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Abstract 

This thesis investigates the performance of mental health providers in England on 

resource use (length of inpatient stay and costs) and quality (readmission rates and 

patient outcomes). Under a new payment system, it is intended that a national tariff 

(price) based on national average costs will be introduced and a part of future 

payments will be contingent on outcomes. Therefore, providers will have incentives 

to control costs and improve patient outcomes. We investigate the potential to achieve 

these aims using two nationally representative patient-level data sets: Hospital 

Episode Statistics (HES) and the Mental Health Minimum Data Set (MHMDS).  

We utilise multilevel models, which allows us to isolate the residual variation in our 

response variable attributable to providers. Residual variation is quantified using 

Empirical Bayes (EB) methods and comparative standard errors are used to rank 

providers to make inferences about performance. We model length of stay (LOS) 

using a Poisson model; costs using a log-linear model and a generalized linear model 

(GLM) with a gamma distribution and log link; outcomes using ordered probit and 

linear models; and costs and outcomes simultaneously using a bivariate model. We 

employ a comprehensive range of patient and provider covariates.  

Demographic, diagnostic, severity and treatment variables are key drivers of LOS and 

costs. Worse outcomes are associated with severity and better outcomes with older 

age and social support. Provider-level emergency readmission rates are associated 

with lower LOS and formal admissions with higher LOS. Provider-level variables 

have negligible effects on outcomes but a notable effect on costs. Ranking providers 

by residual variation suggests some providers can improve performance. Providers 

performing below average face financial instability under a national tariff and when 

a part of payment is linked to outcomes. The correlation in provider-level residual 

costs and outcomes is miniscule suggesting that cost-containment and outcome 

improving efforts by providers should not conflict.
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Chapter 1. Introduction 

 Introduction 

1.1.1. Overview of mental healthcare in England 

Mental health constitutes an important area of research due to its large and often 

neglected impact on individuals, society and the economy. Around one in four people 

suffer from a mental health problem each year (NHS England 2014b) and mental 

health problems contribute to 23% of the total burden of illness in the UK (The Centre 

for Economic Performance's Mental Health Policy Group 2012). Consequently, the 

economic cost of mental illness is estimated to be in the region of £100 billion 

annually – equivalent to the cost of the entire English National Health Service (NHS) 

(NHS England 2014b). Despite the huge disease and economic burden, only 13 

percent of the NHS budget is spent on mental health (NHS England 2014b).  

In England, mental healthcare is provided in both primary and secondary care settings. 

The focus of this thesis is secondary mental healthcare, which is provided by NHS, 

private and voluntary providers. There are currently 59 NHS providers - known as 

Mental Health Trusts (NHS Choices 2015b). Until April 2013, mental health services 

were commissioned (organised and purchased) by Primary Care Trusts (PCTs) who 

also provided some mental health services. Since April 2013, the commissioning of 

mental health services is primarily the responsibility of Clinical Commissioning 

Groups (CCGs) with specialised mental health services commissioned by NHS 

England – an executive non-departmental public body of the Department of Health. 

The majority of mental healthcare is provided in outpatient or community-based 

settings (Health and Social Care Information Centre 2014), with inpatient care 

primarily reserved for patients in the most acute phase of mental illness with 

circumstances or care needs that cannot be appropriately met in a less restrictive 

setting (Smith et al. 2015).  

Mental health services have historically been funded through block contracts, with 

funding determined by historic allocations or dependent on available budgets 

(Monitor and NHS England 2013a). This payment system does not necessarily 

incentivise providers to deliver efficient levels of care by controlling cost or 
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increasing levels of activity (Jacobs 2014) nor has payment been aligned to patient 

needs or outcomes (Monitor and NHS England 2013a). Provider payment is 

undergoing reform with a move from block contracts towards the National Tariff 

Payment System (NTPS), formerly known as Payment by Results (PbR) - the activity-

based provider payment system used to reimburse providers of secondary physical 

healthcare. The NTPS for mental health is described more fully in Section 1.2.2. 

Mental health has been a key focus of recent government policy and also featured 

prominently in the Five Year Forward View, which sets out a vision for the NHS 

(NHS England 2014b). A key objective highlighted in recent policy documents has 

been parity of esteem between mental and physical health (Department of Health 

2011; Department of Health 2014; Department of Health and NHS England 2014; 

NHS England 2014b). A number of policies have been introduced in order to achieve 

this goal including patient choice of mental health provider and mental health team 

(NHS England 2014a) and waiting times standards with up to £120 million in 

additional funding earmarked to implement new access and waiting time targets 

(Department of Health and NHS England 2014). The introduction of the NTPS has 

the potential to establish greater parity of esteem between mental and physical health 

and facilitate the policies of patient choice and waiting time standards. The disparity 

in payment systems between mental and physical healthcare risk a diversion in 

resources from mental health towards physical health where better activity data has 

made the return on investment of limited budgets more transparent to commissioners 

(Department of Health and NHS England 2014; Jacobs 2014). Therefore, while the 

introduction of the NTPS to mental health is meant to be budget neutral (Mason and 

Goddard 2009), it may encourage increased spending on mental health as 

commissioners will have a greater transparency over the marginal investment in 

mental health compared to physical health services. NHS England has placed an onus 

on CCGs to increase spending on mental health in real terms during 2015/16, and 

ensure growth in spending will at least equal each CCGs allocation increase (NHS 

England 2014c).  

The introduction of the NTPS will place increased emphasis on provider’s 

performance in relation to resource use and patient outcomes. Provider’s (lagged) 

costs will inform the prices they will be paid to treat patients with a possible prospect 
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of basing prices on the average costs across all providers while it is also intended that 

a part of payment will be linked to patient outcomes (Department of Health Payment 

by Results team 2013b). This motivates an investigation of the performance of mental 

healthcare providers in England to understand the extent to which there are variations 

in performance and if these can be explained by observable patient and provider 

factors. The remaining or residual variation in performance can then be interpreted as 

potentially amenable to actions on behalf of providers of care and commissioners to 

the extent that commissioners or policymakers can incentivise changes in provider 

behaviour. 

1.1.2. Overview of thesis 

This thesis investigates the performance of mental healthcare providers in England in 

the context of the introduction of the NTPS to mental healthcare. The relative 

performance and resource use of mental health providers in England is comparatively 

under-researched and this thesis makes an important contribution to the limited 

evidence base. Provider performance is assessed in relation to resource use in the form 

of length of inpatient stay and costs of care as well as patient outcomes. Our approach 

to measuring provider performance draws on Shleifer’s (1985) theory of yardstick 

competition whereby a given provider is rewarded based on its performance 

compared to the average in a group of similar providers. 

There is a compelling case for measuring the performance of mental health providers; 

resources are limited and the sector is under pressure to increase productivity 

(Monitor 2013). Mental health providers are currently operating in a tight financial 

climate. Since 2011/12, spending on mental health has decreased in real terms, despite 

increases in demand for mental health services (Smith et al. 2015). Across all mental 

health trusts, there was a cut in funding of 2.3% in real terms between 2011/12 and 

2013/14, with the budgets of some providers falling by more than 10% (Lintern 

2014a). For the financial year 2014/15, the economic regulator (Monitor) 

recommended nominal price adjustments for use in local negotiations as -1.5% for 

acute services and -1.8% for non-acute services including mental health with the 

differential justified by the need for acute services to meet the costs of implementing 

the recommendations of the Francis and Keogh reports (Monitor and NHS England 
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2013a). Nevertheless, improvements in care standards as recommended in these 

reports are as relevant for non-acute and mental healthcare as for acute care. The 

relatively larger cut in prices for non-acute services was viewed by many as indicative 

of the “institutional bias” towards acute trusts endemic in the funding system (Lintern 

2014b; Lintern 2014c). Moreover, many mental health providers are not convinced 

that commissioners will fulfil aspirations to increase mental health funding for 

2015/16 (Appleby, Thompson and Jabbal 2015; Lintern 2015a) due to the uncertain 

financial environment (Lintern 2015b). 

The budget cuts in recent years have led to reductions in mental health staff and beds. 

Data from the majority (52) of Mental Health Trusts reveal reductions in nursing staff 

of 6% and doctors of 2% from 2011/12 to 2013/14 (Lintern 2014a). There was a 4% 

reduction in beds between 2011/12 and 2013/14 (Lintern 2014a) with concern that 

these were not balanced by increased capacity in community-based services (Edwards 

2014) where demand has increased (Ahmed et al. 2015). There is evidence of 

increasing demand pressures on available beds with levels of bed occupancy running 

at over 100%, which raises concerns about care quality and patient safety (Royal 

College of Psychiatrists 2011; The Commission to review the provision of acute 

inpatient psychiatric care for adults 2015; Williams et al. 2014). Admission thresholds 

have increased (Csipke et al. 2014; Sabes-Figuera et al. 2012; The Commission to 

review the provision of acute inpatient psychiatric care for adults 2015) to the extent 

that patients are being admitted under the Mental Health Act (MHA) in order to access 

inpatient treatment (House of Commons Health Committee 2013). High pressure on 

beds is also evidenced by increased out-of-area placements: between 2011/12 and 

2013/14 the number of patients travelling beyond their local NHS trust area to access 

emergency mental health treatment rose by 132% (The Commission to review the 

provision of acute inpatient psychiatric care for adults 2015). Much of the spare 

capacity for these placements is provided by the private sector, which is adding to the 

financial pressures placed on NHS providers (Ahmed et al. 2015). Placements far 

from a patient’s home may negatively affect their care and outcomes by removing 

them from their immediate support network. Despite these constraints, Monitor has 

identified scope to achieve productivity gains of between £0.5 billion to £1.3 billion 

in mental health with reductions in (LOS) length of stay cited as a key lever to realize 

some of these financial gains (Monitor 2013). Therefore it is clear that the mental 
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health sector is under pressure to make the most of available resources by reducing 

inefficiencies while safeguarding patient outcomes. 

The thesis is comprised of four main chapters. In Chapters 2 and 3 we examine 

variations in resource use across mental health providers in terms of inpatient LOS 

and costs. In the absence of cost data, LOS can serve as a good proxy for cost as it is 

a key driver of hospital costs, especially in mental health where care is staff-intensive 

(Mason et al. 2011). In Chapter 2, we examine variation in inpatient LOS among 

mental health providers in England, with a particular focus on the relationship 

between LOS and quality as reflected by provider emergency readmission rates. In 

Chapter 3, we investigate the performance of mental health providers in England in 

relation to cost efficiency by explaining variations in costs due to observable patient 

risk factors and comparing the unexplained variation in provider-level costs across 

providers. The objective of Chapter 4 is to explore what factors contribute to 

variations in patient outcomes across providers and whether providers differ 

systematically in terms of performance on unexplained residual variation in 

outcomes. Chapter 5 considers the relationship between costs and outcomes in order 

to determine if there is an evident trade-off between provider performance objectives 

of cost control and outcome improvement.  

Our dependent variable of interest in Chapter 2 is inpatient LOS. LOS is a key driver 

of resource use and there are wide variations in LOS among mental healthcare 

providers in England.  LOS has been identified as a key instrument with which to 

realise productivity gains (Monitor 2013). Under the NTPS providers will have an 

incentive to reduce LOS in order to control cost but if patients are discharged too early 

with inadequate follow-up in the community, this can have a detrimental effect on 

quality of care and patient outcomes. We explain variations in LOS using a 

comprehensive set of admission-level, patient-level and provider-level characteristics 

with a particular focus on the relationship between LOS and emergency readmission 

rates. Unexplained provider-level variation in LOS is captured by a random effect and 

quantified using Empirical Bayes (EB) techniques to make inferences about provider 

performance. The largest drivers of increased LOS at admission level are in-hospital 

death, a primary diagnosis of psychosis, formal detention, discharge to social care and 

the oldest age group (65 years and over). At a patient-level, Black ethnicity is 
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associated with the largest increase in LOS. At a provider-level, the proportion of 

formal admissions under the MHA has a large positive association with LOS. The 

provider emergency readmission rate has a strong negative association with LOS 

implying that providers with high emergency readmission rates are associated with a 

significantly shorter LOS. Variations in residual LOS are evident across providers 

indicating that a number of providers have potential to improve performance on LOS, 

which will gain importance under a national tariff in the NTPS. 

Chapter 3 investigates variations in resource use across mental health providers in 

terms of the costs associated with a period of care in a hospital or community setting 

to make assertions about provider performance. Under the NTPS, it is intended that 

future tariffs (national prices) will be based on the national weighted average costs of 

admitted and non-admitted care and initial assessments (to ascertain if a patient will 

enter secondary care and be reimbursed under the NTPS). This will provide an 

incentive for providers to control costs and increase efficiency. We cost mental 

healthcare activity across both hospital and community-based settings that will be 

reimbursed under the NTPS for public providers of specialist mental healthcare in 

England. We compare variations in costs across providers and explain these variations 

using a comprehensive set of risk adjustment variables to ascertain what factors are 

associated with higher or lower costs. The risk adjustment variables include the 21 

care clusters that are the units of activity for which payment will be made under the 

NTPS as well as demographic, treatment and social variables. Residual variation in 

costs is quantified using EB methods and compared across providers to provide 

insights into which providers have the potential to make financial surpluses or losses 

under the new payment system. Results show that the care clusters do not explain all 

variation in costs. Clusters reflecting greater severity and need are associated with 

higher costs. Admission under the MHA and having care co-ordinated under the Care 

Programme Approach (CPA) (a method of assessing, planning and reviewing the 

needs of a person with severe mental illness) are indicative of higher costs and may 

be picking up aspects of severity not adequately captured by the care clusters. The 

key demographic cost drivers are Black ethnicity, older age, and male gender. 

Variables measuring provider type, size, capacity and formal admissions are also 

found to be associated with costs. We find evidence of differentials in provider 

performance with a number of providers demonstrating higher or lower residual costs 
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independent of observable patient risk-factors controlled for. This residual cost should 

be susceptible to cost-controlling actions on the part of providers, which will gain 

heightened significance under national prices in the new payment system. 

Under the NTPS for mental health, it is intended that a part of provider payment will 

be linked to provider’s performance on patient outcomes. Chapter 4 explores provider 

performance in relation to patient outcomes and the potential for the NTPS to 

incentivise improved performance. Outcomes are measured using a Clinician Rated 

Outcome Measure (CROM) – the Health of the Nation Outcome Scales (HoNOS). 

We apply the concept of Reliable and Clinically Significant Change (RCSC) to a pair 

of HoNOS scores recorded at the beginning and end of a period of care for which 

payment is made. The majority of observations are classified with a stable outcome 

while relatively small proportions experience outcomes classed as clinically 

significant deteriorations or improvements. We model the ordered outcome variable 

using a hierarchical ordered probit model. Risk adjustment covariates reflect 

demographic, need, severity and social indicators. A hierarchical linear model is also 

estimated with the follow-up total HoNOS score as the dependent variable and the 

baseline total HoNOS score included as a risk-adjuster. Provider performance is 

captured by a random effect that is quantified using EB methods. We find that worse 

outcomes are associated with higher severity and better outcomes with older age and 

social support. High baseline HoNOS scores (worse outcomes) are predictive of high 

follow-up HoNOS scores (worse outcomes). In terms of provider variables, mental 

health beds have a positive association with mental health outcomes while bed 

occupancy is associated with worse outcomes. After adjusting outcomes for various 

risk factors, variations in performance are still evident across providers. This suggests 

that when an element of provider payment becomes contingent on patient outcomes, 

some providers may gain financially whilst others may lose.  

The introduction of the NTPS to mental healthcare brings opportunities for providers 

to control costs and improve patient outcomes. However, there may potentially be a 

trade-off between these two objectives as improving outcomes may require additional 

resources to be expended and controlling costs may negatively impact patient 

outcomes. Chapter 5 brings together the research of chapters 3 and 4 by examining 

both costs and outcomes together to ascertain if incentives to control costs provided 
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by the new payment system can be achieved without compromising patient outcomes. 

We estimate a bivariate multilevel model with both cost and follow-up HoNOS scores 

as the dependent variables. A log-linear model is the estimation model of choice for 

costs and a linear model is used to model outcomes. The use of a bivariate multilevel 

model allows us to estimate costs and outcomes simultaneously using a set of risk 

adjustment variables specific to each outcome. Risk adjustment variables reflect those 

used in Chapters 3 and 4 covering demographic, treatment, severity and social 

indicators. We calculate the correlation between the residual variation in costs and 

outcomes at the provider-level and plot the pairwise relationship between the residual 

responses in order to categorise providers in terms of how they perform on both 

residual costs and outcomes. We find little evidence of a correlation between residual 

costs and outcomes at the provider-level, which suggests that concerns regarding a 

trade-off between costs and outcomes may not be warranted, based on current 

evidence. Providers fall rather evenly into four groups: high costs/better outcomes, 

high costs/worse outcomes, low costs/worse outcomes, and low costs/better 

outcomes. This suggests differential responses on the part of providers to the 

preliminary incentives contained within the NTPS.  

This chapter first outlines the economic theory underpinning the empirical analyses; 

explains the policy context motivating the thesis; describes the main data set used for 

three of the thesis chapters; outlines the methodology common to the chapters; and 

provides the main contributions to research of the thesis.  

 Economic Theory 

Agency theory provides a useful framework to underpin our empirical analyses. This 

posits that a principal delegates specific activities to an agent who receives an award 

upon satisfactory execution of these tasks. The delegation of responsibilities will be 

unproblematic if the principal has full information or if the objectives of the principal 

correspond to those of the agent (Smith et al. 2012). In healthcare, problems in the 

principal – agent relationship can arise due to asymmetry of information. The 

principal will have less information than the agent on the nature of the production 

function and external circumstances influencing costs or outcomes. This means that 

the agent can incur costs above the optimal level or deliver outcomes below the 
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optimal level and the principal will be unable to distinguish whether suboptimal costs 

or outcomes are due to the amount of effort employed by the agent or exogenous 

factors outside of the agent’s control. In general, the agent will exert less effort than 

the principal would choose as the utility of the agent decreases as the level of effort 

(e.g. to increase activity or efficiency) increases (Burgess et al. 2011; Smith et al. 

2012).  

In order to address these opposing objectives, the principal can use the agent’s reward 

or payment as an instrument to increase effort. Simply rewarding the agent (in our 

case a mental health provider) based on historical or anticipated costs will not 

incentivise efficient performance. Instead, Shleifer (1985) proposes that the price a 

provider receives is related to the costs of similar providers in the same sector and 

this will simulate a competitive environment whereby the provider will have an 

implicit incentive to increase effort. The motivation underlying this theory of 

“yardstick competition” is that providers wish to maximise profits, but tend to exert 

minimum effort unless profits are at stake. The principal or regulator can exploit this 

profit motive by basing the price any one provider receives on the average of the costs 

incurred by all providers. Therefore, if a provider reduces costs when a competitor 

does not, a profit is incurred; similarly, if a provider does not reduce costs relative to 

its competitors, it faces a loss. This approach overcomes the information asymmetry 

on the part of the regulator as it does not need to know each provider’s specific 

production function, merely the costs incurred by all providers in the sector. 

Moreover, if the regulator observes specific exogenous characteristics that explain 

variations in costs across providers, then these can be accounted for in a cost 

regression to give a more accurate price signal (Shleifer 1985). This approach can 

also apply to the comparisons of outcomes achieved by a group of providers. 

 Policy context 

1.3.1. Provider payment for mental health in an international context 

Internationally, prospective activity-based payment is increasingly used to pay 

providers. In acute physical healthcare, the use of prospective payment systems based 

on casemix classification systems has been associated with reductions in unit costs 

(Street et al. 2011) and improvements in some aspects of quality of care (Or and 
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Hakkinen 2011). Prospective activity-based payment remains limited in mental 

healthcare (Mason and Goddard 2009) as diagnosis is often one of the main variables 

underpinning the unit of activity for which payment is made but diagnosis is not a 

strong predictor of resource use in mental health (McCrone 1994; McCrone and 

Phelan 1994; McCrone 1995).  

Provider payment systems for mental healthcare that incentivise both cost efficiency 

and quality improvement have been a policy focus in a number of countries. Some 

countries such as the Netherlands have included psychiatric care in the prospective 

activity-based payment system for inpatient and outpatient care (Kobel et al. 2011). 

This activity-based payment system takes account of the type of care and treatment 

provided as well as diagnosis (Forti et al. 2014). Cost control is incentivised by 

nationally agreed unit prices and the system also incentivises quality improvements 

that lead to lower resource consumption (Swan-Tan et al. 2011). Other countries have 

implemented prospective payment but chosen an alternative payment unit to 

diagnosis casemix groups, such as the United States which reimburses psychiatric 

inpatient care under Medicare using a per diem system as LOS is an important 

determinant of inpatient cost (Mason and Goddard 2009). This system links payment 

to average cost in order to encourage efficiency, while aspects of the payment system 

are also designed to prevent adverse effects on quality of care (Mason and Goddard 

2009).  

A number of countries including Australia, Canada (Ontario) and New Zealand have 

developed casemix classification systems specific to mental health that have 

incorporated information on patient severity, functioning, and legal status as well as 

diagnosis. The Australian and New Zealand systems included outcomes in the form 

of the HoNOS. In both countries provider factors were shown to drive cost variations 

rendering the classification systems unsuitable for provider payment although was 

this was an explicit objective in Australia only (Buckingham et al. 1998; Gaines et al. 

2003). The classification system developed in Ontario has also not been used to fund 

mental health services although this is a future intention (Mason and Goddard 2009).  
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1.3.2. The National Tariff Payment System (NTPS) for Mental Health 

In an international context, England has made considerable advances towards 

introducing prospective activity-based payment to mental healthcare. The system 

used in the acute physical healthcare sector – the NTPS – has been extended to mental 

health. Under the NTPS in the acute physical healthcare sector, activity is grouped 

into Healthcare Resource Groups (HRGs) that represent groups of patients that are 

clinically and economically homogenous and these are the currencies (units of 

activity) for which payment is made. A national fixed price or tariff per HRG is set 

by the economic regulator (Monitor) and this corresponds to the national average 

(lagged) cost of treating patients in a particular HRG. The national tariff gives 

providers an incentive to increase the efficiency of care provision in order to avoid 

making a loss and increase surpluses. The tariff also negates the need for price 

negotiations between commissioners and providers and contracts can focus more on 

the quantity and quality of care provided (Fairbairn 2007; Jacobs 2014).  Therefore, 

proponents of the introduction of the NTPS to mental health have alluded to potential 

benefits arising from increased efficiency and quality of mental healthcare (Evans-

Lacko et al. 2008). 

A new classification system has been developed for mental health with a primary 

focus on patient severity, an important predictor of mental health resource use (Trauer 

2010b). The currencies for which payment will be made under the NTPS for mental 

health are 21 care clusters which are grouped into three superclasses corresponding 

to non-psychotic, psychosis and organic mental illness (Figure 1.1). 
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Figure 1.1 Relationship of care clusters to each other 

 

Users of mental healthcare services are allocated to a cluster by clinicians using the 

Mental Health Clustering Tool (MHCT). The MHCT incorporates items from 

HoNOS (Wing, Curtis and Beevor 1996) and the Summary of Assessments of Risk 

and Need (SARN) (Self R. 2008) in order to provide all relevant information to 

allocate individuals to clusters (Monitor and NHS England 2013b). Part 1 of the 

MHCT encompasses the HoNOS items, which provide information on current 

problems in terms of the severity of symptoms experienced by the user during the two 

weeks preceding the MHCT assessment. Part 2 of the clustering tool encompasses the 

SARN items, which assess historical problems that occur less frequently or 

sporadically. All MHCT items are rated from 0 (no problem) to 4 (severe to very 

severe problem) (Monitor and NHS England 2013d). Table 1.1. presents an overview 

of the MHCT items, parts and rating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Working-aged adults and older people with mental health problems 

Non-psychotic Psychosis Organic 

Mild/ 

Moderate/

Severe 

Very 

severe 

and 

complex 

First 

Episode 

Ongoing 

or 

recurrent 

Psychotic 

crisis 

Very severe 

engagement 

   Cognitive 

Impairment 

1
. 

C
o
m

m
o
n
 m

e
n
ta

l 
h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

m
e
n
ta

l 

h
e
a
lt
h
  

p
ro

b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

2
. 

C
o
m

m
o
n
 m

e
n
ta

l 
h
e
a
lt
h
 p

ro
b
le

m
s
  

m
e
n
ta

l 

h
e
a
lt
h
  

p
ro

b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

3
. 

N
o
n
-p

s
y
c
h
o
ti
c
 (

m
o
d
e
ra

te
 s

e
v
e
ri
ty

) 

m
e
n
ta

l 

h
e
a
lt
h
  

p
ro

b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

4
. 

N
o
n
-p

s
y
c
h
o
ti
c
 (

s
e
v
e
re

) 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
0
. 

F
ir
s
t 
e
p
is

o
d
e
 i
n
 p

s
y
c
h
o
s
is

 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
1
. 

O
n
g
o
in

g
 r

e
c
u
rr

e
n
t 

p
s
y
c
h
o
s
is

 (
lo

w
 s

y
m

p
to

m
s
) 

 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
2
. 

O
n
g
o
in

g
 o

r 
re

c
u
rr

e
n
t 

p
s
y
c
h
o
s
is

 (
h
ig

h
 d

is
a
b
ili

ty
) 

  m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
3
. 

O
n
g
o
in

g
 o

r 
re

c
u
rr

e
n
t 

p
s
y
c
h
o
s
is

 (
h
ig

h
 s

y
m

p
to

m
 a

n
d
 

d
is

a
b
ili

ty
) 

  m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
4
. 

P
s
y
c
h
o
ti
c
 c

ri
s
is

 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
5
. 

S
e
v
e
re

 p
s
y
c
h
o
ti
c
 d

e
p
re

s
s
io

n
 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
6
. 

D
u
a
l 
d
ia

g
n
o
s
is

 (
s
u
b
s
ta

n
c
e
 a

b
u
s
e
 a

n
d
 m

e
n
ta

l 

ill
n
e
s
s
) 

 m
e
n
ta

l 

h
e
a
lt
h

 p
ro

b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
7
. 

P
s
y
c
h
o
s
is

 a
n
d
 a

ff
e
c
ti
v
e
 d

is
o
rd

e
r 

d
if
fi
c
u
lt
 t
o
 e

n
g
a
g
e

 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
8
. 

C
o
g
n
it
iv

e
 i
m

p
a
ir
m

e
n
t 

(l
o
w

 n
e
e
d
) 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

2
0
. 

C
o
g
n
it
iv

e
 i
m

p
a
ir
m

e
n
t 

o
r 

d
e
m

e
n
ti
a
 (

h
ig

h
 n

e
e
d
) 

  m
e
n
ta

l 

h
e
a
lt
h
  

p
ro

b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

2
1
. 

C
o
g
n
it
iv

e
 i
m

p
a
ir
m

e
n
t 

o
r 

d
e
m

e
n
ti
a
 (

h
ig

h
 p

h
y
s
ic

a
l 

n
e
e
d
 o

r 
e
n
g
a
g
e
m

e
n
t)

 

  m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

1
9
. 

C
o
g
n
it
iv

e
 i
m

p
a
ir
m

e
n
t 

o
r 

d
e
m

e
n
ti
a
 (

m
o
d
e
ra

te
 n

e
e
d
) 

  m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

7
. 

E
n
d
u
ri
n
g
 n

o
n

-p
s
y
c
h
o
ti
c
 d

is
o
rd

e
rs

 (
h
ig

h
 d

is
a
b
ili

ty
) 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

8
. 

N
o
n
-p

s
y
c
h
o
ti
c
 c

h
a
o
ti
c
 a

n
d
 c

h
a
lle

n
g
in

g
 d

is
o
rd

e
rs

 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

5
. 

N
o
n
-p

s
y
c
h
o
ti
c
 (

v
e
ry

 s
e
v
e
re

) 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 

6
. 

N
o
n
-p

s
y
c
h
o
ti
c
 d

is
o
rd

e
rs

 o
f 

o
v
e
rv

a
lu

e
d
 i
d
e
a
s
 

 m
e
n
ta

l 

h
e
a
lt
h
 p

ro
b
le

m
s
 (

lo
w

 s
e
v
e
ri
ty

) 



25 

 

Table 1.1 Overview of Mental Health Clustering Tool (MHCT) 

Rating Part Item 

0 = no problem  

1 = minor problem requiring 

no action  

2 = mild problem but 

definitely present  

3 = moderately severe 

problem  

4 = severe to very severe 

problem  

Rate 9 if Not Known 

1: Current Ratings. 

For scales 1-13, rate 

the most severe 

occurrence in the 

previous two weeks. 

 

1. Overactive, 

aggressive, 

disruptive or agitated 

behaviour  

2. Non-accidental 

self-injury  

3. Problem-drinking 

or drug-taking  

4. Cognitive 

problems  

5. Physical illness or 

disability problems  

6. Problems 

associated with 

hallucinations and 

delusions  

7. Problems with 

depressed mood  

8. Other mental and 

behavioural 

problems  

9. Problems with 

relationships  

10. Problems with 

activities of daily 

living  

11. Problems with 

living conditions  

12. Problems with 

occupation and 

activities  

13. Strong 

unreasonable beliefs 

that are not psychotic 

in origin  

2. Historical 

Ratings 

Scales A-E rate 

problems that occur 

A. Agitated 

behaviour/expansive 

mood  
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in an episodic or 

unpredictable way. 

Include any event 

that remains relevant 

to the current plan of 

care.   

B. Repeat self-harm  

C. Safeguarding 

other children & 

vulnerable adults  

D. Engagement  

E. Vulnerability  

Source: Monitor and NHS England (2013d). National Tariff 2014/15 Payment System 

Annex 7C Mental health clustering tool booklet. London, Monitor 

Upon completion of a MHCT assessment, clinicians identify a care cluster that 

corresponds to the needs of the service user. An electronic algorithm has been 

developed to aid clinicians in this task, which provides a probability of a service user 

being assigned to a particular cluster. A clinician is however able to override the 

algorithm allocation and the ultimate allocation decision is based on clinical 

judgement (Monitor and NHS England 2013a). If a clinician is unable to identify an 

appropriate cluster, the service user is allocated to a variance cluster (cluster 0) and 

the reasons for this course of action are recorded by the clinician (Monitor and NHS 

England 2013b). It is expected that the use of cluster 0 will decline with time as the 

clustering process becomes embedded in clinical practice (Monitor and NHS England 

2013b) and the data suggests that this is indeed the case. 

Unlike in the acute physical healthcare sector where the currencies are primarily based 

on procedures, the currencies in mental healthcare are based on patient characteristics 

and need. Diagnosis is not explicitly taken into account in the allocation of service 

users to clusters except for the three super-classes and the same diagnosis can be 

associated with several clusters, depending on level of need. This may result in 

considerable variation in casemix within and between the clusters (Jacobs 2014). To 

date, there has not been independent validation of the care clusters in terms of their 

clinical and resource homogeneity (Jacobs 2014). 

The clusters are mutually exclusive and it is possible to allocate a service user to only 

one cluster at any time. If a patient changes to a new cluster, the previous cluster can 
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no longer be used for payment purposes (Monitor and NHS England 2013b). The 

packages of care provided following allocation to a cluster is decided at the local level 

between the clinician and service user (Department of Health Payment by Results 

team 2013b; Monitor and NHS England 2013b). Clusters do not correspond to a 

particular care setting, so that care takes place in the most clinically appropriate, cost-

effective and least restrictive care setting possible (Department of Health Payment by 

Results team 2013b; Jacobs 2014). The aspiration is that each cluster will have a fixed 

national price or tariff (Department of Health Payment by Results team 2013b) 

calculated from the national weighted average cost of admitted and non-admitted care 

for a cluster along with the national average cost for an initial assessment (Jacobs 

2014). This will provide a strong incentive for providers to control costs, for example 

by treating patients in non-admitted (outpatient, community) care settings and 

reducing more costly admitted care, as providers with costs above the tariff will incur 

financial losses while those with costs below the tariff will make a surplus. It is likely 

that additional top-up payments or alternative funding arrangements in addition to the 

core cluster payment will be established to cover the cost of more specialised services 

(Monitor and NHS England 2013b). Nevertheless, the current policy emphasis is on 

the local delivery of the NTPS in mental health with recommendations to adapt 

national guidance on the System to suit local implementation and to develop and 

negotiate local cluster prices (Department of Health Payment by Results team 2013a; 

Monitor and NHS England 2014).   

While the use of a national tariff introduces a strong incentive for providers to control 

costs, this may come at the expense of patient outcomes and quality of care. In order 

to prevent any detrimental effect on quality of care and patient outcomes in the drive 

to increase efficiency, a suite of quality and outcome measures have been developed 

that will be mandated in contracts (Department of Health Payment by Results team 

2013b). These include a CROM based on the MHCT/HoNOS as well as quality 

indicators drawn from data collected in the Mental Health Minimum Data Set 

(MHMDS) (see Section 1.3.1.) covering treatment, accommodation and data quality 

(Department of Health Payment by Results team 2013b). In addition, a Patient Related 

Outcome Measure (PROM) and Patient Related Experience Measures (PREMS) are 

under development for future use (Department of Health Payment by Results team 

2013b). It is important that the CROM is complemented by PROMs and PREMs as a 
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clinician-rated measure may be more susceptible to manipulation or gaming with 

providers tempted to over-report improvements in order to improve performance and 

ultimately payment whereas PROMs and PREMs are likely to be more transparent 

(Jacobs 2010; Trauer 2010b; Yeomans 2014). 

It is envisioned that as the payment system evolves, commissioners and providers will 

agree on a component of payment that will be conditional on outcomes achieved 

(Department of Health Payment by Results team 2013b). This means that clinicians 

will have a direct impact on the funding that their organisation receives through their 

work to deliver high quality care and to achieve better outcomes (Department of 

Health Payment by Results team 2013b). The move towards linking payment to 

outcomes in mental health mirrors the introduction of Best Practice Tariffs in acute 

physical healthcare, with outcomes measured using PROMs (Monitor and NHS 

England 2013a). In order to receive the payment, providers must attain best practice 

criteria in terms of achieving an average health gain that is not significantly below the 

national average and meeting data submission standards. Non-fulfilment of these 

criteria means that the provider receives a price 10% below the best practice price 

(Monitor and NHS England 2013e). 

The impetus for moving towards the NTPS in mental health is based on a need to 

increase transparency, link funding to local mental health needs (and away from 

historical block contracts), reduce variation in mental health services, enhance 

personalisation and choice, and achieve value for money (Department of Health 

2010). Extending the NTPS to mental health also helps to place mental healthcare on 

an equal footing with physical healthcare in order to achieve parity of esteem. The 

production of more tangible results under the NTPS should help to protect mental 

health funding and prevent disinvestment in favour of acute care where it is easier for 

commissioners to assess what they are spending their budgets on (Jacobs 2014).  

There are some important differences between the design and implementation of the 

NTPS in physical and mental healthcare: 1) implementation of the NTPS in mental 

health has not been as well resourced as in physical health; 2) a primary goal for 

mental health is to relate payment to outcomes and quality, rather than just activity as 

has been the case for the majority of physical health; 3) the care clusters were uniquely 
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developed for mental health and presented a completely different and novel approach 

to classifying activity, whereas the classification system used in physical health was 

adapted from already established payment systems in other countries. Thus, mental 

health has faced greater challenges, which has likely adversely affected data quality 

in the initial years and the timelines for implementation. 

 Data  

The primary data sources used in the thesis are administrative patient-level data sets 

with national coverage for England. Our main data set for Chapter 2 is Hospital 

Episode Statistics (HES) - a patient-level administrative data set of all admissions, 

outpatient appointments and Accident and Emergency (A&E) attendances at NHS 

hospitals in England. As HES is only used in Chapter 2, it is fully described therein 

along with a range of provider-level variables used in Chapter 2. Our main data set 

for the remaining three chapters is the MHMDS. In order to avoid unnecessary 

repetition in the description of this data set, it is described fully in Section 1.3.1. We 

also give a brief overview of a small number of provider-level variables included in 

sensitivity analyses in Chapters 3 and 4 in Section 1.3.2. 

1.4.1. The Mental Health Minimum Data Set (MHMDS) 

The MHMDS is a patient-level data set with national coverage for England. The data 

set was introduced in April 2000 to facilitate the collection of clinical data in mental 

healthcare at a national level to support clinical audit, service planning and 

management. Three years later, it became mandatory for providers of specialist, 

including elderly, mental health services funded by the NHS to deliver MHMDS data 

on a quarterly and annual basis. The MHMDS contains data on all the care and 

treatment received by a service user from the first referral to specialist mental 

healthcare to the final discharge. This treatment can take place in hospital and 

community-based settings including inpatient, outpatient, and day care and also 

encompasses contacts with different mental health teams and health professionals in 

the community. Data is also collected on primary and secondary diagnoses, whether 

the patient is under the CPA or treatment is provided under a section of the MHA. 

There is also information on clinical and social outcomes (HoNOS, employment, 

accommodation). The variables included in the MHMDS have evolved over the years 
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and we use Version 4.0 which covers 2011/12 and 2012/13 and differs to previous 

versions with the inclusion of information pertaining to the new payment system 

including MHCT ratings and the care cluster assigned to the patient. 

