
A Corpus-Trained Parser for

Systemic-Functional Syntax

David Clive Souter

Submitted in accordance with the requirements for the degree of Doctor of Philosophy.

The University of Leeds

School of Computer Studies

August 1996

The candidate confirms that the work submitted is his own and that appropriate credit has

been given where reference has been made to the work of others.

 ii

Abstract
This thesis presents a language engineering approach to the development of a tool for the parsing of

relatively unrestricted English text, as found in spoken natural language corpora.

Parsing unrestricted English requires large-scale lexical and grammatical resources, and an algorithm

for combining the two to assign syntactic structures to utterances of the language. The grammatical

theory adopted for this purpose is systemic functional grammar (SFG), despite the fact that it is

traditionally used for natural language generation. The parser will use a probabilistic systemic

functional syntax (Fawcett 1981, Souter 1990), which was originally employed to hand-parse the

Polytechnic of Wales corpus (Fawcett and Perkins 1980, Souter 1989), a 65,000 word transcribed

corpus of children’s spoken English. Although SFG contains mechanisms for representing semantic as

well as syntactic choice in NL generation, the work presented here focuses on the parallel task of

obtaining syntactic structures for sentences, and not on retrieving a full semantic interpretation.

The syntactic language model can be extracted automatically from the Polytechnic of Wales corpus in a

number of formalisms, including 2,800 simple context-free rules (Souter and Atwell 1992). This

constitutes a very large formal syntax language, but still contains gaps in its coverage. Some of these are

accounted for by a mechanism for expanding the potential for co-ordination and subordination beyond

that observed in the corpus. However, at the same time the set of syntax rules can be reduced in size by

allowing optionality in the rules. Alongside the context-free rules (which capture the largely horizontal

relationships between the mother and daughter constituents in a tree), a vertical trigram model is

extracted from the corpus, controlling the vertical relationships between possible grandmothers,

mothers and daughters in the parse tree, which represent the alternating layers of elements of structure

and syntactic units in SFG. Together, these two models constitute a quasi-context-sensitive syntax.

A probabilistic lexicon also extracted from the POW corpus proved inadequate for unrestricted English,

so two alternative part-of-speech tagging approaches were investigated. Firstly, the CELEX lexical

database was used to provide a large-scale word tagging facility. To make the lexical database

compatible with the corpus-based grammar, a hand-crafted mapping was applied to the lexicon’s theory

neutral grammatical description. This transformed the lexical tags into systemic functional grammar

labels, providing a harmonised probabilistic lexicon and grammar. Using the CELEX lexicon, the

parser has to do the work of lexical disambiguation. This overhead can be removed with the second

approach: The Brill tagger trained on the POW corpus can be used to assign unambiguous labels (with

over 92% success rate) to the words to be parsed. While tagging errors do compromise the success rate

of the parser, these are outweighed by the search time saved by introducing only one tag per word.

A probabilistic chart parsing program which integrated the reduced context-free syntax, the vertical

trigram model, with either the SFG lexicon or the POW trained Brill tagger was implemented and tested

on a sample of the corpus. Without the vertical trigram model and using CELEX lexical look-up, results

were extremely poor, with combinatorial explosion in the syntax preventing any analyses being found

for sentences longer than five words within a practical time span. The seemingly unlimited potential for

vertical recursion in a context-free rule model of systemic functional syntax is a severe problem for a

standard chart parser. However, with addition of the Brill tagger and vertical trigram model, the

performance is markedly improved. The parser achieves a reasonably creditable success rate of 76%, if

the criteria for success are liberally set at at least one legitimate SF syntax tree in the first six produced

for the given test data. While the resulting parser is not suitable for real-time applications, it

demonstrates the potential for the use of corpus-derived probabilistic syntactic data in parsing relatively

unrestricted natural language, including utterances with ellipted elements, unfinished constituents, and

constituents without a syntactic head. With very large syntax models of this kind, the problem of

multiple solutions is common, and the modified chart parser presented here is able to produce correct or

nearly correct parses in the first few it finds.

Apart from the implementation of a parser for systemic functional syntax, the re-usable method by

which the lexical look-up, syntactic and parsing resources were obtained is a significant contribution to

the field of computational linguistics.

 iii

Contents

Abstract ii

Contents iii

Tables and Illustrations vi

Acknowledgments vii

Preamble viii

Chapter 1. Introduction 1

1.1 Aims. 1

1.2 Parsing Natural Language: An Example. 1

1.3 Setting the Parsing Scene. 3

1.4 Definitions. 7

1.4.1 Natural Language. 7

1.4.2 The Lexicon. 7

1.4.3 Competence and Performance Grammar. 8

1.4.4 The Grammatical Description. 8

1.4.5 The Grammatical Formalism. 9

1.4.6 Systemic Functional Grammar. 10

1.4.7 Language Corpora. 11

1.4.8 Parsing. 11

1.5 Application and Domain. 13

1.6 Scope. 14

1.6.1 Input Format. 15

1.6.2 Output Format. 15

1.7 Original Contributions to the Field. 16

1.8 The Structure of the Thesis. 18

Chapter 2. Background to the Thesis. 20

2.1 Corpus-Based Computational Linguistics. 20

2.1.1 The Intuition-Based Approach to Developing a Grammar. 21

2.1.2 The Corpus-Based Approach to Developing a Grammar. 22

2.1.3 Selecting a Parsed Corpus. 24

2.1.4 The Polytechnic of Wales Corpus. 25

2.1.4.1 Transcription. 26

2.1.4.2 Syntactic Analysis. 26

2.1.4.3 Corpus Format. 26

2.1.5 The Edited Polytechnic of Wales Corpus. 28

2.2 Systemic Functional Grammatical Description and Formalism. 29

2.2.1 Systemic Grammar in NL Generation. 32

2.2.2 Systemic Grammar in NL Parsing. 34

2.2.3 Problems for a SFG Parser. 37

2.2.4 Systemic-Functional Grammar in the POW Corpus. 38

2.2.5 Choosing a Grammar Formalism and its Effect on Parsing. 44

2.3 Lexical Resources for Corpus-Based Parsing. 47

2.3.1 Corpus-Based Tag Assignment. 48

2.3.2 Dictionaries and Morphological Analysers. 51

2.3.3 Lexical Databases. 52

2.3.4 Choice of Lexical Resource. 54

2.4 Parsing Techniques. 55

2.4.1 Rule-Based Parsing. 57

2.4.1.1 Shift-Reduce Parsing. 58

 iv

2.4.1.2 Chart Parsing. 58

2.4.1.3 Probabilistic Chart Parsing. 62

2.4.2 Probabilistic Parsing. 65

2.4.2.1 Probabilistic Language Models. 65

2.4.2.2 Search Techniques. 67

2.4.3 Selection of a Parsing Technique. 69

Chapter 3. Developing the Resources for Parsing. 71

3.1 Developing a Probabilistic Systemic Functional Syntax. 71

3.1.1 Inconsistencies in the Corpus. 73

3.1.2 Distribution and Frequency of the Rules. 73

3.1.3 Coverage of the Rules. 76

3.1.4 Editing the Corpus. 76

3.1.5 Collapsing a Syntax Model using Optionality. 77

3.1.6 Expanding a Syntax Model using Co-ordination. 81

3.2 Developing a Probabilistic Lexicon for Systemic Functional Grammar. 85

3.2.1 Inadequacies of the POW Corpus Word List. 86

3.2.2 Lexical Aims and Policy Decisions. 87

3.2.3 Selection of Lexical Resources. 88

3.2.4 The CELEX English Database. 88

3.2.5 Converting the CELEX Lexicon. 90

3.2.6 Testing the Lexicon. 93

3.2.7 Rapid Lexical Lookup. 95

3.2.8 Lexical Probabilities 96

3.3 Training the Brill Tagger 96

3.4 Conclusions. 97

Chapter 4. A Probabilistic Chart Parser for Systemic Functional Syntax. 99

4.1 Preliminary Test using Parser Version 5. 101

4.2 An Improved Parsing Algorithm: Version 6. 105

4.2.1 Incorporating Rules with Optional Daughters. 105

4.2.2 Incorporating Rules with Co-ordinating Daughters. 107

4.3 Version 7: Combining Context-Free and Vertical-Trigram Rules. 110

4.3.1 The Vertical Trigram Model. 111

4.3.2 Limiting Tree Depth. 112

4.3.3 Stopping the Parser. 112

Chapter 5. Parser Testing and Evaluation. 114

5.1. The Test Data. 114

5.2 Test 1: Prototype context-free parser with CELEX look-up. 116

5.2.1 Lexical Look-Up. 118

5.2.2 Limitations of the Syntax Formalism. 120

5.2.3 Near Misses. 122

5.3 Test 2: Brill tagging and a context-sensitive chart parser. 125

5.3.1 Test 2: Parser Efficiency. 128

5.3 2 Test 2: Lexical Tagging Results. 129

5.4 Formal Evaluation. 131

5.5 Conclusions. 135

Chapter 6. Improvements to the Parser. 137

6.1 Improving the Lexicon. 137

6.1.1 Disambiguated Tag Probabilities. 137

6.1.2 Refining the CELEX to POW Syntax Mapping. 138

 v

6.1.3 Handling Recurrent Word Combinations. 138

6.1.4 Improving the Brill tagger. 139

6.2 Improving the Grammatical Formalism. 140

6.2.1 A Probability Matrix for Optional Rules. 140

6.2.2 Grammatical Coverage. 140

6.3 Improving the Probabilistic Chart Parser. 141

6.3.1 Efficiency Checks. 141

6.3.2 Applying Multi-Word Edges in a Chart. 142

6.3.3 Restricting Unnecessary Rule Application. 143

6.3.4 Controlling the Agenda. 143

6.3.5 Feature-Based Parsing. 145

6.3.6 Semantic Solution Pruning. 146

6.4 Conclusion. 147

Chapter 7. Conclusions. 148

7.1 Lexical Resources. 148

7.2 Grammatical Resources. 149

7.3 Parser Implementation and Testing. 150

7.4 The Research Method. 151

7.5 The Last Word. 153

References . 155

Appendices . 165

Appendix 1. Sample Fragments of Parsed Corpora. 166

 Appendix 1.1 Lancaster/Leeds Treebank. 166

 Appendix 1.2 Nijmegen Corpus (CCPP). 167

 Appendix 1.3 Polytechnic of Wales Corpus. 168

 Appendix 1.4 Susanne Corpus. 169

 Appendix 1.5 IBM/Lancaster Spoken English Corpus. 170

Appendix 2. A Brief Description of the POW Corpus. 171

Appendix 3. Systemic-Functional Syntax Categories in the POW Corpus. 172

Appendix 4. A Mapping from LDOCE to POW SF Syntax Tags. 175

Appendix 5. A Fragment of a Context-Free SF Syntax Maintaining the Distinction

between Filling and Componence.

179

Appendix 6. A Fragment of a Context-Free SF Syntax Ignoring the Distinction between

Filling and Componence.

180

Appendix 7. A Fragment of a Vertical Trigram Model from the POW Corpus. 181

Appendix 8. Rule and Word-Wordtag Frequency Distribution in the POW Corpus. 182

Appendix 9. A Prototype Competence Systemic Functional Syntax. 183

Appendix 10. Brill Tagger Context Rules Learned from POW 186

Appendix 11. General lexical tagging rules used by the Brill tagger for untrained words. 187

Appendix 12. The Reduced EPOW Filling Grammar. 188

Appendix 13. The 100 Most Frequent Word-Wordtag Pairs in the EPOW Lexicon. 189

Appendix 14. Pocock and Atwell's Weight-Driven Chart Parser. 190

Appendix 15. Parser Version 7: Test Results. 191

 vi

Tables and Illustrations

Figure 1. Sample of transcribed speech from the Polytechnic of Wales Corpus. 1

Figure 2. Parse Trees for the Utterances in Figure 1. 3

Figure 3. A Graphical Representation of a Parse Tree. 12

Figure 4. A Sample Section of a POW Corpus File. 27

Figure 5: A fragment of a system network for MOOD in English. 30

Figure 6. A Sample Section of GENESYS Output. 33

Figure 7. Section of Lispified LDOCE. 51

Figure 8. Building a Chart. 60

Figure 9. The 20 Most Frequent Word-Wordtag Pairs in the POW Corpus. 63

Figure 10. The 20 Most Frequent Context-Free Rules in the POW Corpus. 63

Figure 11. A Fragment of Probabilistic RTN from EPOW. 66

Figure 12. Ambiguous Analyses of the Sentence Fight on to save art. 68

Figure 13. Rules which occur only once (6047 out of 8522). 74

Figure 14. Syntax Rule Reduction Using Optionality. 77

Figure 15. A Probabilistic QQGP Syntax. 80

Figure 16. A Reduced Probabilistic QQGP Syntax. 80

Figure 17. Co-ordination Likelihood in the EPOW Corpus. 82

Figure 18. Variants of the Word-Stem brick in the POW Lexicon. 85

Figure 19. Singleton Word/Word-tag Co-occurrences in the POW Corpus Lexicon. 86

Figure 20. A Fragment of our CELEX English Lexicon. 89

Figure 21. Structure of our CELEX Lexicon according to Grammatical Category. 90

Figure 22. A Fragment of the Reformatted CELEX SFG Lexicon. 93

Figure 23. Testing the CELEX SFG Lexicon with the EPOW Word List. 93

Figure 24. A Trivial Test of Parser Version 5. 103

Figure 25. Trivial Output from a Weight-Driven Chart Parser (version 6). 108

Figure 26. Tree Depth in the POW Corpus. 113

Figure 27. The Test Samples. 116

Figure 28. Test 1: Results. 118

Figure 29. Data from a Suspended Six-Word Parse. 121

Figure 30. Near Misses. 122

Figure 31. Test 2: Results. 127

Figure 32: Evaluation of test results on 19 ‘seen’ and 6 unseen test utterances. 133

 vii

Acknowledgments

I would like to thank my supervisor, Eric Atwell for his generous support, insight and

direction throughout my period of part-time study. Without him I would never have become a

corpus linguist, and still been a John-likes-Marian.

I am also indebted to my wife Clair, who has only ever known me as a Ph.D. student, and my

mother, for their continuing encouragement.

I would also like to thank my erstwhile colleagues on the COMMUNAL project at Cardiff,

and Robin and Mick for collecting the POW corpus in the first place.

I am most grateful to the School of Computer Studies and its staff, who persuaded me to

embark on a part-time Ph.D. in the first place, and have never let me forget it. Special thanks

go to my CCALAS colleagues over the years, particularly Eric Atwell, Tim O'Donoghue,

Rob Pocock, John Hughes, George Demetriou and Uwe Jost.

Finally, I would like to thank my external examiners, Robin Fawcett and Willem Meijs for

their useful comments and criticisms, which resulted in this revised thesis.

 viii

Preamble

This project falls within the domain of language engineering, a relatively young discipline in

which (usually large-scale) linguistic resources are harnessed using artificial intelligence and

computer science techniques in order to provide intelligent tools allowing humans to interact

with and exploit computers by natural language. As such, it will not consist of a great new

insight into linguistic theory, nor will it necessarily advance the theoretical bounds of

computer science. In contrast, its originality will lie in a combination of elements; the

selection and development of linguistic resources (a natural language corpus and a lexical

database of English), the extraction of lexical and syntactic knowledge from these resources

into machine-tractable formalisms, their harmonisation under one grammatical description

(systemic functional grammar), and finally the integration of the lexical and syntactic mode

with a parsing algorithm. Of particular importance is the unrestricted nature of the spoken

language in the corpus, which makes the language model very large, including the ability to

handle the common features of speech, such as ellipted items, false starts, replacement items

and unfinished sentences. This sets the present enterprise apart from parsing work based on

competence grammars of the language, which are usually manually developed using expert

linguistic intuition, and often rely on the notion of a syntactic constituent containing a

linguistic head. It is only when computational linguists try to accommodate the full range of

relatively unrestricted natural language as it is performed, that the potential of NL systems

will finally be commercially realised.

The chosen grammatical description is systemic functional grammar (SFG), and specifically

the version of systemic functional syntax used in the annotation of the Polytechnic of Wales

corpus. SFG has been used quite widely as a model of natural language generation within the

broader context of social interaction. Some researchers have worked explicitly on the task of

systemic-functional syntax parsing within the confines of the syntactic coverage of a related

NL generation system, such as that of the Penman project (Kasper 1988) and in the

COMMUNAL project, O’Donoghue’s Vertical Strip Parser (1993) and Weerasinghe’s

Probabilistic On-line Parser (1994)
 1
. The syntactic coverage of such parsers has been

deliberately constrained in these cases by learning the syntax model from what the generator

could generate. The parser’s output was intended to be the input of a semantic interpreter,

1 Although Weerasinghe does draw on the POW corpus for his probabilisitic model, the syntax itself is derived

from the NL generator. O’Donoghue produced an earlier Simulated Annealing Parser based on the POW corpus

(see Atwell et all 1988, Souter and O’Donoghue 1991), but his thesis work focuses on compatibility with the

COMMUNAL generator GENESYS.

 ix

which once implemented, would produce semantic representations compatible with those in

the generator, opening the way to a complete SFG-based NL interface. With such an

application in mind, there is little point expanding the coverage of a syntactic parser beyond

the potential of the generator (unless the interpreter was able to collapse semantically related

syntactic analyses onto just the semantic representations that the generator could produce).

The present project, however, does not so constrain itself, and can therefore analyse a wider

range of structures. The corpus-trained syntax models which are presented here should

provide useful source material to the developers of systemic-functional (and other) NL

generation systems. One disadvantage of using the corpus-based syntax though, is that it is

not directly compatible with that being used in the COMMUNAL NL generator, (even

though they were both authored by Robin Fawcett); the syntactic node labels are slightly

different, and the corpus version does not include participant roles. In this project, therefore, I

am not attempting to accommodate the syntax of the related NL generator. I am working with

a wider, arguably still richer model.

It should also have become clear that I consider the process of semantic interpretation to be

beyond the scope of my project. When I refer to parsing, I will mean purely syntactic parsing

with respect to the corpus-trained model, and not include the process of semantic

interpretation (as some systemicists do). SFG provides a description and formalism at both

the syntactic and semantic level. Therefore the use of the term SFG can be seen to encompass

more than just a syntactic grammar, putting it at odds with linguists who would use the word

grammar more exclusively for a purely syntactic model, such as a set of context-free rules. I

will therefore (try to remember to) refer to my corpus-trained ‘grammar’ as a SF syntax, and

reserve the term SFG for when I especially wish to refer to the full syntactic and semantic

description.

The ethos of the work presented here is to allow the method to be re-used for other corpora

and syntactic descriptions, rather than be tied exclusively to the one description. There are

some areas where specific POW-corpus SF syntax modules have inevitably been included,

but these have deliberately been kept to a minimum. There are many competing grammatical

theories and descriptions, both in the field of corpus linguistics, and more general theoretical

linguistics, none of which can be said to have universal support as yet. I will present a

generally re-usable method, but implement it for one particularly rich (and therefore quite

tricky) description.

 1

Chapter 1. Introduction.

1.1 Aims.

It is the aim of this thesis to produce a reliable method for assigning syntactic structure to

sentences of relatively unrestricted English, as found in spoken corpora of the language. This

process, which is called parsing, is one of the key components in many computer applications

which require natural language processing (NLP) of some kind. Apart from building a particular

implementation of a parser for the syntax of systemic functional grammar (SFG: Fawcett 1981)

as found in the Polytechnic of Wales corpus (Fawcett and Perkins 1980, Souter 1989b), I will

argue that, given adequate lexical and corpus resources, the same method can be adopted to

develop parsers for other grammatical descriptions.

1.2 Parsing Natural Language: An Example.

By way of introduction to the process of parsing, Figures 1 and 2 show the sort of input and

output a parser for relatively unrestricted English might be expected to handle. The input would

be transcribed spoken text, which ideally (but not invariably) would consist of separate

sentences. The sample in Figure 1 is part of a spoken text produced by a twelve year old boy

(PG) in conversation with two others while building some LEGO, and was chosen at random

from a corpus of 65,000 words of spoken English called the Polytechnic of Wales (POW)

Corpus.
1

Figure 1. Sample of transcribed speech from the Polytechnic of Wales Corpus.

 (1) PG: WHY

(2) PG: WHAT 'S THE POINT

(3) PG: YOU PUT THESE ON FOR WINDOWS

(4) AW: you don't have to

(5) SM: won't be long

(6) PG: IT 'S EASIEST MIND

1 The samples are taken from the corpus file 12abpspg.

 2

(7) AW: I know something easy. Build a garage.

(8) PG: FANTASTIC

(9) SM: or something like a skyscraper

(10) PG: THIS WORKED OUT IT WON'T FIT

(11) SM: Go on. We can always move it along can't we.

(12) PG: WILL THAT ONE FIT IN BY-THERE

(13) PG: COME ON LETS GET GOING

(14) PG: I CAN'T EVEN

The text in Figure 1 has been orthographically transcribed from recordings of the spoken data.

While this fragment of speech hardly represents a typical interaction one might imagine between

a human and a computer, it does contain a range of utterance types we would want a computer to

be able to deal with; queries (1,2,11b,13), statements (3-7a,10), exclamations (8), and commands

(7b,11a,13). It also includes examples of syntactic phenomena we would want our parser to be

able to handle; juxtaposed sentences
2
 (10,13), ellipted (missing) words (5,7,9) and unfinished

sentences (4,14), which are a particular problem for many parsing programs. I have selected this

spoken text as an example because it illustrates such difficulties. By doing so I do not mean to

preclude the parser from working on written corpora or adult English, which contain their own

different problems of more complex grammatical structure and longer utterances, but these

language varieties will not be the primary material the parser should handle.

Each sentence in the POW Corpus has been syntactically analysed manually, so that each word is

labelled with a syntactic category (appearing immediately to the word's left), and the words

grouped into phrases and clauses, forming a tree structure of nested labelled brackets (see Figure

2).

2 Juxtaposed sentences are those with no explicit separator between them. It is a matter of linguistic debate whether

(10) is a single sentence consisting of two clauses, or two separate sentences. In a spoken corpus, such separation is

hopefully marked by prosodic features such as pauses and intonation contours. Briscoe (1994; 97-8) refers to this as

the chunking problem.

 3

Figure 2. Parse Trees for the Utterances in Figure 1.

 (1) [Z [CL [AWH [QQGP [AXWH WHY]]]]]

(2) [Z [CL [CWH [NGP [HWH WHAT]]] [OM 'S] [S [NGP [DD THE] [H POINT]]]]]

(3) [Z [CL [S [NGP [HP YOU]]] [M PUT] [C [NGP [DD THESE]]] [CM [QQGP [AX ON]]] [A

[PGP [P FOR] [CV [NGP [H WINDOWS]]]]]]]

(6) [Z [CL [S [NGP [HP IT]]] [OM 'S] [C [QQGP [AX EASIEST]]] [AF MIND]]]

(8) [Z [CL [EX FANTASTIC]]]

(10) [Z [CL [S [NGP [DD THIS]]] [M WORKED] [CM [QQGP [AX OUT]]]] [CL [S [NGP [HP

IT]]] [OMN WON'T] [M FIT]]]

(12) [Z [CL [OM WILL] [S [NGP [DD THAT] [HP ONE]]] [M FIT] [CM [QQGP [AX IN]]] [C

[QQGP [AX BY-THERE]]]]]

(13) [Z [CL [M COME] [CM [QQGP [AX ON]]]] [CL [O LETS] [M GET] [C [CL [M

GOING]]]]]

(14) [Z [CLUN [S [NGP [HP I]]] [OMN CAN'T] [AI EVEN]]]

These manually parsed trees might be treated as the desired solutions a parser should find and

produce as output (provided the experts who produced the trees agree that they are correct).

However, in arriving at these analyses, the manual annotators may have had access to the original

recordings (or information derived from them), which would have provided intonation and other

contextual cues leading the annotators to select one analysis from perhaps many other readings. It

is typical in natural language for a sentence to be syntactically ambiguous, but the hearer will

(usually unconsciously) use prosodic, semantic and pragmatic information, as well as knowledge

of the world, to select the most likely interpretation. The parser being developed here will not

have access to such information. It will therefore be the parser's job to provide the permissible

syntactic structures (with respect to a particular syntactic model) and no more, for subsequent

semantic and pragmatic pruning by further modules of a NLP system, or by a human post-editor.

Consequently, each parse tree in Figure 2 should be viewed as one of perhaps many legitimate

analyses which a syntactic parser should produce.

1.3 Setting the Parsing Scene.

Why is it so important to be able to accurately assign syntactic structure to a sentence? A

reasonable analogy within the computing world would be to ask why is it important to be able to

compile a program? The compiler parses the program from some programmer's file, interpreting

 4

it as a set of instructions to perform on some given data. It is only by parsing the program that it

can then successfully perform the instructions.

In the context of natural language input to a computer, the language utterance is analysed

syntactically either because that is the goal of the computer system, or more commonly because

the utterance is to be interpreted as a command, a query or a statement, and the meaning of the

utterance is to be determined. In the latter case, the form of the utterance is found by the parser,

and the form will dictate what the computer then does with its semantic content: add it to a

database, perform some query on a database, or perform some other action such as opening a file.

This kind of interaction presumes that the human is using natural language to access a data or

knowledge base stored on computer. The advantages to be gained from using language in this

way are that the user does not need to learn a specific database query language or operating

system to make the computer act. Furthermore, if the language input mode is spoken, rather than

written, it saves the user from needing to type, or click on a mouse, and hence will generally be

quicker, and leave the user's hands free for other tasks.

There are, however, many other applications in which natural language is parsed, which promise

to revolutionise the way we interact with computers and each other. Speech recognition devices,

in which the user employs ordinary spoken language which is transformed into written text by

the computer, commonly use a parser to help decide between the alternative possible mappings

from acoustic signal to lists of words. If a speech recogniser has to choose between the following

two mappings from signal to written text, the syntactic analysis will hopefully force it to select

the first:

I'm hoarse because I scream

I'm horse because ice cream

One of the anticipated NLP applications which has so far proved elusive is a general purpose

machine translation or interpreting system between any pair of natural languages. One part of

such a system might be to take the input sentence and parse it, passing the output of the parser to

a semantic interpreter. It has long been assumed by many logicians that “the meaning of a

complex expression should be a function of the meaning of its parts” (Allwood et al 1983; 130),

the compositionality principle which is often attributed to Gottlob Frege (see for example Frege

 5

1952). The function referred to by which the meanings of the parts of a sentence are combined to

form the meaning of the whole is often taken to be the syntactic structure. The meaning of, say, a

noun phrase is first determined from the phrase's subparts according to the structure of the noun

phrase, and then combined with the meaning of other phrases in the same clause, and finally

other clauses, to produce a meaning of the sentence. This method is commonly adopted when

arriving at a semantic representation for a sentence (see for example Dowty et al 1981, Gazdar et

al 1985), and used not only in machine translation, but in other applications such as text

abstracting and summarising, and NL interfaces (as described above).

Other applications in which a syntactic analysis module is presumed are grammar and style

checkers, where the purpose of the program is to point out to an author (perhaps non-native) that

the construct they have used is, according to the system's grammar, unacceptable, or at least

idiosyncratic.

Although parsers are usually associated with the analysis and interpretation of text, there is a

further application in the domain of text-to-speech generation. Text-to-speech synthesizers are

already commercially available. In early products the speech produced was quite intelligible, but

sounded unnatural, primarily because of the lack of varying intonation and other prosodic

features such as pauses for breath at the end of a tone unit. Recent systems have achieved more

natural sounding speech by parsing the text, and applying an intonation and stress pattern to the

generated speech according to the structure of the sentence.

Although many of these much heralded applications for natural language processing are

beginning to be realised, many are doing so by restricting the complexity of the problem. For

example, a speech recognition device might require the speaker to train the system to recognise

his individual speech, and to leave a slight gap between each word (Dragon Dictate is one

example). A machine translation system might be developed for just a limited domain between

two languages, for instance translating weather forecasts between English and French (METEO,

TAUM Montreal).

It is fair to say that researchers in NLP have for a long time confined their efforts to producing

relatively modest working prototypes with restricted lexical and grammatical capabilities. One of

the reasons for their limited success is the fact that they have imposed somewhat tight boundaries

 6

on the range of words and constructs the user can produce. With ‘toy’ lexicons and grammars of

probably fewer than a hundred words and rules, fast, efficient parsers have been developed using

simple algorithms. Of course, such parsers fail frequently when they come across a word or

syntactic structure not described in the lexicon or grammar, but perform admirably within the

chosen sublanguage. It is only when speakers (or writers) are given a free rein with their

linguistic creativity that NLP systems will graduate from prototypes to a robust and mature

technology, and go on to have the profound impact on society, commerce and industry which has

long been envisaged. It is in this context that the so-called language industry is emerging.

In the last eight to ten years, however, this problem of handling realistic unrestricted English text

has begun to be addressed by more than just by a limited number of interested research groups

(Sampson 1990). Several of the theories and techniques that have been developed for the small

prototype systems are coming under close scrutiny by researchers faced with all the complexity

and size of the English language, as observed in the large collections of a variety of English texts

which I am referring to as corpora.

Several major questions arise when considering the parsing of unrestricted English:

What sort of lexicon and grammatical formalism is capable of describing the complex syntactic

relations of a natural language like English? Do existing grammatical theories capture many or

all of the phenomena found in real use of spoken and written natural language, such as ellipsis,

unfinished sentences, discontinuous, repeated and replacement elements? What sort of parsing

techniques are suitable for the very large grammars and lexicons that describe unrestricted

English? Can the rule-based techniques used for competence grammars be adapted easily, or are

purely probabilistic methods the only realistic alternative? Is it possible to produce a parser

which combines the simplicity and efficiency of rule-based parsing with the robustness of the

probabilistic counterparts? Some researchers are also questioning the abstract or so-called

rational approach to grammar and lexicon development, where rules are written intuitively using

expert linguistic knowledge, using what Chomsky called competence in the language, to an

empirical approach guided by the actual performance of the language (Lyons 1970; 38-39). A

grammar which stems from one of these two different approaches may be called either a

competence grammar or a performance grammar.

 7

The research presented here attempts to answer some of these questions, and produce a solution

to the problem of wide-coverage parsing of unrestricted English. This solution falls squarely

within the performance rather than the competence paradigm of grammatical development.

1.4 Definitions.

In the preceding sections, I have tried to give a general introduction to the parsing problem,

without providing any formal definition of technical terms. I will now assume the following

definitions:

1.4.1 Natural Language.

Parsing occurs with respect to a particular natural language. A natural language is distinguished

from mathematical, logical or programming languages by being articulated by native human

speakers, and typically containing ambiguity and vagueness. A natural language is itself defined

by a lexicon and grammar for that language. The lexicon and grammar may be referred to

together as the lexico-grammar. The grammar may be divided into components specifying the

structure of words (morphology) and sentences (syntax), and the meanings of words and

sentences (semantics).

1.4.2 The Lexicon.

The lexicon theoretically lists all the wordforms (words) in the language, but in practice usually

contains a more or less large subset of the morphemes in the language. Morphemes are the

smallest semantically significant parts of words, and are referred to as stems and affixes. For

instance, the word trains can be split into two morphemes: train and s. The suffix s is so called

because it follows the stem. Since the morpheme train is syntactically ambiguous (it can be a

noun or a verb), the suffix here could either be the plural ending for a noun, or the third person

singular ending for a verb. A word is broken down into its component morphemes by a process

called morphological analysis, and a program which does this is called a morphological

analyser. A lexicon which consists of only morphemes is usually supplemented by a set of

regular rules of morphology, which allow wordforms to be constructed from or broken down into

their morphemes. If a wordform cannot be derived from the regular morphological rules for the

 8

language, it is deemed to be irregular and stored in the lexicon as a separate morpheme. A typical

product of lexical look-up and/or morphological analysis for a parser is the part-of-speech

(syntactic tag/category) for a word (or more rarely a group of words treated as one item). Where

a word is syntactically ambiguous, a lexicon should provide all the alternative parts-of-speech,

but a syntactic tagging program (tagger) usually chooses the most likely single tag with respect

to the surrounding words (and their tags).

1.4.3 Competence and Performance Grammar.

The grammar (as has been suggested in section 1.3) can be defined in two different ways: In one

view, a competence grammar describes how the wordforms of the language can be combined to

produce grammatical sentences acceptable to the native speakers of the language. A competence

grammar is an idealised encapsulation of what native speakers consider to be acceptable and

meaningful word combinations in the language, and is usually created by introspection on the

part of the speaker.

In the second view, a performance grammar describes all the ways in which the wordforms in the

language can be combined by a speaker when uttering the language. A speaker usually produces

an utterance for some communicative purpose, such as conveying some meaning. An utterance

may be spoken or written, and may consist of one or more sentences, or only part of a sentence.

The relationship between performance and competence grammars is that the performance

grammar reflects the way the language is used, and so must account for performance features

such as interruptions, repetitions, slips of the tongue and mistakes, whereas the competence

grammar should reflect what the speaker would ideally produce without these ‘imperfections’.

1.4.4 The Grammatical Description.

A grammar contains a unique description of the language. The description includes labels for

wordforms which behave similarly, classifying them into groups. The labels are commonly called

parts of speech, such as noun, verb, preposition and adjective, but will be referred to here as

word tags, and also as terminal categories (since they are the labels on the ends of the branches in

a parse tree, and are attached to the wordforms themselves). The grammar description also

 9

specifies recurring combinations of word tags, called constituents, which, in an individual

grammar may be referred to as clusters, units, groups or phrases. These constituents themselves

may be further combined into higher level groupings called clauses, which finally combine to

make up a sentence. The labels for such constituents are called non-terminal categories. The

label for the sentence constituent itself is called the root category. A description for unrestricted

natural language is likely to contain many tens or even hundreds of grammatical categories

depending on the level of delicacy the writer of the grammar wishes to identify. The finest-

grained description would have a separate label for each wordform, which has led Halliday

(1961; 267) to refer to the lexicon (lexis) as the most delicate grammar. In practice, grammatical

descriptions tend to vary between a few dozen and upto around 200 categories. In some

descriptions, the categories themselves are not treated as indivisible atomic items, but as

combinations of syntactic features.

The constituent structure describes the form of the sentence, but a second level of description

capturing the function of different parts of the sentence is employed in some grammars. The form

of the string of words (15) is a noun phrase, but it may function differently depending on its

position and relationship with other words in the sentence. In (16) the noun phrase acts as subject

of the main verb. In (17) it acts as the verb's object, or complement, and in (18) it acts as the

possessor in an enclosing noun phrase.

(15) Two fat ladies

(16) Two fat ladies wanted a photo

(17) I photographed two fat ladies

(18) I took the two fat ladies' photo

1.4.5 The Grammatical Formalism.

The relationship between the categories is captured by a particular grammatical formalism.

Several formalisms can theoretically be employed for any one description, although it is typical

for one formalism to be associated with one description (and be referred to simply as a grammar),

usually because the description will have been created for a particular purpose, such as teaching

the language structure to native or non-native learners, linguistic research, automatic parsing of

sentences, or generation of sentences. Examples of formalisms that have been employed to

 10

capture grammatical relations in sentence analysis are finite-state rules, context-free and context-

sensitive phrase structure rules, and unrestricted rewrite rules. Each of these formalisms varies in

its generative power according to a hierarchy commonly referred to as the Chomsky hierarchy,

and as the power increases, generally the complexity of the formalism does so too. Not all

sentences permitted by a context-free grammar would be permitted by a finite-state grammar, for

example. For a more detailed introduction see for example (Lyons 1970; 47-82) or (Chomsky

1957). It has long been the goal of linguists to discover the least powerful formalism which

would still adequately cover the sentence structures of a natural language. In models of sentence

generation other formalisms are adopted. For instance, systemic grammar employs system

networks to specify the semantic and syntactic options a speaker has. Each choice may be

associated with a realisation rule, which partially specifies the sentence structure or a lexical

element.

Although I have used the general term grammar in my distinctions between competence and

performance, and between description and fomalism, in my development of a grammatical model

for use in parsing, I will focus on the syntactic component of such grammars.

1.4.6 Systemic Functional Grammar.

If one's goal is to be able to parse unrestricted English, it is necessary either to create one's own

grammatical description or select one from those ‘on offer’. The broad description chosen for

this project is systemic functional grammar as defined by Fawcett (1981), and specifically its

syntactic description as exemplified in the POW corpus. Systemic functional grammar (SFG) has

developed from the linguistic traditions of J. R. Firth and Michael Halliday, and is primarily a

grammar of language generation. That is to say it specifies how to generate acceptable sentences

of the language from a set of semantic choices (technically referred to as systems). This might

seem a bizarre choice in the light of this project’s aims in language analysis. However, a variant

of the syntactic component of SFG has been applied in the manual analysis of the Polytechnic of

Wales Corpus (Fawcett and Perkins 1980), and it is seen as desirable precisely because variants

of the same description have been used for both analysis and generation. This decision is

explained further in sections 1.5 and 2.2.

 11

1.4.7 Language Corpora.

A set of utterances which have been produced by the speakers of a language may be collected as

a corpus. A corpus is a strategic collection of texts, spoken or written, which attempt to represent

the language as a whole. Corpora may also be collected to represent restricted usage of the

language (sublanguages), such as that produced by children, or that used in legal, commercial or

business environments, for example. A corpus is distinguished from an archive of texts by the

fact that it has been strategically collected as a representative sample, rather than randomly

assembled. We have already seen an example taken from a spoken corpus, in which the recorded

speech was transcribed orthographically into a written form. Written corpora or orthographically

transcribed spoken corpora which have received no annotation will be referred to as raw corpora.

In some cases, however, the wordforms in a corpus will have been tagged with terminal

grammatical categories, and will then be referred to as a tagged corpus. When a tagged corpus

has further been annotated with full grammatical analyses for each sentence, it is called a parsed

or analysed corpus or treebank.

1.4.8 Parsing.

Parsing is the assigning of one or more syntactic analyses to an utterance of the language, and a

program which achieves this is called a parser. An analysis can be represented as a parse tree,

which unambiguously captures one particular structure for an utterance (for examples see Figure

2). An utterance may possibly be assigned more than one analysis, in which case the utterance is

considered to be syntactically ambiguous with respect to the lexico-grammar.

In the case where the utterance contains words or constructs not described in the lexico-grammar,

the utterance cannot be assigned a well-formed parse tree, and is termed ungrammatical.

However, we should distinguish here between an utterance which is ungrammatical with respect

to a theoretically complete lexico-grammar, and one which is ‘ungrammatical’ because it cannot

be analysed according to one implementation of a lexicon and grammar. Such an implementation

will inevitably be incomplete because it perhaps does not contain a rare word or construct. In

practice then, an ‘ungrammatical’ utterance may indeed be perfectly acceptable. A parser for

unrestricted English will minimise the possibility that an utterance is incorrectly classified as

ungrammatical either because it contains wordforms not in the lexicon, or combinations of

 12

syntactic categories not described by the syntactic component of the grammar. The identification

of semantically anomalous sentences is not seen as part of the parser’s work, but is part of

semantic interpretation.

Parse trees can be represented by nested labelled brackets, as shown in Figure 2. The relationship

between a constituent and its subparts may instead be represented numerically, as example (2) in

the original numerical format of the parsed POW corpus shows. (The bracketed form is repeated

here for comparison).

(2a - bracketed)

[Z [CL [CWH [NGP [HWH WHAT]]] [OM 'S] [S [NGP [DD THE] [H POINT]]]]]

(2b - numerical)

Z CL 1 CWH NGP HWH WHAT 1 OM 'S 1 S NGP 2 DD THE 2 H POINT

The structure is represented graphically in Figure 3.

Figure 3. A Graphical Representation of a Parse Tree.

Z

CL

CWH OM S

NGP NGP

HWH DD H

WHAT ‘S THE POINT

In example (2), the category label Z is the root, representing the sentence itself. The root label

contains a single clause, labelled CL and we refer to the relation between the two as that of

mother and daughter. A mother is said to dominate its daughter, or daughters. The daughters of

the clause in example (2) are CWH, OM and S. The reason for the numerical representation being

used in the POW Corpus is to capture discontinuities in the daughters, i.e. cases where the

 13

daughters do not directly follow each other in the sentence, but are interrupted by another

constituent. Discontinuities can be represented more elegantly using the numerical rather than the

bracketed format, and would require crossing lines between the categories in a graphical

representation.

Having introduced some of the terminology of parsing, the context in which the parser is

expected to work will now be described.

1.5 Application and Domain.

It is intended that the parser is designed as a general purpose tool, rather than having any single

potential application in mind. However, during the early period of this research, I was working

on phase 1 of the COMMUNAL Project (COnvivial Man Machine Understanding through

NAtural Language)
3
 , directed by Eric Atwell at Leeds and Robin Fawcett at Cardiff, on the

development of a parser which is expected to interact with a semantic interpreter, belief system

and NL generator, as an interface to a knowledge-based system. As a consequence, this will be

assumed to be a potential application for the parser, although I will not be attempting to

explicitly link the parser to the generator’s syntactic description, nor to limit its coverage to that

displayed by the generator
4
.

A further project in which the parser may yet find a home is AMALGAM (Automatic Mapping

Among Lexico-Grammatical Annotation Models)
5
, being conducted by Eric Atwell, Clive Souter

and John Hughes at Leeds University. One of AMALGAM's aims is to produce a multi-treebank

(a single corpus parsed according to several grammatical descriptions), and consequently there is

a need for a general-purpose parser which can be adapted to work with such a variety of

3 The COMMUNAL Project phase 1 was jointly sponsored by the Defence Research Agency's Speech Research Unit

(then RSRE Malvern), ICL and Longman (UK). See, for examples of Leeds work, (Atwell and Souter 1988b, Atwell

et al 1988, Souter and Atwell 1988a, 1988b, Souter and O’Donoghue 1991).

4 Note that this approach to COMMUNAL as a possible application differs from the perspective of O'Donoghue (1993)

and Weerasinghe (1994), who were developing parsers directly tied to a specific version of the COMMUNAL

grammar. Their approach was essentially to assume the COMMUNAL grammar constituted a well-defined

competence model of language, and to parse this well-bounded model.

5 AMALGAM is sponsored by the UK government's Engineering and Physical Science Research Council (EPSRC)

grant number GR/J53508. See for example (Atwell et al 1994).

 14

grammatical descriptions. The use of the parser being developed here in the AMALGAM project

will depend on its adaptability, efficiency and accuracy.

The domain of the parser (as distinguished from its application) specifies whether it is aiming to

analyse a particular sublanguage of English. Perhaps rather ambitiously, at the outset, no

restrictions are being placed on either lexicon or syntactic coverage. An alternative interpretation

of the previous statement would be to say that the specific variety of English we hope to handle

will be general, in as much as the lexical resources the parser will use will not be from a limited

technical domain, and the range of constructs the syntactic grammar will describe will be

extremely wide, as found in the POW corpus.

1.6 Scope.

As has been suggested in sections 1.2 and 1.3, producing parse trees may not be the final goal of

an individual NLP system, (although there are some applications whose goal is primarily to

produce such analyses, such as that of the AMALGAM project). The input to the parser may

have come via other processes, such as speech recognition, and the output may be passed on to,

say, a semantic interpreter or machine translation system. I will therefore delineate just where I

expect the parser's work to begin and end, and specify what kind of text may be handled as input.

The parser will not be specially adapted to handle lattices of potential strings of words that might

be produced by a speech recogniser. It will parse one utterance at a time, but will assign a score

representing the likelihood of the analysis, so that alternative analyses can be ordered and

compared. The parser will not be explicitly linked to a semantic interpreter for SFG or any other

grammatical description. O'Donoghue (1990, 1991a, 1991e and 1994) has demonstrated a

method for incorporating parse trees (virtually in the form to be produced here)
6
 into a systemic

semantic interpreter called REVELATION, which is still that being assumed by the

COMMUNAL project.

6 O'Donoghue's interpreter expects that the parse trees will include labels for SFG's participant roles, whereas the

output of the present parser will not contain these. It is being assumed that the process of assigning such roles could

be achieved automatically with a suitably large annotated lexicon for main verbs, developed according to Fawcett

and Tucker's (1987) principles.

 15

1.6.1 Input Format.

The input to the parser will be English language plain ASCII text in a string of words separated

by blank spaces. It will not need to have been tagged grammatically with parts of speech, as the

parser will incorporate a lexical look up phase. Like many others before me, I will however

assume that the input has been preprocessed, into a format with the following characteristics:

• Characters are in lower case except for the word I and the first letter of any proper nouns:

Utterances should not begin with upper case letters, unless they fall into the aforementioned

categories.

• Sentence punctuation will have been removed, leaving only apostrophes and hyphens within

words. Apostrophes in the morphemes 's, 'd, 'll etc. representing the enclitic forms of the

verbs be, have and some modals as well as those indicating possession (eg. the boy's, the

boys') should be separated from the noun phrase they are attached to by a blank space. Other

apostrophes, such as those in the shortened negative morphemes of isn't, don't, won't and

past tense endings baa'd, ski'd etc. should remain unseparated, as should those in

monomorphemic wordforms such as e'en, ne'er and ma'am.

• Numbers appearing in the input should be written alphabetically, as say, three hundred rather

than 300.

1.6.2 Output Format.

The output resulting from the parser being applied to a single utterance will be a (possibly

empty) list of parse trees ordered most likely first, in which the sentence structure will be

captured by nested brackets. The syntactic categories in the parse trees will be those used in the

systemic functional grammar found in the Edited Polytechnic of Wales Corpus (see section 2.1),

and so will include both units and elements of structure (roughly corresponding to formal and

functional labels respectively), but not participant roles. Although the structure of such trees is

quite difficult for the human reader to read without close inspection (and bracket counting!), it

does have several advantages. This format is amenable to direct display by the POPLOG

programming environment's library program showtree, which produces more easily interpreted

graphical tree representations. Such a facility would be important for a human selector/post-

editor in the context of the AMALGAM project preparing a multi-treebank. Bracketed trees have

the advantage that they are compact for storage purposes, and most easily utilised as list

 16

structures in AI programming languages. Bracketed trees are also the starting point to storing a

parsed corpus in the Nijmegen Linguistic DataBase, which provides parsed corpus browsing and

search facilities (van Halteren and van den Heuvel 1990, Souter 1992). Finally, they are also

probably the nearest to a standard tree representation (see Souter 1993).

1.7 Original Contributions to the Field.

Before describing the original contribution of this work to the field of computational linguistics, I

would like to make clear the relationship it bears with that of colleagues who have been working

alongside me over the past seven or eight years. The initial 18 month period of this research was

spent working with the COMMUNAL team at Leeds and Cardiff, on a workplan devised by

Robin Fawcett and Eric Atwell. In such a position, is quite difficult to separate out one's own

research path from that of the project as a whole, and the early attempts at extracting a systemic

functional grammar from the Polytechnic of Wales Corpus come under the auspices of

COMMUNAL, as do investigations into morphological analysis and parsing using simulated

annealing.

It has also been a problem (albeit a pleasant one) to be working part-time for my Ph.D. while Tim

O'Donoghue was doing so full-time in the same subject area, often in close collaboration (see for

example Souter and O'Donoghue 1991). Similarly, Rob Pocock was for 18 months a full-time

research associate on the Leeds Speech Oriented Probabilistic Parsing (SOPP) Project. Rather

than reinventing the wheel, the present research has, with due acknowledgment, built on some of

their findings. I am grateful in this respect for Eric Atwell's guidance in keeping his research

students working on separate but related paths.

After initially working quite closely with colleagues at Cardiff, the last six years of research have

been conducted more or less independently of Robin Fawcett and his team, with only occasional

communication, usually for clarification of some point in the grammar or corpus. Fawcett's

research student Ruvan Weerasinghe has during this period also been developing a systemic-

functional syntactic parser, which resulted in the publication of his thesis (Weerasinghe 1994)

within a few weeks of my first submission. My own research had up to that point been conducted

independently of his. However, in the last 18 months, I have benefitted from the insights and

 17

experience he gained working primarily with the more up-to-date versions of the COMMUNAL

syntax, as well as in capturing systemic-functional syntax dependencies in a probabilistic model.

Whereas at the outset of this project followers of the empirical or performance paradigm were

still very much in the minority, it has become increasingly common in the last five years or so for

parsers to take account of the likelihood of a syntactic structure. Simply producing a working

probabilistic parser is no longer unusual. However, the parser developed here is original in its

language engineering approach, having the following combination of elements:

It will produce trees annotated with a rich grammatical description, rather than the skeletal

coarse-grained grammar which has been characteristic of much other corpus-based statistical

parsing work (Lari and Young 1990, de Marcken 1990, Magerman and Marcus 1991, Perreira

and Schabes 1992, Bod 1995)

Rather than using a limited hand-fashioned lexicon, or even a corpus word list, two alternative

lexical resources will be developed and employed: (i) a large-scale, 60,000 wordform English

lexicon (CELEX) has been transformed into a format compatible with a corpus-based grammar,

and (ii) a POW-corpus trained version of Eric Brill’s tagger (Brill 1992, 93, 94), both of which

give the parser very good lexical tagging support.

Since Winograd’s early work (1972), there has been a significant increase in attempts to use a

systemic framework for syntactic analysis, instead of the more standard NL generation (Atwell et

al (1988), Kasper (1988, 1989)
7
, O'Donoghue (1993), Weerasinghe (1994) and O’Donnell

(1994)). With the exception of the Leeds COMMUNAL work described in (Atwell et al 1988

and Souter and O’Donoghue 1991), each may potentially be linked to a corresponding SFG-

based NL generator, achieving the desirable aim of using the same grammatical description in

both language interpretation and generation. Kasper's parser however required the manual

creation of some phrase-structure rules and the transformation of the Nigel generator grammar

into a different formalism, Functional Unification Grammar (FUG: see Kay 1985). O’Donnell’s

work is similarly tied to the Nigel grammar. The syntactic models for O'Donoghue and

7 Kasper was then working at the University of Southern California Information Science Institute (ISI) team developing

a parser for their Nigel Grammar.

 18

Weerasinghe's parsers are extracted automatically from a large sample of NL generator output
8
,

which limits their lexical and grammatical coverage to that of the generator. None of these has

been developed using the syntactic coverage of an unrestricted language corpus such as POW, or

incorporated any significant lexical resources. In each of these cases, the grammar will therefore

only contain the structures which have been intuitively designed into the generators by their

authors, i.e. they will be competence grammars.

Instead, the current parser contains a performance grammar, derived from a large genuine sample

of unrestricted spoken English (the POW Corpus), including the grammatically problematic

features of ellipsis, repetition and unfinished sentences. More importantly, the probabilities taken

from such a corpus will be realistic, rather than artificial. Indeed, the range of grammatical

constructs and their frequencies can be used to inspire the production of a generator’s grammar,

since it (currently, at least) goes beyond what the generator can handle.

Consequently, the parser being developed here is original in that it is derived from unrestricted

English (albeit of children aged six to twelve), and in its very wide lexical and grammatical

coverage.

1.8 The Structure of the Thesis.

The remainder of the thesis will be organised in the following manner: (Where relevant work of

mine has already appeared in published form, I provide a reference).

Chapter 2 will present the background to the use of corpora in computational linguistics (Souter

1989b, 1990c, Souter and Atwell 1992, 1993), the chosen systemic functional syntax model

(Souter 1990a), lexical look-up in NLP systems (Souter and Atwell 1988b), and parsing

algorithms (Atwell et al 1988, Souter and O'Donoghue 1991).

Chapter 3 will explain how the grammatical and lexical resources were developed for the parser

(Atwell and Souter 1988a, Souter 1990a,b, Souter 1993).

8 The COMMUNAL NL generator, GENESYS (Fawcett and Tucker 1989), so called because it generates systemically,

can be set to generate sentences randomly, to produce an artificial corpus or ark (Souter 1990a).

 19

Chapter 4 discusses the chosen parsing algorithm, and how it was modified and improved to

accommodate a systemic-functional syntactic model.

Chapter 5 presents an evaluation of the performance of two versions of the parser when tested

with seen and unseen data, and discusses the nature of the parser’s failures, its (in)efficiency and

restrictions imposed by current hardware.

Chapter 6 describes improvements which might be made to the parser with respect to the

development method, the linguistic data, and its efficiency.

Finally, in chapter 7 conclusions are drawn on the parser development process, how generally

transferable it is to other types of grammar and corpora, and whether the original aims have been

met successfully.

 20

Chapter 2. Background to the Thesis.

Comments on related work will be divided into sections for each of the key elements contributing

to parsing method: (i) corpus-based computational linguistics, (ii) syntactic description and

formalism (which will itself depend on the availability of fully analysed corpora), (iii) associated

lexical resources for the syntactic model, and (iv) suitable parsing techniques.

2.1 Corpus-Based Computational Linguistics.

In chapter 1, the distinction between competence and performance grammar was introduced. This

section will explain why the choice was made to adopt a performance syntactic model for parsing

unrestricted English, and to derive such a model from a corpus.

There are essentially two options for the grammarian or computer scientist faced with the task of

developing a large-scale grammar for a natural language;

1. Use native-speaker linguistic intuition to create the rules of the grammar;

2. Study parsed corpora as the inspiration for common and uncommon grammatical structures

which occur in the language.

Although they will be described separately below, in practice the competence and performance

approaches do not diverge as widely as has just been suggested. When trying to build a large

competence grammar, the grammarian will tend to look for inspiration in example sentences.

Whereas when annotating a corpus, a prototype competence grammar or a handbook of case law

examples will tend to be used. The main difference in the end result tends to be the size of the

grammar, and its formalism. A competence grammar will be expressed in one particular

formalism, whereas the parsed corpus will yield syntactic information for several formalisms.

Typically the formalisms in which it is possible to extract a corpus-based grammar are less

powerful than that found in a competence grammar. The former will normally contain atomic

categories related through finite-state or context-free phrase structure grammars, but the latter

may include a variety of enhancements to context-free grammar, such as categories as sets of

 21

features which are combined by unification, feature percolation constraints, metarules, and

transformations.

2.1.1 The Intuition-Based Approach to Developing a Grammar.

Chomsky's Transformational Grammar (Akmajian and Heny 1975, Radford 1981), which was

prevalent in the 1960's and 70's, employed a phrase-structure rule component and a set of

powerful transformational rules. More recently, grammarians have been concerned that the

formalism should be psychologically plausible, and be able to be processed easily by computer

programs. The result has been a whole host of feature augmented context-free grammars. In the

mid to late 1980's, the grammar most in vogue was Generalised Phrase Structure Grammar

(GPSG: Gazdar et al 1985), which replaced atomic category labels with sets of syntactic features,

supplemented phrase structure rules with metarules, and, in common with a number of other

grammars, had recourse to unification of syntactic features. The UK government's Alvey

Programme sponsored a large scale project to produce a natural language toolkit (ANLT) for

English containing a lexicon, morphological analyser, grammar and parser (Grover et al 1989,

Pulman et al 1989, Philips and Thompson 1987). A close variant of GPSG was the chosen

grammar for their project. The ANLT represents probably the largest and most advanced

computer implementation of a competence grammar which is currently publicly available in the

UK1. When expanded to its object grammar, it contains over 1,000 phrase-structure rules.

Despite the obvious achievements which have been made in the ANLT project, the authors of its

grammar are aware of some structures it does not describe, and assume that there are still more of

which they are unaware (Grover et al 1989; 44).

