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Preface 

Two chapters within this thesis (Chapters 2 and 3) have been written as 
papers; these have each been published as articles in the peer-reviewed 
journal Aeolian Research. Furthermore, Chapter 4 has also been written in 
the style of a paper. Thus, each of these three chapters is presented in this 
thesis as stand-alone piece of work; they are linked by a common research 
theme. The literature review and background sections within these chapters 
deal, in part, with aspects of the wider research philosophy adopted in this 
study programme; as such, there is a modest amount of overlap in these 
sections of these chapters. Such overlap is useful since it serves to remind 
the reader of the commonality of the overall research theme as a linked        
thread that runs throughout the thesis. 
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Abstract 

Quantitative stratigraphic prediction of the three-dimensional form of 
sedimentary architectures and associated heterogeneities arising from fluvial 
and aeolian interactions and preserved as accumulated stratigraphic 
successions is notoriously difficult, meaning that prediction of 3D 
stratigraphic architectures in subsurface fluvial and aeolian reservoirs is 
challenging. 

This study comprises four discrete but related research components: (1) 
analysis of aeolian dune-field geomorphology through a remotely sensed 
analysis of four parts of the Al Rub’ Al-Khali Desert, Saudi Arabia; (2) 
analysis of types of aeolian-fluvial system interaction in modern dune-field 
margins through study of the morphological expression and areal distribution 
of 130 examples of fluvial-aeolian interaction mapped by high-resolution 
satellite imagery from 60 deserts around the world; (3) analysis of the 
preserved stratigraphic expression of an ancient mixed aeolian and fluvial 
succession via analysis of the upper part of the Wilmslow Sandstone and the 
lower part of the overlying Helsby Sandstone formations, Sherwood 
Sandstone Group, UK; (4) development of a series of predictive, semi-
quantitative facies models with which to account for the geological complexity 
and origin of mixed aeolian-fluvial successions.  

Principal finding are as follows: (1) observations from the Rub’ Al-Khali 
Desert have enabled the spatial rate of change of morphology of aeolian sub-
environments to be characterized and described through a series of empirical 
relationships; (2) aeolian-fluvial interaction case-study examples have been 
classified to propose a framework of ten distinct types of system interactions; 
(3) outcrop analysis of an ancient preserved succession reveals mechanisms 
for the accumulation and preservation of aeolian and fluvial successions, and 
demonstrates the role of water table on the development and preservation of 
a water-table influenced aeolian system; (4) results from this study have 
enabled the development of facies models that serve as the basis for gaining 
an improved understanding of controls governing the detailed sedimentary 
architecture of preserved aeolian-fluvial successions.  
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Chapter One 

Introduction 

 

_____________________________________________________________ 

This chapter provides a general introduction to the research topic, discusses 

the rationale that underpins the research, states the aim and objectives, 

summarises the data types and methods used for the research, and 

describes the thesis structure. Each subsequent chapter is outlined in turn in 

order to summarise the thesis. 

_____________________________________________________________ 

1.1  Introduction 

Throughout the 1980s and 1990s, studies of the geomorphology of desert 

sand dunes were dominated by field studies of wind flow and sand flow over 

individual dunes (e.g. Livingstone and Warren, 1996). More recently, 

attention has shifted to some extent to modelling approaches, and progress 

has been made in developing models that relate the geomorphology of dune 

fields and their temporal and spatial development to likely preserved 

sedimentary architecture (e.g. Mountney, 2006a and b, 2012; Rubin and 

Carter, 2006). It is clear, however, that such models require substantiation 

using quantitative field observations if they are to be constrained and used 

effectively for the development of improved predictions regarding the 

relationship between dune-field morphology and gross-scale preserved 

stratigraphic architecture. 

Many sand seas exhibit clear patterns of combinations and transitions of 

dune types, dune size and spacing, crest orientation and sediment thickness 

(Breed et al., 1979; Edgell, 1989; Lancaster 1999; Ewing et al. 2006; Al-

Masrahy and Mountney, 2013). Since the late 1970s, satellite images have 

been used to observe and illustrate spatially and temporally changing 

patterns of aeolian sedimentation (dune and interdune type and style of 
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interaction), including bedform distributions in major sand seas, such as the 

Rub’ Al-Khali, Saudi Arabia and surrounding region (e.g. Breed et al., 1979). 

Large compound and complex bedforms (dunes and draa) of the Rub’ Al-

Khali and other major sandy deserts are imaged in detail on the latest 

generation of public-release satellite imagery. The near worldwide coverage 

and ease of availability of such data sources, which offer high-resolution 

imagery, provides a valuable opportunity for the development of new and 

innovative research methods. 

Interactions between aeolian and fluvial systems take place within the 

marginal areas of many aeolian dune-fields, and in the central parts of 

others. The location of zones where aeolian-fluvial system interactions take 

place may vary in time and space. In particular, aeolian-fluvial interactions 

can affect the extent, shape and boundaries of an individual dune field        

(Al-Masrahy and Mountney, 2015). In dryland settings, both fluvial and 

aeolian processes may serve to erode, transport and deposit sources of 

sediment (Visser et al., 2004); sediment eroded and transported by one type 

of process (water or wind) may become material available for subsequent 

transport and eventual deposition by the other type (Belnap, et al., 2011). 

Perennial or ephemeral rivers can act to intercept, trap or erode aeolian 

sediment, such that fluvial channels may disrupt or even halt the downwind 

movement of aeolian sediment (Bullard and McTainsh, 2003; Thomas et al. 

1997). Similarly, aeolian processes may act to winnow the fine sand and silt 

fractions from ephemeral fluvial channel or sheet-like deposits during dry 

episodes (e.g., Al-Farraj and Harvey, 2000, Prospero and Lamb, 2003; 

Painter et al., 2010); clay, silt, sand, and even very small pebbles that form 

the deposits of deposits channel bases, sandbars or fan surfaces in fluvial 

and alluvial systems are susceptible to aeolian erosion processes. Thus, 

fluvial deposits can form an important source of sediment for later aeolian 

dune construction (e.g., Blair and McPherson, 2009; Draut, 2012). 

Interactions between subaqueous and aeolian processes in aeolian dune 

fields may occur as a consequence of flooding by streams or rivers, by tidal 

or storm surge flooding in coastal dune fields, or by flooding in response to 

groundwater-table rise (Fryberger, 1990). Such interactions generate 
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distinctive associations of facies (Mountney et al., 2006) and architectural- 

element arrangements (e.g., Jordan and Mountney, 2010; Blakey et al., 

1994). Although these types of interaction are documented from subsurface 

successions (e.g., Meadows and Beach, 1993), the nature of the 

stratigraphic relationships arising from such interactions are difficult to 

determine from subsurface datasets alone. Constraining the spatial and 

temporal scales at which aeolian and non-aeolian systems interact is 

important to improve our understanding of the evolution of landscape 

geomorphology arising from different types of system interaction. From an 

applied perspective, such studies are required to increase our ability to 

generate more accurate subsurface geological models to describe 

heterogeneity in subsurface reservoirs. 

Fluvial-aeolian interactions result from both short-term interplay between 

contiguous aeolian and fluvial systems, and much longer-term expansion 

and contraction of entire aeolian dune fields in response to climatic, tectonic 

or eustatic effects (Herries, 1993). At an intermediate spatial scale, active 

fluvial channels in aeolian dune fields may cut through aeolian sand dunes 

or sand sheets to form extensive networks (Langford, 1989). Water from 

these channels may collect and form interdune ponds; where the 

groundwater table is elevated, interdune areas in entire sand seas may 

become flooded, and, as a result, the aeolian landforms may be deflated 

(Trewin, 1993; Mountney, 2006b; Belnap, 2011). Over intermediate time 

scales, during arid episodes, aeolian sediment may accumulate over 

abandoned fluvial channel forms. Rare flood events can act to flush aeolian 

sand from choked fluvial channels (Belnap, 2011). This usually takes place 

when rivers flow only intermittently and the intervening dry period is 

sufficiently long for aeolian deposits to accumulate (Bullard and Livingstone 

2002; Mclntosh, 1983). 

Where fluvial channels pass into aeolian dune fields, flows commonly 

experience a reduction in competence meaning that sand- and gravel-grade 

sediment is commonly deposited at the outer dune-field (erg) margin. By 

contrast, finer fractions (clay and silt) are commonly carried predominantly 

as suspended load further inside the aeolian dune fields via flood flows that 
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exploit open interdune corridors; such sediments commonly accumulate as 

clay-prone pans or continental sabkhas where dissolved salts are 

precipitated as flood waters evaporate (Langford, 1989; Glennie, 2005; 

Edgill, 2006). 

The preserved sedimentary signature of aeolian and fluvial interactions has 

been widely recognised in the ancient rock record (e.g. Andrews, 1981; 

Loope, 1985; Langford and Chan, 1988, 1989; Trewin, 1993; Heries, 1993; 

Meadows and Beach, 1993; Jones and Blakey, 1997; Haig et al., 1997; 

Howell and Mountney, 1997; Mountney et al. 1998; Sweet, 1999; Stanistreet 

and Stollhofen, 2002; Bullard and McTainsh, 2003; Mountney and Jagger, 

2004; Scherer and Lvina, 2005; Veiga and Spalletti, 2007; Simpson et al., 

2008; Rodriguez-Lopez et al., 2010; Jordan and Mountney, 2010; Spalletti et 

al., 2010; Bongiolo and Scherer, 2010; Cain and Mountney, 2011; 

Mountney, 2012; East et al., 2015). However, generalised facies models 

have yet to be developed which are able to serve as predictive tools with 

which to account for lateral changes between aeolian and fluvial facies and 

elements in aeolian dune-field margins settings where a complex set of 

interacting processes are known to take place. 

From both contemporary and palaeoenvironmental studies, it is recognised 

that aeolian systems are commonly dependent upon fluvial systems for their 

sediment supply (e.g., Clarke and Rendell, 1998; Kocurek and Lancaster, 

1999). Bullard and Livingstone (2002) suggest that the three main factors 

controlling the transfer of sediment between fluvial and aeolian systems are 

moisture availability, the nature of the sediment supply and the magnitude 

and frequency characteristics of both fluvial and aeolian events in dryland 

environments. The nature of the sediment supply is an important aspect of 

the relationship between aeolian and fluvial processes (Bullard and 

Livingstone, 2002). The magnitude of sand supply is affected by fluvial 

transport processes, which sort and deliver sand to sites where it is 

susceptible to subsequent aeolian reworking. Such interaction may 

determine rates of aeolian erosion or accumulation in downwind areas 

(Laity, 1995; Gillette and Chen, 2001). For example, sand delivered to the 

Sinai Desert (Egypt) comprises sediment transported from eastern Africa by 
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the River Nile (Tsoar, 1978). The large quantities of sediment required to 

construct major sand seas must be delivered over long time periods. This 

means that other variables operating over long periods of time, such as 

tectonic activity and eustasy, will also affect the sediment supply (Winspear 

and Pay, 1995). Basin subsidence plays an important role in generating the 

accumulation space for long-term aeolian accumulation and preservation, as 

well as promoting a suitable wind regime for aeolian deposition by 

encouraging airflow deceleration into developing basinal areas (Wilson, 

1971; Fryberger and Ahlbrandt, 1979). 

The rate and nature of sediment supply to aeolian systems from fluvial 

systems is not only a function of sediment production and sorting but is also 

strongly dependent upon the nature of the channel via which sediment is 

transported. Flow regimes where low or zero flow is the norm, and channels 

which are wide, shallow or braided are more likely to be sites of active and 

regular aeolian deflation. Muhs and Holliday (1995) developed a process-

response model to summarise the relationship between climate change and 

fluvial and aeolian activity in the Great Plains, USA, which associated the 

formation of wide, braided channels with periods of increased aeolian 

activity. Lancaster (1997) also found that periods of aeolian construction in 

the Coachella Valley, south-central California, were determined by stream 

channel dynamics. At this site, increased sediment supply is associated with 

periods of channel entrenchment. Sediment is supplied to the dune field via 

alluvial fans. During periods of increased rainfall and storm intensity, 

channels on the fans become entrenched and sediments entrained during 

this process are transported to the distal areas of the alluvial fans, close to 

the dune field. 

At the northern limit of the Namib Sand Sea, large aeolian dunes advance 

northwards into the Kuiseb Valley near Gobabeb at a rate of approximately 2 

m per year (Ward, 1983). However, annual flood events that pass down the 

Kuiseb River are sufficient to rework and remove any aeolian sand that has 

moved into the channel. Thus, annual flooding of the ephemeral Kuiseb 

River prevents dunes from blocking or crossing the valley (Goudie, 1972) 

and the river serves to delimit and abruptly define the northern margin of the 
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Namib Sand Sea. 

Satellite imagery of dunes and interdunes in desert dune fields has provided 

the basis of an approach for qualitative and quantitative studies of patterns 

of arrangement of large-scale aeolian bedforms and adjoining interdunes in 

large and widely distributed sand seas. Collection and analysis of data 

relating to primary landform morphology has enabled an improved 

understanding of modern desert sedimentary systems and the spatial 

arrangement of various sub-environments within these systems. In 

particular, the morphological changes and distributions of aeolian bedforms 

and interdunes across dune-field systems provides important information 

with which to improve our understanding of the likely arrangement of 

architectural elements in ancient aeolian preserved successions, several of 

which form important reservoirs for natural resources such as hydrocarbons 

or water. 

Observations from modern dune-field margins have enabled the spatial rate 

of change of morphology of aeolian sub-environments to be characterised 

and described through empirical relationships. Results enable the 

proposition and development of a range of dynamic facies models for 

aeolian systems that can be used as predictive tools for subsurface reservoir 

and aquifer characterisation. A combination of morphological and 

architectural data from a range of modern dune fields and their ancient 

counterparts preserved as successions in the geologic record can be used 

to constrain forward stratigraphic models for the prediction of aeolian 

reservoir and aquifer heterogeneity. Such heterogeneity is likely to vary in 

three-dimensions within a reservoir volume. 

In ancient aeolian settings, non-aeolian deposits that are known to have 

accumulated in dune-field margin settings can provide important information 

about the environmental conditions that prevailed during or between 

episodes aeolian system construction (Jones and Blakey, 1997). Such 

evidence is documented from many ancient and recent erg deposits (e.g. 

Mckee and Moiola, 1975; Ahlbrandt and Fryberger, 1981; Kocurek, 1981; 

Fryberger et al., 1988; Mountney and Thompson, 2002; Mountney and 

Jagger, 2004; Rodriguez-Lopez et al., 2010; Cain and Mountney, 2011). 
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Non-aeolian fluvial or alluvial-fan systems also provide important evidence to 

demonstrate the relative timing of episodes of deposition and deflation within 

and adjacent to ancient erg systems (Horne, 1975; Andrew, 1981; Ahlbrandt 

and Fryberger, 1981; Loope, 1985; Langford and Chan, 1989; Porter, 1987; 

Anderson and Anderson, 1990). 

1.2  Project rationale 

Quantitative stratigraphic prediction of the three-dimensional form of 

sedimentary architecture and associated heterogeneities arising from fluvial 

and aeolian interaction and preserved as an accumulated stratigraphic 

succession is notoriously difficult: (i) the preserved products of system 

interactions observed in one-dimensional cores and well-log data typically do 

not yield information regarding the likely lateral extent of sand bodies; (ii) 

stratigraphic heterogeneities typically occur on a scale below seismic 

resolution and cannot be imaged using such techniques. A database 

recording the temporal and spatial scales over which aeolian and fluvial 

events operate and interact in a range of present-day and ancient desert-

margin settings has been collated as part of this study using high-resolution 

satellite imagery, aerial photography and field observation. Together, these 

data have been used to develop a series of dynamic facies models to predict 

the arrangement of architectural elements that define gross-scale system 

architecture. Case-study examples from both modern and ancient systems 

have enabled the construction of a series of depositional models to account 

for the diversity of styles of fluvial and aeolian system interactions. 

From an applied perspective, aeolian dune and interdune successions form 

important reservoirs for hydrocarbons, including the Permian Rotliegened 

Group of North Sea (Howell and Mountney, 1997), the Triassic Ormskirk 

Sandstone Formation of the East Irish Sea (Herries and  Cowan, 1997; 

Meadows, 2006), the Jurassic Norphlet Sandstone of the Gulf of Mexico 

(Kugler and Mink, 1999) and the Permian Unayzah Formation of Saudi 

Arabia (Melvin et al., 2010; Al-Masrahy et al., 2012). Dune facies and 

elements are typically the most productive lithofacies in aeolian reservoir 

systems, whereas interdune facies and elements tend to have lower 
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porosities and permeabilities and may act as baffles or barriers to flow. In 

dune-field margin settings, where fluvial system activities take place, the 

arrangement of preserved architectural elements can form a complex 

mosaic of fluvial and aeolian types, and predicting lateral change in reservoir 

quality in the preserved examples of such successions is challenging. 

Therefore, the ability to predict the geometry and degree of interconnectivity 

of these basic element types and changes from central to marginal palaeo-

dune-field environments is essential in assessing likely reservoir quality and 

the distribution of potential baffles and barriers to fluid flow (Weber, 1987; 

Chandler et al., 1989; Herries, 1993; Stanistreet and Stollhofen, 2002; 

Taggart et al., 2010; Mountney, 2012). 

Significant lithological heterogeneities arise in aeolian successions from the 

juxtaposition of dune elements with generally favourable reservoir properties 

against interdune elements that may act as baffles to flow. The size, 

geometry and type of inter-relationship between aeolian dune and interdune 

elements tends to change markedly from dune-field centre to dune-field 

margin settings (Figure 1.1). Prediction of the arrangement of such elements 

in subsurface successions is therefore important in developing aeolian 

reservoir models. However, such predictions are difficult because the 

preserved thickness, continuity and internal facies composition of both dune 

and interdune elements typically vary spatially both locally and regionally 

due to the action of a complex set of both autogenic and allogenic controls. 

Important controls on spatial architectural variability include the morphology 

and migratory behaviour of the original bedforms and their intervening 

interdunes at the time of accumulation, as well as climatic, tectonic, water 

table and sediment supply controls. 

Development of an improved understanding of the sedimentological 

processes that give rise to preserved products of aeolian and mixed aeolian-

fluvial successions is essential for creating more realistic reservoir models 

that better describe subsurface architectures. This study seeks to investigate 

aeolian depositional systems from both modern and ancient settings. An 

initial part of this research study focuses on gaining an improved 

understanding of the distribution of aeolian dunes, interdunes and closely 
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associated fluvial landforms in a range of modern dryland desert systems. 

This is accomplished through analysis of satellite and aerial photograph 

imagery. Such data have enabled study of the relationships between the 

different types of dunes and fluvial landforms. A second part of this research 

study has focused on the analysis of data from ancient preserved aeolian 

and fluvial successions that have been studied at outcrop in order to build a 

series of facies models that can be used to improve understanding of 

controls on stratigraphic heterogeneity in aeolian and mixed aeolian-fluvial 

reservoirs. 

1.3  Aims and objectives 

The aim of this study is to gain an improved understanding of controls 

governing the detailed sedimentary architecture of preserved aeolian and 

fluvial successions in dryland settings. This is accomplished through the 

integration of a novel set of case-studies of modem and ancient aeolian and 

fluvial systems in order to propose a set of general models. This overarching 

aim is fulfilled through the implementation of four closely related yet 

independent studies, each of which has its own set of research objectives. 

 

1.3.1 Remote sensing of spatial variability in aeolian dune and 

interdune morphology in the Rub’ Al-Khali, Saudi Arabia 

Work-block 1 seeks to quantify the form of geomorphic relationships 

between aeolian dune and interdune sub-environments in the central and 

marginal parts of four modern dune fields of the Rub’ Al-Khali desert, Saudi 

Arabia. The aim is to document how and explain why dune- and draa-scale 

aeolian bedforms and their adjoining interdunes systematically change form 

from central to marginal dune-field areas in terms of their morphology, 

geometry (scale), orientation and style of bedform linkage (i.e. the extent to 

which interconnected and amalgamated aeolian bedform complexes are 

developed). 

Specific objectives of this research are as follows: (i) to assess the 

geomorphic complexity and variety of dune types present in the Rub’ Al-
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Khali desert; (ii) to demonstrate and quantify types of spatial variation in 

dune and interdune type and geometry for a series of major dune fields; (iii) 

to consider how a series of external factors that collectively define the 

sediment state of the system act to dictate spatial changes in dune and 

interdune morphology and geometry. 

1.3.2 A classification scheme for fluvial-aeolian system 

interaction in desert-margin settings 

Work-block 2 seeks to propose a generalised framework with which to 

account for the diverse styles of interaction known to exist between coevally 

active aeolian and fluvial depositional systems, and to discuss the 

significance of these interactions for the geomorphological and 

sedimentological evolution of mixed aeolian-fluvial systems. 

Specific objectives of this research are as follows: (i) to illustrate the principal 

types of aeolian-fluvial interaction documented from the world's major 

dryland systems and to propose a framework for their classification; (ii) to 

demonstrate how the orientation of fluvial systems relative to the trend of 

aeolian bedforms present at the leading edge of dune fields controls the 

nature of aeolian-fluvial system interaction; (iii) to consider the role of open 

versus closed interdune corridors in controlling the style and distance of 

incursion of fluvial systems into aeolian dune fields; (iv) to consider how 

different types of aeolian-fluvial interaction give rise to complex geomorphic 

arrangements of landforms and to consider the implications of such 

arrangements for the palaeoenvironmental reconstruction of ancient 

preserved counterparts. 

1.3.3 Outcrop architecture of ancient preserved aeolian and 

fluvial successions: Triassic Wilmslow Sandstone and 

Helsby Sandstone formations, Sherwood Sandstone Group, 

Cheshire Basin, UK 

Work-block 3 seeks to demonstrate the preserved expression of aeolian-

fluvial system interactions via documentation of a case-study example from 

an ancient outcropping succession. 

The research aim is to document the preserved record of aeolian and fluvial 

successions, to further develop our understanding of processes that operate 
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in aeolian and fluvial systems, and to propose a novel facies model for the 

mechanism of preservation of aeolian and fluvial deposits that accumulated 

in arid and semi-arid depositional settings. 

Specific objectives of this research are as follows: (i) to describe and 

interpret the sedimentary facies of both ancient dryland fluvial deposits and 

wet aeolian deposits that are present in an outcropping ancient succession; 

(ii) to develop high-resolution, three-dimensional facies models for the 

studied successions; (iii) to develop a discussion that investigates the 

aeolian system construction, accumulation and preservation; (iv) to 

investigate the relationship between aeolian dune and interdune 

morphology; (v) to investigate the relationship between preserved aeolian 

set thicknesses, grainflow thicknesses and original aeolian dune bedform 

size. 

This research is significant because the temporal and spatial scales over 

which processes related to aeolian-fluvial interactions occur are highly varied 

and complex. Understanding the different interaction styles between the two 

systems is important in the development of generic facies models to explain 

the rock record in terms of geomorphic landscape evolution and formative 

palaeoenvironment, and for predicting heterogeneity in preserved 

subsurface reservoir successions. 

1.3.4 Modelling system interactions in aeolian dune-field margin 

successions 

Work-block 4 seeks to summarise the spatial and temporal and spatial 

scales over which aeolian and fluvial sediment accumulation events operate 

and interact through the development of a series of generalised facies 

models that account for the range of stratigraphic architectures documented 

from a range of modern desert-margin settings and equivalent ancient 

preserved successions. 

Specific objectives of this research are as follows: (i) to collate the data 

acquired from modern systems using high-resolution satellite imagery as 

part of work-blocks 1 and 2 into a database that can be used to constrain 

graphical facies models; (ii) to employ the data acquired from ancient 
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aeolian and fluvial systems present in an outcropping succession, along with 

data collated from wider literature case studies as examples of aeolian and 

fluvial system interaction, to better understand the variable distribution of 

facies generated by aeolian and fluvial systems in aeolian dune-field margin 

settings; (iii) to show how the database of case-study examples can be 

employed to develop a series of quantitative facies models with which to 

account for dynamic spatial and temporal aspects of aeolian-fluvial system 

behaviour; (iv) to show how a database approach can serve as a tool for 

system classification and quantification. 

From an applied standpoint, quantitative depositional models arising from 

this database-driven approach serve to minimise uncertainties relating to 

stratigraphic heterogeneity in subsurface reservoir settings and aid inter-well 

correlation and prediction. 

1.4  Data and methods 

The four principal work blocks that comprise this research each utilise a 

substantial set of data. 

 

1.4.1 The study of the Rub’ Al-Khali desert system 

The Rub’ Al-Khali of south-eastern Saudi Arabia is covered by the latest 

generation of public-release satellite imagery, which reveals a varied range 

of dune types, the morphology of which changes systematically from central 

dune-field areas to marginal areas where aeolian interdunes, sand sheets, 

and ephemeral fluvial systems dominate. This study has entailed work in 

four distinct geographic areas of the Al Rub’ Al-Khali, which collectively 

cover an area of 73,200 km2. These areas were selected for study according 

to the following specific criteria: (i) chosen locations document spatial 

changes in the morphology of dunes and interdunes from the central part of 

a dune field to its outer margin; (ii) public-release satellite imagery used for 

examination of the dune forms is available for these areas at a resolution 

that is sufficiently high to enable detailed quantitative measurements to be 

made regarding various morphological attributes of dunes and interdunes. 

                    13



 
 

Morphological and geometrical attributes relating to 555 dunes and 1415 

interdunes from the 4 selected study areas have been characterised through 

the collection of 10,100 measurements made through the examination of 

satellite imagery provided by Google Earth Pro software and datasets. A 

series of quantitative approaches have been employed to characterise the 

complexity present in a range of dune-field settings where large, 

morphologically complex and compound bedforms gradually give way to 

smaller and simpler bedform types at dune-field margins. Parameters 

collected describe the following: dune bedform height and elevation of 

interdune flats; the along-crest length of a dune segment; bedform spacing; 

dune wavelength; maximum and minimum dune wavelength; amplitude of 

along-crest sinuosity; bedform long-axis orientation; the distance from the 

dune-field centre of the studied dune fields to their outer margins. 

Additionally, attributes recorded for interdunes are as follows: interdune 

length; interdune width; interdune long-axis orientation; distance from the 

centre of the studied dune fields to their outer margins; style of connectivity 

to neighbouring interdunes. 

1.4.2 The study of the Interaction between aeolian and fluvial 

systems 

The morphological expression and areal distribution of flood deposits 

present between aeolian dunes located in the outer margins of a series of 

desert dune fields from around the world have been mapped using high-

resolution satellite imagery. This study has analysed the morphological 

expression and areal distribution of 130 examples of fluvial-aeolian 

interaction that have been mapped using high-resolution satellite imagery 

from 60 desert dune fields around the world. Case study examples have 

been classified to propose a framework of ten distinct types of system 

interaction. Studied desert systems include the Namib Desert and Skeleton 

Coast (Namibia), Taklamakan Desert (northwest China), Rigestan Desert 

(southwestern Afghanistan), Sahara Desert (North Africa), Algodones 

(southeastern California), White Sands (New Mexico), Rub’ Al-Khali and An 

Nafud sand seas (Saudi Arabia), and Wahiba Sands (Oman), Great Sandy, 

Great Victoria, and Simpson Deserts (Australia). Google Earth Pro software 

provides public-release imagery that covers remote desert regions and 
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provides a high-resolution images that can be exported as seamless tiles 

that are each up to 4,800 pixels wide. Such images provide an opportunity to 

analyse styles of aeolian-fluvial interaction that operate at a range of spatial 

scales. 

1.4.3 Study of the ancient aeolian and fluvial systems 

This study examines an outcropping mixed aeolian and fluvial succession 

from the Triassic Sherwood Sandstone Group of the Cheshire Basin, 

northwest England. The studied outcrop section extends laterally for 230m 

and is up to 13 m high. The outcrop provides an extensive section that 

exposes strata of both aeolian and fluvial origin, representing the upper part 

of the Wilmslow Sandstone Formation and the lower part of the overlying 

Helsby Sandstone Formation, respectively. Detailed analyses of lithofacies 

of aeolian and fluvial origin, facies associations and architectural elements 

within the studied outcrop succession have been undertaken. Fourteen 

lithofacies are defined based on their lithology, sedimentary texture and the 

range and type of sedimentary structures present within the studied section. 

Field sketches and photomosaics have been used to generate composite 

architectural panels from which the distribution and relationship of various 

aeolian and fluvial architectural elements present in the outcrop have been 

determined. Two-hundred palaeocurrent readings comprising cross-bedding 

foreset dip magnitude and azimuth data were collected from both aeolian 

and fluvial deposits. Architectural elements of aeolian and fluvial origin have 

been defined and utilised to generate a series of palaeo-depositional system 

and palaeoenvironment models. Further, a suite of data have been collected 

from preserved aeolian dune bedsets, including measurements of duneset 

thickness and thickness of individual grainflow deposits. 

1.4.4 Modelling the aeolian and fluvial system interactions 

Data used to construct the series of predictive, semi-quantitative facies 

models with which to account for the geological complexity and origin of 

mixed aeolian-fluvial successions form a database populated using the 

results from work blocks 1, 2 and 3, and supplemented through literature-

derived case studies (54 ancient case studies). These data are used to 

assign ranges of values to describe the expected distribution of facies 
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generated by different types of aeolian and fluvial system interaction at 

aeolian dune-field margins and the geometry and facies composition of 

preserved elements in ancient successions. Ten distinctive semi-quantitative 

geological models that describe types of aeolian-fluvial system interaction 

are presented. 

1.5  Thesis structure 

This thesis represents a discussion based around the following: (i) two 

papers that investigate modern aeolian and fluvial system interactions, both 
published in Aeolian Research, an internationally recognised academic 

journal, (ii) a chapter that investigates ancient aeolian and fluvial system 

interactions; (iii) a chapter that introduces an approach to modelling aeolian 

and fluvial system interactions through the development of a series of three-

dimensional graphical, semi-quantitative facies models; (iv) a concluding 

chapter that seeks to summarise the generic findings that have arisen from 

the research. By virtue of the way that the research has been undertaken, 

parts of the various chapters contain modest overlap where key background 

information is reiterated. 

 

1.5.1 Chapter One: Introduction 

This chapter sets out the aims and objectives of the thesis and describes its 

structure. The key research questions that are used to meet the specific 

work objectives are introduced, and the data and methods used to address 

these research questions are explained; each chapter is outlined in turn in 

order to summarise the thesis content. 

1.5.2 Chapter Two: Remote sensing of spatial variability in 

aeolian dune and interdune morphology in the Rub’ Al-

Khali, Saudi Arabia 

This chapter investigates aspects of spatial variability of dune and interdune 

morphology in desert dune fields. Analysis of geomorphic relationships 

between dune and interdune sub-environments within a series of modern 

dunes fields of the Rub’ Al-Khali has been undertaken to document how the 

morphology, geometry, internal facies arrangement and relationship of the 
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various depositional architectural elements produced by these geomorphic 

features vary over space from dune-field-centre to dune-field-margin 

settings. Analysis of this active modern dune-field system shows a 

characteristic reduction in aeolian dune size and degree of connectivity and 

a corresponding increase in interdune size and degree of connectivity 

towards outer dune-field margins. This study has entailed work in four 

distinct geographic areas of the Rub’ Al-Khali Sand Sea, Saudi Arabia and 

surrounding area, which collectively cover an area of 73,200 km2. 

Morphological and geometrical attributes relating to 555 dunes and 1415 

interdunes from the 4 selected study areas. The collection of data relating to 

primary landform morphology has enabled an improved understanding of the 

sediment system state of the modern Rub’ Al-Khali desert sedimentary 

system to be gained. 

1.5.3 Chapter Three: A classification scheme for fluvial-aeolian 

system interaction in desert-margin settings 

This chapter provides a classification scheme for fluvial-aeolian system 

interactions in desert-margin settings. This is achieved through the 

examination of 60 desert regions around the world. This study has analysed 

the morphological expression and areal distribution of 130 examples of 

fluvial-aeolian interaction that have been mapped using high-resolution 

satellite imagery. Case-study examples have been classified to propose a 

framework of ten distinct types of system interaction. The proposed 

generalised framework is used to account for the diverse types of interaction 

known to exist between coevally active aeolian-fluvial depositional systems. 

The developed framework serves as a tool with which to discuss the 

significance of system interactions within the context of the 

geomorphological and sedimentological evolution of mixed aeolian and 

fluvial systems. This study presents a novel classification scheme for the 

description of types of interaction between fluvial systems and adjoining 

aeolian dune systems and their marginal areas into which flood events 

episodically extend. Ten distinct styles of interaction are recorded and 

illustrated by a set of case-study examples from around the world. 
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1.5.4 Chapter Four: Outcrop architecture of ancient preserved 

aeolian and fluvial successions: Triassic Wilmslow 

Sandstone and Helsby Sandstone formations, Sherwood 

Sandstone Group, Cheshire Basin, UK 

This chapter describes and interprets the various lithofacies present in 

sections of the upper part of the Wilmslow Sandstone Formation and the 

lower part of the overlying Helsby Sandstone Formation of the Triassic 

Sherwood Sandstone Group, Cheshire Basin, UK. Specifically, this study 

examines outcrops of the Runcorn Expressway road-cut, a laterally 

continuous outcrop that exposes the boundary between these two 

formations. The study reveals that accumulation of the aeolian system 

represented by the Triassic Wilmslow Sandstone Formation was controlled 

by water table, and accumulation via both climbing and non-climbing 

mechanisms took place. The fluvial succession in the overlaying Helsby 

Sandstone Formation represents a preserved dryland ephemeral braided 

fluvial succession. 

1.5.5 Chapter Five: Modelling system interactions in aeolian 

dune-field margin successions 

This chapter employs the ten types of aeolian-fluvial system interactions 

described from modern desert systems (chapters Two and Three), together 

with the ancient outcrop case-study example (Chapter Four) and a suite of 

literature-derived data to generate a series of ten semi-quantitative 

geological facies models with which to account for the nature and origin of 

stratigraphic complexity present in aeolian dune-field margin successions 

that arise from the interplay of both autogenic and allogenic controls. 

The geological models developed as an outcome of this study can be used 

to predict the arrangement of architectural elements that define gross-scale 

system architecture in a variety of mixed aeolian-fluvial system types. 

Results demonstrate the significance of aeolian dune type and orientation 

relative to fluvial-system type and orientation in determining the style of 

fluvial incursion into dune fields. 
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1.5.6 Chapter Six: Conclusions and future work 

This final chapter summarises the general findings of the research study and 

postulates possible future related research that could be undertaken to 

further advance current understanding of the processes that control types of 

interaction between aeolian and fluvial depositional systems and their 

resultant accumulated sedimentary products. 
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Chapter Two 

Remote sensing of spatial variability in aeolian dune and 

interdune morphology in the Rub’ Al-Khali, Saudi Arabia 

____________________________________________________________ 

This chapter investigates aspects of spatial variability of dune and interdune 

morphology in desert dune fields. This study has entailed work in four 

distinct geographic areas of the Rub’ Al-Khali Sand Sea, Saudi Arabia and 

surrounding area, which collectively cover an area of 73,200 km2. 

Morphological and geometrical attributes relating to 555 dunes and 1415 

interdunes from the 4 selected study areas have been characterised through 

collection of 10100 measurements made via the examination of satellite 

imagery provided by Google Earth Pro software and datasets. The collection 

of data relating to primary landform morphology has enabled an improved 

understanding of the sediment system state of the modern Rub’ Al-Khali 

desert sedimentary system to be gained. 

____________________________________________________________ 

2.1 Abstract 

The Rub' Al-Khali aeolian sand sea of south eastern Saudi Arabia – also 

known as the Empty Quarter – covers an area of 660,000 km² and is one of 

the largest sandy deserts in the world. The region is covered by the latest 

generation of public-release satellite imagery, which reveal spatially diverse 

dune patterns characterised by a varied range of dune types, the 

morphology, scale and orientation of which change systematically from 

central to marginal dune-field areas where non-aeolian sub-environments 

become dominant within the overall desert setting. Analysis of geomorphic 

relationships between dune and interdune sub-environments within 4 

regions of the Rub' Al-Khali reveals predictable spatial changes in dune and 

interdune morphology, scale and orientation from the centre to the outer 

margins of dune fields. A quantitative approach is used to characterise the 

complexity present where large, morphologically complex and compound 
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bedforms gradually give way to smaller and simpler bedform types at dune-

field margins. Parameters describing bedform height, spacing, parent 

morphological type, bedform orientation, lee-slope expression, and 

wavelength and amplitude of along-crest sinuosity are recorded in a 

relational database, along with parameters describing interdune size (long- 

and short-axis dimensions), orientation, and style of connectivity. The spatial 

rate of change of morphology of aeolian sub-environments is described 

through a series of empirical relationships. Spatial changes in dune and 

interdune morphology have enabled the development of a model with which 

to propose an improved understanding of the sediment system state of the 

modern Rub' Al-Khali desert sedimentary system, whereby the generation of 

an aeolian sediment supply, its availability for aeolian transport and the sand 

transporting capacity of the wind are each reduced in dune-field margin 

areas. 

2.2 Introduction 

Significant advances in our understanding of the spatial arrangement of 

aeolian dune patterns have been made possible through the increasing 

availability of high-resolution satellite imagery in recent years (e.g. 

Blumberg, 2006; Hugenholtz and Barchyn, 2010). Aeolian dune-field 

patterns are a product of self-organizing systems (Kocurek and Ewing, 2005; 

Wilkins and Ford, 2007; Ewing and Kocurek, 2010a) in which the 

development of simple or complex distributions of genetically related groups 

of aeolian bedforms and their adjoining interdunes is characterised by 

systematic and predictable changes in dune type, size, morphology, 

orientation and spacing from dune-field centre to dune-field margin settings 

(Werner and Kocurek, 1997, Kocurek and Ewing, 2005; Ewing et al. 2006; 

Bullard et al. 2011). 

Several previous studies have documented spatial variation in bedform type 

and associated spatial changes in aeolian lithofacies distributions in desert 

dune fields (e.g. Breed and  Grow, 1979; Sweet et al., 1988; Kocurek and 

Lancaster, 1999; Atallah and Saqqa, 2004; Baas, 2007; Bullard et al. 2011). 

However, relatively few studies have attempted to quantitatively document 
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the form of spatial variability of dune and interdune morphology from the 

centres of aeolian dune-field systems to their margins (Kocurek and Ewing, 

2005; Wilkins and Ford, 2007; Ewing and Kocurek, 2010a, b; Kocurek et al. 

2010; Hugenholtz and Barchyn, 2010). 

This study utilizes the latest generation of public-release satellite imagery to 

quantify the form of geomorphic relationships between dune and interdune 

sub-environments in both the central and marginal parts of four modern 

dunes fields of the Rub’ Al-Khali (Empty Quarter) of Saudi Arabia. The 

overall aim of this work is to document how and explain why dune- and draa-

scale aeolian bedforms and their adjoining interdunes systematically change 

form from central to marginal dune-field areas in terms of their morphology, 

geometry (scale), orientation and style of bedform linkage (i.e. the extent to 

which interconnected and amalgamated aeolian bedform complexes are 

developed). Specific objectives of this research are as follows: (i) to assess 

the geomorphic complexity and variety of dune types present in the Rub’ Al-

Khali desert; (ii) to demonstrate and quantify styles of spatial variation in 

dune and interdune type and geometry for a series of major dune fields; (iii) 

to consider how a series of external factors that collectively define the 

sediment state of the system act to dictate spatial changes in dune and 

interdune morphology and geometry. 

This research is important because understanding the morphology and 

architectural distribution of the deposits of aeolian dune and interdune sub-

environments serves to constrain the development of models with which to 

explain the principal controls on desert dune distributions. Further, the 

establishment of spatial trends in dune morphology and geometry aids the 

reconstruction of ancient aeolian palaeoenvironments and guides the 

prediction of sedimentary architecture in subsurface stratal successions. 

Understanding the morphological complexity present in a range of modern 

aeolian desert systems is a primary control on preserved stratigraphic 

complexity and is the first step in developing a series of generic models with 

which improve our understanding of the mechanisms by which complex 

sedimentary architectures arise in ancient preserved aeolian successions. 

Thus, there exists a need to document the morphology of modern desert 
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systems to understand how spatial morphological changes in dune type and 

size might impact preserved stratigraphic architecture (Mountney, 2012). 

2.3 Background 

Modern aeolian dune-field systems are composed of complex arrangements 

of geomorphic elements, including dunes, draa and interdunes, which occur 

on a range of scales and are characterised by a variety of morphologies and 

geometries (Warren and Knott, 1983; Kocurek and Havholm, 1993; 

Lancaster, 1994; Rubin and Carter 2006; Ewing and Kocurek, 2010a). In 

many dune-field systems, the form of geomorphic elements and their 

relationship with adjacent elements varies systematically and predictably as 

a function of position within the overall aeolian system, especially in 

downwind directions and from the centre to outer margins of dune fields 

(Breed et al. 1979; Lancaster, 1983, 1994). Indeed, groups of genetically 

related aeolian dunes and intervening interdunes represent some best 

examples of patterned landscapes in nature (Kocurek and Ewing, 2005). 

Few aeolian desert sand dunes exist in isolation. Most cluster, with many 

examples forming large dune fields in which systematic patterns of groups of 

genetically related dunes can be recognised, in some cases repeating with 

spatial regularity or with one or more defining attribute of the dune-form 

changing progressively in a given direction from, say, the centre of a dune-

field to its margin. Groups of dunes collectively form larger geomorphic 

elements typically referred to as sand seas, dune fields (Livingstone and 

Warren, 1996) or ergs (Wilson, 1973). Although Cooke et al. (1993) define 

the lower size limit for a sand sea at 30 000 km2, this being an inflexion point 

on the distribution curve of sand-sea size given by Wilson (1973), in modern 

usage (post-1995), no lower size limit is formally applied by way of definition. 

Dune fields are not necessarily continuously covered with active aeolian 

sand dunes and most additionally include other morphological bodies of 

aeolian-derived or aeolian-related sediment deposits, including interdunes, 

sand sheets (which lack distinctly recognisable larger bedforms), areas of 

soil cover, lacustrine systems (e.g. playa lakes), and fluvial systems 
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(typically ephemeral), some developed between active aeolian dunes 

(Lancaster, 1989). Thus, dunes in sand seas, including those in the Rub’ Al-

Khali, are commonly separated from each other by geomorphic elements 

whose well-defined shapes are, in part, dictated by the shapes of adjoining 

dune bedforms of different types (e.g. McKee and Bigarella, 1979). 

The construction of aeolian dune-field systems and the spatial variation in 

the form of their internal components (e.g. dunes and interdunes) from 

central to marginal areas is governed by numerous controlling parameters 

that dictate sediment state (Berg, 1986; Kocurek, 1998, 1999; Kocurek and 

Lancaster, 1999). At a regional scale, the sediment state of aeolian dune 

fields is defined by separate components of sediment supply, sediment 

availability and transport capacity of the wind (Kocurek and Lancaster, 

1999), and together these factors govern where and when aeolian system 

construction via the growth of dunes occurs. 

2.4  Study area 

The Rub’ Al-Khali of south-eastern Saudi Arabia – also known as the Empty 

Quarter – is one of the largest continuous sand deserts in the world and 

comprises a series of dune fields, some spatially discrete and some merging 

into neighbouring fields, within which self-organised patterns of aeolian 

bedforms and adjoining interdunes are developed (Bishop, 2010). The name 

for the Arabian desert – Rub’ Al- Khali or the Empty Quarter – was 

introduced by the Swiss geographer Burckhardt (1829) in his book “Travels 

in Arabia” and used later by Doughty (1888). Early research by Thesiger 

(1949), Beydoun (1966), Holm (1960, 1968), Glennie (1970) and Breed et al. 

(1979) each documented the presence of different bedform types and noted 

general spatial variations in dune types between different parts of the overall 

desert system. 

In total, the Rub’ Al-Khali covers approximately 660,000 km2, rising to 

776,000 km2 of continuous active sand cover if adjoining sand seas (e.g. 

