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Abstract

Formal methods is an alternative way to develop software, which applies math-

ematical techniques to software design and verification. It ensures logical

consistency between the requirements and the behaviour of the software, because

each step in the development process, i.e., abstracting the requirements, design,

refinement and implementation, is verified by mathematical techniques. However,

in ordinary software development, the correctness of the software is tested at the

end of the development process, which means it is limited and incomplete. Thus

formal methods provides higher quality software than ordinary software devel-

opment. At the same time, real-time operating systems are playing increasingly

more important roles in embedded applications. Formal verification of this kind of

software is therefore of strong interest.

FreeRTOS has a wide community of users: it is regarded by many as the

de facto standard for micro-controllers in embedded applications. This project

formally specifies the behaviour of FreeRTOS in Z, and its consistency is ver-

ified using the Z/Eves theorem prover. This includes a precise statement of

the preconditions for all API commands. Based on this model, (a) code-level

annotations for verifying task related API are produced with Microsoft’s Verifying

C Complier (VCC); and (b) an abstract model for extension of FreeRTOS to

multi-core architectures is specified with the Z notation.

This work forms the basis of future work that is refinement of the models to

code to produce a verified implementation for both single and multi-core platforms.
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Chapter 1

INTRODUCTION

This chapter begins by introducing formal methods and the international Verified

Software Initiative (VSI). It then introduces FreeRTOS, as formally verifying the

correctness of FreeRTOS is one of the pilot projects of the VSI. Next, this chapter

introduces VCC and shows that it is possible to combine formal specification and

code level annotations together to verify the source code. It then discusses the

limitations of single core processors and the benefits of multi-core processors. In

addition the objectives and challenges of verifying FreeRTOS are clarified. Finally,

the structure of the thesis is given.

1.1 Formal Methods

Formal methods apply mathematical techniques to software design and verification

and are normally supported by tools [1]. The general development process for

formal methods is:

(a) Use mathematical expressions to specify the state and the behaviour of the

software according to the documented requirements, which can generally be

expressed by state transitions. An abstract specification will be produced in

this step;

(b) Apply mathematical theorems and lemmas to verify the specification or model;

Page 1



(c) Refine the specification from abstract level to concrete model;

(d) Repeat steps b & c until executable code is generated. Note, the relation be-

tween each refinement also has to be verified.

Formal methods can provide higher quality software than ordinary software devel-

opment, because all models produced in the development process can be verified

and proved using mathematical logic. This can efficiently detect any faults in the

software at the initial stage of development, which may later have lead to huge

losses. For instance, an error in the Inertial Reference System (IRS) of Ariane 5

caused the explosion of the rocket in June 1996 [2], costing around half a billion US

dollars. The US Department of Commerce also estimates that the losses caused

by avoidable software errors is between 20 and 60 billion dollars every year [3, 4].

Without formal methods these kinds of faults are sometimes very hard to discover,

and even if revealed, may be too expensive to correct at a later stage [5].

However, formal methods have not been widely applied in industry, although they

have significant advantages. Hall [6] believes that there are seven common myths

or misunderstandings about formal methods, some of which cause this situation.

Firstly, it is thought that formal methods increase the cost of the development. Yet

Hall [6] indicates that in his experience, applying formal methods in commercial

projects decreases the development cost. Although there is a one-time cost for

learning the non-user-friendly tools which often support formal methods, the devel-

oper gains more benefits from the reduction of cost in the amount of testing and

maintenance. King et al. [7] claim that using formal methods is more efficient for

detecting faults than the most efficient testing phase, which also increases the cost.

The cost of verifying and testing software may occupy 30% to 50% of the total cost

of a software project [8]. This can increase to 70% for hardware. Even with this

huge investment, however, Dijkstra [9] believes testing can never guarantee that

software is free of bugs. Secondly, “formal methods involve complex mathematics

and are incomprehensible to clients” [6]. Although formal methods apply mathe-

matical technology in documentation and design, it only needs knowledge related

to logic and set theory, which is a fundamental part of mathematics. Meanwhile,
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using formal methods, developers may experiment with the model and demon-

strate it to clients using animation. Such animations can clearly show clients the

behaviour of the system. Formal methods help developers to organise documen-

tation much better and because of the mathematical rigour, the documentation is

also more likely to be unambiguous and precise. This makes it easier for clients to

use and understand the system [4]. Lastly, people believe that formal methods are

only used in academic and research fields or in highly critical systems. However,

it has been reported that formal methods are suitable for industrial-scale applica-

tions [6, 7, 10, 11]. Moreover, Berry [12], chief scientist at ESTEREL Technologies,

shows that the control system of the Airbus A380, which has five million lines of

code, was automatically generated by formal methods and all worked first time.

Fortunately, this situation is changing. In 2003, Hoare [13] suggested the interna-

tional Grand Challenge for Computing Research to build a verifying compiler, which

could automatically verify whether a program met its requirements [14]. Based on

this idea, the international Verified Software Initiative (VSI) [4, 5, 13, 15], led by

Hoare, was proposed. The main aim of the VSI is to work out a more approach-

able strategy for verifying software with the integrated support tools. Several pilot

projects have been selected for VSI, such as the Mondex electronic purse [16],

POSIX file store [17], etc.

1.2 FreeRTOS

As a widely used real-time operating system, the function of FreeRTOS can be

divided into three large categories: (a) multitasking task management; (b) inter-

task communication and synchronisation; and (c) memory management, interrupt

management and other features. The three key elements of FreeRTOS are:

Tasks: user processes.

Queues: communication mechanisms between tasks and interrupts.

Semaphores and Mutexes: the facilities which are used for resource manage-

ment, event counting, mutual exclusion locks, etc.
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1.2.1 Task Management
Tasks in FreeRTOS can be regarded as occupying one of two top-level states,

running or notRunning. The running task is recorded by the task control block

handler pxCurrentTCB and simply indicates that the task is currently executing

on the processor. The notRunning state can be decomposed into three sub-

states: ready, suspended, and blocked. The following lists in FreeRTOS are used

to manage this:

Ready Lists (pxReadyTasksLists) this is an array of the task lists, in which tasks

are available to be scheduled to the running state.

Delay List (xDelayedTaskList1) & Overflow Delay List (xDelayedTaskList2)

tasks in these lists are blocked by an event for a certain period. They

are sorted by wake-up time. Because the time is expressed by ticks

in FreeRTOS, if the wake-up time is later than the time represented by

maximum delay ticks − current ticks , the ticks for wake-up time could

overflow. Therefore, an overflow-delay list is required.

Suspended List (xSuspendedTaskList) tasks in this list have been suspended,

and wait until they are resumed by another task.

Pending Ready List (xPendingReadyList) tasks resumed from Interrupt Service

Routines (ISRs) are kept in this list temporarily, while the scheduler is not

running.

Waiting Termination List (xTaskWaitingTermination) deleted tasks stay here

and wait to be removed by the idle task.

Tasks transit between these states as described in Fig. 1.1. For instance, a task

cannot directly transit from suspended to running, because only ready tasks can

be scheduled as running [18]

All tasks have their own priority, uxPriority, which is used by the scheduler. Tasks

can have another priority, uxBasePriority, which records the original priority of
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Figure 1.1: State chart for Tasks
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tasks when priority inheritance occurs. The scheduler is responsible for counting

the clock ticks, used to express time, and schedules the tasks. The scheduling pol-

icy adopted here is priority-based scheduling, which means that the task with the

highest priority and in the ready state can be executed. As a result, it is impossible

to use FreeRTOS in hard real-time environments. When a ready task has a higher

priority than the running task, it will displace the running task from the CPU. The

scheduler has two ways of switching tasks: pre-emptive and cooperative schedul-

ing. In pre-emptive mode, the task with the highest priority will block the running

task immediately and take the CPU. In cooperative mode, the running task can fin-

ish its CPU time before the task with the highest priority takes over. API functions

are provided for task creation, deletion, and control. It is worth noting that the dele-

tion API function does not actually delete a task from the system: it only adds the

task to xTasksWaitingTermination and removes its reference from related task

lists. The idle task, with permanent priority 0, the lowest priority, is used to do the

deleting job and release the memory allocated by the kernel. However, it does not

collect the memory allocated by the user, so tasks have to release used memory

themselves, before being deleted.

In our specification, the function state, which is a total function from TASK to

STATE , in schema StateData (see Sect. 4.2.1, Page. 43) is used to specify

the states of tasks. Further, the reverse function of state can be used to cal-

Page 5



Figure 1.2: An example application that uses RTOS (Task related).
1 xTaskHandle txh1 ;
2
3 void tx1 ( void ∗ xPara ) {
4 xTaskCreate ( tx3 , ( signed char ∗ ) " Task 3 " , 1000 , NULL, 4 , NULL) ;
5 for ( ; ; ) ;
6 }
7
8 void tx2 ( void ∗ xPara ) {
9 for ( ; ; ) {

10 vTaskPr i o r i t ySe t ( txh1 , 3) ;
11 }
12 }
13
14 void tx3 ( void ∗ xPara ) {
15 for ( ; ; ) {
16 vTaskDelete (NULL) ;
17 }
18 }
19
20 i n t main ( void ) {
21 xTaskCreate ( tx1 , ( signed char ∗ ) " Task 1 " , 1000 , NULL, 1 , & txh1 ) ;
22 xTaskCreate ( tx2 , ( signed char ∗ ) " Task 2 " , 1000 , NULL, 2 , NULL) ;
23
24 vTaskStar tScheduler ( ) ;
25 return 0;
26 }

culate tasks in a specific state; for instance, pxReadyTasksLists can be repre-

sented by state∼(| {ready} |). This also works for running tasks: the result of

state∼(| {running} |) is a set with only one element—running task , which rep-

resents the handler pxCurrentTCB. The function priority in schema PrioData

and old priority in schema OriginalPrioData of Mutex model represents tasks’

uxPriority and uxBasePriority respectively. They are defined in Chap. 4.

We use a simple example application to illustrate the functionality provided by

FreeRTOS. Fig. 1.2 shows the C code of an application that uses the FreeRTOS

API function related to task management. Initially, the application creates two

tasks: Task1 and Task2, with priority 1 and 2 respectively (a higher number in-

dicates higher priority), and then starts the FreeRTOS scheduler. The scheduler

then runs Task2, which immediately increases the priority of Task1 to 3. Task2

is now pre-empted by Task1, which gets to execute and creates a new task—

Task3 with priority 4, which is the highest at the moment. Therefore, it pre-empts

Task1 and can execute. Once Task3 is executing, it deletes itself, which triggers

the scheduler to reschedule the system. As Task1 has the highest priority at this

moment, it gets to execute again and will continue to execute.
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We now describe in more detail what happens in the FreeRTOS implementa-

tion code. The application code for main, tx1, tx2 and tx3 is compiled along

with the FreeRTOS code (for the scheduler and the API function calls including

xTaskCreate) and loaded into memory. The scheduler code is loaded into the

Interrupt Service Routine (ISR) code area so that it services software interrupts.

By analysing the source code of FreeRTOS, we see that execution begins with the

first instruction in main, which is the call to the xTaskCreate API function. This

code is provided by FreeRTOS. It allocates 1 kilobyte (defined in the parameters

of xTaskCreate) of memory from the heap to the task stack, as well as space to

store its Task Control Block (TCB) [19, 18]. From the source code, we see that

the TCB contains all vital information about the task: where its code (tx1 in this

case) is located, where its stack begins, where its current top-of-stack pointer is,

what its priority is, and so on. The API function call initialises the TCB entries for

Task1. It then creates and initialises the various lists that the OS maintains, such

as pxReadyTasksLists, xSuspendedTaskList and so on. It finally adds Task1 to

the ready list and returns. Next, main calls xTaskCreate for Task2 and the API

function call sets up the stack and TCB for Task2 and adds it to the ready list, in a

similar way. The next instruction in main is a call to the vTaskStartSchedular API

function, which is also provided by FreeRTOS [19, 18]. This call creates the idle

task with priority 0, and adds it to the ready list. It also sets the timer tick interrupt

to occur at the required frequency. Finally, it does a context-switch to the highest

priority ready task (i.e., it restores its execution state, namely the contents of its

registers, from the task’s stack where they were stored). The processor will next

execute the instruction in the task that is resumed. In our example, this means that

Task2 will now begin execution.

When Task2 begins execution it makes an API function call to vTaskPrioritySet.

The code for this API function call compares the new priority and the current priority

to decide whether scheduling is needed. If the API function increases the priority

of a task or decreases the priority of the current running task, a reschedule will be

requested. It then assigns the new priority to the target task, and moves the task to
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the proper position in the ready list, if it is a ready task. In our case, the priority of

Task1 is changed to 3, it is moved to the correct position in pxReadyTasksLists.

The API function code then execute a yield (a kind of software interrupt) that is

trapped by the scheduler. The scheduler picks the highest priority ready task, which

in this case is Task1, and makes it the running task. Before this, the scheduler

saves the registers of Task2 to its stack, and restores the register context of Task1

from its stack.

Task1 now creates the new task Task3. The process is similar to the xTaskCreate

call to create Task1 and Task2. The difference is that here xTaskCreate triggers

scheduling to make Task3 run.

When Task3 begins execution, it makes a call to the vTaskDelete API function.

The code for this API function is simple. It removes the target task from the state list

and related events list; in this case, Task3 is removed from pxReadyTasksLists.

As it is the current running task, the API function code triggers scheduling again to

make the highest priority ready task run, which is Task1. Task1 then executes its

trivial for-loop, ad infinitum.

The animation and formal verification of our specification for this process will be

illustrated in Chap. 7.

1.2.2 Communication and Synchronisation

In FreeRTOS, tasks and interrupts communicate and synchronise with each other

through queues. When two tasks in FreeRTOS need to exchange information, they

send and receive information to and from a queue. As items are exchanged be-

tween tasks and queues by being copied to or from a queue, the size of each item

in the queue must be the same. Otherwise, when a task receives an item from a

queue, it would be confused as to how many bytes needed to be received. Ev-

ery queue fixes the size of all items it can receive using uxItemSize. All queues

also have a capacity, uxLength, which indicates how many items can be held

by the queue. The number of items currently stored in the queue needs to be
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recorded as well. Tasks will be blocked while they attempt to send (receive) items

to (from) a full (empty) queue. The following two sequences are used to manage

this: (a) xTasksWaitingToSend records tasks blocked by sending operations; and

(b) xTasksWaitingToReceive records tasks blocked by receiving operations. As

well as these basic properties, a number of other fields are recorded also for a

queue, such as, pcHead and pcTail, which represent where the queue starts and

ends.

Semaphores and mutexes, which are used to manage resources, mutual exclu-

sion locks and so on, are implemented by queues. They are considered to be

special queues. Specifically, the item size for semaphores and mutexes is 0. This

is because, when tasks take a semaphore or mutex, they do not copy items from

semaphores and mutexes. What is of interest to the task which attempts to take

the semaphore or mutex, is whether it is available or not. The initial state of

semaphores and mutexes is full rather than of empty, which is the initial state for

normal queues. The main difference between semaphores and mutexes is that

the maximum length for mutexes is always 1; on the another hand, the size of

semaphores can be any unsigned number. Moreover, mutexes support the priority

inheritance mechanism when a higher priority task is waiting to take a mutex which

is hold by a lower priority task. Each mutex has its own mutex holder if it is taken

by a task. The holder of a mutex can repeatedly take it at any time. Therefore,

a mutex needs to know who is its holder. It overrides the field pcTail of normal

queue to pxMutexHolder for this purpose.

In our specification, functions q max and q size in the QueueData schema of the

Queue model (see Sect. 4.3, Page. 63) are used to represent the capacity and

the current size of the queue respectively. Functions wait snd and wait rcv are

used to indicate the blocked task for each queue in the system. Meanwhile, mu-

tex related information is included in the Mutex model (see Sect. 4.5, Page. 79).

For instance, the function mutex holder , which represents the pxMutexHolder, is

contained by MutexData schema of Mutex model. They are defined in Chap. 4.
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Figure 1.3: An example application that uses RTOS (Communication related).
1 xTaskHandle tskH ;
2 xSemaphoreHandle xMutex ;
3
4 void tx1 ( void ∗ xPara ) {
5 xSemaphoreTake ( xMutex , portMAX_DELAY) ;
6 for ( ; ; ) ;
7 }
8
9 void tx2 ( void ∗ xPara ) {

10 vTaskDelay (10) ;
11
12 xSemaphoreTake ( xMutex , portMAX_DELAY) ;
13 for ( ; ; ) ;
14 }
15
16 i n t main ( void ) {
17 xMutex = xSemaphoreCreateMutex ( ) ;
18
19 xTaskCreate ( tx1 , ( signed char ∗ ) " Task 1 " , 1000 , NULL, 2 , & tskH ) ;
20 xTaskCreate ( tx2 , ( signed char ∗ ) " Task 2 " , 1000 , NULL, 3 , NULL) ;
21
22 vTaskStar tScheduler ( ) ;
23 return 0;
24 }

Similar to Sect. 1.2.1, we use a simple example application (Fig. 1.3) to illustrate

functionality related to communication in FreeRTOS. Initially, the application cre-

ates a mutex, xMutex and two tasks: Task1 and Task2, with priority 2 and 3 re-

spectively and then starts the scheduler, which runs Task2. It requests to delay

for 10ms, which blocks Task2 and lets Task1 execute. Once Task1 is executing, it

takes the mutex xMutex then executes its infinite loop. After 10ms, Task2 wakes

up. As it has higher priority than Task1, it preempts Task1 and starts to execute.

Task2 also tries to take the mutex, xMutex. However, it has been held by Task1.

Therefore, Task2 is blocked for portMAX DELAY and Task1 can execute again.

In detail, main creates xMutex by calling xSemaphoreCreateMutex (Note, the

operations, such as load code, create task, etc., which have been de-

scribed in Sect. 1.2.1, are not repeated here). As declared in semphr.h,

xSemaphoreCreateMutex actually executes the code of xQueueCreateMutex,

which is defined in queue.c [19, 18]. This code allocates space to store the new

queue structure (xQueue) and initialise the structure for xMutex. For instance, set

the type to queueQUEUE IS MUTEX, set the holder of the mutex to NULL, set item

size to 0, etc. Next, main creates Task1 and Task2 and starts the scheduler.

When Task2 begins execution, it makes a call to the vTaskDelay API function.
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The code for this API function call will add Task2 to an event list, which is a priority

queue associated with the delayed tasks, with a value that corresponds to the

current tick count plus 10. Then, Task1 is scheduled as the running task.

Once Task1 starts to execute, it calls xSemaphoreTake to take the mutex, xMutex.

xSemaphoreTake is also declared in semphr.h and executes code in queue.c, which

is xQueueGenericReceive. It checks whether there is an item available in the

queue (i.e., xMutex). If there is, the calling task receives the item. Otherwise, it

is blocked for a period which is specified by a parameter of the API function. As

there is no task holding xMutex at the moment, Task1 can successfully take the

mutex. It then executes its infinite for-loop, until an interrupt for the next timer tick

arrives from the hardware clock. This interrupt is again trapped by the scheduler

and it increments its tick count. The scheduler then checks if any of the delayed

tasks have a time-to-awake value that equals the current tick count. There is none

and the scheduler hands back control to Task1. However, when the 10th timer

interrupt takes place, the scheduler finds that Task2’s time-to-awake equals the

current tick count, and moves it to the ready queue. Since there is now a higher

priority ready task, Task1 is swapped out and Task2 is restored and made to ex-

ecute. It then attempts to take the xMutex. As Task1 holds the xMutex at the

moment, Task2 is blocked by the mutex. The event list item of Task2 is added

to the xTaskWaitingToReceive of xMutex as well. Therefore, Task1 can execute

again and stay in an infinite for-loop.

This process will also be animated and formally verified in Chap. 7.

1.2.3 Other API functions

FreeRTOS also provides an API function for other operations, such as memory

management, interrupt management, etc. Memory management related API func-

tion calls can be used to allocate and free memory. When a task or queue needs

memory, pvPortMalloc can be used to do this. It first locates one of the available

memory blocks, and then returns its pointer to the task or the queue. To release

memory, vPortFree can be used. Meanwhile, interrupt related API functions can
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be used to serve interrupts, enter/exit critical sections and so on. Specifically, all

the interrupts have a piece of server code, an Interrupt Service Routine (ISR).

When the operating system services the interrupt, it cannot accept another inter-

rupt. Furthermore, as a real-time operating system, some parts of the code may

be critical, which means they are unable to be interrupted. When the program en-

ters this section of code, the counter uxCriticalNesting would be increased and

portDISABLE INTERRUPTS is called to set a processor flag to refuse further inter-

rupts. When it exits the critical section, the counter is decreased. At this time, the

value of the counter will be checked. If it is greater than zero, the processor flag

remains the same, refusing further interrupts. Otherwise, if and only if it decreases

to zero, portENABLE INTERRUPTS can be applied to reset the flag to enable inter-

rupts.

1.3 VCC

The Verifying C Complier (VCC) was developed by Microsoft for the Hypervisor

Verification Project [20]. It verifies the correctness of annotated C programs. An-

notations used for VCC include function specifications, state assertions, type in-

variants and so on [21]. As described above, normally, there are several steps of

refinement and verification from the abstract model to the concrete specification

and the executable code. Sometimes these are difficult and expensive to perform.

Using the specifications from verified abstract models to directly verify the C code

can be interesting and efficient.

Using Microsoft Visual Studio (MVS) for VCC is recommended. With macro def-

initions, the normal C compiler in Visual Studio can ignore the annotations used

by VCC. On the other hand, the VCC verifier may use the C code and annotation

together. They are translated into Boogie [22] files. These files are then used to

generate *.sx files, which can be used by the Z3 prover [23]. VCC translates the

C code and the annotation to mathematical formulas and verifies them using the

Z3 prover, rather than analysing the code and looking for bugs. Once a piece of

code has been verified by VCC, its correctness with respect to the preconditions
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and post conditions can be guaranteed. Verification in VCC is modular. It does not

go through every function call to verify the code of a function. Instead, it verifies a

function with the information of a function contract for each called function. VCC

assumes that the called functions are correct. In this case, it only needs to verify

that when the function call happens the system state satisfies the preconditions

of the called function. If it does, VCC knows that the post condition of the called

function is satisfied as well. With this feature, developers can verify a function,

even when its sub-functions are not finished or verified. In addition, with the bene-

fits of the Z3 prover, VCC provides the Model Viewer which shows an example for

each failure, when Z3 fails to verify the code. These examples contain a sequence

of the system states which lead to the failure. This is helpful for the developer to

understand why the code failed to verify.

1.4 Multi-core Processor

The Central Processing Unit (CPU) is the core component of the computer. Its

performance determines the performance of the whole computer system. There-

fore, the hardware industry has continued to try to improve the performance of the

processor. There are two common ways to achieve this:

(a) Increasing the number of transistors on the chip. The Intel 4004, the first micro-

processor built in 1971, had 2,300 MOS transistors [24]. According to Moore’s

Law, the number of transistors on a single chip will double approximately every

two years [25]. Thus, after around 50 years development, it is now possible to

put more than 500 million transistors on a single chip, e.g. the Intel i7-680UM

Processor [26]. Due to the large number of transistors, an increasing num-

ber of resources are now available on a chip and processors have become

progressively more powerful.

(b) Increasing the clock rate of the processor.

To use and control the resources on a single core processor efficiently, a large

number of complex circuits have been designed and used. Because of this, design
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and verification for a processor based on traditional single core architecture is in-

creasingly difficult. Bose et al. have reported that verification activities can take up

around 70% of the net development cost [27]. Meanwhile, increasing the clock rate

is one of the direct ways to improve the performance. Nevertheless, this is limited

by the physical features of the processors, power consumption and related thermal

problems, which have also become ever more critical [27]. After every pulse of the

clock, each transistor needs to take some time to transfer to a new state. If a clock

pulse occurs before that, the data and the state of the processor will be incorrect,

which is unacceptable. Furthermore, a higher clock rate means a higher power

cost. Taylor et al. have indicated that it would increase power consumption by the

increase in clock rate cubed [28]. In addition, the thermal issues also increase with

energy expended. Due to these issues, speeding up the clock frequency to obtain

higher performance has reached a bottleneck.

These issues are especially serious for embedded systems. This is because em-

bedded systems are designed for a small number of dedicated functions [29] and

they normally work in mobile systems and/or critical and real-time systems, such as

sensor controllers and car control systems, etc. Due to the function of embedded

systems, it is impossible to provide them with unlimited power.

Multi-core processors, which are composed of two or more independent cores on

a chip, seem an alternative way to solve the problem. Multi-core processes are:

(a) Easy to design – due to parallel computation, multi-core processors can use

several smaller and more simple cores to achieve a higher performance than a

huge, complex core. Therefore, the designer only needs to repeat the simple

cores across the chip and focus on the design of the communication method

between separate cores, such as on-chip networks, bus and so on. Intel Re-

search [30] reports that to design a single core chip with 100 million transistors

would take about twice as long with twice as many people than a multi-core

processor with the same number of transistors.

(b) Energy efficient – because multi-core processors can separate the task into
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independent subtasks and share them with different cores on the chip, they

gain high performance with a lower clock rate. As described above, the raising

of the clock rate would lead to higher power-consumption and related thermal

problems. With the reduction of the clock rate, these issues would be handled.

For instance, the power of the Intel R© Pentium R© 4 Processor 531, which is a

single core processor with a 3.00 GHz clock rate, is 84W [31]. However, the

Intel Teraflops Research Chip, which is a multi-core processor with a 3.16 GHz

clock frequency, consumes only 62W of power [30].

(c) Scalable – because the multi-core processor repeats the simple core across

the chip, it is possible to place as many cores as the limits of the technology.

In the laboratory, processors with 1,024 cores on a chip are now available.

Due to these benefits, an increasing number of companies use multi-core architec-

ture.

1.5 Objectives and Challenges

1.5.1 Objectives
Our aim is to carry out a systematic exercise towards the verification of FreeRTOS

that will:

(a) Produce a formal specification of its intended behaviour.

(b) Produce an annotated version of the implementation for VCC to verify.

(c) Identify aspects of its implementation that do not conform to this specification.

(d) Produce a detailed model of the core scheduling-related functionality that can

serve as a basis for fixing the current implementation to obtain a “verified”

version of FreeRTOS, engineered as originally intended by the developers.

(e) Produce an abstract model for a multi-core platform, which is an extension of

FreeRTOS.

1.5.2 Structure View
Fig. 1.4 illustrates the whole structure of the project. To achieve these objec-

tives defined above, three tools (Z/Eves, VCC and ProZ) are used in the project,
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which are represented by rectangles in the figure. Specifically, VCC, introduced

in Sect. 1.3, is used to verify the correctness of the annotated FreeRTOS source

code, based on the function contracts derived from validated Z specification. Next,

Z/Eves is a theorem prover [32], which we use in our project for analysing our Z

specifications, checking syntax and proving theorems automatically with some help

of human. Finally, ProZ [33] is used to animate the validated Z model. It demon-

strates the behaviour of the software described by a Z specification. Sect. 2.2.1

describes Z/Eves and ProZ in detail. Furthermore, inputs and outputs of the tools

are represented by circles, including documentations, FreeRTOS source code, Z

specifications, etc. And the relations between the tools and their inputs and out-

put are shown by arrows. In detail, as shown in Fig. 1.4, from the documenta-

tion [18, 19, 34] and source code of FreeRTOS, a basic version of the requirement

is obtained by abstracting the documentation and reverse engineering the source

code, which is described in detail in Chap. 3. Then, the first version of the Z speci-

fication is specified, based on the requirement, which is validated with the theorem

prover, Z/Eves. After several rounds of iteration and improvements, the final ver-

sion of validated specification is produced, which can be directly used by ProZ for

animation. The validated specification and the iteration process is explained in

Chap. 4. Afterwards, inspired by Multi-BSP model [35], the final specification is

extended to multi-core platform and validated using Z/Eves (See Chap. 6) as well.

Meanwhile, we manually translate the validated specification into VCC annotation,

so, with FreeRTOS source code, the related source code can be verified (See

Chap. 5).

1.5.3 Challenges
The main scientific difficulty with the verification of FreeRTOS is the low level of the

code. The usual abstractions that make it easier to program systems software do

not exist; it is the purpose of FreeRTOS to provide them. They include:

(a) Communication and synchronisation.

(b) Scheduling guarantees.

(c) Interference freedom.
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Figure 1.4: Overview of project
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(d) Direct hardware interaction using clocks and interrupts.

These are provided through a number of complex pointer-based operations, which

present yet another challenge: verifying pointer programs is a complex and difficult

business.

1.6 Font and Name Styles
In this thesis, text from specification and implementation are distinguished by dif-

ferent font styles. In detail,

• File names of the source code are represented by italic font, e.g. task.c;

• Teletype font is used for text from FreeRTOS source code and VCC annota-

tion, e.g. pxCurrentTCB;

• For text and formulas from specification, naturally, the mathematical font is

used for them, Task .
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Table 1.1: Prefix of variable and function names used in FreeRTOS
Prefix Meaning

x Non-standard integer, e.g. portBASE TYPE, portTickType, xTaskHandle, etc.

v void return type.

ux Unsigned non-standard integer type, e.g. unsigned portBASE TYPE

e Enumerated type, e.g. eTaskState

prv Private functions, e.g. prvDeleteTCB

Table 1.2: Suffixes used in schema names
Task Model Queue Model Time Model Mutex Model

T TQ TQT TQTM

In addition, as there are four levels of models in the specification, each operation

may have more than one version of schema for different level of the model, for

instance, the operation creating task has schemas for all four models. We use suf-

fixes in Table. 1.2 to distinguish these schemas, e.g. CreateTask T is the schema

name for creating task in the task model and CreateTask TQ is the schema name

for creating task in the queue model. Furthermore, each operation may also be

composed of different sub-operations. For example, depending on whether the op-

eration requests rescheduling, creating task has two sub-operations. We append

a suffix to the end of the operation name to indicate them, e.g. N and S used

respectively in CreatTaskN T and CreatTaskS T .

Similarly, FreeRTOS uses prefixes of variable and function names to indicate the

type of the variables and the return type of the functions. For instance, the prefix x

shows that a variable, or the return type of a function, is a non-standard integer, e.g.

portBASE TYPE. There are two exceptions for the prefixes of the function names.

Specifically, the prefix v indicates that the return type of a function is void and

the prefix prv shows that a function is a private function. Table. 1.1 summarises

some of the frequently used prefixes in FreeRTOS and the meaning of them. More

details can be found from [36].
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1.7 Structure of Thesis
The remainder of this thesis is divided into seven chapters:

Chapter 2 presents a review of the literature on formally specifying operating sys-

tems and related work in this field. It also reviews the tools used in this

research.

Chapter 3 analyses the API functions of FreeRTOS and abstracts the require-

ments for each API function.

Chapter 4 describes the formalisation work for FreeRTOS and explains the spec-

ifications and theorems in detail. The task model shown in this chapter has

been published in the journal Formal Aspects of Computing [37].

Chapter 5 illustrates the VCC verification for the API functions related to the task

model of specifications.

Chapter 6 shows the formalisation work for the multi-core version of FreeRTOS,

which is extended from the outcome of the previous chapter. The require-

ments are analysed and presented at the beginning. The extension to the

specification for the multi-core version of FreeRTOS is then covered in the

rest of the chapter.

Chapter 7 evaluates the research project in different ways. It firstly summarises

the achievements of the research. It then also describes a carefully designed

case study to show how the specification would work properly using the ProZ

animator and the Z/Eves theorem prover.

Chapter 8 summarises the work done in this research project. Further, it reports

the experience gained from undertaking the research process. Finally, sug-

gestions for future work are presented.

Appendices introduces the structure of the following appendixes firstly. It, then,

summarises the proof commands (See Page.157) frequently used in proofs

of our model and the preconditions for the API functions of FreeRTOS (See

Page. 159), which is followed by the specification of our FreeRTOS model

and multi-core model, each of which is divided into four separate appendices

according to its sub-model structure. It also presents the specification for
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multi-core task model with promotion. Finally, the annotated source code

related to our VCC verification is listed.
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Chapter 2

LITERATURE REVIEW

This chapter reviews the literature related to the research. It begins with a detailed

discussion of FreeRTOS using examples to show how the API function is used

to implement various applications. Z formal notation, which is adopted in this re-

search, is then introduced, with related tools also described. Finally, the related

research on formally verifying operating systems is examined.

2.1 Related Work
This section presents the existing work on verifying operating systems:

1. Craig describes the specification and refinement in Z notation of, Labrosse’s

µC/OS operating system, a microkernel which is similar to FreeRTOS [38,

39, 40]. The refinement of the requirements targets mathematical data types

at a level of abstraction well above program data types. The lowest level of

refinement is also non-algorithmic and there are no real-time properties. Fre-

itas & Woodcock [41] have continued Craig’s refinement to target datatypes

at the level of FreeRTOS, but without pointer implementation. Börger &

Craig [42] also extend this work, modelling with pseudo-code descriptions

as Abstract State Machines (ASMs), which produces an elegant restructur-

ing of the model that makes it easier to understand and easier to refine into

executable code.
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2. Klein verifies seL4, a high-performance microkernel [43, 44, 45, 46, 47]. An

abstract specification in Isabelle/HOL is refined into an executable specifica-

tion in Haskell, which is then manually refined into a high performance imple-

mentation in the C programming language. The theoretical basis for the work

is in separation logic. There is an almost complete handling of the features of

seL4. The entire exercise involved 8,700 lines of C, 200,000+ lines of proof

script, and 30 person-years of effort to establish the functional correctness of

the operating system.

3. Buerki & Rueegsegger [48] introduce their design and implement a high as-

surance microkernel called Muen. They suggest that assuring the whole

microkernel system is very difficult, but also unnecessary. However, the mi-

crokernel can be separated into different function blocks, some of which are

critical. These are defined as the Trusted Computing Base (TCB) and it can

lead to a fatal system error if the TCBs misbehave. Therefore, the set of

TCBs can be treated as the smallest set of functions which are essential for

verification.

4. Déharbe et al. have produced a specification in the B language of a re-

stricted subset of FreeRTOS [49]. They provide a formalisation of a subset of

the API function, verifying that all its expressions are well defined and demon-

strate logical consistency. This model includes Task and Queue-related func-

tions. The model contains seven basic B-machines, FreeRTOSConfig , Type,

Task , Queue, Scheduler , FreeRTOSBasic, and FreeRTOS , with which the

first model without priority is formalised. It is then refined to the second

model, which takes priority into account. However, there are problems with

this model; for instance, it prevents task creation while the scheduler is run-

ning, which is allowed by FreeRTOS. It also forbids tasks from sending and

receiving messages to and from a queue when there is no task waiting to

receive or send. Comparing this with our work, we introduce a model cover-

ing more functions of FreeRTOS. Due to a finer structure of definitions and

abstractions, our specification has increased proof automation. Furthermore,
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we correct the problems discovered in Déharbe et al.

5. Pronk looks at the verification problem for FreeRTOS [50]. He discusses

and compares the advantages and disadvantages of theorem proving and

refinement in this arena compared with model checking. He concentrates on

the latter, using Promela and the SPIN model checker.

6. Lin, Freitas, & Woodcock produced a specification of FreeRTOS in Z cover-

ing the top-level functionality [51]. This was derived from Déharbe’s B spec-

ification [49] (see above item 4), which was then extended to capture all the

main FreeRTOS functionality. An attempt was made to verify the consistency

using the Z/Eves theorem prover [32], although this could also be proved

in ProofPowerZ [52], Isabelle/HOL [53], or PVS [54]. Originally, there were

30 unproven theorems out of 241. We have carried out further work to re-

duce the number of unproven theorems to around 10. During this process,

we found the key reason for struggling with proofs is that the model is too con-

crete, which leads to proof complexity. For example, to represent the different

states in FreeRTOS, the model uses seven different type variables, such as

functions, sequences, finite sets, etc. Furthermore, even when Z/Eves can

prove a theorem, it takes considerable time. Compared with this, our model

is much more abstract and more tractable for proof.