This is a serious problem with the competence approach. Unless the language being covered is

very restricted, the grammarian's intuition is likely to prove inadequate. It will be inadequate

because it is idiolectic: being based on only one speaker's linguistic experience, and because it is

highly likely that many structures in the language will be omitted, simply because they didn't

come to the speaker's mind. The advantage of competence grammars is that the grammatical

1 Other large-scale competence grammars exist, eg. COMMUNAL, SRI's Core Language Engine, but are not publicly

available with user support provided.

 22

relations are usually made explicit and written in a formal fashion, making them computationally

tractable.

2.1.2 The Corpus-Based Approach to Developing a Grammar.

The second option, using corpora, stands a better chance of providing a comprehensive inventory

of language structures, because it can be collected from several speakers over a period of time

performing the language in different contexts. The problem with corpora, though, is that it is easy

to assume they are exhaustive, when they are only as exhaustive as the corpus sample is

representative of the language as a whole. A second problem with corpora comes precisely from

their ‘performance’ nature. They contain language in all its natural beauty, warts and all! The

mistakes and short cuts we make when using the language are all to be found in corpora, as well

as some errors introduced by the process of collection itself, such as transcription, typing or

optical character recognition errors. A further problem with the grammatical information in raw

corpora is that it is only implicit. Fortunately, several corpora have already been annotated

grammatically with word tags, and some even with full parse trees. This has been done either

entirely manually, or with an automatic program based on a limited competence grammar or a

manually annotated subsection of the corpus. In both cases, extensive proof-reading of the

annotation is necessary to try to eliminate errors, and inevitably even the proof reading can be

imperfect.

However the end product, a parsed corpus, contains a large sample of the language analysed

according to a specific grammatical description, whose grammatical coverage usually far exceeds

that possible using the competence approach.

Because of the enormous effort involved in annotating and post-editing text, only a handful of

parsed corpora of English have been created at research sites in the UK and elsewhere. Those

which are publicly available are:

1. The Gothenburg corpus (Ellegård 1978): 128,000 words of written American English, from

the Brown corpus, analysed using a form of dependency grammar, including function labels;

2. The Nijmegen (CCPP) corpus (Keulen 1986): 130,000 words of written and spoken British

English, including fiction and non-fiction texts, and 10,000 words of transcribed tennis

commentaries, analysed using a context-free grammar derived from (Quirk et al 1972);

 23

3. The Lancaster/Leeds treebank (Sampson 1987a): 45,000 words of written British English,

from the LOB corpus, analysed using a specially devised surface-level phrase-structure

grammar compatible with the CLAWS word-tagging scheme (Garside 1987);

4. The LOB corpus Treebank (Leech and Garside 1991): 144,000 words of written British

English, a subset of the LOB corpus which was automatically parsed and manually post-

edited using a parsing scheme slightly more coarse-grained than the Lancaster/Leeds

Treebank;

5. The Polytechnic of Wales corpus (Fawcett and Perkins 1980, Souter 1989): 65,000 words of

children's spoken British English, hand-parsed using Fawcett's systemic functional grammar

(Fawcett 1981) which includes formal and functional labels;

6. The Penn treebank (Marcus and Santorini 1991, Marcus et al 1993): 3 million words of

written American English, automatically parsed using Don Hindle's Fidditch parser (Hindle

1983), with a simple skeletal scheme consisting of 36 terminals, 12 punctuation markers and

14 non-terminals. This scheme is currently being redesigned to allow a more delicate

annotation;

7. The Susanne corpus (Sampson 1994): 128,000 words of written American English, a

reworking of the Gothenburg corpus into a more accessible and usable resource, analysed

using an enhanced version of the Lancaster/Leeds treebank scheme, by a team at Leeds

University.

The first five of these are described by Sampson (1992) in his consumer guide to the analysed

corpora of English. In addition, the following two parsed corpora are used in academic research

at Lancaster (and Leeds) and Nijmegen, but not publicly available:

1. The IBM/Lancaster Spoken English Corpus (Knowles and Lawrence 1987): 50,000 words of

spoken British English recorded from BBC radio broadcasts, transcribed orthographically,

phonetically and prosodically, and parsed using a scheme referred to as skeletal parsing. The

scheme is so called because it is marginally less delicate than that used in the

Lancaster/Leeds treebank and involves building a skeleton tree structure, to be labelled with

a fairly basic list of categories. The SEC forms part of a larger private enterprise in corpus

annotation between IBM and Lancaster University, which has produced a parsed corpus of 3

million words, called The Skeleton Treebank (Leech and Garside 1991).

 24

2. The TOSCA corpus (Oostdijk 1991): 1.5 million words of written British English, of which

at least 250,000 words have been semi-automatically parsed using extended affix grammar,

which includes formal and functional labels.

The uses of parsed corpora are reviewed in (Souter and Atwell 1994), and a selection of samples

from some of the aforementioned corpora (no's 1, 3, 4, 5 and 6) is included in Appendix 1.

Parsed corpora tend to be small, only in the region of 50,000 to 150,000 words. compared to the

vast raw corpora which are now being collected, many of which contain several tens of millions

of words (for example ICE, British National Corpus, Bank of English, ACL Data Collection

Initiative, European Corpus Initiative). These larger collections are driven by the respective aims

of collecting international varieties of English, providing an inventory for lexicographic

development, and assembling archives for computational linguistic research. Despite their

relative poverty from the viewpoint of lexical coverage, parsed corpora are (by definition)

grammatically rich, providing the best available resource for a parser whose scope is unrestricted

English.

2.1.3 Selecting a Parsed Corpus.

Large, fully annotated corpora are still relatively few and far between, because of the tremendous

manual effort required to perform the grammatical annotation. The annotators' response to the

size of the task has been to follow one of two paths; either to use a skeletal manual parsing

scheme which achieves more rapid progress and ultimately a larger unrefined corpus, or to use a

very detailed scheme and be resigned to ending up with a small but highly refined annotated

corpus. In the former category are the IBM/Lancaster treebank and the ACL Data Collection

Initiative's Penn treebank, part of which is available on CD-ROM. In the latter category are the

Lancaster-Oslo/Bergen (LOB) corpus treebank, the Polytechnic of Wales (POW) corpus, the

Nijmegen corpus, and the Gothenburg and Susanne corpora (both annotated portions of the

Brown corpus). Since the grammatical description of the corpora in the former category is only

coarse-grained, these will be eschewed in favour of a richer description. In contrast to the other

parsed corpora, at the outset of this project, the POW corpus had not been developed or

‘adopted’ by a research team investigating corpus-based parsing. It was originally collected as a

resource for the study of child language development. Consequently, it has been chosen as the

basis for an integrated lexicon, grammar and parser. Further reasons for this choice of corpus and

 25

grammatical description are my familiarity with SFG from work on the COMMUNAL project,

the fact that the grammar has been extended to handle features of unrestricted spoken English,

because it contains both formal and functional labels, and because it has the potential to be

reversible between NL interpretation and generation.

2.1.4 The Polytechnic of Wales Corpus.

This section will introduce the background to the POW corpus, including an explanation of its

notation and format. A brief summary of this information was published in the Lancaster Survey

of English Machine-Readable Corpora (Taylor et al 1991) and is reproduced in Appendix 2. A

short handbook was written to accompany the distributed version of the corpus (Souter 1989),

both of which are available from the International Computer Archive of Modern English

(ICAME) at Bergen2. The corpus was originally collected between 1978-84 for a child language

development project to study the use of various syntactico-semantic constructs in children

between the ages of six and twelve. A sample of approximately 120 children in this age range

from the Pontypridd area in South Wales was selected, and divided into four cohorts of 30, each

within three months of the ages 6, 8, 10, and 12. These cohorts were subdivided by sex (B,G) and

socio-economic class (A,B,C,D). The latter was achieved using details of

• ‘highest’ occupation of both the parents of the child, or one of them in single-parent families

• educational level of the parents.

The children were selected in order to minimise any Welsh or other second language influence.

The above subdivision resulted in small homogeneous cells of three children. Recordings were

made of a play session with a Lego brick building task for each cell, and of an individual

interview with the same ‘friendly’ adult for each child, in which the child's favourite games or

TV programmes were discussed.

2.1.4.1 Transcription.

The first ten minutes of each play session commencing at a point where normal peer group

interaction began (i.e.: when the microphone was ignored) were transcribed by 15 trained

2 The International Computer Archive of Modern English, Norwegian Computing Centre for the Humanities, P.O. Box

53, Universitetet, N-5027 Bergen, Norway, or e-mail icame@hd.uib.no for more information.

 26

transcribers. Likewise for the interviews. Transcription conventions were adopted from those

used in the Survey of Modern English Usage at University College London, and a similar project

at Bristol. Intonation contours were added by a phonetician to produce a hard copy version, and

the resulting transcripts published in four volumes (Fawcett and Perkins 1980). A short report on

the project was also published (Fawcett 1980).

2.1.4.2 Syntactic Analysis.

Again ten trained analysts were employed to manually parse the transcribed texts, using

Fawcett's version of Systemic-Functional Grammar (SFG). The SF syntax used in the analysis

handles phenomena such as raising, dummy subject clauses and ellipsis. Despite thorough

checking, some inconsistencies remain in the text owing to several people working on different

parts of the corpus. SFG in general, and the particular SF syntax found in the POW corpus are

described in more detail in section 2.2. The parsed version is available in machine readable form

but does not contain any of the prosodic information included in the paper version.

2.1.4.3 Corpus Format.

The resulting parsed corpus consists of approximately 65,000 words3, in 11,396 (sometimes very

long) lines, each containing a parse tree. The corpus of parse trees fills 1.1 Mb. There are 184

files, each with a reference header which identifies the age, sex and social class of the child, and

whether the text is from a play session or an interview. The corpus is also available in wrap-

round form with a maximum line length of 80 characters, where one parse tree may take up

several lines, but this makes it difficult to distinguish between numbers used for sentence

reference and those which specify syntactic structure. The four-volume transcripts can be

supplied by the British Library Inter-Library Loans System.

A short portion of the corpus in its original form is included in Figure 4.

3 Earlier papers quote the size of the corpus as being approximately 100,000 words. The latest automatic extraction of a

wordlist from the machine readable corpus shows it to be just over 65,000 words, but this figure can only be

approximate. Noise in the original typing of the corpus in the form of omissions of category labels, or of the spaces

between such labels and the words in the text, makes it difficult to give an accurate figure. The difference between

the two totals is almost certainly the difference between the total for the recorded spoken texts, and the total for those

which have been hand-parsed.

 27

Figure 4. A Sample Section of a POW Corpus File.

**** 58 1 1 1 0 59

6ABICJ (filename)

1) [FS:Y...] Z 1 CL F YEAH 1 CL 2 S NGP 3 DD THAT 3 HP ONE 2 OM 'S 2 C NGP 4 DQ A 4 H RACING-CAR

2) Z CL 1 S NGP 2 DD THAT 2 HP ONE 1 OM 'S 1 C NGP 3 DQ A 3 MO QQGP AX LITTLE 3 H TRUCK

3) [HZ:WELL] Z 1 CL 2 S NGP HP I [RP:I] 2 AI JUST 2 HAD 2 C NGP 3 DQ A 3 MO QQGP AX LITTLE 3 H

THINK 1 CL 4 & THEN 4 S NGP HP I 4 M THOUGHT 4 C CL 5 BM OF 5 M MAKING 5 C NGP 6 DD THIS 6 HP

ONE

4) Z 1 CL 2 S NGP HP I 2 AI JUST 2 M FINISHED 2 C NGP 3 DD THAT 3 HP ONE 1 CL 4 & AND 4 S NGP HN

FRANCIS 4 M HAD 4 C NGP 5 DD THE 5 H IDEA 5 Q CL 6 BM OF 6 M MAKING 6 C NGP 7 DQ A 7 RACING-

CAR

5) [FS:THEN-I] Z CL 1 & THO 1 S NGP HP I 1 M MADE 1 C NGP DD THIS

6) Z CL 1 & THEN 1 S NGP HP FRANCIS 1 OX WAS 1 AI JUST 1 X GOING-TO 1 M MAKE 1 C NGP HP ONE 1

A CL 2 B WHEN 2 S NGP H YOU 2 M CAME 2 CM QQGP AX BACK 2 CM QQGP AX IN

7) [NV:MM] Z 1 CL F NO [FS:FRAN...] 1 CL 2 S NGP HP WE 2 M HAD 2 C NGP 3 DQ AN 3 H IDEA 3 Q CL 4

BM OF 4 M MAKING 4 C NGP 5 DQ FOUR 5 H THINGS

8) Z 1 CL F YEAH 1 CL 2 S NGP HP I 2 M PLAYED 2 C PGP 3 P WITH 3 CV NGP HP IT 2 A PGP 4 P AT 4 CV

NGP H HOME

9) Z CL F YEAH

The tree notation employs numbers rather than the more traditional bracketed form to define

mother-daughter relationships, in order to capture discontinuous units. The number directly

preceding a group of symbols refers to their mother. The mother is itself found immediately

preceding the first occurrence of that number in the tree. In Figure 4, the first tree shows a

sentence (Z) consisting of two daughter clauses (CL), as each clause is preceded by the number 1.

The long lines have been folded manually here for ease of reading. The first number in each tree

is a sentence reference; after which I have inserted a closing bracket, ")", for ease of reading.

These do not appear in the corpus itself. All alphabetic characters are in upper case. The only

lower case alphabetical characters are in the sentence references, which have occasionally been

subdivided into 24a, 24b etc., where what was initially analysed as one sentence was, on

checking, re-analysed as two (or more).

Occasionally when the correct analysis for a structure is uncertain, the one given is followed by a

question mark. Cases where unclear recordings have made word identification difficult are

 28

treated similarly. Apart from the syntactic categories and the words themselves, the only other

symbols in the tree are three types of bracketing:

• square [NV...], [UN...], [RP...], [FS...], for non-verbal, unclear/unfinished, repetition, false

start, pragmatic element etc.

• round (...) for ellipsis of items recoverable from previous text.

• angle <...> for ellipsis of items not so recoverable, eg: in rapid speech.

Filenames indicate precisely which age (6,8,10,12), social class (A,B,C,D), sex (B,G) and

recording situation (play-session (PS) or interview (I)) is involved, followed by the child's

initials. Hence, the text sample in Figure 4 is from file 6ABICJ, involving a six year old, of social

class A, who is a boy, in an interview, with initials CJ.

2.1.5 The Edited Polytechnic of Wales Corpus.

Because the original POW corpus contains various typographical and syntax errors which still

remain after extensive proof reading, the automatic extraction of its grammar and lexicon is

hampered, as described further in chapter 3. Consequently, Tim O'Donoghue has created an

edited version of the corpus, which has become known as EPOW (O'Donoghue 1991b, 1991c).

O'Donoghue used semi-automatic post-editing programs which searched for word and category

patterns which broke the rules for a legitimate parse tree, and then amended them. He also ran a

spelling checker over the words in the corpus, to find examples of typographical errors. The end

product of his work is a much ‘cleaner’ resource with which to work, and is used as the training

data for the parser under development here.

2.2 Systemic Functional Grammatical Description and

Formalism.

The aim of parsing relatively unrestricted English has necessitated a corpus-based, performance

approach to grammar development, rather than the intuition-based competence approach. The

choice of a parsed corpus comes hand in hand with the choice of a grammatical description, so

must be made together, unless a new corpus parsing venture is to be embarked upon. I will now

consider what effect on parsing the choice of systemic functional syntax will have, and how this

 29

compares with other grammatical descriptions and formalisms. I will begin, however, by

describing systemic functional grammar itself.

Systemic functional grammar differs markedly from many other language models in that it is a

grammar which models the way language is produced, rather than the way language is

interpreted. The syntactic structures with which we shall be dealing in virtually all of the rest of

the thesis are not the centre of the language model at all, but are a product (via a process called

realisation) of a series of semantic choices which are formalised in a system network, which is

the heart of the model and is intended to represent the meaning potential of the language. The

language model focuses on the choice of what sentence to generate, rather than how to

understand a sentence that someone has already produced. Useful introductions to SFG are found

in (Fawcett 1980, 1981, 1984, Halliday 1985, Butler 1985, Fawcett et al 1993, O'Donoghue

1993, Weerasinghe 1994). The SFG model of language we shall be dealing with here is that

developed by Fawcett from the earlier work of Halliday, and has provided both the syntactic

description found in the POW corpus, and the large grammar being built into the NL generator of

the COMMUNAL project, called GENESYS (described in more detail in section 2.2.1).

SFG is heavily focused on semantic choices (called systems) made in generation, rather than the

surface syntactic representations needed for parsing. When generating a sentence using systemic

grammar, a number of choices of features are made in a system network. These vary from broad

semantic and syntactic choices such as whether a sentence will be positive or negative, active or

passive, to highly specific choices which select individual lexical items. Hence the grammar is

often referred to as a lexico-grammar, since, in generation, the lexical, syntactic and semantic

choices are all linked together. The choices may be linked together by disjunctive or conjunctive

logic (choice of one feature may exclude or require the choice of others). Progress through the

large networks may necessitate disjunctive or conjunctive entry (the prior selection of one or

more features before the next can be chosen). A small fragment of a (simplified) system network

for mood in English is illustrated in figure 5, taken from (Weerasinghe and Fawcett 1993). This

example illustrates conjunctive and disjunctive systems (see the key), but not conjunctive and

disjunctive entry conditions.

Figure 5: A fragment of a system network for MOOD in English.

 giver.............
[S,O or S,M]

.. Ivy has read it.

 30

 polarity......
[O,S]

... Has Ivy read it?

 seeker

 information new-content.. What has Ivy read?

 confirmation seeker... Hasn’t Ivy read it?

 (others) unmarked-sd..................................... Read it!

MOOD simple-dir pressing-sd... Do read it!

 directive addressee-identified................... You read it!

 proposal for action by-appeal-to-ability..................... Can/could you read it?

 by-appeal-to-willingness......... Will/would you read it?

 KEY: request

 OR direct-rd

 indirect-rd

 AND proposal-for-action-by-self-and-addressee... Let’s read it.

 proposal-for-action-by-self... Shall I read it?

 Realise (others)

Some of the choices cause realisation rules to become active, indicated by a downwards pointing

arrow in figure 5. The realisation rules are normally numerically referenced and stored

separately. In figure 5 the overall effect of just two rules has been informally shown, and reflects

the placing of the Operator (O) before the subject (S) (with features [information], [seeker] and

[polarity] chosen) or after (with [information] and [giver] selected). In the GENESYS

implementation of this and other networks, each choice point has a probability attached to it,

expressing the linguist’s intuition of the relative frequency of the feature, and allowing the

generator to be set to produce sentences randomly. (It is here where the evidence from a parsed

corpus such as POW can be useful in guiding the probabilities to be set, for systems directly

affecting syntax and lexis, at least. It is the ability of the generator to work randomly which has

enabled researchers such as O’Donoghue (1993) and Weerasinghe (1994) to generate a large

sample of output; an artificial parsed corpus, or ark.) Realisation rules can have several effects,

including

1. Causing the network to be re-entered after the current pass through has finished. This

typically occurs to specify a functional role (realised as a (sub)constituent of a clause), after

the clause itself has been created;

2. Causing some part of the structure of the sentence to be created, for example by specifying

the ordering of the subject nominal group and the verb operator (auxiliary);

 31

3. Causing a particular syntactic category to be expounded as a particular lexical item.

These components of the GENESYS lexico-grammar can be illustrated as follows (Fawcett et al

1993; 121):

 the lexico-grammar the outputs

 SEMANTICS: for each semantic unit selection expression

 SYSTEM NETWORK of semantic features

re-entry

to fill role

 REALISATION for each syntactic unit syntax tree, items,

 COMPONENT intonation/punctuation

 POTENTIAL

 STRUCTURES

The output of such a lexicogrammar is a parse tree, the structure of which is then deleted to leave

the sentence itself. The leaves (words) are finally processed by the generation system into either

a punctuated sentence or an utterance with an intonation pattern. Since the focus of this thesis is

on parsing and not generation, we will not give a full blown account of this generation process,

nor other examples of the many systems in the network, or their associated realisation rules.

Suffice it to say that SFGs such as that used in GENESYS represent some of the largest

competence grammars yet to have been constructed by computational linguists (Fawcett et al

1993; 119). A good example following the process of generation through system networks and

realisation rules for English personal pronouns is given in (Fawcett 1988b).

Whereas in language interpretation the grammar and lexicon tend to be stored as separate

entities, in systemic generation they are stored together in the system network. However the

syntactic description can be viewed independently of this formalism in the trees the generator

produces, or indeed in the Polytechnic of Wales corpus. The syntactic part of (an early variant

 32

of) the description is also informally presented in (Fawcett 1981), which acts as a case law of

example sentences and their structures, which would have been invaluable in hand parsing the

corpus. Were I to be explicitly trying to link the output of my parser with the COMMUNAL

generator then

“the generative model that is the core component of (the) SFG (would have to be) the source of

the information that (would be) built into the parser” (Fawcett 1994; 398, my parentheses).

However, instead I will consider the syntactic evidence obtainable from the annotated POW

corpus to be the linguistic data (in their own right) on which the parser should depend, since they

represent a performance rather than a competence model.

2.2.1 Systemic Grammar in NL Generation.

Some well known implementations of systemic grammar generators have been produced: The

first was Davey's Proteus (Davey 1974, 1978), which generated discourse for the game of

noughts and crosses, and drew inspiration from earlier work by Winograd (1972). The second,

which contains the Nigel grammar has been created by the Penman Project at the University of

Southern California's Information Sciences Institute, has been used to generate both English and

Japanese (Mann 1983, Matthiessen and Bateman 1991). A further generator developed at

Edinburgh and derived from Nigel is Patten’s SLANG (Patten 1988). Houghton and Isard (1987)

employed a systemic functional model for their FRED and DORIS system, in which two robots

plan how to be together in the same room! GENESYS, a separate implementation of a NL

generator containing a very large systemic grammar, has been produced by the COMMUNAL

team at Cardiff (Fawcett and Tucker 1990, Fawcett 1990, Fawcett, Tucker and Lin 1993). A

sample of sentences produced by GENESYS (prototype 1.5) is shown in Figure 6. (The latest

‘midi’ and ‘maxi’ versions produce a much greater variety of sentences and structures.) The

figure shows the syntactic structures along with the sentences generated. The leaves of the trees

(the words themselves) are also shown separately to aid the reader.

Figure 6. A Sample Section of GENESYS Output.

[Z [Cl [S/Af [ngp [dq some] [vq of] [dd that] [h paper]]][Xc isn't] [Xp be+ing] [M cook+ed] [e .]]]

[Z [Cl [S/Af [ngp [h what]]] [Xf is] [G going_to] [Xc be] [M die+ing] [e ?]]]

[Z [Cl [S/Ca [ngp [dq some] [vq of] [ds [qqgp [dd the] [a best]]] [vs of] [meme [qqgp [a happy]]] [h question]]] [Xr

hasn't] [M glow+ed] [Ati [ngp [h today]]] [e .]]]

 33

[Z [Cl [Xr have] [S/Ag [ngp [ds [qqgp [dd the] [a best]]]]] [M damage+ed] [C2/Af [ngp [h itself]]] [Ama [qqgp [a

how]]] [e ?]]]

[Z [Cl [O don't] [M be] [C2/At [qqgp [a easy]]] [e !]]]

[Z [Cl [Xf are] [S/Ag [ngp [ds [qqgp [dd the] [a sad+est]]] [vs of] [h that]]] [G going_to] [Xc be] [M stand+ing] [Cm2

about] [e ?]]]

[Z [Cl [S/Af [ngp [h [genclr [g its]]]]] [M kiss+s] [Ama [qqgp [dd the] [a best]]] [e .]]]

[Z [Cl [Xr have] [S/Ca [ngp [h the_Chancellor_of_the_Exchequer]]] [M been] [C2/At [qqgp [a good]]] [e ?]]]

[Z [Cl [S/Af [ngp [ds [qqgp [dd the] [a best]]] [vs of] [h it]]] [Xc was] [Xp be+ing] [M broken] [C2 [pgp [p by]

[cv/Ag [ngp [h who]]]]] [Ama [qqgp [a fast]]] [e .]]]

some of that paper isn't be+ing cook+ed .
what is going_to be die+ing ?
some of the best of happy question hasn't glow+ed today .
have the best damage+ed itself how ?
don't be easy !
are the sad+est of that going_to be stand+ing about ?
its kiss+s the best .
have the_Chancellor_of_the_Exchequer been good ?
the best of it was be+ing broken by who fast ?

These early examples of GENESYS generator output illustrate some of the key differences

between the parse trees produced by the generator and those found in the POW corpus. Firstly,

these have yet to be passed through a process converting them into the finished spoken or written

output, so morphological rules have not been applied to damage + ed to produce damaged, for

example4. Secondly, on the face of it, some of this output appears semantically anomalous, in the

same way as Chomsky’s famous colourless green ideas sleep furiously. The generator, in normal

use, would produce output in response to a previous utterance in line with some overall

conversational plan, and would be subject to higher semantic constraints. Some of these

examples are also syntactically imperfect, needing the application of subject verb agreement

control, for example. More significantly, though, from the point of view of training material for a

parser, the tree structures contain an extra level of labelling, called participant roles, which is

conflated onto the nodes for elements of structure within the clause or lower down the tree. In the

tree

[Z [Cl [S/Af [ngp [ds [qqgp [dd the] [a best]]] [vs of] [h it]]] [Xc was] [Xp be+ing] [M broken] [C2 [pgp [p by]

[cv/Ag [ngp [h who]]]]] [Ama [qqgp [a fast]]] [e .]]]

4 It so happens that all of these examples result from the [written] feature having been chosen in the spoken/written

system of the network.

 34

the labels S/Af and cv/Ag indicate a subject acting as the affected element of the main verb, and a

completive being the agent causing the action, in this case of something being broken. Such

participant roles were not included in the labelling for the POW corpus, so will not be able to be

automatically extracted in a syntactic formalism trained on the corpus. The trees also contain a

less delicate syntactic description than that found in the corpus, (although obviously this

difference is becoming less significant as the generator grammar grows). Nevertheless, the

GENESYS trees also contain one further important feature - they are all well-formed with

respect to headedness, a point we shall return to in section 2.2.4, where we see that the same

feature certainly isn’t guaranteed for POW corpus trees.

2.2.2 Systemic Grammar in NL Parsing.

We focus here on the use of SFG in parsing. Non-SFG approaches are described in section 2.4.

Parsing in SFG should ideally be part of a wider process of interpretation - taking a sentence and

finding the set of semantic features which would have been chosen to generate it. Theoretically

at least, it may be possible to derive the semantic features directly from the words in the sentence

to be interpreted, given a mechanism for searching the system networks and realisation rules.

However, most researchers have assumed that it is sensible to first find one or more syntactic

structures for a sentence before mapping those structures onto the relevant semantic choices.

Systemic functional syntax is normally represented in the form of realisation rules associated

with choices in the system network of semantic features. Both of these formalisms have to be

hand-crafted in a SFG model, and are not immediately amenable to standard parsing techniques.

One might therefore be tempted to conclude that the goal of unrestricted NL parsing and the use

of SFG were in some way at odds with each other, since one could only interpret as much as one

could generate. The range of syntactic structures in a corpus of unrestricted English is likely to

be considerably broader than that hand-crafted into the system network. The solution to this

dilemma in the present work is to allow wider syntax than, say, the COMMUNAL generator can

currently handle, and assume that the generator builders will attempt the task of expanding the

lexico-grammar to approach that of a corpus by becoming more and more comprehensive, as

Fawcett (1992; 23) proposes.

 35

Despite its clear focus towards language generation, several computational implementations of

systemic grammar for interpretation do exist. The earliest and best known of these is probably

Winograd's SHRDLU (Winograd 1972), which could understand commands and queries in a

simple blocks world. More recently, Kasper has developed a parser for the Nigel grammar which

uses the Functional Unification Grammar formalism (Kasper 1988, 1989). The Nigel grammar

has also been central to the systemic interpretation work of Patten (1988) and O’Donnell (1994).

These researchers tend to focus on the difficult problem of semantic interpretation using system

networks and realisation rules in reverse, as does O’Donoghue (1994). If we separate out the

process of syntactic parsing from semantic interpretation, Fawcett and Tucker's COMMUNAL

SF syntax has been used in the syntactic parsers of O'Donoghue (1991d, 1993) and Weerasinghe

(1994).

O'Donoghue's parser uses a vertical strip grammar, which captures relations between a leaf

(word) and its successive parent nodes working through the tree to the root (sentence) node,

instead of traditional phrase structure rules, which relate an ordered horizontal set of daughters to

one mother. The grammar is automatically extracted from an artificial corpus of English

produced by GENESYS, The parser associated with the grammar, the vertical strip parser,

achieves correct results 81% of the time on 1,000 test sentences which were generated by

GENESYS (like those contained in the trees in Figure 6), but not used for the grammar

extraction. The parser's success is limited to sentences which contain structures of the same

depth (in terms of vertical strips) as those in the training material, and employs a lexicon of 940

items extracted from GENESYS PG 1.5 output.

Weerasinghe’s probabilistic on-line parser (POP) has been carefully developed (like

O’Donoghue’s) to act as a robust syntactic parser to keep pace with the grammar used in the

COMMUNAL generator. His results are very good (85% exact match success on a test

comparable to O’Donoghue’s). His parser uses a modified chart parsing algorithm, with a

combined probabilistic model derived from both the POW corpus and GENESYS output. The

syntactic model, however, is obtained solely from GENESYS output. This level of success is

achieved by a combination of modifications to a standard chart parser using a context-free

grammar. Firstly, the syntactic model consists of a horizontal component capturing probability of

transition from one element to another (akin to the linear precedence model in GPSG, but with

added probabilities). There is a vertical component capturing the likelihood of a particular

 36

mother for any daughter (akin to a probabilistic immediate dominance model in GPSG). The

lexicon consists of only 355 items extracted from the GENESYS ‘maxi’ lexico-grammar. The

parsing algorithm itself has been modified to control explosion in the agenda caused by large-

scale grammars. This has been achieved by a one-word look ahead before proposing a new chart

hypothesis, by ordering the agenda according to likelihood, but favouring wider-spanning edges

over those containing fewer words, and (crucially) by relying on the appearance of a head for

each constituent before such a constituent can be built (Weerasinghe 1994; 110-11). These very

promising results have yet to be replicated with large-scale lexicons and unconstrained

conversational dialogue input.

At Leeds, a series of other parsing attempts based on a genuine corpus-trained syntax model

taken from the POW corpus began in 1988, when Atwell and Souter (1988a) attempted to load a

POW Definite Clause Grammar into POPLOG Prolog, but found that memory limitations

prevented the built-in parser-generator function from being able to be applied to such a large

grammar. Then, in the first phase of the COMMUNAL project (in which Leeds were partners

with the Cardiff team), a simulated annealing parser called the RAP was developed, using a

stochastic finite state automaton derived from POW as an evaluation function for the putative

trees proposed by annealing (Atwell et al 1988, Souter 1989a, b, Souter and O’Donoghue 1991).

The resulting parser was never fully tested, since it was extremely slow, and unreliable on

sentences containing long-distance dependencies. However, O’Donoghue later trained the

annealing parser (by then re-named the Dynamic Annealing Parser, DAP) on some GENESYS

output, and achieved exact match success rates of around 30%, on tests for ‘unseen’ generator

output (O’Donoghue 1993; 114). This forms the background to the present parser development.

It is important to remember that the purpose of parsing need not solely be to progress towards a

more robust systemic interpreter - parsers have many other uses in which a systemic description

may be profitable. We now look at some of the difficulties a rich systemic-functional grammar

presents for parsing programs.

2.2.3 Problems for a SFG Parser.

From the point of view of parsing, several problematic features of SFG should be highlighted.

Firstly, the grammatical description includes not only formal categories (units), but also

functional labels (elements of structure) and a further set of labels for the participant roles which

 37

are attached to the main verb in a clause, such as the agent who performs an action, and its

affected entity, or the carrier of an attribute, or the location of an entity or action. When a

constituent of a sentence is given a label specifying its form, it may also therefore be given a

functional label and a participant role (depending on the particular constituent). As we have seen,

the examples in Figure 6 include participant role labels Ag, Af and Ca, which are conflated onto

node labels for elements of structure. The designer of a parsing program for SFG has to decide

where to derive the grammatical model from, and whether to consider applying these different

layers of labelling on separate nodes or have them conflated onto one level.

The fact that the grammar was developed for generation may have an adverse affect on parsing.

For instance, a lexical item may for the purpose of generation be labelled differently according to

the larger construct it is part of. Such multiple labellings exacerbate the problem of ambiguity in

parsing. In recent versions of SFG different labels would be given to the wordform of in

examples (1) to (3).

(1) Some of the men

(2) Part of the cake

(3) A picture of John

The clear distinction between terminal and non-terminal categories in the grammar is not

maintained in SFG. A non-terminal category which most frequently labels some higher level

constituent in the sentence can exceptionally be employed as a terminal category if the lexical

item it labels cannot be productively combined with other items within that constituent. For

example, the label AM, (modal adjunct), would normally be given to each of examples (4) to (6).

(4) Quite possibly

(5) Almost certainly

(6) Maybe

(4) and (5) would be given a constituent structure in (7), whereas (6) would have the simple

structure of a terminal category (8), since the word maybe cannot be productively combined in a

modal adjunct. Ideally, a large-scale lexicon should reflect this fact, but most lexical resources

 38

(other than a lexicon extracted from the POW corpus) fail to capture these distinctions, so

alternative solutions have to be devised.

(7a) [AM [T quite] [AX possibly]]

(7b) [AM [T almost] [AX certainly]]

(8) [AM maybe]

2.2.4 Systemic-Functional Grammar in the POW Corpus.

From the point of view of parsing, the most comprehensive and explicit description of SF syntax

is found in the POW corpus. The version of SF syntax used in analysing the POW corpus was

produced in the early 1980's, and was therefore a forerunner of that used for the COMMUNAL

project's generator. The latter is constantly being amended and refined by Robin Fawcett and

Gordon Tucker. The corpus grammar is preferred to that contained in the generator because it is

stable, offers the possibility of extracting an authentic probabilistic grammar and lexicon, and as

yet contains a wider range of constructs than the generator can produce. However the POW

corpus does not contain participant roles.

As a reader not familiar with systemic linguistics may have already discovered, the terminology

of SFG is quite different to that of generative grammars such as Transformational Grammar or

Generalised Phrase Structure Grammar. In the corpus, a syntax tree is characterised by having

two alternating types of category labels. The first are called elements of structure, such as

Subject (S), Complement (C), Adjunct (A), head (h), modifier (mo) and qualifier (q). Note that,

in a hand-analysis, capital letters are used for elements of clause structure, and lower case letters

for elements of group (and cluster) structure. In the machine-readable version of the corpus,

capitals are used throughout. Elements of structure are filled by the second type of category, i.e.:

units; elements of clause structure are filled by either subordinate clauses, groups, (cf. phrases in

TG or GPSG) such as nominal group (ngp), prepositional group (pgp) and quantity-quality group

(qqgp), or clusters such as genitive cluster (gc). Terminal elements of structure are expounded by

lexical items. The top-level symbol is Z (sigma in the hand-written form) and is invariably filled

by one or more clauses (Cl). Trees tend to be fairly flat, but richly labelled, immediately below

the clause level, notably because of the absence of a predicate or verb phrase constituent. (This

has a direct effect on the size and shape of the formal grammar which can be extracted from the

parsed corpus, as illustrated in chapter 3). Some areas have a very elaborate description, eg: there

 39

are 15 types of adjuncts, six types of modifiers, nine different determiners, and ten auxiliaries.

Other categories are relatively coarse, eg: main-verb (M), head (h), and apex (ax). (The apex

occurs in a quantity-quality group, and is typically expounded by an adverb or adjective). A

comprehensive list of all the categories used in the hand parsing of the POW corpus is given in

Appendix 3, with details of whether the symbol is used as a non-terminal or terminal category (or

both), and some example lexical items which expound the terminal categories. The main

componence relationships found in the corpus will now be exemplified in turn.

The Clause

The clause displays the greatest range of structural variation in the corpus. The declarative main

clause right so tomorrow you are just going to wake up your father and I before eight o’clock

might be labelled with following constituents:

 CL

FR & A S O A X M CM C A

right so tomorrow you are just going to wake up your father and I before eight o’clock

where FR = frame, & = linker, A = adjunct, S = subject, O = operator, X = one or more auxiliary,

M = main verb, CM = main verb completing complement, and C = complement. This by no

means exhausts the potential lists of daughters in a clause, as Appendix 3 shows. Similar

variations are possible for other clauses for imperatives, interrogatives and subordinate clauses,

with most of the constituents being optional, some being able to be repeated at several positions,

and some being mutually exclusive. Weerasinghe (1994; 111) states that the head of the clause in

SF syntax is the main-verb (M), and uses this to build well-formed clause edges in his parser.

The main verb is certainly the semantic head (being responsible for the pattern of participant

roles in a clause) and is certainly responsible for some syntactic patterns such as potential

complementation, but one may argue that the operator, as the first auxiliary, performs the job of

syntactic head (being the element which agrees with the subject in person and number), or indeed

the complete set of auxiliaries and modals, since they show the tense and mood of the clause. If

we explore the evidence found in the POW corpus, and generously take the operator, main verb

 40

or any auxiliary to be a possible head daughter for the clause, we obtain some interesting figures

for headless clauses found in the corpus.

Mother Alternative Heads

CL M, O, OM, OMN, ON, OX, OXN, X, XM, XMN, XN

Of all the componence rules for clauses found in the corpus, 28.6 % of the tokens are found to be

without such a head. Several of these will describe the structure of a clause containing only a

formula, such as yes or no. Some others will be the result of ellipted verbs or auxiliaries, whilst

others belong to neither of these categories. Most of the headless clauses are those containing

only a subject, a complement, an adjunct or even just a conjunction.

The Nominal Group

A (particularly productive) nominal group and some of the greatest of the English world cup

footballers who gained more than fifty caps might consist of the following daughters:

 NGP

& DQ VO DS VO DD MO MOTH H Q

and some of the greatest of the English world cup footballers who gained more than fifty caps

where & = linker, DQ = quantifying determiner, VO = of, DS = superlative determiner, DD =

deictic determiner, MO = one or more modifiers, MOTH = one or more thing-modifiers, H =

head, and Q = one or more qualifier. Again the variation is much greater than shown here,

permitting pronouns and namelike heads of the nominal group. If we again look at the corpus,

using the set of possible NGP heads to be {H, HN, HP, HPN, HSIT, HWH}, we find that 9.6 % of

componence rule tokens appear without a head. The headless nominal groups tend to be just

determiners, modifiers, or both.

 41

The Preposition Group

The other units in Fawcett’s SF syntax for POW show somewhat less variation. The preposition

group and straight to the top maximally involves four possible daughters:

 PGP

 & T P CV

and straight to the top

where & = linker, T = temperer, P = preposition and CV = completive. The first two of these

elements are optional, and there is an alternative label for the head (PM) where it is a main verb

completing preposition (for prepositional verbs). One might assume that both the preposition and

completive were compulsory, and certainly the preposition itself, but taking the head of a PGP to

be either P or PM, we find 3.9% of componence rules for PGP occurring without such a head in

the corpus. The headless preposition groups contain just completive NGPs (i.e. the prepositional

complement on its own)

The Quantity-Quality Group

This unit covers two constituents often dealt with separately in other grammatical descriptions,

those of adjective group and adverbial groups, since the potential structure of the two is the

same, despite their different functions as modifiers, qualifiers and adjuncts, for example. The

structure of

and very fast indeed at running is superficially the same as would be obtained by replacing the

word fast (adj) with quickly (adv):

 QQGP

 & T AX FI SC

and very fast indeed at running

 42

Here, the labels are & = linker, T = temperer, AX = apex, FI = finisher an SC = scope. The use of

AX to label heads of (quantity quality groups filling) modifiers, qualifiers and adjuncts

introduces a great deal of syntactic ambiguity into the parser, which could be avoided if the tag

labelling had been distinct in each of these cases. However in SFG the emphasis is on classifying

functional roles in generation (at the expense of ease of syntactic analysis, in this case). The apex

(AX) is the head of the QQGP, with alternative forms for superlative/comparative (AXT) and

wh-variants (AXWH). If we treat all three of these as possible heads, when exploring the corpus,

we find only 0.4% of QQGP componence rule tokens are lacking a head. The headless quantity-

quality groups contain temperers, scope and finishers each on their own or in combination.

The Genitive Cluster

The genitive cluster is used in SFG to express belonging or possession, which, in English is

found with the possessor being a full nominal group, or being pronominal, such as

 GC GC

 PS G OWN (PS) G OWN

John ’s own (favourite) My own (favourite)

Here the labels are PS = possessor, G = genitive element and OWN = owner. Note that in the case

of a pronominal, the possessing nominal group is subsumed within the genitive element. In the

case of nested possessors, the PS element is filled by a further GC. The genitive element is the

head of the cluster.

The Text Unit

The final unit found in the POW corpus is the text unit, which labels citations, such as he said

‘shut up’. There is little variation in this rare structure, with the TEXT label consisting of a sub-

sentence label, Z. Notice that this structure automatically licenses an alternative analysis (the top

of which is shown by the broken lines in the example below) for almost any sentence, in which it

is being uttered as a response to a question such as What did he say?

 Z

 CL

 43

 S M C

 TEXT

 Z

 M C

 he said go home

To conclude this description of the SF syntax found in the POW corpus, and in particular the

data on headless units, we will estimate the proportion of the whole corpus which consists of

utterances containing at least one constituent unit without a head. The percentage figures I have

given are obtained by searching through all the componence rules extracted from the corpus (for

more on this syntactic formalism see section 3.1). Each rule has an observed frequency, (which

can be represented as a percentage), and by adding together the percentages for all clause rules

without heads, we get an overall figure of 28.6%. It is not straightforward to associate this result

directly with the number of sentences in the corpus which are ‘ill-formed’ in this way. Every tree

would have to be checked individually, to see if it matched the list of headless rules. We can

assume though that there will be some examples of sentences which contain more than one

headless

constituent (co-ordinated clauses for example). Consequently, we might estimate that

about 25% of all sentences have at least one headless clause. However, some of the headed

clauses

would also contain headless subconstituents, so a figure between 25-30% of all sentences is a fair

estimate of the number of sentences missing at least one head in some part of their substructure.

This finding has significant repercussions for any method of parsing which relies on the notion of

syntactic head, including the Alvey Natural Language Tools Parser, and that developed by

Weerasinghe.

2.2.5 Choosing a Grammar Formalism and its Effect on Parsing.

Several different grammatical descriptions and formalisms have been devised by linguists,

logicians and computer scientists. As yet, there is no consensus as to which most adequately and

elegantly captures all the complexity of unrestricted natural language. It is likely that this

situation will persist, as grammars tend to be developed for varying purposes, most notably either

 44

for language interpretation or language generation. However, two endeavours which are

attempting to introduce an element of competition into grammar and parser development are the

US DARPA sponsored Message Understanding Conference, and the Limerick Workshop on

Industrial Parsing of Software Manuals. In the former conference, research teams are asked to

automatically parse a set of unseen randomly chosen texts, to extract pre-defined fields of

semantic content, and their results are graded and published. In the latter, the focus has been

more on syntactic rather than semantic content. One of the main findings of such endeavours has

been that it is very difficult to compare different parsing schemes in an objective manner, and

that there is still little agreement as to what a parser should produce.

Having chosen the SFG contained in the POW corpus as a grammatical description, there

remains the selection of a formalism for the grammar. Bound up in this decision is the choice of

parsing algorithm, since different parsing algorithms work with different formalisms.

The grammar description can be extracted from the parsed corpus automatically in any formalism

which is compatible with the way the parse trees in the corpus have been represented. Typically

this will be limited to using a finite-state grammar, context-free grammar, or perhaps a vertical

strip grammar (examples of each are given in chapter 3). None of the parsed corpora mentioned

in section 2.1 have been annotated with category labels which are complexes of features, rather

than being atomic (although many of the atomic labels are constructed from two or three letters

which include the grammatical information some features contain). As a consequence, the

corpus-based grammar will very possibly be less powerful (in terms of the Chomsky hierarchy)

than its counterparts in the competence paradigm.

Geoffrey Sampson, who was involved in both the Leeds/Lancaster Treebank and the Susanne

corpus-annotation projects, has argued that evidence from such corpora suggests that the number

of rules needed to describe just the noun phrases in the Leeds/Lancaster treebank is open-ended

(Sampson 1987b). Certainly, if the number of unique rules extracted from hand-parsed corpora

are in a simple context-free phrase-structure rule formalism, they number several thousand

(Atwell and Souter 1988a, Souter 1990) and are by no means exhaustive. Taylor, Grover and

Briscoe (1989), in response to Sampson, argue that it is the very simple nature of the formalism

which causes such open-endedness. They claim that, given rules which capture generalisations

such as recursion, and categories as sets of features rather than atomic labels, the number of rules

 45

needed to describe English noun phrases (and we are given to assume, English grammar in

general) can be reduced to a much smaller, finite set. One example in the POW corpus where this

is not the case is in the handling of agreement (between subject and main verb, for example). The

POW corpus parse trees do not explicitly mark person and number agreement between

categories, so introducing a feature which enabled this to happen would, although desirable from

the parsing viewpoint, not reduce the categories in the grammar.

If we are to automatically take advantage of the grammatical information contained in the POW

corpus (or any other parsed corpus), we will not be able to use non-atomic category labels, as

these were not included in the original analysis. Taylor et al.'s grammar, derived from the Alvey

Natural Language Toolkit (Grover et al. 1987), was manually constructed and successively

modified in the light of the LOB corpus data. Unfortunately, no such formal grammar was

created during the hand parsing of the POW corpus, and certainly not one which allowed for

recursion in the rules, and non-atomic category labels. This is because the aim of the POW

corpus compilation was for the study of child language development, and not natural language

processing. Nevertheless, we are able to extract very large syntactic formalisms which are

amenable to parsing, in the form of finite state models, sets of context-free rules, and dominance

rules such as vertical trigrams and vertical strips. However, it is not possible to directly extract

the principal SFG formalism which is amenable to NL generation, a system network, directly

from the corpus text. The syntactic formalisms which are amenable to parsing are not necessarily

at odds with the SFG model for generation, they merely have a different focus. They focus purely

on the formal (and some functional) aspects of the SFG model, without addressing the semantic

basis of SFG.

I am somewhat cautious as to the ultimate value of manually building a large rule-based syntax

model, as there will always be some new sentences which contain structures not catered for in

the grammar, so any parser using such a grammar will hardly be robust. Defenders of the

competence paradigm would argue that corpora have gaps in too, which is a valid point. But the

gaps in corpora will almost certainly be fewer. Furthermore, the endeavours of the TOSCA group

working under the direction of Jan Aarts at Nijmegen University, Holland have been to

incrementally build such a rule set using Extended Affix Grammar (EAG: Aarts and Oostdijk

1988), with reference to their TOSCA corpus. Their grammar now consists of several thousand

rules, and parsing frequently results in several tens or even hundreds of ambiguous analyses. The

 46

choice as to which analyses are the “right” ones must appeal to syntactic, semantic and pragmatic

levels of information. Taylor et al. (1989: 258) also came across this kind of large-scale

ambiguity problem. Rather than manually search through all the ambiguous parses for the

semantically “correct” one, they decided only to manually apply the rules in the grammar to

check that the semantically correct analysis could potentially be found. They also assume that

spurious analyses may be filtered out by some sort of semantic component.

The scale of this multiple ambiguity problem lends weight to a final reason for adopting a

corpus-based formalism. Corpus-based grammars provide the opportunity for recording the

frequency of a wordform or construct. Such frequencies can be used to modify the search

strategy of the parsing algorithm chosen for the grammar, and consequently order by likelihood

the ambiguous analyses a large-scale grammar produces. If experiments show that (one of) the

most likely parse(s) is the correct one, then it will not be necessary to have the parser produce all

possible solutions. One implementation of a parser which adopts this approach using the POW

corpus SFG exists: the Realistic Annealing Parser (see Atwell et al 1989, Souter and

O'Donoghue 1991), which is described in section 2.4.

So far in this chapter I have argued in favour of a corpus rather than intuition-based approach to

computational linguistics, and in particular for the use of parsed corpora as a source of

grammatical information for parsing. As the primary source of linguistic data I have chosen the

Polytechnic of Wales corpus, and the systemic functional description it contains, since there is

more truth in the corpus than in an artificial corpus of generator output. Next, I will consider the

lexical facilities that a wide-coverage corpus-based parser might need.

2.3 Lexical Resources for Corpus-Based Parsing.

The development of lexicons for natural language processing has in many ways followed the

same path as the development of grammars. In small scale systems, researchers were contented

simply to choose a core list of words they would like to be able to deal with, and hand-craft the

lexicon entries with phonological forms, syntactic categories and semantic fields and

representations, etc. The lexicon would perhaps be adequate for the few sentences the researcher

was interested in, but useless for anyone concerned with unrestricted English. In the present

project, we would ideally like to be able to provide, for any wordform in the language,

 47

appropriate grammatical tags from the terminal categories in the POW corpus, and preferably a

probability measure of the occurrence of the wordform with each particular tag. For instance,

given the wordform bricks, the lexical lookup process which initialises the parser might return

[[73 BRICKS H][1 BRICKS M]]

which would provide the parser with the information that bricks can be a noun (H) or main verb

(M) with frequencies of 73 and 1 respectively. Such frequencies could be turned into

probabilities by dividing the frequency of occurrence with a particular tag by the total frequency

of occurrence with any tag (in this case 74). In a speech recognition application, this probability

should then be multiplied by the probability of the wordform occurring in the language, which

can be estimated from a raw corpus. However, in the current application, I use only tag

probabilities, since the nature of the input is not in question.

There are at least three approaches one might adopt to the provision of a large-scale lexicon for

robust parsing. Firstly, we could attempt to extract a list of wordform/wordtag correspondences

with their frequencies from the chosen corpus itself, or use a corpus-trained probabilistic tagger

akin to the constituent likelihood automatic word-tagging system (CLAWS) (Leech et al 1983,

Atwell et al 1984). Alternatively, we could use a traditional dictionary-style morpheme list and a

morphological analyser to strip off affixes before looking up a word. As a third option we could

list all the morphological variants in the lexicon itself without taking advantage of the regular

rules of English morphology, and thereby make the lexicon much larger. In practice, each of

these options has its advantages and disadvantages. One problem common to them all is how to

handle wordforms not covered by the lexicon5, such as proper nouns, neologisms, compounds

and idioms, akin to the problem of grammatical undergeneration.

2.3.1 Corpus-Based Tag Assignment.

Currently, wordlists with disambiguated frequency information can only be obtained from

grammatically tagged or fully annotated corpora. These lexicons tend to be larger than could

5 The CLAWS approach has a set of affix rules it uses to help tag assignment, rather than lexical look up. However, a

lexicon is used for the cases when the affix rules fail, and for idioms.

 48

easily be produced by hand (see section 3.2 for an example from the POW corpus), but still not

really adequate for a project aiming to handle unrestricted English. They have the advantage that

they do provide disambiguated frequencies for wordforms in the corpus, and consequently can be

used as lexicons for prototype probabilistic parsers which do not have pretensions of unrestricted

lexical coverage. The POW corpus, which contains 65,000 words, yields a lexicon of 4,618

unique words with syntactic categories and their disambiguated frequencies. To obtain a larger

wordlist would require an extremely large SFG tagged corpus (which sadly doesn't exist).

An alternative to straightforward lexical look-up from a corpus-derived lexicon is a tagging

program based on the same SF syntax model. Two approaches to building such a tagger exist,

based on either a probabilistic model, or on co-occurrence rules. A probabilistic method has been

used to produce the 1 million tagged LOB corpus (Johansson et al 1986), which resulted from a

semi-automatic approach to word tagging, called constituent likelihood automatic word-tagging

system (CLAWS). A portion of the Brown corpus which had first been grammatically tagged by

a rule-based program, and then corrected by hand was used to extract a probabilistic model of the

relations between word tags in context. The program was then able to indicate unambiguously

what the grammatical tag should be for some new word in the corpus, achieving 95-96%

accuracy. Remaining errors were corrected by a manual post-editing phase to create a completely

tagged corpus. The 1 million word tokens are examples of around 50,000 word types, which is a

sizeable lexicon, although this does include many proper nouns and other items such as

punctuation marks which would not normally be contained in a traditional dictionary.

The main aim of the CLAWS project was, however, not to produce a lexical look up procedure

for a parser, but to create a tagging program which could also be re-used on other corpora

(Garside 1987). To be used as a first step in SFG parsing, the tagger would need to be retrained

to deal with the SFG grammar, by extracting tag co-occurrence frequencies from the POW

corpus. Although an early version of CLAWS is now publicly available, it has not to my

knowledge been designed to automatically accommodate other tagging schemes. Alternatively,

the output of CLAWS as it stands might be mapped onto SFG categories. These options would

probably reduce its accuracy, depending on how bound CLAWS is to the type of published,

written language the LOB corpus contains.

 49

A further probabilistic (Markov model) tagger has been developed by Church (1988), trained on

the tagged Brown corpus, and employing corpus-based bigrams and trigrams, as well as lexical

probabilities. The PARTS tagger has reported accuracy rates of between 95-99%, depending on

text type and evaluation measure.

Recently, two different teams have developed tagging programs able to surpass (the lower end

of) these success rates, using context rules, with limited use of probabilities. In Helsinki, a

formalism to describe English grammar has been built called ENGCG (English Constraint

Grammar, see for example Karlsson et al 1995). This model is essentially a hand-crafted

approach using linguistic knowledge, in the form of a large lexicon and of morphological rules.

As well as assigning parts of speech to each word, a skeletal parse outlining noun phrase

structure is performed, and some functional elements such as a clause’s subject can be

recognised. The same formalism is being used for English, Finnish, Swedish, German and

Basque. It is not clear how one could make use of this tagger without also subscribing to the

tagging scheme.

Another recent alternative to CLAWS, which can be trained on the POW corpus data, is the Brill

tagger (Brill 1992, 93, 94). Instead of using a purely stochastic approach of modelling co-

occurrence of parts-of-speech, Brill’s model instead learns a small set of context rules from a

tagged corpus. He uses a technique called transformation-based error-driven learning to acquire

these rules, which are like a hybrid between a rule-based and a pure stochastic model. The

method consists of

(i) extracting a lexicon from part of a manually tagged training corpus which he refers to as the

truth;

(ii) stripping off the tags from the truth, to make a raw corpus;

(iii) making a first guess at the best tag by choosing the most frequent one from the lexicon;

(iv) comparing the guessed tags to the truth, to calculate an error rate.

(v) generating all possible transformation rules (from a set of about six templates). An example

template is ‘change tag a to tag b when the preceding word is tagged y and the following word is

tagged z’. An example transformation rule resulting from this might be ‘change the tag from

noun to verb if the previous tag is modal’.

(vi) apply each of the many rules in turn, and evaluate by comparing the updated tags to the truth.

 50

(vii) select the rule that reduces the most errors, go back to (iii) and repeat until no new rule

reduces the error rate, or a preset threshold is reached.