Jafura, Dahna and Nefud in Saudi Arabia) are additionally included (Breed et 

al. 1979; Edgell, 1989, 2006). Indeed, the wider desert region, which 
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additionally incorporates the Wahiba Sand Sea of the Sultanate of Oman 

(Laity, 2009), covers an area of 795,000 km2. Within the main the Rub’ Al-

Khali, active aeolian dunes and interdunes cover an area of 522,340 km2 

(Edgell, 2006), extending from United Arab Emirates and Oman in the east, 

to south-western Saudi Arabia and northern Yemen (Figure 2.1; Wilson, 

1973; Glennie, 2005; Edgell, 2006). The largely unconsolidated sand dune 

deposits of the Rub’ Al-Khali are characterised by large bedforms (dunes 

and draa), individual examples of which range from 50 to 300 m in height 

(Brown et al. 1963; Abd El Rahman, 1986; Edgell, 2006), and the majority of 

which are each separated by broad interdune flats, some up to 5 km in width 

in dune-field margin settings (Figure 2.2). The majority of the Quaternary 

sediments of the Rub’ Al- Khali are composed chiefly of aeolian-reworked 

Pliocene alluvial sediments (McClure, 1978), though a secondary sand 

component is likely to have been additionally sourced from local modern 

alluvial (wadi) sediments (Holm, 1960; Brown, 1960). 

The Rub’ Al-Khali basin is a combined physiographical and tectonic feature 

(Bagnold, 1951; Powers et al., 1966; McClure, 1976, 1978; Edgell, 1989, 

and Clark, 1989) that forms a structural depression characterised as an 

embayment with a structural axis trending from northeast-to-southwest, 

bordered to the northwest and west by the Arabian Shield, and to the south 

and southeast by the Hadramawt-Dhofar Arch or Plateau (Figure 2.1b). The 

northern end of Rub’ Al-Khali basin opens into the Arabian Gulf through the 

United Arab Emirates (Edgell, 2006). The desert is additionally constrained 

by the arc of the Oman Mountains to the northeast and by the Qatar Arch to 

the northwest (Figure 2.1b). The area occupied by active sand seas extends 

from the United Arab Emirates and Oman in the east, to south-western 

Saudi Arabia and the area directly north of Yemen. 

2.5  Quaternary evolution of the Rub’ Al-Khali 

The Rub’ Al-Khali formed in response to cyclic episodes of aridity driven by 

climatic fluctuations throughout much of the Quaternary period (Edgell, 

1989, 2006; Glennie, 1998; Goudie, et al. 2000). The application of optical 

dating methods to sand samples from both linear and crescentic dunes has 
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Figure 2.2 (Cont.):   (b) Satellite images from the study area depicting the typical geomorphology of the dune fields, and the 
variation in dune morphology and distribution from the central part of the dune fields toward their margins. Note the reduction 
in dune size in a direction toward the dune-field margins, and the concomitant increase in the extent and connectivity of 
interdunes and playa areas. Images from Google Earth Pro.
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demonstrated that the majority of the dunes of the Rub' Al-Khali formed 

during cold, arid intervals associated with high latitude Quaternary glacial 

cycles and concurrent sea-level lowering (Glennie, 1998; Glennie and 

Singhvi, 2002; Preusser et al., 2002; Lancaster and Tchakerian, 2003; 

Edgell, 2006; Bishop, 2010). Most dune fields of the Rub’ Al-Khali were more 

extensive than their present-day distribution during earlier parts of the 

Quaternary (Pye and Tsoar, 2009), though were less extensive than at 

present during the middle Holocene (Sarnthein, 1978). Indeed, the evolution 

of the Rub’ Al-Khali is known to have been influenced by climatic changes 

from arid, to semi-arid, to sub-humid throughout much of the Quaternary, 

with changes in mean annual precipitation and wind direction (Anton, 1984), 

and changes in sea level (Lancaster, 1998) each exerting a control on 

landscape evolution. 

Dunes of the Rub’ Al-Khali (and indeed other deserts of the Arabian 

Peninsula) underwent several phases of spatial and temporal evolution in 

response to Quaternary climate and environmental change (Alsharhan et al., 

1998, Anton, 1984, 1985; Hotzl et al., 1978; Barth, 2003). Firstly, an 

increase in aridity, especially during the late Pleistocene, encouraged the 

construction of dune fields whereby the availability of sediment for aeolian 

transport and regional variation in wind directions governed dune 

morphology such that complex dunes and draa developed. Secondly, 

increased climatic humidity during the early Holocene enabled lakes to 

develop and vegetation cover to partly stabilize the substrate, thereby 

restricting the availability of sediment for aeolian transport, limiting further 

dune construction, encouraging partial deflation in areas where the sand 

carrying capacity of the wind was undersaturated with respect to its 

potential, and encouraging the growth of non-aeolian regions. Some of the 

larger compound bedforms present in the Rub’ Al- Khali (e.g. those in the 

Liwa area of the United Arab Emirates) are known to have been constructed 

in response to the effects of repeated Quaternary climatic changes whereby 

multiple generations of superimposed dunes are delineated by calcrete 

horizons that record repeated episodes of bedform construction, partial 

deflation and stabilization indicative of alternations between relatively arid 

and relatively more humid climatic conditions (El-Sayed, 1999, 2000). 
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Throughout much of the Quaternary, spatial and temporal changes in dune 

morphology and geometry, and their spatial relationships are known to have 

been controlled significantly by changes in position, direction and intensity of 

Shamal and Indian Ocean Monsoon wind regimes (Preusser, 2009). The 

Shamal wind is a hot and dry wind with substantial sand-transporting 

capacity (Barth, 2001; Edgell, 2006) that forms as part of a large-scale flow 

of air toward a low-pressure centre that develops over Pakistan each year 

(Edgell, 2006). Although active in both summer and winter, it is most intense 

in June and July when it blows almost continuously at velocities that 

commonly reach and exceed 50 km h-1. These winds are the principal agent 

for aeolian transport of sand and dune formation in much of the Arabian 

Peninsula (Membery, 1983). 

2.6  Data and methods 

This study has entailed work in four distinct geographic areas of the Al Rub’ 

Al-Khali, herein called Areas 1, 2, 3 and 4 (Figure 2.2a), which collectively 

cover an area of 73,200 km². These areas were selected for study according 

to the following specific criteria: (i) chosen locations document spatial 

changes in the morphology of dunes and interdunes from the central part of 

a dune-field to its outer margin; (ii) public-release satellite imagery used for 

examination of the dune forms is available for these areas at a resolution 

that is sufficiently high to enable detailed quantitative measurements to be 

made regarding various morphological attributes of dunes and interdunes. 

Morphological and geometrical attributes relating to 555 dunes and 1415 

interdunes from the 4 selected study areas were collected through 

examination of satellite imagery provided by Google Earth Pro software and 

datasets, a business- and scientific-oriented mapping service (Figure 2.3). 

Satellite imagery from the studied areas has a spatial resolution of resolution 

15 m per pixel, derived from 15 to 30 m-resolution multispectral Landsat 

data that have been pan-sharpened with panchromatic Landsat image 

processing software. Individual high-resolution images are each 4800 x 2442 

pixels and images recording adjacent areas have been seamlessly tiled to 

render larger visualizations of each study area. Elevation data are derived 
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from Shuttle Radar Topography Mission (SRTM) data, which has an 

absolute vertical accuracy of 16 m and a relative vertical accuracy of 10 m 

(Falorni et al., 2005). 

Collected dune and interdune data have been recorded in a relational 

database and this has been used to discern trends between measured 

parameters. Spatial variation in both dune and interdune size and shape in 

directions both close to parallel and close to perpendicular to the overall 

direction of net sand transport has been recorded, with the resultant net 

direction of sediment transport having been identified from the analysis of 

dune bedform type and slipface orientation and through reference to 

Resultant Drift Direction calculations made by Fryberger and  Dean (1979). 

Attributes recorded for dunes are as follows and as depicted in Figure 2.4: 

bedform height is based on relief change from the regional level of the 

desert surface indicated by the elevation of interdune flats in the outer dune-

field margin area to the crests of the bedforms; the along-crest length of a 

dune segment is a measure of bedform continuity whereby dune segments 

are terminated by major re-entrants or scours; bedform spacing is the crest-

to-crest (or toe-to-toe) distance between adjacent bedforms in an orientation 

perpendicular to the trend of elongate bedform crestlines; dune wavelength 

records the extent of a bedform in an orientation perpendicular to the trend 

of the bedform crestline and this may vary from a maximum dune 

wavelength to a minimum dune wavelength within one dune segment as a 

function of bedform sinuosity; the wavelength and the amplitude of along-

crest sinuosity observed in plan form together define crestline sinuosity 

(Rubin, 1987); bedform long-axis orientation describes the trend of dune 

crestlines; the distance from the dune-field centre is a relative measure of 

distance from the centre of the studied dune fields to their outer margins. 

Attributes recorded for interdunes are as follows and as depicted in Figure 

2.4: interdune length is a measure of the distance that a single interdune 

corridor extends in an orientation parallel to the trend of the crestlines of the 

dunes that bound the interdune; interdune width is a measure of the width of 

an interdune flat developed between two dunes in an orientation 

perpendicular to interdune length; interdune long-axis orientation describes 
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the trend of an interdune; the distance from the dune-field centre is a relative 

measure of distance from the centre of the studied dune fields to their outer 

margins. 

The terminology applied in this study is derived from that introduced by 

Rubin (1987) and that used in a slightly modified form more latterly by a 

variety of authors including Mountney and Thompson (2002), Rubin and 

Carter (2006) and Mountney (2006a, 2012). It is important to note that some 

authors view the term “bedform wavelength” to be synonymous with 

“bedform spacing” (cf. Breed and Grow, 1979) but for the purposes of this 

study, and also as used by the aforementioned authors, the two terms differ 

in that bedform wavelength defines the distance from the leeward toe to the 

rearward (stoss) toe of the bedform in an orientation parallel to the direction 

of downwind migration. By contrast, bedform spacing defines the crest-to-

crest (or toe-to-toe) distance from one bedform to an adjacent bedform, 

again in an orientation parallel to the direction of downwind migration. Thus, 

bedform spacing additionally incorporates the size of any adjoining interdune 

flat present between two bedforms (Figure 2.4). 

Further to the wind directional data documented by Fryberger and  Dean 

(1979), additional data relating to wind direction were obtained for the period 

1982 to 2013 from 5 stations located in the central and eastern parts of the 

Rub’ Al-Khali and these indicate a prevailing Resultant Drift Direction to the 

southwest (Figure 2.5). 

2.7  Dune morphology in the Rub’ Al-Khali 

Satellite imagery for the Rub’ Al-Khali reveals a varied range of dune types, 

the morphology of which changes systematically from central dune-field 

areas to marginal areas where ephemeral fluvial systems become dominant 

(Figure 2.2b). The spatial variability of the dunes and interdunes present in 

this desert region is significant and was the principal reason for the choice of 

this region for this study. Key attributes describing the nature of the dunes 

and interdunes present in the studied areas are summarised in Tables 2.1 

and 2.2. 
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Figure 2.5:  A summary of dominant wind directions for the central and eastern 
part of the Rub' Al-Khali, based on data from 1982 to 2013 collected from 5 
stations. Values in table are in percent. See Figure 1a for location of stations. 
Source: WeatherOnline.
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Although aeolian dune forms in the Rub’ Al-Khali are many and varied, three 

principal forms are defined at a fundamental level: transverse, linear and star 

forms, depending on whether the orientation of dune crest-lines is close to 

perpendicular or close to parallel to the dominant wind direction, or whether 

the forms exhibit a multi-facetted, pyramid-like morphology, respectively 

(Figure 2.6; Hunter et al., 1983; Kumar and Mahmoud, 2011). These 

fundamental bedform types are broadly distributed into three regions, as 

identified by Breed et al. (1979) through their analysis of Landsat imagery 

and Skylab photographs, and as summarized by Glennie (2005): crescentic 

transverse dunes dominate in the northeast part of the study region, linear 

dunes dominate throughout the western half, and star dunes dominate along 

the eastern and southern margins (Figure 2.2b; cf. Glennie, 1970). 

Additionally, zones occupied by non-classified complex dune forms and 

sand sheets and streaks are also recognised (Breed et al., 1979). Edgell 

(1989) used Landsat 7 near-infrared imagery, large-format camera images 

and field observations to divide the three primary bedform classes into 17 

specific bedform types, though for this study the basic three-fold 

classification is used for the sake of simplicity. 

Compound crescentic transverse dunes – some termed ‘giant crescentic 

massifs’ and ‘compound crescentic dunes’ (Breed and Grow, 1979; Breed et 

al., 1979) – in the northern and eastern Rub’ Al-Khali, including in the Uruq 

al Mutaridah sub-basin (Figure 2.2b, c; Glennie, 2005), have a mean horn-

to-horn width of 2.8 km, a mean length of 2.1 km (cf. Breed et al., 1979), a 

mean bedform long-axis orientation of 88.54 degrees, and exhibit a vertical 

relief of up to 160 m above the surrounding desert floor that is characterised 

by interdune flats and up to 230 m above sea-level datum (Figure 2.7). A 

‘hooked’ variety of compound crescentic dune is described from the north-

central and northeastern Rub’ Al-Khali (Breed and Grow, 1979; Holm, 1960). 

Compound linear dunes in the western and south-western Rub’ Al-Khali are 

aligned from northwest to southeast, parallel to Shamal winds (Glennie, 

2005), and have different types of smaller dunes including star and barchan 

forms superimposed on them (Breed and Grow, 1979). These linear forms 

have a mean dune spacing of 3.9 km, are in places in excess of 130 m high 

above the surrounding desert floor that is characterised by interdune flats 
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Table 2.1:  Summary of data relating to geometry of 555 dunes in the 
studied part of the Rub’ Al-Khali sand sea. 

 
Dune measured 

parameters 

Statistical analysis 

Minimum Maximum Mean Standard 
Deviation 

Coefficient 
of Variance 

Amplitude of along-crest 
sinuosity (km) 0.03 2.39 0.69 0.52 75.23 

Wavelength of along-crest 
sinuosity (km) 0.11 4.99 2.02 1.17 57.89 

Minimum wavelength (km) 0.01 2.04 0.52 0.40 78.18 
Maximum wavelength 
(km) 0.05 3.34 1.22 0.72 58.89 

Spacing (km) 0.63 8.41 3.05 1.21 39.78 

Height (m) 67 218 144.42 31.49 21.80 

Orientation (degrees) 13 182 88.54 33.47 37.81 
 

 

 

 

Table 2.2: Summary of data relating to geometry of 1415 interdunes in the 
studied part of the Rub’ Al-Khali sand sea. 

Interdune measured 
parameters 

Interdune                Statistical analysis 

Minimum Maximum Mean 
(km) 

Standard 
Deviation 

Coefficient of 
Variance 

Length (km) 0.20 53.15 6.97 8.19 117.54 

Width (km) 0.06 6.22 1.49 0.88 58.95 

Orientation (degrees) 5 221 106.39 35.63 33.49 

Elevation (m) 60 107 76.17 9.96 13.08 
 

                    37



N

 0                          km                          5

N

 0                          km                          5

N

 0                          km                          5

N

 0                          km                          5

a b

dc

Figure 2.6: Satellite images from different locations across the Rub' Al-Khali desert depicting typical variations in dune and interdune 
morphology. Note the contrast in dune form and size between each image. All images depicted at the same scale. See figure 2a for 
locations. (a) Image from the northern part of Study Area 1, north-eastern Rub' Al-Khali, showing rows of laterally linked mega-barchan 
dunes with intervening interdunes (salt flats). (b) Image from the northern part of Study Area 2, north Rub' Al-Khali, showing a region 
dominated by complex giant barchan dunes with superimposed crescentic dune forms and parallel interdune corridors. (c) Image from 
the southern part of Study Area 3, southeast Rub' Al-Khali, showing an example of compound linear dune ridges, each separated by 
wide and parallel interdune corridors. (d) Image from the central part of Study Area 4, southeast Rub' Al-Khali, depicting an area 
characterised by pyramidal dunes (star bedforms) with distinctive star-like plan-form shapes and surrounded by extensive interdune 
areas.
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and up to 200 m above sea-level datum; they form linked chains of 

bedforms, some of which extend uninterrupted for distances up to 50 km 

(Figure 2.6c, and Figure 2.8, transect I-I’; Bunker,1953; Holm, 1960; Breed 

et al., 1979). Neighbouring linear bedforms are separated by interdune flats 

(see below) that themselves each have a mean width of up to 1.4 km. 

Bedforms at the eastern and south-eastern margin of Rub’ Al-Khali are 

mainly star dunes with mean widths of 2.1 km and heights up to 120 m 

above the surrounding desert floor that is characterised by interdune flats 

(Figure 2.6d and Figure 2.8, transect J-J’); these types merge with 

barachanoid dunes forming complex bedforms with slipfaces generally 

oriented toward the southeast (McKee and Breed, 1976). 

The majority of dunes in the studied sand seas are oriented separated from 

each other by extensive interdune-flat areas whose shapes are at least 

partly dictated by the morphology of adjoining dunes of different types (cf. 

McKee, 1979). Interdunes in the Rub’ Al-Khali vary in shape and in size 

(Figure 2.6), with the size and continuity typically increasing toward the 

margins of the dune fields (Figure 2.7), where the supply of sand and its 

availability for aeolian bedform construction is less, especially in areas 

where the water table lies close to the accumulation surface, such that the 

draw-up of moisture from the shallow subsurface via capillary action leaves 

the surface damp, thereby encouraging adhesion of sand (cf. Kocurek and 

Fielder, 1982; Olsen, et al. 1989). Open interdune corridors vary in length 

from 0.5 km in the central parts of dune fields to in excess of 50 km at dune-

field margins; widths vary from 0.2 to 6 km. 

2.8  Morphological and geometrical relationships between  

dunes 

Dune bedform wavelength is a simple measure of bedform size herein 

defined as the extent of a dune bedform in an orientation perpendicular to its 

crestline. In this study both maximum and minimum dune wavelength are 

recorded for individual dune segments (Figure 2.4) as a measure of size. 

The difference between maximum and minimum wavelength for a single 

dune segment is also a measure of along-crest crest variability, with similar 
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drift direction (toward the southeast); Section I-I' is aligned close to 
perpendicular to the regional resultant drift direction across a series of linear 
bedforms. Section J-J' reveals spatial changes in the morphology and 
geometry of star bedforms in the southern part of the study area. Digital 
Elevation data from Google Earth Pro are accurate to 10 m. Note that the dune 
wavelengths and interdune widths depicted in the cross sections are apparent 
since the orientation of the bedforms is oblique to the regional resultant drift 
direction in most cases.
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values representing relatively straight-crested bedforms and values with 

greater differences reflecting increasing bedform crestline sinuosity (cf. 

Rubin, 1987; Rubin and Carter, 2006). A strong positive correlation exists 

between maximum and minimum dune wavelength (Figure 2.9a). Dunes 

from all areas exhibit a decrease in mean dune wavelength with increasing 

distance away from the dune-field centre and towards the outer margin 

(Figure 2.9b). Combined results from all 4 study areas demonstrate that over 

a distance of 300 km average dune wavelength decreases from 1.5 km at 

the dune-field centre to ~0.1 km at the dune-field margin. 

Dune spacing is the distance between successive dunes in a train 

(measured, for example, between successive bedform crests), and includes 

both the wavelength of a dune bedform plus the width of the adjoining 

interdune (Figure 2.4). In contrast to dune wavelength, dune spacing exhibits 

little or no change with increasing distance from a dune-field centre toward 

its margin (Figure 2.7, and Figure 2.9c), though recorded values of dune 

spacing demonstrate considerable spread and vary mainly between 2 and 4 

km. Given the lack of discernible change in mean dune spacing from the 

central parts of the dune fields to their margins, yet the systematic decrease 

in mean dune wavelength (i.e. bedform size), progressively smaller 

bedforms in dune-field margin settings are compensated for by progressively 

wider interdunes. 

Wavelength and amplitude of along-crest plan-form sinuosities are together 

a simple measure of bedform crestline sinuosity (Rubin, 1987). For each of 

the 4 study areas, over a distance of 300 km, mean amplitude of along-crest 

sinuosity decreases from 2.5 km at the centre of dune-field to less than 0.5 

km at the outer margin where the dunes become smaller (Figure 9d). Mean 

wavelength of along-crest sinuosity decreases from 5 km at the dune-field 

centre to ~0.2 km at the dune-field margin (Figure 2.9e). A positive 

relationship between dune along-crest amplitude and wavelength 

demonstrates little change of the form of along-crest sinuosity across the 

dune-field (Figure 2.9f). 

Bedform height (defined as the difference in relief between the crest of a 

bedform and the general level of the desert surface where interdune flats are 
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Figure 2.9:  Examples of data demonstrating relationships present in aspects of 
dune bedform morphology in the Rub' Al-Khali dune field, showing the 
relationship between different parameters measured in the study area. Dune 
heights record the relief change between bedform crests and the generalised 
level of the desert floor as defined by the level of interdune flats in marginal areas 
of the dune fields. Best-fit lines shown on graph are for all data; separate best-fit 
equations are additionally shown for individual data sets from each study area. 
See text for further explanation.
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present) varies as a function of both bedform type and location within the 

dune-field in terms of proximity to the outer dune-field margin (cf. Lancaster, 

1988). Data collected from this study reveal bedforms with heights that 

range from <5 m at the dune-field outer margin to >155 m in the dune-field 

centre. The relationship between bedform height and spacing is complex 

(Figure 2.10a) and reveals no predictable trend because dune spacing is 

largely independent of bedform size. By contrast, a positive correlation exists 

between bedform height and wavelength (Figure 2.10b), though the spread 

in these data likely reflect contrasts between dunes of fundamentally 

different morphological types. Although bedform height generally decreases 

from the dune-field centre to its outer margin (Figure 2.10c), the trend is not 

straight-forward because bedforms tend to undergo changes in morphology 

along such transects.   

2.9  Morphological and geometrical relationships between 

interdunes  

The relationship between interdune long-axis length and width exhibits a 

positive correlation (Figure 11a), with the rate of increase of length relative to 

that of width being largely independent of the study area. Interdunes have a 

tendency to become longer and wider with increasing distance from a fixed 

point in the dune-field centre towards the eastern dune-field margin (Figure 

2.11b, c), though considerable variability exists. For the data from Area 3, as 

interdune lengths become very large (> 40 km) their widths stabilize at 1.5 to 

3.5 km in the dune-field margin areas (Figure 2.7, Section C-C’; Figure 

2.11c). In these marginal areas, interdunes become the dominant landform 

type and they effectively partition the dune-field with the dune bedforms 

being subordinate and in some cases spatially isolated landforms. 

Considering the entire dataset, interdune long-axis orientation systematically 

varies (mimicking the trend of bedform crestlines); interdune long-axes 

rotate systematically counter-clockwise from ~130-310 degrees in the central 

dune-field areas to 070-250 degrees at the dune-field margin, 300 km away 

(Figure 2.11d). Two dominant orientation trends are evident: interdunes in 

Areas 1, 2 and 3 are mostly oriented between 0 and 200 degrees, with a 
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Figure 2.10:  Examples of data demonstrating relationships present in aspects of dune bedform height and interdune elevation in the 
Rub' Al-Khali dune field, showing the relationship between different parameters measured in the study area. Best-fit lines shown on graph 
are for all data; separate best-fit equations are additionally shown for individual data sets from each study area. Dune heights have been 
calculated based on relief above the regional level of the desert floor in the dune-field margin areas; note that this level is higher in Area 4 
where the desert system is constructed on a slightly elevated basement, as shown in graph d. See text for further explanation.
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Figure 2.11: Examples of data demonstrating relationships present in aspects of interdunes of the Rub' Al-Khali dune field. The 
scatter plots demonstrate several relationships between measured interdune parameters. Best-fit lines shown on graph are for all 
data; separate best-fit equations are additionally shown for individual data sets from each study area. See text for further explanation.
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cluster of interdunes trending between 050 and 130 degrees; in Area 4 

interdunes have long-axis orientations preferentially trending between 200 

and 300 degrees (Figure 2.11d). The spatially isolated interdune depressions 

present between bedforms in the central dune-field region are elevated up to 

25 m above the regional level (Figure 2.7, and Figure 2.10d) and this 

demonstrates that bedforms in these central regions are climbing over one 

another to generate an accumulation. The elevation of interdunes in Area 4 

is ~20 m higher than that in Areas 1-3 (Figure 2.7, and Figure 2.10d) 

because bedforms and interdunes in this most southerly study area are 

constructed on a topographically elevated basement. 

2.10  Discussion 

Use of satellite imagery for the analysis of changes in morphology, 

geometry, orientation and related attributes of dunes and interdunes present 

along a series of transects from central to marginal positions within 4 areas 

of the Rub’ Al-Khali represents a quantitative approach to the 

characterisation of the changing spatial distribution of aeolian geomorphic 

elements and sub-environments in desert settings. The observed spatial 

variation in patterns of dune bedform and interdune arrangement arise as a 

consequence of several controls that operate to determine aeolian sediment 

system state in the studied dune fields. Although results from the analysis of 

this dataset do not necessarily enable quantitative determination of the 

nature of these controls, they do allow for the statement of a series of 

generalised discussion points. 

Relationships between dune wavelength, interdune length and width, and 

position in the dune-field highlight how interdune morphology interacts with 

the spatial distribution of dunes. The increase in interdune size and 

connectivity in dune-field margin areas and the corresponding decrease in 

dune size results from an overall reduction in either (i) the rate of generation 

of a sand supply for aeolian bedform construction in dune-field margin 

settings, (ii) the availability of that supply for aeolian bedform construction, or 

(iii) a downwind reduction in the sediment transport capacity of the wind 

(Kocurek and Lancaster, 1999). In dune-field margin settings, where areas of 
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interdune flats are dominant, supply-limited and availability-limited aeolian 

systems are common and are controlled by factors such as the presence of 

a damp substrate due to an elevated, near-surface water table (e.g. Hotta et 

al., 1984) and/or the action of surface-stabilizing agents such as vegetation 

and precipitated crusts (e.g. Glennie, 2005; Edgell, 2006; Kumar and 

Mahmoud, 2011). Downstream reduction in the transport capacity of the 

wind at dune-field margin may also limit potential for dune construction (e.g. 

Ash and Wasson, 1983; Anderson and Haff, 1991). The presence of a near-

surface water table in the outer margins of the studied dune fields such that 

its capillary fringe acts as a wicking effect to maintain a damp surface 

effectively renders these parts of the study area wet aeolian systems (sensu 

Kocurek and Havholm, 1993) such that, although a source of sand-grade 

sediment that is potentially suitable for aeolian transport and dune 

construction may be present within interdune flats, this supply is not 

available for transport. Thus, water-table level plays a fundamental role in 

limiting dune construction and protecting interdune flats from deflation. 

Indeed, a progressive rise in the relative level of the water table in the outer 

dune-field margin areas may potentially enable accumulation of packages of 

interdune strata between the accumulations of migrating dunes (cf. 

Mountney and Russell, 2006, 2009). 

The positive correlation between interdune length and width, and distance 

from a fixed point in the dune-field centre, which summarizes the form of 

generalised changes in dune and interdune morphology across the dune 

field, arises as a result of a change in the sediment state components. The 

relations reveal significant geomorphological changes in the interdune areas 

and adjoining dunes across the dune field, and these represent a systematic 

spatial reduction in sediment supply and availability for aeolian transport, 

most likely because sediment is stored in upwind, central parts of the dune-

field rendering the wind undersaturated with respect to its potential sand 

transporting capacity in downwind dune-field margin areas, and therefore 

potentially capable of sediment deflation. 

Dunes in the Rub’ Al-Khali desert exist in great variety of morphologic types 

that change systematically across the dune field. Variation in dune form is 
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the primary control on the morphology of adjacent interdunes, especially in 

dune-field centre regions where the shape and extent of each interdune form 

is governed and defined by the geometry and spacing of surrounding dune 

forms. 

Spatial variation in the arrangement of dune patterns in the Rub’ Al-Khali 

takes the form of gradational transitions from complex to simple bedform 

types, and a decrease in dune size and an associated increase in interdune 

size from the centre to the outer-margin areas of dune fields. Such changes 

reflect the interaction between sediment supply and transport capacity. The 

availability of sand for dune construction has long been recognised as a 

primary control on dune morphology (e.g. Wilson, 1972), whereby simple 

barchan dunes tend to evolve in systems where sand supply is limited and 

therefore are the main bedform type in marginal areas of many dune fields 

including the eastern part of the Rub’ Al-Khali studied here. By contrast, the 

central and northern part of the studied dune-field is dominated by 

interlinked barchanoid dune types, whose presence records a greater sand 

supply. 

Interdune orientation varies systematically as a function of geographic 

location, which in turn reflects the distribution and form of surrounding 

dunes, development of which is governed by prevailing wind type, 

directionality and intensity (Resultant Drift Potential and Resultant Drift 

Direction) and seasonality (Fryberger and Dean, 1979). Study Area 1, which 

is located in the northeast of the Rub’ Al-Khali, is dominated by large linked 

barchanoid dune ridges; Study Area 4, which is located in the southeast of 

the Rub’ Al-Khali, is characterised by a systematic change from connected to 

isolated star dunes and associated changes in interdune morphology 

whereby the observed dune-form variability arises partly because of low 

length-to-width ratios of the dune wavelength. The direction and the rate of 

aeolian sand transport are strongly governed by the wind regime, velocity 

and direction (cf. Pye and Tsoar, 2009). Data depicting dune cross-sectional 

morphology (Figure 2.7) demonstrate increasing variability in the range of 

bedform height and spacing in several marginal dune-field areas (e.g. 
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transects C-C’ and D-D’), which likely results from a sediment state that is 

not in equilibrium for these parts of the studied system. 

The Rub’ Al-Khali region is influenced by winds with a high drift potential (the 

energy of surface winds in term of their capability to induce sand transport), 

chiefly because of the action of trade winds in mid-latitude depressions 

(Fryberger and Ahlbrandt, 1979). Directional variability of effective winds – 

south-southwest in winter and northwest in spring and summer (the so-

called Shamal wind) – influences both the sand transporting potential of the 

wind (and therefore the bedform migration rate) and the Resultant Drift 

Direction (itself a control on dune migration direction) in the Rub’ Al-Khali. 

This explains the high system activity and the pronounced variety of bedform 

patterns, sizes and orientations. Unidirectional winds are responsible for the 

construction of large crescentic (barchan) dunes, which attain heights in 

excess 130 m in some areas in northern part of the dune field. Seasonally 

varying Shamal winds form linear dune ridges; more complex multi-

directional winds form the star dune complexes that dominate in the 

southern part of the dune field. 

The extracted elevation data describing surface topography, which were 

acquired as a series of transects recording changes in dune spacing, height 

and morphology from different locations and in different orientations across 

the study areas (Figure 2.7, and Figure 2.8), show clear examples of dune 

and interdune variability in the Rub’ Al-Khali sand sea. The central part of the 

dune-field contains the largest and most connected dune forms, many of 

which exceed 130 m in height (up to 160 m high), and this reflects bedform 

construction enabled by a large sand supply. Transects in Figure 2.7 each 

show spatially isolated interdune depressions within the central dune-field 

regions that are elevated up to 25 m above the regional level and this 

demonstrates that bedforms in these central regions are climbing over one 

another to generate an accumulation whereby the general interdune level is 

elevated above the regional level of the desert floor observed in more 

marginal dune-field areas (Figure 2.10d; sensu Kocurek, 1999). 

In transects oriented in an upwind-to-downwind direction located in more 

central parts of the dune-field (e.g. transects E-E’ and F-F’, Figure 2.2a and 
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Figure 2.8) no discernible downwind change in mean bedform height, 

wavelength or spacing is evident. By contrast, in transects oriented in an 

upwind-to-downwind direction but located in the zone of transition between 

the central and marginal parts of the dune-field (e.g. transects G-G’ and H-

H’, Figure 2.2a, and Figure 2.8), a general reduction in dune height and 

wavelength (Figure 2.9b and Figure 2.10c), and an associated increase in 

interdune width (Figure 2.11c) in a downwind direction are evident and such 

changes are indicative of a spatial reduction in the availability of sand for 

bedform construction in downwind dune-field margin regions. 

2.11  Conclusions 

The latest generation of high-resolution, public-release satellite imagery and 

SRTM digital elevation data has provided the basis for a quantitative 

analysis of patterns of arrangement of large-scale aeolian bedforms and 

adjoining interdunes in a series of large sand seas present as desert dune 

fields in the Rub’ Al-Khali of south-eastern Saudi Arabia. Image analysis 

documents a varied range of dune types, the morphology of which changes 

systematically from central dune-field areas to marginal areas where aeolian 

interdunes, sand sheets, and ephemeral fluvial systems dominate. Analysis 

of geomorphic relationships between dune and interdune sub-environments 

within 4 modern dune fields documents how dune and interdune 

morphology, geometry and orientation varies over space from dune-field-

centre to dune-field margin settings. Results demonstrate a characteristic 

reduction in aeolian dune size and degree of connectivity and a 

corresponding increase in interdune size and degree of connectivity towards 

outer dune-field margins. The collection of data relating to primary landform 

morphology has enabled an improved understanding of the sediment system 

state of the modern Rub’ Al-Khali desert sedimentary system. Observed 

trends arise as a function of spatial changes in the sediment state of the 

system whereby sediment supply, the availability of that supply for transport 

and the sediment transporting capacity of the wind each combine to dictate 

the geomorphology of dune and interdune forms, which vary from thick 

accumulations of sands in the form of coalesced compound and complex 

barchanoid bedforms in dune-field centre settings, to spatially discrete star 
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dunes and small, spatially isolated barchan dunes separated by extensive 

water-table-controlled interdune flats in dune-field margin settings. 

Observations from this modern dune-field system have enabled the spatial 

rate of change of morphology of aeolian sub-environments to be 

characterised and described through a series of empirical relationships. 

Results of this study have implications for developing an improved 

understanding of the likely controls on the detailed sedimentary architecture 

of preserved aeolian successions by enabling the proposition and 

development of a range of dynamic facies models for aeolian systems. This 

has wider applied implications and significance: for example, the 

morphological changes in the distribution of aeolian bedforms and 

interdunes across dune-field systems provides important information with 

which to improve our understanding of the likely arrangement of architectural 

elements in ancient aeolian preserved successions, several of which form 

important reservoirs for hydrocarbons. This work is therefore an important 

step in the development of improved models for the characterisation of 

stratigraphic complexity and heterogeneity in aeolian reservoirs. 

                    52



Chapter Three 

A classification scheme for fluvial-aeolian system interaction 

in desert-margin settings 

____________________________________________________________ 

This chapter provides a classification scheme for fluvial-aeolian system 

interaction in desert-margin setting. This is achieved through the 

examination of 60 desert regions around the world. This study has analysed 

the morphological expression and areal distribution of 130 examples of 

fluvial-aeolian interaction that have been mapped using high-resolution 

satellite imagery. Case-study examples have been classified to propose a 

framework of ten distinct types of system interaction. The proposed 

generalised framework is used to account for the diverse types of interaction 

known to exist between coevally active aeolian-fluvial depositional systems. 

The developed framework serves as a tool with which to discuss the 

significance of system interactions within the context of the 

geomorphological and sedimentological evolution of mixed aeolian fluvial 

systems. 

____________________________________________________________ 

3.1 Abstract 

This study examines 130 case examples from 60 desert regions to propose 
a generalised framework to account for the diverse types of interaction 
known to exist between active aeolian and fluvial depositional systems at 
modern dune-field margins. Results demonstrate the significance of aeolian 
and fluvial system type, orientation of aeolian versus fluvial landforms, 
distribution of open versus closed interdune corridors, and fluvial flow 
processes in controlling the distance and type of penetration of fluvial 
systems into aeolian dune-fields. 
Ten distinct types of fluvial-aeolian interaction are recognised: fluvial 

incursions aligned parallel to trend of linear chains of aeolian dune forms; 

fluvial incursions oriented perpendicular trend of aeolian dunes; bifurcation 

of  fluvial flow between isolated aeolian dune forms; through-going fluvial 
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channel networks that cross entire aeolian dune-fields; flooding of dune-

fields due to regionally elevated water table levels associated with fluvial 

floods; fluvial incursions emanating from a single point source into dune-

fields; incursions emanating from multiple sheet sources; cessation of the 

encroachment of entire aeolian dune-fields by fluvial systems; termination of 

fluvial channel networks in aeolian dune-fields; long-lived versus short-lived 

modes of fluvial incursion. 

Quantitative relationships describing spatial rates of change of desert-margin 

landforms are presented. The physical boundaries between geomorphic 

systems are dynamic: assemblages of surface landforms may change 

gradationally or abruptly over short spatial and temporal scales. Generalised 

models for the classification of types of interaction have application to the 

interpretation of ancient preserved successions, especially those known only 

from the subsurface. 

3.2 Introduction 

Desert dune-fields are not necessarily covered with aeolian bedforms; most 

are also characterised by other morphological bodies of aeolian-derived or 

aeolian-related sediment deposits, including interdunes, sand sheets, soils, 

lacustrine systems, and perennial, intermittent or ephemeral fluvial systems. 

These geomorphic forms are commonly developed between active aeolian 

dunes, else they define the limits of dune-fields, with sharp or gradational 

boundaries. Figure 3.1 depicts common depositional processes that operate 

at dune-field margins, many of which control the mechanisms by which 

successions accumulate to form bodies of preserved strata. Significant 

diversity in the arrangement and type of interaction of competing 

depositional sedimentary systems is recognised in modern desert dune-

fields and their marginal areas, and these give rise to complex yet 

predictable geomorphological patterns that commonly vary over space and 

time (e.g. Lancaster, 1989; Cooke et al., 1993; Bullard and Livingstone, 

2002; Al-Masrahy and Mountney, 2013). The record of these interactions is 

also recognised in the ancient sedimentary record (e.g. Langford and Chan, 

1989; Kocurek, 1991; Spalletti and Veiga, 2007), where spatial and temporal 

changes in the type of interaction between aeolian dune and associated 
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Supersurface

Laterally extensive ephemeral, 
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across a 
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margin of aeolian dune-field; vertical stacking indicates a dune-field 
margin that has maintained a fixed position for a protracted period

Distance of fluvial incursion along interdune 
corridors is controlled by the magnitude of the 
flood and the length of the open corridors; in 
this example the corridors are closed off by 
merging dune bedforms and the distance of 
fluvial penetration is therefore limited

Size, frequency and degree of interconnectedness of fluvial channel elements decreases 
toward the dune-field centre

Increased incidence of single-thread fluvial channel elements associated with fluvial incursions across 
desert plain directly above regional supersurface; indicates fluvial incursion prior to onset of climbing 
associated with next major phase of aeolian system accumulation

Inter-channel-belt regions 
dominated by non-confined fluvial 

sheet-like bodies, wind-blown 
(loessite) sheets, isolated dune 

complexes; colonisation by 
sparse vegetation and 

development of calcisols

Large alluvial fans at 
mountain front

Smaller, non-climbing barchan dunes at lateral 
aeolian dune-field margin

Highlands; major 
sediment source

Playa deposits

Terminal fluvial system; channels end in terminal 
lobes within the distal reaches of the system.

Interdune pond; elevated water table in 
enclosed interdune hollow

Damp interdune flats at upwind margin 
o f  aeo l ian dune- f ie ld ;  may be 
inundated by sheet-like non-confined  
fluvial flows; vegetation, bioturbation, 
calcisols

Packages of accumulated aeolian 
strata define sequences that are 

bounded by supersurfaces

Climbing damp and wet interdune strata form elongate 
lenses within dune-field margin areas; thickness, 
lateral extent and degree of interconnectedness of such 
interdune deposits decreases towards the dune-
field centre

Interdunes that are not subject to fluvial 
incursion may accumulate damp-surface 
adhesion structures due to locally elevated 
water table related to nearby flooding

Only small, 
single-thread fluvial channel 
elements tend to reach 
dune-field centre settings and 
these tend to be relatively 
uncommon

P r e d o m i n a t e l y 
aeolian dunes with 
limited evidence for 
fluvial incursion 

 Fluvial splays and 
floodouts during periods 

of increased runoff

Extensive areas of 
palaeosol development

Figure 3.1: Schematic model illustrating common depositional processes that operate at dune-field margins, and resultant 
stratigraphic relationships. No particular scale implied.
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desert sub-environments are known to have resulted in the preservation of 

complex arrangements of sedimentary deposits and stratigraphic 

architectures (Mountney, 2006a, 2012). 

Permanent, intermittent and ephemeral fluvial systems occur in many 

dryland regions (Powell, 2009), including in parts of Australia, India, Saudi 

Arabia, and the Southwestern United States (e.g., Schenk and Fryberger, 

1988; Tooth, 2000a, b; Glennie, 1987, 2005; Nanson et al., 2002), and many 

such systems exhibit complex and long-lived interactions with aeolian dunes. 

Some fluvial systems serve to generate significant supplies of sediment that 

are subsequently available for aeolian-dune construction, as in the Kelso 

dune-field, Mojave desert of California (Sharp, 1966; Kocurek and 

Lancaster, 1999). Similarly, alluvial-fan systems that form laterally extensive 

bajada may contribute significant sources of sediment for aeolian landform 

construction, as is the case for the Mojave River, southeastern California 

(Blair and McPherson, 2009; Belnap et al., 2011), and the alluvial-fan 

systems that border parts of the Rub’ Al-Khali sand sea, Saudi Arabia 

(Figure 3.2). Other fluvial systems limit the spatial extent of dune-fields and 

serve to remove significant volumes of sediment transported into river beds 

via aeolian processes from desert sedimentary systems (e.g. The Kuiseb 

River, Namibia, Goudie, 1972; Ward, 1983). 

The role of fluvial systems in aeolian-dominated deserts is significant: they 

are important landscape-forming and developing agents in many dryland 

systems (Wainwright and Bracken, 2011). Although many studies have 

documented types of interaction between aeolian and fluvial systems in both 

modern systems (e.g. Langford, 1989; Trewin, 1993; Stanistreet and 

Stollhofen, 2002; Bullard and McTainsh, 2003) and their ancient preserved 

successions recognised in the geological record (e.g. Langford and Chan, 

1988; 1989; Herries, 1993; Chakraborty and Chaudhuri, 1993; Mountney 

and Jagger, 2004; Jordan and Mountney, 2010; Spalletti et al., 2010), 

relatively few geomorphological studies have explicitly focused on types of 

interaction between contemporaneously active aeolian and fluvial systems 

(e.g. Frostick and Reid, 1987; Cooke et al., 1993; Tooth, 2000a,b; Bull and 

Kirkby, 2002; Parsons and Abrahams, 2009; Reid and Frostick, 2011; Liu 

and Coulthard, 2015). Analysis of types of aeolian-fluvial system interaction 
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Figure 3.2: Google Earth image from southern Arabian Peninsula showing the location of the Rub' Al-Khali sand sea and surrounding 
mountains. Note the presence of alluvial systems with catchments in the mountainous regions that surround the dune fields and the 
fluvial drainage networks that enter the dune fields.
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has implications for gaining an improved understanding of the effects of 

climate change. Furthermore, such analysis aids in the reconstruction of 

ancient palaeoenvironments (cf. Trewin, 1993; Herries, 1993; Yang et al., 

2002; Al Farraj and Harvey, 2004; Simpson et al., 2008; Jordan and 

Mountney, 2010). 

The increasing availability and global coverage of high-resolution satellite 

and aerial-photograph imagery through resources such as Google Earth 

(Butler, 2006; Yu and Gong, 2012; Fisher et al., 2012) has enabled the study 

of geomorphological relationships in detail for remote dryland settings (e.g. 

Tooth, 2006; Bullard et al., 2011; Al-Masrahy and Mountney, 2013). 

Significantly, the global coverage of such data means that comprehensive 

analyses can now be undertaken. This study utilises the latest generation of 

remotely sensed imagery to investigate the nature of aeolian and fluvial 

system interactions in a representative set of desert systems. 