7. Mühlberg & Freitas report on the application of the SOCA and VeriFast tools

to FreeRTOS [55]. They focus on the verification of structural properties (e.g.,

pointer safety and arithmetic overflow) and liveness properties, but ultimately

aim at demonstrating functional correctness. This includes the reconstruc-

tion of a formal specification of FreeRTOS in Z (mentioned above in item 6),

bounded model-checking of the FreeRTOS code using the SOCAVerifier [56],

as well as annotating the source code with assertions in separation logic to

apply the VeriFast software verifier [57].

8. Ferreira uses separation logic to verify code-level pointer structures in

FreeRTOS [58].
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9. Abrial [59] has an unpublished specification of much of the functionality of

FreeRTOS using the B method (excluding interrupts). The Z specification in

this thesis is based on his work, although the verification is necessarily very

different.

10. Mistry, Naylor, & Woodcock have developed a multi-core version of

FreeRTOS on a Field Programmable Gate Array (FPGA), which is able to

schedule tasks on multiple processors and support mutex in a concurrent

environment [60, 61]. They present an adapted version of FreeRTOS that is

able to schedule tasks on multiple processors, as well as provide full mutual

exclusion support for use in concurrent applications, which is independent

of the chosen platform, thus preserving one of FreeRTOS’s most attractive

features, portability.

11. In collaboration with the author of this thesis, an unpublished work from Kush-

wah, Divakaran, & D’Souza aims to give a proof of functional correctness by

proving that the C implementation refines the abstract Z specification. The

commonality with this work is that they also focus on the task-related func-

tionality of FreeRTOS. The points of difference are that their specification is

deterministic, more detailed, and closer to the implementation than ours. In

addition, they do not check consistency or prove properties for their Z model.

12. Based on the previous work (item 11), Divakaran et al. [62] also attempt to

use VCC to verify the implementation of FreeRTOS with abstract Z specifi-

cation. The difference between these works is that they focus on checking

refinement steps. They promote three approaches (“Direct-Import”, “Com-

bined” and “Two-Step” ) in VCC to check refinements between the abstract

model and the implementation. By comparing and applying them to the case

study, they claim that the “Two-Step” approach is much more efficient than

the other two, which splits the verification process into two steps: (a) The

behaviours of the function defined in the abstract model and the concrete

function are verified; (b) Then, the outputs from both functions satisfying the
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gluing invariants is checked. Furthermore, they also suggest how to translate

a subset of the Z notation to VCC.

2.2 Z Notation
Z, developed by Sørensen [63] in 1982, is a formal notation and became an inter-

national standard in 2002 [64]. It is based on set theory and mathematical logic.

Specifically, the Z notation uses set operators, set comprehensions, Cartesian

products and power sets. The logic part uses first-order predicate calculus [65].

With these mathematical theories, Z can describe the state and properties of the

system being specified. Z uses an abstract structure called a Schema to capture

a number of concepts in one named block. Subsequent schemas that refer to the

name of a previous schema can inherit all the concepts and constraints introduced

in that schema [10, 63, 65, 66]. This provides reusability in the Z notation. In order

to manage system complexity, schemas are vital to keep the specification flexible

and manageable in a real, large-scale project [65]. Moreover, a schema can also

be used to specify the behaviour of the system.

Hoare [67] introduced Hoare Triples in 1969, which describe the logical behaviour

of a computer program. This triple can later be verified by related logic theories

and lemmas. Specifically, the notation

P {Q} R

can be used to express that if the precondition P is true before the program Q

is initialised, then the postcondition R will be true once Q terminates successfully.

Therefore, a schema is composed of two parts, a precondition and a postcondition.

The default relation between predicates in different lines of a schema is called

logical conjunction ∧.

For instance, the following shows part of a specification for a system. It is used to

record the relationship between tasks and their priority. (Note, this is just a example

to illustrate how schemas work; the definition here is not the same in our specifica-

tion of FreeRTOS.) Firstly, TASK is defined to represent tasks in the world using a

given set, which is used to introduce uninterpreted domain-specific types in Z.
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[TASK ]

Subsequently, a schema, Task , is introduced to specify the basic abstract state of

the system. It includes two component declarations: (a) tasks , which is a subset

of TASK , indicates the tasks in our system; and (b) priority , which is a partial

function from TASK to N, illustrates that tasks may have a priority. As well as the

declaration, the constraint for these properties is also defined, indicating that the

domain of priority is tasks . This means tasks in set tasks have a priority and tasks

not in tasks do not.

Task
tasks : PTASK
priority : TASK 7→ N

dom priority = tasks

Based on state schemas, operation schemas can be defined, such as setPrio

below, which specifies the operation for setting the priority of a task. It refers to the

Task schema, to obtain all the essential information about the system we defined.

Therefore, the variables defined in Task can be directly used.

setPrio
∆Task
t? : TASK
prio? : N
out ! : N

t? ∈ tasks

tasks ′ = tasks
priority ′ = priority ⊕ {(t? 7→ prio?)}
out ! = priority ′(t?)

The declaration part of the schema starts with ∆Task , which refers to the pre-

and post-state of the Task schema and indicates that it is going to change the

state Task . Following this, it introduces some inputs (e.g., t?) and outputs (e.g.,

out !). They are distinguished through a decoration convention. Variables in the

pre-state (e.g., tasks) and post-state (e.g., tasks ′) are similarly distinguished. This

schema has only one precondition, t? ∈ tasks , indicating that before the operation
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setPrio the target task t? is in the system. Therefore, it is in the domain of priority

as defined in Task schema. Consequently, after the operation has successfully

finished, the new priority of t? is updated in the function priority ′. The override

operator, ⊕, is used to achieve this, which is the most common way to update

functions in the Z notation. If the first element of the pair specified in operation (e.g.,

t? in this case) exists in the domain of the function (e.g., priority), it would update

the result of function application (e.g., priority(t?)) to the new value (e.g., prio?);

otherwise it adds the pair into the function. Finally, the new priority of target task t?

is set as output, which should simply equal to prio?.

More explanation of the Z notation will be provided in Chap. 4 along with the expla-

nation of our specification.

2.2.1 Tools for Z

A leading proof tool for the Z notation is Z/Eves, which can be used for analysing

Z specifications, syntax checking and most importantly theorem proving. Using

Z/Eves, specifications can be entered by importing LATEX source code [68] or by

typing directly from the editing facility provided by Z/Eves [69]. Once the spec-

ification has been entered, Z/Eves can automatically perform syntax checking,

type-checking, and some basic proving, by double clicking on paragraphs, such

as schemas. This is very useful for users to avoid syntax errors. Furthermore,

based on self-defined theorems or lemmas and the built-in theorems, which can

be found in [70], Z/Eves can be used to prove specifications automatically. More

details about how to use Z/Eves can be found in the user guide [69].

ProZ, which is extended from ProB [33], can be used to animate and check Z

specifications. It is worth noting that each specification animated by ProZ should

have one and only one schema named Init, which defines the initialisation state of

the model. Once the model is initialised, based on the current state of the model,

available operations will be shown and the user can apply them to the model by

simply double clicking on them.
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2.3 FreeRTOS

FreeRTOS is a widely used real-time operating system written by a team led by

Richard Barry of Wittenstein High-Integrity Systems in the UK [19]. Introductions

to FreeRTOS informally describe the application programming interface (API) for

the real-time operating system kernel [18]. Verifying the correctness of FreeRTOS

has also been proposed as a pilot project for the VSI. This verification experiment

presents two distinct challenges: (a) Code-level verification to automatically anal-

yse FreeRTOS for structural integrity properties; and (b) The creation of a rational

reconstruction of the refinement of the FreeRTOS code starting from an abstract

specification, discharging all verification conditions automatically. This project was

chosen as a contribution to the VSI at a workshop held at Microsoft Research,

Cambridge, in 2008, that was gathering difficult research problems from industry.

Modelling and verifying operating system kernels is considered to be scientifically

interesting, pushing the current capabilities of software verification research and

technology. Klein is the first to formally verify an operating system kernel and de-

scribe the main scientific challenges [43, 71].

FreeRTOS has a large community of users programming embedded microcon-

trollers: it was downloaded 107,000 times in 2013, putting it high in the top

100 SourceForge codes (there are more than 200,000 available). Verification

of FreeRTOS, which allowed the discovery of residual errors, would thus have a

strong impact on the international embedded system community.

FreeRTOS is a lightweight, embeddable, multi-tasking, Real-Time Operating Sys-

tem (RTOS). It makes the key assumption that the target system has a single pro-

cessing unit. It is really a library of types and functions that can be used to build

microkernels using a combination of C and assembly language, and has been

ported to most embedded systems architectures. It allows a very small kernel to

be produced to target microcontrollers, somewhere between 4–9kB. In some spe-

cial cases, it can be less than 4kB. For instance, it takes less than 4kB of RAM,

when creating 13 tasks, 2 queues and 4 software timers for RL78 [34]. It provides
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services for embedded programming tasks, communication and synchronisation,

memory management, real-time events and I/O-device control.

Fourteen different compilers are used with FreeRTOS, giving complex configura-

tion options and extensive parametrisation. A version of the software, SafeRTOS,

has been certified to Safety Integrity Level 3 by the Technical University of Vienna

for the following safety standards: IEC 61508, FDA 510(k), and DO-178B. These

certificates are for the process of development, rather than for the correctness of

the software against stated requirements.

The objective of formally verifying FreeRTOS would be to find any errors and make

some guarantees about the code’s behaviour. Since the requirements are dis-

tributed throughout the documentation, there is a clear need to produce a formal

abstract specification. A broader aim of our work is to study the verification problem

for an entire class of software, namely real-time operating systems for embedded

applications, and we have chosen to focus on an exemplar of this class of system

namely the FreeRTOS kernel. The techniques and methodology developed here

can be expected to be applicable to other software in this class of system.

2.4 Summary

This chapter firstly reviewed previous work related to formalising operating sys-

tems, which is helpful for us to understand the background of the project. Sec-

ondly, it discussed the principle of formal verification and Z used in the project. In

addition, it reviewed the target system of the project, FreeRTOS.

Based on this, the next chapter will define the goals and scope of the project and

most importantly the requirements of the project can be abstracted.
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Chapter 3

ANALYSIS AND ABSTRACT API

FUNCTIONS OF FREERTOS

This chapter discusses the requirements for the research. Because the devel-

opment process does not completely follow either a formal methods strategy or

reverse engineering strategy, it begins by giving an overview of our model. It then

discusses the goals and scope of the research, followed by the requirements anal-

ysis.

3.1 Model Overview
Normally, the development process in formal methods starts with the requirements,

modelling the behaviour of the system, and refining through several steps to exe-

cutable code. As FreeRTOS does not have explicitly articulated requirements and

has been implemented in C, we consider the user manual and the practical guide

to FreeRTOS [19, 18] the basis of the requirements. However, these sources are

not detailed enough for us to build the model; they just provide a basic functional

description of the API functions. Therefore, we also take the FreeRTOS source

code into consideration for modelling. Thus, the model is mainly based on the

API documentation to verify the functional correctness of FreeRTOS, with some

of the details of the specification derived from the source code. For instance, the
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xTaskCreate API function documentation states that if the API function returns

pdTRUE , then the task has been created. (NB, to simplify the model, we just con-

sider the successful case of API functions.) Nevertheless, it does not indicate how

it was created. Therefore, we analysed the source code to find out how it works

and formalised the behaviour of xTaskCreate based on that.

As described in the last chapter, the key elements of FreeRTOS can be divided

into three categories: (a) task management; (b) communication and synchroni-

sation; and (c) memory and interrupt management. However, functions related to

memory and interrupt management are quite hardware-dependent, so we abandon

them at this level of abstraction. Furthermore, according to whether they are time

dependent, task API functions can be divided into pure task operations or time-

related operations. Therefore, we focus on task, communication (i.e., queue), time

and synchronisation (i.e., semaphore and mutex) related FreeRTOS API functions.

Each of them is reasonably independent. Therefore, our modelling starts from the

core part of the system, Task model, and then expands to cover other features.

For each subsystem, we attempt to keep the model as simple as possible. This

can significantly reduce the difficulty of modelling and verification. In detail, we first

build the Task model. Based on this, the Queue model is added into the system,

followed by the Time and Mutex models.

3.2 Goal and Scope

The goal of this research is to provide a verified high level abstract formal model

for FreeRTOS, which can be used as the foundation for future research (i.e., re-

finement, extension, etc.). It describes the behaviour of FreeRTOS API func-

tions. Based on FreeRTOS’s manual [19], 61 API functions are provided to the

user. However, some of them have similar functions, for instance, xQueueReceive

and xQueuePeek . Both of them attempt to receive an item from a queue, but

xQueueReceive actually receives data from the queue and xQueuePeek just checks

if there are any items available in the queue. Moreover, due to the abstract level

of the specification, some API functions perform the same function, for instance,
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xQueueSend , xQueueSendToBack , xQueueSendToFront . All of these try to send

an item to a queue. The difference is that with xQueueSend a user can send the

item to either the front or the back of the queue and the latter two API functions

can only send the item to the back and the front of the queue respectively. At this

level of abstraction, we do not need to consider the detail of the order of items in a

queue or how items are stored in a queue. Therefore, we only selected 15 of the

API functions for our model (listed in Sect. 3.3.1). To simplify the modelling and

verifying further, we assume that the system scheduler is continuously running and

only focus on cases where the API functions succeed.

Due to the complexity of the traditional refinement process and time limitations, we

have not refined our model into executable code. However, we attempt to use VCC

and our model to verify task-related FreeRTOS API functions to illustrate that the

VCC kind of verifier plus abstract specification can be an alternative approach to

verification. In addition, we also extend this model for multi-core platforms.

3.3 Requirements

Generally, the use case diagram, which shows the relation between the actor and

use cases, and the relation between different use cases, is the most common

approach to describing requirements. It is also used as a fundamental document

for further software development. However, in our project, FreeRTOS has been

implemented already and does not have a proper set of requirements. Therefore,

we summarise requirements for FreeRTOS according to its API function.

3.3.1 Functional Requirements

1. Task Related:

1.1 xTaskCreate Create a task and specify its priority, reschedule tasks

when the priority of the new task is greater than the running task;

1.2 vTaskDelete Remove a non-idle task from the system, reschedule tasks

if the deleted task is the running task;
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1.3 vTaskSuspend Set the state of a task to suspended, reschedule tasks if

the suspended task is the running task;

1.4 vTaskResume Set the state of a suspended task to ready, reschedule

when the priority of the resumed task is greater than that of the running

task;

1.5 vTaskPrioritySet Set new priority of a task (N.B. the priority of idle

task is always 0), reschedule tasks:

• if the priority of the running task is set lower than the priority of the

highest-priority ready task;

• if the priority of a ready task is set greater than that of the running

task.

2. Queue Related:

2.1 xQueueCreate Create a queue and specify its size;

2.2 vQueueDelete Delete a queue;

2.3 xQueueSend Send an item to the queue;

• block this task if the queue is full, add it to waiting send list;

• if the queue is empty, wake up the highest-priority task, which is

waiting to receive an item from the queue.

2.4 xQueueReceive Receive an item from the queue;

• if the queue is empty block the task and add it to waiting receive

list;

• if the queue is full, wake up the highest-priority task, which is waiting

to send an item to the queue.

3. Time Related:

3.1 vTaskDelayUntil Block current running task until the specified time,

reschedule the highest-priority ready task as the new running task;

4. Semaphore & Mutex Related:

4.1 vSemaphoreCreateBinary Create a binary semaphore;
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4.2 vSemaphoreDelete Delete a binary semaphore or a mutex;

4.3 xSemaphoreCreateMutex Create a mutex;

4.4 xSemaphoreTake Take a token from a semaphore or a mutex;

4.5 xSemaphoreGive Give a token back to a semaphore or mutex;

In addition, the following two time properties are related to task scheduling, which

are also of interest to us:

1. The function prvCheckDelayedTasks checks expiry time for blocked tasks.

When time increases, it checks if there are any blocked tasks that need to be

woken up. If there are, it moves them to the ready state, which may cause

rescheduling;

2. When the system increases the ticks counter, which represents the time, it

also checks whether there are any ready tasks with the same priority as the

running task to share the processor.

• If there is more than one ready task sharing the highest priority, they

need to share CPU time as well. Rescheduling is required in this case.

• Otherwise, the current running task keeps running.

3.3.2 Non-functional Requirements

Non-functional requirements specify the constraints on the services or functions

offered by the system. In our case, the non-functional requirements can be sum-

marised as:

1. Well-definedness. The specification should be well-defined;

2. Animatable. The specification should be able to be animated by ProZ.

3. Feasibility. The specification should be feasible (i.e. initial state and precon-

dition for each operation should be reachable);

4. Reproducible. The specification and verification should be easily reproduced

by other users.

5. Reusable. The specification should be able to be reused and expanded eas-

ily with little or no modification;
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3.3.3 Environment Requirements

Z/Eves and ProZ are used as the prover and animator during the project.

To reproduce the experiment, they are essential. Additionally, Community Z

Tools (CZT) [72] can be very helpful for modifying the specification source code.

CZT also integrates an interface for Z/Eves, as the original graphic interface of

Z/Eves is implemented in Python, which crashes easily in Windows 7. Further,

FreeRTOS v7.1.1 is used for the project.

3.4 Summary

In this chapter, the first section showed how we abstract the requirement for

FreeRTOS, following which the second section defined the goal and scope of the

project. Finally, the last section discussed the requirements of the project in three

parts: functional requirements, non-functional requirements and environment re-

quirements. Specifically, the functional requirements described the requirements

for FreeRTOS API functions we modelled in the project, which were divided into

four categories.

In the next chapter, following the categories of the functional requirements, the

abstract model of FreeRTOS, which is the core of the project, will be described

in detail. In addition, the experience gained from the modelling process will be

discussed, which is helpful for developers specifying large systems, like us.
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Chapter 4

MODELLING FREERTOS

This chapter describes the model in detail, following the structure described in the

previous chapter. Firstly, it shows how we approached the model. The Task model

is then described, being the simplest and most important part of the model. In this

section, some auxiliary theorems, which are helpful during proving and modelling

are also explained. Following this, the Queue model is illustrated, followed by the

Time and Mutex models. For each of these models, we also briefly explain how

the API functions of the previous model are expanded. In addition, we collect the

preconditions for each API function and some properties of the system. We also

give a summary of the proof commands in Appendix B, so that the reader can

follow the general argument behind the formal proofs or even recreate the proof in

Z/Eves.1

4.1 Iteration Process
Following the requirement and the refinement strategy of [59], we started the mod-

elling process with the simplest and the most important part of the system, which

includes creating tasks, deleting tasks and rescheduling. Basically, the idea of

creating a task is adding a task, which does not belong to the system, to the sys-

tem. To describe this, besides the given set (TASK ) representing tasks, we need
1Z/Eves project file and other related files can be found in supplementary material.
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a set (tasks) to help us to distinguish the tasks known by the system and others.

Similarly, to delete a task, we simply remove the task from the system, i.e. remove

the target task from the set tasks . Finally, to define the behaviour of rescheduling,

the simplest idea is setting the target task as the new running task, and perform-

ing a context switch. The variables, running task , log context and phy context

are defined for this purpose. Therefore, we specified the first and tiniest model of

FreeRTOS, which contains only one base schema called FreeRTOS .

FreeRTOS
phy context : CONTEXT
running task : TASK
log context : TASK → CONTEXT
tasks : PTASK

running task ∈ tasks
idle ∈ tasks

The schema FreeRTOS contains all the necessary variables described above to

describe creating, deleting and rescheduling tasks. Based on this, we defined the

specification for these three operations. As this model is really tiny and simple,

it is easy to understand and validate, but extremely incomplete. We then took

some fundamental attributes of tasks into consideration. First, a task in FreeRTOS

always has a state and it should be possible to change the state of a task from

one to another. Second, the scheduling policy adopted by FreeRTOS is priority-

based scheduling. A task in FreeRTOS must have a priority. The task then can be

scheduled according to its priority. Therefore, the functions, state and priority are

added into FreeRTOS . The specification for creating, deleting and rescheduling

tasks are updated accordingly. Meanwhile, due to these two new functions, we

can define the behaviour of suspending, resuming and changing priority of tasks.

At this stage, we obtained a reasonable complete task model of FreeRTOS. As

the model is still simple (compared to the expanded models) and we did not verify

preconditions for each schema, there were no issues during the modelling and

proving process. Identifying system attributes, encapsulating the attributes to a

base schema and specifying the related behaviour of the system based on the

schema can be considered as a good choice for a small system. Because of the
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simplicity of the system, the size of base schema can be reasonably small. In this

case, encapsulating all related attributes in the base schema does not raise the

difficulty and complexity of proof for other schemas in the model.

After this, following the structure described in Chap. 3, we extended the model

incrementally to contain queues, then added time, and finally added semaphores

and mutexes. Similarly, each time, all base information, which will be introduced

in detail in Sect. 4.3, 4.4 and 4.5, was added to the base schema FreeRTOS and

the related operations are defined based on FreeRTOS . We found that during

this process we produced an unacceptably large base schema. At the end, when

semaphores and mutex related data were added to the model, the base schema

FreeRTOS was longer then an A4 page. As a consequence, operation schemas

also became unreasonably long, which increased the difficulty of validation and

made the preconditions for operation schemas impossible to verify. The successful

approach described above for the task model becomes unsuccessful, as the scale

of the system increases the difficulty and complexity of the model dramatically.

To solve this problem, we broke the base schema, FreeRTOS , down into smaller

pieces. As stated in the previous chapter, the base schema is split into four sub-

schemas, Task , Queue, Time and Mutex . They are the four sub-models which

are described in following sections. Using this strategy, the size and complexity of

the schemas of the model are reduced dramatically. However, these sub-schemas

still contain too much information to verify the preconditions for operation schemas,

which produce too much unrelated information in the proof condition. This trivial

information increases complexity and the difficulty of auto proving for the prover.

Thus, the sub-base schemas were broken down further to obtain the current ver-

sion of the model. Based on our experience, we can state that encapsulating all the

attributes of the system to a single base schema is definitely an unsuccessful ap-

proach for a large system; on the other hand, hierarchically structured incremental

base schema can be considered as a good choice, as it reduces the difficulty and

complexity of the modelling and proving process by: (a) hiding as much unrelated

information as possible, (b) proving theorems in the model which contains only the

Page 39



information related to the theorem, (c) reusing the previous proved theorems for

proving theorems in later complex model.

4.2 Task Model

As mentioned in Sect. 3.1, task related API functions are the core part of the model

and fundamental to it. To define this model, it is essential to state some basic

context that will be used in the specification.

4.2.1 Basic Statements

The given sets CONTEXT and TASK are provided as given sets to represent

the environment of the processor and the tasks, respectively; in Z, given sets are

basic, maximal types.

[CONTEXT ,TASK ]

Two constants, bare context and idle, are introduced by an axiomatic definition,

which contains a declaration and a constraint. Here, the constraint is trivially true

and is omitted. The constant bare context is an element of the set CONTEXT ; it

represents the initial state of the processor. The constant idle is of type TASK ; it

represents the system task that runs when no other task is scheduled.

bare context : CONTEXT
idle : TASK

STATE is defined using a free type in its simplest form, enumerating exactly five

distinct constants.

STATE ::= nonexistent | ready | blocked | suspended | running

The set of legal state transitions is described by an abbreviation: transition names

the appropriate set that models the diagram in Fig. 1.1.

transition == ({blocked} × {nonexistent , ready , running , suspended})
∪ ({nonexistent} × {ready , running})
∪ ({ready} × {nonexistent , running , suspended})
∪ ({running} × {blocked , nonexistent , ready , suspended})
∪ ({suspended} × {nonexistent , ready , running})
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In particular, transitions (blocked , running) and (suspended , running) are included

because when a task is woken up from the blocked state or resumed from the

suspended state, its state actually transits to ready. However, if it has a higher

priority than the running task, it will be scheduled to running. At this level of

abstraction, we consider these two steps as a single step, which makes state tran-

sitions (blocked , running) and (suspended , running) possible. The definition for

transition turns out not to be very useful in automating proofs about transitions,

because Z/Eves would expand transition into the set in all possible proof contexts.

This greatly increases the load on the prover. Therefore, we disable the defini-

tion and add two theorems that are more helpful. The first is a typing lemma that

states that transition is a set of pairs of STATE ; its proof is a very simple conse-

quence of the definition of transition. With the help of the proof command prefix

“with enabled (transition)”, Z/Eves will take the disabled definition of transition

into consideration during proof. The proof command “prove by reduce” requests

Z/Eves to explore possible theorems and lemmas to prove the goal automatically.

Therefore, the goal can be easily proved automatically by Z/Eves using the follow-

ing command.

Theorem 1 (gTransitionType)

transition ∈ P(STATE × STATE )

proof [gTransitionType]
with enabled (transition) prove by reduce;

Next, we add the following lemma to tell Z/Eves about each individual pair in

transition, which is helpful to Z/Eves for automatically proving. Similarly, the proof

is very simple.

Theorem 2 (rule lInTransition)

∀ l , r : STATE
| (l , r) ∈ {(nonexistent 7→ ready), (running 7→ ready),

(blocked 7→ ready), (suspended 7→ ready),
(ready 7→ running), (blocked 7→ running),

Page 41



(suspended 7→ running), (nonexistent 7→ running),
(running 7→ suspended), (ready 7→ suspended),
(blocked 7→ suspended), (running 7→ blocked),
(running 7→ nonexistent), (ready 7→ nonexistent),
(blocked 7→ nonexistent), (suspended 7→ nonexistent)}

• (l , r) ∈ transition

proof [lInTransition]
with normalization with enabled (transition) prove by reduce;

Based on these definitions, the state schema of the model can be specified, de-

scribing basic system properties. For this stage of modelling, we focus only on

task-related information in FreeRTOS. Further information will be introduced in a

related model. To simplify the proof and the specification, we verify the system

only when the scheduler is running. Therefore, we assume the scheduler is always

running.

To describe the tasks in FreeRTOS, the following four kinds of data are needed,

which are defined by a schema definition. In the Z notation, the schema is used

to structure and compose descriptions. Once a schema is assigned a name, it is

possible to use that name to reuse the schema in other expressions or schemas.

1. Task data. The variables recorded in this category are directly related to

tasks. First, to simplify the description of the model and the following proofs,

we need to distinguish tasks that are known to the system from others; there-

fore, a set tasks is defined as a finite subset of TASK . Second, in the

FreeRTOS source code, task .c file, a pointer (pxCurrentTCB) is used to

record the current running task, which is useful in several cases, such as

scheduling. In the specification, a variable running task of type TASK is

used to represent this. Two constraints are specified: the idle task and the

running task have to be known to the system at all times.

TaskData
tasks : FTASK
running task : TASK
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running task ∈ tasks
idle ∈ tasks

2. State data. As described in Sect. 1.2.1, FreeRTOS uses different lists to

manage the tasks known to the system. Abstractly, two tasks in different

lists have different states. Therefore, the variable state is used to indicate

the state of the tasks. Specifically, the idle task, which is a system task

with responsibility for maintenance jobs for the system (such as garbage col-

lection), can only be ready or running ; it cannot be blocked , suspended , or

deleted (nonexistent ).

StateData
state : TASK → STATE

state(idle) ∈ {ready , running}

3. Context data. The two variables phys context and log context , respectively,

represent the physical system context (e.g., register values, some stacks,

etc.) and the logical context for all the tasks that are not running (i.e., the

system states of a task when it exits the running state).

ContextData
phys context : CONTEXT
log context : TASK → CONTEXT

4. Priority data. FreeRTOS is a priority-based operating system: all the tasks in

the system have their own priority, and a total function, priority , is introduced

to record this. The priority of idle task must always be the lowest priority,

which is 0.

PrioData
priority : TASK → N

priority(idle) = 0
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Invariant Based on these definitions, we can describe the state schema for tasks

that are maintained by this part of FreeRTOS.

Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state∼(| {nonexistent} |))
state∼(| {running} |) = {running task}
∀ pt : state∼(| {ready} |) • priority(running task) ≥ priority(pt)

Apart from the four schemas describing the task, state, context, and priority data,

three more constraints are added to this schema. They show that:

• All the tasks whose state is not nonexistent are known to the system. Here,

as mentioned above, the state is a function, a special case of a relation.

The operator, ∼, takes the inverse relation, so that state∼ is a relation in

STATE ↔ TASK . The operand, (| and |) calculates relational image. The

result for this predicate is a set that contains all the TASK s whose states are

nonexistent .

• Only one task can occupy the running state at any given time, which is

running task .

• The priority of the running task is the highest of all the ready tasks.

Initialisation Based on the state definition and the assumptions mentioned

above, we describe the initialisation of the Task state in a similar piecewise fash-

ion: we separately initialise the four sub-states, and then combine them.

1. Task data. Initially, there are no user-defined tasks in the system; there is

only one task in the system, idle, which is also the initial running task .

Init TaskData
TaskData ′
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tasks ′ = {idle}
running task ′ = idle

2. State data. Furthermore, every other task is in the nonexistent state, except

idle whose state is running .

Init StateData
StateData ′

state ′ = (λ x : TASK • nonexistent)⊕ {(idle 7→ running)}

3. Context data. Also, initially, the logical and physical contexts of all tasks is

the bare context .

Init ContextData
ContextData ′

phys context ′ = bare context
log context ′ = (λ x : TASK • bare context)

4. Priority data. Finally, all tasks have the lowest priority, 0.

Init PrioData
PrioData ′

priority ′ = (λ x : TASK • 0)

The initial state for Task can be defined using these four definitions.

Init Task
Task ′

Init TaskData
Init StateData
Init ContextData
Init PrioData

In order to prove that all the initial states are reachable, the following five theorems

are introduced. They assert that there is at least one possible postcondition for

initialising each sub-state schema and the overall schema. Due to the simplicity of

these theorems, Z/Eves is able to fully prove them automatically.
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Theorem 3 (TaskDataInit)

∃TaskData ′ • Init TaskData

proof [TaskDataInit ]
prove by reduce;

Theorem 4 (StateDataInit)

∃ StateData ′ • Init StateData

Theorem 5 (ContextDataInit)

∃ContextData ′ • Init ContextData

Theorem 6 (PrioDataInit)

∃PrioData ′ • Init PrioData

It is easy to prove these theorems with the proof command “prove by reduce”,

except for TaskInit , because it has more constraints on its state variables.

Theorem 7 (TaskInit)

∃Task ′ • Init Task

proof [TaskInit ]
prove by reduce;
apply extensionality ;
with enabled (applyOverride) prove;

After the automatic proving ordered by prove by reduce, Z/Eves is confused about

the equivalence between sets defined in schema Task . The application of override

also confuses the prover. Therefore, we need to guide the prover to apply theo-

rems, extensionality and applyOverride, to discharge them. These theorems are

provided by the Z/Eves toolkit [70].
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We can check whether the state change respects the transition relation as a dy-

namic invariant that must be satisfied by all the operations on the Task state by

redefining ∆Task :

∆Task
Task
Task ′

∀ st : TASK | state ′(st) 6= state(st)
• state(st) 7→ state ′(st) ∈ transition

It is worth mentioning that in this schema we use Task ′ to refer to the post state

of the Task . Initially, the expression “∆Schema” (Schema refers to a state schema)

has been defined to contain both the pre- and post-state of Schema. We redefine

it here to add further constraints for Task .

Based on these fundamental definitions, operations related to tasks can be speci-

fied.

4.2.2 Additional Schema for Reschedule
In a multi-tasking real-time operating system, rescheduling tasks is essential and

occurs frequently. Generally, depending on the purpose of the system, the operat-

ing system would follow some suitable algorithm to determine the task to be sched-

uled. Other system states can then be updated accordingly. Therefore, at this level

of abstract specification, it is possible to define the rescheduling process nondeter-

ministically. However, the model described in this chapter focuses on FreeRTOS.

We will follow the algorithm used in FreeRTOS to specify rescheduling, which is

based on task priority. Specifically, once a ready task obtains a higher priority

than the running task, it will be scheduled as the new running task. Subsequently,

the system will switch the context of the current running task out and swap in the

context of the new running task. It is also necessary to manage related lists and

system states properly, for instance, by setting the selected task as the running

task and inserting the current running task in a suitable list.

In this specification, we introduce the schema Reschedule to perform the swap-

ping part of the rescheduling process, which can then be used by other schemas.
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The priority-based scheduling algorithm is embedded in the operation schemas for

different API functions that need rescheduling. The priority-based rescheduling be-

haviour depends on the destination to which the current running task is moved. For

example, when suspending the running task, the destination of the running task is

the suspended list; but when we create a task with a higher priority than the running

task, the destination of the current running task is actually one of the ready lists.

These lists are represented by the function state. Therefore, updating the state

with the variable st? manages these lists. In the Z notation, variables marked with

“?” and “!” indicate that they are I/O variables, respectively, for a schema. When

other schemas reuse the Reschedule schema, st? will be introduced within these

schemas with the value of the destination of the current running task. Because

both schemas contain a variable with the same name, these two variables will be

bound together. Consequently, the schema Reschedule can obtain the destination

of the running task by accessing the value of st?. The operator, ⊕, is normally

used to update functions in Z. If the first element of a pair exists in the domain of

the function, it will update the second element of the pair in the function to the new

value; otherwise it appends the pair to the function. Therefore, it is used here to

update the state of running task and target?. Similarly, for each case, the new

running task, the final state of tasks , and the priority of tasks may also be different.

We leave these decisions to the calling schemas. Therefore, variables—target?,

tasks? and pri?—are introduced to represent these properties.

Reschedule
∆Task
target? : TASK
tasks? : PTASK
st? : STATE
pri? : TASK → N

tasks ′ = tasks?
running task ′ = target?
state ′ = state ⊕ {(target? 7→ running), (running task 7→ st?)}
phys context ′ = log context(target?)
log context ′ = log context ⊕ {(running task 7→ phys context)}
priority ′ = pri?
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The calling schema just needs to specify the correct values for these variables, the

Reschedule schema then handles the rest of the work.

4.2.3 Creating and Deleting Tasks

After initialising the system, there is only one task (idle); in order to add more tasks

to the system, the Create operation can be used. Once a task finishes, it should

be Deleted (see Page. 55) to allow other tasks to use the resources held by it.

xTaskCreate and vTaskDelete are also the first group of API functions provided

by FreeRTOS. Generally, there are two cases for each of these two operations: one

is to add or remove a task from the system; the other one leads to a re-scheduling

of tasks.

First Case of Creating Tasks If the assigned priority is not greater than the pri-

ority of the current running task, it adds the new task that does not already exist.

The input target? represents the task that will be created. The input newpri? con-

tains the priority assigned to the new task. Therefore, the precondition is specified

as: first, target? is not known by the system; second, the assigned priority, newpri?

is no more than the priority of running task . After the operation, the target? is

known to the system, the task target? is added to tasks and updates the state

function to record that the state of target? is ready . The input newpri? is assigned

to the task target? by updating the function priority . Because this operation will

not cause rescheduling, other properties of Task remain unchanged. The “Ξ” op-

eration has been used here: it is defined in Z to show that the pre- and post-states

are unchanged. The schema CreateTaskN T can be introduced, which indicates

that this schema is used to Create Task operation in the normal case for the Task

model. Generally, we use postfix N for the Normal case of the operation, which

does not lead to rescheduling; and S for the Scheduling case. The postfix after the

underscore indicates which model it is specified for. For example, T in this case

shows the schema is part of the task model.

CreateTaskN T
∆Task
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target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? ≤ priority(running task)
tasks ′ = tasks ∪ {target?}
running task ′ = running task
state ′ = state ⊕ {(target? 7→ ready)}
ΞContextData
priority ′ = priority ⊕ {(target? 7→ newpri?)}

Having defined this operation as a relation on Task states, we need to work out its

precondition. We posit that the before-state, the inputs, and the first two predicates

are the precondition, and collect these into the following schema, where the suffix

FSBSig in the schema name stands for Feasibility Signature.

CreateTaskN TFSBSig
Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? ≤ priority(running task)

These declarations and predicates are clearly necessary for the actual precondition

as stated above. We show that they are also sufficient in the next theorem, which

can be automatically generated. Specifically, for any “state” that satisfies the defi-

nition of CreateTaskN TFSBSig , the precondition of CreateTaskN T is satisfied.