Brill originally trained his model to tag the Penn Treebank, with success rates of 96-7% for

single tag assignment (just in excess of CLAWS), and up to 99% success when the evaluation

criteria are relaxed to allow an average of 1.5 tags per word. The original tagger described here

now also contains facilities to permit tagging of words not found in the training corpus (although

with a lower success rate of 85%), and to permit re-training on other tagged corpora. John

Hughes has trained the Brill tagger trained on the POW corpus, among others (Hughes and

Atwell, forthcoming). Examples of context rules and the lexical tagging rules produced by this

training process are found in Appendices 10 and 11. The POW corpus is relatively small,

compared to other tagged corpora used by Brill (of up to 1 million words), so we may expect a

reduction in tagging success rate. In particular, its lexical coverage is very small, so the rules for

tagging unknown words will be based on a limited training corpus.

The Brill tagger assigns just one tag per lexical item, so if it fails, it will have a significant

impact on parsing. Equally, it has no mechanism for dealing with multi-word lexical items,

unless these are tokenised together by means of hyphens. Consequently, we may wish to explore

alternative lexical look-up techniques in parallel, such as using dictionary material.

2.3.2 Dictionaries and Morphological Analysers.

Machine readable dictionaries (MRDs) such as the Longman Dictionary of Contemporary

English (LDOCE: Procter 1978) and the Oxford Advanced Learners Dictionary (OALD: Hornby

1974) are lexical resources which offer some hope for computational linguists interested in

robust parsing, but until very recently have developed using the lexicographer's competence,

rather than a large scale observational survey of the language. One dictionary which has resulted

from the analysis of a large corpus (of 20 million words) is COBUILD (Sinclair 1987), but

unfortunately the machine readable version is not, to my knowledge, freely available for

academic research.

Substantial reformatting and re-organisation of a MRD is often necessary before it becomes a

lexicon tractable for NLP work (Atwell 1987, Boguraev and Briscoe 1987, 1989, Wilks et al

 51

1988), but this work is undoubtedly time saving compared to compiling your own lexicon of the

same size. An example of the reformatted bracketed LDOCE lexicon is shown in Figure 7.

Figure 7. Section of Lispified LDOCE.

((abate)
 (1 A0001600 !< a *80 bate)
 (3 E!"beIt)
 (5 v !<)
 (7 100 !< I *DE !< ---- !< ----T)
 (8 (of winds !, storms !, disease !, pain !, etc. !.) to become less strong !; decrease : *46 The ship waited till
 the storm abated before sailing out to sea)
 (7 200 !< T1 *46 often pass !. !< ---- !< ----T----T)
 (8 *46 lit *44 to make less : *46 His pride was not abated by his many mistakes)
 (7 300 !< T1 !< LW-- !< ----H----T)
 (8 *46 law *44 to bring to an end(esp !. in the phr !. *45 abate a nuisance *44))
 (10 1 !< ! ment !< !< n !< U !<))
((abattoir)
 (1 A0001800 !< ab *80 at *80 toir)
 (3 !" *67 bEtwA : R)
 (5 n !<)
 (6 !< BrE)
 (7 0 !< !< AHBZ !< B---NF--X)
 (8 *CA slaughterhouse))
((abbess)
 (1 A0001900 !< ab *80 bess)
 (3 !" *67 b9s !, !" *67 bes)
 (5 n !<)
 (6 C !; N !<)
 (7 0 !< !< RL-- !< ----F---Y)
 (8 a woman who is the head of a religious establishment (*CA CONVENT *CB) !, formerly called
 an *CA ABBEY *CB !, for women *63 compare *CA ABBOT))

A reduced version of such a computational lexicon was derived from LDOCE for use in the

Alvey Natural Language Toolkit's morphological analyser (Carroll and Grover 1989). The

analyser was reviewed by Souter and Atwell (1988b), who drew the following conclusions.

It should be possible to expand the ANLT lexicon to cope with the full capacity of LDOCE, but

this would exacerbate a problem with the morphological analyser: its slow speed in producing

solutions. This would be ameliorated by improving the system hardware, but counter-balanced by

the extra load of the parsing program itself.

The morphological analyser does not assign weights to its analyses, a problem common to all

MRDs. Frequency information in the entries would be useful for probabilistic NLP.

 52

A further problem with the analyser and with MRDs in general is that the grammar used in the

syntax entries will certainly not be amenable to use in NLP (Akkerman et al 1985, 1988). It may

categorize idiosyncratic features which were of interest to the dictionary editor, but not to the

computational linguist, making it difficult or impossible to achieve an automatic mapping

between the dictionary syntax and that chosen for the parsing scheme. However, a preliminary

manual mapping between LDOCE syntactic categories and those in SFG was produced for the

COMMUNAL project (Souter and Atwell 1988b; 73-76), and is reproduced in Appendix 4.

2.3.3 Lexical Databases.

Although MRDs such as LDOCE contain a wide variety of information which could potentially

be used in NLP systems, much of this information is not needed for parsing. MRDs also carry the

overhead of a morphological analyser, which it may be possible to avoid. Some MRDs have been

processed beyond simply a computationally tractable list format (as in Figure 7) into lexical

databases. Such databases may include all variant wordforms of a stem, rather than just the stem

itself, which saves the expense of using a morphological analyser. Furthermore, the lexical

information derived from MRDs can be supplemented easily with new database fields, for

example for lexical probabilities. One such lexical database is the CELEX database (Burnage

1990) of Dutch, English and German, compiled in Nijmegen, Holland. The English component

contains over 80,000 wordforms (rather than stems) obtained from the intersection of the

headwords of LDOCE and OALD, and expanded into all their morphological variants. The

syntactic categories in the database are derived from LDOCE. Each wordform is given a

frequency from the Birmingham (COBUILD) Corpus, but unfortunately the frequencies are not

disambiguated; the entry for books as a third person verb and the entry as a plural noun have the

same frequency (163 occurrences per million words). CELEX has nevertheless been used as a

source lexicon for the aforementioned ENGCG tagger at Helsinki.

CELEX by no means represents the final word on lexical database resources. A team directed by

Yorick Wilks at New Mexico State University, Las Cruces, has also converted LDOCE into

database form (Wilks et al 1989) as has a team from Cambridge University (Alshawi et al 1989).

The European Community has funded a collaborative project ACQUILEX which is developing a

multilingual lexical database primarily for use in semantic taxonomies, semantic equivalence and

feature-based syntactic work (see eg. Meijs 1993a, 1993b).

 53

The need remains when using a lexical database for a mapping from its grammatical description

to that in the parsed corpus, but if the database's grammar has been compiled from more than one

dictionary, there is a better chance of achieving such a mapping automatically or semi-

automatically. In practice it is highly likely that manual intervention will be needed to map to a

fine-grained corpus grammar model. In the case of systemic functional grammar trees, the labels

directly dominating the words are elements of structure depicting the word’s function, rather than

(an absent level of labelling) describing the form of the word. For instance, were the apex of a

quantity-quality group to be further distinguished as either an adjective or and adverb, then in

lexical look-up and parsing we would be able to quickly separate the analyses for new as a

qualifier (Q) and now as an adjunct (A) in the following:

 Z Z

 CL CL

S M C S M C A

NGP NGP NGP NGP QQGP

HP HP Q HP HP AX

 QQGP

 AX

I know something new I know something now

As it stands, the final word of both of these examples will be tagged AX, which licenses both the

qualifier and adjunct reading for either example.

2.3.4 Choice of Lexical Resource.

It is necessary to select at least one approach to provide a lexical resource compatible with the

chosen grammar, which is sufficiently computationally tractable to be used together with the

 54

grammar in a wide-coverage parsing program. Initial attempts to map between the syntactic

category information of the CELEX and the POW corpus SF syntax were promising, and as this

resource also contained wordform frequencies, a lexicon drawn from the CELEX English

database has been adopted as one solution to the tagging problem. CELEX was selected in

preference to the other databases because it included frequency information, was freely and

readily available, and was not still under development6. The modification of the CELEX lexicon

and look up performance tests on the POW corpus are presented in section 3.2. In addition to

CELEX, the POW-trained version of the Brill tagger was used for a separate parsing test, with

results for both described in chapter 5.

2.4 Parsing Techniques.

Parsers can be classified in different ways, according to the purposes they are built for and the

techniques they employ (which in turn is related to the syntactic formalisms they adopt).

Weerasinghe (1994; 7-10) separates parsers on the basis of the disciplines they emerge from -

psychology, logic, mathematics, statistics and AI. A more coarse-grained classification would

still have to allow for parsers belonging to the mathematical/theoretical tradition (exemplified by

Tomita 1991), the computing tradition of parsers as compilers of programming languages, or the

linguistic tradition of parsers for assigning syntactic structure and resolving ambiguity.

The purposes of parsing have already been discussed (see section 1.3), and vary according to

whether the syntactic analysis is the final goal of the exercise, or whether the output of the parser

is intended to be the input to some higher level semantic interpretation. In the latter case, if our

parser is intended to be unrestricted, then an important issue is the development of the related

semantic model and successfully relating it to the syntactic structures. Much of the work in

parsing and interpretation using systemic functional grammar has focused on the difficult

problem of reversing the process of system network traversal and realisation rule application, as

discussed in section 2.2.1. It would be preferable for the association between syntactic structure

and semantic selection expression to be able to be derived automatically in some way, perhaps

using the generator output (which can be adjusted to include the semantic features chosen in

6 CELEX has since been further extended, but for our purposes it was a complete and deliverable system at the time we

needed it.

 55

generation). This kind of approach will only yield semantic analyses for sentences an SFG NL

generator can generate, however. In other grammatical implementations which include a

semantic model, such as the Alvey NL Toolkit (described in section 2.4.1), or the Core Language

Engine (Alshawi 1992), the semantic associations with the syntax have to be hand-crafted. At

present, the only possibility for automated semantic analysis appears to be the harnessing of

resources from dictionaries and encyclopaedias to semi-automatically develop semantic

taxonomies and networks of semantic relations (such as those produced by the ACQUILEX

(Meijs 1993a, 1993b) and Wordnet (Princeton University) projects). In principle, such

knowledge could automatically be acquired from suitably semantically and syntactically

annotated corpora, but these have yet to be created7. The lack of agreement as to what constitutes

a correct parse is replicated in the world of semantics, where possible semantic models include

Montague grammar, type theory and lambda calculus, models of temporal and spatial relations,

SFG system networks, preferences and selection restrictions, or even SQL expressions. Hence we

restrict ourselves in this thesis to the already difficult problem of syntactic analysis of

unrestricted natural language, without concerning ourselves with the issue of formalising and

learning or hand-crafting an equally large semantic model.

When we consider the different techniques used in syntactic parsing, one key distinction can be

drawn, which is to separate techniques which rely on deterministic search (which have been used

for finite search spaces of up to around a thousand grammar rules), from techniques for

probabilistic search (which presume an almost infinite search space).

The former could be called deterministic or rule-based approaches, although strictly speaking

they do not all employ the formalism of a set of rules, and have been used traditionally with

competence grammars. The term determinism will not be used because of its ambiguity in

artificial intelligence circles between an approach which, at every point of choice in the parsing

process, successfully determines the right direction to take without recourse to back-tracking

(Marcus 1980), and a more liberal interpretation in which a system is guaranteed to find at least

one solution (where one or more exist in the grammar) without using probabilities.

7 One exception is Bod (1995), who has attempted to create a semantic performance (Montague) grammar.

 56

Probabilistic techniques have been adopted in response to the presumed open-endedness of

grammars used for the analysis of corpus texts. Such techniques usually aim to find a best-fit

solution, even for semi-grammatical sentences. Probabilistic parsers may use rules augmented

with probabilities, but in this thesis I reserve the term rule-based parsing for rules devoid of

probabilities or weights.

Karlsson (1995; 9) expresses a similar distinction in his excellent review of six possible

approaches with respect to grammar-based versus probabilistic models, recognising that

researchers do not always pick one or the other, but often use a hybrid approach:

1. grammar-based rules only, e.g. Alvey GPSG, Fidditch, TOSCA, The Core Language;

2. probabilistic modules only (PARTS part of speech tagger, CLAWS1 part of speech tagging + UCREL

syntax);

3. grammar-based rules strictly followed by probabilistic modules;

4. probabilistic modules strictly followed by grammar-based rules (the combination of PARTS and

Fidditch: de Marcken’s (1990) model for part of speech disambiguation and syntactic analysis trained

on the LOB corpus);

5. grammar-based rules interleaved with probabilistic modules; grammar rules interleaved with heuristic

metrics for solving ambiguities, followed by a fitting procedure for handling parsing failure: EPISTLE

(Heidorn 1982; Jensen and Heidorn 1983; also cf. the papers in Jensen, Heidorn and Richardson 1993);

McCord’s (1990) slot grammar; skeleton parsing (Black, Garside and Leech 1993); realistic annealing

parsing (Souter and O’Donoghue 1991); unification-based grammar rules supplanted with statistical

information drawn from pre-tagged corpora (Briscoe and Carroll 1991); optimal linguistic constraints

eventually followed by more heuristic constraints if the optimal constraints fail, then reapplication of

the optimal constraints: Constraint Grammar;

6. probabilistic modules interleaved with grammar-based rules

It would be impractical to review here in any great detail all the different approaches which have

been proposed for parsing natural language, so instead I will summarise rule-based parsing and

probabilistic alternatives, including some hybrid approaches, commenting on the pros and cons

of each.

2.4.1 Rule-Based Parsing.

By rule-based parsing, I mean parsing which proceeds by searching through the set of rules in a

grammar (and lexicon) to determine which rules may jointly be applied to produce a well formed

 57

syntactic structure for a sentence of the language described in the grammar. If no analysis for a

sentence can be found using the rules in the grammar, then the sentence is ungrammatical. If

more than one analysis is found, then the sentence is syntactically ambiguous.

Finite state or context-free grammars are simple formalisms adequate for many of the structures

of natural language . Such grammars are usually implemented as recursive transition networks

(RTNs), or sets of phrase-structure rules. Parsing then involves traversing the network, recording

the structures built as each arc is crossed, or for phrase-structure rules, combining them

recursively to build a nested list or tree structure.

However rule-based grammars are limited in their ability to adequately capture unbounded

dependencies in English such as topicalisation and wh-question formation, unless the grammars

have been supplemented with features, feature constraints, and metarules. Associated parsers

must then have recourse to unification of these features.

Two commonly used rule-based parsing algorithms for context-free grammars are shift-reduce

parsing and chart parsing. These differ only in the efficiency with which analyses are found, and

not in the analyses that are found.

2.4.1.1 Shift-Reduce Parsing.

Shift-reduce parsing is a relatively simple parsing algorithm for context-free phrase-structure

grammars, and is widely described in the literature; for an introduction, see (Winograd 1983: 87-

111). Two operations are applied successively until the input sentence is exhausted: The leftmost

word in the sentence is shifted onto a stack, and then a rule in the grammar is chosen whose right

hand side matches the contents of the stack, in order to reduce the stack to the category label on

the rule's left hand side. The POPLOG programming environment contains a built-in PROLOG

parser of this kind. Atwell and Souter (1988) and Atwell et al (1988) describe experiments with

this parser using grammars extracted from the Lancaster/Leeds Treebank and POW corpora. In

both cases, grammars of several thousand rules are unable to be fully loaded because of system

limitations, restricting grammar size to around a thousand rules. An alternative rule-based

technique which is more efficient, but slightly more complex is chart parsing.

 58

2.4.1.2 Chart Parsing.

One of the problems with shift-reduce parsing algorithms is the choice of when to shift and when

to reduce. Much inefficiency results from repeated backtracking to find successful combinations

of the two operations and the right rules, and the matter is made worse by the ambiguity common

to all natural languages. This means that the same structures are constantly being deleted and

then rebuilt in shift-reduce parsing, and the inefficiency is scaled up considerably with very large

grammars.

One way of overcoming this inefficiency is to keep a record of all legal sub-structures built, so

they never need to be reconstructed. This can be done in a well-formed substring table or chart,

hence the name chart parser. In a chart parser (Winograd 1983: 116-127, Gazdar and Mellish

1989; 181-213), words in a sentence are combined as edges, with a record kept of i) the syntactic

category of the edge, ii) its start and end point, iii) its contents, and iii) any other edges needed to

make a full constituent. The syntactic category of the edge is the mother of a phrase-structure

rule, and the contents together with the edges needed are the daughters in a phrase-structure rule.

The daughters may be separated by a full stop to indicate which have been found and which have

yet to be found, in which case the edge represents a dotted rule. An edge which has found all the

daughters it needs to be a full constituent is called inactive, whereas an edge which is still

looking for further daughters is called active. Edges are recursively combined until all the words

have been included and no further edge combinations are possible, using a procedure called the

fundamental rule of chart parsing. Informally, this means combining an inactive edge with an

active one which finishes at the inactive edge's starting point, and which is looking for a daughter

category which matches the category of the inactive edge. This combination rule is described

formally by Gazdar and Mellish (1989; 197):

If the chart contains edges [i,j,A->W1.B W2] and [j,k,B->W3], where A and B are categories and

W1, W2 and W3 are (possibly empty) sequences of categories or words, then add edge

[i,k,A->W1 B.W2] to the chart.

In practice, such combined edges are not added directly to the chart, but put on an agenda of

edges to be added to the chart. When all edges have been taken off the agenda, and no more

combinations are possible, then parsing is finished. The set (possibly empty) of edges labelled

with the root or sentence category label which contain all the words in the sentence is then

 59

considered to be the list of grammatical analyses. The order in which edges are combined (and

hence solutions produced) can be manipulated to perform depth or breadth-first search, by the

ordering the agenda, but the same list of solutions will always be found, for a static lexicon and

syntactic model. Since modified chart parsing will be the approach employed in the present

parser, I will illustrate in Figure 8 the way a chart parser constructs an analysis for the sentence

what’s the point, using a toy lexicon and SF syntax.

Figure 8. Building a Chart.

Mini-lexicon Mini-grammar

what HWH Z � CL

’s OM CL � S OM C CL � CWH OM S

the DD S � NGP CWH � NGP

point H, M NGP � HWH NGP � DD H

 Z

 CL

 CWH S

 S

 NGP NGP

 HWH OM DD H

 M

 0 what 1 ’s 2 the 3 point 4

In Figure 8, only some of the inactive edges are shown, and all the active edges are omitted, for

ease of reading. The example is somewhat contrived, since some rules have also been omitted for

the sake of clarity. In a bottom-up left-to-right chart parser, the chart in Figure 8 would be

constructed as follows: The first word what would be looked up in the lexicon, and found to have

a possible label HWH. An edge would be created in the chart spanning just that word (from

position 0 to 1), with that label. In a breadth first approach, the second word would then be

looked up. In a depth first approach, we would next look in the grammar to see if any rules exist

with HWH as their first daughter, and find the rule NGP � HWH. This would result in the

addition of an active edge labelled NGP seeking an inactive edge labelled HWH being added to

 60

the chart. The fundamental rule could then apply, combining the active and inactive edge to

produce a new inactive edge labelled NGP. The grammar would then be consulted again, looking

for rules with NGP as the first daughter, and two would be found, S � NGP and CWH � NGP.

Two new active edges would be created in the chart, which would then each combine with the

inactive NGP edge using the fundamental rule. Next the grammar would be consulted again,

looking for rules with either S or CWH as first daughter, and the two clause rules CL � S OM C

and CL � CWH OM S would be found and added to the chart as active edges. Each will combine

with the S and CWH edge respectively. At this point, no new rules can be applied to inactive

edges for the first word, so the second word is looked-up in the lexicon. and the edge building

process continues, finding an inactive OM edge for the enclitic verb ’s. The OM edge can

combine with both of clause rules, leaving them both active, seeking one more daughter. The

third word the is then found to be labelled as a deictic determiner, DD, and a new active NGP

edge is created which combines with the DD edge. Finally, the last word, point, is looked up and

found to have two possible tags, H and M, which results in two lexical edges being created. Only

the first of these can combine with the neighbouring active NGP edge seeking an H, to produce

an inactive NGP edge. Again the grammar is consulted, and two new active edges labelled S and

CWH are created, which then combine with the inactive NGP edge to span the last two words of

the sentence. Of the two resulting inactive edges, only one can combine with an active clause

rule, which creates a spanning inactive edge labelled CL. The grammar is then consulted one

more time, to find rules with CL as first daughter, and the Z � CL rule matches, resulting in the

creation of an inactive edge labelled Z which spans the sentence. These conditions are those

required for a solution parse tree (the Z label being that of the root or target), and the structure

contained inside the Z edge is then recursively built and added to the list of solutions. The parser

continues looking for further edges until no more combinations can be made using the lexicon

and grammar, at which point the list of solutions is returned.

Variations on this algorithm have been used by many designers of parsers for small and large

grammars alike, with enhancements to improve performance on large-scale lexicons and

grammars. One of the best known of these is the Alvey Natural Language Toolkit, containing a

chart parser written in Common LISP (Phillips 1986, Phillips and Thompson 1987) which was

intended to serve as a general-purpose tool for the natural language community. As explained in

section 2.1.1, the grammar used roughly follows the Generalised Phrase Structure Grammar

formalism, including categories as sets of features and metarules (Gazdar et al. 1985). The

 61

expanded object grammar contains well over 1,000 rules, which is very large, for a hand-built

competence grammar. Experiments have shown the accuracy of the parser to be very good

(Atwell et al 1988, chapter 4), but the process of loading and running to be very slow. The

Toolkit's authors recommend that a dedicated machine of at least 16 Mb. working memory be

used. Were the grammar used to be one of several thousand rules extracted from a parsed corpus,

the running performance would be expected to deteriorate still further, (assuming, of course, that

it is possible to integrate other grammar descriptions and formalisms such as SFG into the

framework of the Toolkit). One poor aspect of rule-based parsing which is difficult to overcome

is its total failure in cases where the structure of the sentence cannot be described using the

existing set of rules. Most rule-based parsers (including the chart parser of the Alvey NL Toolkit)

simply give a null response when their grammar (or lexicon) is inadequate, not even offering a

partial, best-fit solution. This problem of undergeneration can be minimised by using a much

larger grammar (such as one derived from a parsed corpus), but even then it is theoretically

possible that the parser will fail to produce a solution. In this case the contents of the chart could

be use to offer some kind of ad hoc solution, or parsing could restart with the grammar relaxed in

some way (Kwasny and Sondheimer 1981).

However, with very large grammars contained in rule-based parsers, a further problem tends to

occur (see, for example, Oostdijk 1991, Keenan 1993); tens or even hundreds of legitimate

analyses are produced by the parser. Briscoe (1994; 99) gives an extreme example where the

definition of youth hostel is parsed using the ANLT to produce a parse forest of over 2500

different analyses. Clearly it would be desirable if these were to be ordered according to some

measure of likelihood, or even by having a semantic component interact with the parser. The

latter suggestion is preferred by some theoretical linguists including the developers of the ANLT,

but has proved difficult to implement, not least because of the lack of consensus as to how to

formalise an adequate semantic model for natural language. But some researchers have

introduced corpus-based probabilities into the chart in order to influence the parser's search

strategy, thereby classifying them as hybrid rather than purely rule-based techniques (Magerman

and Marcus 1991, Briscoe and Waegner 1992, Pocock and Atwell 1993).

 62

2.4.1.3 Probabilistic Chart Parsing.

Although approaches to probabilistic parsing are discussed in section 2.4.2, probabilistic

adaptations to chart parsers will be dealt with here, since they represent a modification to the

search strategy of the standard chart parsing algorithm. The lexicon and grammar used by a

probabilistic chart parser are augmented with probabilities extracted from a parsed corpus.

Samples of the probabilistic lexicons and context-free grammars which can be extracted from the

POW corpus are given in Figures 9 and 10. The leftmost column contains the observed corpus

frequency of the word-wordtag pair (Figure 9) or rule (Figure 10).

Figure 9. The 20 Most Frequent Word-Wordtag Pairs in the POW Corpus.

2679 I HP 691 GOT M

2250 THE DD 610 THEY HP
1901 A DQ 585 NO F

1550 AND & 554 IN P
1525 IT HP 523 TO I
1298 YOU HP 482 PUT M

1173 'S OM 417 HE HP
1117 WE HP 411 DON'T ON

1020 THAT DD 401 ONE HP
897 YEAH F 400 OF VO

Figure 10. The 20 Most Frequent Context-Free Rules in the POW Corpus.

8882 S --> NGP 1738 NGP --> DQ H

8792 NGP --> HP 1526 NGP --> H
8251 Z --> CL 1496 C --> PGP

6698 C --> NGP 1272 C --> QQGP
4443 QQGP --> AX 1234 CM --> QQGP
2491 PGP --> P CV 1221 NGP --> DD

2487 CV --> NGP 1215 NGP --> HN
2283 NGP --> DD H 1182 C --> CL
2272 CL --> F 1011 MO --> QQGP

1910 Z --> CL CL 1004 CL --> C

As each edge for a new word or rule is added to the chart, the probability of the word or rule is

also added to the edge. When edges are combined, their probabilities are combined, usually being

multiplied together, since the over-arching edge represents the occurrence of the active edge and

the inactive edge. The recursive combination of edges results in a global probability for each

tree. The parser's search strategy is “most-likely first”, since as the combined edges are added to

the agenda, the agenda is reordered using the probability of the edges. When the next edge is

 63

added to the chart, it will have the highest probability of those remaining on the agenda. When

all solutions have been found, they can be ordered according to their probabilities, or

alternatively, they can be produced on the fly while the parser is still running.

Pocock and Atwell took Gazdar and Mellish's (1989; 429-431) POP11 implementation of a chart

parser and made the changes described above so that the search strategy would be probabilistic.

They enhanced the program in a number of other ways to improve the efficiency of the parser,

since they intended to use the parser with a grammar extracted from the Spoken English corpus

(SEC: Knowles and Lawrence 1987). The lexicon and grammar were separated, and stored as

property lists, rather than flat lists. Probabilities were logarithmised and normalised to integer

form to allow for fast integer arithmetic. The chart was stored as an array of lists, so only a

subpart need be consulted, and a number of methods were employed to reduce garbage collection

when parsing. The SEC grammar consisted of 15 non-terminal and 187 terminal categories, and

several thousand context-free phrase-structure rules. Their findings with the complete grammar

were not promising; performance was very slow, so to achieve adequate performance for their

application (disambiguating speech recognition word lattices) they had to select a subset of the

grammar. With a large grammar, much of the chart parser's time is spent searching through lists

(the agenda and the chart), which are particularly slow to process in POP11.

Magerman and Marcus achieved more satisfactory results with their Perl parser by making the

probability combination function conditional and adding context-sensitive constraints (having

recourse to the parent of the mother category of a rule). They achieved a success rate of 35 out of

40 successful parses (87.5%) on test sentences from the Voyager domain. However, the corpus

material used to derive the grammar was artificially produced by a natural language generator,

and then this grammar was manually augmented with syntactic constraints. While these results

are extremely good, it is desirable instead to be able to use a grammar extracted totally

automatically from a non-artificial parsed corpus.

Further experiments with probabilistic chart parsers have been conducted with context-free

grammars (both with and without features and unification) taken from the ANLT by Briscoe

(1994). His work attempts to solve the problem of undergeneration of competence grammars by

re-estimating the grammar probabilities using the Baum-Welch algorithm (Baum 1972). Briscoe

uses this technique to optimise the probabilities on the existing rules (which he calls explicit),

 64

and to select good ones from a set of implicit potential rules. When applied using a chart parser

on sentences taken from the SEC and Associated Press corpora, he improves the success rate of

the untrained grammar (50%) to between 63-66% with the re-estimated grammar (depending on

whether unification is used). The number of sentences parsed (even if the correct parse was not

the most likely) rose from 53% to 96% using re-estimation of a grammar containing explicit and

implicit rules. This method of expanding an incomplete competence grammar looks to be very

promising, and could also be used to optimise and expand a corpus-based probabilistic context-

free grammar.

2.4.2 Probabilistic Parsing.

Instead of trying to improvise with a number of ad hoc ‘failure’ rules, or to improve the search

strategy of a rule-based approach, a number of researchers have developed novel probabilistic

parsing techniques, which use a stochastic model based on corpus frequencies, and abandon the

phrase-structure rule-based formalism altogether.

Much of the thinking behind probabilistic parsing originates from the observation of corpora

which have been hand parsed. These display the sort of grammatical open-endedness discussed

in section 2.2.3 (Sampson 1987b, Garside et al 1987). In many probabilistic approaches, the strict

grammatical/ungrammatical distinction is foregone, and replaced with a scale of observed

frequency. Frequently occurring structures are hopefully those which are acceptable to most

speakers of the language, while less frequent structures may be uncontroversial and genuinely

rare, or may be semi-grammatical and acceptable only to some speakers. Structures which are

never attested in a large, representative corpus (and representative here is quite difficult to

specify) are considered to be “ungrammatical” or not to be part of the language. Alternatively,

these very rare structures may be given a very low default probability, such that they are

recognised by the parser, but only after the structures found in the corpus.

The parsing process then becomes a matter of stochastic optimisation; a search for the most

frequently observed structure, given some probabilistic model of the language concerned.

Consequently probabilistic parsing may be divided into the choice of a probabilistic language

model, and a suitable optimal search technique.

 65

2.4.2.1 Probabilistic Language Models.

The simplest models are for bigrams or trigrams; describing the co-occurrence of two or three-

word strings, and avoiding any explicit representation of higher level syntactic structure. The

advantage of such models is that only a raw, unanalysed corpus is needed, so the data from very

large corpora can be easily assimilated. Such co-occurrences are used by Sharman (1990) to train

a Hidden Markov Model (HMM) based word tagger for English, the accuracy of which increases

with the length of the polygrams. However, the complexity of the process of training and running

the tagger also increases with the length of the word strings used. Using the same approach in

parsing might seem desirable, but it is unclear how constituents would be formed, and even less

clear whether they would match linguists intuitions of how constituents should be labelled. For

promising experiments in this direction though, see (Hughes 1994, Jost and Atwell 1994, Jost

1994).

Other models incorporate some type of grammatical description, whether only terminal

categories (word tags) for the words in the sentence (as used in the CLAWS project described in

section 2.3.1), or full syntactic trees. The raw material for such models is either a tagged, or a

fully analysed corpus. APRIL (Sampson et al 1989) and COMMUNAL (Phase 1) (Atwell et al

1988) were successive projects at Leeds University which used first-order Markov models

represented as recursive transition networks (RTNs) extracted from fully hand-analysed English

corpora (the LOB Treebank and POW Corpus, respectively). An example of the probabilistic

RTN formalism extracted from the edited POW corpus is shown in Figure 11.

Figure 11. A Fragment of Probabilistic RTN from EPOW.

A # CL 250
A # NGP 156
A # PGP 970
A # QQGP 869
A # TEXT 1
A CL $ 250
A CL CL 6
A NGP $ 156
A PGP $ 970
A PGP PGP 2
A QQGP $ 869
A QQGP QQGP 4
A TEXT $ 1

 66

This RTN fragment contains 4 columns. The first is the mother in the tree, in this example A (=

Adjunct). The second and third are possible ordered daughters of the mother (including the start

symbol (#) and the end symbol ($)). The fourth column contains the frequency of the

combination of the pair of daughters for a particular mother.

The RTN shown above can be used straightforwardly in hybrid parsing by attempting to pass

through the network for a given set of words (and tags). Where a choice of possible arc traversals

presents itself, the probabilities can be used to bias the choice (rather like the re-ordering of the

agenda in chart parsing). However, in the APRIL and COMMUNAL projects the networks were

instead used purely to evaluate the likelihood of subtrees found by another parsing technique

(simulated annealing). The crucial issue here is extracting the grammar from the parsed corpus in

a form which captures the full complexity of natural language, but which is simple enough to be

integrated with the chosen search technique. Experiments with an implementation of a simulated

annealing parser (see section 2.4.2.2, below) suggest that a higher order Markov model will be

needed to handle some long-distance dependencies which occur in wh-questions and

topicalisation, for example.

2.4.2.2 Search Techniques.

One of the advantages of probabilistic parsing is its robustness; a solution is always produced,

even for input which might be considered syntactically deviant in some way. However, the price

for such robustness is paid in the search time, which is enormous for all the permutations of

grammatical labels and potential tree structures. Fortunately, there are established techniques for

searching large solution spaces relatively efficiently, such as simulated annealing (van Laarhoven

and Aarts 1987, Kirkpatrick et al 1983), or biologically inspired algorithms (Kempen and Vosse

1988).

Simulated annealing works by starting with any possible solution parse tree (eg the flat tree

consisting only of the root label and the word tags) and proposing random changes in tree

structure and labelling. At each change, the new tree is evaluated against a probabilistic language

model, and as a general trend, if the change is an improvement, it is accepted. Initially in the

annealing run, worsening changes are also accepted so that the global, rather than just the local,

optimal solution can be found. As annealing progresses, fewer and fewer worsening changes are

 67

accepted, until only moves which improve the value of the tree are allowed. Both the APRIL and

COMMUNAL projects employed simulated annealing, with potential solution trees being

evaluated against corpus-based probabilistic RTNs (Sampson et al 1989, Atwell et al 1988). The

Realistic Annealing Parser (RAP), which was developed by Tim O'Donoghue under the auspices

of the COMMUNAL project, attempted to improve on the total randomness used in APRIL by

the introduction of left-to-right parsing, and careful use of probability density functions to

influence the place and choice of changes to the tree structure (Souter and O'Donoghue 1991). It

finds just one (hopefully optimal) solution for each sentence, although there is no guarantee that

simulated annealing will produce a global optimum. Equally unusual compared to rule-based

parsing is the fact that it can find different solutions on different attempts to parse the same

sentence. One would hope that this would only happen if the values of the two parses are

extremely close, representing more or less equally weighted ambiguous readings. An example of

this produced by the RAP when parsing the sentence fight on to save art is given in Figure 12.

The overall likelihood of both analyses is, in this case, very similar: -18.1732 and -18.6086 are

the logarithms of the total probability of each tree, calculated by multiplying the individual

probabilities for each branch.

Figure 12. Ambiguous Analyses of the Sentence Fight on to save art .

<push Z> 1.0
 <push CL> 0.972759
 <cat M> 0.079384 "FIGHT"
 <push C> 0.73187
 <push PGP> 0.13343
 <cat P> 0.866249 "ON"
 <pop PGP> 0.014601
 <pop C> 0.992598
 <pop CL> 0.688811
 <push CL> 0.227848
 <cat I> 0.025948 "TO"
 <cat M> 0.962891 "SAVE"
 <push C> 0.73187
 <push NGP> 0.620802
 <cat H> 0.07593 "ART"
 <pop NGP> 0.936869
 <pop C> 0.957554
 <pop CL> 0.688811
 <pop Z> 0.758537
Total: -18.1732

 <push Z> 1.0
 <push CL> 0.972759
 <push S> 0.315439
 <push NGP> 0.98825
 <cat H> 0.07593 "FIGHT"
 <push Q> 0.058878
 <push QQGP> 0.083591
 <cat AX> 0.827548 "ON"
 <pop QQGP> 0.965217
 <pop Q> 1.0
 <pop NGP> 0.978261
 <pop S> 0.996161
 <cat I> 0.002828 "TO"
 <cat M> 0.962891 "SAVE"
 <push C> 0.73187
 <push NGP> 0.620802
 <cat H> 0.07593 "ART"
 <pop NGP> 0.936869
 <pop C> 0.957554
 <pop CL> 0.688811
 <pop Z> 0.758537
Total: -18.6086

Extensive testing on unseen corpora was never carried out on the RAP, due to its lexical

limitations, and the fact that optimal settings for the array of parameters involved in annealing

 68

were never arrived at. (At the time it was suggested a second annealing process might be

necessary just to discover the optimal parameter settings for the first!). O'Donoghue abandoned

the simulated annealing approach because of the speed and unreliability of its performance, and

its inability to capture unbounded dependencies, in favour of his vertical strip parser (described

in section 2.2.2). Nevertheless it represents a good example of the extent to which a probabilistic

RTN can be stretched to handle even semi-grammatical input.

Two more promising examples of probabilistic techniques are those of Magerman (1994) and

Bod (1993, 95). Instead of using limited Markov models for evaluating potential parse trees, they

use the frequencies of sub-trees found in a fully analysed training corpus. Magerman assumes

first that any tree matching the sentence length is a potential solution, so he generates all possible

(right-branching) trees for the sentence. All these potential analyses are then evaluated using

corpus-based probabilities, pruning out the less likely ones, until one or more optimal solutions

are reached. Bod’s approach is similar, utilising a corpus of tree structures, together with a set of

operations that combine corpus subtrees into new trees (not restricted to be in Chomsky Normal

Form), and an associated evaluation function. The input to his parser is a sequence of part of

speech labels, which automatically reduces the parsing/ambiguity problem. Nevertheless, he

reports accuracy rates of between 87 and 96% on tests from the ATIS corpus. He even extends

his approach to propose a method for semantic analysis using a performance model (Bod 1995;

99-115). Both Magerman and Bod use the Penn Treebank as their corpus source, which is about

the coarsest of current syntactic annotation schemes, and includes a limited set of formal labels,

with no functional labels.

2.4.3 Selection of a Parsing Technique.

The vast array of attempts to find a successful technique for parsing natural language (let alone

unrestricted language) make it somewhat difficult to select one to pursue with a view to

providing a parser for systemic functional syntax found in the POW corpus. However it does

testify to the fact that the problem is not yet solved. One of the stumbling blocks for NLP is the

lack of any standard metric for judging the success of a parser, although two methods are

described in (Sampson et al 1989) and (Black et al 1991).

 69

The present project will experiment with two lexical tagging resources, and two variants on a

chart parsing algorithm. One will employ a probabilistic context-free phrase-structure formalism

for SFG extracted automatically from the EPOW corpus, and integrate this with the CELEX-SFG

lexicon into a probabilistic chart parser. The grammar will be modified by collapsing simple

phrase-structure rules into a smaller set of rules which allow optional categories. At the same

time, the grammar will be implicitly expanded by providing a mechanism for co-ordination

beyond that which is observed in the corpus. It is hoped that by so reducing the grammar, and

modifying the chart parsing algorithm to allow for optionality and coordination, the slow

performance of the parser described in (Pocock and Atwell 1993) can be improved.

In a second experiment, the lexical look-up facility will be provided by the POW-trained Brill

tagger, and the syntactic model will be context-sensitive, consisting of a combined context-free

rule and vertical trigram model. The second experiment will also limit vertical depth of the edges

proposed in the chart, to constrain the number of hypotheses the syntactic model licenses.

This method will allow the parser to be adopted for other parsed corpora and their descriptions,

since most of these readily permit the extraction of a probabilistic context-free grammar and

vertical trigram model (should it always be needed). The main effort in changing grammar

descriptions would then be in adapting the CELEX lexicon tags to that description, or retraining

the Brill tagger on the new tagged corpus.

The process of extracting and transforming the syntax model from the corpus, and developing the

lexical resources will be described in chapter three. Chapter four will explain the parsing

technique in detail.

 71

Chapter 3. Developing the Resources for Parsing.

This chapter will be divided into three sections: The first section will describe the extraction and

transformation of the syntactic model from the Polytechnic of Wales (POW), and the edited

POW (or EPOW) corpus. The second will explain how the CELEX English database was used to

provide a probabilistic lexicon whose grammatical tags were transformed to match those the

POW corpus systemic functional syntax. The third briefly describes how the Brill tagger was

trained on the POW corpus.

3.1 Developing a Probabilistic Systemic Functional Syntax.

Atwell (1988), Atwell and Souter (1988a), Souter (1990) and Souter and Atwell (1992) all

describe methods for extracting simple context-free rules (among other formalisms) from parsed

corpora, such as the Lancaster/Leeds treebank and the POW corpus. In the earliest of these

experiments, rules were extracted in a PROLOG definite clause grammar (DCG) form without

probabilities, and attempts were made (unsuccessfully) to load these rules into PROLOG and run

them as a parser using a parser-generator facility. System restrictions prevented the entire

grammar from being loaded (POPLOG PROLOG's memory was exhausted).

In further experiments, the rules were extracted from the POW corpus in a simple context-free

formalism (see Figure 10) and lexical ‘rewrite’ rules between words and tags were extracted

separately as a lexicon (see Figure 9).

For the POW corpus rules to be extracted, it was first necessary to write a procedure which could

handle the POW corpus numerical tree format, effectively treating them as bracketed lists. The

extraction algorithm itself is then relatively straightforward; taking the corpus one tree at a time,

rewriting all the mother-daughter relationships as phrase structure rules, and deleting all the

duplicates after the whole corpus has been processed. A count is kept on how many times each

rule occurred. The method is described more fully in (Atwell and Souter 1988a). The lexical

items are extracted separately into a wordlist with the elements of structure they expound, and

again a frequency count is kept (see section 3.2). The most recent code for the extraction process

 72

was written in POP11 by Tim O'Donoghue, for use with the EPOW corpus. As well as a

stochastic context-free grammar, O’Donoghue extracted a stochastic finite state automaton, and

his vertical strip grammar. I have since supplemented these with a further POP11 program for

extracting vertical trigrams from the EPOW corpus. I first explain some important policy

decisions and experiments which Eric Atwell and I conducted before O'Donoghue's work.

Nevertheless, I will later adopt (in section 3.1.4) O'Donoghue's context-free syntax as the starting

point for the modifications which I refer to as grammar expansion and collapsing below.

Initially Atwell and I experimented with two alternative methods for rule extraction which differ

regarding their treatment of filling. Filling is the relationship between the elements of structure

and units (functional and formal categories) in the grammar. Normally in hand-drawn parse trees

and those generated by the GENESYS NL generator, functional and formal categories are

conflated together within one node of a tree, such as S_ngp (S = Subject, ngp = nominal group).

A separate relationship exists between the formal categories in the grammar (units) and their

daughters (elements of structure), called componence. Componence is the same relationship as

that in standard rewrite rules such as

ngp -> dd h

(dd = deictic determiner, h = head) where different nodes on the same level are horizontally

linked together (Fawcett 1981; 6-8). Our first extraction method was to maintain Fawcett's

distinction between filling and componence relationships and resulted in just over 8,500 distinct

rules, a sample of which (in PROLOG DCG form) is included in Appendix 5. The second treats

filling as componence (S -> ngp etc.), which still yields over 4,500 distinct rules, a sample of

which is given in Appendix 6. The second strategy is both more economical and intuitively more

sensible, since the internal structure of a nominal group would appear to be the same whether it

fills a subject or a complement, and filling must allow for branching when, for example, nominal

groups are co-ordinated under one subject anyway. However, this simplification will fail to

capture the difference between main clauses and relative clauses. Both will be simply

represented by the symbol cl, with no reference to the fact that for the former the mother will be

the top symbol of the grammar, Z (= sentence), and for the latter the mother will be the qualifier

in a nominal group. Failing to capture such information will lead to overgeneration in the parser,

since it will permit a relative clause structure to be found in main clause position, for example,

and vice-versa. However, this loss of information was considered preferable to effectively having

to store the same componence rules many times over in the context-free grammar, once without

 73

any conflated element of structure, and then again for each different element of structure the

mother of the componence rule can fill.

3.1.1 Inconsistencies in the Corpus.

Inevitably, Atwell and I identified some errors in the processing of the POW trees to bracketed

form. Empty brackets occur when the sole content of a tree is a ‘non-verbal’ string enclosed in

square brackets. Empty brackets are also found deep in a tree if there is some typing error in the

hand parsing which results in a subtree which does not conform to the general pattern of

alternation between functional and formal labels (elements of structure and units). Such

erroneous trees are filtered out using a bracket-checking program. This practice has enabled the

processing of the POW corpus without having to do any tedious editing of the original text. On a

subsection of the corpus, it was calculated that about one in every thirty three trees was ignored

in this way. Some minor adjustments were required to the extraction program to allow ‘words’ of

extraordinary length, which exceeded the programmer's anticipation of 30 characters as a

maximum:

THE-WILLIE-WONKA-AND-THE-CHOCOLATE-FACTORY

[VROOM-BROOM-VROOM-BROOM-VROOM-BROOM-VROOM-BROOM...]

Without manual intervention it is impossible to filter out all the errant data from the POW

corpus, so some typographical errors remain in the wordlist, and in some of the rules, where the

conventions for drawing the numerical trees were not strictly adhered to. Obviously, extracting

trees from the output of a NL generator such as GENESYS in the form of an Ark corpus (Souter

1990, O'Donoghue 1990) presents far less of a problem from the point of view of such ‘noise’.

3.1.2 Distribution and Frequency of the Rules.

Of the total of 8,522 unique rules extracted from the POW corpus using the method which treats

formal and functional categories as part of the same node, (S_ngp, Z_cl etc.) some occur very

frequently and some only once. Inevitably, some rules have been extracted from malformed or

inconsistent input, but these will be relatively rare. Other rules will be problematic because they

contain portmanteau categories. For instance, when the hand-parsing was being undertaken, if the

 74

annotator could not decide between two labels, they would both be included (eg: S/C?) or even a

single label could be uncertain (eg: NGP?). Some ad hoc procedures can be introduced into the

grammar extraction to remove such problems. Simply ignoring that tree would lose valuable

information contained in the well-formed remainder of the tree. The alternative which was finally

adopted was to remove all such question marks and in the case of portmanteau-style tags, use the

first of two (or more) options.

Another alternative which at first appeared attractive was to threshold out the rare rules, in the

hope that this would remove all such unusual category labels, and allow a core grammar to be

defined using only the fairly frequently occurring rules. Such a frequency threshold by which a

rule is accepted or not would have to be carefully established, but initial examination of the rare

rules was not encouraging. More than 6,000 rules of the 8,522 total occur only once. Two-thirds

of the 4,647 unique rules yielded by the second method of extraction (S -> ngp etc.) were also

singletons. Many of these singletons are not produced by errant input, but are genuine examples

of rare structures in (spoken) English, (Actually some would be considered to be not so rare, if

we trusted our native-speaker intuition!). Other rare rules result from the elaborate category

labelling for a particular construct, or the flat shape of the tree immediately below the clause

level. Consider the following four examples, in which the frequency count (1) is on the far left of

each rule, followed by a reference to the sentence in the original corpus, and then the actual

rewrite rule. Below the rule in each example appears the section of the corpus from which the

rule was extracted, and below that, the sentence without its analysis.

Figure 13. Rules which occur only once (6047 out of 8522).

a) An unexpectedly rare tag question structure: isn't there

1 /*10DGPSSM55*/ ATG_CL --> OXN STH

55 Z 1 CL 2 S NGP HP I 2 M KNOW 1 CL 3 STH THERE? 3 OM 'S? 3 C NGP 4 H? ? 4 Q CL 5 M

BUILDING? 5 C NGP 6 DD THE? 6 H HOUSE [UN:?] 3 ATG CL 7 OXN ISN'T 7 STH THERE [NV:EM]

(I know, there's ? building? the house, isn't there)

b) A genuinely rare structure; interrupted speech: There's a....

1 /*10DGPSSS27*/ Z_CL --> STH OM C_NGPUN V_NGP

 75

27 Z CL 1 STH THERE 1 OM 'S 1 C NGPUN DQ A [UN:THERE-LIKE?] 1 V NGP HN DAWN

(There's a ... Dawn!)

c) Rare structure resulting from the fine distinctions made in adverbials, here, an affective

adverbial (AA): preferably

1 /*12BBPSMB318*/ AA_QQGP --> AX

316 Z CL CWH NGP 1 DT NGP 2 DDWH WHAT 2 H SORT 1 VO OF 1 MOTH NGP H THREE 1 H

BRICK 318 Z CL 1 C? NGP 2 MO QQGP AX WHITE 2 (H) 1 AA QQGP AX PREFERABLY

(What sort of three brick? White, preferably.)

d) Rare because of non-standard hand-parsing.

The following is extracted as a terminal category in the grammar, i.e. a word class instead of a

word itself.

1 /*10BBPSMJ299*/ ABOUT

299 [FS:A...] Z CL ? PGPUN P ABOUT

(About...)

I plotted the distribution of frequent versus rare rules on a scatter diagram, with frequency of a

rule on one axis, and frequency of that frequency on the other axis. It is interesting to note that

the distribution for rules is very similar to that for word frequency. The word and rule graphs

have been plotted on logarithmic scales for comparison in Appendix 8. The characteristic

features of both plots are that only a few words/rules occur very frequently, and very many occur

only once or twice, a distribution known as Zipf's law (Zipf 1936).

3.1.3 Coverage of the Rules.

As a bench mark against which to evaluate these rulesets, I hand-wrote a formal competence

grammar based on the structures given in (Fawcett 1981) using context-free rules which allowed

repeated and optional daughters (see Appendix 9). When this grammar was expanded into simple

context-free rules, (with a limit of three put on possible co-ordinations, which is by no means

 76

generous with respect to the co-ordination of clauses, for example), over 18,000 distinct rules

were produced. Assuming the competence grammar is not wildly overgenerative, this confirmed

our suspicions that there were actually gaps in the rules extracted from even the POW corpus.

The observation that a comprehensive context-free grammar for English, like its vocabulary, has

a distribution adhering to Zipf's law serves to justify the use of probabilities with such a

formalism. The parser using such a large grammar is likely to find a large parse forest of

solutions, which we would like to order by their frequency. Observations of the extracted

context-free syntax lead us to conflicting conclusions. The grammar's coverage appears to fall

short of that which we know should be covered, so we would like to expand the set of rules. At

the same time, the grammar is so large, that, if possible, we would like to reduce its size without

losing any empirical information. Partial solutions to this quandary are presented below.

3.1.4 Editing the Corpus.

One way the grammar can be reduced is to edit out the inconsistent tree structures and category

labels, and I am grateful to Tim O'Donoghue for having performed this task, resulting in the

Edited POW corpus (O'Donoghue 1991b, 1991c). O'Donoghue also adopted the method of rule

extraction which treats filling and componence as essentially the same relationship. Having

edited the POW corpus, he applied his own rule and lexicon extraction programs to EPOW. The

set of rules extracted (treating filling as componence) numbers only 2820. In my remaining work

on the POW SFG, I will actually use O'Donoghue's more restricted (but cleaner) set of

probabilistic context-free rules.

Part of O’Donoghue’s extraction process also removed some category labels which might

preferably have been retained
1
, from a linguistic perspective. For instance, the unfinished unit

labels CLUN, NGPUN, PGPUN etc. were removed, as were bracketed labels signalling ellipsis;

(S), (M) and <S>, <M> etc. This will mean that unfinished sentences, and those with missing

elements will be treated in the same way as complete sentences. We would still like our parser to

find analyses for such sentences, but to distinguish them from complete sentences.

1 Note that these categories were only removed during the rule extraction process. The edited version of the corpus

retains them.

 77

Further ways of reducing the physical size of the syntactic model (to make parsing more

efficient) are to take account of optionality, repeated daughters and mutually exclusive daughters.

Weerasinghe (1990; 48) provides a brief account of how he incorporates optionality and mutual

exclusivity into a chart parser for a limited SFG model (limited with respect to the range of

syntax found in the POW corpus, at least). Here we consider just optionality and repetition (in

co-ordination, for example).

3.1.5 Collapsing a Syntax Model Using Optionality.

It is possible to further reduce the size of the syntax model with no loss of linguistic information

by introducing a notation for optionality of daughters in a rule. For instance the rules in Figure

14 could be collapsed into just one rule. (There is an assumed rewrite arrow between the second

and third elements of these rules).

Figure 14. Syntax Rule Reduction Using Optionality.

[-0.21922 QQGP AX]

[-2.73498 QQGP T AX]

[-6.82655 QQGP AX FI]

[-5.72793 QQGP T AX FI]

can be reduced to

[-0.137776 QQGP [T] AX [FI]]

I wrote a POP11 program to recursively collapse all the componence rules in the grammar (those

with the mothers CL, NGP, QQGP, PGP, GC or TEXT), after preprocessing them using a suite of

AWK programs into a POP11 list format, with frequencies transformed into logs of their

probabilities. The transformation of frequency into probability uses the following equation.

Given a rule R with a mother category M:

Prob(R/M) = Freq(R)/Freq(M)

For example, if the following two rules (with raw frequencies) were the only ways the mother

unit genitive cluster could be expanded

 78

[1 GC G]

[3 GC G OWN]

then their probabilistic versions would be

[0.25 GC G]

[0.75 GC G OWN].

When collapsing the two rules into one permitting optionality, their probabilities would be

added, since the collapsed rule represents the disjunction of the two source rules:

[1 GC G [OWN]].

Unfortunately, in combining these rules we lose the information that the second rule is three

times as likely as the first, i.e.. that the optional element is much preferred. This information

could be preserved by annotating the optional brackets with probabilities:

[1 GC G [0.75 OWN]].

The solution is much more complicated when more than one element is optional. For n optional

daughters, we would need a matrix of 2
n
 probability entries. It is anticipated that n could be at

least four. The matrix size and complexity would add to that of the grammar itself, so initially I

have experimented with the simpler format which involves some loss of frequency information.

Assuming a basic procedure for combining rules akin to that exemplified above, but which also

allows rules containing optional daughters to combine with each other, various algorithms might

be used to achieve the reduction of the rules using optionality, three of which are discussed here:

1. Order the rules for any particular mother by the number of daughters, greatest first. Attempt

to combine successive rules which have only one different daughter. After each combination,

reorder the rules, and repeat until no further combinations are possible.

2. Using linguistic knowledge of the intended head daughter in a rule, start with a rule

containing just the head, and recursively build on optional sisters to the head as they are

found. When no further sisters can be added which are compatible with the current optional

rule, restart creating a new optional rule combining the head with a different sister. Repeat

until no further combinations are possible.

3. Order the rules by frequency, most likely first. Successively attempt to combine the top rule

with those that are less likely. Each time a combination is made, put the combined rule on top

of the list and recurse. When no more combinations are possible with the top rule, recurse

with the second rule. Repeat until no further combinations are possible.

 79

I tried each of these approaches manually on a subset of the grammar (the rules with QQGP as

mother) to assess which would achieve the greatest overall reduction in rules. The second

algorithm would be difficult to implement as it stands, since in many case in the corpus, the

linguistic head of a constituent is missing2. The third algorithm was seen as the most productive,

since it achieved the greatest reduction in the number of rules, and the optional rules created

tended to automatically take account of the linguistic notion of a head, since the most frequent

rules included one. The first algorithm failed to deliver this feature.

I implemented the third algorithm in POP11, and tested the program against the manually

reduced sample, before applying it to the whole of the componence model (2655 rules), and

reducing it to only 1787 rules. Figures 15 and 16 show the effect of the reduction on the quantity-

quality group (QQGP) syntax; 31 original rules in Figure 15 are collapsed to 16 rules in Figure

16.

Figure 15. A Probabilistic QQGP Syntax.

2 It is considered an advantage of the corpus-based approach being adopted here that the grammar includes such rules.

A competence grammar such as that included in Appendix 9 or in GENESYS will normally have the restriction that

each rule should contain a head, whereas in unrestricted English corpora this is not the case. A further approach has

been proposed by Eric Atwell: assume the head is required, collapse all the rules which include the head, then create

a set of fall-back rules without the head. The parser applies the headed rules first, and only adds fall-back rules when

the parser fails.

