of those system.

This section explores the rich set of existing qualitative representation and reason-
ing systems currently available for spatial and temporal reasoning. We start this review
looking at temporal reasoning systems (section 2.2.1) before moving onto topological sys-
tems (section 2.2.2), Orientation or Direction systems (section 2.2.3), Size and Distance
systems (section 2.2.4) and finally qualitative systems designed to deal with shape (sec-
tion 2.2.5). Any similarities between the various systems are indicated throughout the

text and we will finish the section with a summary.

2.2.1 Temporal

The representation and reasoning about temporal knowledge has been of great interest to
researchers within Artificial Intelligence. Probably the most widely used and best known
representation scheme is the algebra of temporal intervals proposed by Allen (1983). The

simplicity and ease of implementation make this scheme particularly appealing.

Given any two complete intervals, Allen shows that there are only thirteen distinct
relationships which precisely characterize the relative endpoints of the two intervals (see
table 2.1). Disjunctions of these simple relations allow for some vagueness in modelling

temporal event structures (e.g. G overlaps or starts M).

The reasoning mechanism is provided through table look-up with a composition
table! which shows the possible relations between two intervals (X and Z) when the

relationship between X and Z is known for a third interval, Y. For example, given

!Allen originally used the term transitivity table, but since more than one relation is involved the
table represents relation composition rather than transitivity.



‘ Relation ‘ Symbol ‘ Example ‘

X before Y < XXX
Y after X > YYY
X meets Y m XXX
Y met-by X mi YYY
X overlaps Y 0 XXX
Y overlapped-by X oi YYY
X starts Y S XXX
Y started-by X si YYYYY
X during Y d XXX
Y contains X di YYYYY
X finishes Y f XXX
Y finished-by X fi YYYYY
X equals Y = XXX

YYY

Table 2.1: The thirteen possible simple interval relationships.

that X <Y and Y d Z the composition table shows that X {< om d s} Z. Using
Allen’s constraint propagation algorithm such inferences can be propagated through an
entire temporal event network. However, Allen shows that this algorithm is incomplete
and suggests that to ensure total consistency the computational complexity of such an
algorithm would be exponential. Further work by Vilain, Kautz & van Beek (1990)
shows this to be accurate and discusses an alternative algebra based on continuous end-
point uncertainty. The restricted algebra is that subset of the interval algebra which can
be completely encoded as disjunctions of continuous time point relations between the
end-points of intervals. (i.e. disallows such disjunctions as {before after}). Both Nebel
& Biirckert (1994) and Ligozat (1994) also analyze the maximal tractable subclasses of

Allen’s interval relations.

Kumar & Mukerjee (1987) re-interpret Allen’s interval algebra using a state-based
approach where the interpretation of the relations is viewed as propositions that hold at

certain instants. This approach permits incomplete temporal intervals to be modelled



(see table 2.2) and using state transition rules it becomes possible to determine the actual
relationship as one of the two events terminate (i.e. on-line interpretation). In chapter 5,

we show how this state-based approach can help identify learned events.

‘ Relation ‘ Symbol ‘ Example ‘
X starts before Y sh XXXXX777
Y starts after X sh YYY??
X starts with Y sb XXX777

YYY??7?

Table 2.2: Extra temporal relationships introduced by Kumar and Mukerjee
that allow modelling of incomplete intervals. A fourth relation ¢
(null) expresses the relationship between two events whose proposi-
tion happens to be false at that instant. Question marks (?) in the
example represent either the relevant symbol (X or Y') or blank.

Another approach that allows reasoning with incomplete knowledge or uncertainty
is presented by Freksa (1992a). Although based around Allen’s interval-based approach,
Freksa splits an interval into ‘beginnings’ and ‘endings’ otherwise known as semi-intervals.

New relationships to support semi-intervals are shown in table 2.3.

An important part of the theory is the idea of conceptual neighbours, conceptual

neighbourhoods and coarse knowledge :

e two temporal relationships are conceptual neighbours if they can be directly trans-
formed into one another by continuously deforming the intervals (in a topological

sense).

e aconceptual neighbourhood is a set of temporal relationships where all the elements

are path-connected through conceptual neighbour relations.

e when the associated disjunction of incomplete or uncertain knowledge about tem-

poral relations forms a conceptual neighbourhood, it is classed as coarse knowledge.

An abstract composition table, based on conceptual neighbourhood relations rather

than the base relations allows the simultaneous composition of several relations as well as



10

‘ Relation ‘ Symbol ‘ Example ‘
X older than Y ol XXX77?7?
Y younger than X yo YY
X head to head with hh XXx77?

YYYY
X survives Y SV ?7777XXX
Y survived-by X sh YY
X tail to tail with Y tt 7?XXXX
YYYYY
X precedes Y pr XXXx7
Y succeeds X sd YYY
X contemporary of Y ct 7XXX777
7PTYYY?
X born before death of Y bd XXX?7777
Y died after birth of X db TITTIYYY

Table 2.3: Freksa’s semi-interval relationships. Question marks (?) in the ex-
ample stand for either the relevant symbol (X or Y) or a blank.

a coarse reasoning strategy suitable for reasoning with incomplete or vague knowledge.
This coarse reasoning strategy does not necessarily lead to coarser results being obtained,
in fact the entries in the abstract table match those in the full table — they are just
in different positions. Fine reasoning is also possible (although, computationally more
expensive) by finding the conjunction of inferred results based on the boolean combination
of neighbourhood relations that yields the desired base relation. Composition tables at
various granularities can be generated but in general, more efflicient processing is obtained

when knowledge can be shifted to a coarser level.

A generalization of interval algebra to an n-interval algebra is demonstrated in
Ligozat (1990) where the special case of n=2 coincides with Allen’s interval algebra. This
generalization is expressed in a relational algebra A, where the atoms have a natural
topological structure represented by polytype H, ,. This generalized algebra can also
represent (p,q)-relations (Ligozat 1991) (i.e. polytype H,,) where H; 5 is set of point-

interval relations (i.e. <, s, d, e and >).
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Mukerjee & Schnorrenberg (1991) look at reasoning in multiple scales (i.e. various
levels of detail/granularity). Depending on the scale, there is some threshold beyond
which the distance between two objects disappears and those objects are perceived as
being in contact. This threshold is known as tolerance space and is a scalar param-
eterization based on the observer, intent and the environment. Although combining
information at very disparate scales will not yield meaningful information, over compa-
rable tolerance spaces there is a possibility of reinforcing and exchanging information.
Mukerjee and Schnorrenberg look at this combination of tolerance spaces for point-point

relations, point-interval relations and interval-interval relations.

Within this thesis, we do not utilize any of these qualitative temporal logics directly.
Rather we incorporate temporal knowledge directly into our spatial model in the form of
equi-temporal regions (see chapter 4) where Mukerjee & Schnorrenberg’s (1991) notion
of tolerance space is used when originally forming the equi-temporal regions. Further

temporal information is modelled indirectly when one frame progresses to the next.

2.2.2 Topological

Although essentially topological, the interval algebra introduced by Allen (1983) only
considers the temporal (1-dimensional) domain. This section details the research into
topological relationships in the spatial domain — for visual surveillance, we are interested
in the interaction between two (or more) physical objects which have a multi-dimensional

spatial extent (rather than just 1-dimensional).

An extension of the interval logic to multi-dimensional cases is explored by Mukerjee
& Joe (1990). Relations along each of the axes in an orthogonal domain are represented
in a multi-dimensional vector. However, each object typically has its own “natural”
orthogonal system so that no one representation can model all of them. As such, the
relative position of two moving objects is modelled based on the ‘lines of travel’ (based on
the current trajectory) taken by the objects and their intersection. As the lines of travel
are different for two objects the relation is non-commutative and does not have a well

defined inverse i.e. given pos(A/B) it is not possible to determine pos(B/A). However,
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considerable reasoning is possible when combined with the relative direction of the objects
(discussed further in the next section). We use a similar approach in chapter 5 when

classifying the relative position from one object to another.

The qualitative spatial calculi developed by Randell & Cohn (1989) is an adaptation
of the calculus of individuals developed by Clarke (1981, 1985). Clarke’s original theory
is based around a single primitive dyadic relation, C,, meaning ‘x is connected to y’.
A mereological definition of the base relations is given along with quasi-boolean and

quasi-topological? function definitions.

Randell & Cohn’s (1989) adaptation is an improvement in three ways:

e Clarke makes use of 2nd and 3rd order variables in his definition. Randell & Cohn
maintain a 1st order formulation expressed in a many sorted logic know as LLAMA

(Cohn 1987) allowing an easier reasoning mechanism.

e the partial (or quasi) functions are made explicit in the many sorted logic with the

addition of a null object making the functions complete.

e The inclusion of a new primitive, conv(x), meaning the convex hull of x*, which

allows further base relations and distinctions to be made.

A refinement of the primitive definition for C(x,y) from ‘regions & and y share a
common point’ to the weaker ‘topological closures of regions z and y share a common
point’ overcomes various conceptual, pragmatic and computational problems (Randell,
Cui & Cohn 1992). In total, the theory has eight jointly exhaustive and pairwise disjoint
basic relations obtainable just from the C(x,y) primitive (see figure 2.1). The number
increases to 23* when considering the convex-hull primitive. In fact, it is possible to
increase the number of qualitative relationships extensively by considering small refine-

ments to the logic (e.g. Cohn, Randell & Cui (1995) demonstrates over a hundred jointly

2The term quasi is used due to the unavailability of a NULL object.

*The conv(x) primitive can be thought of as a ‘cling-film’ operator that gives the convex hull of a
(concave) object.

*Originally there where thought to be only 22 relationships until an additional relationship was shown
to be possible.
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exhaustive and pairwise disjoint relations).

PR

P

DC EC PO " NTTRi

Figure 2.1: A pictorial representation of the eight base relations and their direct
topological transitions (i.e. continuity network).

Continuity networks are used to represent the legal transitions from one relation to
another (figure 2.1) and composition tables provide table look-up for the combination of
two different spatial relations. These continuity networks are not dissimilar to Freksa’s
(1992a) definition of conceptual neighbourhoods although the differences are discussed
in (Cohn, Gotts, Randell, Cui, Bennett & Gooday 1995) with regard to the generation
of compact or abstract composition tables. A reformulation of the spatial calculi to an
intuitionistic propositional logic representation is demonstrated in Bennett (1994) which

can then be used in the automatic generation of composition tables.

The expressive power of the formalism is demonstrated using the continuity net-
work and composition tables as the basis for the qualitative simulation of a force pump
(Randell, Cohn & Cui 1992) as well as a biological example in an envisionment-based
simulation of phagocytosis and exocytosis — the process used by unicellular organisms
for garnering food and expelling waste material (Cui, Cohn & Randell 1992). We find
these methods useful when verifying that each change in an object’s history is legal (in

chapter 5 section 5.4).
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Another formalism based on Clarke (1981, 1985) is given by Vieu (1993) in the
application of geographic space. This reformulation maintains a lst-order logic and pro-
vides a redefinition of points to overcome Clarke’s flawed definition (Vieu 1991). Distance

and orientation are also introduced as inequalities.

The formalism described by Egenhofer & Franzosa (1991) is based around the
practical needs for geographical information systems (GIS). Topological relations are
described by the four intersections of the boundaries and interiors of two point-sets. This
supplies a total of 16 mutually exclusive relations of which 8 are illegal when restricting
the allowable relations to those which are homeomorphic to polygonal areas in a plane.
Perhaps surprising considering the staring points, the remaining 8 relations are essentially
identical to the base relations in Randell, Cui & Cohn (1992)°. An alternative formalism
based on a 9-intersection model (boundary, interior and exterior intersections) provides
a richer set of relations (Egenhofer & Herring 1991). This 9-intersection model is an
improvement of the 4-intersection model as it considers relationships with the embedding

space as well as the relations between feature parts.

Egenhofer & Al-Taha (1992) provide what they call the ‘closest topological dis-
tance’ graph. This is based on the topological distance between two pairs of regions
represented by the 9-intersection model where the topological distance is the sum of all
the differences in the intersection model. The most likely change for a topological re-
lationship is that with the smallest non-zero topological distance value (a zero distance
indicates no topological significance). The resulting graph is almost identical to Randell,

Cui & Cohn’s (1992) continuity network (figure 2.1).

Most topological approaches embody area/area relations and disregard other di-
mensions. In the context of GIS, Clementini, Di Felice & van Oosterom (1993) explore
a dimension extended approach to Egenhofer & Franzosa’s (1991) geometric point-set
approach (i.e. examine relations between areas, lines and points). A total of 52 valid
relations are shown to be possible — too many to be practical for a GIS query language.

Instead a reduced set of mutually exclusive calculus-based relations is introduced (touch,

*Dornheim (1995) discusses the differences.
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in, cross, overlap and disjoint). Clementini et al. (1993) demonstrate that all the re-
lations in the dimension extended approach can be modelled using disjunctions of this

reduced set of relations.

A way in which relations between regions with holes can be modelled is demon-
strated in Egenhofer, Clementini & Di Felice (1994). If the holes are considered as
separate regions then the problem of modelling relations between regions with embedded
holes becomes one of expressing relations between simple regions. Many of the relations
can be automatically inferred and Egenhofer et al. (1994) supply an algorithm to produce

a minimized set of relations which does not include inferable relations.

When considering spatial regions in everyday contexts it is often found that they
do not have precise boundaries: for example urban areas or the natural habitat of some

creature. Such spatial regions tend to fall within two broad categories:

e Objects with sharp boundaries where the position and shape are unknown or cannot

be measured exactly. This situation is known as “positional uncertainty”.

e Situations where there is no well defined boundary for an object.

Both Clementini & Di Felice (1996) and Cohn & Gotts (1996) have examined
this problem independently and proposed very similar models. Clementini & Di Felice
extend Egenhofer & Herring’s (1991) 9-intersection model describing the indeterminacy
of an object’s boundary as a two-dimensional zone surrounding the object separating the
space that surely belongs to the object and the space that is surely outside. The model
geometrically defines a region with a broad boundary by considering two “simple” regions
with sharp boundaries representing the region enclosed by the inner boundary and the
region enclosed by the outer boundary. The broad boundary is also a region, although
with a hole, comprising the area between the inner boundary and the outer boundary.
Clementini & Di Felice demonstrates 44 possible relations from which they construct a
conceptual neighbourhood. The conceptual neighbourhood can then be clustered into

similar relations which are a superset of those relations for simple regions.



16

Similarly, Cohn & Gotts (1996), extend the framework of ‘RCC theory’ (Randell,
Cui & Cohn 1992) to cope with regions with indeterminate boundaries otherwise know as
“vague” or “non-crisp” regions. As with Clementini & Di Felice (1996) the model defines
a vague region as two subregions using an “egg-yolk” representation. The inner subregion
is the “yolk” while the outer subregion is the “white”. Together, both subregions are
the “egg” — thus the “egg-yolk” representation. Randell, Cui & Cohn also define a
“crisping” relation, CR(X,Y), which refines the vagueness of region Y to (a less vague)
region X. A complete “crisping” translates a region with an indeterminate boundary into
a region with a sharp boundary. The only acceptable regions obtained from a complete
“crisping” must lie between the inner and outer limits defined by the “egg-yolk”. By
considering all possible (logical) configurations 46° possible relations are obtained (when
using RCC-5). These are clustered according to the possible relations obtained by a
complete “crisping” of the two vague regions. The obtained clusters are similar but

different to those shown by Clementini & Di Felice (1996).

Although the spatial model we currently generate contains regions with well defined
boundaries, this is not necessary, and we suggest that as further work, the spatial model

could be extended to consider spatial regions with indeterminate boundaries.

Throughout this section we have discussed a number of qualitative topological
formalisms. Although there are differences in the way these formalisms were constructed
the relationships identified are very similar. The spatial model we generate is essentially
topological and can be described using any of these formalisms. However, in itself,
topology is not sufficient for effective spatial reasoning in visual surveillance — there
is no concept of direction or orientation which is required to sufficiently describe the
relationship between two moving objects. In the next section we examine some of the
qualitative formalisms that deal specifically with orientation and direction and often

expand on the purely topological approaches..

®There are two more than Clementini & Di Felice (1996) which is unable to recognize the difference
between two sets of particular configurations.
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2.2.3 Orientation/Direction

As discussed in the previous section, the concept of direction or orientation is essential
when describing the relationship of two objects in 2D or 3D space. When describing
directions in space, concepts such as “right” and “left”, “up” and “down” as well as “in
front” and behind” are often used. These are all qualitative concepts that form the basis
for qualitative vectors (Nielsen 1988) which have been successfully applied in a number
of areas including the qualitative simulation of a clock mechanism (Forbus, Nielsen &

Faltings 1991).

The points in a qualitative vector are described by the symbols {4+,0,-} with respect
to their orientation on a Cartesian coordinate system. In the 2-dimensional case this
represents any of the four quadrants, an axis or the centre. Vector arithmetic is shown
to be possible with only the addition and multiplication of signs necessary, although
ambiguities will arise when adding opposing signs unless more information is know (c.f.
table 2.4).

+ |7
0

-w++H

Table 2.4: Addition of signs in qualitative quantity space {+,0,-}. Entries
marked with a ‘?” represent ambiguities.

Extensions to qualitative vectors have been made by Weinberg, Uckun, Biswas
& Manganaris (1992) and Kim (1992). Weinberg et al. (1992) look at the qualitative
analysis of dynamics and extend qualitative vectors to an algebra allowing greater vector
manipulation. Inequalities are used to describe qualitative magnitudes while angles are
given by {aligned, acute, perpendicular, obtuse and opposite}. Improved vector addition
is obtained by the comparison of the magnitude and angle of two vectors. A number of

lemmas are provided to formalize the reasoning mechanism.

Qualitative kinematics of linkages is the focus of Kim’s (1992) extension. In this

theory, direction is represented by sense and inclination where sense is a qualitative
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vector. However, sense is not always sufficient to distinguish different kinematic linkage
states and inclination must be used. Inclination is the level of incline from the x-axis and

is represented by inequalities between different link angles.

Another similar approach is considered by Mukerjee & Joe (1990) although no
connection is actually made. An intrinsic frame of reference based on the “front” of an
object is used to determine the relative direction to another object and the quadrant in
which that object lies. In 2D-space this gives eight qualitative angular relations with
26 in 3D-space. When combined with the relative position, discussed in the previous
section, a collision parallelogram can be constructed which defines the area common to
the ‘lines of travel’ of two objects. This allows the relationship between the two objects

to be identified.

The intrinsic frame of reference (FofR) used by Mukerjee & Joe (1990) is one
of three possibilities; intrinsic, extrinsic’ and deictic. An intrinsic frame of reference
exploits some inherent property of the reference object (e.g. ‘front’), while an extrinsic
frame of reference imposes an external immutable orientation (e.g. gravity). Orientation

from a deictic frame of reference is with respect to some point of view (e.g. an observer).

Combining topological information with orientation is the focus in Herndndez
(1991, 1994). Spatial projection (3D to 2D) obtains typical topological relationships,
disjoint, tangency, overlap and inclusion®, which are incorporated with orientation rela-
tions based on 45 degree zones — front, left-front, left, left-back, back, right-back, right,
right-front. Spatial knowledge is expressed as projection/orientation pairs with respect

to some frame of reference (e.g. <A, [disjoint,back], B, {intrinsic}>).

Abstract maps, which exploit the structure of space, are available to model changes
in the point of view as well as the more typical composition table allowing the simulta-
neous composition of relations or coarse reasoning. Constraint propagation algorithms
(adapted from the temporal domain) allows the addition of new relations and their effect

on an entire network to be generated. Also presented is an approach to deleting relations

"Nielsen’s approach is extrinsic.
8Note: inclusion covers equality, inclusion at the border and the inverse relations.
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and taking back the consequences of propagation by using a dependency network along

with a reason maintenance system (Herndndez 1993a, Herndndez 1993b).

A qualitative model which defines directional orientation information as available
through perceptual processes is described in (Freksa 19925, Freksa & Zimmermann 1992).
When considering the direction from a vector ab and its inverse vector ba to a point ¢
it is possible to define fifteen possible locations (as shown in figure 2.2). Reasoning is

possible through composition tables and a number of operations:

e Inversion: if c:ab is know, it is possible to precisely deduce c:ba.

e Homing: given c:ab then find a:bc (obtains imprecise result in the form of a

conceptual neighbourhood).

e Shortcut: given c:ab find b:ac (obtains similar results to homing operation —

entries in the table are just in a different order).

BHEHOOG
0,G,0,C0
0101000

Figure 2.2: The fifteen different positions which can be determined using
Freksa’s model.
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It is suggested that through algebraic combination of these operations along with
composition it is possible to build and deduce a relation for every possible combination

of points with respect to any vector.

An extension to this work in (Zimmermann & Freksa 1993) shows that improved
inference results can be obtained if path knowledge is employed. Path knowledge is
composed from the set of relations that define the path (assuming it is straight) between
b and ¢ when given the relationship ab:c (example). Individual composition of the path

relations can refine the overall result improving inference results.