The aim of this study is to propose a generalised framework with which to 

account for the diverse types of interaction known to exist between coeval 

aeolian and fluvial depositional systems, and to discuss the significance of 

these interactions for the geomorphological and sedimentological evolution 

of mixed aeolian-fluvial systems. Specific objectives of this work are: (i) to 

illustrate the principal types of aeolian-fluvial interactions documented from 

the world’s major dryland systems; (ii) to propose a framework for their 

classification; (iii) to demonstrate how the orientation of fluvial systems 

relative to the trend of aeolian bedforms present at the leading edge of dune-

fields controls the nature of aeolian-fluvial system interaction; (iv) to 

document how open and closed interdune corridors act to control the type 

and extent of incursion of fluvial systems into aeolian dune-fields; (v) to 

consider how different types of aeolian-fluvial interaction give rise to complex 

geomorphic arrangements of landforms; and (vi) to consider the implications 

of such arrangements for the palaeoenvironmental reconstruction of ancient 

preserved counterparts (Figure 3.1). 

This research is significant because it presents a robust framework to 

account for all the commonly identified types of aeolian-fluvial interaction in 

desert systems, which can be used as a tool to predict the likely spatial 
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extent over which such interactions occur in both modern systems and their 

ancient counterparts preserved in the rock record. 

3.3 Methodology 

The morphological expression and areal distribution of 130 examples of 

fluvial-aeolian interaction have been mapped using high-resolution satellite 

imagery of 60 desert dune-fields around the world (Figure 3.3). Case study 

examples have been classified to propose a framework of ten distinct types 

of system interaction. Studied desert systems include the Namib Desert and 

Skeleton Coast (Namibia), Taklamakan Desert (northwest China), Rigestan 

Desert (southwestern Afghanistan), Sahara Desert (North Africa), Algodones 

(southeastern California), White Sands (New Mexico), Rub’ Al-Khali and An 

Nafud sand seas (Saudi Arabia), and Wahiba Sands (Oman), Great Sany, 

Great Victoria, and Simpson deserts (Australia). 

The Google Earth Pro software tool provides global coverage of remotely 

sensed imagery, including for desert regions that are generally not readily 

accessible by land. The satellite imagery used is from multiple sources and 

is of variable age; study sites have been selected in part on the availability of 

high-quality imagery with spatial resolution of resolution 15 m per pixel, 

derived from 15 to 30 m-resolution multispectral Landsat data that have 

been pan-sharpened with panchromatic Landsat image processing software. 

The software and its associated datasets have been used to generate a 

high-resolution images in the form of tiles, each up to 4800 x 2442 pixels, 

that have been near-seamlessly stitched together to yield detailed composite 

mosaic images that are well suited to detailed analysis of desert landforms. 

3.4 Types of fluvial-aeolian interaction in aeolian dune-fields 

The following discussion presents a novel classification scheme for types of 

interaction between fluvial systems that are present both within and at the 

margins of aeolian dune-field systems. Ten distinct types of interaction are 

recorded and illustrated by 130 case-study examples from 60 deserts 

around the world. 

                    59



Patagonia

Lençóis 
Maranhenses

Atacama Namib

Kalahari
Australian

Sahara

Arabian

Thar

Mu Us 

TaklamakanTurkmenistan
Great
Basin

Mojave Sonoran

Ethiopian

Peruvian
(Loma)

Monte

Turpan

Libyan

Syrian

Danakil

Great
Sandy

Tanami

Great
Victoria

Simpson

1

53

3

8

9

20 21

55

60

2 33

31

32

34
37

38

35

36

39
40 45

28

29

30

26

27

42

44
43 41

11
10

12

13

54

4

5

6

7

22
23

24

25
19 15 16

1718 14

56

58
59

57

47

49
48

50
52

51

46

Nubian

Figure 3.3: Geographic locations of the sixty studied desert systems: 1 – Rub' 
Al-Khali Desert, 2 – An Nafud Desert, 3 – Ad Dahna Desert, 4 – Al Jafurah 
Desert, and 5 – Tihama Dune Fields Saudi Arabia; 6 – Wahiba Sands, Oman; 7 
– Coastal Dune Field southern Yemen; 8 – Syrian Desert, Syria; 9 – Eastern 
Desert, 10 – Western Desert, and 11 – Sinai Desert, Egypt; 12 – Nubian 
Desert, northern Sudan; 13 – Libyan Desert, eastern Sahara Desert; 14 – 
Idhan Murzuq Desert, Sahara Desert, Libya; 15 – Grand Erg Occidental 
Desert, 16 – Grand Erg Oriental Desert, 17 – Tassili-N-Ajjer Desert, 18 – Erg 
lguidi Desert, and 19 – Hamada Du Draa Desert, Sahara Desert, Algeria; 20 – 
Tassili-Oua-Ahaggar Desert, Sahara Desert, Niger; 21 – Tenere Desert, 
Southern Sahara Desert, Chad; 22 – El Djouf Desert, 23 – Akchar Desert, and 
24 – Trarza Desert, Sahara Desert, Mauritania; 25 – Western Sahara 26 – 
Chalbi Desert, Kenya; 27 – Namib Desert, 28 – Skeleton Coast, and 29 – 
Giribes Plain, Namibia; 30 – Kalahari Desert, South Africa; 31 – Rigestan 
Desert,  Afghanistan; 32 – Thar Desert, 33 – Kharan Desert, Baluchistan, 
Pakistan; 34 – Garagum Desert, Turkmenistan; 35 – Qizilqum Desert, 
Uzbekistan; 36 – Betpaqdala Desert, Southern Kazakhstan; 37 – Kavir Desert 
, and 38 – Lut Desert, Iran; 39 – Taklamakan Desert, 40 – Mu Us Desert, 41 – 
Gobi Desert, 42 – Turpan Desert, 43 – Gurbantünggüt Desert, 44 – Junggar 
Basin, and 45 – Horqin Desert, Inner Mongolia, China; 46 – Dune Fields 
northern Tibetan Plateau, China; 47 – Simpson Desert, 48 – Tirari Desert, 49 – 
Strzelecki Desert, 50 – Great Sandy Desert, 51 – Great Victoria Desert, and 52 
– Tanami Desert, Australia; 53 – White Sand Desert, New Mexico, 54 – 
Algodones Dune Field southeastern California, and 55 – Mojave Desert, 
California, United States; 56 – Sonoran Desert, Northeastern Mexico; 57 – 
Marayes Dune Field, and 58 – Vallecito Dune Field, Monte Desert, Argentina 
59 – Salinas Grandes Desert, Argentina; 60 – Lençóis Maranhenses, or 
Brazilian Sahara, Brazil.
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3.4.1 Fluvial incursions oriented parallel to trend of aeolian dune 

forms 

In cases where the configuration of aeolian dunes is such that they form 

elongate ridges with crestlines aligned close to parallel to the direction of 

fluvial flow and where neighbouring dune ridges are separated by interdune 

flats, fluvial systems are typically able to penetrate along the interdune 

corridors and into the aeolian dune-field, in some cases for many tens of 

kilometres. One example of this type of interaction is the northern margin of 

the Simpson Desert, Australia (Nanson et al., 1995), where fluvial systems 

flow along open interdune corridors with an average width of 450 m, 

between linear dunes (Figure 3.4a). A second example is the Kharan Desert, 

Pakistan, where fluvial systems flow along open interdune corridors with an 

average width of 1250 m between barchanoid and transverse dune ridges 

(Figure 3.4b). These and other representative examples are listed in Table 

3.1. 

Where interdune corridors between dunes are open, they serve to guide 

flood waters and provide the required paths for water to advance significant 

distances into aeolian dune-fields. Where interdune corridors narrow but 

nevertheless remain open, they may promote a localised increase in stream 

power as floods of a given discharge are forced through a narrow 

constriction, which may result in localised erosion, either laterally from the 

toes of adjoining aeolian dunes or via scour on the bed of the interdune 

corridor. Where erosion of aeolian deposits occurs, the nature of the 

sediment load being carried by flood waters will change, and this will 

influence the sedimentary character of resultant flood deposits. Where 

interdune corridors become closed, for example where two neighbouring 

dune ridges meet, flood waters will pond, giving rise to standing water 

bodies that gradually desiccate in the aftermath of the flood event; 

Sossusvlei in the Namib Desert is one such example. Where aeolian sand is 

blown over the course of river channels during dry episodes, the fluvial 

course may be progressively diverted with each successive flood event 

(Figure 3.5a) or terminated (Figure 3.5b). 

This type of interaction results in the deposition of ribbon-like fluvial deposits 

in cases where the aeolian dunes that funnel the flood waters into specific 

                    61



0               km               1
 

N

Fluvial channel flow direction

Trend of aeolian dunes

Vegetation
lines channel
banks

a

Sites of
sediment 
reworking

N

0               km               1
 

Fluvial channel
flow direction

b Trend of aeolian
dune crestline

Sites of sediment 
reworking
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crestlines of aeolian dune forms. (a) Northern Simpson Desert, Australia (24 
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Table 3.1:  Scheme for the classification of types of aeolian-fluvial system interaction, with 130 notable case-study examples 
documented from 60 modern desert systems. Column labelled “Fig. 3” provides a cross-reference to the desert locations shown 
in Figure 3. Abbreviations for aeolian bedform types: S – star; Cs – complex star; Br – barchan; Bi – barchanoid ridges; SB – 
superimposed barchanoid ridges; T – transverse; L – linear; P – parabolic; Cb – compound barchan; R – reverse; D – dome; 
SS –  Sand sheets. 

Interaction type 
Case 
Study 

No. 
Example Desert 

Desert 
No. 
(see 

Fig. 3) 

Case Study Location 

Dune 
spacing 
at outer 
dune-
field 

margin 
(km) 

Dune 
spacing 
at inner 
dune-
field 

margin 
(km) 

Interdune 
width at 

outer 
dune-
field 

margin 
(km) 

Interdune 
width at 

inner 
dune-
field 

margin 
(km) 

Mean 
fluvial 

channel 
width 
(m) 

Fluvial 
channel 
extent 
within 
dune-

field (km) 

Dominant 
aeolian 

bedform 
type 

  
   
1: Fluvial 
incursions 
oriented parallel 
to trend of 
aeolian dune 
forms  
  
  
  

1 Southern El Djouf Desert, Mauritania 22 18 04 17 N 11 11 09 W 2.26 1.51 2.21 1.40 244 114 L/T 
2 Western Idhan Murzuq Desert, Libya 14 24 34 52 N 11 43 59  E 3.38 1.64 3.31 1.35 21 13 Bi 
3 

Southwestern Rub’ Al-Khali Desert 1 
16 46 26 N 45 25 39 E 4.32 1.42 4.10 1.52 68 58 L 

4 17 01 50 N 45 16 23 E 4.65 1.17 4.20 0.35 80 34 L 
5 Grand Erg Oriental Desert, Algeria 16 29 00 56  N 04 36 20 E 2.40 1.30 2.10 1.62 31 15 L 
6 

Northern Simpson Desert , Australia 47 
24 23 07 S 135 28 24 E 0.51 0.19 0.45 0.45 67 29 L 

7 24 03 46 S 135 55 26 E 1.91 0.18 1.82 0.42 62 33 L 
8 Kharan Desert, Baluchistan, Pakistan 33 28 16 54  N 65 29 20 E 1.40 0.45 1.25 1.01 57 27 T/Bi 

  
   
2: Fluvial 
incursions 
oriented 
perpendicular to 
the trend of 
aeolian dune 
forms  
  
  
  
  

9 Mu Us Desert, China 40 40 22 29 N 109 18 00 E 1.6 0.49 1.40 0.18 50 07 Bi 
10 Wahiba Sand Sea, Oman 6 22 25 19 N 58 49 11  E 1.90 1.60 1.60 1.07 327 120 L 
11 Eastern Rub’ Al-Khali Desert, Saudi Arabia 1 19 10 06 N 44 24 58 E 0.18 0.13 0.15 0.10 36 06 Bi/T 
12 Namib Desert, Namibia 27 23 40 59 S 15 14 16 E 2.21 1.60 1.90 1.45 205 147 L 
13 Southern Simpson Desert, Australia 47 27 13 18 S 137 56 43 E 0.81 0.17 0.75 0.45 124 89 L 
14 Northern Simpson Desert, Australia 47 24 15 14 S 135 35 09 E 0.83 0.18 0.72 0.42 148 16 L 
15 Strzelecki Desert, Australia 49 28 25 11 S 138 56 35 E 1.35 0.78 1.12 0.40 133 198 L 
16 Kharan Desert, Baluchistan, Pakistan 33 27 46 16 N 63 48 19  E 2.31 0.24 2.11 0.04 165 86 Bi/L 
17 Tassili-N-Ajjer Desert, Sahara, Algeria 17 26 32 28 N 07 53 49  E 3.39 2.80 2.90 1.21 460 53 CS/L 
18 West Salinas Grandes Desert, Argentina 59 31 45 04 S 67 04 05 W 0.15 0.13 0.10 0.07 260 20 L 

  
3: Bifurcation of 
fluvial flow 
between isolated 
aeolian dune 
forms  

19 
Rub’ Al-Khali Desert, Oman 1 

18 31 24 N 53 22 06  E 1.30 1.27 0.90 1.67 18 32 S 
20 18 27 00 N 53 12 06  E 1.40 1.10 1.00 1.19 82 20 S 
21 18 35 23 N 53 25 35  E 1.85 1.38 1.50 1.47 73 39 S/Cs 
22 Rub’ Al-Khali Desert, Northeastern Yemen 1 18 37 12 N 51 24 40  E 3.03 1.57 2.60 2.43 120 7.61 S/CS/D 
23 Tenere Desert, Southern Sahara Desert, Chad 21 13 40 22 N 16 16 34 E 2.70 1.87 2.10 2.20 188 135 T/Br 
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24 Taklamakan Desert, China 39 38 22 42 N 81 53 46 E 1.46 1.58 1.20 1.67 74 161 Cb/SB 
25 Horqin Desert, Inner Mongolia, China 45 43 12 45 N 118 48 25E 0.69 0.48 0.53 0.22 134 06 T 
26 Dune Field southern Tibetan Plateau, China 46 29 55 57 N 83 31 48 E 0.66 0.34 0.73 0.14 

 
63 60 Br 

  
  
  
   
4: Through-going 
fluvial channel 
networks that 
cross entire 
aeolian dune 
fields  
  
  
  
  
  
  

27 Mu Us Desert, China 40 40 15 15 N 109 46 35E 0.16 0.15 0.11 0.04 74 17 Bi 
28 Eastern Grate Victoria Desert, Australia 51 28 57 46 S 135 56 51 E 0.98 0.62 0.85 0.35 138 98 L 
29 Tirari Desert,  Australia 48 27 49 13 S 137 37 34 E 1.17 0.48 1.12 0.26 182 162 L 
30 Southern Libyan Desert, Sudan 13 15 42 49 N 26 27 06  E 0.49 0.31 0.35 0.08 116 97 Bi/SS 
31 Nile River, eastern Sahara Desert/Sudan 12-13 18 55 06 N 30 33 47 E 0.49 0.31 0.41 1.23 620 800 Br 
32 Tihama Dune Fields, Saudi Arabia 5 19 26 36 N 41 06 29 E 0.35 0.11 0.31 0.24 142 34 Br/SS 
33 Sinai Desert, Egypt 11 30 56 43 N 33 57 26 E 0.49 0.32 0.42 0.17 57 56 Cb/L 
34 Southern El Djouf Desert, Mali 22 16 57 07 N 01 52 06 W 2.04 0.96 1.90 1.80 561 500 L 
35 Holtan River, Taklamakan Desert, China 39 39 15 31 N 80 52 22  E 2.28 0.12 2.10 0.10 157 396 Bi/SB/Cb 
36 Garagum Desert, Turkmenistan 34 40 17 42 N 61 50 23  E 2.45 0.16 2.20 0.18 475 275 SB/Br 
37 Kalahari Desert, South Africa 30 25 06 26 S 20 20 37  E 0.75 0.26 0.68 0.21 90 602 L 
38 Horqin Desert, Inner Mongolia, China 45 43 07 51 N 119 17 45E 0.28 0.22 0.14 0.07 48 42 T/Br 
39 Grand Erg Occidental Desert, Algeria 15 29 07 22 N 01 01 50 W 6.90 0.11 5.09 0.03 115 289 Cs/T/SB 

  
  
  
  
  
   
  
5: Fluvial flooding 
of aeolian dune 
fields associated 
with elevated 
water-table level  
  
  
  
  
  
  

40 
Gobi Desert, northern China 41 

39 46 11 N 102 09 00 E 4.23 2.99 1.13 2.59 NA NA SB 
41 38 40 42 N 104 54 15 E 2.70 3.22 1.90 0.86 NA NA T/Br 
42 Taklamakan Desert, China 39 40 54 43 N 85 30 27 E 1.42 1.24 0.95 0.51 NA NA Cb 
43 Al Jafurah Desert, Eastern Saudi Arabia 4 25 47 17 N 49 48 28 E 0.62 0.51 0.38 0.15 NA NA T/Br 
44 North-eastern Rub Al-Khali, Saudi Arabia 1 24 26 14 N 51 09 37 E 0.83 0.91 0.67 0.45 NA NA Br/T 
45 Western Desert, Egypt 10 29 08 13 N 25 26 33 E 2.64 0.69 1.30 0.51 NA NA L/SB 
46 Northern Grand Erg Oriental Desert ,Tunisia 16 33 37 35 N 07 56 32 E 2.30 0.38 0.97 0.15 NA NA L 
47 Libyan Desert, Northeastern Chad 13 18 56 52 N 20 51 36 E NA 0.57 NA 0.21 NA NA Br/Bi 
48 Tenere Desert, Southern Sahara Desert, Chad 21 14 35 38 N 14 42 29 E 3.85 2.65 2.40 0.63 NA NA T 
49 Betpaqdala Desert, Southern Kazakhstan 36 43 32 33 N 72 18 11  E 1.65 2.80 0.97 1.65 NA NA Br/Bi 
50 Thar Desert, Pakistan 32 26 23 01 N 69 45 01  E 4.11 0.67 2.10 0.22 NA NA SB/Bi 
51 Lençóis Maranhenses Desert, Brazil 60 02 34 31 S 42 57 03 W 0.43 0.54 0.27 0.27 NA NA Br/Bi/T 
52 Great Victoria Desert, Australia 51 28 39 16 S 128 20 58 E 1.31 1.42 0.65 0.63 NA NA L 
53 Dune Field northern Tibetan Plateau, China 46 37 04 20 N 90 33 05  E 1.14 0.70 0.53 0.22 NA NA Cs/Bi 
54 Mu Su Desert, China 40 39 14 43 N 108 50 36 E 0.52 0.34 0.37 0.18 NA NA T/Br/Bi 
55 Horqin Desert, Inner Mongolia, China 45 42 57 47 N 119 33 38E 0.71 0.61 0.42 0.23 NA NA T/Br/Bi 

   
 6: Fluvial 
incursions into 
aeolian dune 
fields associated 

56 Giribes Plain, Namibia 29 19 01 34 S 13 21 34 E NA NA NA NA 32 2.91 SS 
57 Southern Kavir Desert ,Iran 37 33 36 37 N 53 45 55  E 2.14 1.26 1.42 0.25 26 17 L/Bi 
58 Simpson Desert, Australia 47 24 08 55 S 135 13 56 E 1.74 1.68 1.33 1.24 15 05 L/SS 
59 Sonoran Desert, Northwestern Mexico 56 32 03 08 N 113 37 37 W 0.38 0.56 0.28 0.09 13 04 L 
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with a single 
point source 
  
  
  
  
  
  
  
  

60 34 12 03 N 115 16 50 W 0.31 0.38 0.12 0.04 04 06 D/SS 
61 White Sand Desert, USA 53 32 51 54 N 106 12 11W 0.21 0.16 0.10 0.06 07 05 T/Br/P 
62 

Grand Erg Occidental Desert, Algeria 15 
32 26 55 N 00 10 53   E 3.35 3.16 2.20 0.67 262 135 T/L/Br 

63 32 30 19 N 00 08 39 W 0.19 0.80 0.12 0.04 63 03 L 
64 Libyan Desert, central Sahara Desert, Libya 13 23 55 43 N 19 46 42 E 3.57 3.07 2.73 0.49 105 09 L 
65 Tenere Desert, central Sahara Desert, Chad 21 19 23 40 N 16 37 02 E 1.00 0.88 0.57 0.36 187 93 T/Bi/SB 
66 Akchar Desert, Mauritania 23 20 42 53 N 11 59 50 W 0.32 0.12 0.27 0.03 127 10 Br/Bi/L 
67 Erg lguidi Desert, Algeria 18 27 31 26 N 03 45 48  W 2.30 3.60 1.20 2.30 112 22 S/L 

  
  
  
  
7: Fluvial 
incursions into 
aeolian dune 
fields associated 
with a multiple 
sheet source  
  
  
  
  
  

68 
Sonoran Desert, Northwestern Mexico 56 

31 28 13 N 112 55 36 W 0.56 0.26 0.46 0.19 228 08 L/Bi 
69 31 45 29 N 113 08 19 W 0.37 0.17 0.27 0.07 397 07 L/Bi 
70 Algodones Dune Field, south California, USA 54 33 06 00 N 115 14 44 W 1.48 0.43 0.75 0.15 244 02 T/Bi 
71 Tassili-N-Ajjer Desert, Algeria 16 26 43 05 N 06 54 04  E 6.08 2.96 3.94 0.96 240 02 Cs/SB/L 
72 Hamada Du Draa Desert, Algeria 19 29 54 39 N 03 08 59 W 0.71 1.14 0.48 0.34 385 1.6 Cs 
73 Akchar Desert, Mauritania 23 21 26 46 N 11 42 37 W 0.53 0.32 0.35 0.07 387 1.74 Bi/SB/L 
74 Southern Kavir Desert ,Iran 37 33 32 33 N 53 56 43 E 1.74 1.25 1.09 0.41 580 06 Br/Bi 
75 Lut Desert,  Iran 38 30 03 51 N 59 37 57  E 0.43 2.41 0.12 0.51 1200 07 T/S/L 
76 Kharan Desert, Baluchistan, Pakistan 33 28 47 10 N 64 23 01  E 0.31 0.11 0.09 0.05 289 2.4 T/Bi/SB 
77 Betpaqdala Desert, Southern Kazakhstan 36 44 17 57 N 68 43 37 E 0.82 1.12 0.53 0.49 269 540 Bi/T 
78 Gobi Desert, northern China 41 41 36 31 N 101 58 43 E 0.83 1.44 0.38 0.24 197 0.86 S/Bi 
79 Mojave Desert, California 55 34 56 27 N 115 39 10 W 0.35 0.18 0.17 0.05 377 0.91 Bi/SB 

  
  
  
  
  
   
  
  
8: Cessation of 
encroachment of 
aeolian dune 
fields by fluvial 
systems  
  
  
  

80 Qizilqum Desert, Uzbekistan 35 44 12 28  N 66 08 20 E 1.30 0.27 0.64 0.09 326 589 T/Bi 
81 Kuiseb River, Namib Desert 27 23 30 21 S 14 59 00  E 2.28 2.25 0.97 0.77 307 150 L/Bi 
82 Swakop River, Namib Desert 27 22 41 14 S 14 32 36  E 0.12 0.21 0.13 0.08 185 04 L/Bi 
83 Kunene River, Namib Desert 27 17 15 29 S 11 49 17  E 0.42 0.49 0.17 0.03 180 63 Bi/SB/Br 
84 Hoarusib River, Skeleton Coast, Namibia 28 19 01 15 S 12 39 07  E 0.61 0.41 0.37 0.17 274 26 Bi/SB/Cb 
85 

North Namib Desert, Angola 27 
16 17 40 S 12 16 23 E 0.17 0.28 0.04 0.18 119 08 Bi/SB 

86 15 46 50 S 11 59 01  E 0.18 0.27 0.04 0.06 462 86 Bi 
87 

Yellow River, Mu Us Desert , China 40 
40 04 26 N 106 44 06 E 0.28 0.27 0.19 0.04 687 147 Bi/SB/T 

88 40 06 38 N 110 40 57 E 0.33 0.11 0.19 0.03 53 10 Bi/T 
89 Irtysh River, Junggar Basin, Northwestern 

China 
44 47 57 22 N 85 42 40 E 0.22 0.40 0.33 0.08 342 100 Bi/T 

90 Tuolahai River, Northern Tibetan Plateau, 
China 

46 36 42 06 N 94 30 03 E 0.33 0.17 0.41 0.09 232 24 Br/T 
91 Vallecito Dune Field, Monte Desert, Argentina 58 31 52 15 S 67 49 43 W 1.98 2.34 1.04 0.35 116 50 L/Bi/SB 
92 Marayes Dune Field ,Monte Desert, Argentina 57 31 22 32 S 67 29 52 W 1.07 1.47 0.41 0.17 258 27 L/Bi 
93 Helmand River,  Rigestan Desert, Afghanistan 31 31 22 34 N 65 53 27 E 0.22 0.18 0.09 0.04 218 176 Bi/SB 
94 Euphrates River, Northern Syrian Desert, Syria 8 34 50 25 N 40 24 35 E NA NA NA NA 391 65 SS 
95 Chalbi Desert, Kenya 26 02 51 35 N 37 45 13 E 0.26 0.13 0.16 0.02 75 16 L/SS 
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96 Nile River, Western Desert, Egypt 10 28 12 00 N 30 31 26 E 0.59 0.23 0.31 0.04 643 364 Bi/SB/SS 
97 Northern Hamada Du Draa Desert, Morocco  19 31 33 00 N 04 31 21 W 0.07 

 
0.04 0.05 0.02 55 13 T/Br 

  
  
  
  
  
  
  
  
  
9: Termination of 
fluvial channel 
networks in 
aeolian dune 
fields  
  
  
  
  
  
  
  
  
  

98 Coastal Dune Field southern Yemen 7 14 17 22 N 47 54 39 E 3.42 1.34 1.83 0.15 189 11 Bi/SB 
99 An Nafud Desert, Saudi Arabia 2 24 22 58 N 46 14 14 E 2.07 1.08 0.72 0.29 53 04 Bi/SB/D 

100 Tassili-Oua-Ahaggar Desert, Sahara , Niger 20 20 06 00N 08 37 51 E 1.73 0.43 0.74 0.05 40 03 S/R/Bi 
101 Tenere Desert, Sahara, Niger  21 19 20 29 N 16 34 23 E 0.58 0.27 0.38 0.12 165 101 T/Bi 
102 

Ad Dahna Desert, Saudi Arabia 3 
25 17 40 N 47 24 12 E 5.42 7.38 2.46 2.69 68 03 Bi/SB 

103 25 20 58 N 47 17 31 E 5.63 8.56 3.34 2.28 67 01 Bi/SB 
104 Taklamakan Desert, China 39 37 41 22 N 82 41 28 E 3.53 3.07 1.24 1.35 199 95 L/Br 
105 Turpan Desert, China 42 42 31 06 N 90 21 53 E 1.12 1.99 0.65 0.37 95 04 Cs/T/R 
106 White Sand Desert, USA 53 32 57 57 N 106 14 03 W 0.59 0.10 0.59 0.03 46 12 T/Br/P 
107 Sonoran Desert, Northwestern Mexico 56 31 50 15 N 113 11 39 W 0.42 0.24 0.33 0.18 78 06 Bi/L/SS 
108 Gurbantünggüt Desert, Northwestern China 43 44 26 50 N 89 20 33 E 0.36 0.24 0.18 0.06 102 53 L/Bi 
109 Lut Desert, Iran 38 29 37 35 N 58 50 09 E 2.60 2.05 1.78 0.21 108 04 Bi/L 
110 Great Sandy Desert, Australia 50 22 09 41 S 122 55 00 E 1.50 0.33 1.02 0.26 188 68 L 
111 Simpson Desert, Australia 47 24 10 29 S 135 15 53 E 0.63 0.35 0.55 0.25 115 11 L 
112 Vallecito Dune Field, Monte Desert, Argentina 58 31 49 59 S 67 53 02 W 1.23 1.47 0.63 0.19 41 08 L/Bi/SB 
113 Tsondabvlei, Namib Desert, Namibia 27 23 55 37 S 15 22 36  E 2.67 2.08 1.89 0.98 40 60 L/S/Bi 
114 Namib Desert, Angola 27 16 22 05 S 12 09 36 E 0.15 0.22 0.09 0.03 135 1.5 SB/T 
115 Trarza Desert, Mauritania 24 19 33 58 N 13 19 54 W 7.22 3.45 3.69 1.32 61 05 Bi/SB/Br 
116 

Skeleton Coast, Namibia 28 
19 57 15 S 13 12 24 E 0.88 0.27 0.64 0.12 99 1.4 SB/Bi/L 

117 20 01 46 S 13 16 17 E 0.38 0.26 0.29 0.06 145 03 SB/Bi/L 
118 Western Sahara 25 27 09 45 N 13 15 10 W 0.84 0.14 0.73 0.08 40 58 Bi/Br/Cb 

  
  
 
 
10: Examples of 
short-term versus 
long-term fluvial-
aeolian  
interaction  
  
  
  
  
  
  
  

119 Southeastern Libyan Desert, Sudan 13 15 39 11 N 26 25 44 E 0.48 0.42 0.28 0.20 84 09 T/SS 
120 Western Libyan Desert,  North Chad 13 19 59 03 N 19 31 19 E 0.14 0.35 0.05 0.11 374 30 Br/Cb/L 
121 

Hamada Du Draa Desert, Algeria 19 
28 58 03 N 04 02 14 W 6.56 4.81 3.84 3.86 217 23 Bi/S/L 

122 28 52 38 N 04 02 13 W 5.35 2.46 2.89 1.12 410 NA Bi/S/L 
123 Eastern Sahara Desert, Egypt 9 23 09 39 N 30 42 44 E 0.57 0.28 0.34 0.04 NA NA Bi/Cb/D 
124 

Great Sandy Desert, Australia 50 
22 38 00 S 123 18 36 E 1.23 0.76 0.97 0.40 NA NA L 

125 22 18 10 S 128 56 12 E 2.87 0.26 5.56 0.18 NA NA L 
126 Tanami Desert, Australia 52 19 23 02 S 131 35 10 E 2.04 1.05 1.67 0.75 NA NA L 
127 Gurbantünggüt Desert, Northwestern China 43 44 24 03 N 91 05 17 E 0.22 0.23 0.13 0.09 NA NA T/Bi 
128 Betpaqdala Desert, , Southern Kazakhstan 36 43 34 11 N 72 12 56 E 8.71 4.01 5.28 1.21 NA NA Bi 
129 

Taklamakan Desert, China 39 
37 55 41 N 81 28 49 E 1.48 2.18 0.98 0.61 NA NA Cb/SB 

130 37 56 35 N 81 32  18 E 1.48 2.18 0.98 0.61 NA NA Cb/SB 
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interdune corridors are fixed in position. Alternatively, in cases where the 

dunes and their intervening interdunes gradually migrate laterally between 

successive flood events, fluvial deposits arising from successive floods may 

expand laterally to form more sheet-like depositional elements (cf. Langford 

and Chan, 1988). In both cases, the opportunity for aeolian reworking of 

flood deposits is significant, and winnowing of sand and finer fractions by the 

wind is likely, resulting in the generation of armoured lag deposits (Krapf et 

al., 2005; Simpson et al., 2008). Thus, fluvial incursion along interdune 

corridors can generate a local supply of sediment suitable for later aeolian 

construction. Conversely, the deposition of mud drapes through suspension 

settling in ponded flood waters may limit the availability of underlying sand 

substrates for later aeolian transport (Cain and Mountney, 2009, 2011). 

3.4.2 Fluvial incursions oriented perpendicular to the trend of 

aeolian dune forms 

In cases where the configuration of aeolian dunes is such that they form 

elongate ridges with crestlines aligned close to perpendicular to the direction 

of fluvial flow, aeolian topography will exert a significant control on fluvial 

flood pathways, and the nature of the flooding event. In cases where such a 

configuration is present at the outer margin of an aeolian dune-field, flood 

events may be prevented from passing into the dune-field and may instead 

become ponded or be diverted in orientations parallel to the trend of the 

dunes at the outer dune-field margin (Figure 3.6). Where flood waters pond, 

the water level may rise to a point where saddles (cols) between 

neighbouring dune crests are breached, thereby allowing fluvial incursion 

into the inner part of a dune-field. Fluvial breaching at specific sites will 

rapidly lead to erosion and incision as flow is forced through a narrow gap 

between dunes. Three examples where this process is documented are the 

interaction between sand dunes of the Mu Us Desert and the Sala Us River, 

Inner Mongolia, China (Li et al., 2012), ephemeral rivers of the Skeleton 

Coast, northwestern Namibia, including the Hoanib, Uniab, and Hunkab 

rivers (Stanistreet and Stollhofen, 2002), and the Todd River, northwestern 

Simpson Desert, Australia (Hollands et al., 2012). The interaction of Wadi 

Batha Oman with aeolian dunes of the Wahiba Sand Sea (Warren, 1988; 

Figure 3.6a) records a 120 km-long fluvial system that flows eastwards along 
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Figure 3.6: Examples of fluvial incursions oriented perpendicular to trend of 
the crestlines of aeolian dune forms. (a) Wahiba Sand Sea, Oman (22 25 19 
N 58 49 11  E); (b) Namib Desert, Namibia (23 40 59 S 15 14 16 E). See text 
for discussion. (Image source: Google Earth Pro).
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the northern margin of a dune-field composed of north-south trending linear 

dunes with an average dune spacing of 1900 m. Fluvial incursion into the 

dune-field is restricted to the outermost 1 to 2 km of open interdune corridors 

where localised ponding of floodwater occurs. The northern and eastern 

boundaries of the dune-field are delineated by the Wadi Batha, which 

maintains a course close to perpendicular to the tip-out points of the large 

linear dunes. At the northern margin of the Namib Desert, Namibia (Figure 

3.6b), the northward advance of large linear dunes of the Namib sand Sea is 

curtailed by the Kuiseb River, which intermittently flows westwards: aeolian 

sand blown into the river channel during dry episodes is periodically flushed 

up to 147 km downstream during major seasonal flood events. These and 

other representative examples are listed in Table 3.1. 

This type of interaction is typically expressed as a sharp boundary between 

adjoining fluvial and aeolian environments. Where fluvial flood waters 

repeatedly pond against the leading edge of an aeolian dune-field, fine-

grained, mudstone layers will progressively accumulate (e.g., Wadi Al Ayn 

and Wadi Al Batha, Oman: Glennie, 2005). In cases where flood waters are 

saline and where ponded water evaporates or infiltrates only slowly, salts 

such as calcium carbonate, gypsum, halite or potash may be precipitated 

(Valyashko, 1972). For example, the salt flats of Umm as Samim, close to 

the eastern border of the Rub’ Al-Khali Sand Sea, Oman, occur in a low-

lying area between the alluvial fans to the north, the aeolian dunes of the 

Rub' Al Khali to the west and south (Figure 3.2; Goodall et al. 2000). If the 

outer edge of the aeolian dune-field gradually expands over time via dune 

migration, aeolian deposits may become juxtaposed over flood deposits. 

Conversely, if the outer edge of the aeolian dune-field gradually retreats 

(contracts), aeolian deposits may become overlain by flood deposits. 

3.4.3 Bifurcation of fluvial flow between isolated aeolian dune 

forms 

In cases where fluvial flood waters pass into the outer parts of aeolian dune-

fields that are characterised by isolated bedforms or small clusters of 

bedforms of variable size, orientation and spacing, the physical organisation 

of the dunes (or dune clusters) may encourage flood waters to bifurcate 

around the topographic obstacles on both sides. This process is common in 
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the southeastern part of the Rub’ Al-Khali Desert, Oman (Figure 3.2), which 

is dominated by fields of simple and compound star dunes that are bordered 

by the mountains of Oman from which flood events emanate. The distance 

of penetration of these fluvial systems is 20 to 40 km (Figure 3.7a), and this 

is governed by the flow frequency and magnitude, surface topography, 

substrate type (which governs infiltration rate and capacity) and aeolian 

bedform morphology. In some examples, such as the Keriya River in the 

Taklamakan Desert, China, intricate threading of fluvial channels between 

migrating but spatially isolated aeolian dunes is widespread (Figure 3.7b): in 

this example aeolian bedforms or clusters of bedforms that comprise small 

dune-fields are fixed in position by well-established fluvial courses. Similar 

types of interaction are also common in non-desert aeolian settings, 

including on Skeiðarársandur, southern Iceland (Mountney and Russell, 

2009). These and other representative examples are listed in Table 3.1. 

The presence of flowing water in such settings may affect sand dunes either 

directly through erosion or indirectly by generating a local supply of sediment 

suitable for later aeolian construction. In cases where episodic flooding 

results in a water table level that remains permanently close to the aeolian 

accumulation surface, such that the dune-field margin may be classed as a 

wet aeolian system (sensu Kocurek and Havholm, 1993), the long-term 

preservation potential of migrating but spatially isolated aeolian bedforms 

may be enhanced (cf. Mountney and Russell, 2009). 

3.4.4 Through-going fluvial channel networks that cross entire   

aeolian dune-fields 

In cases where fluvial systems pass through entire aeolian dune-fields, the 

presence of a fluvial course may act to effectively partition the dune-field by 

disrupting or limiting aeolian sediment transport pathways (Figure 3.8a; cf. 

Ward, 1987; Krapf et al., 2003). Such fluvial channel networks (or non-

channelised fluvial pathways) may be either permanent (e.g. Nile River, 

Sudan), intermittent (e.g. Saoura River, Algeria) or ephemeral (e.g. Uniab 

River, Skeleton Coast, Namibia and Wadi Juweiza, United Arab Emirates). 

Such fluvial systems may operate as an agent of aeolian erosion; seasonally 

active fluvial courses may be filled with aeolian-derived sediment during dry 

episodes, and this sediment will be flushed downstream out of the dune-field 
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Figure 3.7: (a) Example of ephemeral fluvial channel network between star draa, southeastern Rub' Al-Khali Desert, Oman (18 31 24 
N 53 22 06 E). (b) Example of intricate threading of fluvial channels between migrating aeolian dunes and small disconnected dune 
fields in the Taklamakan Desert, China (38 22 42 N 81 53 46 E). (Image source: Google Earth Pro).
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during each flood event. In some cases, this acts to transport sediment 

suitable for aeolian construction to parts of the dune-field further 

downstream. In cases where fluvial flooding along the fluvial flow pathway is 

frequent and regular, repeated flushing of sediment may severely limit the 

availability of sediment for aeolian construction to the part of the dune-field 

lying downwind of the river course (Figure 3.4). Alternatively, through-going 

fluvial systems may act to generate a localised supply of sediment for further 

aeolian construction, especially if they undergo a downstream reduction in 

flow competency. Where aeolian dunes are prevented from migrating across 

fluvial courses, the aeolian bedform character (size, morphological type, 

sediment composition) will be markedly different on the downwind side of 

fluvial course. The world’s largest example is the 2000 km-long course of the 

Nile River through the eastern Sahara Desert (Figure 3.8a), which separates 

dune-fields of the Nubian Desert from those in the main Saharan sand seas. 

A second example is Warburton River, which separates the Simpson Desert 

from the Tirari Desert, Australia: average channel width is 182 m (Figure 

3.8b). These and other representative examples are listed in Table 3.1. 

The sedimentary record of these types of interactions is predictable. Aeolian 

sand transported into river courses will provide a source detritus that will 

typically be composed of well-sorted, fine sand suitable for fluvial 

transportation; fluvial deposits lying downstream from the dune-field will 

reflect this character. By contrast, aeolian deposits in areas downwind from 

the fluvial course may have a sediment composition that reflects the fluvial 

source. 

3.4.5 Fluvial flooding of aeolian dune-fields associated with 

elevated water table level 

In aeolian dune-fields where floods of relatively high magnitude and 

frequency occur, or where charge to subsurface aquifers is high due to 

either direct or indirect precipitation, interdune areas may be inundated by 

water not only during flood events. The local water table may remain 

permanently at or close to the accumulation surface such that low-lying 

interdune flats remain wet or damp between successive flood events (Nash, 

2011). Thus, aeolian dunes may be surrounded for protracted episodes by 

wet (i.e. flooded) or damp interdunes (Figure 3.9). Such wet aeolian systems 
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(sensu Kocurek and Havholm, 1993) undergo aeolian construction and 

accumulation in a manner that differs from dry aeolian systems. Aeolian 

sediment transport across wet and damp sediment surfaces is severely 

restricted (Hotta et al., 1984; Good and Bryant, 1985; Crabaugh and 

Kocurek,1993; McKenna and Scott, 1998; Mountney and Russell, 2009), 

which limits the volume of sediment available for aeolian dune construction. 

Airflows in wet aeolian systems are therefore commonly under-saturated 

with respect to their potential sand transport capacity, rendering dry sand on 

existing aeolian dunes susceptible to erosion as the wind attempts to entrain 

more sediment. If direct precipitation in the dune-field acts to render dune 

surfaces damp for protracted periods, the effects of aeolian deflation may be 

limited. Rates of aeolian dune migration may be low or zero where flooded 

interdunes prevent bedform advancement. Fluctuations between relatively 

higher and lower water table levels can allow interdunes to change from a 

dry, to damp, to wet state on a seasonal basis and associated aeolian 

activity will reflect these changes. For example, the Lençóis Maranhenses 

dune-field, Brazil, is characterised by the presence of chains of barchanoid 

and transverse dunes separated by interdune lakes and lagoons that flood 

during the wet season (Parteli et al., 2006; Luna et al., 2012). Sauda Nethil 

Sabkha, Qatar (Ashour, 2013) and Chott Rharsa playa lake basin (Blum et 

al., 1998) are other similar examples. Other examples of wet aeolian 

systems in which interdune depressions are flooded in response to a high 

water table level include parts of the Gobi Desert of northern China (Figure 

3.9a) and part of the Al Jafurah Desert, eastern Saudi Arabia (Figure 3.9b). 

In this latter example, a progressive rise in relative water table is enabling 

preservation of the toesets of aeolian dunes that pass over the damp 

surface. These and other representative examples are listed in Table 3.1. 

Damp and wet interdune deposits typical of this type of interaction include 

adhesion structures (adhesion ripples, adhesion warts and adhesion plane 

beds), aqueous-ripple structures, wavy laminations, contorted structures and 

brecciated laminae (Kocurek, 1981; Kocurek and Fielder, 1982). Elevated 

water table levels promote aeolian accumulation and long-term preservation, 

especially in systems where aeolian dune-fields are constructed in subsiding 

sedimentary basins: slow but progressive basin subsidence will gradually 
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cause the aeolian dune deposits to sink beneath a static but relatively high 

water table via a so-called relative water table rise (sensu Kocurek and 

Havholm, 1993), as is the case for the Skeiðarársandur dune-fields in 

southern Iceland (Mountney and Russell, 2009) and part of the Al Jafurah 

Desert, eastern Saudi Arabia (Figure 3.9b). An elevated water table also 

limits the effects of aeolian deflation (Fryberger et al., 1988). 

3.4.6 Fluvial incursions into aeolian dune-fields associated with a  

single point source 

The arrangement of landforms at the margins of desert sedimentary basins 

can act as a fundamental control on the nature of fluvial-aeolian interaction 

(Mountney, 2005). In many desert settings fluvial systems emanate from 

basin-bounding highland areas to pass as single-thread systems into the 

receiving desert basin in which aeolian dune-fields are developed, as is the 

case for wadis at the southern edge of the Rub’ Al-Khali (Glennie, 1970). 

Thus, fluvial systems commonly intersect aeolian dune-fields at specific 

points along their margins. One common scenario is where an aeolian dune-

field lies in front of a valley where a mountain stream emerges from its 

catchment. The confinement of the stream within a valley system, the short 

distance from the catchment to the aeolian dune-field, and the generally high 

gradient of the fluvial profile each act to reduce the opportunity for fluvial 

avulsion, thereby confining the river to a single point for a protracted period. 