[-0.21922 QQGP AX]

[-2.73498 QQGP T AX]

[-3.10892 QQGP AXWH]

[-3.81428 QQGP AX SC]

[-3.87337 QQGP AXT]

[-5.15257 QQGP & AX]

[-5.15257 QQGP DD AX]

[-5.25101 QQGP DD AXT]

[-5.48281 QQGP T AXT]

[-5.62257 QQGP AXT FI]

[-5.72793 QQGP T AX FI]

[-5.72793 QQGP T]

 80

[-5.78509 QQGP T AX SC]

[-6.1334 QQGP AX T]

[-6.53886 QQGP TWH AX]

[-6.82655 QQGP AX FI]

[-6.82655 QQGP AXT SC]

[-6.82655 QQGP DQ AX]

[-7.23201 QQGP T AXT FI]

[-7.51969 QQGP T FI]

[-7.92516 QQGP INF AX]

[-8.6183 QQGP & T AX]

[-8.6183 QQGP AX T FI]

[-8.6183 QQGP AXWH SC]

[-8.6183 QQGP DD AXT FI]

[-8.6183 QQGP DD T AX]

[-8.6183 QQGP DQ AXT]

[-8.6183 QQGP DQ T FI]

[-8.6183 QQGP DQ]

[-8.6183 QQGP SC]

[-8.6183 QQGP T AX SC FI]

Figure 16. A Reduced Probabilistic QQGP Syntax.

[-0.137776 QQGP [T] AX [FI]]

[-2.40972 QQGP [AXWH] [SC]]

[-3.64157 QQGP [DD] AXT [FI]]

[-3.68383 QQGP [T] AX SC]

[-4.81164 QQGP T [AXT] [FI]]

[-5.1218 QQGP & [T] AX]

[-5.1218 QQGP DD [T] AX]

[-5.15257 QQGP AX [T] [FI]]

[-5.62257 QQGP AXT FI]

[-6.53886 QQGP TWH AX]

[-6.6724 QQGP DQ [AX]]

[-6.82655 QQGP AXT SC]

[-7.23201 QQGP [DQ] T FI]

[-7.92516 QQGP INF AX]

[-8.6183 QQGP DQ AXT]

[-8.6183 QQGP T AX SC FI]

This simplistic way of combining probabilities in merged rules can produce high probabilities for

rules which include rare options. Extreme examples in Figure 16 are

i) the most likely collapsed rule

[-0.137776 QQGP [T] AX [FI]]

includes the relatively rare rule

[-6.82655 QQGP AX FI];

ii) the second most likely collapsed rule

[-2.40972 QQGP [AXWH] [SC]]

generates the uniquely occurring rule

[-8.6183 QQGP SC].

Although it may appear that this second collapsed rule also generates the rule

[-2.40972 QQGP []]

 81

in fact it is not possible for the empty daughter case to occur in a chart parser. The rule will only

ever be added to the chart if a potentially combining inactive edge labelled AXWH or SC has

already been found.

3.1.6 Expanding a Syntax Model using Co-ordination.

It is possible to reduce the set of syntax rules slightly further by collapsing the 165 filling rules,

which allow for co-ordination and subordination of units in SFG. For example, the rules which

permit a sentence to contain up to ten co-ordinated clauses in the corpus

[-0.26847 Z CL]

[-1.73170 Z CL CL]

[-3.15969 Z CL CL CL]

[-4.50744 Z CL CL CL CL]

[-5.88536 Z CL CL CL CL CL]

[-6.72161 Z CL CL CL CL CL CL]

[-7.90027 Z CL CL CL CL CL CL CL]

[-7.90027 Z CL CL CL CL CL CL CL CL]

[-8.59341 Z CL CL CL CL CL CL CL CL CL]

[-9.28656 Z CL CL CL CL CL CL CL CL CL CL]

could all be reduced to one rule

[[-0.26847 -1.73170 -3.15969 -4.50744 -5.88536 -6.72161 -7.90027 -7.90027 -8.59341 9.28656] Z CL].

This method has been implemented using an AWK
3
 program, and reduces the filling grammar to

111 rules (Appendix 12). Their probabilities are stored in an ordered list as the first element of

the rule (rather than as an atomic element), and we can exploit this difference in data structure

from a canonical probabilistic rule in order to make the parser handle the rule differently,

allowing optionally repeated daughters. This technique actually offers a way of expanding the

grammar's coverage at the same time, since we could allow the parser to analyse potentially

3 For an introduction to this string processing language see (Aho et al 1988).

 82

infinitely co-ordinated structures. The probability of the rule decreases with increased co-

ordination, and a function can be estimated to predict the probability of unobserved co-

ordination, using the evidence from the corpus. Figure 17 shows the average probability of co-

ordination for all units filling all elements of structure in the EPOW corpus. Such a function is

also useful in influencing co-ordination in an SFG NL generator, such as GENESYS.

Figure 17. Co-ordination Likelihood in the EPOW Corpus.

Daughters Probability (%age)

1 47.58515

2 0.51551

3 0.10314

4 0.04766

5 0.02206

6 0.02409

7 0.01235

8 0.03706

9 0.01853

10 0.00927

Note that the percentage probabilities do not add up to 100. They represent the likelihood of any

particular mother containing a particular daughter (not just any daughter) and the likelihood of

co-ordination of that daughter. For example, consider the uncollapsed rules with the mother

adjunct (A):

10.9083 A CL

0.178094 A CL CL

0.0445236 A CL CL CL

6.94568 A NGP

43.0988 A PGP

0.0890472 A PGP PGP

38.5129 A QQGP

0.178094 A QQGP QQGP

0.0445236 A TEXT

 83

The percentage probabilities in the left column here do add up to 100. But when collapsing rules,

we do so for each unique daughter separately. Hence:

[[10.9083 0.178094 0.0445236] A CL]

[[6.94568] A NGP]

[[43.0988 0.0890472] A PGP]

[[38.5129 0.178094] A QQGP]

[[0.0445236] A TEXT]

The probabilities in each column are then averaged to obtain those in Figure 17. The

probabilities do not decrease smoothly, since there is only sparse data for co-ordination of more

than five daughters (the co-ordination of clauses in sentences). The estimated probability

degradation function will therefore be smoothed to allow for lack of data. The function currently

in use is given in section 4.2.2.

These methods will go some way to reduce the problem of undergeneration in the grammar, but

do not address the gaps in the componence grammar, which can only be rectified by the parsing

of a larger corpus, or the re-estimation of the grammar with added implicit rules. Alternatively

we could relax the grammar formalism: It would be possible to use the context-free grammar to

create a wider-coverage probabilistic immediate dominance grammar (in which no ordering of

the daughters is assumed), and re-parse using this relaxed format in the case where a chart parser

fails. As yet, none of these solutions have been tried, so the grammar will still ‘leak’

occasionally.

At the same time as leaking occasionally, a simple context-free syntax model of SFG will tend to

over-generate, without some form of constraint on the vertical relationships in the tree. The full

range of matrix clause structures is not appropriate in a relative clause, for example, yet a simple

context-free model is unable to capture this fact. Earlier in section 3.1, we eschewed the idea of a

extracting a full context-sensitive model from the corpus (one in which elements of structure and

units are conflated on one node) for the sake of efficiency. One way of recouping the lost

empirical information is to extract a separate model of the vertical relationships in the corpus, as

indeed O’Donoghue has done in his vertical strip grammar. His vertical strips are somewhat

limited by their being of restricted depth, and not very general, since they span from leaf to root

in one go. Instead, I have extracted a probabilistic vertical trigram model, using a recursive

POP11 program to search every tree in the corpus for possible grandmother, mother, daughter

 84

triples. These are of the form [probability daughter mother grandmother]. For example, the

trigrams

[38 & CL AL]

[7 & CL A]

[3 & CL CV]

[26 & CL C]

show that a linker (&) has a CL mother and AL (logical adjunct) grandmother 38 times in the

corpus, whereas the same daughter-mother combination under a simple adjunct (A) occurs only

seven times. A larger fragment of the model is to be found in Appendix 7, and the total model

contains 968 trigrams.

Using these methods I have reduced the overall componence and filling grammar to about two-

thirds of its original size (from 2820 to 1898 rules), while increasing its coverage potentially

infinitely. Possible over-generation which would have been the outcome of a pure context-free

model has been constrained by the provision of a vertical trigram model. The changes made to

the chart parsing algorithm to accommodate the new rule format are described in chapter 4. We

will now consider the development of accompanying lexical resources.

3.2 Developing a Probabilistic Lexicon for Systemic Functional

Grammar.

One characteristic of many existing NLP systems is the lack of attention paid to provision of an

adequate lexicon. Much of the corpus-based computational linguistic work at Leeds is no

exception, since we have focused our efforts on parsing techniques (see for example Atwell et al

1988, O'Donoghue 1993, Pocock and Atwell 1993). The research presented here, however,

attempts to reverse the trend. Prior to the present work, the largest lexicons we tended to use

have been word lists extracted from the corpora themselves, along with the possible parts of

speech (word-tags), and frequencies of each word-form word-tag pair. This sort of list differs

from that typically contained in a machine-readable dictionary (MRD) in that morphological

variants of a word-stem are separate entries in the corpus word list, and frequencies are included

for each reading of a syntactically ambiguous word. The entries corresponding to the stem brick

 85

are shown in Figure 18, with word-tags H for head (of a nominal group), and M for main verb.

(Out of a total number of tokens of 65,000 in the corpus, the frequencies may appear unduly

high. However, the children were recorded in interviews, and at play during a Lego building

task!).

Figure 18. Variants of the Word-Stem brick in the POW Lexicon.

16 BRICK H

1 BRICK M

1 BRICKED M

73 BRICKS H

The modest lexicon extracted from the POW corpus contains 4984 unique lexical items, and

serves as an adequate facility for prototype parser development. Its advantages are that the

grammatical word-tags correspond exactly to those used in the large systemic functional

grammar we have extracted from the corpus, and that it contains ‘realistic’ disambiguated

frequencies for each word-form
4
. However, in the context of a parser for unrestricted English, the

inadequacies of such a lexicon far outweigh these advantages: the parser will fail at the lexical

look up point too frequently to be of any practical use. This section will describe these

inadequacies, and discuss the method used to select and convert the CELEX English database

into a suitable form for probabilistic parsing with the corpus-based systemic grammar. This work

has been reported in (Souter 1990b, 1993a).

3.2.1 Inadequacies of the POW Corpus Word List.

The most important problem with the POW word-list is its lack of coverage. With fewer than

5,000 words in the lexicon, many attempts at parsing a new sentence will fail immediately at the

lexical look-up stage, unless such a sentence has been carefully chosen with the subject matter of

the corpus in mind. It is difficult to put a figure on the size of lexicon required, but, ignoring

proper nouns, it is likely to be between 50-100,000 wordforms, if not stems. The frequency

distribution of words in corpora is well known to follow Zipf's law, so even such a large lexicon

4 Note that even this lexicon is over five times as large as the largest lexicon used by either O’Donoghue (1993) or

Weerasinghe (1994).

 86

will fail in coverage occasionally, and require ad hoc solutions for assigning categories (and

frequencies) to a word.

A second problem is the number of inaccuracies in the format of the hand parsed corpus, which

result in a few false ‘words’ being included in the lexicon (and some false rules in the extracted

grammar). These consist of typographical errors, misspellings, word-tags being treated as words,

occasions where the transcriber was uncertain what had been uttered (and inserted question

marks) and spaces being omitted between tags and words causing them to be treated as one item.

It may be surmised that these occurrences will be rare, compared to the genuine lexical items,

and that removing all items below a threshold frequency of, say, one, or even five, would suffice

to leave only the desired data. As was the case with rule extraction, this would actually be a

negative step, since thresholding out the noisy data will also remove some genuinely infrequent

words, as can be seen from the list of singleton items in Figure 19.

Figure 19. Singleton Word/Word-tag Co-occurrences in the POW Corpus Lexicon.

1 ABANDONED M

1 ABLE CP

1 ABLE? AX

1 ABOUT

1 ABOUT? T

1 ABROAD AX

1 ABROARD CM

1 ACCOUNTANT H

1 ACHING M

1 ACROSS CM

1 ACTUALLY AL

1 ADD? M

1 ADDED M

1 ADDING M

1 ADJUST M

1 ADN-THEN &

1 ADRIAN HN

1 ADVENTRUE H

1 ADVERT H

1 ADVERTS H

1 AERIAL? H

1 AEROPLACE? H

One way round the problem of noise in the corpus is to employ checking programs which post-

edit the structure of each tree. O'Donoghue's edited version of the POW corpus has been spelling

checked to try to minimise the occurrence of noisy lexical data. The wordlist extracted from the

EPOW corpus is reduced to 4618 unique lexical items, which emphasizes its poor lexical

coverage, but at least is now a ‘cleaner’ lexical resource. A sample of the most frequent words in

the EPOW wordlist is included as Appendix 13. The overall problem of lack of coverage

remains, though, and requires a more radical solution. Before we consider the first of two

proposed solutions, our general aims for the lexicon will be presented.

 87

3.2.2 Lexical Aims and Policy Decisions.

Our aims in providing an improved lexical facility for our parsing programs are as follows: The

lexicon should be large-scale, that is, contain several tens of thousands of words, and these

should be supplemented with corpus-based frequency counts. The lexicon should employ

systemic functional grammar for its syntax entries, to conform with the grammar used in parsing.

Frequencies should ideally be available for the different readings of a syntactically ambiguous

wordform. The lexicon format should be versatile, so it can be utilised by other projects.

Having established these aims, we took several decisions as to how best to achieve them. While

it may not be psycholinguistically desirable, it was decided to adopt a wordform list, rather than a

list of morphemes. This avoids the need for a time consuming morphological analyser, but will

substantially increase the space required to store the lexicon. Secondly, we naturally would

prefer to make use of an existing lexical resource, rather than building our own. The definition of

systemic functional syntax will be taken to be that used in the POW corpus, which is stable,

relatively fine grained and provides many examples of its use for analysing real English

sentences. Finally, we will not initially attempt to include any semantic components, or word

definitions, as we are presently focusing on syntactic parsing.

3.2.3 Selection of Lexical Resources.

Ideally, we would have an extremely large corpus of several million words from various text

types which have been perfectly hand parsed (or even just tagged with terminal categories)

according to the same systemic functional grammar as the POW corpus. From such a corpus, a

much larger lexicon could be extracted, including more reliable frequencies than those provided

by POW. This resource is unlikely to become a reality, so it is necessary instead to look at what

is currently available. The alternatives were discussed in section 2.3, and the solution proposed

here is to adapt an existing lexical database, and to train a tagging program on the EPOW corpus

(see section 3.3). The former involves manipulating the selected entries into a machine tractable

form for rapid look up, (we would not wish to load the whole database and associated user

interface software), and transforming the grammatical entries to SF syntax form. The lexicon will

also have to be augmented with a mechanism for dealing with proper nouns, and any word

formats not handled by the database, such as hyphenated and abbreviated words. The most

 88

suitable lexical database option, in combined terms of availability, cost, coverage and tractability

was the CELEX database.

3.2.4 The CELEX English Database.

At the Centre for Lexical Information (CELEX), University of Nijmegen, the Netherlands, a

team led by Hans Kerkman has built a large lexical database for Dutch, German and English

(Burnage 1990, Piepenbrock 1993). The English section of the CELEX database comprises the

intersection of the word stems in LDOCE (Procter 1978, ASCOT version, see Akkerman et al

1985, 1988) and OALD (Hornby and Cowie 1974), expanded to include all the morphological

variants; a total of 80,429 wordforms. Moreover, the wordform entries include frequency counts

from the COBUILD (Birmingham) 18 million word corpus of British English (Sinclair 1987),

normalised to frequencies per million words. However, these are not disambiguated for

wordforms with more than one syntactic reading. CELEX offers a fairly traditional set of syntax

categories, augmented with some secondary stem and morphological information derived mainly

from the LDOCE source dictionary. At the time we acquired the data from Nijmegen, it was free

to academic researchers, but subsequently a charge has been imposed to new academic and

commercial licensees. A menu-driven user interface to the database, called FLEX, allows relative

novices to inspect the lexicons available, and extract the data they require to be imported into

their own research environment. On a visit to Nijmegen in 1989, we exported from the database a

lexicon containing wordform, stem, category, frequency, and morphology information.

A small sample showing the format of our selected CELEX lexicon is given in Figure 20.

Figure 20. A Fragment of our CELEX English Lexicon.

wordform stem category stem info freq ambiguity morphol.

info

abaci abacus N Y N N N N N N N N Y 0 N irr

aback aback ADV Y N N N N N 3 N

abacus abacus N Y N N N N N N N N N 0 N

abacuses abacus N Y N N N N N N N N Y 0 N +es

abandon abandon N N Y N N N N N N N N 16 Y

 89

abandon abandon V Y N N N N N N N N N N N 16 Y

abandoned abandon V Y N N N N N Y N N Y N N 36 Y +ed

abandoned abandoned A Y N N N N 36 Y N N

Columns four and eight indicate subcategorisation and morphological information about each

entry, with a binary (Y/N) value. Other columns show the frequency of the word-form, and

morphological conversion from the stem to the word-form. The position of the frequency column

differs according to the primary syntactic category of the entry, which is one of the set {N, V, A,

ADV, PREP, C, I, PRON, EXP}. The position of the subcategorisation and morphology

indicators also varies according to the grammatical category of the entry. A key to their meaning

is given in Figure 21.

It is inevitable that some manipulation of any imported lexicon will be necessary. In our case,

this task involved the removal of unwanted duplicate entries, the creation of a mapping between

the different syntax descriptions, the reformatting of the lexicon structure, and the addition of

some new entries and frequencies.

Figure 21. Structure of our CELEX Lexicon according to Grammatical Category.

Col Nouns Verbs Adjectives Adverbs Others

1 Wordform Wordform Wordform Wordform Wordform

2 Stem Stem Stem Stem Stem

3 Class(N) Class(V) Class(A) Class(ADV) Class(C,EXP,&,I,PREP,PRON)

4 Count Transitive Ordinary Ordinary Personal

5 Uncount Trans+Compl Attributive Predicative Demonstrative

6 Sing. use Intransitive Predicative Prepositive Possessive

7 Plural use Ditransitive Postpositive Combinatory Reflexive

8 Group count Linking Group uncount Comparative Wh-pronoun

9 Group uncount Plural morph Frequency Superlative Frequency

10 Attributive Past tense Ambiguous Frequency Ambiguous

11 Postpositive 1st person Comparative Ambiguous Co-ordinating

12 Vocative 2nd person Superlative Subordinating

13 Plural morph 3rd person

14 Frequency Participle

15 Ambiguous Rare verb form

 90

16 Inflec-affix Inflec-affix

17 Frequency

18 Ambiguous

3.2.5 Converting the CELEX Lexicon.

Various transformations were performed on the lexicon to make it more suitable for use in

parsing (using systemic functional syntax). By means of the UNIX utility uniq, a substantial

number of the verb entries were removed, which would be duplicates for our purposes, reducing

the lexicon to only 59,322 wordforms. This was necessary because the CELEX lexicon includes

distinctions between, for example, 1st and 2nd person forms of the verb. These are rightly

recorded as separate word-form entries in the database for German and Dutch, but such a

distinction is unnecessary for English regular verbs. The full paradigm of irregular verbs such as

be and have was, of course, retained.

Using the AWK program and some UNIX tools, the lexicon was reformatted along the lines of

the bracketed, often called ‘lispified’, LDOCE dictionary, which is perhaps the nearest to an

established lexicon format norm. Columns of the lexicon were reordered to bring the frequency

information into the same column for all entries, irrespective of syntactic category.

The most difficult change to perform was the transforming of the CELEX syntactic labels into

SF syntax. Some mappings were achieved automatically because they were one to one, eg:

prepositions: PREP -> P

main verbs: V -> M

head nouns: N -> H

Other mappings required use of the stem information in the CELEX lexicon eg:

subordinating and co-ordinating conjunctions:

 C -> & (= linker, for co-ordinating conjunctions, with Y in column 11), or

 C -> B (= binder, for subordinating conjunctions, with Y in column 12)

pronouns: PRON -> HP (the general case), or

 PRON -> HWH (= wh-pronoun, with Y in column 8), or

 PRON -> HPN (= negative pronoun, for no-one, nobody, nothing, noone or none)

 91

comparative and superlative adjectives:

 A -> AX (the general case), or

 A -> AXT (= comparative or superlative apex, with Y in column 8 or 9)

Elsewhere, however, the two grammatical descriptions diverge so substantially (or CELEX did

not contain the relevant information) that manual intervention was required to create a file of

some 300 word-forms for which SFG is more finely grained than CELEX, or which CELEX had

omitted. These can be divided into the following categories:

auxiliaries and modals (O, OM, OMN, ON, OX, OXN, X, XM),

determiners (DD, DDWH, DQ, DQN, DQWH, DO),

interjections (F, EX),

temperers (see below).

The systemic functional grammar category temperer, T , is particularly problematic, and even a

good definition of the term is difficult to give (see Fawcett 1981 section 6). Temperers are

‘adverbs’ of degree or scope which may modify other adverbs, prepositions or adjectives, but not

verbs. Examples of degree temperers are given in (1).

(1) about, all that, amazingly, brand, dead, fairly, hardly, how, nearly, particularly, pretty, rather,

raving, really, so, terribly, very.

Scope temperers modify or specify the field of an adjective, such as

(2) economically viable, ergonomically sound, mathematically brilliant.

The production of scope temperers from adverbs seems possible ‘on the fly’, and would require a

large proportion of the adverb entries in the lexicon to be duplicated with syntactic category T in

the 3rd column, as well the usual AX (= apex) of the quantity-quality group. Consequently, only

the more common degree temperers have been duplicated in the lexicon. This has a parallel in the

case of verb participles being used as adjectives. The CELEX lexicon chooses to include these

only in their verbal form. A procedure permitting the relabelling of an apex as a temperer and a

verb participle as an adjective could instead be included at the parsing stage. While this may

appear to be an ad hoc solution, it can be viewed more positively as a mechanism for handling a

specific feature of SFG: The problem with such adverbs arises because in SFG parse trees, the

 92

terminal category which is expounded by a lexical item is in fact a functional label (eg. head,

temperer) rather than a formal label (noun, adverb). In most cases, the function is realised by

only one formal category (eg. the head of a nominal group is a noun) and this formal category

only fills one function (a noun is used as the head of a nominal group), so the formal category is

omitted from the grammar. Occasionally however, as in the case of adverbs produced from an

adjective + ly , a category can fill more than one function. To prevent wholesale duplication in

the lexicon, this feature could be dealt with more economically by the parser. This mechanism

has not yet been implemented, which will result in overgeneration in the analyses that are found

for such structures.

The extra entries which were added manually to the lexicon also required some frequency

information. I added frequencies from the EPOW corpus normalised to a frequency per million

words, although the ideal solution would have been to send the list of extra entries to the

COBUILD team and request frequency counts from the same material as had been included in

CELEX. I do not expect the variation between corpus genres to seriously affect the probabilistic

parsing technique. A fragment of the transformed lexicon is shown in Figure 22.

Figure 22. A Fragment of the Reformatted CELEX SFG Lexicon.

((abaci)(abacus)(H)(0)(N)(Y)(N)(N)(N)(N)(N)(N)(N)(N)(Y)(irr))

((aback)(aback)(AX)(3)(N)(Y)(N)(N)(N)(N)(N))

((abacus)(abacus)(H)(0)(N)(Y)(N)(N)(N)(N)(N)(N)(N)(N)(N)())

((abacuses)(abacus)(H)(0)(N)(Y)(N)(N)(N)(N)(N)(N)(N)(N)(Y)(+es))

((abandon)(abandon)(H)(16)(Y)(N)(Y)(N)(N)(N)(N)(N)(N)(N)(N)())

((abandon)(abandon)(M)(16)(Y)(Y)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)())

((abandoned)(abandon)(M)(36)(Y)(Y)(N)(N)(N)(N)(N)(Y)(N)(N)(Y)(N)(N)(+ed))

((abandoned)(abandoned)(AX)(36)(Y)(Y)(N)(N)(N)(N)(N)(N))

KEY: ((wordform)(stem)(category)(frequency)(ambiguity)(...stem info...)(...morphol. info...))

3.2.6 Testing the Lexicon.

To assess the adequacy of the CELEX lexicon, a program was written (in AWK) to look up each

of the 4618 unique words of the Edited Polytechnic of Wales Corpus word list in the CELEX

 93

lexicon. This has the advantage that both lexical coverage and the syntax entries can be

evaluated. Using another larger corpus word list (say from the LOB corpus) would provide a

more rigorous test of lexical coverage, but disallow testing of the syntactic classes, or tags. The

testing program assigned words from the EPOW list to three sub-lists; words not in the CELEX

lexicon, words in CELEX, and words in CELEX for which CELEX also contains the same

syntactic category. Results are shown in Figure 23, both for word types (4,618), and, more

realistically, word tokens (60,784).

Figure 23. Testing the CELEX SFG Lexicon with the EPOW Word List.

 type/token total not in lexicon in lexicon in lexicon with same tag

types: 4618 100% 1301 28.2% 3317 71.8% 2613 56.6%

tokens: 60784 100% 4232 6.96% 56552 93.04% 49605 81.61%

These initial results suggest that lexical coverage is quite good, with only a little under 7% of

word tokens not recognised. Inspection of the list of words which were not found in the CELEX

lexicon shows that these belong almost entirely to three groups: hyphenated words

(compounds)
5
, proper nouns (tagged HN) and words containing apostrophes (mainly

abbreviations). Apart from these three groups, the residue consists of only 764 tokens (1.2%),

and includes words which would be classed as ungrammatical in standard adult English (bringed,

builded, chimley, comed, digged, drawed, drownded, goodest) and words which are typical of

spoken language (cor, flippin, hoick, na, oops, tata, wonkety) or of Welsh English (ay, bach,

boyo, yere).

Areas of weakness in the grammatical mapping can be identified by considering the words which

were found to be in the CELEX lexicon, but for which the transformed CELEX-SFG lexicon did

not contain the same word tag. These consist primarily of a group of prepositions also labelled in

POW as apexes (AX), (on, up, out, in, down), adjuncts (A, AI, AF, AL ...) such as just,

sometimes, only, and formulae (F) yeah, no, yes, what, pardon, alright, aye, right. These are

typical of areas where systemic functional grammar makes fine-grained distinctions which are

5 Note that the POW corpus contained an unusually high proportion of hyphenated words, due at least in part to the

SFG requirement for a single-word head of a nominal group. This led to compound noun sequences being

transcribed as single hyphenated wordforms. Eg. adventure-books air-hostess ball-bearings.

 94

not found in the CELEX source lexicon. Furthermore, from time to time in the POW corpus, a

label normally used on a non-terminal node (for a quantity-quality group functioning as an

adjunct) may be used as a terminal to label a single word if the group is non-productively

expounded by only one word. This is a short cut in the labelling of the parsed corpus which it

would be unrealistic to expect to be included in a non-SFG lexicon, such as CELEX.

Some of these observations have led to the syntax mapping being amended, such as the inclusion

of the label AXWH for wh- apexes (where, when etc.). Further amendments and supplements will

continue to be made to the lexicon, which is an ongoing task for its developer. Recognising the

fallibility of the lexicon, within the parser itself two default mechanisms have been introduced to

deal with the occasions when the lexical look up process fails. Firstly, if a word begins with a

capital letter (and the word is not I), then it is assigned the label HN for namelike-head (proper

noun). Secondly, if after consulting CELEX and checking for proper nouns, there has still not

been a tag assigned, three default labels are attached to a word: H, M and AX. This is analogous

to the CLAWS default tagging of NN VB JJ, see (Leech et al 1983, Johansson et al 1986). Hence

uncapitalised hyphenated words will fall into this catch-all category. Input to the parser is

expected to have been preprocessed with respect to the occurrence of apostrophes (see section

1.6.1). As the lexicon is refined, the default mechanisms will be brought into action less and less.

3.2.7 Rapid Lexical Lookup.

Storing a lexicon containing 60,000 entries within working memory whilst running the parser

will have an adverse affect on parser speed, since it will limit the memory available for the

parsing process itself. It will also restrict the choice of machines the parser will run on, if the size

of the process exceeds the memory of the machine, and swap space has to be used.

As a consequence, it was decided to keep the lexicon in secondary memory, and use an indexing

program to look up words rapidly. Such a program was supplied to CCALAS with the LDOCE

MRD, which created an indexed file for all the entries in the dictionary. This C program was

modified to work with the CELEX SF lexicon, which had been formatted to match LDOCE's

structure. I am grateful to George Demetriou of Leeds University for identifying and solving an

inconsistency between the UNIX alphabetical sort command, and the alphabetical ordering

needed for the C look up program, which had caused a small number of entries not to be found,

 95

despite their presence in the lexicon. Demetriou also amended the C code to allow entries to be

accessed by a UNIX command. For example the command:

 % celex5 bottle

returns the entries:

((bottle)(bottle)(H)(83)(Y)(Y)(N)(Y)(N)(N)(N)(N)(N)(N)(N)())

((bottle)(bottle)(M)(83)(Y)(Y)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)(N)())

This type of command could then be executed from within the parsing program, and the UNIX

output stream diverted back into the parser. In this way rapid lexical look up was achieved

without the cost of search through a lengthy lexicon list structure, and the damaging effect on

working memory. The implementation of the look up process is further described in chapter 4.

3.2.8 Lexical Probabilities.

In Pocock and Atwell’s parser, the probability of a word with a particular tag was calculated by

multiplying the lexical probability of the word by the probability of the word being labelled with

a specific tag. This makes sense in their application (speech recognition) in which the likelihood

of a word should play its part as well as its possible tags. In CELEX, the tag likelihood

information is not known, since the CELEX entries are not syntactically disambiguated. As a

result, tag probabilities have simply been calculated by dividing 1 by the number of tags for a

given word. This will clearly fail to bias the parser in the way we would prefer, to take account

of a specific tag being the most likely. For instance the word yes has a lexical probability of

740/1000000 = 0.00074 (frequencies in the CELEX lexicon are per million words). It is assigned

two tags, F and H, so the tag probability is 0.5. The combined lexical and tag probability of yes

as a head noun would therefore be calculated as 0.00037. When the lexical edges for the word

yes are added to the agenda (along with edges for other words in the sentence), they would be

likely to be removed quite quickly from the agenda and added to the chart, (remember the agenda

is ordered by probability), since yes is quite a common word. Once added to the chart, its edges

would combine with others derived from grammar rules to build a subtree. However, lexical

edges for rare words, and those that are highly ambiguous, may remain on the agenda for some

time. It would be preferable to influence the search strategy to include the other lexical edges at

an earlier stage, to produce more of a breadth first method. To achieve this, the lexical

probabilities were removed from the function for assigning probabilities to tagged words, and the

tag probability used on its own. A lexical edge for an unambiguous word would therefore have a

probability of 1. This change served to bring lexical edges into the chart more quickly, and is

 96

justifiable because the input itself is not in question (i.e.. the parser is not being used to

disambiguate speech or handwriting recognition lattices).

3.3 Training the Brill Tagger.

Hughes (Hughes and Atwell, forthcoming) has copied the publicly available source code for the

Brill tagger (Brill 1992, 93, 94) to Leeds, for use in the AMALGAM project (Atwell et al 1994).

In this project, we are attempting to produce a multi-tagged and multi-parsed corpus of English,

using the Spoken English Corpus as a benchmark corpus for future tagging and parsing

programs. In order to obtain the SEC tagged according to several syntactic annotation schemes,

we can re-train the Brill tagger for each scheme on a suitable tagged corpus, and then use the

tagger to tag the SEC. One of our chosen schemes was that used in the EPOW corpus. Hughes

has modified the original fully parsed corpus by removing all the non-terminal annotation,

leaving a tagged version of POW. It was also necessary to ‘tokenise’ the corpus into the input

form expected by the tagger’s training module. This consisted of adding some punctuation, to act

as sentence separators, making all characters lower case (except for those labelled as proper

nouns) and other minor amendments.

Most tagged corpora are significantly larger than POW’s 65,000 words
6
, so all of the corpus was

used in training to maximise the performance of the resulting lexicon, context rules and bigram

model, which constitute the main components of the tagger. (The working of the tagger was

described in section 2.3.1, and example fragments of these components are to be found in

Appendices 10 and 11). The tagger was then tested on some of the POW data on which it had

been trained, with a success rate of around 95%. On untrained material, we would therefore

expect this rate to be somewhat lower. The Brill tagger also learns general morphological and

context rules in order to be able to guess tags for words on which it has never been trained. In

particular, it is trained to assign the label HN to any word beginning with a capital letter (other

than I). In the absence of a lexical entry or any of the learned bigrams and context rules being

applicable, the default tag H is assigned. Again, the POW corpus will be a relatively small source

of data for these general rules.

6 Brill 1994 refers to training data of up to 1 million words, for maximum success rates.

 97

The parsing code for the chart parser has been adjusted to handle either the CELEX lexicon look-

up, or to call the Brill tagger from within POP11. In the first case, one or more tags are assigned

to each word of input, along with the probabilities described in section 3.2.8. For the Brill tagger,

however, only one tag is added per word, so the tag probability is always 1.

3.4 Conclusions.

This chapter has shown how a wide-coverage probabilistic context-free grammar can be derived

from the EPOW corpus, and then reduced in size but increased in coverage by the introduction of

rules containing optional and co-ordinated daughters. A vertical trigram model has also been

extracted from the corpus to capture the vertical dependencies of SF syntax. A large lexical

database was accessed to provide a probabilistic lexicon which permitted rapid look up, and was

modified to match the corpus-based syntactic annotation. As well as producing an SF syntax

lexicon specifically for an SF parser, we have also established a methodology for conversion

between lexico-grammatical labelling schemes, which can be applied in translating CELEX to

other corpus-based grammatical descriptions, eg. for the SEC and LOB corpora. As a second

lexical resource, the Brill tagger has been trained on the POW corpus. The corpus-based systemic

functional lexical and syntax models form the primary resources for the parsing process itself,

which will be described in chapter four.

 99

Chapter 4. A Probabilistic Chart Parser for Systemic

Functional Syntax.

In section 2.4 I described various approaches to the problem of parsing unrestricted English, and

proposed an architecture with three separate components: a probabilistic lexical resource

(achieved either by lexical look-up or by a tagging program), a probabilistic corpus-based syntax

model and the probabilistic chart parsing algorithm. The parsing component can be developed in

a relatively modular fashion, allowing for it to be applied to different grammar descriptions,

providing they each adhere to the same formalism. In chapter three I showed how large lexical

and syntactic resources could be harmonised within a systemic functional grammar (SFG)

description, such as that found in the POW corpus.

Instead of designing a parser from scratch, I have decided to adapt the chart parsing algorithm of

Pocock and Atwell (1993) which was itself derived from Gazdar and Mellish (1989). Pocock and

Atwell experimented with chart parsing using a grammar extracted from the Spoken English

Corpus, but later resorted to a faster Markov model approach. Some changes are necessary to the

parsing program itself because of the amendments to the syntactic formalism (to handle

optionality, co-ordination and vertical trigrams) I used to reduce the grammar size and prevent

overgeneration, and these are described in this chapter. The results of testing the parser are given

in chapter 5, but I include some discussion of informal trials with trivial examples here for

illustration purposes.

The terminology and standard procedure for chart parsing was presented in section 2.4.1.2.

Pocock and Atwell’s amendments to the basic chart parsing algorithm are given in Appendix 14.

Their chart parser was written in POP11, and designed to allow word lattices produced by a

speech recogniser to be disambiguated, and employed a large grammar and modest lexicon

extracted from the IBM/Lancaster Spoken English Corpus (Knowles and Taylor 1987). They

used rule probabilities taken from the corpus, combined with lattice and lexical probabilities for

the words, to force the chart parsing search strategy to produce the most likely tree first.

Although Pocock and Atwell finally abandoned the chart parser owing to speed and system

limitations, it is being adapted here to work with a smaller grammar (in terms of number of

 100

rules), and an external lexicon. The use of POP11 as a programming language in this context is

well justified. It offers typical AI features such as lists, properties (fast look-up hash tables) and

pattern matching along with facilities one would associate with a procedural language, such as

array handling and fast arithmetical processing. External function calls are possible to a number

of languages within the POPLOG environment (PROLOG, LISP, ML), and to C and the UNIX

operating system. The COMMUNAL project is using POPLOG PROLOG as its programming

language, which would mean that the two systems could be interleaved if desired. O’Donoghue’s

semantic interpreter (section 2.2.1) was also written in POP11. POPLOG does however have

some drawbacks which will have an influence on the parser’s performance.

Pocock classified his final code as being version 5 of his probabilistic chart parser. Two

developments to this parser will now be described:

Version 6:

Lexical look-up: the CELEX SF lexicon.

Syntax formalism: Probabilistic context-free rules, with modification only to permit

 optionality and repeated daughters.

Parsing algorithm: Chart parser, ordering agenda according to likelihood.

Probabilistic function: Simple multiplication of combined edges, with a probability degradation

 function applied to co-ordinated daughters.

Edge format [weight start finish label found tofind]

Version 7:

Lexical look-up: The Brill tagger.

Syntax formalism: Probabilistic context-free rules with modifications to permit optionality

 and repeated daughters supplemented with probabilistic vertical

trigrams.

Parsing algorithm: Chart parser, ordering agenda according to likelihood, with constraints

on subtree depth and overall tree depth. New edges only proposed if

well- formed with respect to the vertical trigram model. Vertical

recursion severely restricted. Extra parsing termination conditions

incorporated.

 101

Probabilistic function: Multiplication of combined edges, but with an extra weighting factor

 contributed by the product of the component vertical trigrams (for all but

 leaf nodes).

Edge format [weight start finish label found tofind depth]

Test results for each of these versions are to be found in chapter 5, where they are referred to as

tests 1 and 2.

The loading process for versions 5-7 takes only a few seconds. From within POP11 the file

parseV5/6/7.p is loaded, which itself consults all the parsing code and datafiles containing the

syntax and lexicon. A prompt is given for three types of parsing: parsing word sequences, tag

sequences, or lattices of words. The first of these was used exclusively in the tests that follow.

The diagnostic messages output during loading are shown in Appendix 15. The parser can be run

in two modes, with or without a trace facility. A trace facility is used if the user wishes to study

the parser whilst it is working, by seeing the (inactive) edges it is adding to the chart. This is

achieved by the parser outputting such edges to a file. Using the trace facility slows down the

parser, though, so for batch mode it is omitted. However, the trace facility has been used for all

of tests described here.

4.1 Preliminary tests using Parser Version 5.

Minor amendments were made to the input format of version 5, to permit input of upper and

lower case words, and deal with variations between the SEC and POW with respect to

punctuation. Since the SEC includes punctuation, its minimum sentence length was hard-wired to

be two items, and this was adjusted to permit single-word utterances. A small part of the version

5 parsing code was specifically written with the SEC corpus grammar in mind, and had to be

swapped for its equivalent within SFG. For instance, when initialising the agenda, the default

grammatical tags assigned to words not found in the lexicon are the three for noun, verb and

adjective in the SEC. The lexical probabilities are combined with lattice probabilities in

Pocock’s implementation. These are provided by a speech recognition device as a guide to how

‘confident’ the recogniser is of the word(s) it has produced. Since this is not the primary

application for our SF parser, the lattice probabilities were excluded. Pocock’s parser also waited

until parsing had finished entirely before producing any output. I amended the code to output

 102

successful parses to the screen as soon as they were found, since using a very large grammar can

mean that the parser will run for some considerable time.

The most significant change was to incorporate the CELEX SFG lexicon. In Pocock’s

implementation, the lexicon is stored as a property list within POP11. For reasons put forward in

section 3.2, I stored the lexicon externally, and accessed it via a UNIX call to a C look up

program. Once an entry has been retrieved, the word, probability, SF syntax tag, and its start and

end point within the sentence are then combined in an edge, stored as a list structure. The edge is

used to initialise the chart parser’s agenda. If more than one category can be assigned to the word

(i.e. it is syntactically ambiguous) then further edges are added to the agenda. In version 6, the

agenda is so initialised for each word in the sentence before parsing begins. For example, if the

sentence being parsed had the first word why, the following edges produced by CELEX look-up

would be added to the agenda:

[-6931 0 1 AX [why] []]

[-6931 0 1 EX [why] []]

The edges containing the word why are labelled apex (AX) or exclamation (EX), have a

logarithmic lexical probability of -6931 (log(0.5) since there are two tags)
1
, start at position 0

(the start of the sentence) and finish at position 1. Their contents are the word itself. The empty

brackets at the end of each list represent the fact that no further information is needed to

complete the lexical edge; it is inactive.

Before embarking on any formal trials, I experimented with some ‘trivial’ input. The output

produced for the single word utterance “yes” is included in Figure 24.

Figure 24. A Trivial Test of Parser Version 5.

[-29742 0 1 Z [[CL [F yes]]] []]

1 For further discussion of lexical/tag probabilities see section 3.2.8.

 103

[-63486 0 1 Z [[CL [F [QQGP [AX [NGP [H yes]]]]]]] []]

[-69092 0 1 Z [[CL [C [NGP [H yes]]]]] []]

[-76664 0 1 Z [[CL [F [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-80403 0 1 Z [[CL [C [CL [F yes]]]]] []]

[-81034 0 1 Z [[CL [AL [CL [F yes]]]]] []]

[-83607 0 1 Z [[CL [S [NGP [H yes]]]]] []]

[-89842 0 1 Z [[CL [F [QQGP [AX [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]]]] []]

[-91782 0 1 Z [[CL [V [NGP [H yes]]]]] []]

[-93287 0 1 Z [[CL [C [QQGP [AX [NGP [H yes]]]]]]] []]

[-100481 0 1 Z [[CL [A [CL [F yes]]]]] []]

[-101484 0 1 Z [[CL [A [QQGP [AX [NGP [H yes]]]]]]] []]

[-102837 0 1 Z [[CL [AF [CL [F yes]]]]] []]

[-103020 0 1 Z [[CL [F [QQGP [AX [QQGP [AX [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]]]]]] []]

[-105239 0 1 Z [[CL [C [TEXT [Z [CL [F yes]]]]]]] []]

[-106465 0 1 Z [[CL [C [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-106522 0 1 Z [[CL [CWH [NGP [H yes]]]]] []]

[-110115 0 1 Z [[CL [AWH [QQGP [AX [NGP [H yes]]]]]]] []]

[-111031 0 1 Z [[CL [A [NGP [H yes]]]]] []]

[-111215 0 1 Z [[CL [SWH [NGP [H yes]]]]] []]

[-114147 0 1 Z [[CL [C [CL [F [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-114662 0 1 Z [[CL [A [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-114778 0 1 Z [[CL [AL [CL [F [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-115403 0 1 Z [[CL [F [QQGP [AX [NGP [DQ [NGP [H yes]]]]]]]]] []]

[-116166 0 1 Z [[CL [ATG [CL [F yes]]]]] []]

[-116198 0 1 Z [[CL [F [QQGP [AX [QQGP [AX [QQGP [AX [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]]]]]]]]

[]]

[-116997 0 1 Z [[CL [F [QQGP [T [NGP [H yes]]]]]]] []]

[-117625 0 1 Z [[CL [F [QQGP [AX [PGP [CV [NGP [H yes]]]]]]]]] []]

[-117685 0 1 Z [[CL [F [QQGP [AX [NGP [DP [NGP [H yes]]]]]]]]] []]

[-118763 0 1 Z [[CL [C [PGP [CV [NGP [H yes]]]]]]] []]

[-118786 0 1 Z [[CL [F [QQGP [AX [NGP [DQ [QQGP [AX [NGP [H yes]]]]]]]]]]] []]

[-119643 0 1 Z [[CL [C [QQGP [AX [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]]]] []]

[-119753 0 1 Z [[CL [C [CL [C [NGP [H yes]]]]]]] []]

[-120220 0 1 Z [[CL [AP [CL [F yes]]]]] []]

[-120384 0 1 Z [[CL [AL [CL [C [NGP [H yes]]]]]]] []]

[-121009 0 1 Z [[CL [C [NGP [DQ [NGP [H yes]]]]]]] []]

[-123291 0 1 Z [[CL [C [NGP [DP [NGP [H yes]]]]]]] []]

[-123293 0 1 Z [[CL [AWH [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-124375 0 1 Z [[CL [AM [CL [F yes]]]]] []]

[-124392 0 1 Z [[CL [C [NGP [DQ [QQGP [AX [NGP [H yes]]]]]]]]] []]

[-124393 0 1 Z [[CL [CWH [QQGP [AX [NGP [H yes]]]]]]] []]

It was still necessary to interrupt the parsing process after over an hour since it was still active,

but inspection of the output made me realise that recursion in the grammar would be likely to

cause it to continue indefinitely. Solutions are output in descending logarithmic probability order

(most likely first). The label of each successful edge is Z, it must start at 0 and finish at 1 (for a

single word utterance), and not have anything left in the final set of brackets (the list of daughters

needing to be found). The first solution is the desired one, and should certainly be found, since it

is about the most frequent utterance (and analysis) in the corpus! However, the multiplicity of

other solutions is some cause for concern. Some are legitimate SF syntactic structures. For

instance, the edges

 [-69092 0 1 Z [[CL [C [NGP [H yes]]]]] []]

 [-91782 0 1 Z [[CL [V [NGP [H yes]]]]] []]

 104

would be legitimate analyses in answer to the questions ‘Was that a yes or a no?’ and ‘Did you

say yes or no?’.

However, the solutions of the form

[-76664 0 1 Z [[CL [F [QQGP [AX [QQGP [AX [NGP [H yes]]]]]]]]] []]

will give rise to infinite mutual recursion. The quantity-quality group can be rewritten as a single

apex, and the apex can itself be filled by a quantity-quality group. This sort of recursion is

normally prevented in a chart parser by checking to see if the same rule has been applied

previously at the same point in the chart, before adding a new edge. In this case that procedure

obviously wasn’t succeeding, even though such a procedure had been included in the program.

The reason for its failure was that the actual test performed was to see if a newly proposed edge

was already a member of the agenda or the chart. The POP11 member function would fail in the

cases of recursion shown above because at each test the newly proposed edge will have a

different probability and different contents, as a result of combining with other edges. A less

stringent test than member was required, which allowed for variation in the ‘probability’ and

‘found’ elements of the edge. The test was re-implemented using the POP11 pattern matcher,

which allows the specification of a partial pattern within a list. While this test succeeds, it does

degrade the efficiency of the program. The member test checks for a specific pattern, whereas the

pattern matcher requires several permutations to be checked before it can either fail or succeed.

With long lists of edges on the agenda and chart, this is a necessary but significant drawback.

The solutions produced with the amended parser still display the grammar’s ability to combine

its many terminal and non-terminal categories in an amazing variety of ways. It appears that

virtually every unit can fill every element of structure, creating a massive permutation in parse

trees, as Figure 24 illustrates. This is exacerbated when parsing longer sentences of three or four

words. These do not constitute lengthy sentences in a written corpus, (for example, in the LOB

corpus the average sentence length is around 25 words), but are more normal in conversational

dialogue (in POW the average sentence length is only around 6 words).

On inspecting the chart after parsing had finished, it also became clear that many inappropriate

edges were being added for such a short sentence. Edges (rules) which require more than one

daughter could never be successfully completed in the chart, since it is a feature of SFG that each

 105

terminal category must be expounded by a word
2
. Unlike GPSG, there are no empty categories

marking the place where a ‘moved’ constituent would normally be placed. As a consequence, it

is pointless adding an edge which has more required daughters than there are remaining in the

sentence. This change was made to the parser, and increases the speed quite markedly for very

short sentences of fewer than four words, but will have a less marked effect on longer sentences.

4.2 An Improved Parsing Algorithm: Version 6.

Having ensured that the prototype probabilistic chart parser worked, albeit slowly, and having

ironed out a few difficulties I was then in a position to make the more important changes which

would permit the introduction of the reduced grammar. These changes can be divided into two

categories: those for rules containing optional daughters, and those for rules with potentially co-

ordinated daughters.

4.2.1 Incorporating Rules with Optional Daughters.

The first change to the program which was necessary to permit the inclusion of rules with

optional daughters was to the way the grammar property table was created. Pocock had written a

program property.p which took a probabilistic context-free grammar as input, and produced a list

structure suitable for loading into POP11 as a property. He used properties as an efficiency

measure, since they enable sub-parts of the grammar (those with a particular category label on

the first daughter) to be accessed without needing to search through all the other rules. To enable

a property list to work correctly for the reduced grammar, we had to account for the fact that the

first daughter might be optional. Consider the rule

[-1378 QQGP [T] AX [FI]].

This needs to be added not only to the list of rules with T as their first daughter in the form

[-1378 QQGP T AX [FI]]

but also to the list for AX, in the form

[-1378 QQGP AX [FI]]

2 More precisely, by a morpheme. The COMMUNAL generator produces separate morphemes, which are later

combined into wordforms. In the POW corpus, each leaf node must consist of a word or an ellipted item. But in the

syntax model extracted from EPOW, ellipted items are ignored.

 106

since the temperer is optional. It might appear that this mechanism will undo all the good work

we have done in reducing the grammar in the first place, and to a certain extent it will (when a

rule has an optional first daughter). But the options will still remain in the rest of the daughters.

In practice owing to the technique adopted for reducing the rules, relatively few of them begin

with an optional daughter.

This mechanism has been implemented and the program property.p revised. When parsing, edges

can now be created from the grammar rules with optional daughters in the list of those to be

found. This has two knock-on effects with respect to the fundamental rule of parsing:

1. An active edge with a first optional daughter in its ‘needed’ list is really looking for two kinds

of inactive edges; those labelled with the optional daughter as their category, and those

labelled with the optional daughter’s right sister. In the case of repeated optional daughters,

even more inactive edges need to be considered, up to and including the first obligatory

daughter if there is one.

2. An edge which contains only optional daughters in its ‘needed’ list must be considered as

potentially inactive. It should be added to the chart with its optional daughters intact, but if

combined with an active edge, these will be ignored.

These two amendments result in the blurring of the distinction between active and inactive edges

when they contain only optional daughters and care must be taken not to add them to the chart

twice, once as an inactive and once as an active edge. The chart parser algorithm was modified to

take account of optional daughters in the fashion just described.

4.2.2 Incorporating Rules with Co-ordinating Daughters.

The fundamental rule of chart parsing also needed to be amended to handle the structure of rules

for co-ordinated daughters. In section 3.1, I distinguished filling rules (which allow co-ordination

and subordination) from componence rules (which do not). Filling rules are identified by a

different data structure in the reduced grammar; their probability element is contained in a list

rather than being atomic. A conditional check on the form of the probability element in an edge

leads to the rules being treated differently. Componence rules are dealt with as in the prototype

parser. Filling rules will have the structure

 107

[[-22157 -63306 -77169] A CL],

for example. This rule will be accessed normally from the grammar. Once it becomes an edge, it

can combine with a clause (CL) to form an inactive adjunct (A) edge. Whenever it combines in

this fashion, two new edges are proposed. The first is a normal inactive edge with an atomic

probability element, but the second is an active edge which has a probability list, has found one

clause, but still needs to find another, i.e.. a new daughter is added to the ‘needed’ list. This

process can go on indefinitely when combining with an inactive clause edge until the end of the

sentence is reached, when the lack of words left in the sentence will prevent the new active edge

from being created. As the number of co-ordinated daughters increases, their probability is

degraded by the following function:

P(mother with n+1 daughters) = (P(mother with n daughters) - 120000/2
n
) + P(daughter n)

which is an estimated (smoothed) function approximating to the observed probability degradation

(presented in section 3.1.6). The function is initialised with the observed probability of only one

daughter. It can be adjusted to increase or decrease the likelihood of co-ordination. A minor

adjustment was also necessary in the ordering of the agenda to check if an edge represented a

filling or a componence rule before accessing its probability.

With the two changes in place, the new version of the weight-driven chart parser (version 6) was

ready to test. A few trial runs again on short sentences were performed as a comparison with the

prototype. The results for the parsing of the utterance “yes” are again presented in Figure 25.

This time parsing concluded, and a full set of solutions can be shown.

Figure 25. Trivial Output from a Weight-Driven Chart Parser (version 6).

Type words to parse in lower case except for “I” and proper nouns :

 -> : yes

 Starting parsing process - Version 6

 Lexical lookup results:

 yes

 [[-6931 F] [-6931 H]]

 [-22496 0 1 Z [[CL [F yes]]] []]

 [-36080 0 1 Z [[CL [AL [CL [F yes]]]]] []]

 [-49164 0 1 Z [[CL [C [NGP [H yes]]]]] []]

 [-56287 0 1 Z [[CL [S [NGP [H yes]]]]] []]

 [-62713 0 1 Z [[CL [C [CL [F yes]]]]] []]

 [-66611 0 1 Z [[CL [C [PGP [CV [NGP [H yes]]]]]]] []]

 [-73512 0 1 Z [[CL [S [NGP [H yes]]]]] []]

 [-78122 0 1 Z [[CL [F yes]]] []]

 108

 [-78855 0 1 Z [[CL [A [PGP [CV [NGP [H yes]]]]]]] []]

 [-80163 0 1 Z [[CL [V [NGP [H yes]]]]] []]

 [-84201 0 1 Z [[CL [A [PGP [P [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-84291 0 1 Z [[CL [A [QQGP [AX [NGP [H yes]]]]]]] []]

 [-86341 0 1 Z [[CL [A [CL [F yes]]]]] []]

 [-89886 0 1 Z [[CL [AF [CL [F yes]]]]] []]

 [-91541 0 1 Z [[CL [V [NGP [H yes]]]]] []]

 [-91809 0 1 Z [[CL [AWH [QQGP [AX [NGP [H yes]]]]]]] []]

 [-94036 0 1 Z [[CL [CWH [NGP [H yes]]]]] []]

 [-94652 0 1 Z [[CL [A [NGP [H yes]]]]] []]

 [-99724 0 1 Z [[CL [SWH [NGP [H yes]]]]] []]

 [-99925 0 1 Z [[CL [A [CL [AL [CL [F yes]]]]]]] []]

 [-101567 0 1 Z [[CL [F [QQGP [AX [NGP [H yes]]]]]]] []]

 [-103002 0 1 Z [[CL [A [NGP [DD [GC [PS [NGP [H yes]]]]]]]]] []]

 [-103222 0 1 Z [[CL [A [PGP [CV [NGP [H yes]]]]]]] []]

 [-103811 0 1 Z [[CL [ATG [CL [F yes]]]]] []]

 [-107966 0 1 Z [[CL [AM [CL [F yes]]]]] []]

 [-108568 0 1 Z [[CL [A [PGP [P [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-108658 0 1 Z [[CL [A [QQGP [AX [NGP [H yes]]]]]]] []]

 [-108817 0 1 Z [[CL [A [NGP [MO [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-108920 0 1 Z [[CL [AP [CL [F yes]]]]] []]

 [-110708 0 1 Z [[CL [A [CL [F yes]]]]] []]

 [-111012 0 1 Z [[CL [AI [QQGP [AX [NGP [H yes]]]]]]] []]

 [-111093 0 1 Z [[CL [CWH [QQGP [AX [NGP [H yes]]]]]]] []]

 [-119019 0 1 Z [[CL [A [NGP [H yes]]]]] []]

 [-119910 0 1 Z [[CL [AF [QQGP [AX [NGP [H yes]]]]]]] []]

 [-124292 0 1 Z [[CL [A [CL [AL [CL [F yes]]]]]]] []]

 [-124348 0 1 Z [[CL [CANTIC [NGP [H yes]]]]] []]

 [-125164 0 1 Z [[CL [AM [QQGP [AX [NGP [H yes]]]]]]] []]

 [-125569 0 1 Z [[CL [SANTIC [NGP [H yes]]]]] []]

 [-127369 0 1 Z [[CL [A [NGP [DD [GC [PS [NGP [H yes]]]]]]]]] []]

 [-128480 0 1 Z [[CL [AWH [NGP [H yes]]]]] []]

 [-128562 0 1 Z [[CL [CWH [CL [F yes]]]]] []]

 [-130471 0 1 Z [[CL [ALWH [QQGP [AX [NGP [H yes]]]]]]] []]

 [-130471 0 1 Z [[CL [AI [QQGP [AX [NGP [H yes]]]]]]] []]

 [-130937 0 1 Z [[CL [AWH [PGP [CV [NGP [H yes]]]]]]] []]

 [-133184 0 1 Z [[CL [A [NGP [MO [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-136283 0 1 Z [[CL [AWH [PGP [P [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-136830 0 1 Z [[CL [AWH [NGP [DD [GC [PS [NGP [H yes]]]]]]]]] []]

 [-141747 0 1 Z [[CL [CWH [PGP [CV [NGP [H yes]]]]]]] []]

 [-142146 0 1 Z [[CL [CWH [CL [AL [CL [F yes]]]]]]] []]

 [-142645 0 1 Z [[CL [AWH [NGP [MO [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-147093 0 1 Z [[CL [CWH [PGP [P [QQGP [AX [NGP [H yes]]]]]]]]] []]

 [-147421 0 1 Z [[CL [SANTIC [CL [F yes]]]]] []]

 [-155230 0 1 Z [[CL [CWH [CL [C [NGP [H yes]]]]]]] []]

 [-161005 0 1 Z [[CL [SANTIC [CL [AL [CL [F yes]]]]]]] []]

 [-168405 0 1 Z [[CL [A [TEXT [Z [CL [F yes]]]]]]] []]

 [-174089 0 1 Z [[CL [SANTIC [CL [C [NGP [H yes]]]]]]] []]

Number of edges in chart = 572

Number of inactive edges = 409

Number of almost inactive edges = 0

Number of active edges = 236

Number of edges in output file = 572

Number of solution parse trees : 44

E = edge number and W = weight

Time to execute (variable TIME) = 244.05

Number chart edges (variable chart_edges) = 572

 109

The grammar licenses 44 parses out of 572 edges in the chart. Note that the number of inactive

edges plus the number of active edges (645) is greater than the total number of edges, which

illustrates the extent to which optional rules have been treated as both active and inactive. In a

small number of cases (four times here), the parser produces duplicate parses with different

probabilities. This results from the reduced grammar containing two rules for a mother rewriting

as the same daughter, surrounded by different optional sisters. Ideally this should be rectified by

amending the componence rule reduction program, and reducing the grammar again. Since this

program is highly recursive and takes several days to run on the clause grammar, this has not yet

been done. A temporary ad hoc solution is simply to delete the second version of the parse from

the final solutions list.