A generalization of Freksa’s (19920) qualitative model is demonstrated by Ligozat
(1993) in terms of qualitative triangulation. Triangulation is the process of locating a
third point by computing the angles and distance of the lines between two other points
and the third point. With qualitative triangulation, qualitative knowledge of the angle
values is used and propagated as new values are considered. Freksa’s (1992b6) qualita-
tive orientation model is obtained when the scale of angles is restricted to 90 degree

increments.

The last approach in this section considers the orientation of points in a plane.
The orientation or ordering of points on a line (1D-space) is well known (<, = and >

or [-,0,4]), what is less well known is that this is also possible for points on a plane

(2D-space):

4ve if counter clockwise order.
(a,b,c) =14 —ve if clockwise order.

0 if collinear.

This observation is utilized for qualitative navigation (Schlieder 1993).

Schlieder (1995) demonstrates that 1D-ordering information can exactly describe
Allen’s interval relations and extends this ordering idea into 2D-space using two pairs
of connected points. As long as the points are not collinear then there are 14 relations

(as shown in figure 2.3%). If collinear points are allowed, there are the 13-Allen relations

° Adapted from Schlieder (1995).
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along with a further 36 relations when three of the points are collinear.

A A
C._.D D._.C
D
B @@=~ A / / B @—=@ A
D Blc B
C B C D
/ D A /
B D A C
C c B D
/ A /
A D D B c
B B
C._.D D._.C
D
A O—e B / / A @—e B
c Albp A

Figure 2.3: The 14 line segment relations determined by Schlieder.

Within this section we have examined a number of different approaches to mod-
elling orientation and direction qualitatively. From these different approaches, the one
which most closely matches our requirements for visual surveillance and the interaction
of moving objects is that described by Mukerjee & Joe (1990). In this approach, an
intrinsic frame of reference is used based on the “front” of a vehicle. In chapter 5 our
approach to obtain the relative position of one object with respect to another is similar,
although the “lines of travel” we use is based on the composite regions we generate as

part of the spatial model in chapter 3.

Again in chapter 5 we classify the direction of motion using a deictic point of view

based on the camera position. This is used to convert the quantitative vector supplied
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by the tracking algorithm into a qualitative (45 degree) zone as described by Hernandez
(1991).

The observation made by Schlieder (1993) about point ordering is also found useful
when determining which equi-temporal region an object is contained in (as described in

chapter 5.

The other approaches described within this thesis are not specifically utilized within
this thesis. However, certain insights into relative position and direction have assisted

and inspired the work described throughout the course of this thesis.

2.2.4 Size and Distance

Size and distance are related in so far as we tend to use linear scale systems to measure
each of these aspects. Distance is typically thought of as a one dimensional concept
whereas size is multi-dimensional (area or volume). The domain may also influence
distance values (isotropic and anisotropic surfaces) but qualitative reasoning systems
are typically concerned with linear quantity systems such that the qualitative algebras

developed will apply equally to both size and distance representations.

Probably the earliest measuring scheme introduced to qualitative reasoning are
the order of magnitude calculi (Raiman 1986, Mavrovouniotis & Stephanopoulos 1988)
which allow a quantity to be described as being much larger or smaller than another.

This means that many smaller values are required to surpass a “much larger” value.

A more recent representation known as the A-Calculus (delta-calculus) is described
in Zimmermann (1995). This formalism considers the cognitive capabilities of humans

reasoning about point-like measures (e.g. durations or object dimensions):

e Human observation tends to regard positive measures, so negative values are un-

supported in the calculus.

e Direct multiplication of two measures is considered cognitively implausible (consider

multiplying the size of a chair by the width of a table,) and as such is only supported
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through the repeated summing of a measure.

The A-calculus introduces a triadic relation for difference measurements, z(>,d)y
where z is larger than y by some d. Measures (e.g. #,y and d) are maintained as relational
knowledge with adaptive granularity, for example z(>, d)d would make z twice as large

as d meaning that y is three times as large as d and one and a half times as large as z.

Zimmermann (1993) combines the A-calculus with Freksa’s (1992b) orientation
model — considering the distance between the points in vector ab to a third point c it is
possible to obtain (limited) distance information. Finer levels of distinction can be made

if the perpendicular and vertical distance from point ¢ are also considered.

A technique to determine the relative size of two objects was proposed by Muk-
erjee & Joe (1990). When the starting point of two objects is the same, the observed
relationship between those two objects is determined by their relative size. For example,
if the relationship is equality the objects must be the same size, whereas if the one ob-
ject starts the other it must be smaller. From this observation, Mukerjee & Joe define
a flush-translation operator, ¢, which is used to translate two size and shape invariant
regions, A and B. By observing the topological relationships between the flush regions

¢ A and B, it is then possible to determine the relative size {<, =, >}.

A relatively new and sophisticated formalism for modelling distance qualitatively
is proposed by Herndndez, Clementini & Di Felice (1995). The distance relationship
between two objects is expressed with respect to some frame of reference (analogous to
that used in orientation systems); intrinsic distances are determined by inherent charac-
teristics of the object (e.g. topology, size or shape), extrinsic distance is based on some
external factor (e.g. object arrangement, travel time) and deictic distance relies on an

external point of view (e.g. camera position).

Different levels of distinctions can be made for distance ranges, for example close
and far, close, medium and far or very close, close, commensurate, far and very far.
A distance system allows the choice of a distance range and requires a set of structural

relations which provide additional information about how the distance ranges correspond
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to one another (e.g. monotonically increasing ranges or order of magnitude). Composition
of relations is based on the structural relations and examples are provided for distances
with the same orientation and different orientations. This method is currently being

extended to include other orientations.

Within this thesis, we do not directly use qualitative size although it may be used
to extend the scope of the work described here to consider the behaviour of two (or
more) objects of dissimilar size. Due to time constraints, this idea was not pursued to

any extent.

However, we do consider distance but as yet, we only look at “close” objects. Our
use of “close” is not based particularly on spatial proximity and is discussed in more

detail in chapter 5.

2.2.5 Shape!®

A perceptual approach to the organization and representation of natural occurring forms
examines the inherent regularities in organic and inorganic bodies (Pentland 1986). The
complexity of shape description arises from the limited vocabulary in combing the finite
number of basic forms in a myriad possible combinations. Pentland (1986) proposes a
method allowing the representation of objects using the boolean combination of a few

basic forms!!.

These basic forms are represented by a parameterized family of shapes
known as superquadrics. Although a superquadric provides a quantitative description of
that part, a qualitative description can be used for the boolean combination of different

parts.

A further refinement exploits the general characteristics of natural occurring fractal
forms (such as clouds or a mountain) where the ratio of a feature in one scale to the same
feature in the next larger scale is constant. Such fractal surfaces can be constructed using

superquadric parts at recursively smaller scales.

Y Throughout the course of the research presented in this thesis we have not been concerned with
qualitative shape description. This section is included only as a matter of completeness although future
work may want to consider the shape of paths/regions as they may evoke different behaviour patterns.

"' This method can be seen as equivalent to a ‘naive’ verbal description given by people.
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Another hybrid qualitative and quantitative shape model uses an axial model
(Mukerjee 1994) for shape descriptions. Qualitative shape models are ambiguous (by
qualitative definition) and represent a class of conceptual objects — Agrawal, Mukerjee
& Deb (1995) propose a method using a real-coded genetic algorithm to implement the

visualization and optimization of such inexact shapes.

Jungert (1993) presents a formalism for the qualitative matching of object shapes.
An object shape description is represented as characteristic points including the angle
(obtuse, acute and right-angled), entry and exit directions. Sequences of points allow
concave and convex areas to be identified. For shape matching, the relative angles are

used and a simplified sequence obtained.

An exploration of the basic connection primitive (i.e. C(x,y)), used in the topo-
logical spatial calculi (RCC) developed by Randell, Cui & Cohn (1992), is conducted by
Gotts (1994) to determine what level of topological complexity can be identified — in

particular, to decide if the topology of a region is that of a solid torus (or a ‘doughnut’).

Cohn (1995) proposes a shape extension to the RCC theory which further exploits
the convex-hull operator. This proposal allows a wider selection of shapes to be distin-
guished than just connection (Gotts 1994). The maximal connected (i.e. one piece) parts
of the inside of a region and the relationships between them can be identified. Further
distinctions can also be made to identify adjacent holes (concave areas) and holes on the
‘same side’. Finer grained shape distinctions can be obtained by recursively applying
the technique to each maximal inside of the original shape. More recent work by Davis,
Cohn & Gotts (to appear) shows that it is possible to distinguish any shapes which are

not affine related.

Qualitative shape representation based on ordering information is proposed by
Schlieder (1996). A sequence of triangle orientations for the vertex points are used in
the representation. The more triangle orientations included, the more refined the shape
becomes. A complete set of qualitative relations for quadrilateral shapes is demonstrated
along with a formalism to obtain the relations and its conceptual neighbourhood. The

conceptual neighbourhood relations are based on the Hamming distance (i.e. the number
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of different components) between two relations (similar to the closest topological distance
used by Egenhofer & Al-Taha (1992)). This formalism could easily be adapted to more
complex shapes (i.e. those with more vertex points). However, using boundaries to de-
scribe shape can cause problems for practical reasoning — for example, when two objects
are tocuhing which boundary points belong to which object? Fleck (1996) discusses these
problems in more detail and suggests an alternative approach where boundary points are
deleted from the representation of space allowing the attention to focus on region borders;

thin strips of a region adjacent to the boundaries.

Within the spatial model we construct, we follow Fleck’s (1996) approach when

considering region occupancy in chapter 5.

2.2.6 Summary

Throughout this section we have provided a review of the rich set of qualitative repre-
sentation and reasoning systems currently available for reasoning about space and time.
Although it is not always possible to obtain accurate quantitative knowledge about a
particular situation, it is typically possible to collapse the (potentially) inaccurate quan-
titative knowledge into a broader (qualitative) subset which contains the critical aspect
of knowledge necessary to allow a qualitative reasoning system to predict, diagnose or

explain the physical behaviour(s) being observed.

Our intended purpose is to utilize appropriate techniques for the purpose of visual
surveillance. In particular, we want to be able to recognize particular behaviours or
events observed in the domain. Rather than providing the descriptions of these events as a
priori system knowledge part of our research has been to learn such models automatically
through the extended observation of a particular scene. Such conceptual models can be

sufficiently (and probably better) described using a qualitative representation.

Throughout this section we have indicated the approaches which most closely re-
semble our requirements (in particular in the section on Qualitative Orientation and

Direction — section 2.2.3).
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2.3 Conceptual Descriptions from Image Sequences

In providing conceptual descriptions of observed behaviours in real-world image se-
quences, it is necessary to perceive and understand the actions and interactions of objects
moving in the scene. Computer vision, a large and diverse field of Artificial Intelligence,
provides the basis for the artificial perception of situated actions. Essentially vision
(both biological and machine) can be split into three stages; (1) Low-level (or early), (2)

Intermediate-level and (3) High-level vision.

e Low-level vision is the most understood. Visual receptors provide a 2D array of
intensity values (i.e. an image) representing the real-world view. Low-level pro-
cessing is achieved using visual primitives to obtain image features such as edges.
A large amount of image processing literature already exists and we will spend no
more time covering these concepts. For more details, see any of the following books;
Castleman (1979), Hall (1979), Gonzalez & Wintz (1987), Boyle & Thomas (1988),
Schalkoff (1989) or Sonka, Hlavac & Boyle (1993).

o Intermediate-level vision typically concerns the recognition of objects. For sin-
gle images this is usually object identification through model matching techniques
whereas tracking individual objects is the focus for image sequences. For more

information, see Ullman (1996).

e High-level vision is the least understood stage and, at present, contains the least
amount of active research. Emphasis is placed on the conceptual understanding
of information obtained from the intermediate-level visual processing such as the
recognition or interpretation of situated actions or sequences of situated actions

(events). For a more detailed review of high-level vision see Howarth (1995).

By allowing the feedback of information based on the results from high-level visual
processing to the intermediate and low-level visual stages, it is possible to control
the processing that should be performed at those levels (Bajcsy 1988, Ballard 1991).
Typically such systems will have a gaze control mechanism that can actively posi-

tion the camera in response to physical stimuli allowing simpler execution of visual
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behaviours such as physical search and intelligent data acquisition.

2.3.1 Object Tracking

Although we are most concerned with high-level visual processing, we make use of result-
ing information obtained from an object tracking application. As such, we will provide

a brief overview of the current state of visual tracking technology.

It has become recognized that to track objects effectively in a cluttered scene some
sort of a priori information is necessary in order to find the object being tracked (although
exceptions exist). Prior information usually takes the form of object shape models which

may be derived statistically from training data using “Principal Component Analysis”

(PCA) as described in Jolliffe (1986).

The type of shape model typically depends on the object to be tracked. Sullivan
(1994) describes a model-based vehicle tracking system which was originally developed
for the recognition and pose recovery of a vehicle in a single frame. Knowledge of the
camera position with respect to the ground plane reduces the search space (for subsequent
object positions) by constraining the possible degrees of freedom from six to three (full
3D movement and orientation to 2D movement and orientation in a single plane). The
tracking procedure can be seen as an application of Lowe’s (1991) refinement technique
— an iterative procedure which begins with an initial rough estimate of the position and
orientation of the object and at each iteration of the refinement, suggested movements

are calculated from image features.

Sullivan (1994) relies on CAD-like geometrical models of objects to be recognized
and the scene in which they appear. A “pose hypothesis” is generated through a process
of Canny edge detection on the image, which is then reduced to a set of straight line
segments. Strong lines of a significant length are compared against each vehicle model
to find those lines which are consistent. After generating an orientation histogram and
determining the possible model origin an “iconic evaluation” is performed to measure the

quality of the object and pose hypothesis.
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In a more recent paper (Ferryman, Worrall, Sullivan & Baker 1995), the geometrical
object shape models have been generalized to a generic deformable model — composed
initially from 29 parameters. Unfortunately, considering the three spatial degrees of free-
dom, these 29 parameters lead to a configuration space which, for all practical purposes,
is too large to search naively when attempting to locate an object. However, to represent
a vehicle strong structural constraints can be applied and obtained through principal
component analysis. The 6 main PCA parameter prove sufficient to distinguish the three
sub-classes of car (hatchback, saloon and estate) which is a searchable configuration

space.

When tracking the motion of a non-rigid object, such as a walking person or a
hand, an alternative shape model is more appropriate. The Point Distribution Model
(PDM) introduced by Cootes, Taylor, Cooper & Graham (1992) and Cootes & Taylor
(1992) is one such example. Typically, a PDM is a statistical model of a set of (2D
or 3D) “landmark” points where each point corresponds to a particular feature on the
object. The landmark points for the PDM are based on a statistical analysis of the point
coordinates over a training set. In a related approach, Baumberg & Hogg (1995) describe
a method which tackles the problem of modelling continuous deformable contours using
a spline shape representation which provides a more efficient method for calculating a
statistical shape model for continuous curves rather than using a dense set of sampled

boundary points.

For tracking objects in the scene, Cootes & Taylor (1992) describe their “Active
Shape Model” for locally optimizing the shape parameters of the object model to fit
the features in the image. The actual method is similar to that used by Sullivan (1994)
and regarded as a 2D application of Lowe’s (1991) refinement technique where at each
iteration of the refinement process, suggested movements for each landmark point are

calculated from image features.

Other approaches such as the “snake” (or active contour model) of Kass, Witkin &
Terzopoulos (1987), “Kalman Snake” (Terzopoulos & Szeliski 1992) and “Active Splines”

(Blake, Curwen & Zisserman 1993) are 2D, contour based approaches where object
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shape is constrained to be continuous and to deform smoothly. A “snake” is an energy-
minimizing spline (like an elastic membrane) that is attracted to image features such
as edges. The “Kalman Snake” employs a Kalman filter to provide a mechanism for
tracking a “snake” over successive image frames which allows model parameters to be
derived from a statistical sensor model and varied over time. An “Active Spline” evolved
from the principles of a snake and provides a framework for efficiently tracking B-spline
contours using a Kalman filter mechanism. Through the implicit continuity and elastic-
ity of a B-spline, a simple stochastic model can be applied without having to explicitly

“regularize” the energy-minimizing function.

To date, less sophisticated tracking applications have found a home in commercial
surveillance systems. In such systems, a simple background subtraction image processing
technique is applied to recover moving objects in a scene. Connected components of
flagged pixels usually correspond to moving objects although when several objects in an
image overlap, or are too close to be distinguished, a single region will be obtained which
represents several scene objects. This technique is also highly susceptible to changing
lighting conditions, for example a cloud passing in front of the sun, although with more
gradual changes an adaptive background can be applied. Baumberg (1995) uses this
technique as a first step in his model generation process. This adaptive background
technique is the method used throughout this thesis (for more details see chapters 3
and 5). It may be possible to improve the results detailed within this thesis by using a

more sophisticated object tracker — as described in this section.

2.3.2 Interpretation of Image Sequences

This section deals with high-level vision systems that are capable of recognizing and able
to interpret dynamic processes and situations within the real-world. A large proportion of
this work combines computer vision systems with a natural language interface providing

a means of conveying the system’s understanding.

Perhaps the earliest work in this area can be attributed to Badler’s (1975) pioneer-

ing work which proposed a model for organizing the visual world into conceptual struc-
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tures based on the description of visually perceived motion concepts such as ‘bounce’
or ‘swing’. Such conceptual structures are built from a hierarchy of motion concepts
which are closely related to those concepts used to describe object movements in natural
language. Using these concepts it becomes possible to look beyond movement or changes
between two consecutive images and to describe change over a number of consecutive
images (i.e. sequence spanning). Consider the notion of ‘swing’; between two adjacent
frames, it is only possible to determine that an object is rotating in a particular direction.
If this sequence is followed over a number of frames, the overall motion can be described
using a single motion concept. At the time Badler’s research was conducted, obtaining
sufficiently descriptive information automatically from visual input was not feasible so

9”12

“ideal encodings”*# of each image in a sequence were used.

This work was further developed by Tsotsos, Mylopoulos, Covvey & Zucker (1980)
and Tsotsos (1981) to generate descriptions of the shapes and motions exhibited by a
left ventricular wall — in particular noting any abnormalities or unusual occurrences.
Unlike the previous work by Badler (1975) this research looked at real X-ray cinecar-
dioangiograms'® at up to sixty frames a second. A hypothesis rating scheme is used

within the recognition scheme to select the most appropriate motion description.

The approach described by Badler and extended by Tsotsos derives the verbaliza-
tions bottom-up (i.e. the motion conceptualization is generated from an image sequence
with a simple translation of the concept into words). An alternative top-down approach,
outlined by Marburger, Neumann & Novak (1981) and known as NAoOs, processes verbal-
izations in order to determine whether or not they correctly describe an image sequence.
Using this approach, the system is capable of answering “yes” or “no” questions about
moving objects in a real-world scene. An independent scene analysis system provides
referential knowledge in the form of symbolic frame descriptions including object names,
type and visual properties. Each object located in a frame is identified and labelled.

When the same object appears in subsequent frames it is identified and labelled accord-

ingly.

12These “ideal encodings” take the form of shape descriptions for the background and scene objects.
13 The application looked at left ventricles that had received corrective surgery and during surgery nine
tiny markers were implanted which allowed relatively simple cineradiography.
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More formally, such a symbolic representation has become known as a Geometric
Scene Description (GSD) (Neumann 1989). A GSD is an ideal representation of output
from an intermediate-level vision process and should represent the original image sequence
completely without loss of information — in principle, the data provided in a GSD is

sufficient to reconstruct the raw images:

o the data for each frame includes

a time stamp
— a list of visible objects
— the camera viewpoint

camera illumination data

e the data for each object includes

an identity stamp
— 3D-position and orientation in world coordinates

— 3D-shape and surface characteristics (e.g. colour)

class membership and possible identity with respect to a priori knowledge

(provides for example object name).

Such a representation is extremely idealistic and we are still far from a universally
applicable Al system capable of completely analyzing any arbitrary sequence of images
and providing a complete GSD. Instead, the components of the GSD are appropriately

tailored to suit each system.

Generic event models (Neumann & Novak 1983) assist in the recognition of inter-
esting temporal developments (i.e. events) in the observed scene. Event models, useful for
both top-down (question answering) or bottom-up (scene description) approaches charac-
terize a spatio-temporal representation for that event. The representation for each event
model contains a declarative description of classes of actions organized around verbs of

locomotion (for example see figure 2.41*) where the components are directly related to

“Example adapted from Neumann & Novak (1983).
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the deep-case structure of a corresponding natural language description. These event
models may be viewed as a template which must be matched against pertinent scene
data (found in the GSD) in order to recognize instances of that event which can then be

expressed in natural language.

(EVENT-MODEL OVERTAKE

(PARAMETERS OBJECT1 OBJECT2 TIME1 TIME2)
((MOVE OBJECT1)@(TIME1 TIME2)
(MOVE OBJECT2)@(TIME1 TIME2)
(BEHIND OBJECT1 OBJECT2)@TIME1
(BEHIND OBJECT2 OBJECT1)@TIME2
(WITHIN (TIME3 TIME4)(TIME1 TIME2))
(BESIDE OBJECT1 OBJECT2)@(TIME3 TIME4)
(APPROACH OBJECT1 OBJECT2)@(TIME1 TIME3)
(RECEDE OBJECT1 OBJECT2)@(TIME4 TIME2)))

Figure 2.4: Simplified event model for an “overtake” situation.