The operator “pre Schema” is defined in Z to calculate the precondition schema

of a schema [65, Chap. 14]. For instance, the predicate “pre CreateTaskN T ”

in the following theorem obtains the precondition schema by calculating ∃Task ′ •

CreateTaskN T \ (outputs), where outputs refers to the list of output variables re-

lated to the operation, which will be hidden, and is empty in this case. The schema

hiding operator, “\”, hides the variables listed in the outputs from the declaration

of the operation by introducing them in the predicate part of the schema with an

existential quantifier.

Theorem 8 (CreateTaskN T vc ref)

∀CreateTaskN TFSBSig | true • pre CreateTaskN T
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It is interesting to understand the proof of this theorem. First of all, as mentioned

above, the Z/Eves prover is used to verify our specification. All the proof scripts

shown in this thesis are used to help Z/Eves to finish the proof work. Generally,

there are two ways to finish a proof [69, Chap. 5]: (a) exploratory proof — directly

prove the theorem without any previous plan and address any proof goals returned

by the prover; (b) planned proof — carry out a detailed plan for the proof, which

is enough to finish the proof by hand, then transfer the plan to a proof script for

the prover. To maximise the benefit of proof automation, we adopt the exploratory

proof approach in many cases. The general idea for this approach is:

1. Expand terms such as schema references and let Z/Eves prove the proof

goal automatically.

2. When Z/Eves is stuck, stop at the proof goals, guide Z/Eves by using or

applying related theorems or lemmas to rewrite the proof goals, provide more

conditions, etc.

3. Let Z/Eves progress based on the new goal.

4. Repeat step 2 and step 3 until the proof is finished.

For efficiency, it is necessary to expand as few terms as possible in step 1. This

can significantly reduce the proof time, especially when the system is complex.

This is also one of the reasons for defining our system in parts.

Specifically, we first use the following proof command to expand all necessary

terms and then let the prover automatically apply rules and theorems, which are

included by Z/Eves, to prove the goal.

with disabled (ContextData) prove by reduce;

Meanwhile, because the ContextData is unchanged in this schema, we keep it

unexpanded. The prefix with disabled (ContextData) can achieve this by making

the prover ignore ContextData, when expanding the terms. Note that as some

theorems are rarely used when proving and other theorems are time consuming,

Z/Eves disables them by default. This is helpful for improving the efficiency of the

proof process; however, it is also one of the reasons why Z/Eves may become stuck

Page 51



in some cases. As a result, the original proof goal is transferred to the following

five goals2.

1. The tasks known by the system are finite.

TASK \ ((state ⊕ {(target?, ready)})∼(| {nonexistent} |)) ∈ FTASK

As defined in CreateTaskN T , the expression state ⊕ {(target?, ready)} is

equal to the post state. The left side of the expression indicates all the tasks

known by the system after the operation. It should be a finite set as defined

in TaskData.

2. The running task remains the same before and after the operation:

(state ⊕ {(target?, ready)})∼(| {running} |) = state∼(| {running} |)

Similarly, the image of running under the inverse function (state ⊕

{(target?, ready)})∼ represents the running task after the operation.

3. The target? task is added into the system by the operation:

TASK \ ((state ⊕ {(target?, ready)})∼(| {nonexistent} |))
= {target?} ∪ (TASK \ (state∼(| {nonexistent} |)))

After the operation, the tasks known by the system should be the same as

the known tasks of the pre state of the system plus the created task, which

is target?.

4. The priority of the target? task is less than or equal to the running task:

((state ⊕ {(target?, ready)})(pt) = ready ∧ (pt = target? ∨ pt ∈ TASK )
⇒
priority(running task) ≥ (priority ⊕ {(target?, newpri?)})(pt))

Comparable to state, the post state of the priority function can also be writ-

ten as: priority ⊕ {(target?, newpri?)}. In this case, this expression is easy

to understand.
2Because the proof goals are too long to present in this thesis, we only list the most important

part here. Please download the Z/Eves project file from the supplementary material and open it

with Z/Eves to find the full details.
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5. Every state transition made by any task respects the transition relation.

(st ∈ TASK ∧ ¬ (state ⊕ {(target?, ready)})(st) = state(st)
⇒
(state(st), (state ⊕ {(target?, ready)})(st)) ∈ transition)

It is easy to find that the key to proving both goals 1 & 3 is goal 3. As defined,

TASK \ (state∼(| {nonexistent} |) which is tasks , is a finite set. If we can prove

goal 3, we can easily show that the union of two finite sets is a finite set. Further-

more, for goal 3, the prover is actually confused by the complex set calculation on

the left side of the equation. As these two goals are derived from the constraint of

the state schema, we expect they will repeat frequently in the precondition proofs

of other schemas. Therefore, we introduce a lemma, setminUpdate, to help Z/Eves

to discharge this kind of goal automatically. In Z/Eves, it is possible to use the key-

word, rule, to define an external lemma to help the proof. Z/Eves will use them

automatically when the prove command is called.

Theorem 9 (rule setminUpdate)

∀ f : TASK → STATE ; g : TASK 7→ STATE •
TASK \ ((f ⊕ g)∼(| {nonexistent} |)) =

TASK \ (f ∼(| {nonexistent} |)) \ (g∼(| {nonexistent} |))∪
(dom g \ (g∼(| {nonexistent} |)))

Similarly, the proof goal 2 is also likely to repeat during the verification. We define

another lemma, runningUpdate, to improve automation of proof.

Theorem 10 (rule runningUpdate)

∀ f : TASK → STATE ; g : TASK 7→ STATE |
running /∈ ran g ∧

(f ∼(| {running} |)) ∩ dom g = ∅ •
(f ⊕ g)∼(| {running} |) = f ∼(| {running} |)

To prove these two lemmas, the extensionality rule in Z/Eves toolkit can be used.

The detailed proof script can be found in the supplementary material. After adding

these two lemmas before theorem 8 and restarting the proof, we can find that the

first three proof goals are discharged automatically.
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Proof goal 4 is then given by the constraint in Task schema. Tasks other than

target? maintain the requirement that the priority of the running task is at least as

great as that of all the ready tasks:

∀ pt : state∼(| {ready} |) • priority(running task) ≥ priority(pt)

A copy of this constraint is also in the assumption part of the goal, and to distinguish

pt in these two, Z/Eves renames one from pt to pt 0. Therefore, to prove that

tasks other than target? obey the constraint, we just need to indicate that pt 0

and pt are the same. For target?, the priority is defined as newpri?, which is

specified to be no higher than the priority of running task as a precondition of this

schema. The rule applyOverride is applied to analyse expressions that contain

the operator ⊕. Finally, the command with normalization prove; is used to finish

the proof3. Thus, the theorem CreateTaskN T vc ref can be proved by following

script in Z/Eves.

proof [CreateTaskN T vc ref ]
with disabled (ContextData) prove by reduce;
instantiate pt 0 == pt ;
with enabled (applyOverride) prove;
apply applyOverride;
with normalization reduce;

Second Case of Creating Tasks If the priority assigned to the new task is

greater than the priority of the running task, then rescheduling is required. This

is achieved by calling the Reschedule schema. The current running task will be

moved into the ready state; the new priority and initial context is allocated for the

new task, which is then scheduled to be the running task. To reuse Reschedule, the

variables st?, pri? and tasks? are declared and assigned appropriately. Note, the

default logical context for the new tasks is bare context . We do not need to set it

separately. Therefore, the schema for the second case of the create task operation

can be defined as follows:

CreateTaskS T

3The details about the proof command, with normalization prove; , can be found in Appendix B.
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∆Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running task)
∃ st? : STATE ; tasks? : FTASK ; pri? : TASK → N
| st? = ready
∧ tasks? = tasks ∪ {target?}
∧ pri? = priority ⊕ {(target? 7→ newpri?)} • Reschedule

Similarly to the previous case, the signature schema and the precondition theorem

can be defined.

CreateTaskS TFSBSig
Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running task)

Theorem 11 (CreateTaskS T vc ref)

∀CreateTaskS TFSBSig | true • pre CreateTaskS T

This indicates that the new task is unknown to the system before the operation and

the priority of the new task is higher than the priority of the running task. This is

sufficient and necessary for the precondition of schema CreateTaskS T .

Deleting Tasks The first case for deleting a task is that it is not the running

task: the state of this task—provided it is not the idle task—can be ready , blocked ,

or suspended , because, normally the handle of the idle task, xIdleTaskHandle,

is private to the system and impossible for the user to obtain. After the operation,

the deleted task will become unknown to the system by deleting it from tasks , set-

ting its state to nonexistent , and setting its logical context to the bare context .
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It is worth mentioning that in the source code of vTaskDelete in FreeRTOS,

the context of the deleted task is not actually deleted, but instead moved to the

xTasksWaitingTermination list. It is the idle task that actually performs garbage

collection to recover the resources allocated by the system. At this level of abstrac-

tion, we consider all this as part of the deletion operation, resetting the log context

of the deleted task to the bare context . Note, due to space limitations, we only list

the parts of our model which contain something of interest; the rest of the speci-

fications, precondition theorems, and proof scripts can be found from the supple-

mentary material.

Secondly, if the task to be deleted is the running task—but not the idle task—then

we remove it from the system. This leaves a vacuum to be filled: we need to sched-

ule another process to use the CPU. We will choose the task in a ready state with

the highest priority. However, we cannot use Reschedule to achieve this because

the logical context of the running task, which is requested by this operation but

not supported by Reschedule, will be reset. The output variable topReady ! is intro-

duced. The universally quantified expression specifies that the topReady ! holds the

highest priority. It is worth mentioning here that if there are several solutions, then

topReady ! is chosen nondeterministically. Similarly, the tasks , state, phys context

and log context are updated.

DeleteTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
tasks ′ = tasks \ {target?}
running task ′ = topReady !
state ′ = state ⊕ {(topReady ! 7→ running), (target? 7→ nonexistent)}
phys context ′ = log context(topReady !)
log context ′ = log context ⊕ {(target? 7→ bare context)}
ΞPrioData

The signature schema of this can be obtained as follows.
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DeleteTaskS TFSBSig
Task
target? : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}

Theorem 12 (DeleteTaskS T vc ref)

∀DeleteTaskS TFSBSig | true • pre DeleteTaskS T

As mentioned above, the “pre ” operator calculates the precondition schema for

DeleteTaskS T , which is the result of ∃Task ′ • DeleteTaskS T \ (topReady !).

When the prover automatically discharges this predicate, it attempts to eliminate

existentially quantified variables. Because the post state of the system, Task ′,

has been defined in the operation, the one-point rule4 is applied to handle them.

However, the variable running task ′ and topReady ! can only eliminate one of them,

because the output variable topReady ! is assigned the value of running task ′ in

this operation. Therefore, the proof goal will become:

∃ running task ′ : TASK •
Task [log context := log context ⊕ {(target?, bare context)},

phys context := log context(running task ′),
running task := running task ′,
state := state ⊕ ({(target?, nonexistent)}
∪{(running task ′, running)}),

tasks := tasks \ {target?}]
∧ (∀ st : TASK |
¬ (state ⊕ ({(target?, nonexistent)}∪
{(running task ′, running)}))(st) = state(st) •

(state(st), (state ⊕ ({(target?, nonexistent)}∪
{(running task ′, running)}))(st)) ∈ transition)

∧ state(running task ′) = ready
∧ (∀ t 0 : state∼(| {ready} |) •

priority(running task ′) ≥ priority(t 0)

4One-point rule: ∃ x : X | p • q ∧ x = t ⇔ p[t/x ] ∧ q [t/x ] ∧ t ∈ X , provided that x is not free

in t .
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Meanwhile, as defined in the specification, one of the highest priority ready tasks is

nondeterministically assigned to the variable running task ′. In this case, with the

existential-elimination rule, if we can find an instance of these tasks that satisfies

this predicate, the proof goal can be verified. Therefore, we introduce the following

function (f ) to discover a member of a set of tasks that has the highest value of

its g , which can be replaced by priority, among other tasks in that set. A label

“findDelegate” is assigned to this lemma, which can be referred to during later

proofs.

f : PTASK 7→ TASK

∅ /∈ dom f
〈〈 findDelegate 〉〉
∀Task ; a : PTASK ; g : TASK 7→ Z
• a ∈ dom f ∧ f (a) ∈ a ∧ a ⊆ dom g ∧ (∀ t : a • g(f (a)) ≥ g(t))

It is then possible to use this function to find the highest priority task in a ready state

and use it to instantiate the running task ′, when the function priority is assigned

to the variable g . If we let p,∃ x : X • q represent the conditions and the goal of

proof above, the predicate to be proved can be considered as

p ⇒ ∃ x : X • q . (4.1)

Further, let t represent f (state∼(| {ready} |)). When we instantiate the

running task ′ with the delegate, with one-point rule, we have ∃ x : X • q ∧ x =

t ⇔ t ∈ X ∧ q [t/x ], which gives ∃ x : X • q ⇔ ∃ x : X • q ∨ (t ∈ X ∧ q [t/x ]).

Therefore, equation (4.1) transfers into:

p ⇒ (∃ x : X • q) ∨ (t ∈ X ∧ q [t/x ]). (4.2)

Reorganising the equation, the relation

p ∧ ¬ (t ∈ X ∧ q [t/x ])⇒ ∃ x : X • q . (4.3)

can be acquired.

Therefore, applying the proof command “instantiate running task ′ == f (state∼(|

{ready} |)); ”, a negative copy of this proof goal will be added to the condition part,
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of which running task ′ will be replaced by f (state∼(| {ready} |)). Analysing the

negative copy of the goal, we find

Task [log context := log context ⊕ {(target?, bare context)},

phys context := log context(f (state∼(| {ready} |))),

... ⇒

t ∈ TASK ∧

state(t) = ready ∧

¬ priority(f (state∼(| {ready} |))) ≥ priority(t) (4.4)

which conflicts with the definition of function f ; therefore, it is not true. However,

according to the implication, if we can prove that the condition is false, the re-

sult of proof is true. As proving this condition is false presents difficulties due to

the complexity, an auxiliary theorem, lDeleteTaskS T Lemma, is introduced and

proved separately. When we use it to prove DeleteTaskS T vc ref , the variable

topReady ! can be substituted by f (state∼(| {ready} |)).

Theorem 13 (lDeleteTaskS T Lemma)

∀Task ; topReady !, target? : TASK
| target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (Task [log context := log context ⊕ {(target?, bare context)},

phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(target?, nonexistent)} ∪ {(topReady !, running)}),
tasks := tasks \ {target?}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))(st) = state(st)

⇒ (state(st), (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))(st)) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))
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Generally, the purpose of Theorem 13 is to prove and notify Z/Eves that for

all the states that satisfy the definition of Task , based on the precondition of

schema DeleteTaskS T , the proof goal (4.4) is false. With this information and

the following script, Z/Eves can easily prove the result of Theorem 12 is true.

DeleteTaskS T vc ref can be continued.

proof [DeleteTaskS T vc ref ]
use findDelegate[a := state ∼ (| {ready} |), g := priority ];
with disabled (Task) prove by reduce;
instantiate running task ′ == f (state ∼ (| {ready} |));
prove;
use lDeleteTaskS T Lemma[topReady ! := f (state ∼ (| {ready} |))];
prove;
instantiate t 0 == rtsk ;
prove;

4.2.4 Executing Tasks
In FreeRTOS, there is no API function for this: once the task is scheduled, it will

be executed automatically. However, it is helpful for specifications to show the task

being executed, especially when executing the specification with an animator (such

as ProZ). In detail, when the processor executes a task, it updates registers, flags,

memory location, and so on. We model this by updating the physical context of

the processor. Here, we are not interested in the new value after the operation, but

want to know that it has changed and the new value has some special property.

Therefore, we use a nondeterministic definition again for updating phys context .

Because the schema ExecuteRunningTask T describes executing the task, if the

new value of phys context is different from the original, it will be satisfied.

4.2.5 Suspending/Resuming Tasks
Like creating and deleting, suspending and resuming tasks also have two cases.

When the system suspends a ready or blocked task, it does not lead to reschedul-

ing. However, if the task to be suspended is the running task, then the system

needs to find another task to take the processor. If a resumed task has a higher

priority than the running task, it becomes the new running task, otherwise, it goes
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to the ready state. As mentioned above, normally the handle of the idle task is

not obtainable. Even though the user may extend the behaviour of the idle task by

modifying the vApplicationIdleHook function, the idle task must never be sus-

pended [18], and consequently can never be resumed. It is possible to suspend

an already suspended task: the system keeps everything the same as before. So,

the first case concerns suspending a task that is ready or blocked; the only change

necessary is to update the task’s state. The following script shows the precondition

theorem and proof script of the schema of this case.

Theorem 14 (SuspendTaskN T vc ref)

∀ SuspendTaskN TFSBSig | true • pre SuspendTaskN T

proof [SuspendTaskN T vc ref ]
prove by reduce;
apply extensionality to predicate TASK \ (state ∼ (| {nonexistent} |) ) =
TASK \ ((state ⊕ {(target?, suspended)}) ∼ (| {nonexistent} |) );

apply extensionality to predicate (state ⊕
{(target?, suspended)}) ∼ (| {running} |) = state ∼ (| {running} |);

instantiate pt 0 == pt ;
prove;
apply applyOverride;
with normalization prove;

Due to the complication of the proof goal, the final proof command

“with normalization prove; ” requires a significant amount of time to complete.

However, if we use the “cases , next ” commands to separate the proof goals into dif-

ferent cases and then apply “with normalization prove; ”, it becomes much more

efficient.

The second case of the suspend operation is when the suspended task is the

running task. Clearly, this leads to rescheduling. This operation ensures that

the running task is not the idle task. It selects a target that is ready and

is one of the ready tasks with the highest priority (there may be many such

tasks). The Reschedule schema is used to achieve the necessary reschedul-

ing. Similar to DeleteTaskS T , a nondeterministically chosen value is assigned
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to running task ′. The prover is therefore confused about its value. An additional

theorem, lSuspendTaskS T Lemma, is introduced to help the prover with the pre-

condition. Finally, it is also possible to suspend a suspended task. According to

the reference manual of FreeRTOS [19], nothing changes when a suspended task

is suspended. A single call to vTaskResume can resume the task that has been

suspended several times. For this reason, in schema SuspendTaskO T , predicate

ΞTask is used to show that the pre- and post-value of all variables within Task

schema are unchanged.

Similarly, the first case of resuming a task does not cause rescheduling. The pri-

ority of the resumed task must be no higher than the running task. The task is

moved to the ready state and everything else is unchanged. In the second case,

the resumed task has a higher priority than the running task, and rescheduling is

required. Again, the schema Reschedule is used to approach this.

4.2.6 Changing Priority of Tasks

Because the priority of the idle task is permanently 0, if the target task is idle, the

newpri? should equal 0. Specifically, to change the priority of tasks, there are three

different cases that need to be considered. In the first case, there is no scheduling

required, and this follows if one of the following conditions hold:

1. The target is the running task and the new priority is at least as high as

every other ready task.

2. The target is ready and the new priority does not have a greater priority than

the running task.

3. The target is the idle task and the new priority is 0.

4. The target is blocked.

5. The target is suspended.

Note that we cannot change the priority of nonexistent tasks. Further, as the set

TASK is composed of running , ready , blocked , suspend , and nonexistent , tasks

in these states are disjoint. Therefore, the predicate state(target?) 6= nonexistent
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implies that the target? is in one of the other four states. That means for condi-

tions related to the blocked and suspended states, we do not need other predicates.

Finally, the effect of the operation is to only change the priority of the target, but

nothing else. Then, we update the function priority by overriding the priority of the

target? task with newpri?.

In the second case, the target is a ready task whose new priority is higher than

that of the running task. The target displaces the running task as the tasks are

rescheduled. Similarly, the Reschedule schema is used to achieve this.

In the third case, similar to the second, rescheduling is required. However, the tar-

get task, whose priority we wish to change, is the running task. Meanwhile, the new

priority is not the highest of the ready tasks. The schema for this would firstly pick

up the task with the highest priority in the ready tasks. It updates the value of the

priority of the running task. Finally, it reschedules the system with the Reschedule

schema. The variable “topReady !” here, similar to the schedule case of delete task

and suspend task, is used to represent which ready task holds the highest priority

among other ready tasks and would be scheduled as the new running task after the

operation. Also, the schema lChangeTaskPriorityD T Lemma (See Page. 183)

is introduced to handle the nondeterministically chosen value of “running task ′”.

4.3 Queue Model

Queue is the facility provided by FreeRTOS for communication between tasks. Sim-

ilar to the task model, to define this model, we need to specify some basic states.

4.3.1 Basic Statements

Firstly, we define QUEUE to represent the queues.

[QUEUE ]

The properties of queues in FreeRTOS, can generally be divided into the following

three parts:
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1. Queue data. In this schema, variables are used to record the basic prop-

erties of queues. First, set queue is given to distinguish the queues known

to the system from others. Second, it is necessary to know the maximum

size and the actual size of each queue in the system. Therefore, two func-

tions, q max and q size, are respectively used for these, and the domain of

these two functions should equal queue. Furthermore, for each queue in the

system, its actual size cannot exceed its maximum size.

QueueData
queue : PQUEUE
q max : QUEUE 7→ N1

q size : QUEUE 7→ N

dom q max = dom q size = queue
∀ q : QUEUE | q ∈ queue • q size(q) ≤ q max (q)

2. Waiting data. As the maximum size of a queue is finite, queues can be

full when a task attempts to send an item to them. In this case, FreeRTOS

allows the task to wait until spaces become available in the queue. Similarly,

when a task wants to receive items from a queue which is empty, the task

may also wait for some resources to be available in the queue. Therefore,

two functions wait snd and wait rcv are defined, respectively. Due to the

definition of these two functions, a task cannot both be waiting to send and

to receive items at the same time. A constraint is specified for this property,

that the intersection of the domain of these two functions is the empty set.

WaitingData
wait snd : TASK 7→ QUEUE
wait rcv : TASK 7→ QUEUE

domwait snd ∩ domwait rcv = ∅

3. Releasing data. According to the implementation of FreeRTOS, when a task

is released from a waiting event, it should continue the operation which it was

performing before the event. For instance, if the task is blocked by sending
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an item to a queue, when it is released from wait snd it should continue

sending the item to the queue. To achieve this, two assistant functions are

provided to indicate if a task has just been released from the waiting event

and also record the queue it was dealing with.

QReleasingData
release snd : TASK 7→ QUEUE
release rcv : TASK 7→ QUEUE

dom release snd ∩ dom release rcv = ∅

Gathering these three schemas, we can define the schema Queue for the proper-

ties across each sub-state.

Queue
QueueData
WaitingData
QReleasingData

ranwait snd ⊆ queue
ranwait rcv ⊆ queue
ran release snd ⊆ queue
ran release rcv ⊆ queue
(domwait snd ∪ domwait rcv)
∩(dom release snd ∪ dom release rcv) = ∅

First, the range of functions described in WaitingData and QReleasingData are

queue, because a task cannot send or receive items from a queue which is

unknown to the system. Additionally, the tasks of functions in WaitingData

and QReleasingData are disjoint, because only when a task is removed from

the functions in WaitingData, it can then be added to the related function in

QReleasingData.

Finally, the state data for the queue level model can be defined using these defini-

tions.

TaskQueue
Task
Queue
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domwait snd ⊆ state∼(| {blocked} |)
domwait rcv ⊆ state∼(| {blocked} |)

There are two extra constraints for this schema, which indicate that the state of

tasks in the domain of wait snd and wait rcv is blocked.

Initialisation We have defined the initialisation for the Task schema in the previ-

ous section. Now, we only need to specify the initialisation for Queue, then combine

them to obtain the initialisation for the queue model (i.e. TaskQueue schema). Ini-

tially, no queues exist in the system, therefore, the initial state of the set queue and

all other functions in QueueData, WaitingData and QReleasingData are the empty

set. Finally, the initialisation of TaskQueue can be defined as

Init TaskQueue
TaskQueue ′

Init Task
Init Queue

To prove the reachability of these initial states, initialisation theorems are also in-

troduced. As the definition of the Queue schema and its sub-state are quite sim-

ple, these theorems are easily proved using the command prove by reduce. With

the definition of theorem TaskInit , the initialisation theorem of TaskQueue can be

proved by the following script.

Theorem 15 (TaskQueueInit)

∃TaskQueue ′ • Init TaskQueue

proof [TaskQueueInit ]
use TaskInit ;
prove by reduce;
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4.3.2 Extension

Before specifying operation schemas for the queue model, it is necessary to extend

the operations for the task model satisfying the state of the queue model. Firstly,

as ∆Task is overridden in order to check the state transition, we need to override

∆TaskQueue for this purpose as well.

∆TaskQueue =̂ TaskQueue ∧ TaskQueue ′ ∧ ∆Task

Generally, most task related operations do not need to update information about

queues. Schema ExtendTaskXi is given to extend the base state of task related

schemas from ∆Task to ∆TaskQueue, to show that the running task is not re-

leased from sending or receiving events and to specify that queue related states

are unchanged with ΞQueue.

ExtendTaskXi
∆TaskQueue

running task /∈ dom release snd ∪ dom release rcv
ΞQueue

With this schema, a conjunction relation can be used to easily extend task related

schemas to the queue model. For example, to extend CreateTaskN T to this level,

the following script can be used.

CreateTaskN TQ =̂ ExtendTaskXi ∧ CreateTaskN T

Similarly, the following scripts can be used to extend the signature schema of

CreateTaskN T to the queue level.

ExtTaskFSBSig
TaskQueue

running task /∈ dom release snd ∪ dom release rcv

CreateTaskN TQFSBSig =̂ ExtTaskFSBSig ∧ CreateTaskN TFSBSig

To show that the precondition of CreateTaskN TQ is sufficient, theorem 16 is in-

troduced.
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Theorem 16 (CreateTaskN TQ vc ref)

∀CreateTaskN TQFSBSig | true • pre CreateTaskN TQ

As two key components of this theorem, CreateTaskN TQFSBSig and

CreateTaskN TQ , are extended from task level, theorem 8 is very helpful to sim-

plify the proving. The command “use CreateTaskN T vc ref ” reuses theorem 8.

Exceptionally, there are some schemas that need to update information about

queue related variables. If a task is blocked by a waiting event or it has just been

released from a waiting event, it is recorded by waiting or releasing functions in

WaitingData and QReleasingData. Deleting or suspending it requires updating

related data. For instance, when expanding the schema to delete the task in the

normal case to this level, information about the target task needs to be removed

from wait snd , wait rcv , release snd and release rcv .

DeleteTaskN TQ
DeleteTaskN T
∆TaskQueue

running task /∈ dom release snd ∪ dom release rcv
ΞQueueData
wait snd ′ = {target?} −C wait snd
wait rcv ′ = {target?} −C wait rcv
release snd ′ = {target?} −C release snd
release rcv ′ = {target?} −C release rcv

Similarly to the general case of extension, the task level schema, DeleteTaskN T ,

is reused to introduce constraints and maintain task information. For queue in-

formation, variables in QueueData are unchanged, and target task related pairs

are removed from functions in WaitingData and QReleasingData. Domain anti-

restriction operator −C is used to approach this. It excludes the set on the left-hand

side of an operator from the domain of a relation. Specifically, in our case, pairs

whose first element is target? are removed from the functions. If target? does not

exist in the domain of the functions, nothing happens to that function.
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As only one constraint is added to this new schema, which is the same

as ExtTaskFSBSig , the signature schema and precondition theorem of

DeleteTaskN TQ can be given with the same strategy as the creating task case.

4.3.3 Creating and Deleting Queues

The first API function related to queue is xQueueCreate, it is used to add new

queues into the system. Once a queue is no longer needed, it is deleted by

xQueueDelete to release the resources. The schema CreateQueue TQ and

DeleteQueue TQ are defined for these operations respectively.

Specifically, to create a queue, the user needs to specify its capacity (size?) which

should be greater than 0. A new queue (que?), which is unknown to the system

before the operation, can then be added to the set queue. Meanwhile, its maximum

and real size can be specified by size? and initial size, which is 0, respectively. In

addition, other information should remain unchanged before and after the opera-

tion.

In contrast, to delete a queue, we need to remove the information related to the

queue from queue, q max and q size. However, we can only delete a queue,

which is known to the system when no task is using it. This means no task is

waiting for it and no task has just been released from a waiting event related to the

queue.

4.3.4 Sending and Receiving Items

Sending an item to a queue can be represented by increasing the current size of

the queue. However, the exact behaviour depends on whether the queue is full,

whether there is a task waiting to receive an item from the queue, and whether

the waiting task has a higher priority than the running task. It can be divided into

four cases, described below. In cases where the running task is released from a

waiting-to-send event, it has to continue its attempt at sending and the target queue

has to be the queue which the running task attempted to send to before the waiting

event.
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The first is the most general case. There is space left in the queue, which means

the running task can successfully send an item to the queue. Meanwhile, there are

no other tasks waiting to receive an item from the queue. Therefore, the running

task can send the item to the queue normally. Consequentially, after the operation,

the size of que? should be increased by 1; the running task should be removed

from the function release snd and all other data should remain unchanged.

QueueSendN TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release rcv
running task ∈ dom release snd
⇒ que? = release snd(running task)

que? ∈ queue
q size(que?) < q max (que?)
que? /∈ ranwait rcv
ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?) + 1)}
ΞWaitingData
release snd ′ = {running task} −C release snd
release rcv ′ = release rcv
topReady ! = running task

The schema QueueSendW TQ is introduced for the second case. The postfix

W used here represents that there are waiting tasks. In detail, there is also

space in the queue. However, there are tasks waiting to receive an item from

the queue and the priority of the highest priority task (topReady !) is lower than or

equal to the current running task. As a result, topReady ! will be woken up and

recorded in release rcv , as it has just been released from a waiting-to-receive

event. In other respects, it is the same as the normal case. As the topReady !

is chosen nondeterministically from the domain of wait rcv , the assistant theorem

lQueueSendW TQ Lemma is used to help with the proof.

Third, similar to the previous case, there is space in the queue and tasks wait-
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ing to receive, but the priority of the highest priority waiting task (topReady !) is

greater then the running task. The schema QueueSendWS TQ represents this

case. When the waiting task is woken up, it is rescheduled as the new running

task. Therefore, the schema for this case uses the schema Reschedule to maintain

task related information and a similar script to the previous case is used to manage

queue related data.

In the fourth case, when the target queue is full (the schema QueueSendF TQ

is defined for this case), the running task is blocked. Similar to the suspend-

ing running task, this leads to rescheduling, which is achieved by using the

schema Reschedule. Furthermore, because the running task is blocked by a

waiting-to-send event, the maplet (running task 7→ que?) is added to the func-

tion wait snd . Finally, running task related information also needs to be removed

from release snd . Similarly, the new running task is nondeterministically selected.

The theorem lQueueSendF TQ Lemma is introduced to help with the proof.

Just like sending an item to a queue, receiving an item from a queue can be

specified as decreasing the size of the queue and there are four cases for the

receiving operation: (a) Normal case (QueueReceiveN TQ). There are items

available in the queue and no other tasks are waiting to send an item to the

queue. The size of the queue is decreased by one; we remove running task re-

lated information from release rcv and keep everything else unchanged; (b) Wait-

ing case (QueueReceiveW TQ). There are items available in the queue and some

tasks waiting to send an item to the queue. Moreover, the priority of the high-

est priority waiting task is no higher than the running task. The highest prior-

ity waiting task is moved to the ready state and recorded in release snd . The

schema maintains other variables as in the first case; (c) Waiting and schedul-

ing case (QueueReceiveWS TQ). There are items in the queue and some tasks

waiting to be sent. The highest priority waiting task has a higher priority than

the running task and rescheduling is required. The schema Reschedule is used

for this. Other variables are maintained in a similar way to the previous case;

(d) Queue is empty case (QueueReceiveE ). The running task is blocked by the
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waiting-to-receive event. The running task is rescheduled to the blocked state by

the Reschedule schema and recorded in the function wait rcv . Further, the oper-

ation removes running task related information from release rcv and keeps other

variables unchanged.

4.4 Time Model

At this level of modelling, we take time properties into consideration. As a real-time

multi-tasking system, this is crucial. For instance, the processor is shared by tasks

with the same priority based on time sharing. Different tasks may also need to

cooperate with each other based on the same system clock, etc. As in previous

models, to illustrate the time model, we start from the basic information.

4.4.1 Basic Statements

A constant, slice delay is defined to represent the unit of time for each time slice,

which is specified as 1 in this case. A label, “disabled slice delay def”, is given

to this lemma. With the disabled mark, this lemma is automatically omitted by

Z/Eves during proofs.

slice delay : N

〈〈 disabled slice delay def 〉〉
slice delay = 1

Compared with the task and queue models, the base state of the time model is very

simple, as it only contains four variables. First, the system clock is represented by

a variable, clock . Second, when tasks block themselves by calling delay API func-

tions, the set delayed task is used to mark them. The key difference between the

blocked and the suspended state is blocking time. Tasks in the suspended state

can only be resumed by certain types of events. However, tasks in a blocked state

can be woken up by both events and time. Third, to record how long a blocked task

will be blocked, a function wait time is introduced. In a single-core multi-task op-

erating system, CPU time is divided into individual time slices; tasks with the same

priority can then take one slice in turn, to share CPU time equally. In FreeRTOS, a
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similar strategy is used for CPU sharing. For this purpose, time slice is defined to

show the number of time slices that have passed.

Time
clock : N
delayed task : PTASK
wait time : TASK 7→ N
time slice : N

∀ t : domwait time • wait time(t) ≥ clock

In wait time, each task is mapped to the time at which it should finish waiting, so

each element of the range should be greater than (after) the system clock, which

is clock .

Because the range of wait time indicates the time tasks need to wait, no members

should be less than the system clock, which is clock .

Similar to the schema TaskQueue, the state schema for this level of model can be

specified by combining TaskQueue and Time.

TaskQueueTime
TaskQueue
Time

〈delayed task , domwait snd , domwait rcv〉 partition domwait time
delayed task ⊆ state∼(| {blocked} |)

As the function wait time records blocking time for each blocked task, its domain

has to contain all the tasks in blocked state (i.e., delay task , domwait snd and

domwait rcv ). Similar to the relation between domwait snd and domwait rcv

described in Sect. 4.3.1, once a task is blocked by an event, it cannot continue

its execution and be blocked by another event. The intersection of each two of

these sets should be the empty set. Therefore, we can define that delay task ,

domwait snd and domwait rcv partition domwait time. As mentioned above,

the set delayed task marks tasks which are blocked by themselves. All tasks in

delayed task are in the blocked state.
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Additionally, it is clear that the state of tasks in the domain of wait time have to

be blocked . The prover, however, cannot get this assertion directly. Theorem 17

is provided to guide the prover. The proof is also quite simple; we need to indi-

cate that: (a) The tasks in the domain of wait time are also tasks in delay task ,

domwait rcv or domwait snd ; (b) The state of tasks in delay task , domwait rcv

and domwait snd is blocked . After this, Z/Eves can handle the rest of the work

using the proof command “with normalization rewrite”. Specifically, the first three

proof commands in the following script are used to expand TaskQueueTime and

TaskQueue schemas, as they contain the necessary information, for instance, the

relation between the domain of wait time and the other three sets (delay task ,

domwait rcv and domwait snd ), and the state of the tasks in these sets. The

fourth and fifth commands indicate to the prover that the union of delay task ,

domwait rcv and domwait snd equals the domain of wait time and t can be

a member of one of these three sets. The final five proof commands request that

the prover rewrites the proof goal with the theorem inPower 5 and then proves that

the state of the task t is blocked .

Theorem 17 (rule domTime)

∀TaskQueueTime; t : TASK | t ∈ domwait time • t ∈ state∼(| {blocked} |)

proof [domTime]
invoke TaskQueueTime;
invoke TaskQueue;
prove;
apply extensionality to predicate delayed task
∪ (dom wait rcv ∪ dom wait snd) = dom wait time;

instantiate y == t ;
with enabled (inPower) prove;
instantiate e == t ;
instantiate e 0 == t ;
instantiate e 1 == t ;
with normalization rewrite;

5X ∈ PY ⇔ (∀ e : X • e ∈ Y )
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Initialisation Initially, the system clock is 0 and in the first CPU time slice. More-

over, there is no task blocked, so the set delayed task and the function wait time

should be empty.