The solutions are in a slightly different order than the prototype parser, which is a result of the

combination of probabilities in rules with optional edges. The prototype solutions which

contained recursion have not been produced, but the number of parses is still high. 17 solutions

are found (including two duplicates) for the formula label, and 27 for the head noun label

(including two duplicates). Some of these analyses are not acceptable in SFG terms, but are

licensed by the (over-generative) context-free version of the grammar. For example, the parse

[-94036 0 1 Z [[CL [CWH [NGP [H yes]]]]] []]

should not be accepted since the element of structure wh-complement (CWH) should contain a

wh-head (HWH), such as what. The dependency between the two will be captured by version 7

of the parser, through the use of the vertical trigram model. This feature alone accounts for 15

unwanted parses. A similar lack of dependency exists between adjunct labels (of which there are

many; A, AF, AL, AWH, ATG, AM, AP, AI, ALWH) and the words they are eventually expounded

by in these solutions, but this is not captured by the vertical trigram model. The lexical look-up

facility would need to recognise the likelihood of a particular lexical item having a particular tag

(and great-grandmother in these cases) to adequately handle the relationship between these

adjuncts and their eventual exponent lexical items. The combination of the vertical trigram model

and the Brill tagger achieves this, in the case of wh-variants of heads and apexes, for example.

None of the solutions produced can be strictly described as parsing errors, since they are all

legitimate combinations of lexical items and context-free rules. The ordering is important

 110

therefore in selecting one or more parses as ‘desired’ solutions with respect to the overall SFG

description. Using linguistic intuition and knowledge of the POW corpus grammar, I would

expect to find at least the following parses, given the lexical tags assigned to the word yes:

[-22496 0 1 Z [[CL [F yes]]] []]

[-49164 0 1 Z [[CL [C [NGP [H yes]]]]] []]

[-56287 0 1 Z [[CL [S [NGP [H yes]]]]] []]

[-80163 0 1 Z [[CL [V [NGP [H yes]]]]] []]

These are at least all found within the first ten parses, (eight if you exclude the duplicate parses),

which provides some evidence that the probabilities are playing the selective role we would

hope.

The next version incorporates the improvements we have just discussed (and some others).

4.3 Version 7: Combining Context-Free and Vertical-Trigram

Rules.

Version 7 of the parser uses the Brill-tagger trained on the POW corpus, which serves to limit

some of the ambiguity found in version 6 by only adding one tag per word to the chart. As we

shall see in chapter 5, it also slightly increases the lexical tagging success rate, but still results in

several tagging errors.

4.3.1 The Vertical Trigram Model.

The biggest advance in terms of parsing accuracy is gained by combining vertical dependency

information in the corpus with the context-free rules. This has been experimented with by

Magerman and Marcus (1991) in their Pearl chart parser. They incorporated daughter-

grandmother relationships into the syntax model, giving the formalism more context-sensitive

power, thereby improving the accuracy of their parser. The success comes at a price of increased

size of syntactic model, as discussed in section 3.1. The vertical trigram model has been

incorporated into the working memory of the parser, (as increases in the hardware have allowed),

 111

using a further property list for efficient access. Resultant parsing process sizes are larger than

for version 6.

What we are trying to capture in combining a probabilistic context-free grammar with a

probabilistic vertical dependency grammar is the most likely subtree associated with a particular

lexical item or grammatical category. Our implementation of chart parsing then begins to

approach the subtree combination method of Bod (1995), combining the most likely subtrees for

each word/wordtag pair, by identifying overlapping structures. Unlike O’Donoghue’s work,

which was restricted in depth to that observed in his artificial corpus of generator output, if we

store a grammar of vertical dependencies smaller than the distance from word tag to root

category, but greater than between just two nodes (mother and daughter), we will be able to

permit a constrained level of vertical recursion. Such constraints limit the mutual recursion of

adjuncts, for example, while still allowing for deeper trees than those observed in the corpus.

The vertical trigram model is incorporated into the chart parsing algorithm as follows. As a new

edge is proposed, an additional check is performed before it is added to the agenda. This involves

looking up all the relationships between the label of the active edge (the grandmother), the label

of the inactive edge (the mother) and each of the possible daughters in the found element of the

inactive edge. If any of the proposed vertical trigrams are absent from the corpus-trained model,

the proposed edge is rejected. Otherwise, the product of their combined probabilities is

multiplied by the weights of the component active and inactive edges, to form the weight of the

new edge
3
.

4.3.2 Limiting Tree Depth.

In order to further constrain the over-generation shown in version 6 of the parser, I have also

introduced a factor limiting the depth of solution trees to that observed in the corpus for trees of a

comparable breadth (counted in words). This involves recording the depth of each edge in the

chart (a seventh element in the data structure for the edge). When new edges are proposed, if the

combined depth of the over-arching edge exceeds that observed for a similar breadth in the

3 In the present implementation of version 7, the vertical weight is moderated by dividing it by 1.1, which has been

found by experiment to achieve an appropriate balance (for SF syntax) between breadth first and depth first search,

still within an overall most-likely first strategy.

 112

corpus, the edge is prohibited. This affects both sub-trees and overall trees. The function defining

the depth limit is derived from the corpus. Figure 26 shows the empirical evidence for (sub)tree

in the POW corpus.

The depth limit has been set to the maximum observed in the corpus, but could be more or less. If

we wish to improve parsing speed, we can eliminate very deep trees, which are quite rare, by

setting the function to be nearer the median rather than the maximum observed depth. Note that

tree depth in POW tends to jump in multiples of two nodes, in line with the alternation between

labels elements of structure and units. The combination of the depth constraint and the vertical

trigram model is still more general than O’Donoghue’s vertical strip grammar, but is similar in

that it is tied to the depth observed in the corpus (in the current implementation).

4.3.3 Stopping the Parser.

Version 6 of the parser illustrated that, when chart parsing with a very large syntax model, the

parser can sometimes run and run. Three (variable) measures have been implemented to stop the

parser after (what I consider) a reasonable time. Firstly, there is an arbitrary limit (currently of

six) set on the number of parses to be produced. This will illustrate the extent to which the

probabilistic method results in legitimate parses being found first. Secondly, the weight of the

first solution

 113

Figure 26.

Tree Depth in the POW Corpus

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

Sentence Length (words)

T
re

e
 D

e
p

th
 (

n
o

d
e
s
)

maxdepth

mean

median

produced is recorded, and no new edges are generated with a weight currently set to be 1.5 times

that of the first solution’s weight. Finally, in the absence of any solutions being found, parsing

stops when the agenda reaches a certain size, currently set to be (50,000 x sentence length)

edges.

The results of formal testing of version 6 and 7 of the probabilistic chart parser are now

presented in chapter 5.

 114

Chapter 5. Parser Testing and Evaluation.

This chapter will report test results for two parsing methods: Firstly, a prototype parser using

CELEX lexical look-up, and a corpus-based context-free syntax. Secondly, a more successful

parser, using the Brill tagger for lexical annotation, and an amended chart parsing algorithm

which uses a context-sensitive syntax model incorporating vertical trigrams. The results will

be evaluated and compared. First of all, we will consider the selection of test data.

5.1 The Test Data.

Preliminary testing material for a corpus-based parser should in the first instance come from

the corpus itself. One might assume that a parser should at least handle the structures in its

training material. In the case of the CELEX-SFG lexicon though, the parser is using a lexicon

not derived from the corpus, so lexical tagging will not necessarily be 100% accurate. In the

second case, the Brill tagger, which was trained on the EPOW corpus, achieves an accuracy

rate of between 90-95% of word tokens correctly tagged. Furthermore, it may be that the

manual annotation chosen for a sentence by the corpus annotators is not the only legitimate

SF syntax analysis, and perhaps not the most likely (based purely on syntactic criteria, rather

than using other semantic and contextual cues found in the corpus), so we may reasonably

expect some different solutions to those found in the corpus to be produced by a purely

syntactic parser. Parsers employing very large grammars often find tens, or even hundreds of

possible solutions, and it may take several days to allow the parser to run and run until all

solutions are produced . In the first test described in section 5.2, the parser was interrupted

manually after the first few solutions has been found (or my patience ran out). In the second

test (section 5.3), for efficiency reasons, an arbitrary limit has been set on the maximum

number of analyses (currently six) the parser may produce. It will be an interesting test of the

value of probabilistic parsing to discover how often the POW analysis is found in the first

few parses. Therefore parsing a sample of the POW corpus itself is not a purely trivial task,

because of tagging errors, and because of time and computing resource limits.

Other corpora of a different genre to that which provided the training material should ideally

also be used as secondary testing material, to give an objective assessment of the parser’s

success. A half-way house strategy adopted by some (eg. Sharman 1990, Pocock and Atwell

1993) is to deliberately set aside a fraction of the corpus from training, and use this in testing.

 115

This is more difficult than testing on the training material, but not as stringent as parsing new

genres.

In this experiment, I have used the whole of the EPOW corpus from which to extract the

syntactic model, in order to maximise the subset of English it covers and to enhance the

reliability of the probabilistic part of the model. Therefore, provided the lexical tagging

works correctly, the syntactic model is guaranteed to contain the required rules to produce

solutions for test sentences from the POW corpus, but not for those outside the corpus. It is

useful to use corpus sentences as test data, since we have a hand-annotation to act as the

target solution the parser should produce, (among others, if the utterance is syntactically

ambiguous). For non-corpus-based test sentences, we have no such target, and must instead

rely on ‘expert’ knowledge of the syntactic description used in the corpus. In the second

parsing test, in which the corpus-based test material has been supplemented with some from

outside the corpus, I have used my own judgment to gauge the correctness of the solutions.

The sample of the POW corpus given in Figure 1 (chapter 1) was used as the first test

material for the parser. The sample consisted of 17 utterances
1
, shown in Figure 27a. This

sample was chosen arbitrarily from the material provided by twelve year olds, and consists of

part of one of the Lego play sessions (corpus file ‘12abpspg’). It may be argued that such

material is less likely to contain grammatical errors (than that of the six-year olds, for

example), but equally, it may contain greater syntactic variety.

A further small set of six sentences taken from those used by the Limerick International

Workshop on Industrial Parsing of Software Manuals (Koch and Sutcliffe 1995) were used as

examples of data on which the parser had not been trained (Figure 27b). Although at least

sixty sentences were used as test data at the workshop, a core of just six were chosen for a

detailed comparative study of the results, and it is these which have been used here. The

genre is entirely different from the POW corpus, being written formal material taken from

software manuals. Of particular note is the difference in utterance length, which, as we shall

see, seriously affects parser performance. These ‘untrained’ sentences were modified slightly

to remove their sentence-level punctuation (commas, full-stops, question marks etc.), since,

although the Brill tagger can handle these, there are no relevant rules in the syntax model for

the parser to use to incorporate them into the tree structure. (Being a spoken corpus, the

transcription contains no such punctuation - it was not deemed useful to insert some

1 19 utterances if we include no’s. 11, 11a and 11b as separate parsing tests.

 116

artificially. In written corpora containing such punctuation marks, parsing can actually be

ameliorated, since they often serve to delimit phrases.) Only the trained test sample was used

for testing the context-free prototype parser, whereas both were used for the context-sensitive

parser.

Figure 27a. The Trained Test Sample.

1. why

2. what ‘s the point

3. you put these on for windows

4. you don’t have to

5. won’t be long

6. it ‘s easiest mind

7. I know something easy

8. build a garage

9. fantastic

10. or something like a skyscraper

11. this worked out it won’t fit

11a. this worked out

11b. it won’t fit

12. go on

13. we can always move it along can’t we

14. will that one fit in by there

15. come on

16. let’s get going

17. I can’t even

Figure 27b. The Untrained Test Sample.

18. press SHIFT+INS or CTRL+V

19. what do we mean by this

20. select the text you want to protect

21. that is these words make the source sentence longer or shorter than the TM sentence

22. displays the records that have a specific word or words in the TITLE CONTENTS

 SUBJECT or SERIES fields of the BIB record depending on which fields have

 been included in each index

23. enter the line number of the alphabetical title search option

5.2 Test 1: Prototype context-free parser with CELEX look-up.

The first trial was conducted with a version of the probabilistic chart parser which I have

called version 6. (The code which I adopted from Pocock and Atwell being version 5). The

components of this parser are:

(1). The CELEX English lexicon, modified to match the systemic functional syntax labels in

the POW corpus, with a rapid look-up program supplying multiple parts-of-speech in the case

of lexically ambiguous items.

 117

(2). A probabilistic context-free systemic-functional syntax model extracted from the whole

of the POW corpus, in which the simple context-free rules have been modified (as described

in section 3.1) to account for optionality, co-ordination and subordination.

(3). A probabilistic chart parser whose search strategy is ‘most likely first’, and which has

been adapted to elegantly handle the modified context-free syntax in (2).

The first test was conducted on a Sun SPARCstation 2
2
 running UNIX and POPLOG POP11.

In virtually every case, the parser had to be terminated prematurely, and in some cases before

any solutions had been found. Performance on sentences of five words and over was so slow

that no solutions were produced within three days. Consequently, after trying to parse several

such sentences, and having to prematurely interrupt the process each time, I divided the two-

clause utterances in 7/8, 13/14 and 16/17 into separate trials for the parser. (Some of the

utterances in the corpus consist of two or more ‘co-ordinated’ clauses, even in the absence of

a co-ordinating lexical item, but have not been segmented separately in the transcribed

version, perhaps owing to intonational cues). Even when the parser produces solutions for the

shorter single-clause input, it continues to run for several hours, so I interrupted such

processes after the first few solutions had been output. As a consequence, it is difficult to

classify the output in traditional terms, such as number of solutions produced, since many

more could have been produced given a faster machine and plenty of time. However, we can

compare the first few parses with those in the corpus, and see if they are the same, or even

remotely similar. The results are summarised in Figure 28.

These results are very poor. Only two out of 17 utterances were correctly parsed, and in only

one of these cases was the correct parse the first solution to be found. (If the EPOW analysis

differs from the one found by the parser only in its inclusion of ellipted elements, then such

parses were deemed to be correct). Five of the longer utterances failed to be assigned a single

parse before they were interrupted. Of the remainder, many parses were found, and it was

usually the first solution which was the nearest to the desired solution (shown in brackets in

column five). Nearness can be indicated by the overlap in tree structure and category labels.

Usually, these near misses were the result of lexical look up problems, where the desired tag

was never found in the CELEX lexicon. The failure of this parser is now analysed in more

detail.

2 The first test was performed on the School of Computer Studies machine csparc16, a 40 MHz SPARCstation 2,

with 32 Mb. of main memory, executing 28.5 MIPS.

 118

Figure 28. Test 1: Results.

Utterance number Parsing completed Parses found POW analysis found Solution no

1 Y 55 Y 12

2 N 5 N (2)

3 N 0 N -

4 N 2 N (1)

5 N 6 N (1/5)

6 N 7 N (4)

7 N 2 N (1)

8 N 3 Y 1

9 Y 44 N (1)

10 N 0 N -

11 N 0 N -

12 Y 6 N (1)

13 N 0 N -

14 N 0 N -

15 N 15 N (1)

16 N 2 N (1)

17 N 7 N (1)

5.2.1 Lexical Look-Up.

Lexical failure was responsible for several parsing failures (9 of the 17 utterances contained a

single word which was not assigned the correct tag, and in one utterance two words failed to

be assigned the correct tag, although one of these was because the word one had been

incorrectly tagged in EPOW). A total of 66 words were contained in the test utterances, of

which 55 were correctly tagged (83.3%). The words which the lexicon failed to tag correctly

along with the desired tag were:

Lexical Item Tag(s) found in CELEX POW tag

in P, PM AX

on P, PM AX (3 times)

out PM, M AX

why AX, EX AXWH

always AX AI

mind H, M AF

fantastic AX EX

one H, M, AX HP

even T, AX, H AI

 119

have-to OX, M, X / AX, EX, PM, P XM

by-there PM, P / AX, F, STH AX

In the case of the last two items in this list. it would have been unreasonable to expect the

CELEX lexicon to reproduce POW’s hyphenated format, so the words were input separately.

The failures can be classified as follows:

The prepositions on, in and out are labelled as apexes in POW when part of phrasal verbs:

[CL [M COME] [CM [QQGP [AX ON]]]].

This feature has yet to be incorporated into the lexical mapping from CELEX to SFG. It

would effectively mean duplicating all prepositional entries with the new AX tag, since it is

difficult to specify those which can occur in phrasal verbs. A more reasonable solution would

be to incorporate a lexicon of phrasal verbs (eg. Cowie et al 1975), and allow multi-word

idiom tags and lexical edges. See section 6.1.3 for further explanation.

Where a fine-grained grammatical distinction has yet to be incorporated into the lexicon,

such as for the various SFG adjuncts, or for wh versions of an element of structure, then a

solution which contained the less delicate description was accepted as correct. For instance

AX is considered a match for AXWH, since the mapped CELEX lexicon does not yet provide

the AXWH label.

The category label EX is assigned to the word fantastic in the corpus. It is difficult to specify

an exhaustive list of the lexical items that can be used in exclamations, so only the most

frequent have been included (by mapping the CELEX label I: interjection). The AX label is

the correct label within the POW corpus for an adjective, but here the word fantastic is

functioning as an exclamation.

The problem of the multiplicity of (normally non-terminal) adjunct labels (such as AI and

AF) being used directly as terminal categories has already been identified (see section 3.2.6),

and two of the ‘errors’ can be attributed to my solution; labelling these as apexes of quantity-

quality groups which can fill a non-terminal adjunct, i.e. treating them as productive

constituents.

 120

The first parsing test, therefore, shows that there are still some improvements to be made to

the lexical mapping from CELEX to SFG syntactic categories. The difficult problems

associated with the lexical labelling of adjuncts, exclamations, phrasal verb particles, and

temperers (among others) mean that completely watertight lexical look-up has not been

achieved. It is precisely by running such parsing tests that lexical deficiencies in the hand-

crafted mapping algorithm from CELEX labels to the POW corpus SFG can be discovered

and rectified. Some deficiencies could be resolved by further lexical entries being added to

CELEX (eg. for phrasal verb particles and terminal adjunct categories), others would involve

fine-tuning the mapping (eg. wh-apexes) and others would require the parsing program to be

adjusted to change lexical labelling ‘on the fly’ (temperers, adjectival verb participles). What

is surprising about these results is not the fact that some errors have occurred, but rather that

there were relatively few of them. In many cases, CELEX look-up introduced more than one

tag into the chart for each lexical item, which will of course have made the parsing problem

more perplex. However, the second parsing test will show that using the Brill tagger for

lexical ‘look-up’ increases the success rate from 83% to over 90% of word tokens in the test

data, and has the advantage of selecting only one tag per lexical item.

5.2.2 Limitations of the syntax formalism.

Since in all but two cases the parser had to be terminated prematurely due to the size of the

search space, it is difficult to classify the performance of the syntactic model. The context-

free formalism is responsible for the overgeneration described in section 4.3.2, which is

displayed again in many of the test solutions. Context-sensitive constraints need to be added

to the context-free rules to capture knowledge of likely grandmothers, as well as mothers of a

daughter (and in some cases even more distant relationships between nodes), for instance in

the possible subconstituents of the various adjunct labels. Currently, typical parses for

adjuncts are duplicated for each particular adjunct label (A, AA, AD, AF, AI AL, ALWH, AM,

AML, AN, AP, ATG, AWH). The overgeneration is exacerbated by the possibility of an

adjunct being filled by a clause, which itself contains just an adjunct. The vertical recursion

of the same adjunct is prevented by the parser, but the successive alternation of each adjunct

label sandwiching a clause label is not. Hence the current syntax licenses the following

structure:

...[CL [A [CL [AL [CL [...

Given there are thirteen such adjunct labels in the syntactic description used in POW, this

could potentially result in 8192 different adjunct/clause structure combinations being

 121

proposed each time a clause label is added to the chart. In the corpus however, only seven of

the adjuncts occur being filled with a clause, so the combinatorial explosion is limited to a

mere 128 possibilities. But this feature of the syntactic formalism means that every time a

clause edge is generated, the explosion takes place. Similar combinations recur for other

elements of structure and units, which helps to explain the non-termination of parsing within

a reasonable period (the writer’s patience limit).

To illustrate the size of the explosion problem, in Figure 29 I present some data taken from

the chart and agenda when a six-word utterance was parsed, and the process halted after four

days. The utterance, this worked out it won’t fit, should have contained two clauses (one

might also argue that this could really have been divided into two separate three-word

utterances by the corpus analysers).

Figure 29. Data from a Six-Word Parse.

listlength(agenda)==>

** 157188

agenda(1)==>

** [[-134326] 0 2 MOTH [[NGP [MO [QQGP [AX [NGP [DD this]]] [FI [CL [M worked]]]]]]] [NGP]]

agenda(157188)==>

** [[-298506]1 4 AM [[CL [C [CL [M worked]]]] [CL [M out] [A [CL [AL [CL [F [QQGP [AX [NGP

[HP it]]]]]]]]]]] [CL]]

listlength(chart(0,1))=>

** 3651

listlength(chart(0,2))=>

** 826

listlength(chart(0,3))=>

** 213

listlength(chart(0,4))=>

** 110

listlength(chart(0,5))=>

** 0

listlength(chart(0,6))=>

** 0

listlength(chart(1,6))=>

** 0

listlength(chart(2,6))=>

** 13

listlength(chart(1,5))=>

** 0

chart(0,3)==>

...[-91517 0 3 Z [[CL [S [NGP [DD this]]] [M worked] [C [PGP [PM out]]]]] []]...

chart(3,6)==>

...[-81469 3 6 Z [[CL [S [NGP [HP it]]] [OMN won t] [M fit]]] []]...

vars prob;

chart(0,3) matches [== [?prob 0 3 Z [[CL ==] ==] [CL]] ==]=>

** <false>

agenda matches [== [?prob 0 3 Z [[CL ==] ==] [CL]] ==]=>

** <true>

prob=>

** [-151517]

We see from Figure 29 that the agenda has reached an enormous size (157,188 edges) with

logarithmic probabilities ranging from -134326 for a two-word edge at the start of the

 122

agenda, to -298506 for a two-word edge at the end of the agenda. No spanning edges have

been found, and the longest edges cover only four words. However, among the three-word

spanning edges are those which correctly parse the two clauses. In fact, these clause edges

were the first to be found for the span from position 0 to 3 and from 3 to 6. I checked to see if

the active clause co-ordinating rule had been activated, and it had, and had already combined

with the first clause (this worked out), with a logarithmic probability of -151517. This active

edge still looking for an inactive matching clause is placed well below the top of the agenda

(the top edge has a logarithmic probability -134326), so will take some time to reach. Once it

has found the inactive second clause, they will combine to form a new spanning edge with a

probability of -78784 + -151517 = -230301, which will be added to the agenda. Only when

this spanning edge has reached the top of the agenda, will the solution be produced. It seems

likely, given the speed with which the two clauses were found, that this will also be the first

solution that would be produced. The prognosis for this unconstrained chart parser is

therefore not good. Longer single clause utterances would take much longer to parse, and

only by dividing multi-clause utterances into separate parses could we hope to produce a

solution. The syntactic formalism is working as it should, but the opportunity for

combinatorial explosion because of mutually recursive rules is far too great.

5.2.3 Near Misses.

For the shorter sentences which were not correctly parsed, I made a judgment as to which of

the solutions produced was the best-fit to the desired parse in the corpus. For example Figure

30 shows the desired and best-found solutions for three of the near misses. The parser

solutions are annotated with the ranking amongst other solutions.

Figure 30. Near Misses.

i) what ’s the point

POW solution:

[Z [CL [CWH [NGP [HWH WHAT]]] [OM ’S] [S [NGP [DD THE] [H POINT]]]]]

Parser solution (2):

[-107832 0 4 Z [[CL [S [NGP [HWH what]]] [OM ’s] [C [NGP [DD the] [H point]]]]]

ii) you don’t have to

POW solution:

[Z [CL [S [NGP [HP YOU]]] [ON DON’] [XM HAVE-TO] [(M)] [(C)] [(CM)]]]

Parser solution (1):

 123

[-92454 0 4 Z [[CL [S [NGP [HP you]]] [ON don t] [M have] [C [NGP [MO [QQGP [AX to]]]]]]]

iii) won’t be long

POW solution:

[Z [CL [(S)] [OMN WON’T] [M BE] [C [QQGP [AX LONG]]]]]

Parser solution (1):

[-94797 0 3 Z [[CL [OMN won t] [M be] [C [NGP [MO [QQGP [AX long]]]]]]]

Example i) shows how lack of dependency in a context-free syntax between daughters and

their grandmothers causes overgeneration. The HWH tag should be dominated by a wh-

grandmother, such as SWH or CWH. These will eventually be found by the parser, but they

are less likely than their non- wh counterparts. Until the question structure information is

found at the clause level, the clause rule reversing the wh- complement and subject will fail

to be applied.

Example ii) is a near miss because of the hyphenation of the modal verb have-to in the POW

SFG. In my CELEX lexicon, the modal is listed as two wordforms, which are looked up

separately. The verb tag found is for a main verb, rather than a modal, and the infinitival to

fails to be labelled as such. The resulting parse treats have as a main verb and to as a

complement. This provides further justification for the need to incorporate collocations and

idioms in the lexicon (see section 6.1.3).

Example iii) illustrates an occasion on which the combination of probabilities itself appears

to select a more complex structure in favour of a simple one. The complement in a clause is

more likely to be filled by a nominal group than by a quantity-quality group, so the single

apex long

is classified as an adjectival modifier in a nominal group rather than as a predicative

adjective.

Although I have been rather conservative in classifying such examples as failures, several are

legitimate systemic-functional syntactic structures, so cannot be regarded as incorrect. The

nearest solution to the desired one (in terms of matching categories and structure) was

frequently the first one produced, as Figure 28 column 5 shows, so the probabilistic method

should not immediately be rejected. The real message from such examples is that there is a

need to compensate edges which contain words so that they can be activated equally or in

preference to ‘wordless’ edges created from the grammar.

 124

In the probabilistic model used in test one, the weight of a tree is calculated as the product of

the weights of each of its constituent edges. A spanning edge containing, say, six words

would have a combined probability derived by multiplying together probabilities of all its

many constituent edges. Such a potential edge would be competing in the agenda with edges

spanning only one or two words, which would be prioritised until they were extremely deep.

It would be desirable to normalise the edges that span several words to allow them the chance

to act ahead of the implausible very deep structures being built for single words. Indeed,

some very deep trees and subtrees created in the chart (caused for example by mutual vertical

recursion of adjuncts) are not well-formed according to the SF description used to annotate

the corpus, but are well-formed with respect to an unmodified context-free formalism. A

mechanism is needed to constrain vertical growth of trees to the limits observed in the

language as it is performed, and to require that the vertical relationships between nodes are

linguistically acceptable. A context-free formalism essentially controls horizontal ordering

(linear precedence) relationships between potential sister nodes in a tree, as well as the

immediate vertical dominance between a mother and its possible daughter constituents.

However, the alternative vertical layering in SFG syntax trees between elements of structure

and units would suggest a model which can capture relationships at least between

grandmother, mother and daughter nodes. Intuitively, one can envisage this being needed to

model the difference between clause structure for a matrix clause and a relative clause, for

example.

O’Donoghue (1993) used vertical strips extracted from leaf node to root in his vertical strip

parser, which limited parse trees to the depth found in his artificial corpus of NL generator

output. Weerasinghe (1994; 86) uses a combined probabilistic model derived from the POW

corpus and then mapped onto SF labels used in the GENESYS NL generator. His model

includes lexical tag (exponence) probabilities, filling probabilities (a vertical bigram model)

and element transition probabilities (akin to probabilistic linear precedence rules).

In the second parsing test, I will combine the context-free model (used in test one) with a

vertical trigram model extracted from the EPOW corpus, which together act in a context-

sensitive fashion to control both horizontal and vertical relationships in the solutions the

parser finds. The use of additional vertical weights, on top of the probabilities of the context-

free rules, tends to mitigate against deep thin trees. Whilst the search strategy is still most-

likely first, a more breadth first pattern is encouraged, by penalising vertical growth without

corresponding horizontal growth in the tree. This appears to be a feasible alternative to other

ways of compensating wider spanning edges, such as taking the probability of a tree as a

 125

geometric mean of its constituent node probabilities (Sampson et al 1989). There is as yet no

generally accepted solution to this problem.

5.3 Test 2: Brill tagging and a context-sensitive chart parser.

The second trial was conducted with a version of the probabilistic chart parser which I have

called version 7. The components of this parser are:

(1). Lexical look-up provided by the Brill tagger, trained on the EPOW corpus. This ensures

that at most one tag is assigned to each lexical item. Since the tagger is trained on the corpus’

lexical data, it can handle the hyphenated multi-word combinations POW contains. The

training process also includes the learning of general morphological rules for English words,

which allow prediction of word category for words not found in the corpus. (However, as we

shall see, this is process does not yet yield perfect results.)

(2). A probabilistic context-free systemic-functional syntax model extracted from the whole

of the EPOW corpus, in which the simple context-free rules have been modified (as

described in section 3.1) to account for optionality, co-ordination and subordination.

(3). A probabilistic vertical trigram model, also extracted from the EPOW corpus.

(4). A probabilistic chart parser whose search strategy is ‘most likely first’, and which has

been adapted to elegantly handle the modified context-free syntax in (2) and (3). In

particular, whenever a non-terminal edge is being proposed (by activation of the fundamental

rule of chart parsing), each of the vertical trigrams from the new spanning edge’s mother

label down to its constituent granddaughters is checked against the vertical trigram model. If

any are not found in the corpus-extracted model, the proposed edge is rejected. If all the

vertical trigrams are found to be valid, then the logarithms of their respective probabilities are

added, and combined with the weights of the active and inactive edges in making the new

spanning edge.

(5). A limiting factor place on the production of all edges in the chart, which prevents them

growing deeper than the observed depth of (sub)tree found in the EPOW corpus. The factor

varies according to the length of the (sub)sentence, i.e. according to the breadth of the tree,

measured in leaf nodes. Once the first solution has been found by the parser, the maximum

depth of any further solutions is capped to 4 nodes greater than the first solution (provided

this is still less than the original maximum depth limit).

(6). A modified termination condition on parsing. The standard chart parsing algorithm

terminates when the agenda is empty, and no more new edges can be proposed for the

particular lexicon and syntax model. The current version 7 of the parser instead terminates

when

 126

a) six solutions have been produced, or

b) the weight of an edge at the top of the agenda is 1.5 times the weight of the first solution

found, or

c) the number of edges on the agenda has grown to 50,000 times the length of the input in

words.

Each of these terminating conditions has been set arbitrarily, after observation of the parser

performance without them, and also with them set at different values.

The addition of the vertical trigram model (3) to the context-free syntax rules (2) effectively

transforms the complexity of the model to be context-sensitive (a production is only activated

when the mother is itself the daughter of a particular grandmother). It serves to limit (but not

entirely prevent) the vertical recursion of, for example, adjuncts sandwiched by clauses,

which were partially responsible for the very slow parsing times displayed in test one. It is

more flexible than O’Donoghue’s vertical strips from leaf to root, since a vertical trigram

model theoretically allows deeper trees than those observed in the corpus, but these will be

penalised by having very low probabilities. However, in the current implementation, a further

vertical limiting factor (5) has been introduced, to prevent the growth of subtrees of greater

depth than those found in the corpus. The vertical trigrams are comparable to (but more

restrictive than) the vertical bigram model of filling used by Weerasinghe (1994; 87).

The second test was performed on the Sun general purpose server of the School of Computer

Studies, running UNIX and POPLOG POP11
3
. The results are summarised in Figure 31, and

Appendix 15 contains a detailed log of the parser output.

Figure 31. Test 2: Results.

Utterance Words Tags

correct

Parsing

completed

Parses

found

POW

analysis

found

Good SF

analysis

found

Sol.

no.

CPU

time

Chart

edges

1 1 1/1 Y 6 Y Y 2 3.47 133

2 4 4/4 Y 6 Y Y 3 3340.83 3637

3 6 6/6 N 5 Y Y 5 7 days 19498

3 A SPARCserver-1000E (csgps1), with main memory of 192 Mbytes, 2 x 60 MHz processors, running Unix

Solaris 2.3, POPLOG version 14.5.

 127

4 3 3/3 Y 1 Y Y 1 107.32 846

5 3 3/3 Y 4 Y Y 1 148.01 1026

6 4 3/4* Y 5 N Y (5) - 11766

7 4 4/4 Y 6 N Y (4) 6564.48 4361

8 3 3/3 Y 1 Y Y 1 21.9 618

9 1 0/1 Y 4 N Y (1) 9.06 218

10 5 5/5 Y 6 N Y (1) 59180.1 10548

11 6 6/6 Y 6 N Y (3) 106244 17647

11a 3 3/3 Y 4 Y Y 3 201.38 1322

11b 3 3/3 Y 1 Y Y 1 26.72 616

12 2 1/2 Y 2 N Y (1) 2.74 161

13 8 7/8 N 0 N N - 3 days 19518

14 6 6/6 Y 6 Y Y 4 7715.26 8074

15 2 1/2 Y 2 N Y (1) 2.5 161

16 3 2/3** N 0 N N - 2 hrs 6577

17 3 3/3 Y 1 Y Y 1 119.6 873

18 4 4/4 Y 6 - Y (2) 1986.51 3640

19 6 6/6 N 3 - Y (1) 16 hrs 12367

20 7 6/7 N 0 - N - - -

21 15 14/15 N 0 - N - - -

22 32 31/32 N 0 - N - - -

23 10 9/10 N 0 - N - - -

* The word easiest is incorrectly labelled AX in EPOW, so the tag assigned (AXT) was

actually marked as correct.

** Once get has been incorrectly labelled X, it is impossible to find any solution given the

corpus-based grammar, so parsing was manually terminated early.

These results are a lot more successful than those for the first test. If we first consider the 19

‘trained’ test sentences taken from the POW corpus, (treating the two-clause utterance in 11

as three separate tests as shown), on ten occasions the POW analysis is among the first six

found, and in five of these cases the POW solution is the first one to be produced. Of the

further nine cases where the exact POW solution was not found, seven produced syntactically

acceptable trees, and three of these seven produced the best solution first. In only two of the

nineteen cases, no solution was found before parsing was terminated, once (no. 16) because

an incorrect tag made it impossible for a solution to be found using the current syntax model,

and once (no. 13) because I manually terminated parsing of an eight word utterance after

three and a half days before the termination conditions had been reached.

 128

In the smaller test on the six sentences of ‘untrained’ material, the results are less positive.

Parsing was completed in only two of the six cases, but both produced syntactically

acceptable analyses. The failures are partly due to lexical tagging error, and partly to the

length of the input. Each of the unparsed tests contained a tagging error which would have

made it impossible to find the ‘correct’ analysis.

To illustrate the improvement with respect to version 6 of the parser in test one, the two-

clause utterance discussed as a problem in section 5.2.2 (Figure 29), this worked out it won’t

fit (utterance 11), has now been successfully parsed, both as two separate utterances, and as

one co-ordinated clause utterance, as found in the corpus. Although the exact POW analysis

is not found in the first six solutions, the third solution to be found (see Appendix 15) differs

from it only in that the word out is dominated (indirectly) by a simple complement label (C),

rather than the finer-grained main-verb-completing complement (CM) which identifies the

occurrence of a phrasal verb. (The finer-grained label is less frequent than the general

complement label. Note that in the separate test parsing just the first clause, the parser finds

both solutions.) We will now consider the issues of parser efficiency and lexical tagging in

more detail.

5.3.1 Test 2: Parser Efficiency.

Version 7 of the parser has improved efficiency because only one lexical tag is added to the

chart for each word. Relatively deep edges are prohibited by a depth limit across all edges in

the chart, and some potential edges are never added to the chart by virtue of being vertically

ill-formed. Although version 7 of the parser has constrained edge generation markedly

compared to version 6, it has not eliminated the combinatorial explosion licensed by the

syntactic formalism.

Parse times range from 2-20 CPU seconds for very short utterances to 7715.26 CPU seconds

for a six-word utterance. However, parse time is not purely related to sentence length, but

also to structural complexity. Another six-word utterance (no. 3) was manually terminated

after 7 days having produced 5 solutions, with the agenda having reached around half a

million edges.

The size of the parser process reaches up to 85 Mb in such cases. Once the agenda has

reached such a size, much of the time is spent on simple sequential list search. The real time

devoted by the CPU to such a process obviously varies depending on the number of other

 129

jobs/users the operating system must attend to. The parser is not unique in suffering such

memory and speed problems when dealing with a large, perplex grammar: Sekine and

Grishman (1995; 221) report limiting active nodes and inactive nodes to 3 million and 10

thousand respectively, and use a small back-up grammar when their chart-parser is ‘unable to

produce a parse due to memory limitation’. Osborne (1995; 5) reports the need for similar

constraints and a ‘packing’ mechanism when using a modified version of the Alvey NL Tools

grammar and parser. Keenan (1993) actually abandons the use of the ANLT, considering it

too unwieldy to be applied to the problem of parsing handwriting recognition lattices. He

instead resorts to a less powerful Markov-model-based formalisms to find a practical

solution.

The success of the test on the POW corpus utterances can be ascribed to their relatively short

length, for which the size of the chart is less than around 1,000 edges. With longer sentences,

the chart reaches a size of several thousand edges and the agenda is usually an order of

magnitude larger, so test material from written corpora would naturally make the efficiency

results considerably worse. To a certain extent, this problem is constantly being reduced in

importance, as computer processing speed and working memory increase. Nevertheless, it

does currently limit the practical use of the parser for unrestricted English.

5.3 2 Test 2: Lexical Tagging Results.

The EPOW-trained Brill tagger assigns one tag for each word of input, and is reported by

Hughes and Atwell (forthcoming) to achieve around 95% accuracy. On both the untrained

and trained sentences in test two, the accuracy is somewhat lower, at just over 92% (11 errors

in 138 words). The errors are summarised below:

Lexical item Tag assigned EPOW tag

’s OX OM

mind M AF

fantastic AX EX

on (x2) P AX

always AX AI

get X M

 130

select P M

shorter H AXT

displays P M

enter P M

Interestingly, the error rate is actually worse on the POW corpus material (7/74) than on the

untrained tests (4/64). However, of the seven errors found in the POW tests, only one proves

really fatal: the labelling of get as an auxiliary X prevents any analysis at all being found for

utterance no. 16. (All of the other errors for the POW tests still permit an analysis to be

produced, even if it doesn’t exactly match that in the corpus). In contrast, all four of the

untrained test errors are serious, and three fall into the same category; labelling a sentence-

initial main verb (M) incorrectly as a preposition (P). This occurs because none of these

words is found in the POW corpus, so the tagger resorts to its morphological and

bigram/context rules to try to determine the word-tag. In each of the three cases, the main

verb is followed (not unusually) by the sequence determiner (DD) + head (H), which happens

to match the structure for the complement of a preposition as well as that of a main verb. The

fourth serious error is the labelling of shorter as a head (H) rather than comparative apex

(AXT) in the co-ordinating expression longer or shorter. It is likely that this would have

produced an analysis of co-ordinated NGPs rather than QQGPs.

The capitalised items in the untrained tests are assigned the label HN (namelike head) which I

deem to be acceptable, although in the corpus the alternative analysis of a simple head (H)

dominated by NGP filling a thing-modifier (MOTH) is often found labelling compound nouns

and related collocations.

The nature of the errors occurring with either CELEX look-up or Brill tagging is strikingly

similar. The areas for potential improvement are phrasal verb particles, adjuncts acting as

terminal labels, open-ended categories such as exclamations, and SFG’s fine-grained

description for auxiliaries. The Brill tagger is more successful, and has the added advantage

that it uses the context of each item in the sentence to determine just one tag per item.

5.4 Formal Evaluation.

The formal evaluation of parsing programs is still fraught with problems, as (Koch and

Sutcliffe 1995) illustrates. Researchers have different views as to what constitutes a correct

parse. The broadest difference corresponds to the various grammatical descriptions:

 131

dependency grammar, phrase-structure grammar and functional grammar. The aim of this

project has fallen within the bounds of the syntactic element of systemic functional grammar,

which involves building a tree structure akin to that in phrase-structure grammar, but also

labelling alternate layers of nodes with functional labels, called elements of structure. The

trees produced by my model are a notational variant, in which elements of structure and units

appear on separate nodes. Our task has been to try to reproduce the particular systemic-

functional syntax used to annotate the POW corpus, which omits the functional role labels

found in the more recent development of SFG for the COMMUNAL NL generator,

GENESYS. Nevertheless, it still constitutes a very rich syntactic description. The richness of

a syntactic description is a further area in which researchers differ in what they view as a

successful parse.

On one end of the spectrum, there are very coarse-grained descriptions, with only a handful

of terminals and non-terminals, often referred to as skeletal parsing, epitomised by that found

in the UPenn treebank (Marcus et al 1993), and in the parser of Sekine and Grishman (1995),

which contains only two non-terminals! At the other end, there are extremely detailed

descriptions, devised to illustrate fine-grained linguistic distinctions, such as those found in

POW, LOB, ICE and the Susanne Corpus, for example.

Parsing tests may also include or exclude the problem of lexical look-up, by guaranteeing

correct lexical tagging for the test sentences, or not. Different teams also vary in judging

which solution to include as a parse to be entered into the evaluation process; the first only,

one of the first few, or any of the parses produced. Even when we have a supposed target

parse to aim for, we cannot be entirely confident in judging correctness, since it is possible

with corpus data (as shown in utterance no. 6) for the target to contain an error, (albeit minor

in this case). Perhaps the most obvious ways of comparing solutions found against a target

solution is to match node labellings and tree structure overlap. It requires linguistic

knowledge of the syntactic category labels used in a grammatical description to make

judgments of correctness of node labelling, and to classify labelling errors as minor or major,

as I have done here. Such judgment is of course prone to occasional error, just as the original

manual transcribers and annotators were. Similarly, judgments can be made as to the distance

from the target tree structure by positing the number of structural changes required to

transform a solution parse tree into the target tree. Such changes would have to be defined

and accepted as a standard, (four possibilities would be those used in the simulated annealing

parser projects at Leeds: relabel, merge, hive and reattach (Sampson et al 1989, Souter and

O’Donoghue 1991), but who is to decide whether each change should be equally weighted?

 132

A final problem, moreover, is that although we know that a robust parser should eventually

be able to produce a corpus-based target sentence if it was trained on the parsed corpus (and

has completely accurate tagging), there is no guarantee that the target will be (or even should

be) the first solution to be produced (or even one of the first six), since other legitimate

syntactic analyses might be produced first, which the annotators ruled out using intonation

cues, semantic and pragmatic knowledge.

These comments explain why any one measure of the success of a parser has yet to be

generally accepted. Sampson et al (1989) proposed an evaluation metric which measures

similarity of node labels and overall structure by assessing the overlap in all the vertical

strips from leaf to root node, and report values of 75% for the APRIL parser tested on 50

sentences from the parsed LOB corpus. To my knowledge, the metric has not been re-used

elsewhere, although O’Donoghue (1994; 112) uses a variant on this theme.

Black et al (1991) propose an evaluation function ‘based only on the constituent boundaries

... (and not on the names it assigns to these constituents)’, which first eliminates a list of

known discrepancies between different grammatical descriptions, and then compares crossing

parentheses and recall with a similarly reduced parse taken from the Penn treebank. This

metric has been criticised by some researchers as too coarse and not linguistically motivated

(Magerman 1994; 91, Weerasinghe 1994; 140). Two good reasons for not considering such

crossings to be an acceptable measure are that when dealing with accuracy within just one

parsing scheme, the labels on the nodes are clearly important in judging how correct a parse

is. Secondly, the measure assumes only one solution parse is produced, whereas a parser may

reasonably produce more than one (acceptable) parse. Weerasinghe concludes that an exact

match can be the only fully acceptable measure, but, as we have just discussed, this has its

own shortfalls, since the target may not be the only legitimate syntactic parse, or may itself

be flawed.

Nevertheless, for the sake of those who wish to try to quantify results, the performance of the

parser (in Test 2) can be recorded as shown in Figure 32 (and readers wishing to quote these

figures are duty bound to quote the preceding four paragraphs as well).

An exact match success rate of 26% is found for the trained test (there is no such concept for

this unseen test). If we broaden our window to the first six parses found, the exact match

success rate is 53% (a+b). If we broaden our success criteria still further, to include any

legitimate SF syntax tree in the first six parses, the success rate rises to 89% (a+b+c+d) on

 133

the POW corpus tests. Since the number of tests for the unseen material is quite low, we will

not evaluate them separately.

For all 25 sentences, the most conservative criterion we can set is that a legitimate solution

must be produced first (a+c), which has a success rate of 40%. If we broaden this again to say

a legitimate (POW SF syntax) parse may be produced within the first six solutions, the

overall success rate (a+b+c+d) is 76%.

Figure 32: Evaluation of test results on 19 ‘seen’ and 6 unseen test utterances.

Type of Measure Number of

‘Seen’

Utterances

%age Number of

Unseen

Utterances

%age Overall

%age

(a) Exact match, first parse 5 26.3 n/a n/a

(b) Exact match, within top 6 5 26.3 n/a n/a

(c) Good SF syntax tree produced first 4 21.1 1 16.6 40

(d) Good SF syntax tree produced in top 6 3 26.3 1 16.6 36

(e) Only bad parses produced 0 0.0 0 0 0

(f) No parses produced 2 10.5 4 66.6 24

Total sentences 19 100 6 100 100

To a certain extent, the intended use of a parser should also play a part in evaluating its

success rate. Parsers can be used in a variety of applications, including

1. tasks which generally pass the parsing results onto further levels of processing (semantic,

pragmatic, machine translation, speech synthesis),

2. evaluating best paths through the lattices in recognition tasks (speech and handwriting

recognition),

3. evaluating acceptability of grammar (grammar and style checkers in word processing

tools), 4. semi-automatically annotating raw corpora, in order to expand the corpus data set

from which further broad-coverage probabilistic and syntactic models can be obtained for a

natural language, or to obtain parses from several different grammatical descriptions for the

same raw language data.

The eventual application for this parser has deliberately been only loosely specified as

belonging to either the tasks in 1. or 4. Most of the work conducted on parsing the syntax of

SFG has been with a view to the higher goal of semantic interpretation (falling squarely

under task 1), in order to permit NL analysis and generation within the same grammatical

 134

description (if not the same formalism). See for example the contributions by Fawcett (1994)

and O’Donoghue (1994) in Strzalkowski (1994), and the work of Kasper (1988), O’Donnell

(1993) and Weerasinghe (1994). The results presented here do not compare at all favourably

with those of Weerasinghe’s POP and O’Donoghue’s Vertical Strip Parser, which achieve

exact match success rates of 85% and 81% respectively. However, both of their projects were

based on much less complex versions of SF syntax with narrower coverage of English than

that found in the POW corpus: those extracted from the COMMUNAL NL generator

GENESYS ‘midi’ and PG 1.5 versions respectively. Equally, their syntactic models did not

yet include notations for handling ellipted, replacement and unfinished elements within a

constituent. One would also assume that all of their training material consisted of ‘headed’

constituents, which cannot be said for the POW corpus. It may also be argued that the small

quantity of unseen testing material used here presents a greater challenge (in terms of

sentence length and genre) than the POW and GENESYS Ark sentences used by

Weerasinghe and O’Donoghue, although they have used a greater number of test sentences.

Even though the POW SFG notation is different from that used in the COMMUNAL NL

generator, it would theoretically be possible for version 7 of the present parser to be used as a

precursor to semantic interpretation, since Weerasinghe (1994; 176) has devised a partial

mapping between the POW and COMMUNAL SF syntactic descriptions
4
. However, with the

present algorithm and computing resources, it would not be a feasible option for this or any

other real-time application, because of the slow performance of the parser.

Instead, the present parser offers greater potential as a tool for aiding corpus linguists in

annotating new material according to the POW scheme. It is a time-consuming job for any

linguist to learn the syntactic annotation scheme for any parsed corpus, even with some kind

of annotation training manual (which doesn’t always exist). The parser could be used to

suggest possible analyses which the corpus annotator could choose from or modify in a

manual post-editing process. This is the kind of tool the AMALGAM team at Leeds has

already used to annotate the Spoken English Corpus with the ICE syntactic description,

consisting of a tagger and parser provided by the TOSCA group from Nijmegen University,

Holland (Willis 1996). In this kind of interactive mode, it is possible to first check that the

tagging has been accurate, before continuing with parsing, which would certainly benefit our

4 It is a partial mapping because Weerasinghe’s list describes only 42 of the 98 node labels used POW, and listed

in Appendix 3.

 135

own probabilistic chart parser. Even to do the same for the POW SF syntax scheme, however,

the present parser would need to be improved in terms of speed and sentence length.

5.5 Conclusions.

The results presented here represent a qualified success. We have first seen that when using a

corpus-trained context-free syntax model, the probabilistic chart parser is effectively unable

to assign structures quickly to sentences of five words or more, due to combinatorial

explosion in the grammar. Inadequacies in the CELEX lexical look-up also had a small part

to play, although modifications to the lexical grammar mapping would minimise this

problem. With the exception of lexical failure, the context-free chart parser would be able to

produce correct analyses for longer sentences given sufficient time and adequate hardware

resources, but these analyses would be part of an enormous list of possible solutions.

By modifying the chart-parsing algorithm to employ both probabilistic context-free rules and

a probabilistic vertical trigram model (which together form a context-sensitive model), the

success of the parser is significantly improved, being able to find at least one legitimate SF

syntax parse in its first six solutions for 76% of the tests performed. The combined model

serves to improve the validity of the solutions produced, and prune the parser’s search space.

However, until the processing speed of computing hardware is greatly increased, such results

can still only be produced after an impractically long delay for any real-time applications,

particularly when the test sentences contain more than 6-7 words. In order to minimise this

delay, a set of termination conditions for parsing have been introduced, and the depth of

solution trees has been capped to that observed in the POW corpus.

The use of probabilistic search does tend to cause the ‘desired’ solution to be among the first

few produced (given the evidence of the small test sample included here), but is not always

the first solution. Using syntactic probability alone cannot be responsible for selecting a

correct parse from the forest of trees produced, and my results confirm the need for semantic

and pragmatic knowledge to be used as well in order to select the target solution found in the

corpus. I would however raise the question of the validity of tests seeking to find only an

exact match with a corpus-based target for a purely syntactic parser.

As far as lexical look-up and tagging are concerned, both the CELEX lexicon (modified to

include SF syntactic categories) and the Brill tagger trained on the POW corpus have proved

quite successful, with accuracy levels of 83% and 92% respectively for the word tokens in

 136

the test data. However, both tools show some room for improvement. The Brill tagger out-

performs the CELEX lexicon in my tests, but would perhaps be less successful were a greater

number of unseen tests to be included. If we consider our aim to be that of finding a corpus

target solution, then the Brill tagger has the advantage of only introducing one tag per word

into the chart, which improves parser performance. But if we have a wider aim of producing

all syntactically legitimate parses, then the selection of only one tag per word will

compromise parsing success, and a large-scale lexicon such as CELEX may offer a better

solution.

In the next chapter, I will assess how the components of the parser could be further improved,

to go a step further toward practical parsing using a wide-coverage systemic functional

syntax model of English, such as that found in the POW corpus.

 137

Chapter 6. Improvements to the Parser.

At the end of chapter five I drew the conclusion that the components used in version 7 of the

parser are a qualified success, but still leave room for improvement. A feasible method has been

proposed and implemented for creating a wide-coverage lexicon using the CELEX lexical

database, and an alternative lexical tool, the POW-trained Brill tagger, is even more successful.

The syntactic model extracted from the POW corpus consists of both probabilistic context-free

rules and probabilistic vertical trigrams, and serves to limit the over-generation found in a purely

context-free model. The probabilistic chart parsing algorithm I have adopted and modified is able

to use these resources with some success, but not yet with sufficient speed to be employed in a

real-time application. This chapter considers how the parsing algorithm and its lexical and

syntactic resources might be further improved and controlled. I will first consider the

possibilities for improving the lexical resources.

6.1 Improving the Lexical Resources.

6.1.1 Disambiguated Tag Probabilities.

One of the most obvious improvements to the POW syntax modified CELEX lexicon would be to

include the frequencies of each ambiguous tag for a word in the parsing process. This would

‘enhance’ the most likely lexical edges, making it more likely that the desired parse is found first.

Having disambiguated tag frequencies would not however solve the problem of ambiguity itself.

In the absence of a several million word SFG tagged corpus, the frequencies could be obtained

from a large tagged corpus such as the British National Corpus or the Bank of English, but in

each of these cases a mapping of grammatical categories to the POW SF syntax would be

involved. In areas where such a tagged corpus used a less delicate grammatical description than

the POW SF syntax, tag frequency assignment would be complicated. But for basic category

distinctions (such as noun/verb/adjective) broad preferences for one particular tag could be

derived.