Following referral to specialist mental healthcare by a GP or self-referral, or following 

a request from police or social services, service users will undergo an ‘initial 

assessment’ (Monitor and NHS England 2013b). The patient is assessed in order to 

determine if they need treatment in specialist care and require allocation to a care 

cluster or their needs can be adequately met in an alternative care setting (such as 

primary care or other services) (Monitor and NHS England 2013b). This initial 

assessment is not reimbursed under the care clusters but as a separate currency (unit 

of activity for which payment is made) (Monitor and NHS England 2013b). If a 

service user enters specialist care they undergo a MHCT assessment and are allocated 

to a cluster. This allocation is reviewed at regular intervals to ensure that the cluster 

continues to adequately meet the needs of the service user. It is recommended that 

MHCT assessments take place at CPA or other formal care reviews, and on occasions 

when a change in a services user’s needs necessitates a significant modification of 

planned care, for example if a service user is admitted to inpatient care (Monitor and 

NHS England 2013d). Following the MHCT assessment, the service user may remain 

in the same cluster or move to a different cluster. The interval between MHCT 

assessments is referred to as a ‘Cluster Review Period’ (CRP) and this is the unit of 

observation for the analyses in Chapters 3-5. The CRP forms the basis of contracts 

and prices agreed between commissioners and providers (Department of Health 

Payment by Results team 2013b; Monitor and NHS England 2013b) and so it is 

appropriate to analyse costs associated with CRPs.  Moreover, the MHCT assessment 

process facilitates the appraisal of whether there has been an improvement in a service 

user’s wellbeing during a period of care (Department of Health Payment by Results 

team 2013b) implying that the CRP is a suitable entity for measuring and analysing 

outcomes. Maximum review periods have been recommended for each of the clusters 

(Table 1.2) (Department of Health Payment by Results team 2013b). 
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Table 1.2 Maximum review periods 

Cluster Number Cluster label Cluster review period 

(CRP) (Maximum) 

0 Variance 

 

6 months 

 
1 Common mental health 

problems (low severity) 

 

12 weeks 

 2 Common mental health 

problems 

 

15 weeks 

 3 Non-psychotic (moderate 

severity) 

 

6 months 

 4 Non-psychotic (severe) 6 months 

 
5 Non-psychotic (very 

severe) 

 

6 months 

 6 Non-psychotic disorders 

of overvalued ideas 

 

6 months 

 7 Enduring non-psychotic 

disorders (high disability) 

 

Annual 

 8 Non-psychotic chaotic 

and challenging disorders 

 

Annual 

 9 Blank cluster 

 

Not Applicable 

10 First episode in psychosis 

 

Annual 

 
11 Ongoing recurrent 

psychosis (low 

symptoms) 

 

Annual 

 

12 Ongoing or recurrent 

psychosis (high 

disability) 

 

Annual 

 
13 Ongoing or recurrent 

psychosis (high symptom 

and disability) 

 

Annual 

 

14 Psychotic crisis 

 

4 weeks 

 
15 Severe psychotic 

depression 

 

4 weeks 

 16 Dual diagnosis 

(substance abuse and 

mental illness) 

 

6 months 
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17 Psychosis and affective 

disorder difficult to 

engage 

 

6 months 

 

18 Cognitive impairment 

(low need) 

 

Annual 

 19 Cognitive impairment or 

dementia (moderate 

need) 

 

6 months 

 

20 Cognitive impairment or 

dementia (high need) 

 

6 months 

 21 Cognitive impairment or 

dementia (high physical 

need or engagement) 

 

6 months 

Source: Department of Health Payment by Results team (2013b). Mental Health 

Payment by Results Guidance for 2013-14. Leeds, Department of Health. 

The MHMDS includes a number of variables that can be used to risk-adjust patient 

costs and outcomes. Risk adjustment controls for differences in patient casemix when 

comparing the costs and outcomes of treatment (Smith and Street 2013). We cannot 

simply assume that providers working in the same specialty, such as mental 

healthcare, treat patients with a homogenous casemix. A patient’s risk factors are 

likely to influence the costs incurred and outcomes achieved by providers, meaning 

that a comparison of providers treating patients with different risk profiles will result 

in a misleading picture of relative provider performance in costs and outcomes. 

Variables considered as risk-adjusters should not be related to the treatment and 

should be measured prior to or at the onset of treatment (Dow, Boaz and Thornton 

2001). Potential risk-adjusters should explain variation in the dependent variable of 

interest and there should be some degree of uniformity in the relationship between the 

dependent and risk adjustment variables across providers. It is also necessary to guard 

against using too many risk adjustment variables as this could mask genuine variation 

in costs and outcomes attributable to providers (Dow, Boaz and Thornton 2001) that 

we want to measure as performance. 

It is important to highlight issues of data completeness and data quality in the 

MHMDS that may be partly explained by our usage of data for 2011/12 and 2012/13 

which cover the initial years of the development and implementation of the NTPS in 
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mental health. The allocation of patients to care clusters commenced in 2011 and the 

mandatory use of the clusters as the basis for contracting mental health services for 

working-age and older adults was introduced only in 2012. Particular issues that 

pertain to our analyses concern the limited coding of variables measuring primary and 

secondary diagnoses that inhibits the use of these variables in Chapters 3-5 as well as 

a considerable reduction in estimation sample size in Chapter 4 arising from a lack of 

follow-up HoNOS ratings. Moreover, it is opportune to underline that there are 

shortcomings to the Reference Cost data used in Chapters 3 and 5, which is fully 

described in Section 3.3.1 of Chapter 3. These shortcomings relate to high variability 

in the costs reported both within and between providers as well as missing data. 

Again, these issues may relate to the use of data collected at a nascent stage of the 

development of the payment system. 

1.4.2. Provider variables 

We do not include provider-level variables in the main analyses in Chapters 3 and 4, 

as our objective is to control only for observable patient factors that may lead to 

variations in costs and outcomes across providers and allow provider factors to be 

captured in the provider-level residual and be indicative of performance. 

Nevertheless, it is of interest whether variables reflecting provider governance and 

capacity constraints have an effect on patient costs and outcomes. Therefore, in 

sensitivity analyses in Chapters 3 and 4 we include a number of provider-level 

variables in the estimation models including Foundation Trust (FT) status, mental 

health beds, mental health bed occupancy and proportion of formal admissions (in 

Chapter 3 only). We source these data from the websites of the Health and Social Care 

Information Centre (HSCIC) – the national provider of information, data and IT 

systems for health and social care in England – and NHS England. 

 Methods 

1.5.1. Multilevel generalized linear model (GLM) 

In chapters 2-4, we use a random effects multilevel GLM to model responses that are 

not normally distributed. A link function relates the conditional mean to the covariates 

and multivariate normal random effects while a distribution is used to specify the 
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relationship between the variance and the mean (Jones 2010; Rabe-Hesketh, Skrondal 

and Pickle 2004; Skrondal and Rabe-Hesketh 2009). As we use a different dependent 

variable in each chapter, different distributions and links are utilised which are 

described in more detail in each chapter. Advantages of a multilevel GLM are that 

predictions are made on the original scale of the dependent variable so it is not 

necessary to alter the dependent variable to facilitate model estimation or 

interpretation of results while heteroskedasticity can be accommodated through the 

choice of distributional family (Jones 2010).  

1.5.2. Comparisons of provider performance: Empirical Bayes (EB) 

prediction of the Random Effects 

Having obtained estimates of the model parameters and treating them as the true 

parameter values, we can predict values of the provider random effects using EB 

techniques. This allows us to quantify the residual variation (i.e. the unexplained 

variation, which remains after taking account of all the variables in our model) and 

compare this residual variation across providers in terms of the response variable. EB 

predictions combine the prior (normal) distribution with the likelihood to obtain the 

posterior distribution given the observed responses. The EB estimates of the provider-

level random effects are “shrunken” towards the mean of the posterior distribution 

with the degree of shrinkage determined by the relative information available on the 

group. A high level of shrinkage reflects relatively little information about the group 

(the number of patients is small for a particular provider or the patient-level variance 

is large relative to the provider-level variance). Therefore this shrinkage is desirable 

as it means less weight is placed on units with less data (Steele 2008). In order to 

compare the residual variation across providers we use comparative standard errors. 

We assume a normal posterior distribution and known model parameters in order to 

form Bayesian credible intervals using the posterior mean and posterior standard 

deviation. The posterior standard deviation is commonly used as a standard error of 

prediction for multilevel GLMs (Skrondal and Rabe-Hesketh 2009). The EB 

estimates of the provider-level random effects are ranked and graphically displayed. 

The residuals represent provider departures from the overall mean, so a provider 

whose confidence interval does not overlap the line at zero is said to differ 

significantly from the average at the 5% level. However, it is not possible to conclude 
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that two providers whose confidence intervals fail to overlap are statistically 

significantly different from each other at the 5% level as the confidence intervals are 

too wide (Goldstein and Healy 1995). The width of the confidence interval associated 

with a particular provider depends on the standard error of that provider’s residual 

estimate, which is inversely related to the size of the sample (Steele 2008) so wider 

confidence intervals signify relatively smaller numbers of observations in that 

provider. 

 Contribution to research 

This thesis makes a contribution to the current evidence base in a number of ways. 

The research offers a comprehensive and rigorous analysis of the performance of 

mental healthcare providers in England in terms of resource use (LOS, costs) and 

patient outcomes (including readmission rates). To date, such analysis is lacking due 

to the paucity of national data on mental healthcare in community settings. This meant 

that the majority of studies have primarily relied on data with limited geographical, 

provider or patient samples, restricting the generalisability of results. This research 

overcomes this problem by using large, administrative, nationally representative data 

sets – HES and MHMDS, the latter of which has only recently become available for 

research purposes. This means that the MHMDS has not been commonly used for 

research and this thesis makes  an important contribution in that regard. The use of 

HES data allows us to conduct a comprehensive study of resource use and quality of 

care in inpatient mental health settings. This is complemented by the MHMDS, which 

contains information on specialist mental healthcare and allows us to examine the 

entire care pathway encompassing outpatient and community mental healthcare as 

well as inpatient mental healthcare. Both HES and the MHMDS contain patient-level 

data and provider identifiers which allow the use of multilevel models in order to 

make inferences about the influence of different levels on the dependent variable of 

interest – another innovative feature of this research. Both HES and the MHMDS 

contain a comprehensive set of variables spanning demographic, treatment, need, and 

social indicators which are complemented by provider-level variables from additional 

sources in order to explain variations in resource use and outcomes. This moves this 

research beyond current literature in this field which considers a more limited range 

of covariates. Residual variation in the dependent variable of interest is quantified 
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using EB techniques and comparative standard errors are used to compare residual 

variation across providers. To the best of my knowledge, this thesis presents the first 

attempts to measure and compare provider performance in mental healthcare using 

EB methods. The thesis also offers other innovations with regard to methodological 

applications to mental health data including the use of a cross-classified model, which 

reflects patient movement between providers, and the use of a bivariate multilevel 

model to analyse patient costs and outcomes simultaneously. Additional original 

contributions include the use of provider-level emergency readmission rates 

calculated using HES data, the calculation of RCSC in HoNOS scores for nationally 

representative data, and the costing of specialist mental healthcare activity across the 

entire care pathway, again at a national level.  

The research presented in this thesis will be of potential benefit to policymakers by 

informing the design of the NTPS for mental healthcare. The research is the first 

attempt to investigate the ability of the care clusters to explain variations in costs for 

a period of care. This work also provides insights into whether observable patient and 

provider factors influence cost and outcome variations. The research explores how 

provider payment can be linked to outcomes and if providers may potentially face a 

trade-off between controlling costs and improving patient outcomes. Therefore, the 

results of these analyses can aid the development and implementation of the NTPS 

for mental health to ensure that providers are adequately reimbursed for providing 

good quality care tailored to patient’s needs that is cost-efficient and improves 

patient’s outcomes.
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Chapter 2. Variations in performance of mental health 

providers in the English NHS: An analysis of the 

relationship between readmission rates and length of 

stay 

 Introduction 

Using LOS as a proxy for cost and resource use (Martin and Smith 1996) we explore 

variation in LOS across providers and the extent to which patient and provider 

characteristics explain this variation. LOS is a key driver of hospital costs, especially 

when care is staff-intensive as is the case in mental health (Mason et al. 2011). 

Differences in LOS can reflect differences in patient needs, but can also be indicative 

of differences in treatment philosophies and practice patterns (Horgan and Jencks 

1987). One of the risks of the NTPS is that the incentives to generate efficiencies 

through reducing unit costs and LOS may have unintended consequences such as 

skimping on quality (Jacobs 2014). A major challenge in monitoring the quality of 

mental healthcare lies in utilising hospital-based data to make inferences about both 

hospital and community care (Lakhani et al. 2005). Hospital emergency readmission 

rates are increasingly used as a performance measure and as a basis for hospital 

reimbursement (Laudicella, Li Donni and Smith 2013) and can act as a good proxy 

measure for inferences about both hospital and community mental healthcare.   

The aim of this chapter is to examine variation in LOS among mental health providers 

in England, in particular the relationship between LOS and quality as reflected by 

provider emergency readmission rates. The study makes a unique contribution to 

research in two ways. First, the analysis uses three levels at which factors influence 

LOS, by considering admission-, patient- and provider-level variables. Second, the 

chapter uses a cross-classified model to explore variation in LOS and tests the 

sensitivity of this modelling approach by estimating a three-level hierarchical model 

to see if results diverge when there is a small degree of cross-classification in the data. 

We quantify the residual variation in LOS at the provider-level using EB estimates 

with comparative standard errors to compare performance across providers.  
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 Findings from previous literature 

We conducted a literature search for studies investigating LOS in mental healthcare 

using the following databases: EconLit, Embase, Medline, OvidMedline, and 

PsychInfo. Search terms included: “mental health”, “psychiatry”, “length of stay”, 

“readmission”, “inpatient”, and “performance”.  

In the studies reviewed, sample size ranged from 56 (Rothbard and Schinnar 1996) to 

327,797 (Harman, Cuffel and Kelleher 2004) patients. While some of the studies 

(Abas, Vanderpyl and Robinson 2008; Chung et al. 2010; Compton, Craw and 

Rudisch 2006; Dausey, Rosenheck and Lehman 2002; Hodgson, Lewis and 

Boardman 2000; Huntley et al. 1998; Imai et al. 2005; Lerner and Zilber 2010; 

Oiesvold et al. 1999; Padgett et al. 1994; Pertile et al. 2011; Rothbard and Schinnar 

1996; Stevens, Hammer and Buchkremer 2001; Williams et al. 2014; Wolff et al. 

2015b; Zhang, Harvey and Andrew 2011) included all psychiatric admissions 

irrespective of diagnosis, other studies (Chung et al. 2013; Douzenis et al. 2012; Fong 

Chan and Lieh Yan 2010; Harman, Cuffel and Kelleher 2004; Jacobs et al. 2015; Lay, 

Lauber and Rossler 2006; Peiro et al. 2004) explicitly focused their analyses on 

inpatients with particular diagnoses of serious mental illness, most commonly 

schizophrenia, bipolar and major depressive disorders.  

The majority of studies (Abas, Vanderpyl and Robinson 2008; Chung et al. 2010; 

Compton, Craw and Rudisch 2006; Dausey, Rosenheck and Lehman 2002; Douzenis 

et al. 2012; Fong Chan and Lieh Yan 2010; Harman, Cuffel and Kelleher 2004; 

Huntley et al. 1998; Imai et al. 2005; Lay, Lauber and Rossler 2006; Padgett et al. 

1994; Peiro et al. 2004; Pertile et al. 2011; Rothbard and Schinnar 1996; Williams et 

al. 2014) used multiple linear regression. Some studies modelled the log of LOS due 

to the skewed nature of LOS (Abas, Vanderpyl and Robinson 2008; Chung et al. 2010; 

Compton, Craw and Rudisch 2006; Lay, Lauber and Rossler 2006; Pertile et al. 2011; 

Rothbard and Schinnar 1996). Another common methodology employed by studies 

was a Cox regression (survival analysis) (Hodgson, Lewis and Boardman 2000; 

Lerner and Zilber 2010; Oiesvold et al. 1999; Stevens, Hammer and Buchkremer 

2001).   
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A number of authors (Chung et al. 2013; Lay, Lauber and Rossler 2006; Wolff et al. 

2015b; Zhang, Harvey and Andrew 2011) were interested in examining the predictors 

of long LOS with the definition of long LOS varying from greater than 12 days 

(Zhang, Harvey and Andrew 2011) to greater than 300 days (Lay, Lauber and Rossler 

2006). Logistic regression was used to model a dependent variable equal to one if the 

LOS was considered long according to the definition used. Poisson (Jacobs et al. 

2015) and zero-truncated negative binomial regression (Wolff et al. 2015b) were 

alternative methodologies employed. Several studies employed multilevel models 

with either fixed (Jacobs et al. 2015) or random (Chung et al. 2013; Chung et al. 2010; 

Harman, Cuffel and Kelleher 2004; Pertile et al. 2011; Williams et al. 2014) effects. 

Only a minority of studies (Huntley et al. 1998; Wolff et al. 2015b) utilised a split 

sample validation design whereby a part of the sample was used to estimate the model 

and the model was validated using the remaining sample observations. 

For the purposes of our study, determinants of LOS for psychiatric inpatient care can 

be classified in terms of admission, patient or provider characteristics. Table 2.1 gives 

an overview of the main characteristics considered in previous studies and their 

relationship with LOS according to the three levels considered in our analysis. 

Table 2.1 Literature on characteristics associated with length of stay (LOS) 

Variable  Direction of association (Reference) 

Admission-level characteristics 

Physical co-morbidities Positive: (Douzenis et al. 2012) 

 

Negative: (Chung et al. 2013) 

Diagnosis of psychosis Positive: (Chung et al. 2010; Hodgson, 

Lewis and Boardman 2000; Huntley et al. 

1998; Jacobs et al. 2015; Lay, Lauber and 

Rossler 2006; Lerner and Zilber 2010; 

Oiesvold et al. 1999; Peiro et al. 2004; 

Pertile et al. 2011; Tulloch, Fearon and 

David 2011) 

Co-morbid diagnosis of Substance 

Misuse  

Negative: (Compton, Craw and Rudisch 

2006; Harman, Cuffel and Kelleher 2004; 

Huntley et al. 1998; Jacobs et al. 2015; 

Stevens, Hammer and Buchkremer 2001)  

Legal status (compulsory admission) Positive: (Jacobs et al. 2015; Kallert, 

Glockner and Schutzwohl 2008; Lerner 
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and Zilber 2010; Pertile et al. 2011; 

Williams et al. 2014) 

 

Negative: (Compton, Craw and Rudisch 

2006; Tulloch, Fearon and David 2011) 

Social support Positive: (Oiesvold et al. 1999) 

 

Negative: (Fong Chan and Lieh Yan 

2010; Tulloch, Fearon and David 2011) 

Prior service use Positive: (Huntley et al. 1998; Lerner and 

Zilber 2010; Stevens, Hammer and 

Buchkremer 2001; Williams et al. 2014) 

 

Negative: (Dausey, Rosenheck and 

Lehman 2002; Jacobs et al. 2015; 

Rothbard and Schinnar 1996)  

Deprivation  Positive: (Abas, Vanderpyl and Robinson 

2008; Jacobs et al. 2015) 

Negative: (Dekker et al. 1997) 

Age Positive: (Chung et al. 2013; Fong Chan 

and Lieh Yan 2010; Hodgson, Lewis and 

Boardman 2000; Huntley et al. 1998; 

Jacobs et al. 2015; Oiesvold et al. 1999; 

Pertile et al. 2011) 

 

Negative: (Chung et al. 2010; Peiro et al. 

2004; Stevens, Hammer and Buchkremer 

2001) 

 

Non-linear: (Harman, Cuffel and 

Kelleher 2004; Horgan and Jencks 1987; 

McCrone and Lorusso 1999) 

Patient-level characteristics 

Gender Positive for males: (Chung et al. 2013; 

Chung et al. 2010; Rothbard and Schinnar 

1996) 

 

Positive for females: (Hodgson, Lewis 

and Boardman 2000; Oiesvold et al. 1999; 

Pertile et al. 2011; Tulloch, Fearon and 

David 2011; Wolff et al. 2015b) 

Ethnicity Positive for Black ethnicity: (Jacobs et 

al. 2015; Padgett et al. 1994)  

 

Positive for Jewish ethnicity: (Lerner 

and Zilber 2010) 

Provider-level characteristics 

Hospital type Positive for psychiatric hospital: (Chung 

et al. 2013) 
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Hospital capacity Positive: (Chung et al. 2013; Chung et al. 

2010; Imai et al. 2005; Tulloch, Fearon 

and David 2011) 

Human resources of healthcare 

professionals 

Negative: (Chung et al. 2013; Chung et 

al. 2010; Imai et al. 2005) 

Readmission rates Positive: (Korkeila et al. 1998; Wolff et 

al. 2015b)  

 

Negative: (Appleby et al. 1993; Boden et 

al. 2011; Figueroa, Harman and Engberg 

2004; Lin et al. 2006; Sytema and Burgess 

1999)    

 

At an admission-level, diagnostic (primary and secondary diagnoses), treatment (prior 

service use, involuntary admission) and socioeconomic (social support, deprivation) 

variables are reported as being significantly associated with LOS. In terms of 

diagnostic variables, the presence of physical co-morbidities as well as a diagnosis of 

psychosis has been found to be positively associated with longer LOS while a co-

morbid diagnosis of substance misuse disorder is generally reported as reducing LOS 

(Table 2.1). There is less consensus in the literature regarding the effect of treatment 

and socioeconomic characteristics. A longer LOS may arise from an involuntary 

admission if such admissions are indicative of greater severity of illness. Tulloch 

(2011) report that being married is associated with shorter LOS. Rothbard and 

Schinnar (1996) posit that prior service use may be associated with a shorter LOS as 

patients who are familiar with the mental health system can be treated and discharged 

quicker. However, prior service use may also be indicative of greater severity of 

illness thus resulting in a longer LOS (Huntley et al. 1998). Abas et al. (2008) found 

that greater levels of socioeconomic deprivation in the inpatient’s neighbourhood of 

residence were associated with extended hospitalization after adjustment for 

demographic factors and primary diagnosis but not after adjustment for comorbid 

diagnosis, chronicity, function, and severity. Jacobs et al. (2015) report a longer LOS 

for patients from more deprived neighbourhoods, with a larger effect for patients with 

bipolar disorder. Dekker et al. (1997) reported negative correlations between LOS and 

deprivation characteristics which they surmised resulted from deprived areas having 

a larger number of patients who are frequently readmitted for a short time.  McCrone 

and Lorusso (1999) showed a non-linear relationship between LOS and age. A longer 

LOS for older people may be somewhat related to the availability of social supports 
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as well as the availability of and access to continuing health and social care (Bryan 

2010; Pertile et al. 2011). Moreover, presentations by elderly patients may be 

medically complex due to a higher risk of medical co-morbidities and adverse 

reactions to medications (Pertile et al. 2011).  

At a patient-level, black ethnicity is associated with a longer LOS compared to white 

or Asian ethnicity (Jacobs et al. 2015; Padgett et al. 1994). There is no clear direction 

regarding the relationship between LOS and gender.   

At a provider-level, hospital capacity is positively associated with LOS (Chung et al. 

2010) while levels of human resources in terms of healthcare professionals have 

shown a negative relationship with LOS (Imai et al. 2005). The positive relationship 

between LOS and hospital capacity is likely due to a desire or need to keep bed 

occupancy levels high and may also be related to the provider payment method (e.g. 

per diem) and hospital efforts to increase revenues (Chung et al. 2010). Lower 

numbers of human resources in terms of healthcare professionals may be indicative 

of cost-cutting efforts on the part of hospitals that consequently reduce quality of care 

and increase LOS (Imai et al. 2005). 

 

 Methods 

2.3.1. Study sample 

Our data exhibits a multilevel structure with admissions nested in patients, who are 

nested in hospitals. Some patients have multiple admissions (spells) the majority of 

which are to the same hospital, but approximately 2% of patients (accounting for 4% 

of admissions) have admissions to different hospitals. We use a cross-classified model 

to reflect this non-hierarchical data structure. Cross-classified data occurs when 

lower-level units relate to more than one distinct higher-level unit. Lower level units 

will then be connected to a pair or group of higher level units resulting in two or more 

higher level units or classifications being crossed (Leckie 2013) as shown in Figure 

2.1.  
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Figure 2.1 Cross-classified data structure 

 

2.3.2. Estimation model 

Our choice of estimation model is a three-level GLM that can be written as:  

g-1{E[ yijk | xijk, vjk uk]} = βXijk + uk + vjk  ≡ ηijk           (1) 

where Xijk  is a column vector of admission, patient and hospital characteristics, uk are 

level 3 random intercepts or hospital specific effects, vjk  are level 2 random intercepts 

or patient specific effects, g-1 (.) is the link function and ηijk  is the linear predictor. The 

conditional expectation of the response, given the covariates and the random effects 

is: 

μijk ≡ {E[ yijk | xijk, vjk, uk]} = g(βXijk + uk + vjk ) = g(ηijk)                            (2) 

The random effects are considered multivariate normal with strictly exogenous 

covariates (Skrondal and Rabe-Hesketh 2009). Conditional independence of the 

responses is assumed with conditional distributions drawn from the exponential 

family (Skrondal and Rabe-Hesketh 2009). The conditional variance is given by: 

Var (yijk| uk, vjk) = φijkV(μijk)                                                (3) 

where φijk is a dispersion parameter and V(μijk) is a variance function specifying the 

relationship between the conditional variance and conditional expectation. As our 

 

Level 2 
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Level 2 

Hospital1 
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Patient 1 Patient 2 

Admission 1 Admission 2 Admission 3 Admission 4 Admission 5 
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response variable (LOS) can be evaluated as count data, a Poisson distribution with a 

log link is specified. The variance function V(μijk) = μijk and the dispersion parameter 

φijk  = 1. The Poisson distribution assumes that equi-dispersion is present implying 

that the conditional mean is equal to the variance. For some spells of care the 

conditional variance may exceed the mean so the assumption of equi-dispersion is too 

restrictive. Therefore we allow for an extra binomial variation parameter to allow for 

over- or under-dispersion. Statistical significance is tested at the 5%, 1% and 0.1% 

levels.  

2.3.3. Empirical Bayes (EB) prediction of the Random Effects 

Having obtained estimates of the model parameters and treating them as the true 

parameter values, we can predict values of the level 3 or hospital random effects uk 

using EB techniques as outlined in Section 1.4.2 of Chapter 1. This allows us to 

quantify the residual variation (i.e. the unexplained variation which remains after 

taking account of all the variables in our model) and compare this residual variation 

across hospitals in terms of LOS. As we use a log link, we can interpret provider 

performance in days of LOS by calculating the exponentiation of the EB estimates. 

2.3.4. Estimation method 

The cross-classified model is estimated using the Monte Carlo Markov Chain 

(MCMC) method. MCMC utilises simulation methods to produce parameter 

estimates (Browne 2012). For the cross-classified model presented here, the chain is 

first run for 5,500 iterations until the Markov chain converges and is then run for an 

additional 350,000 iterations. Parameter estimates and standard errors are based on 

the means and standard deviations of the estimates produced during each of the 

350,000 iterations (Leckie and Charlton 2012).  

The coefficients on the predictor variables are expressed using Incidence Rate Ratios 

(IRRs). The IRR represents exponentiated coefficients that can be given a 

multiplicative interpretation (Cameron and Trivedi 2011). Therefore, a coefficient 

greater than one signals that the variable exerts an upward pressure on LOS and a 

coefficient less than one a downward pressure. The quantitative effect of a variable is 

calculated as (IRR-1)*100. 
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2.3.5. Sensitivity Analyses 

As only a small proportion of our data sample is affected by a cross-classified 

structure, we consider how the treatment of our data sample as a three-level hierarchy 

affects the estimation results. Figure 2.2 displays the three-level hierarchical data 

structure of admissions nested in patients who in turn are nested in hospitals in 

graphical form.  

Figure 2.2 Three-level data structure 

 

Our use of both three-level and cross-classified models allows us to investigate if the 

models produce consistent results when only a small portion of the sample does not 

exhibit a strict hierarchy. The three-level model is estimated using restricted iterative 

generalized least squares (RIGLS) which corresponds to restricted maximum 

likelihood (Goldstein 1989).  

We also re-estimate the cross-classified model using a data set that excludes the 

observations with zero LOS (patients who are admitted and discharged on the same 

day or day cases) to test if admissions with a positive LOS better reflect resource use.  

The models were estimated in MLwiN 2.29 (Rabash et al. 2009) using the runmlwin 

command (Leckie and Charlton 2012) in Stata 13.0 (StataCorp 2013). 
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 Data  

2.4.1. Data sources and coverage 

We drew on the literature on the determinants of LOS for psychiatric inpatient 

admissions to inform our choice of independent variables in our models. The 

independent variables comprise a range of admission-, patient- and provider-level 

variables that are likely to influence LOS. Admission- and patient-level variables 

were sourced from HES, a patient-level administrative data set of all admissions, 

outpatient appointments and A&E attendances at NHS hospitals in England. HES 

information is stored as a large collection of separate records - one for each period of 

care - in a secure data warehouse and it is managed by the HSCIC. Our study used 

HES data for 2009/10 and 2010/11. Sources for provider-level variables include 

HSCIC (variables sourced from HES), Hospital Activity Statistics, the Care Quality 

Commission, and the Department of Health Staffing Survey. These data are all 

publicly available on the websites of the respective organisations. The Hospital 

Activity Statistics are published by NHS England - an executive non-departmental 

public body of the Department of Health. The Care Quality Commission is the 

independent regulator of all health and social care services in England. 

Our data set consists of 63 public mental healthcare providers comprising Mental 

Health Trusts, Care Trusts and Primary Care Trusts (PCTs). Mental Health Trusts 

provide health and social services for people with mental health problems, in 

particular specialist services for people with severe mental health problems (NHS 

Choices 2015b). Care Trusts provide a range of services including social care and 

mental health services. PCTs provide the equivalent full set of mental health services 

as Mental Health Trusts, but are unable to become FTs. FTs differ from other NHS 

Trusts in that they are independent legal bodies and have different governance 

arrangements. They are not subject to the same levels of performance management 

and have significant financial freedoms (NHS Choices 2015a).  

We selected our study sample by trimming episodes of care to cover only patients 

with mental disorders treated by mental healthcare providers. More specifically, we 

dropped observations for admissions to PCTs without a record of an ICD-10 F chapter 

(Mental and Behavioural Disorders) code or a HRG Version 3.5 T code (Mental 
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Health); observations for patients admitted prior to 1st April 2009 so that the data set 

consists only of patients with finished episodes that were admitted during 2009/10 

and discharged during 2009/10 or 2010/11; and admissions with incorrectly coded 

age. 

2.4.2. Dependent variable 

The dependent variable LOS is measured by the time elapsed between admission and 

discharge dates. LOS per admission ranges from a minimum of 0 days to a maximum 

of 708 days (Figure 2.3).  

Figure 2.3 Length of Stay (LOS) by patient admission 

 

There is substantial variation in LOS between providers (Figure 2.4). 
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Figure 2.4 Variation in length of stay (LOS) between providers 

 

2.4.3. Independent variables 

Level 1 relates to an admission i.e. a period of care in one provider. Level 1 

independent variables reflect the diagnostic, treatment and socioeconomic 

characteristics of patients included in the study and can potentially change from 

admission to admission. Patients can be transferred to or from another hospital 

provider. This indicator may be a proxy for patient casemix because providers may 

specialize in the treatment of certain diagnoses and patients may be transferred if the 

provider they were originally admitted to cannot meet the needs of the patient. Patient 

death in hospital captures if the patient died during a particular admission. It reflects 

the proportion of all admissions with a reason for discharge coded as death. Patient 

death in hospital is a relatively rare event but it can act as an indicator of the quality 

of care provided (Department of Health and Human Services  Agency for Healthcare 

Research and Quality 2002). Co-morbidities are measured using the total number of 

secondary diagnoses recorded for an admission. We include a number of variables 

that describe the ICD-10 mental health chapter codes that represent the most common 

primary diagnoses recorded. Severity is reflected in psychiatric history represented 
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by one or more previous psychiatric admissions. Another severity variable indicates 

if patients have been formally detained under the MHA. Marital status and a record 

of carer support signal the extent of social support available to patients. Information 

on deprivation is captured by the Index of Multiple Deprivation (IMD). The IMD is 

measured at Lower Layer Super Output Area (LSOA) level and subsequently 

assigned to patients on the basis of residency. LSOAs are a geographic hierarchy with 

a minimum population of 1000 and a mean of 1500 (Health and Social Care 

Information Centre 2013). The IMD has seven domains, of which the IMD Income 

Domain is included in our analysis. The purpose of this Domain is to capture the 

proportions of the population experiencing income deprivation in an area (Noble 

2008). A higher score for the IMD Income Domain indicates a greater proportion of 

the population in the area in which the patient lives experiences income deprivation. 

The scores for the Income Domain are rates which we multiplied by 100 to ease 

interpretation. So, for example, if an LSOA scores 0.72 in the Income Deprivation 

Domain, this means that 72% of the LSOA’s population is income deprived. We 

indicate if an admission has been discharged to social care and this will include any 

delayed discharge which may increase LOS. Age ranges from 3 to 104 years and is 

divided into 5 categories to capture any non-linearity in the relationship between LOS 

and age. Age category 2 (18-39) is the reference category. 

Level 2 relates to variables measured at the patient-level that do not change from 

admission to admission. Patient-level independent variables cover demographic 

characteristics of patients. Gender is measured as a dummy variable with females as 

the reference category. Patient ethnicity is categorized into White (the reference 

category), Asian, Black and Other ethnicity (e.g. mixed race, or unknown ethnicity).  

 

Level 3 variables are measured at the provider-level and vary only for admissions and 

patients in different hospitals. Provider-level independent variables describe provider 

type and capacity, proportion of formal admissions, emergency readmission rate, co-

morbidities recorded by a provider, quality of care and human resources. Two dummy 

variables are included in the models to indicate if a provider is 1) a Mental Health 

Trust and/or 2) has FT status.  
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The variable “total available beds” provides a measure of hospital size. Total bed 

occupancy provides an indication of utilisation of available bed capacity and reflects 

average bed occupancy over a quarterly time period for 2010/11 and an annual time 

period for 2009/10. Human resources variables are measured as the percentage of 

medical staff from total Full Time Equivalent (FTE) staff and the percentage of 

nursing staff from total FTE staff. Nurses make up a higher percentage of total FTE 

staff. The proportion of formal admissions under the MHA provides information on 

patient severity. We include a variable on formal admissions at provider-level as well 

as admission-level as we expect providers to have different thresholds for detention. 

Similarly, we include a provider-level variable measuring the average number of co-

morbidities recorded by a provider. This complements the admission-level co-

morbidity variable and controls for systematic under- or over-recording of co-

morbidities by providers. 

The study utilises emergency readmission rates for mental health providers which 

have not been calculated nationally before. We calculated rates for mental health 

providers using HES data, following a methodology used for acute providers (Health 

and Social Care Information Centre 2011). However, we adapted this to include 

readmissions treated by mental health specialities. The HSCIC excludes mental health 

speciality in its standard calculation of emergency readmission rates for acute 

providers. In the calculation of readmission rates for mental health providers, the 

numerator is based on a pair of admissions – the discharge (index) admission and the 

next readmission to reflect emergency admissions within 28 days of discharge from 

hospital. The readmission includes cases where the patient dies but excludes those 

with a main speciality of obstetrics or learning disability upon readmission, and those 

with a diagnosis of cancer (other than benign or in situ) or chemotherapy for cancer 

coded anywhere in the admission. The denominator excludes day cases, admissions 

with a discharge coded as death, admissions with obstetric and learning disability 

specialities and those with a diagnosis of cancer or chemotherapy treatment for any 

form of cancer in the 365 days prior to admission.  

Quality of care is also represented by a number of variables upon which providers are 

performance managed by the regulator, the Care Quality Commission. Crisis 

Resolution and Home Treatment (CRHT) teams provide intensive home-based 
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support for people in mental health crises in their own home and stay involved until 

the problem is resolved (Care Quality Commission 2009). An aim of CRHT teams is 

to prevent hospital admissions; therefore access to CRHT teams can provide an 

indication of the level of gate-keeping available. This indicator is measured using the 

number of admissions to the Trust’s acute wards (excluding admissions to psychiatric 

intensive care units) that were “gate-kept” by the CRHT teams as a percentage of the 

total number of admissions to the Trust’s acute wards (excluding admissions to 

psychiatric intensive care units). The indicator CPA 7 day follow-up measures the 

extent to which people under adult mental illness specialities on CPA receive follow-

up (by phone or face-to-face contact) within seven days of discharge from psychiatric 

inpatient care. Providers are judged to have “achieved” this indicator if at least 95% 

of patients receive timely follow-up post-discharge. The patient experience score is 

based on five domains: access and waiting; safe, high quality, coordinated care; better 

information, more choice; building relationships; and clean, comfortable, friendly 

place to be and a higher score indicates a more positive experience (Care Quality 

Commission 2010). We hypothesise that efforts by providers to drive down LOS may 

be associated with commensurate declines in quality. 

 Results 

2.5.1. Descriptive statistics 

Table 2.2 presents the descriptive statistics for our data sample, presented according 

to the levels (admissions; patients; providers) with reference categories in brackets.   