Another integrated vision and natural language processing system is LandScan
(LaNguage Driven Scene ANalysis) described by Bajcsy, Joshi, Krotkov & Zwarico
(1985). This preparatory investigation outlines a system capable of dynamically updat-

15

ing and maintaining a model of an urban world over a number of aerial image views™®.

Processing is both data-driven (bottom-up) or query-driven (top-down):

e For data-driven processing, stereo aerial images are used to reconstruct polyhedral
surfaces in a scene. Surface attributes and relations are computed using a geometric
modelling system capable of determining a number of attribute values — including
compactness, centroid, normal, area and type (e.g. building, sidewalk, or street)

and topological relations (such as above, adjacent, contiguous and contains).

e A natural language front end allows query-driven processing to construct a logical
representation of the scene and assists vision processing by restricting the scene
analysis, through user interaction, to areas of current interest. The reasoning sys-

tem analyzes the query, determines a strategy for obtaining an answer and provides

15 . . . . .
The system outhined only considers single or stereo images, not image sequences.
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feedback to the vision system. Should the query fail and no answer be found, the
system will indicate whether the query was conceptually ill-formed, or whether

insufficient information was available to answer the query.

Similar to Naos, the CiTyToUR system described by André, Bosch, Herzog & Rist
(1986) is also a (German) question-answering system. The system simulates a fictitious
sight-seeing tour through the discourse world; an “interesting” part of a particular city
containing both static and dynamic objects with the “sight seeing bus” being a special
dynamic object. Static objects are represented as a closed polygon complete with a
centroid and a prominent front edge along with a delineative rectangle oriented on the
prominent front edge. Dynamic object movement is represented as a trajectory containing
time stamps for each position. By examining the object trajectory along with a static
object it is possible to define algorithms to recognize dynamic relations (‘pass’ and ‘along’
are the examples given in the paper). Unlike Naos, in CiTyToUR the conversational
partner is considered part of the scene (i.e. on the bus) and as such, the answer may take
into account the position and orientation of the bus (i.e. allows a deictic point of view as

well as an extrinsic viewpoint).

So far, all these earlier systems concentrate on an a posteriori analysis of dy-
namic scene data. The entire image sequence is considered before relevant events can
be recognized. This means that the systems are only capable of providing a retrospec-
tive description of the analyzed scene. The system developed in the VITRA (Visual
TraAnslator) project is capable of recognizing events simultaneously as they occur in the

image sequence using an incremental recognition strategy.

Initially, the domain of discourse considered in the VITRA project was a game of
football (André, Herzog & Rist 1988) (or more specifically, short sequences of images
obtained from a static camera watching a football match). The incremental recognition
of events within the football game enables the system to provide a running commentary of
the actions within the domain including perceived intentions (Retz-Schmidt 1988). The
listener is assumed to have prototypical knowledge of the static background (in this case

the football pitch). This world model can be seen as the stationary part of a Geometric
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Scene Description and is supplied manually so that the system can recognize situated
events, for example realizing the difference between passing the ball and attempting to

score a goal.

Events are described conceptually using events models, as with Neumann & Novak
(1983) such event models represent a priori knowledge about typical occurrences in the
domain and in particular the changes that people usually talk about. The core of an event
model is described using a course diagram which is represented using a labelled directed
graph, for example see figure 2.5'. Such course diagrams specify the sub-concepts and
the situational context which characterize the instances of a particular event model. An
incremental event recognition mechanism successively receives geometric data for the
objects moving in the scene and attempts to match that information by traversing a
course diagram. Propositional information, concerning events occurring at the moment,

is generated and used to initiate the utterance for that event.

(SUCCEED (t; (move-free ball)))

:PROCEED
‘- TRIGGER :STOP
w i V2
(and (and
(STOP (t; (have-ball pl1 ball))) (STOP (t; (move-free ball)))
(SUCCEED (t; (move-free ball)))) (TRIGGERED (t; (have-ball pl2 ball))))

Figure 2.5: An example of a course diagram representing a “ball-transfer”
event.

Spatial relationship’s between various objects are represented by relational tuples

(André, Herzog & Rist 1989) of the form:

(rel-name, subject, ref-obj;, ref-objs, ..., ref-obj,, <orientation>>)

where rel-name is the spatial relationship between the object to be located, subject, (ac-

cording to the orientation) with relation to one or more reference objects, ref-obj;. j.

1% Adapted from Herzog, Sung, André, Enkelmann, Nagel, Rist, Wahlster & Zimmermann (1989).
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The spatial relationship is applicable if it can be used to characterize an object config-
uration. To determine the extent to which a spatial relationship is applicable an area
of applicability is designated for each relation complete with a measure of the degree
of applicability. More formally, Gapp (1994) provides a computational model of func-
tions which define the degree of applicability for a number of basic spatial relations with

respect to geometrical object properties.

For a more complete overview of the entire VITRA project see Herzog & Wazinski

(1994).

Unlike the VITRA project where the primary concern has been to produce a natural
language dialog (or running commentary) of situations occurring in a scene, the VIEWS
(Visual Inspection and Evaluation of Wide-area Scenes) project (Corrall & Hill 1992)
concentrates on Visual Surveillance in order to identify incorrect or illegal behaviour (i.e.
incidents). This does not imply that a natural language engine could not be connected

to provide a commentary, just that this has not been the aim of the project.

Similar to previous approaches, VIEWS is heavily knowledge based and relies on: a
known representation of the scene; a (complete) set of object models to be identified; the
camera configuration and a database of specific events and behaviours to be recognized.
The location of individually labelled objects is provided frame by frame and can be
thought of as part of a Geometric Scene Description. In this instance a 3D model based
tracking method is used (Worrall, Marslin, Sullivan & Baker 1991) which makes use of the
list of object models. An analogical representation of space (Howarth & Buxton 1992a)

provides the static background for the GSD and allows situated actions and events to be

identified.

Events and behaviours are scripted and formally represented as grammars. It
follows that the recognition of events and behaviours is obtained by matching scene
observations against these scripts (i.e. parsing). A behavioural parser based on island-
parsing is used. Such a parser produces “islands” of recognized instances and needs
to join these “islands” to infer which script is occurring. This parsing method allows

intermediate states to be reported and is capable of tolerating diverse “noise” while
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still producing a correct interpretation — including errors such as insertions (unwanted

events), deletions (missing events) and substitutions (transformed events).

Howarth & Buxton (1992a, 1992b) introduced their analogical representation of
space as part of the VIEws project. Their representation of space is a ground plane
projection of the scene using a hierarchical structure based on regions, where a region is
a spatial primitive defined as a (closed) two-dimensional area of space where the spatial

extent of a region is controlled by the continuity of a particular spatial property.

For their purposes, the spatial representation is an extended form of the topological
representation developed by Fleck (1988a, 1988b) — each region provides an encapsu-
lation of space composed of cells which have topological properties (Munkres 1984). In
particular, a regular cell complex is employed where the cells are made up of three cell-
dimensions describing: vertices (0D); edges (1D) and faces (2D). The boundary cells
which delimit a region provide a “skin” enclosing the contents. Although cells are not
used directly, they do provide a topological foundation for the spatial structure that
directly supports the topological reasoning required in their system. In itself, Fleck’s
cellular topology is purely qualitative, however, Howarth & Buxton also desire quantita-
tive reasoning capability so they “fix” the topology by providing a coordinate system,

through the addition of a Euclidean metric, on top of the basic cellular construct.

There are two kinds of region which they store in a spatial layout database:

o Leaf regions are the finest granularity of region and the most primitive database
element. They are areas of space that tile the entire scene and do not overlap. Leaf
regions are used to structure space and are completely defined by how composite

regions overlap.

e Concatenations of adjacent leaf regions form composite regions expressing areas
sharing the same significance, for example region types (i.e. roads and footpaths)
and regions with similar behavioural significance (i.e. give-way zones). It is possible
for different composite regions to share leaf regions (i.e. they may overlap) providing

the hierarchical structure to the spatial layout.
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Howarth (1994) shows how such representations of space are produced manually
for each new domain: A time consuming and painstaking process which provides the
inspiration for our research into automatically generating such spatial structures. A
knowledge acquisition program know as “MAP-EDITOR” assists the model generation
process and produces a “map file” containing the geometric data in for the spatial model.
Entries exist for points and lines, which provide polyhedra for leaf region descriptions.
Leaf regions are used to define composite regions which can have associated attributes

attached. The basic format used for the “map-file” is shown in table 2.57.

Map file format

%P Pnnn float float float 3D point defined by three floating point numbers
%L Lnnn Pnnn Pnnn two points define a line

%R Ronn Lnnn .. .Lnnn three or more lines define a leaf region

%R Ronn Rnnn .. .Ronn one or more regions define a composite region

%A Rnnn attribute-index value assign value to given attribute of composite region Rnnn

Map file example

%P P169 14467.40768 -25836.72342 0.00000

%P P170 14629.23743 -26832.32174 0.00000

%L L140 P169 P170

%R R93 L140 L281 L342 L141

%R R222 R93 R76 R100 R27 R96 R92 R73 R63 R103
%A R222 Long-Name "Roundabout South Cycle-way"
%A R222 USED-BY CYCLE

Table 2.5: Basic format of Howarth and Buxton’s spatial layout map-file.

Following Mohnhaupt & Neumann (1990), this decomposition is known as analog-
ical because the representation explicitly matches the intrinsic structure of the scene.
This means that the spatial model can directly be used as a support to any spatial rea-
soning involving objects within the scene. By using the analogical representation of space
certain events can easily be determined. For example if a vehicle remains stationary in a
region specified as a “give-way” zone then it can be postulated that the vehicle is giving
way to another. Further, as the “give-way-to” zone is also labelled, the potential location

of the other vehicle(s) is also known.

Howarth and Buxton further develop this representation to include a temporal

aspect known as “conduits” which represent the space swept out through time by an

" Adapted from Howarth (1994).
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object’s path. This 2D+t structure is constructed by combining the consecutive locations
occupied by an object throughout the scene with respect to time. Using this conduit it
becomes possible to approximate more accurately the time in which a region was entered

and exited as well as to allow reasoning about missing updates.

A number of requirements are highlighted to enable adequate reasoning about
objects and interacting objects moving in the static scene. As well as converting the
ground-plane coordinate data (in the map-file) into regions, the connectivity between
those regions must be described. Essentially objects are treated in the same way as
the static model — in each frame, the spatial extent of each object is obtained so that
it can be positioned within a pose-box with labelled edges (front, left, right and rear).
This pose-box allows the accurate identification of (partially) occupied leaf regions. To
derive spatial behaviour, the speed and orientation of an object is required as well as

inter-object orientation and distance when considering multiple objects.

Originally the project used a passive system which collected information about all
objects in a scene. This approach has become known as Hivis-MoNITOR (Howarth 1994).
The detection of single object events such as start, stop, turn left, turn right, speed up
and slow down relies on the observation of changing object properties such as speed,
orientation and region occupancy. For two or more objects it is necessary to determine
if the objects are “near” any other by checking if they are in the same region (leaf or
composite). In their terms, an event represents a state-change of some type and multiple
events compose episodes. Typical episodes are: region-crossing; following; overtaking;
give-way and waiting. Episodes are described using scripts. For example a valid turn

t18 can be described as:

right even
Vi <ty
TRUE(tq, t2, TURN-RIGHT (x)) =
Ity <t <ty < to
TRUE(tq, t2, IN-TURN-RIGHT-REGION (x)) A
TRUE(ts, t4, (ORIENTATION-CHANGE(x,8) A (6 < —10)))

A continuously evolving database contains entries for the history of each object and

18 Adapted from Howarth (1994).
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the interactions between them. An ongoing interpretation procedure follows the scripts

to construct episodes which provide the desired behavioural descriptions.

An alternative approach (Hivis-WATCHER) relies on a dynamic form of Bayesian
network (Howarth & Buxton 1993) to provide a task-based control system identifying
relevant objects in the scene which potentially fulfill the given surveillance task (Howarth
1994, Buxton & Howarth 1995). Rather than collecting information on all scene objects,

only data potentially relevant to the task is processed.

To accomplish this, a dynamic Bayesian network (DBN) is used to combine the
relative nearness, or proximity, measurements between two scene objects over time. The
evolving network structure reflects the changing proximity relationships between objects
in the scene where the relevance of that relationship towards the surveillance task is de-
termined by a static Bayesian belief network (BBN) called TASKNET. If the temporally
evolving relationship is deemed interesting and requires further attention, an “agent”
is allocated to each of the objects in the relationship. The pair of agents is overseen
by TASKNET which builds a coherent interpretation of the evolving relationship and
is capable of terminating the attention should an uninteresting situation arise. The
TASKNET receives data from its agents indicating the nearest object and the bearing to
that object with respect to its frame of reference (i.e. a deictic reference such as “behind-
me”). Using that information, the evolving network has a simple structure containing
nodes representing the composite relationship obtained from the two deictic orientations
(e.g. back-to-back or trans-overtaking-back) and the likely episode they represent (e.g.

overtaking, following or queueing).

Howarth and Buxton claim that this Bayesian network approach can improve the
interpretation process by incorporating what one is looking for (top-down expectations)
with what could be appearing (bottom-up inference) to overcome the problems of un-
certainty and incompleteness in the evaluation of behaviour. This dynamic Bayesian
network has also been used successfully at other levels, for example tracking (Buxton &

Gong 1995).
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2.3.3 Summary

This section has looked at variety of systems capable of providing conceptual descriptions
from image sequences. For our purposes, the most appropriate systems deal with high-
level systems capable of recognizing and interpreting dynamic processes and situations
within the real world. At a computational level, it is apparent that some form of symbolic
representation of the scene (or Geometric Scene Description) assists the reasoning pro-
cess. The analogical model of space introduced by (Howarth & Buxton 1992a) provides
an ideal basis for such a symbolic representation. However, to date, this analogical rep-
resentation has been provided by hand. We found this undesirable and the first part of
our research has been involved in automatically learning a similar representation of space
from the extended observation of image sequences (chapter 2). The resulting symbolic

representation can then be used for further research into visual surveillance.

For event recognition purposes, typically event models are provided which act as
a template to match against a sequence of image frames to recognize an instance of
that event. As previously indicated, it is our intent to not only recognize sequences of
actions, but to learn what those sequences of actions are. This means that as part of
our research it is necessary to automatically generate an event model similar to that
generated by Neumann & Novak (1983) (figure 2.4). From the “overtake” event model,
it is clear that the relative position between two objects is required. Also, the relative
direction of motion will be necessary for other events where the objects are not travelling
in the same direction (for example, giving way). From section 2.2, the most appropriate
qualitative reasoning systems are those described by Mukerjee & Joe (1990), Hernandez
(1991, 1994), Freksa (1992b) and Schlieder (1993) who each provide alternative methods
for dealing with orientation and direction. The method we choose to use is most similar
to Mukerjee & Joe (1990) for relative position and Herndndez for relative direction of

motion.

In the next section we provide a brief review of traditional machine learning meth-
ods and discuss our requirements indicating which learning method is the most appro-

priate to those requirements.
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2.4 Machine Learning Techniques

Machine learning is the specific subfield of Artificial Intelligence that studies the au-
tomated acquisition of domain specific knowledge. Traditionally, the study of machine
learning was reserved for the development of knowledge based (expert) systems. However,
it has become of much wider relevance throughout the entire field of Al — learning can
be important in any domain requiring intelligence. Although the study of machine learn-
ing is important in the process of automating knowledge acquisition, it is also relevant
to the more philosophical question of understanding the nature and general principles of

human learning.

This section will deal with some of the major paradigms that have emerged over

the period of research of machine learning.

2.4.1 Neural Networks

Neural networks are one of the earliest approaches studied in machine learning (Nilsson
1965). They derive their name from the basic representation of knowledge and the
computational style which is inspired from studies of biological nervous systems (i.e. the
manner in which nerve cells (neurons) transmit impulses in the human brain). In other
words, this approach attempts to create learning machines that operate in a similar way
to the human brain by constructing them with components that behave like biological

neurons.

Typically input nodes in the network are connected to a set of binary sensors which
indicate if a particular feature is present or absent. Present features activate initial nodes
and the weight of the links from the active initial nodes determine which subsequent nodes
will be activated. This activation process iterates until the final node level is reached

which produces the output.

Learning within a neural network consists of the incremental modification of link

relations between input and output nodes which improves the mimicry of the desired rela-
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tion. Pattern classification is a typical goal and learning is mostly supervised (although
unsupervised learning is now receiving much attention) by providing a set of labelled

training sets.

The simplest and most understood form of neural net is a (single layer) perceptron
(a term first used by Rosenblatt (1958), who also first suggested using software to model
the network rather than hardware). A layer of input nodes is connected directly to a
single output node (see figure 2.6). If the sum of all link weights from the active input
nodes is greater than some threshold then the output node is activated. The network
learns when a classification error is made. If the output node is not active when it
should be, the incoming link weights are lower than the threshold so all link weights are
increased by a small constant. When the output node is active when it shouldn’t be, the
incoming link weight values are too high so they are decremented by a small constant.
An alternative modification method (Widrow & Hoff 1960) uses a “least mean squares”
(or LMS) function to modify each link weight differently to reduce the mean-square error

between the desired output and the generated output.

Input
Nodes

N

Weighted Links

Output
Node

Figure 2.6: Single layer perceptron.

More complicated neural networks contain multiple layers. Intermediate (or hid-
den) nodes are (indirectly) connected to the input and output nodes of the network.

Learning link weights for such networks is not trivial. Typically, a back propagation
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method is employed which applies the LMS procedure recursively through the network.
Nodes are activated through the network in the usual direction, then based on the differ-
ence between the observed outputs and the desired outputs, back propagation computes
the desired activation level on hidden nodes one level back using LMS. Back propagation
now treats the level of hidden nodes as the output nodes and applies LMS recursively

until it reaches the input nodes.

Multi-layered perceptrons are the most frequently used neural network. They per-
form a functional approximator, which provides a mapping between input and output
nodes, allowing a wide range of applications including image interpretation (Hopgood,

Woodcock, Hallam & Picton 1993) and path planning in robotics (Meng & Picton 1992).

The interest in unsupervised learning within neural networks has increased con-
siderably within the last few years offering the possibility of exploring the structure of
data without direct classification. A number of iterative clustering algorithms have been
developed (known collectively as Vector Quantizers) for this purpose — for example: K-
means clustering (Krishnaiah & Kanal 1982); the Gaussian Mixture model, or adaptive

K-means, and Kohonen networks (Kohonen 1984).

Unfortunately, neural networks do not tend to produce a symbolic representation of
the learned knowledge which is desirable for the spatial model. This means that learning

through a neural network is not really practical for the work we describe in this thesis.

2.4.2 Learning from Observation

Another family of machine learning is collectively known as empirical learning (or learn-
ing from observation). The goal of empirical learning techniques is to provide a general
description which characterizes a collection of observations. Making use of the descriptive
generalization, the system is then capable of making predictions on novel cases. Typ-
ically, the training cases and the acquired knowledge employ a relational or structural

representation (e.g. propositional clauses).

The most common supervised empirical learning techniques (meaning that training
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cases have been classified prior to training) are (production) rule learning (for example
Michalski & Chilauski (1980)) and decision tree construction (for example Brieman,
Friedman, Olshen & Stone (1984)). Probably the most widespread unsupervised empirical
learning method is conceptual clustering (for example Michalski & Stepp (1980)).

Production rules represent the domain expertise as a set of conditions and actions.
The rule conditions test the properties of a case and the rule actions specify the classi-
fications. It is possible to learn the rules by starting with the most specific description
and then remove or relax the conditions using a generalization operator. Alternatively, it
is also possible to start with the most general case and, using a specialization operator,
add or constrain the rule conditions. These approaches generally rely on the fact that

pre-classified training instances are (usually) partially ordered according to generality.

The candidate-elimination algorithm (Mitchell 1977) employs both methods to con-
duct a bidirectional exhaustive search to identify the conditions for classification rules.
Unfortunately, the algorithm assumes that a single, conjunctive rule can describe each
class and that the training set is free from noise. To compensate, another methodology
(for example Clark & Niblett (1989)) applies heuristic search to limit the computational
expense. The heuristic search looks for individual rules which can discriminate between
true and false instances of a class. During search, the candidate rules are minimally spe-
cialized (or generalized) in all permutations and then evaluated for predictive accuracy
on the training instances. The most accurate permutations are further specialized (or
generalized) and reevaluated. Search terminates when the new rules are no more accurate

(statistically) than the previous set.

In decision trees, the set of training instances are presented to the system at the

same time. Then the learned knowledge is represented in a tree-structure where:

e Each non-terminal node of the tree specifies some attribute to test.
e Fach branch leaving a node specifies an alternative value, and

e Each terminal node represents a specific class.
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The classification procedure (for a new case) iterates through the tree, testing each
non-terminal node attribute and following the relevant branches until reaching a terminal

node which provides a classification for that case.