Thus, the site of fluvial incursion of such single-thread fluvial systems into an 

aeolian dune-field remains fixed. Where such fluvial systems intersect the 

leading outer edge of an aeolian dune-field, their ability to penetrate the 

dune system will be dictated by factors such as the magnitude and 

frequency of the flood events, together with the orientation and continuity of 

dune ridges present at the dune-field margins. The areal extent over which 

dune-field flooding associated with single-thread fluvial channels operates 

tends to be limited, as is the case in examples from the White Sand Desert, 

New Mexico (Figure 3.10a). In cases where several single-thread channels 

enter into an aeolian dune-field, the lateral spacing of such fluvial courses 

dictates the types of fluvial-aeolian interaction, as is the case in the Grand 

Erg Occidental Desert, North Sahara Desert, Algeria (Figure 3.10b). These 

and other representative examples are listed in Table 3.1. 
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Figure 3.10: Examples of fluvial incursions into aeolian dune fields 
associated with a single point source. (a) White Sands, New Mexico, USA (32 
51 54 N 106 12 11 W); (b) Grand Erg Occidental Desert, northern Sahara 
Desert, Algeria (32 30 19 N 00 08 39 W). The maximum extent of fluvial 
channel penetration into the   dune field is 5 km. (Image source: Google Earth 
Pro). 
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The sedimentary expression of single-thread fluvial channels will be limited 

to the zone of penetration of the fluvial system into an aeolian dune-field, 

and this will tend to be present over a limited area in cases where the fluvial 

systems are fixed in position for protracted episodes. Consequently, the 

preserved sedimentary record may reveal limited lateral variations. 

3.4.7 Fluvial incursions into aeolian dune-fields associated with a  

multiple sheet source 

Alluvial fans commonly form extensive bajada where multiple catchments 

are present in close proximity along mountain fronts in arid settings (e.g., 

Padul Depression bajada, Spain, Calvache et al., 1997; bajada of northern 

Oman, Rodgers and Gunatilaka, 2002; Death Valley, Nevada, USA, Harvey, 

2011). Similarly, distributive fluvial systems form networks of channels where 

they pass out onto low relief desert plains (cf. Hartley et al., 2010; 

Weissmann et al., 2011). Fluvial networks in such systems are commonly 

arranged into broad areas occupied by poorly-defined channels and are in 

some cases subject to non-confined flow over low-gradient surfaces 

(Hampton and Horton, 2007). Where such systems meet aeolian dune-field 

margins, they typically do so as sheet-like sources that may be active across 

distances of many tens of kilometres. Examples include part of the Sonoran 

Desert, northwestern Mexico (Figure 3.11a), and part of the Gobi Desert, 

northern China (Figure 3.11b). Aeolian-fluvial system interactions of this type 

occur over wide areas and multiple fluvial incursions may occur at many 

places along the dune-field margin. Non-confined sheet-like flood flows are 

typical, especially in the immediate aftermath of rainstorms. High-magnitude 

rainfall events, catchment area and relief, the low infiltration capacity of the 

substrate, the short run-off length from catchment to receiving basin the lack 

of appreciable relief on the basin plain, and the general absence of dense 

vegetation cover that might otherwise act to subdue run off, are all factors 

that contribute to sheet-like floods over large areas (Blair and McPherson, 

1994; Blair, 1999; Arzani, 2005; Goudie, 2013). Such non-confined flows 

typically pass into dune-fields penecontemporaneously along multiple open 

interdune corridors with access gained from multiple points along the dune-

field margin. Representative examples are listed in Table 3.1. 
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Figure 3.11: Examples of fluvial incursions into aeolian dune fields 
associated with a sheet source. (a) Sonoran Desert, northwestern Mexico 
(31 28 13 N 112 55 36 W); (b) Gobi Desert, north China (41 36 31 N 101 58 
43E). Note the area of fluvial encroachment into the aeolian system. (Image 
source: Google Earth Pro).
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This type of aeolian-fluvial system interaction results in the widespread 

distribution of fluvial-derived sediment within dune-fields. Flooding over a 

wide spatial area means that the energy of the flow at any one location will 

be reduced. As such, the capacity of such flood events to erode aeolian 

bedforms will tend to be limited, except where non-confined flows locally 

coalesce into channels, for example where they are funnelled into narrow 

interdune corridors. Such flood deposits may serve to generate a localised 

supply of sediment for later aeolian dune construction. 

3.4.8 Cessation of encroachment of aeolian dune-fields by fluvial 

systems 

The downwind margins of several very large aeolian dune-fields are defined 

as spatially abrupt boundaries due to the presence of ephemeral or 

perennial fluvial systems that are effective in limiting the downwind 

encroachment of the dune-field. One large-scale example is the eastern 

boundary of the Sahara Desert, which terminates at the Nile River (Figure 

3.8a). Even relatively small ephemeral fluvial systems may be effective in 

halting dune-field encroachment, as is the case for the Kuiseb River at the 

northern (downwind) margin of the Namib Sand Sea (Figure 3.6b). Other 

examples include the northern limit of the Skeleton Coast Dune-field, 

Namibia, which terminates at the Kunene River (Figure 3.12a), and the Mu 

Us Desert, northern China, which terminates at the Yellow River (Figure 

3.12b). Flash floods passing down channel networks are commonly of 

sufficient magnitude to flush aeolian sand downstream, in some cases to a 

long-term sediment sink – the Atlantic Ocean in the case of the Kuiseb River 

that defines the northern margin of the Namib Sand Sea and the Kunene 

River that defines the limit of the Skeleton Coast Dune-field (both Namibia). 

These and other representative examples are listed in Table 3.1. 

3.4.9 Termination of fluvial channel networks in aeolian dune-

fields 

Where fluvial systems terminate within the inner parts of aeolian dune-fields 

they do so in a variety of ways (e.g., Al Farraj and Harvey, 2004). A common 

type of fluvial termination is associated with a transformation from 

channelised to non-channelised flow, which tends to reduce flow 

competence, thereby expediting flow termination. Such conditions are 
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common in ephemeral systems and may occur in any part of the aeolian 

dune-field depending on the energy of the flow. At the point of fluvial 

termination, suspended sediment comprising clay and fine silt sediment 

fractions are deposited (Reid and Frostick, 1987; Reid, 2002) to form mud 

layers in interdunes and playas. During dry seasons, aeolian sediment may 

to migrate over fluvial channels, thereby blocking the fluvial channel course 

and reducing the opportunity for future flood events to breach into the central 

parts of aeolian dune-fields during subsequent wet seasons (e.g., Mountney, 

2006b). Examples include the Skeleton Coast Dune-field, Namibia (Figure 

3.13a), the Simpson Desert, Australia (Figure 3.13b), and the Trarza Desert, 

Mauritania (Figure 3.13c). These and other representative examples are 

listed in Table 3.1. 

3.4.10 Examples of short-term versus long-term fluvial-aeolian 

interaction 

In modern dryland systems, there exist many examples of short-term 

aeolian-fluvial interaction (see Lancaster, 1995) whereby fluvial channels 

that are subject to ephemeral or intermittent flow that have been blocked by 

encroaching aeolian dunes or sand sheet deposits. Damming of fluvial 

courses typically occurs during the dry seasons or during drought episodes 

that are sufficiently long-lived to allow aeolian deposits to accumulate in 

fluvial channels (e.g., Figure 3.5; Glennie, 1970). One such example is 

where aeolian dunes have partially migrated across a playa lake basin at the 

terminus of an ephemeral river in part of the eastern Sahara Desert, Egypt 

(Figure 3.14a). Another example is in the Hamada Du Draa Desert, Algeria 

(Figure 3.14b). Episodic floods commonly act to flush out the system. Such 

fluvial flood deposits typically have a sedimentary character similar to that of 

the surrounding aeolian deposits, though grains are usually more tightly 

packed, producing lower primary porosities and permeabilities sandstones.  

Over longer time scales, the impact of climate variation on depositional 

environments tends to be pronounced and significant, since it influences 

sediment yield, aeolian transport capacity of the wind, and the availability of 

sediment for aeolian transport. Together these factors govern the aeolian 

sediment state of the system (e.g., McKee et al., 1967; Herries, 1993; 

Kocuerk, 1999; Kocurek and Lancaster, 1999; Robinson et al., 2007). Short-
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Figure 3.13: Examples of termination of fluvial channel networks in aeolian dune fields. (a) Skeleton Coast, Namibia (20 01 46 S 
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fluvial channels subject to ephemeral flow have been blocked by encroaching 
aeolian sediment. This usually occurs during the dry season or during 
drought episodes that are sufficiently long-lived to allow aeolian deposits to 
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term or long-term shifts in the positions and form of the boundaries between 

aeolian and fluvial systems are controlled by the competition between fluvial 

flood events and sites of aeolian dune construction, which are subject to the 

external (allogenic) control of climate change (cf. Porter, 1986). During 

relatively more arid episodes, for example, accumulated sedimentary 

successions tend to be characterised by dry aeolian deposits such as dunes 

and sand sheets (Kocurek and Nielson, 1986; Basilici et al., 2009). During 

relatively more humid episodes, fluvial process tend to dominate, generating 

more heterogeneous successions (e.g., Stanistreet and Stollhofen, 2002). 

Representative examples are listed in Table 3.1.  

3.5 Discussion 

3.5.1 Geomorphic and sedimentary impact of fluvial-aeolian 

system interactions 

Where externally sourced fluvial systems cannot reach the interior parts of 

dry aeolian systems because of the great density of aeolian dunes present 

and the closed nature of associated interdune depressions, the opportunity 

for aeolian sediment reworking via fluvial processes is limited. Minor fluvial 

streams may, however, develop in such settings in response to localised 

surface run-off associated with rainfall events that occur within the dune-field 

itself. Streams associated with intra dune-field flooding are highly 

ephemeral; reworking of aeolian sediment by such flows will be limited in 

extent and resultant deposits will be composed solely of fluvially reworked 

aeolian sand (Svendsen et al., 2003; Stromback et al., 2005). 

Where externally sourced fluvial systems are able to penetrate into the 

interior of aeolian dune systems (Figures 3.15, and Figure 3.16), the 

principal morphological controls on the distance and type of fluvial incursion 

are as follows: (i) morphological dune type, which defines the length and 

continuity of individual dune segments; (ii) the orientation of dunes relative to 

the direction of fluvial flooding; (iii) the form of interdune corridors that are 

present between dune segments, which are defined in terms of their width 

and length, and spatial changes in these parameters that dictate whether 

such features are classed as open or closed morphological elements (Table 
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Figure 3.15: Examples of aeolian system expansion and contraction. (a) Taklamakan Desert, China. (37 46 00 N 81 27 30 E). (b) 
Namib Desert, Namibia (24 43 41 S 15 20 40 E); depicts various types of fluvial-aeolian system interaction and their geomorphic and 
sedimentary impact. Note the fluvial terminations within the dune fields, where large-scale dune bedforms have acted to pond flood 
waters and limit the extent of fluvial incursion. Playa deposits result in the generation of a significant surface crust of calcrete or 
gypcrete (white colour on the image) where flood waters have repeatedly ponded. (c) Southeastern Sahara, Sudan (15 39 11 N 26 25 
44 E); shows vegetation development within a repeatedly flooded interdune and on the lower flanks of adjacent aeolian dunes; the 
presence of vegetation may act to partially stabilize the aeolian system. (d) Rigestan Desert, Afghanistan (31 22 26 N 65 53 19 E); 
demonstrates the role of fluvial flooding in controlling aeolian dune-field expansion and contraction. (Image source: Google Earth 
Pro).
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1); (iv) the type and rate of aeolian dune and interdune migration relative to 

the frequency of fluvial flood events. 

Accumulation and preservation of the sedimentary record of aeolian-fluvial 

interactions requires an appropriate mechanism to enable accumulation of 

both aeolian and fluvial deposits. One such mechanism is the gradual and 

progressive subsidence of the system within an evolving sedimentary basin 

(Blakey, 1988; Mountney et al., 1999). The nature of preserved types of 

interaction will be dictated in part by both the spatial arrangement of 

interdune corridors along which fluvial systems penetrate into aeolian dune-

fields and the temporal change in the morphology of these interdune 

corridors (Mountney, 2012). Additionally, the nature of preserved types of 

interaction will also be dictated by the frequency and intensity of the flood 

events. The spatial extent of fluvial incursions may vary over time between 

successive floods as aeolian dunes and their intervening interdunes migrate, 

or as the intensity of successive flood events wax or wane in response to 

external controls such as climate change. 

3.5.2 The role of fluvial flooding in controlling aeolian dune-field 

expansion and contraction 

Although climatic aridity is a dominant factor that controls the distribution and 

extent of many sandy deserts, aeolian dune-fields are present not just in arid 

and semi-arid settings but also in a range of humid, non-climatic desert 

settings where sediment supply, sediment availability for transport, and the 

potential sediment transport capacity of the wind are sufficient to enable 

aeolian bedform construction. Climate exerts a fundamental control on the 

relative dominance of fluvial versus aeolian processes and plays a primary 

role in governing how aeolian dune-field margins expand or contract over 

time (e.g., Herries,1993; Clarke and Rendell, 1998; Yang and Li Ding, 2013). 

Increases in either the frequency or magnitude of fluvial flood events in 

dune-field margin areas in response to climate change will impact continued 

aeolian dune-field construction in a number of ways. Increased fluvial 

discharge and stream power will promote erosion of older aeolian deposits. 

Fluvial reworking of aeolian sediment, its transport downstream and its 

ultimate re-deposition in areas where floods terminate will influence the 
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supply and availability of sediment of a calibre suitable for later aeolian 

construction (Figure 3.15). Increased fluvial flood activity will limit the 

potential for aeolian dune migration (e.g., Pickup et al., 2002; Bullard and 

McTainsh, 2003). The availability of water provides conditions suitable for 

vegetation colonisation, thereby promoting stabilisation of interdune flats and 

limiting the capability of the wind to erode such substrates (e.g., Levin et al., 

2009). Similarly, the deposition of mud drapes via settling from suspension 

over wide areas in the aftermath of repeated flood events will also limit the 

availability of underlying sediment for aeolian transport. Frequent floods will 

act to charge the ground water table beneath the aeolian dune-field, thereby 

raising the water table, possibly to the level whereby formerly dry interdunes 

become damp or wet (Figure 3.13, Figure 3.15, and Figure 3.16). An 

elevated water table tends to limit the availability of sediment for aeolian 

transport. However, it also increases the preservation potential of the aeolian 

bedforms that gradually subside beneath it (e.g., Mountney and Russell, 

2009). 

3.5.3 Controls on the form and spatial extent of fluvial incursion 

into aeolian dune-fields 

The distance that fluvial systems are able to penetrate into dune-fields is 

partly dependent on bedform morphological type and spacing, which itself 

controls interdune width and shape (Figure 3.16). Further, the orientation of 

open interdune corridors relative to the angle of incidence of fluvial floods 

also plays a significant role, as does the rate of lateral migration of the dunes 

and their adjacent interdunes. The distance of penetration of fluvial incursion 

into the margins of aeolian dune-fields is greatest for regularly-spaced trains 

of relatively straight-crested aeolian dunes for which bedforms are separated 

by broad interdune flats and where fluvial systems impact the dune-field 

margin at an angle whereby flood waters associated with high-magnitude 

events can pass relatively unhindered along open interdune corridors. 

Open interdune corridors play an important role where they occur adjacent 

to the path of fluvial systems passing into aeolian dune-fields (e.g., Hoanib 

River in Skeleton Coast, northwestern Namibia; Stanistreet and Stollhofen, 

2002): they act as a catchment for excess water during flood events, thereby 

acting to buffer flood discharge (Figure 3.15b,c). In cases where interdune 
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corridors terminate in closed depressions, they typically host ponded flood 

waters, the suspended-load deposits of which commonly form mudstone or 

salt layers that are relatively resistant to erosion due to their cohesive nature 

(Figure 3.15b; Loope et al., 1995; Bloomfield et al., 2006 McKie et al., 2010; 

Höyng et al., 2014). This has an important impact on sediment preservation 

potential. From an applied perspective, understanding the distribution of 

such layers in ancient preserved successions is important because they act 

as stratigraphic heterogeneities that restrict flow in water aquifers and 

hydrocarbon reservoirs, thereby compartmentalising subsurface bodies 

(e.g., Fryberger, 1990a; Mountney 2006a). 

3.5.4 Controls on the accumulation and preservation of mixed 

aeolian and fluvial deposits 

In modern desert dune-field settings, the relative dominance of aeolian 

versus fluvial activity is highly variable over a range of spatial and temporal 

scales, and this gives rise to complex arrangements of aeolian and fluvial 

morphological landforms and their deposits. In systems subject to infrequent 

or low-magnitude flood events, aeolian processes tend to dominate; 

conversely in systems subject to high-frequency, high- magnitude floods, 

fluvial processes dominate. 

The frequency and persistence of fluvial flooding controls the period of 

occupancy of interdune corridors by active fluvial systems; in cases where 

aeolian dunes continue to migrate whilst flooding is on-going, the preserved 

architectural elements of fluvially-flooded interdunes tend to expand laterally 

as successive flood deposits develop in-front of advancing aeolian dunes. In 

non-climbing (i.e., non-accumulating) aeolian systems, such behaviour 

favours the development of sheet-like bypass supersurfaces (e.g. flood 

surfaces of Langford and Chan, 1988); in aeolian systems that climb at low 

angles (i.e., where a modest component of vertical accumulation is 

coincident with on-going aeolian dune and interdune migration), thin 

intercalations of vertically stacked, sheet-like fluvial and aeolian elements 

tend to accumulate (Mountney, 2012). The scale and connectivity of fluvial 

flood deposits tends to diminish with increasing distance toward the aeolian 

dune-field centre (Figures 3.1, and Figure 3.16), though exceptions occur 

where aeolian dunes act as natural dams, thereby encouraging floodwaters 
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to pond creating temporarily lakes over large areas within more central parts 

of dune-fields. This type of interaction tends to be characterised by the 

accumulation of clay and silt deposits, and potentially of salt if the water 

salinity is high. The accumulation of such fine-grained or crystalline deposits 

is important from an applied perspective because elements composed of 

such material have the potential to form laterally extensive and continuous 

low-permeability baffles or barriers to flow in subsurface water aquifers and 

hydrocarbon reservoirs (e.g., Fryberger, 1990a; Bloomfield et al., 2006; 

Bongiolo and Scherer, 2010; McKie et al., 2010; Höyng et al., 2014; Romain 

and Mountney, 2014). 

3.6 Conclusions 

Fluvial and aeolian processes in desert-margin settings rarely operate 

independently: they are usually dynamically linked and exhibit a range of 

sedimentary interactions between fluvial and aeolian systems that are 

important and widespread in modern deserts. The diverse range of system 

interactions gives rise to considerable complexity in terms of 

geomorphology, sedimentology and preserved stratigraphy. Ten distinct 

types of fluvial-aeolian interaction are recognised (Figure 3.16, Table 3.1): 

fluvial incursions aligned parallel to trend of linear chains of aeolian dune 

forms; fluvial incursions oriented perpendicular to trend of aeolian dunes; 

bifurcation of fluvial systems around the noses of aeolian dunes; through-

going fluvial channel networks that cross entire aeolian dune-fields; flooding 

of dune-fields due to regionally elevated water table levels associated with 

fluvial floods; fluvial incursions emanating from a single point source into 

dune-fields; incursions emanating from multiple sheet sources; cessation of 

the encroachment of entire aeolian dune-fields by fluvial systems; 

termination of fluvial channel networks in aeolian dune-fields; and long-lived 

versus short-lived types of fluvial incursion. These interaction types form the 

basis for a classification scheme that can be applied to desert dune-field 

systems generally. 

The varied range of temporal and spatial scales over which aeolian-fluvial 

processes interact means that simple generalised models for the 

classification of types of interaction must be applied with caution when 
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interpreting ancient preserved successions, especially those known only 

from the subsurface. By understanding the nature and surface expression of 

various types of aeolian and fluvial interaction, and by considering their 

resultant sedimentological expression, predictions can be made about how 

the preserved deposits of such interactions might be recognised in the 

ancient stratigraphic record and assessment can be made of the spatial 

scale over which such interactions are likely to occur. 
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Chapter 4 

Outcrop architecture of ancient preserved aeolian and fluvial 

successions: Triassic Wilmslow Sandstone and Helsby 

Sandstone formations, Sherwood Sandstone Group, 

Cheshire Basin, UK 

_____________________________________________________________ 
This chapter describes and interprets the various lithofacies present in 

sections of the upper part of the Wilmslow Sandstone Formation and the 

lower part of the overlying Helsby Sandstone Formation of the Triassic 

Sherwood Sandstone Group, Cheshire Basin, UK. Specifically, this study 

examines outcrops of the Runcorn Expressway road-cut, a laterally 

continuous outcrop that exposes the boundary between these two 

formations. The research aim is to document the preserved record of aeolian 

and fluvial successions, to further develop our understanding of processes 

that operate in aeolian and fluvial systems, and to propose a novel facies 

model for the mechanism of preservation of aeolian and fluvial deposits that 

accumulated in arid and semi-arid depositional settings. 

_____________________________________________________________ 

4.1 Abstract 

The Runcorn Expressway road-cut of northern Cheshire, England, provides 

an extensive section that exposes strata of both aeolian and fluvial origin. 

Aeolian and fluvial lithofacies, facies associations and architectural elements 

within this studied outcrop succession have been characterised in detail. 

Interdunes occur between dunes in most aeolian dune-fields, but the 

relationship of the preserved deposits of these low-lying and low-relief sub-

environments to the deposits of adjacent dunes have not been adequately 

studied in the preserved sedimentary record, particularly in systems where 

the water table played a major role in governing sediment accumulation. The 

research objectives of this study are as follows: to document the preserved 

record of a wet aeolian system and an associated fluvial succession; to 

develop further our understanding of processes that operate in aeolian and 
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fluvial systems in arid and semi-arid depositional settings; to develop high-

resolution, three-dimensional facies models with which to account for the 

type and mechanisms of preservation of fluvial and aeolian deposits in a 

manner whereby the resultant models have predictive potential; to 

investigate the relationship between aeolian dune and interdune morphology 

by relating primary depositional facies and associations of such lithofacies to 

specific processes of sediment transport and deposition; to investigate the 

relationship between preserved aeolian set thicknesses, grainflow 

thicknesses and original aeolian dune bedform size, to discuss the type of 

fluvial system responsible for generating the studied fluvial deposits. 

This study reveals that accumulation of the aeolian system represented by 

the Triassic Wilmslow Sandstone Formation was controlled by water table: 

the formation is considered to largely be a so-called “wet aeolian system”. 

This study also indicates the importance of the nature of the strata that 

comprise interdune elements present between aeolian dune elements in 

determining the relationship of interdunes to adjacent dunes forms at the tie 

of accumulation, particularly in systems where water table played a 

significant role. The succession represented by the Wilmslow Sandstone 

Formation accumulated via both climbing and non-climbing mechanisms. 

The investigated fluvial facies and elements present in the overlying Helsby 

Sandstone Formation reflect the development of a dryland fluvial system in 

an ephemeral braided river setting. 

4.2 Introduction 

Studies of both modern aeolian systems and their ancient preserved 

successions have revealed a number of important conceptual advances in 

recent years regarding the mechanisms by which sedimentological and 

stratigraphic complexity is manifest in the accumulations of desert dune and 

interdune systems (e.g., Brookfield and Ahlbrandt, 1983; Loope, 1985; 

Fryberger, 1990a; Kocurek and Havholm, 1993; Lancaster, 1995; Howell 

and Mountney, 2001; Mountney and Jagger, 2004; Rubin and Carter 2006; 

Ewing, 2010, Al-Masrahy et al., 2012; Al-Masrahy and Mountney, 2013; 

Rodriguez-Lopez et al., 2014; White et al., 2015, Lancaster, et al., 2015). 
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Several referenced studies document the great diversity of fluvial styles 

within dryland settings (e.g, Mabbutt, 1977; Graf, 1988; Cook et al. 1993; 

Thornes, 1994a, 1994b; Miall, 1996, McCarthy and Ellery, 1998; Tooth and 

Nanson, 2000a, 2000b; 2004; Powell, 2009; Bourquin et al., 2009; Thomas, 

2011). Dryland rivers typically have intermittent flows or ephemeral flows, 

many of which fail to reach the ocean, instead terminating within dryland 

settings such as low-relief alluvial plains, in playa basins or among aeolian 

dune-fields (Tooth and Nanson, 2011). 

The construction, accumulation and preservation of aeolian desert systems 

does not require extreme aridity. Although aeolian system activity tends to 

be more extensive in arid and hyper-arid environmental settings (e.g., 

Glennie, 1970; Breed et al, 1979; Mountney and Howell, 2000; Scherer, 

2001; Mountney, 2006a), desert aeolian systems may also be constructed 

and accumulate deposits in areas where the groundwater table is elevated 

such that the accumulation surface (sensu Kocurek and Havholm, 1993) 

may be damp or even wet (i.e. flooded). These are so-called wet aeolian 

systems (Kocurek, 1981a; Fryberger, 1990a, b, c; Kocurek and Havholm, 

1993; Crabaugh and Kocurek, 1993; Mountney and Thompson, 2002). Such 

conditions are common at the margins of aeolian dune-fields and their 

preserved successions, where aeolian processes occur alongside 

synchronous  fluvial processes, give  rise to a range of types of aeolian-

fluvial interaction (see Chapter Three, Section 3.4: types of aeolian-fluvial 

interactions, Figure 3.16). Most dryland regions support river systems (e.g., 

deserts of southeast Arabia, Glennie, 2005; the Rub’ Al-Khali sand sea,      

Al-Masrahy and Mountney, 2013; (Chapter Two, Figure 2.1 and Chapter 

Three, Figure 3.2); Namib Desert, Stanistreet and Stollhofen, 2002;           

Al-Masrahy and Mountney, 2015; (Chapter Three, Figure 3.15b); Skeleton 

Coast, Krapf et al., 2003; Al-Masrahy and Mountney, 2015; (Chapter Three, 

Figure 3.13a). Dryland rivers play an important role in landscape-forming 

processes (Reid and Frostik, 2011). In some settings fluvial activities control 

aeolian processes and landforms through eroding parts of aeolian dunes, 

breaching dune barriers or providing sediment for aeolian systems (e.g., 

Nanson  et al., 1995; Wainwright and Bracken, 2011; Tooth and Nanson, 

2011). In other settings, aeolian activities influence fluvial channel pathways, 
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for example by acting to pond fluvial flow (e.g., Lancaster and Teller, 1988, 

Al-Masrahy and Mountney, 2015). 

Ephemeral and intermittent fluvial systems occur in geographic regions that 

are  influenced  by  arid to semiarid climatic conditions and  are  common on 

both present-day active alluvial systems and successions preserved in the 

ancient rock record (Picard and High, 1973; Rust, 1981; Jones et al., 2005; 

Jones and Frostick,2008; McKie et al., 2010; McKie, 2011a; Banham and 

Mountney, 2013, 2014). 

Desert margin settings are sensitive to climatic change (cf. Swezey et al., 

1999). For example, during episodes of increased precipitation, ephemeral 

and intermittent fluvial systems tend to become more active and may 

penetrate further into aeolian dune-field margins. Fluvial rivers commonly 

serve as both sources and sinks of aeolian sediment (cf. Draut, 2012). 

Dryland rivers influence aeolian systems if they develop contemporaneously; 

they can play an important role in defining the type of aeolian system. Fluvial 

systems may act to charge the subsurface water table that lies beneath 

aeolian dune-fields. Where the groundwater table rises to a level where it 

influences the accumulation surface, it will dictate how aeolian sediments 

accumulate and become preserved, providing an opportunity for wet aeolian 

systems to develop (cf. Kocurek and Havholm, 1993; Blakey et al., 1996). 

The presence of the competing (coeval) aeolian and fluvial systems in the 

same geographic vicinity will give rise to intercalated depositional settings (cf. 

Mountney and Jagger, 2004; Bourquin et al., 2009; Yan et al., 2015). 

Understanding the distribution of lateral and vertical arrangements of the 

ancient river system architectural elements in the preserved rock record is 

fundamental to the development of facies models with which to advance 

understanding of river behaviours and the factors controlling the gross-scale 

of architecture of fluvial systems (Bridge and Tye, 2000; Gibling, 2006; 

Colombera et al., 2012); the understanding of the river behaviours will guide 
the reconstruction of palaeo-drainage basins (e.g. Nichols and Hirst 1998; 

Jones, 2004). 

The exposures selected for analysis in this study provide a valuable example 

of the preserved remnants of an ancient water-table influenced aeolian 
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system – a so-called wet aeolian system (sensu Kocurek and Havholm, 

1993). Interdune units preserved between aeolian dune units record the 

impact of the water table on aeolian system construction and development 

and sediment accumulation and preservation (Kocurek et al, 1992; Carr-

Crabaugh and Kocurek, 1998). This locality also provides access to an 

outcropping succession that is interpreted to represent an example of a 

preserved dryland fluvial system. 

The principal aim of this study is to document the preserved record of 

aeolian and fluvial successions, specifically, to gain an improved 

understanding of the mechanisms of accumulation and preservation of wet 

aeolian systems present at the marginal parts of aeolian dune-field (erg) 

systems where they interact with fluvial environments, and to further develop 

our understanding of processes that operate in aeolian and fluvial systems in 

arid and semi-arid depositional settings. Fulfilment of this aim will help gain 

an improved understanding of the palaeoenvironmental factors that act as 

primary controls on sedimentation in such settings. Specific research 

objectives are as follows: 1) to describe and interpret the sedimentary facies 

of both ancient dryland fluvial system and wet aeolian deposits that 

developed in aeolian erg margins present in an outcropping ancient 

succession; 2) to develop high-resolution, three-dimensional facies models 

with which to account for the style and mechanism of preservation of fluvial 

and aeolian deposits in a manner whereby the resultant models have 

predictive potential (cf. Howell and Mountney, 2001; Al-Masrahy and 

Mountney, 2015); 3) to develop a discussion that investigates mechanisms 

of wet aeolian system construction, accumulation and preservation based on 

analyses of facies relationships preserved in outcrop (cf. McKee and Moiola, 

1975; Loope, 1985; Loope and Simpson, 1992; 1993; Kocurek and 

Crabaugh,1993; 4) to investigate the relationship between aeolian dune and 

interdune morphology which have not been so far adequately studied, by 

relating primary depositional facies and associations of such lithofacies to 

specific processes of sediment transport and deposition (cf. Kocurek and 

Dott, 1981; Kerr and Dott, 1988; Romain and Mountney, 2014); 5) to 

investigate the relationship between preserved aeolian set thicknesses, 

grainflow thicknesses and original aeolian dune bedform size; 6) to discuss 
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the type of fluvial system responsible for generating the studied fluvial 

deposits. 

4.3 Background 

Many previous studies have investigated both modern aeolian depositional 

systems and their ancient preserved successions, and several have 

documented the range of sedimentary processes that are known to operate 

in water-table-influenced aeolian depositional settings (e.g., McKee, 1966; 

Thompson, 1970, a and b; Wilson, 1971; McKee and Moiola, 1975. Kocurek, 

1981a; Fryberger et al, 1983; Simpson and Loope, 1985; Hummel and 

Kocurek, 1984; Lancaster and Teller, 1988; Glennie, 1990; Fryberger, 

1990a, b and c; Fryberger et al. 1990; Øxnevad, 1991; Kocurek, et al, 1992; 

Loope and Simpson, 1992; Kocurek and Havholm, 1993; Kocurek and 

Crabaugh,1993; Meadows and Beach, 1993; Herries and Cowan, 1997; 

Mountney and Thompson, 2002; Granja et al., 2008; Mountney and Russell, 

2009; Luna et al., 2012; Al-Masrahy and Mountney, 2015). Although these 

studies document the impact of water table on the accumulation and 

preservation of aeolian bedforms, understanding the interaction between 

aeolian bedforms and adjacent damp or wet interdunes requires additional 

detailed consideration. The origin and significance of resultant preserved 

facies relationships arising from damp/wet interdune and aeolian dune 

interaction in such systems requires further investigation. Better 

understanding of such settings will improve the interpretation of 

palaeoclimatic conditions in such setting and, more specifically, will enable 

the more precise interpretation of subsurface aeolian reservoir geometries. 

Prediction of reservoir facies and architectural-element variability in three-

dimensions is a fundamental requirement for quantitative reservoir 

characterisation (e.g. Sweet, 1996; Liu et al., 2002; Fischer et al., 2007). 

Therefore, more accurate modelling of the lateral and vertical arrangements 

of damp and/or wet interdune architectural elements within aeolian 

reservoirs will aid the development of models describing the internal facies 

characterisation and mapping of lateral continuity of the producing zones 

(e.g. aeolian dune elements) and baffling zones (e.g. interdune elements) 

within reservoir bodies. 
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Accumulation and preservation of the deposits of migrating aeolian dune 

bedforms in wet aeolian systems requires a particular set of conditions: 1) a 

net rise per unit time in the water table, either via relative rise, where the 

water table remains static but the accumulating sediment gradually subsides 

through it, or via absolute rise, where the change of the water table is in 

response to climatic change, that may be gradual (i.e. progressive) or 

punctuated (i.e. episodic) (Kocurek and Havholm, 1993; Carr-Crabaugh and 

Kocurek, 1998; Mountney, 2012; Bristow and Mountney, 2013; Rodriguez-

Lopez et al., 2014); 2) placement of accumulated aeolian sediment deposits 

beneath the baseline of erosion (Kocurek and Havholm, 1993). In some 

cases, accumulation and preservation of an aeolian system may arise 

through the inundation of the aeolian system during marine transgression, 

for example as is the case in aeolian systems adjacent to coastal 

environments, such as parts of the coastal fringe of the Namib Sand Sea. 

The proximity of aeolian systems to marine systems leads to inter-

relationships among competing processes and depositional products 

(Eschner and Kocurek, 1986; Kocurek et al., 1992). In such settings, marine 

waters will directly influence accumulation in interdune hollows between 

dunes by charging water table level (Hunter, 1981; Hummel and Kocurek, 

1984; Kocurek et al., 2001), thereby enhancing the preservation potential of 

the aeolian deposits. 

The ratio between the rate of relative water-table rise and the rate of aeolian 

bedform migration is an important factor that governs the expansion or 

contraction of aeolian dune bedforms and adjacent interdunes areas over 

time; it also controls the angle of climb at which accumulating aeolian 

systems (dunes and adjoining intedunes) aggrade (cf. Rubin and Hunter, 

1982; Kocurek and Havholm, 1993; Crabaugh and Kocurek, 1993; Kocurek , 

1999; Mountney and Thompson, 2002, Mountney, 2012). In wet aeolian 

systems, for example, with a relative rise in the water-table level, both dune 

and interdune deposits accumulate, the rate of vertical accumulation can 

potentially match rate of the water-table rise. Where water-table rise acts to 

reduce the local availability of loose, dry sand suitable for aeolian dune 

construction, damp and wet interdunes will tend to expand at the expense of 

adjacent dunes (Kocurek and Havholm, 1993; Kocurek, 1996). If sediment 
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supply increased with the rise of water table,  interdune flats will have the 

tendency to maintain its thickness  over large distance in climbing aeolian 

erg setting (Kocurek and Havholm, 1993; Mountney and Thompson, 2002).  

Recognising evidence to determine the interaction between aeolian dune 

and interdune development and relative changes in relative water-table level 

in preserved examples of wet aeolian systems is not straightforward; this 

research seeks to address this issue. 

4.4 Geological setting 

The Cheshire Basin forms part of a major north-south trending rift system 

present throughout much of England and the surrounding region. Rifting was 

initiated in early Permian times (Glennie, 1995; Chadwick, 1997), and 

enabled the development of a series of rift basins in response to faulting and 

uplift at the end of the Late Carboniferous Variscan orogeny. This episode of 

extension was associated with an early phase of Atlantic opening (Griffiths et 

al., 2003; Ziegler and Dèzes, 2006). 

The Cheshire basin itself forms a half-graben bounded to the east by the 

Wem-Red Rock fault system (Chadwick and Evans, 1995, Chadwick, 1997), 

whereas at its western margin the Permian and Triassic infill succession of 

the basin thins by depositional onlap onto Pre-Permian basement (Colter 

and Barr, 1975; Chadwick, 1997). 

The Permo-Triassic fill of northern Cheshire Basin comprises a sequence of 

major units. The lowermost part of the fill of the Cheshire Basin (Kinnerton 

Sandstone Formation) comprise Rotliegend Group equivalent deposits that 

are likely of Permian age (Figure 4.1; Warrington et al., 1980; Griffiths et al., 

2002). This is overlain by the Sherwood Sandstone Group (Permo-Triassic, 

Zechstein-Ladinian), which is in turn overlain by the Mercia mudstone Group 

(Triassic) (Warrington et al., 1980; Warrington and Ivimey-Cook, 1992). The 

Sherwood  Sandstone  Group comprises  predominantly  arenaceous units 

(the Chester Pebble Beds, Wilmslow Sandstone and Helsby Sandstone 

Formations), which are overlain by predominantly argillaceous deposits of the 

Mercia Mudstone Group. Elsewhere in the Cheshire region, though not in 
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Figure 4.1: Stratigraphic subdivision of the Permo-Triassic fill of the northern 
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District are assigned names on an informal basis (Beacon Hill Unit, 
Frogsmouth Unit and Beetle Rock Unit). Based on discussion in Mountney 
and Thompson (2002). Ages from Harland et al. (1990).
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the northern Cheshire Basin, deposits of the Merica Mudstone Group are 

overlain by deposits of the Penarth Group. 

Regionally, the Sherwood Sandstone Group comprises much of the fill of the 

series of genetically related and partially interlinked rift basins that run from 

the Wessex Basin in the south of England, northwards through the 

Worcester Graben, the Knowle Basin, the Stafford and Needwood basins, 

and into the Cheshire Basin; the rift system continues further northwards into 

the Lancashire and West Cumbria basins, and north-northwest-wards via the 

Deemster sub-basin into the East Irish Sea Basin (Chadwick and Evans, 

1995). These basins had varying maximum burial depths, ranging from less 

than one kilometre to more than three kilometres deep (Burley, 1984; 

Griffiths et al. 2002). 

During permo-Triassic times northwest Europe occupied a latitudinal position 

similar of the Sahara deserts today (Glennie, 1983). Within these basins the 

Sherwood Sandstone Group accumulated a series of mixed fluvial and 

aeolian successions. Generally, deposits of the group comprise the following 

broad facies associations: 1) fluvial channel conglomerate and sandstone 

deposits and overbank sand-, silt- and mudstone deposits; 2) aeolian 

sandstone and interdune sandstone, siltstone and mudstone deposits. 

Part of the Permo-Triassic Sherwood Sandstone Group is well exposed in 

the Runcorn Expressway road-cut, an outcrop that is 13 m high and that 

extends laterally for 230 m along a slipway of the A557.  This outcrop 

reveals well-exposed examples of both an aeolian and a fluvial succession 

within the upper part of the Wilmslow Sandstone Formation (of aeolian dune 

and interdune origin) and the lower part of the overlying Helsby Sandstone 

Formation (of fluvial origin), respectively (Figure 4.1, and Figure 4.2). 

Several detailed previous studies have sought to document the preserved 

stratigraphic architecture of the Sherwood Sandstone Group in the Cheshire 

Basin generally, and in the Wilmslow and Helsby formations, in particular. 

Such studies have attempted to establish lateral and vertical trends in 

lithofacies and architectural-element distribution in these rock units (e.g., 

Strahan, 1882; Thompson, 1969; 1970a; and 1970b; Øxnevad, 1991; 

Benton et al., 1994; Mountney and Thompson 2002). However, no detailed 
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account has been published previously on the stratigraphic architecture of 

the Runcorn Expressway road-cut locality. 

The Wilmslow Sandstone Formation in the Cheshire Basin is interpreted as 

being of mixed fluvial and aeolian in origin, and records deposition under the 

influence of generally arid climatic conditions (Thompson, 1970a). The 

Helsby Sandstone Formation forms the uppermost unit of the Sherwood 

Sandstone Group in the Cheshire Basin; it occurs above what is marked 

locally in northern Cheshire by the Hardegsen unconformity (intra-Triassic 

unconformity, late Scythian age), that likely resulted from a syn-extensional 

regional uplift accompanying lithospheric thinning during mid-Triassic times 

(Warrington, 1970; Evans et al., 1993). The contact between the underlying 

Wilmslow Sandstone Formation and the overlying Helsby Sandstone 

Formation in the study area is represented by this Hardegsen Unconformity 

(Warrington, 1970; Evans et al., 1993). 

In the northern part of the Cheshire Basin, in the area around Helsby, 

Frodsham, Runcorn and north-westwards to Wirral, the Helsby Sandstone 

Formation can be divided into three members based on lithofacies: the 

Thurstaston Member (dominantly aeolian, though locally fluvial in places), 

the Delamere Member (dominantly fluvial) and the Frodsham Member 

(dominantly aeolian) (Thompson, 1969, 1970b; Warrington et al., 1980; 

Mountney and Thompson, 2002). 

This study documents the stratigraphic architecture of the Runcorn 

Expressway road-cut, which yields an extensive section that exposes strata 

of aeolian origin within the upper part of the Wilmslow Sandstone Formation 

and fluvial origin within lower part of the overlying Helsby Sandstone 

Formation–equivalent to a unit known on Wirral as the Thurstaston Hard 

Sandstone Bed of the Thurstaston Member (Thompson, 1970b, Howard et 

al., 2007). Stratigraphically, the studied Expressway road-cut section lies 

directly beneath the Delamere Member of Helsby Sandstone Formation, 

which is exposed in several quarries on Runcorn Hill (Figure 4.2b), and 

which was the focus of the study by Mountney and Thompson (2002). 
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4.5 Data and methods 

Analysis of aeolian and fluvial lithofacies, facies associations and 

architectural elements within the studied outcrop succession have been 

defined; the attributes of the aeolian and fluvial deposits (predominantly 

sandstones) have diverse characteristics, which have been the subject of 

detailed facies analysis. 

The field-based lithofacies analysis has been used to describe the detailed 

characteristics of fourteen distinct lithofacies recognised within the deposits 

of Wilmslow Sandstone and Helsby Sandstone formations exposed in an 

outcrop located adjacent to the A557 Runcorn Expressway road, northwest 

England (Figure 4.1). The fourteen lithofacies are defined based on their 

lithology, sedimentary texture and the range and type of sedimentary 

structures present within. Six separate log sections measured from the study 

area characterise a total of 42 metres of sedimentary succession. Recorded 

information includes lithology, sediment texture and sedimentary structures. 

Collectively, these graphic logs provide a generalised complete vertical 

profile for the studied outcrop; the general log section covers a vertical 

section of 13 metres (the full thickness of the outcrop) (Figure 4.3). Six, two-

dimensional architectural panels depict the sedimentary architectural 

relationships present in the entire of the outcrop, which extends laterally for 

230 metres. Panels have been generated from detailed field sketches and 

photomosaics to determine the distribution and relationship of various 

aeolian and fluvial architectural elements present in the outcrop. The panels 

depict the stratigraphic architecture of the upper part of the Wilmslow 

Sandstone Formation, which primarily comprises aeolian deposits, and the 

lower part of the overlying Helsby Sandstone Formation, which primarily 

comprises fluvial deposits in the studied section. Panels were arranged to 

form a composite correlation panel that have been manipulated digitally to 

generate a pseudo-three-dimensional view of stratigraphic architecture. This 

has enabled the tracing of the individual sets in three-dimensions (Figure 

4.4). Two-hundred readings of palaeocurrent data (comprising cross-

bedding foreset dip magnitude and azimuth data) were collected from both 

the aeolian and fluvial deposits. Summaries of these data are presented as 

rose diagrams for each section (Figure 4.3). Two aeolian and five fluvial 
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Lithology and
sedimentary structure

Description Facies Palaeocurrent Stratigraphy
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Figure 4.3: Summary log section for the study interval at Runcorn Expressway                      
road cut.  
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Planar thinly (10-30 cm) laminated  Silty mudstone.

Wavy to crinkly laminated sandstone, dominated by modified wind-ripple strata and adhesion-ripple strata; 
accumulated in interdune areas between merging aeolian dune forms.  

Small-scale water escape (flame) structures in upper part of damp interdune units.

Fluvial trough cross-beds, representing the migration and accumulation of sandy mesoform within a fluvial 
channel system.

Planar-tabular sets representing the migration of sandy bedforms within a fluvial channel system.  

Sharp boundaries at the top of the channel-fill element record an abrupt abandonment phase.  
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Massive sandstone; lack of organised internal lamination; reflects the homogeneity of sandstone grain size. 
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architectural element models have been proposed to illustrate the main 

architectural components of each formation; these elements serve as the 

building blocks required to reconstruct the larger-scale palaeo-depositional 

system and palaeoenvironment. To investigate the relationship between 

preserved aeolian set thicknesses, grainflow thicknesses and original 

aeolian dune bedform size, a further suite of data have been collected from 

the preserved aeolian bedsets, including measurements of dune set 

thicknesses (11 selected preserved sets) and thicknesses of individual 

grainflow deposits (130 readings). 