Table 2.2 Descriptive statistics 

Variable Source Mean Standard 
Deviation 

Min Max 

LOS (days) 
Derived 

from 
HES 

43 66 0 708 

Admission-level variables (n=133,156) 

Patient transfer-in  HES 0.210 0.407 0 1 

Patient transfer-out  HES 0.063 0.243 0 1 

Patient death in hospital  HES 0.009 0.096 0 1 

Total number of comorbidities Derived 
from 
HES 

1 1 0 17 
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Primary diagnosis of psychosis  Derived 
from 
HES 

0.156 0.363 0 1 

Primary diagnosis organic disorder  Derived 
from 
HES 

0.057 0.231 0 1 

Primary diagnosis mood disorder  Derived 
from 
HES 

0.203 0.402 0 1 

Primary diagnosis substance 
misuse disorder  

Derived 
from 
HES 

0.094 0.291 0 1 

Primary diagnosis neurotic disorder  Derived 
from 
HES 

0.054 0.226 0 1 

Primary diagnosis personality 
disorder 

Derived 
from 
HES 

0.054 0.227 0 1 

Formally detained under the MHA  HES 0.128 0.334 0 1 

Carer support recorded  HES 0.072 0.259 0 1 

Married/civil partner  HES 0.186 0.389 0 1 

One or more previous psychiatric 
admission  

HES 0.407 0.491 0 1 

Income Deprivation HES 20 13 0 83 

Discharge to social care  HES 0.059 0.236 0 1 

Age Category 1 (under 18) HES 0.048 0.213 0 1 

Age Category 2 (18-39) HES 0.380 0.485 0 1 

Age Category 3 (40-49) HES 0.190 0.392 0 1 

Age Category 4 (50-64) HES 0.156 0.363 0 1 

Age Category 5 (65+) HES 0.226 0.418 0 1 

Patient-level variables (n=90,980)  

Patient gender: male  HES 0.506 0.500 0 1 

Patient ethnicity: White  HES 0.848 0.359 0 1 

Patient ethnicity: Asian  HES 0.045 0.206 0 1 

Patient ethnicity: Black  HES 0.052 0.221 0 1 

Patient ethnicity: Other  HES 0.056 0.230 0 1 

Provider-level variables (n=63)      

Foundation Trust (FT) HES 0.625 0.484 0 1 

Mental Health Trust  HES 0.928 0.258 0 1 

Total available beds HAS 512 252 14 1237 

Total bed occupancy (%) HAS 85.1 5.7 63.5 97.9 

Proportion of formal admissions 
under the MHA 

HSCIC 0.184 0.075 0.044 0.650 

Emergency readmission rate by 
provider 

Derived 
from 
HES 

0.115 0.034 0.053 0.226 

Average comorbidities recorded by 
provider 

Derived 
from 
HES 

1 1 0 4 

CPA 7 day follow-up (%) CQC 97.1 2.8 82.7 100 

Patient experience total score CQC 298.7 10.7 273.5 325.8 
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Access to Crisis Resolution Home 
Treatment (CRHT) team 
(gatekeeping) (%) 

CQC     95.6 5.5 71.9 100 

Percentage of medical staff from 
total Full Time Equivalent (FTE) staff 

DoH SS 5.7 2 1.3 10.9 

Percentage of nurses from total FTE 
staff 

DoH SS 32.3 4.1 19.4 40 

HES: Hospital Episode Statistics; HAS: Hospital Activity Statistics; HSCIC: Health 

and Social Care Information Centre; CQC: Care Quality Commission; DoH SS: 

Department of Health Staffing Survey. 

 

Our estimation sample consists of 133,156 admissions in 90,980 patients that are 

treated in 63 hospitals. In-hospital death is a relatively rare event - it affects only 1% 

of admissions in this data set. The admissions in our sample had, on average, one co-

morbidity recorded, but there was sizeable variation with some admissions recording 

no co-morbidities and up to seventeen co-morbidities recorded for others. Mood 

disorder was recorded for 20% of admissions, making it the most common primary 

diagnosis followed by psychosis (16%) and substance misuse disorder (9%) while the 

primary diagnoses of organic, neurotic and personality disorders accounted for 6% or 

less of admissions. Given high admission thresholds it is somewhat surprising that 

only 16% of observations are coded with a diagnosis of psychosis. This may be partly 

explained by the relatively sizeable coding of observations (around 20%) with 

“Unknown and unspecified causes of morbidity” (ICD-10 R69X). Given the 

challenges of diagnosing mental illness (Timimi 2014) and the reluctance on the part 

of some clinicians to attach diagnostic labels to patients (Ben-Zeev, Young and 

Corrigan 2010; Sartorius 2002; Timimi 2014), the numbers of admissions with a 

diagnosis of psychosis may be underreported in our data. Approximately 13% of 

admissions were involuntary (i.e. the individual was detained under the MHA). 

Again, we might expect a larger proportion of observations to be formally detained 

under the MHA given the high severity thresholds for admission. However, a recent 

study (Jacobs et al. 2015) using HES data to investigate LoS for people with serious 

mental illness reports 19.3% of the sample as formally detained. Given that we 

include a broader range of diagnoses in our sample, the number of admissions under 

formal detention in our study does not appear unreasonable. 
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In terms of social support, almost one-fifth (19%) of the sample was married or had a 

civil partner while less than one-tenth (7%) had a record of carer support. However, 

the latter may underestimate the true extent of carer support as it only reflects patients 

for whom there is a formal record. Almost half (41%) of the sample have a history of 

psychiatric treatment. The income deprivation variable has a minimum of 0 and a 

maximum of 83%, with a mean of 20%, which implies that the average admission 

was from a neighbourhood where 20% of residents experienced income deprivation. 

On average, 6% of admissions were discharged to a social care setting. Just over half 

of patients in our sample were male (51%). White ethnicity accounts for the majority 

of the sample (85%), followed by Other (6%), Asian (5%) and Black (5%).  

The majority (93%) of providers in the sample are Mental Health Trusts and almost 

two-thirds (63%) of providers have FT status. Compared with those treated in Mental 

Health Trusts without FT status, it is interesting to note that individuals in our data 

set who are treated by FTs are less likely to be transferred in from another hospital, 

have less comorbidity, and are less likely to have psychosis or a substance misuse 

disorder. They are less likely to have been formally detained, to have previous 

psychiatric admissions or be male, and more likely to be aged 65 years or over, or of 

White ethnicity.  

The mean proportion of formal admissions under the MHA is 0.18 but this varies 

widely across providers from 0.04 to 0.65 suggesting that providers have different 

formal admission thresholds or different types of local populations. The mean 

emergency readmission rate is 0.12 but for one provider approximately one in twenty 

patients is readmitted while for another almost one in four patients is readmitted 

within 28 days. The providers in our sample have on average been successful in 

achieving the indicator measuring CPA 7-day follow-up with a mean score of 97% 

and a maximum score of 100%. However a minimum score of 83% indicates that 

some providers failed to achieve adequate patient follow-up. On average, 6% of FTE 

staff are medical staff while 32% of FTE staff are nurses. 
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2.5.2. Estimation results 

Table 2.3 presents the estimates of the cross-classified (baseline) and three-level 

(sensitivity analysis) models. In the following paragraphs we discuss the results of the 

cross-classified (baseline) model. 

Table 2.3 Estimates of cross-classified and three-level models 

 Observations per group 

 
Number of 

Observations 
Minimum Average Maximum 

Level 3: Hospital 63 234 2113.6 5377 

Level 2: Patient 90,980 1 1.5 86 

Level 1: Admission 133,156    

 Cross-classified model Three-level model 

  IRR 
Standard 

Error 
IRR 

Standard 
Error 

Constant 4.908 0.319*** 6.087 7.287 

Patient transfer-in  1.150 0.003*** 1.065 0.009*** 

Patient transfer-out  0.660 0.002*** 0.836 0.012*** 

Patient death in hospital 1.862 0.021*** 1.454 0.047*** 

Total number of comorbidities 1.142 0.001*** 1.098 0.004*** 

Primary diagnosis of psychosis 1.406 0.005*** 1.493 0.017*** 

Primary diagnosis organic disorder 1.196 0.008*** 1.049 0.018** 

Primary diagnosis mood disorder 1.231 0.005*** 1.022 0.012 

Primary diagnosis substance misuse 
disorder 

0.795 0.006*** 0.450 0.008*** 

Primary diagnosis neurotic disorder 0.903 0.006*** 0.667 0.013*** 

Primary diagnosis personality disorder 1.116 0.007*** 0.826 0.017*** 

Formally detained under the MHA 1.477 0.005*** 1.603 0.017*** 

Carer support recorded 0.732 0.005*** 0.850 0.020*** 

Married/civil partner 1.097 0.007*** 0.907 0.010*** 

One or more previous psychiatric 
admission 

0.815 0.002*** 0.890 0.008*** 

Income Deprivation 0.992 0.000*** 0.996 0.000*** 

Discharge to social care 2.010 0.008*** 2.008 0.027*** 

Age Category 1 (under 18) 1.131 0.023*** 1.345 0.035*** 

Age Category 3 (40-49) 1.129 0.011*** 1.010 0.012 

Age Category 4 (50-64) 1.381 0.015*** 1.220 0.015*** 

Age Category 5 (65+) 2.049 0.021*** 1.493 0.019*** 

Patient gender: male 0.993 0.008 1.023 0.009** 

Patient ethnicity: Asian 1.171 0.019*** 1.065 0.021** 

Patient ethnicity: Black 1.314 0.019*** 1.165 0.021*** 

Patient ethnicity: Other 0.731 0.007*** 0.858 0.016*** 

Foundation Trust (FT) 1.028 0.080 0.975 0.052 
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Mental Health Trust  1.041 0.087 1.364 0.116*** 

Total available beds 1.000 0.000 1.000 0.000 

Total bed occupancy (%) 1.006 0.001*** 1.006 0.004 

Proportion formal admissions under the 
MHA 

3.608 1.533*** 2.692 0.731*** 

Emergency readmission rate by provider 0.052 0.039*** 0.372 0.284 

Average comorbidities recorded by 
provider 

0.897 0.046*** 0.967 0.032 

CPA 7 day follow-up 1.007 0.001*** 1.006 0.010 

Patient experience total score 1.003 0.001*** 1.004 0.002 

Access to Crisis Resolution Home 
Treatment (CRHT) team (gatekeeping) 

0.996 0.001*** 0.996 0.005 

Percentage of medical staff from total Full 
Time Equivalent (FTE) staff 

0.997 0.007 0.998 0.015 

Percentage of nurses from total FTE staff 0.989 0.001*** 0.990 0.006 

Random Effects Parameters Estimate 
Standard 

Error 
Estimate 

Standard 
Error 

Level 3: Hospital 
0.088 

 
0.017 

 
0.026 0.005 

Level 2: Patient 
1.355 

 
0.007 

 
0.733 

 
0.008 

Overdispersion parameter 41.960 0.000 41.960 0.268 

***p<0.001, **p<0.01, *p<0.05 

Admission-level variables with a significant positive association with LOS include 

transfer-in, inpatient death, number of co-morbidities, a primary diagnosis of 

psychosis, organic, mood or personality disorders, formal detention, married/civil 

partner, discharge to social care and age less than 18 years or over 39 years. Of these, 

the variables measuring death in hospital, a diagnosis of psychosis, formal detention, 

discharge to social care and age of 65 years or over have the largest significant effects 

on LOS. More specifically, patient death is associated with an 86% increase in LOS. 

A primary diagnosis of psychosis is associated with an increase of LOS of 41% while 

detention under the MHA is associated with an increased LOS of almost 50%. Patients 

discharged to social care are associated with a LOS twice the length of those who are 

discharged elsewhere. Similarly, age 65 years or over is associated with a doubling of 

LOS. The association of a longer LOS with inpatient death, psychosis and formal 

detention is likely to reflect greater disease severity among these admissions. The 

variables measuring a primary diagnosis of organic disorder and mood disorder are 

also associated with relatively large increases in LOS of around 20%. Admissions 

transferred from another provider and total number of comorbidities are associated 

with a higher LOS of 14-15%. A primary diagnosis of personality disorder and 

marriage/civil partner are associated an increased LOS of 10-11%. 
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Admission-level variables with a statistically significant negative association with 

LOS include transfer-out, a primary diagnosis of substance misuse or neurotic 

disorders, a record of carer support, psychiatric treatment history and income 

deprivation. A primary diagnosis of substance misuse disorder is associated with a 

20% reduction in LOS. This finding may be because the presence of substance misuse 

disorder without a mental disorder diagnosis precludes detention under the MHA 

which we find to be associated with a longer LOS. A primary diagnosis of neurotic 

disorder is associated with a reduced LOS of 10%. A record of carer support is 

associated with a 27% reduction in LOS. Patients may be discharged earlier if a carer 

is available to provide care at home. Transfer-out reduces LOS in the order of 34% 

while previous psychiatric treatment is associated with an 18% decrease in LOS, 

possibly because services are familiar with the care of these patients. 

All of the patient-level variables have a statistically significant association with LOS 

with the exception of male gender. Black and Asian ethnicities are associated with a 

longer LOS compared to White ethnicity with Black ethnicity associated with a 31% 

increase and Asian ethnicity a 17% increase in LOS. The only patient-level variable 

with a statistically significant negative association with LOS is Other ethnicity which 

is associated with a 27% reduction in LOS compared to White ethnicity. 

In terms of provider-level variables, the emergency readmission rate is associated 

with a large reduction in LOS of around 95%. The variable measuring the proportion 

of admissions under the MHA exerts a strong upward pressure on LOS of almost four 

times in the cross-classified model. The average number of comorbidities recorded 

by a provider is associated with a reduction in LOS of 10%. The variables measuring 

total bed occupancy, CPA 7 day follow-up, patient experience total score, access to 

a CRHT team, and the percentage of nurses from total Full Time Equivalent (FTE) 

staff have small effects on LOS of around 1% or less. 

2.5.3. Provider-level residual variation 

After controlling for the admission-, patient- and provider-level variables included in 

the model, there remains some residual variation in LOS as captured by the provider 

random effects. Figure 2.5 presents the EB estimates of the provider-level residual 
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variation from the cross-classified model. While the majority of providers do not 

differ significantly from zero, there are a number of providers with a statistically 

significant higher or lower LOS compared to the average. Hospitals above (below) 

the line at zero have higher (lower) residual LOS compared to the average, i.e. the 

most (least) unexplained variation in LOS after controlling for observable 

characteristics. This implicitly assumes that the model has controlled for all known 

factors driving LOS and the remaining variation is due to a range of unobserved 

factors, one of which may be inefficiency.  

Figure 2.5 Empirical Bayes (EB) estimates of residual variation in length of 

stay (LOS) in the cross-classified model 

 

The EB estimates also suggest that relative to the average performing hospital with 

respect to unexplained variation in LOS (i.e. the residual), the worst performing 

hospital has a higher LOS of almost 1 day, while the best performing hospital has a 

lower LOS of almost 1 day in the cross-classified model (Figure 2.5) due to factors 

not considered in the model such as variations in efficiency, suggesting that there is 

scope for some providers to improve their relative performance.  
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An examination of the provider with the lowest residual LOS compared to the 

average, reveals that before conditioning on the admission-, patient- and provider-

level variables in the model, the mean LOS of this provider is the second-lowest of 

the group. A perusal of the descriptive statistics of this provider does indicate that it 

treats a somewhat different case-mix to other providers. In particular, this provider 

has relatively low proportions of admissions with a diagnosis of psychosis as well as 

low levels of formal admissions at both admission- and provider levels. As these 

variables are identified as significant drivers of LOS, this may help to explain why 

the provider has the lowest residual LOS and emerges as an outlier in Figure 2.5. 

2.5.4. Sensitivity analysis 

The results of the three-level model largely agree with the cross-classified model for 

the admission- and patient-level variables, although there is a minor tendency for the 

magnitudes of effects to be smaller in the three-level model. The most pronounced 

differences between the two models lies at the provider-level with more variables 

reaching statistical significance in the cross-classified model as this specification 

results in more accurate standard errors, especially for variables measured at higher 

levels (Leckie 2013). 

Figure 2.6 shows the EB estimates from the three-level model in which the worst 

performing hospital has a higher LOS of almost half of a day and the best performing 

hospital has a lower LOS of around one-third of a day. 

Figure 2.6 demonstrates the effect of not accounting for the cross-classified nature of 

the data. When the data are modelled as three-level, the cross-classified nature of the 

data is not recognised. Therefore, if a patient attends two different providers, that 

patient is counted twice. This means that the total number of admissions within a 

patient is reduced and the within-patient variance or variability is increased. This 

subsequently causes a greater degree of shrinkage as is evident in Figure 2.6 compared 

to Figure 2.5. Almost all (62/63) providers are affected by cross-classification so 

almost all are affected by the higher shrinkage from specifying a three-level model. 

Therefore, all are brought closer to the overall mean and relative differences are 

reduced. When the cross-classified nature of the data is correctly modelled, the 
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shrinkage is less and the provider estimates are closer to those predicted by the data. 

Therefore, the outlier provider is more distinct in Figure 2.5 as its estimate is closer 

to the posterior distribution (i.e. that predicted by the data) than to the prior 

distribution. 

Figure 2.6 Empirical Bayes (EB) estimates of residual variation in length of stay 

(LOS) in the three-level model 

 

When admissions with a zero LOS were excluded from the analysis, the results of the 

cross-classified model remained robust, with the exception of  the variable measuring 

if a provider is a Mental Health trust, which became statistically significant at the 

0.1% level and is associated with an increase in LOS of 23%. 

 Discussion  

2.6.1. Contribution to the current evidence base 

This chapter has sought to investigate the main drivers of variations in LOS for mental 

health providers in England. The largest drivers of increased LOS at admission level 

are in-hospital death, a primary diagnosis of psychosis, formal detention, discharge to 

social care and the oldest age group (65 years and over). The first three of these factors 
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are likely to reflect greater disease severity (or need) among these admissions. In line 

with previous literature (McCrone and Lorusso 1999) we find evidence of a non-linear 

relationship between LOS and age with younger and older age groups having positive 

coefficients. At a patient-level, Black ethnicity is associated with the largest increase 

in LOS and this finding is supported by previous literature in this field (Jacobs et al. 

2015; Padgett et al. 1994). At a provider-level, the proportion of formal admissions 

under the MHA has a large positive association with LOS while the provider-level 

emergency readmission rate is associated with a large reduction in LOS.  

We contribute to the current evidence base in a number of ways. The use of three-

level and cross-classified models has allowed us to exploit the multilevel nature of a 

patient-level data set with national coverage – HES. Our results reveal that when a 

small proportion of the sample exhibits a cross-classified structure, three-level and 

cross-classified models provide somewhat similar results with differences most 

pronounced at the highest level of the data. Therefore, it is important to correctly 

model the cross-classified data structure in order to avoid misleading inferences. HES 

data provides rich information on a wide range of variables related to admission-, 

patient- and provider-level attributes which enables us to move beyond current 

literature in this field which considers a more limited range of variables. Moreover, 

we include provider-level emergency readmission rates calculated using HES data – 

a valuable addition as the HSCIC does not routinely calculate emergency readmission 

rates for mental healthcare providers. This allows us to investigate the relationship 

between variations in LOS and provider quality of care as measured by the emergency 

readmission rate – another novel contribution to the current evidence base. 

2.6.2. Policy implications 

We find that the provider emergency readmission rate has a strong negative 

association with LOS implying that providers with high emergency readmission rates 

are associated with a significantly shorter LOS. A plausible explanation is that 

providers may be compromising quality of care resulting in readmission and this is 

reflected in resource use in terms of LOS. Therefore, our findings lend some credence 

to the argument that, in the absence of clear guidelines on optimal LOS, decisions 

regarding duration of hospitalisation could be driven by economic rather than clinical 
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considerations (Capdevielle and Ritchie 2008). Internationally, psychiatric LOS has 

experienced a downward trend corresponding to a decrease in psychiatric beds 

(OECD 2015) with shorter LOS associated with community-based mental health 

systems (Sytema, Burgess and Tansella 2002). Yet, there lacks a clear consensus on 

what constitutes an optimal LOS or indeed on best practice in this area (Capdevielle 

and Ritchie 2008). A high emergency readmission rate may indicate an inadequate 

provision of mental health support in the community. It may also represent poor 

quality inpatient care during the index admission, in particular in relation to 

inadequate discharge preparedness (Durbin et al. 2007). Many previous studies have 

investigated the relationship between LOS and readmissions at the individual patient-

level for mental health. Shorter initial hospital stays have been shown to be related to 

higher readmissions (Appleby et al. 1993; Boden et al. 2011; Canadian Institute for 

Health Information 2008; Figueroa, Harman and Engberg 2004; Lin et al. 2006; 

Tulloch, David and Thornicroft 2015). Nevertheless, a recent study (Wolff et al. 

2015b) has found readmission to be associated with an increase in LOS while an 

association between a long LOS and an increased risk of multiple readmissions has 

been reported by Korkeila et al. (1998). Efforts to reduce costs may drive shorter LOS 

(Capdevielle and Ritchie 2008; Lin et al. 2006) but risk compromising the quality of 

care leading to readmission which can in fact increase overall costs (Lin et al. 2006). 

Readmissions that take place within a relatively short period after discharge may be 

negatively associated with LOS due to the need for a longer inpatient stay to stabilise 

symptoms and provide adequate treatment. On the other hand, readmissions taking 

place within a longer period following discharge may be more likely to reflect the 

influence of factors beyond inpatient hospitalization, such as effective transitional 

care, the availability of community and family supports, access to primary care, 

housing and continued access and adherence to prescribed medications. This implies 

an important role for adequate discharge planning in protecting against early 

readmission (Durbin et al. 2007).  

Our finding that shorter LOS comes at the expense of higher emergency readmission 

rates raises concerns of a ‘revolving door’ phenomenon of recurring hospitalisations 

with little effect (Williams et al. 2014) that can undermine a policy of strong 

community care and has long-term cost and quality implications. Internationally, 

readmission rates have garnered policy focus as a result of an increased awareness of 
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the need to achieve value for purchasers in terms of quality and cost (Burgess Jr. and 

Hockenberry 2014). This has led to the introduction of high-powered incentives in 

the form of financial penalties imposed on hospitals for levels of readmission that are 

deemed inappropriate (Burgess Jr. and Hockenberry 2014). In England, providers in 

the acute sector are not reimbursed for readmissions within 30 days of discharge under 

the NTPS, and based on these results, such a policy may also be pertinent in the mental 

healthcare sector if it were to discourage reductions in LOS to such an extent as to 

have a detrimental impact on quality. 

2.6.3. Limitations and future research 

There are several limitations to this research. In order to gain a more comprehensive 

picture of the performance of mental healthcare providers it is necessary to model the 

entire care pathway across different settings. The majority of mental healthcare takes 

place in community-based settings and inpatient care is usually reserved for crisis 

stabilisation. Thus, by focusing on a relatively narrow segment of the care process we 

may misrepresent the true performance of mental healthcare providers. Moreover, 

consideration of the entire care pathway is likely to provide important insights into 

the interplay of other factors such as the range of outpatient and community-based 

services received, accommodation status, and crisis planning among others, which 

could not be considered in this model, but which may influence inpatient LOS. Future 

analysis using HES linked to the MHMDS would allow us to investigate provider 

performance across the entire care pathway. Our results find an association between 

reduced LOS and higher emergency readmission rates but we cannot infer a causal 

relationship. Moreover, while we have highlighted differences in residual variation 

across providers that we interpret as differences in provider performance, we cannot 

provide definitive reasons why some providers perform better than others once we 

account for observable admission-, patient- and provider-level variables. 

Nevertheless, the identification of providers with above- and below-average 

performance is in itself a useful exercise as this type of benchmarking highlights 

potential problems or potential efficiency savings allowing hospitals and regulators 

to undertake in-depth investigations to address such issues . This will become more 

pertinent if a national tariff is introduced as part of the NTPS as LOS can be viewed 
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as a proxy for cost and providers will likely face pressures to reduce relatively more 

expensive inpatient care in order to control costs.  
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Chapter 3. Investigating variations in costs and 

performance of English mental healthcare providers 

 Introduction 

Under the NTPS mental health providers will be paid a prospective fixed price for 

care provided in a given care cluster. This will incentivise providers to control costs 

and may encourage care provision in cost-effective community-based settings rather 

than more costly inpatient settings. The aim of this research is to investigate the 

performance of mental health providers in England in relation to cost efficiency. We 

explain variations in costs due to observable patient risk factors. We assume that the 

unexplained variation in costs is amenable to efficiency enhancing behaviour on the 

part of providers. We compare residual variation in costs across providers to assess 

performance in achieving cost efficiency and to provide insights into which providers 

may potentially gain or lose under the new payment system. 

We add to the existing literature on mental health costs in several ways. Firstly, we 

go beyond the remit of using risk adjustment to explain variations in mental health 

costs by explicitly comparing the performance of mental healthcare providers in terms 

of residual cost variation. This complements recent literature in the physical acute 

sector by extending similar methodologies to mental healthcare. Additionally, we 

improve upon existing studies in mental healthcare by using a large, nationally 

representative patient-level data set and exploit the richness of this data set by 

applying multilevel models which allow us to report the variation in costs explained 

by various levels of analysis. We utilise a multilevel log-linear model and a multilevel 

GLM to estimate costs and adopt EB methods to quantify provider random effects in 

order to interpret provider performance. We use a comprehensive set of explanatory 

variables spanning demographic, treatment, and social variables and provide a first 

insight into how well the new currency developed to implement the NTPS in mental 

health performs in predicting resource use.  
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 Literature review 

3.2.1. Review of evidence on risk adjustment of mental health costs 

We reviewed previous literature investigating risk adjustment of costs in mental 

healthcare by searching a number of databases including EconLit, Embase, Medline, 

OvidMedline, and PsychInfo using the following search terms: “mental health”, 

“psychiatry”, “costs”, “expenditures”, “risk adjustment”, and “performance”. The 

majority of the studies we retrieved are from the US and England but we also review 

notable studies from Australia and New Zealand which describe the development of 

psychiatric casemix classification systems. While some of the studies we review 

include children and adolescents in the data sample and analysis, we focus on the 

results for adults only as this corresponds to the coverage of our data. 

Many of the US-based studies investigated the adequacy of diagnosis based 

classification systems developed for use in acute physical healthcare in predicting 

mental health costs (Ettner et al. 2001; Ettner et al. 1998; Ettner and Notman 1997; 

McGuire et al. 1987; Mitchell et al. 1987). Other studies had a main objective of 

developing casemix classification systems for inpatient psychiatric care only 

(Cromwell et al. 2005; Drozd et al. 2006) or inpatient and outpatient psychiatric care 

(Sloan et al. 2006). This was also the prime purpose of the research conducted in the 

Australian and New Zealand studies (Buckingham et al. 1998; Gaines et al. 2003). 

Moreover, in Australia, the intention was to use the system as a basis for reimbursing 

providers. In England, research was undertaken to inform resource allocation, 

specifically for the mental health component of a funding formula for general 

practitioners (Sutton et al. 2012). Other studies from England conducted research to 

identify the predictors of costs associated with the use of mental health services by 

people with psychosis (McCrone et al. 1998; McCrone, Johnson and Thornicroft 

2001). Williams et al. (2014) investigated the factors associated with the costs of an 

inpatient stay as part of an evaluation of an intervention to reduce hospital LOS. 

The studies from the US use a range of administrative data sources including from 

the federal Medicare (Cromwell et al. 2005; Drozd et al. 2006; Mitchell et al. 1987) 

and Medicaid (Ettner et al. 2001; Ettner and Notman 1997; Robst 2009) health 

insurance programmes, the Veterans Health Administration (VHA) (Montez-Rath et 
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al. 2006; Sloan et al. 2006), and private insurance claims data (Ettner et al. 1998; 

McGuire et al. 1987). These data sources vary considerably in terms of coverage with 

Medicare primarily covering over-65s and people on disability benefits; Medicaid, 

low-income groups; the VHA is primarily comprised of males and certain mental 

disorders such as schizophrenia and substance abuse are more prevalent; while 

private health insurance is provided by employers to employees and their families 

whom may have less severe forms of mental illness.   

Sample size varied from 147 patients (McCrone et al. 1998) to 914,225 patients 

(Sloan et al. 2006). Costs covered care delivered in hospital inpatient settings only 

(Cromwell et al. 2005; Drozd et al. 2006; McGuire et al. 1987; Mitchell et al. 1987; 

Williams et al. 2014) or hospital inpatient and outpatient settings (Ettner et al. 2001; 

Ettner et al. 1998; Ettner and Notman 1997; Kapur, Young and Murata 2000; Sloan 

et al. 2006) as well as wider community mental healthcare settings (Buckingham et 

al. 1998; Gaines et al. 2003; McCrone et al. 1998; McCrone, Johnson and Thornicroft 

2001; Montez-Rath et al. 2006; Robst 2009; Sutton et al. 2012). The measurement 

unit for cost was average (McGuire et al. 1987; Mitchell et al. 1987); total (Ettner et 

al. 2001; Ettner et al. 1998; Ettner and Notman 1997; Sloan et al. 2006; Williams et 

al. 2014); per diem (Buckingham et al. 1998; Cromwell et al. 2005; Drozd et al. 2006; 

Gaines et al. 2003); or for a defined six (McCrone et al. 1998; McCrone et al. 2001) 

or twelve (Kapur, Young and Murata 2000; Robst 2009; Sutton et al. 2012) month 

period. 

Risk-adjusters included diagnosis or diagnosis-related classification groups 

(Buckingham et al. 1998; Cromwell et al. 2005; Drozd et al. 2006; Ettner et al. 2001; 

Ettner et al. 1998; Ettner and Notman 1997; Kapur, Young and Murata 2000; 

McCrone, Johnson and Thornicroft 2001; McGuire et al. 1987; Mitchell et al. 1987; 

Robst 2009; Sloan et al. 2006; Sutton et al. 2012; Williams et al. 2014) as well as 

demographic variables such as age (Buckingham et al. 1998; Cromwell et al. 2005; 

Drozd et al. 2006; Ettner et al. 2001; Ettner et al. 1998; Ettner and Notman 1997; 

Gaines et al. 2003; Kapur, Young and Murata 2000; McCrone et al. 1998; McCrone, 

Johnson and Thornicroft 2001; Robst 2009; Sutton et al. 2012; Williams et al. 2014), 

sex (Ettner et al. 2001; Ettner et al. 1998; Ettner and Notman 1997; Gaines et al. 2003; 

Kapur, Young and Murata 2000; McCrone, Johnson and Thornicroft 2001; Robst 
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2009; Sutton et al. 2012), ethnicity (Gaines et al. 2003; Kapur, Young and Murata 

2000; McCrone, Johnson and Thornicroft 2001; Robst 2009; Sutton et al. 2012) and 

marital status (Kapur, Young and Murata 2000; McCrone, Johnson and Thornicroft 

2001; Sutton et al. 2012). Additional risk adjustment variables have reflected 

functioning (Buckingham et al. 1998; Cromwell et al. 2005; Drozd et al. 2006; Kapur, 

Young and Murata 2000; McCrone et al. 1998; McCrone, Johnson and Thornicroft 

2001), need (Buckingham et al. 1998; Gaines et al. 2003; McCrone, Johnson and 

Thornicroft 2001), treatment (Buckingham et al. 1998; Cromwell et al. 2005; Drozd 

et al. 2006; Gaines et al. 2003; McCrone et al. 1998; Williams et al. 2014) and social 

(Kapur, Young and Murata 2000; McCrone et al. 1998; McCrone, Johnson and 

Thornicroft 2001; Sloan et al. 2006; Sutton et al. 2012; Williams et al. 2014) factors. 

Provider-level variables in the form of provider type and ownership (Cromwell et al. 

2005; Drozd et al. 2006; McGuire et al. 1987), site (as a proxy for provider) 

(Buckingham et al. 1998), teaching status, size, occupancy rate, urban location, and 

area hospital wage rates (Drozd et al. 2006) were also considered. Indicators for day 

of stay were included in two studies (Cromwell et al. 2005; Drozd et al. 2006) to 

investigate the potential use of declining block pricing in a payment system. 

A number of study samples included non-utilisers of mental health services resulting 

in cost data containing a considerable proportion of zero observations. This 

necessitated the use of two-part models with either logit (Ettner et al. 2001; Ettner et 

al. 1998; Ettner and Notman 1997) or probit (Kapur, Young and Murata 2000) models 

used to model the probability of incurring mental health expenditures in the first stage. 

For the second stage, the level of expenditures was modelled using either 

untransformed (Ettner et al. 2001) data or transforming data to its log (Montez-Rath 

et al. 2006; Sutton et al. 2012) or square-root (Ettner et al. 1998; Ettner and Notman 

1997; Montez-Rath et al. 2006) levels or using a non-linear exponential least squares 

regression (Kapur, Young and Murata 2000). If data was transformed, a smearing 

estimator equivalent to the mean of the squared residuals was used to retransform the 

predicted estimates to the mean of the original expenditure distribution (Ettner et al. 

1998; Ettner and Notman 1997). Studies with samples covering only users of mental 

health services used weighted least squares regression models (Sloan et al. 2006) or a 

linear regression model with expenditures modelled on the raw scale (Buckingham et 

al. 1998; Gaines et al. 2003; McCrone, Johnson and Thornicroft 2001; Robst 2009; 
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Williams et al. 2014) or with log or square root transformations (Cromwell et al. 2005; 

Drozd et al. 2006; McCrone et al. 1998; Montez-Rath et al. 2006; Robst 2009). In 

order to avoid transforming the dependent variable, GLMs were used by a number of 

authors. Montez-Rath et al. (2006) estimated three GLMs on untransformed cost: 

normal with identity link (equivalent to Ordinary Least Squares (OLS)); gamma with 

log link; and gamma with square-root link. Sutton et al. (2012) used a GLM with a 

log link in the second part of a two-part model. Williams et al. (2014) estimated a 

multilevel model of admissions nested within patients with random intercepts 

included for patients. Model performance in terms of predictive ability was compared 

using R-squared (Buckingham et al. 1998; Cromwell et al. 2005; Ettner et al. 1998; 

Ettner and Notman 1997; Gaines et al. 2003; Kapur, Young and Murata 2000; 

Mitchell et al. 1987; Sloan et al. 2006); Mean Absolute Prediction Error (MAPE) 

(Ettner et al. 1998; Ettner and Notman 1997; Montez-Rath et al. 2006; Sloan et al. 

2006); Root Mean Square Error (RMSE) (Montez-Rath et al. 2006); Predictive Ratios 

(PRs) (Kapur, Young and Murata 2000; Montez-Rath et al. 2006; Robst 2009); 

Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

(Robst 2009); and Coefficients of Variation (CV) (Buckingham et al. 1998; Gaines et 

al. 2003). 

With regard to study findings, Diagnosis Related Groups (DRGs) or other 

classification systems designed for use in physical healthcare did not prove 

successful in explaining a substantial part of variation in mental health costs (Ettner 

et al. 2001; Ettner et al. 1998; Ettner and Notman 1997; McGuire et al. 1987; Mitchell 

et al. 1987). The use of additional control variables such as demographic, co-

morbidities (Ettner et al. 2001; Ettner et al. 1998; Ettner and Notman 1997; Kapur, 

Young and Murata 2000) as well as social (homelessness) (Kapur, Young and Murata 

2000), previous costs (Kapur, Young and Murata 2000), functioning (Cromwell et 

al. 2005; Drozd et al. 2006; Kapur, Young and Murata 2000), severity (Cromwell et 

al. 2005; Drozd et al. 2006) and treatment (Cromwell et al. 2005; Drozd et al. 2006) 

improved the predictive ability of models. A systematic review (Wolff et al. 2015a) 

of drivers of mental health inpatient resource use found that the most relevant patient 

characteristics were age, major diagnostic group, experiencing psychotic or affective 

symptoms, risk, legal problems, and ability to perform activities of daily living. Non-

patient characteristics associated with inpatient resource use included day of stay 
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(Cromwell et al. 2005; Drozd et al. 2006) and treatment site (Buckingham et al. 

1998). 

Table 3.1 provides an overview of the direction of association between cost and 

various patient characteristics. For several variables, the relationship was consistent 

across numerous studies. 

Table 3.1 Literature on characteristics associated with mental health costs 

Variable  Direction of association (Reference) 

Age Positive: (Buckingham et al. 1998; Cromwell et 

al. 2005; Drozd et al. 2006; McCrone, Johnson 

and Thornicroft 2001)  

Negative: (Kapur, Young and Murata 2000; 

Robst 2009)   

Functioning Negative: (Kapur, Young and Murata 2000; 

McCrone et al. 1998)  

Previous costs Positive for inpatient costs and negative for 

outpatient costs: (Kapur, Young and Murata 

2000).   
Diagnosis Positive: (Buckingham et al. 1998; Drozd et al. 

2006; Kapur, Young and Murata 2000; Robst 

2009)  

Deficits in Activities of Daily 

Living (ADL) 

Positive: (Buckingham et al. 1998; Cromwell et 

al. 2005; Drozd et al. 2006)  

Detox Positive: (Drozd et al. 2006) 

Electroconvulsive Therapy 

(ECT) 

Positive: (Cromwell et al. 2005; Drozd et al. 

2006) 

Legal status (compulsory 

admission) 

Positive: (Buckingham et al. 1998; Gaines et al. 

2003; Williams et al. 2014) 

Severity (measured using 

HoNOS) 

Positive: (Buckingham et al. 1998; Gaines et al. 

2003) 

Aggressive/disruptive/suicidal 

behaviour 

Positive: (Buckingham et al. 1998; Cromwell et 

al. 2005) 

Single, divorced, widowed, or 

living alone 

Positive: (McCrone et al. 1998; Sutton et al. 