Init Time
Time ′

clock ′ = 0
delayed task ′ = ∅
wait time ′ = ∅
time slice ′ = slice delay

Combining the schema Init Time and Init TaskQueue, the initialisation schema

for the time model can be generated. With the help of theorem 15, the initialisation

theorem for this model is also easy to prove.

4.4.2 Extension

Similar to the queue model, we need to override the schema ∆TaskQueueTime

to enable the state transition check for related schemas and define an extension

schema to help upgrade the schemas for the queue model to this level, which

expands the base state to ∆TaskQueueTime and keeps variables in Time un-

changed. Most schemas can be easily upgraded by a conjunction between the

queue level schema and the extension schema, like the extension for the general

case described in Sect. 4.3.2. However, there are schemas that need to update

variables in the Time schema as well.

• Similar to the queue model, deleting and suspending operations need to re-

move the target task from delayed task and wait time, if it is blocked;

• Schemas that unblock a task from the blocked state also need to remove

the unblocked task from the function wait time;

• Finally, schemas that block the running task need to add blocking time infor-

mation into the function wait time.

For instance, when a queue is full, sending items to that queue blocks the run-

ning task. Originally, the API function xQueueSend blocked the running task for a
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period of time. To simplify our model, the running task will block until a specified

time (wtime? in the specification). Therefore, an extra precondition is given, that the

waking time is later than the current clock. The maplet, (running task 7→ wtime?),

is appended to wait time to record this. (Signature schema and the precondition

theorem proof of this schema can be found on Page. 212 and in the supplementary

material as well.)

QueueSendF TQT
∆TaskQueueTime
QueueSendF TQ
wtime? : N

wtime? > clock
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice

4.4.3 Delaying Tasks
In FreeRTOS, there are two API functions for delaying tasks, vTaskDelay and

vTaskDelayUntil. One delays tasks for a certain period and the other delays

tasks until a specific time. To simplify the model, we only modelled one of them,

specifying vTaskDelayUntil.

To delay a task, firstly, delaying time (wtime?) needs to be specified as later than

the system clock. As the running task is blocked, rescheduling is requested. Like

other schemas requesting rescheduling, the schema Reschedule is used to do this.

Furthermore, delayed task and wait time have to be updated to record this infor-

mation as well.

4.4.4 Checking Delayed Tasks
Once the blocking time of a blocked task has expired, it needs to be woken auto-

matically by the system. This is performed by the function prvCheckDelayedTasks

in FreeRTOS. When the scheduler increases the clock ticks, this function is called

to check if there are any tasks that need to be woken up. If there are, these tasks
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are moved to the ready list for scheduling. Two cases are used to model this.

When the priority of a woken task is no higher than the running task, it is moved

from blocked state to ready state. However, when its priority is higher than the

running task, rescheduling is requested.

Specifically, in our model, when tasks’ blocking time expires, we unblock them

in the order of priority. Therefore, the next unblocked task (topWaiting !) should

have the earliest waking time. If there is more than one task that holds the same

wake up time, it should be the highest priority task first. Depending on whether its

priority is greater than the running task or not, there are two separate schemas.

For normal cases, it does not need to reschedule. For task related variables, we

only need to override the state of topWaiting ! to ready and keep everything else

unchanged. Meanwhile, topWaiting ! has to be removed from one of the block

related lists (i.e., delay task , wait snd , wait rcv ) and wait time. In addition, we

also need to update the system clock to the wake up time of topWaiting ! to show

that time has passed. This is because at this level of abstraction, we are not

interested in the behaviour of the system at each time tick. Our main objective is

verifying the correctness of the API functions. In this way, we can ensure that tasks

are unblocked in the correct order, while focusing on the behaviour of the operation

and ignoring the trivial details (at this level of abstraction) of the clock ticks.

CheckDelayedTaskN TQT
∆TaskQueueTime
topWaiting ! : TASK

running task /∈ dom release snd ∪ dom release rcv
topWaiting ! ∈ domwait time
∀wt : domwait time • wait time(topWaiting !) ≤ wait time(wt)
∀wt : domwait time | wait time(wt) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt)

priority(topWaiting !) ≤ priority(running task)
ΞTaskData
state ′ = state ⊕ {(topWaiting ! 7→ ready)}
ΞContextData
ΞPrioData
ΞQueueData
wait snd ′ = {topWaiting !} −C wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
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ΞQReleasingData
clock ′ = wait time(topWaiting !)
delayed task ′ = delayed task \ {topWaiting !}
wait time ′ = {topWaiting !} −C wait time
time slice ′ = time slice

In contrast, if the priority of topWaiting ! is higher than the running task, reschedul-

ing is required. The schema Reschedule is used to maintain task related variables.

For other variables, it is the same as the normal case.

As topWaiting ! is selected nondeterministically, assistant lemmas,

lCheckDelayedTaskN TQT Lemma and lCheckDelayedTaskS TQT Lemma,

are introduced to help prove the precondition theorems of these two cases

respectively.

4.4.5 Time-Sharing
As a multi-task operating system, if there are any ready tasks that have the same

priority as the running task, they will share the CPU time. In FreeRTOS, this is

implemented by an interrupt service routine. When a time slice passes, it will trigger

an internal interrupt to check whether it is necessary to perform rescheduling. If

there are other tasks holding the same priority as the running task, the next task in

the ready list for that priority will be rescheduled. In our specification, the schema

TimeSlicing TQT is specified for this case. It nondeterministically selects the next

running task from ready tasks, which have the same priority as the current running

task. The schema Reschedule can be used for rescheduling. Then time slice is

increased to indicate that one time slice has passed. However, if the running task

is the only task that has the highest priority, it can continue to occupy CPU time. In

this case, the schema NoSlicing TQT only needs to increase the time slice and

keeps everything else unchanged.

4.5 Mutex Model

As described in Sect. 1.2.2, semaphores and mutexes are used to manage

shared resources and are special queues. There are two types of semaphores
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in FreeRTOS, counting semaphores and binary semaphores. The counting

semaphores allow more than one task to hold the semaphore, which is specified

by its size. However, the binary semaphores are similar to mutexes, which only

allow one task to hold the semaphore. The difference between binary semaphores

and mutexes is that binary semaphores do not support priority inheritance when

competition happens. These two types of semaphores have similar properties. To

simplify the specification, we only model the binary one.

4.5.1 Basic Statement
Basic information about semaphores and mutexes is gathered in the schema

MutexData, which defines that semaphores and mutexes are members of

QUEUE . As a task holds a mutex, it can take the mutex repeatedly. The func-

tion mutex holder is introduced to record the mutex holder for each mutex. Mean-

while, it is also necessary to know how many times the mutex holder retakes the

mutex; because, it has to return the mutex the same number of times to actually re-

turn the mutex. There are three constraints for MutexData: (a) The intersection of

semaphore and mutex should be the empty set. Although, in FreeRTOS, the mutex

is treated as a special semaphore, they have different properties and operations.

Therefore, we separate them into two disjoint sets. (b) The domain of the function

mutex recursive has to be mutex , as it records how many time a mutex holder

repeatedly takes the mutex. (c) If a mutex is not held by a task, its mutex recursive

has to be 0.
MutexData
semaphore : PQUEUE
mutex : PQUEUE
mutex holder : QUEUE 7→ TASK
mutex recursive : QUEUE 7→ N

mutex ∩ semaphore = ∅
dommutex recursive = mutex
∀m : mutex • m /∈ dommutex holder ⇔ mutex recursive(m) = 0

To enable the priority inheritance mechanism, the schema OriginalPrioData is

provided, which has only one function base priority recording the original priority

of a mutex holder.
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OriginalPrioData
base priority : TASK 7→ N

Similar to queues, when a task is released from waiting to take a mutex event, it

has to continue its attempt. However, because only the mutex holder can give the

mutex back, it is impossible to block a task from giving back a mutex. The schema

MReleasingData is defined to record the task which has just been released from

waiting to take a mutex.

MReleasingData
release mutex : TASK 7→ QUEUE

Based on these definitions, the constraints between them can be defined in the

schema Mutex .

Mutex
MutexData
OriginalPrioData
MReleasingData

dom base priority = ranmutex holder
ran release mutex ⊆ mutex

Finally, the base state of the mutex model can be defined as follows. First,

semaphores and mutexes are special cases of queues, which have a maximum

size of 1. Second, if a mutex is held by a task, its size should be 0. Therefore, the

domain of mutex holder is all the mutexes with size 0. Third, only tasks known by

the system can take and hold a mutex, which means the range of mutex holder

is a subset of tasks . Priority inheritance is used to avoid a higher priority task be-

ing blocked by a lower priority mutex holder. If a mutex holder inherits a priority

from another task, the new priority has to be greater than its original priority. Fur-

thermore, only the holder of a mutex or a semaphore can return the mutex or the

semaphore, so it is impossible for a task to be blocked and released by a sending

event. Finally, as mutexes are a subset of queues and taking a mutex is imple-

mented by receiving from a queue, the function release mutex should be a subset

of the function release rcv as well.
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TaskQueueTimeMutex
TaskQueueTime
Mutex

semaphore ⊆ queue
∀ s : semaphore • q max (s) = 1
mutex ⊆ queue
∀m : mutex • q max (m) = 1
dommutex holder = {m : mutex | q size(m) = 0}
ranmutex holder ⊆ tasks
∀mh : ranmutex holder • priority(mh) ≥ base priority(mh)
∀ms : mutex ∪ semaphore • ms /∈ ranwait snd ∪ ran release snd
release mutex ⊆ release rcv

Initially, no semaphore or mutex exists in the system. All variables in Mutex should

be empty at this point.

4.5.2 Extension
A similar strategy of extension to that in Sect. 4.4.2 can be used to upgrade the

specification of the time model to the mutex model. The schema ExtendTQTXi

is introduced, which expands the base state and leaves variables in Mutex un-

changed. However, there are some operations that need to update variables in

Mutex .

• A mutex holder cannot be deleted by the system. The resource locked by

the mutex would no longer be available for other tasks, if the mutex holder is

deleted before it releases the mutex.

• Semaphores and mutexes are special queues, which means the queue op-

erations may treat a semaphore or mutex as a normal queue. However, the

operations for queues are not actually correct for semaphores and mutexes.

For instance, when creating a queue, it should be empty by default. Then the

user can use it for communication. However, for a semaphore or a mutex, the

user wants it to be full initially as this indicates that a resource is available. It

is important to prevent queue operations from dealing with the semaphores

and mutexes. Therefore, the constraint “que? /∈ semaphore∪mutex ” is added

to all schemas for queue operations.
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• Similarly, as the function release mutex is a sub-function of release rcv , it is

also vital to indicate that the running task is not released from taking a mutex

for the queue receiving schemas.

• Finally, the changing priority operations are the most complex extensions

for this level. In the previous model, we have three cases for changing

task priorities. At this level, it depends on whether: (a) the target task is

holding a mutex, or not; (b) the target task is inheriting a priority, or not;

(c) the new priority is higher than the inherited priority and the priority of

the running task, or not. Each case can be subdivided into three more

cases. Specifically, for tasks not holding a mutex, we keep Mutex unchanged

and append the precondition to indicate the target task is not a member of

the domain of base priority , which equals the domain of mutex holder , for

the three cases, NNotHolder 6, SNotHolder and DNotHolder . For tasks

holding a mutex but not inheriting a priority, the schemas for the three

cases (NNotInherited , SNotInherited and DNotInherited ) have to update

the information of base priority as well. When the target task is a mem-

ber of the domain of the base priority and is equal to its current priority, it

implies that the task is not inheriting a priority. The preconditions are ap-

pended to extend the three cases of changing task priority. Finally, in the

case of the target inheriting a priority from another task, (a) if the new pri-

ority is not greater than its inheriting priority, the operation updates the base

priority of the target task only; (b) meanwhile, if its new priority is greater

than its inheriting priority but it is lower than or equal to the running task, it

is based on the normal case of changing the priority of a task and updates

the base priority of the target task; (c) however, if its new priority is greater

than that of the running task, its base priority is updated and rescheduling is

requested; the schema ChangeTaskPriorityS TQT is used to simplify the

specification. The schema InheritedN , InheritedU and InheritedS are de-

fined for this case.

6Due to the length of these schema names, we present the postfix for each schema here only; i.e.

the postfix NNotHolder represents the schema ChangeTaskPriorityNNotHolder TQTM
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4.5.3 Creating and Deleting Semaphores and Mutexes

As described in Sect. 4.5.1, initially there is no semaphore or mutex in the

system. FreeRTOS provides the API functions vSemaphoreCreateBinary and

xSemaphoreCreateMutex to introduce a new binary semaphore and mutex to the

system. Later, when these structures are no longer needed, they can be removed

from the system by the API function vSemaphoreDelete.

Semaphores and mutexes are special queues, which have a maximum capacity

of 1. The behaviour of their creating and deleting operations is similar to that of

queues. In FreeRTOS, creating a semaphore or mutex actually creates a new

queue with capacity 1. It then sends an item to fill the semaphore or mutex,

which makes the semaphore or mutex available. Meanwhile, the API function

vSemaphoreDelete is directly defined by vQueueDelete.

We also try to follow this strategy to reuse existing specifications in new schemas.

This not only simplifies the definition of new schema, but also dramatically reduces

the complexity of the verification, because the precondition theorem for existing

schemas can be used directly in the proof of the precondition theorem for the new

schema. Therefore, when defining the schemas DeleteBinarySemaphore TQTM

and DeleteMutex TQTM , the schema DeleteQueue TQT is used to manage sys-

tem information before the mutex model. The deleted semaphore and mutex are

then removed from related variables, semaphore, mutex and mutex recursive re-

spectively. It is worth noting that when deleting a mutex from the system, it should

not be held by any task.

However, when creating operations, as the initial size of the new semaphore and

mutex is full instead of empty, CreateQueue TQT cannot be used. The schema

CreateBinarySemaphore TQTM and CreateMutex TQTM add a new queue to

the queue and set its capacity and size to 1. The queue is also added to semaphore,

mutex and mutex recursive. All other variables remain unchanged.
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4.5.4 Taking Mutexes

As a special queue, taking a mutex can be treated as receiving an item from the

mutex. Basically, we attempt to reuse specifications for the queue receiving opera-

tion in our specification for mutex taking. In Sect. 4.3.4, four cases are defined for

receiving an item from a queue. However, the second and third cases are impossi-

ble for mutex taking, as they are introduced for cases where there are tasks waiting

to send an item to the queue and there is no wait to send events for semaphores

and mutexes. Based on the normal and empty cases of the receiving operation,

the specification for the mutex taking operation can be defined. Specifically, there

are two sub-cases for the normal case, depending on whether the running task

previously held a mutex.

• MutexTakeNnonInh TQTM If the running task did not previously hold a mu-

tex, which means its base priority was not initialised, we need to initialise it

with the value of its current priority.

• MutexTakeNInh TQTM Otherwise, the base priority of the running task

should not be changed.

In addition, the remaining part of these two sub-cases are the same: (a) They

reuse the schema QueueReceiveN TQT to receive the item from the mutex, which

shows that the running task takes the mutex; (b) Set the running task as the holder

of the mutex; (c) Increase the value of mutex recursive; (d) Finally, remove infor-

mation about the running task from release mutex to enable the running task to

execute other operations.

When the mutex is not available, the running task will be blocked by waiting for a

receiving event. Depending on the relationship between the priorities of the running

task and the mutex holder, there are also three cases.

• MutexTakeEnonInh TQTM If the priority of the running task is not higher

than that of the mutex holder, the mutex holder keeps its priority and the

running task is replaced by a ready task with the highest priority, which is
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the same as the empty case of the queue receiving operation. The schema

QueueReceiveE TQT is used to achieve this and running task related infor-

mation is also removed from release mutex .

• On the other hand, if the priority of the running task is higher than the mu-

tex holder, the mutex holder inherits the priority of the running task and the

running task is blocked.

– MutexTakeEInheritReady TQTM If the state of the mutex holder is

ready, it becomes the new running task.

– MutexTakeEInheritHolder TQTM Otherwise, a task with highest pri-

ority in the ready state is selected as the new running task.

In these cases, the schema QueueReceiveE TQT cannot be used, because

the priority of the mutex holder is updated. However, Reschedule is used

to manage rescheduling. Similarly, it also needs to remove information

about the running task from related release functions (i.e., release rcv and

release mutex ). As the running task is blocked, data about the blocking time

needs to be appended to the wait time function as well. Other variables

remain unchanged.

Finally, the last case, MutexTakeRecursive TQTM , is for recursively taking the

mutex, which is the simplest case. It increases the value of the mutex in

mutex recursive and keeps everything else the same.

In summary, taking mutexes has six cases in total.

4.5.5 Giving Mutexes

Similar to taking mutexes, when a mutex holder gives the mutex back, it actually

sends an item back to the mutex, even if the item size is zero. Therefore, the

schemas for queue sending are reused here to develop new specifications for giv-

ing mutexes. As we define the domain of base priority to be equal to the range of

the mutex holder , when a task gives all its mutexes back, its base priority has to be

removed as well. This can happen to every case of giving mutexes. The schema

basePriorityMan is introduced to perform base priority management. It checks
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whether the running task is giving its last mutex. If it is, basePriorityMan removes

the running task related pairs from base priority ; otherwise, base priority remains

unchanged.

basePriorityMan
∆TaskQueueTimeMutex
mut? : QUEUE

running task ∈ ran({mut?} −Cmutex holder)
⇒ ΞOriginalPrioData

running task /∈ ran({mut?} −Cmutex holder)
⇒ base priority ′ = {running task} −C base priority

The first case of giving mutexes (MutexGiveNRecursive TQTM ) is the simplest

one, which handles the recursive return. When the mutex holder has taken the

mutex several times, the mutex holder has to return the mutex the same number

of times to make the mutex available for other tasks. When the value of the mutex

in mutex recursive is greater than 1, the schema MutexGiveNRecursive TQTM

decreases mutex recursive by 1 each time. In addition, there are eight cases for

giving mutexes. The behaviour depends on: (a) Whether there are tasks waiting to

take the mutex; (b) Whether the priority of the mutex holder is inherited from other

task; (c) Which priority is the highest (the base priority of the running task; the

priority of the running task, the priority of the top priority ready task or the priority of

the top priority waiting task). Table 4.1 and 4.2 illustrate the relationship between

each case7.

Table 4.1 shows that based on the normal case of the queue sending operation

there are three different cases. Specifically, for the first case (NnonInh case),

there are no tasks waiting to take the mutex and the mutex holder does not in-

herit priority from other tasks. As the mutex holder is the current running task,

we know its priority is the highest of the ready tasks. Therefore, there is no

rescheduling request. We just need to send an item to the mutex to indicate

that the mutex holder returns the mutex. Meanwhile, information about the mu-
7Due to the length of schema names, only the postfixes for each schema are presented in the

table; i.e., the postfix NnonInh stands for the schema MutexGiveNnonInh TQTM
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Table 4.1: The constraints for giving mutexes (no waiting tasks)

Inh N Y

Highest Prio - Base Ready

Postfix NnonInh NInhN NInhS

Table 4.2: The constraints for giving mutexes (with waiting tasks)

Inh N Y

Highest Prio Run Waiting Base Ready Waiting

Postfix WnonInhN WnonInhS WInhN WInhSR WInhSW

tex in mutex holder and mutex recursive has to be reset. Finally, the schema

basePriorityMan is used to manage the base priority of the mutex holder. The

schema MutexGiveNnonInh TQTM uses QueueSendN TQT to send an item

to the mutex. If the mutex holder inherits a priority from another task, its priority

has to be reset to its original priority when it gives the mutex back. The second

and third cases in this group are defined for this. The difference between them is

when the original priority of the mutex holder (i.e., the running task) is lower than

the priority of a ready task, rescheduling is requested. Unfortunately, the schema

QueueSendN TQT cannot be used, as the priority of the mutex holder needs to

be modified, which is not covered by the definition of QueueSendN TQT .

Similar to the last group of cases, the cases in Table 4.2 are based on waiting, and

waiting and rescheduling cases of queue sending operations. There are tasks wait-

ing to take the mutex. It is necessary to wake these tasks when the mutex holder

returns the mutex. When the mutex holder does not inherit a priority, these cases

are extensions from QueueSendW TQT and QueueSendWS TQT . Otherwise,

the priority of the mutex holder needs to be revised to its original priority. Moreover,

depending on the relationship between the base priority of the running task, the

priority of the top priority ready task and the priority of the top priority waiting task,

each case needs to decide which task should be the new running task after the

operation (i.e., the highest priority task can be executed).
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4.6 Summary of Interface

The preconditions for the interface, and the API function mapping can be found in

Appendix C. When we define the schemas for API functions, in order to simplify

the specification, we use different schemas to define the different cases of API

functions. We use disjunction to connect them together to get the schema that rep-

resents the API function in FreeRTOS. The precondition for these new schemas

is also obtained from the preconditions of the old schemas, which are also dis-

joint. For instance, the FreeRTOS API function for creating a task, xTaskCreate, is

represented by the schema CreateTask T , which has two cases, CreateTaskN T

and CreateTaskS T , as defined above. Therefore, it is defined by these two sub-

schemas linked by “∨”. In the first case, the precondition is that target? is not

known to the system and the priority of the new task is lower than or equal to the

priority of the running task. The precondition for the second case is that target? is

not known to the system and the priority of the new task is greater than that of the

running task. Therefore, the precondition for the new schema is only that target?

is not known to the system before the operation.

It is worth noticing that the functions in QReleasingData and MReleasingData are

auxiliary functions. They are used to help specify the behaviours of queue sending,

receiving, and mutex taking operations. In the implementation of FreeRTOS, when

a task is woken up after being blocked during the execution of these operations,

(for instance, the running task is blocked by sending an item to a full queue) the

task continues any unfinished work. However, in the specification, once a task

is blocked in a schema, its state will be simply transferred to blocked . When it is

rescheduled as the running task later, it does not have to continue its unfinished job.

It can perform any schema whose precondition is satisfied. Therefore, the functions

in QReleasingData and MReleasingData are necessary to distinguish continuing

schemas from the others. These functions do not actually represent anything in

FreeRTOS. Consequently, preconditions related to them in the specifications are

omitted in the tables of Appendix C.
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Based on the content of these tables, it is possible to produce code-level annota-

tions for VCC. These preconditions can be used in VCC as the content of requires

clauses, “ (requires ...)”. Further, the postconditions of the schemas can also

be transferred into ensures clauses, “ (ensures ...)”, of the notation of VCC.

We have also verified the task-related functions with VCC, which is presented in

Chap. 5.

4.7 Some Properties
Finally, there are properties of the specifications that are important for the prover,

which have been verified as well. Some of these help to ensure that the specifica-

tions have the correct behaviours, the properties of the system are consistent with

the API document and source code, etc. Others are used to help Z/Eves prove our

model correct. These theorems may seem trivial to the human eye; however, they

are particularly helpful for the prover. Therefore, in this section, we present a few

of these theorems as examples. Further details can be found in the supplementary

material.

1. As described above, in some schemas we need to find the task with the high-

est priority of all ready tasks. In these cases, ensuring the running task is not

a member of the ready tasks is important, otherwise the reschedule algo-

rithm would be chaotic. Moreover, ensuring the running task does not belong

to the ready tasks is also important for the prover to prove the related prop-

erties of the task. For instance it helps to prove the theorem TaskProperty6.

Theorem 18 (TaskProperty3)

∀Task ; t : state∼(| {ready} |) • t ∈ tasks \ {running task}

2. The variable tasks is used to record tasks known to the system. In other

words, if the task is not recorded in tasks , it is unknown to the system.

This theorem is helpful for the prover to determine the state of this task in

nonexistent .
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Theorem 19 (TaskProperty4)

∀Task ; t : TASK \ tasks • state(t) = nonexistent

3. As defined by FreeRTOS, the idle task always has the lowest priority. If the

priority of a task is greater than 0, this task cannot be the idle task. The

command prove by reduce can be used to prove this.

Theorem 20 (TaskPriority5)

∀Task ; t : tasks | priority(t) > 0 • t 6= idle

4. It is also interesting to check that the behaviour of the operation schemas are

properly described. To illustrate this, we select the schema SuspendTaskS T

to check. This theorem will check that for any proper case of Task , after the

SuspendTaskS T operation, the old running task will be suspended and the

new running task has the highest priority of the ready tasks. To prove this

theorem, the theorem TaskProperty3 will be used. Following that, we apply

the one-point rule to the condition. The goal can then be proved.

Theorem 21 (TaskProperty6)

∀Task | SuspendTaskS T
• state ′(running task) = suspended
∧ (∀ t : state∼(| {ready} |)
• priority(running task ′) ≥ priority(t))

proof [TaskProperty6]
with disabled (∆ Task , Task) prove by reduce;
use TaskProperty3[t := target !];
instantiate t 0 == t ;
prove;

5. As mentioned in Sect. 2.2, the operator ⊕ is commonly used to update the

values of a function. However, when the domain of two operands of the

operation are disjoint, the effect of this operator is to comprise an union set

with the first operand and the second one, which also means that the first

function is a subset of the result of the operation.

Page 90



Theorem 22 (overrideIsAppend)

∀ f , g : X 7→ Y | dom f ∩ dom g = ∅ • f ⊆ f ⊕ g

6. For a normal function, it is possible that many different elements in the do-

main of the function can match to one element in the range of the function.

In this case, if domain subtraction is applied to this kind of function and there

are other elements that can match to the same result as the elements in the

subtracted set, the range of the function should not be changed.

Theorem 23 (ranUnchanged)

∀ f : X 7→ Y ; a : X | a ∈ dom f ∧ f (a) ∈ ran({a} −C f )
• ran f = ran({a} −C f )

4.8 Summary

In this chapter, the first section revealed how and why the model is structured in

the way described in this chapter. The following four sections described the model

in detail, also showing how the model can be extended layer by layer. Finally, the

preconditions for the API modelled in the project and some properties of the system

were summarised in the last two sections.

In the next chapter, the preconditions, which were calculated in this chapter for task

related operations, will be used to develop the VCC annotations and the process

of verifying the FreeRTOS implementation (task related API functions) with VCC is

described.
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Chapter 5

VCC VERIFICATION OF FREERTOS

As mentioned in Chap. 4, the specification defined in the model for FreeRTOS can

be used to develop VCC annotations to verify the implementation of FreeRTOS.

This chapter illustrates our work on this. Due to time limitations, only task-related

functions are verified, to demonstrate the possibility of verifying source code with

the abstract model and VCC.

This chapter begins by introducing an overview of VCC and our verification, de-

scribing how we organised the specification and the source code. A basic state-

ment of the specification is then given. Finally, annotated functions explain how

to use the specification to verify the implementation of FreeRTOS. The full code

is not given in the thesis; however, full details can be found in the supplementary

material. An explanation of VCC annotations is given, along with a description of

the verification.

5.1 Overview

As introduced in Sect. 1.3, VCC is a verifier based on the Z3 prover. It uses annota-

tions, which are ignored by a normal C compiler, to describe the virtual model and

the properties of the source code. The following annotations are most frequently

used in VCC:
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• The most basic annotations in VCC are assumptions and assertions. As-

sumptions are used so that the prover considers predicates declared in the

assumptions to be logically true and therefore does not attempt to prove

them. In contrast, the prover does attempt to prove predicates specified in

assertions. However, whether the result is true or false, they are also con-

sidered as logically true in later proofs.

• It is also possible to define virtual variables and code, which are hidden to an

ordinary C compiler, with ghost code. This can be used to introduce a virtual

model of the specification to the implementation of the C source code.

• Constraints can be defined for data structures (concrete and virtual), which

are called Object Invariants in VCC.

• An instance of a structure in VCC, called an object, has two states, open

and closed. When it is in the open state, it is mutable and its constraints

can be broken. Moreover, if the object is owned by the executing thread, it is

writeable for the thread. However, once it is closed, all constraints specified

for the data structure have to hold for that instance.

• A function contract can be specified for each function, which is similar to pre-

and post-conditions for a schema in Z. This defines the behaviours of a func-

tion. VCC assumes the predicates in requires annotations in the contract to

be true at the beginning of the function and verifies the predicates in ensures

at the end of the function.

If the function with the contract is called by another function, the prover does

not attempt to prove the called function. It just checks whether the precondi-

tions of the function hold when it is called. If they do, the prover assumes the

function is verified, i.e., the postconditions are satisfied.

• In VCC, parameters and global variables are not writeable for a function by

default. They have to be included in writes annotations to inform the prover
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that the function is going to modify the value of the variable. When data is

closed and owned by the thread, it is called wrapped. Even if it is in a writes

annotation, we also need to unwrap it to update the data of the structure.

In addition, there are also other annotations, such as claim and mutable, etc., that

are not as common as the annotations described above. Further details can be

found in [21]. They will be briefly described below, where they are used in the

verification. It is also worth noting that the concept of hierarchical ownership for

variables in VCC exists. For instance, a thread can own several structures and

each structure can have its own variables and structures. To update a variable, it

has to be included in the writes annotations, opened and owned by the thread.

In theory, we can directly annotate the FreeRTOS source code to verify the imple-

mentations. However, as we are only verifying the implementation of task related

API functions, due to time limitations, we need to minimise the FreeRTOS source

code to only include task-related code. Specifically, we create two files, vtask.h

and vtask.c. In the header file, vtask.h, we include some essential predefinitions

for verification, such as type definitions for the given sets introduced in the Z spec-

ification. This file also contains the functions declarations and their contracts. The

file vtask.c is an annotated and minimised version of the FreeRTOS source code

task.c, which includes all definitions of the related API functions. We also modify

the API functions to simplify the verification process. We first remove any code

not related to the functions verified in the Z specification, such as memory man-

agement. Next, we use equivalent code to replace some of the function calls, for

instance, portYIELD WITHIN API(). The most important reason for this decision

is that during function calls, the prover may believe that global variables may be

changed and it will “forget” information about them. For some cases, it is possible

to use claims to inform the prover that this information is not changed during func-

tion calls. However, this makes the verification extremely complex. There are also

other reasons for different function replacement, which will be explained in detail

below, along with the verification.
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Figure 5.1: Constraints of tskTCB
1 _ ( dynamic_owns ) typedef struct tskTaskCont ro lB lock
2 {
3 x L i s t I t e m xGener icL is t I tem ; /∗< The l i s t t h a t the s ta te l i s t

i tem of a task i s re ference from denotes the s ta te o f t h a t task (
Ready , Blocked , Suspended ) . ∗ /

4 x L i s t I t e m xEventL is t I tem ; /∗< Used to re ference a task from an
event l i s t . ∗ /

5 unsigned portBASE_TYPE u x P r i o r i t y ; /∗< The p r i o r i t y o f the task .
0 i s the lowest p r i o r i t y . ∗ /

6
7 _ ( i n v a r i a n t u x P r i o r i t y < configMAX_PRIORITIES )
8 _ ( i n v a r i a n t \ mine(& xGener icL is t I tem ) )
9 _ ( i n v a r i a n t \ mine(& xEventL is t I tem ) )

10 } tskTCB ;
11
12 _ ( ghost typedef tskTCB ∗ TASK ; )

5.2 Statement Definition
To create the annotations to verify the FreeRTOS implementation with our abstract

model, we first need to transform our specification to VCC style annotations. For

the task model, the first definition of the specification is the given sets of TASK

and CONTEXT . Similar to our Z model, we are not interested in the memory

management and the detail of context switches, which are mainly implemented

by assembly language. We use a pointer of void type (i.e., void *) to define

CONTEXT in a ghost annotation. However, it is not actually used in the verifi-

cation. As mentioned in Sect. 1.2.1, a structure called Task Control Block (tskTCB)

is defined in FreeRTOS to record the properties of a task, such as the priority of

the task, general list item (in state lists to represent the state of the task), event

list item (in event lists), etc. We use a simplified version of the tskTCB structure

to define TASK in the verification, which removes memory management-related

declarations and some other unrelated fields from the tskTCB structure.

As shown in Fig. 5.1, firstly, the priority of a task has to be lower than the maximum

priority defined in the configuration file. Then, the list items of each task have to be

held by the task. The task cannot be modified by a thread without it being opened,

otherwise, the constraints of the system might be broken. Therefore, we state that

the pointers for these list items are owned by the tskTCB structure, which can later

transfer to the thread when it unwraps the task structure. Because of these own-

ership declarations, it is necessary to mark the structure as “ (dynamic owns)”.
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Figure 5.2: State and transition in VCC
1 _ ( ghost typedef enum{
2 nonex is ten t = 0 , ready , blocked , suspended , running
3 } STATE ; )
4
5 _ ( ghost \ bool t r a n s i t i o n [ 5 ] [ 5 ] ; )
6 _ ( def \ bool Trans ( )
7 {
8 / / nonex is tent , ready , blocked , suspended , running |
9 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−

10 / / { { \ f a l se , \ t rue , \ fa l se , \ fa l se , \ t r ue } | nonex is ten t
11 / / { \ t rue , \ fa l se , \ fa l se , \ t rue , \ t r ue } | ready
12 / / { \ t rue , \ t rue , \ fa l se , \ t rue , \ t r ue } | blocked
13 / / { \ t rue , \ t rue , \ fa l se , \ fa l se , \ t r ue } | suspended
14 / / { \ t rue , \ t rue , \ t rue , \ t rue , \ f a l s e } } | running
15 return
16 t r a n s i t i o n [ 0 ] [ 0 ] == \ f a l s e && t r a n s i t i o n [ 0 ] [ 1 ] == \ t r ue &&
17 . . . &&
18 t r a n s i t i o n [ 4 ] [ 4 ] == \ f a l s e ; / / running
19 }
20 )

This will request the user to manage the ownership of the object components man-

ually (e.g., manage the ownership of the generic list item, &xGenericListItem).

Following this, in Fig. 5.2, an enumerated type, which contains five states of tasks

defined in the Z model, is used to translate the free type definition for STATE into

VCC. In Z, a set of mappings is used to represent the transition rules, because

we know all the elements of this set. Similarly here, the following boolean type

two-dimensional array is used to represent this set. Each mapping included in

transition can be matched to a boolean true in the array to represent that the

transition is valid. Otherwise, if an element of the array is false, the represented

transition is invalid in this case. It is worth noticing that, in VCC, the curly brackets

are overridden to declare object sets. We cannot directly use it to initialise the

array. An assistant logic function is used to do this. The logic function in VCC is

a virtual function, which contains a specification for a given activity. It is normally

used to perform some logic checking. As a virtual function, it should not have any

operations about memory writes. Specifically, the function Trans() returns logical

true, once the value of each element of transition satisfies the table included in

the comments.

Based on these definitions, the virtual structure, FreeRTOS, for the base model

can be given as below, which organises all the essential elements of verification.
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The relationship between these elements and the concrete variables in the original

source code can be specified in this virtual structure. Their constraints are also

defined here (see Fig. 5.3).

Figure 5.3: FreeRTOS structure
1 _ ( ghost _ ( dynamic_owns ) typedef struct {
2 \ bool tasks [TASK ] ;
3 STATE s ta te [TASK ] ;
4 / / CONTEXT phys_context ;
5 / / CONTEXT log_con tex t [TASK ] ;
6
7 \ n a t u r a l p r i o r i t y [TASK ] ;
8
9 / / READY

10 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE)
==>

11 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &
pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&

12 ( ( tskTCB ∗ ) t ) != pxCurrentTCB ) <==> s ta te [ t ] == ready ) )
13 / / BLOCKED
14 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE)

==>
15 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
16 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 ) <==> s ta te [ t ] == blocked ) )
17 / /SUSPENDED
18 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE)

==>
19 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList <==> s ta te [ t ] == suspended ) )
20 / / RUNNING
21 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE)

==>
22 ( t == (TASK) pxCurrentTCB <==> s ta te [ t ] == running ) )
23 _ ( i n v a r i a n t ( ( x L i s t ∗ ) pxCurrentTCB−>xGener icL is t I tem . pvContainer ) ==

&pxReadyTasksLists [ pxCurrentTCB−>u x P r i o r i t y ] )
24 / / NONEXISTENT
25 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( t−>\closed && xSchedulerRunning !=

pdFALSE) ==>
26 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
27 t == NULL) <==> s ta te [ t ] == nonex is ten t ) )
28
29 _ ( i n v a r i a n t \ f o r a l l TASK t ; xSchedulerRunning != pdFALSE ==> ( s ta te [ t ]

!= nonex is ten t <==> tasks [ t ] ) )
30 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> \ mine ( t ) )
31 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> t−>\closed )
32 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> p r i o r i t y [ t ] == t−>u x P r i o r i t y )
33 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> s ta te [ t ] <= 4)
34 _ ( i n v a r i a n t \ mine ( \ embedding(& xIdleTaskHandle ) ) )
35 _ ( i n v a r i a n t \ mine ( \ embedding(& pxCurrentTCB ) ) )
36 _ ( i n v a r i a n t xSchedulerRunning != pdFALSE ==> ( tasks [ xIdleTaskHandle ]

&& tasks [ pxCurrentTCB ] ) )
37 _ ( i n v a r i a n t xSchedulerRunning != pdFALSE && xIdleTaskHandle != NULL

==> p r i o r i t y [ xIdleTaskHandle ] == 0)
38 _ ( i n v a r i a n t \ f o r a l l TASK t ; xSchedulerRunning != pdFALSE && s ta te [ t ]

== ready ==> p r i o r i t y [ pxCurrentTCB ] >= p r i o r i t y [ t ] )
39
40 } ∗ FreeRTOS ; )

This structure translates the schema Task into a VCC style base model. The map

tasks from TASK to \bool in Ln. 2 is used to represent tasks in the Z model. In

VCC, map type is a type similar to an array, which can only be used in ghost
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code. It maps a value of the type in the square bracket to a value of the type

before the variable name. In this case, \bool tasks[TASK] maps each task to

a boolean type value to indicate whether the task is known by the system or not.