4.6 Sedimentary facies analysis 

Although the Wilmslow Sandstone Formation and Helsby Sandstone 

Formation have been referred to in several previous studies (e.g., 

Thompson, 1969; 1970a; Warrington et al., 1980; Planet et al., 1999; 

Thompson and Meadows, 1997; Mountney and Thompson, 2002), to date, a 

detailed sedimentological analysis of the Runcorn Expressway cutting has 

not been published, and no detailed studies have been published previously 

relating to the outcrops discussed herein. This study presents a formal and 

detailed facies scheme for the Runcorn Expressway road-cut, based on 

primary observations at the outcrop. Fourteen lithofacies types are 

recognised and these are grouped into four facies associations: aeolian 

dune, aeolian interdune, channelised fluvial and non-channelised fluvial 

(Table 4.1). 

This extensive road-cut section studied provides a valuable example of the 

preserved remnants of an ancient water-table influenced aeolian system – a 

so-called wet aeolian system (sensu Kocurek and Havholm, 1993). 

Interdune units preserved between aeolian dune units record the impact of 

the water table on aeolian system construction and development and 

sediment accumulation and preservation (Kocurek et al, 1992; Carr-

Crabaugh and Kocurek, 1998). 
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Code Facies Description Interpretation Occurrence 
Facies 

Association 

       
AD1 

Moderate- to high-
angle grainflow 
strata; sandstone 

Reddish-brown, orange, fine to coarse, well- sorted, 
rounded and frosted quartz grains, forms planar, 
inversely-graded sand laminae between 10-60 mm 
thick, up to 23° inclined. Set thickness  10cm to 1 m.  

Packages of grainflow strata, deposited by successive 
dry sandflows down the dune slipface.  

Dune leeside 
foresets, very 
common. 

Aeolian Dune 

            
AD2 

Moderate-angle 
grainfall strata; 
sandstone 

Reddish-brown, orange, fine to medium, well-sorted, 
rounded grains, small dunes, preserved set thickness 
ranges from 10 to 30 cm, foresets inclined up to 15°. 

Thin parallel cross-stratified grainfall strata, settled out 
of suspension. Recorded as draping over grainflow or 
wind-ripples strata.  

Dune leeside 
foresets, rare   Aeolian Dune 

      
AD3 

Low- to moderate-
angle wind-ripple 
strata; sandstone 

Reddish-brown, orange, medium to very coarse-sand, 
well sorted, rounded  to subrounded grains, lamina 
rarely exceeded 10mm in thickness, foreset inclined 
12°. Inverse graded, pinstripe lamination evident. 

Cross-stratified strata, deposited by the migration of 
aeolian ripples either down or across the lower part of 
the dune slipface. 

Dune leeside 
toesets, common Aeolian Dune 

      
AD4 

Massive to weakly 
cross-bedded 
sandstone 

Reddish-brown, brown, orange, medium to coarse, 
homogenised sandstone, very well sorted, rounded to 
well-rounded grains, very faint, high-angle cross 
stratification. 

Lack of internal structure is attributed to the 
accumulation of uniform grain size along the dune 
foresets, in a stable wind velocity conditions. 

Dune foresets, 
common  Aeolian Dune 

      
AD5 

Soft-sediment 
deformed 
sandstone 

Reddish-brown, orange, fine to coarse, moderate to 
well sorted, rounded grains. 10-50 mm-thick foreset 
laminae. Deformed small cross-stratified strata (soft- 
sediment deformation) intertongues with wavy 
laminated sandstone. 

Intercalated packages of grainflow and wind-ripple 
lithofacies at the lower part of aeolian dunes, deposited 
under damp surface conditions on interdune flats 
between dunes. 

Dune plinth or 
apron Aeolian Dune 

         
ID1 

Horizontal to sub-
horizontal 
laminated 
sandstone 

Reddish-brown, brown, fine to very-coarse, 
moderately to well sorted, subrounded grains. 
Forming sets that are 10cm to 1 m thick. Near 
horizontal, discontinuous translatent wind-ripple 
strata. 

Deposited through the migration of aeolian ripples 
across a dry interdune surface. The texture of sand 
grains indicates accumulation under a high wind 
velocity. 

Areas low water 
table 

Aeolian 
interdune 

       
ID2 

Wavy laminated 
sandstone 

Reddish-brown, orange, whitish-grey, fine to very 
coarse sand. Wavy to crinkly laminated sandstone, 
sets are 10 cm to 1 m thick, adhesion ripples and 
small-scale flame structure are evident. This facies 
also records a down-folded lamination at set tops. 

This facies accumulated in interdune areas between 
migrating aeolian dune forms. This facies records a 
vertical change to dry interdunes, reflects the passage 
to drier edge of interdune. The down-folded laminations 
are formed by vertebrate footprints (indenters). 

Areas of high 
water table, 
common 

Aeolian 
interdune 

Table 4.1: Summary Lithofacies observed in the Runcorn road cut (outcrop): Helsby and Wilmslow Sandstone formations. 

                    113



 

 

FC1 

Intraformational 
mud-clast 
conglomerate 

Reddish-brown, formed mainly of thinly laminated 
mudstone and silty mudstone as a rip-up clasts, vary 
in size (1 to 20 cm long). 

Fluvial channel-lag deposits, composed of dispersed 
pebbles of reworked local sediments (mud clasts) 
sourced from in-channel and floodplain areas. 

Channel 
lag/common Fluvial Channel 

FC2 
Planar cross-
bedded 
sandstone 

Reddish-brown or brown, fine to very-coarse (fining 
upward), moderately-well sorted, sub-rounded 
sandstone grains. In cross-stratified sets (20cm to 1 
m thick, 10 to 22° inclined), forming sets up to 2.5 m 
thick that may be stacked, sharp set boundaries, mud 
clasts present as lag deposits.  

                                                                                
Fluvial channel-fill deposits, represents the migration of 
confined flow within a channelized setting, sediment 
deposited by straight-crested dune-scale bedforms. 

Channel 
fill/common Fluvial Channel 

      
FC3 

Trough cross-
bedded 
sandstone 

Reddish-brown or brown, fine to very-coarse sand, 
moderately to poorly sorted, sub-rounded sandstone 
grains. Medium-scale trough cross-strata. Occurs in 
sets of varying thickness, forming cosets up to 1.5 m. 
rip-up mudclasts of variable size are common. 

Fluvial channel-fill deposits, representing the migration 
and accumulation of sandy mesoforms within a 
confined fluvial channel system, deposited by sinuous 
crested dune-scale bedforms.  

Channel 
fill/common Fluvial Channel 

       
FC4 

Massive 
(structureless) 
sandstone 

Brown or light-brown, fine to medium grained hard 
sandstone, homogeneous, staked sets (10 cm to 3 m 
thick). 

Lacks organised internal lamination, reflects the 
homogeneity of the sandstone grain size and suggest 
the accumulation through rapid deposition during flood 
events.  

Channel 
fill/common Fluvial Channel 

FH 
Horizontally 
laminated 
sandstone 

Reddish-brown, pink, fine to medium sand, commonly 
normally graded, moderate to well sorted, rounded –
sub-rounded grains. Thinly laminated (1-5 mm) in sets 
20-60cm thick. Current lamination is evident in the 
upper parts of sets. 

This facies records deposition under the influence of 
upper flow-regime conditions, either in confined 
channel flow or non-confined fluvial sheet-like flow. 

Upper channel 
fill/common 

Fluvial Channel/  
Floodplain 

         
FR 

Ripple cross- 
laminated 
sandstone 

Brown or light-brown, very-fine to coarse, moderate to 
poorly sorted, sub-rounded sandstone grains. Mud- 
draped climbing ripples and lenticular bedding with 
complete preservation of ripple forms are evident. 
Sets range in thickness from 1 to 30 cm. 

Represent unidirectional migration of small-scale ripple 
forms during low flow regimes within the upper part of 
the fluvial fill or in a non-confined floodplain setting. 
Preserved ripple foresets commonly exhibit mud 
drapes indicating pulsed migration between episodes 
when the water formed standing ponds. 

Top channel fill  Fluvial Channel/  
Floodplain 

        
FM 

Horizontally thin-
laminated silty 
mudstone 

Reddish-brown, planar, thinly-laminated, laterally 
extensive, sets rarely exceed 30 cm, commonly 
adopts a white or motled greenish-white appearance, 
preserves desiccation cracks at the top of the 
mudstone sets. 

Channel abandonment or overbank deposits, 
alternation of siltstone and mudstone gives rise to thin 
laminae, represents deposition from suspension 
settling in floodplains or the final stage of channel filling 
and abandonment.  

Top channel fill/ 
overbank 
areas/common 

Fluvial Channel/  
Floodplain  

 

Table 4.1: Cont. 
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4.6.1 Aeolian facies 

Seven aeolian lithofacies have been identified and collectively these 

represent the preserved products of aeolian dune and interdune deposition 

(Table 1). 

4.6.1.1 Moderate to high angle grainflow strata facies (AD1) 

Description: This lithofacies is red to brown-orange, characterised by well- 

to very well-sorted and rounded predominantly fine-grained (rarely medium- 

to coarse-grained) quartzarenite sandstone grains with millet seed texture 

(mature-supermature) (cf. Folk, 1951; Livingstone and Warren, 1996). 

Deposits are moderately indurated (cf. Lancaster, 1993), arranged in 

moderate to high angle cross-bedded sets characterised by packages of 

grainflow avalanche strata (cf. Hunter, 1977). Individual grainflow stratum 

form 5 to 50 mm-thick wedge-shaped tongues of massive or weakly 

inversely graded sandstone (cf. Sallenger Jr, 1979). Cross bedding within 

sets is inclined at angles up to 23°. Discrete grainflow strata thin in an up-dip 

direction toward the top of sets (cf. Lancaster, 1995), in most cases 

truncated by the overlaying set (Figure 4.5), and pass down-dip into 

interdune or dune plinth deposits. This facies represent approximately 35% 

of the succession. This facies also preserves distinctive bi-modal grain size 

lamination in places, especially in lower parts of sets. Individual grainflow 

packages stack together to form planar tabular cross-strata themselves 

arranged into sets that are up to 1 m thick. Foresets have a mean dip 

azimuth direction toward 255° (n = 130). In several places, sets of facies 

AD1 are truncated downwind by overlying sets to form reactivation surfaces 

(Brookfield, 1977 and Fryberger, 1993). These reactivation surfaces are 

ubiquitous and appear in cyclic patterns (mean lateral downwind spacing = 

2.1 m) (Figure 4.4, Panels A-C; cf. Hunter and Rubin, 1983). Individual 

foresets produced by packets of grainflow strata are separated by either 

wind-ripple strata of facies AD3 (packages of which rarely exceed 10mm 

thick) or, more rarely, by grainfall laminations of facies AD 2 (1 to 3 mm-thick 

foreset laminations) (Figure 4.5). 

Interpretation: The texture of the sandstone described above and the lack 

of any clay drapes (Figure 4.5), all are indications of an aeolian grain 
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Facies Information Facies Characteristics  Interpretation 
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  Facies AD1 : Moderate-high angle grainflow (avalanche) strata

Aeolian dune high-angle cross strata, 
up to 23 degrees 

Aeolian dune foreset grianflow dominated 

Dune strata truncations (erosional 
truncation surface)  

Grains have “millet-seed” texture

Bi-modal grain size (pinstripe lamination). 

Wind-ripples dominated strata
Concordant cyclic cross beds, thick 
alternating grainflow deposits 
separated by thin wind-ripple laminae  

Fine to coarse grained 
sand

10 cm to 1m sets
10mm-60 mm foreset 
 thickness 

Reddish-brown, orange

3

2

2

7

7
7

Well to very-well sorted
Rounded grains 

Aeolian Dune

A1

Direction of migration

Colour

Grain Size

Set Thickness

Sorting & Texture

Facies Association

Architectural Elements

Grainflow strata pinching out toward the 
base lee-slope 

5

1

4

8

8

Moderate- to high-angle cross-stratified 
aeolian sand dune facies, with packages of 
grainflow strata, deposited by successive 
dry sandflows down the slipface of the dune. 
Lamina colouration is due to the variation of 
grainsize and/or fluid bleaching through 
porous and permeable strata. Bi-modal 
grain size resulted from kinetic sieving 
during avalanche movement down the dune 
slipface. Planar lamination indicates that the 
deposits  record the migration and 
accumulation of aeolian dunes that had 
straight crest-line morphologies.

1
5
 c

m
Figure 4.5: Aeolian dune, moderate-high angle grainflow lithofacies (AD1).
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transport mechanism (Glennie, 1970). This facies is also characterised by its 

style of cross-bedding (inclination up to 23°), which is a typical and common 

characteristic feature of sedimentation on the lee of aeolian dunes (cf. 

McKee, 1965). Aeolian dunes typically show an angle of lee-slope inclination 

that is steeper than that of most dunes formed by fluvial processes (e.g. 

Selley, 1996; Hsü, 2004). Facies AD1 represents the preservation of aeolian 

sand dunes slipface (lee side) deposits that accumulated through the 

migration of dunes through repeated movement (repetitive redistribution) of 

friable weak inverse graded sand grains via avalanching (sandflow) over the 

dune slipface (Kocurek, 1996, Mountney, 2006a), through gravity-driven 

failure, that occurs when sand accumulates high on the dune lee slope 

surface until a critical angle of repose is exceeded, which is typically 32° to 

34° for well-sorted, loose, dry sand, resulting in sand avalanches that carry 

grains down the slope  (Figure 4.6; Allen, 1970; Carrigy, 1970; Hunter, 1977; 

Loope et al., 2012). The abundant occurrence of grainflow strata in this type 

of sandstone indicates that the dunes possessed well-developed slipfaces 

(cf. Scherer, 2000). The bi-modal grain-size distribution reflects the 

accumulation of thin units of finer grained wind-ripple and grainfall strata 

between thicker packages of grainflow strata (cf. Hunter, 1981, Mountney 

and Howell, 2000; Mountney, 2006b). It is also possible for such separation 

to form via the following processes: (i) as a result of the movement of grains 

of different sizes by different run-out distances down a dune slipface; (ii) by 

the downward gravitational settling of smaller grains through the cavities 

between larger grains due to kinetic sieving or gravitational sorting 

(Middleton, 1970, Fryberger and Schenk, 1988; Jullien et al., 2002). The 

planar nature of the foresets in directions along-strike indicates that the 

deposits record the migration and accumulation of aeolian dunes that had 

straight crest-line morphologies (cf. Mountney, 2006a). The presence of 

regularly spaced cyclic reactivation surfaces truncating the sets of grainflow 

strata indicates periodic erosion and reworking of the dune sediments on lee 

face of the migrating bedforms in response to a change in one or more of the 

following: (i) the aeolian bedform migration direction as a result of a change 

in wind direction (e.g. reversed airflow); (ii) change in wind velocity that 

erodes sand from one part and depositing it in another part of the dune; (iii) 
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Grainflow depositsReactivation surface Dune toeset 

Wind-ripple deposits

Sediment loading structure 
and flame structures

Crinkly lamination
(adhesion structures)

Truncation surface. This is an interdune 
migration surface in the terminology 

of Kocurek (1996)

Vertebrate footprint impression 
(indenter mark)

Soft-sediment deformation 

Dune 
lee 

Dune plinth (toe) 

Dune

Dune

Interdune

0.5-5 m

Resultant sand transport direction

damp interdune

dune slipface 
grainflow

Lee slope
dune foresets

Grainfall

Wind ripples Adhesion ripples

Translating 
wind ripples

Wind direction 

Figure 4.6: Aeolian dune and interdune cross section illustrating the main 
deposit types and its preferred location of accumulation. In this schematic 
example, the dune is migrating across a damp interdune sand flat without 
climbing .

Figure 4.7: Sedimentary features of aeolian dune and damp interdune 
strata.  
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changes in dune asymmetry, lee slope steepness or dune height (Rubin, 

1987; Kocurek, 1996; Clemmensen et al., 1997; Bristow and Mountney, 

2013). The sub-horizontal and sub-parallel erosional bounding surfaces 

which separate the accumulation of the aeolian dune sets are interdune 

migration surfaces, and they overlie interdune deposits (see below) (Figure 

4.7; Brookfield, 1977; Kocurek, 1981a, 1996). 

4.6.1.2 Moderate angle grainfall strata facies (AD2) 

Description: This fine- to medium-grained, well- to very well-sorted, 

rounded, reddish-brown quartzarenite is characterised by thinly laminated (1 

to 3 mm) cross-bedded sandstone, with foresets inclined at a moderate 

angle (typically 15°; rarely steeper). Laminations are commonly distinct due 

to clear grain-size segregation (bi-modal) forming cyclic cross beds of 

different grain sizes (fine and medium). Sets are 0.1 to 0.3 m thick. Individual 

foreset are separated by wedge-shaped grainflow laminations in cross strata 

that may extend to the base of the sets. This facies represents 5% of the 

succession. Examples of lithofacies AD2 pinch out in a down-dip direction 

where they merge with horizontal and low-angle-inclined wind-ripple 

deposits. This facies commonly preserves deflated ridge-and-swale 

structures on set upper bounding surfaces (cf. Simpson and Loope, 1985). 

Sets are truncated downwind by overlying sets to generate reactivation 

surfaces. Foreset dips decrease gradually towards the dune plinth (set 

base), and downlap with a near-asymptotic relationship to horizontal 

bounding surfaces that define the set base (interdune migration surface). 

The cross-strata dip toward the south-west, with a mean value of 255° (n = 

130) (Figure 4.8). 

Interpretation: Grainfall and grainflow strata are two major components of 

aeolian dune slipface foreset deposits (Hunter, 1985; Brookfield and 

Silvestro, 2010). Grainfall deposits represent airfall deposition and 

commonly accumulate in zones downwind of points of air flow separation at 

the dune crestline or brinkline (Collinson, 1986); grains transported by 

saltation processes during high-intensity winds pass over the dune brink, 

then fall through the separated flow zone where the wind speed is locally 

reduced, to deposit directly on the upper part of the aeolian dune lee slope. 

In exceptional cases, grainfall deposits may extend over the entire lee face 
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Facies Information Facies Characteristics  Interpretation 
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Facies AD2: Moderate angle grainfall strata

Concordant cyclic cross beds

Wind-ripple-dominated strata

Deflated ridges

Reactivation surface

4

4

Alternating aeolian lithofacies deposits 
(grainflow, grain fall) 
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10 to 30 cm sets
1 to 3 mm foreset 
 thickness 
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Rounded grains  
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Grain Size
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Sorting & Texture
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Bi-modal grain size 

Small scale dune cross strata 

5

5

5

1
3

3

Direction of migration

2

Damp interduneDamp interdune

Moderate-angle, thin parallel cross-stratified 
grainfall influenced aeolian sand dune facies. 
Grainfall is a distinctive feature of aeolian strata 
that records settl ing out of temporary 
suspension of previously saltating grains  
(during episodes of reduced wind velocity) on 
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draping over grainflow or wind-ripple strata. 
Thickness depends on intensity and duration of 
the wind.

6
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Figure 4.8: Aeolian dune, moderate angle grainfall lithofacies (AD2).
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of small dunes (Hunter, 1977; Collinson, 1986; Nickling et al., 2002). In most 

modern settings grainfall deposits form thin (1 to 3 mm thick) laminations 

(Figure 4.6; Bristow and Mountney, 2013). The preservation of this 

lithofacies implies that the dune lee face slope was less than the angle of 

repose (32° to 34°, Allen, 1970) and the wind intensity was relatively low (at 

least locally and temporarily in the lee of the dune) such that it was 

insufficient to rework the sediment into wind-ripples (cf. Kocurek and 

Dott,1981). The alternation of grainfall and grainflow laminae suggests an 

occurrence near the base of a dune; this indicates that the sets likely 

represented relatively small dunes (cf. Kocurek and Dott, 1981; Mader, 

1985a). 

4.6.1.3 Low to moderate angle wind-ripple strata facies (AD3) 

Description: This facies is characterised by orange-brown, medium- to very 

coarse-grained quartzarenite that is moderately to well-sorted, and possess 

grains that are sub-rounded to rounded. This facies is organised into low-to-

moderate angle (4°-12°) inclined cross-stratified sandstone sets. Sets are 

dominated internally by thin (<10 mm) laminations produced primarily by 

climbing wind-ripple translatent strata, in some cases these are separated by 

thin (<3 mm) laminae of grainfall origin (cf. Hunter, 1977, 1981; Kocurek, 

1991). Laminations are generally discontinuous (pinch-out laterally), rarely 

exceed 10 mm thick and are inclined at angles up to 12°. Laminations exhibit 

weak inverse grading in some sets (Figure 4.9). Laminations usually merge 

in an up-dip direction with more steeply inclined grainflow dominated facies 

(AD1), whereas they commonly transition down-dip into irregular-crinkly 

and/or planar laminations of facies ID1 and ID2 (Figure 4.4, Panels B and C, 

2). Grain size homogeneity was observed in some sets of this lithofacies, 

which limits the ability to distinguish the lamination boundaries and also 

makes the inverse grading hard to discern. This facies represents 20% of 

the succession. 

Interpretation: Wind ripples are the smallest scale of aeolian bedform 

(Goudie, 2013). They are very common in aeolian systems, and are usually 

the first structure to develop as a consequence of sand transport and 

deposition on a dry sand surface. Wind ripples develop in response to 

saltation processes, in conditions where wind shear decreases and the wind 
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 Facies  AD3: Low-moderate angle wind-ripples strata 
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Aeolian dune  low-angle cross strata, 
up to 12 degrees 

Aeolian dune foreset wind-ripples 
dominated (translatent wind-ripple strata  
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Bi-modal grain size (pinstripe lamination) 

Medium to very-coarse

10 cm to 60 cm sets
 laminae rarely exceeded 
10 mm in thickness. 

Orange, brown

Moderate to well-sorted  
Sub-rounded to rounded 
grains

Aeolian Dune

A1

Colour

Grain Size

Set Thickness

Sorting & Texture

Facies Association

Architectural Elements

Direction of migration Direction of migration

5

3

Packages of translatent wind-ripple strata

Grain-size segregation; lamina pinch out laterally 

Low- to moderate-angle cross-stratified 
aeolian sand dune facies, dominated by 
translatent and climbing wind-ripple 
strata; deposited by the migration of 
aeolian ripples either down or across 
the lower part of the dune slipface. 
Inverse graded lamination and pinstripe 
lamination are evident; formed by 
migration of ballistic wind ripples over 
lower dune slope surface. 

Wind-ripple strata merge with interdune facies

Reactivation surface

5

6

Figure 4.9: Aeolian dune, low-moderate angle wind-ripple lithofacies (AD3).
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transport capacity declines resulting in the deposition of excess sediment to 

the bed forming wind-ripple lamiae (Lancaster, 1995; Kocurek, 1996). The 

development and migration of wind ripples is linked to the surface traction 

processes (Collinson, 1986; Anderson, 1987), and the predominance of this 

lithofacies (wind-rippled lamination) in the lower parts of the dune foresets 

(dune plinth areas) indicates the presence of winds that were sufficient to 

cause traction transport (Figure 4.6, and Figure 4.7; Kocurek, 1991; Sweet, 

1992; Kocurek, 1996). Wind-ripple strata commonly reflect wind conditions 

that are intensive but insufficient for dune development (Hunter, 1977). This 

facies is generally restricted to the lower part of the preserved dune sets 

(dune plinth region) because its presence higher on the dune slipface makes 

it prone to reworking by grainflow avalanche processes, thereby preventing 

its widespread preservation in such settings. Aeolian wind ripples may 

develop in a variety of aeolian sub-environments including dry interdunes, 

aeolian sand sheets and on low- to moderately-inclined dune slopes 

(Clemmensen and Abrahamsen, 1983; Kocurek, 1991; Collinson, et al., 

2006; Mountney, 2006b, Rodriguez-Lopez et al., 2012). The discontinuity of 

packages of wind-ripple strata observed in this study is attributed to episodic 

accumulation and deflation, which likely reflects local variations in wind 

intensity. 

4.6.1.4 Massive to weakly cross-bedded sandstone facies (AD4) 

Description: This facies is reddish-brown to orange, medium to coarse 

quartzarenite that is well-sorted and possesses well-rounded grains. 

Deposits occur in sets that are 1.5 to 2 m thick, and which possess a very 

faint (vague), high-angle-inclined cross lamination (in many cases massively 

bedded) (Figure 4.10). The faint cross-bedded sandstone sets are inclined 

up to 22°, and extend across almost the entire exposed section (Figure 4.4, 

Panels A-F2). In places, a variation on this facies type is characterised by a 

homogeneous sediment texture, whereby massive packages occur in sets 

up to 2 m thick and linked vertically and laterally with other aeolian 

lithofacies (AD1, AD3 and ID2). In places, small iron oxide cemented 

rhizoliths (5 to 8 cm in diameter) are evident, though are rare. No 

interaclasts have been observed in this facies (Figure 4.10). This facies 

represents 10% of the succession. 
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Facies AD4: Massive sandstone

Medium to coarse sand 

15 cm to 2 m sets

Reddish-brown, orange

Well to very-well sorted
Rounded to well rounded 
grains

Aeolian Dune

A1

Colour

Grain Size

Set Thickness

Sorting & Texture

Facies Association
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Facies Characteristics  Interpretation 
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Very faint (vague) aeolian dune high-angle
 cross lamination, up to 22 degrees visible 
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Homogeneous sediment texture 

Rhizoliths; iron oxide concretion; calcite 
cement   

Well sorted, well rounded and frosted 
grains, aeolian origin   

2
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Stacked aeolian dune foreset deposits that 
lack clear stratification (internal structure 
absent) due to grain size homogeneity. The 
absence of identifiable grain-size segregation 
lamination is attributed to the accumulation of 
uniform grain size along the dune foresets, 
which suggests a stable wind velocity 
(effective sand-grain sorting mechanism). 
Rhizoliths Indicate the stabilization of aeolian 
sand dune by vegetation. 

15 cm

4

cm

Figure 4.10: Aeolian dune, massive sandstone lithofacies (AD4).
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Interpretation: This facies represents aeolian dune foreset deposits that 

lack clearly developed stratification either because the internal structure is 

absent or because it has been obscured due to grain size homogeneity. The 

absence of identifiable grain size segregation lamination is attributed to the 

accumulation of uniform grain size along the dune foresets; this suggests an 

effective sand-grain sorting mechanism and weak tractional processes that 

are required to generate sedimentary structures and bed boundaries, at the 

time of deposition (cf. Chan, 1999). Structureless aeolian sandstone 

deposits have also been attributed to deposition from hyperconcentrated 

flows down the dune slipface (Simpson et al., 2002), for example in the 

aftermath of intense rain storms. The development of rhizoliths – a type of 

organo-sedimentary structure produced by plant roots (Loope, 1988) – is 

indicative of the episodic partial stabilisation of dunes to varying degrees. 

Lack of interaclasts in this lithofacies support the interpretation of an aeolian 

origin. 

4.6.1.5 Soft sediment deformation facies (AD5)  

Description: This facies is characterised by reddish-brown to orange 

coloured, fine- to coarse-grained quartzarenite that is moderately to well-

sorted and characterised by rounded sandstone grains. This facies occurs 

as sets that range from 0.1 to 1 m thick, mainly in the lower part of the 

preserved aeolian dune sets. The internal structures of sets of this facies 

show small-scale deformed stratification, including small-scale liquefaction 

structures, flames (6 cm in height), and folding structures (8 to 27 cm in 

width). Examples of facies AD5 occur laterally and vertically intercalated with 

the facies AD1, AD3 and ID2. Slump and folding structures of mainly 

avalanche strata are especially common in the basalmost 25% of aeolian 

dune sets. The deformation is usually present at the contact with facies ID2, 

which is associated with accumulation under the influence of damp surface 

conditions (Figure 4.11). Facies AD5 represents 5% of the succession. 

Interpretation: Soft-sediment deformation structures are the result of 

liquefaction in water-saturated sediments (Allen, 1982; Owen, 1987; 

Glennie, and Hurst, 2007; Topal, and Özkul, 2014). This facies potentially 

formed through several processes: 1) the re-sedimentation of aeolian 
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Figure 4.11: Aeolian dune, dune toe set facies, soft-sediment deformation (AD5).
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sediment triggered by heavy rainfall (cf. Heward, 1991; Gareth and Berry, 

1993); 2) inundation processes related to the change in water table, 

occurring as a result of fluvial flooding (Blaszczyk, 1981; Allen, 1982; 

Heward, 1991); 3) slumping of unconsolidated sand or moderately cohesive, 

moist sands on aeolian dune lee slopes (McKee et al., 1971; Glennie, 1972; 

Doe and Dott, 1980; Eschner and Kocurek, 1988), which is possibly the case 

herein. The part of the original dune influenced by soft sediment deformation 

is the lower part of the aeolian dune sets, which is composed of intercalated 

packages of grainflow (AD1) and wind-ripple (AD3) strata. The presence of 

this facies (AD5) above instances of wavy-laminated sandstone of lithofacies 

ID2 indicate the deposition in lower dune plinth area under the influence 

damp surface conditions where the dunes were constructed directly on 

interdune flats (cf. Kocurek, 1996). It is also possible for such sediment 

deformation to occur as a result of loading of the saturated sand by an 

advancing aeolian sand dune (Collinson, 1994; Horowitz, 1982). In some 

sets, the aeolian sand deposits display soft-sediment deformation (down-

folding at the top of the damp interdune element) related to animal tracks 

(cast of vertebrate footprint). See description of facies ID2 for details of this 

structure (Figure 4.11; Mader, 1985; Loope, 1986; Rodriguez-Lopez et al., 

2012).  

4.6.1.6 Dry interdune facies (ID1) 

Description: This facies is composed of fine- to very coarse-grained, 

reddish-brown to brown sandstone that is moderately to well-sorted; grains 

are sub-rounded. This facies occurs as 0.1 to 0.8 m-thick sets, examples of 

which have a maximum lateral extent of 20 m. This facies is less common 

than lithofacies ID2; it represents 5% of the entire aeolian succession. Rock 

composed of this facies has a friable nature. This facies is characterised 

internally by near-horizontal, discontinuous translatent strata (McKee, and 

Bigarella, 1979; Ahlbrandt and Fryberger, 1982). This facies is associated 

with small-scale (10 to 30 cm in length) deflation scours on the top surfaces 

of sets (Figure 4.12; Hunter, 1977, Kocurek, 1981).  Many sets exhibit 

bimodal grain size segregation – so-called pinstripe laminations (Fryberger 

and Schenk, 1988). In other sets, such lamination is difficult to distinguish 

due to the well-sorted nature of the grains and the overall uniformity of the 
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Figure 4.12: Horizontal-sub-horizontal laminated sandstone lithofacies (ID1). 
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grain-size distribution. The inclination of these laminations rarely exceeds 

one degree; examples of sets of this facies commonly exhibit a gradual 

lateral or vertical transition into aeolian dune facies AD1, AD3. 

Interpretation: Horizontal to sub-horizontal translatent wind-ripple strata 

accumulate through the migration of wind ripples across a dry interdune 

surface via climbing at very low angles (Hunter, 1977, Bristow and 

Mountney, 2013). The coarse texture of sand grains within the ripple strata, 

is indicative of the accumulation in interdune depressions, whereas finer 

sand grain fractions tend to be swept onto the dunes (Kocurek, 1996). The 

horizontally laminated appearance of this facies is may be related to wind 

velocity; high wind velocities can generate aeolian upper-stage plane bed 

lamination (Hunter, 1977, Allen and Leeder, 1980, Bridge, 2003), and this 

may occur intercalated with wind-ripple strata. The development of wind-

ripple strata may also indicate a restriction in sediment availability or 

sediment supply, which is also possibly inferred if the underlying dune 

accumulation demonstrates evidence for partial deflation on its upper 

surface (Figure 4.12; Kocurek, 1981a; Kocurek and Nielson, 1986; Kocurek 

and Lancaster, 1999). 

The grain-size distribution was generated as a consequence of the transport 

processes (Bagnold, 1941; Hunter, 1977). Tractional processes for example, 

forms plane bed lamination at high wind velocities, and the deposition in 

dune-fields by processes other than tractional deposition is normally 

restricted to the lee side of dune crests as a result of air flow separation from 

the surface (Hunter, 1977). Transport processes also responsible for the 

generation of bimodal grain size sorting,  bimodal grain size  sorting being a 

function of wind ripple development that occurs under conditions of constant 

wind velocity (Sharp, 1963; Glennie, 1970; Fryberger and Schenk, 1988). 

The sedimentary structure of the wind ripples is characterised by an 

arrangement whereby laminae generated by ripples that have coarser grains 

on their crests; this is due to the trapping of the sand finer grains in the lee 

side troughs in front of migrating ripples (Sharp, 1963; Mountney, 2006; 

Bristow and Mountney, 2013). This generates distinctive pinstripe lamination 

because of differences in grain size distribution. Such pin-striping is 

highlighted in the outcrop by the changes in colour: the finer grains tend to 
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be slightly darker than the coarser grains; different diagenetic processes can 

also highlight such a type of lamination (Allen, 1984, Fryberger and Schenk, 

1988; Anderson and Bunas, 1993; Makse, 2000). Pinstripe lamination is a 

distinctive feature of both modern and ancient aeolian sediments (Fryberger 

and Schenk, 1988; Cowan, 1993). 

Interdune deposits accumulated between dunes formed in bimodal or 

complex wind regimes, such as linear and star dunes, tend to be thicker and 

more areally extensive than those associated with unimodal dune systems, 

which produce lenticular, diachronous and relatively thin (<2 m) interdune 

accumulations (e.g., (McKee and Moiola, 1975;  Ahlbrandt and Fryberger, 

1981). The limited thickness of the interdune facies observed in the studied 

outcrop (sets < 1 m) is typical of sedimentation in dry interdunes of limited 

lateral extent between dunes developed under the influence of a unimodal 

wind regime. 

Dry interdune units reflect the nature of the substrate within the parts of the 

aeolian dune-field between the aeolian dune forms. They demonstrate a dry 

accumulation surface in interdune areas because of the lack of evidence that 

the sedimentation was influenced by any type of moisture and because wind 

ripple generally required dry, loose, non-cohesive, sand-grade sediment to 

form (Kocurek, 1981a; Mountney, 2006a). 

4.6.1.7 Damp interdune facies (ID2) 

Description: Facies ID2 is most the common type of interdune deposit; it 

represents 20% of the succession. This facies is composed of reddish-brown 

to orange, fine- to medium (rarely up to very-coarse) quartz-arenite; it is 

moderately to well-sorted; grains are sub-rounded. It occurs as sets that 

range in thickness from 0.1 to 1 m and that are typically several metres in 

lateral extent (up to 57 m). Internally, sets are composed of wavy and crinkly 

lamination dominated by modified wind-ripples (modification as a result of 

aqueous action) and adhesion structures (Glennie et al., 1978; Kocurek and 

Fielder, 1982). The characteristics of the sedimentary structures result in a 

marked textural contrast between this facies (damp interdune, ID2) and 

other juxtaposed aeolian facies (AD1, AD2, AD3) and interdune facies ID1. 

Toward the top of some sets of facies ID2, pseudo-lamination (Glennie, 
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1970, l972) is present and minor convolution may be present in the form of 

small, 30 to 40 mm-high flame structures (cf. Collinson,1994). This facies 

also exhibits several examples of down-folding structures up to 10 cm in 

width and 5 cm in depth (Figure 4.11, and Figure 4.13). The strata of some 

sets show gradual upward change from crinkly type lamination to more flat 

wind-ripple dominated strata (Figure 4.13).  

Interpretation: This facies records deposition under the influence of a short- 

or long-lived, elevated or fluctuating water table (Langford, 1989; Ahlbrandt 

and Fryberger, 1981) that was at or close to the accumulation surface such 

that its capillary fringe met and interacted with the surface (cf. Mountney, 

2006a). Interdune strata record accumulation in the depressions between 

aeolian dunes, and the variation of water table level plays a significant role in 

the nature of interdune sedimentary processes, such that dry, damp and wet 

interdune facies may be recognised. Facies ID2 represents a damp or wet 

interdune setting, whereas facies ID1 represents a dry interdune or lower 

dune plinth setting (cf. Mountney and Jagger, 2004). The adhesion 

structures observed in this lithofacies indicate deposition on a damp surface, 

where dry, wind-blown sediment migrated across a wet or damp surface and 

adhered to it (Figure 4.13; Glennie et al., 1978; Clemmensen, 1979; 

Kocurek, and Fielder, 1982). The irregular appearance of the strata that 

comprise this facies internally may reflect the repeated occurrence of local 

deflation and deposition processes, which is also a record of moisture and 

wind intensity variations over time, whereby deflation was locally limited by 

the water-table level (Simpson and Loope, 1985). The small-scale flame 

structures in this facies are a type of soft-sediment deformation related to 

fluid escape (Collinson, 1994). This structure indicates the presence of a 

damp interdune surface during the advance of an aeolian dune bedform, 

whereby the loading effect of the advancing dune squeezes moisture out of 

the interdune sediments in front of it, thereby resulting in deformation due to 

water escape (Doe and Dott, 1980; Horowitz, 1982). The down-folded 

structures are interpreted as vertebrate indentation marks in the damp 

interdunes; they are poorly defined animal footprint trackways and are 

common in many damp interdune settings (e.g. Lewis and Titheridge, 1978; 

Pollard, 1981; Loope, 1986; 2006; Allen, 1989, Rodriguez-Lopez et al., 
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2012). Similar features are common elsewhere in the Triassic Wilmslow 

Sandstone and Helsby Sandstone formations of the Cheshire Basin 

(Tresise, 1993; 1994; Tresise and Sarjeant, 1997, King and Thompson, 

2000). The gradual upward change to dry depositional units dominated by 

wind-ripple lamination, either dry interdune (ID1) or dune plinths (AD3), are 

indications of the decrease in the relative level of the water table (Figure 

4.13; Kocurek, 1981). 

4.6.2 Aeolian facies association 

From the interpretation of preserved characteristics, the various depositional 

facies seen in the Wilmslow Sandstone Formation exposed in the lower part 

of the Runcorn Expressway road-cut section (Figures 4.3, Figure, 4.14, and 

Figure 4.15) can be assigned to a mix of arid to semi-arid aeolian 

depositional settings. Collectively, this mixed facies association is interpreted 

to represent the preserved deposits of a water-table influenced aeolian dune 

and interdune system (sensu Glennie, 1970; Brookfield and Ahlbrandt, 1983; 

Kocurek, 1991; Cooke et al., 1993; Lancaster, 1995; Mountney and Howell, 

2000; Mountney, 2006a). 

The aeolian facies association (AD) in this study records the preserved 

expression of accumulation through the migration of aeolian dunes and 

associated interdunes. Collectively, the aeolian dune lithofacies (AD1-AD5) 

discussed above represent the preserved products of downwind and oblique 

migrating aeolian dunes inferred from measured mean foreset dip azimuth 

directions which range between 200° and 300° (cf. Mountney and Thompson 

2002). The repetitive grainflow processes across the dune slipface of these 

dunes generated packages of advancing cross strata in facies AD1. The 

common presence of cyclic reactivation surfaces truncating the avalanches 

sets indicates periodic localised erosion and reworking of the sediments on 

dune slipfaces in response to minor changes in aeolian bedform migration 

direction or lee slope steepness, or dune slope asymmetry (cf. Rubin, 1987). 

The horizontal aeolian interdune facies (ID1, ID2; (Figure 4.15) likely record 

deposition in areas between migrating active aeolian dunes (cf. Ahlbrandt 

and Fryberger, 1981); see modern examples in Al-Masrahy and Mountney 

(2013, 2015). 
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The simplest explanation is that these interdune accumulations separate 

accumulations of aeolian dune facies and therefore the lower bounding 

surface that defines the base of these interdune units represents an 

interdune migration surface that separates the accumulations of what would 

have once been laterally adjacent aeolian dune bodies (cf. Brookfield, 1977; 

Kocurek, 1981a, b, 1996; Ahlbrandt and Fryberger, 1981; Fryberger, 1993). 

These damp or dry interdune areas formed hollows or corridors between the 

aeolian dunes. Such interdune configuration could potentially be exploited by 

fluvial systems if open to the edge of the dune-field (see Chapter 3; cf. Cain 

and Mountney, 2011; Al-Masrahy and Mountney, 2015). In the case of 

closed, elliptical hollows between dune forms, interdunes may have 

collected local run-off from rain water and sedimentation would therefore 

have been associated with rainfall events within the dune-field (erg) system 

(Brookfield  and Ahlbrandt, 1983; Svendsen et al., 2003; Pye and Tsoar, 

2009). 

The shift between the interdune and dune facies is represented by a gradual 

upward transition from the wavy to crinkly laminations of the damp interdune 

into wind rippled dominated strata of the dry interdune (ID1) and overlying 

aeolian dune toeset (AD3), and up into grainflow dominated strata sets of 

the dune lee slope (AD1). This gradational change demonstrates 

synchronous development and emplacement of the damp interdune, the dry 

interdune and adjacent dune facies (Pulvertaft, 1985; Mountney and 

Thompson, 2002; Mountney, 2006b). This relationship is most obviously 

explained by an interdune flat in which the central part of a slightly 

topographically depressed intedune hollow was closer to the water table, 

whereas the fringes of the interdune were slightly topographically higher and 

drier, especially where they passed into the plinth areas of any adjoining 

dunes. 

Implicit in the interpretation provided above is the notion that the aeolian 

dunes and their adjoining interdunes migrated and accumulated over earlier 

deposits via bedform climbing whereby a succeeding dune migrated over a 

preceding interdune surface (cf. Mountney and Jagger, 2004). This general 

interpretation is only one of the possible models of aeolian dune and 

interdune interactions. A second possible interpretation is that sedimentation 
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on damp or wet interdune flats was not on-going during the dune advance; 

rather, aeolian dune bedforms migrated across damp or wet interdune flats 

where angle of climb is fluctuating around zero, so-called non-climbing 

model (cf. Langford and Chan, 1988; Simpson and Loope, 1985, Mountney 

and Thompson, 2002; Jagger and Mountney, 2004). Interaction between 

aeolian dunes and adjoining interdunes is discussed further in the discussion 

part of this chapter (Section 4.7.2). 

4.6.3 Aeolian architectural elements 

Two aeolian architectural elements are identified and these are illustrated in 

three-dimensional models (Figures 4.16, and Figure 4.17): aeolian dune 

element A1 and aeolian interdune element A2, which comprise 75% and 

25% of the studied section of the Wilmslow Sandstone Formation, 

respectively. These geometrical bodies stack together to form compound 

assemblages of multiple stacked elements that themselves extend laterally 

for 170 m as element groups or compound packages of strata that are up to 

~8 m thick (Figures 4.16, and Figure 4.17). 

4.6.3.1 Aeolian dune architectural elements (A1) 

Description: The complex architecture of the aeolian dune elements within 

the outcrop is shown in Figure 4.4. The facies associated with aeolian dune 

architectural elements include the following: moderate- to high-angle 

grainflow strata (AD1); moderate- to high-angle grainflall strata (AD2), low to 

moderate angle wind-ripple strata facies (AD3), massive aeolian sandstone 

(AD4) and soft sediment deformed facies (AD5). Aeolian dune elements are 

the most prevalent element in the aeolian succession. Single elements 

laterally extend between 3 and 8 m, and reach a maximum thickness of 1.5 

m. Each set is cut out by the succeeding set in a downwind direction (Figure 

4.4, Panels A-F4). Aeolian dune elements occur vertically above interdune 

elements and together these two element types attain a maximum thickness 

of 8 m. Cosets of strata that form stacked aeolian dune elements rarely 

exceed 4 m, with cosets delimited by interdune migration bounding surfaces. 

Palaeocurrent measurements from facies that comprise A1 elements 

indicate an overall south-westward dune migration direction, inferred from 
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measured mean foreset dip azimuth directions; mean = 255°, angular 

deviation = 14, n = 130 (Figure 4.16). 