The most common learning technique employs a classification rule to partition a
collection of instances according to a selected domain attribute. In a recursive procedure,
each partition is then processed by the same classification rule with a different domain
attribute. An evaluation function selects the most discriminating attribute of the in-
stances “contained” in a partition — these attributes form the non-terminal nodes. A

sub-tree is complete when all instances in a partition have the same classification.

For conceptual clustering, the learning mechanism is supplied with an unlabelled
set of instances and is expected to form “useful” concept descriptions. The learner
determines how to cluster the instances and builds the description for those clusters,
typically, in the form of a hierarchy or taxonomy of the concepts. Superficially, the
structure is similar to that of decision trees, but each node in a concept hierarchy has an
associated concept description that is used during classification. Also, different search

and evaluation functions are employed.

As with neural networks, learning from observation does not typically provide a
representation of the learned knowledge which is useful in visual surveillance — thus it

is not pursued further in the work described in this thesis.

2.4.3 Explanation-based Learning

When learning from explanations, the emphasis is more on the compilation of existing
domain knowledge into a more efficient form rather than creating new, or extending
existing, knowledge. Unlike most other machine learning paradigms, explanation based
learning is analytical, as opposed to inductive, using the domain knowledge to guide
the deductive processes that compile the knowledge into a more useful form. Typically,
knowledge provided by explanation based learning methods provides an efficiency benefit

that favours problem-solving tasks.
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One analytical approach compiles explanations into rules. The domain knowledge
is specified as a set of inference rules or goal decompositions. Given a top-level goal, the
system performs an AND-OR search to obtain a set of primitive actions, states or beliefs
that achieve the goal. The knowledge search results in a proof tree, or explanation, for
the achieved goal'®. Explanation based learning makes use of the generated proof-tree to
create a summary of the search that can simplify future search methods for a similar goal
(for example, DeJong & Mooney (1986) and Mitchell, Keller & Kedar-Cabelli (1986)). By
focusing on a relevant problem feature, the learner can summarize the problem-solution
pair as a (new) general rule. As a result, similar problems can now be solved in fewer

steps.

A similar approach uses an alternative search method rather than AND-OR search.
State-space search applies a sequence of operations to the problem states in order to
achieve the desired goal. Typically, the states and goal embody specific configurations
while the operators specify preconditions and the postconditions after performing the
action. Once the problem-solving system has discovered a set of operators leading from
the initial state to the desired goal state the entire solution path can be composed into a
single rule or macro-operator (Iba 1989). The conditions of the macro-operator include
all the initial problem state aspects and the postcondition include all those actions not
undone by rules in the solution path. As a result, the problem-solver can take larger steps
which effectively shortens the length of the solution path. Typical examples include the
eight puzzle and blocks world but learning macro-operators can also be applied to more

complex tasks such as planning (Minton 1985).

Explicit control rules (or meta rules) can be employed in a means-end planning
system (Minton, Carbonell, Knoblock, Kuokka, Etzioni & Gill 1989) to guide the selection
of states to expand, operators or inference rules to apply, and the variable bindings
for those operators. Should no explicit control rule be available, the problem solver
defaults to a depth-first search and then attempts to explain the success or failure using
(axiomatized) general knowledge of problem solving. The AND-OR explanation can then

be compiled into a (new) control rule for future use.

¥ This sort of reasoning is supported directly by, for example, PROLOG.
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Although explanation based learning does not provide knowledge in the format
we desire for visual surveillance, the search methods described here may be useful. We
utilize a depth first search with the intention that if it provided too slow we could improve
the search method to improve the performance. However, experimental results showed
no performance issues using only depth first search, so other search methods were not

pursued. This may change if the requirements change in future research.

2.4.4 Analogical learning

One of the most recent approaches to problem-solving and learning methods relies on the
analogy of new experiences to the SPECIFIC knowledge of previously experienced problem
situations. Mounting evidence suggests that humans (partly) rely on previous experience
to guide problem solutions. Case-based reasoning exploits this idea using Al systems
designed to classify new cases and formulate solutions based on the evidence of specific
cases already held in memory. A good introductory text to case-based reasoning can be

found in Aamodt & Plaza (1994).

In case-based reasoning, a case usually refers to a problem situation. A case-base
(knowledge base) maintains previously experienced problems along with the correspond-
ing solution in such a way that it can be reused in the solving of future problems. When
a new situation is experienced, the problem solver attempts to match the new problem
against the solved problems. Should a matching case be discovered, the previous solu-
tion is applied to the new situation — if the solution fails, the reason for that failure is
identified and stored for future reference. Similarly, case-based reasoning can be used for

classification problems where the stored solution predicts the desired classification.

Aamodt & Plaza (1994) have described the case-based reasoning method as a cycle

described by four processes (and illustrated in figure 2.72%):

1. RETRIEVE the most similar case(s).

2. REUSE case solution to solve problem.

20 Adapted from Aamodt & Plaza (1994)
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Figure 2.7: The Case-Based Reasoning Cycle.

3. REVISE the proposed solution (if necessary).

4. RETAIN the new solution as part of a new case.

A new problem is matched against cases in the case base and one or more similar
cases are retrieved. A solution suggested by the matching case is then reused and tested
for success. Unless the retrieved case is a close match the solution will probably have to

be revised producing a new case that can then be retained.

There is a number of different retrieval algorithms which have been used to identify
the most similar cases to the current problem or situation, including nearest neighbour

and analogical matching.

e In the nearest-neighbour technique, past instances are stored verbatim, and the
best match (for the new case) is retrieved. Typically, the similarity assessment is

based on matching a weighted sum of features (for example, the algorithm Kolodner
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(1993) uses in the Cognitive Systems ReMind software). Missing information can

be supplied directly from the best match.

Variants are possible — for example, the number of retrievals can be expanded
to increase predictive accuracy by using a weighted average of the retrieved cases

(Stanfill 1987).

e The nearest-neighbour technique presents relatively few problems for feature-based
or attribute based representations. However, serious complexities to the match
process can be introduced in domains requiring a structural or relational knowledge
representation. In such domains, the two cases are unlikely to match exactly and
some form of partial matching based on semantical similarities is required (in other
words, analogical matching). Typical examples include PROTOS (Bareiss 1988),
in which each case feature has a degree of importance assigned for the solution of
the case, and CREEK (Aamodt 1991), which has a similar mechanism although
values for the predictive strength of a feature and that features criticality (i.e. the

potential influence the lack of the feature has on a case solution) are stored.

Analogical learning most closely matches our requirements in producing a symbolic
representation of the learned knowledge although we have adapted the technique to allow

an iterative learning strategy (as discussed in the summary that follows).

2.4.5 Summary

Although we have outlined a number of different machine learning techniques there is
a number of requirements necessary in our research. In particular, the learning method
must be capable of forming conceptual structures from the unsupervised observation of
real world situations. Also, to reduce run-time storage requirements and to allow real-
time learning an iterative method is desirable. These requirements immediately restrict
our learning methods by removing “explanation-based” approaches (which cannot match
our real-time requirements) and “neural networks” (which during the learning cycle tend

to take extended periods of time and do not produce a symbolic representation). From
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our requirements, an iterative “conceptual clustering” approach or a case-based learning

methodology would appear to be ideal learning techniques.

We select a case-based approach with elements of conceptual clustering incorpo-
rated into the strategy. Usually, in case-based learning, the abstraction of prior experience
occurs in a lazy fashion, by which we mean that experiences are not aggressively com-
piled in anticipation of future use and instead, the majority of processing is saved until
actual use occurs. Unfortunately, this can lead to large bodies of information being con-
structed. Rather than including all new cases in the database, we attempt to search the
database for an existing equivalent entry. If successful, we merge the new case with the
existing case in such a way as to maintain as much information (from the separate cases)
as possible. Although equivalent entries can be overlooked, a verification step at the end
of the learning period can discover any remaining equivalent entries. This method is an
adaptation of current case-based learning strategies and is introduced here to meet our

requirements for real-time learning as the information is made available.



Chapter 3

Generation of Semantic Regions

3.1 Introduction

As discussed in the previous chapter, event recognition provides a significant challenge
for high-level vision systems and explains the impetus behind the work described in
this thesis. Nagel (1988) outlines several previous applications that connect a vision
system to a natural language system to provide retrospective descriptions of analysed
image sequences. Typically the vision system is used to provide a “Geometric Scene
Description” (GSD) containing a complete description of the spatial structure within the
domain (i.e. the area in view of the camera) and the spatial coordinates of the objects
in the scene at each instance of time. A generic event model (Neumann & Novak 1983),
characterizing a spatio-temporal representation for that event, can be matched against
the GSD in order to recognize instances of that event which can then be expressed in

natural language.

More recent work demonstrates a simultaneous analysis of image sequences to pro-
vide the incremental recognition of events within a football game (André et al. 1988, Retz-
Schmidt 1988). This enables the system to provide a running commentary of the actions
within the domain including perceived intentions. A model of the world representing the

static background of the scene is supplied manually so that the system can recognize situ-

52
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ated events, for example realizing the difference between passing the ball and attempting

to score a goal.

Although not necessary for all event recognition tasks, a spatial model providing a
context specific representation of the domain is certainly beneficial. In strongly stylized
domains, such as road traffic environments where vehicles’ movements are governed by
strict constraints, a spatial model containing semantic information would allow the inter-
pretation of object behaviour from the sequenced position of objects within the domain,
for example areas where vehicles turn or where pedestrians cross the road. Figure 3.1
shows an example to illustrate how a context specific region based model of space can
be used to facilitate the recognition of a vehicle waiting to turn right. The region occu-
pied by the vehicle in figure 3.1b is an area of behavioural significance representing the

location where vehicles must await oncoming traffic before turning right.

. ¢
S

>

Figure 3.1: A simplified spatial model of a road junction showing a sequence
of object locations. A vehicle approaches a junction (a), reaches it
(b) and then awaits oncoming traffic (¢ & d) before turning right
into the new road (e & f).

As discussed in the previous chapter (section 2.3), Howarth & Buxton (1992a,

1992b) introduced an analogical representation of space for spatial event detection in the
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domain of traffic surveillance. This representation is both flexible and multi-purpose and
maintains the underlying structure of the domain in a usable form. A ground plane pro-
jection of the scene is defined using a hierarchical structure based on (two-dimensional)

regions.

Overall, the spatial model they introduced is a (ground-plane) segmentation of a
scene composed of two kinds of regions: leaf regions and composite regions (for more

information refer back to chapter 2 section 2.3.2).

Howarth (1994) produced such representations of space manually for each new
domain: a time consuming and painstaking process. In this chapter, we demonstrate a
method to generate a similar (2D) spatial structure automatically for strongly stylized
domains through the monitoring of object movement over extended periods. Following
Howarth & Buxton, we will continue using the names “leaf” and “composite” to describe
regions — these names adequately indicate the hierarchical region structure. However,
we decided against producing a ground-plane projection of the spatial model (although
it is possible, see the discussion in section 3.3.5). A number of factors contributed to this

decision:

e To project a 2D representation of space onto the ground-plane relies on an inter-
pretation system that can accurately determine the depth of all points in the image

plane.

e Alternatively, a 3D model of space could be constructed relying on potentially haz-
ardous 3D data obtained from the tracking process. Typically, such 3D positional
information is not sufficiently accurate — meaning that assumptions have to be

made for the (3D) spatial model which adds uncertainty to the reasoning process.

e Finally, we decided it would be useful to discover the extent to which automated

visual surveillance can be conducted just in the image plane.

In this chapter, we discuss:

e Our initial approach to leaf region generation (section 3.2.1). This is based on
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simple segmentation techniques and looked promising but was eventaully dropped

due to problems obtaining a satisfactory segmentation matching our requirements.

e Our second region generation method (section 3.3) based on the observation of

object movements over extended periods which has proved much more successful.

Li-Qun, Young & Hogg (1992) describe a related method of constructing a model
of a road junction from the trajectories of moving vehicles. However, this deals only
with straight road lanes and is unable to handle the fine granularity of region required
for a detailed behavioural analysis — such as regions where a vehicle turns left. Our
approach, based on the extended analysis of moving objects, is less limited being able to
successfully follow objects with more complex behaviour patterns like a vehicle turning

a corner.

Johnson & Hogg (1995) demonstrate a related approach in which the distribution
of (partial) trajectories in a scene is modelled automatically by observing long image
sequences with the image data applied through a neural network. However, for our

requirements, this method is limited by not yielding the symbolic structures we desire.

3.2 Initial Approach

3.2.1 Outline

Various image segmentation techniques already exist and, initially, it appeared possible
for a leaf region segmentation of the scene to be obtained using such techniques. Typi-
cally, the intention of early image processing is to divide an image into a number of parts
(regions) bearing a strong correlation to physical objects or their parts. As such, image
segmentation tends to be one of the most important steps in the analysis of an image.
With regions identified, subsequent intermediate and high-level vision processes can be
used to identify objects in the image. Of course, there is a lot more to the analysis than

indicated, but object identification is typically the highest level of processing attained.
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This means that simple segmentation techniques (which concentrate on single frame
or static images) alone will not be sufficient to generate the desired leaf region segmen-
tation — some of the regions we want to identify exhibit a “semantic” nature with no
visual distinction. In other words, at certain areas within a domain, objects may be ob-
served displaying a particular behaviour but the area itself has no physical features which
can discern it from the adjacent areas of space (for example, the area on a road where
a vehicle would await oncoming traffic before turning right — as shown in figure 3.1).
Such behaviours can only be observed over time (unless a priori system knowledge is
provided about general vehicle behaviours) and it is highly unlikely that such areas can
be located using a single image of the scene. However, we are not restricted to a single
image. Rather, we have access to an entire sequence of images where typical behaviour

patterns can be observed.

In this approach, the intention is to analyse the movement of objects throughout
a scene observed by a static camera. Analysed data, corresponding to the location of
moving objects in the scene, is used to generate a mapping of the scene representing the
frequency and distribution of all object movements over a training period. The resulting
map shows changes in intensity gradient similar to a grey scale image and, as such,
simple image segmentation techniques may be applied in order to (hopefully) obtain a
leal region segmentation for the scene. Although sufficiently accurate results were not
obtained, it is still worth covering the process. Figure 3.2 shows a diagram outlining this

initial approach.

Real-world Camera Video Image Tracking Tracked Object Freguency
scene Sequence Process Shapes Distribution Map
Segmentation
Future _ Spatial | Region
Applications Model Generation

Figure 3.2: Overview of the initial approach.

The three main stages are:
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e A tracking process obtains shape descriptions of moving objects (section 3.2.2).

o Frequency distribution map generation builds an image map of the scene showing
the frequency and distribution of all objects moving throughout the scene (sec-

tion 3.2.3).

e Traditional image segmentation techniques are applied to the frequency distribution

map to generate leaf regions (section 3.2.4).

3.2.2 Tracking'

The first step in automatically generating the spatial representation is the analysis of
dynamic scene data. Visual information is provided through live video images from a
static camera. The current test domains include: an elevated view of a busy junction
containing both pedestrians and vehicles (figure 3.3a); an extremely busy dual carriage-

way (figure 3.3b) as well as a predominantly pedestrian scene (figure 3.3¢).

A list of objects is provided on a frame by frame basis using the tracking process
described in Baumberg & Hogg (1994b). A combination of background subtraction,
blurring and thresholding is used to obtain object silhouettes for each frame. The outline
of each silhouette is then described by a number of uniformly spaced control points for
a closed cubic B-spline and assigned a label by considering object size and proximity in
the previous frame. Table 3.1 provides an example of the object descriptions provided
by the tracking program and figure 3.4 gives a diagrammatic representation of the shape

descriptions for a number of frames.

Although this method does not handle occlusion and is not particularly robust?,
it provides sufficient information for our purposes and it proves significantly faster than

the active shape model described in Baumberg & Hogg (1994a).

'The same tracking process is used in both the initial (unsuccessful) approach and the improved
(successful) approach.

2Slight camera movement or rapid changes in contrast can mask moving objects and incorrectly identify
“noise” as an object until the camera stabilizes.
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Figure 3.3: Example of test domains viewed from a static camera.
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list_length = 14

label 1

origin (63.6117,105.466)

width 40

height 40

direction (1.26633,8.59552)

control points (16.0495,16.1407) (16.0392,4.17215)
(11.6806,-3.36599) (6.75029,- 15.0023) (-1.38,-16.1585)
(-10.5585,-13.7835) (-20.858,-7.83551) (-10.2149,2.96858)
(-8.07889,11.7172) (0.613198,16.7709)

label 2

origin (187.019,121.255)

width 40

height 40

direction (0.822992,-4.49786)

control points (-8.28647,13.1029) (-1.62511,18.7274)
(11.4624,14.098) (12.799,3. 75626) (14.7826,-6.10941)
(11.8223,-18.3557) (3.075,-12.3313) (-10.4461,-14.9221)
(-16.5301,-4.50971) (-15.7635,6.29561)

label 3

origin (222.969,150.985)

width 32

height 32

direction (-0.382882,-1.71961)

control points (-5.38405,10.012) (-0.372716,12.7569)
(8.25357,8.55943) (7.84044, 1.58996) (12.7036,-4.8138)
(6.73559,-9.92285) (-0.5392,-8.6016) (-7.30112,-10.0489)
(-13.3605,-1.13137) (-7.05462,2.06805)

label 4

origin (101.171,174.59)

width 40

height 40

direction (1.54284,-1.14579)

control points (13.3009,18.0155) (14.2404,9.90429)
(12.8495,-6.59882) (-1.12397, -6.7817) (2.99911,-16.3373)
(-1.74721,-11.8686) (-9.90921,-6.21254) (-19.8662,-0.174143)
(-1.72763,5.55178) (-6.53926,18.0309)

Table 3.1: Output from tracking application.
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Figure 3.4: Object silhouettes for a short sequence of frames.
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3.2.3 Frequency Distribution Map

In this original approach, our intention was to use the shape descriptions from moving
objects, obtained from the tracking process, to build a “mapping” of the scene describing
the frequency and distribution of all objects travelling throughout the scene (this became
known as the “frequency distribution map” or FDM). Each point in the FDM corresponds
to a pixel in the scene and indicates the total number of objects that have passed through

that particular pixel.

The shape descriptions for each moving object are supplied on a frame-by-frame
basis. In each new frame, all points within the FDM which match the pixels occupying
the silhouette of each objects’ shape are incremented. However, in adjacent frames the
pixels occupying the silhouette of a moving object are likely to overlap. When this occurs,
the object will have an undesirable impact on some points within the FDM. The resulting
value of a point in the FDM is supposed to represent the total number of objects that have
passed over the corresponding pixel in the scene. If the silhouette of an object overlaps a
previous location then the shared pixels will contribute at least twice to the FDM value,
not just once. To compensate, all pixels occupying the silhouette of an object’s shape in
both the current frame and the previous frame are discarded. The remaining pixels are

then combined with the FDM:

le.

d(xv y) = d(xv y) + (_‘fi—l(xv y)&fz(wv y))

where d(z,y) is the FDM value at image position (z,y) and f;(z,y) indicates whether

the pixel (z,y) is covered by the silhouette of an objects in frame i.

Although the remaining pixels (corresponding to a particular object) in the current
frame may correspond to locations held in other earlier frames (than the previous) the
number of such “overlapping” pixels should be minimal. This means that only a slight

variation may occur between adjacent points in the FDM which should have no significant
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effect on subsequent processing.

In an attempt to filter out inadvertently tracked “noise”, the pixels occupying the
silhouette of an object’s shape are not combined with the FDM until the second frame
that the object appears in. Usually random “noise” will appear only in a single frame;
by waiting for the second appearance, an object is more likely to be genuine rather than

just “noise”.

When an object is perceived as having been stationary for two or more frames
we do not discard the overlapping pixels. In this situation, the location occupied by
the stationary object may be important in discerning significant behavioural regions
(for example, that location may be a give-way zone). As such, we want the pixels
composing the location occupied by the stationary object to have a greater impact on
the corresponding points in the FDM. Should the overlapping pixels be discarded that

impact would be lost.

Typically the length of the image sequence will be about 10-15 minutes, although
it could be significantly longer. On completion, there is a strong correlation between the
properties of the FDM and a grey scale image. The value contained at each point in both
a grey scale image and the FDM represents the intensity of some property. In a grey
scale image this property is light and in the FDM that property is object passage. In
fact, figure 3.5 reconsiders the intensity values within an FDM as light intensity values to
provide a visual representation of that FDM. Traditional image segmentation techniques
operate on a function relying on image intensity values and as such these same techniques

can be applied to the FDM.

3.2.4 Segmentation

The number of image segmentation techniques that currently exist is already quite large
and these are adequately detailed in a number of sources (c.f. Castleman 1979, Hall
1979, Gonzalez & Wintz 1987, Boyle & Thomas 1988, Schalkoff 1989, Sonka et al. 1993).

Rather than devising any new segmentation techniques, traditional methods such as
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Figure 3.5: Frequency distribution map displayed as a grey scale image.

edge detection, crack-edge relaxation, region identification and region growing have been

applied to the frequency distribution map with varying degrees of success (see figure 3.6).