Similarly, a map from TASK to STATE and a map from TASK to natural numbers are

used to represent state and priority , respectively. As we mentioned above, the

context related variables are not used in the verification. They are declared, but

commented out, which has no effect on our model.

After the declarations of the virtual variables, the links between them and the real

variables are specified. Specifically, lines 9 to 27 in Fig. 5.3 show the relationship

between the virtual state in the specification to the real state lists in FreeRTOS.

For instance, FreeRTOS declares an array of tskTCB lists to store ready tasks. An

invariant (Ln. 9 to 12) is used to specify this, which defines that all the tasks in a list

of pxReadyTasksLists are exactly those that are in a ready state, i.e., state[t]

== ready.

Following that, line 29 translates a constraint from the tasks schema. It states that

all tasks which are not in a nonexistent state are known by the system (i.e., they

map to true in tasks). However, if a task is known to the system, we can also say

it belongs to the structure FreeRTOS (Ln. 30), as this structure describes the base

of the whole system and is the root of the hierarchy ownership tree. When a thread

unwraps the FreeRTOS structure from its wrapped state, the thread automatically

obtains ownership of all tasks, which makes these tasks in the wrapped state at

the moment. Otherwise, to verify the properties of the tasks for a function, it would

have to have all the tasks in the parameter list of the function, which is not possible.

A binding from the virtual priority to the real priority of each task is stated in Ln. 32.

Next, the handlers of the idle task and pxCurrent task are declared as global

variables in FreeRTOS. If we want to specify the properties of these two handlers,

we need to transfer their ownership to the FreeRTOS structure. To do this, we

first need to transfer ownership of their container to FreeRTOS. In VCC, all global

fields are included in a virtual container. Due to their definition in Ln. 30, setting
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their entry in tasks to true transfers ownership to the FreeRTOS structure. The

constraint that the priority of idle task has to be 0 can then be specified. The last

invariant shows that the priority of the running task is the highest of all ready tasks,

which is also the last constraint of the Task schema in Z.

Finally, another logic function, excList() (details of which can be found from the

supplementary material), is given to ensure that the state lists for tasks are exclu-

sive (i.e., one list cannot be used as more than one state).

5.2.1 Translation from Z to VCC

In summary, to translate types from Z to VCC, the following rules can be considered

as a guide.

• Given sets in Z can be translated to point types or structures defined in C,

e.g. TASK is translated to tskTCB *.

• Generally, functions can be translated into two ways, (a) As functions are sets

of mappings in Z, they can be naturally translated to maps in VCC, e.g. the

function priority is translated to \natural priority[TASK]; (b) If a func-

tion is defined from a given set which has been translated as a structure, to

another type, the value of this function can be defined as a ghost field in the

structure, e.g. the function priority can also be translated as a ghost field in

the structure tskTCB. We chose the former way to translate priority , as it is

closer to our Z specification.

• Sets in Z can be understood as power sets of their own type. Therefore, in

VCC a set can be defined by a boolean type map that maps each element

of its type into a boolean type value to indicate whether the element is a

member of the set e.g. tasks is translated to \bool tasks[TASK].

• Simple free types can be translated as enumerated types e.g. STATE de-

fined in Fig. 5.2.

• Finally, static functions can be defined as two-dimensional arrays of

Booleans, e.g. transition is represented by \bool transition[5][5].
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VCC provides plenty of operators for the ghost fields and logical operations, in-

cluding quantifiers (∀ and ∃), implication, etc. Once all the variables in our Z spec-

ification have been translated to corresponding VCC variables or C variables, we

can use operators defined in VCC and C for these types of variables to represent

predicates used in the Z specification. For example,

• For functions, which are translated as mappings, we can simply apply the

function to an element in the domain to obtain the value of the function, e.g.

state[t] used in Ln. 12 of Fig. 5.3.

• Similarly, for sets in Z,

– we can calculate the result of a map applied to an element to check

whether the element is in the set, e.g. tasks[t] == \true;

– we can also set the value of a map for an element to \true or \false

to add or remove the element to or from the set respectively.

• As VCC supports quantifiers, we can directly translate such predicates from

Z specification to VCC annotations, e.g. we use plenty of quantifier \forall

in Fig. 5.3.

More detailed explanation will be provided during the explanation of each API func-

tions in following sections.

Following this, we can use the preconditions and postconditions verified in the Z

model to verify the implementation of FreeRTOS task API functions.

5.3 Creating Tasks

To verify the API function for creating tasks in FreeRTOS, xTaskGenericCreate,

we first append two ghost parameters, FreeRTOS and newTask, to the function

parameter list. These represent the virtual model and the new task created by

the function respectively. The contract of the API function can then be specified

as in Fig. 5.4. The first annotation, (updates FreeRTOS), is used to tell the

prover that the structure is wrapped before and after the operation. It may be

modified by the operation (i.e., FreeRTOS is writeable and in a writes clause). It is
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actually equivalent to (requires \wrapped(FreeRTOS)), (writes FreeRTOS)

and (ensures \wrapped(FreeRTOS)).

As our specification in Z assumes that the scheduler is always executing (see

Sect. 4.2.1), it is stated for VCC verification as well. Following this, the logic func-

tion excList() is used to ensure that all items in the state list are exclusive when

the API function starts. Because the value of newTask and pxCreatedTask will be

updated to the handler of the created task, they have to be included in the writes

clause of the VCC annotation. In addition, the postconditions can be specified with

ensures clauses.

In the Z specification, we separate the creating operation into two cases, normal

and rescheduling. The postconditions for these need to be mixed together in the

same way as the postconditions for the API function. VCC provides \old() func-

tion to obtain the pre-state of a variable, which is used here to refer to the old

value of pxCurrentTCB. Then the priority of the old running task can be accessed.

Comparing the new priority of the new task and the priority of the old running task,

the difference between the two cases can be specified separately. In the normal

case of task creation (see Ln. 9 to 11), the priority of the new task is less or equal

to the priority of the old running task. The created task is set to the ready state.

Otherwise (see Ln. 12 to 14), it requests rescheduling and replaces the value of

pxCurrentTCB. The state of the created task and the old running task should also

be set to running and ready, respectively. For both cases, the priority in the pa-

rameter list should be assigned to the new task.

It is worth noting that in the Z model, we do not restrict the maximum

value of the priority. In FreeRTOS, however, the maximum value of priority,

configMAX PRIORITIES, is defined in the configuration file. If the new priority

is not less than the maximum priority, it is set to the maximum priority of the sys-

tem (i.e., configMAX PRIORITIES-1).

The only precondition for creating tasks in the Z model is that the created task is

not in the system before the operation. As it is newly created during the operation,
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Figure 5.4: Contract for creating tasks
1 signed portBASE_TYPE xTaskGenericCreate ( pdTASK_CODE pxTaskCode , const

signed char ∗ const pcName, unsigned short usStackDepth , void ∗
pvParameters , unsigned portBASE_TYPE u x P r i o r i t y , xTaskHandle ∗
pxCreatedTask , portSTACK_TYPE ∗puxStackBuffer , const xMemoryRegion
∗ const xRegions _ ( ghost FRTOS FreeRTOS) _ ( ghost TASK ∗newTask ) )

2
3 _ ( updates FreeRTOS)
4 _ ( requ i res xSchedulerRunning == pdTRUE)
5 _ ( requ i res excL i s t ( ) )
6
7 _ ( w r i t e s newTask , pxCreatedTask )
8
9 _ ( ensures \ r e s u l t == pdPASS ==>

10 u x P r i o r i t y <= \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ==>
11 (FreeRTOS−>s ta te [∗newTask ] ) == ready )
12 _ ( ensures \ r e s u l t == pdPASS ==>
13 u x P r i o r i t y > \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ==>
14 (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] ) == ready && (FreeRTOS−>

s ta te [ ( TASK) pxCurrentTCB ] ) == running )
15 _ ( ensures \ r e s u l t == pdPASS ==> FreeRTOS−>p r i o r i t y [∗newTask ] ==
16 ( \ n a t u r a l ) ( u x P r i o r i t y < configMAX_PRIORITIES ? u x P r i o r i t y :

configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U) )
17 _ ( ensures \ r e s u l t == pdPASS ==> pxCurrentTCB−>\closed )
18 _ ( ensures \ r e s u l t == pdPASS ==> \ f resh (∗newTask ) )
19 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] &&
20 \ o ld (FreeRTOS−>s ta te [ t ] ) != FreeRTOS−>s ta te [ t ] ) ==>
21 t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t ] ] )

it is not easy to describe with requires clauses; therefore, it is stated in the post-

condition instead. The function, \fresh() is provided by VCC to indicate that the

object is freshly allocated. Finally, the last predicate requests VCC to check that

the state transitions obey transition.

To improve the efficiency of the prover, VCC does not make forward inferences

from the precondition by default. For instance, in the precondition, we state that

FreeRTOS is wrapped, which means all the constraints have to hold at the begin-

ning of the function. In the constraints of the FreeRTOS structure, we state that

pxCurrentTCB is owned by FreeRTOS and all the tasks owned by FreeRTOS have

to be closed. From these definitions, we can easily conclude that pxCurrentTCB

has to be in the closed state, when FreeRTOS is wrapped. However, VCC cannot

obtain this result automatically. Therefore, the script in Fig. 5.5 is used to show

that pxCurrentTCB is closed at the beginning along with some other properties

which may be helpful for later verification. After the declaration of some local vari-

ables, the first statement calls the function prvInitialiseTCBVariables, which

allocates memory for the new task and its stack. To simplify the verification, we

replaced it with malloc. An annotation is added here to make sure that the prover
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Figure 5.5: Creating tasks pre-verification
1 _ ( asser t \ wrapped (FreeRTOS) )
2 _ ( asser t \ i nv (FreeRTOS) )
3 _ ( asser t xSchedulerRunning == pdTRUE)
4 _ ( asser t FreeRTOS−>tasks [ pxCurrentTCB ] )
5 _ ( asser t pxCurrentTCB \ i n FreeRTOS−>\owns )
6
7 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
8 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] <

configMAX_PRIORITIES )
9

10 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
11 _ ( asser t pxCurrentTCB−>\closed )
12
13 signed portBASE_TYPE xReturn ;
14 tskTCB ∗ pxNewTCB;
15
16 \ \ pxNewTCB = p r v I n i t i a l i s e T C B V a r i a b l e s ( usStackDepth , puxStackBuf fer ) ;
17 pxNewTCB = ( tskTCB ∗ ) mal loc ( sizeof ( tskTCB ) ) ;
18 _ ( asser t pxNewTCB != pxCurrentTCB )

ensures that the handler for the new task is not equal to pxCurrentTCB, otherwise,

when it is updated, the prover may confuse these two tasks as they refer to the

same task.

As shown in Fig. 5.6, when pxNewTCB is successfully assigned memory, two as-

sertions (Ln. 2 and 3) are added to help the prover ensure that pxNewTCB is suc-

cessfully and newly allocated by the function. It is then necessary to complete

the details of the created task. As we only focus on the functions we specified

in the Z model, we remove all unrelated code and only keep functions related to

the priority and the generic list item of the new task, which sets the new priority

for the task and places it in the proper position in the ready task lists. The task

is then physically created. The rest of the creation function manages the sys-

tem state for the new task. In VCC, before verifying system properties related

to pxNewTCB, the structure has to be wrapped in advance. To do this, the own-

ership of all pxNewTCB components has to be taken by the structure. However,

for the new created task, the thread keeps the ownership of pxNewTCB and all its

components, i.e., the generic and event list items, which need to be transferred to

pxNewTCB. Two ghost statements in Ln. 13 and 14 are used to perform this and

then the statement (wrap pxNewTCB) is used to wrap it. In the critical section,

the original source code manages the system states according to the properties

of the new tasks, for instance, the maximum priority of existing tasks, the total
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number of the tasks in the system, etc. However, they are not included in our re-

duced version. The variable xReturn is then set to pdPASS to indicate that the new

task has been successfully created and added to the system. In cases of failure

to allocate memory to pxNewTCB, the function does nothing but set the value of

xReturn to errCOULD NOT ALLOCATE REQUIRED MEMORY. In this case, an asser-

tion is needed to remind the prover that the invariants of FreeRTOS still hold at that

time.

Figure 5.6: Creating tasks verification part-1
1 i f ( pxNewTCB != NULL ) {
2 _ ( asser t pxNewTCB)
3 _ ( asser t \ f resh (pxNewTCB) )
4
5 / / p r v I n i t i a l i s e T C B V a r i a b l e s ( pxNewTCB, pcName, u x P r i o r i t y , xRegions ,

usStackDepth ) ;
6 pxNewTCB−>u x P r i o r i t y = ( u x P r i o r i t y < configMAX_PRIORITIES ? u x P r i o r i t y

: configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U) ;
7 pxNewTCB−>xGener icL is t I tem . pvContainer = &pxReadyTasksLists [pxNewTCB−>

u x P r i o r i t y ] ;
8 _ ( asser t \ w r i t a b l e (&(pxNewTCB−>xGener icL is t I tem ) ) )
9 _ ( asser t \ w r i t a b l e (&(pxNewTCB−>xEventL is t I tem ) ) )

10 _ ( wrap &(pxNewTCB−>xGener icL is t I tem ) )
11 _ ( wrap &(pxNewTCB−>xEventL is t I tem ) )
12
13 _ ( ghost pxNewTCB−>\owns = ( \ ob j se t ) {&(pxNewTCB−>xGener icL is t I tem ) } )
14 _ ( ghost pxNewTCB−>\owns += &(pxNewTCB−>xEventL is t I tem ) )
15 _ ( asser t ! ( FreeRTOS \ i n pxNewTCB−>\owns ) )
16 _ ( wrap pxNewTCB)
17
18 i f ( ( void ∗ ) pxCreatedTask != NULL ) {
19 ∗pxCreatedTask = ( xTaskHandle ) pxNewTCB;
20 }
21 taskENTER_CRITICAL ( ) ;
22 { / / . . .
23 xReturn = pdPASS;
24 }
25 taskEXIT_CRITICAL ( ) ;
26 } else {
27 _ ( asser t \ i nv (FreeRTOS) )
28 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
29 }

When xReturn is set to pdPASS, the system needs to check whether rescheduling

is requested and the ghost code for managing system states is placed here, as

shown in Fig. 5.7. Firstly, before the system checks for rescheduling, we unwrap

the FreeRTOS, set the priority of pxNewTCB, temporarily set the state of pxNewTCB

to ready, add it to tasks and transfer its ownership to FreeRTOS. Finally, we assign

pxNewTCB to the virtual parameter * newTask. Some assertions are used here to

ensure that the assignments of the virtual code work. The system then checks the

relationship between the priority for the new task and the priority for the running
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task to determine whether the system needs to reschedule or not.

As a global volatile variable, pxCurrentTCB can be accessed and updated by a

thread in VCC which does not hold its ownership. To access pxCurrentTCB, an

atomic read annotation is applied to the container of pxCurrentTCB, which is

\embedding(&pxCurrentTCB) in this case. When the priority of pxCurrentTCB

is lower than the new priority, the system needs to reschedule. We also mod-

ify the state of pxNewTCB and pxCurrentTCB to running and ready, respec-

tively. A system function call to portYIELD WITHIN API is used to perform

rescheduling, which is replaced by directly assigning the handler of the new task

to pxCurrentTCB in our reduced version.

Similar to accessing pxCurrentTCB, in order to modify it, we need to apply the

atomic annotation to its container. It is worth noting that during the atomic opera-

tion, information about global variable FreeRTOS is lost. Ideally, this can be handled

by the claim annotation, which claims that the state of FreeRTOS is kept unchanged.

However, this complicates the verification and due to the time limits of the project,

we simply assert that the invariant of FreeRTOS holds before the atomic operation

and assume them after the operation. In addition to these, some assertions are

used to ensure that the properties for FreeRTOS are well maintained. It can then

be wrapped. Finally, the assumption of the logic function, Trans(), is used to set

the value of the array transition.

5.4 Deleting Tasks
Similar to creating tasks, to prove the API function for deleting tasks, vTaskDelete,

two extra ghost parameters are appended, FreeRTOS and topReady. As shown in

Fig. 5.8, the first four annotations in the function contract are similar to used in

creating tasks. They describe the basic properties of the system. In addition, the

preconditions specific to deleting tasks can be defined following our Z specification,

which states the target task has to be a member of tasks but not idle and the

topReady ! is the highest priority ready task in the system. In the source code,

the target task is named pxTaskToDelete. We first state that at the beginning of
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Figure 5.7: Creating tasks verification part-2
1 i f ( xReturn == pdPASS )
2 {
3 _ ( unwrapping FreeRTOS) {
4 _ ( asser t \ i nv (FreeRTOS) )
5
6 _ ( ghost {
7 FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] = pxNewTCB−>u x P r i o r i t y ;
8 FreeRTOS−>s ta te [ ( TASK) pxNewTCB] = ready ;
9 FreeRTOS−>tasks [ ( TASK) pxNewTCB] = \ t r ue ;

10 FreeRTOS−>\owns += pxNewTCB;
11 ∗newTask = pxNewTCB;
12 } )
13
14 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxNewTCB] == ready )
15 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running )
16 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] == pxNewTCB−>u x P r i o r i t y

)
17 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t !=

pxNewTCB) && xSchedulerRunning != pdFALSE) ==>
18 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
19 ( ( tskTCB ∗ ) t ) != pxCurrentTCB ) <==> FreeRTOS−>s ta te [ t ] ==

ready ) )
20
21 . . .
22
23 i f ( _ ( atomic_read \ embedding(&pxCurrentTCB ) )
24 pxCurrentTCB−>u x P r i o r i t y < u x P r i o r i t y )
25 {
26 _ ( ghost {
27 FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] = ready ;
28 FreeRTOS−>s ta te [ ( TASK) pxNewTCB] = running ;
29 } )
30 _ ( asser t FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready )
31 / / portYIELD_WITHIN_API ( ) ;
32 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
33 pxCurrentTCB = pxNewTCB;
34 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
35 }
36 }
37
38 _ ( asser t \ o ld ( pxCurrentTCB )−>u x P r i o r i t y >= u x P r i o r i t y ==> (FreeRTOS

−>s ta te [ ( TASK) pxNewTCB] == ready && FreeRTOS−>s ta te [ ( TASK)
pxCurrentTCB ] == running ) )

39 _ ( asser t \ o ld ( pxCurrentTCB )−>u x P r i o r i t y < u x P r i o r i t y ==>
40 (FreeRTOS−>s ta te [ ( TASK) pxNewTCB] == running &&
41 pxNewTCB == pxCurrentTCB &&
42 FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready
43 )
44 )
45 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] == pxNewTCB−>u x P r i o r i t y

)
46 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) \ o ld ( pxCurrentTCB ) ] == \ o ld (

pxCurrentTCB )−>u x P r i o r i t y )
47 _ ( asser t FreeRTOS−>tasks [ ( TASK) \ o ld ( pxCurrentTCB ) ] )
48
49 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t !=

pxNewTCB) && xSchedulerRunning != pdFALSE) ==>
50 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
51 ( ( tskTCB ∗ ) t ) != pxCurrentTCB ) <==> FreeRTOS−>s ta te [ t ] ==

ready ) )
52
53 . . .
54
55 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> t−>\closed )
56 } / / wrapping FreeRTOS
57 }
58 _ ( assume Trans ( ) )
59 return xReturn ;

Page 107



Figure 5.8: Contract for deleting tasks
1 _ ( updates FreeRTOS)
2 _ ( requ i res \ mutable (& xSchedulerRunning ) )
3 _ ( requ i res xSchedulerRunning == pdTRUE)
4 _ ( requ i res excL i s t ( ) )
5
6 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTaskToDelete ] )
7 _ ( requ i res ( tskTCB ∗ ) pxTaskToDelete != ( tskTCB ∗ ) xIdleTaskHandle )
8
9 _ ( requ i res FreeRTOS−>tasks [ topReady ] )

10 _ ( requ i res FreeRTOS−>s ta te [ topReady ] == ready )
11 _ ( requ i res \ f o r a l l TASK r t s ;
12 (FreeRTOS−>tasks [ r t s ] && FreeRTOS−>s ta te [ r t s ] == ready )
13 ==> FreeRTOS−>p r i o r i t y [ topReady ] >= FreeRTOS−>p r i o r i t y [ r t s ] )
14 _ ( requ i res topReady != (TASK) pxTaskToDelete )
15 _ ( requ i res topReady != (TASK) pxCurrentTCB )
16
17 _ ( ensures ( (TASK) pxTaskToDelete )−>\closed )
18 _ ( ensures pxTaskToDelete != NULL ==> ! FreeRTOS−>tasks [ ( TASK)

pxTaskToDelete ] )
19 _ ( ensures pxTaskToDelete == NULL ==> ! FreeRTOS−>tasks [ ( TASK) \ o ld (

pxCurrentTCB ) ] )
20 _ ( ensures pxTaskToDelete == NULL ==> (TASK) pxCurrentTCB == topReady )
21 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] &&
22 \ o ld (FreeRTOS−>s ta te [ t ] ) != FreeRTOS−>s ta te [ t ] ) ==>
23 t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t ] ] )

the function, pxTaskToDelete has to be in tasks and not equal to the handler

of the idle task, xIdleTaskHandle. Then, topReady has to be in tasks with a

state of ready and have the highest priority of the ready tasks. Moreover, it is also

important to state that the topReady must not be the same as the running task or

the task to be deleted. Otherwise, the deleted task can be set to the new running

task after the operation, which is not sensible.

Compared to creating tasks, the postconditions for deleting tasks are quite simple.

They ensure that the target task is removed from the system by checking the value

of the tasks. When the deleted task is the old running task, topReady is used to

replace the running task. It needs to be noted that in FreeRTOS, if the handler of

the deleted task in parameter list is NULL, the running task will be deleted. Like

creating tasks, the last postcondition ensures that the state transfer for all tasks

follows the restriction defined by transition.

Again, similar to creating tasks, we firstly need to ensure the prover retains the

necessary information about the system. Before entering the critical section, we

unwrap FreeRTOS (see Ln. 347 on Page. 348), as the deleted task is already owned

by FreeRTOS. To delete it, FreeRTOS has to be opened. As mentioned above,
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FreeRTOS defines a NULL value for the target task, which indicates that the target

task is the running task. This is because the macro prvGetTCBFromHandle is used

to obtain the control block for a task from its handle.

Meanwhile, the macro returns the control block of the running task, while the

handle is NULL. To simplify the code, FreeRTOS sets the value of the parame-

ter pxTaskToDelete to NULL, if it is equal to pxCurrentTCB. It then assigns the

task obtained from pxTaskToDelete to pxTCB, which represents the task to be

deleted afterwards. These two steps require access to the global volatile variable,

pxCurrentTCB. The atomic read declaration is needed for this. As the virtual struc-

ture FreeRTOS has been unwrapped, the ownership of tasks in the system is now

transferred to the thread and hence they are now wrapped. Assertion (in Ln. 370

on Page. 349) is used to ensure that pxTCB is wrapped at that time, and can then

be unwrapped.

The function, uxListRemove, is used to remove pxTCB’s generic list item from the

system. Furthermore, it can be added to the list xTasksWaitingTermination to

mark that it needs to be removed. Then the idle task will make the deletion when

it is executed. It is also necessary to remove the event list of the target task, if it

is in any event list. Three assertions are used to ensure these operations perform

properly. Following this, a piece of ghost virtual code (between Ln. 403 and Ln. 406

on Page. 349) is used to maintain the system state. The state of pxTCB is set to

nonexistent, and the value of pxTCB in tasks is set to \false as well. Exiting

the critical session, the API function checks whether the running task has been

deleted. If it has been, rescheduling is required. Specifications and code similar

to creating task are used here to perform rescheduling. Again, due to the atomic

operation, we assert and assume the necessary properties of FreeRTOS before

and after atomic access. It can then be wrapped. Finally, assumption of Trans is

used to initialise the array transition, which can be used for the postcondition

check, at a later point.
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5.5 Getting and Setting Priority
The API function, uxTaskPriorityGet, is the simplest to verify (see Ln. 508-539

on Page. 351). It keeps everything unchanged and returns the priority of the

target task. The precondition states that the target task (i.e., pxTask) is known

to the system and other general system preconditions, such as the one to cre-

ate tasks. The postcondition ensures that the returned value, \result, equals

FreeRTOS->priority[(TASK) pxTask].

To set the priority of a task, the API function vTaskPrioritySet can be used. To

verify this, similar to deleting a task, the extra virtual parameters FreeRTOS and

topReady are appended. However, in this case, the details of topReady remain

undefined at the beginning. The key reason for this is that vTaskPrioritySet re-

quests a system reschedule, when the priority of the running task is reduced. In

this case, the running task may still be scheduled as the new running task again.

Therefore, the definitions for the details of topReady are specified when reschedul-

ing is required.

As well as the four general preconditions, there are three extra annotations for

the precondition (see Ln. 551-560 on Page. 351). These state that topReady and

pxTask are in the system and that when the target task is the idle task, the priority

has to be 0. The postconditions for the vTaskPrioritySet (see Fig. 5.9) first state

that the target task has to be closed and known by the system. The key feature for

this API function is then to update the priority of the target task. An annotation is

used to ensure that this has been done successfully. In our specification, there are

two cases where the system needs to be rescheduled, (a) when the target task is

in the ready state and obtains a higher priority than the running task; and (b) when

the priority of the running task is reduced to less than one of the ready tasks. The

following two predicates are specified to check that in these two cases the system

is rescheduled properly. Finally, it is verified that the state transitions are valid for

this operation.

Similarly, some assertions are used to show basic properties. After the dec-
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Figure 5.9: Postconditions for priority setting
1 _ ( ensures ( (TASK) pxTask )−>\closed )
2 _ ( ensures FreeRTOS−>tasks [ ( TASK) pxTask ] )
3 _ ( ensures FreeRTOS−>p r i o r i t y [ ( TASK) pxTask ] ==
4 ( \ n a t u r a l ) ( uxNewPr ior i ty < configMAX_PRIORITIES ? uxNewPr ior i ty :

configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U) )
5 _ ( ensures (FreeRTOS−>s ta te [ ( TASK) pxTask ] == ready && FreeRTOS−>p r i o r i t y

[ ( TASK) pxTask ] > \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ) ==>
6 (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready && FreeRTOS−>

s ta te [ ( TASK) pxTask ] == running )
7 )
8 _ ( ensures ( ( pxTask == NULL | | ( tskTCB ∗ ) pxTask == \ o ld ( pxCurrentTCB ) )

&& ! (
9 \ f o r a l l TASK t ; FreeRTOS−>s ta te [ t ] == ready ==> FreeRTOS−>

p r i o r i t y [ ( TASK) pxTask ] >= FreeRTOS−>p r i o r i t y [ t ]
10 ) ) ==> (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready &&
11 FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running &&
12 \ o ld (FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] ) == ready )
13 )
14 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t

] ) != FreeRTOS−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [
FreeRTOS−>s ta te [ t ] ] )

laration, the API function first checks whether the new priority is less than

configMAX PRIORITIES (see Ln. 594 on Page. 352). If it is not, it is set to the

maximum priority. An assertion is added to ensure this. It then enters the critical

session to update the priority of the target task and manage the system states. In

this case, the FreeRTOS structure needs to be unwrapped. It transfers the owner-

ship of pxTCB to the threads. As in the case of deleting tasks, if pxTask is equal

to pxCurrentTCB, it is set to NULL. With the macro prvGetTCBFromHandle the task

control block for the target task is obtained and assigned to pxTCB. Atomic read

annotations are also used for reading from pxCurrentTCB. The functions use a

local variable, uxCurrentPriority to record the old priority of the target task. Af-

ter obtaining the control block for the target task, its priority is also accessible and

assigned to uxCurrentPriority.

Afterwards, the local variable xYieldRequired is set to pdTRUE to indicate that

rescheduling is requested, according to the relation between the old and new pri-

ority of the target task (see Ln. 641-663 on Page. 353). Specifically, if it is increased

and the target task is not the running task, or the target task is the running task and

its priority is decreased, it indicates that there may be a ready task that has a higher

priority than the running task. xYieldRequired is set. Following this, the function

starts to update the priority of pxTCB and manage the related system variables. At
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this point, some assertions are inserted into the source code to verify that pxTCB is

wrapped. We then unwrap it to allow the thread to update the priority of pxTCB. The

priority of the target task is also updated to the mapping priority of the virtual

model. Furthermore, if a task is in the ready or running state, its generic list item

should be placed in one of the ready lists, according to its priority. Therefore, the

target task has to be replaced in the new list based on its new priority, which helps

the system perform rescheduling correctly.

During this process, we first need to inform the prover that while pxTCB’s generic list

item is placed in one of pxReadyTasksLists, it is in the ready or running state (see

Ln. 702 on Page. 354). Moreover, to replace its generic list item to the new position

of the pxReadyTasksLists, &(pxTCB->xGenericListItem) is unwrapped.

Finally, assertions are inserted to verify that after this process, the target task is still

in the mapping tasks and its generic list item is replaced in the correct position.

The last part of the function is used to reschedule the system, if xYieldRequired

is set to pdTRUE (see Ln. 726 on Page. 354). Similar to the previous API functions,

portYIELD WITHIN API is used to perform this. It is replaced with ghost code as

well. The assertions and assumptions are used to ensure the operation works.

The only thing different here is that we need to specify the details of topReady

above the ghost code. Because the API function requests rescheduling when the

priority of the running task is reduced, it can still have the highest priority compared

to the other ready tasks. Therefore, topReady can be pxCurrentTCB for this API

function. Further, it has to have the highest priority compared to the other ready

tasks. If the running task still has the highest priority, it is set to topReady. Like the

previous API functions, the atomic access has lost some of the information about

FreeRTOS, so we simply assume that they hold. It can then be wrapped before

exiting the critical session. Finally, the assumption for Trans() is inserted.

5.6 Suspending and Resuming Tasks
In the FreeRTOS task model in Z, we also verify the API functions for suspend-

ing (see Page. 355-358) and resuming (see Page. 358-359) tasks, which are sim-
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ilar to deleting and creating tasks. The key difference between suspending and

deleting tasks is the destiny of the target task, which are the suspended state and

the non-existent state respectively. Due to space limitations they are not presented

here, but can be found from the supplementary material.

5.7 Summary

This chapter firstly introduced VCC and the overview of our verification with VCC.

The rest of the chapter showed our verification for task related functions in the

FreeRTOS implementation. The work described in this chapter shows the possibil-

ity of verifying executable code with an abstract specification and code verifier.

In the next chapter, the FreeRTOS model described in Chap. 4 will be extended to

suit a multi-core platform.
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Chapter 6

EXTENSION FOR MULTI-CORE

This chapter extends the model described in Chap. 4 to a multi-core platform. It

also follows the structure adapted in Chap. 4, which develops the Task , Queue,

Time and Mutex models. Due to time limitations, we were only able to extend the

FreeRTOS specification to a multi-core platform; the proof of the consistency of the

model could not be completed and is part of our future work. In addition, it was

not possible to show all details of the model in the thesis. Full details can be found

from the supplementary material.

6.1 Overview
To migrate FreeRTOS to a multi-core platform, it is important to find a new schedul-

ing policy for tasks. Similar to the model for FreeRTOS, this is an abstract model.

Therefore, one option is to leave the scheduling algorithm as nondeterministic. It

could then be refined as required at the refinement stage. However, because the

system described is an extension of FreeRTOS, we decided to extend the schedul-

ing algorithm for FreeRTOS to a multi-core algorithm. This provides benefits for

the development in later stages. For instance, if we apply the promotion tech-

nique to develop the new specification of the multi-core model1, the specification

for FreeRTOS can be reused. As mentioned previously, in FreeRTOS, tasks are
1We produced another version of the task model with promotion, which is shown in Sect. 8.2.
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scheduled based on their priority. On a multi-core platform, tasks execute in paral-

lel. Therefore, rather than time-slicing a single processor, a simple scheduling pol-

icy is used to extend the notion of a highest-priority ready task to a set of highest-

priority tasks sufficient for the number of cores available. This is called global

scheduling. However, it is known to be less efficient than partitioned scheduling,

where each task is bound to a specified core and scheduling occurs within the

core [73]. The main reason for this is the cost of migrating tasks from one core to

another. We adopted a priority-based partitioned scheduling policy.

As this was the first attempt, we aimed to keep everything as simple as possi-

ble. Therefore, we avoided specifying details about the architecture of the multi-

core platform, memory and interrupt management. Following the structure of the

FreeRTOS model, we divided our specification for the multi-core platform into four

major parts: Task , Queue, Time and Mutex . The well-definedness of these mod-

els was checked by Z/Eves. Furthermore, they can also be animated by ProZ.

6.2 Task Model
This is the core part of the specification. It includes operations for task manage-

ment, such as creating tasks and deleting tasks, etc. Similar to Sect. 4.2.1, we also

need to define some basic statements that are used in the specification.

6.2.1 Basic Statements
As well as the given sets defined in Sect. 4.2.1, we introduce another given set,

CORE , to represent the cores.

[CONTEXT ,TASK ,CORE ]

The constant, bare context represents the initial state of the processors, similar to

the FreeRTOS model. The multi-core operating system may have multiple idle

tasks, one for each core; therefore, the constant idle need to be updated to idles ,

a finite set of tasks. The last constant cores represents all the cores available for

the system. As each core can have only one idle task, the number for cores and

idle tasks should be the same.
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bare context : CONTEXT
idles : FTASK
cores : FCORE

#cores = #idles
cores 6= ∅

As in FreeRTOS, we defined five states for tasks in our system. Their state transi-

tions should also obey transition defined in Sect. 4.2.1.

Similar to the FreeRTOS model, we also have four sub-state schemas to describe

all essential properties of tasks in the system: TaskData, StateData, ContextData

and PrioData. TaskData includes the most basic properties of the system. It

first introduces a finite set tasks to represent all the tasks in the system. As a

multi-core system, there is more than one running task in the system: each core

must always have a running task and the running task is uniquely run on one core.

Therefore, the definition of the running task is updated to an injective total function,

running tasks , which shows the relation between cores and their running tasks.

Finally, a partial surjective function, executable, is given to record the relation be-

tween each task and its core. As we adopted a partitioned scheduling policy in our

system, this information is essential for scheduling. To guarantee the properties

mentioned above, four constraints are specified.

TaskData
tasks : FTASK
running tasks : cores � TASK
executable : TASK 7→→ cores

ran running tasks ⊆ tasks
idles ⊆ tasks
dom executable = tasks
∀ t : ran running tasks • running tasks∼(t) = executable(t)

The definition for StateData and PrioData are similar to the FreeRTOS model.