Interpretation. The lateral extent of the aeolian elements reflects persistent 

episodes of aeolian activity. Vertically stacked aeolian dune elements 

represent deposits of an aeolian dune-field system for which conditions were 

favourable for bedform construction and accumulation (cf. Glennie, 1970; 

Lancaster, 1983; Kocurek, 1996, 1999). The observed interbedding of 

grainflow strata with wind-ripple strata represent accumulation on dry, 

sloping surfaces of dune lee slopes (Hunter, 1977; Kocurek, 1981; 1991; 

1996). The upward transition from less steeply inclined AD3 facies 

representative of the lower dune plinth region to more steeply inclined AD1 

facies representative of the dune lee slope within preserved sets is indicative 

of the transition from interdune sedimentation to dune sedimentation 

(Kocurek, 1991; Mountney, 2006a; Mountney and Thompson, 2002). Soft-

sediment deformation observed within this element occurs as a result of 

sand accumulation failure at a high-angle dune slipface, possibly in 

response to surface precipitation, wet conditions (Allen, 1970; Hunter, 1977; 

Doe and Dott, 1980; Mountney, 2006a). Mean foreset azimuth direction 

(Palaeocurrent direction) suggest slipface orientation for aeolian dune 

element to be consistently to southwest (Figure 4.3), the spread of cross bed 

orientation throughout the measured sets likely reflect barchanoid transverse 

to oblique dune forms (Fryberger, 1979; Nurmi, 1985; Nichols, 2009; 

Mountney and Thompson, 2002; cf. Hunter et al., 1983; Rubin, 1987; Rubin 

and Careter 2006; Al-Masrahy et al., 2012). The relationship between this 

element and aeolian element A2 suggests that the preservation of the 

aeolian dune element occurred within a wet dune-field settings (cf. Mountney 

and Russell, 2009). 

4.6.3.2 Aeolian interdune architectural elements (A2) 

Description: Three distinct scales of aeolian interdune element are 

observed in the studied succession. First, thin (10 to 20 cm) interdune 

elements occur as lenses (5-15 m in lateral extent) of mainly ID2 facies that 

occur directly beneath aeolian dune elements A1 (Figure 4.4, Panel A). 

These examples are laterally restricted and are rare, representing only 1% of 
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the succession. Second, units occur as less than 0.8 m-thick, 10 to 20 m-

wide bodies, which represent about 5% of the succession (Figure 4.4, 

Panels A and B) and are composed internally of facies ID1. Third, units 

composed of facies ID2 occur that are up to 1 m thick of laterally 

discontinuous interdune sets, this later scale of interdune element is the 

dominant interdune scale in the studied outcrop. These element types range 

in length from 12 to 57 m, and represent 19% of the succession; they pinch 

out laterally, and examples of this element can typically be traced laterally 

for 20 to 30 m (Figure 4.4, Panels A-F4). Some instances of this element 

internally exhibit a gradual upward change from facies 1D2 to ID1 and then 

pass gradationally upwards into A1 elements. This type of interdune element 

occurs in close association with aeolian dune element A1 (Figure 4.16). A2 

elements occur typically as lense-shaped bodies between aeolian dunes 

elements (Figure 4.17). The contact boundary between A1 and A2 elements 

is either sharp with evidence of erosion at the base of A2, or laterally 

transitional into overlying aeolian dune element A1 (Figure 4.17). 

Interpretation: All the three recognised varieties of aeolian interdune 

elements described above are representative of the variation in the nature of 

the substrate at the time of accumulation on the interdune surface, which is 

typically related to the surface moisture conditions (Kocurek, 1981; Kocurek 

and Nielson, 1986; Pulvertaft, 1985; Mountney, 2006a; Mountney and Cain, 

2009). Interdune elements composed of mainly of wind-ripple strata 

represent dry interdune elements formed during dry conditions and a water 

table that lay significantly beneath the accumulation surface (Kocurek, 1981; 

Mountney, 2006a). Irregular (wavy) lamination, with evidence of small-scale 

flame structures and indenter marks indicate the presence of an elevated 

water-table (Doe and Dott, 1980; Kocurek, 1981; Horowitz, 1982; Mountney 

and Thompson, 2002; Kocurek and Fielding, 1982). The gradual upward 

change from facies ID2 to ID1 and to A1 records a drying up in the 

sequence, which can most obviously be linked to a change in relative water 

table (Figure 4, Panels A and B; Kocurek, 1981). Interdunes occur between 

dunes in most dune-fields (Glennie, 1970; Ahlbrandt and Fryberger, 1981, 

Talbot, 1985; Mountney, 2006; Masrahy and Mountney, 2015). The lateral 

pinch-out of these elements reflects the expansion and contraction of the 
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interdune flats in response to changes in dune size and morphology. Some 

relationships observed between A1 and A2 elements record coeval 

development and climb of dunes and adjacent interdunes (Figure 4.4, Panel 

F2 and Figure 4.15b; cf. Pulvertaft, 1985; Loope and Simon, 1992; 

Mountney and Thompson, 2002). The sharp contact boundary between A1 

and A2 elements, which shows evidence of erosion at the base of A2, 

indicates an interdune erosional surface and overlying lateral transition into 

overlying aeolian dune element A1. This relationship indicates a coeval (i.e., 

synchronous) development of two laterally adjoining sub-environments: 

aeolian interdune and dune (cf. Pulvertaft, 1985; Mountney, 2006b; 

Mountney and Thompson, 2002). Other relationships record dune migration 

over an eroded interdune surface and therefore signify a break in deposition 

whereby the interdune is assigned to one sequence and the overlying dune 

represents the onset of a later sequence (Figure 4.4, Panel A, and Figure 

4.14a and b; Loope, 1985; Jagger and Mountney, 2004). The presence of 

these elements in the hollow depressions and flat areas between successive 

aeolian dune elements, and the mechanism of alternation between aeolian 

dune facies and related aeolian interdune facies all confirm their association 

with aeolian dune element (A1) (Ahlbrandt and Fryberger, 1981; Mountney 

and Thompson, 2002; Mountney, 2012, Al-Masrahy and Mountney, 2013). 

4.6.4 Fluvial facies 

Seven fluvial lithofacies have been identified, and collectively these 

represent the preserved product of deposition from both channelised and 

non-channelised aqueous flow deposition (Table 1). 

4.6.4.1 Intraformational mud clasts facies (FC1) 

Description: This facies is composed of reddish-brown, poorly-sorted 

quartzarenite; grains in the matrix are angular to sub-angular and sub-

rounded; intraformational mud clast pebbles are also present. This facies 

represents 5% of the succession (Figure 4.18). The sandstone matrix 

exhibits an upward decrease in grain size within sets (fining upward), from 

coarse or very coarse sandstone to fine sandstone, this lithofacies change in 

vertical profile from FC1 lithofacies to FC2 lithofacies. The intraformational 

rip-up clasts are composed of red to reddish-brown laminated (original 
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depositional structure) silty mudstone. Clasts are of highly variable size and 

shape; they attain lengths that range from 1 to 25 cm and are especially 

abundant in the lower parts of sets of this facies. Sets range in thicknesses 

from 0.1 to 1.0 m. This facies is closely associated with other channel-fill 

facies (FC2 and FC3). Sets of this facies most commonly occur directly 

above prominent erosional bounding surfaces and some examples of this 

facies fill erosional scours present in the upper parts of previously deposited 

facies of aeolian and fluvial origin, elements, F1 and F2, (Figure 4.4, Panels 

B-F, see section 4.6.6.1, and 4.6.6.2). 

Interpretation: This intraformational mud-clast lithofacies is preserved 

principally as a channel lag deposit associated with fluvial channel-fill 

elements (Collinson and Lewin, 1983; Miall, 1996; Selley, 1996). This facies 

directly overlies the erosional bounding surface that defines the fluvial 

channel base (Miall, 1978, 1996; Steel and Thompson, 1983). The mud 

clasts in this facies most-likely represent the localised reworking of fluvial 

floodplain deposits, or possibly late-stage channel-fill deposits (Miall, 1996; 

Collinson, 1996; Medici et al., 2015). The presence of the large cobble and 

boulder-size mud clasts (up to 25 cm in diameter) embedded in a sandstone 

matrix likely indicates introduction by collapse of unstable channel banks. 

The angular nature of clasts of this friable material signify a very short 

transport distance and rapid deposition, probably from a rapidly waning 

current, an interpretation supported by the associated absence of order and 

structure in the lag deposits and the overall fining upward trend within sets 

(Mader, 1985, Jones et al., 2001; Bridge, 2003; Collinson et al., 2006; 

Scasso, et al., 2012). Facies similar to this have been shown to originate via 

erosion of fine-grained sediments of aeolian wet interdune origin during 

major floods (Mountney and Howell, 2000; Svendsen et al., 2003; Cain and 

Mountney, 2009), as well as via erosion of fluvial floodplains (Miall, 1978, 

1996; Collinson, 1996; Medici et al., 2015). The observed rapid facies 

change from facies FC1 to FC2 suggests a rapid decrease in flow velocity 

and associated decrease in flow competency and sediment transport 

capacity (Miall, 2010a. Bridge, 2003; also see below). 
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4.6.4.2 Planar cross-bedded sandstone facies (FC2) 

Description: Facies FC2 is composed of reddish-brown to light-brown, fine- 

to very coarse-grained sandstone that is poorly to moderately sorted, with 

intraformational mud clasts that occur primarily above a basal a erosional 

surface to form lag deposits (as in FC1) and also scattered throughout the 

facies, especially lining many foresets (Figure 4.19, and Figure 4.4, Panels 

B-F). This facies represents 25% of the succession. Facies FC2 is arranged 

into planar cross-bedded sets that are 0.2 to 1 m thick. The lower surface of 

each set can be either sharp but non-erosional or erosional. Internally, cross 

strata within sets vary from relatively low- to high- angle inclined (10° to 22°) 

cross-bedded foresets. Reactivation surfaces are observed although are 

rare or absent in some sets. The cross-bedding of this facies only rarely 

exhibits asymptotic bottom sets (Fielding, 2006; Tucker, 2011). Inclined 

cross-bedded foresets have azimuths oriented in a direction toward 

northwest with mean vector of 295° (n = 60). Multiple individual sets are 

commonly stacked into cosets, which themselves vary in thickness from 1.5 

to 2.5 m (coset thickness decreases upwards through the succession (see 

4.4, Panel C2). 

Interpretation: This planar cross-bedded sandstone facies records the 

migration, accumulation and preservation of subaqueous mesoforms (i.e., 

dune scale bedforms) within a fluvial channel system (Miall, 1996; Collinson 

et al., 2006; Reesink et al., 2015). The dunes were straight-crested 

bedforms (Miall, 1977; Cant and Walker, 1978; Cant, 1982; Allen, 1982; 

Best, 2005; Leclair, 2011; Soltan and Mountney, 2016). The development of 

such 2D mesoforms indicates deposition during lower flow-regime conditions 

that gave rise to a unidirectional palaeoflow, as signified by the development 

of planar-tabular cross-bedding (Miall, 1996). The style of planar cross-

bedding in some sets is tabular whereas in a small number of sets it is 

tangential (asymptotic) to the set base, reflecting deposition during high 

water stage and an increase in flow strength that produces a reverse flow 

component toward dune lee slope due to the presence of a strong 

separation eddy (Collinson et al., 2006, Miall, 2006, Bridge and Demicco, 

2008). Sets characterised by sharp boundaries at their top record an abrupt 

abandonment phase. The preservation of only toesets and foresets of the 
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Figure 4.19: Fluvial channel, planar cross-bedded sandstone lithofacies (FC2).
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mesoforms indicates a subcritical angle of bedform climb, where the 

preservation of dune stoss-side deposits of the bedform did not occur 

(Rubin, 1987, Collinson et al., 2006). The reactivation surfaces observed in 

some sets (Figure 4.19) likely indicate fluctuations in the palaeoflow direction 

or current speed or intensity (Miall, 2010b), or flow-stage oscillations that 

varied between low and high stage (Rust and Jones, 1987; Collinson, 1970; 

Ashworth et al., 2011). This fluctuation of the flow may also account for the 

presence of the scattered intraformational mud clasts in the cross-bedded 

sets. 

4.6.4.3 Trough cross-bedded sandstone facies (FC3) 

Description: Facies FC3 is a trough cross-bedded sandstone, composed of 

reddish-brown to light-brown, fine- to very coarse-grained sandstone; sorting 

is poor to moderate, with intraformational mud clasts occurring primarily in 

the basal parts of individual troughs such that they form lag deposits, though 

they also occur scattered throughout the facies in some instances (Figure 

4.20, and Figure 4.4, Panels F4-5). This facies occurs in sets that are 

typically 0.1 to 0.3 m thick, and which stack together to form cosets that are 

each up to 2 m thick. Troughs within the cross-bedded sets vary in width 

from < 1 m to ~2 m, the direction of palaeoflow is indicated by the orientation 

of the trough axes towards northwest with mean vector of 304° (n=10). This 

facies represents 15% of the succession. 

Interpretation: These trough cross-bedded deposits are of subaqueous 

origin and represent the migration and accumulation of sandy mesoforms 

within a fluvial channel system. The sets represent the preserved deposits of 

sinuous-crested (i.e., three-dimensional) dune-scale bedforms (Miall, 1977; 

Allen, 1982; Rubin, 1987; Collinson et al., 2006; Banham and Mountney, 

2014), the development of which is typical of channels that experienced 

turbulent flows (Allen, 1982; Collinson et al., 2006), under low to moderate 

flow regimes (Miall, 1996; Stikes, 2007; Nichols, 2009). Sharp boundaries at 

the bottom of the channel-fill element records a scouring and eroding of the 

underlying substrate (channel base) by flow circulation in front of the 

migrating bedforms (Friend et al., 1979; Jones, 2002; Gibling, 2006). The 

presence of intraformational rip-up mud clasts on the bases of troughs 
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indicates the re-working and entrainment of previously deposited sediments 

during periods of high-energy flow (DeCelles et al., 1983; Rubin, 1987). 

4.6.4.4 Massive (structureless) sandstone facies (FC4) 

Description: This well-lithified, brown to light-brown coloured sandstone is 

devoid of prominent internal sedimentary structures. This facies occurs in 

many places across the studied outcrop (Figure 4.4, Panels  B-F). This 

lithofacies represents 35% of the succession. It is characterised by fine to 

medium, moderately to well-sorted sandstone with sub-rounded to sub-

angular grains but is structureless. This facies occurs in sets that are 0.1 to 3 

m thick. Although massive (i.e. structureless) in the majority of occurrences, 

rarely a very faint and patchy lamination may be just discernable in small 

areas of some sets. This facies commonly occurs above erosional surfaces. 

Intraformational mud clasts up to 15 cm in length are observed in this facies, 

though are rare (Figure 4.21, and Figure 4.4, Panel F6). 

Interpretation: The predominantly massive nature of this lithofacies is 

indicative of rapid deposition of sediment from hyper-concentrated or gravity-

driven, possibly during single or multiple flood events (Olsen, 1987; Miall, 

1996; Svendsen et al., 2003; Collinson et al., 2006). Hyperconcentrated 

flows are common in semi-arid ephemeral fluvial systems and stream 

subject to intermittent flow (Svendsen et al., 2003) where long periods 

between floods or fluvial activity (e.g. during drought episodes) promotes the 

accumulation of non-cohesive, sand-rich aeolian sediment in fluvial 

pathways that is prone to rapid fluvial reworking during high-magnitude flood 

events (Glennie, 1970; Al-Masrahy and Mountney, 2015). The lack of clear 

internal structure may also attributed to both the grain size homogeneity and 

to rapid deposition in a waning flow. The observed mud clasts reflect the 

high energy of the fluvial flow that was able to transport such clasts (cf. Miall, 

1977). 

4.6.4.5 Horizontally laminated sandstone facies (FH) 

Description: This facies is a horizontally laminated sandstone, composed of 

brown to pinkish-brown, very fine- to medium-grained, moderately to well-

sorted, sandstone composed of sub-rounded to sub-angular grains. The 

facies is laminated on an mm scale (1 to 5 mm thick); laminations are 
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Facies FC4: Massive (Structureless) sandstone
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Figure 4.21: Fluvial channel, massive sandstone lithofacies (FC4).
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discontinuous in some sets extend laterally between 30 to 100 m. Sets are 

0.2 to 0.6 m thick and commonly exhibit normally grading. Some set 

boundaries are difficult to distinguish due to grain size homogeneity. This 

facies commonly passes upwards gradationally into current ripple-laminated 

sandstones facies (FR) within sets (Figure 4.22). No reworked rip-up clasts 

are present in this facies. This facies represents 12% of the succession. 

Interpretation: The fine-grained planar laminated sandstone facies 

represents deposition under the influence of upper flow regimes conditions 

(Allen, 1982; Picard and High, 1973; Cheel, 1990, Bridge, 2003), indicated 

by horizontal parallel lamination. This facies is indicative of either 

channelised fluvial flow or sheet-like flow (Stear, 1985; Bridge, 2003; Picard 

and High, 1973; Miall, 1978; 1996), the normal grading and presence of 

current ripple-lamination at the top or above this lithofacies indicate 

deposition during decelerating flow; it also evidence of falling stage in 

channel deposits (Bridge, 2006; Bridge and Demicco, 2008). Grain size 

homogeneity (though with vague lamination in some units) possibly reflects 

the localised reworking and re-deposition of a compositionally and texturally 

mature aeolian sediment during floods (Glennie, 1970; Good and Bryant, 

1985; Langford, 1989). 

4.6.4.6 Ripple cross-laminated sandstone facies (FR) 

Description: This lithofacies is characterised dominantly by cross-laminated 

sandstone that is light brown-brown to reddish-brown, very fine- to coarse-

grained, and which possesses dark mud drapes on some lamination 

surfaces. This facies represents 3% of the succession. This facies is also 

characterised in places by ripple-form stratification for which ripples climbed 

at subcritical angles of 5 to 10°; preserved ripples heights are <3.5 cm. 

Ripple forms may occur in trains. In places, this facies also rarely exhibits 

examples of supercritical climbing (Figure 4.23). This facies occurs in the 

upper parts of sets as packages of ripple cross-lamination and ripple-form 

strata at are 1 to 30 cm thick. Ripple forms are especially well developed on 

upper bedding surfaces of sets. The mud drapes, where present, are thin (< 

2mm thick). This facies is commonly closely associated with horizontally 

laminated sandstone facies (FH). 
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Figure 4.22: Fluvial channel, horizontally laminated sandstone lithofacies (FH).
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Interpretation: This facies accumulated in subaqueous conditions (fluvial); 

and represents the unidirectional migration of small-scale ripple forms 

(microforms) during waning flow regimes (low flow speed) within either the 

upper part of the fluvial channel-fill or in non-channelised fluvial settings 

(Stear, 1985). The sets of current-ripple stratification imply sluggish and 

shallow flow in a waning flow regime (Allen, 1968; Nichols, 2009; Banham 

and Mountney, 2014). The preserved ripple foresets that possess mud 

drapes indicate weak pulsing currents possibly moving into area where the 

water formed standing ponds, allowing suspension settling of the mud 

fraction (Allen, 1968, 1985; Reineck and Singh, 1980; Stear, 1985; Collinson 

et al., 2006). The ripple cross-laminated sandstone facies (FR) is commonly 

associated with horizontally laminated sandstone facies (FH); its occurrence 

on a horizontally laminated surface (FH) results from turbulent variation in 

near-surface flow velocity and variation in rate of sediment supply; these 

variations are also responsible for the differences in the ripple internal 

structures (Jopling and Walker, 1968; Allen, 1982; 1984; Bridge and 

Demicco, 2008). 

4.6.4.7 Horizontally thin-laminated silty mudstone facies (FM) 

Description: This lithofacies is characterised by red-brown (rarely bleached 

white) silty mudstone that typically occurs as beds of thinly laminated 

siltstone and massive or thinly laminated mudstone. Beds are commonly 

laterally extensive, extending for 192 m across the entire section of the 

fluvial part of the outcrop (Figure 4.4, Panels B-F), although some sets show 

limited lateral extent (Figure 4.4, Panel F). Grain size is almost entirely of 

clay and silt grades. This facies occurs in sets that are 0.1 to 0.3 m thick. 

Desiccation cracks have been observed in similar examples of this facies 

seen elsewhere in the local area (cf. Mountney and Thompson, 2002), 

(Figure 4.24). This facies represents 5% of the succession. 

Interpretation: This facies represents deposition from very weak traction 

currents and suspension settling in floodplains or during the final stage of 

channel filling and abandonment; it records waning flow to form ponds and 

their subsequent desiccation (Miall, 1977; 1996; Olsen, 1987; Collinson, 

1966; Jones et al., 2001; Bourke, 2003; Bridge, 2006; Fisher et al., 2008). 
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 Facies FM: Horizontally thin-laminated silty mudstone 
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Figure 4.24: Fluvial channel, horizontally laminated silty mudstone lithofacies (FM).
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The presence of this facies may record the uppermost part of a fluvial 

channel-fill, which is a common feature of idealised channel-fill successions, 

especially in ephemeral fluvial systems in semi-arid settings (Abdullatif, 

1989; Collinson, 2006; Bridge, 2006). Colour mottling may reflect weakly 

developed pedoturbation over relic fluvial bedforms or fluid bleaching 

(Wright, 1986). Mudstone lamination indicates the deposition from very slow 

flow or standing water (Picard and High, 1973; Fisher et al., 2008). This 

facies is the parent material of the intraformational mud clasts of facies FC1, 

FC2, FC3 and FC4. Thus, this facies was prone to extensive re-working by 

succeeding fluvial activity. 

4.6.5 Fluvial facies association 

The seven recognised lithofacies have been grouped into two associations 

representative of 1) channelised fluvial deposits (CF), composed of the 

facies (FC1, FC2, FC3, FC4, FH, FR and FM), and 2) non-channelised 

sheet-like fluvial deposits (UCF), composed of the facies (FH, FR and FM) 

(Figures 4.3, and Figure 4.25). 

The channelised fluvial facies association (CF) represents the preserved 

deposits that formed by the accumulation under a variable set of processes 

that operated in a channelised fluvial system (Miall, 1996; 2014; Bourquin et 

al., 2009). Successions in Figure 4.25 (a and b) show a typical upward-fining 

succession, from pebbly lag deposits of intraformational origin at the base of 

the succession to finer sediment at the top (Figure 4.3, and Figure 4.25), 

which marks the culmination of confined channel filling (Collinson and Lewin, 

1983; Miall, 1978, 1996; Steel and Thompson, 1983). A general upward 

thinning of bed-set thickness is also noted in channel-fill facies successions 

(Figure 4.25 a). Collectively, these trends reflect a decrease in the fluvial 

flow (Miall, 2014). Facies FC1 indicates the rapid-reworking of parts of the 

preserved adjoining overbank units to generate locally derived rip-up mud 

clasts, that were carried and moved through the fluvial channel as bed load 

sediment, and which subsequently were deposited in the lower parts of the 

channel during the waning stage of the flow to form lag deposits at the base 

of each fining-up-ward depositional cycle (Miall, 2010a., 1996, Bridge, 2003). 
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Facies FC2, FC3 and FC4, which range in grain size from very coarse to fine 

sandstone, represent accumulation of mesoforms and dunes that were 

migrating downstream within channels under the influence of episodic flow of 

high-energy-fluvial-discharge during fluvial-flood events (Miall, 1977; Cant 

and Walker, 1978; Soltan and Mountney, 2016). The horizontally laminated 

silty mudstone Lithofacies (FM) may reflect final channel filling and 

abandonment as standing ponds of water left in abandoned channels (Miall, 

1977; 1996). 

The non-confined facies association (UCF), composed of facies FH, FR and 

FM, is best observed in the upper parts of fluvial depositional cycles (cf. 

Cheel, 1990), examples of which are shown in (Figure 4.25). Facies in this 

association are characterised principally by the absence of the erosional 

bounding surfaces, a generally finer grain size, sheet-like lamination and, in 

some cases, small-scale cross bedding (Stear, 1985). Collectively, these 

characteristics are indicative of deposition under waning-flow conditions in 

response to channel over-topping and flow in non-confined floodplain 

overbank settings (Bridge, 2003; 2006; Picard and High, 1973). The 

presence of desiccation cracks on top surfaces of facies FM (Figure 4.24) in 

the study area confirms deposition of suspension-load either in fluvial 

overbank settings or in standing pools of water within a drying-out channel 

(Collinson, 1996; Miall, 1966; Mountney and Thompson, 2002). 

From the previous discussion, the various depositional facies seen in the 

upper part of the Runcorn expressway road-cut rock exposure (Figure 4.3) 

can be assigned to a mix of fluvial depositional sub-environments (Figure 

4.25). These mixed facies associations are interpreted to be product of 

deposition via fluvial system sedimentation in both channelised and non-

channelised settings (sensu Picard and High, 1973; Cant and Walker, 1978, 

Cant, 1982; Allen, 1985; Miall, 1977, 1996; Mader, 1985; Bridge, 2006; 

Collinson, 2006; Mountney & Thompson, 2002; Cain and Mountney, 2009). 

4.6.6 Fluvial facies architectural elements 

Four fluvial architectural elements representative of the preserved remnants 

of fluvial sub-environments are identified and illustrated in three-dimensional 

models. The fluvial architectural elements are as follows: fluvial architectural 
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elements representing channelised fluvial flow processes (F1, F2, F3  and 

F4), and fluvial architectural elements representing non-channelised fluvial 

processes (F3 and F4) (Figure 4.26, and Figure 4.27). 

4.6.6.1 Multi-storey, multi-lateral amalgamated channel elements (F1) 

Description: Laterally and vertically amalgamated channel-fill elements are 

composed of a series of amalgamated channelised strata. F1 elements are 

2.5 to 6 m thick and 5 to16 m wide. They have the following geometrical 

characteristics: (i) this element defined at its base by an erosional surface, 

commonly with a lag deposits of intraformational clasts (facies, FC1), and 

overlain by preserved stacked of dune-scale bedforms (mesoforms) to form 

multiple storeys (Bridge and Mackey 1993; Miall, 1996, 2014; Gibling, 2006); 

(ii) the element is composed internally of cross-bedded sandstone and some 

sets some pass gradationally upward into sets of horizontally laminated 

sandstone overlain by silty mudstone; (iii) this element is also characterized 

by a sheet-like geometry (Friend et al., 1979; Veiga et al., 2007) (Figure 

4.26, and Figure 4.25 a). Multiple instances of these elements are not 

necessarily fully preserved because the erosional bases of overlying 

elements have commonly cut-out and removed the upper parts of the 

underlying elements. 

Internally F1 elements are composed of vertically stacked and laterally 

overlapping storey that are made up of 1.5 to 2.5 m thick cosets that are 

each themselves composed of 0.2 to 1 m thick sets. Cosets stack together 

to form up to 6 m of stacked channel deposits, separated by horizontal thin 

silty mudstone units (FM). Individual storeys can be traced laterally for 5 to 

16 m in directions parallel to regional palaeoflow to a point where typically 

one storey is cut-out laterally by an adjacent storey (Figure 4.4, Panel C). 

The lower set of the fluvial storey defined by basal erosional surface 

preserves evidence of scour into facies of aeolian origin at the top of the 

underlying Wilmslow Sandstone Formation (Figure 4.4, Panels B-F4, and 

Figure 4.26). The fill of each storey comprises facies FC1 and FC2, with FC2 

being the major component of this element. Cross-bedded sandstone sets of 

facies FC2 may rarely pass gradationally upward into sets of FH, FR or FM 

in a single channel storey. This arrangement is only rarely observed 
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Figure 4.26: Multi-storey, multi-lateral amalgamated channel-fill complex elements (F1).
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because it is more typical for the overlying element to erode down and cut-

out (i.e. erode) the upper part of underlying F1 elements. Where the 

complete facies succession of a well-developed F1 element is preserved, a 

clear fining-up succession capped by facies FM, is evident (Figure 4.25 a). 

Interpretation: Laterally extensive, amalgamated channel-fill elements of 

type F1 (Figures 4.26) represent the deposits of aggrading braided-channel-

belts where intense fluvial erosion processes were active during major flood 

events (Flores and Pillmore, 1987; Bridge, 1993; Gibling, 2006). The 

occurrence of the intraformational mud clasts in association with erosively 

based channel storeys indicates a high velocity flow that is sufficiently 

powerful to erode the underlying substrate, followed by the transport of the 

locally derived materials as clasts prior to their deposition as a basal lag 

during the waning-flow stage (Collinson and Lewin, 1983; Miall, 1978, 1996; 

Steel and Thompson, 1983; Bridge, 2003; Cain and Mountney 2009). The 

multi-storey and multilateral nature of these channel-fill elements indicates a 

long-lived episode of fluvial depositional system activity in a localised area to 

allow the accumulation of the stacked and overlapping storeys of these 

elements (Cain and Mountney, 2009). 

4.6.6.2 Single-storey, multi-lateral amalgamated channel elements (F2) 

Description: Type F2 amalgamated channel-fill elements are composed of 

a series of laterally amalgamated channelised strata. F2 elements are 2 m 

thick and it can be traced laterally for 110 m. The have the following 

geometrical characteristics: (i) The basal surfaces of these element are 

sharp and erosional in other places with lag deposits of intraformational mud 

clasts (FC1) toward at the bottom, overlain by sets of inclined planar cross-

bedded strata (FC2) or trough cross-bedded strata (FC3); (ii) the upper 

bounding surface is generally either sharp, cut by the overlaying set of 

horizontally laminated sandstone which itself overlaying by silty mudstone 

element (F4) or erosional, upper surface scoured by the overlying single 

storey element; (iii) this element have an overall sheet-like geometry. 

Internally, F2 elements facies successions are encapsulated within a single 

coset of cross strata that forms a storey, though storeys are stacked laterally 

adjacent to each other, with their bounding surfaces typically showing local 
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lateral incision into neighbouring storeys (Figure 4.27). Storey are composed 

of sets of facies FC1, FC2 and FC3. Cosets of this element which represent 

channel storeys are defined by a basal erosion surface that commonly has 

locally derived intraformational mudstone clasts (of reworked facies FM) 

associated with it. These lags are overlain by sets of trough cross-bedded 

strata (FC3). 

Interpretation: This element represents a laterally overlapping and 

extensive but none aggrading braided fluvial channel-belt accumulation 

(Figure 4.25 b; Bridge, 1993; Gibling, 2006; Banham and Mountney, 2014). 

These elements are dominated by bedload transport processes, with trough 

cross-bedded sets representing the migration of dune-scale mesoforms 

within the braided channels (Miall, 1977; 1996). The nature of the lateral 

extent of multi-lateral channel elements arose from repeated avulsion of 

active and unstable shallow channels at a single stratigraphic surface to 

form a channel belt (Martinsen et al., 1999; Gibling 2006; Banham and 

Mountney, 2014). These types of elements and the fluvial systems that 

generate them are common in dryland systems (Tooth, 2000b, Tooth and 

Nanson, 2011). 

4.6.6.3 Horizontally sheet-like elements (F3) 

Description: Type F3 sheet-like elements are composed of lithofacies FH 

and FR. F2 elements are  0.9 m thick and 30 to 60 m wide, rarely 80 to 100 

m, where obscured parts of poorly exposed sections are included (Figure 

4.4, Panels B-F). They have the following geometrical characteristics: (i) 

sharp lower surface; (ii) sharp upper bounding surface overlain by element 

F4; (iii) this elements have an overall sheet-like geometry (Figure 4.27). 

Internally, F3 elements comprise sets of horizontally laminated sandstone up 

to 0.6 m thick (FH; Figure 4.22). Top of this facies is associated with mud 

draped current ripple-laminated sandstones (FR). 

Interpretation: The presence of facies FH and FR in this element could 

indicate either channelised fluvial flow or sheet-like, non-confined flow, 

(Bridge, 2003; Picard and High, 1973; Miall, 1996; Cain and Mountney, 

2009; Banham and Mountney, 2014). Current ripple-lamination and 

associated thin mud films at the top or above this lithofacies are indicative of 
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progressively decreasing current velocity This could be indicative of falling 

stage in-channel sedimentation processes or waning flow in a post-flood 

non-confined setting (Picard and High, 1973; Bridge, 2006; Bridge and 

Demicco, 2008). 

4.6.6.4 Channel abandonment elements (F4) 

Description: Examples of this element are composed entirely of lithofacies 

FM, attain a thickness of 10 to 30 cm and extend laterally for at least 192 m, 

although in places show limited lateral extent 60 to 80 m. F4 elements have 

the following geometrical characteristics: (i) sharp lower surface; (ii) sharp 

upper surface; (iii) this elements have an overall sheet-like geometry. The 

upper surfaces of F4 elements are characterised by desiccation cracks 

(Figure 4.4, Panels B-F, Figure 4.25 a, and Figure 4.27). 

Interpretation: As the flow velocity decreased in the aftermath of flood 

events, the grain size of the sediment load also decreased until, during the 

last stage of flow, the suspended sediment load component (mud and silt) 

settled and was deposited, forming blanket of fine sediment on top of the 

channel fill. Two possible sub-environments are envisaged for F4 elements: 

(i) accumulation in shallow, sluggish or stagnant pools, thereby marking the 

channel abandonment phase; (ii) accumulation in non-confined overbanks 

floodplain settings. The presence of desiccation cracks on the upper 

surfaces of these elements is a diagnostic feature of ephemeral fluvial 

stream activity (Figure 4.27; Picard and High, 1973; Miall, 1977; 1996; 

Olsen, 1987; Swiecicki et al., 1995; Reid and Frostick, 1997; Bourke, 2003; 

Bridge, 2006; Fisher et al., 2008). 

4.7 Discussion 

4.7.1 Aeolian depositional system 

Based on the detailed sedimentological analysis of Triassic deposits 

represented by Wilmslow Sandstone and Helsby Sandstone formations of 

the Sherwood Sandstone Group in the Runcorn Expressway road cut, two 

main continental depositional environments have been identified: (i) an 

aeolian dune-field system and (ii) a braided fluvial system; both formed in an 

arid to semiarid setting (Figure 4.28). 
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Although aeolian deposition is not limited to arid settings, it is most common 

in such settings (Breed et al. 1979; Glennie, 1970). However, even in arid 

climatic deserts, water remains a significant agent that influences deposition 

in most aeolian systems (Fryberger, 1990a; Kocurek and Havholm, 1993; 

Mountney, 2006a), The common association of heat and dryness with 

modern dune-fields means that it is possible to overlook the many ways that 

water directly or indirectly impacts the aeolian sedimentation process, 

including provenance, deposition, burial and diagenesis (Fryberger, 1990b). 

Water commonly impacts aeolian sedimentation because many dune-fields 

develop in proximity to standing or ephemeral lakes and streams, lagoons or 

the ocean. Water erosion processes modifies the surface of stabilised 

dunes, particularly in more humid regions (Jungerius and Meulen, 1988; 

Bridge and Rose, 1983; Pay and Tsoar, 2009). 

In dry aeolian systems, where aeolian sedimentation is fundamentally 

controlled by aerodynamic configurations and the water table or its capillary 

fringe has no effect on sedimentation, migrating aeolian dunes will only 

commence climbing one over one another after they have been constructed 

to a size whereby interdune flats have been eliminated (Kocurek and 

Havholm, 1993). As a result, dry aeolian successions tend to lack thick 

accumulations of interdune elements, and are generally dominated by 

aeolian dune elements (Mountney, 2006a). By contrast, in wet aeolian 

systems, where aeolian accumulation is controlled by both aerodynamic 

configuration and the presence of moisture on the accumulation surface, 

which acts to restrict the availability of aeolian grains for transport (Kocurek, 

1981a,b, Kocurek, 1996, Mounteny, 2012), aeolian accumulation can occur 

in response to a rise in the relative level of the water table (Kocurek and 

Havholm, 1993; Carr-Crabaugh and Kocurek, 1998; Mountney, 2012). The 

presence of an elevated water table in so-called wet aeolian systems means 

that the construction of aeolian bedforms in such systems is limited, whereas 

the potential for the accumulation of thick interdune flats (damp or wet) 

separating the downwind climbing dune strata is high (Hummel and Kocurek, 

1984; Mountney and Jagger, 2004, Mountney, 2006a). 

The level of the water table during or after the accumulation of aeolian 

sediment plays a significant role in the preservation mechanism of the 
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deposited aeolian sediment (Kocurek, 1981a; Kocurek, 1996; Carr-

Crabaugh and Kocurek, 1998). In this study area, the preserved aeolian 

succession is characterised by an abundance of damp interdune elements 

that separate aeolian dune elements (Figure 4.7). The interaction between 

the dune forms and the damp interdune strata exhibits an intertonguing 

(interfingering) and transitional relationship (Figure 4.11, Figure 4.13, and 

Figure 4.15). These relationships demonstrate that the dunes accumulated 

synchronously with the interdunes, and represent sub-environments that 

were laterally adjacent to each other. The interdunes were damp and water-

table-influenced within a wet aeolian system for much of their development 

(cf. Kocurek, 1981a; Pulvertaft, 1985; Simpson and Loope, 1985; Mountney 

and Thompson, 2002, Mountney, 2006a and b). The water table acted to 

control the accumulation of this system (Øxnevad, 1991; Herries and 

Cowan, 1997; Mountney and Thompson, 2002). 

 

4.7.2 Aeolian dune-interdune relationship, controls on dunes and 

interdune accumulation 

Interdune deposits are the key indicators of specific palaeoenvironmental 

conditions in wet aeolian systems, where the water table lies at or close to 

the accumulation surface. The development of damp or wet interdunes will 

act to control the level to which aeolian deflation can occur and, hence, will 

govern the supply of sediment suitable for aeolian dune construction, and 

the availability of that sediment for aeolian transport (Kocurek, 1981; Hotta et 

al., 1984; Granja et al., 2008; Mountney and Russell, 2009; Mountney, 

2012). 

The accumulation and preservation of damp or wet interdune strata in wet 

aeolian systems is known to arise via two competing processes: climbing 

and non-climbing styles of interaction between dune bedforms and 

interdunes. 

Climbing model: In wet aeolian systems, migrating aeolian dunes can 

accumulate and their deposits can be preserved in response to a gradual 

rise in water table (Kocurek and Havholm, 1993; Crabaugh and Kocurek, 

1993; Carr-Crabaugh and Kocurek, 1998). The ratio between the rate of 
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water table rise and the rate of aeolian dune bedform migration determines 

the angle of climb of dunes and adjoining interdunes. Changes in this 

balance between rate of water table rise and rate of aeolian dune bedform 

migration result in changes to the angle of climb. The expansion and 

contraction of interdune flats between dune forms are determined by the 

availability of sediment suitable for aeolian dune construction (Crabaugh and 

Kocurek, 1993; Kocurek and Havholm, 1993; Mountney, 2012). This process 

of accumulation and preservation requires high external sediment supply to 

maintain dune migration and climbing while the water table is rising. In 

response to changes in sediment availability for dune construction, the size 

and extent of dunes and adjoining wet or damp interdunes varies. An 

increase in the rate of water table rise tends to restrict the supply and 

availability of sediment for aeolian construction, thereby favouring a 

decrease in dune size and an associated increase in wet interdune size 

(Kocurek and Havholm, 1993; Kocurek, 1999; Mountney and Thompson, 

2002; Mountney and Jagger, 2004; Mountney, 2012). 

The Jurassic Entrada Sandstone, which was described by Kocurek (1981a, 

b), is a well-documented example of a wet aeolian system in which the dune 

bedforms and adjoining interdunes undertook climb (i.e. net accumulation) in 

response to contemporaneous dune migration with a progressive and 

gradual rise in the water table (Figure 4.29a). 

Non-climbing model: This model was proposed by Simpson and Loope 

(1985) and Loope and Simpson (1992) – amongst others – from studies of 

preserved aeolian dune and interdune strata in the White Sands dune-field, 

New Mexico, and the Jurassic Wingate Sandstone, Utah. The premise of the 

model is that preserved sequences of aeolian dune and interdune deposits 

are primarily controlled by the periodicity of climatic change (an allocylic 

control) superimposed on a background of slow and possibly punctuated 

subsidence that generated accommodation (Figure 4.29b). These authors 

related the damp or wet conditions of the interdunes in modern ergs and the 

evidence of high water tables in ancient eolian sequences as an indications 

for low sand supply and small, typically spatially isolated dunes (Figure 

4.29b). 
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Preservation of aeolian dunes in this model is attributed to the punctuated 

episodes of rising water table and availability of accommodation space. 

Hence, sediment bypassing is dominant, and the rock record therefore 

represents a series of amalgamated wet interdune elements that may be 

separated from time to time by the fortuitous accumulation of thin sets of 

aeolian dunes when accommodation and climate allows (Simpson and 

Loope, 1985). This style of preserved stratigraphic architecture reflects the 

migration of isolated aeolian dunes across wet interdune flats where the 

angle of climb was essentially zero for prolonged periods. Thus, preserved 

successions may contain numerous long-lived bypass supersurfaces (cf. 

Crabaugh and Kocurek, 1993). However, such surfaces are difficult to 

identify since they are effectively disastems (paraconformities) that separate 

bundles (sequences) of similar strata that become vertically stacked over 

long time periods. 

The differentiation between climbing and non-climbing competing models 

from evidence present in outcrop data is not an easy task, particularly in 

areas that are tectonically not stable, where tilting of the originally deposited 

beds is possible, hence, leading to a mis-interpretation of the original 

accumulation and preservation mechanism (Figure 4.30). From an applied 

perspective, in hydrocarbon field development, differentiating between 

climbing and non-climbing damp/wet interdune units is important because it 

influences how interpretations and correlations of subsurface intervals 

between wells are undertaken. Climbing interdune units examined in this 

studied aeolian section are generally laterally restricted (5-20m) (cf. 

Kocurek,  1981; Mountney and Thompson, 2002; Mountney and Jagger, 

2004). For such systems, it is difficult to undertake inter-well correlations 

when well spacing is more than few hundred metres. By contrast, non-

climbing system interdune units generally tend to be more laterally extensive 

and possibly amalgamated (cf. Simpson and Loope, 1985; Loope and 

Simpson, 1992). Thus, it may be possible to confidently correlate such non-

reservoir units for several hundred metres. Consequently, gaining an 

understanding of the mechanisms by which wet aeolian systems accumulate 

and become preserved is important to construct more reliable hydrocarbon 

depositional models, especially for such complex system. In the studied 
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outcrop, the interdune basal surfaces are commonly sharp, abruptly 

terminating the underlying dune units (Figure 4.15). The contact between 

interdune and overlain dune sets are either sharp erosional (non-climbing 

model) (Figure 4.4, Panel A and B, and Figure 4.14) as a consequence of a 

slight fall in water table giving chance for wind reworking process to take 

place, or sharp non-erosional contact (Figure 4.4, Panels A-F) or 

gradational, where interdune facies pass gradationally upward to aeolian 

dune toe sets facies (Figure 4.7, Figure 4.8, Figure 4.13, and Figure 4.15). 

Additionally, in Figure 4.4, Panel B, an interdune composed of facies ID2 

observed stacked against cross-strata of dune composed of facies AD1 and 

AD3. In some places, the intertonguing of dry interdune strata with overlying 

aeolian dune strata indicates interdune sedimentation that was synchronous 

with dune migration and accumulation (climbing model) (Pulvertaft, 1985; 

Loope and Simon, 1992; Kocurek and Havholm, 1993; Mountney and 

Thompson, 2002; Mountney, 2006b). 

Lens-shaped interdune geometries which are dictated by the morphologic 

arrangement and spacing of adjacent dunes are observed in the studied 

sections (Figure 4.4, Panels A, B and D, and Figure 4.14b). These types of 

interdune elements are common in preserved aeolian dune successions that 

comprise the deposits of relatively small, rapidly downwind migrating 

transverse or oblique aeolian dunes between which isolated interdune 

depressions were present (Rubin, 1987; Carruthers, 1987; Lancaster, 1995). 

The style of lateral transitions and the nature of boundary surfaces between 

dune and interdune elements suggest changes in the level of water table, 

possibly in response to factors such as the amount of precipitation or longer-

term changes in climate (cf. Crabaugh and Kocurek, 1993; Luna et al., 

2012). In wet aeolian systems, the angle-of-climb of aeolian bedforms and 

laterally adjoining interdunes is known to change to reflect the fluctuation in 

the rate of water table rise and the rate of aeolian-migration (cf. Mountney 

and Thompson, 2002). 