2012) 
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Unemployment Positive: (Sutton et al. 2012)  

More years of education Negative: (McCrone, Johnson and Thornicroft 

2001) 
No fixed residence or unsettled 

accommodation 

Positive: (Sutton et al. 2012; Williams et al. 

2014)  

Prior service use Positive: (Sutton et al. 2012; Williams et al. 

2014) 

Gender Positive for males: (McCrone, Johnson and 

Thornicroft 2001; Robst 2009)  

Ethnicity Positive for ethnic minorities compared to 

whites: (Gaines et al. 2003; Robst 2009) 

 

A number of studies also examined the influence of provider factors. An early study 

(McGuire et al. 1987) found that after adjusting for differences in average cost 

between providers using DRGs, some variation remained with private psychiatric 

hospitals and hospital-based substance abuse facilities having the highest adjusted 

cost per case and general hospitals without specialist psychiatric units having much 

lower average adjusted costs. Conversely, Cromwell et al. (2005) found no statistical 

differences in costs between acute general hospitals with distinct psychiatric units 

and either public or private psychiatric hospitals. This study also found that higher 

costs were associated with higher area wage rates as well as teaching status while 

lower costs were associated with a higher average daily psychiatric census, and a 

higher facility share of Medicaid plus Medicare SSI eligible (low-income) patients. 

The initial part (days 2-5) of the inpatient stay was associated with higher costs while 

an inpatient stay of less than 24 hours was associated with lower costs (Cromwell et 

al. 2005). Drozd et al. (2006) report that a classification model comprising only 

facility characteristics (a weekend indicator, ownership, teaching status, size, 

occupancy rate, urban location, area hospital wage rates and Medicare 

disproportional share ratio) and day of stay explained only 23% of daily cost variation 

compared to an alternative model with 16 groups that used five major DSM-IV 

categories and stratified by age, illness severity, deficits in daily living activities, 

dangerousness, and use of electroconvulsive therapy (ECT) that explained 40% of 

daily cost variation. Projects to develop casemix classification systems for mental 

health services in Australia and New Zealand revealed that patient-level costs were 
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driven by provider factors such as individual clinical practice, resource availability 

and the types of services available (Buckingham et al. 1998; Gaines et al. 2003). 

In terms of methodology, Montez-Rath et al. (2006) showed that transforming the 

data to its square-root was optimal with a square-root normal model having the lowest 

RMSE, MAPE and bootstrap confidence interval values, and a GLM with gamma 

distribution and square-root link having the best PRs. However, the latter model had 

convergence problems with small samples. The authors maintain that the 

advantageous performance of the square root models may be due to the ability of this 

transformation to address high comorbidity levels in the study sample by introducing 

a form of interaction while the gamma distribution helps to address the long tail 

typical of cost data. Similarly, the results of Robst (2009) suggested that a model 

using the square root of expenditure fit the data best. Nevertheless, the PRs implied 

that modeling untransformed expenditures may be sufficient on larger samples while 

the log transformation was advantageous for groups with very high or low 

expenditures.   

3.2.2. Review of selected literature on variations in costs and provider 

performance in acute care  

In a separate review we selected recent studies that have analysed patient costs and 

provider performance in acute physical healthcare. The studies reviewed tend to focus 

on a particular speciality or disease (Cooper et al. 2007; Hvenegaard et al. 2009; 

Kristensen et al. 2010; Laudicella, Olsen and Street 2010; Olsen and Street 2008). 

Nevertheless, there are studies that did not limit the sample to patients treated in a 

particular specialty. Daidone and Street (2013) analysed the costs of the entire 

population (12,154,599) of patients admitted to 163 hospitals in England in order to 

investigate the costs associated with specialist care. Gaughan et al. (2012) analysed 

variations in costs across English NHS providers for ten treatments1in order to 

investigate if above- or below-average cost performance is consistent across 

                                                 
1 Medical: acute myocardial infarction; childbirth; stroke. Surgical: appendectomy; breast cancer 

(mastectomy); coronary artery bypass graft; cholecystectomy; inguinal hernia; hip replacement and 

knee replacement 
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departments/specialities for a particular hospital. Carey (2000) used data on a sample 

of 526,117 patients treated in 24 medical centres operated by the VHA in the US. 

Studies used two-level multilevel model with fixed (Gaughan et al. 2012; Hvenegaard 

et al. 2009; Kristensen et al. 2010; Laudicella, Olsen and Street 2010; Olsen and Street 

2008) or random (Carey 2000; Cooper et al. 2007; Daidone and Street 2013; Olsen 

and Street 2008) effects. Costs were commonly modelled on a log (Carey 2000; 

Cooper et al. 2007; Gaughan et al. 2012; Hvenegaard et al. 2009; Olsen and Street 

2008) or raw (Daidone and Street 2013; Hvenegaard et al. 2009; Laudicella, Olsen 

and Street 2010)  scale in a linear regression. Daidone et al. (2013) modelled costs 

using a GLM with a gamma distribution and square root link. Cooper et al. (2007) 

utilised two-part models with cost modelled as 1) a log-normal and 2) a gamma 

distribution with log link in the second part. 

Dependent variables were measured as total patient cost during a fiscal year (Carey 

2000; Cooper et al. 2007) or during a hospital stay (Gaughan et al. 2012; Hvenegaard 

et al. 2009; Kristensen et al. 2010; Laudicella, Olsen and Street 2010; Olsen and Street 

2008). Due to the large number of patients and HRGs in the study of Daidone and 

Street (2013), the dependent cost variable was measured as the individual patient’s 

cost compared to the average cost of all patients assigned to the same HRG. All 

studies included age and gender as patient-level explanatory variables while 

additional explanatory variables included casemix classification variables and 

additional diagnostic variables (Carey 2000; Gaughan et al. 2012; Hvenegaard et al. 

2009; Kristensen et al. 2010; Laudicella, Olsen and Street 2010; Olsen and Street 

2008); health and treatment variables (Cooper et al. 2007; Daidone and Street 2013; 

Gaughan et al. 2012; Hvenegaard et al. 2009; Laudicella, Olsen and Street 2010; 

Olsen and Street 2008); socioeconomic characteristics (Daidone and Street 2013; 

Hvenegaard et al. 2009; Laudicella, Olsen and Street 2010); and quality variables 

(Gaughan et al. 2012). A number of studies included provider variables including 

volume of patients treated (Gaughan et al. 2012; Kristensen et al. 2010; Laudicella, 

Olsen and Street 2010); beds (Carey 2000); teaching status (Carey 2000; Gaughan et 

al. 2012; Laudicella, Olsen and Street 2010); staff (Laudicella, Olsen and Street 

2010); input price index (Kristensen et al. 2010; Laudicella, Olsen and Street 2010); 
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specialisation (Gaughan et al. 2012; Kristensen et al. 2010); and quality (Gaughan et 

al. 2012) variables. 

Two studies compared various model specifications. Cooper et al. (2007) found that 

the two-part models provided the best fit to the data. Daidone and Street (2013) 

compared OLS to 1) OLS with a log or square root transformation applied to costs; 

2) GLM; and 3) Finite Mixture Models (FMM). The latter failed to converge while 

log-linear models were found to be imprecise. A relatively consistent finding was that 

diagnosis-based classification systems emerged as important predictors of cost 

variation (Carey 2000; Hvenegaard et al. 2009; Kristensen et al. 2010) and that much 

of the heterogeneity in patient costs between providers was due to casemix (Olsen 

and Street 2008). Some, but not all, types of specialist care was found to be associated 

with higher costs (Daidone and Street 2013). Provider-level variables were found to 

have no (Carey 2000; Gaughan et al. 2012) or negligible (Kristensen et al. 2010; 

Laudicella, Olsen and Street 2010) effects in terms of explaining cost variations. The 

ranking of providers in terms of fixed or random effects revealed significant 

differences in cost-containment performance (Carey 2000; Daidone and Street 2013; 

Gaughan et al. 2012; Hvenegaard et al. 2009; Laudicella, Olsen and Street 2010; 

Olsen and Street 2008). Hvenegaard et al. (2009) found that provider rankings were 

sensitive to choice of functional form with department rankings differing according 

to whether costs were modelled on a raw or log-transformed scale as the use of log-

transformed costs gave less weight to cost outliers which centred on certain 

specialised providers. In contrast, Daidone and Street (2013) found that provider 

rankings were not sensitive to the choice of linear OLS or GLM specifications. 

Gaughan et al. (2012) reported that, after controlling for patient- and provider-level 

variables, a small number of hospitals had higher average costs across multiple 

treatments compared to their peers implying that these providers may face financial 

instability under a national tariff or fixed price system. 

This literature review informs our study in several ways. Firstly, the studies on risk 

adjustment of mental health costs suggest that classification systems based on 

diagnosis tend to perform poorly in adequately explaining variation in mental health 

costs and it is necessary to use additional demographic, treatment, and socioeconomic 

variables. We move beyond previous studies by risk-adjusting mental healthcare costs 
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by using a classification system developed specifically for mental healthcare and 

supplement this with a range of demographic, treatment and socioeconomic variables. 

We also examine the influence of provider-level variables in a sensitivity analysis. 

Secondly, we utilise random effects to make assertions about relative provider 

performance thus extending methods applied in physical healthcare to mental 

healthcare. 

 Data  

We use two main data sets for our analysis; the Department of Health Reference Cost 

data is used to construct the dependent cost variable, while the MHMDS contains 

information on the clustering process as well as our independent risk adjustment 

variables.  

3.3.1. Reference Cost data 

We use the Reference Cost data published by the Department of Health to construct 

our dependent cost variable. The Reference Cost data is submitted by NHS providers 

to the Department of Health and provides an indication of the costs of providing 

mental health services. Privately owned providers do not submit Reference Cost data 

despite providing care for NHS patients and being reimbursed under the NTPS. A 

considerable proportion of mental healthcare is provided by the private sector and the 

costs of this care may differ significantly from the costs of NHS provision (Jacobs 

2014). 

Reference cost data for the mental healthcare clusters were first collected in a pilot 

exercise that complemented the main Reference Cost collection in 2011 (Department 

of Health 2012). While the clusters are independent of setting, cluster activity is 

costed according to admitted- and non-admitted cluster days as well as initial 

assessments. Therefore, each provider reports Reference Cost data for each cluster 

disaggregated into the per diem cost associated with admitted and non-admitted care 

respectively. Of the 55 providers in our database that report Reference Cost data, one 

provider does not report costs for admitted care for 2011/12 while two providers do 

not report costs for admitted care for 2012/13. Six providers do not report costs for 
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non-admitted care for 2011/12. These providers are included in the analysis with costs 

reflecting only the admitted or non-admitted part of the care pathway as appropriate. 

Figure 3.1 displays the mean unit cost per day of admitted care for 2011/12 and 

2012/13 for the 52 providers in our database that report these costs for both 2011/12 

and 2012/13.  

Figure 3.1 Average unit cost per day of admitted care, by provider, n=52 

 

Figure 3.2 displays the mean unit cost per day of non-admitted care for 2011/12 and 

2012/13 for the 49 providers in our database that report these costs for both 2011/12 

and 2012/13.  
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Figure 3.2 Average unit cost per day of non-admitted care, by provider, n=49 

 

Variation across providers is evident and this appears to be more pronounced for 

admitted care. As may be expected, costs increased in 2012/13 but there are some 

providers with higher costs in 2011/12 and these higher costs are particularly marked 

for non-admitted care which may suggest that data quality also improved in 2012/13.  

Concerns regarding the quality of the Reference Cost data submitted during the first 

data collection have been raised (PriceWaterhouseCoopers 2012). These concerns 

relate to variations in unit costs within clusters and between providers; variations in 

the number of service users and LOS in each cluster; and missing data from Reference 

Cost returns. The low implementation rate of Patient Level Information Costing 

Systems (PLICS) in mental healthcare compared to acute care has also been noted 

with 52% of mental health providers implementing or planning to implement PLICS 

in 2011 compared to 87% of acute trusts (PriceWaterhouseCoopers 2012). A greater 

implementation of PLICS would increase the accuracy and reliability of Reference 

Cost data – a necessity for implementation of a national price or tariff per cluster. 
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Taking account of issues of Reference Cost data quality, we compared Reference Cost 

data for 2011/12 and 2012/13 by provider and omitted data for outliers defined as 

greater than 4 times the cost reported in the previous (for 2012/12 data) or following 

year (for 2011/12 data) (n=102,121). This resulted in dropping one provider with 

consistently high costs for all clusters across both years. We also dropped 

observations with inpatient days in the 99th percentile (>=48 days) for Cluster 1 

(n=383) and observations with inpatient days in the 99th percentile (>=74 days) for 

Cluster 2 (n=450) as these clusters cover common mental health problems and due to 

pressure on mental health beds we would not expect patients in these clusters to have 

such long lengths of stay. 

While the care cluster currencies cover most services for working age adults and older 

people, some services such as children and adolescent, drug and alcohol, and 

specialist mental health services are not included and will be reimbursed under 

separate non-cluster currencies. Table 3.2 outlines the coverage of mental health 

services in Reference Cost data.  

Table 3.2 Coverage of mental health services in Reference Cost data 

Service Included in 

cluster 

Reference 

Cost data 

Included in 

non-cluster 

Reference 

Cost data 

Excluded 

from 

Reference 

Cost data 

Approved social worker services* Yes   

Assertive outreach teams Yes   

Crisis accommodation services Yes   

Crisis resolution and home treatment 

teams 
Yes   

Early intervention in psychosis 

services from age 14 
Yes   

Eating disorder services (adult, 

excluding tertiary eating disorders) 
Yes   

Emergency clinics or walk in clinics Yes   
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Emergency duty teams (which are not 

emergency assessments e.g. for 

sectioning under the Mental Health 

Act)* 

Yes   

Homeless mental health services Yes   

Local psychiatric intensive care units Yes   

Mental health counselling and 

therapy 
Yes Yes  

Psychology Yes Yes  

Psychotherapy Yes Yes  

A&E mental health liaison services 

(psychiatric liaison) 
 Yes  

Autism and Asperger syndrome  Yes  

Child and Adolescent Mental Health 

Services (CAMHS) 

 Yes  

Drug and alcohol services  Yes  

Eating disorder services (children and 

adolescents) 
 Yes  

Forensic and secure mental health 

services 
 Yes  

Learning disability services in high 

dependency or high secure units 
 Yes  

Mental health services provided 

under a GP contract 

 Yes  

Perinatal mental health services 

(mother and baby units) 

 Yes  

Primary diagnosis of drug or alcohol 

misuse 

 Yes  

Specialised addiction services  Yes  

Specialist psychological therapies 

(admitted patients and specialised 

outpatients) 

 Yes  

Specialised eating disorder services  Yes  

Improving access to psychological 

therapies (IAPT) 

     Yes**  

Acquired brain injury   Yes 

Complex or treatment resistant 

disorders in tertiary settings 

  Yes 

Gender dysmorphia   Yes 
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Learning disability services not 

provided in high dependency or high 

secure units 

  Yes 

Specialist mental health services for 

deaf people 
  Yes 

Neuropsychiatry   Yes 

* these services are only included in clusters where NHS funded, otherwise they are 

excluded 

** other specialist teams 

Source: Department of Health (2012). Reference Costs 2011-12. Leeds, Department 

of Health. 

3.3.2. Risk adjustment covariates  

Demographic variables include age, gender, ethnicity and marital status. We 

categorise age based on deciles in order to capture any non-linearities in the 

relationship between age and cost and use age 18-34 years as the reference category. 

Ethnicity is also categorised to represent the main ethnic groups in the data: White, 

Black, Asian and Other with White set as the reference category. Gender is 

represented by a dummy variable with males equal to one. Information on severity 

and treatment are captured by variables reflecting if a patient has care co-ordinated 

under the CPA or has been admitted to hospital under the MHA. Around 40% of 

observations for the CPA and MHA variables were missing but we coded these as 

zero and make the assumption that these observations have not been subject to the 

MHA or under CPA.  

We include dummy variables for the 21 care clusters to investigate the extent to which 

these explain variations in cost. We use the cluster with the lowest cost (Cluster 1) as 

the reference category. The MHMDS contains data for a small area level geographic 

marker, the Lower Layer Super Output Area (LSOA) of the individual. LSOAs have 

a minimum population of 1000 and a mean of 1500 (Health and Social Care 

Information Centre 2013). The LSOA codes can be matched to data from the Census 

or the Index of Multiple Deprivation (IMD) in order to enable variables reflecting 

various domains of deprivation to be used in the analysis. We include information on 

income deprivation using the IMD Income Deprivation (Noble 2008) variable. This 
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Domain measures the proportions of the population experiencing income deprivation 

in an area (Noble 2008). A higher score for the IMD Income Domain indicates a 

greater proportion of the population in the area in which the patient lives experiences 

income deprivation. The scores for the Income Domain are rates which we multiplied 

by 100 to allow interpretation as percentages. Observations include those with a CRP 

that starts in 2011/12 or in 2012/13 so a dummy variable is included to capture the 

year that the cluster started in order to control for factors such as inflation or 

differential coding of costs with 2011/12 used as the reference category.  

3.3.3. Sensitivity Analysis 

Provider-level variables are not included in the main analysis, in order to allow us to 

control only for observable patient factors that may lead to variations in costs across 

providers and allow provider factors to be captured in the provider-level residual and 

be indicative of performance. As a sensitivity analysis we include a number of 

provider-level variables reflecting provider governance and capacity constraints to 

investigate if these variables can explain variations in cost. These variables include 

provider size as measured by the number of available mental health beds, percentage 

occupancy of mental health beds, and whether the provider has FT status. We would 

expect that providers with a higher number of beds may have lower costs due to 

economies of scale effects. Providers with high occupancy rates (above the optimum 

of 85%) (Royal College of Psychiatrists 2011) may have higher costs if high rates 

result in patients being discharged early and subsequently readmitted. Providers with 

FT status have more autonomy and control over their finances so can be expected to 

be associated with higher financial performance (Verzulli, Jacobs and Goddard 2011) 

and hence lower costs. We also include a variable measuring the proportion of 

admissions under the MHA by provider. Recent research has revealed statistically 

significant differences in compulsory admissions between providers in England, after 

controlling for a large number of explanatory variables (Weich et al. 2014) and we 

expect compulsory admission to be positively associated with cost. We do not include 

any provider-level variables capturing quality as we want these to be reflected in the 

measure of provider performance. 



82 

 

 Methods 

3.4.1. Construction of dependent cost variable 

In order to construct our dependent variable, we first measured all activity during a 

CRP that corresponds to mental health services covered under the care cluster 

currencies (see Table 3.2). This activity relates to admitted care and non-admitted 

care. Admitted care refers to inpatient hospital stays while non-admitted care includes 

care delivered by mental health teams, NHS day care, consultant outpatient episodes, 

acute home-based care, NHS mental healthcare homes, and community contacts with 

healthcare professionals. For each observation (CRP), we calculated the total number 

of days in admitted and non-admitted care. These LOS variables for admitted and 

non-admitted care were then multiplied by the per diem unit costs for admitted and 

non-admitted care for the particular care cluster and provider in order to construct a 

variable reflecting the total cost associated with a CRP. We use the 2011/12 Reference 

Cost data for activity between 1 April 2011 and 31 March 2012 and the 2012/13 

Reference Cost data for activity between 1 April 2012 and 31 March 2013. For 

activity between 1 April 2011 and 31 March 2013 we calculate a weighted average 

cost that reflects the number of days during a CRP in each year. It is important to 

highlight that the use of cost data reported at a provider level, albeit disaggregated by 

cluster and admitted and non-admitted care will conceal the true variation in cost that 

would be evident in data reported at the patient level.  

We do not adjust costs using the Market Forces Factor (MFF). The Market Forces 

Factor (MFF) is an estimate of unavoidable costs faced by healthcare providers due 

to their geographical location. Each NHS provider is allocated an MFF value and this 

informs a payment index that is used to adjust provider payment in order to avoid 

financial (dis)advantage due to geographical location (Monitor and NHS England 

2013c). Our primary interest is in variations in cost performance across providers and 

in comparing performance, our objective is to control only for factors that vary at 

CRP- or patient-levels, rather than at provider-level. Moreover, we are interested in 

examining the role of cluster costs in the design of the NTPS and the variation in costs 

that would explain whether it’s possible to obtain an accurate price signal for 
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payment. As the MFF would not be considered in the calculation of a national tariff, 

it is therefore excluded from this assessment.  

3.4.2. Multilevel models 

A patient can have more than one CRP and the maximum number of CRPs per patient 

is 43. This means that our data is characterised by a multilevel structure with three 

levels: CRPs clustered in patients clustered in providers (Figure 3.3).  

Figure 3.3 Multilevel data structure 

 

 

 

 

 

 

 

As our data is not a random sample of the general population but rather covers all 

users of specialist mental healthcare in England, we do not face the problem of dealing 

with a large number of zero cost observations and so avoid the use of a two-part 

model.  

We adopt two estimation approaches: 1) a linear model with the log of total cost as 

the dependent variable, and 2) a multilevel GLM with untransformed total cost as the 

dependent variable. As our dependent variable is highly skewed, we transform it by 

taking logs in order to achieve a normally distributed variable. This is preferable for 

making inferences about provider performance as EB techniques make the 

assumption that the prior distribution of the residuals is normal. However, in order to 
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interpret the model coefficients in terms of the arithmetic mean of the dependent 

variable in the original monetary units of cost, retransformation from the log scale is 

required. Direct transformation in the form of exponentiation of the model 

coefficients can result in biased estimates as E{ln(Y)} does not necessarily equal 

ln{E(Y)}(Montez-Rath et al. 2006). The use of a multilevel GLM allows us to easily 

interpret model estimates in terms of the arithmetic mean in monetary terms as it does 

not necessitate the transformation and subsequent retransformation of the dependent 

variable.  

We estimate the following three-level log-linear model for CRP i in patient j in 

provider k: 

𝑦ijk =  𝛼 +  𝛽𝑋ijk +  𝑢k +  𝑣jk +  𝜀ijk           (1) 

where yijk is the dependent cost variable, Xijk represents a vector of risk adjustment 

covariates at the cluster-review- and patient-levels, uk is the provider-level random 

intercept, vjk is the patient-level random intercept and εijk is the error term at the CRP-

level. The coefficients for the log of total cost dependent variable can be interpreted 

in terms of a percentage change in the geometric mean of total cost which can be 

calculated as (exp(β) – 1)*100. For the majority of covariates measured as dummy 

variables, this is the percentage change in the geometric mean resulting from a change 

in the variable from zero to one. For the continuous IMD Income Deprivation 

variable, the coefficient can be interpreted as the percentage change in the geometric 

mean in total cost resulting from a one unit change in this variable.  

We estimate a three-level GLM with a gamma distribution and a log link. More 

specifically we estimate the following multilevel GLM for CRP i in patient j in 

provider k: 

       g {E [yijk | X
’
ijk, uk vjk]} = X’

ijk β + uk + vjk ≡ ηijk, yijk ~ gamma       (2) 

where yijk is the vector of responses from the gamma distributional family, X’
ijk is a 

vector of risk adjustment covariates for the fixed effects β.  X’
ijk β + uk + vjk is the 
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linear predictor, also denoted as ηijk; g (.) is the link function and is assumed to be 

invertible so that  

E (yijk | X
’
ijk uk vjk) = g-1 (X’

ijk β + uk + vjk) = exp (ηijk) = μijk       (3) 

Model coefficients for the GLM model(s) can be interpreted as average marginal (or 

partial) effects. All but one of our independent variables are dummy variables so 

coefficients can be interpreted in terms of average effects measuring discrete change 

i.e. the change in the total cost of a CRP as the independent variable changes from 

zero to one, holding all other variables at their mean value. The coefficient on the 

independent IMD variable can be interpreted in terms of the change in the total cost 

of a CRP arising from a one unit change in the IMD score. Statistical significance is 

tested at the 5%, 1% and 0.1% levels.  

3.4.3. Comparison of provider performance 

In order to compare the residual variation across providers we predict the random 

effects uk from the log-linear model using EB estimates with comparative standard 

errors as described in Section 1.4.2 of Chapter 1. We calculate the percentage 

difference in the EB estimates of provider-level residual variation for the best and 

worst performing providers compared the average performing provider as (exp(𝑢k - 

𝑢0) – 1)*100 where 𝑢0 refers to the average provider.  

The models are estimated in Stata 13.0 (StataCorp 2013) using the meglm, margins, 

and predict commands and in MLwiN 2.29 (Rabash et al. 2009) using the runmlwin 

command (Leckie and Charlton 2012) in Stata 13.0 (StataCorp 2013). 

 Results 

3.5.1. Dependent variables 

Figure 3.4 shows our untransformed dependent variable – total cost for CRPs. The 

graph shows that there is considerable variation both within and between providers.  
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Figure 3.4 Dependent variable, total cost per Cluster Review Period (CRP) by 

provider, n=55 

 

Figure 3.5 displays the log transformation of the total cost per CRP variable, which 

reflects a normal distribution. 
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Figure 3.5 Dependent variable, log of total cost per Cluster Review Period 

(CRP) 

 

3.5.2. Descriptive statistics 

Table 3.3 displays the descriptive statistics for our dependent and independent 

variables for the estimation sample of 689,404 observations with reference categories 

in brackets.  

Table 3.3 Descriptive statistics (n=689,404) 

Variable Mean 
Standard 
Deviation Min Max 

Total cost of a CRP 3448 9783 0.99 303131 

Log of total cost of a CRP 6.92 1.62 0.01 12.62 

[White ethnicity]  0.877 0.328 0 1 

Asian ethnicity 0.045 0.208 0 1 

Black ethnicity 0.047 0.211 0 1 

Other ethnicity 0.031 0.173 0 1 

[Age category 1 (18-34)]  0.204 0.403 0 1 

Age category 2 (35-46) 0.191 0.393 0 1 

Age category 3 (47-62)  0.207 0.405 0 1 

Age category 4 (63-79) 0.204 0.403 0 1 
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Age category 5 (80+) 0.195 0.396 0 1 

Gender [Female] 0.436 0.496 0 1 

Married/civil partner 0.331 0.471 0 1 

Admitted under the MHA 0.087 0.282 0 1 

Under CPA 0.411 0.492 0 1 

Cluster 0: Variance 0.011 0.102 0 1 
[Cluster 1: Common mental health problems, 
low severity] 0.040 0.195 0 1 

Cluster 2: Common mental health problems 0.050 0.219 0 1 

Cluster 3: Nonpsychotic, moderate severity 0.117 0.321 0 1 

Cluster 4: Non-psychotic, severe 0.088 0.284 0 1 

Cluster 5: Non-psychotic, very severe 0.032 0.175 0 1 
Cluster 6: Non-psychotic disorders of overvalued 
ideas 0.017 0.128 0 1 

Cluster 7: Enduring non-psychotic disorders 0.039 0.193 0 1 
Cluster 8: Non-psychotic chaotic and 
challenging disorders 0.036 0.186 0 1 

Cluster 10: First episode in psychosis 0.027 0.163 0 1 
Cluster 11: Ongoing recurrent psychosis, low 
symptoms 0.090 0.286 0 1 
Cluster 12: Ongoing or recurrent psychosis, high 
disability 0.064 0.245 0 1 
Cluster 13: Ongoing or recurrent psychosis, high 
symptom/disability 0.045 0.208 0 1 

Cluster 14: Psychotic crisis 0.028 0.166 0 1 

Cluster 15: Severe psychotic depression 0.010 0.102 0 1 
Cluster 16: Dual diagnosis, substance abuse 
and mental illness 0.016 0.126 0 1 
Cluster 17: Psychosis and affective disorder 
difficult to engage 0.022 0.148 0 1 

Cluster 18: Cognitive impairment, low need 0.098 0.297 0 1 
Cluster 19: Cognitive impairment or dementia, 
moderate need 0.108 0.310 0 1 
Cluster 20: Cognitive impairment or dementia, 
high need 0.044 0.204 0 1 
Cluster 21: Cognitive impairment or dementia, 
high physical need 0.019 0.135 0 1 
CRP started in 2012/13 [CRP started in 
2011/12] 0.423 0.494 0 1 

Income Deprivation 17.97 11.785 0 77 

Provider-level variables, n=681,027         

Foundation Trust (FT) 0.74 0.44 0 1 

Number of mental health beds 516 230 50 1010 

Mental health beds occupancy (%) 88.31 5.30 63.9 99.6 

Proportion of formal admissions 0.27 0.09 0.06 37.40 

 

In terms of our risk-adjusters, the majority (88%) of observations are of White 

ethnicity with Black ethnicity and Asian ethnicities representing around 5% of 

observations and Other ethnicities 3%. Age ranges from 18 to 110. The majority of 
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observations are of female gender with males accounting for around 44% of 

observations. One-third of observations are married or have a civil partner. 9% of 

observations had an admission under the MHA prior to or at the beginning of entry to 

a cluster while around 40% were under CPA. In terms of the 21 clusters, Cluster 3 is 

the most common with around 12% of observations followed by Clusters 19 and 18 

with 11% and 10% respectively. 43% of observations started a CRP in 2012/13. On 

average, the observations in our study lived in an area where 18% of the population 

experienced income deprivation but this ranges from 0% to 77%. 

The estimation sample size is reduced to 681,027 observations for the sensitivity 

analysis including provider variables due to missing data on these additional variables 

for 4 providers. Almost three-quarters (74%) of providers have FT status. On average, 

the providers in our sample have just over 500 beds but there is considerable variation 

ranging from 50 to over 1,000 mental health beds. There is also variation between 

providers regarding bed occupancy. The average occupancy rates is 88% - just over 

the recommended rate of 85% (Royal College of Psychiatrists 2011) but some 

providers are operating with spare capacity with the lowest occupancy rate around 

64% and other providers operating at almost full capacity with an occupancy rate of 

almost 100%. For the average provider, just over one-quarter admissions is under the 

MHA, but over one-third of admissions are under the MHA for one provider. 

A Hausman test confirmed our preference for the random-effects model (chi-squared 

(33) = 32.79, Prob>chi-squared = 0.4775). 

3.5.3. Estimation results 

Table 3.4 displays the estimation results for the three-level log-linear model and 

GLM.  
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Table 3.4 Estimates of three-level log-linear model and generalized linear 

model (GLM) 

 Observations per group 

 
Number of 

Observations 
Minimum Average Maximum 

Level 3: Provider 55 33 12535 54060 

Level 2: Person 413,568 1 1.7 43 

Level 1: CRP 689,404   

 Log-linear GLM 

 Log likelihood -1222897.6 -5970609.1 

Variable Coefficient 
Standard 

Error 
Coefficient 

Standard 
Error 

Married/civil partner 0.009 0.004* -20.02 16.45 

Asian ethnicity 0.026 0.009** 114.65 35.55** 

Black ethnicity 0.083 0.010*** 423.74 36.36*** 

Other ethnicity 0.031 0.011** 70.27 42.41 

Age category 2 (35-46) 0.086 0.006*** 255.90 23.91*** 

Age category 3 (47-62) 0.147 0.006*** 480.70 23.91*** 

Age category 4 (63-79) 0.295 0.007*** 1123.07 27.37*** 

Age category 5 (80+) 0.181 0.008*** 585.04 30.56*** 

Gender 0.011 0.004** 115.0 14.94*** 

Admitted under the MHA 0.681 0.008*** 4272.19 41.37*** 

Under CPA 0.231 0.005*** 1007.00 17.53*** 

Cluster 0: Variance 0.287 0.019*** 1864.02 75.52*** 

Cluster 2: Common 
mental health problems 

0.378 0.012*** 1386.41 43.89*** 

Cluster 3: Nonpsychotic, 
moderate severity 

0.686 0.010*** 2518.38 39.62*** 

Cluster 4: Non-psychotic, 
severe 

1.019 0.011*** 3804.10 43.70*** 

Cluster 5: Non-psychotic, 
very severe 

1.324 0.013*** 5230.34 56.07*** 

Cluster 6: Non-psychotic 
disorders of overvalued 
ideas 

1.285 0.016*** 4836.18 65.19*** 

Cluster 7: Enduring non-
psychotic disorders 

1.282 0.013*** 4783.26 52.75*** 

Cluster 8: Non-psychotic 
chaotic and challenging 
disorders 

1.349 0.013*** 5281.83 55.97*** 

Cluster 10: First episode 
in psychosis 

1.684 0.014*** 6444.12 62.46*** 

Cluster 11: Ongoing 
recurrent psychosis, low 
symptoms 

1.034 0.011*** 3678.16 43.81*** 

Cluster 12: Ongoing or 
recurrent psychosis, high 
disability 

1.468 0.012*** 5449.89 50.87*** 
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Cluster 13: Ongoing or 
recurrent psychosis, high 
symptom/disability 

1.721 0.013*** 6602.53 57.82*** 

Cluster 14: Psychotic 
crisis 

2.012 0.014*** 7898.02 66.78*** 

Cluster 15: Severe 
psychotic depression 

1.627 0.020*** 6651.91 80.61*** 

Cluster 16: Dual 
diagnosis, substance 
abuse and mental illness 

1.531 0.017*** 5997.82 69.70*** 

Cluster 17: Psychosis 
and affective disorder 
difficult to engage 

1.881 0.015*** 7052.80 68.18*** 

Cluster 18: Cognitive 
impairment, low need 

0.186 0.011*** 39.43 42.18 

Cluster 19: Cognitive 
impairment or dementia, 
moderate need 

0.550 0.011*** 1556.22 42.85*** 

Cluster 20: Cognitive 
impairment or dementia, 
high need 

0.810 0.013*** 3275.40 51.80*** 

Cluster 21: Cognitive 
impairment or dementia, 
high physical need 

0.682 0.016*** 2954.41 63.47*** 

Income Deprivation 0.000 0.000* -0.65 0.64 

CRP started in 2012/13 -0.494 0.004*** -1655.33 15.02*** 

Constant 5.934 0.057*** 1151.89 1.01*** 

Random Effects  Estimate 
Standard  

Error 
Estimate 

Standard 
Error 

Level 3: Provider 0.170 0.033 0.039 0.001 

Level 2: Person 0.291 0.004 0.436 0.002 

Level 1: CRP 1.768 0.004   

***p<0.001, **p<0.01, *p<0.05 

As may be expected given the relatively large sample size most variables are 

statistically significant. The majority of variables have a positive effect on the cost of 

a CRP. The results of both models correspond closely in terms of sign and magnitude 

of coefficients with the exception of married/civil partner, which is statistically 

significant in the log-linear model but not in the GLM. Other variables that are 

statistically significant in the log-linear model but not in the GLM include Other 

ethnicity and Income Deprivation. Variables with the largest effects in both models 

include Black ethnicity, older age, admission under the MHA and care clusters 10 and 

13-17. 
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In the log-linear model, Black ethnicity is associated with a 9% increase in the cost 

of a CRP compared to White ethnicity. Observations aged 63-79 are associated with 

CRPs that are 34% more costly than CRPs for observations aged 18-34. Admission 

under the MHA is associated with increased costs of almost 100% while the care 

clusters 10 and 13-17 are associated with cost increases ranging from 362% (Cluster 

16) to almost 648% (Cluster 14). 

For the GLM, Black ethnicity is associated with an increased cost of a CRP of £424 

compared to White ethnicity. Older age is associated with higher cost with age of 63-

79 years associated with an increased cost of £1,123 and age 80 years and above 

associated with an increased cost of £585 compared to the age 18-34. Admission 

under the MHA is associated with an increase in costs of £4,272. The care clusters 

are broadly increasing in cost within the broad diagnostic groupings shown in Figure 

1.1 in Chapter 1. In particular, Clusters 10 and 13-17 are associated with considerably 

higher costs compared to Cluster 1; Cluster 10 is associated with an increased cost of 

£6,444 and Cluster 17 is associated with a higher cost of £7,053 compared to Cluster 

1. The variable capturing if the CRP started in 2012/13 is associated with a reduction 

in the cost of a CRP of 39% in the log-linear model and £1,655 in the GLM. 

3.5.4. Provider-level residual variation 

Around 8% of the residual variation in log of total cost is at the provider-level. 

Figure 3.6 displays the EB predictions of the provider-level random effects for the 

log-linear model. The graph show that a number of providers consistently have higher 

or lower costs compared to the average performing provider after controlling for 

observable risk-factors. The provider performing best in terms of cost-containment 

has residual costs 72% below the average while the worse performing provider has 

residual costs 194% above the average performing provider. 
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Figure 3.6 Variation in provider-level residual variation from the log-linear 

model 

 

3.5.5. Sensitivity analysis 

Table 3.5 shows the results of the sensitivity analysis that included a number of 

provider-level variables we expect to be associated with cost.  