The only difference is that rather than checking only one idle task, we need to

ensure that for all idle tasks, their states are ready or running and their priorities

are 0. Originally, there was only one core in the system, which meant that only one

physical context needed to be recorded. Here, in the new ContextData, a function
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from cores to CONTEXT is used to record the physical context for each core. With

these schema definitions, the schema for the base system, Task , can be defined

as follows:

Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state∼(| {nonexistent} |))
state∼(| {running} |) = ran running tasks
∀ pt : state∼(| {ready} |); r : ran running tasks
| executable(pt) = executable(r) • priority(r) ≥ priority(pt)

It appends three extra constraints to the system. Comparing it to the Task schema

in the FreeRTOS model, we can see that the meaning of these constraints are the

same. However, as the number of running tasks changes from one to many, the

expression has to be updated accordingly.

It is essential to provide the schema to initialise Task . When the system starts,

(a) There are only idle tasks in the system; (b) The state for all tasks is

nonexistent , except idle tasks, which are the running tasks for their cores; (c) The

physical and logical context is empty at the moment, i.e., bare context ; (d) The pri-

ority is 0 for all tasks. Because each core only has an idle task in the initial

state, the initial value for running tasks and executable should be pairs of idles

and cores . However, although it is important to know there is an idle task from

idles executing on each core from cores , we do not care which idle task maps to

which core. Therefore, we leave the initial value for running tasks and executable

as nondeterministic.

Similar to the previous model, the ∆ schema for Task has been overridden to insist

that the state transfer for each task should follow the rule defined in transition as

well.
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6.2.2 Additional Schemas

First, the schema Reschedule is modified to satisfy priority-based partitioned

scheduling for the multi-core environment. Specifically, all the tasks are bound

to a core, which is available in the system; they will be scheduled later within the

core, based on their priority. When there is a task whose priority is higher than the

running task of its core, it will be scheduled as the new running task.

Reschedule
∆Task
target? : TASK
tasks? : FTASK
executable? : TASK 7→→ cores
st? : STATE
pri? : TASK → N

target? ∈ tasks?
dom executable? = tasks?
tasks ′ = tasks?
running tasks ′ = running tasks
⊕{(executable?(target?) 7→ target?)}

executable ′ = executable?
state ′ = state ⊕ {(target? 7→ running),

(running tasks(executable?(target?)) 7→ st?)}
phys context ′ = phys context
⊕{(executable?(target?) 7→ log context(target?))}

log context ′ = log context
⊕{(running tasks(executable?(target?))
7→ phys context(executable?(target?)))}

priority ′ = pri?

As well as the interface variables introduced in the FreeRTOS model, target?,

tasks?, st?, pri?, another input variable is provided, executable?, which updates

the executable information for tasks.

Second, there is also a frequently reused operation to search for the ready task

that is bound to the same core as the given task and holds the highest priority.

findTopReady
Task
target? : TASK
topReady ! : TASK
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target? ∈ tasks
state(topReady !) = ready
executable(topReady !) = executable(target?)
∀ rt : state∼(| {ready} |) | executable(rt) = executable(topReady !)
• priority(topReady !) ≥ priority(rt)

This schema is reasonably simple compared to the previous one. It takes the given

task in the input target? and returns the highest-priority ready task with topReady !,

which is nondeterministically selected because we are not concerned about the

details of any particular scheduling algorithm, only that this task holds the highest

priority among the other ready tasks within the same core.

Third, due to partitioned scheduling, when creating a task it is necessary to al-

locate it to one specific core, which may have access to a particular resource or

have the shortest distance property. If, however, the location of the task is not

of interest to the user, then the system will allocate a suitable core. The algorithm

used here is inspired by Best-Fit Algorithm [74] for memory allocation. The schema

findACore T is designed to be used by the task creation schemas to find a proper

core for new task.

findACore T
Task
newpri? : N
executeCore? : CORE
executeCore : CORE

executeCore? /∈ cores
executeCore ∈ cores
∃ tcs , cs : F cores |

tcs = { pc : cores | newpri? > priority(running tasks(pc)) }
• (tcs = ∅ ⇒ cs = cores) ∧ (tcs 6= ∅ ⇒ cs = tcs)
∧ (∀ oc : cs • executeCore ∈ cs
∧ #(executable∼(| {executeCore} |)) ≤

#(executable∼(| {oc} |)))

The key aim of this algorithm is to find the best core for the task, so that it can be

executed as soon as possible. It also attempts to minimise the maximum loads

of all the cores, thus helping other tasks to meet their deadlines. Specifically, this
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schema takes two input variables from the task creation schemas, newpri? and

executeCore?, which represent the new priority of the target task and the target

core specified by the user. When executeCore? is specified by the developer, this

schema will have no effect. Otherwise, it compares the priority of the new task

with the priority of all running tasks to find out whether it is possible to schedule

the new task immediately. If it is possible, then the set tcs includes all possible

cores. Otherwise, it is set to cores , which indicates all the cores available in the

system. Subsequently, it examines which core has the minimum load and sets it to

executeCore, which can be used later by related schemas.

6.2.3 Creating and Deleting Tasks
Similar to creating tasks for FreeRTOS, the relation between the priority of the

new task and the priority of the running task, both of which are executed in the

same core, splits task creation into two separate cases, normal and rescheduling.

Depending on whether the associated core for the new task is specified, each of

these cases can be further divided into two sub-cases. Therefore, the definition for

task creation can be divided into four cases. When the user specifies the executing

core, the new task target? is added to the system with the new priority newpri? and

the bound core information recorded in related functions. If the priority of the new

task is not higher than the priority of the running task, the system does not need

rescheduling; the state of the new task is set to ready . Otherwise, Reschedule is

used to reschedule the system. When the executing core is not provided by the

developer, the schema findACore T is used to determine the core to which the

new task will be bound. Therefore these cases, where the user does not provide

the executing core, are covered by the cases where the executing core is specified.

The delete operation is simpler than the create operation, because it considers only

two cases, rescheduling or not. These cases are similar to the FreeRTOS model. If

the deleted task is not the running task, it removes the target task from the system

and updates related functions; otherwise, it leads to rescheduling. As tasks are

bound to different cores, we cannot simply get the task with the highest priority from

the ready state, like the rescheduling case for task deletion in the FreeRTOS model.
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The schema findTopReady is used to find which task is going to be rescheduled

as the new running task for that core after the operation. Otherwise, it does a

similar job to the FreeRTOS model: removes target?, which is a running task, from

tasks , and executable; updates topReady !, which is defined by findTopReady , to be

the running task in its core; updates the physical context of the executing core of

topReady ! to its logical context; and finally, sets the logical context of the previous

running task to bare context .

6.2.4 Migrating Task
As a multi-core system, it is also necessary to provide facilities for the user to move

a task from one core to another. The schema, Migration T , is introduced for this

purpose. There are four cases for migrating tasks:

1. MigrationN T The task that is going to be migrated is a non-running task

with a priority that is not greater than the priority of the running task of the

target core, and therefore does not cause rescheduling, either in the orig-

inal core or in the target core. All that needs to be done is to update the

information about the target task in the new core for executable.

2. MigrationS T The migrating task is a non-running task with priority higher

than the running task of the new core. The original core does not perform

rescheduling, but the migrating task causes a reschedule in the target core.

The schema Reschedule is used to do this.

3. MigrationRuN T The migrating task is running in its core, but has a priority

lower than or a priority equal to the running task of the target core. As the

migrating task is moved out, rescheduling is requested to find a suitable ready

task to fill the core. In the target core, however, the migrant is simply added

to the ready list.

4. MigrationRuS T The migrant task is the running task in its core and also

has a higher priority than the running task in the target core. Both source

and target cores need rescheduling (and Reschedule cannot do this).
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6.2.5 Other Operations

In addition to the operations described above, other operations are also for task

management, such as suspending tasks, resuming tasks and changing the priority

of tasks. However, their effects are isolated to a single core, the one in which the

target task is executing. Their definitions are almost the same as in the FreeRTOS

model. Therefore, they are not described in detail here. Their specification can be

found in the supplementary material. It is worth noticing that as the definition of

the running tasks is different, the related expressions are different and we need to

keep the function executable unchanged for these operations.

6.3 Queue Model

Queue is also defined as a communication facility for tasks in our system. As

tasks which need to communicate with each other may be resident in the different

cores, queues should be accessible for different cores. At the same time, the base

statement definition for the queue model in the FreeRTOS model includes all the

essential information about a queue. However, each queue is limited to a single

core only. Therefore, the function q ava is appended to the schema QueueData

to enable multiple accessibility for the new model. This function records a set of

cores for each queue, which can access the queue. Similar to the functions, q size

and q max , the domain of this function should also be the queues known by the

system, i.e., queue. The range also has to be a set of cores known by the system,

i.e., cores .

QueueData
queue : PQUEUE
q max : QUEUE 7→ N1

q size : QUEUE 7→ N
q ava : QUEUE 7→ FCORE

dom q max = dom q size
dom q size = dom q ava
dom q ava = queue
ran q ava ⊆ F cores
∀ q : QUEUE | q ∈ queue • q size(q) ≤ q max (q)
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To extend operations from the task model to the queue level, the same strategy in

Sect. 4.3.2 can be used. In addition, when deleting or suspending a task, it is nec-

essary to remove related data from functions in WaitingData and QReleasingData.

It is worth noticing that although it is easy to use the variable running task to re-

fer to the task executing the operation in the FreeRTOS model, we have multiple

running tasks in the new model. A new input variable, self ?, has to be introduced

to each schema which needs to refer to the task executing the operation. For in-

stance, to distinguish whether a task has just been released from the waiting event,

we check whether the running task belongs to the domain of releasing functions

in the FreeRTOS model. Here, we need to verify whether self ? belongs to the

releasing functions.

To create a queue, as well as the constraints and the behaviours described in

Sect. 4.3.3, we also need to know the set of cores, cset?, which can access the

queue. This information is recorded by appending the ordered pair, (que?, cset?),

to the function q ava.

When deleting a queue, we first need to check whether the calling task belongs to

a core which can access the queue. Because there is more than one running task

in the system, it is impossible to refer to the calling task by using the running task.

The input variable self ? is introduced to indicate the calling task. Then, with the

function executable, its bound core can be identified. If this core is one of the cores

which can access the queue, deleting can be performed. The information related

to the queue should be removed from queue, q max , q size and q ava.

For sending and receiving items to and from a queue, we also use the variable

self ? to identify the calling task, and the schema findTopReady is used to find the

correct highest-priority ready task when rescheduling is required. The behaviours

of these operations are the same as the FreeRTOS model (see Sect. 4.3.4).

Because a queue can only be accessed by a particular set of cores in the sys-

tem, if a task which is using the queue migrates to another core which is not au-

thorised to access the queue, the set of available cores for the queue has to be
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updated to include the core, or the task loses its ability to access the queue. The

last operation for the queue model is introduced to handle this, which is called

ChangeQueueLevel TQ .

ChangeQueueLevel TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
cset? : F cores

self ? /∈ dom release snd ∪ dom release rcv
que? ∈ queue
state(self ?) = running
executable(self ?) ∈ q ava(que?)
cset? 6= q ava(que?)
cset? 6= ∅
∀ t : wait rcv∼(| {que?} |) ∪ wait snd∼(| {que?} |)
∪release rcv∼(| {que?} |) ∪ release snd∼(| {que?} |)
• executable(t) ∈ cset?

ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size
q ava ′ = q ava ⊕ {(que? 7→ cset?)}
ΞWaitingData
ΞQReleasingData

As we can see from the specification, the behaviour of the operation is really sim-

ple. It updates the value of q ava(que?) and keeps everything else unchanged.

However, it can be performed only when the new set of cores is not empty and not

equal to the original set. In addition, it also has to include all the cores in which

there are some tasks using the queue. Otherwise some of these tasks may lose

access to the queue.

6.4 Time and Mutex Model

The semaphores and mutexes in this multi-core model are also defined as special

cases of queues. The properties of time facilities and semaphores and mutexes

are the same as the FreeRTOS model. The operation schema of the lower level

model can be extended to the higher level by the same strategy. Moreover, for the
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operation schemas for the time and the mutex model except TimeSlicing TQT ,

schemas for mutex tasking and mutex given, they focus on the behaviour of one

task in one core, so their definitions are close to the FreeRTOS model. Due to

length limitations, they are not repeated here (see Sect. 4.4 & 4.5 and Page. 205

and 225 for the details).

6.4.1 Time Slicing
The most interesting schema for this model is TimeSlicing TQT . When time-

slicing happens, the running tasks need to be replaced in all the cores in which

there are some ready tasks that have the same priority as their running task. To

achieve this, we first define a set of ready tasks with the same priority as their

running task, called topReadys !. With this set and the inverse function of executable,

we can find all the cores which need to be rescheduled. Therefore, the following

schema is given.

TimeSlicing TQT
∆TaskQueueTime
topReadys ! : FTASK

#topReadys ! ≤ #cores
∀ t : topReadys ! • state(t) = ready
∧ priority(t) = priority(running tasks(executable(t)))

∀ t1, t2 : topReadys ! | executable(t1) = executable(t2) • t1 = t2
∀ c : cores | (∀ t : topReadys ! • executable(t) 6= c)
• (∀ t : executable∼(| {c} |) | state(t) = ready
• priority(t) < priority(running tasks(c)))

topReadys ! 6= ∅
∀ t : dom time • time slice ≤ time(t)
tasks ′ = tasks
executable(| topReadys ! |)−C running tasks ′

= executable(| topReadys ! |)−C running tasks
executable ′ = executable
(running tasks(| executable(| topReadys ! |) |) ∪ topReadys !)−C state ′

= (running tasks(| executable(| topReadys ! |) |)
∪topReadys !)−C state

executable(| topReadys ! |)−C phys context ′
= executable(| topReadys ! |)−C phys context

running tasks(| executable(| topReadys ! |) |)−C log context ′
= running tasks(| executable(| topReadys ! |) |)−C log context

priority ′ = priority
∀ trt : topReadys !
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• running tasks ′(executable(trt)) = trt
∧ state ′(trt) = running
∧ state ′(running tasks(executable(trt))) = ready
∧ phys context ′(executable(trt)) = log context(trt)
∧ log context ′(running tasks(executable(trt)))

= phys context(executable(trt))
ΞQueue
clock ′ = clock
delayed task ′ = delayed task
time ′ = time
time slice ′ = time slice + slice delay

For this operation, the post condition for running tasks has to be discussed in two

parts: (a) for the cores which do not need to be rescheduled, the value has to be

equal to its original value; (b) on the other hand, the value has to be updated with

tasks in topReadys ! according to its executable core. Similarly, the post conditions

for variables state, phys context and log context also need to be considered in two

parts. Moreover, the value of time slice has to be increased and the rest of the

variables should be the same as before.

6.4.2 Taking Mutexes
As mentioned in Sect. 4.5.4, for a single core system, there are six cases for taking

a mutex. When this operation migrates to a multi-core platform, there are two

extra cases. First, if the task which is executing is taking the mutex and holds

the mutex already, the specification simply increases the value of mutex recursive

for the mutex. Then, if the mutex is available, there are two cases for taking a

mutex depending on whether the calling task has held a mutex already. Similar to

the FreeRTOS model, the schema QueueReceiveN TQT is used to simplify the

specification. When the mutex is not available and the priority of the calling task

is not greater than the priority of the mutex holder, the calling task will be blocked

by the operation and no priority inheritance requested, QueueReceiveE TQT is

used for this case. In addition, once the priority of the calling task is higher than

the mutex holder, the mutex holder needs to inherit the priority of the calling task.

As a multi-core system, the mutex holder and the calling task may be executing

in different cores. If they are executing in the same core, the operations are close
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to the FreeRTOS model. The mutex holder or the top priority ready task replaces

the calling task, which is blocked by the waiting event. However, when the mutex

holder belongs to a different core of the calling task, there are two additional cases.

When the inherited priority of the mutex holder is lower than or equal to its running

task or the mutex holder is not in the ready state, for that core, no rescheduling

is requested. We just need to reschedule the top priority ready task of the calling

task as the new running task. On the other hand, once the mutex holder is in the

ready state and the inherited priority is higher than its running task, rescheduling

needs to be performed in both cores. For these two schemas, Reschedule cannot

be used for rescheduling. This is because of the need to update the state of three

and four tasks respectively. Reschedule cannot handle this.

6.4.3 Giving Mutexes

Like the FreeRTOS model, the mutex giving operation is the most complex of the

whole model. The new version of basePriorityMan is also introduced to help man-

age the base priority of the calling task. The first case for this operation is also

for a recursively returning mutex. It decreases the mutex recursive of the mu-

tex and keeps everything else unchanged if the mutex holder takes the mutex

several times. When there is no task waiting to take the mutex, we have three

cases: (a) The mutex holder, i.e., the calling task, did not inherit priority from an-

other task. It just uses the schema QueueSendN TQT to return the mutex, re-

moves the mutex holder from the mutex, sets the mutex recursive of the mutex

to 0, uses the schema basePriorityMan to manage the base priority of the call-

ing task and keeps the rest of the variables unchanged; (b) When the priority of

the mutex holder is inherited from another task, it needs to reset its priority to the

original. Further, if its original priority is still the highest of the ready tasks in the

same core, it can keep executing. As the priority of the mutex holder has to be

updated, the schema QueueSendN TQT cannot be used. The behaviour has to

be defined from scratch. It first updates the priority of the mutex holder, sets the

size of the mutex to 1 make the mutex available for other tasks and also updates

mutex holder , mutex recursive, etc. as in the previous case; (c) Finally, when the
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original priority of the mutex holder is not the highest; rescheduling is requested

and the schema Reschedule is used. Furthermore, if there are tasks waiting to take

the mutex, when the mutex holder returns the mutex, the highest priority waiting

task is woken up. Meanwhile, if the mutex holder did not inherit the priority, the

priority of the mutex holder does not need to be updated after the operation. What

we need to do is return the mutex, and unblock the highest priority waiting task.

However, depending on the priority of the woken-up task, rescheduling needs to

be considered. If its priority is not higher than the running task of its core, the wo-

ken task is placed in the ready state. Otherwise, the running task is replaced in

its core. The behaviour of these two cases is the same as that of the queue send-

ing operation except variables related to mutexes. Therefore, the specification for

these two schemas can be defined with the schema of QueueSendW TQT and

QueueSendWS TQT respectively, and an update of the functions mutex holder

and mutex recursive.

Finally, different from last two cases, the mutex holder inherits priority from other

tasks in the remaining cases. After the returning operation, the priority of the mutex

holder has to be reset and the highest priority waiting task has to be woken up. In

detail, the following conditions have to be considered to decide the behaviour of

these cases:

1. Do the woken task and the calling task belong to the same core?

2. The relationship between the original priority of the mutex holder, the top

priority ready task which executes in the same core as the mutex holder, the

woken task and the running task in the same core as the woken task.

Table 6.1 illustrates the cases and their conditions in detail. In this table, Running

Task refers to the running task which executes on the same core as the woken

task, if the executing core for the woken up task is different from the executing core

for the calling task; Top Waiting refers to the highest priority waiting task of the

mutex; and Top Ready represents the highest priority ready task of the core of the

calling task.
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Table 6.1: Conditions for giving mutex cases (have waiting tasks and the mutex

holder inherits the priority)
Running Task Top Waiting Calling Task Top Ready

c2 c1 c1 c1
1 PH - - PH

Running Ready Ready Running
c2 c1 c1 c1

2 PH PH - -
Running Running Ready Ready

c2 c1 c1 c1
3 PH - PH -

Running Ready Running Ready
c2 c2 c1 c1

4 - PH PH -
Ready Running Running Ready
c2 c2 c1 c1

5 - PH - PH

Ready Running Ready Running
c2 c2 c1 c1

6 PH - PH -
Running Ready Running Ready

c2 c2 c1 c1
7 PH - - PH

Running Ready Ready Running

From this table, firstly we can see that the effect of cases 3 & 6 are the

same. They do not need to reschedule the tasks in any core. The schema

MutexGiveWInhN TQTM is defined for this case, which is the normal case for

mutex returning. Secondly, cases 1 & 7 have the same effect as well. Although the

relation between the executing cores for the top priority waiting task and the calling

task are different in these two cases, they both request to use the top priority ready

task replacing calling task as the new running task and do not reschedule for any

other cores. When the woken task belongs to the core of the calling task, the pri-

ority of the top priority ready task has to be the highest compared with the original

priority of the calling task and the priority of the woken task. When the operation

resets the priority of the calling task, the system needs to be rescheduled. Simi-

larly, cases 2 & 4 can also be recognised as the same case. Even through the post
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states for these four tasks are different in these two cases, it can be considered as

the top priority waiting task being rescheduled as the new running task in its core.

Specifically, if it belongs to the core of the calling task and its priority is the highest

compared with the original priority of the calling task and the priority of the top

priority ready task, it is scheduled as the new running task in its core (c1). There

is no rescheduling for other cores (c2). On the other hand, when the woken task

belongs to a different core from the calling task, and its priority is also higher than

the priority of the running task in the core and the original priority of the calling task

is no less than the priority of the top priority ready task in that core, the rescheduling

also occurs in the core of the woken task (c2) and no rescheduling is requested for

other cores (c1). Finally, case 5 is the last case for giving mutexes. It requests

rescheduling for both cores of the calling task and the woken task. As shown in

Table 6.1, the top waiting task and the calling task belong to different cores. The

priority of the top waiting task and the top ready task are the highest in their cores.

Rescheduling happens in both cores. As well as these differences for task related

variables, the new values for the other variables are the same as the other cases

of mutex giving. The specification for these schemas can be found from Page. 258.

6.5 Summary

This chapter presented the extended FreeRTOS model, which is used for a multi-

core platform. The first section highlighted the differences between the original

version and the multi-core version of the model. Following the structure used in

Chap. 4, the model for the multi-core platform was shown, which focused on the

differences between the original model and the new model. This piece of work

shows that the model is easy to reuse and extend.

The next chapter will evaluate our project. Case studies will also be shown in the

next chapter.
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Chapter 7

EVALUATION AND CASE STUDIES

This chapter evaluates our research project. It compares the project with the ob-

jectives listed in Sect. 1.5, it also summarises the achievements of the project, fol-

lowed by animations and proofs for the case studies discussed in Chap. 2. Finally,

some issues about the implementation of FreeRTOS are discussed.

7.1 Project Summary

We will now show that, except objective d in Sect. 1.5 (which is included in

Sect. 8.2 as a future work), our project meets the objectives (Sect. 1.5) and

requirements (Sect. 3.3) proposed at the beginning of the project. During the

project, we produced an abstract formal model for FreeRTOS (Obj. a). This in-

cludes 514 Z paragraphs, including basic definitions for the model, schemas for

the operations, theorems for the consistency verifications and some assistant lem-

mas. From these paragraphs, 598 theorems were derived, all of which have been

proved with Z/Eves (Well-definedness and Feasibility). In particular, around

half of them (240) were proved automatically. The specified behaviour of the

FreeRTOS API functions meets the requirements list in Sect. 3.3.1. The sum-

mary of the relationship between the API interfaces and the schemas in the speci-

fication is included in Appendix C. In addition, the model can also be animated by

Page 133



ProZ [33] (Animatable). Based on our specification, the function contracts for task-

related API functions were developed and the functions verified with VCC (Obj. b).

However, due to time limitations, we only verified the task-related API functions

and reduced the code complexity to focus on the functions modelled with the Z

notation, we believe it is enough to demonstrate the possibility of directly verifying

the implementation with the abstract formal specification. During the modelling and

verification of FreeRTOS, we detected some issues with the FreeRTOS implemen-

tation, which are discussed in detail in Sect. 7.3 (Obj. c). Finally, we extended the

model of FreeRTOS to a multi-core platform, as described in Chap. 6. The well-

definedness of our multi-core model was also verified with Z/Eves, which includes

the basic syntax and domain check for all the definitions. Further, the multi-core

model can also be animated by ProZ (Obj. e). These extensions show that our

specification for FreeRTOS is reusable. We also provide the source code and

project file of our work in the supplementary material. This makes it easy to repro-

duce (Reproducible). Therefore, our model satisfies non-functional requirement

stated in Sect. 3.3.2.

In summary, except objective d, this project meets the objectives and requirements,

both functional and non-functional, proposed at the beginning of the project.

7.2 Case Studies
As discussed in Chap. 1, we have shown how our specification illustrates the exe-

cution of FreeRTOS code. Due to the different format requirements between ProZ,

CZT and Z/Eves, we modified the source files to fit them. However, to animate our

model with ProZ, some extra modifications were still needed, as follows:

• Remove the definition for the findDelegate function, which is defined to help

in proof and has no effect for animation. Most importantly, ProZ struggles

with it and runs out of time;

• Remove the disabled mark for transition, i.e., use \begin{zed} to replace

\begin[disabled]{zed}. Otherwise, ProZ cannot use this definition, as

[disabled] is not defined in ProZ;
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• Use “Init” to replace the name of the top-level initialisation schema of the

model. For instance, to animate the Task model, the name of the schema

Init Task , should be replaced. This is the entrance for ProZ to detect the

model state and initialise the model;

• Remove the label, 〈〈disabled slice delay def 〉〉, which is not defined in ProZ;

• For the mutex model, use “XXX ?/que?” to replace all “que? := XXX ?” in

the schema reuse, as CZT cannot recognise the second format; in addition,

ProZ cannot handle the first one.

• For the mutex model, we use the schema basePriorityMan (See Page. 258)

to simplify the definitions for returning mutex, which is helpful for modelling.

However, it dramatically increases the load for the animator. Therefore, it

has to be removed and its contents have to be used to replace all calls to

the schema. For example, the schema MutexGiveNnonInh TQTM (See

Page. 258) uses the schema basePriorityMan to manage the base priority

of the running task, which should be replaced by:

running task ∈ ran({mut?} −Cmutex holder)
⇒ ΞOriginalPriorityData

running task /∈ ran({mut?} −Cmutex holder)
⇒ base priority ′ = {running task} −C base priority

7.2.1 Case 1
The application for the first case is shown in Fig. 1.2 Page. 6. Firstly, ProZ is used

to animate the model. Before animation, we set the size of our given sets to 4; the

maximum integer needs to be set to 4 as well. This is because we have four tasks

in the application, idle, Task1, Task2 and Task3, and the maximum number used

is the priority of Task3, namely 4. Afterwards, the .tex file is loaded in ProZ.

Although we have three tasks in the application, these tasks execute in a single-

core processor. Therefore, it is possible to predict the sequence of API function

calling, which is1:

xTaskCreate Create Task2 with priority of 1;
1As idle task is created when the animator is initialising, it is actually Task1 for the animator.

Therefore, the first task we created in the application (i.e. Task1) is Task2 in ProZ.
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Figure 7.1: API function execution history and result for Case 1

xTaskCreate Create Task3 with priority of 2;

vTaskPrioritySet Change the priority of Task2 to 3;

xTaskCreate Create Task4 with priority of 4;

vTaskDelete Delete Task4;

After initialising the machine in ProZ, we call the API function in this order (see

Fig. 7.1). As we analysed in Sect. 1.2.1, the expected final state of execution

should be:

1. There are three tasks left in the system, idle, Task2, and Task3;

2. Task2 is the running task, as it has priority of 3.

3. Task3 is in ready state with priority 2.

4. Task4 is unknown to the system, therefore its state is nonexistent.

As we can see from the screen shot of state properties, the result generated from

our model matches our expectations.

In addition to this, we also let Z/Eves verify our result. We use a theorem, simi-

lar to Theorem: 21 (see Page. 90), to show that the behaviour of the API function

matches our expectation. The API function call xTaskCreate is repeated three

times in the application, but we only show the theorem for one of these calls. There-

fore, we have the following theorems to show our model works for the application.

1. Create Task1. When we execute this, there is only the idle task in the

system, which is the running task; therefore, we have to indicate this situation
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to the prover. The input variables need to be introduced and we need to

specify the value of newpri? as 1. After this operation, we expect that the

new task is created, which means it is in the set tasks ′. It should be the

running task with priority 1, which is higher than the priority of the idle task.

Theorem 24 (CaseStudyStep1)

∀Task ; target? : TASK ; newpri? : N
| tasks = {idle} ∧ running task = idle
∧ newpri? = 1 ∧ CreateTask T

• target? ∈ tasks ′ ∧ state ′(target?) = running
∧ priority ′(target?) = 1

To prove this, we know that the system needs to be scheduled. Therefore, we

try to eliminate the non-schedule part of the specification of CreateTask T .

The key condition to distinguish these two cases is whether the priority of the

new task is greater than the running task. Thus, we expand the necessary

schemas of the proof goal and then let the prover discharge the proof goal

automatically by the prove by reduce; command.

proof [CaseStudyStep1]
with disabled (CreateTaskS T , StateData,
TaskData, ContextData) reduce;

prove by reduce;

2. Change the priority of Task2 to 3. Similarly, we need to inform the prover

about the pre-state of the system. The key element of the expected result of

this API function call is that Task2 is scheduled as running task with priority

of 3. By eliminating the unrelated case of ChangeTaskPriority T , like the

previous case for CreateTask T , it is easy to prove this theorem.

Theorem 25 (CaseStudyStep3)

∀Task ; Task2,Task3, target? : TASK ; newpri? : N
| tasks = {idle,Task2,Task3}
∧ priority(Task2) = 1 ∧ priority(Task3) = 2
∧ state(Task2) = ready ∧ running task = Task3
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∧ target? = Task2 ∧ newpri? = 3
∧ ChangeTaskPriority T

• priority ′(Task2) = 3 ∧ running task ′ = Task2

3. Finally, we verify the properties related to the last step of the API function

call, delete Task4. Following the strategy introduced before, the theorem

and proof can be obtained. The only difficulty in proving this theorem is

in the nondeterministic definition for topReady !. In order to solve this, it is

necessary to inform Z/Eves that (a) the possible value of topReady ! is one

of the elements of tasks ; and (b) the priority of topReady ! is the greatest

amongst all ready tasks, i.e., the priority of topReady ! has to be greater than

or equal to the priority of Task2.

Theorem 26 (CaseStudyStep5)

∀Task ; Task2,Task3,Task4, target? : TASK ; newpri? : N
| tasks = {idle,Task2,Task3,Task4}
∧ priority(Task2) = 3 ∧ priority(Task3) = 2
∧ priority(Task4) = 4 ∧ state(Task2) = ready
∧ state(Task3) = ready ∧ state(Task4) = running
∧ target? = Task4 ∧ DeleteTask T

• state ′(Task4) = nonexistent ∧ running task ′ = Task2

7.2.2 Case 2

In Fig. 1.3, we provided example code demonstrating communication and synchro-

nisation related API functions (see Page. 10). As described, it is also animated and

verified with ProZ and Z/Eves, respectively. Similar to the previous case, we first

animate it with the ProZ animator. In this case, we have two tasks in the system,

together with the idle task. Therefore, it is necessary to set the size of the given

set to 3 for this case. Similarly, 3 would be sufficient for the maximum integer, as

the highest priority in the system is 3, the priority for Task3. After loading the model

to the animator, the following sequence of API functions is called.

xSemaphoreCreateMutex Create a mutex xMutex;

xTaskCreate Create Task2 with priority of 2;
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xTaskCreate Create Task3 with priority of 3;

vTaskDelay Delay Task3 for 1 time units;

xSemaphoreTask Task2 attempts to take the mutex xMutex;

xSemaphoreTask Task3 attempts to take the mutex xMutex.

After initialising the machine in ProZ, the sequence of API functions are called as

shown in Fig. 7.2(Above). It should be noted that when we invoke the schema

DelayUntil TQTM , we selected 1 time unit instead of 10 which was originally

defined on Page. 10, because the maximum number of the integer is 3. If

we increase it to 10 the load of the animator would be dramatically increased.

At the same time, the purpose of this function call is to block the high prior-

ity task. This replacement has no effect on the result. Moreover, the schema

CheckDelayedTaskS TQTM is called after Task2 has taken the mutex to release

Task3 from the blocked state. In addition, we use the sub operation schemas for

mutex take instead of MutexTake TQTM . The key reason is that due to the com-

plexity of MutexTake TQTM , if we use it directly, it considerably increases the

load of the animator. The animator will therefore take a long time to calculate and

may fail to respond at all.

The main behaviour of this piece of code is that two tasks compete for a single

mutex. The lower priority task holds the mutex and blocks the higher priority task.

As the higher priority task is blocked by the mutex taking operation, priority inher-

itance happens. The lower priority task inherits the priority of the higher priority

task. Therefore, the final priority of Task2 should be 3 and it should be in the run-

ning state, while Task3 is in the blocked state with its own priority. As shown on

the bottom side of Fig. 7.2-Bottom, the actual animation result matches our expec-

tation.

Because we have shown the verification of the theorem of xTaskCreate in the pre-

vious section, it is not repeated here. The following theorems show two cases of

xSemaphoreTake. The first one illustrates the case when Task2 attempts to take

the mutex. As the mutex is free initially, it successfully takes the mutex with nor-
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Figure 7.2: API function execution history (above) and result (bottom) for Case 2

mal case in the specification. Meanwhile, the second represents the case when

Task3 attempts to take xMutex, which matches the case when the mutex is un-

available, priority inheritance is requested and the mutex holder is scheduled as

the new running task. Both of them can be easily proved by the Z/Eves command

“prove by reduce”.

Theorem 27 (caseStudyTask1Take)

∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK
| tasks = {idle,Task2,Task3} ∧ queue = {QUEUE1}
∧ priority(Task2) = 2 ∧ priority(Task3) = 3
∧ state(Task3) = blocked ∧ running task = Task2
∧ mut? = QUEUE1 ∧ QUEUE1 /∈ dommutex holder
∧ QUEUE1 ∈ mutex ∧ release rcv = ∅
∧ release snd = ∅ ∧ base priority = ∅
∧ MutexTakeNnonInh TQTM

• mutex holder ′(QUEUE1) = Task2
∧ priority ′(Task2) = 2 ∧ priority ′(Task3) = 3
∧ running task ′ = Task2

Theorem 28 (caseStudyTask2Take)

∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK
| tasks = {idle,Task2,Task3} ∧ queue = {QUEUE1}
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∧ priority(Task2) = 2 ∧ priority(Task3) = 3
∧ state(Task2) = ready ∧ running task = Task3
∧ mut? = QUEUE1 ∧ QUEUE1 ∈ mutex
∧ QUEUE1 ∈ dommutex holder
∧ mutex holder(QUEUE1) = Task2
∧ release rcv = ∅ ∧ release snd = ∅
∧ base priority = ∅ ∧ clock = 1 ∧ n? = 2
∧ MutexTakeEInheritHolder TQTM

• mutex holder ′(QUEUE1) = Task2 ∧ state ′(Task3) = blocked
∧ priority ′(Task2) = 3 ∧ priority ′(Task3) = 3
∧ running task ′ = Task2

7.2.3 Case 3
Our extension model for the multi-core platform can also be animated with ProZ.

Similarly, we formulate some sequences of operation calls that illustrate the be-

haviour of the model. Consider the following sequence, assuming there are two

cores available to the system.

1. Initially, there are two tasks, Task3 and Task4, created on Core1 with priority

of 1 and 2, respectively.

2. Change the priority of Task3 to 3.

3. Create Task5 with priority of 4.

4. Move Task3 to Core2.

When the system is initialised, Task4 occupies Core1, as it has the highest pri-

ority within Core1. Meanwhile, on Core2, the idle task is executing. When the

priority of Task3 is changed to 3, it preempts Task4 and can execute. There-

upon, Task5 is created with a priority of 4. As it is not specified on which core

the new task is created, the system selects one to accommodate the new task,

based on the algorithm described in Sect. 6.2.3. In this case, Task5 will be cre-

ated on Core2. Finally, Task3 is moved to Core2. Because Task3 is the cur-

rent running task on Core1, moving it to Core2 causes Task4 to be scheduled as

the next running task. Therefore, the final state of the system should be as fol-

lows: (a) there are five tasks in the system; (b) Task4 and Task5 are executing

on Core1 and Core2, respectively; (c) Task3 is ready in Core2. To animate this
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Figure 7.3: API function execution history (above) and result (bottom) for Case 3

process, we need at least five individual tasks and two cores available from the

animator with a maximum natural number of 4. We initialise the system with the

setup constants and initialisation commands. For the setup constants

command, we need sets {CORE1,CORE2}&{TASK1,TASK2} as the param-

eters. Next, the initialisation command is used to initialise the system with

maplets TASK1 7→ CORE1, TASK2 7→ CORE2 and so on, as parameters. This

initialises the system with some definitions, such as, TASK1 and TASK2 as the

idle task for CORE1 and CORE2, respectively. At this moment, we can animate

the system following the sequence described above (see Fig. 7.3-Above). After

these operations, we find the system status has been changed to Fig. 7.3(Bottom),

which matches our expectation.