Although, strictly speaking, edge detection and crack-edge relaxation are not seg-
mentation techniques they can both be used to detect borders and subsequent processing
may provide the desired segmentation. For instance, one possibility with a sparse edge
representation would be to apply a general Hough transform to generate continuous lines

for a complete border map. Regions could then be identified from closed areas.

Unfortunately, the results obtained from segmentation did not match our expecta-
tions. In gradient edge detection obtaining a suitable threshold value was not possible
and the resulting edge image was either too sparse (insufficient edges) or too full (too
many edges — figure 3.6(a)). Substantial improvements to the edge image could be
obtained by the application of image preprocessing techniques (such as histogram equal-
ization, smoothing and median filtering) to the frequency distribution map (figure 3.6(b))
although the results are still insufficient to construct a leaf region map from. Crack-edge

relaxation (figure 3.6(c) produces similar results to the preprocessed image with gradient
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Figure 3.6: Borders obtained by segmenting the frequency distribution map
using a number of techniques; (a) (Sobel’s) gradient edge detec-
tion, (b) FDM image preprocessed before (Sobel’s) edge detection,
(c) Crack edge relaxation, (d) Region growing using phagocyte
heuristic, (e) Regions grown until larger than a specific size.

edge detection — in other words the results still do not match requirements.

Region identification generates regions directly from the frequency distribution
map by grouping together adjacent map position that have the same (or similar) inten-
sity values. However, the variation of adjacent values can be considerable and many small
regions can be constructed. Region growing methods attempt to recursively merge ad-
jacent regions according to some criteria. The phagocyte heuristic merges regions based
on the number of weak-edges and the shortest perimeter length between two adjacent re-
gions. Unlike the previous methods, this method does result in actual regions. However,
selecting suitable thresholds is still very difficult and the resulting segmentation from all
attempted thresholds did not provide the desired results. Across the image, essential
boundaries are dissolved while other unnecessary boundaries remain (figure 3.6(d)). In
an attempt to improve the results, a further region growing method was applied which
merges regions based on size and shortest perimeter length (figure 3.6(e)). Again satis-

factory results were not obtained.
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3.2.5 Discussion

Although the frequency distribution map showed initial promise and by normal human
vision it is possible to discern potential regions, subsequent image segmentation was
unable to produce satisfactory results. Early results were quite encouraging but we were
unable to improve these sufficiently to produce the desired leaf region segmentation. A

number of factors contribute to this lack of success:

e The desired effect of the FDM was based on the observation that abnormal or
unusual object behaviours occur significantly less frequently than “normal” be-
haviours. Over a typical training period, the amount of abnormal behaviour oc-
curring will be relatively low. So, the areas where such behaviours occur should be
overwhelmed by the information obtained from “normal” behaviour patterns (i.e.
there should be a minimal amount of variation between points in the FDM where
unusual behaviour has occurred and points in the surrounding area). As a result,
areas where abnormal behaviour has occurred should be indistinguishable and not

be identified in the segmentation process.

Unfortunately, some routes through the domain which correspond to acceptable
behaviour patterns are also used relatively infrequently. Consequently certain de-
sirable regions cannot be found — for example the intersecting area where pedes-
trians cross a road may not be identified due to the small number of pedestrians

compared to the large number of vehicles.

e The outline of an object provided by the tracking process is heavily affected by
shadows and reflections caused by lighting conditions. From frame-to-frame, the
silhouette of a tracked object’s shape may change substantially and the overlap
between non-adjacent frames will be greater than expected. Our earlier assump-
tion that ‘the number of such “overlapping” pixels should be minimal’ is actually
inaccurate. This allows an undesirable amount of “noise” to be introduced to the

FDM disrupting the segmentation process.
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e Typical problems affecting any image segmentation task and the subsequent iden-
tification of relevant regions also occur. For example: finding the most appropriate
threshold values or locating too many borders in one area with too few in an-
other area. It is possible that improved results could be obtained using a hybrid

segmentation method (reference).

Even after addressing these considerations, it is not certain whether a satisfactory
leaf region segmentation could be obtained. Also, once a desirable leaf region segmenta-

tion is discovered there still remains the problem of composite region generation.

3.3 Improved Method

3.3.1 Outline

As with the initial approach, the system accepts live video images from a static camera
to produce shape descriptions corresponding to moving objects within the scene. This
dynamic scene data is then analysed, in real-time, to build a database of paths used by
the objects, before being further processed to generate the regions required for the spatial

model. A diagram outlining this system is shown in figure 3.7.

Real-world :[]Camera Video Image Tracking Tracked Object Path
scene m Sequence Process Shapes Generation
Database
Update
Future L ,S,p?t@ o Region Generated Path
Applications Model Generation Paths Database

Figure 3.7: Overview of the improved method.

There are three main stages:
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e As with the initial approach, a tracking process obtains shape descriptions of mov-

ing objects (section 3.2.2).

e Path generation builds a model corresponding to the course taken by moving objects

and subsequently updates the database of paths (section 3.3.2).

e Region generation accesses the database of paths so that leaf and composite regions

can be constructed for the spatial model within the domain (section 3.3.3).

3.3.2 Path Generation

A path is defined as the course that an object takes through the domain. More specif-
ically, the spatial extent of an object’s path is determined by the combination of all
pixels occupied by that object along its course through the domain. To enable real-time
processing from the tracking output and to reduce storage requirements, a list of active
paths is maintained from frame to frame. With each new frame, the latest location of

each object is combined with its respective existing active path.

Object location can be taken just from the outline of the object provided from the
tracking process. However, considering the observation made in our original approach,
object outlines are subject to various forms of noise. In particular, light reflections
can alter the object silhouette dramatically (figure 3.8a). When combined, such object

locations may produce a jagged path (figure 3.80).

Under ideal conditions, an object moving along a straight line trajectory will pro-
duce a convex path (except possibly at the ends) and although an object with a curved
trajectory will obviously not have a convex path it will be “locally convex”. The state
of a path becomes important during database update — two objects following the same
course should have approximately the same path which may not be the case without pre-
processing them. Image smoothing techniques (such as averaging or median smoothing)
enhance the condition of the path by filling in some of the gaps. However they are, in

real-time terms, computationally expensive.

Instead of using smoothing techniques, path condition is enhanced by generating
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the convex hull of the object outline (figure 3.8¢). Such calculations are not computa-
tionally expensive — the convex hull of any polygon can be found in linear time, O(n)
(see Melkman 1987). Although Baumberg & Hogg’s (1994b) tracking program supplies
a cubic B-spline representation of the object outlines, it is relatively simple to convert

them to a polygonal representation (Sonka et al. 1993, Chapter 6.2.5, pp. 212-214).

The convex hulls combine to give a significantly smoother path (figure 3.84d,) that

is more likely to be correctly matched during database update.

Figure 3.8: Example showing advantage when using convex hull of object out-
line. (a) Object outline, (b) Path generated using object outline,
(¢) Convex hull of object outline, (d) Path generated using convex
hull of object outline.

Once an active path becomes complete it is merged into the database of existing

paths. There are two possibilities when merging a new path into the database:

e an equivalent path already exists and should be updated to accommodate the new

path.

e no equivalent path is found and the new path should be allocated a unique identity.

Equivalence is based on the percentage overlap between the new path and the paths
contained within the database. Path overlap occurs when the constituent pixels of two
paths coincide. Two paths are considered to be equivalent if a specified proportion of
their paths overlap. When the specified percentage overlap is too low it is possible that
two different paths will be found equivalent — for example, two adjacent road lanes may
be matched and seen as just one wide lane. Alternatively, if the overlap is too high there
may be no equivalences identified within a satisfactory time scale. Experimental results

within the test domains have shown that a tolerable compromise appears to be an overlap
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of 80% — this allows a sufficient duration for the training period without undesirable
equivalences being identified®. Of course, this value is scene specific and will be discussed

more in section 3.3.4.

When updating the database, a new path could be merged with an existing data-
base path using a function analogous to the binary or operation — the value of each pixel
representing a database path would indicate if any equivalent path has occupied that
pixel. However, the update function used is analogous to arithmetic addition — allowing
the value of each pixel for a database path to indicate the number of equivalent paths

sharing that pixel (as with the frequency distribution map described in section 3.2.3).

At the end of the training period, each path held in the database will contain
frequency distribution information for that path, figure 3.9a. This representation has

two benefits :

e “noise” can easily be identified from low distribution areas.

e it is possible to extract the most “common” path by thresholding the distribution,

figure 3.90.

Figure 3.9: Obtaining the most “common” path; (a) Original path displayed
with a grey scale representation of the frequency distribution and
(b) Most common path obtained by thresholding the distribution.

3.3.3 Region Generation

At any time during the training period it is possible to generate regions for the spa-

tial model. Effectively this halts the database generation process (although it may be

*But see the discussion in section 3.3.5.
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resumed) and uses that information to build the regions. A new region model can be cre-
ated during the path generation stage each time a path becomes complete and is merged
into the database. However, it is unclear how useful this continuous region generation
may be. The spatial model may change frequently and the latest underlying region map
may differ substantially to that in the previous state. Without an accurate mapping

between the adjacent states, object behaviours may prove difficult to interpret.

When regions are generated only as required, path verification may also be ac-
complished. Each database path is tested against all other paths in the database to
verify that no path equivalences have been created through the database update process
— the merging of equivalent paths may alter the original shape enough that a previ-
ously unmatched path may now be found equivalent. Should any “new” equivalences be

discovered they are merged together as before.

Although this step is not entirely necessary, it has the advantage that a previously
statistically “weak” path may be strengthened by a “new” equivalence. Without this
operation, such paths will be strengthened with extra training — essentially, this step
allows a shorter training period and as such provides an advantage over continuous region

generation.

Alternatively, this operation could be performed during the database update pro-
cess. The resulting database entry, after a new path is merged into the database, could
then be reprocessed to check for any further equivalences. However, this operation may
prove to be the bottleneck for real-time processing. It is possible that several database
merges may be necessary before previously unmatched paths become equivalent. This
means that several database update checks may be required. However, if the test is left
until the start of the region generation stage, then any equivalent paths can be found in
a single “verification” pass. In fact, experimental results have shown that fewer database
checks and updates are made when using a single path verification process rather than

continuous update.

To reduce “noise”, any path with a uniformly low frequency distribution is dis-

carded. Although low frequency distribution may represent infrequent object movement
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rather than “noise”, it is also possible that abnormal or unusual behaviour is being
displayed. In some applications this information may be useful; however, the method
described here relies on behavioural evidence and it is safe to reject these paths as they

are not statistically frequent enough.

The remaining paths are then processed to obtain a binary representation of the
“best” or most “common” route used — this depends on the database path update
function being “addition” rather than “or” (see previous section). Thresholding is used
to provide a binary representation where the threshold is selected from the cumulative
frequency histogram of each database path and the percentage overlap value employed
in the test for path equivalence. An 80% overlap value is required to merge a path into
the database and indicates the percentage of pixels shared by equivalent paths. This
is reflected in the cumulative frequency histogram where the “common” path forms the
highest 80% of the histogram. So, the frequency value found at 20% of the histogram

provides the value for the threshold operation.

These binary path representations express the composite regions for the spatial
model — they describe each area of similar behavioural significance from objects following
the same course through the domain. From section 3.1, the leaf regions can be completely
defined by how the binary path representations overlap. Each binary path is allocated a
unique identification before being added to the region map. Overlapping segments form
separate leafl regions and are reassigned a new unique identification. When all the paths

have been processed each leaf region will have been identified and labelled.

Occasionally, adjacent paths may share small areas of common ground — perhaps
from shadows or the occasional large vehicle. This can generate very small regions that
are not actually useful and the last step in leaf region generation is to remove such small
regions by merging them with an adjacent region. The most appropriate adjacent region
selected for the merge is obtained by considering the smoothness of the resulting merged
regions. Smoothness is checked by considering the boundary of the small region and
the proportion shared with the adjacent leaf regions. The adjacent region sharing the

highest proportion of the small region’s boundary is selected for the merge, e.g. if the
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small region has a border length of seven pixels and shares five with region A and only
two with region B, the combination with region B would form a “spike” whereas region
A may have a “local concavity” filled and subsequently be smoother (see figure 3.10).

Figure 3.11 displays the leaf regions obtained for the test domains.

Figure 3.10: Merge operation for “useless” small regions.

To complete the spatial model, it is necessary to discover the union of leaf re-
gions which make up each composite region (based on the binary representations of the
database paths). A complication in this process results from the previous merge of small
“useless” regions which may now be part of a larger leaf region that should not be a
member of the composite region for the path under consideration. Each composite re-
gion should contain only those leaf regions that are completely overlapped by the path
it represents. A selection of composite regions is displayed in figure 3.11 along with the

identified leaf regions.

When complete, the spatial model is in raster format. Although this may be
suitable for some applications, for storage, a vector representation is much more efficient.
As such, a raster-vector conversion is applied to the raster data and then output to

a “map-file” (as used by Howarth (1994) and shown in chapter 2 section 2.3.2). The
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Figure 3.11: Test domains; (a) Road junction, (b) dual carriage-way and
(c) pedestrian scene displaying identified leaf regions along with
a selection of composite regions.
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obtained spatial model is then composed of composite regions, leaf regions, line segments

and points.

3.3.4 Experimental Results

The tracking program processes about 5 frames/second on a regular UNIX platform. The
video image sequence used for the traffic junction is about 10 minutes in length and
averages b or 6 objects each frame. For the dual carriage-way, again about 10 minutes of
video footage is used, this time with up to 20 objects in each frame. In comparison, the
pedestrian scene is roughly double the length with at most 3 objects in any frame and

often with periods of no object movement.

At the end of the training period the traffic junction has entered 200 paths into
the database which reduces to 70 after checking for equivalences. Of these paths, 28
prove frequent enough to be used in region generation so giving 28 composite regions
and initially over 400 leaf regions. The removal of small regions reduces this number
to around 150. After only 2 minutes, many of the significant routes have already been
identified with 16 paths strong enough to be considered composite regions and generating
a total of 87 leaf regions. For the dual carriage-way approximately 150 leaf regions are
obtained from 21 recognized paths and in the pedestrian scene about 120 leaf regions are

generated from 23 recognized paths.

These results rely on three threshold parameters we were unable to eliminate from
the system. Thresholds remain necessary for the overlap value in the path equivalence
test, the actual threshold operation used to obtain binary path representations and the
size of leaf regions that are to be merged into an adjacent region. As previously indicated,
the overlap value for path equivalence and the path threshold operation are linked —
one being the dual of the other. Experimental results indicated that an overlap value of
80% was suitable for each test domain. It is possible that the percentage overlap value
is related to the camera angle for the scene. As the angle is reduced, objects in adjacent
lanes will naturally overlap more. This means that when attempting the path equivalence

test a higher overlap percentage value will be required to distinguish equivalent paths
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from those that are actually adjacent lanes. The value used to determine small regions is
passed on from the tracking program — here the minimum tracked object size is 10 pixels
otherwise problems can arise. Ten pixels is less than 0.02 percent of the total image area

size so it is quite conservative.

3.3.5 Discussion

By using an existing tracking program that produces (2D) shape descriptions for tracked
objects from a real image sequence, we have demonstrated an effective method for the
real-time generation of a context specific model of a (2D) area of space. The domain is
required to be strictly stylized for this method to be suitable; for example in the traffic
surveillance domain there is typically a constrained set of possibilities for the movement
of vehicles. This may not be the case for less stylized domains like the movement of fish
in a pond?. However, the extent of such stylized domains is sufficiently widespread for

the method to be widely applicable.

The spatial model can be considered to be “data-centered” due to its construction
from real image data. This means that an alternative tracking application could be used
that provides object outlines projected onto the ground plane rather than the image plane
to produce a spatial model representing a ground plane projection of the viewed scene
which could prove useful®. Howarth & Buxton (1992a) use a ground plane projection of
the image plane to “better facilitate reasoning about vehicle interactions, positions and
shape.” Similarly, by using a tracking process that provides 3D shape descriptions the

method would require relatively few changes to provide a complete 3D spatial model.

Previous contextually relevant spatial models have been generated by hand and as
a consequence the domain is subject to human interpretation and occasionally miscon-
ception so the generated spatial model may not be entirely accurate. Our method relies

only on observed behavioural evidence to describe the spatial model. As long as a suf-

* Although, as an anonymous referee pointed out, even with the movement of fish in a pond there may
be sufficient stylized behaviour to build a model. For example fish circle the perimeter of a pond and
often return to a particular location to eat or to a shaded area in which to rest.

5A ground plane projection could also be obtained by back projection of the derived spatial model.
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ficiently broad representation of object behaviour occurs throughout the training period

the derived spatial model should be accurate without being prone to any misconceptions.

Statistical analysis allows the most used routes to be extracted from the database.
This means that the length of the training period depends on the volume of object
movement as well as representative object behaviour — for a quiet scene, a much longer
image sequence will be necessary than with a busy scene. As long as the image sequence
is of a sufficient length and demonstrates typical behaviour it is possible to obtain a
reasonable representation of a (2D) area of space that is contextually relevant to the

viewed scene.

Really, only one problem occurs with the generation of the spatial model. Occa-
sionally, when the path database update checks for path equivalence it is not possible
to set an overlap percentage that denies all inaccurate matches. In particular, in the
test domain where we generate a representation of space for the dual carriage-way we
have to deal with acceleration and deceleration traffic merge lanes. In this situation the
amount of natural path overlap is extremely high between the merge lane and the inner
carriage-way. As a result these lanes are represented as a single (Y-shaped) composite
region with a concavity in the spatial model (see figure 3.12). Although it is not possible
to increase the percentage overlap because desirable equivalences would not be identified,

one possible solution to this minor problem is discussed in the next chapter.

3.3.6 Further Work

As well as the remaining work discussed in this thesis there are a number of possible
extensions to the spatial model and applications in which such a representation of spaces

may prove beneficial:

e The process as described is real-time as far as the training period is concerned and is
able to generate the regions at any time during the training sequence. However, once
generated, the spatial model becomes a static entity. Although the static spatial

model allows the easy recognition of “non-standard” events, problems may occur
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Figure 3.12: Lanes merged through undesirable equivalence determination.

in a changing world. For instance, if the model is used for traffic surveillance and
road works subsequently alter traffic flow, the spatial model becomes inaccurate.
In such situations it is desirable to have an adaptive model of space that is able to
learn during use. It should be possible to enhance the method described here to

provide an adaptive model of space.

This representation of space could provide control for a tracking process by reducing
the search space for moving objects — the spatial representation contains the paths
followed by objects. The spatial model could also identify the potential location of

new objects in the scene, again reducing the search space.

Currently, the regions identified in the generation process are arbitrarily labelled.
Although this is sufficient for visual surveillance, should the model be desired for a
natural language interface other properties would also be required — in particular,
a natural language description or name for a path represented by a particular
composite region would be desirable. User input (or a priori scene knowledge)

would be necessary for this type of property acquisition.

At present, the boundaries of regions generated in the spatial model are defined
precisely by thresholding the frequency map contained in the path database to

obtain the most “common” path. However, the overall spatial extent of objects
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using that path can extend beyond the “common” area and into the area we discard.
It is possible that we could enhance the spatial model to include indeterminate
boundaries similar to the “egg-yolk” representation described by Cohn & Gotts
(1996). The “yolk” would represent the “common” area obtained by the usual
threshold operation while the complete “egg” is comprised of the complete spatial
extent of the database path without the threshold operation. This would provide a
more complete representation of space that more accurately describes the passage

of (various sized) objects through the domain.

e Other possible areas where such a spatial layout could be used are stereo image
matching and fusing of multiple overlapping views. The topology of the spatial
model is largely invariant to small changes in the viewing angle and provides sets

of corresponding regions.

3.4 Summary

Within this chapter we have examined an existing representation of space that appears
ideal for qualitative reasoning purposes. To date, such spatial models have been generated
by hand. We have proposed two possible methods for automatically learning a similar
representation of space. Although sufficiently accurate results where not obtained from
the first method, it did provide certain insights to the problem that helped form the
second approach. Results have been provided for both approaches and a number of

possible improvements and further work have also been outlined.

Following the completion of the work described in this chapter we started to think
about visual surveillance and, in particular, event recognition. Since we are intending
to use qualitative modelling techniques, a method for identifying “close” objects was
required without resorting to exact measurements. We address this problem in the next

chapter by extending the spatial representation to a spatio-temporal model.



Chapter 4

A Temporal Extension

4.1 Introduction

For event recognition tasks, there is a necessity for an attention control mechanism which
can assist in identifying objects of potential interest. Usually, this means any object whose
behaviour pattern appears unusual or different to the expected (“normal”) behaviour.
Typically such situations arise between two (or more) interacting objects. As such, a
mechanism which can identify “close” objects is highly desirable. By “close”, we refer
to the distance between two objects which may affect typical object behaviour (usually
just lane or path following). In terms of moving objects, “close” is a function not only of
distance but also of speed. Since we intend to use a qualitative methodology, we would
like an approach that can automatically classify “close” objects without having to work

out the exact speeds and distances of all objects in a dynamic scene.