Table 3.5 Estimates from sensitivity analysis including provider-level variables 

 Observations Per Group 

 
Number of 

observations 
Minimum Average Maximum 

Level 3: Provider 51 489 13353.5 54060 

Level 2: Person 407385 1 1.7 43 

Level 1: CRP 681,027    

 Log-linear  GLM 

 Log-likelihood -1207545  -5897662.9  

Variable Coefficient 
Standard 

Error 
Coefficient 

Standard 
Error 

Married/civil partner 0.009 0.004* -13.50 8.93 

Asian ethnicity 0.026 0.010** 8.20 19.30 

Black ethnicity 0.085 0.010*** 185.72 19.96*** 
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Other ethnicity 0.032 0.011** -21.13 23.11 

Age category 2 (35-46) 0.087 0.006*** 143.35 12.94*** 

Age category 3 (47-62) 0.149 0.006*** 265.49 12.93*** 

Age category 4 (63-79) 0.296 0.007*** 613.11 14.74*** 

Age category 5 (80+) 0.182 0.008*** 331.70 16.54*** 

Gender 0.010 0.004** 65.02 8.09*** 

Admitted under MHA 0.670 0.008*** 2275.57 20.78*** 

Under CPA 0.230 0.005*** 508.77 9.16*** 

Cluster 0: Variance 0.287 0.019*** 989.46 39.66*** 

Cluster 2: Common 
mental health problems 

0.377 0.012*** 765.22 23.64*** 

Cluster 3: Nonpsychotic, 
moderate severity 

0.685 0.010*** 1369.59 20.92*** 

Cluster 4: Non-psychotic, 
severe 

1.018 0.011*** 2052.37 22.47*** 

Cluster 5: Non-psychotic, 
very severe 

1.325 0.013*** 2839.59 28.46*** 

Cluster 6: Non-psychotic 
disorders of overvalued 
ideas 

1.290 0.016*** 2633.31 34.00*** 

Cluster 7: Enduring non-
psychotic disorders 

1.281 0.013*** 2600.45 26.82*** 

Cluster 8: Non-psychotic 
chaotic and challenging 
disorders 

1.348 0.013*** 2879.71 28.49*** 

Cluster 10: First episode 
in psychosis 

1.683 0.014*** 3509.89 31.46*** 

Cluster 11: Ongoing 
recurrent psychosis, low 
symptoms 

1.029 0.011*** 2012.14 22.76*** 

Cluster 12: Ongoing or 
recurrent psychosis, high 
disability 

1.466 0.012*** 2983.98 25.46*** 

Cluster 13: Ongoing or 
recurrent psychosis, high 
symptom/disability 

1.715 0.013*** 3581.40 28.50*** 

Cluster 14: Psychotic 
crisis 

2.007 0.014*** 4282.05 32.78*** 

Cluster 15: Severe 
psychotic depression 

1.623 0.020*** 3623.61 41.75*** 

Cluster 16: Dual 
diagnosis, substance 
abuse and mental illness 

1.520 0.017*** 3241.07 36.05*** 

Cluster 17: Psychosis 
and affective disorder 
difficult to engage 

1.874 0.016*** 3828.30 34.60*** 

Cluster 18: Cognitive 
impairment, low need 

0.184 0.011*** 23.39 22.85 

Cluster 19: Cognitive 
impairment or dementia, 
moderate need 

0.547 0.011*** 838.81 22.91*** 

Cluster 20: Cognitive 
impairment or dementia, 
high need 

0.813 0.013*** 1788.40 27.28*** 

Cluster 21: Cognitive 
impairment or dementia, 
high physical need 

0.693 0.016*** 1646.44 34.01*** 

Income Deprivation 0.000 0.000* -0.68 0.35 

CRP started in 2012/13 -0.490 0.004*** -881.38 7.69*** 

Foundation Trust (FT) -0.216 0.132 -259.93 9.97*** 
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Number of mental health 
beds 

0.000 0.000 -0.82 0.02*** 

Mental health beds 
occupancy (%) 

-0.002 0.009 25.40 0.78*** 

Proportion of formal 
admissions 

-0.222 0.641 231.32 50.10*** 

Constant 6.33583 0.820*** 292.02 1.03*** 

Random Effect Estimate 
Standard 

Error 
Estimate 

Standard 
Error 

Level 3: Provider 0.170 
0.287 

 

0.034 
0.004 
0.004 

 

0.062 0.066 

Level 2: Person 0.287 
1.769 

 

0.004 
0.004 

 

0.430 0.439 

Level 1: CRP 1.769 
 

0.004 
 

  

***p<0.001, **p<0.01, *p<0.05 

None of the provider-level variables are statistically significant in the log-linear 

model but they are all significant in the GLM model. For the log-linear model, the 

magnitudes of the cluster review- and patient-level variables are similar to the 

baseline model while the coefficients of these variables in the GLM model are 

reduced when provider variables are included compared to the baseline model. In the 

GLM model, the number of mental health beds and mental health bed occupancy are 

associated with relatively small effects on costs with the former exercising downward 

pressure on costs and the latter upward pressure. On the other hand, FT status and the 

proportion of formal admissions at the provider-level are associated with sizable 

effects on costs; providers with FT status are associated with reduced costs of a CRP 

of £260, while a one-unit increase in the proportion of formal admissions is associated 

with an increased cost of a CRP of £231. The residual variation in log of costs at the 

provider-level remains 8%. 

 Discussion 

This chapter has provided the results of a preliminary exercise in costing mental 

health activity that will be reimbursed under the NTPS. We have compared costs 

across providers and attempted to explain variations in these costs due to observable 

patient (and provider) factors that would be expected to be beyond the control of the 

provider. Furthermore, we provide insight into the extent to which the care clusters 

explain variation in costs. Despite controlling for a wide range of variables, we find 

evidence of residual variation in costs at the provider-level and this suggests that a 

number of providers have above average costs and may face financial instability when 

a national tariff is introduced. 
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Our findings on the drivers of mental health costs echo those of previous studies. We 

find that Black ethnicity is associated with higher costs compared to White ethnicity. 

This supports the findings of previous studies (Eagar et al. 2004; Robst 2009; Sutton 

et al. 2012) that found that ethnic minorities have higher costs. Age has a non-linear 

relationship with costs with older age categories associated with higher costs. Males 

are associated with higher costs compared to females. Admission under the MHA is 

a key cost driver and it may be the case that this variable is picking up aspects of 

severity not adequately captured by the care clusters. While the care clusters do not 

explain all variation in costs, the direction of the effects of the cluster variables does 

appear intuitive with the clusters reflecting higher severity and need associated with 

higher costs. CRPs that started in 2012/13 are associated with lower costs compared 

to those that started in 2011/12. This may reflect improved coding of the cost data in 

2012/13. Our sensitivity analysis that considered provider-level variables revealed 

that the number and percentage occupancy of mental health beds are associated with 

relatively small effects on mental health costs but FT status and the proportion of 

formal admissions at provider-level are associated with notable negative and positive 

effects respectively on mental health costs. 

 

Previous literature on mental health costs has underlined the inadequacies of 

classification and payment systems based primarily on diagnosis to accurately predict 

a large proportion of mental health costs and the need to consider a wider range of 

variables, in particular those reflecting patient need, social circumstances and 

treatment. While we do not consider a classification system based primarily on 

diagnosis, our study nevertheless continues in a similar vein in that it shows that the 

classification system developed for the NTPS in mental health is not sufficient by 

itself to explain variations in mental health costs and other factors are important cost 

drivers. Moreover, even after controlling for all of these variables, there still remains 

considerable residual variation in costs and this varies across providers with a small 

number of providers continuing to have higher than average costs. It would be too 

simplistic to label these providers as being inefficient as there are a number of 

important factors that we haven’t considered in this analysis. Firstly, those providers 

with higher residual costs may be providing better quality care and Chapter 5 explores 

the relationship between cost and outcomes to try to provide some insight into 
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whether higher cost is associated with better outcomes. In the acute physical 

healthcare sector, the NTPS primarily incentivises higher levels of activity. For 

implementation of the NTPS in mental health, a set of quality indicators and outcome 

measures that commissioners and providers can use in setting contracts are under 

development (Department of Health Payment by Results team 2013b) so that quality 

of care will not be sacrificed in the drive to increase activity and contain costs. 

Moreover, the introduction of national fixed prices for each cluster should allow 

contract negotiations to focus more on quality and there will also be more of an onus 

on providers to demonstrate good outcomes in order to distinguish themselves in a 

more competitive market (Yeomans 2014). Secondly, providers with higher residual 

costs may be treating a certain casemix of patients that we haven’t been able to fully 

account for. A limitation of our set of risk adjustment variables is that they exclude 

diagnosis due to poor data coding in the MHMDS. While classification systems based 

primarily on diagnosis perform poorly in predicting the majority of mental health 

costs, this does not mean that diagnosis should be ignored entirely and several studies 

have found that diagnosis can explain some variation in costs with more severe 

diagnoses such as psychoses being associated with higher costs (Buckingham et al. 

1998; Drozd et al. 2006). The clustering method does not explicitly take diagnosis 

into account and it is likely that the clusters are very variable in terms of diagnosis 

and casemix (Jacobs 2014; Yeomans 2014). It may also be the case that some patients 

have treatment-resistant variants of mental illness which implies that they will be 

consuming large amounts of care and resources to little avail (Jencks et al. 1987). If 

certain providers have a higher case-load of such patients this could well explain their 

unexplained higher costs. Thirdly, the variations in residual costs may be a reflection 

of variations in practice. Practice variations may be more prevalent in psychiatric care 

compared to physical healthcare and the introduction of the NTPS will shed insight 

into variation in practice as different clinicians are likely to make different MCHT 

ratings (Yeomans 2014). If practice variations are leading to inefficiencies in resource 

use, then it is likely that a national tariff will help to reduce inappropriate resource 

use while adequate training and supervision of clinicians in the use of the MHCT will 

help to prevent the clustering process exacerbating such problems. However, some 

variations in practice may be warranted and the classification system could partly 

address this by incorporating psychiatric procedures such as rehabilitation, 

detoxification, and intensive inpatient care to mirror the use of medical/surgical 
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procedures in HRGs used in the acute sector (Oyebode 2007). Fourthly, poor cost data 

may lead to certain providers appearing to have above-average costs.  Concerns have 

been raised as to the reliability of cluster costing data (Capita 2013; 

PriceWaterhouseCoopers 2012). Accurate costing will be imperative under a national 

tariff as this assumes that providers face the same cost structures and have the same 

prospects to make cost reductions but the tariff will not act as an accurate price signal 

if it is based on imperfect data (Jacobs 2014). It is intended that PLICS will be 

introduced for use by mental health providers on a developmental basis in 2016 

leading to eventual mandatory use by 2020 (Monitor 2015). 

 

In order to assess its potential to successfully facilitate the introduction of the NTPS 

to mental healthcare in England the care clusters classification system may require 

refinements. Despite being implemented the system has not been independently 

evaluated (Jacobs 2014) and such an exercise would inform and potentially improve 

the system. From an international perspective, the fact that the system is being used 

to inform contracts between commissioners and providers is both innovative and 

progressive as several countries have developed psychiatric classification systems but 

have not implemented these in a provider payment system. Moreover, the care clusters 

classification system is only one aspect of the NTPS in mental health. Any 

weaknesses of the care clusters approach can potentially be addressed by other aspects 

of the payment system. An important consideration for the refinement of the NTPS in 

mental health will be the outlier policy used so that any providers attracting high-cost 

patients, not adequately accounted for by the classification system, will not be 

penalised. A case in point may be in relation to the MHA as we find that the proportion 

of formal admissions at the provider-level is associated with a considerable increase 

in costs. Caution has been advised about the use of legal status in a classification and 

payment system as it may inadvertently increase involuntary treatment (Buckingham 

et al. 1998). This may be a legitimate concern in England as while use of the MHA is 

tightly regulated, it has been suggested that the MHA is used to acquire access to an 

inpatient bed due to high demand pressures on beds (House of Commons Health 

Committee 2013). However, providers do have different thresholds and capacities for 

admission under the MHA and if this is not recognised in the payment system it could 

potentially leave some providers facing financial risk.  
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If the NTPS for mental health does not adequately address legitimate reasons for cost 

variations among providers then there is a danger of inducing undesirable behaviours 

on the part of providers. These could include “dumping’ more expensive patients and 

treating more of those patients expected to incur less resources in order to reduce 

costs. Alternatively, providers may move patients into more expensive clusters and it 

could be argued that this may be relatively easier in mental healthcare where 

clinicians themselves will be the coders as opposed to acute physical healthcare where 

coders are external. However, the existence of a small number of clusters may 

mitigate this somewhat and the use of audit should also help to deter such practices 

(Jacobs 2014; Yeomans 2014). The extent to which providers may be tempted to 

engage in “gaming” the system may also depend on how much revenue they will 

receive from the NTPS. As noted earlier, not all mental health services will be 

reimbursed under the NTPS and even if providers make a loss on the NTPS services 

this may be balanced by a surplus on non-NTPS services. However, continual losses 

from NTPS may then encourage a shift away from providing these services and 

increased specialisation in non-NTPS services. 
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Chapter 4. Measuring and comparing the performance 

of English mental health providers in achieving patient 

outcomes 

 Introduction 

A routinely collected mental health outcome measure is necessary to underpin any 

prospective payment system linked to outcomes. There is great variation between 

countries in the implementation and use of mental health outcome measures. In some 

countries, routine outcome measurement is centrally driven while in others, several 

relatively autonomous systems of outcome measurement co-exist. Similarly, the 

choice of instrument differs across countries and appears to be determined by local 

factors with some countries using CROMs and others PROMs (Trauer 2010a).  

While it has been mandatory for English mental health providers to collect routine 

outcome data in the form of HoNOS since 2003, completion rates have been 

suboptimal (Jacobs 2009; Slade 2010), partly because commissioning of services was 

not based on outcomes and there were no financial consequences to non-compliance 

with outcome reporting requirements (Slade 2010). The NTPS for mental health 

changes the incentives faced by providers as HoNOS is an integral part of the 

classification system used for payment, while it is envisioned that provider 

performance on patient outcomes (based on HoNOS data) will also influence 

payment. Moreover, a national tariff per cluster will help to focus contracts between 

commissioners and providers on quality rather than price (Fairbairn 2007; Yeomans 

2014). Information on quality and outcomes will help to guide commissioners as to 

which providers are performing best in terms of patient outcomes (Department of 

Health Payment by Results team 2013b) and this should encourage providers to 

distinguish themselves in order to secure contracts in a more competitive market 

(Yeomans 2014). More transparent provider outcomes will also inform patient choice 

in mental health services (NHS England 2014a) which is facilitated by the move away 

from block budgets to prospective activity-based funding.  

This chapter explores the potential for the NTPS for mental health to incentivise 

provider performance in relation to patient outcomes by examining what factors 

contribute to variations in outcomes measured using HoNOS and, after controlling 
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for these variables if systematic differences in performance across providers remain. 

We move beyond previous international studies that compare provider performance 

on patient outcomes by using a large, nationally representative patient-level data set 

– the MHMDS. To date, the performance of English mental healthcare providers in 

relation to outcomes has not been researched in a systematic and rigourous manner. 

Yet, the availability of HoNOS data in the MHMDS allows a rigourous performance 

assessment of English mental healthcare providers to be undertaken. The richness of 

the MHMDS is exploited using multilevel models, which enables us to consider the 

influence of different levels of analysis on outcomes. Residual variation is quantified 

using EB methods which allows us to compare provider performance. 

 Risk adjustment and comparisons of provider performance 

in physical and mental healthcare 

The routine collection of health outcome data offers the potential to make 

comparisons across health professionals or organisations in order to answer questions 

such as “are providers meeting minimum standards of performance?” and “how are 

providers performing relative to others doing the same kind of work?” (Smith and 

Street 2013). With adequate risk adjustment, it is possible to examine the performance 

of providers using routinely collected patient outcome data (Gutacker et al. 2013b). 

Sections 4.2.1 and 4.2.2 provide an overview of the data and methods used to compare 

risk-adjusted outcomes across providers in both the physical and mental healthcare 

sectors. 

 

4.2.1. Physical healthcare 

A recent study (Nuttall, Parkin and Devlin 2015) describes a methodology for the 

casemix adjustment of PROMs data collected by NHS funded providers in England 

in order to facilitate the comparison of outcomes between providers of elective 

surgery. This methodology consists of two stages of which the first stage involves 

regressing the post-operative health outcome of an individual patient against their pre-

operative health outcome, condition-specific factors and characteristics unrelated to 

their condition. The model also includes a provider effect that can be considered fixed 

or random. In the second stage, indirect standardization is used to generate a measure 

of providers’ performance relative to other providers. National average health 
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outcomes are multiplied by a provider-specific variable ρj which measures how 

provider j performs relative to the national average. A value of ρj greater than one 

signifies that the provider performs better than average while a value of ρj less than 

one signals worse than average performance. Provider performance in terms of 

casemix adjusted and unadjusted health outcomes can then be compared. 

A separate study (Gutacker et al. 2013b) using PROMs data collected by NHS funded 

providers in England outlines a methodology to compare providers on the separate 

dimensions of the EQ-5D using hierarchical ordered probit models. Health status can 

be considered a latent variable as it is not directly observed but is instead inferred 

from patient’s responses to the EQ-5D questionnaire which contain three categories; 

1 = no problems, 2 = some problems, 3 = extreme problems. A hierarchical ordered 

probit model was employed with pre- and post- treatment outcomes regressed against 

a set of time invariant patient-level risk adjustment variables with a dummy variable 

equal to one if the outcome is post-treatment. The model also included random 

intercepts for both patients and providers as well as a random coefficient on the 

treatment variable that varies by providers and reflects the provider effect on post-

treatment outcomes. This treatment effect was predicted post-estimation and 

quantified using EB estimates in order to rank providers. Provider performance was 

also compared according to the probability of reporting a specific post-treatment 

outcome (m=1,2,3), based on the estimated quality effort of the provider.  

4.2.2. Mental healthcare 

In contrast to acute care and elective surgery, risk adjustment is relatively 

underdeveloped in mental health (Dow, Boaz and Thornton 2001; Hendryx, Beigel 

and Doucette 2001; Hermann, Rollins and Chan 2007; Rosen et al. 2010). Moreover, 

risk adjustment in mental health has focused mainly on payment systems, and little 

on risk adjustment of outcomes data for the purpose of comparing provider 

performance (Dow, Boaz and Thornton 2001). A number of studies of risk adjustment 

of mental health outcomes were identified through a search of databases including 

EconLit, Embase, OvidMedline and PsychInfo using the following search terms: 

“mental health”, “psychiatry”, “outcomes”, “risk adjustment”, and “performance”. 
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The numbers of patients and providers examined in previous studies has been 

relatively small and usually restricted to one US state or geographical area. Two 

studies (Hendryx, Dyck and Srebnik 1999; Hendryx and Teague 2001) compared six 

publicly funded community mental health agencies in the US state of Washington 

with the sample sizes varying from 289 (Hendryx, Dyck and Srebnik 1999) to 336 

(Hendryx and Teague 2001) adult users. A larger study used data from 24 state-funded 

mental health facilities in Florida covering a sample of almost 8,000 patients who 

were classified according to state certification procedures as adult disabled or in crisis 

(Dow, Boaz and Thornton 2001). Two studies (Kramer et al. 2001; Rosen et al. 2010) 

used data from the VHA. Kramer et al. (2001) compared the outcomes of 187 patients 

undergoing treatment for major depression disorder in three types of specialty mental 

health treatment settings including a VHA clinic, a clinic attached to a university 

teaching hospital, and a staff model managed care organisation. Rosen et al. (2010) 

analysed data on 986 veterans receiving inpatient or outpatient mental 

health/substance abuse care in one of two VHA medical centres in New England from 

mid-2004 to mid-2006.  

Previous studies measured mental health outcomes in terms of various domains 

including PROMS (Hendryx and Teague 2001; Rosen et al. 2010), functioning (Dow, 

Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 1999; Kramer et al. 2001), 

patient satisfaction (Dow, Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 

1999), quality of life (Hendryx, Dyck and Srebnik 1999) and diagnosis and severity 

(Kramer et al. 2001). 

In terms of risk adjustment variables, all studies included information on age and 

gender. Additional sociodemographic variables included ethnicity (Hendryx, Dyck 

and Srebnik 1999; Hendryx and Teague 2001; Kramer et al. 2001; Rosen et al. 2010), 

marital status (Kramer et al. 2001; Rosen et al. 2010), education (Dow, Boaz and 

Thornton 2001; Kramer et al. 2001; Rosen et al. 2010), income (Dow, Boaz and 

Thornton 2001; Kramer et al. 2001), employment (Dow, Boaz and Thornton 2001; 

Rosen et al. 2010), homelessness and social support (Kramer et al. 2001; Rosen et al. 

2010). All studies also included information on diagnosis as well as baseline measures 

of the dependent outcome variable. Other risk-adjusters included information on 

substance abuse (Hendryx and Teague 2001; Kramer et al. 2001), clinical history and 
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status (Hendryx and Teague 2001; Kramer et al. 2001), social functioning (Hendryx 

and Teague 2001), physical health (Hendryx and Teague 2001), voluntary treatment 

and duration of community-based treatment (Dow, Boaz and Thornton 2001). 

A number of the studies (Hendryx, Dyck and Srebnik 1999; Kramer et al. 2001) used 

split-sample model validation in the development of the risk adjustment model with 

the sample randomly split to allow model development using one part of the sample 

and model testing on the other. The motivation for this approach is the design of an 

external validation study (Steyerberg 2009). However, split-sample validation can be 

criticized on a number of grounds including: imbalances in the distribution of the 

outcome and predictor variables owing to the random split of the sample, which may 

be aggravated if these distributions are skewed; model results may be less stable given 

that a subset of the data sample is used; similarly validation of model performance 

may be unreliable as it is based on only a section of the sample and model 

performance may depend on the particular random sample used; while bias is also 

introduced as ideally model performance should be assessed based on the full sample, 

not a random selection (Steyerberg 2009). 

Most studies (Dow, Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 1999; 

Hendryx and Teague 2001; Kramer et al. 2001; Rosen et al. 2010) modeled outcomes 

using linear regression, while one study that used a measure with a binary outcome 

also used logistic regression (Kramer et al. 2001). Another study included provider 

random effects to control for the clustering of patients by site (Rosen et al. 2010). A 

common technique employed was to introduce risk adjustment variables sequentially 

into the model in order to examine the additional variance they explained in the 

dependent variable (Hendryx, Dyck and Srebnik 1999; Hendryx and Teague 2001; 

Kramer et al. 2001; Rosen et al. 2010). In a number of studies, the variables that 

performed best in terms of explaining variation in the dependent variable were used 

to predict outcomes in the final risk adjustment model (Dow, Boaz and Thornton 

2001; Hendryx, Dyck and Srebnik 1999; Hendryx and Teague 2001; Kramer et al. 

2001). Providers were compared by generating ranks based on unadjusted and risk-

adjusted outcomes (Dow, Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 

1999; Hendryx and Teague 2001; Kramer et al. 2001). 
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Variables found to significantly predict mental health outcomes include age (Dow, 

Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 1999; Hendryx and Teague 

2001; Kramer et al. 2001; Rosen et al. 2010); gender (Rosen et al. 2010); ethnicity 

(Rosen et al. 2010); marital status (Rosen et al. 2010); diagnosis (Hendryx, Dyck and 

Srebnik 1999; Hendryx and Teague 2001; Rosen et al. 2010); education (Dow, Boaz 

and Thornton 2001; Rosen et al. 2010), income (Kramer et al. 2001); employment 

(Rosen et al. 2010); social support (Rosen et al. 2010), homelessness (Rosen et al. 

2010); baseline measures of the outcome variable (Dow, Boaz and Thornton 2001; 

Hendryx, Dyck and Srebnik 1999; Kramer et al. 2001; Rosen et al. 2010); substance 

abuse (Hendryx, Dyck and Srebnik 1999; Hendryx and Teague 2001); physical health 

(Hendryx and Teague 2001; Kramer et al. 2001); duration of community-based care 

(Dow, Boaz and Thornton 2001); and involvement in decision to enter services (Dow, 

Boaz and Thornton 2001). Studies that entered variables sequentially to models 

reported that sociodemographic variables alone did not account for significant 

variation in outcomes (Hendryx, Dyck and Srebnik 1999; Rosen et al. 2010). 

Previous studies (Dow, Boaz and Thornton 2001; Hendryx, Dyck and Srebnik 1999; 

Hendryx and Teague 2001; Kramer et al. 2001) have underlined the need for risk 

adjustment by showing that provider performance varied between unadjusted and 

adjusted outcomes. Moreover, the ranking of providers was found to differ according 

to the outcome variable used (Dow, Boaz and Thornton 2001). Hendryx and Teague 

(2001) conducted analyses based on different diagnostic groups and found that the 

significance of risk adjustment variables as well as provider performance differed 

according to diagnostic groups, implying that the pooling of diagnostic samples can 

obscure this information. However, the stratification of samples according to 

diagnosis will depend on diagnosis-specific sample sizes and the particular outcome 

of interest. 

Our review of the literature in both physical and mental healthcare informs our 

analysis in several ways. While variables such as age, sex, ethnicity and co-

morbidities are important risk-adjusters in acute physical healthcare, the literature on 

risk adjustment for mental healthcare highlights the need to supplement these with a 

broader set of covariates covering treatment and social circumstances. Moreover, 

baseline measures of outcome appear to be particularly strong predictor variables. We 
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draw on the multilevel modeling techniques used in physical healthcare and directly 

model the provider effect in order to make inferences about provider performance in 

terms of patient outcomes. 

 Measuring mental health outcomes using Reliable and 

Clinically Significant Change (RCSC) 

In measuring an outcome in terms of change in baseline and follow-up HoNOS scores, 

it is important to differentiate between statistical significance and clinical 

significance as differences that meet the criteria for statistical significance may not be 

clinically meaningful, particularly as sample size increases (Eisen et al. 2007). 

Reliable change can be ascertained using the Reliable Change Index (RCI) whereby 

the post-treatment score is subtracted from the pre-treatment score and divided by the 

standard error of the differences. If the absolute value of “t” is greater than 1.96, then 

change is considered statistically reliable. If a change is deemed statistically reliable, 

the clinical significance of the change can be established by verifying that the post-

treatment score falls within the range of scores for a population with no mental health 

problems (Eisen et al. 2007). 

The RCI was initially developed by Jacobson et al. (1984) for use in psychotherapy 

outcome research and later modified based on suggestions by Christensen and 

Mendoza (1986). The premise of the RCI is that the level of change in outcome for a 

particular individual should be statistically reliable in that it cannot merely be 

attributed to chance or measurement error. In order to judge how much change is 

necessary to be considered clinically significant, there is a need for a reference 

standard - the normal or functional population - in order to prevent arbitrary decisions. 

Clinical significance should refer to a range of possible outcomes and not merely a 

binary choice. Then, an intervention can be judged to have achieved a reliable and 

clinically significant change if an individual’s level of functioning following the 

intervention means they are statistically more likely to fall within the functional, 

rather than the dysfunctional population (Jacobson, Follette and Revenstorf 1984). 

However, to date no HoNOS measurements have been taken from a sample of people 

with no mental health problems in the general population (Jacobs 2009).  
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Despite a lack of HoNOS scores for a population with no mental health problems, 

some researchers have calculated the RCI for HoNOS using an alternative criterion 

for a functional population. In a study using HoNOS to assess patient change in NHS 

psychotherapy and psychological treatment services, Audin et al. (2001) calculated a 

threshold for clinical change as the mean total assessment (baseline) score plus the 

mean total discharge (follow-up) score, halved (Audin et al. 2001). This enabled a 

categorisation of study participants into seven mutually exclusive groups as outlined 

in Table 4.1. In another study using HoNOS, Parabiaghi et al. (2005) similarly 

categorised patients into seven groups based on RCSC calculations (Parabiaghi et al. 

2005) which correspond to those of Audin et al. (2001) (Table 4.1). 

Table 4.1 Reliable and Clinically Significant Change (RCSC) categories, Audin 

et al. (2001) and Parabiaghi et al. (2005) 

Patient 

category 

Audin et al. (2001) Parabiaghi et al. (2005) 

1 Clinical/reliable deterioration Recurrence 

2 Clinical deterioration/no reliable 

change 

Clinical deterioration 

3 No clinical change/reliable 

deterioration 

Deterioration 

4 No clinical change/no reliable 

change 

Stable 

5 No clinical change/reliable 

improvement 

Improvement 

6 Clinical improvement/no reliable 

change 

Clinical improvement 

7 Clinical improvement/reliable 

improvement 

Remission 

 

In the absence of HoNOS scores for a population with no mental health service users, 

Parabiaghi et al. (2005) classified a sample of patients based on severity to identify a 

functional population in order to determine clinical significance (Parabiaghi et al. 

2005).  

Reliable change was calculated as follows: 



108 

 

RCindex = 1.96 x SEdiff where SEdiff = SD1 x √2 x √(1 − 𝛼) 

where SD1 is the standard deviation of the baseline observations and 𝛼 is Cronbach’s 

coefficient (a measure of internal consistency). 

A clinically significant change was judged to occur when a patient’s score moved 

from the “dysfunctional population” range into the “functional population” range, 

which required calculation of a cut-off point where there was an equal chance of 

belonging to either distribution. Functional and dysfunctional was determined 

according to clinical severity with two categories of severity defined: 1) severe 

patients defined as having scores of ≥ 3 in at least one item of HoNOS and 2) very 

severe patients with a score of ≥ 3 in at least two items. Non-severe patients were 

considered either: 1) mild with at least one item with a score =2, or 2) subclinical with 

a score of <2 in all items. 

 

The clinically significant (CS) “cut off” point was calculated as: 

CScut-off = (meanclin x SDnorm) + ( meannorm x SDclin) 

SDnorm + SDclin 

where meanclin and meannorm are the mean scores of the “dysfunctional population” and 

the “functional population”, respectively and SDnorm and SDclin are the standard 

deviations of the scores in these two groups. Two cut-off points were calculated: cut-

off1 that separated the group of “very severe” patients from the other service users 

and cut-off2 that separated the group of subclinical subjects from the group of clinical 

subjects (mild, moderately severe and very severe). The cut-off1 and cut-off2 thresholds 

calculated from baseline data were a HoNOS score of 11 and 5 respectively. 

In a follow-up study Parabiaghi et al. (2011) again applied the RCSC concept to 

HoNOS scores in order to evaluate clinical change. The Clinical Global Impression 

Scale (CGIS) was used to measure severity in the study sample. Patients were 

categorised into two groups based on having a CGIS rating of 1-4 (mild to moderate) 

or 5-7 (severe) in order to calculate the CScut-off. A five-level classification was 
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obtained: reliable and clinically significent improvement, reliable improvement, 

stability, reliable deterioration and reliable and clinically significant deterioration 

(Parabiaghi et al. 2011).  

More recently, the RCSC concept has been applied to a sample of 4,146 working age 

and older adult HoNOS data sets provided by the Tees, Esk and Wear Valleys NHS 

FT in England in order to investigate the utility of the MHCT as a generic outcome 

measure (Speak and Hay 2012). Patient severity was classified according to HoNOS 

scores in order to calculate the RCI and clinical severity cut-offs. The baseline 

HoNOS ratings had a Cronbach alpha of 0.6 which gave a RCI of 9, a cut-off threshold 

of 12 (cut-off1) to seperate the group of “very severe” patients from the other service 

users, and a cut-off threshold of 5 (cut-off2) to seperate the group of subclinical 

subjects from the group of clinical subjects. The resulting categorisation of patients 

found that 92% remained stable, 0.3% showed a reliable improvement, 2.8% a clinical 

improvement and 3.6% were considered in remission. In contrast, 0.4% were shown 

to have a recurrence or clinically and statistically significant deterioration; 0.6% a 

clinical deterioration; and 0.1% deterioration. The authors interpret these results in 

light of the relatively low Cronbach alpha and relatively wide standard deviations, 

which made it more difficult to detect clinically significant changes in HoNOS total 

scores. The RCI and clinical cut-offs were also calculated for each care cluster 

individually. The RCI ranged from 0.569 to 0.740, cut-off1 ranged from 9 to 15 and 

cut-off2 ranged from 4 to 8.  

 Data 

The main data set used for the analysis is the MHMDS, which is described in Section 

1.3.1 of Chapter 1. The MHMDS data for 2011/12 and 2012/13 were cleaned to 

remove: duplicate observations, observations with a CRP that did not have 

corresponding HoNOS scores recorded, observations with age coded as less than 18 

years or greater than 110 years, and observations treated by private providers. Our 

final estimation sample is 305,960 CRP observations for 163,611 patients treated by 

57 providers. 
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4.4.1. Health of the Nation Outcome Scales (HoNOS) 

The MHMDS contains data on HoNOS, which is used to measure mental health 

outcomes for our dependent variable(s).  

HoNOS was developed by the Royal College of Psychiatrists’ Research Unit in 

response to a request by the Department of Health in 1993 in order to measure 

progress towards the Health of the Nation target “to improve significantly the health 

and social functioning of mentally ill people” (Wing, Curtis and Beevor 1994). As 

HoNOS forms part of the MHMDS, providers of specialist adult mental healthcare 

are mandated to undertake HoNOS assessments. 

HoNOS is comprised of 12 items, each of which is scored from 0 (no problem) to 4 

(severe problem) giving a total score in the range of 0 (best) to 48 (worst). The 12 

items can also be aggregated into 4 subscales/sections. Table 4.2 describes the 12 

items, 4 subscales and scoring of HoNOS. 
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Table 4.2 Health of the Nation Outcome Scales (HoNOS) items, subscales and 

scoring 

Item Subscales/sections Scoring 

1. Overactive, 

aggressive, disruptive or 

agitated behaviour 

Behaviour (1-3) Each item rated on a 5-

point 

scale: 

0. no problem 

1. minor problem 

requiring no 

action 

2. mild problem but 

definitely 

present 

3. moderately severe 

problem 

4. severe to very severe 

problem 

Scoring yields 

individual item scores, 

subscale scores and a 

total score. 

2. Non-accidental self-

injury 

3. Problem-drinking or 

drug-taking 

4. Cognitive problems Function / Impairment (4-

5) 5. Physical illness or 

disability problems 

6. Problems associated 

with hallucinations and 

delusions 

Symptoms (6-8) 

7. Problems with 

depressed mood 

8. Other mental and 

behavioural problems 

9. Problems with 

relationships 

Social (9-12) 

10. Problems with 

activities of daily living 

11. Problems with living 

conditions 

12. Problems with 

occupation and activities 

Source: Jacobs, R. (2009). Investigating Patient Outcome Measures in Mental Health. 

CHE Research Paper 48. 

Ratings are made by an individual clinician (psychiatrist, nurse, psychologist, or 

social worker) or using a consensus rating. The rating is made on the basis of all 

information available to the clinician and is based on the most severe problem that 

arose during the two weeks leading up to the point of rating. 
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At the very least, a rating should be made at the beginning and end of each episode of 

care. Ratings are also expected to be taken at any regular review (for instance a CPA 

review), when a major change occurs in the patient's condition (such as an admission 

to or discharge from hospital) and on a bi-annual basis for long episodes of care. As 

the HoNOS underpins the MHCT, HoNOS scores will also be recorded when a patient 

changes cluster. 

An outcome measure is obtained by calculating the change in a patient’s ratings at 

two points in time using individual item scores, the subscale scores and the total score 

but follow-up scores are often more difficult to record than baseline scores due to 

issues such as patient access and attendance or staff turnover (Jacobs 2009).  

4.4.2. Risk adjustment covariates 

The risk adjustment variables used in the analysis include demographic, need, 

treatment and social variables. Demographic information covers age, gender, 

ethnicity and marital status. Age ranges from 18 to 110 years and is grouped into five 

categories reflecting quintiles of the distribution in order to capture any non-linearities 

in the relationship with costs and outcomes with age 18-34 years as the reference 

category. Ethnicity is also categorised to represent the main ethnic groups in the data 

– White, Black, Asian and Other with White ethnicity treated as the reference 

category.  Gender is represented by a dummy variable with males equal to one. Need 

is captured by the care cluster a patient is assigned to. This data is categorized 

according to 7 broad groups based on the relationship of care clusters to each other 

(Figure 1.1). We aggregate the individual clusters into these groups in order to make 

interpretation of the coefficients more meaningful. For example, it may be difficult to 

compare the outcomes associated with Cluster 1 (common mental health problems 

(low severity)) with those of Cluster 14 (psychotic crisis). Variables reflecting if a 

patient is under CPA or has been admitted to hospital under the MHA provides 

information on severity and treatment. Information on social circumstances is 

captured in the MHMDS by variables on employment and settled accomodation but 

poor coding discourages the use of these variables. Therefore, we include information 

on social circumstances by constructing a variable using Item 11 of the HoNOS that 

reflects problems with living conditions. This variable takes the form of a dummy 
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variable equal to one if a HoNOS score of ≥2 is recorded for HoNOS Items 11. 

Information on socioeconomic deprivation is captured by including a variable for the 

IMD Income Deprivation Domain (Noble 2008) as described in Section 2.4.3 of 

Chapter 2 and Section 3.3.2 of Chapter 3. We also include dummy variables that 

capture the full time period of the CRP. Observations can have a CRP that: starts in 

2011/12 and ends in 2012/13, starts and ends in 2011/12, or starts and ends in 2012/13. 

These variables are measured differently to those in Chapters 3 and 5 as in the cost 

analyses the time dummy variables act primarily to control for annual fluctuations in 

prices and inflation so it is more appropriate for the variables to capture the year the 

CRP commenced. 

4.4.3. Provider variables 

We include a number of provider-level variables in a sensitivity analysis to investigate 

if there are provider characteristics that are systematically associated with better or 

worse outcomes. These variables include FT status, number of mental health beds and 

bed occupancy. FTs are differentiated from other NHS Trusts as they are autonomous 

legal bodies and have different governance arrangements. They have considerable 

financial independence and do not undergo comparable levels of performance 

management (NHS Choices 2015a). The variable “mental health beds” provides a 

proxy for hospital size. Mental health bed occupancy provides an indication of 

utilisation of available capacity and reflects average mental health bed occupancy 

over a quarterly period from 2010/11 and an annual period for 2009/10. It is 

recommended that mental health bed occupancy rates not exceed 85% to avoid delays 

in admissions that can adversely affect outcomes (Royal College of Psychiatrists 

2011) and therefore necessitate a greater outlay of resources.  