Again, we can verify the API functions with the Z/Eves theorem prover. For in-

stance, consider the scenario where we initialise the state as shown above and

then call CreateTask T to create Task3 on Core1 with priority 1.
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Theorem 29 (createTaskOverTwoCores)

∀Task ; target? : TASK ; newpri? : N; c? : CORE
| cores = {c1, c2} ∧ running tasks = {(c1 7→ i1), (c2 7→ i2)}
∧ newpri? = 1 ∧ tasks = {i1, i2} ∧ c? = c1
∧ executable = {(i1 7→ c1), (i2 7→ c2)} ∧ CreateTask T

• target? ∈ tasks ′ ∧ state ′(target?) = running
∧ priority ′(target?) = 1 ∧ executable ′(target?) = c1

, where i1, i2 represent idle tasks for two cores (i.e. c1 and c2), respectively.

7.3 Issues of FreeRTOS

During the modelling and verifying process of our project, we detected some issues

with FreeRTOS. These issues were revealed at different stages of the project. For

instance, when we analysed the implementation to complete the requirements for

modelling, we found an issue with changing the priority of a mutex holder (see,

item 5). When we proved the precondition theorems, we found that deleting the

idle task violated the system constraints (see, item 1) and so on. Due to the

limitation of our VCC model, only item 1 can be detected during VCC verification.

But it shows the possibility of verifying the implementation with the VCC and the

abstract specification.

1. As shown in the precondition for vTaskDelete (Sect. 5.4), there is one pred-

icate, which states the target task does not equal the idle task. If this pred-

icate is removed, the verification would fail. The reason is that the opera-

tion may delete the idle task, which breaks the constraints of the system.

Generally, the handler of the idle task is hidden from the user. However,

it is possible to obtain it from vApplicationIdleHook, which is provided by

FreeRTOS and used to define extra behaviours of the idle task. Therefore,

we need an extra precondition to ensure that the idle task cannot be deleted

by the operation.

2. Similar to the previous issue, the delete API function does not check if the

target is the holder of a mutex. Because our VCC model does not include the
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context related to mutex, this issue has no effect on our verification. However,

if a mutex holder is deleted without returning its mutex, then the resource is

locked permanently.

3. According to [19], if vTaskSuspendAll is called, xTaskResumeAll has to

be called as many times as the suspend operation to resume the sched-

uler. FreeRTOS uses an unsigned counter, uxSchedulerSuspended, to

record this. However, the API function vTaskSuspendAll does not check

the overflow of the counter. In other words, when it overflows, only one

call to xTaskResumeAll can resume the scheduler from millions of calls

of vTaskSuspendAll. Although calling vTaskSuspendAll millions of times

might not happen in real life, this could still be a weak point in the system.

4. Similar to the issues related to vTaskDelete, the API function vQueueDelete

also does not verify that the target queue is not in use. If a task is blocked by

waiting to send/receive an event to/from the queue, when it is woken up be-

fore the expiration time, it attempts to continue its operation. At this moment,

the target queue could be an invalid pointer, if the queue has been deleted.

Furthermore, in FreeRTOS, the API function vSemaphoreDelete is used to

delete a mutex, which actually uses vQueueDelete directly to perform the

deleting operation. It is then possible to delete a mutex, which is held by a

task. This can even be performed by a task which is not the holder of the

mutex. When the holder returns the mutex or recursively takes it, the handler

of the mutex can be an invalid pointer again.

5. Finally, we reveal an issue, which is not about the implementation, but related

to the design. When the running task fails to take a mutex of which the

holder has a lower priority, then the higher priority task is blocked and a

lower priority task can be executed prior to a high priority task. This is called

priority inversion. FreeRTOS adopts priority inheritance to solve this. To

implement this, a base priority is introduced for each task. This records the

original priority of each task. Afterwards, when a user calls the API function

Page 144



Figure 7.4: Scenario for priority inversion issue
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to change the priority of the mutex holder, which has inherited priority from

another task, FreeRTOS only updates its base priority. Generally, this works

fine. However, if the new priority of the mutex holder is even higher than its

inherited priority, this can cause priority inversion again.

Consider the following scenario (see Fig.7.4). The upper chart shows the

normal case for priority inheritance. When a higher priority task requests a

mutex held by a lower priority task, the lower priority task inherits the priority

of the higher priority task. When it is scheduled as running, it finishes the

job, releases the mutex and recovers its own priority. Then the higher priority

task can take the mutex and continue its task. This works fine in this case.

However, the problem happens at the end of the scenario shown in the lower

chart. There are three tasks in this scenario, MH, PT, HP, which represent the

mutex holder, the preemptive task, and the higher priority task respectively.

Firstly, MH starts running and takes the mutex. When the preemptive task,

which has a higher priority than the mutex holder, joins the system, it pre-
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empts the system and starts to execute. It then attempts to take the mutex

and is blocked by the failure to take the unavailable mutex. MH resumes its

execution and inherits priority from the PT. Before it finishes its job and re-

leases the mutex, HP preempts the system and updates the priority of MH to a

even higher priority than HP. Theoretically, the mutex holder has the highest

priority in the system at the moment, since it should be running. However,

because FreeRTOS only updates the base priority of the mutex holder, which

is not used for scheduling, HP would continues its execution.

We have produced sample code for each of these cases, which are included in

the supplementary material. They can be directly used with the FreeRTOS v7.3.0

simulator.

7.4 Summary

This chapter has evaluated our project in terms of achievement and the case study.

It first described the achievement of this project against the objectives, which were

stated in Sect. 1.5, and requirements, which were abstracted in Chap. 3. Then, it

illustrated the animation and theorem proof for case studies in ProZ and Z/Eves

respectively to show the correctness of the model.

It is worth noting that the theorems for the case studies are composed manually.

Due to the complexity of the system, it is possible that there are mistakes in these

theorems. Especially, when a mistake happens in the condition part of a theorem,

the theorem is still able to be proved by Z/Eves. Because, according to the defi-

nition of implication, the false condition can imply anything. Therefore, if there is

contradiction in the condition part, it is extremely difficult to locate. To avoid this

kind of problem, we wrote some simple theorems to check the condition for these

theorems, which simply state the condition implies to false. If there is a contradic-

tion in the condition, which makes the condition false, the theorem can be proved

easily by Z/Eves. Otherwise, the condition is correct.
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Chapter 8

CONCLUSION AND FUTURE WORK

This chapter concludes the project, including experience gained during the project.

It discusses possible future work for the project and reports on some attempts

related to future work.

8.1 Conclusion
We have produced the first complete abstract specification of FreeRTOS. The

model can be animated by the ProZ tool to show how FreeRTOS works. We have

shown that the model is internally consistent by discharging all the verification con-

ditions for well-definedness of the specification and by calculating the exact pre-

conditions for the successful operation of each part of the FreeRTOS API function.

Experiments were performed based on this model.

Firstly, we translated the base state of the model, and pre and postconditions of

task-related schemas into the virtual model structure and function contracts of

VCC, respectively, to build an annotated version of the FreeRTOS implementation,

which was then verified by VCC.

However, due to time limitations, we were only able to focus on task API functions

and a simplified implementation. This still shows the possibility of verifying soft-

ware implementation directly with a high-level abstract specification and a code
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verifier. The typical way to obtain the implementation in formal methods is refine-

ment, which is normally complex and time consuming. Although it guarantees the

correctness of the design and the implementation, it also increases the difficulty

and expense of the development. However, not every piece of software requires

this high level of correctness, and for such pieces of software, we expect the way

we have demonstrated to be an easier approach to formalisation.

Secondly, we have developed an extended model for a multi-core platform. The

requirements of the specification were inspired (but not limited) by the Multi-BSP

model [35]. As a high-level abstract model, we described the general behaviours

for each operation, which can then be refined for a specific architecture. We also

validated the model with the theorem prover, Z/Eves, by performing the syntax and

domain checking for all the definitions. This work demonstrates the reusability of

our verified specification. It also builds the foundations for developing a verified

RTOS for the multi-core platform.

During the project, there were plenty of difficulties in both modelling and verifying,

for instance:

1. Some operations (e.g., sending items to a queue) may have intermediate

states and it was necessary to find the correct way to describe them.

2. The Z/Eves prover provided reasonable proof automation. However, it also

had some problems. For example, in some cases, the order of predicates

in a schema had an effect on the result of a proof, which should not be the

case.

3. We also found that although there were many similar proof goals, we needed

to guide the prover to prove them repeatedly. This increased the work load

dramatically. A well-designed proof structure would be helpful for simplifying

the proof process.

4. We spent considerable time on VCC experiments. It was not as easy as we

imagined at the beginning. For simple cases, it was very clear and easy.
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However, when the hierarchical ownership tree, which is one of the most im-

portant concepts of VCC, became involved, it was easy to become confused.

Ideally, VCC should notice and highlight all false assertions or predicates that

lead to conflict. However, if conflicts happen in the code, VCC may consider

false to be true, which makes later proofs meaningless. Furthermore, the

error model report provided by VCC was not detailed enough for the user to

understand why the proof failed. This increased the difficulty of working with

VCC.

We also learnt that the Z notation is sufficient for verifying the correctness of a

single function, which is similar to the unit test in normal software engineering.

However, for some of the system properties of the RTOS (such as time-related

issues), other techniques have to be used (like CSP).

We provide all the definitions and proofs in the supplementary material, so that

the entire verification can be replayed to check its authenticity. This means that

crucially our experiment is repeatable.

8.2 Future Work

For future work,

1. As mentioned in Chap. 6, promotion is an alternative way to extend our spec-

ification to a multi-core platform. This would be the first project we expect

to finish as future work and provides several benefits for the specification.

The most important is the possibility for code reuse during development. We

have finished the first part of the model, the task model, with the Z promotion

approach, which is described below.

2. Currently, we translated Z specification to VCC manually without any verifi-

cation about data refinement. As Z notation provides richer data types and

operations than VCC, we would expect that the data types of variables in our

FreeRTOS model can be refined to data types, which can be directly used
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with VCC, in Z notation and verified with Z/Eves automatically. Then directly

use these refined variables in VCC. This will increase the reliability of our ver-

ification during translation process. Furthermore, when the data refinement

is achieved and the variables in the Z specification can be directly used in

VCC, the translation process will become more straightforward. We would

also expect the translation process can be performed automatically by some

software.

3. We expect to verify the whole implementation of FreeRTOS with VCC and our

abstract specification. This will not only provide more solid evidence to sup-

port our expectations in the previous section, but also assure the correctness

of the implementation of FreeRTOS.

4. The models, both for FreeRTOS and multi-core RTOS, can be refined, level

by level, to executable source code in order to obtain a fully verified imple-

mentation of RTOS. This will provide a highly assured RTOS for industrial

and research use.

We are keen to encourage others to use our specifications and proofs as bench-

marks for comparing other notation and tools.

8.3 Task Model with Promotion

We attempted to apply the Z promotion technique to improve our multi-core model.

The model1 for task API functions is developed as an example to illustrate how

that can be achieved, and how it can also be animated with ProZ [33]. To promote

the task model for FreeRTOS to a multi-core platform, we consider that there is a

sub system, which is an instance of FreeRTOS, executing in each core. Therefore,

we can use the task model for FreeRTOS, except the definition for the idle task,

directly as a part of the new model. In the FreeRTOS model, we define the idle

1Although it can be very slow, this model can be animated with ProZ with some modification,

which is stated in the comments of the source file. We also provide example animation in the

supplementary material.
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task as a global constant of TASK . However, for the multi-core model, we need

one idle task for each core. We modify the definition of the idle task for a core

as a “local” variable of the schema TaskData and introduce constants, idles and

cores , globally with constraints similar to the model shown in Chap. 6.

TaskData
tasks : FTASK
running task : TASK
idle : TASK

running task ∈ tasks
idle ∈ tasks
idle ∈ idles

As the idle task should never change for all operations, we appended an additional

constraint to the schema ∆Task , which states that the idle task is equal before

and after the operation. The rest of the task model can be used directly. The base

state schema for the multi-core model can then be defined as follows:

Multi Task
subTask : cores → Task
exeCore : TASK 7→→ cores

∀ c1, c2 : cores | c1 6= c2 •
(subTask(c1)).tasks ∩ (subTask(c2)).tasks = ∅

dom exeCore ∈ FTASK
dom exeCore =

⋃{c : cores • (subTask(c)).tasks}

Firstly, the total function, subTask , is used to match cores and their local FreeRTOS.

In Z, a state schema (e.g., Task ) can be used as a data type. Its characteristic

binding can be obtained by the operator “θ”, which binds the values of variables of

an instance of the schema to the name of the variables of the schema, and this

can then be used to assign the instance of the schema to a variable. Simply, it can

be understood as a handler of an instance of the schema. Similar to the model

described in Chap. 6, the partial surjective function, exeCore, is given to record the

relationship between the tasks and their executable core. Three constraints are

introduced to describe the properties of the system. First, we state that the tasks

set for each core are disjoint; then, the domain of exeCore is defined as the union of
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all the tasks for each core; based on the previous constraints, we can easily prove

that the domain of exeCore has to be a finite set, because tasks for each core and

the set of all the cores in the system, cores , are finite sets. However, it is hard to

prove this with Z/Eves. We chose to append another constraint to allow Z/Eves

to recognise this. Initially, there were only the idle tasks for each core in the

system. Therefore, we defined the domain of the initial state of exeCore as equal

to idles . In addition to this, the initialise schema for the task model, Init Task , was

used to help us to initialise the system for the multi-core model by initialising each

subsystem for each core.

Init
Multi Task ′

dom exeCore ′ = idles
∀ c : cores
• ∃Task ′ | Init Task
• subTask ′(c) = θTask ′ ∧ exeCore ′((subTask ′(c)).idle) = c

Based on these definitions, the promotion schema was defined. This describes

the link between the global and local operations. In this case, three promotion

schemas are specified, because the creating, deleting, and remaining operations

have different behaviours. Specifically:

1. The promotion schema for the creating operations can be defined as the

schema, PromoteC , which takes ∆Task , the input variable (i.e., target?) and

an extra temporary variable (i.e., executeCore) as parameters. In particular,

∆Task is actually provided by the local operation of FreeRTOS. As a new

task, the value of target? should not be in the system. The first precondi-

tion is used to restrict the target task from being included in the domain of

exeCore. At the same time, we need to identify which instance of Task is ex-

ecuting in the core, executeCore. The second predicate of the preconditions

is used to achieve this. Finally, for the post-state of operations, the maplet

of executeCore and the characteristic binding of the post state of Task is up-

dated to subTask and the relation between target? and executeCore is added

to exeCore.
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PromoteC
∆Multi Task
∆Task
target? : TASK
executeCore : cores

target? /∈ dom exeCore
subTask(executeCore) = θTask
subTask ′ = subTask ⊕ {executeCore 7→ θTask ′}
exeCore ′ = exeCore ⊕ {target? 7→ executeCore}

2. Unlike the promotion operation for creating tasks, we need to remove the

target task from the system. The promotion schema for deleting tasks,

PromoteD , needs to remove target? from exeCore, instead of adding it to

exeCore. The other constraints should be the same, in order to identify the

local Task and update it with the post state of Task to subTask .

3. For the remaining operations, which can be described with promotion, there

is no effect on the function executable core, whether suspending tasks, re-

suming tasks or changing the priority of tasks. Similar to the previous case,

the difference between the promotion schemas, Promote and PromoteC , is

the function exeCore, which stays the same.

Furthermore, with the promotion schemas, the sub-definitions for creating tasks

can be defined as:

createTaskN MT =̂ ∃∆Task • CreateTaskN T ∧ PromoteC

createTaskS MT =̂ ∃∆Task • CreateTaskS T ∧ PromoteC

Like the multi-core model described in Chap. 6, the schema, findACore MT , is

introduced to locate the best position for a new task if its executable core is not

specified by a user. The creating operation can be defined similarly. The same

strategy can be applied to specify the rest of the operations.

We also specify the behaviours of migrating a task from one core to another, which

also contains four cases, as in Sect. 6.2.4. However, the definitions are slightly
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more complex than those for the old multi-core model. The reason for this is that

in the old model, the function state, priority , etc., are global total functions, which

are easy to access by the operation schema. Instead, in the promotion model, they

are private for each subsystem and can only be accessed by the function subTask .

Due to the complexity of the expressions, we introduce two assistant variables,

srcSys and tarSys , to represent the subsystems for the original core and the target

core respectively. The behaviour of this operation can then be defined similarly to

the one for the old model.

8.4 Summary

This chapter has summarised the project and suggested some future works after

the project. It firstly described the whole process of the project, and identified the

difficulties we experienced during the project. It then shows the potential future

works based on the results of the project. Finally, as an example, we presented

our attempt on specifying multi-core task model with promotion technique.

In general, in this project, we produced the first complete abstract specification in Z

of FreeRTOS, together with proofs of consistency (well-definedness, initialisation,

precondition, and a few properties). Then, the model is extended for multicore plat-

form, with basic proofs of well-definedness (including syntax checking and domain

validating). The abstract characterisation of both models is a first step towards a

verified implementation of FreeRTOS on multicore. We were the first to promote

FreeRTOS as a pilot project in VSI, and the work presented continues this by es-

tablishing a benchmark for others to follow. We believe that this is an important

contribution to both the verification community and also the embedded systems

community. We also demonstrated the possibility to verify a software system by

combining the formal modelling (Z model) and code verifier (VCC), which can be

an easier approach for improving the quality of the software.
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Appendix A

INTRODUCTORY APPENDIX

There are twelve appendixes provided after this introductory appendix. They con-

tain auxiliary information for the main body of the thesis. Specifically,

(a) The summary of frequently used proof commands is shown in Appendix B. It is

helpful for understanding the proof script provided in supplementary material.

(b) As stated in Sect. 4.6, the mapping between API functions and the precondition

for schema interface from FreeRTOS model can be found in Appendix C.

(c) The specification for our FreeRTOS model can be found in Appendix D-G.

They include all the definitions, schemas and theorems (i.e. precondition theo-

rems for operation schemas, auxiliary theorems and theorems for some system

properties). Unfortunately, the proof scripts for the model cannot be included,

due to the length of the script itself. However, they can be found in supplemen-

tary material and can be used directly in the theorem prover, Z/Eves.

(d) Similarly, the specification for multi-core model can also be found in Ap-

pendix H-K. And the the specification for the multi-core task model with pro-

motion technique is shown in Appendix L.
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(e) Finally, the VCC annotated source code of task related API functions (i.e. cre-

ating, deleting, suspending, resuming tasks and changing the priority of tasks)

is listed in Appendix M.
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Appendix B

SUMMARY OF Z/EVES PROOF

COMMANDS

We summarise the proof commands used in proving of the model. For full instruc-

tion of the proof commands, please see Chap. 5 of [32].

prove The prover automatically applies sequences of proof commands. For ex-

ample, simplify , rewrite, rearrange. Besides this, the mathematical rules

included in Z/Eves’ mathematical toolkit [70] are applied, if possible.

prove by reduce The prover repeatedly reduces the current proof goal. In addi-

tion to what prove does, the prover expands all names.

with enabled (theorem) This is a prefix that is applied to the prove,

prove by reduce, or an already prefixed command. Many inefficient rules are

disabled by default, and this prefix enables them for the current command.

For example, with enabled (applyOverride) prove allows the prover to use

the disabled theorem applyOverride within the scope of the prove command.

with disabled (theorem) This is similar to the previous command, except that it

disables the theorem rather than enabling it.
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with normalization This is also a prefix for prove commands. It allows the prover

to use “if-then-else” normal-form to represent all logical connectives [70].

instantiate This command allows the prover to instantiate quantified variables

(universal in the assumptions, existential in the goal).

apply theorem As mentioned above, there are plenty of disabled rules in Z/Eves’

mathematical toolkit. This command applies the specified theorem to rewrite

the goal.

use theorem This command allows a specified theorem to be used to deduce

additional assumptions.

extensionality A theorem included in Z/Eves Mathematical Toolkits [70], which
defined as:

X = Y ⇔ (∀ x : X • x ∈ Y ) ∧ (∀ y : Y • y ∈ X )
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Appendix C

SUMMARY OF INTERFACE
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Appendix D

SPECIFICATION FOR TASK MODEL

[CONTEXT ,TASK ]

bare context : CONTEXT
idle : TASK

STATE ::= nonexistent | ready | blocked | suspended | running

transition == ({blocked} × {nonexistent , ready , running , suspended})
∪ ({nonexistent} × {ready , running})
∪ ({ready} × {nonexistent , running , suspended})
∪ ({running} × {blocked , nonexistent , ready , suspended})
∪ ({suspended} × {nonexistent , ready , running})

theorem grule gTransitionType
transition ∈ P(STATE × STATE )

theorem rule lInTransition
∀ l , r : STATE | (l , r) ∈ {nonexistent 7→ ready , running 7→ ready ,

blocked 7→ ready , suspended 7→ ready , ready 7→ running ,
blocked 7→ running , suspended 7→ running ,
nonexistent 7→ running , running 7→ suspended ,
ready 7→ suspended , blocked 7→ suspended ,
running 7→ blocked , running 7→ nonexistent ,
ready 7→ nonexistent , blocked 7→ nonexistent ,
suspended 7→ nonexistent}

• (l , r) ∈ transition
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TaskData
tasks : FTASK
running task : TASK

running task ∈ tasks
idle ∈ tasks

Init TaskData
TaskData ′

tasks ′ = {idle}
running task ′ = idle

theorem TaskDataInit
∃TaskData ′ • Init TaskData

StateData
state : TASK → STATE

state(idle) ∈ {ready , running}

Init StateData
StateData ′

state ′ = (λ x : TASK • nonexistent)⊕ {(idle 7→ running)}

theorem StateDataInit
∃ StateData ′ • Init StateData

ContextData
phys context : CONTEXT
log context : TASK → CONTEXT

Init ContextData
ContextData ′

phys context ′ = bare context
log context ′ = (λ x : TASK • bare context)
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theorem ContextDataInit
∃ContextData ′ • Init ContextData

PrioData
priority : TASK → N

priority(idle) = 0

Init PrioData
PrioData ′

priority ′ = (λ x : TASK • 0)

theorem PrioDataInit
∃PrioData ′ • Init PrioData

Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state∼(| {nonexistent} |))
state∼(| {running} |) = {running task}
∀ pt : state∼(| {ready} |) • priority(running task) ≥ priority(pt)

∆Task
Task
Task ′

∀ st : TASK | state ′(st) 6= state(st)
• state(st) 7→ state ′(st) ∈ transition

f : PTASK → TASK

〈〈 findDelegate 〉〉
∀Task ; a : PTASK ; g : TASK 7→ Z •
f (a) ∈ a ∧ a ⊆ dom g ∧
(∀ t : a • g(f (a)) ≥ g(t))

theorem TaskProperty1
∀Task • state(running task) = running
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theorem TaskProperty2
∀Task • ∀ t : TASK | t ∈ state∼(| {blocked} |) • t ∈ tasks

theorem TaskProperty3
∀Task • ∀ t : state∼(| {ready} |) • t ∈ tasks \ {running task}

theorem TaskProperty6
∀Task ; t : TASK | 0 < priority(t) • idle 6= t

Init Task
Task ′

Init TaskData
Init StateData
Init ContextData
Init PrioData

theorem TaskInit
∃Task ′ • Init Task

Reschedule
∆Task
target? : TASK
tasks? : FTASK
st? : STATE
pri? : TASK → N

tasks ′ = tasks?
running task ′ = target?
state ′ = state ⊕ {(target? 7→ running), (running task 7→ st?)}
phys context ′ = log context(target?)
log context ′ = log context ⊕ {(running task 7→ phys context)}
priority ′ = pri?

disableReschedule =̂ [Task | false] ∧ Reschedule

CreateTaskN T
∆Task
target? : TASK
newpri? : N

state(target?) = nonexistent
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newpri? ≤ priority(running task)
tasks ′ = tasks ∪ {target?}
running task ′ = running task
state ′ = state ⊕ {(target? 7→ ready)}
ΞContextData
priority ′ = priority ⊕ {(target? 7→ newpri?)}

CreateTaskN TFSBSig
Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? ≤ priority(running task)

theorem rule runningUpdate
∀ f : TASK → STATE ; g : TASK 7→ STATE | running /∈ ran g

∧ (f ∼(| {running} |)) ∩ dom g = ∅
• (f ⊕ g)∼(| {running} |) = f ∼(| {running} |)

theorem rule setminUpdate
∀ f : TASK → STATE ; g : TASK 7→ STATE
• TASK \ ((f ⊕ g)∼(| {nonexistent} |))

= TASK \ (f ∼(| {nonexistent} |)) \ (g∼(| {nonexistent} |))
∪(dom g \ (g∼(| {nonexistent} |)))

theorem CreateTaskN T vc ref
∀CreateTaskN TFSBSig | true • pre CreateTaskN T

CreateTaskS T
∆Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running task)
∃ st? : STATE ; tasks? : FTASK ; pri? : TASK → N

| st? = ready ∧ tasks? = tasks ∪ {target?}
∧ pri? = priority ⊕ {(target? 7→ newpri?)}

• Reschedule
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CreateTaskS TFSBSig
Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running task)

theorem CreateTaskS T vc ref
∀CreateTaskS TFSBSig | true • pre CreateTaskS T

CreateTask T =̂ CreateTaskN T ∨ CreateTaskS T

DeleteTaskN T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {ready , blocked , suspended}
tasks ′ = tasks \ {target?}
running task ′ = running task
state ′ = state ⊕ {(target? 7→ nonexistent)}
phys context ′ = phys context
log context ′ = log context ⊕ {(target? 7→ bare context)}
ΞPrioData
topReady ! = running task

DeleteTaskN TFSBSig
Task
target? : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {ready , blocked , suspended}

theorem finsetIsFinset
∀X : FTASK ; x : TASK • X \ {x} ∈ FTASK

theorem DeleteTaskN T vc ref
∀DeleteTaskN TFSBSig | true • pre DeleteTaskN T
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DeleteTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
tasks ′ = tasks \ {target?}
running task ′ = topReady !
state ′ = state ⊕ {(topReady ! 7→ running), (target? 7→ nonexistent)}
phys context ′ = log context(topReady !)
log context ′ = log context ⊕ {(target? 7→ bare context)}
ΞPrioData

DeleteTaskS TFSBSig
Task
target? : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}

theorem lDeleteTaskS T Lemma
∀Task ; topReady !, target? : TASK
| target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (Task [log context := log context ⊕ {(target?, bare context)},

phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(target?, nonexistent)} ∪ {(topReady !, running)}),
tasks := tasks \ {target?}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(target?, nonexistent)}∪

{(topReady !, running)}))(st) = state(st)
⇒ (state(st), (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))(st)) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))
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theorem DeleteTaskS T vc ref
∀DeleteTaskS TFSBSig | true • pre DeleteTaskS T

DeleteTask T =̂ DeleteTaskN T ∨ DeleteTaskS T

ExecuteRunningTask T
∆Task
target ! : TASK

ΞTaskData
ΞStateData
phys context ′ 6= phys context
log context ′ = log context
ΞPrioData
target ! = running task

ExecuteRunningTask TFSBSig
Task

∃ phys context ′ : CONTEXT • phys context ′ 6= phys context

theorem ExecuteRunningTask T vc ref
∀ExecuteRunningTask TFSBSig | true • pre ExecuteRunningTask T

SuspendTaskN T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {ready , blocked}
ΞTaskData
state ′ = state ⊕ {(target? 7→ suspended)}
ΞContextData
ΞPrioData
topReady ! = running task

SuspendTaskN TFSBSig
Task
target? : TASK

target? ∈ tasks \ {idle}
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state(target?) ∈ {ready , blocked}

theorem SuspendTaskN T vc ref
∀ SuspendTaskN TFSBSig | true • pre SuspendTaskN T

SuspendTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
∃ st? : STATE | st? = suspended
• Reschedule[tasks/tasks?, priority/pri?, topReady !/target?]

theorem TaskProperty4
∀Task | SuspendTaskS T
• state ′(running task) = suspended
∧ (∀ t : state∼(| {ready} |) • priority(running task ′) ≥ priority(t))

theorem TaskProperty5
∀Task • ∀ t : TASK | t /∈ tasks • state(t) = nonexistent

SuspendTaskS TFSBSig
Task
target? : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}

theorem lSuspendTaskS T Lemma
∀Task ; target?, topReady ! : TASK
| target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (Task [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
running task := topReady !,
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state := state⊕
({(running task , suspended)} ∪ {(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , suspended)}

∪{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , suspended)}
∪{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem SuspendTaskS T vc ref
∀ SuspendTaskS TFSBSig | true • pre SuspendTaskS T

SuspendTaskO T
ΞTask
target? : TASK
topReady ! : TASK

state(target?) ∈ {suspended}
topReady ! = running task

SuspendTaskO TFSBSig
Task
target? : TASK
topReady ! : TASK

state(target?) ∈ {suspended}

theorem SuspendTaskO T vc ref
∀ SuspendTaskO TFSBSig | true • pre SuspendTaskO T

SuspendTask T =̂ SuspendTaskN T
∨ SuspendTaskS T
∨ SuspendTaskO T

ResumeTaskN T
∆Task
target? : TASK

state(target?) = suspended
priority(target?) ≤ priority(running task)
ΞTaskData
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state ′ = state ⊕ {(target? 7→ ready)}
ΞContextData
ΞPrioData

ResumeTaskN TFSBSig
Task
target? : TASK

state(target?) = suspended
priority(target?) ≤ priority(running task)

theorem ResumeTaskN T vc ref
∀ResumeTaskN TFSBSig | true • pre ResumeTaskN T

ResumeTaskS T
∆Task
target? : TASK

state(target?) = suspended
priority(target?) > priority(running task)
∃ st? : STATE | st? = ready
• Reschedule[tasks/tasks?, priority/pri?]

ResumeTaskS TFSBSig
Task
target? : TASK

state(target?) = suspended
priority(target?) > priority(running task)

theorem ResumeTaskS T vc ref
∀ResumeTaskS TFSBSig | true • pre ResumeTaskS T

ResumeTask T =̂ ResumeTaskN T ∨ ResumeTaskS T

ChangeTaskPriorityN T
∆Task
newpri? : N
target? : TASK
topReady ! : TASK
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state(target?) = ready ⇒ newpri? ≤ priority(running task)
state(target?) = running ⇒

(∀ t : state∼(| {ready} |) • newpri? ≥ priority(t))
state(target?) 6= nonexistent
target? = idle ⇒ newpri? = 0
ΞTaskData
ΞStateData
ΞContextData
priority ′ = priority ⊕ {(target? 7→ newpri?)}
topReady ! = running task

ChangeTaskPriorityN TFSBSig
Task
newpri? : N
target? : TASK

state(target?) = ready ⇒ newpri? ≤ priority(running task)
state(target?) = running ⇒

(∀ t : state∼(| {ready} |) • newpri? ≥ priority(t))
state(target?) 6= nonexistent
target? = idle ⇒ newpri? = 0

theorem ChangeTaskPriorityN T vc ref
∀ChangeTaskPriorityN TFSBSig | true • pre ChangeTaskPriorityN T

ChangeTaskPriorityS T
∆Task
target? : TASK
newpri? : N
topReady ! : TASK

state(target?) = ready
newpri? > priority(running task)
target? = idle ⇒ newpri? = 0
∃ st? : STATE ; pri? : TASK → N
| st? = ready
∧ pri? = priority ⊕ {(target? 7→ newpri?)}

• Reschedule[tasks/tasks?]
topReady ! = target?

ChangeTaskPriorityS TFSBSig
Task
newpri? : N
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target? : TASK

state(target?) = ready
newpri? > priority(running task)
target? = idle ⇒ newpri? = 0

theorem ChangeTaskPriorityS T vc ref
∀ChangeTaskPriorityS TFSBSig | true • pre ChangeTaskPriorityS T

ChangeTaskPriorityD T
∆Task
target? : TASK
topReady ! : TASK
newpri? : N

state(target?) = running
target? = idle ⇒ newpri? = 0
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
newpri? < priority(topReady !)
∃ st? : STATE ; pri? : TASK → N
| st? = ready
∧ pri? = priority ⊕ {(target? 7→ newpri?)}

• Reschedule[tasks/tasks?, topReady !/target?]