 138

6.1.2 Refining the CELEX to POW Syntax Mapping.

Further amendments to the mapping between the original CELEX grammar categories and those

of the POW corpus have been identified during the course of this study. Many of these will have

to be in the form of hand-crafted entries, or exception lists to the general mapping, because they

result from areas where SFG is particularly delicate. The principal areas of deficiency are

described in sections 3.2.6 and 5.2.

A mechanism has yet to be devised for permitting and controlling the production of temperers

and adjectival verb participles within the parser itself. Implementation within the parser is

proposed because there appears to be no real restriction in English on the spontaneous production

of degree and scope temperers from adverbs and adjectives, for example (see section 3.2.5 for

exemplification). A first attempt solution would be for the parser to identify cases of adjacent

adverbs, or adverbs occurring to the left of prepositions and adjectives, and check if there is an

active edge at that point in the chart looking for a temperer.

6.1.3 Handling Recurrent Word Combinations.

A more radical modification to the lexicon needs to be made to handle the linguistic phenomena

of idiomatisation (he kicked the bucket) and compounding (piston engine), neither of which is

supported by CELEX. In both of these cases, several wordforms need to be classed together as

one lexical item. In the context of a chart parser, we can imagine this being implemented (when

the chart is initialised) as an edge spanning several words, but with only one tag. Idioms and

compounds represent one extreme of a cline in language between totally free combination of

wordforms and increasingly restricted co-occurrence of words. Restricted word co-occurrences

(variously called collocations, phrases or phrasemes), have not been accounted for in any serious

way by computational linguists writing parsers. Altenberg (1994) claims that around 70% of the

words in the London-Lund Corpus are part of recurrent word combinations, and these can vary

from two to around forty words in length. If such a large number of words in the language are in

some way bound lexically, syntactically and semantically to each other, this should surely be

captured in the lexicon, and this information used to prime the parser. However, until the lexicon

is revamped to become more of a phrase-bank, there is little hope for parsers to take advantage of

collocation. Omitting such information condemns the parser to producing all the ambiguities the

 139

grammar and lexical tags will permit, without finding the idiomatic or collocational structure.

The POW SF annotation makes a small attempt at capturing such word combinations through its

use of the labels CM and PM (Main verb completing complement and main verb preposition

respectively), but a simple context-free grammar formalism fails to capture these horizontal

dependencies with the main verb. In other cases, the annotators of the corpus hyphenate together

multi-word lexical items. Other than requiring these to be hyphenated in the input to the parser

(in which case they would be treated as one item and labelled with default tags), the lexicon can

be the only source of collocation, compound and idiom information. A comprehensive

collocational/idiom lexicon should also handle phrasal verbs and at least the most common

temperer combinations.

6.1.4 Improving the Brill tagger.

The main deficiency in the Brill tagger is in the size of its lexicon, which is obtained directly

from the POW corpus. Any words not found in the corpus are tagged using a small set of default

rules, which consider the morphology of the unknown word, and the surrounding words and their

tags. These rules have been learnt from the morphology of only the words in the corpus, so

would clearly benefit from being re-trained on a larger POW-SF annotated corpus. The Brill

tagger’s lexicon could be supplemented using the wordforms and tags in the CELEX lexicon,

which would expand its size from around 4,500 words to at least 60,000 words. Unfortunately,

this is not a trivial exercise, since for ambiguous words, the Brill tagger’s lexicon requires the

alternative tags to be ordered by likelihood, which is effectively the same problem as discussed

in section 6.1.1.

One other way the error rate of the Brill tagger could be reduced, is (somewhat bizarrely) to

attempt to independently tag the test sentence with the Brill tagger trained on other (perhaps

larger) corpora. The tags so obtained from other schemes could be broadly compared with the

POW tag, and if the POW tag was found in some way to be the odd one out, it could be mapped

to a better tag in the POW scheme by use of a tag interlingua. Such an interlingua is currently

under development by John Hughes in the AMALGAM project (Hughes and Atwell,

forthcoming).

 140

6.2 Improving the Syntactic Formalism.

6.2.1 A Probability Matrix for Optional Rules.

One improvement to the context-free syntax formalism as it stands would be to retain all

individual rule probabilities in the collapsed rules, as discussed in section 4.3.1. A possible way

of retaining the original probabilities would be to store them in a matrix as the initial probability

element of the collapsed rule. A collapsed rule containing n optional daughters would need 2
n

places in the probability matrix. Observing the collapsed context-free rules derived from the

corpus, n would be at most four, so a 16 place ordered matrix would be needed. However, the

simplest way to implement such a structure when collapsing the rules would be to apply it to all

rules, regardless of their number of optional daughters. This would result in a vast number of

zero probabilities being needlessly stored. Since the syntactic model is currently loaded as part of

the POP11 process, this would use up valuable memory. A method which only creates the matrix

as it is required would be preferable. During parsing, when an optional edge is instantiated, the

matrix probability would then be accessed to derive the combined edge probability. A further

difficulty with this solution however is that in a corpus the size of EPOW, few rules are frequent

enough for us to predict probability with great confidence. Collapsed rules at least include

combined probabilities we can be surer of.

6.2.2 Grammatical Coverage.

The modification to all the filling rules extracted from the corpus currently permits a

theoretically unlimited number of subordinated or co-ordinated units to fill an element of

structure. This propensity is restricted by a probability degradation function (estimated from the

evidence in the corpus), which progressively penalises edges representing an element of structure

containing more and more units of the same type. The degradation function can, of course, be

modified to produce solutions displaying more or less co-ordination.

The vertical trigram model theoretically allows the parser to permit vertical relationships greater

than three nodes deep which are not observed in the corpus, but tends to constrain them to be

very near to the corpus patterns. A vertical sequence of three nodes or less is however required to

have been observed in the corpus.

 141

No such flexibility has yet been introduced in the handling of the componence relationship (that

which expands a unit as a sequence of elements of structure), which forms the bulk of the

combined syntactic model, particularly with respect to the expansion of the clause. This is

modelled by a probabilistic context-free formalism, with a modification allowing optional

daughters. To permit componence relationships not observed in the corpus, we would need to

relax the context-free model to some kind of regular grammar, such as linear precedence rules, or

a bigram or trigram model (Weerasinghe (1994) uses a bigram model of transition probabilities

between elements of structure). The componence grammar is already enormous, given the

inclusion of rules for replacement, ellipted and unfinished constituents, and relaxing the

formalism here would further increase the permutations to be added to the chart, so this step has

not been taken.

6.3 Improving the Probabilistic Chart Parser.

6.3.1 Efficiency Checks.

The first step one might take to improve the performance of the probabilistic chart parser as it

stands is to do some kind of efficiency audit. This would involve monitoring and minimalising

the time spent on garbage collection, as well as assessing each procedure in turn to check it has

been written in an efficient way. Whilst I have attempted to bear efficiency in mind in the

modifications I have made to Pocock and Atwell’s weight-driven chart parser
1
, some of my

changes will most probably have compromised the efficiency of their implementation. Two such

cases have already been identified:

Firstly, a small number of duplicate edges are produced as a result of applying different optional

rules which instantiate to the same rule in parsing.

Secondly, to prevent mutual vertical recursion of the same pair of categories (discussed in

section 5.2.2) I introduced a less stringent check on the contents of the chart and the agenda

1 Indeed, that was the purpose of collapsing the grammar in the first place.

 142

when proposing a new edge. (The less stringent check allowed for variation in the probability

and the lower levels of the ‘found’ elements of an edge, whereas Pocock’s implementation

required an exact match, using the member function). My revision improved accuracy of the

parser at the expense of efficiency (the POP11 matches facility was used instead of member).

Pocock’s code was carefully checked to see if efficient alternatives to many POP11 functions

could be used, whereas I have not yet done the same for my own supplementary code.

A further efficiency gain may be possible through external storage of the syntactic model.

However, unlike the lexical facility, which needs to be accessed only once per word at the start

of the parsing run, the syntactic model must be consulted throughout parsing. Potential efficiency

gains could only be measured by implementing an external grammar access function, and testing

its performance. Note however that any such improvements are only likely to be minor, since

Pocock and Atwell’s improvement of Gazdar and Mellish’s original algorithm was incrementally

developed taking efficiency into account at each stage (see Pocock and Atwell 1993, Atwell

1994, for details).

6.3.2 Applying Multi-Word Edges in a Chart.

One advantage of the chart parsing algorithm is that only minor modifications would be

necessary to accommodate multi-word lexical edges (for collocations, idioms etc. see section

6.1.3) being added to the chart initialisation procedure. Instead of simply taking each word in

turn and looking it up in the lexicon, all permutations of neighbouring word combinations would

also be looked up in the lexicon (supposing a good collocational lexicon with SF syntax labels

were available). A further amendment might be to look up non-adjacent combinations of words,

since some collocations can be discontinuous: eg. run up in run a big bill up. Multi-word edges

would tend to be activated ahead of productive syntactic combinations, since the former would

not involve probability combination. Productive combinations still need to be generated by the

parser for cases of non-idiomatic use of the same structure. For example, in (1) there is a genuine

ambiguity between the idiomatic and syntactic readings, whereas in (2) and (3) syntactic and

semantic clues in the adverbial phrase (time versus place adjuncts) suggest one reading as more

likely.

(1) He kicked the bucket.

 143

(2) He kicked the bucket last week.

(3) He kicked the bucket down the corridor.

Although the idea of parsing idioms and collocations is attractive, it would actually serve to

increase the perplexity of the syntax model. Whereas some lexicons of idioms and phrasal verbs

do exist, like the CELEX lexicon, they would need to be mapped to the POW SF syntax labels.

Alternatively, the Brill tagger could be re-trained on collocation-annotated corpus material.

6.3.3 Restricting Unnecessary Rule Application.

I have already implemented a limited look-ahead function within the chart parser to restrict rules

with more daughters than there are words remaining from being added to the chart (or agenda). A

more general look ahead facility to prevent rule application at the start and middle of a sentence

is needed. As the algorithm stands, the only check that is performed (apart from the sentence

length check just mentioned) when the grammar is consulted, is to ensure that the grammar rule

contains a first daughter matching the label of an inactive edge in the chart. If the grammar rule

contains more than one daughter, additional checks should be performed on each daughter to

ensure that the word tags on the right-adjacent words could either be such daughters, or be

constituent parts of the daughters. Implementing this in SF syntax would probably require a

record being kept of a node’s vertical position in the tree, i.e. its position in the rankscale

(Fawcett 1981: 54). Were a look-ahead function able to be applied in this way, it would severely

restrict the combinatorial explosion produced by a simple context-free grammar and unmodified

chart parsing algorithm. On the other hand, such a look-ahead check every time a potential rule is

considered would add other processing overheads, since it would effectively involve checking for

the existence of a vertical strip, in (O’Donoghue 1994)’s terms, between a right-adjacent word

and the next daughter category.

6.3.4 Controlling the agenda.

Perhaps the single most important improvement to the algorithm of version 7 of the parser would

be in controlling the agenda to accelerate the production of spanning edges. The agenda is

currently implemented as a POP11 list, ordered simply by the weight of each edge, no matter

how many words the edge spans. The size of the agenda produced for even a six-word sentence

 144

can reach half a million edges after a week of parsing, so managing it efficiently is crucial to

efficient parsing overall.

In a standard chart parser, the agenda is treated as either a stack or a queue, to achieve depth or

breadth first search. Ordering the agenda by probability is different to both of these. We can

produce a search path approaching either depth or breadth first (whilst still retained a most-likely

first strategy) by altering the probabilistic function determining the weight of a subtree. If we

want to achieve breadth first style search, we can penalise new edges being proposed which don’t

increase their combined word span, (i.e. those with one edge which is entirely active, and has

found no daughters yet), by adding to their weight. We can encourage the early production of

deeper narrower trees by lessening the same weight. In the current parser, version 7, more of a

breadth first effect is produced by modifying the combined weight derived from the vertical

trigram model for any new edge. Since POW SFG trees are relatively broad and flat (compared

to say a tree in Chomsky Normal Form), the vertical weight parameter has been set to reproduce

fairly flat trees (although this can be altered by adjusting a single parameter value).

Very deep trees are prohibited from ever being added to the agenda by a further function limiting

edge depth. This function depends on the length of the edge (in words), and the limit can be set

to the maximum depth observed in the corpus for a particular word span, or somewhere between

the maximum and the median, if we wish to further prune potential edges from entering the

agenda (at risk of not finding some rarer, deep solution trees). The function must rise in steps of

two nodes, (since I treat the filling relationship as covering two nodes, rather than one), to

account for the alternation between units and elements of structure. It is currently set to be the

maximum observed depth in the corpus for the range of sentence lengths (from one word to 73

words, the maximum depth ranges from 12 nodes to 18 nodes). It would be worth experimenting

with limits nearer to the median, rather than the maximum depth to see how much the agenda is

reduced, and thereby parsing speed improved.

However, probably the most effective modification we could make to the agenda would be to

prioritise multi-word edges over those spanning fewer words. The agenda could be ordered first

by edge breadth into several sub-agendas, and then by weight within each sub-agenda, as

Weerasinghe (1994; 117) has done with apparent success. Agenda search could also be speeded

 145

up by physically storing each sub-agenda as a separate element of an array, as we have in the

current parser for the chart itself.

6.3.5 Feature-Based Parsing.

It is tempting to suggest that feature-based categories should replace the simple atomic labels

used in SFG syntax, and combined using unification during parsing. This change has been one of

the hallmarks of several recent grammatical theories (GPSG, HPSG, LFG, Categorial Grammar),

but such formalisms have rarely been used for corpus annotation (in which case it has been

achieved by automatic parsing using a feature-based parser, such as the ANLT parser, which

relies on the headedness of constituents). Such a proposal would serve to reduce the grammar

size, and capture some of the long-distance dependencies (vertical and horizontal) which are

found in the POW corpus trees. For example, the relationship between a main verb and a main

verb completing complement or preposition could be enforced using feature propagation

principles (such as GPSG’s Control Agreement Principle, see Gazdar et al 1985; 83). Likewise

the dependency between a wh- word, wordtag and its wh- grandmother could be captured by the

GPSG Head Feature Convention (Gazdar et al 1985; 50), instead of using the current vertical

trigram model. In the POW corpus grammar, though, we have observed many cases where the

head is absent, which would prevent such conventions/principles from being successfully

applied.

However while using feature-based grammars and unification obviously reduces parser

overgeneration, it does not solve the problem of massive ambiguity that all wide-coverage

grammars experience (Oostdijk 1991, Keenan 1993). A further drawback with feature-based

grammars is that they are hand-crafted competence grammars, and not directly extractable from

corpora, along with their rule probabilities. So producing a feature-based formalism on the scale

of lexicon and grammar we have used here would be an enormous manual task, and be contrary

to the general ethos of this work, which is to minimise the manual intervention in the creation of

the syntactic model, by extracting it from suitable annotated corpus material. The only feasible

way a large feature-based SFG could be automatically produced would be to use a NL generator

such as GENESYS to produce syntax trees annotated with the relevant features taken from the

system network, should the network contain them. Even if this were possible, this grammar

 146

would not have as wide a coverage as the POW corpus SFG, nor would it have realistic

frequencies to guide parsing.

6.3.6 Semantic Solution Pruning.

When faced with the problem of massive ambiguity, most developers of wide-coverage

grammars assume some kind of compositional semantic model will work alongside the syntax to

select the correct analyses. A Montague-style compositional approach is used to attempt to build

semantic representations for each syntactic analysis, and if a representation cannot be built, then

the parse is rejected. Problems with this approach are that again each semantic rule has to be

hand crafted rather than automatically learned, and it assumes that the semantic grammar is

complete. Sentences which are not assigned semantic representations may well be legitimate, but

just not covered adequately by semantic rules yet. A mechanism for assigning likelihoods to

semantic representations is not normally incorporated, and so the buck is passed on to a (usually

even less well defined) pragmatic model for further disambiguation.

A more promising semantic constraint model for disambiguating parse forests would be one

which could be automatically learned or extracted, would allow a weight to be assigned to a

sentence, and would not rely directly on the precise syntactic structure of the sentence for its

success. Demetriou and Atwell (1994) present a combination of such semantic constraints which

offer a more practical approach to semantic disambiguation. Among others, they include

semantic domain codes and selectional restrictions/preferences extracted from machine-readable

dictionaries and lexical databases, and measures of mutual semantic information and distance

between words, which can be extracted from corpora. Some of these measures rely first on the

production of a syntactic structure, to provide the semantic head of each constituent, for example,

while others can be applied independently of the syntax tree. The former are useful in

disambiguating syntax trees, while the former and the latter can be applied in speech and

handwriting recognition tasks where the recogniser produces a lattice of words as output.

Although an optimal function for combining each of these constraints has yet to be established,

they offer a more practical (learnable) way of assessing the semantic integrity of a sentence and

its parse trees.

 147

6.4 Conclusion.

In this chapter I have presented some potential improvements to the probabilistic chart parser

algorithm, and to the lexical, corpus and syntactic resources it employs. Each of these are non-

trivial amendments, so have not yet been implemented. In some cases they will not be

implemented in the foreseeable future owing to the absence of relevant lexical or corpus

resources. These improvements address the issues of poor speed, over and undergeneration, and

disambiguation of multiple solutions which were evident in the parsing test results detailed in

chapter 5. It is difficult to assess the gains that can be made in each case, but adjusting the

ordering of the agenda to prioritise broader edges over narrower edges would appear to offer the

greatest potential for improving parser performance to a more adequate speed for real-time

applications. At the same time, the current implementation would certainly benefit from faster

hardware which is currently or soon will be available.

 148

Chapter 7. Conclusions.

The original aims of this thesis were twofold: to propose a re-usable method for deriving a

probabilistic parser for relatively unrestricted spoken English, and to use this method to

implement such a parser for the systemic functional syntax used to annotate the POW corpus.

Both of these aims have been achieved, but not without some qualifications on their success.

The main shortfall has been in the implementation of a parsing algorithm which can rapidly

traverse the enormous search space presented by the large lexical and syntactic resources

needed for unrestricted parsing. The parser achieves a reasonably creditable success rate of

76%, if the criteria for success are liberally set at at least one legitimate SF syntax tree in the

first six produced for the given test data. But it doesn’t do this quickly enough for real-time

applications. I will now discuss these two aims in turn, beginning with the different elements

of the parser implementation for the corpus-trained systemic functional syntax.

7.1 Lexical Resources.

Two lexical resources have been developed to support the parser; a large-scale lexicon (from

CELEX), and a corpus-trained tagging program (due to Brill).

The first consists of a 60,000 wordform lexicon derived from the CELEX database, in which

the original ‘theory-neutral’ grammatical tags have been semi-automatically transformed to

those of the POW SF syntax. The mapping has been tested by looking up all the unique word-

wordtag pairs from the Edited POW corpus in the CELEX lexicon, and checking if the POW-

assigned tag was present. The success rate for word tokens with the correct tag was around

82%, which means the two default mechanisms described below will come into play for

approximately one in every five words. On the full parsing tests described in section 5.2,

look-up success rate was 83% of the words and tags found in the POW corpus.

The lexical probabilities contained in the CELEX database are extracted from the

Birmingham COBUILD corpus. In the present parser, these probabilities are not used, since

they are not disambiguated for each possible tag. However, were the parser being used for a

speech or handwriting recognition application, the likelihood of one wordform over another

would be valuable information. The lexicon is supported by two default mechanisms within

the parser. The first assigns the label for proper nouns to any words other than the first

 149

person singular pronoun (I) which begin with a capital letter. This default assumes some form

of lexical preprocessing has been performed on the input, either spoken or written. The

second default assigns the three most common tags (noun, verb, adjective) to any words

which have failed to have been assigned a tag by lexical look up or the first default. Rapid

lexical look up is achieved as an external process to the parser using an indexed and

subindexed file structure.

The second lexical resource is the Brill tagger (Brill 1992, 93, 94), trained on the POW

corpus by John Hughes (Hughes and Atwell, forthcoming). This incorporates a small lexicon

based on the words in the corpus, and a set of context an bigram-like rules learned from the

corpus, as well as some rules for assigning tags to unknown words. The tagger assigns a

single tag to each word of input, and does so with 92% success rate on my test data (see

section 5.3). Apart from an improved success rate, the Brill tagger is preferred because it

makes parsing more efficient, by only introducing one edge per word when initialising the

chart. It is also re-usable, since it can be trained on other corpora, as Hughes and Atwell

(forthcoming) demonstrate for the LOB, London-Lund, Brown, SEC, Penn and ICE corpora.

The tagging success rate could be improved by supplementing the tagger’s small lexicon with

the aforementioned CELEX lexicon, by checking possible tags against those assigned by the

Brill tagger trained on other schemes, and identifying discrepancies, or by using the tagger to

tag new material, manually post-editing it, and retraining on the enlarged tagged corpus.

7.2 Grammatical Resources.

The grammatical resources consist firstly of a probabilistic context-free grammar extracted

automatically from the Edited Polytechnic of Wales corpus, of just over 2,800 rules. This size

of grammar is achieved by treating the SFG relationships of componence and filling as the

same phenomenon. This means formal and functional grammar labels are not treated as

though they were placed on the same node in a tree, but handled as if they were on separate

nodes. Were the two relationships distinguished when extracting rules, the grammar size

would grow to at least twice this size. The benefit gained through the smaller set of rules is

offset by the loss of context sensitive grammatical information. In order to compensate for

this loss, and capture the vertical relationships between units and elements of structure (and

vice-versa), a probabilistic vertical trigram model is also extracted from the corpus.

To reduce the set of context-free rules, and thereby improve parsing efficiency, an algorithm

for collapsing similar rules into new rules containing optional daughters is devised and

 150

applied to the componence rules. Similarly, the filling rules which handle co-ordination (and

sub-ordination) in the grammar are collapsed into a smaller set of rules with only one

daughter, while maintaining the probability of the repeated daughters. A general degradation

function for the increasing occurrence of co-ordination is extracted from this data, which will

then permit the parser to recognise co-ordinated structures not realised in the corpus. No

default mechanism has been implemented to allow for gaps in the componence grammar

which would cause the parser to fail. These reduction techniques led to the final syntactic

model containing just under 1900 probabilistic context-free rules, in addition to 968 vertical

trigrams. The data structures were in the form of a property table, indexed by the (first)

daughter of each rule/trigram, in order to afford more rapid access to specific subparts of the

syntax.

The combined context-sensitive syntactic model, when tested with the parser, was found to

overgenerate marginally with respect to vertical SFG relationships between words, elements

of structure and units.

7.3 Parser Implementation and Testing.

An existing weight-driven chart parsing algorithm was amended to handle rules containing

optional daughters and permit co-ordination beyond that exhibited in the corpus.

Modifications were also made to allow the lexicon and tagger to be accessed externally to the

main parsing process. Two SF syntax specific features were incorporated into the parsing

algorithm: a restriction is placed on the fundamental rule of chart parsing such that only

edges that are well-formed with respect to the vertical trigram model may be combined.

Secondly, the notation for filling rules (which permits repeated co-ordinated and

subordinated daughters) was accommodated to distinguish them from componence rules.

Although a working parser for the POW corpus syntax has been produced, it is certainly not

an unmitigated success, but neither is it a complete disaster. Two versions of the parser were

tested on 25 test sentences taken partly from the POW corpus, and partly from unseen

material of a different genre. Of the two parsing algorithms which are tested in chapter 5, it is

fair to say that the simple context-free model leaves a great deal to be desired, since it fails to

find a target solution in all but two cases. The context-sensitive parser created by the

combination of a corpus-trained context-free syntax with a vertical trigram model performs

with some success (ranging between 26-89%, depending on evaluation criteria), but still fails

to find a solution within the timescale required by any real-time application for parsing all

 151

but very short sentences. For sentences of over seven words the parser can run for several

days without producing a solution. In its current form, it would only be truly useful in helping

a non-systemicist begin to analyse a raw corpus using the POW corpus annotation scheme.

The parser has essentially three component parts, a lexicon, a syntactic model, and an

algorithm for combining these into grammatical analyses for sentences, I have provided

large-scale lexical and syntactic SFG resources for parsing a substantial subset of English

grammar, but a partially inadequate algorithm with which to harness their size and

complexity in a real-time application.

Having assessed how well I met this first aim, I will now turn my attention to the second aim,

that of demonstrating a reusable method for parsing resource development.

7.4 The Research Method.

The general research principle in this project has been to build computationally tractable

linguistic resources which account for characteristics of the language as it is performed,

rather than model native speakers’ intuitions of how the language should theoretically be

used. This principle exposes the computational linguist to many of the messy features of real

language use, such as repeated words, interrupted sentences, missing or incorrect words, and

constituents without syntactic or semantic heads. Such exposure is exactly what the machine

will get in human-computer interaction via written or spoken language, however, so an

adequate natural language processing system for unrestricted English needs to be able to

account for language as it is performed. Whilst it is tempting to suggest that users of future

language technology be constrained in their freedom to use the full range of their natural

language, the work presented here instead explores the possibility of parsing relatively

unrestricted language, since there are no guarantees that the methodologies used for

constrained-NL systems can be scaled up easily to unrestricted language.

I have also tended to address linguistic issues ahead of computational resources, preferring

ideally to preserve linguistic information where possible. However, there have been some

compromises for the sake of providing a working implementation of the parser. I have

furthermore adopted reusable, transferable methods ahead of those devised specifically for

one grammatical theory, where practicable.

With these principles in mind, the primary resource for the computational linguist developing

a parser is the parsed corpus, which provides a rich set of examples of lexical items and

 152

grammatical structures, and offers the potential of extracting a probabilistic syntactic

description in a number of formalisms suitable for parsing. Parsing programs can then be

devised for each such formalism, irrespective of the grammatical description it houses. Using

the corpus as a primary resource also has the advantage of offering probabilistic information,

which is crucial in unrestricted NLP work, as a practical means of ordering potentially

massive search spaces and selecting the most likely solutions. The only restriction within this

framework is that a parsed corpus is available for a chosen grammatical description, and that

it is in a format which permits automatic extraction. In practice this last constraint means

writing a bespoke program for translating the corpus into some kind of standard form, such as

bracketed trees. Existing parsed corpora have been stored in a variety of formats (Souter

1993), but there are some grounds for hoping that formats for parsed corpora will converge

on a standard soon, as the recommendations of the ACL/ALLC sponsored text encoding

initiative and the EAGLES language engineering standards project begin to be adopted, and

parsed corpus browsing tools become available.

Although parsed corpora yield both grammars and lexicons, these can be developed as

separate resources in a standard formalism, and this set formalism adopted as a standard for

the parsing program. It becomes sensible to consider separate grammar and lexical

development when we make the following observation: While grammars derived from such

corpora are relatively large, compared to their hand-written rivals, the same cannot be said

for probabilistic lexicons extracted from parsed corpora. Larger lexical resources need to be

provided, and apart from tagged corpora, the only other reusable resource available is a

lexical database or machine-readable dictionary. The 1 million word tagged LOB corpus

furnishes us with a list of around 50,000 unique words and tags, but some lexical databases

are even larger. This situation has recently been greatly improved, with the release of the 100

million word tagged British National Corpus as a public resource. Researchers are just

beginning to explore this enormous bank of the English language, but are yet to exploit its

potential for language engineering tools. Even so, many of the words in a corpus are

singleton occurrences of ‘noise’ such as typographical errors, foreign words and proper

nouns, which we may not wish to store in the lexicon. No matter how large, corpora tend to

display gaps in the typical morphological paradigm for some words, so in the end, a

combination of corpus and lexical database may be preferable.

If the lexicon is developed independently, the grammatical description it contains must be

harmonised with that in the corpus-based grammar for use in parsing. The relative success of

the parser will depend on this harmonisation, the chosen syntactic formalism, and the parsing

 153

algorithm itself. Using either lexical databases or tagged corpora leaves us with the problem

of syntactic tag mapping to our target grammar (unless we are fortunate enough to have a

very large tagged corpus which contains our target grammatical description). This ‘mapping’

can be achieved semi-automatically, as I have shown for the CELEX lexicon, or quasi-

automatically, as has been done with the Brill tagger. These procedures should be able to be

repeated quite easily for other grammatical descriptions, since the POW SF syntax represents

one of the richer syntactic annotation schemes, including both formal and functional levels.

For the systemic-functional syntax found in the POW corpus, a combined context-sensitive

formalism has had to be adopted to accommodate this dual tree labelling in the parsing

program. This step may not be necessary for other corpus-trained syntactic models, for which

a context-free formalism may suffice.

The only area in which the research method still leaves real room for improvement is in the

parsing algorithm itself. The modified probabilistic chart parser is not yet able to efficiently

handle the enormous number of hypotheses licensed by the lexical and syntactic resources in

a way that produces solutions in real time. The probabilistic model does tend to generate

legitimate solutions in the first few (if not always the first) to be produced, but there is

evidence that additional semantic and contextual knowledge are required to select the target

solutions found in the corpus. It is anticipated that the greatest further gains in efficiency will

come from better handling of the agenda, to prioritise wider-spanning edges.

7.5 The Last Word.

In section 1.3, I asked several questions which arise when developing a parser for

unrestricted English. I will conclude by presenting answers to these questions, as discovered

during this project. We have seen that the formalism required to capture the complex

syntactic relations in a systemic-functional description of unrestricted natural language must

be at least as powerful as a context-sensitive grammar. Traditional parsing techniques such as

chart parsing therefore have to be modified substantially to incorporate probabilistic (non-

immediate) dominance rules with context-free rules, especially where the grammatical

description includes formal and functional annotation. The phenomena of unrestricted spoken

natural language, such as ellipsis, unfinished sentences, repeated and replacement elements,

as displayed in the. systemic functional annotation of the POW corpus, make a parsing

algorithm based on headed constituents impracticable. Capturing these syntactic phenomena

even in the kind of context-sensitive systemic-functional syntax model described here results

 154

in widespread ambiguity and combinatorial explosion within a chart parsing framework.

Control of the agenda using probability, with restrictions on the generation of implausible

subtrees, and encouraging a search strategy in keeping with the general shape of the corpus

trees only partially addresses the problem, but does result in a promising, if slow, parser. It is

likely that only careful prioritisation of wider-spanning edges and general advances in

computer hardware speed and memory size will transform the current implementation into

one suitable for real-time syntactic parsing of unrestricted English.

 155

References.

Aho, Alfred, Brian Kernighan and Peter Weinberger. 1988. The AWK Programming Language. Addison-

Wesley.

Akkerman, Eric, Pieter Masereeuw and Willem Meijs. 1985. Designing a Computerized Lexicon for

Linguistic Purposes. ASCOT Report No 1. Amsterdam: Rodopi.

Akkerman, Eric, Henry Voogt-van Zutphen and Willem Meijs. 1988. A Computerized Lexicon for Word-

Level Tagging. ASCOT Report No 2. Amsterdam: Rodopi.

Akmajian, A., and F. Heny. 1975. Introduction to the principles of transformational syntax. Cambridge,

Mass.: MIT Press.

Allwood, Jens, Lars-Gunnar Andersson and Osten Dahl. 1977. Logic in Linguistics. Cambridge: C.U.P.

Alshawi, H. 1992. The Core Language Engine. Cambridge Mass.: MIT Press.

Altenberg, Bengt. 1994. On the phraseology of spoken English: the evidence of recurrent word

combinations. In Proceedings of the Leeds International Symposium on Phraseology. 18-20 April 1994.

Leeds University.

Atwell, Eric Steven, Geoffrey Leech and Roger Garside. 1984. Analysis of the LOB Corpus: progress and

prospects. In Jan Aarts and Willem Meijs eds. Corpus Linguistics. Amsterdam: Rodopi.

Atwell, Eric Steven. 1987. Converting the Oxford Advanced Learner's Dictionary into a structured

database. In Robert Oakman and Barbara Pantonial eds. ICCH87: Abstracts for the Eighth International

Conference on Computers and the Humanities. Columbia (South Carolina): Association for Computers and

the Humanities.

Atwell, Eric Steven. 1988. Transforming a Parsed Corpus into a Corpus Parser. In Merja Kytö, Ossi

Ihalainen and Matti Rissanen (eds.). Corpus Linguistics, hard and soft. 61-70. Amsterdam: Rodopi.

Atwell, Eric and Clive Souter. 1988a. Experiments with a very large corpus-based grammar. In Proceedings

of the 15th ALLC conference, June 5-13. Jerusalem.

Atwell, Eric and Clive Souter. 1988b. Probabilistic Criteria in Prototype Parser 1. COMMUNAL Research

Report No. 15. School of Computer Studies, The University of Leeds.

Atwell, Eric, Clive Souter and Tim O'Donoghue. 1988. Prototype Parser 1. COMMUNAL Research Report

No. 17. School of Computer Studies, The University of Leeds.

Atwell, Eric. 1994. The Speech Oriented Probabilistic Parsing Project: Final Report. School of Computer

Studies, University of Leeds.

Atwell, Eric, John Hughes and Clive Souter. 1994. AMALGAM: Automatic Mapping Among Lexico-

Grammatical Annotation Models. In Judith Klavans and Philip Resnik eds. Proceedings of The Balancing

Act - Combining Symbolic and Statistical Approaches to Language, Workshop in conjunction with the 32nd

Annual Meeting of the Association for Computational Linguistics. New Mexico State University, Las

Cruces, New Mexico, USA, 27th-30th June 1994.

 156

Barrett, R., A. Ramsay and A. Sloman. 1985. POP-11: A practical language for artificial intelligence.

Chichester: Ellis Horwood.

Baum, L. 1972. An inequality and associated maximisation technique in statistical estimation for

probabilistic functions of Markov processes. Inequalities (3): 1-8.

Black, Ezra, S. Abney et al. 1991. A procedure for quantitatively comparing the syntactic coverage of

English grammars. In Proceedings of the DARPA Workshop on Speech and Natural Language. (Feb 1991).

306-311. San Mateo, Ca.: Morgan Kaufmann.

Black, E., R. Garside and G. Leech (eds.). 1993. Statistically-driven Computer Grammars of English: The

IBM Lancaster Approach. Amsterdam: Rodopi.

Bod, Rens. 1993. Monte Carlo Parsing. Proceedings of the 3rd International Workshop on Parsing

Technologies (IWPT ‘93) Tilburg.

Bod, Rens. 1995. Enriching Linguistics with Statistics. Ph.D. Thesis. Department of Computational

Linguistics. University of Amsterdam.

Boguraev, Bran, and Ted Briscoe. 1987. Large Lexicons for Natural Language Processing: Exploring the

Grammar Coding System of LDOCE. Computational Linguistics 13 (3-4): 203-218.

Boguraev, Bran, and Ted Briscoe eds. 1989. Computational Lexicography for Natural Language

Processing. London: Longman.

Brill, Eric. 1992. A simple rule-based part of speech tagger. Proceedings of the Third Conference on

Applied Natural Language Processing, ACL, Trento, Italy, 1992.

Brill, Eric. 1993. A Corpus-Based Approach to Language Learning. Ph.D. thesis, Department of Computer

and Information Science, University of Pennsylvania, 1993.

Brill, Eric. 1994. Some advances in rule-based part of speech tagging. Proceedings of the Twelfth National

Conference on Artificial Intelligence (AAAI-94), Seattle, Wa., 1994.

Briscoe, Ted, and John Carroll. 1991. Generalised Probabilistic LR Parsing of Natural Language (Corpora)

with Unification-Based Grammars. Cambridge: University of Cambridge Computer Laboratory, Technical

Report No. 224.

Briscoe, Ted and Nick Waegner. 1992. Robust stochastic parsing using the inside-outside algorithm. In

Proceedings of the AAAI workshop on Statistically-based NLP techniques. July 12-16. San Jose. 39-53.

Briscoe, Ted. 1994. Robust statistical parsing techniques. In Corpus-based research into language. N.

Oostdijk and P. de Haan eds. 97-119. Amsterdam: Rodopi.

Burnage, Gavin. 1990. CELEX - A Guide for Users. Nijmegen: Centre for Lexical Information (CELEX).

Butler, C.S. 1985. Systemic Linguistics: Theory and Applications. London: Batsford.

Carroll, John and Claire Grover. 1989. The derivation of a large computational lexicon for English from

LDOCE. In Computational Lexicography for Natural Language Processing. Bran Boguraev and Ted

Briscoe eds. 117-134. London: Longman.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.

 157

Church, K. 1988. A stochastic parts program and noun phrase parser for unrestricted text. Proceedings of

the 2nd Conference on Applied Natural Language Processing. ACL. pp. 136-143.

Cowie, A. and R. Mackin. 1975. Oxford Dictionary of Current Idiomatic English. Vols. 1 & 2. Oxford:

OUP.

Davey, A. 1974. Discourse Production. Ph.D. thesis, University of Edinburgh. Published by Edinburgh

University Press in 1978.

Davey, A. 1978. Discourse Production: A computer model of some aspects of a speaker. Edinburgh:

Edinburgh University Press.

Demetriou, George C. and Eric S. Atwell. Machine-Learnable, Non-Compositional Semantics for Domain

Independent Speech or Text Recognition. In Proceedings of 2nd Hellenic-European Conference on

Mathematics and Informatics (HERMIS), Athens University of Economics and Business. 1994.

Dowty, David R., Robert Wall and Stanley Peters. 1981. Introduction to Montague Semantics. Dordrecht:

Reidel.

Ellegård, A. 1978. The Syntactic Structure of English Texts: A computer-based study of four kinds of text

in the Brown University Corpus. Gothenburg Studies in English. 43. Gothenburg.

Fawcett, Robin P., and Michael Perkins. 1980. Child Language Transcripts 6-12. (With a preface, in 4

volumes). Department of Behavioural and Communication Studies, Polytechnic of Wales.

Fawcett, Robin P. 1980. Language Development in Children 6-12: Interim Report. Linguistics 18 pp. 953-

958.

Fawcett, Robin P. 1980. Cognitive Linguistics and Social Interaction. Julius Groos Verlag.

Fawcett, Robin P. 1981. Some Proposals for Systemic Syntax. Journal of the Midlands Association for

Linguistic Studies (MALS). 1.2, 2.1, 2.2 (1974-76). Re-issued with light amendments, 1981, Department of

Behavioural and Communication Studies, Polytechnic of Wales.

Fawcett, Robin P. 1984. System networks, codes and knowledge of the universe. In Fawcett, R., Halliday,

M.A.K., Lamb, S.M. and Makkai, A. (eds.) The Semiotics of Culture and Language. London, Pinter. pp.

135-179.

Fawcett, Robin P. and Gordon Tucker. 1987. What a parser needs to know about twenty main verb forms.

Mimeo. SESCP, UWCC.

Fawcett, Robin P. 1988a. A note on the relationship between the syntactic categories used in (1) the analysis

of the Polytechnic of Wales Corpus and (2) generation and analysis in the COMMUNAL project. (personal

communication)

Fawcett, Robin P. 1988b. The English Personal Pronouns: An Exercise in Linguistic Theory. In Linguistics

in a systemic perspective. J. Benson, M. Cummings and W. Greaves eds. 185-220.

Amsterdam/Philadelphia: John Benjamin.

Fawcett, Robin P. and Gordon H. Tucker. 1989. Prototype Generators 1 and 2. COMMUNAL Report No.

10, Computational Linguistics Unit, University of Wales College of Cardiff.

Fawcett, Robin P. and Gordon H. Tucker 1990. Demonstration of GENESYS: a very large semantically

based systemic functional grammar. In Proceedings of COLING 90 Vol. 1. Helsinki. pp. 47-9.

 158

Fawcett, Robin P. 1990. The computer generation of speech with semantically and discoursally motivated

intonation. In Proceedings of 5th International Workshop on Natural Language Generation. Pittsburgh. pp.

164-73a.

Fawcett, Robin P. 1992. The state of the craft in computational linguistics: a generationist’s viewpoint.

COMMUNAL Working Papers No. 2. Computational Linguistics Unit, University of Wales College of

Cardiff.

Fawcett, Robin P., Gordon Tucker and Yuen Q. Lin. 1993. How a systemic functional grammar works: the

role of realisation in realisation. In Horacek, H and M. Zock (eds.) New Concepts in NL Generation:

Planning, Realisation and Systems. London, Pinter. 114-186.

Fawcett, Robin P. 1994. A generationist approach to grammar reversibility in NLP. In Tomek Strzalkowski

(ed.). Reversible Grammar in NLP. 1994. Kluwer. 365-413

Frege, Gottlob. 1952. Ueber Sinn und Bedeutung. In P. Geach and M. Black eds. Translations from the

Philosophical Writings of Gottlob Frege. 56-78. Oxford: Blackwell.

Garside, Roger, Geoffrey Leech and Geoffrey Sampson eds. 1987. The Computational Analysis of English.

London and New York: Longman.

Garside, Roger. 1987. The CLAWS word-tagging system. In The Computational Analysis of English. Roger

Garside, Geoffrey Leech and Geoffrey Sampson eds. 30-41. London and New York: Longman.

Gazdar, Gerald, Ewan Klein, Geoff Pullum and Ivan Sag. 1985. Generalised Phrase Structure Grammar.

Oxford: Blackwell.

Grover, Claire, Ted Briscoe, John Carroll and Bran Boguraev. 1989. The ALVEY natural language tools

grammar (second release). Technical Report 162. Computer Laboratory, University of Cambridge.

Halliday, Michael. 1961. Categories of the theory of grammar. Word (17) 241-92.

Halliday, Michael. 1985. An Introduction to Functional Grammar. London: Edward Arnold.

van Halteren, Hans, and Theo van den Heuvel. 1990. Linguistic Exploitation of Syntactic Databases: the

use of the Nijmegen Linguistic Database program. Amsterdam: Rodopi.

Heidorn, George. 1982. Experience with an easily computed metric for ranking alternative parses.

Proceedings of the 20th Annual Meeting of the ACL. 82-84.

Hindle, Donald. 1983. User Manual for Fidditch. Technical memorandum 7590-142, US Naval Research

Laboratory.

Hornby, A, and Tony Cowie eds. 1974. Oxford Advanced Learners' Dictionary of Current English. Oxford:

Oxford University Press.

Houghton, G. and S. Isard. 1988. Why to speak, what to say and how to say it: modelling language

production in discourse. In P. Morris (ed.) Modelling Cognition. Chichester: Wiley. pp. 112-30.

Hughes, John. 1994. Automatically Acquiring a Classification of Words. Ph.D. Thesis. School of Computer

Studies, The University of Leeds.

Hughes, John and Eric S. Atwell. (forthcoming). The AMALGAM Project: Annotating the Spoken English

Corpus with several annotation schemes. To appear in Magnus Ljung (ed.) Proceedings of the 17th ICAME

Conference, Stockholm, May 15-19th, 1996. Rodopi Press.

 159

Jensen, Karen, and George Heidorn. 1983. The Fitted Parse: 100% parsing capability in a syntactic

grammar of English. Proceedings of the Conference on Applied NLP, ACL. 93-98.

Jensen, K., G. Heidorn and S.D Richardson (eds.). 1993. NLP: the PLNLP Approach. Boston: Kluwer.

Johansson, Stig, Eric Atwell, Roger Garside, and Geoffrey Leech. 1986. The Tagged LOB Corpus.

University of Bergen, Norway: Norwegian Computing Centre for the Humanities.

Jost, Uwe and Eric Atwell. 1994. A hierarchical mutual-information based probabilistic language model. In

L. Evett and T. Rose eds. Computational Linguistics for Speech and Handwriting Recognition. AISB

Workshop Series 1994, University of Leeds.

Jost, Uwe. 1994. Probabilistic Language Modelling for Speech Recognition. M.Sc. dissertation. School of

Computer Studies, University of Leeds.

Karlsson, Fred. 1994. Robust parsing of unconstrained text. In Corpus-based research into language. N.

Oostdijk and P. de Haan eds. 121-142. Amsterdam: Rodopi.

Karlsson, F. 1995. Designing a parser for unrestricted text. In Karlsson, F., A Voutilainen, J. Heikkila and

A. Anttila. (eds.) 1995. Constraint Grammar. Berlin/New York: Mouton De Gruyter. pp. 1-40.

Karlsson, F., A Voutilainen, J. Heikkila and A. Anttila. (eds.) 1995. Constraint Grammar. Berlin/New York:

Mouton De Gruyter.

Kasper, Robert T. 1988. An experimental parser for systemic grammars. ISI Reprint Series 88-212,

University of Southern California.

Kasper, Robert T. 1989. Unification and classification: an experiment in information-based parsing. In

Proceedings of International Workshop on Parsing Technologies. Pittsburgh, PA.

Kay, Martin. 1985. Parsing in Functional Unification Grammar. In D. Dowty, L. Karttunen and A. Zwicky

eds. Natural Language Parsing. Cambridge: CUP.

Keenan, Frank. 1993. Large-vocabulary syntactic analysis for text recognition. Ph.D. Thesis. Department of

Computing. Nottingham Trent University.

Kempen, Gerard, and Theo Vossen. 1988. Incremental syntactic tree formation in human sentence

processing. NICI, University of Nijmegen. Appeared in Cahiers de la Fondation Archives Jean Piaget,

1989. Geneva.

Keulen, F. 1986. The Dutch Computer Corpus Pilot Project. In Corpus Linguistics II. J. Aarts and W. Meijs

eds. 127-161. Amsterdam: Rodopi.

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi. 1983. Optimization by simulated annealing. Science 220:

671-80.

Knowles, Gerry, and Lita Lawrence. 1987. Automatic Intonation Assignment. In The Computational

Analysis of English. Roger Garside, Geoffrey Leech and Geoffrey Sampson eds. 139-148. London and New

York: Longman.

Koch, Heinz-Detlev and Richard F. E. Sutcliffe. eds. 1995. Proceedings of the International Workshop on

Industrial Parsing of Software Manuals. Limerick, May 4-5 1995.

 160

Kwasny, S. and Norman Sondheimer. 1981. "Relaxation techniques for parsing grammatically ill-formed

input in natural language understanding systems" in American Journal of Computational Linguistics 7(2):

99-108.

van Laarhoven, Peter J. M. and Emile H. L. Aarts. 1987. Simulated Annealing: theory and applications.

Dordrecht: Reidel.

Lari, K. and S. Young. 1990. The estimation of stochastic context-free grammars using the Inside-Outside

algorithm. Computer Speech and Language 4: 35-56.

Leech, Geoffrey, Roger Garside, and Eric Steven Atwell. 1983. The Automatic Grammatical Tagging of the

LOB Corpus. In Newsletter of the International Computer Archive of Modern English (ICAME NEWS) 7:

13-33, Norwegian Computing Centre for the Humanities, Bergen University.

Leech, Geoffrey, and Roger Garside. 1991. Running a grammar factory: the production of syntactically

analysed corpora or `treebanks'. In English Computer Corpora: Selected Papers and Research Guide. S.

Johansson and A.-B. Stenström eds. 15-32. Berlin: Mouton de Gruyter. Lyons, John. 1970. Chomsky.

London: Fontana-Collins.

Magerman, D. 1994. Natural Language Parsing as Statistical Pattern Recognition. Ph.D. Thesis. Stanford

University, USA.

Magerman, D. and M. Marcus. 1991. Pearl: a probabilistic chart parser. In 2nd International Workshop on

Parsing Technologies. Cancun, Mexicon. 193-199.

Mann, William C. 1983. A linguistic overview of the Nigel Text Generation Grammar. ISI Reprint Series

83-9, University of Southern California. de Marcken, C.G. 1990. Parsing the LOB corpus. In Proceedings

of the ACL Meeting, Pittsburgh PA. 243-251.

de Marcken, C. 1990. Parsing the LOB corpus. Proceedings of the 28th Annual Meeting of the ACL. 243-

251.

Marcus, M.P. and B. Santorini. 1991. Building very large natural language corpora: the Penn Treebank. CIS

report. University of Pennsylvania.

Marcus, M.P., B. Santorini and M.A. Marcinkiewicz. 1993. Building a large annotated corpus of English:

the Penn Treebank. Computational Linguistics 19 (2). 313-330.

Matthiessen, C. M. I. M, and J. A. Bateman. 1991. Text Generation and Systemic-Functional Linguistics.

London: Pinter.

McCord, Michael. 1990. Slot Grammar: A system for simpler construction of practical NL grammars. In R.

Studer (ed.). Natural Language and Logic (Lecture Notes in AI: 459). Berlin: Springer-Verlag. pp. 118-145.

Meijs, Willem. 1993a. Exploring Lexical Knowledge. In Corpus-based Computational Linguistics. 249-

260. C. Souter and E. Atwell eds. Amsterdam: Rodopi Press.

Meijs, Willem. 1993b. Analyzing nominal compounds with the help of a computerized lexical knowledge

system. In English Language Corpora: Design Analysis and Exploitation. 299-312. J. Aarts, P. de Haan and

N. Oostdijk eds. Amsterdam: Rodopi Press.

O’Donnell, Michael. 1993. Reducing Complexity in a Systemic Parser. Proceedings of the 3rd

ACL/SIGPARSE International Workshop on Parsing Technologies (IWPT3),Tilburg and Durbuy, August

10-13th 1993. 203-218.

 161

O’Donnell, Michael. 1994. Sentence Analysis and Generation: A Systemic Perspective. Ph.D. Thesis,

Department of Linguistics, University of Sydney, Australia.

O'Donoghue, Tim F. 1990. The theory behind REVELATION1: a semantic interpreter for systemic

grammars. Research Report 90.28. School of Computer Studies, University of Leeds.

O'Donoghue, Tim F. 1991a. An Expert System for semantic interpretation in Systemic grammar. Research

Report 91.7. School of Computer Studies, University of Leeds.

O'Donoghue, Tim F. 1991b. EPOW: The Edited Polytechnic of Wales Corpus. Research Report 91.11.

School of Computer Studies, University of Leeds. Also appeared in Proceedings of the 5th International

Conference on Symbolic and Logical Computing. Dakota State University, USA, April 1991.

O'Donoghue, Tim F. 1991c. Taking a parsed corpus to the cleaners: the EPOW corpus. ICAME Journal 15:

55-62.

O'Donoghue, Tim F. 1991d. The Vertical Strip Parser: A lazy approach to parsing. Research Report 91.15,

School of Computer Studies, University of Leeds.

O'Donoghue, Tim F. 1991e. A semantic interpreter for systemic grammars. In Tomek Strzalkowski (ed.).

Reversible Grammar in Natural Language Processing: Proceedings of a workshop sponsored by the Special

Interest Groups on Generation and Parsing of the Association for Computational Linguistics. 129-138.

Morristown, New Jersey: ACL.

O'Donoghue, Tim F. 1993. Reversing the process of generation in Systemic Grammar. Ph.D. thesis. School

of Computer Studies, Leeds University.

O’Donoghue, Tim F. 1994. Semantic Interpretation in a Systemic Functional Grammar. In Tomek

Strzalkowski (ed.) 1994. Kluwer.

Oostdijk, Nelleke. 1991. Corpus Linguistics and the Automatic Analysis of English. Amsterdam: Rodopi

Press.

Osborne, Miles. 1995. Parsing Computer Manuals using a Robust Alvey NL Toolkit. In Koch and Sutcliffe

(eds.) International Workshop on Industrial Parsing of Software Manuals, Limerick, 4-5th May 1995.

Patten, T. 1988. Systemic Text Generation as Problem Solving. Cambridge: CUP.

Pereira F. and Y. Schabes. 1992. Inside-Outside re-estimation for partially bracketed corpora. In 30th

Annual Meeting of the ACL. Newark, Delaware. 128-135.

Phillips, J. D., and Henry S. Thompson. 1987. A parsing tool for the Natural Language Theme: version 13.

Software paper no. 5. Department of Artificial Intelligence, Edinburgh University.

Piepenbrock, Richard. 1993. A Longer Term View on the Interaction between Lexicons and Text Corpora

in Language Investigation. In Corpus-based Computational Linguistics. 59-70. C. Souter and E. Atwell eds.

Amsterdam: Rodopi Press.

Pocock, Rob and Eric Atwell. 1993. Probabilistic Grammatical Models For Treebank-Trained Lattice

Disambiguation. Research Report 93.30. School of Computer Studies, Leeds University. Also available in

Eric Atwell. 1994. The Speech Oriented Probabilistic Parsing Project: Final Report. School of Computer

Studies, University of Leeds.

Pulman, S.G., G.J. Russell, G.D. Ritchie and A.W. Black. 1989. Computational morphology of English.

Technical Report 155. Computer Laboratory, University of Cambridge.

 162

Procter, Paul. 1978. Longman Dictionary of Contemporary English. London: Longman.

Quirk, R., S. Greenbaum, G. Leech and J. Svartvik. 1972. A Comprehensive Grammar of the English

Language. London and New York: Longman.

Radford, Andrew. 1981. Transformation syntax. Cambridge: CUP.

Sampson, Geoffrey. 1987a. The Grammatical Database and Parsing Scheme. In The Computational

Analysis of English. Roger Garside, Geoffrey Leech and Geoffrey Sampson (eds.). 82-96. London and New

York: Longman.

Sampson, Geoffrey. 1987b. Evidence against the “grammatical”/“ungrammatical” distinction. In Corpus

Linguistics and Beyond. Willem Meijs ed. 219-226. Amsterdam: Rodopi.

Sampson, Geoffrey, Robin Haigh and Eric S. Atwell. 1989. Natural language analysis by stochastic

optimization: a progress report on Project APRIL. Journal of Experimental and Theoretical Artificial

Intelligence 1: 271-287.

Sampson, Geoffrey. 1990. Notes for Corpus Meeting, Wadham College, Oxford, January 1990. In G. Leech

ed. Proceedings of a workshop on Corpus Resources. 13-15. DTI/SERC Speech and Language Technology

Club.

Sampson, Geoffrey. 1992. Analysed Corpora of English: a consumer guide. In Computers in Applied

Linguistics. M.C. Pennington and V. Stevens eds. 181-200. Multilingual Matters.

Sampson, Geoffrey. 1994. SUSANNE: A Domesday Book of English Grammar. In Corpus-based Research

into language. N. Oostdijk and P. de Haan eds. 169-188. Amsterdam: Rodopi.

Sekine, S. and R. Grishman. 1995. A corpus-based probabilistic grammar with only two non-terminals.

Proceedings of the ACL SIGPARSE Fourth International Workshop on Parsing Technologies (IWPT ‘95),

Prague and Karlovy Vary. Sept 1995. 216-223.

Sharman, Richard. 1990. Hidden Markov models for word tagging. Technical Report 214. Winchester:

IBM UK Scientific Centre.

Sinclair, John McH. ed. 1987. Looking Up: An account of the COBUILD project in lexical computing.

London: Collins COBUILD.

Souter, Clive and Eric Atwell. 1988a. Constraints on Legal Syntactic Configurations. COMMUNAL

Research Report No. 14. School of Computer Studies, The University of Leeds.

Souter, Clive and Eric Atwell. 1988b. Morphological Analysis. COMMUNAL Research Report No. 16.

School of Computer Studies, The University of Leeds.

Souter, Clive. 1989a. The COMMUNAL Project: Extracting a grammar from the Polytechnic of Wales

corpus. ICAME Journal 13: 20-27.

Souter, Clive. 1989b. A Short Handbook to the Polytechnic of Wales Corpus. ICAME, Norwegian

Computing Centre for the Humanities, P.O. Box 53, Bergen University, N-5027 Bergen, Norway.

Souter, Clive. 1990a. Systemic Functional Grammars and Corpora. In J. Aarts and W. Meijs eds. Theory

and Practice in Corpus Linguistics. 179-211, Rodopi Press, Amsterdam.