Object speed can be determined using the formula v = d/t. This means that time
plays a very important role in determining how close two moving objects are. In fact,
time and distance are interchangeable concepts used in natural language. For example,
consider the question “How far away are you?”. The reply could be in terms of distance
“About a mile” or time “About two minutes” In traffic domains, our primary concern,

we are told in the Highway Code (HMSO 1996, rule 57) that a reasonable distance to

79
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be maintained between two vehicles moving in the same direction, under ideal weather
conditions, is approximately two seconds (under adverse conditions this time gap should
be at least doubled). When a vehicle enters this space, the behaviour of the two objects
becomes more interesting. As such, we identify “close” vehicles by checking the temporal

distance between them.

It should be noted that our concept of “close” does not refer directly to spatial
proximity. Consider two vehicles moving at 30mph where the second vehicle is follow-
ing the first and the distance between them is about a car length. At this speed, the
distance maintained between the two vehicles is probably safe. However, consider the
same situation on the motorway at 70mph, again the second vehicle is about a car length
away from the first. In this situation the distance maintained between the two vehicles
is significantly more dangerous than at 30mph. Our qualitative use of “close” must be
able to identify potentially interacting vehicles which depends not only on distance but
also on the speed at which the vehicles are travelling (i.e. the time taken for one vehicle

to travel the distance between itself and the other).

In section 2.3 we examined the analogical representation of space introduced by
Howarth & Buxton (1992a, 1992b) and in the last chapter we demonstrated a method
of automatically generating a similar analogical representation. If the composite regions,
in the spatial model, contain sub-divisions (or regions) of a specific time length (say two
seconds), then it becomes possible to classify “close” objects as those occupying the same

or adjacent sub-divisions. These are known as equi-temporal regions or E'TRs.

In this chapter, we propose a method which extends our existing approach for the
automatic generation of semantic regions to include equi-temporal regions which sub-

divide each composite region.

4.2 QOutline

A (slightly modified) tracking process accepts live video images from a static camera.

Shape descriptions corresponding to all moving objects within the scene are produced on
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a frame-by-frame basis. Real-time analysis of the dynamic scene data is performed to
build a database of paths used by objects. Further information pertaining to time is also
stored in a second (temporal) database. At the end of the training period, data stored
in the two databases is processed to generate the (leaf, composite and equi-temporal)

regions required for the spatio-temporal model. A diagram outlining this system is shown

in figure 4.1.
I Video | i Tracked Object | onPord
Real-world m Camera Iaeo Image 'I;racklng racSh | Path
scene Sequence ocess apes Generation
Database
Update
Path
. Database
Futre | Spatio-Temporal | Region Generated Paths &
Applications Model Generation Temporal Intervals
Tempora
Database

Figure 4.1: Overview of the temporally extended method.

There are three main stages:

e A (slightly modified) tracking process obtains shape descriptions of moving objects

(section 4.3).

o Temporal path generation builds a model corresponding to the course taken by
moving objects, complete with a sequence of temporal intervals where each interval
has the same passage duration for that object. Subsequently, the database of paths
and the database of temporal interval sequences are updated with information

contained in the model (section 4.4).

e Region generation accesses the database of paths and the database of temporal
interval sequences so that leaf, composite and equi-temporal regions can be con-

structed for the spatio-temporal model of the domain (section 4.5).
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Only the extensions to our previous approach will be discussed in this chapter.

4.3 Changes to the Tracking Process

Although essentially the same tracking process is still used, one particular modification is
required. In this chapter, we are describing a method to generate equi-temporal regions;

as such the timing of each frame is essential.

Due to improved technology, it is now possible to specify exactly how many frames
are to be processed each second (up to 30). As a result, the exact duration between
one frame and another can be calculated, allowing the precise number of frames in any
period of time to be ascertained. This is equivalent to providing a time-stamp for each
frame which would have been equally acceptable. The actual frame count selected is 25

frames/second as this is currently the standard (UK) frame rate for full-motion video.

Unfortunately, the process still does not handle occlusion so we restrict the test

domains to limit the amount of occlusion occurring in the domain.

4.4 Temporal Path Generation

4.4.1 Analysis

Originally, it was thought that equi-temporal region generation may be accomplished with
a relatively simple approach. When the path is generated for each object the number of
frames that each object spends travelling through the domain is also recorded (in a log).
In the path equivalence test, the log for the number of frames can also be tested against
the database entry to determine temporal equivalence as well as (path) area equivalence.
Since the temporal equivalence check is between two integer counts there would be no
need for a complicated algorithm. At the end of the training period, the average number
of frames spent by all objects travelling each path can be used to generate constantly

spaced temporal sub-divisions (or regions) for the corresponding composite region. This
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idea has at least two problems that have to be addressed:

e The most obvious problem is that constantly spaced sub-divisions provide no benefit
to the spatial model and are certainly not temporally sized. Although not immedi-
ately apparent, constant spacing can only be applied using 2D (screen) coordinate
points which, due to perspective, would not provide either constant distance or
constant time for the sub-divisions. Even using a ground plane projection would
not alleviate the problem due to changes in ground height and actual variations in

speed when manoeuvering around corners and bends in a path.

e A less apparent problem may occur when the percentage overlap test between two
paths show the paths to be equivalent but the second test for equivalent temporal
interval sequences fails. Here, the two paths are really equivalent — only the veloc-
ity of one object is greater than the other object. In itself, this is not a problem —
the temporal sized regions should be capable of handling a range of velocities and
multiple identified temporal sub-divisions would provide that support. However,
the spatial extent of a composite region relies on the combination of all equivalent
paths (as in the path threshold operation discussed in section 3.3.3). If not all equiv-
alent paths are combined then the spatial extent obtained for the composite region
may not be as accurate. Also, the entire method relies on statistical frequency and
if a number of temporally different paths emerge, the discrete “equivalent” paths

may not prove to be sufficiently frequent to be accepted as composite regions.

From this potential approach and the analysis of the perceived problems it becomes
apparent that for equi-temporal sub-divisions it is necessary to take into account camera

perspective as well as velocity variations due to (complex) object manoeuvres.

Considering the second problem, discussed above, it is evident that the spatio-
temporal model to be constructed should consist of single (separate) composite regions
representing each (statistically frequent) object path (as generated for just the spatial
model in the previous chapter). However, each composite region is further refined by one

or more equi-temporal region sequences identifying the different speeds taken by objects
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travelling the path (represented by the composite region).

An alternative strategy would construct separate spatio-temporal paths (consisting
of a composite region with a single temporal interval sequence), where the spatial ex-
tents may be identical. Conceptually, the complete spatio-temporal models are similar.
However, as discussed above, for a path to be considered a composite region it requires
sufficient (statistical) evidence which would be reduced by matching both spatially and

temporally equivalent entries. As such, the first proposal is the method followed.

The complete spatio-temporal representation has a more hierarchical structure than
the alternative strategy would produce. However, when using the complete model, it is
possible to construct spatio-temporal paths on the fly (i.e. for more efficient storage, the
hierarchical model would only need to store the spatial extent once, but when necessary
the disparate temporal sequences could be applied to the associated composite region to

construct a number of separate spatio-temporal paths with the same spatial extent).

4.4.2 Process Description

Currently, the spatial extent of an object’s path is determined by the combination of
all pixels occupying the silhouette of an object’s convex hull along its course through
the domain. This is still accurate. However, for the temporal sized sub-divisions and
to account for camera perspective and speed variations over the length of the path, it
becomes necessary to maintain a list of point coordinates indicating the location of the
object at regular intervals of time. These temporal point coordinates will allow the

equi-temporal regions to be subsequently constructed.

As previously mentioned, in this domain two seconds is a reasonable value to iden-
tify “close” objects. Therefore, the location of an object needs to be recorded at two
second (or 50 frame) intervals. The centroid of an object’s outline, which is readily
available from the tracking process, is an appropriate selection for the temporal point
coordinate — it will not cause bias in subsequent processes when locating objects in

the relevant ETR. Figure 4.2 shows two example paths complete with temporal points
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located at two second intervals.

Figure 4.2: The path of an object complete with temporal point intervals.

Asin the non-temporal approach, on completion an object’s path is merged into the
database of existing paths after searching the database for any equivalent entries. The
path equivalence test is still the same, based on the percentage overlap of constituent
pixels of the new path and the existing database path. If an equivalent path is not

discovered in the database then:

e The temporal interval sequence, associated with the new path, is added to a second

(temporal) database containing all the alternative temporal interval sequences.
e A link between the (new) temporal database entry and its path is created.

e Then, the new path is added to the path database.

Otherwise, an equivalent path has been discovered and should be revised to in-
corporate the information contained in the new path. As before, in the non-temporal
approach, the new path is combined with the database path using a function analogous
to addition. This provides a frequency value for each constituent pixel (of the database
path) indicating the number of contributing equivalent paths (see section 3.3.2). Subse-

quently, the path threshold operation can be applied to generate the composite region.

Now, however, the temporal interval sequence for the new path also requires merg-

ing into the database of temporal interval sequences. This time, a temporal equivalence
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test is performed on the existing temporal interval sequences contained in the database.
Not all database entries should be checked — only those associated with the equivalent
(updated) database path. For this purpose, each database path entry contains a list
of links (relations) to associated temporal interval sequences contained in the temporal
database (as shown in figure 4.3). Should no equivalent temporal interval sequences be
discovered, the new temporal interval sequence is added to the temporal database along

with an associated link to the database path entry.

(Spatia) Path Database Temporal Database

NP
= =

@

Figure 4.3: Structure of path and temporal database.

Temporal equivalence requires a different type of test to that of path equivalence.
Unlike the generated object paths, there are no constituent pixels to coincide so, it is not
possible to check a percentage overlap value. Instead, it is necessary to match points in
both temporal interval sequences. Objects entering the domain should essentially appear

in (approximately) the same location for a particular path. Assuch, to check whether two
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temporal interval sequences are equivalent all that should be necessary is to check that
the number of intervals correspond and that the length of the corresponding intervals is

approximately the same in each sequence.

Unfortunately, the tracking process does not always detect the initial appearance
of an object. For example, a small vehicle, entering in the distance, combined with light
reflections may not have enough presence to be detected immediately. This means that
in the temporal equivalence test a starting point needs to be identified before matching

the lengths of the remaining temporal intervals.

It is most unlikely that the starting points and subsequent interval distances will
exactly coincide, although that would make the process simpler. Instead, these matches
must be approximately the same. More formally, a threshold or tolerance space (Mukerjee
& Schnorrenberg 1991) is required to provide reasonable matches. The value for the
tolerance space changes with each interval to be matched and is calculated from the
mean duration of the corresponding temporal intervals to be matched in the two interval

sequences.

When checking for a starting position in each sequence, the test is for two corre-
sponding point locations not interval lengths. However, a tolerance space is still appro-
priate and is calculated from the mean length of the temporal intervals on either side of
the focus points in the two sequences. If the focus point is the initial point in the interval
sequence there is no prior interval so only the next interval length is considered (in that

sequence).

The actual value obtained for the current tolerance space is a 20% threshold value
calculated from the mean temporal interval lengths. Figure 4.4 shows an example to

demonstrate this calculation. From the diagram:

t_£1+52+f3+f4

1 x 20%

As before, this threshold value appears reasonable. If the threshold value was higher
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more matches would be found and less matches if lower. So, if corresponding starting
points can be determined and the remaining temporal intervals are approximately the

same lengths, then, the two temporal interval sequences are seen to be equivalent.

New Entry Database Entry Tolerance Space
ls
b
bq
Pn
ly ly

Figure 4.4: Calculation of tolerance space for temporal intervals.

When two temporal interval sequences are found to be equivalent, the temporal
database entry should be updated. Beginning with the initial points matched in both
interval sequences, the mean position for the two points is calculated and the temporal
database entry updated. The mean position takes into account all temporal points that
have contributed to its location not just the two current points — otherwise, each new
temporal interval sequence would have a greater effect on the final location of each point
in the database entry. As such, the number of contributors for each point in the temporal

interval sequence is also required in the temporal database entries.

The calculation is then:

(25, y;) X Ni + (v, w;)
(N: +1)

(i, i) =

where (z;,y;) is the ith temporal point in the database entry which matches the jth
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temporal point, (v;, w;), in the equivalent temporal interval sequence and N; is the total

number of contributors for the i*h temporal point in the database entry.

This algorithm is quite long and described through the text in this section. For

clarification purposes, a sketch algorithm of the process is provided in figure 4.5.

for each frame
receive object descriptions
for each object in frame
generate convex hull of object shape
update object path matrix
every 2 seconds
record temporal point coordinate
for each completed object path
search path database for an equivalent entry
if equivalent entry found
merge new path with database path
search temporal database entries for equivalent entry
if temporal equivalent entry found
update temporal database entry
else
add new temporal database entry
else
add new path database entry
add new temporal database entry

Figure 4.5: Sketch algorithm of path and temporal database generation.

4.5 Equi-Temporal Region Generation

Leaf regions and composite regions are constructed as before in the non-temporal ap-
proach (section 3.3.3). Path verification reassesses the entries in the path database to
ensure that any “new” equivalences are merged together. The information stored in the
database is then analysed to determine which paths occur sufficiently frequently to con-
tribute to the spatial model (i.e. those paths which are recognized as composite regions).

Subsequent thresholding and combination of these paths results in the leaf regions and
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composite regions for the spatial model.

The temporal database entries associated with each of these paths are then pro-
cessed to generate sets of equi-temporal regions for the relevant composite region. Simi-
larly to the path database, each set of temporal database entries belonging to a particular
path is verified to ensure that no equivalences have been created through the update pro-
cess. Should any “new” equivalences be discovered they are merged together as described
in the previous section. However, the calculation for the mean location of the points in
the temporal interval sequences has to be generalized to take into account the number of

contributors to the point location in both sequences.

le.

(xi,4i) X Ni+ (vj, w;) X N;
(N: + Nj)

(i, i) =

where (z;,y;) is the " temporal point in one database entry which matches the jth
temporal point , (v;,w;), in the equivalent temporal database entry. N; is the total
number of contributors for the i*" temporal point in the database entry and N; is the

total number of contributors for the 7" temporal point in the equivalent database entry.

The temporal verification stage also ensures that the temporal points within the
interval sequence are all positioned within the boundary of the generated composite
region. It is possible that the threshold operation applied to a path (to obtain the
composite region) will leave some of these points outside the resulting area. Should this
occur the entire interval sequence is discarded. Typically, this only occurs if the interval
sequence has a low statistical frequency — otherwise, the mean location of each point
obtained from the combination of more frequent equivalent temporal interval sequences
is likely to place those points within the boundary of the resulting composite region.
As the next step removes infrequently occurring temporal interval sequences from the

database no significant information is discarded.

Each composite region will now have left at least one temporal interval sequence
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(should there be none then the composite region itself is invalid and should be discarded).
Should the composite region have more than one associated interval sequence this would
represent objects travelling at different speeds along the path thus containing relevant
information. For example, push bikes typically travel slower than motor bikes but are
likely to travel along similar paths, or at different times of the day when the traffic is

heavier or lighter, the typical travelling speed changes.

The spatial extent of an equi-temporal region is bounded by the line segments
obtained from the composite region border and the points to either side of a temporal
interval. The line segments (from the composite region boundary) provide the (intrinsic)
left and right edges for the ETR, whereas the (intrinsic) front and rear edges are obtained

by generating lines passing through the points at either side of the temporal interval.

Although the initial temporal interval has a start point, it is not used to bound
the first equi-temporal region (in the composite region) because it occurs at the entry
location for new objects — any object entering a composite region should enter into the
first temporal region whether before the first point or not. Typically, this will only occur
if a small object is detected earlier than normal — which is unlikely. As such, the spatial
extent of the first equi-temporal region is bounded to the left, right and rear by the line
segments for the composite region boundary and to front by the second point in the

interval sequence (i.e. the point at the end of the first temporal interval).

Although the left and right edges (obtained from the line segments for the composite
region boundaries) are already known for the temporal region, the front and rear edges
have to be constructed, This is achieved by considering each temporal point, (z;,y;), in

turn along with the previous point, (z;_1,y;—1), and next point, (41, Yit1)-
The gradient, mq, of the line joining the previous and next temporal points can be

calculated with ease:

_ Yitt — i1
Tig1 — Ti—1
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When multiplying the gradients of any two perpendicular lines we know that:

my X mg = —1

Therefore, the gradient of any line perpendicular to the line joining the previous

and next temporal points is:

Ti—1 — Ti41
mo = 7+
Yi+1 — Yi—1

In turn, it is now possible to define the equation for a perpendicular line that passes

through the current temporal point:

y—yi= (7%_1 — 96¢+1) (z — )

Yi+1 — Yi—1

Using the equation of the perpendicular line it then becomes possible to find the
location of the points which intersect the composite region boundary providing the “cor-

ner” points for the temporal region (see figure 4.6).

There is a special case for the last point in the temporal interval sequence. Unlike
the first point in the temporal interval sequence, objects are still travelling along the path
after the last point — they just leave the domain in less than the 2 seconds required for
a complete interval. This means that there is a final equi-temporal region at the end of
a composite region which occurs after the last temporal interval. In this situation, there
are no further temporal points to obtain the line gradient from. Instead, the current
(last) and previous temporal points are used in the gradient calculation rather than the

next and previous temporal points.
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Line connecting previous
and next point

points _

Figure 4.6: Obtaining edge points for equi-temporal regions.

le.

_ Yim Yot
Ti; — Ti—1

where ¢ is the last point in the temporal interval sequence. The remaining calculations

are then followed as before.

One complication may occur as a result of two paths being inadvertently merged
as a result of unusually high overlap, as in the case of a traffic merge lane and an inner
carriage-way. As explained in the previous chapter (section 3.3.5), such a merge results
in a (Y-shaped) region with a large concavity. When this occurs, the perpendicular line,
passing through a temporal point located on either side of the concavity, will make four

boundary intersections, not just two. As we desire all regions to be single piece, the



94

nearest boundary intersections on either side of the temporal point are selected as the
“corner” points for the temporal region (figure 4.7). This also provides another benefit
that will allow these inadvertently merged regions to be separated. As this idea has not

yet been implemented it will be discussed later in the section on further work (section 4.8).

Figure 4.7: ETRs for a Y-shaped composite region.

The spatio-temporal model is complete when each temporal database entry asso-
ciated with a composite region has been processed. Again, as the algorithm is detailed
throughout the section, a sketch algorithm of the region generation process is provided

in figure 4.8.
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at end of training period
verify path database entries
for each verified and statistically frequent path database entry
verify associated temporal database entries
if path still valid
threshold database path matrix
update region map with threshold data
find and merge small regions with relevant adjacent region
for each verified and statistically frequent path database entry
identify leaf regions each composite region
for each associated temporal database entry
find corner points for equi-temporal regions

Figure 4.8: Sketch algorithm of region generation process.

4.6 Experimental Results

The system maintains real-time performance during the database update stages and is
only marginally slower when generating regions (which can still be generated at any
time). Results are highly successful, providing a number of alternative sets of equi-
temporal regions for the majority of the composite regions. Although some composite
regions only show a single set of equi-temporal regions it is still acceptable — typically,
objects travel at the same speed along that path. A selection of equi-temporal region
sets, contained within their composite regions, are displayed for the dual carriage-way in

figure 4.9.

4.7 Discussion

In this chapter, we have presented a temporal extension to our original spatial model
and demonstrated a method of automatically generating this new spatio-temporal model
still based on the movement of objects throughout the domain. Once again, we have uti-
lized an existing tracking application which provides (2D) shape descriptions for tracked

objects from a real image sequence. However, this time the image sequence is processed
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at a fized frame rate allowing the precise timing of object movements throughout the

domain.

The method copes well with equi-temporal region size variations due to camera
perspective as well as handling situations where variable object speeds may occur as a
result of situated obstacles, such as sharp corners where a vehicle will have to slow down

considerably before manoeuvering around that corner.

If we had desired a three dimensional spatial model plus time (3D4¢) then it would
still be possible to use an alternative tracking process as long as that process allowed the
precise timing of object movements — either by a known fixed frame rate or by providing

a time-stamp with each frame.

The complete spatio-temporal model appears unique throughout the literature.
It allow us to create an attention control mechanism which can identify “close” objects
within each frame of an image sequence. As discussed in the introduction to this chapter,
for our purposes “close” does not refer to spatial proximity but to temporal proximity.
When two objects are considered “close” the time taken for one vehicle to reach the
position the other occupies is less than two seconds. In the domain considered during
this chapter and the next chapter, temporal proximity provides a useful mechanism for
attention control. Consider the sequence of actions resulting in one vehicle overtaking
the other. At some stage, the overtaking vehicle is behind the other, at the end of the
sequence it is ahead and at some stage during the manoeuvre it is alongside (right) of the
other. To recognize this sequence of actions, it is not necessary (or desirable) to examine
the relationship between every pair of vehicles. Only those which are considered “close”.
The attention control mechanism described in the next chapter provides a mechanism

which allows us to learn this type of sequence.