 Methodology  

4.5.1. Multilevel modelling 

As the MHMDS is characterised by a hierarchical structure with CRPs nested within 

patients who are in turn nested within providers, we utilise a multilevel modelling 

approach and compare results from two three-level models of CRPs in patients in 

providers: 1) an ordered probit model; and 2) a linear model. 
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1) Ordered probit model  

We obtain a measure of RCSC in our HoNOS data by defining observations as severe 

if scores of ≥3 in at least one item of HoNOS are recorded in order to determine a 

clinical severity cut-off and subsequently categorise patients into five mutually 

exclusive groups. An ordered probit model is then employed in order to predict the 

probability of a particular outcome in a CRP, conditional on a set of risk adjustment 

variables. We assign a numerical value to each outcome so that: m=1 for reliable and 

clinically significant deterioration, m=2 for reliable deterioration, m=3 for stable, 

m=4 for reliable improvement, m=5 for reliable and clinically significant 

improvement. We assume a natural ordering of the outcomes in that 5 is considered a 

better outcome than 4 and so on. This model is expressed as:   

Yijk = m if κ m-1< y*ijk≤ κ m, m = 1,..,5                        (1) 

The threshold values are unknown and must be estimated from the data. It is not 

possible to identify both the constant term and all of the cut points so the constant 

term is excluded (Woolridge 2010). This threshold model relates the ordinal outcome 

to the underlying latent measure of mental health which is unobservable and will in 

principle be a continuous variable. Instead we observe mental health as measured by 

HoNOS scores which we subsequently interpret in terms of an ordered outcome. 

 

Latent mental health y*
ijk can then be described by the following equation: 

y*
ijk = x’

ijk β + uk + vjk + eijk             (2) 

where xijk is a vector of risk adjustment variables, vjk is the patient random intercept 

and eijk is the random error for CRP i in patient j in provider k and has a zero mean 

and variance of one, eijk ~ (0, 1). The provider effect is captured through uk which is 

assumed to be random with a zero mean and constant variance, uk ~ (0, σ2
u). A similar 

approach has previously been used to measure provider performance on patient 

outcomes in acute physical healthcare (Gutacker et al. 2013b). 

2) Linear model  

We also estimate the following linear model: 
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yijk = αijk + x’
ijk β +uk + vjk + eijk                   (3) 

with the follow-up HoNOS as the dependent variable yijk and the baseline HoNOS 

score included as an additional risk adjustment variable in the vector xijk. 

Coefficients for the linear model can be interpreted as average partial effects; for 

covariates measured as dummy variables the coefficient represents the average effect 

or the change in the follow-up HoNOS score when the independent variable changes 

from zero to one. The coefficients on continuous variables such as the baseline 

HoNOS score and the IMD Income Deprivation variable can be interpreted in terms 

of marginal effects or the change in the follow-up HoNOS score arising from a one 

unit change in the continuous variable. The coefficients of the ordered probit model 

relate to the underlying latent mental health variable which is unobservable and not 

measured in any kind of natural units meaning the coefficients can only be interpreted 

as qualitative effects (Jones 2005). 

4.5.2. Quantifying and comparing provider performance 

Provider performance in both models is illustrated by ranking providers based on their 

relative impact on mental health status as measured by the random effect 𝑢̂k which 

can be quantified using EB techniques. Additionally for the ordered probit model, 

provider performance is compared according to the probability of achieving a specific 

outcome (m=1, 2, 3, 4, 5), given an average set of risk-adjusters:  

Prob (yijk = m| 𝑥̅ = 𝑢̂k = 0) = Φ (κm – 𝑥̅’
ijk β) - Φ (κm-1 – 𝑥̅’

ijk β), κ 0 = -∞,   κ 5 = +∞     (4) 

95% credible intervals are calculated around 𝑢̂k based on their posterior distribution 

in order to compare departures of providers from the average.  

The ordered probit model and associated EB estimates were estimated using the 

gllamm and gllapred commands (Rabe-Hesketh, Skrondal and Pickle 2004) and the 

hierarchical linear model and associated EB estimates were estimated using MLWiN 

2.29 (Rabash et al. 2009) via the runmlwin command (Leckie and Charlton 2012). 

Both models were estimated in Stata 13.0. (StataCorp 2013). 
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4.5.3. Sensitivity Analyses 

We conducted a number of sensitivity analyses to assess the robustness of the models 

to changes in variable construction and estimation sample. Firstly, we code the 

approximately 50% of observations with no information on MHA or CPA as missing 

instead of zero. We coded observations with missing information on MHA and CPA 

as zero as these activities are subject to regulation and scrutiny and we would expect 

that they would be recorded if they had taken place. Secondly, we estimate the three-

level model excluding a provider that is an outlier on follow-up HoNOS scores. 

Thirdly, we include a number of variables at the provider-level to control for provider 

factors that may be associated with patient outcomes. These include provider size as 

measured by the number of available mental health beds, percentage occupancy of 

these beds, and whether the provider has FT status.  

 Results 

4.6.1. Outcome variable 

Following Parabiaghi et al. (2005) we calculated the RCI and clinical severity cut-off 

using the baseline HoNOS scores from the 1,663,894 observations comprising 

583,138 patients treated by 57 NHS Mental Health Trusts that were clustered under 

the NTPS and had a HoNOS score recorded at the beginning (baseline) of a CRP. 

Based on having at least one HoNOS item ≥3, 63% of observations were classified 

as severe. Table 4.3 shows the descriptive statistics of the baseline HoNOS scores for 

the observations classified as severe and non-severe. This shows that observations 

classified as severe had an average total HoNOS score of 14 – over twice the average 

HoNOS score of 6 for observations classified as non-severe. Moreover, the maximum 

total HoNOS score of 24 for the non-severe group of observations was half of the 

maximum total HoNOS score of 48 for the observations classified as severe. 
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Table 4.3 Descriptive statistics of baseline Health of the Nation Outcome Scales 

(HoNOS) scores for severe and non-severe samples 

 Obs Mean Standard 

Deviation 

Min Max 

Non-severe 610,637 6.165 3.643 0 24 

Severe 1,053,257 14.180 5.846 3 48 

 

A Cronbach alpha of 0.7, which is relatively high, resulted in a RCI of 10 and a 

clinical cut-off of 9. This is comparable to Parabiaghi et al. (2011) who report a RCI 

of 8 and a clinical cut-off of 10. This indicates that a change between HoNOS baseline 

and follow-up scores of at least 10 is required for a change to be considered reliable 

(and not due to measurement error or chance) while a change in score of at least 9 is 

required for it to be considered clinically significant. 

 

There was a considerable reduction in the number of observations with HoNOS scores 

recorded at both the beginning (baseline) and end (follow-up) of a CRP. This meant 

that the RCI and CScut-off were applied to only 342,288 observations encompassing 

185,281 patients that had both baseline and follow-up HoNOS scores recorded. This 

resulted in a five-category HoNOS ordered outcome variable as shown in Figure 4.1. 

88% of observations fall into “stable” category while approximately 4% record a 

“reliable deterioration”, a “reliable and clinically significant deterioration” or a 

“reliable and clinically significant improvement”. Less than 1% of observations have 

a “reliable improvement” based on this classification. The proportion of the sample 

categorized as “stable” is comparable to previous studies (Parabiaghi et al. 2005; 

Speak and Hay 2012) in which 92% of the sample was categorized as stable.   
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Figure 4.1 Health of the Nation Outcome Scales (HoNOS) ordered outcome 

variable 

 

4.6.2. Descriptive statistics 

Table 4.4 displays the descriptive statistics for the variables included in the analysis 

with the reference categories in brackets. 

Table 4.4 Descriptive statistics 

Variable [N=305,960] Mean 
Standard 
Deviation 

Min Max 

HoNOS follow-up 11.406 6.480 0 48 

HoNOS baseline 11.404 6.480 0 48 

Ordered HoNOS 2.965 0.572 1 5 

Married/civil partner 0.338 0.473 0 1 

[White ethnicity] 0.892 0.310 0 1 

Asian ethnicity 0.043 0.203 0 1 

Black ethnicity 0.038 0.190 0 1 
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Other ethnicity 0.027 0.163 0 1 

[Age category 1 (18-34)] 0.200 0.400 0 1 

Age category 2 (35-47) 0.210 0.407 0 1 

Age category 3 (48-61) 0.191 0.393 0 1 

Age category 4 (62-78) 0.209 0.407 0 1 

Age category 5 (79+) 0.190 0.392 0 1 

Gender [Female] 0.434 0.496 0 1 

Admitted under the MHA 0.154 0.361 0 1 

Under CPA 0.465 0.499 0 1 

[Cluster: Non-Psychotic Mild, Moderate, Severe 
(Clusters1-4)]  

0.257 0.437 0 1 

Cluster: Non-Psychotic Very Severe and 
Complex (Clusters 5-8) 

0.139 0.346 0 1 

Cluster: Psychosis First Episode (Cluster 10) 0.030 0.171 0 1 

Cluster: Psychosis Ongoing or recurrent 
(Clusters 11-13) 

0.231 0.421 0 1 

Cluster: Psychosis Psychotic Crisis (Clusters 14-
15) 

0.044 0.205 0 1 

Cluster: Psychosis Very Severe Engagement 
(Clusters 16-17) 

0.019 0.136 0 1 

Cluster: Organic Cognitive Impairment (Clusters 
18-21) 

0.254 0.435 0 1 

Problems with Accommodation 0.137 0.344 0 1 

Income Deprivation 18.505 11.915 0 77 

[Year:2011/12] 0.189 0.392 0 1 

Year: 2012/13 0.500 0.500 0 1 

Year: 2011/12 and 2012/13 0.311 0.463 0 1 

Provider-level variables  [N=305,960] 

Foundation Trust (FT) 0.756 0.429 0 1 

Mental Health Beds 564 253 40 1010 

Mental Health Beds Occupancy (%) 88 5 64 100 

 

The total HoNOS score at follow-up ranges from 0 to 48 with a mean of 11. In terms 

of the risk adjustment variables, the baseline total HoNOS score has a similar 

distribution to the follow-up total HoNOS score. Just over one-third of the sample is 

married or has a civil partner. The majority (90%) is of White ethnicity, while Asian, 

Black and Other ethnicities each account for 3-4% of the sample. Age is represented 

by five categories to capture any non-linearities in the relationship between mental 

health outcomes and age. The majority of observations are of female gender with 

males accounting for 44%. Around 15% of observations had an admission under the 

MHA before or at baseline while around 47% of observations were under CPA prior 

to or upon entry to the cluster.  
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The most common clusters in our sample relate to non-psychotic 

mild/moderate/severe (26%), organic cognitive impairment (25%) and psychosis 

ongoing or recurrent (23%). Clusters related to non-psychotic very severe and 

complex account for 14% while clusters for psychosis first episode, psychotic crisis 

and psychosis very severe engagement each account for 4% or less of the sample. 

14% of the sample has problems with accommodation as recorded in baseline HoNOS 

scores. On average, the observations in our sample live in an area where just under 

20% of the population experience income deprivation but this ranges from 0% to 77%. 

Observations include those with a CRP that: starts and ends in 2011/12 (19% of the 

sample); starts and ends in 2012/13 (50% of the sample); and starts in 2011/12 and 

ends in 2012/13 (31% of the sample).  

In terms of provider-level variables, approximately three-quarters of the providers in 

our sample have FT status. The average number of mental health beds is 564 but there 

is considerable variation with this variable ranging from 40 to 1010. Average mental 

health bed occupancy is 88% - just above the recommended rate of 85% (Royal 

College of Psychiatrists 2011), with a minimum occupancy rate of 64% and a 

maximum of 100%.  

4.6.3. Estimation results 

Table 4.5 displays the estimation results of the ordered probit and linear models.  
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Table 4.5 Estimates of ordered probit and linear models 

 Observations per group 

 Number of 
observations Minimum Average Maximum 

Level 3: Provider 57 2 5368 36981 

Level 2: Person 163,611 1 1.9 67 

Level 1: CRP 305,960    

 Ordered probit model Linear model 

 Log likelihood -149096.96 935428.94 

Variable Coefficient 
Standard 

Error 
Coefficient 

Standard 
Error 

HoNOS baseline     0.440 0.002*** 

Married/civil partner 0.031     0.006*** -0.391 0.024*** 

Asian ethnicity -0.009 0.014 -0.086    0.056 

Black ethnicity -0.006 0.015 -0.249 0.061*** 

Other ethnicity -0.012 0.017 -0.041    0.068 

Age category 2 (35-47) -0.006 0.009 0.236 0.035*** 

Age category 3 (48-61) 0.002 0.009 0.241 0.036*** 

Age category 4 (62-78) 0.042     0.010*** -0.348 0.039*** 

Age category 5 (79+) 0.049     0.012*** -0.359 0.045*** 

Gender -0.030     0.006*** 0.256 0.022*** 

Admitted under the MHA -0.109     0.008*** 0.813 0.034*** 

Under CPA -0.026     0.006*** 0.633 0.024*** 

Cluster: Non-Psychotic Very 
Severe and Complex (Clusters 
5-8) 

-0.065     0.009*** 1.315 0.033*** 

Cluster: Psychosis First 
Episode (Cluster 10) 

0.007 0.017 -0.279 0.062*** 

Cluster: Psychosis Ongoing or 
recurrent (Clusters 11-13) 

0.033     0.008*** -0.412 0.030*** 

Cluster: Psychosis Psychotic 
Crisis  
(Clusters 14-15) 

-0.129      0.014*** 1.303 0.051*** 

Cluster: Psychosis Very 
Severe Engagement (Clusters 
16-17) 

-0.149     0.020*** 1.734 0.075*** 

Cluster: Organic Cognitive 
Impairment (Clusters 18-21) 

-0.022  0.010* 0.513 0.037*** 

Problems with Accommodation 0.211     0.008*** 0.104    0.032** 

Income Deprivation -0.001     0.000*** 0.016 0.001*** 

Year: 2012/13 -0.005 0.008 0.042    0.026 

Year: 2011/12 and 2012/13 -0.012 0.008 -0.156 0.028*** 

Constant     5.622 0.116*** 

κ1 -1.881   0.014***     

κ2 -1.511   0.014***     

κ3 1.784   0.014***     

κ4 1.830     0.014***     

Random-effects Parameters         

Level 3 0.132   0.013*** 0.570 0.119*** 
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***p<0.001, **p<0.01, *p<0.05 

Variables with the same qualitative meaning have opposite signs due to the different 

dependent variables in the ordered probit and linear models. For the ordered HoNOS 

variable, the values are in ascending order which means a positive coefficient signifies 

a better outcome. In the linear model, the follow-up HoNOS variable is measured on 

a continuous scale from 1 (best) to 48 (worst) meaning that an increase signifies a 

worse outcome.  

The results from both models show that variables associated with better mental health 

outcomes include married/civil partner, the two oldest age categories, allocation to 

the cluster for a first episode of psychosis (relative to non-psychotic 

mild/moderate/severe), and allocation to the cluster for ongoing or recurrent 

psychosis (relative to non-psychotic mild/moderate/severe). Additionally, in the 

linear model Black ethnicity is associated with a reduction in follow-up HoNOS 

scores of 0.25 points, thus positively associated with mental health outcomes. 

Variables associated with worse mental health outcomes in both models include male 

gender, admission under the MHA, having care co-ordinated under CPA, allocation 

to a cluster for 1) non-psychotic illness that is very severe and complex; 2) psychotic 

crisis; 3) psychosis very severe engagement; and 4) cognitive impairment (all relative 

to allocation to a cluster for non-psychotic mild/moderate/severe) and income 

deprivation. The linear model reveals that allocation to clusters for very severe and 

complex non-psychotic disorders and psychotic crisis is associated with an increased 

follow-up HoNOS of 1.3 points; while allocation to clusters for psychosis with very 

severe engagement is associated with an increase in follow-up HoNOS of almost 2 

points. Moreover, in the linear model the baseline HoNOS score and age categories 2 

and 3 variables are positively associated with the follow-up total HoNOS score and 

therefore associated with a worse mental health outcome. A one-unit increase in 

baseline HoNOS scores is associated with an increase of 0.44 points in follow-up 

HoNOS scores, while an age of 35 years or over is associated with an increase in the 

follow-up HoNOS score of around 0.24 points compared to an age of 18 to 34 years. 

The results for the variable capturing problems with accommodation were 

Level 2 0.044   0.004*** 5.378 0.071*** 

Level 1     21.888 0.076*** 
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inconsistent between the two models, having a positive association with mental health 

outcomes in the ordered probit model but a negative association in the linear model. 

The threshold values from the ordered probit model imply that a value of the latent 

mental health variable less than -1.881 corresponds to an outcome of “reliable and 

clinically significant deterioration”; a value between -1.881 and -1.511 corresponds 

to “reliable deterioration”; a value between -1.511 and 1.784 corresponds to  “stable”; 

a value between 1.784 and 1.830 corresponds to “reliable improvement”; and a value 

above 1.830 corresponds to “reliable and clinically significant improvement”.  

4.6.4. Provider performance 

Around 11% of the residual variation in latent mental health unexplained by the risk 

adjustment variables in the ordered probit model lies at provider-level. Around 2% of 

the variation in the follow-up total HoNOS scores not accounted for by the risk 

adjustment variables in the linear model lies at provider-level. The EB estimates of 

this residual variation are plotted in Figure 4.2 for the ordered probit model and Figure 

4.3 for the linear model with providers on the right performing better than those on 

the left in both figures. The figures show that a considerable number of providers 

(with intervals that do not encompass zero) perform better or worse than average. A 

larger degree of variation in the EB estimates from the linear model likely reflects the 

higher level of variation in the response variable.  
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Figure 4.2 Empirical Bayes (EB) estimates of provider-level residual variation 

for ordered probit model 

 

Figure 4.3 Empirical Bayes (EB) estimates of provider-level residual variation 

for linear model 
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For the model with the ordered outcome HoNOS variable, an alternative means of 

comparing provider performance is in terms of the cumulative probability of reporting 

a particular outcome for the average patient by provider. Figure 4.4 plots the 

cumulative probability of reporting an outcome (m=1,2,3,4,5) where providers on the 

left perform better than those on the right and we can see for example, that the 

probability of reporting the outcome of “reliable and clinically significant 

deterioration” (m=1) ranges from 2% to 9% while the probability of reporting the 

oucome of “reliable deterioration” (m=2) ranges from 5% to 16%.  

Figure 4.4 Cumulative probability of reporting an outcome by provider 

 

4.6.5. Sensitivity analyses 

Observations with missing values of CPA or MHA were dropped from the estimation 

resulting in a reduced estimation sample of 144,063 observations with 92% of 

observations being subject to CPA and 33% admitted under the MHA. The results are 

robust to this coding change with the exception of CPA which has a positive 

association with mental health outcomes in both the ordered probit and linear models. 
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The large percentage (92%) of observations subject to CPA in this sensitivity analysis 

may have overestimated the effect.  

The results of the linear model without the provider that emerged as an outlier in the 

EB estimates remain robust with the exception of year 2012/13 which became 

statistically significant at a 0.1% level. 

Table 4.6 shows the estimation results with provider-level variables included.  

Table 4.6 Estimates from sensitivity analysis including provider-level variables 

 Observations per group 

 
Number of 

observations Minimum Average Maximum 

Level 3: Provider 57 2 5367.7 36981 

Level 2: Person: 163,611 1 1.9 67 

Level 1: CRP: 305,960    

 Ordered Probit Model Linear Model 

Log-likelihood -149097.8 -935432.13 

Variable Coefficient Standard Error Coefficient 
Standard 

Error 

HoNOS baseline   0.440     0.002*** 

Married/civil partner 0.031     0.006*** -0.391     0.024*** 

Asian ethnicity -0.009 0.014 -0.086 0.056 

Black ethnicity -0.006 0.015 -0.249     0.061*** 

Other ethnicity -0.012 0.017 -0.042     0.068*** 

Age category 2 (35-47) -0.006 0.009 0.236     0.035*** 

Age category 3 (48-61) 0.002 0.009 0.241     0.036*** 

Age category 4 (62-78) 0.042     0.010*** -0.348     0.039*** 

Age category 5 (79+) 0.049     0.012*** -0.359     0.045*** 

Gender -0.030     0.006*** 0.256     0.022*** 

Admitted under Mental Health 
Act (MHA) 

-0.109     0.008*** 0.814     0.034*** 

Under Care Programme 
Approach (CPA) 

-0.026    0.006*** 0.632     0.024*** 

Cluster: Non-Psychotic Very 
Severe and Complex 
(Clusters 5-8) 

-0.065     0.009*** 1.315     0.033*** 

Cluster: Psychosis First 
Episode (Cluster 10) 

0.006 0.017 -0.279     0.062*** 

Cluster: Psychosis Ongoing or 
recurrent (Clusters 11-13) 

0.032    0.008*** -0.412     0.039*** 

Cluster: Psychosis Psychotic 
Crisis (Clusters 14-15) 

-0.129    0.014*** 1.303     0.051*** 



127 

 

Cluster: Psychosis Very 
Severe Engagement (Clusters 
16-17) 

-0.149    0.020*** 1.734     0.075*** 

Cluster: Organic Cognitive 
Impairment (Clusters 18-21) 

-0.022 0.010* 0.514      0.037*** 

Problems with 
Accommodation 

0.211     0.008*** 0.104     0.032** 

Income Deprivation -0.001     0.000*** 0.016     0.001*** 

Year: 2012/13 -0.006 0.008 0.042 0.026 

Year: 2011/12 and 2012/13 -0.013 0.008 -0.157     0.028*** 

Foundation Trust (FT) 0.009 0.013 -0.129 0.231 

Mental Health Beds (size) 0.000     0.000*** 0.000 0.000 

Bed Occupancy (%) -0.004  0.001* 0.023 0.016 

Constant   3.698 1.431* 

κ1 -2.086   0.131***     
κ2 -1.716   0.131***     
κ3 1.580   0.131***     
κ4 1.626   0.131***     
Random-effects Parameters         

Level 3 0.131   0.013*** 0.542   0.113*** 

Level 2 0.044   0.004*** 5.379   0.071*** 

Level 1     21.887   0.076*** 

 

Results at the CRP- and patient-level are stable and similar to those presented in Table 

4.5. Mental health beds have a positive association with mental health outcomes in 

the ordered probit model while mental health bed occupancy is associated with worse 

outcomes in the same model. The threshold values from the ordered probit model now 

imply that a value of the latent mental health variable less than -2.086 corresponds to 

an outcome of “reliable and clinically significant deterioration”; a value between -

2.086 and -1.716 corresponds to “reliable deterioration”; a value between -1.716 and 

1.580 corresponds to “stable”; a value between 1.580 and 1.626 corresponds to 

“reliable improvement”; and a value above 1.626 corresponds to “reliable and 

clinically significant improvement”.  

 Discussion and conclusions 

The introduction of the NTPS to mental health brings with it a future objective of 

linking some part of provider payment to patient outcomes. This presents a ripe 

opportunity to investigate the relationship between provider performance and patient 
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outcomes in order to inform the policy context of the NTPS for mental health. The 

MHMDS offers a comprehensive repository of data related to the NTPS for mental 

health including patient cluster, outcomes, demographic and treatment variables. The 

availability of this data set provides an ideal resource to apply the RCSC concept in 

order to compare the performance of English mental health providers based on patient 

outcomes. The use of multilevel modelling is innovative compared to previous studies 

in mental health and enables us to utilise the hierarchical structure of this data set to 

make inferences about the influence of different levels on outcomes. Thus, it 

complements recent work on risk adjustment and comparisons of provider 

performance using PROMS for elective surgery in England (Gutacker et al. 2013b) 

and makes an important contribution to the relative lack of evidence in the area of 

mental health.   

A stated goal of the NTPS for mental health is to link some element of payment to 

delivering particular outcomes, but this remains challenging and firm proposals on 

how this will be achieved have not yet been outlined (Department of Health Payment 

by Results team 2013b). Nevertheless, the use of a CROM based on HoNOS has been 

recommended for use (Department of Health Payment by Results team 2013b; 

Monitor and NHS England 2013a) and a calculation of the clinical significance of 

changes in total HoNOS scores such as that employed in this analysis could be used 

to evaluate changes in outcomes arising from treatment (Department of Health 

Payment by Results team 2013b; Speak and Hay 2012). Our findings suggest that it 

is feasible for providers to achieve clinically and statistically significant changes in 

outcomes during CRPs and there is potential to improve outcomes by linking payment 

to patient needs. A part of provider’s payment could then be made contingent on 

achieving certain benchmarks measured by changes in HoNOS scores relating to 

clinical improvement. This would mean that providers that are in a position to achieve 

better outcomes as highlighted by this analysis would stand to gain financially if 

payment were linked to outcomes in this way. However, the potential unintended 

consequences of using a CROM as part of a payment system should be guarded 

against as clinicians may have incentives to ‘game’ the recording of outcomes for 

financial gain. A policy consideration may include ways in which data quality could 

be audited, although this may be difficult to do since clinical judgement underpins the 

outcome assessment. 
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While the proportion of the sample categorized as “stable” may appear high (88%), it 

is comparable to previous studies (Parabiaghi et al. 2005; Speak and Hay 2012) in 

which 92% of the sample was categorized as stable. Moreover, for some diagnoses of 

severe mental illness such as schizophrenia, exhibiting stability can be viewed as a 

favourable outcome as research has indicated that for example, it is rare to observe 

significant change in schizophrenia illness among patients treated on an outpatient 

basis (Miles et al. 2014). However, the lack of diagnostic information in the MHMDS 

prevents us from stratifying the different outcomes by diagnosis. Given the chronic 

nature of mental illness, the large proportion of patients with a stable outcome may 

also signal that longer time periods may be needed to realize improvements in 

outcomes. The Cronbach alpha of 0.7 for the baseline HoNOS scores showed a 

reasonable level of consistency in clinician ratings. A higher Cronbach alpha and 

narrower standard deviations would improve the model’s sensitivity to change and 

result in more observations being classified as reliably and clinically significant. 

Nevertheless, it has been noted that Cronbach’s alpha tends to underestimate 

reliability and is affected by the number of items in a given measure (Speak and Hay 

2012) so a Cronbach alpha of 0.7 should not necessarily be viewed negatively. 

We find that demographic variables describing age and married/civil partner have a 

positive association with our outcome variables. Older people may experience better 

outcomes as the positive symptoms of some serious mental illnesses such as 

schizophrenia tend to diminish with age (Hendryx, Dyck and Srebnik 1999) while 

social support may also improve outcome. Our finding that CPA is associated with 

worse outcomes may reflect that those on CPA have an enduring and severe mental 

disorder and thus this variable may be picking up aspects of illness severity that we 

are unable to control for due to the absence of diagnosis variables in our model. The 

positive association between HoNOS outcomes and problems with accommodation 

may suggest that this variable does not adequately capture issues of unsettled housing 

or homelessness. Patients who are admitted under the MHA are likely to be more 

severely ill which may reduce the probability of experiencing a better outcome 

although involuntary status may be more representative of high acuity at admission 

rather than greater severity of illness over time (Hermann, Rollins and Chan 2007). 

The sensitivity analysis including provider variables revealed a positive association 
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between provider size as measured by number of mental health beds and outcomes. 

This supports previous work that found a positive relationship between mental health 

volume and performance that parallels the medical and surgical literature (Druss et al. 

2004). 

While it is important to control for patient need as reflected in cluster assignment, it 

is somewhat difficult to interpret the results pertaining to the cluster variables in this 

analysis as the non-psychotic mild/moderate/severe clusters are not necessarily 

suitable benchmarks for clusters relating to psychosis or cognitive impairment. 

Ideally, we would like to compare clusters within the broad categories of non-

psychotic, psychotic and organic and future work needs to incorporate more suitable 

benchmarks for cluster comparisons. 

A limitation to our set of risk adjustment variables is the inability to include 

information on primary diagnosis due to poor coding of this variable in the MHMDS. 

This may be due to the difficulty of making a definitive diagnosis in mental healthcare 

(Timimi 2014); a reluctance on the part of clinicians to label patients as suffering from 

a particular mental disorder – in part due to stigma associated with mental illness 

(Ben-Zeev, Young and Corrigan 2010; Sartorius 2002; Timimi 2014); and that 

diagnosis may not necessarily inform treatment decisions that influences outcomes 

(Timimi 2014). Nevertheless, “the proportion of users who have a valid ICD10 

recorded” is among the quality indicators recommended for use by commissioners 

and providers in drawing up contracts to enable the evaluation of the quality and 

outcomes of services delivered by providers (Department of Health Payment by 

Results team 2013b). The uptake of this indicator could lead to improved coding of 

diagnosis in the MHMDS and it would be important to test diagnosis as a risk 

adjustment variable in future work should this become feasible. 

Our risk adjustment methodology is also limited by the inability to include 

information on the clinical severity of mental illness and the goal of treatment which 

would subsequently affect the outcome. For example, two patients may have the same 

risk profile but the current goal for one of them is acute management of their 

symptoms while for the other the current goal is rehabilitation and functional gain. 
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Another limitation of this work is that it does not account for missing data which is 

an issue for the HoNOS records in the MHMDS. As highlighted in Section 4.4.1, 

follow-up HoNOS scores may be more challenging to record than baseline scores and 

this results in missing data and an inability to measure outcomes. Concerns regarding 

compliance with mental health outcome reporting requirements have been 

documented internationally (Trauer 2010c). The reasons for low rates of completion 

include: poor data quality, lack of adequate IT support, limited systematic training of 

staff, lack of clinician engagement due to time pressures as a result of high caseloads, 

and a perceived lack of benefits of outcome measurement. Commonly, outcome 

measurement is seen as a managerial or administrative exercise which has little direct 

impact on frontline services (Trauer 2010c). This has led to a recognition of the need 

to differentiate the use of outcome measures for research and audit versus use for 

direct clinical care. Promoting outcome measures as a means of shared decision 

making rather than as tools primarily used for audit or performance review will help 

to promote greater clinician engagement and uptake of outcome measures (Wolpert 

2014). This will ensure that the outcome data underpinning funding and 

reimbursement systems is of good quality (Trauer 2010a) – an important contributer 

to the success of such systems. 

 

Missing data can be considered missing completely at random (MCAR) missing at 

random (MAR) or missing not at random (MNAR) (Bartlett and Carpenter 2013). 

Data is MCAR if the probability of observations being missing is independent of the 

variables of interest in the model. Data can be considered MAR when the chance of 

observing the variable for an observation may depend on the underlying value of that 

variable, but given the observed data, this association no longer holds. For data to be 

MNAR, the probability of the value of a variable being missing for a particular 

observation depends on the observation’s underlying value of that variable. For the 

MHMDS data, HoNOS may be MNAR if patients with more severe mental health 

problems are more likely to drop out of care and be lost to follow-up. As HoNOS is a 

clinician-rated measure, missing follow-up HoNOS scores may also be indicative of 

the quality of provider coding practices (which in turn may be associated with 

provider performance) and be considered MNAR. There is some evidence to suggest 

that routine use of outcome measures in mental healthcare is associated with aspects 

of provider performance in terms of reduced psychiatric inpatient admissions (Slade 
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et al. 2006). In acute care, inferences about relative provider performance are sensitive 

to the assumptions made about the reasons for missing data on PROMs (Gomes et al. 

2015). 

While assumptions regarding the missing data mechanism can be ascertained from 

the data under study, these assumptions cannot be definitively verified from the 

observed data (Bartlett and Carpenter 2013). The issue of missing data could be 

addressed using multiple imputation which involves the generation of multiple 

imputed data sets which, conditional on the missingness assumption, correctly reflect 

the distribution of the missing data given the observed data. The model of interest is 

then fitted to each imputed data set and the results of all the iterations are averaged – 

for example using Rubin’s rules (Rubin 1987) – for the final inference.  

The issues of data completeness and data quality highlighted above may be partly 

explained by our usage of data for 2011/12 and 2012/13 which cover the initial years 

of the development and implementation of the NTPS in mental health. The allocation 

of patients to care clusters commenced in 2011 and the mandatory use of the clusters 

as the basis for contracting mental health services for working-age and older adults 

was introduced only in 2012. 

 

Finally, we do not take account of provider costs associated with CRPs and it may be 

that providers associated with better outcomes are also associated with higher costs. 

As the NTPS for mental health introduces incentives for providers to control costs, it 

may become more challenging for providers to maintain good performance in relation 

to outcomes. Chapter 5 considers potential trade-offs between provider costs and 

outcomes. 

This research will be of interest to policymakers not only in England but also further 

afield. We make an important contribution to the small evidence base on the 

performance assessment of mental healthcare providers in relation to outcomes and 

provide evidence to inform the continual refinement of the NTPS in mental 

healthcare. Previous international attempts to develop psychiatric classification 

systems for the purposes of provider benchmarking and reimbursement have achieved 

varying degrees of success (Mason and Goddard 2009) and this research adds to the 
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existing evidence base. Our results suggest that some providers are more likely to 

achieve better outcomes for patients with an average set of risk-factors. This implies 

that if the objective of linking some element of provider payment to outcomes is 

realised, these providers will stand to benefit from the new financial regime, whilst 

others may lose.  
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Chapter 5. Investigating the relationship between costs 

and outcomes for English mental health providers: A 

bivariate multilevel regression analysis 

 Introduction 

The aim of this chapter is to investigate the relationship between costs and outcomes 

for mental health providers in England to ascertain if incentives to control costs 

provided by the new payment system can be achieved without negatively affecting 

patient outcomes. As outlined in Section 1.2.2 in Chapter 1, a fixed national price can 

encourage providers to control costs in order to avoid financial losses and create 

surpluses. However, there is a risk that cost control may be achieved by reducing care 

quality. We estimate a multilevel bivariate model with costs and outcomes as 

responses and include a comprehensive set of risk adjustment covariates 

encompassing sociodemographic, need and treatment variables. We calculate the 

correlation in residual variation in costs and outcomes at the provider-level and plot 

the pairwise relationship between residual costs and outcomes for the providers in our 

sample. 

Chapters 3 and 4 have investigated variations in costs and outcomes across English 

mental health providers separately and shown evidence of variations in performance 

as reflected in above-average residual costs and below-average residual outcomes. 

These differentials in performance may be due to not taking account of the 

relationship between costs and outcomes. Providers with above-average costs may be 

associated with above-average outcomes and vice versa. Examining the relationship 

between costs and outcomes is challenging due to endogeneity in the form of reverse 

causality: providers who spend more may produce better outcomes, but outcomes may 

also drive costs as patients with worse outcomes may consume more resources. A 

potential way to control for this endogeneity is to use an instrumental variable 

approach but data on a suitable instrumental variable is lacking in this context. 

Therefore, we do not attempt to estimate the causal relationship between costs and 

outcomes; rather we investigate the correlation between the residual variation in costs 

and outcomes for providers, after controlling for a range of risk adjustment variables. 
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We contribute to existing evidence in several ways. To the best of our knowledge, 

this chapter is the first to use a multilevel bivariate model to examine both mental 

health cost and outcome responses separately and simultaneously and calculate the 

correlation in residual variation between two responses. Our use of multilevel 

methods allows us to isolate the residual variation in costs and outcomes that can be 

attributed to providers while the estimation of a provider effect gives a quantifiable 

measure of provider performance. Moreover, while previous studies in mental health 

have used data with limited geographical or provider samples, we use a nationally-

representative data set that contains data for all specialist mental health providers in 

England. This means that we can examine costs and quality for both admitted and 

non-admitted care and are not constrained to just one care setting as in several 

previous studies.  

 Literature Review 

5.2.1. Review of literature on the relationship between costs and quality 

in mental healthcare 

We searched a number of databases including PubMed, EconLit, Embase, Ovid 

MEDLINE, PsychINFO with the following search terms: “mental health”, 

“psychiatry”, “costs”, “expenditures”, “outcomes”, “performance” and “efficiency”. 

We found just four studies (Dickey and Normand 2004; Haas et al. 2013; Hendryx 

2008; Schulz, Greenley and Peterson 1983) that examined the relationship between 

costs and quality in mental healthcare. The majority of the studies are based in the US 

(Dickey and Normand 2004; Hendryx 2008; Schulz, Greenley and Peterson 1983), 

with the exception of one study from Germany (Haas et al. 2013). These studies are 

summarised in Table 5.1. 
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Table 5.1 Literature on the relationship between costs and quality in mental 

healthcare 

Sample Dependent 

variable 

Independent 

variables 

Method Results 

(Schulz, Greenley and Peterson 1983) 

13 inpatient 

acute 

psychiatric 

units located 

in one US 

state: 6 in 

community 

general 

hospitals and 

7 in public 

county-

controlled 

specialty 

hospitals. 

Cost per stay 

(covering only 

direct 

expenditures); 

staff’s 

perception of 

the relative 

quality of the 

unit compared 

with other units. 

Environmental, 

patient, 

institution, 

professional, and 

management 

characteristics. 

Modified case 

approach, 

comparing unit 

characteristics 

across four 

quality and 

cost outcome 

categories: 

higher quality 

and lower cost; 

higher quality 

and higher 

cost; lower 

quality and 

lower cost; 

lower quality 

and higher 

cost. 

The 13 units 

were almost 

equally 

distributed 

between the 

four groups. 

The four 

groups 

appeared to 

differ 

according to 

management 

characteristics

. 

(Dickey and Normand 2004) 

Patients who 

had visited 

one of 8 

psychiatric 

emergency 

screening 

teams (EST) 

in one US 

state. 