 163

Souter, Clive. 1990b. Probabilistic Parsing and the CELEX lexicon. CELEX Newsletter 5: 9-11, Centre for

Lexical Information, University of Nijmegen, The Netherlands.

Souter, Clive. 1990c. Corpus Linguistics: the State of the Science. In Gerhard Leitner ed. Computer

Corpora des Englischen. (CCE) Newsletter 4: 1-15, Institut fur Englische Philologie, Freie Universitat

Berlin, Germany.

Souter, Clive and Tim O'Donoghue. 1991. Probabilistic Parsing in the COMMUNAL Project. In Stig

Johansson and Anna-Brita Stenström eds. English Computer Corpora, Selected Papers and Research Guide.

33-48, Berlin: Mouton de Gruyter.

Souter, Clive. 1992. The Nijmegen Linguistic Database program. ICAME Journal 16: 70-79.

Souter, Clive and Eric Atwell. 1992. A Richly Annotated Corpus for Probabilistic Parsing. Research Report

92.13, School of Computer Studies, University of Leeds. Also appeared in Proceedings of AAAI workshop

on Statistically-Based NLP Techniques, San Jose, California, July 12-17, 1992.

Souter, Clive. 1993a. Harmonising a lexical database with a corpus-based grammar. In C. Souter and E.

Atwell eds. Corpus-based Computational Linguistics. 181-193, Amsterdam: Rodopi Press.

Souter, Clive. 1993b. Towards a Standard Format for Parsed Corpora. In Jan Aarts, Pieter de Haan and

Nelleke Oostdijk eds. English Language Corpora: Design, Analysis and Exploitation. 197-214, Amsterdam:

Rodopi Press.

Souter, Clive and Eric Atwell eds. 1993. Corpus-Based Computational Linguistics. Amsterdam: Rodopi

Press.

Souter, Clive. 1994. Using parsed corpora: a review of current practice. In Corpus-based Research into

language. N. Oostdijk and P. de Haan eds. 143-158. Amsterdam: Rodopi.

Strzalkowski, Tomek. (ed.) 1994. Reversible Grammar in NLP. Kluwer.

Tomita, M. 1991. Generalised LR Parsing. Kluwer Academic Publishers.

Weerasinghe, A. Ruvan. 1990. A chart parsing approach to building a systemic parser for a non-trivial

subset of English. M.Sc. Dissertation. Computational Linguistics Unit, University of Wales College of

Cardiff.

Weerasinghe, A Ruvan and Robin P. Fawcett. 1993. Probabilistic Incremental Parsing in Systemic

Functional Grammar. Proceedings of the 3rd ACL/SIGPARSE International Workshop on Parsing

Technologies (IWPT3),Tilburg and Durbuy, August 10-13th 1993. Appendix 1.

Weerasinghe, A. Ruvan. 1994. Probabilistic Parsing in SFG. Ph.D. thesis. School of Computing

Mathematics, University of Wales College of Cardiff.

Wilks, Yorick., Dan Fass, Cheng-Ming Guo, James E. McDonald, Tony Plate and Brian M. Slator. 1988.

Machine Tractable Dictionaries as Tools and Resources for Natural Language Processing. In Proceedings

of the 12th International Conference on Computational Linguistics (COLING '88), Budapest, 750-755.

Willis, Tim. (1996) Annotating the Spoken English Corpus with the Nijmegen ICE parser. In Proceedings

of the 16th ICAME Conference, Toronto, May 1995.

Winograd, Terry. 1972. Understanding Natural Language. San Diego: Academic Press.

Winograd, Terry. 1983. Language as a Cognitive Process. Reading, Mass. Addison-Wesley.

 164

Zipf, George K. 1936. The psycho-biology of language: an introduction to dynamic philology. George

Routledge.

 165

Appendices.

Appendix 1. Sample Fragments of Parsed Corpora. 166
 Appendix 1.1 Lancaster/Leeds Treebank. 166

 Appendix 1.2 Nijmegen Corpus (CCPP). 167
 Appendix 1.3 Polytechnic of Wales Corpus. 168
 Appendix 1.4 Susanne Corpus. 169

 Appendix 1.5 IBM/Lancaster Spoken English Corpus. 170
Appendix 2. A Brief Description of the POW Corpus. 171

Appendix 3. Systemic-Functional Syntax Categories in the POW Corpus. 172
Appendix 4. A Mapping from LDOCE to POW SF Syntax Tags. 175
Appendix 5. A Fragment of a Context-Free SF Syntax Maintaining the Distinction between Filling

and Componence.

179

Appendix 6. A Fragment of a Context-Free SF Syntax Ignoring the Distinction between Filling and

Componence.

180

Appendix 7. A Fragment of a Vertical Trigram Model from the POW Corpus. 181
Appendix 8. Rule and Word-Wordtag Frequency Distribution in the POW Corpus. 182

Appendix 9. A Prototype Competence Systemic Functional Syntax. 183
Appendix 10. Brill Tagger Context Rules Learned from POW 186
Appendix 11. General lexical tagging rules used by the Brill tagger for untrained words. 187

Appendix 12. The Reduced EPOW Filling Grammar. 188
Appendix 13. The 100 Most Frequent Word-Wordtag Pairs in the EPOW Lexicon. 189

Appendix 14. Pocock and Atwell's Weight-Driven Chart Parser. 190
Appendix 15. Parser Version 7: Test Results. 191

 166

Appendix 1. Sample Fragments of Parsed Corpora.

Appendix 1.1 Lancaster/Leeds Treebank.

R01 69 001

[S[Np[NP[Jones]NP][NNS[ideas]NNS]Np][Vb[BER[are]BER]Vb][Nw[RN[now]RN]Nw][J[QL[so
]QL][RB[firmly]RB][JJ[established]JJ][RB[abroad]RB][Fc[CS[that]CS][Fa[CSA[as]CSA][Np[JJ[
primitive]JJ][NNS[states]NNS]Np][V[VB[develop]VB]V]Fa][,[,],][Ni[PP3[it]PP3]Ni][Vzeb[BEZ[is

]BEZ][XNOT[not]XNOT]Vzeb][Ns[ATI[the]ATI][JJ[old]JJ][NN[country]NN]Ns][Fr[Pq[IN[on
]IN][WDT[which]WDT]Pq][Nap[PP3AS[they]PP3AS]Nap][V[VB[model]VB]V][Nop[PPLS[

themselves]PPLS]Nop]Fr][,[,],][Nns+[CC[but]CC][ATI[the]ATI][JJ[new
]JJ][NP[Jones]NP]Nns+]Fc]J][.[.].]S]

R01 72 001

[S[P[IN[in]IN][NP[Africa]NP]P][,[,],][Np[NP[Jones]NP][NNS[hotels]NNS]Np][V[VB[spring
]VB]V][R[RP[up]RP]R][R[RB[even]RB]R][Fa[CSA[as]CSA][Ns[ATI[the]ATI][NPT[Prime
]NPT][NPT[Minister]NPT][JJ[elect]JJ]Ns][Vzp[BEZ[is]BEZ][BEG[being]BEG][VBN[let

]VBN]Vzp][P[IN=[IN21[out]IN21][IN22[of]IN22]IN=][NN[prison]NN]P]Fa][.[.].]S]

R01 73 072

[S[P[IN[in]IN][Ns[ATI[the]ATI][JJ[middle]JJ][NR[east]NR]Ns]P][,[,],][Np[NN[oil]NN][NNS[

royalties]NNS]Np][Vp[BER[are]BER][VBN[turned]VBN]Vp][P[IN[into]IN][Np[NP[Jones
]NP][NNS[amenities]NNS][,[,],][P[IN=[IN21[such]IN21][IN22[as]IN22]IN=][N&[NN[ice]NN][,[,
],][N-[JJ[big]JJ][NNS[cars]NNS]N-][,[,],][N+[CC[and]CC][NNS[night-clubs]NNS][Fr[Nq[WP[that

]WP]Nq][Veb[MD[would]MD][XNOT[not]XNOT][BE[be]BE]Veb][P[IN=[IN21[out]IN21][IN22[
of]IN22]IN=][NN[place]NN]P][P[IN[on]IN][Nns[NP[Miami]NP][NPL[Beach

]NPL]Nns]P]Fr]N+]N&]P]Np]P][.[.].]S]

R01 75 112

[S[P[IN[in]IN][NP[Brazil]NP]P][,[,],][Ncs[AT[an]AT][J[RB[entirely]RB][JJ[new]JJ]J][NN[
capital]NN]Ncs][Vzp[HVZ[has]HVZ][BEN[been]BEN][VBN[hacked]VBN]Vzp][P[IN=[IN21[out

]IN21][IN22[of]IN22]IN=][Ns[ATI[the]ATI][NN[jungle]NN]Ns]P][P[IN[as]IN][Ncs[AT[a]AT][JJ[
living]JJ][NN[monument]NN][P[IN[to]IN][N&[NP[Jones]NP][N+[CC[and]CC][ABN[all

]ABN][Fr[Nas[PP3A[he]PP3A]Nas][Vz[VBZ[stands]VBZ]Vz][Ps[INF[for
]INF]Ps]Fr]N+]N&]P]Ncs]P][.[.].]S]

R01 78 001

[S[Np[JJ[foreign]JJ][NNS[visitors]NNS]Np]S]

R02 79 001

[S&[Nas[PP3A[he]PP3A]Nas][V[VBD[felt]VBD]V][P[IN[in]IN][Ns[PP$[his]PP$][NN[jacket

]NN][NN[pocket]NN]Ns]P][S+[CC[and]CC][V[VBD[pulled]VBD]V][R[RP[out]RP]R][Ncs[AT[a
]AT][NN[key]NN][NN[ring]NN]Ncs]S+][.[.].]S&]

 167

Appendix 1.2 Nijmegen Corpus (CCPP).

0800104 C.[9500 IN 9102 THE 2103 DARK 4103 DAYS 3203 OF 9104 WINTER, 3101
0800104 THIS 5101 IS E201 THE 2103 KIND 3103 OF 9104 WIMBLEDON 9905 DAY 3102
0800104 ONE 7703
0800105 DREAMS A203 ABOUT. 8800 IT 0201 'S F201 ARRIVED- A801 THE 2102
0800105 PERFECT 4102 SETTING 3102 FOR 9103 FINALS 9904 DAY. 3100 A 2502
0800106 SUN 3102 VERY 8104 STRONG 4104 INDEED, 8103 BUT 6103 NOT 8504 TOO 8104
0800106 HOT 4101 , 6501 VERY 8103 LITTLE 2802 WIND 3101 , 6501
0800106 SHIRT-SLEEVED 4202
0800107 CROWD 3102 SETTLING A903 DOWN 8803 TO 9204 ENJOY B704 THIS 2105
0800107 FIRST-EVER 7605 OPEN 9906 CHAMPIONSHIP 9906 FINAL 3105
0800108 AT 9106 WIMBLEDON. 3500 FITTING, 4101 OF 9902 COURSE, 8101 THAT 6302
0800108 ROD 9905 LAVER, 3504 THE 2106 WORLD'S 3306 NUMBER 9907
0800109 ONE 9907 PLAYER, 3105 THE 2107 FAVOURITE 3106 AND 6106 THE 2107
0800109 NUMBER 9908 ONE 9908 SEED 3103 HAS F203 WON B803 HIS 2004 WAY 3104
0800110 THROUGH 8303 TO 9104 THIS 2105 FINAL. 3100 TWENTY-NINE 7602 YEARS 3202
0800110 OF 9103 AGE 3101 , 6501
0800111 COMES A202 FROM 9103 QUEENSLAND... 3500
0800112 THE 2102 WORLD'S 3302 LEADING 4102 PLAYER, 3101 REALLY, 8101 SINCE 9102
0800112 THE 2103 END 3103 OF 9104 1965 7203 WHEN 8904 HE 5104 TOOK B304
0800113 OVER 8804 THE 2105 TOP-BILLING 3104 FROM 9105 KEN 9906 ROSEWALL. 3500
0800114 LAVER 3501 PLAYING A901 THIS 2103 AFTERNOON 3101 IN 9102 HIS 2003
0800114 SIXTH 7603 FINAL 3103 AT 9104 WIMBLEDON. 3500 AS 9302 AN 2503
0800115 AMATEUR, 3101 HE 5101 REACHED B301 THE 2102 FINAL... 3101 FOR 9102
0800115 FOUR 7603 YEARS 3203 IN 9104 SUCCESSION; 3100 THAT 5102
0800116 WAS E302 1959 7251 , 6501 1960 7252 HE 5102 WAS E302 RUNNER-UP 3101
0800116 , 6501 IN 9103 61 7202 HE 5102 WON B302 THE 2103 TITLE 3102 WHEN 6303
0800116 HE 5104 BEAT B304
0800117 ER 1104 MACKINLEY 3504 IN 9105 THE 2106 FINAL 3101 , 6501 IN 9103
0800117 62 7202 HE 5102 RETAINED B302 THE 2103 TITLE, 3102 BEATING B903
0800117 MARTIN 9904
0800118 MULLIGAN. 3500 OF 9902 COURSE 8101 ER 1101 HIS 2002 FIFTH 7602
0800118 APPEARANCE 3102
0800119 IN 9103 A 2504 WIMBLEDON 9905 FINAL 3101 WAS E301 IN 9102
0800120 THE 2103 FIRST-EVER 7603 PROFESSIONAL 4103 TOURNAMENT 3103 AT 9104
0800120 WIMBLEDON 3503 SPONSORED A804 BY 9105 THE 2106
0800121 BBC, 3101 LAST 4103 SUMMER, 3101 WHEN 6302 LAVER 3503 WON B303 THE 2104
0800121 PROFESSIONAL 4104 CHAMPIONSHIP. 3100 HE 5101 'S E201
0800122 HERE 8101 TODAY 8101 IN 9102 HIS 2003 SIXTH 7603 FINAL. 3100 THE 2103
0800122 OPPOSITE 4103 SIDE 3103 OF 9104 THE 2105 NET 3101 ANOTHER 4102
0800123 PROFESSIONAL, 3101 OF 9902 COURSE, 8101 TONY 9903 ROCHE- 3502 BORN A803
0800123 IN 9104 TARCUTTA, 3505 WHICH 5406 IS E206 A 2507
0800124 NEW 9908 SOUTH 9908 WALES 9908 SHEEPTOWN. 3100 TWENTY-THREE 7603
0800124 YEARS 3203 OF 9104 AGE 3102 , 6502 SEEDED E803 FIFTEEN, 7701
0800125 HE 5101 REALLY 8101 CLEARED B301 UP 8801 THE 2102 WAY 3102 TO 9103
0800125 THE 2104 FINAL 3101 FOR 9102 HIMSELF 5001 WHEN 6302 HE 5103 KNOCKED B303
0800126 KEN 9905 ROSEWALL, 3504 THE 2105 NUMBER 9906 TWO 9906 SEED, 3103
0800127 OUT 9905 OF 9104 THE 2105 CHAMPIONSHIP 3103 ON 9104 THE 2105 NUMBER 9906
0800128 ONE 9906 COURT 3103 THE 2105 OTHER 4105 DAY. 3100 THE 2102 OTHER 4102
0800128 SEEDED 4202 PLAYER 3102 HE 5103 BEAT A303 ON 9104 THE 2105 WAY 3101
0800129 WAS E301 BUTCH 9903 BUCHHOLZ, 3502 THE 2103 NUMBER 9904 TEN 9904
0800129 SEED 3103 FROM 9104 THE 2105 UNITED 9906 STATES; 3600 AND, 8201
0800130 OF 9902 COURSE, 8101 IN 9102 THE 2103 SEMI-FINAL 3101 HE 5101 BEAT B301
0800130 TOM 9902 GRAEBNER. 3500 [[9400

 168

Appendix 1.3 Polytechnic of Wales Corpus.

**** 58 1 1 1 0 59

6abicj

1 [FS:Y...] Z 1 CL F YEAH 1 CL 2 S NGP 3 DD THAT 3 HP ONE 2 OM 'S 2 C NGP 4 DQ A 4 H
RACING-CAR
2 Z CL 1 S NGP 2 DD THAT 2 HP ONE 1 OM 'S 1 C NGP 3 DQ A 3 MO QQGP AX LITTLE 3 H

TRUCK
3 [HZ:WELL] Z 1 CL 2 S NGP HP I [RP:I] 2 AI JUST 2 M HAD 2 C NGP 3 DQ A 3 MO QQGP AX

LITTLE 3 H THINK 1 CL 4 & THEN 4 S NGP HP I 4 M THOUGHT 4 C CL 5 BM OF 5 M MAKING 5
C NGP 6 DD THIS 6 HP ONE
4 Z 1 CL 2 S NGP HP I 2 AI JUST 2 M FINISHED 2 C NGP 3 DD THAT 3 HP ONE 1 CL 4 & AND 4 S

NGP HN FRANCIS 4 M HAD 4 C NGP 5 DD THE 5 H IDEA 5 Q CL 6 BM OF 6 M MAKING 6 C NGP
7 DQ A 7 H RACING-CAR

5 [FS:THEN-I] Z CL 1 & THO 1 S NGP HP I 1 M MADE 1 C NGP DD THIS
6 Z CL 1 & THEN 1 S NGP HP FRANCIS 1 OX WAS 1 AI JUST 1 X GOING-TO 1 M MAKE 1 C NGP
HP ONE 1 A CL 2 B WHEN 2 S NGP H YOU 2 M CAME 2 CM QQGP AX BACK 2 CM QQGP AX IN

7 [NV:MM] Z 1 CL F NO [FS:FRAN...] 1 CL 2 S NGP HP WE 2 M HAD 2 C NGP 3 DQ AN 3 H IDEA 3
Q CL 4 BM OF 4 M MAKING 4 C NGP 5 DQ FOUR 5 H THINGS
8 Z 1 CL F YEAH 1 CL 2 S NGP HP I 2 M PLAYED 2 C PGP 3 P WITH 3 CV NGP HP IT 2 A PGP 4 P

AT 4 CV NGP H HOME
9 Z CL F YEAH

10 [FS:I] [FS:I] Z 1 CL F NO 1 CL 2 S NGP HP I 2 OX 'VE 2 AI JUST 2 M GOT 2 C NGP 3 DQ ONE 3
MO QQGP AX BIG 3 H TIN [FS:OF?] 3 Q QQGP 4 AX FULL 4 SC PGP 5 P OF 5 CV NGP HP IT
11 [NV:ER] Z CL 1 (S) 1 (M) 1 C NGP 2 DQ NGP 3 DQ ALL 3 H SORTS 2 VO OF 2 H THINGS

12 Z 1 CL 2 S NGP HP I 2 M MAKE 2 C NGP H CARS 2 A QQGP AX ALWAYS 1 CL 3 & AND 3 A
SOMETIMES 3 S NGP HP I 3 M MAKE 3 C NGP H HOUSES 1 CLUN & AND

13 Z 1 CL F YEAH 1 CL 2 S NGP HP I 2 M GOT 2 C NGP HN KERPLUNK
14 [FS:IT] [FS:IT] [NV:UM] Z 1 CL 2 S NGP HP YOU 2 M PUT 2 C NGP H STRAWS 2 C PGP 3 PM
INTO 3 CV NGP 4 DQ A [RP:A] [RP:A] 4 MOTH NGP H GLASS 4 H TUB 4 Q PGP 5 P WITH 5 CV

NGP 6 H HOLES 6 Q PGP 7 P IN 7 (CV) 1 CL 8 & THEN 8 S NGP HP YOU 8 M PUT 8 C NGP 9 DD
THE 9 H STRAWS 8 C PGP 10 PM IN 10 CV NGP 11 DD THE 11 H HOLES 1 CL 12 & THEN 12 S
NGP HP YOU 12 M PUT 12 C NGP 13 DD THE 13 H MARBLES 12 CM QQGP AX DOWN 1 CL 14 &

AND 14 (S) 14 M PULL 14 C NGP 15 DQ A 15 H STRAW 14 CM QQGP AX OUT 14 A CL 16 I TO 16
M SEE 16 C CL 17 B IF 17 S NGP 18 DQ A 18 H MARBLE 17 M GOES 17 C PGP 19 P INTO 19 CV

NGP 20 DQ A 20 H POINT
15 Z CL 1 S NGP HP I 1 ON DUN 1 M NO 1 (C)
16 [NV:ER] [NV:ER] Z CL 1 S NGP HP I 1 M PLAY 1 C PGP 2 P WITH 2 CV NGP 3 DD MY 3 H

BIKE
17 Z 1 CL 2 S NGP HP I 2 M PLAY 2 C PGP 3 P WITH [FS:MY-CHIP] 3 CV NGP 4 DD MY [RP:MY]

4 MO QQGP AX BIG 4 H TIPPER-LORRY 1 CL 5 & AND 5 S NGP HP I [RP:I] 5 M CALL 5 C PGP 6
PM FOR 6 CV NGP HN DAVID
18 Z 1 CL F YEAH [FS:HE'S-ONE-MY] [FS:HE'S-ROUND] 1 CL 2 S NGP HP HE 2 OM 'S 2 C PGP 3 P

IN 3 CV NGP 4 DD MY 4 H CLASS
19 [NV:OH] [FS:WE-JUST] Z CL 1 S NGP HP WE 1 M PLAY 1 C PGP 2 P AT 2 CV 3 NGP H

FOOTBALL [HZ:AND-STUFF] 3 NGP 4 & AND 4 H CRICKET
20 [NV:ER] [FS:WE-PLAY-S...] Z CL 1 S NGP HP WE 1 M PLAY 1 C 2 NGP H FIREMEN 2 NGP 3 &
AND 3 H POLICE

21 [NV:ER] Z CL 1 AI JUST 1 M READ 1 C NGP H COMICS

 169

Appendix 1.4 Susanne Corpus.

A01:0030f#-#YB#<minbrk>#-#[Oh.Oh]
A01:0030g#-#AT#The#the#[O[S[Ns:s.

A01:0030h#-#NN1c#jury#jury#.Ns:s]
A01:0030i#-#RRR#further#far#[R:c.R:c]

A01:0030j#-#VVDv#said#say#[Vd.Vd]
A01:0030k#-#II#in#in#[P:p.
A01:0030m#-#NNT1c#term#term#[Np[Ns.

A01:0030n#-#YH#+<hyphen>#-#.
A01:0030p#-#NN1c#+end#end#.Ns]

A01:0040a#-#NN2#presentments#presentment#.Np]P:p]
A01:0040b#-#CST#that#that#[Fn:o.
A01:0040c#-#AT#the#the#[Nns:s101.

A01:0040d#-#NNL1c#City#city#.
A01:0040e#-#JB#Executive#executive#.

A01:0040f#-#NNJ1c#Committee#committee#.
A01:0040g#-#YC#+,#-#.
A01:0040h#-#DDQr#which#which#[Fr[Dq:s101.Dq:s101]

A01:0040i#-#VHD#had#have#[Vd.Vd]
A01:0040j#-#JB#over<hyphen>all#overall#[Ns:o.
A01:0050a#-#NN1n#charge#charge#.

A01:0050b#-#IO#of#of#[Po.
A01:0050c#-#AT#the#the#[Ns.

A01:0050d#-#NN1n#election#election#.Ns]Po]Ns:o]
A01:0050e#-#YC#+,#-#.Fr]Nns:s101]
A01:0050f#-#YIL#<ldquo>#-#.

A01:0050g#-#VVZv#+deserves#deserve#[Vz.Vz]
A01:0050h#-#AT#the#the#[N:o.

A01:0050i#-#NN1n#praise#praise#[NN1n&.
A01:0050j#-#CC#and#and#[NN2+.
A01:0050k#-#NN2#thanks#thank#.NN2+]NN1n&]

A01:0050m#-#IO#of#of#[Po.
A01:0050n#-#AT#the#the#[Nns.
A01:0060a#-#NNL1c#City#city#.

A01:0060b#-#IO#of#of#[Po.
A01:0060c#-#NP1t#Atlanta#Atlanta#[Nns.Nns]Po]Nns]Po]N:o]

A01:0060d#-#YIR#+<rdquo>#-#.
A01:0060e#-#IF#for#for#[P:r.
A01:0060f#-#AT#the#the#[Ns:103.

A01:0060g#-#NN1c#manner#manner#.
A01:0060h#-#II#in#in#[Fr[Pq:h.

A01:0060i#-#DDQr#which#which#[Dq:103.Dq:103]Pq:h]
A01:0060j#-#AT#the#the#[Ns:S.
A01:0060k#-#NN1n#election#election#.Ns:S]

A01:0060m#-#VBDZ#was#be#[Vsp.
A01:0060n#-#VVNv#conducted#conduct#.Vsp]Fr]Ns:103]P:r]Fn:o]S]

A01:0060p#-#YF#+.#-#.O]

 170

Appendix 1.5 IBM/Lancaster Spoken English Corpus.

SK01 1 v
SK01 2 v

[Good_JJ morning_NNT1] !_!
SK01 3 v

[Nr Every_AT1 three_MC months_NNT2 Nr] ,_, [here_RL [P on_II [N Radio_NN1 4_MC N]P]] ,_, [N
I_PPIS1 N][V present_VV0 [N a_AT1 programme_NN1 [Fn called_VVN [N Workforce_NP1 N]Fn]N]V]
._.

SK01 4 v
[N It_PPH1 N][V 's_VBZ [N a_AT1 quarterly_JJ bulletin_NN1 [P on_II [N employment_NN1 -_- not_XX

unemployment_NN1 -_- employment_NN1 N]P]N] V] !_!
SK01 6 v
[Nr Last_MD year_NNT1 Nr] ,_, [N the_AT workforce_NN1 N][V grew_VVD V] .

SK01 9 v
[N Stephen_NP1 N][V left_VVD [N school_NN1 N][Nr last_MD year_NNT1 Nr] V] ._.

SK01 10 v
Now_RT ,_, [N unemployment_NN1 [P among_II [N school_NN1 leavers_NN2 N]P]N] ,_, [Fa as_CSA
[N I_PPIS1 N][V 'm_VBM [J sure_JJ [Fn[N you_PPY N][V know_VV0 V]Fn]J]V]Fa] ,_, [V is_VBZ [J

very_RG high_JJ J]V] ._.
SK01 11 v
[N One_PN1 [P in_II [N four_MC teenagers_NN2 N]P]N] ,_, [P over_II [N the_AT country_NN1 [P as_II

[N a_AT1 whole_NN1 N]P]N]P] ,_, [V is_VBZ [P out_II21 of_II22 [N work_NN1 N]P]V] ._.
SK01 13 v

[N It_PPH1 N][V 's_VBZ [J even_RR worse_JJR [Fa if_CS [N you_PPY N][V e_VBR black_JJ
J]V]Fa]J]V]
SK01 14 v

[N It_PPH1 N][V 's_VBZ almost_RR [N one_MC1 [P in_II [N two_MC N]P]N] V] ._.
SK01 15 v

[N Every_AT1 other_JB black_JJ teenager_NN1 [P in_II [N Britain_NP1 N] P]N][V is_VBZ [P out_II21
of_II22 [N work_NN1 N]P]V] ._.
SK01 16 v

And_CC ,_, [Fa although_CS [N unemployment_NN1 [P at_II [N any_DD age_NN1 N]P]N][V is_VBZ [N
a_AT1 tribulation_NN1 N]V]Fa] ,_, [N it_PPH1 N][V does_VDZ seem_VV0 [J especially_RR unfair_JJ
[P to_II [N the_AT young_JJ N]P]J]V] ._.

SK01 24 v
But_CCB [N the_AT DHSS_NNJ N][V was_VBDZ [J wrong_JJ J]V] !_!

SK01 25 v
[N Stephen_NP1 N][V was_VBDZ entitled_VVN [P to_II [N 18.20_NNU [a_AT1 week_NNT1]N]P][Ti
to_TO help_VV0 [N him_PPHO1 N] look_VV0 [P for_IF [N work_NN1 N]P]Ti]V] ,_, [Fa as_CSA [N

he_PPHS1 N][V discovered_VVD [Fa when_CS [N he_PPHS1 N][V sought_VVD [N the_AT
advice_NN1 [P of_IO [N Youthaid_NP1 (_([Fr[N which_DDQ N][V is_VBZ [N an_AT1

organisation_NNJ [Fr[N which_DDQ N][V helps_VVZ [N young_JJ unemployed_JJ people_NN
N]V]Fr]N]V]Fr])_) N]P]N]V]Fa]V]Fa] ._.
SK01 27 v

Oh_UH ,_, and_CC [N he_PPHS1 N][V did_VDD pass_VV0 [N his_APP$ exams_NN2 N]V] ._.
SK01 28 v

[N Youthaid_NP1 N][V is_VBZ [N a_AT1 small_JJ [national_JJ charity_NN1] ,_, now_RT [[ten_MC
years_NNT2] old_JJ] ,_, [Tn dedicated_VVN ,_, [Fa as_CSA [N I_PPIS1 N][V said_VVD V]Fa] ,_, [P
to_II [Tg helping_VVG [N unemployed_JJ young_JJ people_NN N]Tg]P]Tn] N]V] ._.

 171

Appendix 2. A Brief Description of the POW Corpus.
Date of Compilation: 1978-84

Location: Polytechnic of Wales, Pontypridd, S. Wales.

Compiled by: Dr. Robin P. Fawcett and Dr. Michael R. Perkins

Type of Data:

Spoken corpus, recordings transcribed using conventions from the Survey of Modern English Usage at
University College London, and those of a similar project at Bristol, with pitch movements marked by

trained phonetician.

Fully hand parsed, using a Systemic Functional Grammar developed by Fawcett, with rich syntactico-

semantic categories, capable of handling raising, dummy subject clauses, ellipsis, replacement strings. Parse
trees stored in a numerical format (not standard bracketed) to capture discontinuities in syntactic structures.

Children's English from Pontypridd, S. Wales. Informal register. The subjects were screened to exclude
those with strong second language influence (Welsh or otherwise). 120 children aged between 6-12, (all
within 3 months either side of their 6th, 8th, 10th or 12th birthday) divided equally according to sex, age,

and socio-economic class established by profession and highest educational level of parents. Small cells of
3 children were recorded at play with Lego bricks, and each child also interviewed by the same `friendly'
adult on his/her favourite games and TV programmes.

Size:

65,000 words approximately, in 11,396 lines. 1 parsed sentence per line, hence some very long lines. (also
available in 80 chars wrap round format) 1.1 Mb. storage.

Format:

194 ASCII text files, each with a reference to age, social class, sex, play session or interview, and child's
initials. (each file is a sample of a single child's speech in a play session or an interview).

Availability:

Only the parsed corpus is available in machine readable form; the recorded tapes and 4-volume transcripts
with intonation contours are available in hard copy from the British Library Inter-Library Loans System.

Original recordings are available from: Dr. Robin Fawcett, Computational Linguistics Unit, University of
Wales College of Cardiff, Cardiff.

Original reason for collection:

Psycholinguistic research into development of children’s' English between ages of 6 and 12, investigating
the growing use of a variety of syntactico-semantic structures.

Current research (1987-9):

COMMUNAL project; Natural Language Processing at UWCC and Leeds University Extracting machine-
readable systemic functional grammars and lexicons for use in parsing. Suites of programs developed to
achieve this, including converting the corpus into bracketed form. The grammar used for the hand parsing in

the corpus was not formalised in terms of phrase-structure rules, or RTNs, but in system networks of
semantic/functional features and their realisation rules more suitable for NL generation than parsing.

 172

Appendix 3. Systemic-Functional Syntax Categories in the
 POW Corpus.

Name of Category Symbol in POW NT/T Examples (for Terminals)

TEXT AND SENTENCE

Text text NT -
Unfinished Text textun NT -

Sentence Z (for sigma) NT -

CLAUSE

Clause Cl NT -

Unfinished Clause Clun NT -

Adjunct (= Experiential Adjunct) A NT/T really, mostly
Affective Adjunct Aa NT -
Discourse organizational Adjunct Ad NT/T first-of-all, anyway

Replacement Adjunct Arepl NT -
Feedback-seeking Adjunct Af NT/T look, right, you know

Inferential Adjunct Ai NT/T just, only
Logical Adjunct Al NT/T really, though, as well
Replacement Logical Adjunct Alrepl NT -

Wh-logical Adjunct Alwh NT -
Modal Adjunct Am NT/T maybe, probably
Metalingual Adjunct Aml NT/T say, I mean

Negative Adjunct An NT/T never, neither
Politeness Adjunct Ap NT/T there, please

Tag Adjunct Atg NT/T is it, isn't it
Wh-Adjunct Awh NT/T how, when, where, why

Binder B NT/T because, cos, if, so, when
Main-verb-completing Binder Bm T of

Negative Binder Bn T -

Complement C NT -

Anticipatory Complement Cantic NT -
Replacement Complement Crepl NT -
Main-verb-completing

Complement

Cm NT/T across, in, on, up

Predicative Complement Cp NT/T able

Formula F NT/T alright, yes, no, pardon, what

Frame Fr NT/T right, now

Infinitive element I T to

Main verb M T builds, kicked, went

Negator N T not, no

 173

Operator O T did, does, do, let's

Modal Operator Om T 'll, 'd, 'm, are, can, could, is
Negative Modal Operator Omn T can't, couldn't, isn't, won't
Negative Operator On T didn't, doesn't, don't

Auxiliary Operator OX T 'm, 're, 've, have, was
Negative Auxiliary Operator OXn T haven't, wasn't

Subject S NT -
Anticipatory Subject Santic NT -

Replacement Subject Srepl NT -
Dummy it Subject Sit T it

Dummy there Subject Sth T there
Wh-Subject Swh NT -

Vocative V NT -

Auxiliary X T be, going to, have, used
Modal/Necessity Auxiliary Xm T better, got to, have to
Negative Modal Auxiliary Xmn T mustn't

Negative Auxiliary Xn T don't, hadn't, haven't

NOMINAL GROUP

nominal group ngp NT -

unfinished nominal group ngpun NT -

deictic determiner (also in qqgp) dd NT/T the, this, that, her, my

wh-deictic determiner ddwh T what, which
quantifying determiner (also in

qqgp)

dq NT/T a, an, one, four, any, all

negative quantifying determiner dqn NT/T no, none
wh-quantifying determiner dqwh T how many, how much

ordinative determiner do NT/T first, sixth, last
partitive determiner dp NT/T part
superlative determiner ds NT -

typic determiner dt NT -

selector (of) vo T of

modifier (= experiential modifier) mo NT -

affective modifier moa NT/T flipping
comparison modifier moc NT/T other, else, same, different

quantifying modifier moq NT/T five, only, ten
situation modifier mosit NT/T opening
thing modifier moth NT/T plastic, square, table

head (i.e. 'common noun') h T brick, books, men

('proper') name head hn T America, Alf, Barry-Island,
Batman

pronoun head hp T anything, he, her, him, I, it

negative pronoun head hpn T no-one, nobody, nothing
situation head hsit NT/T painting, reading
wh-pronoun head hwh T what, which, who

 174

qualifier q NT/T ago, left
replacement qualifier qrepl NT -

PREPOSITIONAL GROUP

prepositional group pgp NT -
unfinished prepositional group pgpun NT -

preposition p NT/T on, in, up, under
Main-verb-completing preposition pm T about, after, at, for, into

completive cv NT -

replacement completive cvrepl NT -
wh-completive cvwh NT -

QUANTITY-QUALITY GROUP

quantity-quality group qqgp NT -
unfinished quantity-quality group qqgpun NT -

temperer (also in pgp) t NT/T a bit, about, all, over, very
wh-temperer twh T how

apex ax NT/T always, away, back, big, black
tempering apex axt T biggest, better, higher, smaller

wh-apex axwh NT/T how, where, why, when

scope sc NT/T more

finisher fi NT/T of all, together

GENITIVE CLUSTER

genitive cluster gc NT -
genitive element g T 's
possessor ps NT -

owner own T own

ELEMENTS OCCURRING IN MORE THAN ONE UNITS NOT SPECIFIED ABOVE

inferrer inf T just, only

Linker & T and, and then, but, or, so, then
Negative linker &N T nor

 175

Appendix 4. A Mapping from LDOCE to POW SF Syntax Tags.

(First version 23-5-88)

LDOCE POW

1) Adjectives. adj [A,B,E,F,GU,P,Wa] [3,5,6,9] Default= [B]

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

attributive(prenom) [A] AX (MO_QQGP) eg overall
both at+pr (default) [B] AX (MO/C_QQGP) eg nice, fast

attributive(postnom) [E] AX (MO_QQGP) eg elect
predicative [F] AX (C_QQGP) eg asleep

group uncountable the+[GU] AX (NGP MO_QQGP) eg the accused
plural the+[P] AX (NGP MO_QQGP) eg the dead
comp=er, superl=est Wa1[] AX (MO/C_QQGP) eg nice, fast

comp=more/er,superl=most/est [Wa2] AX " eg secure
comp/superl,schwa-losing [Wa3] AX " eg simple
no-comp/superl [Wa5] AX " eg main, atomic

comparative/superlative
(formsare not in LDOCE)

- AXT " eg larger, largest

2) Nouns. n [A,C,E,GC,GU,N,P,R,S,U,Wn] [3,5,6,9] Default= [C]

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

attributive(prenominal) [A] H (MOTH_NGP) eg ‘football’ in ‘football

kit’
 (freq one word

hyphenated in POW)
countable (default) [C] H (NGP)
attributive(postnominal) [E] ? " v. rare

group(countable) [GC] H " eg committee
group(uncountable) [GU] H " eg the Admiralty
vocative [N] H/HN (V_NGP) eg doctor!

plural [P] H (NGP) eg the police
namelike [R] HN " eg God,the Earth

singular(uncountable) [S] H " eg think,babble
uncountable [U] H " eg sugar,love
odd-plural:

usu. change in pl. [Wn1] H " eg lion, pheasant
usu. don't change in pl. [Wn2] H " eg quail, salmon

never change in pl. [Wn3] H " eg sheep, grouse

3) Pronouns. pron [Wp] default= []

LDOCE POW

 176

Description of item LDOCE

tag/code

POW tag POW unit Comments

personal: [Wp1] HP (NGP) eg
subject, object, I, me,
possessive, reflexive. mine, myself.

relative: [Wp2] HWH " eg
 restric & non-restrictive who(m), whose, which,

what.
 restrictive only that, {}
negative - HPN " eg no-one, none,

nothing, nobody.
other - HP " eg any, everything,

anything, something,
another, others, each,
both.

4) Determiners. determiner [Wp] default= []

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

possessive determiner [Wp1] DD (NGP) eg my, our, his.

deictic - DD (NGP) eg the, that, this
 those, these.

wh-deictic [Wp2] DDWH (NGP) eg which, what, whose.
quantifying non-ordinal - DQ (NGP) eg a, any, a-bit,
(includes predeterminers) some, all, each,

 every, both.
quantifying ordinal - DQ (NGP) eg one, two, three..

(MOQ when preceded by
another determiner)
 - DO (NGP) eg first, second..

negative - DQN (NGP) eg no.
wh- - DQWH (NGP) eg how-many/much

partitive/representative - DP (NGP) eg part of, one of,
(quite rare, could be given DQ) much of, a bit of
genitive element - G (NGP_PS) eg 's.

5a) Verbs. v [D,I,L,T,V,Wv,X] [0-9] always have a number.

(includes modals, auxiliaries and linking verbs)

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

ditransitive [D] M (all CL) eg give, tell
intransitive [I0] M eg sleep, pause.

 [I2] OM(N)/
XM(N)

 modal auxiliaries

 [I8] OX(N)/

X(N)

 auxiliaries

 (see below [Wv2])
 [I5/6] M eg seems, appears

 (it + verb)

 177

linking/copula [L] M eg be, become, act, start
(subj refers to complement) last, cost, end up, go.

transitive [T] M eg kick, say, help.
non-finite-clause complement [V] M (+

BM)
 eg help(to do sth)

 see, ask.
transitive+(sth. else) [X] M eg consider, put,

 regard(as), make.
to be [Wv1] M
operator/auxiliary [Wv2] O/X eg do.

 OM/XM eg can, might, ’d,
 ’ll, will, ought..

 OX/X eg have, be.

(Operator is used in POW for the first auxiliary, which agrees, is finite, tensed, and moves to clause-initial

position in Y/N questions. Hence most auxiliaries are given an operator and an auxiliary tag in POW. All
such POW tags may be followed by N (eg OXN) for the negated, often shortened form of the verb; hasn’t,

won’t, couldn’t etc.).

schwa-losing [Wv3] M eg couple

-ing as adjective [Wv4] M eg fly
-ed as adjective [Wv5] M eg plait
no -ing form (present tense) [Wv6] M eg know, see

infinitival element [-3] I eg to

5b) Phrasal Verbs. v adv, v adv prep, v prep, v adv;prep. [I,T]

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

adverb particle v adv M AX (CM_QQGP) eg pull out, put down
preposition particle v prep M PM (C_PGP) eg get into, go around.

adv/prep particle v adv;prep M AX (CM_QQGP) eg lay off
 M PM (C_PGP) eg lay off

adv+prep particles v adv prep M AX (CM_QQGP)
 P (A_PGP) eg pop up through

(some phrasal verbs with 2-particles have the particles hyphenated in pow, eg see out-of, make out-of, in
which case they are treated as single preposition particles; v prep).

6) Adverbs adv [E,F,H,Wa] (mostly no upper-case letters)

(never followed by a number, except [Wa1] etc.)

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

default (no code) - AX/T/F/
FR

 most adverbs are both
[F] and [H]

postnominal [E] Q (QQGP) eg ago, left, previously.

complement [F] AX (A_QQGP) eg abroad, quickly,
easily.

combining with adj,prep,adv [H] T (MO_QQGP) eg very, so, well, right.

schwa-losing [Wa3] AX/T eg simply

 178

schwa-reducing [Wa4] AX/T eg poetically

(pow tag F (formula) is used for LDOCE adverbs which are usually single-word adverbials, such as yes, no,

OK, right. pow tag FR (frame) is used similarly, for time adverbials; now, right-now).

7) Prepositions. (LDOCE) prep = P (pow)

8) Conjunctions.

pow distinguishes two types, binder(B) and linker(&) for LDOCE conj, which could perhaps be conflated.

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

linker conj & (CL) eg and, but, then, so, or.
binder conj B (CL) eg cos, as, after, before,

if, for, when, since, till

9) Interjections.

Again pow distinguishes two types, exclamation(EX) and formula(F) for LDOCE interj, which could be

conflated.

LDOCE POW

Description of item LDOCE

tag/code

POW tag POW unit Comments

exclamation interj EX (CL) eg hey,dear,oh
formula interj F (CL) eg yes,no,OK,right

 179

Appendix 5. A Fragment of a Context-Free SF Syntax Maintaining
the Distinction between Filling and Componence.

6949 /*10ABIHS1*/ 'S_NGP' (['S_NGP' , X1]) --> 'HP' (X1).
1366 /*10ABIHS10*/ 'Z_CL' (['Z_CL' , X1]) --> 'F' (X1).
1242 /*10ABIHS2*/ 'C_NGP' (['C_NGP' , X1]) --> 'HP' (X1).
1198 /*10ABIHS19*/ 'CM_QQGP' (['CM_QQGP' , X1]) --> 'AX' (X1).
1138 /*10ABIHS1*/ 'C_NGP' (['C_NGP' , X1, X2]) --> 'DQ' (X1), 'H' (X2).
905 /*10ABIHS19*/ 'C_PGP' (['C_PGP' , X1, X2]) --> 'P' (X1), 'CV_NGP' (X2).
895 /*10ABIHS1*/ 'Z' (['Z' , X1, X2]) --> 'CL' (X1), 'CL' (X2).
853 /*10ABIHS25*/ 'C_QQGP' (['C_QQGP' , X1]) --> 'AX' (X1).
845 /*10ABIHS2*/ 'MO_QQGP' (['MO_QQGP' , X1]) --> 'AX' (X1).
798 /*10ABIHS2*/ 'C_NGP' (['C_NGP' , X1, X2]) --> 'DD' (X1), 'H' (X2).
733 /*10ABIHS14*/ 'A_QQGP' (['A_QQGP' , X1]) --> 'AX' (X1).
733 /*10ABIHS12*/ 'CV_NGP' (['CV_NGP' , X1, X2]) --> 'DD' (X1), 'H' (X2).
732 /*10ABIHS12*/ 'A_PGP' (['A_PGP' , X1, X2]) --> 'P' (X1), 'CV_NGP' (X2).
582 /*10ABIHS5*/ 'S_NGP' (['S_NGP' , X1]) --> 'DD' (X1).
547 /*10ABIHS12*/ 'C_NGP' (['C_NGP' , X1]) --> 'H' (X1).
486 /*10ABIHS55*/ 'Z' (['Z' , X1, X2]) --> 'CL_F' (X1), 'CL' (X2).
352 /*10ABIHS16*/ 'S_NGP' (['S_NGP' , X1, X2]) --> 'DD' (X1), 'H' (X2).
336 /*10ABIHS14*/ 'C_NGP' (['C_NGP' , X1]) --> 'HN' (X1).
316 /*10ABIHS16*/ 'CV_NGP' (['CV_NGP' , X1]) --> 'HP' (X1).
288 /*10ABIHS14*/ 'C_NGP' (['C_NGP' , X1]) --> 'DD' (X1).
281 /*10ABIHS42*/ 'Z_CL' (['Z_CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'M' (X2), 'C_NGP' (X3).
260 /*10ABIHS31*/ 'MOTH_NGP' (['MOTH_NGP' , X1]) --> 'H' (X1).
254 /*10ABPSHS222*/ 'V_NGP' (['V_NGP' , X1]) --> 'HN' (X1).
245 /*10ABIHS11*/ 'CV_NGP' (['CV_NGP' , X1]) --> 'DD' (X1).
231 /*10ABIHS1*/ 'CWH_NGP' (['CWH_NGP' , X1]) --> 'HWH' (X1).
226 /*10ABIHS11*/ 'Q_PGP' (['Q_PGP' , X1, X2]) --> 'P' (X1), 'CV_NGP' (X2).
222 /*10ABIHS71*/ 'CV_QQGP' (['CV_QQGP' , X1]) --> 'AX' (X1).
216 /*10ABIRL51*/ 'CV_NGP' (['CV_NGP' , X1]) --> 'H' (X1).
208 /*10ABIHS36*/ 'CL' (['CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'M' (X2), 'C_NGP' (X3).
192 /*10ABIHS16*/ 'Z' (['Z' , X1, X2, X3]) --> 'CL' (X1), 'CL' (X2), 'CL' (X3).
181 /*10ABIRL3*/ 'C_PGP' (['C_PGP' , X1, X2]) --> 'PM' (X1), 'CV_NGP' (X2).
169 /*10ABPSHS273*/ 'C_NGP' (['C_NGP' , X1, X2, X3]) --> 'DQ' (X1), 'MO_QQGP' (X2), 'H' (X3).
169 /*10ABIHS61*/ 'CV_NGP' (['CV_NGP' , X1]) --> 'HN' (X1).
166 /*10ABIHS5*/ 'Z_CL' (['Z_CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'OM' (X2), 'C_NGP' (X3).
163 /*10ABIHS2*/ 'S_NGP' (['S_NGP' , X1]) --> 'HN' (X1).
157 /*10ABIRL3*/ 'CV_NGP' (['CV_NGP' , X1, X2]) --> 'DQ' (X1), 'H' (X2).
156 /*10ABIHS24*/ 'C_QQGP' (['C_QQGP' , X1, X2]) --> 'T' (X1), 'AX' (X2).
143 /*10ABPSHS38*/ 'S_NGP' (['S_NGP' , X1]) --> 'H' (X1).
138 /*10ABPSHS235*/ 'Z_CL' (['Z_CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'M' (X2), 'C_CL' (X3).
135 /*10ABIHS18*/ 'C_CL' (['C_CL' , X1, X2, X3]) --> 'I' (X1), 'M' (X2), 'C_NGP' (X3).
133 /*10ABIHS71*/ 'C_PGP' (['C_PGP' , X1, X2]) --> 'P' (X1), 'CV_QQGP' (X2).
128 /*10ABIHS41*/ 'Z_CL' (['Z_CL' , X1, X2, X3]) --> '(S)' (X1), '(M)' (X2), 'C_NGP' (X3).
120 /*10ABIRL55*/ 'AWH_QQGP' (['AWH_QQGP' , X1]) --> 'AXWH' (X1).
116 /*10ABIRL69*/ 'Z_CL' (['Z_CL' , X1, X2, X3, X4]) --> 'S_NGP' (X1), 'OX' (X2), 'M' (X3), 'C_NGP'
(X4).
116 /*10ABIHS2*/ 'DP_NGP' (['DP_NGP' , X1, X2]) --> 'DD' (X1), 'H' (X2).
114 /*10ABITG15*/ 'CL' (['CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'OM' (X2), 'C_NGP' (X3).
112 /*10ABIHS2*/ 'CL' (['CL' , X1, X2, X3, X4]) --> '&' (X1), 'S_NGP' (X2), 'M' (X3), 'C_NGP' (X4).
102 /*10ABPSRL117*/ 'ATG_CL' (['ATG_CL' , X1, X2]) --> 'OMN' (X1), 'S_NGP' (X2).
101 /*10ABPSHS215*/ 'C_NGP' (['C_NGP' , X1]) --> 'DQ' (X1).
100 /*10ABIHS32*/ 'Z_CL' (['Z_CL' , X1, X2, X3]) --> 'S_NGP' (X1), 'OM' (X2), 'C_QQGP' (X3).
92 /*10ABIRL69*/ 'C_TEXT' (['C_TEXT' , X1]) --> 'Z_CL' (X1).

 180

Appendix 6. A Fragment of a Context-Free SF Syntax Ignoring
the Distinction between Filling and Componence.

8765 10ABIHS000001 S --> NGP
8598 10ABIHS000001 NGP --> HP
8013 10ABIHS000004 Z --> CL
6520 10ABIHS000001 C --> NGP
4344 10ABIHS000002 QQGP --> AX
2365 10ABIHS000002 CV --> NGP
2361 10ABIHS000001 PGP --> P CV
2225 10ABIHS000004 CL --> F
2195 10ABIHS000002 NGP --> DD H
1705 10ABIHS000001 NGP --> DQ H
1702 10ABIHS000001 Z --> CL CL
1473 10ABIHS000012 NGP --> H
1460 10ABIHS000001 C --> PGP
1238 10ABIHS000024 C --> QQGP
1223 10ABIHS000002 CM --> QQGP
1178 10ABIHS000002 NGP --> HN
1169 10ABIHS000005 NGP --> DD
1149 10ABIHS000002 C --> CL
951 10ABIHS000002 MO --> QQGP
933 10ABIHS000002 A --> PGP
931 10ABIHS000007 CL --> S M C
846 10ABIHS000014 A --> QQGP
618 10ABIHS000005 CL --> S OM C
461 10ABIHS000022 AL --> CL
432 10ABIHS000001 CL --> M C
394 10ABIHS000016 Z --> CL CL CL
357 10ABPSHS00079 V --> NGP
346 10ABIHS000024 QQGP --> T AX
336 10ABIHS000001 NGP --> HWH
334 10ABPSHS00273 ATG --> CL
326 10ABIHS000031 MOTH --> NGP
310 10ABIHS000001 CL --> & S M C
278 10ABIHS000011 Q --> PGP
273 10ABIHS000041 CL --> (S) (M) C
271 10ABIRL000047 CL --> M
266 10ABIHS000001 CWH --> NGP
261 10ABIHS000022 Q --> CL
248 10ABIRL000015 CL --> S OM M C
243 10ABPSHS00273 NGP --> DQ MO H
241 10ABIHS000018 CL --> I M C
240 10ABIHS000071 CV --> QQGP
239 10ABIHS000001 CL --> S OX M C
238 10ABIHS000026 Z --> CLUN
230 10ABIHS000002 A --> CL
226 10ABIHS000055 QQGP --> AXWH
207 10ABITG000037 CL --> S M
203 10ABIRL000003 PGP --> PM CV
199 10ABIRL000003 NGP --> DQ
189 10ABIHS000028 CL --> B S M C
176 10ABIHS000051 DQ --> QQGP

171 10ABIHS000013 C --> NGP NGP
164 10ABIHS000055 CL --> ???
160 10ABIHS000002 DP --> NGP
158 10ABIHS000018 CL --> (S) (OM) C
153 10ABIHS000009 A --> NGP
151 10ABIHS000011 NGP --> DQ H Q
150 10ABPSRL00071 CL --> EX
148 10ABIRL000055 AWH --> QQGP
146 10ABIHS000071 CL --> M CM
127 10ABIRL000017 NGP --> MO H
126 10ABIHS000061 CL --> STH OM C
124 10ABIRL000049 TEXT --> Z
121 10ABPSHS00047 ??? --> NGP
121 10ABIHS000012 CL --> S M C A
119 10ABITG000023 CL --> M C C
118 10ABIRL000049 C --> TEXT
117 10ABIHS000024 Z --> CL CLUN
116 10ABIHS000059 QQGP --> AX SC
116 10ABIHS000025 DQ --> NGP
115 10BBPSHW00065 C? --> NGP
113 10ABIHS000002 NGP --> DD MO H
112 10ABPSRL00158 CL --> C?
111 10ABIHS000053 QQGP --> AXT
103 10ABPSRL00027 CL --> OMN S
102 10ABIHS000016 NGP --> DD H Q
101 10ABIRL000034 SWH --> NGP
101 10ABIRL000004 NGP --> DQ DD H
99 10ABIRL000022 NGP --> DQ MOTH H
99 10ABIHS000013 CL -->(S) (OX) (M) C
97 10ABIRL000047 Z --> CL CL CL CL
96 10ABIHS000070 CWH --> QQGP
95 10ABPSRL00039 CL --> S ON M C
95 10ABIHS000027 PGP --> (P) CV
93 10ABPSRL00194 CL --> FR
91 10ABPSHS00047 NGP --> DD HP
90 10ABPSHS00281 NGP --> DQ MO HP
88 10ABIHS000025 CL --> & S OM C
87 10ABIHS000002 NGP --> DP
77 10ABITG000043 CREPL --> NGP
76 10ABIHS000025 PGP --> P C
74 10ABIHS000025 C --> NGPUN
74 10ABIHS000009 NGP --> DQ VO H
71 10ABPSHS00301 CL --> CWH OM S
71 10ABPSHS00038 CL --> B S OM C
71 10ABIRL000021 CL --> (I) (M) C
70 10ABIRL000002 CLUN --> &
70 10ABIRL000001 MOA --> QQGP
69 10ABITG000051 DD --> GC
69 10ABIRL000061 NGP --> DQ VO HP
69 10ABIRL000051 NGP --> H Q

 181

Appendix 7. A Fragment of a Vertical Trigram Model from the
 POW corpus

This sample illustrates all the possible vertical trigrams dominating the linker (&) label, with their

frequencies from the POW corpus. Note that the linker is one of the few elements of structure which may
occur in more than one unit (CL, CLUN, NGP, NGPUN, PGP, QQGP). There are 968 unique vertical

trigrams in all.