Damp interdune elements (A2) in the studied outcrop (Figure 4.4, Panels A 

and F) are abundant and are characterised by deposits that occur 

interfingered at a small scale with overlying aeolian dune toesets of  A1 

elements (e.g. Figure 4.4, Panel F2, and Figure 4.14b). 
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4.7.3 Relationship between grainflow dominated sets thickness 

and grain flow lithofacies thickness 

Direct measurements of parameters relating to aspects of architecture of 

aeolian elements has enabled the establishment of empirical relationships, 

that can be used as a tool for predicting subsurface architectural parameters 

and arrangements (e.g., Romain and Mountney, 2014). The style of 

preserved grainflow lithofacies types and preserved set architectures 

enables prediction to be made regarding the relationship between preserved 

individual grainflow thickness and set thickness. 

The amount of an aeolian succession that comprises packages of grainflow 

strata is an important consideration in reservoir geology; such packages 

represent bodies of high permeability, relative to packages of wind-ripple 

and grainfall strata. Thick and laterally continuous and connected 

accumulations of grainflow strata typically make for excellent reservoirs for 

hydrocarbons and water (Galloway and Hobday,1996; Howell and 

Mountney, 2001; Shephered, 2009; Loope et al., 2012; Ringrose and 

Bentley, 2014). 

Aeolian sets, representing aeolian dune deposits and which are dominated 

by grainflow lithofacies (AD1) but also composed in part of grainfall and 

wind-ripple facies (AD2 and AD3), represent 35% of the aeolian succession 

observed with the Wilmslow Sandstone Formation exposed in the Runcorn 

Expressway road cut. Small-scale facies relationships from 11 preserved 

sets have been examined in detail (Figure 4.31a). For these sets, the 

thicknesses and type of 130 individual gainflow units have been determined, 

with each grainflow deposit having been defined based on sediment texture 

and grain size trends, and relationship to adjoining lithofacies AD2 and AD3 

(see description and interpretation of lithofacies AD1 section 4.6.1.1, and 

aeolian element A1 section 4.6.3.1). The mean thickness of preserved sets 

is 0.7 m (Standard deviation 0.24 m); the mean grainflow thickness is 1.8 cm 

(Standard deviation 0.98 cm) (Figure 4.30). The data population exhibit a 

negative skewed distribution (Figure 4.31b). The relationship between set 

thicknesses and grainflow thicknesses data shows considerable variation 
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with no apparent trend and no clear correlation (Figure 4.32). The thickness 

of grainflow strata is directly linked to the volume of sand entrained at the 

front of the dune lee slope, and this in turn is governed by lee-slope length, 

which itself related to the dune height (Kocurek and Dott, 1981). Thicker 

grainflow deposits tend to develop on the lee slopes of larger dunes, 

whereas thinner grainflow deposits that are separated by thin grainfall 

laminae are typical of smaller dunes (Figure 4.14c; Hunter, 1981; Kocurek 

and Dott, 1981; Mader, 1985a). From a study of currently active dunes in the 

Little Sahara dune-field, Utah, Kocurek and Dott (1981) demonstrated a 

positive correlation between grainflow thickness and bedform height. The 

accumulation of aeolian dunes via bedform climbing is considered as the 

main mechanism of accumulation for the majority of preserved aeolian 

successions. For water-table-influenced examples of such systems, the 

angle of climb is controlled by changes in the ratio between the rates of 

water-table rise and dune migration, and the net aeolian sediment budget, 

which controls dune size (Mountney, 2004; Mountney, 2012). Bedform 

climbing processes typically allow only the lowermost part of the migrating 

aeolian bedform to be preserved (Rubin and Carter, 2006). Thus, preserved 

set thickness does not necessarily reflect the original dune bedform size; 

instead, thickness of preserved grainflows may represent a better proxy for 

dune height (Romain and Mountney, 2014). 

For migrating dunes of a fixed size, a fixed angle of climb will result in 

generation of sets of dune strata with constant thickness (Mountney, 2012). 

Thus, for successions that have accumulated under the influence of a fixed 

angle of climb, there should be a strong positive correlation between 

preserved grainflow thickness and preserved set thickness. However, the 

data set herein highlights the absence of correlation between the grainflow 

strata thickness and set thickness. This could imply that the system was not 

climbing at a fixed angle but was rather climbing at variable angles during 

accumulation; else, it could indicate that successive dunes in a train were of 

variable size and/or spacing. 

Examples of similar correlations were also demonstrated by Howell and 

Mountney (2001), and Romain and Mountney (2014). Results from both 

these studies concluded no significant relationship between preserved set 
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Figure 4.32: Relationship between grainflow thickness and  preserved bed-
set thickness within which grainflow laminae occur.
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thickness and grainflow thickness. This variation could be a result of several 

reasons (Figure 4.33): 1) dunes of different bedform size but with the same 

angle of climb, the different original dune bedform sizes responsible for 

generating the sets preserved in different parts of the succession; 2) dunes 

of the same size but different angle of climb; 3) the exposed part of the dune 

trough could be only the edge, and the actual maximum preserved set 

thickness is more toward the trough central part that is not exposed; 4) 

Punctuated episodes of generation of accommodation. The preservation of 

an aeolian succession requires that the accumulation is placed beneath the 

level of deflation to protect it from later reworking. This can be achieved by: 

1) placing the aeolian accumulation beneath the level of the water table, 

which acts to protect the accumulated sediment from deflation and reworking 

processes (Carr-Crabaugh and Kocurek, 1998; Mountney, 2012; Bristow 

and Mountney, 2013); 2) accumulation of aeolian sediment to a level 

beneath the baseline of erosion, thereby preventing aeolian sediment from 

becoming susceptible to deflation and reworking processes (Kocurek and 

Havholm, 1993). The thickness of accumulated and preserved aeolian 

deposits in the rock record therefore, is directly dependent on the availability 

of accommodation space. 

4.7.4 Fluvial depositional model 

Water can play a significant role in both erosion and deposition within 

dryland regions (Reid and Frostik, 2011, 1997; Tooth and Nanson, 2011). 

Dryland rivers tend to experience high –magnitude, low-frequency flood 

events (Graf, 1988, Tooth, 2000b), and due to the dependency of channel 

pattern on stream power provide an explanation of the common occurrence 

of braided rivers in dryland environments (Powell, 2009). 

The deposits of braided rivers in dryland environments possess a set of 

sedimentary characterise by which they can be identified. These 

sedimentary characteristics are exhibited by the facies assemblages present 

in this study and are as follows: (i) a generally coarse-grained sediment 

composition (Figure 4.3 and Figure 4.18; Cant, 1982; Bristow, 1988, Soltan 

and Mountney, 2016); (ii) facies that are indicative of stream flow with both 

upper and lower flow regimes (Glennie, 1970; Miall, 1996); (iii) abundant and 
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Figure 4.33: Stratigraphic explanation for the lack of clear trend in the 
relationship between grainflow thickness and preserved set thickness. a) 
different original dune bedform sizes responsible for generating the sets 
preserved in different parts of the succession, note the difference in the 
preserved interdune set thicknesses; b) variable angle of climb responsible for 
generating the sets preserved in different parts of the succession, note the 
difference in the preserved dune set thicknesses; c) clipping the edges of 
troughs; the pseudo-wells that penetrate trough-shaped sets at random 
positions reveal sets that are apparently of variable thickness. However, the true 
maximum thickness of the trough-shaped sets is actually very similar in all 
cases; d) punctuated episodes of generation of accommodation resulting in the 
episodic accumulation and preservation of aeolian dune sets.  
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repeated channel incision and fluvial erosion (Figure 4.4, Panel C); (iv) an 

abundance of planar cross-bedding (Figure 4.3, Figure 4.4, Panels B-F, and 

Figure 4.19; Smith, 1972; Swiecicki et al., 1995; Miall, 1996); (v) evidence 

for lateral migration of channels that with banks composed of poorly 

consolidated sand (Figure 4.4, Panel F; Cant and Walker, 1976; Cant, 

1982); (vi) the presence of rip-up clasts (Figure 4.3, and Figure 4.18; Rubin, 

1987; Miall, 2010); and (vii) general fining upward in grain size to form 

depositional cycles that occur vertically superimposed (Figure 4.3; Cant, 

1982; Jones et al., 2001; Ashworth et al., 2011). 

The presence of clay to silt grained deposited at the top of the channels in 

this study succession (Figure 4.25 a) implies that the fluvial system was 

probably  related to a distal  part of fluvial setting where  the stream power 

was decreased, thereby promoting the accumulation of suspended-load 

sediments and the generation of such siltstone and mudstone at the top of 

each preserved cycle (cf. Miall, 1996; Collinson, 1996). Associations of 

facies and their occurrence as a distinctive suite of architectural elements 

record accumulation within a braided fluvial system. 

Terminal fluvial systems, which are common fluvial system types in semiarid 

to arid regions represent a style of fluvial drainage network in which fluvial 

discharge does not drain to a significant standing body of water (e.g., a sea 

or lake), but instead terminates on an alluvial plain or in marginal aeolian 

dune-field setting (Figure 4.34; Friend, 1978; Kelly and Olsen, 1993; Cain 

and Mountney 2011, Al-Masrahy and Mountney, 2015). Desert ephemeral 

rivers or wadi channels carry large amounts of sediment as both 

suspension-load and bed-load (cf. Edgell, 2006). Terminal fluvial systems in 

such settings typically transport large volumes of sediment into the inland 

basins, thereby providing a  significant source of sediment for later aeolian 

construction (Lancaster, 1995; Blair and McPherson, 2009; Belnap et al., 

2011).   

4.8 Conclusions 

Results from this work form a valuable tool for comparative study of 

analogous aeolian and fluvial systems and preserved successions, in both 
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Figure 4.34: Schematic model illustrating the facies relationships arising from the termination of a fluvial system within an 
aeolian interdune corridor in a dune-field margin setting.
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modern and ancient settings, which do not possess the three-dimensional 

characteristics of the outcrop succession of the Runcorn Expressway road 

cut. Sedimentological characteristics provide details with regard to the 

systems’ architectural elements, internal lithofacies components and facies 

associations, within the framework of a generalised depositional model that 

depicts the arrangement and relationships of fundamental components of an 

ancient aeolian and braided fluvial succession. 

The construction of aeolian desert sedimentary systems, their accumulation 

and their long-term preservation does not necessarily require extreme 

aridity. Desert aeolian systems may also be constructed and accumulate 

deposits in areas influenced by an elevated water table level that is close to, 

at or above the surface, such that the accumulation surface may be damp or 

even wet. This study has documented the preserved record of a wet aeolian 

system and an associated fluvial succession, and has developed further our 

understanding of processes that operate in aeolian and fluvial systems in 

arid and semi-arid depositional settings. 

The Runcorn Expressway road-cut of northern Cheshire, England, provides 

an extensive section that is 13 m high and 230 m long. This section exposes 

strata of both aeolian and fluvial origin within the upper part of the Wilmslow 

Sandstone Formation and the lower part of the overlying Helsby Sandstone 

Formation (Figure 4.28). Aeolian and fluvial lithofacies, facies associations 

and architectural elements within this studied outcrop succession have been 

characterised in detail; the attributes of the aeolian and fluvial deposits 

(predominantly sandstones) are diverse. The latest techniques in lithofacies 

analysis and architectural-element analysis have been used to propose a 

novel depositional model for the aeolian and fluvial environments 

represented by these formations. 

The studied section provides a valuable example of the preserved deposits 

of an ancient wet aeolian system. Interdune units preserved between aeolian 

dune units record the impact of the water table on the development and 

preservation of a water-table-influenced aeolian system. Also this studied 

section provides example of dryland fluvial system, and understanding the 

lateral and vertical arrangements of the ancient river system architectural 
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elements is important to build more accurate models with which to advance 

the understanding of fluvial behaviour and the factors controlling the gross-

scale of architecture of preserved fluvial successions. 

This study provides a thorough and comprehensive description and 

interpretation for a well-exposed locality. The study concentrates on the 

overall understanding of an aeolian dune-field margin setting, where 

sedimentation was influenced by interaction with a dryland fluvial system. 

The outcomes of this study reveal the following: 1) the aeolian succession 

represents the preserved deposits of a wet aeolian system; 2) the system 

preservation mechanism was mainly controlled by the presence and change 

of water table level; 3) the aeolian system in the studied section preserves 

examples of both climbing and non-climbing dune-interdune behaviour, with 

examples of bypass and deflation supersurfaces preserved; 4) from 

observations in studied outcrop, the fluvial system developed as an 

ephemeral braided river in a dryland environment. 

Results from this study are of importance in assessing the role of 

heterogeneity in partitioning hydrocarbon reservoirs and water aquifers, and 

for predicting lithofacies lateral distributions between isolated wells, and the 

likely arrangement of non-reservoirs units such as interdunes and fluvial 

channel-abandonment and floodplain lithofacies. 

Preserved desert accumulations exhibit complex transitions on a variety of 

scales between the various sub-environments that comprise the arid climate 

depositional system. Typically, subsurface aeolian hydrocarbon reservoirs 

and groundwater aquifers are complex. Complexities arise from the 

stratigraphic anatomy and arrangement of lithofacies, including the possible 

associated occurrence of related fluvial lithofacies. Therefore, understanding 

the controls that govern the arrangement of aeolian and fluvial in arid-climate 

depositional systems, and the arrangement of architectural elements in erg-

margin settings is important in assessing reservoir heterogeneity and 

predicting how low permeability interdune units may act as baffles to the fluid 

flow. 
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Chapter Five 

Modelling system interactions in aeolian dune-field margin 

successions 

_____________________________________________________________ 

This chapter employs the ten types of aeolian-fluvial system interactions 

described from modern desert systems (chapters Two and Three), together 

with the ancient outcrop case-study example (Chapter Four), and a suite of 

literature-derived data, to generate a series of ten semi-quantitative 

geological facies models with which to account for the nature and origin of 

stratigraphic complexity present in aeolian dune-field margin successions 

that arise from the interplay of both autogenic and allogenic controls. 

____________________________________________________________ 

5.1 Abstract 

Mixed fluvial and aeolian successions form several major reservoirs for 

hydrocarbons, including the Permian Unayzah Formation of Saudi Arabia, 

the Permian Rotliegend Group of the North Sea, and the Jurassic Norphlet 

Sandstone of the Gulf of Mexico. Such reservoir successions typically exhibit 

stratigraphic heterogeneity at a number of scales. Quantitative stratigraphic 

prediction of the three-dimensional form of heterogeneities arising from 

fluvial and aeolian interaction is notoriously difficult: (i) the preserved 

products of system interactions observed in one-dimensional core and well-

log data typically do not yield information regarding the likely lateral extent of 

sand bodies; (ii) stratigraphic heterogeneities typically occur on a scale 

below seismic resolution and cannot be imaged using such techniques. A 

database recording the temporal and spatial scales over which aeolian and 

fluvial events operate and interact in a range of present-day and ancient 

desert-margin settings has been collated using high-resolution satellite 

imagery, aerial photography and field observation. Together, these data 

have been used to develop a series of dynamic facies models to predict the 

arrangement of architectural elements that define gross-scale system 
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architecture. Case-study examples have enabled the construction of a series 

of depositional models to account for the diversity of styles of fluvial and 

aeolian system interactions. 

Several styles of fluvial-aeolian interaction have been documented and the 

type and distribution preserved deposits can now be predicted through 

quantitative geological models that account for spatial and temporal changes 

in system dominance. For example, the preserved architectural elements of 

fluvially flooded interdunes tend to expand laterally as successive flood 

deposits develop in front of advancing aeolian dunes. In non-climbing 

aeolian systems, such behaviour favours the development of sheet-like 

bypass surpersurfaces. In aeolian systems that climb at low angles and for 

which fluvial incursions are episodic, thin and laterally impersistent fluvial 

elements tend to accumulate. The scale and connectivity of fluvial flood 

deposits tends to diminish with increasing distance toward the aeolian dune-

field centre. Results from this study have implications for how reservoir 

models are constructed for subsurface plays developed in mixed aeolian and 

fluvial successions. 

5.2 Introduction 

Accumulation, deflation (erosion), supersurface development and sequence 

preservation are variable over both space and time in aeolian successions. 

As a result, the possible configurations of stratigraphic architectures that can 

result from the operation of these controls are many and it is not feasible to 

propose a single summary model to account for the possible range of 

aeolian stratigraphic complexity. 

Aeolian sandstone deposits can form excellent reservoirs. The wind is a 

highly effective agent for sorting sediment meaning that the grain-size 

distribution of aeolian sand deposits tends to be restricted to a narrow range 

of sizes. Mean and median grain size and the standard deviation of their 

distribution may vary from the upwind to the downwind parts of aeolian dune 

fields and their preserved successions (e.g. Langford and Chan, 1993). At 

any given aeolian depositional site, wind-blown deposits tend to be relatively 

well-sorted by grain size compared to sediment deposited via other 
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processes, such as fluvial activity. Effective sediment grain sorting 

processes generally favour the development of good reservoir quality 

through the preservation of high primary porosity (Slatt et al., 1993). Aeolian 

dune deposits commonly (though not always) comprise thick, cross-bedded 

intervals of sandstones with well-rounded and well-sorted grain textures and 

that are typically compositionally mature (e.g. quartz arenites). This gives 

rise to well preserved primary porosities (e.g. Weber, 1987). The primary 

porosity and permeability of sandstones depends largely upon primary 

depositional processes and sediment texture. However, diagenetic 

processes that occurred after deposition commonly exert a strong secondary 

influence on the final porosity and permeability of preserved rock 

successions (Bloch, 1991, Ali et al., 2010; Slatt, 2013). Aeolian dune 

grainflow-dominated slipface deposits, which comprise loosely packed, well-

sorted sand grains, are normally the most productive lithofacies in aeolian 

reservoir systems, whereas dune-apron deposits tend to exhibit slightly 

reduced quality reservoir, and interdune units can form relatively low-

porosity and low-permeability barriers and baffles within aeolian successions 

(Hunter, 1977; Weber, 1987; Heward, 1991; Herries, 1993; Shepherd, 2009, 

Mountney, 2006a). 

Fluvial depositional environments, by contrast, tend to produce more 

heterogeneous reservoir successions for which porosity and permeability 

may vary considerably according to primary lithofacies type (North and 

Prosser, 1993). The facies associations of different architectural elements of 

fluvial successions can have markedly different porosity and permeability 

characteristics that chiefly depend on several factors: the nature of the rock 

matrix, lithologic heterogeneity, compaction, cementation, original sand 

sorting and grain size distribution character ((Morse, 1994; McKinley et al., 

2011). Relatively poorly sorted sandstone grain textures tend to exhibit lower 

permeabilities than better-sorted sandstone (Slatt, 2013). Within fluvial 

successions, the original clay content trapped in between the framework 

grains commonly lead to the development of secondary cement formation 

during diagenesis and the presence of such clays typically detrimentally 

affects fluvial reservoir quality (Ramon and Cross, 1997). For example, 

sand-prone channel-fill elements may be composed of apparently well 
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sorted sandstone but the presence of clays between framework-forming 

grains tends to reduce reservoir potential via permeability reduction (e.g., De 

Ros and Scherer, 2012). Clay content is commonly sufficient to choke pore 

throats. Moreover, clays may alter to form pore-blocking types such as hairy 

illite that contributes further to reservoir impairment (Woodward and Curtis, 

1987; Ahmed, 2008; Greensmith, 2012). Examples of successions where 

illitization is noted include parts of the Southern North Sea Permian 

Rotliegend Group (Glennie and Provan, 1990). 

In arid and semi-arid environments it is common for fluvial and aeolian 

systems to interact over a variety of spatial and temporal scales (see 

Chapter Three). Such interactions generate sequences that are composed 

internally of complex arrangements of aeolian and fluvial architectural 

elements, which are themselves composed of various facies associations 

(Chapter 4). The common types of interplay recorded from present-day 

aeolian and fluvial systems have been classified as ten distinctive types of 

interactions (Chapter Three, Figure 3.16; Al-Masrahy and Mountney, 2015). 

The accumulated and preserved lithofacies expressions of these different 

types of interactions typically result in different and possibly contrasting 

geometries and architectures (e.g., Herries, 1993; Mountney, 2012). Thus, 

preserved examples of such systems may form complex hydrocarbon 

reservoirs that are stratigraphically heterogeneous at several spatial and 

temporal scales. 

From an applied perspective, aeolian dune and interdune successions form 

important reservoirs for hydrocarbons, including the Permian Rotliegened 

Group of North Sea (Glennie, 1990; Howell and Mountney, 1997; Sweet, 

1999), the Triassic Ormskirk Sandstone Formation of the East Irish Sea 

(Herries and Cowan, 1997; Meadows, 2006), the Jurassic Norphlet 

Sandstone of the Gulf of Mexico (Kugler and Mink, 1999) and the Permian 

Unayzah Formation of Saudi Arabia (Melvin et al., 2010; Al-Masrahy et al., 

2012). Dune facies and elements are typically the most productive lithofacies 

in aeolian reservoir systems, whereas interdune facies and elements tend to 

have lower porosities and permeabilities, and fluvial components may form 

non-net reservoir flow barriers. The ability to predict the geometry and 
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degree of interconnectivity of these basic element types and changes from 

central to margin palaeo-dune-field environments is essential in assessing 

likely reservoir quality and the distribution of potential baffles and barriers to 

fluid flow (Weber, 1987; Chandler et al., 1989; Stanistreet and Stollhofen, 

2002; Taggart et al., 2010; Mountney, 2012). 

The complex distribution of aeolian dunes and interdunes in any dune field 

defines their spatial heterogeneity distribution which will affect reservoir 

behaviour, the impact of which often increases later in the life of a 

hydrocarbon field (Sweet et al., 1996). By mapping and modelling the 2D 

and 3D distribution of dune and interdune architecture, it is possible to 

capture details of types of facies interactions, the spatial extent of bounding 

surfaces, and the distribution of stratification types, all of which serve as 

fundamental controls on reservoir heterogeneity. 

The preserved sedimentary signatures that arise from the interaction of 

fluvial and aeolian processes have been widely recognised in stratigraphic 

record (e.g. Andrews, 1981; Loope, 1985; Langford and Chan, 1988; 1989; 

Glennie, 1990; Trewin, 1993; Heries, 1993,  Jones and Blakey, 1997; Howell 

and Mountney, 1997; Mountney et al. 1998; Sweet, 1999; Stanistreet and 

Stollhofen, 2002; Bullard and McTainsh, 2003; Mountney and Jagger, 2004; 

Scherer and Lvina, 2005; Veiga and Spalletti, 2007; Simpson, et al., 2008; 

Rodriguez-Lopez et al., 2010; Jordan and Mountney, 2010; Spalletti et al., 

2010; Bongiolo and Scherer, 2010; Cain and Mountney, 2011; Mountney, 

2012; East et al., 2015). However, specialised and sophisticated facies 

models have yet to be developed which account for the lateral facies 

changes known to occur in aeolian dune-field margins where competing 

aeolian and fluvial processes take place. This shortcoming is addressed by 

this work. 

Three-dimensional geological models (i.e. facies models) are still considered 

one of the important tools for reservoir development purposes. The aim of 

this chapter is to propose a series of facies models, the internal anatomy 

and facies composition of which reflect the preserved record of different 

types of aeolian-fluvial interaction documented from the ancient rock record. 

A specific research objective is to predict the likely arrangement of 
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architectural elements for both the aeolian and the fluvial components of 

different types of desert-margin successions. Such elements form the 

building blocks of hydrocarbon reservoirs in such successions. 

5.3 Fluvial-aeolian system interaction types 

This section discusses the approach taken to developing a series of facies 

models for the different types of interaction known to occur between 

competing fluvial and aeolian systems that are present both within and at the 

margins of aeolian dune-field systems (Chapter Three; summary figure 

3.16). Ten distinct types of interaction are illustrated by ten different three-

dimensional geological models. 

5.3.1 Fluvial incursions oriented parallel to trend of aeolian dune 

forms 

In this type of interaction, dune forms are arranged in a configuration of 

elongate ridges with crestlines aligned parallel or close to parallel to the 

direction of fluvial flow (Figure 5.1). The elongate shape of the dune forms 

(e.g., linear dunes) in this case enables the fluvial flow to pass through 

between dunes and flooding the open interdune areas. The potential extent 

of fluvial incursion into the dune field is variable; analysis of examples from 

modern systems (Chapter Three, Table, 3.1) reveals a range incursion 

distances of 13 to 114 km along open interdune corridors that provide 

access for fluvial systems within aeolian dune fields. Fluvial processes that 

operate during flood incursions may rework and erode aeolian sediment, and 

can also introduce new sediment into the aeolian system. A modern 

example of this type of interaction is the northern Simpson Desert, Australia 

(Figure 3.4; Nanson et al., 1995; Al-Masrahy and Mountney, 2015). 

This setting generates either ribbon-like fluvial deposits between non-

climbing or stabilised dune forms or sheet-like fluvial depositional elements 

in cases where the aeolian dunes progressively migrate between flood 

events (cf. Langford and Chan, 1988). Where fluvial channels are 

developed, their fills may be composed predominantly of fluvially reworked 

aeolian sand. The fluvial flow at the termination point within aeolian system 
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Figure 5.1: Fluvial incursions oriented parallel to trend of aeolian dune forms.
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may form temporary ponds from which fine-grained suspended-load 

sediments are deposited to generate thin layers of mud that may act to 

stabilise the interdune substrate once the flood waters have receded (e.g., 

Stanistreet and Stollhofen, 2002). Such layers may act to restrict aeolian 

reworking thereby preserving underlying fluvial strata. 

Although the majority of channels developed as a result of this type of 

interaction are ephemeral, they may be repeatedly re-occupied with each 

subsequent flood event. Where a slow rate of aeolian bedform migration 

occurs, such fluvial channels will migrate gradually laterally over time in front 

of the advancing aeolian dunes, and in doing so will form sheet-like fluvial 

elements of either extra-dune-field sediment or locally fluvially reworked 

aeolian sediment. Such deposits may accumulate between stacked aeolian 

dune deposits. The preserved fluvial deposits present in this type of aeolian 

setting can potentially be characterised by a lateral extent that is significantly 

greater than the width of a single flooded interdune at an instant in time 

because channel elements migrate laterally in front of the advancing dunes 

and thereby become grow through lateral translation and may merge with 

one another in non-climbing dune systems. 

The interdune corridor itself will comprise a series of facies associations and 

nested architectural elements. 1) Fluvial channels that, in some places, may 

have erosional bases filled with a lag of coarse-grained clasts; some pebble 

or cobble clasts may be of intraformational origin in cases where sediment 

has been reworked from the margins of aeolian dunes as blocks of semi-

consolidated sand; other pebble clasts may be of extraformational origin if 

the desert system is adjacent to a mountain front (cf. Anderson and 

Anderson, 1990). 2) Fluvial channels in some places may be erosionally 

based and have a fill of massive (structureless) sand or crudely cross-

bedded sand that reflects a rapid accumulation processes. 3) The fill of 

fluvial channel elements can be largely of fluvially reworked aeolian sand. 4) 

The fill of fluvial channel elements may alternatively be aeolian sand that 

was blown into an under-filled abandoned channel, thereby filling it via 

aeolian processes. 5) Other parts of interdunes might be characterised by 

sheet-like (i.e. non-channelised) fluvial deposits. 6) Some parts of interdunes 
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might not be subject to fluvial flow but might be characterised by damp 

interdune adhesion structures due to a locally elevated water table 

associated with the flooding taking place elsewhere in the dune-field margin. 

several ancient examples of such behaviours have been documented: the 

Permian Cutler Formation and Cedar Mesa Sandstone on the Colorado 

Plateau (Langford and Chan, 1989); the Middle Jurassic Page Sandstone in 

south central, USA (Jones and Blakey, 1997); the Triassic Helsby 

Sandstone Formation, Cheshire Basin, UK (Mountney and Thompson 2002); 

much of the foreland region of Paradox Basin during the Early Permian 

(Wolfcampian) time (Condon, 1997); the Cretaceous Troncoso Member, 

Neuquen Basin, Argentina (Stromback et al., 2005); and the Permian Organ 

Rock Formation, southeast Utah, USA (Cain and Mountney, 2011). 

5.3.2 Fluvial incursions oriented perpendicular to the trend of 

aeolian dune forms 

In this type of interaction, the dune forms are arranged in a configuration of 

elongate ridges with crestlines aligned perpendicular or close to 

perpendicular to the direction of fluvial flow (Figure 5.2). The occurrence of 

this configuration at the outer margin of an aeolian dune field, gives rise to 

flood events that may be prevented from passing into the dune field and may 

instead become ponded or be diverted in orientations parallel to the trend of 

the dunes at the outer dune-field margin. 

This setting generates a sharp boundary between aeolian and adjoining 

fluvial environments. The persistent or repeated presence of fluvial systems 

in this configuration prevents aeolian bedform migration or growth beyond 

the boundary of the fluvial system; aeolian sediment may temporarily 

accumulate in the fluvial channels but will be reworked by and incorporated 

into fluvial flows to be transported and deposited further downstream. By 

contrast, if the aeolian system undertakes progressive retreat 

(retrogradation), the aeolian deposits may become overlain by flood 

deposits. Complex and repeated jostling of the respective systems may 

produce an alternating cycles of aeolian and fluvial deposits. 

                    191



Fluvial flow direction

Aeolian sand accumulates in
inactive channels

Supersurface

Fluvial channel may have a 
flat or erosional base with high 

relief; fill of massive 
(structureless sand) or cross 

bedded sand

Aeolian sand filling 
inactive ephemeral 

channels

Older fluvial channel 
elements preserved in this 
section; interfingering of 
channel elements with 
adjacent aeolian dune 

elements

Older fluvial channel elements 
preserved in the stratigraphy 

are stacked vertically; 
demonstrates a fixed position 
for the dune-field margin for a 

protracted period. 

Fluvial reworking of the toes of 
aeolian dunes at the dune-field 

margin; encroaching fluvial 
channels

Fluvial channel elements are significantly wider than the active channels. 
Lateral and vertical stacking into multi-lateral and multi-sotrey channel belts 
arranged into a “cluster”; architecture dependent on changes in position of 

dune-field margin over time (may be fixed or highly mobile)

Minor flood waters escaping into 
adjacent interdune corridors to form 

localized ponds

Secondary dunes may become established 
where the wind has reworked ephemeral 

fluvial deposits into small dunes

Absence of fluvial deposits in 
dune interior testifies to the long-
lived fixed position of the dune-

field margin, which has 
prevented fluvial incursion into 
the central dune-field region

Chott or oasis; vegetation, 
plant root structures, trace 

fossils, evaporite 
deposition etc

0

5

10

15

20

m
e

tr
e

s

0        100      200      300 m

typical scale

Dry or damp
interdunes

and interdune
strata

Figure 5.2: Fluvial incursions oriented perpendicular to trend of aeolian dune forms.
This model is analogous to the modern scenario at the eastern margin of Wahiba Sand Sea, Oman.
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The preservation of stacked fluvial channel elements in this setting will occur 

at the aeolian system outer margin. The intercalation of fluvial and aeolian 

facies will tend to be limited to the narrow zone of interaction between the 

two systems in cases where the position of the dune-field margin is stable 

for a protracted period. Thus, preserved fluvial channel elements in the 

stratigraphic record may be stacked vertically in the area where the 

interaction is taking place, thereby demonstrating a fixed position for the 

aeolian dune-field margin for a protracted period. A known outcrop example 

of this type of behaviour is the lateral erg margin of the Permian Cedar Mesa 

Sandstone, Utah (Mountney and Jagger, 2004); a second example is the 

pre-White Rim sandstone (Permian) that is characterised by intertonguing 

fluvial and aeolian environments within the undifferentiated Cutler Group, 

also of the Paradox Basin, Utah (Chan, 1989). 

5.3.3 Bifurcation of fluvial flow between isolated aeolian dune 

forms 

Some aeolian systems are characterised by the presence of isolated aeolian 

dune bedforms (e.g., the star dunes of the southeastern part of the Rub’ Al-

Khali sand sea; Chapter Two, section 2.7; Figure 2.6d; Figure 3.7a). In such 

settings, fluvial systems may flow around these isolated dunes in the outer 

parts of aeolian dune fields and flow may bifurcate around the topographic 

obstacles on both sides, eroding and reworking the dune flanks, and then 

redepositing the aeolian sediment downstream in terminal splays within the 

aeolian dune field (Figure 5.3). The tortuous pathways of fluvial channels 

between and around spatially isolated aeolian dunes are dictated by dune 

morphology and spatial density. The distance of penetration of these fluvial 

systems into the marginal parts of aeolian systems may be high (7 to 161 

km; Table 3.1), indicating that the zone within which aeolian and fluvial 

sediment intermixing might occur can be broad. Sediment of mixed aeolian 

and fluvial origin that is deposited at the point of termination of fluvial flow 

within an aeolian system results in preserved sediment accumulations of 

mixed affinity, which can make the task of discerning original sedimentary 

process and environmental settings difficult, particularly in situations where 

fluvial systems have travelled long distances into aeolian dune-field margins. 
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Figure 5.3: Bifurcation of fluvial flow between isolated aeolian dune forms. 
This model is analogous to the modern scenario at the southeastern margin of the Rub’ Al-Khali  Sand Sea, Saudi Arabia.
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In some fluvial systems, bedload-deposited sediments may be composed 

almost exclusively of reworked aeolian sediments and the sediment textural 

characteristics will reflect this. 

Fluvial flow into the aeolian dune fields may locally charge the groundwater 

reservoir and this can influence the water-table level. Where the water table 

remains close to the surface for long periods, a wet aeolian system may 

develop (sensu Kocurek and Havholm, 1993). The long-term presence of a 

high water table will also enhance the preservation potential of the 

lowermost parts of migrating but spatially isolated aeolian bedforms (cf. 

Mountney and Russell, 2009). 

Preserved fluvial deposits within aeolian systems of this type tend to vary in 

character spatially. In areas close to the outer dune-field margin, fluvial 

stream flow will tend to have higher velocity and be able to generate 

confined fluvial channels. Further downstream within the dune-field margin, 

the velocity of fluvial flow will typically decrease and flow will tend to be less 

confined, generating sheet-like elements that comprise some aeolian-

reworked sediment. Interdune flats in areas beyond the limit of fluvial 

incursion will tend to become progressively “drier” with increasing distance 

from the flood termination point; interdune elements will change their internal 

facies composition as they change laterally from bodies that indicate a 

gradual shift from damp to dry interdune substrate conditions. 

Documented ancient examples of such behaviour are as follows: the 

Jurassic Kayenta-Navajo transition, northern Arizona, USA (Herries, 1993); 

the lower part of the Ormskirk Sandstone Formation, Triassic, England 

(Meadows and Beach, 1993); the Vallecito Formation, Lower Miocene in the 

Andean foreland basins of the Precordillera, Argentina (Tripaldi and 

Limarino, 2005); and the Paleoproterozoic Baker Lake Group, Nunavut, 

Canada (Hadlari et al., 2006). 

5.3.4 Through-going fluvial channel networks that cross entire 

dune-fields 

In this type of interaction, fluvial systems pass through entire aeolian dune-

fields. Such through-going fluvial channel fairways are established where 
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major drainage courses emerge from mountain catchments and pass into 

desert dune fields (Figure 3.16, and Figure 5.4). The presence of a fluvial 

course passing through an entire dune field may act to effectively partition 

the dune field, thereby limiting aeolian sediment transport pathways. One 

example of a permanent, perennial fluvial desert system is the Nile River 

(Figure 3.8a). The continuous presence of water will enhance the level of the 

groundwater table, potentially resulting in moisture at the accumulation 

surface in areas of the dune field adjacent to the river course. This will 

reduce aeolian sediment mobility, and therefore the availability of that 

sediment for aeolian transport (Ward, 1987; Krapf et al., 2003). During wet 

seasons when floods occur, the channel bank-full capacity of through-going 

rivers may be exceeded, resulting in the dispersal of fluvial sediment laterally 

along aeolian interdune corridors adjacent to the river. This is a mechanism 

to allow fluvial sediment dispersal beyond the fluvial channel margins (i.e. in 

floodplain settings). Such fluvial overbank sediments will typically become 

overrun by aeolian dunes in post-flood times after the water level has 

receded and the river once again has become confined. The type example 

where such processes occur is the River Nile, where 1000 kilometres of 

riverbank are lined with active aeolian dunes separating the Nubian Desert 

from the Libyan Desert (Spencer et al., 2012; Woodward et al., 2015). 

Fluvial flooding events may also form localised ponding along interdune 

corridors adjacent to the main river course. Here, thin mud beds typically 

accumulate in the aftermath of suspended-load sedimentation. The repeated 

reoccurrence of this process will favour the generation of a zone of 

accumulation of wet interdune strata adjacent to the main fluvial channel 

fairway. This zone is characterised by a progressive accumulation of 

mudstone units. 

The configuration of aeolian dunes along the river channel bank may act to 

fix the position of the channel fairway. The vertical facies succession at the 

site of the main fluvial fairway will typically be characterised by a vertically 

stacked cluster of amalgamated fluvial channel elements that testifies to 

long-lived fluvial activity and a relatively fixed channel position (Figure 5.4). 
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Figure 5.4: Through-going fluvial channel networks that cross entire dune-fields.
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During dry seasons, in areas characterised by the presence of ephemeral 

rivers, aeolian activity will tend to rework fluvial detritus and small dunes may 

migrate into and along the fluvial channel path and across floodplain areas. 

In such situations, the preservation of aeolian sediment is unlikely as such 

aeolian deposits will likely be reworked by fluvial flow during next flood 

event. Documented ancient examples of such behaviour are as follows: the 

eastern part of the northern Permian Basin, Karl Formation, Offshore 

Denmark (Stemmerik et al., 2000), the Pennsylvanian to Permian lower 

Cutler beds, southeast Utah, USA (Jordan and Mountney, 2010); the 

Permian  Slochteren Formation in the Netherlands (McKie, 2011b); and the 

Upper Triassic Tadrart Ouadou Sandstone Member, Argana Valley; South-

west Morocco (Mader and Redfern, 2011). 

5.3.5 Fluvial flooding of aeolian dune-fields associated with 

elevated water table level 

In this type of interaction, aeolian dune fields are characterised by a high 

water-table level that may inundate interdune areas during wet episodes 

(Figure 3.9, and Figure 5.5). The permanent presence of a high water table 

will generate wet or damp interdune flats between aeolian dunes for 

protracted episodes, thereby allowing the development of a wet aeolian 

systems (sensu Kocurek and Havholm, 1993). A high water table is also 

important as it increases the likelihood of the long-term preservation of the 

aeolian deposits (see the example from Al Jafurah Desert, Saudi Arabia; 

Figure, 3.9b; Mountney and Russell, 2009). In wet aeolian systems, 

sediments that comprise the floors of damp or wet interdune flats are 

relatively cohesive, and sediment availability for aeolian transport is 

restricted (Hotta et al., 1984; Good and Bryant, 1985; Fryberger et al., 1988; 

Crabaugh and Kocurek,1993; McKenna and Scott, 1998; Mountney and 

Russell, 2009). Such water-table controlled aeolian systems tend to be 

characterised by reduced rates of aeolian dune migration due to damp or 

wet surface conditions that prevent aeolian bedform advancement. One 

ancient example is part of the Jurassic Wingate Sandstone, Utah (Simpson 

and Loope, 1985; Loope and Simpson, 1992). 
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Figure 5.5: Fluvial flooding of aeolian dune-fields associated with elevated water table level.
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Common sedimentological features of damp and wet interdune deposits 

typical of this type of interaction include red mudstone (loess), desiccation 

cracks, adhesion structures (adhesion ripples, adhesion warts and adhesion 

plane beds), aqueous-ripple structures, wavy laminations, contorted 

structures and brecciated laminae, bioturbation, vertebrate trackways, sand 

derived from aeolian reworking of local dunes, calcisols and rhizoliths 

(Chapter Four, section 4.6.1.7; Kocurek, 1981; Kocurek and Fielder, 1982). 

The long-lived presence of extensive and repeatedly flooded interdune areas 

that are non-migratory favours the accumulation of thick wet interdune 

deposits, and the preserved geometry of the interdune (i.e. lenses) reflects 

the shape and size of the original interdune that was flooded, the rate of 

migration of that interdune during and between flood episodes and the 

longevity of the flood episodes (Figure 5.5). Regional elevated water-table 

level leads to flooding of interdune areas between aeolian dune forms; this 

may generate isolated and enclosed wet depressions that lack any fluvially-

derived sediment of extrabasinal origin. Such damp or wet interdune 

elements may show a lateral facies zonation from their centre to their 

margin, which reflects the nature of the substrate at the time of flooding and 

will be preserved as predictable drying or wetting upward cycles in vertical 

profiles of interdune elements. Temporary rise in the groundwater table 

brought about by fluvial floods is also documented by Ahlbrandt and 

Fryberger (1981), Petit-Maire et al., (1980), and Ward (1988). 

Further documented ancient examples where such behaviour is recorded 

are as follows: the Cutler Group and the Cedar Mesa Sandstone (Permian), 

southeastern Utah (Langford and Chan, 1988; 2008); the Ormskirk 

Sandstone Formation (Lower Triassic), East Irish Sea Basin (Herries and 

Cowan, 1997); the Permian Whitehorse Group of south-central Oklahoma, 

Permian Delaware basin region (Kocurek and Kirland, 1998); Triassic to 

Lower Jurassic continental red beds of the Argana Valley, Morocco 

(Hofmann et al.,  2000); the Late Permian Dawlish Sandstone Formation, 

Wessex Basin, South west UK (Newell, 2001); the Avile Member of the Agrio 

Formation (Lower Cretaceous), central Neuquen Basin, Argentina (Veiga et 

al., 2002); the upper Karoo aeolian strata (Early Jurassic), Tuli Basin, South 
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Africa (Bordy and Catuneanu, 2002); the Ordovician Guaritas Rift, 

southernmost Brazil (Paim and Scherer, 2007); and mid-Cretaceous western 

Tethyan margin, Iberian Basin, Spain (Rodríguez-López et al., 2006). 

5.3.6 Single point source fluvial incursion into aeolian dune-

fields 

In this type of interaction, the fluvial channels emanate from basin-bounding 

highland areas to pass as single-thread systems to intersect aeolian dune-

field systems at specific points along their margins (Figure 3.10, and Figure 

5.6). These types of channels commonly do not migrate laterally and are not 

long-lived but are transient features. Therefore, they are preserved as 

isolated features in the preserved stratigraphy, with size, frequency and 

degree of interconnectedness of fluvial channel elements typically 

decreasing toward the dune-field centre. The distance of fluvial incursion 

along interdune corridors is controlled by the magnitude of the flood and the 

length of open interdune corridors. Modern examples show a range of 

incursion distance of 2.91 to 135 km (Chapter Three, Table 3.1). 

Preferential vertical stacking of fluvial channel elements at one position in 

the outer margin of the aeolian dune field indicates a dune-field margin that 

has maintained a fixed position for a protracted period and may be 

associated with a limited distance of penetration of the fluvial system into an 

aeolian dune field (Figure 5.6). Consequently, the preserved sedimentary 

record might be characterised by limited lateral variations. The presence of 

relatively small and isolated fluvial channel elements in the central parts of 

otherwise aeolian-dominated successions may indicate a single thread 

fluvial channel that was characterised by a high-magnitude flow history, with 

associated floods that were able to penetrate a considerable distance into a 

dune-field centre setting; these types of incursion are relatively uncommon in 

modern systems. 

Documented ancient examples of this type of behaviour are as follows: the 

Proterozoic Mancheral Quartzite, Sullavai Group, Pranhita-Godavari Valley, 

India (Chakraborty and Chaudhuri, 1993); the Lower to Middle Triassic 

Buntsandstein of north west Sardinia, Italy (Costamagna, 2012); the early 
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Figure 5.6: Single point source fluvial incursions into aeolian dune-fields. 

                    202



Proterozoic Whitworth Formation, Mount Isa Inlier, Australia (Simpson and 

Eriksson, 1993); the Middle Devonian Lower Eday Sandstone, Orkney 

(Astin, 1985); and The Lower Triassic, western German Basin (Bourquin et 

al. (2006). 