Care was 

labelled 

“better” 

(“poorer”): if 

the mean 

monthly 

medication dose 

was within 

(above) the 

recommended 

guideline dose 

range and 

patients with a 

record of 

substance abuse 

received (did 

not receive) 

treatment.  

Mental health 

costs in terms of 

health benefits 

paid for by state 

and federal 

government 

through the 

Medicare and 

Medicaid 

programs; 

Outcomes 

measured by 

self-reported 

health-related 

quality of life, 

psychiatric and 

substance use 

problems and 

medication side 

effects. 

Descriptive 

summaries of 

cost data. 

Statistical 

analysis of the 

socio-

demographic 

and outcome 

data. 

Patients in the 

“poorer care” 

group had 

higher 

treatment 

expenditures 

and more side 

effects. No 

statistical 

difference 

between the 

two groups 

was found for 

self-reported 

problems and 

mental health-

related quality 

of life. 
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(Hendryx 2008) 

All US states 

as well as 

Washington, 

D.C.   

21 performance 

measures 

covering: 1) 

access to 

information and 

services; 2) 

availability of 

recovery 

supports; 3) 

social 

circumstances; 

4) readmission 

rates; 5) patient-

reported 

experience and 

outcome 

measures; 6) 

inpatient 

hospitalisations

; 7) morbidity; 

8) mortality 

(suicide rates); 

9) forensic 

mental health; 

10) workforce 

development. 

Mental health 

expenditures on 

a per capita and 

per client basis; 

mean state per 

capita income; 

severity of 

illness. 

Correlation 

analysis; linear 

multiple 

regression 

analysis, 

hierarchical 

models using 

generalized 

estimating 

equations with 

a robust 

variance 

estimation. 

 

After 

adjusting for 

state income 

and illness 

severity, no 

statistical 

relationship 

was found for 

17 of the 21 

performance 

measures. 

(Haas et al. 2013) 

101 patients 

from a 

university 

teaching 

hospital in 

Berlin with a 

main 

diagnosis of 

somatoform 

pain disorder 

according to 

ICD-10. 

Change in the 

Mental Health 

Component of 

the Short Form- 

8 (MCS-8). 

Mental health 

costs; patient 

characteristics; 

sociodemograph

ic variables; 

pain-related 

variables; 

comorbidities; 

and subjective 

illness 

attribution. 

Minimal 

clinical 

important 

difference 

(MCID); the 

omitted 

variable 

version of 

Hausman test; 

OLS 

regression. 

A trade-off 

between costs 

and outcome 

was found 

only for 

patients 

without or 

with only 

minor somatic 

illness 

attribution 

(77% of the 

sample).   

 

The studies used data on patients treated in inpatient settings only (Haas et al. 2013; 

Schulz, Greenley and Peterson 1983) or on an outpatient basis with no psychiatric 
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inpatient episodes during the study period (Dickey and Normand 2004). In contrast, 

Hendryx (2008) conducted a state-level analysis that included all US states as well as 

Washington, D.C.   

All four studies used some measure of quality of care as the main variable(s) of 

interest. Independent variables included environmental, patient, institution, 

professional, and management characteristics (Haas et al. 2013; Schulz, Greenley and 

Peterson 1983) as well as costs (Dickey and Normand 2004; Haas et al. 2013), and 

expenditures on mental health (Hendryx 2008), outcomes (Dickey and Normand 

2004), and mean state per capita income and severity of illness (Hendryx 2008). The 

studies employed various methods including primarily descriptive as well as 

statistical depending on the sample size. Statistical analyses included correlation 

analyses and multilevel modelling (Hendryx 2008) as well as linear regression (Haas 

et al. 2013; Hendryx 2008).  

The studies found some evidence of a trade-off between costs or expenditure and 

outcomes but this is restricted to certain measures of quality or patient populations. 

Dickey and Normand (2004) found that patients associated with poorer care had 

higher psychiatric unadjusted treatment expenditures and higher pharmacy costs 

compared to their “better care” counterparts but medical care expenditures were 

comparable between the two groups. Hendryx (2008) found that higher spending was 

associated with better quality of care in terms of access and lower rates of 

incarceration. Haas et al. (2013) found a trade-off between costs and outcome for 

patients without or with only minor somatic illness attribution (77% of the sample).  

The studies were characterized by several limitations including a small sample size 

(Dickey and Normand 2004; Haas et al. 2013; Hendryx 2008; Schulz, Greenley and 

Peterson 1983) which limits the analytical methods that could be employed and 

generalizability of study findings; and data limitations, for example the data sourced 

from medical records could be considered incomplete and not include all relevant 

variables (Dickey and Normand 2004); and performance measures collected across 

geographical entities (i.e. states in the US) may be inconsistently collected and 

reported (Hendryx 2008). 
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5.2.2. Review of literature on the relationship between costs and quality 

in acute physical healthcare 

We also identified a number of studies (Carey and Burgess 1999; Gutacker et al. 

2013a; Hvenegaard et al. 2011; Schreyogg and Stargardt 2010; Weech-Maldonado, 

Shea and Mor 2006) that examined the relationship between cost and quality in non-

mental healthcare through a separate literature search. These studies are summarised 

in Table 5.2. 

Table 5.2 Literature on the relationship between costs and quality in acute 

physical healthcare 

Sample Dependent 

variable 

Independent 

variables 

Method Results 

(Carey and Burgess 1999) 
137 non-

psychiatric VA 

hospitals for the 

six fiscal years 

of 1988 to 

1993. 

Annual total 

variable cost, 

excluding the 

cost of 

physicians and 

dentists and 

the costs of 

long-term 

care. 

Risk-adjusted 

mortality within 

30 days of 

discharge and 

readmission 

rates within 14 

days of 

discharge; 

outpatient 

follow-up 

(patients not 

seen) within 30 

days after 

inpatient 

discharge; 

output 

measures; input 

prices; number 

of beds; and 

teaching status.  

Instrumental 

variables: 

lagged 

measures of 

quality. 

OLS and 

Two Stage 

Least 

Squares 

(2SLS) 

equations 

estimated 

for each year 

of data 

separately.  

A positive 

relationship 

between cost 

and the 

measures of 

quality. For 

mortality and 

readmission, 

this is likely a 

result of 

inadequate 

risk 

adjustment 

with quality 

measures also 

controlling for 

severity. 

(Weech-Maldonado, Shea and Mor 2006) 
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749 nursing 

homes in five 

US states. The 

nursing homes 

all participated 

in the Centers 

for Medicare 

and Medicaid 

Services’  

Multi-State 

Casemix and 

Quality 

Demonstration 

in 1996. 

 

Log of a 

facility’s total 

patient care 

costs. 

Pressure ulcers 

worsening 

(physical 

outcome); 

mood decline 

(psychosocial 

outcome); 

casemix; output 

measures; input 

prices; 

occupancy rate; 

and measures of 

competition.  

Instrumental 

variables: cost 

and quality 

county-level 

variables 

associated with 

demand of 

nursing home 

care. 

Weighted 

least squares 

with weights 

equal to the 

inverse of 

the square 

root of the 

total number 

of facility 

residents. 

Pressure 

ulcers: 

increasing 

(decreasing) 

costs at the 

lower (higher) 

range of 

quality. Mood 

decline: a 

relatively flat 

curve at the 

lower range of 

quality but 

increasing 

costs after a 

threshold. 

(Schreyogg and Stargardt 2010) 

35,279 patients 

from 115 VHA 

hospitals with 

an index 

admission 

during which a 

primary 

diagnosis of 

AMI was made 

during the years 

2000-2006.   

Individual 

level costs 

incurred 

during the 

inpatient stay. 

Risk-adjusted 

mortality and 

readmission 

rates one year 

after discharge 

for the index 

hospitalization; 

casemix; 

number of beds; 

number of 

patients treated; 

teaching status.  

Instrumental 

variables: 

Medicare Wage 

Index and 

general 

overhead costs 

per day at the 

hospital level. 

Two-stage 

model: 1) a 

generalized 

linear mixed 

model with a 

gamma 

distribution 

and a log-

link; 2) 

multilevel 

random-

effects 

proportional 

hazard 

models for 

mortality 

and 

readmission 

including 

actual costs 

and 

residuals 

from the 

first-stage.  

A highly 

significant 

negative 

association 

between costs 

and quality 

(mortality and 

readmission 

conditional on 

not dying). 
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(Hvenegaard et al. 2011) 

All (3,754) 

patients 

admitted for 

vascular 

surgery in six 

(of eight) 

Danish vascular 

departments. 

Individual 

level costs 

incurred 

during the 

inpatient stay. 

Risk-adjusted 

mortality within 

30 days of 

discharge; 

wound 

complications; 

patient 

demographic, 

casemix, and 

treatment 

variables. 

Fixed effect 

models for 

costs 

(linear) and 

quality 

(logistic). 

Provider 

cost and 

quality 

effects 

measured as 

the 

difference 

between 

observed 

and 

expected 

cost and 

quality. 

Providers 

ranked 

according to 

a cost-

quality ratio 

(provider 

cost effect 

divided by 

the quality 

effect). 

Lower costs 

were 

associated 

with higher 

mortality with 

some evidence 

of a U-shaped 

relationship 

between costs 

and mortality 

but no clear 

association 

between costs 

and wound 

complications. 

(Gutacker et al. 2013a) 

Individual-

level data for 

four surgical 

procedures (hip 

replacement, 

knee 

replacement, 

varicose vein 

and groin 

hernia) from a 

minimum of 

125 (for 

varicose veins) 

to a maximum 

of 147 (for 

Individual 

level costs 

incurred 

during the 

inpatient stay. 

PROMs; patient 

demographic; 

casemix and 

treatment 

variables; 

number of 

patients treated; 

teaching status; 

provider 

specialisation. 

Multilevel 

linear model 

with costs 

on natural 

scale. 

Provider 

random 

effects were 

used to rank 

providers in 

terms of 

cost-

containment 

performance 

with and 

without 

A non-linear 

association 

between 

health 

outcomes and 

risk-adjusted 

costs was 

found for hip 

replacement 

surgery. 

Controlling 

for quality 

resulted in a 

significant 

improvement 

in relative cost 

performance 
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hernia) 

hospitals. 

quality 

controls. 

for some 

hospitals. 

 

A common feature of these studies is that they use administrative data to study the 

relationship between costs and outcomes. The dependent variable in all studies is cost 

but studies vary in what measure of cost is used. In two studies (Carey and Burgess 

1999; Weech-Maldonado, Shea and Mor 2006) cost is measured at the aggregate 

provider-level while the other three studies (Gutacker et al. 2013a; Hvenegaard et al. 

2011; Schreyogg and Stargardt 2010) use individual level costs. 

The most common measures of quality used are risk-adjusted mortality (Carey and 

Burgess 1999; Hvenegaard et al. 2011; Schreyogg and Stargardt 2010) and 

readmission rates (Carey and Burgess 1999; Schreyogg and Stargardt 2010). While 

two studies use mortality within 30 days of discharge (Carey and Burgess 1999; 

Hvenegaard et al. 2011), another (Schreyogg and Stargardt 2010) used mortality one 

year after discharge for the index hospitalization. Readmission rates also had different 

time frames: within 14 days of discharge (Carey and Burgess 1999) and within one 

year of discharge (Schreyogg and Stargardt 2010). Other quality measures included 

PROMs (Gutacker et al. 2013a); outpatient follow-up within 30 days after inpatient 

discharge (Carey and Burgess 1999); wound complications (Hvenegaard et al. 2011); 

and pressure ulcers worsening (physical outcome) and mood decline (psychosocial 

outcome) (Weech-Maldonado, Shea and Mor 2006).   

Given the concerns about endogeneity between costs and quality measures, a number 

of studies (Carey and Burgess 1999; Schreyogg and Stargardt 2010; Weech-

Maldonado, Shea and Mor 2006) adopted an instrumental variable approach. The 

choice of instrumental variables differ across studies and include lagged measures of 

quality (Carey and Burgess 1999), county-level variables associated with demand of 

nursing home care (Weech-Maldonado, Shea and Mor 2006) and the Medicare Wage 

Index and general overhead costs per day at the hospital level (Schreyogg and 

Stargardt 2010). Two studies (Gutacker et al. 2013a; Schreyogg and Stargardt 2010) 

utilised a multilevel modelling approach with patients at level one nested in providers 

at level two. Provider effects - estimated either as fixed (Hvenegaard et al. 2011) or 

random (Gutacker et al. 2013a) effects - were used to make inferences about 
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performance with respect to cost and quality. Hvenegaard et al. (2011) constructed 

provider cost and quality effects as the difference between observed and expected cost 

or quality and subsequently divided the provider cost effect by the quality effect to 

form a cost-quality ratio which was used to rank providers. Gutacker et al. (2013a) 

used the provider effect to rank providers in terms of their performance in terms of 

cost-containment with and without quality controls.  

Findings regarding the relationship between cost and quality were not consistent 

across the studies with Carey and Burgess (1999) reporting a positive relationship and 

Schreyogg and Stargardt (2010) a negative association. The remaining studies 

(Gutacker et al. 2013a; Hvenegaard et al. 2011; Weech-Maldonado, Shea and Mor 

2006) found some evidence of a non-linear relationship between costs and quality 

with the pattern of the relationship dependent on the quality indicator.  

A rather innovative study (Hauck and Street 2006) analysed the performance of 

English health authorities using a multivariate multilevel analysis. The use of a 

multivariate analysis enabled the investigation of 13 different objectives covering the 

four NHS performance domains “health outcomes”, “clinical quality”, “access” and 

“efficiency” simultaneously. The performance indicators included mortality, limiting 

long standing illness, emergency admissions, waiting times, accessibility to general 

practitioners (GPs), number of elective surgery episodes, day case rate, maternity 

costs, and psychiatry costs. A number of socioeconomic variables were included in 

the model to control for factors associated with population need and utilisation of 

healthcare. The study used multilevel models to examine data for electoral wards at 

level one nested within health authorities at level two and consider the correlation in 

performance across indicators. The results revealed that the majority of performance 

indicators had positive significant coefficients implying that areas with worse 

socioeconomic conditions were likely to have worse performance than expected given 

basic age-sex standardisation. Focusing on psychiatric costs in particular, significant 

positive correlations were found for the following variables: limiting long-standing 

illness for ages 0-74; waiting time for radiotherapy; accessibility to GPs; and 

maternity costs while a negative significant correlation was found for deaths 

following hospital surgery. Furthermore, 34% of the variation in performance for 

psychiatric costs is attributable to health authorities. 
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A more recent study (Gutacker and Street 2015) also used multivariate multilevel 

analysis to examine the performance of English NHS providers of elective hip 

replacement surgery. Four dimensions of performance were investigated: waiting 

time between referral and treatment; LOS; unplanned readmission within 30 days of 

discharge; and patient-reported post-operative outcomes. The study found that 

providers performing well on one of these dimensions tended to perform well on all 

four dimensions and providers who performed well were usually privately owned 

with a limited concentration on providing hip replacements. 

 

5.2.3. Summary of previous literature in mental and physical healthcare 

Previous studies investigating the relationship between costs and quality in both 

physical and mental healthcare have revealed that this is a challenging endeavour. 

Particular challenges relate to the availability of adequate measures of quality, small 

sample sizes and the endogenous relationship between costs and quality. Regarding 

the latter, a number of studies (Carey and Burgess 1999; Schreyogg and Stargardt 

2010; Weech-Maldonado, Shea and Mor 2006) have used instrumental variables in 

order to consistently estimate the causal relationship. Nevertheless other studies 

(Gutacker et al. 2013a; Hvenegaard et al. 2011) have highlighted the inherent 

difficulty of addressing endogeneity including the limited availability of suitable 

instrumental variables. Given the challenge of finding suitable instrumental variables, 

we avoid the causal identification problem and motivated by a similar methodology 

used in previous studies (Gutacker and Street 2015; Hauck and Street 2006), we 

analyse costs and outcomes using two separate equations and allow for a correlation 

in responses. As in previous studies (Gutacker et al. 2013a; Haas et al. 2013) we 

measure quality in terms of an outcome measure – HoNOS. Drawing on the literature 

in acute physical healthcare (Gutacker et al. 2013a; Gutacker and Street 2015; Hauck 

and Street 2006; Schreyogg and Stargardt 2010) we use a multilevel model which 

allows us to examine the correlation in residual responses at provider-level to provide 

insight into the relationship between costs and outcomes and if a potential trade-off 

exists. The use of a large, nationally representative data set with individual-level data 

moves us beyond previous studies (Dickey and Normand 2004; Haas et al. 2013; 

Schulz, Greenley and Peterson 1983) in mental healthcare that were constrained by 

small sample sizes. 
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 Methods  

5.3.1. Unit of analysis  

As in Chapters 3 and 4 the CRP forms the unit of observation in this analysis. 

5.3.2. Multilevel modelling 

As the MHMDS is characterised by a hierarchical structure with responses 

constituting the lowest level of the hierarchy nested within CRPs at level 2 nested 

within patients at level 3 who are in turn nested within providers at level 4, we utilise 

a multilevel modelling approach.  

We estimate the following bivariate model with two response variables: costs y1ijk and 

outcomes y2ijk: 

      {
𝑦1ijk =  𝛼1 +  𝛽1𝑋1ijk +  𝑢1k +  𝑣1jk +  𝜀1ijk

 
𝑦2ijk =  𝛼2 +  𝛽2𝑋2ijk +  𝑢2k +  𝑣2jk +  𝜀2ijk

             (1) 

(

    
𝑢1𝑘 

 
𝑢2𝑘 

)∼ N (0, Ωu ) : (
𝜎2 𝑢1

    
 

𝜎𝑢1𝑢2 𝜎2 𝑢2
  

)                                            (2) 

X1ijk represents a vector of risk adjustment covariates for the cost equation while X2ijk 

reflects a vector of risk adjustment covariates for the outcomes equation. The 

provider-level random intercepts for costs and outcomes are represented by u1k and 

u2k respectively. The individual-level random intercepts for each response are denoted 

by v1jk and v2jk; while ε1ijk and ε2ijk signify the error terms at the CRP-level for each 

response. The provider-level effects, u1k and u2k are both assumed to follow a bivariate 

normal distribution with zero mean and covariance matrix Ωu. Our interest lies in the 

correlation between the residual variation in y1ijk and y2ijk at the provider-level which 

can be calculated as r(x, y) = 
𝜎𝑢1𝑢2 

√𝜎2 𝑢1
  𝜎2 𝑢2

   
 . 

Our cost response variable y1ijk is modelled using a log-linear model and our outcome 

response variable y2ijk using a linear distribution. The multilevel estimates are 
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statistically efficient even if some observations have missing data for either response 

under the assumption that data is missing at random (Rabash et al. 2012).  

The coefficients for the log of total cost can be interpreted in terms of a percentage 

change in the geometric mean of total cost calculated as (exp(β) – 1)*100. For the 

majority of covariates measured as dummy variables, this is the percentage change in 

the geometric mean resulting from a change in the variable from zero to one. For the 

continuous IMD Income Deprivation variable, the coefficient can be interpreted as 

the change in the geometric mean in total cost resulting from a one unit change in this 

variable. Coefficients for the total follow-up HoNOS score can be interpreted as 

average partial effects; for covariates measured as dummy variables the coefficient 

represents the average effect or the change in the follow-up HoNOS score when the 

independent variable changes from zero to one. The coefficients on continuous 

variables such as the baseline HoNOS score and the IMD Income Deprivation 

variable can be interpreted in terms of marginal effects or the change in the follow-

up HoNOS score arising from a one unit change in the continuous variable. 

The model is estimated using restrictive iterative generalized least squares (RIGLS) 

which is equivalent to restricted maximum likelihood (Goldstein 1989) in MLwiN 

2.29 (Rabash et al. 2009) using the runmlwin command (Leckie and Charlton 2012) 

in Stata 13.0 (StataCorp 2013). 

 

5.3.3. Sensitivity Analysis 

We performed a sensitivity analysis by excluding a provider that is an outlier on 

follow-up HoNOS scores.  

 

 Data 

The data and variables used for the analysis are described fully in Chapters 3 and 4. 

More specifically, mental health costs are constructed using Reference Cost data as 

described in Section 3.3.1. in Chapter 3 and our dependent cost variable measures the 

log of total cost associated with a CRP. Mental health outcomes are measured using 

follow-up HoNOS scores; HoNOS is fully described in Section 4.4.1 of Chapter 4. In 

terms of risk adjustment variables, the baseline total HoNOS score is included as a 
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risk adjustment variable for the follow-up total HoNOS score response variable 

following our earlier findings and those of previous studies (Dow, Boaz and Thornton 

2001; Hendryx, Dyck and Srebnik 1999; Kramer et al. 2001; Rosen et al. 2010) that 

show that baseline outcome is a consistent predictor of follow-up outcome. 

Demographic information covers age, gender (with female as the reference category), 

ethnicity (White (reference category), Black, Asian and Other) and marital status. Age 

is grouped into five categories reflecting quintiles of the distribution in order to 

capture any non-linearities in the relationship with costs and outcomes with age 18-

34 years the reference category. Variables reflecting if a patient has care co-ordinated 

under the CPA or has been admitted to hospital under the MHA provides information 

on severity and treatment. Missing values of CPA and MHA were coded as zero under 

the assumption that these observations were not likely subject to the MHA or under 

CPA as these are highly regulated activities and likely to be recorded. We include 

dummy variables for the 21 care clusters to investigate the extent to which these 

explain variations in costs and outcomes. We use the cluster with the lowest cost 

(Cluster 1) as the reference category. We account for income deprivation in the area 

of residence of observations by including a variable for the IMD Income Domain 

(Noble 2008) as described in Section 2.4.3 of Chapter 2 and Section 3.3.2 of Chapter 

3. A dummy variable is included to capture the year (2011/12 and 2012/13) the CRP 

commenced (with 2011/12 as the reference category) in order to control for inflation 

and changes in coding practices.   

 Results 

5.5.1. Response variables 

Figure 5.1 shows our cost response variable and figure 5.2 our follow-up HoNOS 

score response variable measured at the CRP-level.  
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Figure 5.1 Log of total cost 

 

Figure 5.2 Total follow-up Health of the Nation Outcome Scales (HoNOS) score 
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The graphs show that both variables are approximately normally distributed although 

the follow-up HoNOS score variable is slightly right skewed reflecting a smaller 

number of observations with high scores (and more severe mental health problems). 

5.5.2. Descriptive statistics 

We merged data on outcomes and costs from the databases constructed for Chapters 

3 and 4 using the Person and Spell identifiers in the MHMDS and the CRP start and 

end dates. This resulted in 854,037 observations. Our estimation sample was reduced 

to 697,022 observations due to missing data on the risk adjustment variables. In our 

estimation sample, 269,525 observations have both cost and outcome responses, 

419,879 observations have the cost response only, and 7,618 have the outcome 

response only. As in Chapter 3, data is available for 55 providers as three providers 

don’t report cost data and one high-cost outlier provider was excluded from the 

analysis. Table 5.3 displays the descriptive statistics for our estimation sample with 

reference categories in brackets.  

Table 5.3 Descriptive statistics 

Variable Observations Mean 
Standard 
Deviation Min Max 

Total cost 689404 3448.076 9783.937 0.99 
303131

.3 

log of total cost 689404 6.919 1.615 0.01 12.62 

Total HoNOS follow-up score  277143 11 6 0 48 

Total HoNOS baseline score 277143 11 6 0 48 

Married/civil partner 697022 0.331 0.470 0 1 

[White ethnicity]  697022 0.877 0.329 0 1 

Asian ethnicity 697022 0.046 0.208 0 1 

Black ethnicity 697022 0.047 0.211 0 1 

Other ethnicity 697022 0.031 0.173 0 1 

[Age category 1 (18-34)]  697022 0.204 0.403 0 1 

Age category 2 (35-46) 697022 0.191 0.393 0 1 

Age category 3 (47-62) 697022 0.207 0.405 0 1 

Age category 4 (63-79) 697022 0.204 0.403 0 1 

Age category 5 (80+) 697022 0.194 0.395 0 1 

Gender [Female] 697022 0.436 0.496 0 1 

Admitted under the MHA 697022 0.088 0.283 0 1 

Under CPA 697022 0.413 0.492 0 1 

Cluster 0: Variance 697022 0.011 0.103 0 1 
[Cluster 1: Common mental 
health problems, low severity] 697022 0.039 0.195 0 1 
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Cluster 2: Common mental 
health problems 697022 0.050 0.219 0 1 
Cluster 3: Nonpsychotic, 
moderate severity 697022 0.116 0.321 0 1 
Cluster 4: Non-psychotic, 
severe 697022 0.088 0.283 0 1 
Cluster 5: Non-psychotic, very 
severe 697022 0.032 0.175 0 1 
Cluster 6: Non-psychotic 
disorders of overvalued ideas 697022 0.017 0.128 0 1 
Cluster 7: Enduring non-
psychotic disorders 697022 0.039 0.193 0 1 
Cluster 8: Non-psychotic 
chaotic and challenging 
disorders 697022 0.036 0.186 0 1 
Cluster 10: First episode in 
psychosis 697022 0.027 0.163 0 1 
Cluster 11: Ongoing recurrent 
psychosis, low symptoms 697022 0.090 0.286 0 1 
Cluster 12: Ongoing or 
recurrent psychosis, high 
disability 697022 0.064 0.246 0 1 
Cluster 13: Ongoing or 
recurrent psychosis, high 
symptom/disability 697022 0.046 0.209 0 1 

Cluster 14: Psychotic crisis 697022 0.029 0.167 0 1 
Cluster 15: Severe psychotic 
depression 697022 0.010 0.102 0 1 
Cluster 16: Dual diagnosis, 
substance abuse and mental 
illness 697022 0.016 0.127 0 1 
Cluster 17: Psychosis and 
affective disorder difficult to 
engage 697022 0.022 0.148 0 1 
Cluster 18: Cognitive 
impairment, low need 697022 0.098 0.297 0 1 
Cluster 19: Cognitive 
impairment or dementia, 
moderate need 697022 0.107 0.310 0 1 
Cluster 20: Cognitive 
impairment or dementia, high 
need 697022 0.043 0.204 0 1 
Cluster 21: Cognitive 
impairment or dementia, high 
physical need 697022 0.019 0.135 0 1 

Income Deprivation 697022 17.988 11.785 0 77 
CRP started in 2012/13 [CRP 
started in 2011/12] 697022 0.423 0.494 0 1 

 

The total HoNOS baseline score ranges from 0-48 with a mean of 11. One-third of 

our sample is married or has a civil partner. The majority (88%) of observations are 

of White ethnicity with Asian, Black and Other ethnicities accounting for 3-5% each. 

Just under half (44%) of observations are of male gender. Almost one-tenth of 

observations were admitted under the MHA while around 41% of observations were 
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under CPA prior to or during a CRP. On average, our sample consists of people living 

in an area where 18% of the population experiences income deprivation but some 

members of the sample live in an area where as much as 77% of the population 

experiences income deprivation. The majority (12%) of observations are allocated to 

Cluster 3 while Clusters 4, 11, 18 and 19 were also quite common accounting for 9-

11% of observations. It is somewhat reassuring that Cluster 0 (the variance cluster) is 

one of the least populated clusters, along with Cluster 15. 

5.5.3. Estimation results 

Table 5.4 displays the estimation results.  

Table 5.4 Estimates of bivariate model 

  Observations per group 

 
 Number of 
observations Minimum Average Maximum 

Level 3: Provider 55 33 12673 54090 

Level 2: Person 414092 1 1.7 43 

Level 1: CRP 697022       

Log likelihood -2065741    

  Log of total cost Total follow-up HoNOS  

  
Coefficient Standard 

Error 
Coefficient Standard 

Error 

Total HoNOS baseline score   0.388 0.002*** 

Married/civil partner 0.009 0.004* -0.378 0.025*** 

Asian ethnicity 0.026 0.009** -0.121 0.057* 

Black ethnicity 0.083 0.010*** -0.302 0.063*** 

Other ethnicity 0.031 0.011** -0.050 0.070 

Age category 2 (35-46) 0.086 0.006*** 0.191 0.037*** 

Age category 3 (47-62) 0.147 0.006*** 0.169 0.036*** 

Age category 4 (63-79) 0.295 0.007*** -0.338 0.041*** 

Age category 5 (80+) 0.181 0.008*** -0.401 0.048*** 

Gender 0.011 0.004** 0.236 0.023*** 

Admitted under the MHA 0.681 0.008*** 0.484 0.042*** 

Under CPA 0.231 0.005*** 0.407 0.026*** 

Cluster 0: Variance 0.286 0.019*** 1.094 0.128*** 

Cluster 2: Common mental health 
problems 

0.378 0.012*** 0.539 0.084*** 

Cluster 3: Nonpsychotic, 
moderate severity 

0.686 0.010*** 1.262 0.075*** 

Cluster 4: Non-psychotic, severe 1.019 0.011*** 2.232 0.076*** 

Cluster 5: Non-psychotic, very 
severe 

1.323 0.013*** 3.129 0.087*** 

Cluster 6: Non-psychotic disorders 
of overvalued ideas 

1.284 0.016*** 3.003 0.102*** 
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Cluster 7: Enduring non-psychotic 
disorders 

1.280 0.013*** 2.995 0.085*** 

Cluster 8: Non-psychotic chaotic 
and challenging disorders 

1.347 0.013*** 3.390 0.087*** 

Cluster 10: First episode in 
psychosis 

1.684 0.014*** 1.550 0.092*** 

Cluster 11: Ongoing recurrent 
psychosis, low symptoms 

1.035 0.011*** 0.125 0.076 

Cluster 12: Ongoing or recurrent 
psychosis, high disability 

1.468 0.012*** 1.833 0.078*** 

Cluster 13: Ongoing or recurrent 
psychosis, high symptom/disability 

1.720 0.013*** 3.020 0.083*** 

Cluster 14: Psychotic crisis 2.011 0.014*** 3.412 0.089*** 

Cluster 15: Severe psychotic 
depression 

1.626 0.020*** 3.562 0.118*** 

Cluster 16: Dual diagnosis, 
substance abuse and mental 
illness 

1.528 0.017*** 3.871 0.103*** 

Cluster 17: Psychosis and 
affective disorder difficult to 
engage 

1.880 0.015*** 3.373 0.095*** 

Cluster 18: Cognitive impairment, 
low need 

0.186 0.011*** 0.385 0.079*** 

Cluster 19: Cognitive impairment 
or dementia, moderate need 

0.550 0.011*** 2.310 0.079*** 

Cluster 20: Cognitive impairment 
or dementia, high need 

0.808 0.013*** 4.354 0.089*** 

Cluster 21: Cognitive impairment 
or dementia, high physical need 

0.681 0.016*** 5.462 0.113*** 

Income Deprivation 0.000 0.000* 0.014 0.001*** 

CRP started in 2012/13 -0.494 0.004*** 0.195 0.020*** 

Constant 5.934 0.057*** 4.648 0.148*** 

Random Effects Parameters Estimate 
Standard 

Error 
95% Confidence Interval 

Level 3: Provider     

Variance: Log of total cost 0.170 0.033 0.106 0.234 

Variance: Follow-up total HoNOS 0.748 0.052 -0.109 0.095 

Covariance: Log of total cost, 
Follow-up total HoNOS 

-0.007 0.159 0.436 1.060 

Level 2: Person     

Variance: Log of total cost 0.291 0.004 0.284 0.298 

Variance: Follow-up total HoNOS 5.407 0.013 0.038 0.089 

Covariance: Log of total cost, 
Follow-up total HoNOS 

0.063 0.073 5.263 5.551 

Level 1: CRP     

Variance: Log of total cost 1.768 0.004 1.760 1.776 

Variance: Follow-up total HoNOS 21.000 0.015 -0.078 -0.017 

Covariance: Log of total cost, 
Follow-up total HoNOS 

0.047 0.078 20.848 21.153 

***p<0.001, **p<0.01, *p<0.05 

The follow-up HoNOS response variable is measured on a continuous scale from 1 

(best) to 48 (worst) meaning that a positive coefficient signifies a worse outcome. 
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For the log of total cost response variable, many of the cluster variables are associated 

with the largest effects. For example, cluster 14 is associated with a 647% and cluster 

17 a 555% increase in cost compared to cluster 1. Clusters 10, 13 and 15 are also 

associated with considerable increases of over 400% compared to cluster 1. The MHA 

variable is associated with a 98% increase in cost. In terms of demographic variables, 

Black ethnicity is associated with an increase of 9% in costs compared to White 

ethnicity while age of 63-79 years is associated with an increase in costs of 34% 

compared to age 18-34 years. CRPs that started in 2012/13 are associated with a 39% 

reduction in costs compared to CRPs that started in 2011/12. For the follow-up 

HoNOS response variables, covariates associated with an improved outcome include 

married/civil partner, Asian and Black ethnicities compared to White ethnicity, and 

older age. Marriage/civil partnership and age 80 years or over are associated with a 

reduced HoNOS score of around 0.4 points while Black ethnicity is associated with a 

reduction of 0.3 points. The positive association between married/civil partner, older 

age and Black ethnicity are consistent with the findings for Chapter 4. The MHA and 

CPA variables are associated with an increase in the follow-up HoNOS score of 0.4-

0.5 points. Similar to the cost response, the clusters with higher severity are associated 

with greater magnitudes of effects with clusters 15, 16, 20 and 21 associated with 

increases of 4-5 points compared to cluster 1. A CRP that started in 2012/13 is 

associated with an increased HoNOS score of around 0.2 points compared to a CRP 

that started in 2011/12. 

5.5.4. Provider-level residual variation in costs and outcomes 

The correlation between residual costs and outcomes at the provider-level was 

calculated as -0.02 suggesting little evidence of a meaningful relationship between 

the two measures. 

Figure 5.3 shows the pairwise plot in residual costs and outcomes for the providers in 

our analysis.  
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Figure 5.3 Pairwise plot of residual costs and outcomes for providers 

 

The providers fit quite evenly into four groups; those associated with 1) higher costs 

and lower follow-up HoNOS scores (better outcome) in the top left quadrant, 2) 

higher costs and higher follow-up HoNOS scores (worse outcome) in the top right 

quadrant, 3) lower costs and higher follow-up HoNOS scores (better outcome) in the 

bottom right quadrant, and 4) lower costs and lower follow-up HoNOS scores (worse 

outcome) in the bottom right quadrant. There is an outlier provider with a residual 

follow-up HoNOS score of just over 4 points above the average and slightly above-

average residual costs. This outlier in respect to residual follow-up HoNOS score is 

consistent with the findings of Chapter 4. 

The estimates of residual costs and outcomes at the provider-level follow a normal 

distribution with a mean of zero. The follow-up HoNOS response variable is 

measured on a continuous scale from 1 (best) to 48 (worst) meaning that a positive 

score for the residual total follow-up HoNOS score signifies a worse outcome. The 

residual follow-up HoNOS score varies from -1.36 to 4.23 meaning that the best 
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performer in relation to outcomes is associated with a residual follow-up HoNOS 

score of 1.36 less than the average performer while the worst performer is associated 

with a residual follow-up HoNOS score of 4.23 greater than the average performer. 

For the cost response variable we can calculate the percentage difference in the EB 

estimates of provider-level residual variation for the top and bottom performing 

providers compared to the average provider as (exp(𝑢1k - 𝑢10) – 1)*100 where 𝑢10 

refers to the average provider. This shows that the provider-level variation in total 

cost varies from 71% below the average for the best performing provider and 194% 

above the average for the worst performing provider. 

5.5.5. Sensitivity analysis 

The exclusion of the provider with the above-average residual follow-up HoNOS 

score of 4.23 decreased the estimation sample to 681,305 observations. The 

estimation results were robust to this change with the exception of married/civil 

partner which loses statistical significance for the log of total cost response. The 

correlation between residual costs and outcomes at the provider-level became -0.09. 

Figure 5.4 displays the pairwise plot in residual costs and outcomes for the 54 

providers in the sensitivity analysis. The residual follow-up HoNOS score reduced to 

1.39 for the worst performing provider on follow-up HoNOS scores compared to the 

average performing provider for this response. This sensitivity analysis had little 

effect on the residual log of total cost which varied from 72% for the best performing 

provider to 191% for the worst performing provider. 
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Figure 5.4 Pairwise plot of residual costs and outcomes for providers in 

sensitivity analysis 

 

 Discussion 

The reimbursement of mental healthcare providers in England is undergoing a 

considerable reform with the move towards a prospective, activity-based payment 

system. With future intentions to link prices to national average costs as well as 

linking some part of payment to patient outcomes, the new system will offer 

incentives for providers to deliver care more efficiently while better meeting patient 

needs and improving outcomes. This research has explored the relationship between 

costs and outcomes in order to examine the scope for providers to respond to the 

incentives introduced by the new payment system. The relationship between costs and 

outcomes has been the subject of a number of studies in both physical (Carey and 

Burgess 1999; Gutacker et al. 2013a; Hvenegaard et al. 2011; Schreyogg and 

Stargardt 2010; Weech-Maldonado, Shea and Mor 2006) and mental (Dickey and 
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Normand 2004; Haas et al. 2013; Hendryx 2008; Schulz, Greenley and Peterson 1983) 

healthcare and this research makes an important contribution to this literature. 

After controlling for a range of demographic and treatment factors, we find that 

residual variation remains in both costs and outcomes at the provider-level. However, 

the correlation between residual costs and outcomes at the provider-level is miniscule, 

which suggests that a trade-off between cost containment and outcome improving 

efforts on the part of providers is not a major concern. Plotting the provider-level 

residual costs and outcome variables reveals that providers broadly fall into four 

groups with an outlier provider. This outlier provider is consistent with Chapter 4. 