[38 & CL AL]

[7 & CL A]
[3 & CL CV]

[26 & CL C]
[2 & CL FI]
[8 & CL Q]

[3 & CL SANTIC]
[1 & CL SC]
[1745 & CL Z]

[3 & CLUN AL]
[1 & CLUN A]

[2 & CLUN C]
[151 & CLUN Z]
[1 & NGP CANTIC]

[4 & NGP CREPL]
[1 & NGP CVREPL]

[44 & NGP CV]
[211 & NGP C]
[3 & NGP DQ]

[6 & NGP SANTIC]
[26 & NGP S]
[1 & NGPUN CREPL]

[1 & NGPUN CV]
[18 & NGPUN C]

[2 & NGPUN S]
[2 & PGP A]
[7 & PGP C]

[3 & QQGP A]
[4 & QQGP CM]

[2 & QQGP CV]
[9 & QQGP C]
[3 & QQGP DQ]

[12 & QQGP MO]

 182

Appendix 8. Rule and Word-Wordtag Frequency Distribution
 in the POW Corpus.

Context-Free Rule Frequency Distribution in POW

1

10

100

1000

10000

1 10 100 1000 10000

Frequency of Frequency of Rule

F
re

q
u

e
n

c
y
 o

f
R

u
le

Word-Wordtag Frequency Distribution in POW

1

10

100

1000

10000

1 10 100 1000 10000

Frequency of Frequency of Word-Wordtag Pair

F
re

q
u

e
n

c
y
 o

f
W

o
rd

-W
o

rd
ta

g
 P

a
ir

 183

Appendix 9. A Prototype Competence Systemic Functional
Syntax.

A Formal Systemic-Functional Grammar

Clive Souter (June 1988)

(This grammar is taken from Fawcett's "Some Proposals for Systemic Syntax", using his example trees and
descriptions of structure for all levels of the sentence. It will be expanded to a 'full' set of simple PS rules to
be compared with those extracted from the pow corpus. Two kinds of rewrite arrow are used here:

 => for filling of an element of structure by a unit, such as S => NGP

 -> for componence, (traditional rewrite in PS grammars), eg NGP -> H

Rules may include daughters followed by '+' which allows for repeated co-ordination of that category, and

will be specified to a certain maximum value for the sake of generation of a set of simple PS rules later on.
Where a daughter is optional, it is placed in round brackets (DD). If a daughter may optionally be repeated
up to a limited no of times, this figure is included in braces {} immediately following the daughter category,

eg DD{3}. It so happens in the current version of the grammar that no daughters are both obligatory and
allow repetition, i.e. all daughters which may be repeated up to a limited number of times are optional i.e.

(MO{2}). The notation could therefore be collapsed to just use the {} facility, with (MO) = MO{1}, but it
remains to be seen whether this will always be the case.

Filling Relationships:

A => CL
A => NGP
A => PGP+

A => QQGP+
C => CL+
C => NGP+

C => PGP+
C => QQGP+

C => TEXT
CV => CL
CV => NGP+

CV => PGP
CV => QQGP

DD => GC
DP => NGP
DQ => NGP

DQ => QQGP
FI => CL+

FI => PGP
H => CL
MO => QQGP+

MOTH => NGP ;; perhaps not all the nominal group structure is needed here
PS => NGP+
Q => CL+

Q => NGP
Q => PGP+

Q => QQGP
S => CL+

 184

S => NGP+
S => PGP

S => QQGP+
SC => CL
SC => PGP+

T => NGP
T => QQGP

TEXT => Z
Z => CL+

Componence Relationships:

Adverbial/Adjectival Group = Quantity/Quality Group.

(should this distinction be reintroduced if we no longer have the difference between MO_QQGP and

A_QQGP? Clearly while the structure of the two is the same, the items which may expound the various
daughters of QQGP ARE different according to whether they are part of a MO or A. NB: still causes probs

for dict look-up)

QQGP -> (&) (T) AX (SC) (FI)

QQGP -> (&) AX (T) (SC) (FI)

i.e. T is mutually exclusive. AX is necessary.

Nominal Group (including genitive cluster)

A full range of determiner structures has been attempted, with the exception that DO(ordinative) and
DS(superlative) have been treated as one category, DS. Partitive(DP) and Quantifying(DQ) determiners

have been distinguished. Modifiers are of three types, MOQ(quantifying), MO('normal'), and
MOTH('thing'). MOTH replaces the original nominator, and is used for the first element in strings like

"paper bag" and "football match". There is clearly some overlap with the idea of compound nouns, whose
characteristics are difficult to specify, as not only phonological (stress) criteria are needed. Compounds are
normally hyphenated in pow, but not always in everyday usage. The head is nearly always present, except

for cases like "this", which is traditionally treated as a pronoun as well as a determiner, but here only as a
determiner.

The deictic determiner (DD) may be filled by a genitive cluster, or expounded directly by a word.

NGP -> (&) DP VO DQ VO DS VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DP VO DS VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DP VO DS VO (MOQ) (MO{3}) (MOTH{3}) H (Q{5})

NGP -> (&) DP VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DQ VO DS VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})

NGP -> (&) DQ VO DS (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DQ VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DQ DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})

NGP -> (&) DQ (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DS VO DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})

NGP -> (&) DS (VO) (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DD (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) DD (MOQ)

NGP -> (&) (MOQ) (MO{3}) (MOTH{3}) H (Q{5})
NGP -> (&) HP
NGP -> (&) HN

GC -> (PS) G (OW) ;; NB no co-ordination

 185

Prepositional Groups

Main verb completing prepositions (PM) (i.e. in phrasal verbs) not included. What should their structure
be? (temperers disallowed, no co-ordination)

PGP -> (&) (T) P CV ;; should P be able to be filled by a QQGP?

PGP -> PM CV

Clauses

Does not yet account for all medial adjuncts; particularly between S, O and Xs.

declarative:

CL -> F
CL -> (FR) (&) (B) (A+) S (O) (A) (X{5}) M (CP) (C{2}) (A+)

CL -> (FR) (&) (A+) C S (O) (X{5}) M (C) (A+) ;; topicalised complement
 ;; or rel. clause.
CL -> (FR) (&) (A+) (C) M S (A+) ;; here is.. into it ran the mouse.

imperative:

CL -> (&) (B) (A+) M (C{2}) (A+)

interrogative: (NB wh-subjects treated as in non-interrogative position)

CL -> (FR) (&) (A+) O S (A) (X{5}) (M) (C{2}) (A+)

CL -> (FR) (&) (A+) C O S M (C) (A+)

 186

Appendix 10. Brill Tagger Context Rules Learned from POW

csgps1:POW>more CONTEXT-RULEFILE

OM OX NEXT1OR2TAG M

STH AX NEXT1OR2TAG .
P AX NEXTTAG .
P M PREV1OR2WD I

F M PREVTAG ON
I P NEXTTAG DD

M O RBIGRAM do you
M X NEXTTAG M
STH AX NEXT1OR2TAG HP

M H PREVWD a
OX OM CURWD 'd

DQ AX NEXTTAG SC
P AX NEXTTAG P
P PM PREVWD look

HWH F SURROUNDTAG STAART .
AF FR PREV1OR2OR3TAG STAART
P AX NEXT1OR2TAG M

HP DQ NEXT1OR2TAG VO
AX & WDNEXTTAG then HP

OM OX NEXT2TAG X
AX T NEXTTAG AX
I P NEXTTAG HN

AX P NEXTWD the
P AX NEXTTAG &

M OX RBIGRAM have you
HP DQ NEXTTAG H
M O NEXTTAG M

STH AX NEXT1OR2TAG &
OM G SURROUNDTAG H H
OX OM NEXTTAG DQ

I P NEXTTAG H
AX STH NEXTTAG OM

P AX NEXT1OR2WD we
P PM PREVWD looking
I P NEXTTAG DQ

OM G PREVTAG HN
AX F WDAND2BFR STAART alright

H M PREVBIGRAM & HP
OX OM NEXTTAG AX
DQ AX PREVTAG T

STH AX NEXTTAG P
HP DD WDNEXTTAG her H

HWH DDWH NEXT1OR2TAG H

 187

Appendix 11. General lexical tagging rules used by the Brill
 tagger for untrained words.

The first of these are default labels for nouns and proper nouns. Others represent (fairly esoteric) rules for

helping predict tags with respect to a neighbouring tag or word, or by analysing affixes. For example

M my fgoodright H 5.66868686868687

suggests a good tag to follow a main verb followed by the word my is a head noun.
(The rules are presented in 3 columns to save space).

NN a fchar H 0
NN b fchar H 0
NN c fchar H 0
NN d fchar H 0
NN e fchar H 0
NN f fchar H 0
NN g fchar H 0
NN h fchar H 0
NN i fchar H 0
NN j fchar H 0
NN k fchar H 0
NN l fchar H 0
NN m fchar H 0
NN n fchar H 0
NN o fchar H 0
NN p fchar H 0
NN q fchar H 0
NN r fchar H 0
NN s fchar H 0
NN t fchar H 0
NN u fchar H 0
NN v fchar H 0
NN w fchar H 0
NN x fchar H 0
NN y fchar H 0
NN z fchar H 0
NNP A fchar HN 0
NNP B fchar HN 0
NNP C fchar HN 0
NNP D fchar HN 0
NNP E fchar HN 0
NNP F fchar HN 0
NNP G fchar HN 0
NNP H fchar HN 0
NNP I fchar HN 0
NNP J fchar HN 0
NNP K fchar HN 0

NNP L fchar HN 0
NNP M fchar HN 0
NNP N fchar HN 0
NNP O fchar HN 0
NNP P fchar HN 0
NNP Q fchar HN 0
NNP R fchar HN 0
NNP S fchar HN 0
NNP T fchar HN 0
NNP U fchar HN 0
NNP V fchar HN 0
NNP W fchar HN 0
NNP X fchar HN 0
NNP Y fchar HN 0
NNP Z fchar HN 0
the goodleft M 103.741851499632
ng hassuf 2 M 63.3301587301587
the goodright H 54.2394733115649
I goodright M 45.756450713517
very goodright AX 33.0682856984206
he goodright M 29.2066457866229
H ed fhassuf 2 M 21.3333333333333
H it fgoodright AX 19.1383883614615
AX s fdeletesuf 1 M 13.3333333333333
can goodright M 12.7017211703959
M with fgoodright HP 10.5027834347864
't hassuf 2 OMN 9.6165286494636
M out fgoodright P 9.14219217900017
H ly faddsuf 2 AX 8.9
H was fgoodright AX 8.62216837090389
M never fgoodleft OM 8.53591985129854
ly deletesuf 2 AX 8.35227272727273
M - fchar H 6.98913043478261
-to deletesuf 3 XM 6.94565217391304
a deletepref 1 AX 6.12766116941529
ere hassuf 3 AX 6.01641414141414
H are fhassuf 3 F 6

ing deletesuf 3 M 5.95238095238095
H don't fgoodright M 5.83333333333333
H years fgoodleft DQ 5.39849012775842
M er fhassuf 2 H 5.2
M my fgoodright H 5.66868686868687
H we fgoodright M 4.8
H be fgoodright AX 5.28767957810511
AX s faddsuf 1 H 5.18349068349068
H ones fgoodleft AX 5.05492610837439
mother goodleft DD 4.3646096289248
AX es fhassuf 2 H 4
H u fhassuf 1 F 4
then hassuf 4 & 4
H has fgoodright HP 3.95789473684211
H too fgoodright AX 3.95402298850575
of hassuf 2 P 3.92857142857143
M isn't fgoodleft AX 3.88399570354458
elf hassuf 3 HP 3.66666666666667
H you fgoodright M 3.5995670995671
M some fgoodright H 4.60498687664042
H could fgoodright M 3.72834645669291
OMN got fgoodleft OXN 3.4010989010989
H came fgoodright AX 3.20498866213152
HP big fgoodleft DD 3.10564226578085
M dle fhassuf 3 H 3
M ty fhassuf 2 AX 3
ous hassuf 3 AX 3
H years fgoodright AX 3
ah hassuf 2 F 3
H no fhassuf 2 F 3
H ' fhassuf 1 P 3
H oh fhaspref 2 EX 3
est hassuf 3 AXT 3
-it deletesuf 3 ATG 3
P she fgoodleft B 2.96361471861472

 188

Appendix 12. The Reduced EPOW Filling Grammar.

[[-2.21565 -6.33061 -7.71691] A CL]
[[-2.66705] A NGP]
[[-0.84167 -7.02376] A PGP]
[[-0.95418 -6.33061] A QQGP]
[[-7.71691] A TEXT]
[[0.00000] AA QQGP]
[[-0.69315] AD PGP]
[[-0.69315] AD QQGP]
[[-0.13353] AF CL]
[[-2.07944] AF QQGP]
[[0.00000] AI QQGP]
[[-0.07036 -3.51942 -4.96634] AL CL]
[[-5.65948] AL PGP]
[[-3.58004] AL QQGP]
[[0.00000] ALREPL CL]
[[0.00000] ALWH QQGP]
[[-0.41552] AM CL]
[[-1.07881] AM QQGP]
[[0.00000] AML CL]
[[0.00000] AN QQGP]
[[0.00000] AP CL]
[[-2.30259] AREPL CL]
[[-2.30259] AREPL NGP]
[[-0.91629] AREPL PGP]
[[-0.91629] AREPL QQGP]
[[0.00000] ATG CL]
[[-4.36945] AWH NGP]
[[-4.36945] AWH PGP]
[[-0.02564] AWH QQGP]
[[-0.53900] AX NGP]
[[-2.48491] AX PGP]
[[-1.09861] AX QQGP]
[[-2.23685 -5.97961 -8.21320] C CL]
[[-0.50225 -4.07007 -5.57414 -7.11459 -8.61867] C NGP]
[[-2.00126 -7.36590 -8.61867] C PGP]
[[-2.16347 -7.52005 -8.61867 -9.31181] C QQGP]
[[-4.45200] C TEXT]
[[-0.06454 -2.77259] CANTIC NGP]
[[-7.13409] CM CL]
[[-5.52466] CM NGP]
[[-4.83151] CM PGP]
[[-0.01608 -5.74780] CM QQGP]
[[0.00000] CP QQGP]
[[-3.16969] CREPL CL]
[[-0.26826 -3.39283 -4.77912] CREPL NGP]
[[-2.29422] CREPL PGP]
[[-2.98736] CREPL QQGP]
[[-3.91797 -7.26787 -7.96102] CV CL]
[[-0.14219 -4.22335 -6.86241 -7.96102 -7.96102] CV NGP]
[[-4.96529] CV PGP]
[[-2.43956 -7.96102 -7.96102] CV QQGP]
[[-7.96102] CV TEXT]
[[-0.08004 -2.56495] CVREPL NGP]
[[-0.69315] CVWH NGP]
[[-0.69315] CVWH QQGP]
[[-4.16148] CWH CL]
[[-0.32923] CWH NGP]

[[-4.85463] CWH PGP]
[[-1.35812] CWH QQGP]
[[-0.05481] DD GC]
[[-3.62434] DD NGP]
[[-3.62434] DD QQGP]
[[0.00000] DO QQGP]
[[-0.00593] DP NGP]
[[-5.12990] DP QQGP]
[[-5.69373] DQ GC]
[[-0.94880 -4.30744] DQ NGP]
[[-0.52895 -5.00058] DQ QQGP]
[[0.00000] DQN QQGP]
[[0.00000] DR NGP]
[[0.00000] DS QQGP]
[[0.00000] DT NGP]
[[0.00000] F QQGP]
[[-1.17865 -3.25810] FI CL]
[[-0.42488] FI PGP]
[[0.00000] HSIT CL]
[[-4.85593] MO NGP]
[[-0.01668 -5.32593 -5.54908] MO QQGP]
[[0.00000] MOA QQGP]
[[-3.41773] MOC NGP]
[[-0.03334] MOC QQGP]
[[0.00000] MOQ QQGP]
[[0.00000] MOSIT CL]
[[-0.02118] MOTH NGP]
[[-3.86523] MOTH QQGP]
[[0.00000] P QQGP]
[[0.00000] PS NGP]
[[-0.88099 -5.38450 -5.78996] Q CL]
[[-2.87219] Q NGP]
[[-0.83413 -5.78996] Q PGP]
[[-2.47577] Q QQGP]
[[-0.69315] QREPL CL]
[[-0.69315] QREPL PGP]
[[-6.69872] S CL]
[[-0.00483 -6.00557 -7.48717 -9.09661] S NGP]
[[-8.40346] S PGP]
[[-8.40346] S QQGP]
[[-2.75154 -3.85015] SANTIC CL]
[[-0.18659 -3.15700 -3.15700] SANTIC NGP]
[[-2.11296 -4.51086] SC CL]
[[-2.90142] SC NGP]
[[-0.23419] SC PGP]
[[-3.81771] SC QQGP]
[[-3.25810] SREPL CL]
[[-0.03922] SREPL NGP]
[[0.00000] SWH NGP]
[[-0.38137] T NGP]
[[-1.14862] T QQGP]
[[-0.00265] V NGP]
[[-5.93489] V QQGP]
[[-0.26847 -1.73170 -3.15969 -4.50744 -5.88536 -6.72161 -
7.90027 -7.90027 -8.59341 -9.28656] Z CL]

 189

Appendix 13. The 100 Most Frequent Word-Wordtag Pairs in the
EPOW Lexicon.

2679 I HP
2250 THE DD
1901 A DQ
1550 AND &
1525 IT HP
1298 YOU HP
1173 'S OM
1117 WE HP
1020 THAT DD
897 YEAH F
691 GOT M
610 THEY HP
585 NO F
554 IN P
523 TO I
482 PUT M
417 HE HP
411 DON'T ON
401 ONE HP
400 OF VO
398 THERE AX
397 THIS DD
383 THERE STH
373 CAN OM
366 ON P
353 MY DD
350 YES F
349 LOOK M
341 HAVE M
320 KNOW M
318 BE M
316 ON AX
314 'LL OM
305 DO M
304 NOT N
295 THEM HP
294 GO M
287 ALL DQ
281 HOUSE H
279 MAKE M
278 'VE OX
269 IF B
261 WHAT HWH
253 'S OX
247 WITH P
245 GET M
243 IS OM
238 NOW AX
227 WAS OM
224 UP AX

211 HERE AX
210 LIKE P
198 LITTLE AX
198 BUT &
196 'M OX
192 LIKE M
192 FOR P
187 SOME DQ
186 TO P
185 TWO DQ
182 JUST AI
182 DOOR H
179 SHE HP
177 AND-THEN &
172 THESE DD
170 BY-THERE AX
169 OUT AX
168 GOOD AX
164 ONE DQ
162 DO O
161 PLAY M
161 GOING-TO X
161 CAN'T OMN
160 NEED M
154 HAVEN'T OXN
152 ROOF H
152 HAVE-TO XM
148 ME HP
144 IN AX
137 WHEN B
131 WANT M
128 THINK M
125 WENT M
125 COME M
124 WHERE AXWH
123 MAN H
120 THINGS H
118 WINDOW H
118 GOT-TO XM
118 COULD OM
117 WINDOWS H
117 BUILD M
117 BIG AX
114 OFF AX
112 ONES HP
112 'RE OM
109 THING H
108 CAR H
107 AN' &
106 AT P

 190

Appendix 14. Pocock and Atwell's Weight-Driven Chart Parser.

Major amendments made to Gazdar and Mellish’s POP11 chart parser:

;;; file ~rob/Chart/V5/chartV5.p

WEIGHT - DRIVEN CHART PARSER: Version 5
Rob Pocock 6/1/93

See '~rob/Chart/0.READ_ME' for information on how to run the chart parser
and an explanation of code.

Changes Made To Basic Algorithm in [Gazdar & Mellish 89] :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(1) Separate grammar and lexicon. Lexicon is only accessed when initialising 
    agenda. 
(2) Grammar and lexicon are stored as property lists (indexed according to 
    first rhs constituent), allowing direct access to grammar rules invoked 
    in function 'inactive_edge_procedure'. 
(3) Edges augmented with a weight field : 
        [ ?weight ?start ?finish ?label ?found ?tofind ] 
(4) Weights may be either (logarithmised) probabilities or frequencies 
    depending on the grammar & lexicon loaded. 
(5) 'initialise_agenda' assigns three default wordtags (weighted) to words 
    which aren't in the lexicon  -->  NN1, VV0, JJ 
(6) Chart is stored as an array of many lists rather than one very long list. 
    Allows more precise access - much faster. 
(7) Edges in the agenda are ordered according to highest weight first - main 
    influence on parser search strategy. 
(8) Use a list 'update_list' to store intermediate edges (also ordered). This 
    list is then combined with the agenda to create a new updated agenda. 
(9) Only check whether new edges to be added to the agenda already exist ( in 
    update_list, agenda or chart), in function 'inactive_edge_procedure'. 
    These are completely active edges created from invoked grammar rules. All 
    other new edges created in 'add_edge' derive from these 'invoked' edges, 
    so there is no need to check for them. 
(10) Spanning edges (complete parse trees) are augmented with their edge 
     number, allowing the 'stage' at which parse trees are found to be 
     studied. 
(11) Three types of input : 
     - sentence of words 
     - sequence of grammar wordtags 
     - lattice of recognition-candidates 
(12) With lattice input, data is read from a textfile whose filename is 
     contained in global variable 'lattice_filename'. For an example of 
     required format, examine ~rob/Chart/Data/STEPHEN.l 
(13) Pop11 efficiency details : 
     - attempted to avoid creating new lists when updating old lists, so as to 
       save on memory and garbage collection. eg. NCREV, NC_<> 
     - fast integer functions eg. fi_+, fi_> 
     - compile time macros #_< and >_# 
     - compile procedures as being constant 
       eg. compile_mode:pop11 +defcon   (in ~rob/Chart/V5/initV5.p) 
     - use '==' wherever possible 
     - use 'until list == [] do' ... 'enduntil' for accessing list contents 
     - use 'syslockheap' and 'sysgarbage' 



 191 

Appendix 15. Parser Version 7: Test Results. 
 
Diagnostics displayed when version 7 of the parser is loaded: 

 
 
:load parseV7.p 
;;; LOADING parseV7.p 
 
Using EPOW trained BRILL tagger: 
 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/lookup.p 
 
Loading parsing code : 
 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/initV5.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/outputV7.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/chartV7.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/inputV5.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/problem.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/out.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/property.p 
;;; LOADING /home/csuna_cl/staff/cs/pop/parser/TRACE_chartV7.p 
 
Loaded parsing code - Version 7 
 
Look at textfile ~nlp/SOPP/Chart/0.READ_ME for more information. 
 
Popmemlim = 20000000 
 
Loading collapsed POW systemic functional grammar (1898 rules) : 
 
Creating grammar property list (gpl) : 
 
Creating vertical triples property list (vpl) : 
 
Grammar loaded, ready to parse 
Use commands  - parse("W",[]) - for sentence of words 
  - parse("G",[]) - for sequence of wordtags 
  - parse("L",[]) - for lattice of words 
 
;;; Parameters set to the following three way stopping mechanism for parser: 
;;; maxparses = 6, 
;;; finalweight = 1.5 * firstweight 
;;; max agenda length = 50000 * strlen 
 
 



 192 

Utterance 1 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : why 
 
POW solution: 
[Z [CL [AWH [QQGP [AXWH WHY]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
[why AXWH] 
 
 Lexical lookup results for sentence: 
why 
AXWH 
 
 
lattice_filename = LATTICE 
chart_filename =  EDGES 
chart_to_file = <false> 
only_inactive = <true> 
almost_inactive = <false> 
 
Result of parse : 
[[[W -128437 Z [Z [CL [A [QQGP [AXWH why]]]]] 6]] 
    [[W -130227 Z [Z [CL [AWH [QQGP [AXWH why]]]]] 6]] 
    [[W -131189 Z [Z [CL [C [QQGP [AXWH why]]]]] 6]] 
    [[W -155665 Z [Z [CL [CWH [QQGP [AXWH why]]]]] 6]] 
    [[W -173309 Z [Z [CL [AL [QQGP [AXWH why]]]]] 6]] 
    [[W -175388 Z [Z [CL [C [PGP [CV [QQGP [AXWH why]]]]]]] 8]]] 
 
Number of edges in chart = 133 
Number of inactive edges = 40 
Number of almost inactive edges = 0 
Number of active edges = 97 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 3.47 
Number chart edges (variable chart_edges) = 133 
 

Utterance 2 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> :what ’s the point 
 
POW solution: 
[Z [CL [CWH [NGP [HWH WHAT]]] 
       [OM 'S] 
       [S [NGP [DD THE] [H POINT]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
what 



 193 

HWH 
 
's 
OM 
 
the 
DD 
 
point 
H 
 
lattice_filename = LATTICE 
chart_filename =  EDGES 
chart_to_file = <true> 
only_inactive = <true> 
almost_inactive = <false> 
 
Result of parse : 
[[[W -149624 Z 
        [Z [CL [S [NGP [HWH what]]] 
               [OM 's] 
               [C [NGP [DD the] [H point]]]]] 
        6]] 
    [[W -185372 Z 
        [Z [CL [S [NGP [HWH what]]] 
               [OM 's] 
               [C [NGP [DD the]]] 
               [C [NGP [H point]]]]] 
        6]] 
    [[W -196983 Z 
        [Z [CL [CWH [NGP [HWH what]]] 
               [OM 's] 
               [S [NGP [DD the] [H point]]]]] 
        6]] 
    [[W -199622 Z 
        [Z [CL [S [NGP [HWH what]]] 
               [OM 's] 
               [C [PGP [CV [NGP [DD the] [H point]]]]]]] 
        8]] 
    [[W -207834 Z 
        [Z [CL [S [NGP [HWH what]]] 
               [OM 's] 
               [A [PGP [CV [NGP [DD the] [H point]]]]]]] 
        8]] 
    [[W -210985 Z 
        [Z [CL [C [NGP [HWH what]]] 
               [OM 's] 
               [S [NGP [DD the] [H point]]]]] 
        6]]] 
 
Number of edges in chart = 3637 
Number of inactive edges = 1772 
Number of almost inactive edges = 769 
Number of active edges = 2033 
Number of edges in output file = 1604 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 3340.83 
Number chart edges (variable chart_edges) = 3637 



 194 

listlength(agenda)==> 18112 
 

Utterance 3 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : you put these on for windows 
 
POW solution: 

[Z [CL [S [NGP [HP YOU]]] 
 [M PUT] 
 [C [NGP [DD THESE]]] 
 [CM [QQGP [AX ON]]] 
 [A [PGP [P FOR] [CV [NGP [H WINDOWS]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
you 
HP 
 
put 
M 
 
these 
DD 
 
on 
AX 
 
for 
P 
 
windows 
H 
 
 
lattice_filename = LATTICE 
chart_filename =  EDGES 
chart_to_file = <true> 
only_inactive = <true> 
almost_inactive = <false> 
 
[-230118 0 6 Z 
            [[CL [S [NGP [HP you]]] 
                 [M put] 
                 [C [NGP [DD these] [MO [QQGP [AX on]]]]] 
                 [A [PGP [P for] [CV [NGP [H windows]]]]]]] 
            [] 8] 
[-239344 0 6 Z 
            [[CL [S [NGP [HP you]]] 
                 [M put] 
                 [C [NGP [DD these] 
                         [MO [QQGP [AX on] [FI [PGP [P for]]]]] 
                         [H windows]]]]] 
            [] 10] 
[-240631 0 6 Z 
            [[CL [S [NGP [HP you]]] 
                 [M put] 



 195 

                 [C [NGP [DD these]]] 
                 [A [QQGP [AX on]]] 
                 [A [PGP [P for] [CV [NGP [H windows]]]]]]] 
            [] 8] 
[-240813 0 6 Z 
            [[CL [S [NGP [HP you]]] 
                 [M put] 
                 [C [NGP [DD these] [MO [QQGP [AX on]]]]] 
                 [C [PGP [P for] [CV [NGP [H windows]]]]]]] 
            [] 8] 
[-241124 0 6 Z 
            [[CL [S [NGP [HP you]]] 
                 [M put] 
                 [C [NGP [DD these]]] 
                 [CM [QQGP [AX on]]] 
                 [A [PGP [P for] [CV [NGP [H windows]]]]]]] 
            [] 8] 
 
suspended after one week running at nice value 5. - agenda reached: 
 
WEIGHT = -242092   ;   Chart edge number 19498 
listlength(agenda)=> 419619 
 

Utterance 4 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : you don’t have-to 
 
POW solution: 
[Z [CL [S [NGP [HP YOU]]] 
       [ON DON'] 
       [XM HAVE-TO] 
       [(M)] 
       [(C)] 
       [(CM)]]] 
 
 Starting TRACE parsing process - Version 7 
 
Lexical lookup results for sentence: 
you 
HP 
 
don't 
ON 
 
have-to 
XM 
 
Result of parse : 
[[[W -115180 Z 
        [Z [CL [S [NGP [HP you]]] [ON don't] [XM have-to]]] 
        6]]] 
 
Number of edges in chart = 846 
Number of inactive edges = 203 
Number of almost inactive edges = 209 
Number of active edges = 658 
Number of edges in output file = 188 
 



 196 

Number of solution parse trees : 1 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 107.32 
Number chart edges (variable chart_edges) = 846 
listlength(agenda)=> 2170 
 

Utterance 5 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : won’t be long 
 
POW solution: 
[Z [CL [(S)] 
       [OMN WON'T] 
       [M BE] 
       [C [QQGP [AX LONG]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
won't 
OMN 
 
be 
M 
 
long 
AX 
 
Result of parse : 
[[[W -117536 Z 
        [Z [CL [OMN won't] [M be] [C [QQGP [AX long]]]]] 
        6]] 
    [[W -124709 Z 
        [Z [CL [OMN won't] [M be] [C [NGP [MO [QQGP [AX long]]]]]]] 
        8]] 
    [[W -136655 Z 
        [Z [CL [OMN won't] [M be] [CM [QQGP [AX long]]]]] 
        6]] 
    [[W -140498 Z 
        [Z [CL [OMN won't] [M be] [A [QQGP [AX long]]]]] 
        6]]] 
 
Number of edges in chart = 1026 
Number of inactive edges = 510 
Number of almost inactive edges = 302 
Number of active edges = 558 
Number of edges in output file = 468 
 
Number of solution parse trees : 4 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 148.01 
Number chart edges (variable chart_edges) = 1026 
listlength(agenda)=> 2808 
 



 197 

Utterance 6 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : it ’s easiest mind 
 
POW solution: 
[Z [CL [S [NGP [HP IT]]] 
       [OM 'S] 
       [C [QQGP [AX EASIEST]]] 
       [AF MIND]]] 
 
Starting TRACE parsing process - Version 7 
Lexical lookup results for sentence: 
it 
HP 
 
's 
OX 
 
easiest 
AXT 
 
mind 
M 
 
 [-211132 0 4 Z 
            [[CL [S [NGP [HP it]]] 
                 [OX 's] 
                 [A [QQGP [AXT easiest]]] 
                 [M mind]]] 
            [] 6] 
[-269891 0 4 Z 
            [[CL [S [NGP [HP it]]] 
                 [OX 's] 
                 [A [PGP [CV [NGP [MO [QQGP [AXT easiest]]]]]]] 
                 [M mind]]] 
            [] 10] 
[-302521 0 4 Z 
            [[CL [S [NGP [HP it]]] 
                 [OX 's] 
                 [A [CL [C [QQGP [AXT easiest]]]]] 
                 [M mind]]] 
            [] 8] 
[-306592 0 4 Z 
            [[CL [C [TEXT [Z [CL [S [NGP [HP it]]] 
                                 [OX 's] 
                                 [A [QQGP [AXT easiest]]] 
                                 [M mind]]]]]]] 
            [] 10] 
[-306816 0 4 Z 
            [[CL [S [NGP [HP it]]] 
                 [OX 's] 
                 [C [QQGP [AXT easiest]]] 
                 [ATG [CL [M mind]]]]] 
            [] 6] 
 
(suspended after 20 hours) 
listlength(agenda)=> 94765 
chart_edges=> 11766 
 



 198 

Utterance 7 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : I know something easy 
 
POW solution: 
[Z [CL [S [NGP [HP I]]] 
       [M KNOW] 
       [C [NGP [HP SOMETHING] [MO [QQGP [AX EASY]]]]]] 
   [CL [(S)] 
       [(OM)] 
       [C [CL [M BUILD] 
              [C [NGP [DQ A] [H GARAGE]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
I 
HP 
 
know 
M 
 
something 
HP 
 
easy 
AX 
 
Result of parse : 
[[[W -156121 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [C [NGP [HP something]]] 
               [A [QQGP [AX easy]]]]] 
        6]] 
    [[W -156614 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [C [NGP [HP something]]] 
               [CM [QQGP [AX easy]]]]] 
        6]] 
    [[W -171195 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [C [NGP [HP something]]] 
               [C [QQGP [AX easy]]]]] 
        6]] 
    [[W -178368 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [C [NGP [HP something]]] 
               [C [NGP [MO [QQGP [AX easy]]]]]]] 
        8]] 
    [[W -204267 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [A [PGP [CV [NGP [HP something]]]]] 
               [A [QQGP [AX easy]]]]] 



 199 

        8]] 
    [[W -208176 Z 
        [Z [CL [S [NGP [HP I]]] 
               [M know] 
               [C [PGP [CV [NGP [HP something]]]]] 
               [A [QQGP [AX easy]]]]] 
        8]]] 
 
Number of edges in chart = 4361 
Number of inactive edges = 1866 
Number of almost inactive edges = 954 
Number of active edges = 2680 
Number of edges in output file = 1681 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 6564.48 
Number chart edges (variable chart_edges) = 4361 
listlength(agenda)=>29450 
 

Utterance 8 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : build a garage 
 
 
POW solution: 
[Z [CL [S [NGP [HP I]]] 
       [M KNOW] 
       [C [NGP [HP SOMETHING] [MO [QQGP [AX EASY]]]]]] 
   [CL [(S)] 
       [(OM)] 
       [C [CL [M BUILD] 
              [C [NGP [DQ A] [H GARAGE]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
build 
M 
 
a 
DQ 
 
garage 
H 
 
Result of parse : 
[[[W -69622 Z [Z [CL [M build] [C [NGP [DQ a] [H garage]]]]] 6]]] 
 
Number of edges in chart = 618 
Number of inactive edges = 113 
Number of almost inactive edges = 254 
Number of active edges = 513 
Number of edges in output file = 105 
 
Number of solution parse trees : 1 



 200 

E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 21.9 
Number chart edges (variable chart_edges) = 618 
listlength(agenda)=>756 
 

Utterance 9 
 
Type words to parse in lower case except for "I" and proper nouns : 
 -> : fantastic 
 
POW solution: 
[Z [CL [EX FANTASTIC]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
fantastic 
AX 
 
Result of parse : 
[[[W -71709 Z [Z [CL [C [QQGP [AX fantastic]]]]] 6]] 
    [[W -78882 Z [Z [CL [C [NGP [MO [QQGP [AX fantastic]]]]]]] 8]] 
    [[W -89608 Z [Z [CL [A [QQGP [AX fantastic]]]]] 6]] 
    [[W -106822 Z [Z [CL [S [NGP [MO [QQGP [AX fantastic]]]]]]] 8]]] 
 
Number of edges in chart = 218 
Number of inactive edges = 70 
Number of almost inactive edges = 126 
Number of active edges = 156 
Number of edges in output file = 62 
 
Number of solution parse trees : 4 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 9.06 
Number chart edges (variable chart_edges) = 218 
listlength(agenda)=>172 
 

Utterance 10 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: or something like a skyscraper 
 
POW solution: 
[Z [CL [& OR] 
       [(M)] 
       [C [NGP [HP SOMETHINK] 
               [Q [PGP [P LIKE] [CV [NGP [DQ A] [H SKYSCRAPER]]]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
or 
& 



 201 

 
something 
HP 
 
like 
P 
 
a 
DQ 
 
skyscraper 
H 
 
Result of parse : 
[[[W -188054 Z 
        [Z [CL [& or] 
               [S [NGP [HP something]]] 
               [A [PGP [P like] [CV [NGP [DQ a] [H skyscraper]]]]]]] 
        8]] 
    [[W -208753 Z 
        [Z [CL [& or] 
               [C [NGP [HP something]]] 
               [A [PGP [P like] [CV [NGP [DQ a] [H skyscraper]]]]]]] 
        8]] 
    [[W -210315 Z 
        [Z [CL [& or] 
               [C [NGP [HP something]]] 
               [C [PGP [P like] [CV [NGP [DQ a] [H skyscraper]]]]]]] 
        8]] 
    [[W -222938 Z 
        [Z [CL [& or] 
               [S [NGP [HP something]]] 
               [C [PGP [P like] [CV [NGP [DQ a] [H skyscraper]]]]]]] 
        8]] 
    [[W -235183 Z 
        [Z [CL [& or] 
               [C [NGP [HP something]]] 
               [C [PGP [P like]]] 
               [A [PGP [CV [NGP [DQ a] [H skyscraper]]]]]]] 
        8]] 
    [[W -240944 Z 
        [Z [CL [& or] 
               [C [NGP [HP something] [Q [PGP [P like]]]]] 
               [C [NGP [DQ a] [H skyscraper]]]]] 
        8]]] 
 
Parse trees are stored in global variable 'TREES'. 
Trees are stored in the order in which they were found. 
'TREES' also has total number of chart edges and parse time. 
 
Number of edges in chart = 10548 
Number of inactive edges = 4331 
Number of almost inactive edges = 1833 
Number of active edges = 6676 
Number of edges in output file = 3872 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 59180.1 
Number chart edges (variable chart_edges) = 10548 



 202 

 

Utterance 11a 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: this worked out 
 
POW solution: 
[Z [CL [S [NGP [DD THIS]]] 
       [M WORKED] 
       [CM [QQGP [AX OUT]]]] 
   [CL [S [NGP [HP IT]]] 
       [OMN WON'T] 
       [M FIT]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
this 
DD 
 
worked 
M 
 
out 
AX 
 
Result of parse : 
[[[W -104086 Z 
        [Z [CL [S [NGP [DD this]]] [M worked] [C [QQGP [AX out]]]]] 
        6]] 
    [[W -111259 Z 
        [Z [CL [S [NGP [DD this]]] 
               [M worked] 
               [C [NGP [MO [QQGP [AX out]]]]]]] 
        8]] 
    [[W -120251 Z 
        [Z [CL [S [NGP [DD this]]] [M worked] [CM [QQGP [AX out]]]]] 
        6]] 
    [[W -126831 Z 
        [Z [CL [S [NGP [DD this]]] [M worked] [A [QQGP [AX out]]]]] 
        6]]] 
 
Number of edges in chart = 1322 
Number of inactive edges = 433 
Number of almost inactive edges = 416 
Number of active edges = 932 
Number of edges in output file = 390 
 
Number of solution parse trees : 4 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 201.38 
Number chart edges (variable chart_edges) = 1322 
listlength(agenda)=>3269 
 



 203 

Utterance 11b 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: it won’t fit 
 
POW solution: 
[Z [CL [S [NGP [DD THIS]]] 
       [M WORKED] 
       [CM [QQGP [AX OUT]]]] 
   [CL [S [NGP [HP IT]]] 
       [OMN WON'T] 
       [M FIT]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
it 
HP 
 
won't 
OMN 
 
fit 
M 
 
Result of parse : 
[[[W -82141 Z [Z [CL [S [NGP [HP it]]] [OMN won't] [M fit]]] 6]]] 
 
Number of edges in chart = 616 
Number of inactive edges = 107 
Number of almost inactive edges = 178 
Number of active edges = 520 
Number of edges in output file = 96 
 
Number of solution parse trees : 1 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 26.72 
Number chart edges (variable chart_edges) = 616 
listlength(agenda)=>748 
 

Utterance 11 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: this worked out it won’t fit 
 
POW solution: 
[Z [CL [S [NGP [DD THIS]]] 
       [M WORKED] 
       [CM [QQGP [AX OUT]]]] 
   [CL [S [NGP [HP IT]]] 
       [OMN WON'T] 
       [M FIT]]] 
 
 Starting TRACE parsing process - Version 7 
 
 



 204 

 Lexical lookup results for sentence: 
this 
DD 
 
worked 
M 
 
out 
AX 
 
it 
HP 
 
won't 
OMN 
 
fit 
M 
 
Result of parse : 
[[[W -244397 Z 
        [Z [CL [S [NGP [DD this]]] 
               [M worked] 
               [C [NGP [MO [QQGP [AX out]]] [HP it]]]] 
           [CL [OMN won't] [M fit]]] 
        8]] 
    [[W -256507 Z 
        [Z [CL [S [NGP [DD this]]] [M worked]] 
           [CL [S [NGP [MO [QQGP [AX out]]] [HP it]]] 
               [OMN won't] 
               [M fit]]] 
        8]] 
    [[W -263031 Z 
        [Z [CL [S [NGP [DD this]]] [M worked] [C [QQGP [AX out]]]] 
           [CL [S [NGP [HP it]]] [OMN won't] [M fit]]] 
        6]] 
    [[W -270204 Z 
        [Z [CL [S [NGP [DD this]]] 
               [M worked] 
               [C [NGP [MO [QQGP [AX out]]]]]] 
           [CL [S [NGP [HP it]]] [OMN won't] [M fit]]] 
        8]] 
    [[W -274449 Z 
        [Z [CL [S [NGP [DD this]]] 
               [M worked] 
               [CM [QQGP [AX out]]] 
               [C [NGP [HP it]]]] 
           [CL [OMN won't] [M fit]]] 
        6]] 
    [[W -277319 Z 
        [Z [CL [S [NGP [DD this]]] 
               [M worked] 
               [CM [QQGP [AX out]]] 
               [C [TEXT [Z [CL [S [NGP [HP it]]] 
                               [OMN won't] 
                               [M fit]]]]]]] 
        10]]] 
 
Number of edges in chart = 17647 
Number of inactive edges = 4698 
Number of almost inactive edges = 5744 



 205 

Number of active edges = 13456 
Number of edges in output file = 4191 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = -106244.0 
Number chart edges (variable chart_edges) = 17647 
listlength(agenda)=>231816 
 

Utterance 12 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: go on 
 
POW solution: 
[Z [CL [M GO] [CM [QQGP [AX ON]]]] 
   [CL [S [NGP [HP WE]]] 
       [OM CAN] 
       [AI ALWAYS] 
       [M MOVE] 
       [C [NGP [HP IT]]] 
       [CM [QQGP [AX ALONG]]] 
       [ATG [CL [OMN CAN'T] [S [NGP [HP WE]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 Lexical lookup results for sentence: 
go 
M 
 
on 
P 
 
Result of parse : 
[[[W -58720 Z [Z [CL [M go] [C [PGP [P on]]]]] 6]] 
    [[W -76969 Z [Z [CL [M go] [A [PGP [P on]]]]] 6]]] 
 
Number of edges in chart = 161 
Number of inactive edges = 36 
Number of almost inactive edges = 89 
Number of active edges = 128 
Number of edges in output file = 33 
 
Number of solution parse trees : 2 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 2.74 
Number chart edges (variable chart_edges) = 161 
listlength(agenda)=>188 
 

Utterance 13 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: we can always move it along can’t we 
 
POW solution: 



 206 

[Z [CL [M GO] [CM [QQGP [AX ON]]]] 
   [CL [S [NGP [HP WE]]] 
       [OM CAN] 
       [AI ALWAYS] 
       [M MOVE] 
       [C [NGP [HP IT]]] 
       [CM [QQGP [AX ALONG]]] 
       [ATG [CL [OMN CAN'T] [S [NGP [HP WE]]]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
we 
HP 
 
can 
OM 
 
always 
AX 
 
move 
M 
 
it 
HP 
 
along 
AX 
 
can't 
OMN 
 
we 
HP 
 
 (suspended after 3.5 days): Agenda reached: 
 
WEIGHT = -234803   ;   Chart edge number 19514 
listlength(agenda)=> 251634 
listlength(chart(0,8))=> 
0 
listlength(chart(0,7))=> 
0 
listlength(chart(0,6))=> 
0 
listlength(chart(0,5))=> 
5 
listlength(chart(0,4))=> 
52 
listlength(chart(0,3))=> 
466 
listlength(chart(0,2))=> 
546 
listlength(chart(0,1))=> 
1844 
listlength(chart(0,0))=> 
1108 
listlength(chart(1,8))=> 
0 



 207 

listlength(chart(2,8))=> 
0 
listlength(chart(3,8))=> 
0 
listlength(chart(4,8))=> 
0 
listlength(chart(1,7))=> 
0 
listlength(chart(1,6))=> 
5 
listlength(chart(1,5))=> 
20 
chart(0,5)==> 
[[-234089 0 5 CL 
             [[S [NGP [HP we]]] 
              [OM can] 
              [C [NGP [MO [QQGP [AX always]]]]] 
              [C [CL [M move] [C [NGP [HP it]]]]]] 
             [[A]] 
             7] 
    [-232604 0 5 CL 
             [[S [NGP [HP we]]] 
              [OM can] 
              [C [QQGP [AX always]]] 
              [C [TEXT [Z [CL [M move] [C [NGP [HP it]]]]]]]] 
             [[A]] 
             9] 
    [-226916 0 5 CL 
             [[S [NGP [HP we]]] 
              [OM can] 
              [C [QQGP [AX always]]] 
              [C [CL [M move] [C [NGP [HP it]]]]]] 
             [[A]] 
             7] 
    [-208906 0 5 Z 
             [[CL [S [NGP [HP we]]] 
                  [OM can] 
                  [A [QQGP [AX always]]] 
                  [M move] 
                  [C [NGP [HP it]]]]] 
             [] 6] 
    [-196612 0 5 CL 
             [[S [NGP [HP we]]] 
              [OM can] 
              [A [QQGP [AX always]]] 
              [M move] 
              [C [NGP [HP it]]]] 
             [] 5]] 
chart(1,6)==> 
[[-234641 1 6 CL 
             [[OM can] 
              [S [NGP [MO [QQGP [AX always]]]]] 
              [M move] 
              [C [NGP [HP it]]] 
              [C [QQGP [AX along]]]] 
             [[AF]] 
             7] 
    [-232460 1 6 Z 
             [[CL [OM can] 
                  [S [NGP [MO [QQGP [AX always]]]]] 
                  [M move] 



 208 

                  [C [NGP [HP it]]] 
                  [CM [QQGP [AX along]]]]] 
             [] 8] 
    [-223310 1 6 Z 
             [[CL [OM can] 
                  [S [NGP [MO [QQGP [AX always]]]]] 
                  [M move] 
                  [C [NGP [HP it]]] 
                  [A [QQGP [AX along]]]]] 
             [] 8] 
    [-218886 1 6 CL 
             [[OM can] 
              [S [NGP [MO [QQGP [AX always]]]]] 
              [M move] 
              [C [NGP [HP it]]] 
              [CM [QQGP [AX along]]]] 
             [[A]] 
             7] 
    [-211016 1 6 CL 
             [[OM can] 
              [S [NGP [MO [QQGP [AX always]]]]] 
              [M move] 
              [C [NGP [HP it]]] 
              [A [QQGP [AX along]]]] 
             [] 7]] 
chart_edges=>19518 
(process size was around 85 Mb) 
 

Utterance 14 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: will that one fit in by-there 
 
POW solution: 
[Z [CL [OM WILL] 
       [S [NGP [DD THAT] [HP ONE]]] 
       [M FIT] 
       [CM [QQGP [AX IN]]] 
       [C [QQGP [AX BY-THERE]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
will 
OM 
 
that 
DD 
 
one 
HP 
 
fit 
M 
 
in 
AX 
 



 209 

by-there 
AX 
 
Result of parse : 
[[[W -192992 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [C [QQGP [AX in]]] 
               [A [QQGP [AX by-there]]]]] 
        6]] 
    [[W -200165 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [C [NGP [MO [QQGP [AX in]]]]] 
               [A [QQGP [AX by-there]]]]] 
        8]] 
    [[W -202142 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [C [QQGP [AX in]]] 
               [CM [QQGP [AX by-there]]]]] 
        6]] 
    [[W -207251 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [CM [QQGP [AX in]]] 
               [C [QQGP [AX by-there]]]]] 
        6]] 
    [[W -209315 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [C [NGP [MO [QQGP [AX in]]]]] 
               [CM [QQGP [AX by-there]]]]] 
        8]] 
    [[W -214424 Z 
        [Z [CL [OM will] 
               [S [NGP [DD that] [HP one]]] 
               [M fit] 
               [CM [QQGP [AX in]]] 
               [C [NGP [MO [QQGP [AX by-there]]]]]]] 
        8]]] 
 
Number of edges in chart = 8074 
Number of inactive edges = 2119 
Number of almost inactive edges = 1665 
Number of active edges = 6279 
Number of edges in output file = 1795 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 7715.26 
Number chart edges (variable chart_edges) = 8074 
listlength(agenda)=> 25850 
 



 210 

Utterance 15 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: come on 
 
POW solution: 
[Z [CL [M COME] [CM [QQGP [AX ON]]]] 
   [CL [O LETS] [M GET] [C [CL [M GOING]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
come 
M 
 
on 
P 
 
Result of parse : 
[[[W -58720 Z [Z [CL [M come] [C [PGP [P on]]]]] 6]] 
    [[W -76969 Z [Z [CL [M come] [A [PGP [P on]]]]] 6]]] 
 
Number of edges in chart = 161 
Number of inactive edges = 36 
Number of almost inactive edges = 89 
Number of active edges = 128 
Number of edges in output file = 33 
 
Number of solution parse trees : 2 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 2.5 
Number chart edges (variable chart_edges) = 161 
listlength(agenda)=> 188 
 

Utterance 16 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: let’s get going 
 
POW solution: 
[Z [CL [M COME] [CM [QQGP [AX ON]]]] 
   [CL [O LETS] [M GET] [C [CL [M GOING]]]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
let's 
O 
 
get 
X 
 
going 
M 
 



 211 

(suspended after 2 hours) 
listlength(agenda)=> 17131 
chart_edges=> 6577 
 

Utterance 17 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: I can’t even 
 
POW solution: 
[Z [CLUN [S [NGP [HP I]]] [OMN CAN'T] [AI EVEN]]] 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
I 
HP 
 
can't 
OMN 
 
even 
AI 
 
Result of parse : 
[[[W -117496 Z [Z [CL [S [NGP [HP I]]] [OMN can't] [AI even]]] 6]]] 
 
Number of edges in chart = 873 
Number of inactive edges = 204 
Number of almost inactive edges = 238 
Number of active edges = 683 
Number of edges in output file = 190 
 
Number of solution parse trees : 1 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 119.16 
Number chart edges (variable chart_edges) = 873 
 
listlength(agenda)=> 2001 
 

Utterance 18 
 
Type words to parse in lower case except for "I" and proper nouns : 
->: press SHIFT+INS or CTRL+V 
 
 Starting TRACE parsing process - Version 7 
 
 Lexical lookup results for sentence: 
press 
M 
 
SHIFT+INS 
HN 
 
or 



 212 

& 
 
CTRL+V 
HN 
 
Result of parse : 
[[[W -176832 Z 
        [Z [CL [M press] 
               [C [NGP [HN SHIFT+INS]]] 
               [C [NGP [& or] [HN CTRL+V]]]]] 
        6]] 
    [[W -195038 Z 
        [Z [CL [M press] 
               [C [NGP [HN SHIFT+INS]] [NGP [& or] [HN CTRL+V]]]]] 
        6]] 
    [[W -198246 Z 
        [Z [CL [M press] 
               [C [NGP [HN SHIFT+INS]]] 
               [V [NGP [& or] [HN CTRL+V]]]]] 
        6]] 
    [[W -223946 Z 
        [Z [CL [M press] [C [NGP [HN SHIFT+INS]]]] 
           [CL [C [NGP [& or] [HN CTRL+V]]]]] 
        6]] 
    [[W -224051 Z 
        [Z [CL [M press] 
               [C [PGP [CV [NGP [HN SHIFT+INS]]]]] 
               [C [NGP [& or] [HN CTRL+V]]]]] 
        8]] 
    [[W -225243 Z 
        [Z [CL [M press] 
               [S [NGP [HN SHIFT+INS]]] 
               [C [NGP [& or] [HN CTRL+V]]]]] 
        6]]] 
 
Number of edges in chart = 3640 
Number of inactive edges = 1033 
Number of almost inactive edges = 1216 
Number of active edges = 2722 
Number of edges in output file = 918 
 
Number of solution parse trees : 6 
E = edge number   and   W = weight 
 
Time to execute (variable TIME) = 1986.51 
Number chart edges (variable chart_edges) = 3640 
listlength(agenda)=>14319 
 

Utterance 19 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: what do we mean by this 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
what 
HWH 



 213 

 
do 
O 
 
we 
HP 
 
mean 
M 
 
by 
P 
 
this 
DD 
 
[-256767 0 6 Z 
            [[CL [CWH [NGP [HWH what]]] 
                 [O do] 
                 [S [NGP [HP we]]] 
                 [M mean] 
                 [A [PGP [P by] [CV [NGP [DD this]]]]]]] 
            [] 8] 
[-277606 0 6 Z 
            [[CL [CWH [NGP [HWH what]]] 
                 [O do] 
                 [S [NGP [HP we]]] 
                 [M mean] 
                 [A [PGP [P by]]] 
                 [A [PGP [CV [NGP [DD this]]]]]]] 
            [] 8] 
[-281842 0 6 Z 
            [[CL [CWH [NGP [HWH what]]] 
                 [O do] 
                 [S [NGP [HP we]]] 
                 [M mean] 
                 [C [PGP [P by] [CV [NGP [DD this]]]]]]] 
            [] 8] 
 
(suspended after 16 hours, agenda reached): 
WEIGHT = -312013   ;   Chart edge number 12367 
listlength(agenda)=> 94925 
 

Utterance 20 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: select the text you want to protect 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
select 
P 
 
the 
DD 
 
text 



 214 

H 
 
you 
HP 
 
want 
M 
 
to 
I 
 
protect 
M 
(suspended after 7 days) 
 

Utterance 21 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: that is these words make the source sentence longer or shorter than the TM sentence 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
that 
DD 
 
is 
OM 
 
these 
DD 
 
words 
H 
 
make 
M 
 
the 
DD 
 
source 
H 
 
sentence 
H 
 
longer 
AXT 
 
or 
& 
 
shorter 
H 
 
than 
P 



 215 

 
the 
DD 
 
TM 
HN 
 
sentence 
H 
 
(suspended - unfinished) 
 

Utterance 22 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: displays the records that have a specific word or words in the TITLE CONTENTS SUBJECT or SERIES fields of 
the BIB record depending on which fields have been included in each index 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
displays 
P 
 
the 
DD 
 
records 
H 
 
that 
DD 
 
have 
M 
 
a 
DQ 
 
specific 
H 
 
word 
H 
 
or 
& 
 
words 
H 
 
in 
P 
 
the 
DD 
 
TITLE 



 216 

HN 
 
CONTENTS 
HN 
 
SUBJECT 
HN 
 
or 
& 
 
SERIES 
HN 
 
fields 
H 
 
of 
VO 
 
the 
DD 
 
BIB 
HN 
 
record 
H 
 
depending 
M 
 
on 
P 
 
which 
DDWH 
 
fields 
H 
 
have 
X 
 
been 
X 
 
included 
M 
 
in 
P 
 
each 
DQ 
 
index 
H 
 
(Suspended unfinished) 
 



 217 

Utterance 23 
 
Type words to parse in lower case except for "I" and proper nouns : 
 ->: enter the line number of the alphabetical title search option 
 
 Starting TRACE parsing process - Version 7 
 
 
 Lexical lookup results for sentence: 
enter 
P 
 
the 
DD 
 
line 
H 
 
number 
H 
 
of 
VO 
 
the 
DD 
 
alphabetical 
H 
 
title 
H 
 
search 
H 
 
option 
H 
 
(Suspended unfinished) 
 

End of Appendix 15.
 