However, although temporal proximity provides a mechanism which can learn this
type of interaction it is not sufficiently general to capture other sequences of actions —
for example, a vehicle giving way at a junction is not moving but is obviously giving way
to another vehicle. In this situation identifying “close” objects from the waiting vehicle

is not possible as our definition of “close” depends on movement.
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4.8 Further Work

One possible improvement that can be made is based on the observation that in some
composite regions, the appearance of the last temporal region is not ideal (for example, see
figure 4.10). The (perpendicular) line splitting the two regions may be skewed as a result
of the line gradient calculation. In all other cases, the gradient of the (perpendicular) line
passing through a particular point in the temporal interval sequence is calculated from
the mean gradient of lines to either side of that point (i.e. the gradient of lines from the
current point to the previous and next points in the sequence). Unfortunately, it is not
possible to calculate a mean gradient for the last temporal point because there are no
further points in the temporal sequence. As such, the line equation is calculated directly
from the gradient between the previous point and the current point, assuming that it
would provide satisfactory results. For the largest proportion of composite regions, this
is actually true. However, in a minority of situations (in the test domains) unsatisfactory
results are obtained indicating that the gradient calculated for the line equation could be
improved. One possibility would be to base the line equation on a mean gradient using a
“virtual” next point which is position midway between the points of the end line-segment

of the composite region boundary.

A potential side-effect of the equi-temporal region generation is to provide a method
that will allow a composite region that represents two distinct paths to be separated. Such
composite regions occur when two adjacent paths have an unusually high percentage
overlap. Asin the dual carriage-way where the traffic merge lane and the inner carriage-
way are combined. These lanes result in a single Y-shape composite region representing
both lanes. It is not possible to prevent this merge by reducing the percentage overlap

value because other desirable path equivalences will also be lost.

However, constructing the equi-temporal regions may provide a solution to this
problem. When constructing the region boundary, an equation representing the perpen-
dicular line passing through a single temporal point is calculated and applied to locate
the point intersections with the composite region boundary. Usually, there should only be

two such boundary intersections — one on either side of the temporal point. However, in
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Figure 4.10: Undesirable shape obtained for the last equi-temporal region in
some situations.

the undesirable Y-shaped composite region there is a large concavity where the perpen-
dicular line will make four intersections. These four intersections will identify undesirable
composite regions. As before, the nearest point on either side of the temporal point is
selected for the actual intersection point but the point on the side of the concavity is
tagged so that it can be easily identified. The first temporal point after the concavity
will result in only two boundary intersections. At this time, it is possible to create a
“new” composite region for the path described by this set of temporal intervals. The last
tagged boundary point can be connected directly to the new boundary point found in
the last intersection and then used to describe the boundary for the “new” composite re-
gion (figure 4.11). Similarly, another “new” composite region can be generated when the
temporal interval sequence uses the second branch of the original undesirable composite

region.
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Figure 4.11: Separating undesirable composite regions.

4.9 Summary

Throughout this chapter we have described a temporal extension to the spatial model
as well as providing the modifications and extensions to the learning process. Sets of
equi-temporal regions sub-divide each composite region adding a further hierarchical
component to the model. A single composite region (representing a particular path in
the scene) may have more than one set of equi-temporal regions. The typical speed used
by objects travelling throughout the scene may vary. For example, take a typical saloon
vehicle and a bus manoeuvering around a corner (represented by a single composite
region) the speed of the bus may be significantly less than that of the saloon. Similarly,
traflic may travel faster out of rush hour. A single set of equi-temporal regions may not
be sufficient to successfully handle these different travel speeds — meaning that two (or

more) sets of equi-temporal regions are required.

The temporal aspect discussed within this chapter is context specific and obtains
its accuracy from statistical evidence provided by real data. As such, precise timing
is essential to generate an accurate model. This timing is provided by the (external)

tracking program complete with improved hardware technology which allows us to process
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a specific number of frames each second. Alternatively, the tracking program could have
attached a time stamp to the data received each frame which would have been just as

adequate.

Through the (quantitative) frame information, the composite region occupied by
each object can be identified along with the correct temporal sub-division. This identifi-
cation procedure provides us with a method for locating “close” objects without resorting
to exact measurements (which are further complicated by camera perspective). Being
able to locate “close” objects is desirable as it limits the amount of processing by focusing
the attention to potentially interacting objects. We refer to this “close” object location
mechanism as “attention control” and provide a more complete description in the next
chapter. We also explore an application of the spatio-temporal model combined with the
attention control mechanism that allows us to learn qualitative event models (in contrast

to providing such models as a priori system information).



Chapter 5

Event Learning

5.1 Introduction

The driving force behind the development of an automated technique to generate seman-
tic regions for a scene was the desire to provide a spatial model to assist event recognition

procedures.

Dynamic scene analysis has traditionally been quantitative and typically generates
large amounts of temporally evolving data. Qualitative reasoning methods (c.f. chap-
ter 2) should be able to provide a more manageable way of handling this data if a formal
framework for the given situation exists. By qualitative reasoning we refer to a method-
ology that only requires a minimum amount of critical information necessary to perform

a specific task — as such qualitative information tends to be task oriented.

The spatial model described in chapter 3, being topologically based, is able to
provide a formal framework suitable for a number of qualitative reasoning tasks, for
example simulation, prediction and event recognition. In this chapter we concentrate on
event learning. Unlike previous approaches where generic event models are provided as
part of the a priori system information we propose a method that allows the automatic
generation of contextually relevant qualitative event models. In this instance, by using

qualitative reasoning our intention is that the derived event models will contain only the

102
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critical information (using a qualitative logic) necessary to recognize future instances of
the events that have been modelled. We will demonstrate a case-based learning method
that is capable of analyzing objects’ locations, movements and the relationships to other

objects in order to generate the desired event models automatically.

As already indicated, the event learning process relies on the representation of
space we addressed in chapter 3. However, the spatial model alone was determined to
be insufficient in locating objects of potential interest — in particular, it provides no
mechanism for recognizing “close” or interacting objects. As such, an attentional control
mechanism was deemed appropriate and can be achieved using the temporal extension

(described in chapter 4) to our original spatial model.

5.2 Outline

Again, a tracking process accepts live video images from a static camera providing shape
descriptions corresponding to each moving object within the scene on a frame-by-frame
basis. An attention control mechanism locates each object in the correct composite
region and the equi-temporal region being occupied. “Close” objects of potential interest
are identified and a qualitative history of object relationships updated. The database
(case-base) is updated from the associated object histories (cases) of each object leaving
the domain. At the end of the training period event models can be obtained from the
statistical analysis of object histories contained in the case-base. A diagram outlining

this approach is shown in figure 5.1.

There are five main stages:

e The same tracking process previously used obtains shape descriptions of moving

objects (sections 3.2.2 and 4.3).

o A C(lassification stage allows the identification of qualitative position and direc-
tion from the quantitative information provided by the tracking application (sec-

tion 5.3).
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Figure 5.1: Overview of the temporally extended method.

o Object history generation uses an attentional control mechanism to identify “close”
objects and the qualitative relationships to those objects are added to the object

history (section 5.4).

e Object history verification analyzes each object history (case) to ensure that all

relationship transitions are valid (section 5.5).

e In the FEvent database revision, each valid object history is added to the case-
base. On completion of the training period, statistical analysis can determine event

models from the object histories contained in the case-base (section 5.6).
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5.3 Classification

The first step in generating a history for each object is correctly identifying the position
of each object within the spatio-temporal model and classifying the direction each object
is travelling in. For each object location, the composite region being occupied has to
be established along with the correct equi-temporal region within that composite region.
Essentially, this classification of position can be seen as data reduction in terms of con-
verting the unnecessary quantitative location into a more (for our purposes) desirable

qualitative location.

To this end, the database containing the spatio-temporal model is processed to
produce a (two dimensional) leaf region map where each position indicates the leaf re-
gion occupying that pixel in the scene. Region borders lie between pixels and as such
will cause no classification problems. Shape descriptions for each tracked object can be
processed to provide a silhouette “mask” which can be located on the leaf region map.
Any corresponding points will indicate the set of leaf regions overlapped by the object.
To reduce potential errors (see below), the number of points overlapping each leaf region
is also counted and if less than a predetermined threshold that leaf region will be ignored.
In this case, the predetermined threshold is 10% of the object size. Each object and leaf
region has to have a minimum size of 10 pixels (from the tracking application parameters
and the removal of small regions). Therefore, 10% of the minimum size is a single pixel

— the smallest discernible unit.

The database for the spatial model can then be queried to determine which com-
posite regions contain that particular subset of leaf regions. It is possible that more
than one composite region will be identified. In such cases the principle of momentum is

applied to make the same composite region categorization as in the previous frame.

The potential errors, mentioned above, that may be created by not pruning out
leaf regions with minimal occupancy include misidentifying the correct composite region.
By removing those leaf regions, the “core” leaf regions being overlapped still remain and

prove sufficient for the identification of the correct composite region.
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An alternative method for identifying the set of leaf regions is more complex.
Rather than re-building the leaf region map, each leaf region in the database can be

processed against the (polygonal) object outline to determine:

Contains — All line segments for the leaf region outline completely surround the

line segments for the object outline — in this case only one leaf region is identified.

e (Overlap — Line segments for the outline of a leaf region intersect the line segments

for the object outline — at least two leaf regions will be identified.

o (ontained-by — Line segments for the object outline completely surround the leaf

region outline — again, at least two leaf regions will be identified.

e Discrete — No intersections and no occupancy between the object and leaf region

being processed.

Other relationships can also be identified (see chapter 2, e.g. proper part of, tan-
gential proper part of, equal...) but are not important for this categorization — all that
is needed here is the set of (partly) occupied leaf regions. The problem of error reduc-
tion would involve a polygonal area calculation of the intersecting lines. This method
for region identification was not pursued due to no perceived benefits. The potential
benefits obtained by using vector data do not apply in this situation as that vector data
was initially constructed from raster data. As such, sufficient accuracy and (improved)
timing of composite region classification can be obtained by re-building the leaf region

map.

For equi-temporal region classification a different method is used. In the equi-
temporal region generation process, the centroid point of an object’s outline helps deter-
mine the end points for a temporal interval. As such, if an equi-temporal region contains
the centroid point of an object, then it is potentially occupied by the object. In mathe-
matics, the equation of a line can be used to determine which side of that line a particular

point occurs on.
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le.

ar +by+c=10

When the coordinates for a point not on the line are substituted into the equation
the result will be +ve or —ve, indicating that the point is to the left or the right of
that line. (To use Schlieder’s (1993) terminology, the point order is either clockwise or
anti-clockwise.) The composite region being occupied by an object is already known,

meaning that only the front and rear line segments need to be checked.

Each set of equi-temporal regions is processed to determine which equi-temporal
region in each set contains the centroid point. The most appropriate equi-temporal region
is determined by matching the temporal interval distance (i.e. the distance between the
front and rear line segments) to the potential distance moved by the object over 2 seconds
(or 50 frames — the original time period when constructing the equi-temporal regions).
The potential distance to be moved by an object over 50 frames can be calculated after
two frames (by multiplication). Although this distance is likely to be wrong due to
camera perspective and actual speed variations it will be minimal over 2 seconds. Also,
successively improved distances can be calculated as the object proceeds. The object is
classified as belonging to the equi-temporal region where the temporal interval distance

is closest to the calculated (potential) distance moved by an object over 2 seconds.

A deictic frame of reference (as discussed in chapter 2 based on the position of
the camera is used to classify the direction being taken by a moving object. This allows
information provided directly from the tracking application to be used in the classification
procedure. With each object description (after the first) a quantitative direction vector is
provided indicating the direction just taken by that object. For a qualitative classification
based on 45 degree zones (Hernandez 1994) all that is required is to convert the vector
into an angle and find the relevant zone. Internally a scale of 1-8 is used (see figure 5.2)
to represent the qualitative direction. As such, the easiest classification method uses two

mathematical functions:
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§ =tan~! (Q) to obtain the angle in range [—7, 7]
x

and

to obtain the classification.

dir =

(647 + F) %2n)

4

(0 + 7) adjusts the range to [0, 27] which when divided will provide the direction
in the range of [1, 8] as desired. However, the directions are offset (see figure 5.2 so the

angle needs further adjusting by § so that the correct classification is obtained.

Figure 5.2: Direction classification.

5.4 Object Histories

Once the position (with respect to the equi-temporal region within a composite region of
the spatial model) and (qualitative) direction of each object in the current frame has been
classified, the history for each object can be updated. By history we refer to the sequence
of relationships between each object and any other (potentially) interacting objects on

each object’s course through the domain. Such relationships are modelled qualitatively
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such that only critical changes are recorded. (Potentially) interacting objects refer to any
objects within a “close” vicinity to the reference object such that the typical behaviour
pattern exhibited by that object may be affected. As discussed in chapter 4, by “close”
we refer not to spatial proximity but to temporal proximity whereby the speed of an

object determines which objects are deemed “close”.

There are two relationships modelled between “close” objects which are recorded

in each history item:

e The relative position of the “close” object with respect to the reference object.

There are eight possible classifications; ahead, ahead-left, adjacent-left, behind-left,
behind, behind-right, adjacent-right and ahead-right (as illustrated in figure 5.3).
The relationship model used is similar to the orientation model proposed by Muk-
erjee & Joe (1990) such that objects in the “lines of travel” are either ahead or
behind the reference object. However, the “lines of travel” do not rely on the cur-
rent trajectory of the reference object, but, rather on the composite region currently

occupied by that object, which may include curves rather than just straight lanes.

Ahead Ahead

L eft Ahead | pight

Left T Right OR
Behind . Behind

L eft Behind Right

Figure 5.3: Position of 7close” objects relative to the reference object.

e The relative direction of movement between the two objects.

Unlike the relative position, the number of “interesting” relative directions is, at
present, limited to four; same, opposing, (perpendicular) towards and (perpendic-

ular) away (as illustrated in figure 5.4).
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Perpendicular Away L eft Same Perpendicular Away Right
Perpendicular Towards Right Opposing Perpendicular Towards L eft

Figure 5.4: Relative direction of motion between two objects.

Before classifying the relationships between the reference object and any other
objects it is necessary to identify any objects within a “close” vicinity (i.e. focus the
system’s attention). This is achieved through an attention control mechanism that utilizes
the equi-temporal region occupied by an object to build a temporal extent within which

all objects of potential interest can be identified.

The temporal extent, created by the attention control mechanism, incorporates
the equi-temporal region occupied by the reference object and the equi-temporal regions
immediately in front and behind the occupied one. Since the two objects may be towards
the edge of their respective ETRs, this brings any object sharing the temporal extent
within four seconds distance. To identify “close” objects in adjacent paths, the temporal
extent is also broadened to encompass those paths (figure 5.5 shows an example of a

temporal extent).

On completion, the attention control mechanism is capable of identifying any ob-
jects contained within the bounds of the temporal extent. Again, the centroid point of

an object is the determining point of occupancy.

Following the identification of “close” objects it is necessary to classify the rela-
tive qualitative relationships (position and direction of motion) from the reference object
to each identified “close” object. This is accomplished by splitting the temporal ex-
tent region (generated by the attention control mechanism) into nine sub-regions!. The

sub-region that the identified “close” object (partially) occupies determines the relative

'Only 8 positions are relevant, the 9*" position is the central location occupied by the reference object.



Figure 5.5: Example of a temporal extent generated by the attention control
mechanism.

qualitative position (figure 5.3).

Determining the spatial extent of the sub-regions is not particularly difficult. The
composite region already splits the temporal extent into three sub-regions. Occupation of
these sub-regions would identify objects travelling in the same path, a left adjacent path
or a right adjacent path. To obtain the finer grained distinctions required to determine
objects travelling ahead, alongside or behind we use the bounding box for the reference
object. The front and rear bounds can then be extended across the temporal extent to

generate the remaining sub-regions.

Unfortunately, the bounding box is not provided with an object’s shape description.
However, the end bounds of the equi-temporal region have already been calculated and
a line of the same gradient can be used to acquire the end-bounds of the bounding box.
Using the equi-temporal region end-bound gradients for the object’s bounding box will
not necessarily provide a parallelogram — the usual shape used for a bounding box.
However, a parallelogram would not take into account camera perspective which would
distort the bounding box — the end-bounds obtained through this method are based on
empirical evidence which does reflect camera perspective. As such, the acquired end-

bounds are more appropriate to the situation. Figure 5.6 shows an actual example for
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the position classification.

Figure 5.6: Classification of relative qualitative position using sub-regions ob-
tained from temporal extent.

Calculating the relative direction of motion is far more simple. The actual direc-
tions of motion for the two interacting objects have already been converted to qualitative
values. These two values now need to be compared to determine the relative direc-
tion. The absolute difference, obtained by counting the (minimum) number of direction
segments, between the two directions is a number between 0 and 4 where the relative

direction of motion is:

0—1 travelling in same direction
abSdiff(diT‘objecth dirobject?) = 2 travelling adjacent

3 —4 travelling in opposing directions

The “travelling adjacent” test requires a little more work to determine if the other
object is moving towards or away from the reference object. Rather than the absolute
difference, the actual difference of an object moving on a perpendicular trajectory will be
positive or negative indicating “perpendicular left” or “perpendicular right”. Subsequent
combination with the relative position will indicate the direction of movement (towards

or away). Table 5.1 shows the combination operation to obtain the relative direction of
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motion for perpendicular moving objects.

‘ rel. pos. right ‘ rel. pos. left ‘

perp. right || perp. away (right) | perp. towards (right)

perp. left || perp. towards (left) perp. away (left)

Table 5.1: Combination operation to discern relative direction of motion for
objects travelling on perpendicular trajectories.

The relevant object history maintained for the reference object is then updated if it
already exists or created if not. The qualitative relationship tuple is compared with the
last history item. If the history item matches the relationship tuple then an associated
count is incremented to indicate the total number of matches for the current relationship
(for statistical analysis purposes). Otherwise the new relationship pair is appended to

the history list.

Each reference object may interact with several other objects and a separate object
history is maintained for each. The same procedure has to be followed for each reference
object — both finding “close” objects and obtaining the relative qualitative relationships.
Since each object can be travelling at different velocities, the associated temporal extents
will be different. This means that the “close” operation is not necessarily commutative
and although one object may be deemed “close” to another, the reverse is not always
true. Similarly, even if the objects are deemed “close” in both situations, the resulting
relationships may not correspond. Each object has its own frame of reference which may
be different to that of the “close” object. Relative position depends on the reference
object’s frame of reference and if it is different to the other object’s then the identified

relationships may not correspond.

5.5 Object History Verification

When an object leaves the domain its associated object history lists can be merged with
the expanding database. However, to ensure that the object history is valid and free

from extraneous relationships caused by tracking “noise”, the object history is analysed
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in a verification procedure that relies on the statistical data provided when generating

the history.

First of all, the verification procedure checks whether or not the history has suffi-
cient statistical strength to be considered. If the history sequence refers to a relatively
short interaction between two objects, then that interaction could be between elements of
tracked “noise” and not actual objects. Since it is not possible (at present) to determine
the object types such short interactions are discarded. Over the entire training period,
sufficient object histories will be processed such that discarding potentially “risky” his-

tories will not adversely effect the learning process.

Next, the history sequence is analysed to locate (potentially) irrelevant history
items. (Potentially) irrelevant refers to those history items that only occur in a sequence
of one or two frames and more specifically lie between two matching items that appear

for significantly more frames. For example, in the sequence:

((behind, same) 23)

o ((behind-left, same) 1)

((behind, same) 74)

the relationship tuple (behind-left, same) only occurs in a single frame and splits
a significantly longer sequence of (behind,same). It is important to remember that a
single frame takes (1/25)'" of a second which is essentially negligible and this pruning

operation only strengthens the re-combined relationship (behind,same).

If the aberrant relationship tuple occurs between two that are not the same the
removal process is more complicated. The transition from one relationship tuple to
another has to respect the underlying assumption that motion is continuous. This is

achieved by checking a continuity network (introduced in chapter 2 and also known as a
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conceptual neighbourhood (Cohn 1996)), for the relationship tuples on either side of the
aberrant entry. Figures 5.7 and 5.72 provide continuity networks for the two relationship

types (relative position and relative direction of motion).

[ |
— —
[ |
Ahead Right Right Behind Right
[ |
[ |
Ahead Behind
. /
— N —
[ |
Ahead Left Left Behind Left

Figure 5.7: Continuity network for qualitative relative position.

Perpendicular %&me >Per%dcuar Away Right

| |

Perpendicular Towards Right Opposing Perpendicular Towards Left

E—

Figure 5.8: Continuity network for qualitative relative direction of motion.

Similarly, the final verification step involves checking that all adjacent items in the

history respect the continuity network. In this example:

2This continuity network for the relative direction of motion assumes that both objects are moving
and not stationary.
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((infront, same) 34)
((right, same) 13)

((infront-right, same) 23)

there is no direct transition between the positional relationships infront and right. The
continuity network (figure 5.8) shows that the only possible transitions from infront are
to infront-left or infront-right. As with Herndndez’s (1994) topological /orientation
model (chapter 2, section 2.2.3), simultaneous changes in both relationships (relative di-
rection and relative direction of motion) may occur (i.e. (right, opposing) may change

directly to (behind-right, perp-away-right)).

For single discrepancies, it may be possible to “fix” the history by inserting a
missing relationship tuple or removing an extraneous one (though in general this is not
uniquely possible). However, if the number of discrepancies is large, it is easier to dis-
card the entire sequence rather than trying to “fix” the history and then including the

conglomerate sequence in the database.