5.3.7 Fluvial incursion into aeolian dune-fields associated with a 

multiple sheet source 

Distributive fluvial systems form networks of channels, commonly arranged 

into broad areas occupied by poorly-defined channels flow over low-gradient 

surfaces, where they pass out onto low relief desert plains (Cain and 

Mountney, 2009; Hartley et al., 2010; Weissmann et al., 2011). Along their 

width of intersection with aeolian dune-field margins, non-confined fluvial 

sheet-like bodies are characterised by shallow and poorly defined braided 

channel networks. These fluvial systems may pass between aeolian dunes 

along multiple adjacent interdune corridors, in some cases for distances of 

many tens of kilometres (Figure 3.1, Figure 3.2, and Figure 3.11). Such non-

confined flows typically pass into dune-fields penecontemporaneously along 

multiple open interdune corridors with access gained from multiple points 

along the dune-field margin, spreading fluvial-derived sediment at several 

areas within dune fields (cf. Cain and Mountney, 2009; Figure 5.7). 

Interdune flats at the upwind margins of aeolian dune-fields may be 

inundated by sheet-like non-confined fluvial flows generally at the fluvial 

termination point where the power of the stream flow is less efficient and 

less erosive. Interdune flats that are not subject to fluvial incursion may 

accumulate damp-surface adhesion structure due to locally elevated water 

table related to nearby flooding. In the central part of aeolian dune fields, 

where the fluvial processes are absent, dry interdune elements will develop. 

In areas where fluvial flow can pass further into the aeolian system, erosion 

of aeolian sand occurs by water flowing through narrow neck areas between 

dunes. Deposition of fluvial and fluvially reworked aeolian sediment via 

fluvial processes occurs at the termini of interdunes where flood waters 

finally pond. This type of fluvial system may cover large areas at dune-field 

margins. Such fluvial systems are commonly ephemeral; flood frequency 
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Figure 5.7: Fluvial incursions into aeolian dune-fields associated with a multiple sheet source.
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and magnitude are directly linked to the changes in climate conditions, which 

may be seasonal. Thus, fluvial sedimentation may dominate in aeolian dune-

field margin settings during wet seasons. The result is preserved braided 

fluvial channel networks that form a laterally continuous belt of sand. This 

reflects the long-term position of the lateral dune-field margin. In dry 

seasons, aeolian processes dominate. 

Documented ancient examples of this type of behaviour are as follows: the 

Upper Rotliegend Group, UK south North Sea (Sweet, 1999); Cambro-

Ordovician cratonic sheet sandstones of the northern Mississippi Valley, 

USA (Dott et al., 1986); the Tumblagooda Sandstone, Late Silurian, of west 

Australia (Trewin, 1993); the western part of the Germanic Basin, Olenekian, 

Early Triassic (Péron et al., 2005); the Siluro-Devonian Swanshaw 

Sandstone Formation, southwest Scotland (Smith et al., 2006); the Wolfville 

Formation, Late Triassic synrift succession of the Minas sub-basin, Bay of 

Fundy, Nova Scotia (Leleu and Hartley, 2010); and parts of the 

undifferentiated Cutler Group, Permian, Utah, USA (Venus et al., 2015). 

5.3.8 Cessation of encroachment of aeolian dune-fields by fluvial 

systems 

In this type of interaction, fluvial systems that experience sufficient flow 

discharge, either continuously or seasonally, are able to halt aeolian dune 

migration by flushing aeolian sand that blown into the channel system 

downstream. Thus, downwind encroachment of aeolian dune bedforms and 

entire aeolian dune-field margins is halted. One modern example of such 

behaviour is the Kunene River that defines the limit of the Skeleton Coast 

dune-field, Namibia (Figure 3.12, and Figure 5.8). 

Where such fluvial systems define the downwind margin of entire aeolian 

dune fields, aeolian sediment will be carried away with each flood event to 

be re-deposited beyond the confines of the aeolian system. The final fate of 

such aeolian sediment may be a long-term sediment sink in some cases, for 

example, the Atlantic Ocean in the case of the Kuiseb River that defines the 

northern margin of the Namib Sand Sea. This type of interaction may leave 
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no clear indication of interaction between competing aeolian and fluvial 

systems. 

Rare major fluvial flood events that exceed the river bank-full capacity may 

flood the open interdune corridors, thereby generating a mixed and stacked 

deposits of fluvial and aeolian sediment within the aeolian dune-field, 

particularly in open interdune corridors developed adjacent to the fluvial 

system. The deposited fluvial sediment within the aeolian system will 

commonly be reworked later by aeolian processes. The aeolian and fluvial 

interaction in this configuration is limited to the site of juxtaposition of the 

aeolian and fluvial system. The vertical stacking of the fluvial channel 

elements at the boundary of the aeolian dune-field succession indicate a 

fixed erg margin position, and a limited interaction between the two systems. 

Documented ancient examples of such behaviour include the Permian lower 

Culter beds, southeast Utah, USA, during episodes of humid climate 

conditions (Jordan and Mountney, 2010) and the Lower Jurassic Wingate 

Sandstone, northeastern Arizona (Clemmensen and Blakey, 1989). 

5.3.9 Termination of fluvial channel networks in aeolian dune-

fields 

In this type of interaction, fluvial systems terminate within the inner parts of 

aeolian dune-fields (Figure 5.9). Fluvial channels terminate at points where 

interdune corridors narrow and close, for example where two adjacent dunes 

meet and overlap, or where aeolian dune forms become arranged 

perpendicular to the direction of fluvial incursion. Analysis of modern dune 

fields reveals that this type of interaction may occur within distances of 1.4 to 

101 km from the outer margins of dune fields (Chapter Three, table 3.1). 

The configuration of aeolian dunes in a dune field, along with the energy of 

the water flow each act to control the extent of fluvial flow into a dune field 

(Figure 3.13 and Figure 3.15b). This type of interaction is common in 

ephemeral fluvial systems (e.g., Trarza Desert, Mauritania; Figure 3.13c), 

and could occur in any part of an aeolian dune field depending on the energy 

of the flow. 
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The sedimentary signature at the point of fluvial flow termination records the 

ponding of fluvial flow and the deposition of clay and fine silt from 

suspension in standing ponds in areas where fluvial flow has ceased (Reid 

and Frostick, 1987; Reid, 2002; Stanistreet and Stollhofen, 2002). This 

results in the accumulation of mud layers in interdune flat and playa areas. 

During dry seasons, aeolian systems become more active and the wind 

processes establish migrating aeolian dunes that may cover former flood 

deposits. Such active dunes may also form obstacles that curtail fluvial 

channel flow during later floods, thereby reducing the opportunity for future 

flood events to breach into the central parts of aeolian dune-fields during 

subsequent wet seasons (e.g., Figure 3.5; Mountney, 2006b). Fluvial 

incursions into aeolian dune fields may act to erode the lower flanks of 

aeolian dune bedforms, triggering aeolian processes such as dune sand 

avalanches (grainflows) and slumping of dune lee slopes. The slumping of 

aeolian sand into flood waters will lead to reworking of that sand by fluvial 

processes and later redeposition elsewhere within the aeolian dune field; the 

resultant fluvial deposits will take on aspects of the textural character of the 

original aeolian sand, making the differentiation of such sediment difficult 

based on its textural character alone. At the termination point where large-

scale aeolian dune bedforms have acted to pond flood waters and limit the 

extent of fluvial incursion, playa deposits may result in the generation of a 

significant surface crust of calcite or gypcrete, especially where flood waters 

repeatedly pond (e.g, Sossusvlei, Namib Desert). 

Documented ancient examples of such behaviour are as follows: aeolian-

fluvial interaction in the Page Sandstone (Middle Jurassic) in south central, 

USA (Jones and Blakey, 1997); the late Cretaceous to middle Tertiary Nima 

Basin fill in the central Tibetan Plateau (DeCelles et al., 2007); and the Rush 

Springs Sandstone (Permian, Guadalupian) of western Oklahoma, USA 

(Poland and Simms, 2012). 

3.5.10 Examples of short-term versus long-term fluvial-aeolian 

interaction 

This type of interaction reflects the influence of climate on sedimentation in 

desert-margin settings. During relatively humid episodes, fluvial systems are 
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more active and the level of the water table is high. This tends to generate 

successions that are fluvially dominated. In contrast, during relatively arid 

episodes the activity of aeolian processes is increased and accumulated 

fluvial deposits serve as a supply for aeolian construction of environments 

that are aeolian dominated (Figure 5.10). 

In aeolian dune-field settings, interdune deposits reflect the nature of the 

substrate at the time of sediment accumulation: dry, damp and wet interdune 

types are all recognised (Mountney, 2006a). In the stratigraphic record, such 

dry, damp and wet interdune elements may thicken and thin slightly over 

space, and in some cases may pinch out laterally reflecting the expansion 

and contraction of the interdune flats in response to changes in dune size, 

morphology and type, reflecting changes in climate conditions, interdune 

size and water-table level. During humid episodes, aeolian preservation 

potential is enhanced by an elevated water-table level.  

From a study of the response of an aeolian system to Holocene climate and 

hydrologic changes in the northern margin of Sahara Desert, Swezey et al. 

(1999) recorded cycles of aeolian deposits which reflect a phase of humid 

climatic conditions and high lake levels (a stabilised aeolian system), and an 

arid phase characterised by playa desiccation and deflation, and associated 

dune-field construction. 

Documented ancient examples of such behaviour are as follows: interaction 

between aeolian and fluvial processes during accumulation of the Upper 

Cretaceous capping sandstone member of the Wahweap Formation, 

Kaiparowits Basin, USA (Simpson et al., 2008); the Jurassic Guara 

Formation, southern Brazil (Scherer and Lavina, 2005); the Sherwood 

Sandstone Group of East Irish Sea Basin, UK (Cowan, 1993); Copper 

Harbor Formation, Late Proterozoic, Lake Superior Basin, USA (Taylor and 

Middleton, 1990); the Middle Proterozoic Eriksfjord Formation, southwest 

Greenland (Tirsgaard and Øxnevad, 1998); the Triassic sandstones of 

Scrabo, County Down, Northern Ireland (Buckman et al., 1998); numerous 

Late Palaeozoic and Mesozoic examples from NW Europe and the Western 

Interior of the USA (Clemmensen et al., 1994); and the mid-Cretaceous 
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subtropical erg-margin system close to the Variscan Iberian Massif, Spain 

(Rodríguez-López et al., 2010). 

5.4 Discussion 

Types of fluvial-aeolian interactions and their resultant deposits are variable 

within the fluvial-aeolian systems investigated by this study. Characterisation 

of how this variability is expressed is important to gain an improved 

understanding of the processes involved in generating a preserved 

stratigraphic record in such settings and also in the evaluation of likely 

reservoir heterogeneity. Current models that describe different types of 

aeolian-fluvial interaction processes and their resultant accumulated 

products are still largely qualitative. Yet it is important to undertake 

quantitative studies to document the geometry of such interactions in ancient 

outcropping and subsurface successions to better predict reservoir 

behaviour (e.g., Bongiolo and Scherer, 2010). This study attempts to provide 

a series of semi-quantitative models for which the expected dimensions (and 

ranges thereof) of architectural elements are constrained. 

The shape of interdune flats along which fluvial systems may pass is 

controlled by the morphology of the dune bedforms (Chapter Two, Section 

2.7-2.9). At the dune-field margin, where much of the interaction between 

aeolian and fluvial processes occurs, dune and interdune size and shape 

exert an important control that defines the type of interaction between fluvial 

and aeolian systems. Linear dunes, for example, typically provide open 

corridors that promote the passage of fluvial flood water far into aeolian dune 

fields, especially when the flow is parallel to the trend of the straight 

crestlines of aeolian dune forms. In other settings, where the trend of 

elongate aeolian bedforms is arranged perpendicular to the trend of fluvial 

channels, damming of the fluvial flow acts to confine fluvial systems and 

their deposits solely to the outer margins of aeolian dune fields. Thus, the 

thickness and lateral extent of the mixed aeolian and fluvial deposits is 

affected by the morphology and arrangement of the aeolian dunes and 

associated interdunes in relation to the preferred fluvial flow direction. 
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One important effect of fluvial incursion into aeolian dune fields is the impact 

on the level of the water table. Water-table level determines the level to 

which deflation may occur. A rise in relative water table to a level close to 

the accumulation surface will lead to the generation damp interdunes and, 

where the water table level rises temporarily but repeatedly above the 

accumulation surface, wet interdune playas will form; the resultant deposits 

are characterised by sedimentary features such as adhesion structures and 

salt crusts. The thickness of these damp or wet interdune deposits is 

commonly a function of the length of time over which the interdune 

accumulation surface develops (Ahlbrandt and Fryberger, 1981). 

5.5 Reservoir implications 

Analysis of data acquired from a range of modern desert systems reveals 

the diversity of aeolian and fluvial interactions, which occur on a variety of 

scales (Chapter Three), and which are characterised by complex spatial 

variation in sedimentary architecture at the aeolian dune-field margin 

settings where such processes occur (cf. Mountney and Jagger, 2004). 

Aeolian-fluvial interaction processes and resultant sedimentological 

signatures give rise to preserved stratigraphic heterogeneities that influence 

reservoir properties and behaviour in such mixed depositional systems 

typically. Variable lateral and vertical facies arrangements characterise 

architectural elements composed of stratal units with markedly variable 

reservoir properties. 

The limited volume of subsurface data available with which to recognise 

evidence for stratigraphic partitioning in mixed aeolian-fluvial reservoir 

successions is problematic (e.g., North and Boering, 1999). Therefore, more 

sophisticated facies models to better account for reservoir architecture and 

connectivity are required. Models for the characterisation of types of 

interaction between aeolian and fluvial processes and resultant deposits 

derived from both case-examples of modern (Chapter Two and Chapter 

Three) and ancient (Chapter four and this chapter) case studies can be 

applied to predict subsurface reservoir geology (cf. Langford, 1989; Langford 

and Chan, 1989). Consequently, prediction of the possible types of 
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interaction serves as a useful tool when ranking targets within larger 

prospect areas. 

The occurrence of fluvial elements embedded within successions that are 

otherwise dominated by aeolian elements generates successions that 

stratigraphically heterogeneous at a variety of lateral and vertical scales. 

Laterally, changes from a fluvial-dominated erg margin to an aeolian-

dominated erg margin impact on regional variations in potential reservoir 

quality. Determination of types and length-scales of such interactions is 

required for play fairway mapping and the establishment of gross 

depositional environment (GDE) maps. Fluvial deposits within the aeolian 

system are significantly poorer in terms of porosity and permeability 

characteristics than the adjacent aeolian bodies and this influences reservoir 

quality (Chandler et al., 1989; Trewin, 1993; Bloomfield et al., 2006; Glennie, 

2009). Coeval interactions between fluvial and aeolian systems (Chapter 

Three) take place within the aeolian system, where fluvial floods pass into 

interdune areas, thereby generating ribbon-like fluvial geometries (string-like 

sand bodies). Such ribbon-like geometries tend to act as baffles to lateral 

flow but will be less restrictive to vertical flow; the impact is generally local 

(e.g., Herries, 1993). For example, Figure 5.1 illustrates the parallel type of 

interaction between aeolian and fluvial systems, where fluvial channels 

travel in a direction parallel to the strike of the aeolian dune bedforms. The 

fluvial flow is confined by the aeolian dunes, thereby restricting the presence 

of the fluvial deposits to the interdune corridors. In some cases, thick 

accumulations of mud occur as a result of settling of sediment from 

suspension (clay and silt) at the termination point of flood waters within an 

erg setting (e.g., Krapf et al., 2003). There accumulation of such low 

permeability units that may act as baffles to fluid flow within reservoirs is 

significant. 

In contrast, the expansion of a fluvial system at the expense of a retreating 

aeolian dune-field system in response to a change to wetter climatic 

conditions (Chapter Three, section 3.5.2), will tend to generate more laterally 

extensive sheet-like fluvial geometries that could significantly 

compartmentalise a reservoir (e.g., Fryberger, 1993; Herries, 1993). 
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Fluvial incursion into aeolian dunes usually interact with the lower part of the 

aeolian dunes  (lee side avalanche deposits), which is the portion that most 

likely to be preserved in the rock record in a subsurface reservoir. This fluvial 

interaction leaves behind fine sediment that reduces the quality of the 

preserved aeolian facies. Therefore, this part will represent a significant 

permeability barrier that affect reservoir performance within an otherwise 

more permeable portion of an aeolian succession (e.g., Stanistreet and 

Stollhofen, 2002).  

The juxtaposed occurrence of relatively permeable units of aeolian elements 

and relatively impermeable fluvial elements  within a reservoir is significant; 

the aeolian elements will generally flow more effectively than neighbouring 

fluvial elements and this will typically lead to fast hydrocarbon depletion from 

the aeolian unit. Where aeolian elements are not in communication with 

other nearby aeolian elements, productivity problems may arise: a poorly 

swept reservoir, unpredictable flow rates, early water cut. The presence of 

relatively thin but highly permeable aeolian elements within a reservoir will 

have a significant impact on the flow rate during well testing: short-duration 

well testing may give inaccurate predictions of long-term reservoir 

performance (Cowan, 1993). Such factors will also affect reservoir gas or 

water injection: injected gas or water will preferentially flow through high-

permeability aeolian layers, leaving the less permeable fluvial layers 

unswept (e.g., Wehr and Brasher, 1996). This can lead to early water cut. 

Thus, identifying the presence of aeolian facies deposited within otherwise 

fluvial-dominated successions is important. 

5.6 Conclusions 

Aeolian and fluvial processes interact in a complex variety of ways, both 

spatially and temporally, in most desert-margin settings. Such interactions 

generate a range of types of sedimentary interaction, the effects of which 

may be preserved in the ancient stratigraphic record. Interaction types 

combine to result in distinctive aeolian and fluvial deposits that accumulate 

in the marginal areas of aeolian dune-field systems and successions. 

Preserved sedimentologic and stratigraphic relationships provide evidence 
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from which to establish the likely type of aeolian-fluvial interaction. This 

chapter has presented series of ten bespoke facies models that demonstrate 

different types of aeolian-fluvial interaction from dune-field margin settings. 

These ten semi-quantitative geological facies models have been developed 

based on analysis of modern systems from earlier chapters (Chapter Three 

and Four), and consideration of ancient literature-derived case-study 

examples. The facies models presented here account for the nature and 

origin of stratigraphic complexity present in aeolian dune-field margin 

successions that arise from the interplay of both autogenic and allogenic 

controls. 

The effects of fluvial processes that operate in aeolian landscapes are 

significant. Floods modify interdune surfaces; dunes are partially eroded and 

finer sediments, such as mud, may be deposited in low-relief interdune flats. 

Muddy flood deposits in interdune-flat settings are resistant to deflation and 

increase the long-term preservation potential of underlying deposits, 

particularly when dune bedforms migrate over these interdune surfaces. 

Fluvial incursion can influence groundwater-table level; a high water table 

will promote aeolian system stabilisation and will limit the level to which 

aeolian deflation can proceed. 

Understanding the nature and surface expression of various types of aeolian 

and fluvial interaction, and considering their resultant sedimentological 

expression, is important for prediction and interpretation of preserved 

deposits of such interactions that might be recognised in the ancient 

stratigraphic record. Assessment can be made of the spatial scale over 

which such interactions are likely to occur and this facilitates the prediction 

of net reservoir sandbody dimensions through models that constrain the 

geometry and lateral and vertical connectivity of sand bodies in reservoir 

successions. Assuming layer-cake correlations between neighbouring wells 

within stratigraphically complex reservoirs of mixed aeolian and fluvial facies 

is inappropriate; instead, a range of bespoke facies models should be 

utilised, each of which considers possible stratigraphic configurations and 

each of which has implications for likely reservoir performance. 
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Chapter Six 

Conclusions and future work 

_____________________________________________________________ 

This chapter summarises the generic outcomes of the research project. 

Further, it postulates possible future related research that could be 

undertaken to advance our present understanding of the interaction between 

aeolian and fluvial depositional systems. 

_____________________________________________________________ 

6.1 Conclusions 

Studies of modern desert dune fields allow geologists to draw conclusions 

about the controls that govern the development of spatial patterns of 

arrangement of desert landforms. This knowledge can be applied to predict 

the likely arrangement of architectural elements in preserved ancient desert 

successions. This serves as the basis for the development of more 

sophisticated facies, architectural-element and sequence stratigraphic 

models that can be applied in sedimentary geology generally and in 

reservoir geology specifically. 

Geomorphological elements in desert settings tend to change systematically 

from the central parts of dune fields, where aeolian processes are dominant, 

to dune-field margins, where non-aeolian systems, including ephemeral 

fluvial streams dominate. Aeolian and fluvial processes operate coevally in 

most desert-margin settings to generate a range of types of sedimentary 

interaction that are documented from both modern arid systems and 

analogous ancient preserved outcrop successions. Such types of system 

interaction give rise to considerable complexity in terms of sedimentology 

and preserved stratigraphy. The physical boundary between geomorphic 

systems in hot deserts is dynamic such that facies belts undertake 

considerable lateral shift over time with the result that preserved sequence 

architectures exhibit complexity arising from system interactions that operate 
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at a range of spatial and temporal scales from local to regional. An improved 

understanding of factors that govern these multiple scales of interaction is 

important for prediction of preserved stratigraphic architecture. Across desert 

margins where fluvial and aeolian systems interact, the location of 

assemblages of surface landforms may change gradationally or abruptly. An 

improved understanding of contemporary interactions serves as the basis for 

a database of modern analogues that can be used to account for types of 

aeolian-fluvial interactions preserved in the stratigraphic record. 

Satellite imagery of dunes and interdunes in desert dune fields has provided 

the basis for an approach to qualitative and quantitative studies of patterns 

of arrangement of large-scale aeolian bedforms and adjoining interdunes in 

large aeolian sand seas. The collection and collation of data relating to 

primary landform morphology has enabled an improved understanding of 

modern desert sedimentary systems and the spatial arrangement of various 

sub-environments within these systems. In particular, the morphological 

changes and distributions of aeolian bedforms and interdunes across dune-

field systems provides important information with which to improve our 

understanding of the likely arrangement of architectural elements in ancient 

aeolian preserved successions, several of which form important reservoirs 

for hydrocarbons. 

Observations from modern dune-field margins have enabled the spatial rate 

of change of morphology of aeolian sub-environments to be characterised 

and described through empirical relationships. Results are enabling the 

proposition and development of a range of dynamic facies models for 

aeolian systems that can be used as predictive tools for subsurface reservoir 

characterisation. A combination of morphological and architectural data from 

a range of modern dune fields and their ancient counterparts preserved as 

successions in the geologic record can be used to constrain forward 

stratigraphic models for the prediction of aeolian reservoir heterogeneity. 

Such heterogeneity is likely to vary in three-dimensions within a reservoir 

volume. 

The Rub’Al-Khali of south-eastern Saudi Arabia is covered by the latest 

generation of public-release satellite imagery, which reveals a varied range 
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of dune types, the morphology of which changes systematically from central 

dune-field areas to marginal areas where aeolian interdunes, sand sheets, 

and ephemeral fluvial systems dominate. Analysis of geomorphic 

relationships between dune and interdune sub-environments within a series 

of modern dunes fields of the Rub’ Al-Khali has been undertaken to 

document how the morphology, geometry, internal facies arrangement and 

relationship of the various depositional architectural elements produced by 

these geomorphic features vary over space from dune-field-centre to dune-

field-margin settings. Analysis of this active modern dune-field system shows 

a characteristic reduction in aeolian dune size and degree of connectivity 

and a corresponding increase in interdune size and degree of connectivity 

towards outer dune-field margins. 

A series of quantitative approaches have been employed to characterise the 

complexity present in a range of dune-field settings where large, 

morphologically complex and compound bedforms gradually give way to 

smaller and simpler bedform types at dune-field margins. The following 

parameters describing aspects of morphology have been measured: dune 

bedform height; elevation of interdune flats; along-crest length of a dune 

segment; bedform spacing; mean dune wavelength; maximum and minimum 

dune wavelength; amplitude of along-crest sinuosity; bedform long-axis 

orientation; distance of dune forms from a fixed point at the centre of the 

studied dune field to its outer margin. Additionally, attributes recorded for 

interdunes are as follows: interdune length; interdune width; interdune long-

axis orientation; elevation; the relationship between the geometry of 

interdune depressions and their distance from a fixed point at the centre of 

the studied dune field in a direction toward its outer margin. 

The analysis undertaken as part of this study regarding the geomorphic 

relationships between dune and interdune sub-environments within the 

modern active dune fields of the Rub’ Al-Khali documents how the 

morphology, geometry, internal facies arrangement and relationship of the 

various depositional architectural elements produced by these geomorphic 

features vary over space from dune-field-centre to dune-field-margin 

settings. The data collected from the Rub’ Al-Khali desert reveals a reduction 
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in aeolian dune size and degree of connectivity and corresponding increase 

in interdune size and degree of connectivity toward the dune-field margins. 

The dunes changes from large compound and complex barchanoid 

bedforms (>155 m dune height) at the dune-field centre, to spatially isolated 

star dune forms and small barchan dunes at the dune-field margin, 

separated by water-table controlled interdunes that are >40 km in length. 

This has implications for understanding reservoir heterogeneity and 

predicting how low-porosity and permeability interdune areas may be 

distributed and may vary in geometry (shape and size) across ancient dune-

field-margin successions. 

The complex distribution of aeolian dunes and interdunes in any dune field 

defines their spatial heterogeneity distribution (which will affect reservoir 

behaviour), the impact of which typically becomes more significant later in 

the life of a hydrocarbon field (Sweet et al., 1996). By mapping and 

modelling the 2D and 3D distribution of dune and interdune architecture, it is 

possible to capture details of types of facies interactions, the extent of 

bounding surfaces, and the distribution of stratification types, all of which 

serve as fundamental controls on reservoir heterogeneity. 

The physical boundaries between many desert geomorphic systems are 

dynamic. Along desert dune-field margins where aeolian and fluvial 

processes interact, the location of the boundary and the assemblage of 

surface landforms present may change either gradually or sharply over both 

space and time. Short-term shifts in the positions and form of such 

boundaries are controlled by the competition between fluvial flash-flood 

events and on-going aeolian dune construction. Medium- and long-term 

changes in boundary position and form are governed by changes in climate 

and tectonic basin evolution, respectively. 

Aeolian and fluvial processes in desert-margin settings rarely operate 

independently: they are usually dynamically linked and exhibit a range of 

styles of sedimentary interaction documented from modern arid systems. 

Interactions between aeolian and fluvial systems are important and 

widespread in modern deserts, as revealed by analysis of global satellite 
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imagery. A diverse range of styles of system interaction gives rise to 

considerable complexity in terms of geomorphology, sedimentology and 

preserved stratigraphy. Ten distinct styles of fluvial-aeolian interaction are 

recognized: fluvial incursions aligned parallel to trend of linear chains of 

aeolian dune forms; fluvial incursions oriented perpendicular trend of aeolian 

dunes; bifurcation of fluvial systems around the noses of aeolian dunes; 

through-going fluvial channel networks that cross entire aeolian dune fields; 

flooding of dune fields due to regionally elevated water-table levels 

associated with fluvial floods; fluvial incursions emanating from a single point 

source into dune fields; incursions emanating from multiple sheet sources; 

cessation of the encroachment of entire aeolian dune fields by fluvial 

systems; termination of fluvial channel networks into playas within aeolian 

dune fields; long-lived versus short-lived styles of fluvial incursion. 

Recognition of these interaction types forms the basis for a classification 

scheme that can be applied to desert dune-field systems generally. 

Across desert margins where fluvial and aeolian systems interact, the 

location of assemblages of surface landforms may change gradationally or 

abruptly. The varied range of temporal and spatial scales over which 

aeolian-fluvial processes are known to interact means that simple 

generalised models for the classification of styles of interaction must be 

applied with caution when interpreting ancient preserved successions, 

especially those known only from the subsurface. By understanding the 

nature and surface expression of various types of aeolian and fluvial 

interaction, and by considering their resultant sedimentological expression, 

prediction can be made regarding how the of preserved deposits of such 

interactions might be predicted in the ancient stratigraphic record and 

assessment can be made of the spatial scale over which such interactions 

are likely to occur. 

Given the economic importance and complex stratigraphic and 

sedimentologic nature of aeolian and fluvial successions, it is important to 

maximise subsurface hydrocarbon reservoir potential. Reservoir 

successions that exhibit marked lateral and vertical facies changes are 

complex such that flow behaviour is not easy to predict. Therefore, it has 
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become essential to develop both qualitative and quantitative models with 

which to account for dynamic spatial and temporal aspects of aeolian-fluvial 

system behaviour at the dune-field and basin scales. The modelling-based 

approach and associated classification framework is a key objective of this 

wider research project, and it has potential applications in the development 

of predictive models with which to account for reservoir heterogeneity in 

aeolian reservoirs targeted for the production of hydrocarbons. Results from 

this project have been applied to generate a range of synthetic three-

dimensional stratigraphic architectural models (cf. Mountney, 2012) with 

which to illustrate the range of possible sedimentological complexity likely to 

be present in preserved dune-field-margin successions (Al-Masrahy and 

Mountney, 2013 and 2015). Appreciation of this complexity has significant 

applied implications because interdune and dune-plinth elements typically 

act as principal and subordinate baffles to flow, respectively, in aeolian 

hydrocarbon reservoirs, whereas dune lee-slope elements typically 

represent effective net reservoir. 

Reservoir anisotropy in aeolian successions profoundly affects reservoir 

performance throughout the producing life of a field. Although aeolian 

reservoirs are internally complex, they are predictable and can be managed 

efficiently once their three-dimensional internal architecture has been 

accurately characterised and modelled. Temporal and spatial variations in 

original dune and interdune morphology act as primary controls on resultant 

preserved set architecture. This study has quantified how aeolian dune, 

interdune and dryland fluvial morphological arrangements can be expressed 

in a variety of styles, in many cases predictably, across the zone transition 

from a dune-field centre to its margin. This represents an important step in 

the development of generic quantitative models with which to account for 

aeolian and mixed aeolian-fluvial reservoir architectural variability where 

changes are considered to occur spatially across a play, or within a single 

field. Each development project should be carefully characterised prior to 

initiating a more extensive drilling programme. 

This study has utilised modern outcrop analogue data for the development of 

a suite of models designed to develop a bridging link between data provided 
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by sedimentological studies and its appropriate application in the 

construction of reservoir models. The internal reservoir sedimentary 

architecture, together with the smaller-scale fabric and sedimentary structure 

of component lithofacies, ultimately control the path of fluid migration during 

oil and gas emplacement and subsequent extraction. This architecture is, in 

turn, the product of the depositional and diagenetic processes that created 

the sediment body. If an understanding of the sedimentological origin of the 

reservoir is developed, reservoir architecture, and hence fluid flow paths, 

become predictable (North and Prosser, 1993). In arid regions, it is common 

for fluvial and aeolian processes, and resultant strata to occur inter-mixed, 

with the result that overall preserved successions exhibit marked complexity 

(Glennie, 1990). Thus, to understand the fluid flow properties of mixed 

fluvial-aeolian reservoirs it is important to determine the geometry and the 

relationship of sedimentary bodies of fluvial and aeolian origin (Newell, 

2001). The presence of stratigraphic complexity and heterogeneity at a scale 

below seismic resolution, coupled with stratigraphic architectures 

characterised by notable lateral facies changes, means that prediction of 3D 

stratigraphic architecture in subsurface reservoirs is challenging (e.g., 

Sweet, 1999). Therefore, studying appropriate outcrops and modern 

analogues is imperative to provide insight into reservoir heterogeneity and 

potential variability in geological models (e.g., Herrise, 1993; Mountney et 

al., 1998; North and Boering, 1999; Visser and Chessa, 2000; Newell, 2001; 

Bongiolo and Scherer, 2010). 

6.2 Principal research findings of this study 

1) The collection of data relating to primary desert dune-field landform 

morphology has enabled an improved understanding of the sediment 

system state of the modern Rub’ Al-Khali Desert sedimentary system. 

Observed trends arise as a function of spatial changes in the 

sediment state of the system whereby sediment supply, the 

availability of that supply for transport and the sediment transporting 

capacity of the wind each combine to dictate the geomorphology of 

dune and interdune forms, which vary from thick accumulations of 

sands in the form of coalesced compound and complex barchanoid 
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bedforms in dune-field centre settings, to spatially discrete star dunes 

and small, spatially isolated barchan dunes separated by extensive 

water-table-controlled interdune flats in dune-field margin settings. 

2) Observations from the modern Rub’ Al-Khali Desert have enabled the 

spatial rate of change of morphology of aeolian sub-environments to 

be characterised and described through a series of empirical 

relationships. 

3) Results of the study of the modern Rub’ Al-Khali Desert have 

implications for developing an improved understanding of the likely 

controls on the detailed sedimentary architecture of preserved aeolian 

successions by enabling the proposition and development of a range 

of dynamic facies models for aeolian systems. This has wider applied 

implications and significance: for example, the morphological changes 

in the distribution of aeolian bedforms and interdunes across dune-

field systems provides important information with which to improve 

our understanding of the likely arrangement of architectural elements 

in ancient aeolian preserved successions, several of which form 

important reservoirs for hydrocarbons. Results of this work represent 

an important step in the development of improved models for the 

characterisation of stratigraphic complexity and heterogeneity in 

aeolian reservoirs. 

4) The physical boundaries between geomorphic systems are dynamic 

over short temporal time-scales. Across desert margins where fluvial 

and aeolian systems interact, the location of assemblages of surface 

landforms may change gradationally or abruptly. The varied range of 

temporal and spatial scales over which aeolian-fluvial processes 

interact means that simple generalised models for the classification of 

types of interaction must be applied with caution when interpreting 

ancient preserved successions, especially those known only from the 

subsurface. An improved understanding of interactions has been 

revealed by a database of modern systems and ancient preserved 

successions that can be used to account for types of aeolian-fluvial 

interactions preserved in subsurface reservoir intervals. From an 

applied standpoint, quantitative depositional models arising from this 
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database-driven approach serve to minimise uncertainties relating to 

stratigraphic heterogeneity in subsurface reservoir settings and aid 

inter-well correlation and prediction. 

5) The study of aeolian and fluvial systems from the Triassic Wilmslow 

and Helsby Sandstone formation (Triassic, Cheshire Basins, UK) 

provide details of sedimentological characteristics of preserved 

aeolian and fluvial desert successions, including details on 

architectural elements and their internal lithofacies components and 

facies associations. Results are represented within the framework of 

a generalised depositional model that depicts the arrangement and 

relationships of fundamental components of an ancient aeolian and 

braided fluvial succession. This study has documented the preserved 

record of a wet aeolian system and an associated fluvial succession. 

It has developed further our understanding of processes that operate 

in aeolian dune-field margin settings, and more generally that operate 

in aeolian and fluvial systems under the influence of an arid to semi-

arid climatic regime. 

6) Outcrop observations of damp interdune elements preserved between 

aeolian dune elements record the impact of the water table on the 

development and preservation of a water-table-influenced aeolian 

system. Such arrangements have a direct impact on the vertical and 

lateral heterogeneity of subsurface aeolian reservoirs. 

7) The aeolian system in the studied section of the Wilmslow Sandstone 

Formation preserves examples of both climbing and non-climbing 

dune-interdune behaviour of the aeolian system. This study, 

therefore, adds new examples of such system behaviours. 

8) Results from this study are of importance in assessing the role of 

heterogeneity in partitioning hydrocarbon reservoirs and water 

aquifers, and for predicting lateral distributions of lithofacies between 

isolated wells, and the likely arrangement of non-reservoir units, such 

as interdunes and fluvial channel-abandonment and floodplain 

elements and associated lithofacies. 
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6.3 Future work 

Although this research has addressed the originally stated aim and 

objectives, further investigation is required to address the different types of 

aeolian and fluvial system interaction from outcrop and subsurface data. 

Additional studies, particularly from subsurface successions, will provide 

evidence for and applications of the types of aeolian-fluvial interaction 

classification described here and, therefore, benefit hydrocarbon reservoir 

modelling by providing detailed information on reservoir heterogeneity 

and lateral connectivity within mixed aeolian-fluvial reservoirs. The following 

avenues of potential future research could be explored, results from which 

would complement this study. 

1) Studies of modern desert dune-fields allow conclusions to be drawn 

regarding the spatial pattern of landforms in desert systems. This 

knowledge can be applied to predict the likely arrangement of 

elements in preserved ancient desert palaeoenvironments. This 

serves as the basis for the development of more sophisticated 

architectural-element and sequence stratigraphic models. Recent 

research has resulted in a rapid increase in the use of numerical 

modelling techniques in aeolian studies (e.g., Parsons, 2004; Rubin 

and Carter, 2006; Salles et al., 2011; Mountney, 2012) and fluvial 

studies (e.g., Geleynse et al., 2011; Geach et al., 2015). Building 

numerical forward stratigraphic models of aeolian dune and interdune 

architecture that can account for types of aeolian-fluvial interactions in 

3D and 4D is important to better characterise and manage subsurface 

hydrocarbon reservoirs and groundwater aquifers. This especially 

important in aeolian reservoirs where subtle changes in porosity-

permeability structure make the difference between net and non-net 

reservoir. A major outcome of this future research in this area will be 

the development of predictive, quantitative facies and sequence 

stratigraphic models, which will improve our understanding of the 

factors that control the distribution of aeolian and fluvial elements in 

subsurface reservoirs and aquifers. 
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2) A further avenue of future research should be the development of a 

quantitative database system that sample input parameters relating to 

aeolian depositional systems, architectural elements and lithofacies in 

order to construct reservoir models for development engineering 

purposes in petroleum industries. This type of database has already 

been established for fluvial depositional systems: the “Fluvial 

Architecture Knowledge Transfer System” or FAKTS (Colombera et 

al., 2012). FAKTS is a relational database that stores hard and soft 

data about fluvial sedimentary architecture and which has been 

populated with data derived from modern rivers, ancient outcrop 

successions and published literature data. This system can be used 

to construct a practical architectural model for reservoir planning 

based on limited input data available from preliminary exploration and 

interpretation of facies (Colombera et al., 2013; Miall, 2014). The 

development of a similar database for digital reproduction of all the 

essential features of aeolian sedimentary architecture that accounts 

for the style of internal organization of aeolian dune forms, their 

geometries and spatial distribution would be a useful tool to predict 

the dimensions of architectural elements and the arrangement of 

neighbouring elements away from the borehole, especially in areas 

where the subsurface data is limited. 

3) Three-dimensional geological computer modelling is one of the 

important, most innovative and most widely applied tools for reservoir 

management purposes (e.g., Robinson et al., 2008). One potential 

future research avenue will be to utilise a forward stratigraphic 

modelling approach to predict preserved stratal architectures and 

facies distributions for aeolian and mixed aeolian-fluvial successions 

based on a combined process-based and geometrical modelling 

approach. Such models should ideally be integrated fully within 

industry standard reservoir modelling software tools such as 

Schlumberger Petrel, Landmark DecisionSpace and Bakker Hughes 

JewelSuite. Resultant reservoir models would be able to demonstrate 

the likely variation in the arrangement and geometry of mixed aeolian 

and fluvial geo-bodies that contribute to net versus non-net reservoir 
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units in a subsurface reservoir successions. This could be achieved 

using stochastic modelling techniques that make use of a 

mathematical model to incorporate pseudo-random possibilities in a 

given realisation or set of realisations (Zou, 2013). Stochastic models 

are useful in generating multiple realisations of the spatial distribution 

of depositional systems sediment properties in settings where data 

density is limited or insufficient to construct a unique deterministic 

facies architecture model (Geel and Nonselaar, 2007). Conceptual 

geological models (e.g., aeolian-fluvial interactions models, chapter 

5), could be used to constrain numerical models that capture the 

expected range of possible spatial arrangements of elements in 

aeolian-fluvial systems, and the facies bodies that are likely to be 

present in the subsurface. Such an approach could be used to 

generate training images to integrate geological information into 

reservoir models (e.g., Strebelle and Levy, 2008). 
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Appendix 

Appendix 1: Composite architectural panels depicting the stratigraphic 

architecture of the Wilmslow Sandstone and Helsby Sandstone Formations 

as observed in Runcorn Expressway road cutting outcrop. 
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Trough cross bedding of fluvial origin, characterised by very coarse- to gravel grade lag deposits  
of locally derived materials(mud clasts).

Planar (horizontal) discontinuous , thinly laminated fine-to very fine-grained sandstone, with current 
lamination and mud-drapped climbing-ripple stratification toward the top.  

Massive sandstone; lack of organised internal lamination; reflects the homogeneity of sandstone grain size. 
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27

28

Fluvial channel scour surface29

Facies Summary 

Aeolian Facies
AD1: Aeolian dune, moderate to high-angle bedded,  grainflow dominated.
AD2: Aeolian dune, moderate to high-angle beeded, grainfall dominated.
AD3: Aeolian dune, Low to moderate-angle beede. Windripples dominated. 
AD4: Aeolian dune, massive, lacks clear stratification.  

 
AD5: Aeolian dune, dune toe set soft-sediment deformation.
ID1:  Aeolian interdune, horizontally laminated, wind-ripple dominated.
ID2:  Aeolian interdune,  crinckly laminated, modified wind-ripple 
       and adhision-ripple strata.

 
FC5: Fluvial channel fill, massive sandstone, rapid deposition, also due to 
         grain size homogeneity.  
FC6: Fluvial ch. fill, Ripple cross laminated sandstone with mud drapes.
FC7: Fluvial ch. fill or flood plain, mud-siltstone, suspension deposits. 

FC1: Fluvial channel-lag deposits, intraformational mud clasts.
FC2: Fluvial channel fill, planar tabular bedding, straight crested dunes. 
FC3: Fluvial channel fill, trough cross-beds, sinuous crested dunes.
FC4: Fluvial channel fill, planar thinly laminated, upper flow regimes. 

Fluvial Facies

1

2

3

4

5

8

6

7

9

10

11 Lateral thickening of wavy laminated interdune horizon.

Downwind-dipping reactivation surfaces.

Lateral transition from crinckly-wavy laminated (damp) to wind-ripple (dry)
interdune strata.

Damp interdune unit showing erosive topography on both upper 
and lower surface, pinches out laterally.

Spatially isolated damp interdune unit.

Fluvial faint flat lamination; homogonous grain size due to well-sorted nature of grains.  

Moderate-high angle aeolian dune foresets (grainflow dominated), pinching out toward the base off lee-slope.    

Dune toe-set soft-sediment deformation, laterally intertonguing with damp interdune strata.  

Dune strata with erosional truncation surface; deflation surface. 

Stacked aeolian dune-strata separated by interdune surface. Medium-to coarse-grained sandstone dominated by planar and
wind-ripple laminated dry interdune strata.

Fluvial flood surface with erosive base exhibiting local topography and planar laminated silty mudstone fill.

Planar thinly (10-30 cm) laminated  Silty mudstone.

Wavy to crinkly laminated sandstone, dominated by modified wind-ripple strata and adhesion-ripple strata; 
accumulated in interdune areas between merging aeolian dune forms.  

Lense-shaped interdune element.

Small-scale water escape (flame) structures in upper part of damp interdune units.

Fluvial trough cross-beds, representing the migration and accumulation of sandy mesoforms within a fluvial 
channel system.

Planar-tabular sets representing the migration of sandy bedforms within a fluvial channel system.  

Sharp boundaries at the top of the channel-fill element record an abrupt abandonment phase.  

19

18

20

21

22

23

24

25
17

12

13

14

15

16

Down-folded lamination in the uppermost layers of the damp interdune represent cross-sectional view of vertebrate
footprint structure.   

Low-angle inclined aeolian dune foresets; wind-ripple dominated (translatent wind-ripple strata common).

Near horizontal, bi-modal grain size (pinstripe lamination) forming clear grain size segregation unit; 
pinches out laterally and merge with interdune facies.   

Stacked aeolian dune foreset deposits that lack clear stratification due to grain size homogeneity. 

 Intraformational rip-up clasts composed of red (laminated silty mudstone); highly variable size and shape. Basal lag 
 deposits associated with channel fill-element.  

Fluvial channel base; erosional bounding surface.  
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