Providers with higher than average residual costs and lower than average residual 

outcomes may signify poor performance but may also indicate that certain providers 

are treating a casemix that our model has not fully accounted for. While patient 

casemix is controlled for to a certain extent by the care clusters, the clustering method 

does not explicitly take diagnosis into account and it is likely that the clusters are very 

variable in terms of diagnosis and casemix (Jacobs 2014; Yeomans 2014). It may also 

be the case that some patients have treatment-resistant variants of mental illness which 

implies that they will be consuming large amounts of care and resources with little 

discernible changes in outcome scores (Jencks et al. 1987). If certain providers have 

a higher case-load of such patients this could well explain their unexplained higher 

costs and worse outcomes. If the higher costs are legitimate then these providers may 

warrant additional payments as defined by any outlier policy attached to the payment 

system. A number of providers are associated with better residual outcomes but also 

with higher residual costs. These providers in particular may face a potential trade-

off between costs and outcomes and efforts to reduce costs under a national tariff may 

compromise outcomes if providers are induced to undertake undesirable behaviours 

such as skimping on patient care. A number of providers have lower than average 

residual costs and higher than average residual outcomes. These providers are likely 

to financially benefit from the new payment system if a national tariff is introduced 

and patient outcomes are linked to provider payment. Providers with lower than 

average residual costs and lower than average residual outcomes may have scope to 

make financial profits under a national tariff but these may be offset if payment is 

linked to outcomes. If providers are achieving lower costs at the expense of patient 
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outcomes then they would warrant particular scrutiny by commissioners under quality 

and outcomes standards established in the contracting process. 

As highlighted in Section 3.6 of Chapter 3 and Section 4.7 of Chapter 4, there are 

limitations regarding our data, in particular issues surrounding the quality of the 

Reference Cost data and missing values for HoNOS scores, which we do not take into 

account in this analysis. Nevertheless, this research provides a useful insight into the 

relationship between mental health costs and outcomes that is pertinent in the context 

of a new payment system for mental health providers in England. 
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Chapter 6. Conclusion 

 Overview of research 

This thesis investigates the performance of English mental healthcare providers in 

terms of resource use (LOS and costs) and quality (readmission rates and patient 

outcomes) in the context of the introduction of a new payment system to mental 

healthcare. The NTPS will present providers with various incentives with regard to 

resource use and quality, which may subsequently affect their performance. We 

attempt to anticipate the incentives introduced by the NTPS and potential effects on 

providers by examining provider performance on LOS, costs and outcomes. It is 

important to investigate provider performance in the context of the introduction of the 

NTPS, given that mental health expenditure is not commensurate with the disease and 

economic burden and mental health budgets have been cut recently, despite increases 

in demand for services. 

We employ multilevel methodology to model the various response variables 

including linear, log-linear, ordered probit and Poisson models. While the majority of 

models are hierarchical we also utilise a non-hierarchical model. We make inferences 

about provider performance by quantifying the provider-level random intercepts or 

effects using EB techniques. While this approach has been previously employed in 

studies assessing the performance of providers in acute physical healthcare (Gutacker 

et al. 2013a; Gutacker et al. 2013b), to my knowledge this is the first research to apply 

this method to mental health data to investigate performance of mental healthcare 

providers. We use data sets with national coverage that allow us to study the 

performance of the majority of English public mental health providers, moving us 

beyond previous studies in mental healthcare that have been limited in the 

geographical, population or patient coverage of their data. 

In Chapter 2, we investigate the determinants of inpatient LOS at admission-, patient- 

and provider-levels using HES data. Our estimation model of choice is a cross-

classified model, which recognises that patients can have admissions to different 

hospitals. As a sensitivity analysis, we model the data using a three-level hierarchical 

model that does not allow for patient movement across multiple providers in order to 
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investigate the extent to which results differ given that only a small proportion of 

patients had admissions to more than one provider. Admission-level covariates 

include demographic, diagnostic, treatment and social variables. Patient-level 

covariates cover demographic information while provider-level covariates include 

provider type and capacity, information on staffing, and treatment and quality 

indicators including provider emergency readmission rates. The research is 

innovative in using provider-level readmission rates as previous studies (Appleby et 

al. 1993; Boden et al. 2011; Figueroa, Harman and Engberg 2004; Korkeila et al. 

1998; Lin et al. 2006; Sytema and Burgess 1999; Wolff et al. 2015b) have investigated 

the relationship between LOS and readmission rates at the patient-level and this is the 

first study, to my knowledge, that uses provider-level readmission rates to explain 

variation in admission-level LOS. It is beneficial to use provider-level readmission 

rates as there may be systematic differences between providers in readmission rates 

that go beyond patient casemix. These differences may reflect not only quality of care 

but also wider organisational and management attributes such as discharge planning 

and policies, coordination between inpatient and community care and community-

based follow-up. Provider-level variation in LOS unexplained by the admission-, 

patient- and provider-level variables is quantified using EB methods in order to 

compare provider performance.  

Results show that at an admission-level, inpatient death, a primary diagnosis of 

psychosis, formal admission under the MHA, discharge to social care and the oldest 

age group (65 years and over) are associated with the largest increases in LOS. The 

variables capturing transfer-out, a primary diagnosis of substance misuse disorder, 

carer support recorded and psychiatric treatment history are associated with relatively 

large reductions in LOS at the admission-level. Of the patient-level variables, Black 

ethnicity is associated with the largest increase in LOS. At provider-level, the 

emergency readmission rate has a large negative association with LOS while the 

proportion of formal admissions under the MHA has a large positive association with 

LOS. The sensitivity analysis shows that the two models are broadly in agreement 

with differences most pronounced for provider-level variables. This is because the 

three-level model does not correctly model the dependence in the data when there is 

cross-classification, which leads to biased standard errors (Leckie 2013). Ranking 

providers by residual variation reveals significant differences with a number of 
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providers exhibiting above- or below-average residual LOS, suggesting scope for 

some providers to improve performance. 

In Chapter 3, we use the MHMDS to examine resource use in terms of costs associated 

with a CRP – the unit of activity for which payment is made under the NTPS. Cost 

encompasses both admitted and non-admitted care and wide variations in costs are 

evident across providers. We model costs using 1) a three-level log-linear model and 

2) a three-level GLM with a gamma distribution and a log link. We use a 

comprehensive range of variables to risk-adjust costs in order to compare residual 

costs across providers to assess performance. Risk adjustment variables cover 

demographic, treatment and social characteristics of patients as well as the care cluster 

patients are assigned to. Provider-level variables hypothesized to be associated with 

cost including provider type, number of mental health beds and mental health bed 

occupancy, and formal admissions as a proportion of total inpatient admissions are 

included in the model in a sensitivity analysis. Results show consistency between the 

log-linear model and GLM with variables associated with higher costs including older 

age, Black ethnicity, admission under the MHA, and care clusters 10 and 13-17. The 

number and percentage occupancy of mental health beds are associated with small 

negative and positive effects on mental health costs but FT status and the proportion 

of formal admissions at provider-level are associated with a sizeable decrease and 

increase respectively in mental health costs. Around 8% of residual variation in costs 

remains at the provider-level despite controlling for a wide range of variables with an 

influence on cost. While a number of providers exhibit lower residual costs than 

average, other providers are associated with higher residual costs compared to the 

average. These higher costs may be associated with higher quality care or with 

inefficient provision of care, which may lead to financial instability under a national 

tariff. The large variation in costs also brings into question the ability to set a national 

average price (tariff), which can act as an accurate price signal for each cluster. 

 

Chapter 4 also uses the MHMDS and examines the performance of mental health 

providers in relation to patient outcomes. Outcomes are measured using HoNOS 

scores recorded at the beginning and end of a CRP. An ordered outcome variable is 

constructed that measures a RCSC in HoNOS scores. This variable is subsequently 

modelled using an ordered probit three-level model. A linear three-level model is used 
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to model follow-up HoNOS scores. Both estimation models include a wide range of 

risk adjustment covariates reflecting demographic, treatment, social and need 

variables. Provider-level residual variation is quantified using EB methods, and 

providers are ranked in order to make inferences about provider performance. We 

include provider-level variables measuring provider type, size and capacity in a 

sensitivity analysis. The models reveal a number of variables are associated with 

better outcomes including married/civil partner, older age and need associated with 

ongoing or recurrent psychosis compared to need associated with common mental 

health problems as captured by the care clusters. Variables associated with worse 

outcomes in both models include male gender, admission under the MHA, having 

care coordinated under CPA, income deprivation, and higher need as captured by care 

clusters reflecting very severe and complex non-psychotic illness, severe psychotic 

illness, and cognitive impairment compared to care clusters for common mental 

problems. In addition, in the linear model, Black ethnicity is associated with better 

outcomes while higher baseline HoNOS scores and problems with accommodation 

are associated with worse outcomes. In contrast, problems with accommodation are 

associated with better outcomes in the ordered probit model. These results remain 

stable in the sensitivity analysis, which also shows that mental health beds have a 

positive association and mental health bed occupancy a negative association with 

mental health outcomes in the ordered probit model. Residual variation across 

providers persists after adjusting outcomes for these risk factors, which indicates that 

some providers are more likely to achieve better outcomes for a patient with an 

average set of risk factors.  

In Chapter 5, we consider costs and outcomes together by estimating a bivariate model 

with log of cost and follow-up HoNOS scores as dependent variables. To my 

knowledge, this is the first study to use a multilevel bivariate model to explore the 

relationship between costs and outcomes in mental healthcare. As in Chapters 3 and 

4, we risk-adjust these variables using a wide-ranging set of covariates capturing 

demographic, need, treatment and social information to ensure impartial comparisons 

across providers. The correlation between the provider-level residual variation in 

costs and outcomes is calculated to assess if a trade-off exists between resource use 

and quality. The residual variation in the response variables is also quantified using 

EB techniques and plotted in order to categorise providers into four groups based on 
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their performance in relation to costs and outcomes. Results regarding the direction 

of relationships between the dependent and independent variables mirror those of 

Chapters 3 and 4. Providers fall into four relatively equal groups: those associated 

with 1) higher costs and lower follow-up HoNOS scores (better outcome), 2) higher 

costs and higher follow-up HoNOS scores (worse outcome), 3) lower costs and higher 

follow-up HoNOS scores (worse outcome), 4) lower costs and lower follow-up 

HoNOS scores (better outcome). Results show a negligible correlation between 

residual costs and outcomes at the provider-level, which suggests that concerns about 

a potential trade-off between cost-containment and quality-improving efforts on the 

part of providers may not be warranted. 

In summary, variables associated with higher costs and worse outcomes include care 

clusters reflecting higher severity, formal admission under the MHA, care co-

ordination under CPA and male gender. Conversely, we find that older age and Black 

ethnicity are associated with higher resource use measured by both LOS and costs but 

also better outcomes. Results regarding social support and resource use are somewhat 

inconclusive. We find that carer support is negatively associated with LOS while 

married/civil partner is positively associated with resource use and is also associated 

with better outcomes. 

With regard to provider variables, results show that providers with FT status have a 

negative association with costs but there is no evidence of an association with 

outcomes. Provider size as measured by number of mental health beds has a negative 

association with costs and a positive association with outcomes. This may be 

suggestive of economies of scale. Bed occupancy is associated with positive effects 

on resource use in terms of both LOS and costs and a negative effect on outcomes.  

A trade-off between resource use and quality of care is reflected in our finding 

regarding LOS and readmission rates. We find a large negative association between 

admission-level LOS and provider readmission rates suggesting that providers with 

high readmission rates are associated with shorter LOS for admissions. This implies 

that efforts on the part of providers to make efficiencies in terms of LOS may have a 

detrimental impact on quality of care as measured by the readmission rate. In contrast, 

we find little evidence of a trade-off between costs and outcomes. The disparity in 
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results may be due to the differing measures of resource use and quality and 

methodologies employed. 

In all chapters, the greatest variation within groups is at level 3 – hospital or provider. 

In Chapter 2, there are on average, over 2,000 patients per hospital but the smallest 

hospital has 234 patients and the largest 5,377 patients. At the patient level, on 

average there are only 1.5 admissions per patient with some patients having just one 

admission, and one patient with 86 admissions. In Chapters 3-5, the minimum number 

of patients per provider ranges from 2 (Chapter 4) to 33 (Chapters 3 and 5). On 

average, there are between 5,368 and 12,673 patients per provider, with a maximum 

number of patients per provider of between 36,981 (Chapter 4) and 54,090 (Chapter 

5). At the patient-level, the minimum number of CRPs is 1 with an average of 2 CRPs 

indicating little information on the group. However, some patients have up to 67 CRPs 

(Chapter 4). 

 Implications for policy and recommendations for practice  

This research has a number of implications for policymakers, commissioners, 

providers and users of mental healthcare. We discuss implications in relation to the 

design of the classification and payment system including the role of outcomes in the 

NTPS, readmissions, formal admissions, and mental health funding. 

6.2.1. Care clusters classification system 

Our research shows that a number of providers have higher than average resource use 

as measured by LOS and costs for reasons unaccounted for by the variables included 

in our analyses including the care clusters. One possible explanation is that higher 

resource use is attributable to factors we have been unable to control for in our models 

such as these providers treating a larger proportion of patients with treatment-resistant 

mental illness. On the other hand, high residual levels of resource use may be 

interpreted as inefficient provision. If the care clusters classification system does a 

good job of explaining variation in cost and the payment system accounts for any 

legitimate cost drivers not considered in the classification system then any financial 

risk due to inefficiency will be borne by providers and they will have a good incentive 

to reduce this inefficiency in order to avoid financial deficits. Therefore, the design 
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of the classification and payment system is crucial. We find that the care clusters do 

not control for all variation in costs. An implication of this for policymakers is that 

the care clusters may require additional refinements or the payment system will need 

to compensate for any weaknesses of the classification system in order to prevent 

providers facing unfair financial risk. Otherwise, providers may be enticed to engage 

in manipulating or ‘gaming’ cluster allocations in order to increase income. This 

would have implications for service users in terms of receiving either inadequate or 

unnecessary care. Furthermore, commissioners may end up expending extra resources 

for unnecessary care, which may destabilise local health economies. Additional 

factors may need to be considered in the classification or payment systems to reduce 

differentials between prices paid to and costs borne by providers. However, this must 

be balanced against the risk of incentivising providers to selectively treat patients 

based on their observable characteristics. We find that Black ethnicity and older age 

are associated with higher costs and LOS. Age was also found to be a key cost driver 

in the classification systems developed in Australia and New Zealand while the US 

per diem payment system also adjusts for patient age. The New Zealand classification 

system adjusted for ethnicity. The care cluster classification system does not take 

account of diagnosis.  We find that a diagnosis of psychosis is associated with longer 

LOS which suggests it is a driver of inpatient costs, as supported by previous studies 

(Chung et al. 2010; Hodgson, Lewis and Boardman 2000; Huntley et al. 1998; Jacobs 

et al. 2015; Lay, Lauber and Rossler 2006; Lerner and Zilber 2010; Oiesvold et al. 

1999; Peiro et al. 2004; Pertile et al. 2011; Tulloch, Fearon and David 2011). Previous 

research (Buckingham et al. 1998; Drozd et al. 2006) has also found diagnosis to 

predict higher inpatient costs. 

It would be premature to consider the introduction of a national price or tariff per 

cluster before further refinement to the classification or payment systems. A national 

tariff is also contingent on the submission of good quality cost and activity data by 

providers. An implication for providers is that clinicians who are clustering patients 

need to be aware that this activity informs provider payment. Providers must also put 

in place systems to collect high-quality cluster activity and cost data. Commissioners 

can incentivise the collection of good-quality cluster activity data by including 

indicators on data quality in NTPS contracts with providers, for example the 

proportion of service users in each cluster. There is also an onus on the economic 
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regulator (Monitor) to encourage the reporting of high quality cost data by providers 

in order to ensure that provider payment adequately reflects resource use on the part 

of providers. The planned introduction and eventual mandatory use of patient-level 

information and costing systems (PLICS) (Monitor 2015) by mental health providers 

will help to achieve this. 

From the perspective of implementing a payment system, it is somewhat 

disconcerting that we found evidence of a statistical association between provider 

variables and the total cost of a CRP (after controlling for patient factors). This raises 

a concern that providers may systematically gain or lose financially based on FT 

status, size (number of beds), spare capacity (% occupancy) and proportion of formal 

admissions. The Reference Cost data that is used to calculate the cost of a CRP will 

underpin price in the NTPS and in theory, (baseline) payment should reflect 

differences in costs arising from patient characteristics alone and not be biased 

towards providers with particular characteristics (Fries et al. 1993).  

 

An important consideration for policymakers is the design of an outlier policy to 

ensure that providers treating patients with costs that are not reflected in the 

classification system are not discriminated against financially. This raises the question 

of how outliers should be defined, for example in terms of inpatient days or per diem 

costs. Our finding of statistical relationships between provider-level variables 

reflecting inpatient care and resource use suggests that an outlier policy to reimburse 

legitimate cost differences between providers may be best focused on the inpatient 

component of a CRP. An outlier policy may therefore be designed in a similar fashion 

to that adopted for the NTPS in acute elective care whereby a long-stay outlier 

payment is activated once a LOS threshold is reached and additional days beyond this 

threshold are paid on a per diem basis (Mason, Ward and Street 2011). This threshold 

and the per diem payments could be differentiated by cluster. In clusters where 

relatively long inpatient stays are foreseen, these per diem payments could decline as 

LOS increases as is the case for inpatient psychiatric payment systems in the US 

(Mason and Goddard 2009). 



167 

 

6.2.2. Role of outcomes in the new payment system 

It is intended that a part of provider payment under the NTPS will be linked to 

outcomes. This has several implications for policymakers. We find that some 

providers perform worse than average on patient outcomes and the linking of payment 

to performance on outcomes has the potential to drive improvements among these 

providers. As HoNOS is a CROM there is greater potential for manipulation of ratings 

in order to influence payment. Subsequently there will need to be strict regulation of 

the system in order to prevent the incentivisation of adverse behaviour on the part of 

clinicians. A particular challenge is that clinical judgement underpins the cluster 

allocation decision. Clinicians could be encouraged to adhere to the available care 

transition protocols and guidelines regarding cluster allocations (Monitor and NHS 

England 2013d) and deviations from the recommended care transitions could be 

monitored. There is also a need to collect baseline outcome measures to ensure that 

any targets set are appropriate. We found that there was considerable missing data on 

follow-up HoNOS scores and this may have implications for linking payment to 

outcomes if outcomes are measured using changes in HoNOS scores. While making 

a part of provider payment contingent on outcomes will incentivise the collection of 

follow-up HoNOS data, the collection of follow-up HoNOS scores could be included 

as a quality indicator in NTPS contracts between commissioners and providers to 

encourage routine collection of this data. 

Linking a part of provider payment to outcomes has the potential to improve the 

commissioning of mental health services as the value commissioners perceive they 

are getting for resources spent on mental health will be more evident and transparent. 

Commissioners will be able to direct resources to the providers that deliver 

comparatively better quality and outcomes. The inclusion of quality and outcomes in 

contracts with the eventual linkage of payment to quality and outcome standards and 

targets will make it easier for commissioners to hold providers to account and penalise 

them if necessary for sub-standard care. This will place an onus on providers to deliver 

high quality care and perform well in relation to patient outcomes or risk facing 

financial losses. In turn, service users will stand to benefit from improved quality of 

care and outcomes. Moreover, the recent introduction of patient choice of provider to 
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mental healthcare may entice service users to be more cognisant of the quality of 

different providers, including their performance on outcomes.  

6.2.3. High readmission rates are associated with lower LOS. 

We find a negative association between provider-level readmission rates and 

admission-level LOS. This implies that higher readmission rates are associated with 

shorter LOS. Under the NTPS for mental health, providers are paid a fixed 

prospective price for all care provided in a given cluster irrespective of setting. 

Therefore, the NTPS introduces an incentive for providers to reduce inpatient LOS, 

given that inpatient care is relatively more costly on a daily basis compared to 

community-based care. The current financial climate may also place pressure on 

providers to reduce inpatient LOS. Providers need to consider that attempts to reduce 

resource use in terms of LOS may have detrimental effects on quality of care and lead 

to higher costs in the longer run due to increased readmissions. The impacts on quality 

of care may be in the form of inadequate care during the index admission and 

insufficient preparation and planning for discharge. Deficiencies in community-based 

care, in particular post-discharge follow-up may also contribute to increased 

readmission rates. If the provider market for mental healthcare becomes more 

competitive under a national tariff then providers with high readmission rates may not 

gain contracts and may face financial losses. The introduction of a national tariff is 

likely to provide a strong incentive to reduce costs and LOS and some providers may 

have to increase efficiency in order to remain financially viable once this objective is 

realised. 

The implication of our findings on the relationship between LOS and readmission 

rates for service users is the concern that multiple admissions results in a revolving 

door pattern of care with patients frequently admitted with little clinical benefit for 

their condition. In agreeing care packages following cluster allocation, it is important 

that providers and patients plan appropriately for periods of inpatient admission and 

ensure adequate community support, in particular for crisis and post-discharge 

services and support and providers ensure patients are informed about the availability 

of necessary services.  
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Providers also need to consider the comprehensiveness and adequacy of services 

provided in particular clusters – particularly those where periods of inpatient care may 

be anticipated – when negotiating and agreeing cluster prices with commissioners. 

For their part, commissioners may want to monitor readmission rates to mental health 

services more closely. Data on “Unplanned readmissions to mental health services 

within 30 days of a mental health inpatient discharge in people aged 17 and over” is 

included in the CCG Outcomes Indicator Set. The data for this indicator is published 

at CCG level and measures the number of unplanned readmissions to a mental health 

service within 30 days of the discharge date as a proportion of the CCG level count 

of discharges from a mental health inpatient service in people aged 17 and over 

(Health and Social Care Information Centre Clinical Indicators Team 2015). 

Commissioners may also want to monitor readmissions by including this indicator in 

contracts with providers, taking into consideration the casemix profile of providers, 

in particular in relation to the clusters. It can be expected that there will be different 

rates of readmissions in the different clusters. Performance on readmissions could be 

financially incentivised through its inclusion in the Commissioning for Quality and 

Innovation (CQUIN) payment framework. CQUIN payments incentivise the delivery 

of high quality and efficient care by linking a proportion of provider’s reimbursement 

to performance on national and local goals. There are currently two national mental 

health CQUIN indicators related to dementia and improving the physical healthcare 

of people with serious mental illness in order to reduce premature mortality (NHS 

England 2015). It can be informative for commissioners to consider provider 

performance on readmissions alongside contextual indicators such as availability of 

mental health beds and community services (Durbin et al. 2007). Indicators on the 

availability of post-discharge or crisis community-based care could also be included 

in payment contracts or incentivised through CQUIN payments. Commissioners 

could withhold payment or impose financial penalties if providers exceed a certain 

threshold for readmissions.  

Our finding on the relationship between readmission rates and LOS also has 

implications for policymakers and the design of the NTPS for mental health. In acute 

physical healthcare, providers do not receive payment for readmissions within 30 days 

of discharge under the NTPS. Policymakers need to consider whether a similar policy 

should be attached to mental health payment. In mental healthcare, it would be 
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feasible to discriminate financial penalties according to the clusters, taking into 

consideration the different readmission rates in the different clusters. 

6.2.4. Formal admissions 

We find that formal admissions is a key driver of increased resource use. Admission 

under the MHA is not considered in the care clusters classification system. This may 

be due to a concern that it may incentivise increased formal admissions in order to 

increase provider payment. Moreover, depriving service users of their civil liberties 

would be a concern for patients if they are increasingly treated in more restricted 

settings, against their will. Nevertheless, providers have different thresholds for 

formal admissions and may face financial risk if this is not adequately taken account 

of in the payment system. Ideally, the clinical or patient factors driving formal 

admission should be adequately reflected in the classification system (Buckingham et 

al. 1998). Our findings suggest that these clinical factors are not adequately captured 

by the care clusters in and of themselves. Research has suggested that patient factors 

such as ethnicity and age are associated with compulsory admission (Weich et al. 

2014). This suggests that further work could be done to refine the classification 

system. Alternatively, the payment system could compensate providers for treatment 

of patients that are characterised by cost drivers (e.g. Black ethnicity). Providers could 

be compensated through an outlier policy included in the system as described earlier. 

As formal admission increases LOS, providers could be paid for the additional 

inpatient days beyond a stipulated LOS threshold. This would ensure that patients 

receive adequate, good quality care and providers are sufficiently reimbursed for this. 

Formal admission is also associated with inferior outcomes for patients. This implies 

that providers with high rates of formal admissions will also face a disadvantage when 

a proportion of provider payment is linked to patient outcomes. Commissioners can 

take into consideration previous rates of formal admissions when agreeing prices and 

negotiating contracts with providers. Commissioners may want to monitor rates of 

formal admissions of providers to see if these are stable over time and to provide 

insights into what factors are associated with high rates of formal admissions. 

Research has suggested that around 7% of variation in admission to inpatient care 

under the MHA is attributable to (unobservable) provider factors (Weich et al. 2014). 
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If rates of formal admissions are amenable to actions on the part of providers, then 

financial incentives could be attached to formal admissions through CQUIN or NTPS 

payments, such as withholding a part of payment in the event that providers exceed 

an agreed threshold for formal admissions or imposing financial penalties on 

providers in such instances. This would help to ensure that patients do not face a 

higher probability of formal admission conditional on the provider they attend and 

help to achieve better patient outcomes. 

6.2.5. Funding for mental health services 

The English NHS is currently experiencing a difficult financial situation. At the end 

of 2014/15, providers of acute physical healthcare recorded an overall net deficit of 

over £820 million. The situation does not look set to improve with around two-thirds 

of providers of acute physical healthcare forecasting deficits for 2015/16 (Appleby, 

Thompson and Jabbal 2015). Mental health has not been spared from the recent 

financial hardships with decreases in funding and subsequent cuts in staff and beds 

(Lintern 2014a), despite increased demand pressures (Smith et al. 2015). Moreover, 

mental health providers are pessimistic that increased funding commitments for 

2015/16 will be met (Appleby, Thompson and Jabbal 2015). 

Mental health has traditionally received less attention than physical health among 

policymakers and funding has not been commensurate with the prevalence of mental 

illness and its societal and economic impacts. Recently however, there has been an 

increased recognition of the need to place mental health on a par with physical health. 

The goal of parity of esteem has started to be realised with the extension of polices 

such as patient choice, and access and waiting times targets to mental health. The 

introduction of the NTPS to mental health is another key policy lever to achieve parity 

of esteem. The funding of mental health providers using block contracts, combined 

with a lack of good cost and activity data has left mental health vulnerable to 

underfunding. The use of the NTPS for acute physical healthcare has made costs and 

activity more transparent and meant it was easier for commissioners to evaluate what 

budgets were being spent on. The measurement and costing of mental health activity 

using the care clusters means that commissioners will have a more tangible sense of 

what they are purchasing in mental healthcare. This will make it more challenging for 
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commissioners to arbitrarily shift resources away from mental health, which is an all 

too realistic prospect given the financial difficulties of acute physical healthcare 

providers. A fairer allocation of resources to mental health according to patient need 

(and potentially outcomes) and provider activity is clearly warranted given the high 

disease burden and economic cost associated with mental illness. This will help to 

improve patient care in order to deliver better physical and mental health outcomes 

for users of mental health services. 

 Limitations of work and areas for future research  

There are a number of limitations to the work presented in this thesis, which could be 

addressed in future research. In Chapter 2, we only consider the inpatient part of the 

mental healthcare pathway due to the unavailability of the MHMDS at the time of the 

research. Inpatient mental healthcare warrants particular attention given that it is a 

resource intensive care setting that has been singled out for productivity 

improvements. However, only a minority of mental healthcare is provided in inpatient 

settings (Health and Social Care Information Centre 2014). A more complete picture 

of the impact of provider readmission rates on LOS is provided by linking HES to the 

MHMDS. This would allow the inclusion of additional admission-level variables on 

community-based care such as CPA, accommodation status, and type and intensity of 

community-based care received (e.g. contacts with different healthcare professionals 

and types of mental health teams and other forms of care such as outpatient or day 

care) to be added to the model. This would provide greater insights into the effect of 

community-based care and support on inpatient LOS. It is worth noting the limitations 

of the primary diagnosis data recorded in HES for our sample, in particular the 

relatively high percentage (around 20%) of observations coded as “Unknown and 

unspecified causes of morbidity” (ICD-10 R69X). This may be why we observe fewer 

observations with diagnoses such as psychosis than we would expect given high 

admission thresholds for acute inpatient mental health care. 

Mental health costs are reported in the Reference Cost (Department of Health 2012) 

data as per diem admitted (and non-admitted) cost per cluster by provider. By linking 

HES to the MHMDS we would also gain information on the care cluster assigned to 

the patient which would allow us to measure resource use in terms of cost in order to 
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replicate the analysis. Future research could also consider alternative ways of 

modelling the data to investigate the relationship between LOS and readmission rates, 

such as using a bivariate model such as that employed in Chapter 5. Another limitation 

of the analysis in Chapter 2 is that we only estimate the association between LOS and 

readmission rates. In order to make inferences about a causal relationship we would 

need an instrumental variable – a variable correlated with readmission rates but not 

with LOS. To our knowledge, such a variable is not available in either HES or 

MHMDS. 

A limitation of the research presented in Chapter 3 is the inability to include data on 

diagnosis due to the poor coding of the variables measuring primary and secondary 

diagnoses in the MHMDS. Previous research (Buckingham et al. 1998; Drozd et al. 

2006; Kapur, Young and Murata 2000; Robst 2009) has shown that diagnosis is 

predictive of cost with more severe diagnoses associated with higher costs 

(Buckingham et al. 1998; Drozd et al. 2006). While the care clusters utilise diagnostic 

labels there is a distinct difference between the care cluster classification system and 

diagnostic systems (Yeomans 2014). Diagnosis is not considered when a patient is 

allocated to a care cluster and it has been suggested that the clusters should be viewed 

as complementary to diagnosis (Trevithick, Painter and Keown 2014). Primary 

diagnosis is relatively well recorded in HES so future work could link HES and 

MHMDS and restrict the analysis to patients with an inpatient stay only. While this 

would lead to a considerable reduction in the sample size and would limit the analysis 

to high severity patients with an inpatient stay, it would nevertheless provide an 

insight into the effect of different primary diagnoses on cost. If the coding of diagnosis 

in the MHMDS improves over time then it would be worthwhile replicating the 

analysis with information on diagnosis included. The introduction of a new variable 

measuring provisional diagnosis in the new Mental Health Services Data Set 

(MHSDS) (which replaces the MHMDS) may help to improve coding of diagnosis. 

A potential reason for poor coding of primary diagnosis is that it can take time for a 

mental disorder to present itself and clinicians are often reluctant to prematurely code 

diagnosis in order to avoid the problem of false positive diagnoses (Wakefield 2010; 

Wykes and Callard 2010). The use of a provisional diagnosis variable may address 

this issue to a certain extent. 
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As we use data from the initial years of the implementation of the NTPS, we can 

expect data coding to improve over time, in particular for the cost and care cluster 

variables. An improvement in the coding of the cost data from 2011/12 to 2012/13 is 

evident (see Figures 3.1 and 3.2 in Chapter 3). With the development and subsequent 

roll-out of PLICS for mental health providers commencing in 2016 we may expect 

cost data to improve considerably. A further limitation of the cost data used in Chapter 

3 is that it is essentially provider-level cost data that underpins our dependent cost 

variable. While variation in the dependent cost variable will arise for patients in 

different clusters with different care patterns (in terms of LoS and admitted and non-

admitted care), a greater level of variation would be observed if we had access to data 

on the actual costs incurred by individual patients, rather than the provider average. 

Cluster data may also be expected to improve once it forms the basis for provider 

payment. Therefore, it would be worthwhile replicating the analysis in future with 

additional years of data.  

A limitation of Chapter 4 is the large number of observations with missing follow-up 

HoNOS scores. If the data is Missing Not at Random (MNAR) then this can result in 

biased estimates of provider performance. Future work could use multiple imputation 

to address the problem of missing HoNOS data when making inferences about the 

performance of mental health providers on patient outcomes. Multiple imputation 

requires the generation of multiple imputed data sets which, conditional on the 

missingness assumption, correctly reflect the distribution of the missing data given 

the observed data. The model of interest is then fitted to each imputed data set and the 

results of all the iterations are averaged – for example using Rubin’s rules (Rubin 

1987) – for the final inference. The use of multiple imputation might lead to 

alternative inferences about provider performance. 

It is important to recognise the limitations of RCSC as applied to our data. The RCI 

of 10 and clinical severity cut-off of 9 imply that reliable and clinically significant 

improvements or deteriorations will be evident only for observations at the extreme 

ends of the severity distribution in terms of HoNOS scores. Moreover, it is not 

possible to distinguish reliable and clinically significant improvements or 

deteriorations measured using RCSC from changes that would have occurred anyway 

due to the tendency for a large measurement to be followed by a measurement closer 
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to the average value, a phenomenon commonly known as “regression to the mean” 

(Barnett, van der Pols and Dobson 2005). For example, to the extent that regression 

to the mean applies, patients who enter mental health services in a crisis or distressed 

state (rather than in a non-distressed state) and subsequently record high HoNOS 

scores, will be more likely to record a lower subsequent rating regardless of the 

treatment received or quality of provider care (Evans, Margison and Barkham 1998). 

It has also been suggested that a cut-off point will not be accurately estimated when 

distributions have different variances and skew (Evans, Margison and Barkham 

1998). Bearing these caveats in mind, the application of RCSC to a more homogenous 

patient population e.g. patients allocated to the same cluster or attending the same 

provider or service type may make the measurement more sensitive to change. This 

would mean a smaller change in HoNOS scores needed to establish a reliable change 

(RC) and a higher change in HoNOS scores for the clinically significant (CS) cut-off 

determining an improvement or deterioration in outcome (Parabiaghi et al. 2005). As 

in Chapter 3, better quality data on diagnosis would allow refinement of the models 

used in Chapter 4 and also aid interpretation of the ordered outcome dependent 

variable. The majority (88%) of patients were classified as having a “stable” outcome, 

which can be viewed as a favourable outcome for severe mental illness such as 

psychosis. Better data on diagnosis would also allow the calculation of RCSC in 

HoNOS scores for different diagnostic groups, given sufficient sample sizes.  

As additional HoNOS measurements become available for the same patients, these 

could be analysed using a repeated measures model. This would allow the analysis of 

multiple outcome measures taken at different points in time and take into account the 

correlation between subsequent measures (Steele 2014). A repeated measures model 

would provide insights into the change in outcomes over time and whether different 

patterns are associated with different providers, for example do patients experience 

more rapid improvements or deteriorations when treated by certain providers? As 

mental illness is a chronic disease, modelling provider performance based on more 

than two measurements could provide inferences that are more robust.  

Future work could also consider the causal relationship between costs and outcomes 

if data on a suitable instrumental variable correlated with outcomes but not with costs 

should become available. 
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We find variations in performance across providers for both resource use and quality. 

It is not within the scope of this thesis to investigate the factors driving these 

differences in performance beyond the variables considered in this research. Future 

work could further investigate what features of providers can explain differences in 

performance to inform future developments in the way mental health providers are 

funded so the reimbursement system can incentivise efficiency and quality without 

creating perverse incentives for providers. 
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Glossary 

 

A&E Accident and Emergency  

ADL Activities of Daily Living 

AIC Akaike’s Information Criterion 

BIC Bayesian Information Criterion 

CAMHS Child and Adolescent Mental Health Services 

CCGs Clinical Commissioning Groups 

CGIS Clinical Global Impression Scale 

CPA Care Programme Approach 

CQUIN Commissioning for Quality and Innovation 

CRHT Crisis Resolution and Home Treatment  

CROM Clinician Rated Outcome Measure 

CRP Cluster Review Period 

CS Clinically Significant 

CV Coefficient of Variation  

DRGs Diagnosis Related Groups 

EB Empirical Bayes 

ECT Electroconvulsive Therapy 

FMM Finite Mixture Models 

FT Foundation Trust  

FTE Full Time Equivalent  

GLM Generalized Linear Model  

HES Hospital Episode Statistics 

HoNOS Health of the Nation Outcome Scales 

HRGs Healthcare Resource Groups 

HSCIC Health and Social Care Information Centre  

IAPT Improving Access to Psychological Therapies 

IMD Index of Multiple Deprivation  

IRRs Incidence Rate Ratios  

LOS Length Of Stay 

LSOA Lower Layer Super Output Area  

MAPE Mean Absolute Prediction Error 

MAR Missing At Random 

MCAR Missing Completely At Random 

MCMC Monte Carlo Markov Chain  

MFF Market Forces Factor 

MHA  Mental Health Act 

MHCT Mental Health Clustering Tool  

MHMDS Mental Health Minimum Data Set 

MHSDS Mental Health Services Data Set 

MNAR Missing Not At Random 

NHS National Health Service 

NTPS National Tariff Payment System 

PbR Payment by Results 
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PCTs Primary Care Trusts 

PLICS Patient Level Information Costing Systems 

PRs Predictive Ratios 

PREMS Patient Related Experience Measures  

PROMs Patient Reported Outcome Measures  

RC Reliable Change 

RCSC Reliable and Clinically Significant Change 

RIGLS Restricted Iterative Generalized Least Squares  

RMSE Root Mean Square Error  

SARN Summary of Assessments of Risk and Need  

VHA Veterans Health Administration  
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