Figure 5.9 provides several examples of actual history sequences and the resulting
history sequence after verification. In the first example (a), “Infront Right in Same
Direction” only occurs in a single frame and the relationship on either side is identical.
As such, that relationship is discarded and the remaining two are merged. Similarly in
example (b). The last example (c) is somewhat more complex and results in a history
consisting of three items although perhaps just “Behind in the Same Direction” may have
been more appropriate. Had the minimum number of frames been set higher that would

have been the result.

5.6 Event Database Revision

Following the verification stage, an object history list will represent a sequence of rela-
tionship tuples between two interacting objects depicting a single event or a composite

event episode. An event will usually be represented by a single relationship tuple indi-
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52: Infront in Same Direction
1: Infront Right in Same Direction
61: Infront in Same Direction

16: Behind Right in Same Direction
9: Right in Same Direction

18: Infront Right in Same Direction
1: Infront in Same Direction

17: Infront Right in Same Direction

2: Behind in Same Direction

1: Behind in Opposing Direction

: Behind in Same Direction
Behind Right in Same Direction
Behind in Same Direction
Behind Right in Same Direction
Behind in Same Direction
Behind Right in Same Direction
Behind Left in Same Direction
Behind Right in Same Direction
Behind Left in Same Direction

: Behind Right in Same Direction
16: Behind in Same Direction

: Behind Left in Same Direction
Behind in Same Direction
Behind Left in Same Direction
Behind in Same Direction
Behind Left in Same Direction

: Behind in Same Direction

=N NN W W

}—‘[\')[\')P—‘[\')

(c)

‘ 113: Infront in Same Direction

16: Behind Right in Same Direction
9: Right in Same Direction
35: Infront Right in Same Direction

16: Behind in Same Direction
3: Behind Right in Same Direction
34: Behind in Same Direction

Figure 5.9: Example relationship history sequence along with the results from
verification. The number refers to the number of adjacent frames
in which the relationship tuple was observed.
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cating simple behaviour patterns such as following, being followed, travelling alongside
left...% Although a single event may occur through multiple relationships (for exam-
ple pulled out behind would require (behind, same) and (behind-right, same)) such
events usually follow a more simple relationship. In the example of pulled out behind the
reference object would have been followed before the other object pulled out. Thus, the

object history represents two events or a (composite) event episode.

This observation is important when updating the database. Not only is it necessary
to search for equivalent database entries, it is also necessary to search the database for
entries that match a (continuous) subset of the new entry. Such subsets represent simpler
event patterns which compose the new event episode. Finally, if an equivalent entry has
not been found, the database also needs searching for entries that the new history is
a subset of. In this situation, the new object history represents an event pattern that
currently hasn’t been discovered. However, the new event may already be modelled

within one or more composite event sequences.

Using a qualitative representation scheme for the relationships eases the database
search. An entry is only equivalent (to the new object history) if the relationship tuple
sequences are identical (i.e. each relationship tuple must appear in the matching sequence
in the same order). The equivalence test does not include the item count — that was
only necessary for the verification procedure. If an exact database entry is discovered
a “hit” count is incremented otherwise a new entry is inserted into the database. The
“hit” count indicates the number of times that particular sequence of relationship tuples
has occurred in the training period and provides statistical information that will allow

event models to be constructed.

This “hit” count is the reason why it is necessary to search for matching subsets.
The first subset search finds the less complex event sequences that compose the new
sequence (i.e. discovers the matching events in an event episode). Although these less
complex event sequences have not occurred on their own, they are part of a more complex

behaviour pattern that requires these less complex sequences. As such, the “hit” count

7The system does not generate these English names.
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on those matching subsets is also incremented.

The final subset search, looking for database entries that the new sequence forms
a subset of, is only necessary if an equivalent entry is not discovered. This test searches
the database for more complex sequences (event episodes) that the new entry contributes
towards. Rather than updating the “hit” count on the existing database entries, the “hit”
count associated with the new entry is incremented. The search is not necessary if an
equivalent entry was initially discovered because this process would have been performed
when the entry initially appeared and subsequently updated with the previous search

mechanism.

At the end of a training period any sufficiently frequent database entry represents

the sequence of relationships in an event model.

5.7 Experimental Results

Over a 15 minute training period observing object interactions on a dual carriageway over
60 distinct relationship sequences were captured in the case-base. Subsequent analysis
determined that of those, 25 prove sufficiently frequent to represent events. By far the
most observed behaviour was “following” where the only relationships contained in the
sequence show the focus object “behind” the interacting object and travelling in the same
direction. Unfortunately, the most complex “overtake” sequence, where an object starts
behind a second and pulls out and all the way around to finish in front of the other
vehicle, was not discovered although the less complex version, where the objects start
and finish in adjacent lanes, is modelled as well as other subsets like pulling out behind
and pulling in front. It would appear that in this particular domain, the observed area
is not large enough to obtain all the necessary information to form the more complex

behaviour patterns that we would like to discern.

To demonstrate the effectiveness of the event models discovered in the learning
process a demonstration program has been set up that allows the user to specify a par-

ticular event to watch for. The event models can be loaded from an “event-info” file
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along with the spatio-temporal map-file. These are interpreted into the desired format
allowing the user to cycle through a list of event models and to decide which event se-
quence the program should watch out for. Currently a diagrammatic presentation has
not been provided. Instead, the user is shown a linguistic description of the composing

transitions of the event. For example, an overtake event episode would be described as:

o travelling behind-right in the same direction.
e travelling right in the same direction.

o travelling infront right in the same direction.

To allow the simultaneous interpretation of the observed actions a state transi-
tion network (similar to that used by André et al. (1988) as described in chapter 2,
section 2.3) is automatically built from the event sequence. Figure 5.10 displays the

discovered overtake sequence as a state transition network.

Behind-Right(x,y) Right(x,y)

Right(x,y)

OVERTAKE

Behind-Right(x,y) Ahead-Right(x,y)

Behind-Right(x,y)
~Behind-Right(x,y) &

~Behind-Right(x,y) & ~Right(x,y) &
~Right(x,y) ~Ahead-Right(x,y)
NO OVERTAKE NO OVERTAKE

Figure 5.10: Overtake state transition network.

As before, the attention control mechanism isolates objects in the same vicinity
which are then categorized with the correct relationship tuple. The relationship tuple is
then checked against the starting state in the state transition network. If they match,
the event episode has potentially been initiated. To show a potential event episode the

relevant objects are coloured on the display. A green object indicates a target object in a



121

relationship and a blue object represents the reference object potentially involved in the
event episode. If the last state in the transition network is reached, the reference object
shifts to red to indicate that the event episode has been recognized. Figure 5.11 shows
a sequence of frames showing the recognition of the overtake sequence of relationships

shown above.

Appendix A provides a complete list of the behaviours learnt by the system.

5.8 Discussion

In this chapter, we have demonstrated how, using our spatio-temporal model of space,
it is possible to learn event models that are context specific to the domain. From the
observation and analysis of object movements and interactions it is possible to generate
the relationship history of two interacting objects. One such history constitutes a case
which can then be added to the expanding database. Further statistical analysis of the
database can be conducted to determine which relationship history lists occur sufficiently
frequently enough to form event models. We also demonstrate a procedure that is capable
of processing object movements and interactions in order to recognize instances of that

event.

Using the event recognition procedure, it would be possible to classify all instances
of occurring events (rather than just a selected one) but an effective means of displaying
or conveying all that information is not always possible with such a busy scene. Different
colours could be used to describe different events but those colours would have to be
selected and the user would have to keep track of what each colour represents to effectively
process that information. Also, there is the issue of what colour to use when an object
is involved in more than one event. Alternatively, multiple windows could show several

different event types being recognized simultaneously.

As mentioned above in the experimental results, the system has not been capable
of learning the behaviour patterns associated with more complex event patterns as with

the most complicated overtake manoeuvre. This does not occur due to inefficiency in the
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Figure 5.11: Sequence of frames showing the recognition of the overtake ma-

noeuvre.
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algorithm but more because the domain is not sufficiently large enough to observe these
more complex behaviour patterns. For a more detailed behavioural analysis, the static
camera would have to capable of observing a larger area. Alternatively a larger area may
be observed with a number of static cameras or with a single moving camera (although

the underlying spatial model would have to support this larger area).

5.9 Further Work

e At this time, the events that the system learns are only identified by an interpre-
tation mechanism that provides a pseudo-language description of the relationship
changes. Perhaps a better interface would be a diagrammatic representation of
these relationship changes or alternatively a natural language description of the
sequence of relationships, for example (in the process of) overtaking. Such descrip-
tions can be provided, a posteriori, through an interface in which a user is shown
the sequence of relationships (either verbally or diagrammatically) and is asked to

provide a description of the sequence.

e Currently, the system only models qualitative relationships for relative position
and relative direction of motion. As such, the system is not capable of learning
any events associated with the velocity of an object, such as accelerating and de-
celerating. If the relative velocity was also modelled such events could be obtained.
Through the analysis of the temporal extents being occupied by each object the rel-
ative velocity can be identified as faster, slower or the same which can then provide

a further dimension in the relationship tuples.

e So far, the system has only examined relationships between two objects and, as
such, only learns events involving two interacting objects. More complex behaviour
involving several interacting objects (for example queueing) is currently not mod-
elled as a single event between multiple vehicles. Instead, several events between
two vehicles are modelled which does not sufficiently represent the more complex

behaviour been observed. The system could benefit by being enhanced to model
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relationships between three or more interacting objects.

e The attention control mechanism described within this chapter only identifies po-
tentially interacting objects through proximity based on the equi-temporal region
occupied by the object under attention. From this mechanism, the event learning
strategy relies on the assumption that events occur between “close” objects. Within
this domain, this assumption is sufficient. However, in other situations this is not
the case. For example, when one vehicle is being chased by a police car the two
objects may not be “close” but they are still interacting. Another example occurs
between two object travelling at vastly different speeds like a pedestrian crossing
a road. Using our example, a pedestrian crossing a road would not be in “close”
proximity to moving vehicles, but that pedestrian has examined the environment
and decided that an accident will not be caused by crossing the road at that time.
How the attention control mechanism can be enhanced to include such situations

requires more work.

5.10 Summary

Within this chapter, we have shown how our spatio-temporal representation of space can
assist in the identification of interacting objects through an attention control mechanism.
From the composite and equi-temporal region occupied by a particular object, the at-
tention control mechanism constructs a “temporal extent” within which all potentially

interacting (or “close”) objects can be identified.

We demonstrate how relative direction of motion and relative position can be mod-
elled qualitatively and how we can automatically generate event models through the anal-
ysis of objects” movements and interactions. Throughout the period an object travels
through the domain, object relationship histories are created between that object and all
potentially interacting objects. Each object history represents a new case (which poten-
tially represents an event model). A history item is added to the database, and at the

end of the training period the database is (statistically) analysed to identify actual event
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models.

Finally, we provide a demonstration which allows the simultaneous recognition of
(learned) events by following a state transition graph of each event. A sequence of frames

is shown which shows the recognition of an overtake event sequence.

The next (final) chapter provides a summary of all the research discussed in this

thesis as well as looking at any future work that may follow this research.



Chapter 6

Conclusions

6.1 Summary of Work

Throughout the course of this thesis we have examined methods of learning for spatial,
spatio-temporal and event models which can assist processing tasks in visual surveillance
applications. The domains of interest are typically natural outdoor scenes where the
movement of objects within the domain are strictly stylized (i.e. domains in which objects
tend to comply with a number of default behaviours, like the movement of vehicles on a
road which follow rules according to the highway code). Such scenes are observed by a

static camera over an extended period to provide training data for the learning processes.

In chapter 3, we demonstrate how a (hierarchical) region based model of space,
corresponding to the underlying structure of a domain, can be automatically constructed
from the extended observation of objects moving within the domain. Region types in-
clude leaf regions, which define the underlying structure of space, and composite regions,
which are constructed from concatenation of adjacent leaf regions and describe areas of

behavioural significance (such as a road lane or a give-way zone).

We discuss our original approach and the reasons for adopting an alternative
method which has proved significantly more effective. Object paths are constructed

from the area covered by an object travelling through the domain. These paths are
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then merged into a database before statistical analysis indicates which entries are (sta-
tistically) too infrequent to be included in the spatial model. Regions for the spatial
representation are obtained from the combination of the remaining paths stored in the
database. Although the spatial model we generate is similar to (and based on) an exist-
ing model (Howarth & Buxton 19924), we demonstrate a novel method for automatically

learning regions for the spatial representation in contrast to having to provide them by

hand.

A temporal extension, to the original spatial model, is outlined in chapter 4 adding
a further hierarchical layer. Here, the composite regions are divided into equi-temporal
regions where the spatial extent of each sub-division is controlled by the speed objects
typically move at. Each sub-division represents the distance moved by an object in a
fixed time (we select a two second interval, reasons for which can be found in section 4.1).
Dependant on a number of factors (for example: traffic light condition; vehicle load and
time of day), objects may travel at different speeds within the same composite region.
Should this occur, several ETR sets will be generated corresponding to the different

ranges of travel speed. This temporal extension appears to be unique within the literature.

Using our spatio-temporal model, it becomes possible to determine a qualitative
location for objects within the domain, in terms of spatial location (i.e. leaf and composite
region placement) and velocity (i.e. depending on which ETR). This then allows the
application of qualitative reasoning methods to real-world situations. Although this is
not necessary, qualitative reasoning methods can often simplify complicated situations

by considering only the critical information necessary to determine the situation.

To demonstrate how effective the spatio-temporal model, combined with qualita-
tive logics, can be in real world situations we present an effective (qualitative) event
learning strategy in chapter 5. In previous approaches which are capable of recognizing
situated actions or events in the real world, a priori system knowledge is provided in
the form of event models. We demonstrate an approach that, through the analysis of in-
teracting objects, is capable of learning sequences of qualitative relationships that define

particular events. The spatio-temporal model is used to obtain the qualitative position
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of each object (in terms of spatial region and equi-temporal region). From the occupied
ETR, an attention control mechanism builds a “temporal extent” around that object,
within which all potentially interacting objects can be identified. Using the results, an
application is available that can watch a domain to recognize instances of a particular

event simultaneously.

6.2 Discussion

The learning strategy is similar to case-based learning, although usually the abstraction
of prior experience is delayed until that information is actually required. Instead, we com-
bine an iterative conceptual clustering method that allows similar entries to be merged
on entry. This strategy maintains a reasonable size for the database and improves the

processing efliciency at the termination of the training period.

Training data, in each situation, is provided by an existing tracking application
which provides shape descriptions (in the form of a cubic B-spline) for each object moving
in a frame. For the duration of the training period, data is provided on a frame-by-frame
basis with matching objects in adjacent frames given the same label. Unfortunately,
the tracking application available for our use is incapable of handling occlusion (i.e.
situations when, due to camera perspective, two objects overlap). In such situation, one
of the object labels will be lost. Also, the tracker is not model based, meaning that it is
unable to recognize the difference between actual objects moving in the scene and scene
variations due to camera vibration or “noise”. As such, the learning applications have to
be capable of handling incomplete, inaccurate or “noisy” data. However, results in each

area may be improved by utilizing a more sophisticated tracking application

The spatial (and spatio-temporal) model generation process is data driven. Assuch,
an alternative tracking application could be used to provide different results. For exam-
ple, the tracking application applied throughout this thesis provides two-dimensional
shape descriptions. If we were to utilize a three-dimension model based tracker the same

region generation methodology would be capable of generating a three dimensional spatial
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representation® (plus a further temporal dimension for the spatio-temporal model). Simi-
larly, the event learning strategy could also be extended to incorporate three-dimensional

spatial relationships extending the current scope.

6.3 Future Work

We have already included a section on “Further Work” at the end of each chapter. In
this section we will summarize the more important of those aspects as well as looking at

the broader area.

e Currently, once generated, the representation of space becomes a static entity.
However, the real-world is a changing place and typical behaviours may change over
time. For example the typical velocity of vehicles on a road may change depending
on the time of day (for example during rush hour traffic tends to be significantly
more busy with vehicles travelling slower). Also, new obstacles may be placed
within the domain (for example road works) and change the usual object movement
patterns. In such situations, the existing representation becomes inadequate. One
possibility that can form part of future work would be to extend this learning
strategy to be adaptive and to learn new patterns and adjust the existing one.
Rather than just learning for a specified training period, the method would have

to extend to a continuous learning strategy.

e When generating the spatial model, it would be possible to provide an indication of
where objects initially appear on the screen. This information could be combined
with a tracking application to reduce the search space for new objects. Also, the
expected location of an object in the next frame can be minimized from the spatial

model which indicates the typical behaviour exhibited by objects within the domain.

e At present, the event learning strategy models qualitative relationships for relative

position and relative direction of movement. Although this can model events in-

LOf course, the current application programs would have to be extended to cope with the extra
information; the underlying method would remain the same.
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directly related to the relative velocity of two vehicles (for example in an overtake
manoeuvre) it is not capable of learning events directly related to the velocity (for
example pull away from or approach). The event learning strategy could be ex-
tended to also model the relative velocity. Through the analysis of the identified
ETR, it is relatively simple to determine which object is travelling faster than the
other, (approximately) the same speed or slower. This information could enhance

the range of event types that the system learns.

The demonstrated event learning strategy only models relationships between two
(interacting) objects. As such, events occurring between three or more vehicles
(for example queuing) are only modelled indirectly (from object B following object
A, object C following object B and perhaps object C following object A). Such

sequences may be important in determining illegal manoeuvres like queue jumping.

From just a single static camera, the application domain is fairly limited. This
could be extended by combining several cameras with (slightly) overlapping views
to follow the object movements throughout the entire observed area. If the con-
nection between camera positions is unknown, the system could build the spatial
model for each of the views and then combine them into a single area by find-
ing the overlapping spatial model features. This would allow an integrated wide
area surveillance system to be constructed as well as improving the event learning

strategy that is currently constrained due to the size of observed area.

From the spatial model construction, it is possible to identify areas with mini-
mal occupation. This could be useful in a shopping centre (or other public area)
when considering refurbishment. The spatial model obtained would show typical
behaviour patterns that would allow the designers to place new features with the

minimal amount of disruption.

The ideas presented in this thesis have application in most areas of visual surveil-
lance. For example as a security system in a parking lot, the event system combined
with the equi-temporal regions can easily identify unusual behaviour (e.g. a person

not following the usual pedestrian paths or spending too long next to a vehicle).
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e Qualitative reasoning methods to predict, diagnose and explain physical behaviour

in real-world situation in a qualitative manner may be further investigated.



Appendix A

Behavioural Analysis

In chapter 5 we discussed our strategy to learn contextually relevent qualitative event
models automatically from the extended observation and analysis of object interatactions
in a scene showing a dual carriageway. A case-based learning strategy is presented along
with (limited) experimental results. In this appendix, we present the complete set of be-
haviours learned by our system over the 15 minute training period discussed in chapter 5,

section 5.7. These are ordered in terms of strength (based on frequency of occurence).

e Travelling Infront in the Same Direction.

132
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e Travelling Behind in the Same Direction.

e Travelling Infront-Right in the Same Direction.

e Travelling Behind-Right in the Same Direction.
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e Travelling Infront-Left in the Same Direction.

e Travelling Behind-Left in the Same Direction.

e Travelling Right in the Same Direction.
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e Travelling Infront-Right in the Same Direction.

e Travelling Infront in the Same Direction.

e Travelling Behind-Right in the Same Direction.

e Travelling Right in the Same Direction.

e Travelling Behind in the Same Direction.

e Travelling Behind-Right in the Same Direction.
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e Travelling Infront in the Same Direction.

e Travelling Infront-Left in the Same Direction.

e Travelling Right in the Same Direction.

e Travelling Behind-Right in the Same Direction.

e Travelling Infront in the Same Direction.

e Travelling Infront-Right in the Same Direction.
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e Travelling Behind-Left in the Same Direction.

e Travelling Behind in the Same Direction.

e Travelling Left in the Same Direction.

e Travelling Behind in the Same Direction.
e Travelling Behind-Right in the Same Direction.

e Travelling Behind in the Same Direction.
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e Travelling Right in the Same Direction.

e Travelling Behind-Right in the Same Direction.

e Travelling Behind in the Same Direction.

e Travelling Behind-Left in the Same Direction.

e Travelling Behind-Right in the Same Direction.
e Travelling Behind in the Same Direction.

e Travelling Behind-Right in the Same Direction.
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e Travelling Infront-Right in the Same Direction.
e Travelling Infront in the Same Direction.

e Travelling Infront-Right in the Same Direction.

e Travelling Behind-Right in the Same Direction.

e Travelling Infront-Left in the Same Direction.
e Travelling Left in the Same Direction.

e Travelling Behind-Left in the Same Direction.
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e Travelling Behind-Right in the Same Direction.
e Travelling Right in the Same Direction.

e Travelling Infront-Right in the Same Direction.

e Travelling Infront-Left in the Same Direction.

e Travelling Infront in the Same Direction.
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e Travelling Infront-Left in the Same Direction.

e Travelling Infront in the Same Direction.

e Travelling Infront-Left in the Same Direction.
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