ChangeTaskPriorityD TFSBSig
Task
newpri? : N
target? : TASK

state(target?) = running
target? = idle ⇒ newpri? = 0
∃ readyTask : state∼(| {ready} |) • newpri? < priority(readyTask)

theorem lChangeTaskPriorityD T Lemma
∀Task ; target?, topReady ! : TASK ; newpri? : N
| state(target?) = running
∧ (target? = idle ⇒ newpri? = 0)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
∧ newpri? < priority(topReady !)
• ¬ (Task [log context := log context⊕

{(running task , phys context)},
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phys context := log context(topReady !),
priority := priority ⊕ {(target?, newpri?)},
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)})]
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem ChangeTaskPriorityD T vc ref
∀ChangeTaskPriorityD TFSBSig | true • pre ChangeTaskPriorityD T

ChangeTaskPriority T =̂ ChangeTaskPriorityN T
∨ ChangeTaskPriorityS T
∨ ChangeTaskPriorityD T
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Appendix E

SPECIFICATION FOR QUEUE MODEL

[QUEUE ]

QueueData
queue : PQUEUE
q max : QUEUE 7→ N1

q size : QUEUE 7→ N

dom q max = dom q size = queue
∀ q : QUEUE | q ∈ queue • q size(q) ≤ q max (q)

Init QueueData
QueueData ′

queue ′ = ∅
q max ′ = ∅
q size ′ = ∅

theorem QueueDataInit
∃QueueData ′ • Init QueueData

WaitingData
wait snd : TASK 7→ QUEUE
wait rcv : TASK 7→ QUEUE

domwait snd ∩ domwait rcv = ∅
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Init WaitingData
WaitingData ′

wait snd ′ = ∅
wait rcv ′ = ∅

theorem WaitingDataInit
∃WaitingData ′ • Init WaitingData

QReleasingData
release snd : TASK 7→ QUEUE
release rcv : TASK 7→ QUEUE

dom release snd ∩ dom release rcv = ∅

Init QReleasingData
QReleasingData ′

release snd ′ = ∅
release rcv ′ = ∅

theorem QReleasingDataInit
∃QReleasingData ′ • Init QReleasingData

Queue
QueueData
WaitingData
QReleasingData

ranwait snd ⊆ queue
ranwait rcv ⊆ queue
ran release snd ⊆ queue
ran release rcv ⊆ queue
(domwait snd ∪ domwait rcv)
∩(dom release snd ∪ dom release rcv) = ∅

theorem QueueProperty1
∀Queue • ∀ q : queue • q max (q) > 0

theorem ImageProperty1
∀ f : TASK 7→ QUEUE • ∀ y : QUEUE • f ∼(| {y} |) 6= ∅ ⇔ y ∈ ran f
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Init Queue
Queue ′

Init QueueData
Init WaitingData
Init QReleasingData

theorem QueueInit
∃Queue ′ • Init Queue

TaskQueue
Task
Queue

domwait snd ⊆ state∼(| {blocked} |)
domwait rcv ⊆ state∼(| {blocked} |)

Init TaskQueue
TaskQueue ′

Init Task
Init Queue

theorem TaskQueueInit
∃TaskQueue ′ • Init TaskQueue

∆TaskQueue =̂ TaskQueue ∧ TaskQueue ′ ∧ ∆Task

ExtendTaskXi
∆TaskQueue

running task /∈ dom release snd ∪ dom release rcv
ΞQueue

ExtTaskFSBSig
TaskQueue

running task /∈ dom release snd ∪ dom release rcv

CreateTaskN TQ =̂ ExtendTaskXi ∧ CreateTaskN T
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CreateTaskN TQFSBSig =̂ ExtTaskFSBSig ∧ CreateTaskN TFSBSig

theorem CreateTaskN TQ vc ref
∀CreateTaskN TQFSBSig | true • pre CreateTaskN TQ

CreateTaskS TQ =̂ ExtendTaskXi ∧ CreateTaskS T

CreateTaskS TQFSBSig =̂ ExtTaskFSBSig ∧ CreateTaskS TFSBSig

theorem CreateTaskS TQ vc ref
∀CreateTaskS TQFSBSig | true • pre CreateTaskS TQ

CreateTask TQ =̂ CreateTaskN TQ ∨ CreateTaskS TQ

DeleteTaskN TQ
DeleteTaskN T
∆TaskQueue

running task /∈ dom release snd ∪ dom release rcv
ΞQueueData
wait snd ′ = {target?} −C wait snd
wait rcv ′ = {target?} −C wait rcv
release snd ′ = {target?} −C release snd
release rcv ′ = {target?} −C release rcv

DeleteTaskN TQFSBSig =̂ ExtTaskFSBSig ∧ DeleteTaskN TFSBSig

theorem DeleteTaskN TQ vc ref
∀DeleteTaskN TQFSBSig | true • pre DeleteTaskN TQ

DeleteTaskS TQ =̂ ExtendTaskXi ∧ DeleteTaskS T

DeleteTaskS TQFSBSig =̂ ExtTaskFSBSig ∧ DeleteTaskS TFSBSig

theorem lDeleteTaskS TQ Lemma
∀TaskQueue; topReady !, target? : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
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∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (TaskQueue[log context := log context⊕

{(target?, bare context)},
phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(target?, nonexistent)} ∪ {(topReady !, running)}),
tasks := tasks \ {target?}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(target?, nonexistent)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem DeleteTaskS TQ vc ref
∀DeleteTaskS TQFSBSig | true • pre DeleteTaskS TQ

DeleteTask TQ =̂ DeleteTaskN TQ ∨ DeleteTaskS TQ

ExecuteRunningTask TQ =̂ ExtendTaskXi ∧ ExecuteRunningTask T

ExecuteRunningTask TQFSBSig =̂ ExtTaskFSBSig
∧ ExecuteRunningTask TFSBSig

theorem ExecuteRunningTask TQ vc ref
∀ExecuteRunningTask TQFSBSig | true • pre ExecuteRunningTask TQ

SuspendTaskN TQ
SuspendTaskN T
∆TaskQueue

running task /∈ dom release snd ∪ dom release rcv
ΞQueueData
wait snd ′ = {target?} −C wait snd
wait rcv ′ = {target?} −C wait rcv
ΞQReleasingData

SuspendTaskN TQFSBSig =̂ ExtTaskFSBSig ∧ SuspendTaskN TFSBSig
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theorem SuspendTaskN TQ vc ref
∀ SuspendTaskN TQFSBSig | true • pre SuspendTaskN TQ

SuspendTaskS TQ =̂ ExtendTaskXi ∧ SuspendTaskS T

SuspendTaskS TQFSBSig =̂ ExtTaskFSBSig ∧ SuspendTaskS TFSBSig

theorem lSuspendTaskS TQ Lemma
∀TaskQueue; target?, topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (TaskQueue[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
running task := topReady !,
state := state ⊕ ({(running task , suspended)}∪
{(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , suspended)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , suspended)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem SuspendTaskS TQ vc ref
∀ SuspendTaskS TQFSBSig | true • pre SuspendTaskS TQ

SuspendTaskO TQ =̂ ExtendTaskXi ∧ SuspendTaskO T

SuspendTaskO TQFSBSig =̂ ExtTaskFSBSig ∧ SuspendTaskO TFSBSig

theorem SuspendTaskO TQ vc ref
∀ SuspendTaskO TQFSBSig | true • pre SuspendTaskO TQ

SuspendTask TQ =̂ SuspendTaskN TQ
∨ SuspendTaskS TQ
∨ SuspendTaskO TQ
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ResumeTaskN TQ =̂ ExtendTaskXi ∧ ResumeTaskN T

ResumeTaskN TQFSBSig =̂ ExtTaskFSBSig ∧ ResumeTaskN TFSBSig

theorem ResumeTaskN TQ vc ref
∀ResumeTaskN TQFSBSig | true • pre ResumeTaskN TQ

ResumeTaskS TQ =̂ ExtendTaskXi ∧ ResumeTaskS T

ResumeTaskS TQFSBSig =̂ ExtTaskFSBSig ∧ ResumeTaskS TFSBSig

theorem ResumeTaskS TQ vc ref
∀ResumeTaskS TQFSBSig | true • pre ResumeTaskS TQ

ResumeTask TQ =̂ ResumeTaskN TQ ∨ ResumeTaskS TQ

ChangeTaskPriorityN TQ =̂ ExtendTaskXi ∧ ChangeTaskPriorityN T

ChangeTaskPriorityN TQFSBSig =̂ ExtTaskFSBSig
∧ ChangeTaskPriorityN TFSBSig

theorem ChangeTaskPriorityN TQ vc ref
∀ChangeTaskPriorityN TQFSBSig | true
• pre ChangeTaskPriorityN TQ

ChangeTaskPriorityS TQ =̂ ExtendTaskXi ∧ ChangeTaskPriorityS T

ChangeTaskPriorityS TQFSBSig =̂ ExtTaskFSBSig
∧ ChangeTaskPriorityS TFSBSig

theorem ChangeTaskPriorityS TQ vc ref
∀ChangeTaskPriorityS TQFSBSig | true
• pre ChangeTaskPriorityS TQ

ChangeTaskPriorityD TQ =̂ ExtendTaskXi ∧ ChangeTaskPriorityD T

ChangeTaskPriorityD TQFSBSig =̂ ExtTaskFSBSig
∧ ChangeTaskPriorityD TFSBSig
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theorem lChangeTaskPriorityD TQ Lemma
∀TaskQueue; target?, topReady ! : TASK ; newpri? : N
| state(target?) = running
∧ (target? = idle ⇒ newpri? = 0)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
∧ newpri? < priority(topReady !)
• ¬ (TaskQueue[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
priority := priority ⊕ {(target?, newpri?)},
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)})]
∧ newpri? < priority(topReady !)
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem ChangeTaskPriorityD TQ vc ref
∀ChangeTaskPriorityD TQFSBSig | true
• pre ChangeTaskPriorityD TQ

CreateQueue TQ
∆TaskQueue
que? : QUEUE
size? : N

running task /∈ dom release snd ∪ dom release rcv
que? /∈ queue
size? > 0
ΞTask
queue ′ = queue ∪ {que?}
q max ′ = q max ⊕ {(que? 7→ size?)}
q size ′ = q size ⊕ {(que? 7→ 0)}
ΞWaitingData
ΞQReleasingData
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CreateQueue TQFSBSig
TaskQueue
que? : QUEUE
size? : N

running task /∈ dom release snd ∪ dom release rcv
que? /∈ queue
size? > 0

theorem CreateQueue TQ vc ref
∀CreateQueue TQFSBSig | true • pre CreateQueue TQ

DeleteQueue TQ
∆TaskQueue
que? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
que? ∈ queue
que? /∈ ranwait snd ∪ ranwait rcv
que? /∈ ran release snd ∪ ran release rcv
ΞTask
queue ′ = queue \ {que?}
q max ′ = {que?} −C q max
q size ′ = {que?} −C q size
ΞWaitingData
ΞQReleasingData

DeleteQueue TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
que? ∈ queue
que? /∈ ranwait snd ∪ ranwait rcv
que? /∈ ran release snd ∪ ran release rcv

theorem DeleteQueue TQ vc ref
∀DeleteQueue TQFSBSig | true • pre DeleteQueue TQ

QueueSendN TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK
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running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
que? /∈ ranwait rcv
ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?) + 1)}
ΞWaitingData
release snd ′ = {running task} −C release snd
release rcv ′ = release rcv
topReady ! = running task

QueueSendN TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
que? /∈ ranwait rcv

theorem QueueSendN TQ vc ref
∀QueueSendN TQFSBSig | true • pre QueueSendN TQ

QueueSendF TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) = q max (que?)
running task 6= idle
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

ΞQueueData
wait snd ′ = wait snd ⊕ {(running task 7→ que?)}
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wait rcv ′ = wait rcv
release snd ′ = {running task} −C release snd
release rcv ′ = release rcv

QueueSendF TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) = q max (que?)
running task 6= idle

theorem lQueueSendF TQ Lemma
∀TaskQueue; topReady ! : TASK ; que? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) = q max (que?)
∧ running task 6= idle
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |) • priority(topReady !) ≥ priority(rtsk))
• ¬ (TaskQueue[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait snd := wait snd ⊕ {(running task , que?)}]

∧ (t ∈ TASK ∧ state(t) = ready
⇒ priority(topReady !) ≥ priority(t))

⇒ st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st = state(st)

∧ ¬ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

theorem QueueSendF TQ vc ref
∀QueueSendF TQFSBSig | true • pre QueueSendF TQ
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QueueSendW TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
topReady ! ∈ wait rcv∼(| {que?} |)
∀wr : wait rcv∼(| {que?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) ≤ priority(running task)
ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
ΞPrioData
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?) + 1)}
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
release snd ′ = {running task} −C release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ que?)}

QueueSendW TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
∀wr : wait rcv∼(| {que?} |) • priority(running task) ≥ priority(wr)

theorem lQueueSendW TQ Lemma
∀TaskQueue; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(running task) ≥ priority(topReady !)
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• ¬ (TaskQueue[q size := q size ⊕ {(que?, (1 + q size(que?)))},
release rcv := release rcv ⊕ {(topReady !, que?)},
release snd := {running task} −C release snd ,
state := state ⊕ {(topReady !, ready)},
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK ∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = que?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem QueueSendW TQ vc ref
∀QueueSendW TQFSBSig | true • pre QueueSendW TQ

theorem TaskQueueProperty1
∀TaskQueue • ∀ t : TASK | t ∈ domwait rcv • state(t) = blocked

QueueSendWS TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
topReady ! ∈ wait rcv∼(| {que?} |)
∀wr : wait rcv∼(| {que?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) > priority(running task)
∃ st? : STATE | st? = ready
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?) + 1)}
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
release snd ′ = {running task} −C release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ que?)}

QueueSendWS TQFSBSig
TaskQueue
que? : QUEUE
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running task /∈ dom release rcv
running task ∈ dom release snd ⇒ que? = release snd(running task)
que? ∈ queue
q size(que?) < q max (que?)
∃ topReady ! : wait rcv∼(| {que?} |)
| ∀wr : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wr)

• priority(topReady !) > priority(running task)

theorem lQueueSendWS TQ Lemma
∀TaskQueue; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) > priority(running task)
• ¬ (TaskQueue[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait rcv(topReady !), (1+

q size(wait rcv(topReady !))))},
release rcv := release rcv⊕
{(topReady !,wait rcv(topReady !))},

release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait rcv := {topReady !} −C wait rcv ]

∧ (wr ∈ domwait rcv ∧ wait rcv(wr) = wait rcv(topReady !)
⇒ priority(topReady !) ≥ priority(wr))

⇒ st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
∧ ¬ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

theorem QueueSendWS TQ vc ref
∀QueueSendWS TQFSBSig | true • pre QueueSendWS TQ

Page 198



QueueSend TQ =̂ QueueSendN TQ
∨ QueueSendF TQ
∨ QueueSendW TQ
∨ QueueSendWS TQ

QueueReceiveN TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
que? /∈ ranwait snd
ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?)− 1)}
ΞWaitingData
release snd ′ = release snd
release rcv ′ = {running task} −C release rcv
topReady ! = running task

QueueReceiveN TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
que? /∈ ranwait snd

theorem QueueReceiveN TQ vc ref
∀QueueReceiveN TQFSBSig | true • pre QueueReceiveN TQ

QueueReceiveE TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
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que? ∈ queue
q size(que?) = 0
running task 6= idle
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(running task 7→ que?)}
release snd ′ = release snd
release rcv ′ = {running task} −C release rcv

QueueReceiveE TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) = 0
running task 6= idle

theorem lQueueReceiveE TQ Lemma
∀TaskQueue; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) = 0
∧ running task 6= idle
∧ topReady ! ∈ state∼(| {ready} |)
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueue[log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
release rcv := {running task} −C release rcv ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait rcv := wait rcv ⊕ {(running task , que?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
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⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem QueueReceiveE TQ vc ref
∀QueueReceiveE TQFSBSig | true • pre QueueReceiveE TQ

QueueReceiveW TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
topReady ! ∈ wait snd∼(| {que?} |)
∀ws : wait snd∼(| {que?} |) • priority(topReady !) ≥ priority(ws)
priority(topReady !) ≤ priority(running task)
ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
ΞPrioData
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?)− 1)}
wait snd ′ = {topReady !} −C wait snd
wait rcv ′ = wait rcv
release snd ′ = release snd ⊕ {(topReady ! 7→ que?)}
release rcv ′ = {running task} −C release rcv

QueueReceiveW TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
∀ws : wait snd∼(| {que?} |) • priority(running task) ≥ priority(ws)
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theorem lQueueReceiveW TQ Lemma
∀TaskQueue; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(running task) ≥ priority(topReady !)
• ¬ (TaskQueue[q size := q size ⊕ {(que?, (q size(que?)− 1))},

release rcv := {running task} −C release rcv ,
release snd := release snd ⊕ {(topReady !, que?)},
state := state ⊕ {(topReady !, ready)},
wait snd := {topReady !} −C wait snd ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ ws ∈ domwait snd
∧ wait snd(ws) = que?
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveW TQ vc ref
∀QueueReceiveW TQFSBSig | true • pre QueueReceiveW TQ

QueueReceiveWS TQ
∆TaskQueue
que? : QUEUE
topReady ! : TASK

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
topReady ! ∈ wait snd∼(| {que?} |)
∀ws : wait snd∼(| {que?} |) • priority(topReady !) ≥ priority(ws)
priority(topReady !) > priority(running task)
∃ st? : STATE | st? = ready
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?)− 1)}
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wait snd ′ = {topReady !} −C wait snd
wait rcv ′ = wait rcv
release snd ′ = release snd ⊕ {(topReady ! 7→ que?)}
release rcv ′ = {running task} −C release rcv

QueueReceiveWS TQFSBSig
TaskQueue
que? : QUEUE

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ que? = release rcv(running task)
que? ∈ queue
q size(que?) > 0
∃ topReady ! : wait snd∼(| {que?} |)
| ∀ws : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(ws)

• priority(topReady !) > priority(running task)

theorem lQueueReceiveWS TQ Lemma
∀TaskQueue; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(topReady !) > priority(running task)
• ¬ (TaskQueue[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait snd(topReady !),

(q size(wait snd(topReady !))− 1))},
release rcv := {running task} −C release rcv ,
release snd := release snd⊕
{(topReady !,wait snd(topReady !))},

running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait snd := {topReady !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
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{(topReady !, running)}))st) ∈ transition)
⇒ ws ∈ domwait snd
∧ wait snd(ws) = wait snd(topReady !)
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveWS TQ vc ref
∀QueueReceiveWS TQFSBSig | true • pre QueueReceiveWS TQ

QueueReceive TQ =̂ QueueReceiveN TQ
∨ QueueReceiveE TQ
∨ QueueReceiveW TQ
∨ QueueReceiveWS TQ
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Appendix F

SPECIFICATION FOR TIME MODEL

slice delay : N

〈〈 disabled slice delay def 〉〉
slice delay = 1

Time
clock : N
delayed task : PTASK
wait time : TASK 7→ N
time slice : N

∀ t : domwait time • wait time(t) ≥ clock

Init Time
Time ′

clock ′ = 0
delayed task ′ = ∅
wait time ′ = ∅
time slice ′ = slice delay

theorem TimeInit
∃Time ′ • Init Time

TaskQueueTime
TaskQueue
Time
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〈delayed task , domwait snd , domwait rcv〉 partition domwait time
delayed task ⊆ state∼(| {blocked} |)

theorem rule domTime
∀TaskQueueTime; t : TASK | t ∈ domwait time
• t ∈ state∼(| {blocked} |)

Init TaskQueueTime
TaskQueueTime ′

Init TaskQueue
Init Time

theorem TaskQueueTimeInit
∃TaskQueueTime ′ • Init TaskQueueTime

∆TaskQueueTime =̂ TaskQueueTime ∧ TaskQueueTime ′ ∧ ∆Task

ExtendTaskQueueXi
∆TaskQueueTime

ΞTime

CreateTaskN TQT =̂ ExtendTaskQueueXi ∧ CreateTaskN TQ

CreateTaskN TQTFSBSig =̂ TaskQueueTime ∧ CreateTaskN TQFSBSig

theorem CreateTaskN TQT vc ref
∀CreateTaskN TQTFSBSig | true • pre CreateTaskN TQT

CreateTaskS TQT =̂ ExtendTaskQueueXi ∧ CreateTaskS TQ

CreateTaskS TQTFSBSig =̂ TaskQueueTime ∧ CreateTaskS TQFSBSig

theorem CreateTaskS TQT vc ref
∀CreateTaskS TQTFSBSig | true • pre CreateTaskS TQT

CreateTask TQT =̂ CreateTaskN TQT ∨ CreateTaskS TQT
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DeleteTaskN TQT
DeleteTaskN TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task \ {target?}
wait time ′ = {target?} −C wait time
time slice ′ = time slice

DeleteTaskN TQTFSBSig =̂ TaskQueueTime ∧ DeleteTaskN TQFSBSig

theorem DeleteTaskN TQT vc ref
∀DeleteTaskN TQTFSBSig | true • pre DeleteTaskN TQT

DeleteTaskS TQT =̂ ExtendTaskQueueXi ∧ DeleteTaskS TQ

DeleteTaskS TQTFSBSig =̂ TaskQueueTime ∧ DeleteTaskS TQFSBSig

theorem lDeleteTaskS TQT Lemma
∀TaskQueueTime; topReady !, target? : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTime[log context := log context⊕
{(target?, bare context)},

phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(target?, nonexistent)} ∪ {(topReady !, running)}),
tasks := tasks \ {target?}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(target?, nonexistent)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))
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theorem DeleteTaskS TQT vc ref
∀DeleteTaskS TQTFSBSig | true • pre DeleteTaskS TQT

DeleteTask TQT =̂ DeleteTaskN TQT ∨ DeleteTaskS TQT

ExecuteRunningTask TQT =̂ ExtendTaskQueueXi
∧ ExecuteRunningTask TQ

ExecuteRunningTask TQTFSBSig =̂ TaskQueueTime
∧ ExecuteRunningTask TQFSBSig

theorem ExecuteRunningTask TQT vc ref
∀ExecuteRunningTask TQTFSBSig | true
• pre ExecuteRunningTask TQT

SuspendTaskN TQT
SuspendTaskN TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task \ {target?}
wait time ′ = {target?} −C wait time
time slice ′ = time slice

SuspendTaskN TQTFSBSig =̂ TaskQueueTime
∧ SuspendTaskN TQFSBSig

theorem SuspendTaskN TQT vc ref
∀ SuspendTaskN TQTFSBSig | true • pre SuspendTaskN TQT

SuspendTaskS TQT =̂ ExtendTaskQueueXi ∧ SuspendTaskS TQ

SuspendTaskS TQTFSBSig =̂ TaskQueueTime
∧ SuspendTaskS TQFSBSig

theorem lSuspendTaskS TQT Lemma
∀TaskQueueTime; target?, topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
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∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTime[log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
running task := topReady !,
state := state ⊕ ({(running task , suspended)}∪
{(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , suspended)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , suspended)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem SuspendTaskS TQT vc ref
∀ SuspendTaskS TQTFSBSig | true • pre SuspendTaskS TQT

SuspendTaskO TQT =̂ ExtendTaskQueueXi ∧ SuspendTaskO TQ

SuspendTaskO TQTFSBSig =̂ TaskQueueTime
∧ SuspendTaskO TQFSBSig

theorem SuspendTaskO TQT vc ref
∀ SuspendTaskO TQTFSBSig | true • pre SuspendTaskO TQT

SuspendTask TQT =̂ SuspendTaskN TQT
∨ SuspendTaskS TQT
∨ SuspendTaskO TQT

ResumeTaskN TQT =̂ ExtendTaskQueueXi ∧ ResumeTaskN TQ

ResumeTaskN TQTFSBSig =̂ TaskQueueTime
∧ ResumeTaskN TQFSBSig

theorem ResumeTaskN TQT vc ref
∀ResumeTaskN TQTFSBSig | true • pre ResumeTaskN TQT

ResumeTaskS TQT =̂ ExtendTaskQueueXi ∧ ResumeTaskS TQ
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ResumeTaskS TQTFSBSig =̂ TaskQueueTime
∧ ResumeTaskS TQFSBSig

theorem ResumeTaskS TQT vc ref
∀ResumeTaskS TQTFSBSig | true • pre ResumeTaskS TQT

ResumeTask TQT =̂ ResumeTaskN TQT ∨ ResumeTaskS TQT

ChangeTaskPriorityN TQT =̂ ExtendTaskQueueXi
∧ ChangeTaskPriorityN TQ

ChangeTaskPriorityN TQTFSBSig =̂ TaskQueueTime
∧ ChangeTaskPriorityN TQFSBSig

theorem ChangeTaskPriorityN TQT vc ref
∀ChangeTaskPriorityN TQTFSBSig | true
• pre ChangeTaskPriorityN TQT

ChangeTaskPriorityS TQT =̂ ExtendTaskQueueXi
∧ ChangeTaskPriorityS TQ

ChangeTaskPriorityS TQTFSBSig =̂ TaskQueueTime
∧ ChangeTaskPriorityS TQFSBSig

theorem ChangeTaskPriorityS TQT vc ref
∀ChangeTaskPriorityS TQTFSBSig | true
• pre ChangeTaskPriorityS TQT

ChangeTaskPriorityD TQT =̂ ExtendTaskQueueXi
∧ ChangeTaskPriorityD TQ

ChangeTaskPriorityD TQTFSBSig =̂ TaskQueueTime
∧ ChangeTaskPriorityD TQFSBSig

theorem lChangeTaskPriorityD TQT Lemma
∀TaskQueueTime; target?, topReady ! : TASK ; newpri? : N
| state(target?) = running
∧ (target? = idle ⇒ newpri? = 0)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
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• priority(topReady !) ≥ priority(rtsk))
∧ newpri? < priority(topReady !)
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
priority := priority ⊕ {(target?, newpri?)},
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)})]
∧ newpri? < priority(topReady !)
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem ChangeTaskPriorityD TQT vc ref
∀ChangeTaskPriorityD TQTFSBSig | true
• pre ChangeTaskPriorityD TQT

CreateQueue TQT =̂ ExtendTaskQueueXi ∧ CreateQueue TQ

CreateQueue TQTFSBSig =̂ TaskQueueTime ∧ CreateQueue TQFSBSig

theorem CreateQueue TQT vc ref
∀CreateQueue TQTFSBSig | true • pre CreateQueue TQT

DeleteQueue TQT =̂ ExtendTaskQueueXi ∧ DeleteQueue TQ

DeleteQueue TQTFSBSig =̂ TaskQueueTime ∧ DeleteQueue TQFSBSig

theorem DeleteQueue TQT vc ref
∀DeleteQueue TQTFSBSig | true • pre DeleteQueue TQT

QueueSendN TQT =̂ ExtendTaskQueueXi ∧ QueueSendN TQ

QueueSendN TQTFSBSig =̂ TaskQueueTime ∧ QueueSendN TQFSBSig
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theorem QueueSendN TQT vc ref
∀QueueSendN TQTFSBSig | true • pre QueueSendN TQT

QueueSendF TQT
∆TaskQueueTime
QueueSendF TQ
wtime? : N

wtime? > clock
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice

QueueSendF TQTFSBSig
TaskQueueTime
QueueSendF TQFSBSig
wtime? : N

wtime? > clock

theorem lQueueSendF TQT Lemma
∀TaskQueueTime; topReady ! : TASK ; que? : QUEUE ; wtime? : N
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) = q max (que?)
∧ running task 6= idle
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ wtime? > clock
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait snd := wait snd ⊕ {(running task , que?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪
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{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem QueueSendF TQT vc ref
∀QueueSendF TQTFSBSig | true • pre QueueSendF TQT

QueueSendW TQT
∆TaskQueueTime
QueueSendW TQ

clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topReady !} −C wait time
time slice ′ = time slice

QueueSendW TQTFSBSig =̂ TaskQueueTime
∧ QueueSendW TQFSBSig

theorem lQueueSendW TQT Lemma
∀TaskQueueTime; topReady ! : TASK ; que? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(running task) ≥ priority(topReady !)
• ¬ (TaskQueueTime[q size := q size ⊕ {(que?, (1+

q size(que?)))},
release rcv := release rcv ⊕ {(topReady !, que?)},
release snd := {running task} −C release snd ,
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state⊕

Page 213



{(topReady !, ready)})st) ∈ transition)
⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = que?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem QueueSendW TQT vc ref
∀QueueSendW TQTFSBSig | true • pre QueueSendW TQT

QueueSendWS TQT
∆TaskQueueTime
QueueSendWS TQ

clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topReady !} −C wait time
time slice ′ = time slice

QueueSendWS TQTFSBSig =̂ TaskQueueTime
∧ QueueSendWS TQFSBSig

theorem lQueueSendWS TQT Lemma
∀TaskQueueTime; topReady ! : TASK ; que? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) > priority(running task)
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait rcv(topReady !), (1+

q size(wait rcv(topReady !))))},
release rcv := release rcv⊕
{(topReady !,wait rcv(topReady !))},

release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]
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∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = wait rcv(topReady !)
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem QueueSendWS TQT vc ref
∀QueueSendWS TQTFSBSig | true • pre QueueSendWS TQT

QueueSend TQT =̂ QueueSendN TQT
∨ QueueSendF TQT
∨ QueueSendW TQT
∨ QueueSendWS TQT

QueueReceiveN TQT =̂ ExtendTaskQueueXi ∧ QueueReceiveN TQ

QueueReceiveN TQTFSBSig =̂ TaskQueueTime
∧ QueueReceiveN TQFSBSig

theorem QueueReceiveN TQT vc ref
∀QueueReceiveN TQTFSBSig | true • pre QueueReceiveN TQT

QueueReceiveE TQT
∆TaskQueueTime
QueueReceiveE TQ
wtime? : N

wtime? > clock
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice

QueueReceiveE TQTFSBSig
TaskQueueTime
QueueReceiveE TQFSBSig
wtime? : N

wtime? > clock
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theorem lQueueReceiveE TQT Lemma
∀TaskQueueTime; que? : QUEUE ; topReady ! : TASK ; wtime? : N
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) = 0
∧ running task 6= idle
∧ topReady ! ∈ state∼(| {ready} |)
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ wtime? > clock
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release rcv := {running task} −C release rcv ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait rcv := wait rcv ⊕ {(running task , que?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem QueueReceiveE TQT vc ref
∀QueueReceiveE TQTFSBSig | true • pre QueueReceiveE TQT

QueueReceiveW TQT
∆TaskQueueTime
QueueReceiveW TQ

clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topReady !} −C wait time
time slice ′ = time slice

QueueReceiveW TQTFSBSig =̂ TaskQueueTime
∧ QueueReceiveW TQFSBSig
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theorem lQueueReceiveW TQT Lemma
∀TaskQueueTime; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(running task) ≥ priority(topReady !)
• ¬ (TaskQueueTime[q size := q size⊕

{(que?, (q size(que?)− 1))},
release rcv := {running task} −C release rcv ,
release snd := release snd ⊕ {(topReady !, que?)},
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait snd := {topReady !} −C wait snd ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state⊕
{(topReady !, ready)})st) ∈ transition)

⇒ ws ∈ domwait snd
∧ wait snd(ws) = que?
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveW TQT vc ref
∀QueueReceiveW TQTFSBSig | true • pre QueueReceiveW TQT

QueueReceiveWS TQT
∆TaskQueueTime
QueueReceiveWS TQ

clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topReady !} −C wait time
time slice ′ = time slice

QueueReceiveWS TQTFSBSig =̂ TaskQueueTime
∧ QueueReceiveWS TQFSBSig

theorem lQueueReceiveWS TQT Lemma
∀TaskQueueTime; que? : QUEUE ; topReady ! : TASK
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| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(topReady !) > priority(running task)
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait snd(topReady !),

(q size(wait snd(topReady !))− 1))},
release rcv := {running task} −C release rcv ,
release snd := release snd⊕
{(topReady !,wait snd(topReady !))},

running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait time := {topReady !} −C wait time,
wait snd := {topReady !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ ws ∈ domwait snd
∧ wait snd(ws) = wait snd(topReady !)
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveWS TQT vc ref
∀QueueReceiveWS TQTFSBSig | true • pre QueueReceiveWS TQT

QueueReceive TQT =̂ QueueReceiveN TQT
∨ QueueReceiveE TQT
∨ QueueReceiveW TQT
∨ QueueReceiveWS TQT

DelayUntil TQT
∆TaskQueueTime
wtime? : N
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
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state(topReady !) = ready
running task 6= idle
∀ t : TASK | state(t) = ready • priority(topReady !) ≥ priority(t)
wtime? > clock
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

ΞQueue
clock ′ = clock
delayed task ′ = delayed task ∪ {running task}
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice

DelayUntil TQTFSBSig
TaskQueueTime
wtime? : N

running task /∈ dom release snd ∪ dom release rcv
running task 6= idle
wtime? > clock

theorem lDelayUntil TQT Lemma
∀TaskQueueTime; wtime? : N; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ running task 6= idle
∧ state(topReady !) = ready
∧ wtime? > clock
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTime[delayed task := delayed task∪
{running task},

log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))
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theorem DelayUntil TQT vc ref
∀DelayUntil TQTFSBSig | true • pre DelayUntil TQT

CheckDelayedTaskN TQT
∆TaskQueueTime
topWaiting ! : TASK

running task /∈ dom release snd ∪ dom release rcv
topWaiting ! ∈ domwait time
∀wt : domwait time • wait time(topWaiting !) ≤ wait time(wt)
∀wt : domwait time | wait time(wt) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt)

priority(topWaiting !) ≤ priority(running task)
ΞTaskData
state ′ = state ⊕ {(topWaiting ! 7→ ready)}
ΞContextData
ΞPrioData
ΞQueueData
wait snd ′ = {topWaiting !} −C wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
ΞQReleasingData
clock ′ = wait time(topWaiting !)
delayed task ′ = delayed task \ {topWaiting !}
wait time ′ = {topWaiting !} −C wait time
time slice ′ = time slice

CheckDelayedTaskN TQTFSBSig
TaskQueueTime

running task /∈ dom release snd ∪ dom release rcv
∃ topWaiting ! : domwait time
• (∀wt : domwait time • wait time(topWaiting !) ≤ wait time(wt))
∧ (∀wt : domwait time | wait time(wt) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt))

∧ priority(topWaiting !) ≤ priority(running task)

theorem lCheckDelayedTaskN TQT Lemma
∀TaskQueueTime; topWaiting ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ topWaiting ! ∈ domwait time
∧ (∀ dtk : domwait time
• wait time(topWaiting !) ≤ wait time(dtk))

∧ (∀ detk : domwait time
| wait time(detk) = wait time(topWaiting !)
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• priority(topWaiting !) ≥ priority(detk))
∧ priority(topWaiting !) ≤ priority(running task)
• ¬ (TaskQueueTime[clock := wait time(topWaiting !),

delayed task := delayed task \ {topWaiting !},
state := state ⊕ {(topWaiting !, ready)},
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ,
wait snd := {topWaiting !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topWaiting !, ready)})st = state(st)
⇒ (state(st), (state⊕
{(topWaiting !, ready)})st) ∈ transition)

∧ (wt ∈ domwait time
⇒ wait time(topWaiting !) ≤ wait time(wt))

⇒ wt 0 ∈ domwait time
∧ wait time(wt 0) = wait time(topWaiting !)
∧ ¬ priority(topWaiting !) ≥ priority(wt 0))

theorem CheckDelayedTaskN TQT vc ref
∀CheckDelayedTaskN TQTFSBSig | true
• pre CheckDelayedTaskN TQT

CheckDelayedTaskS TQT
∆TaskQueueTime
topWaiting ! : TASK

running task /∈ dom release snd ∪ dom release rcv
topWaiting ! ∈ domwait time
∀wt : domwait time • wait time(topWaiting !) ≤ wait time(wt)
∀wt : domwait time | wait time(wt) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt)

priority(topWaiting !) > priority(running task)
∃ st? : STATE | st? = ready
• Reschedule[topWaiting !/target?, tasks/tasks?, priority/pri?]

ΞQueueData
wait snd ′ = {topWaiting !} −C wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
ΞQReleasingData
clock ′ = wait time(topWaiting !)
delayed task ′ = delayed task \ {topWaiting !}
wait time ′ = {topWaiting !} −C wait time
time slice ′ = time slice
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CheckDelayedTaskS TQTFSBSig
TaskQueueTime

running task /∈ dom release snd ∪ dom release rcv
∃ topWaiting ! : domwait time
• (∀wt : domwait time • wait time(topWaiting !) ≤ wait time(wt))
∧ (∀wt : domwait time | wait time(wt) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt))

∧ priority(topWaiting !) > priority(running task)

theorem lCheckDelayedTaskS TQT Lemma
∀TaskQueueTime; topWaiting ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ topWaiting ! ∈ domwait time
∧ (∀ dtk : domwait time
• wait time(topWaiting !) ≤ wait time(dtk))

∧ (∀ detk : domwait time
| wait time(detk) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(detk))

∧ priority(topWaiting !) > priority(running task)
• ¬ (TaskQueueTime[clock := wait time(topWaiting !),

delayed task := delayed task \ {topWaiting !},
log context := log context⊕
{(running task , phys context)},

phys context := log context(topWaiting !),
running task := topWaiting !,
state := state⊕

({(running task , ready)} ∪ {(topWaiting !, running)}),
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ,
wait snd := {topWaiting !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topWaiting !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topWaiting !, running)}))st) ∈ transition)

∧ (wt ∈ domwait time
⇒ wait time(topWaiting !) ≤ wait time(wt))

⇒ wt 0 ∈ domwait time
∧ wait time(wt 0) = wait time(topWaiting !)
∧ ¬ priority(topWaiting !) ≥ priority(wt 0))

theorem CheckDelayedTaskS TQT vc ref
∀CheckDelayedTaskS TQTFSBSig | true
• pre CheckDelayedTaskS TQT
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TimeSlicing TQT
∆TaskQueueTime
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
state(topReady !) = ready
priority(topReady !) = priority(running task)
∀ t : domwait time • time slice ≤ wait time(t)
∃ st? : STATE | st? = ready
• Reschedule[topReady !/target?, tasks/tasks?, priority/pri?]

ΞQueue
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time
time slice ′ = time slice + slice delay

TimeSlicing TQTFSBSig
TaskQueueTime

running task /∈ dom release snd ∪ dom release rcv
∀ t : domwait time • time slice ≤ wait time(t)
∃ topReady ! : state∼(| {ready} |)
• priority(topReady !) = priority(running task)

theorem lTimeSlicing TQT Lemma
∀TaskQueueTime; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ state(topReady !) = ready
∧ priority(topReady !) = priority(running task)
∧ (∀ ts : domwait time • time slice ≤ wait time(ts))
• ¬ (TaskQueueTime[log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
time slice := time slice + slice delay ]

⇒ st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st = state(st)

∧ ¬ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)
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theorem TimeSlicing TQT vc ref
∀TimeSlicing TQTFSBSig | true • pre TimeSlicing TQT

NoSlicing TQT
∆TaskQueueTime

running task /∈ dom release snd ∪ dom release rcv
∀ t : domwait time • time slice ≤ wait time(t)
∀ t : state∼(| {ready} |) • priority(t) < priority(running task)
ΞTask
ΞQueue
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time
time slice ′ = time slice + slice delay

NoSlicing TQTFSBSig
TaskQueueTime

running task /∈ dom release snd ∪ dom release rcv
∀ t : domwait time • time slice ≤ wait time(t)
∀ t : state∼(| {ready} |) • priority(t) < priority(running task)

theorem NoSlicing TQT vc ref
∀NoSlicing TQTFSBSig | true • pre NoSlicing TQT

Page 224



Appendix G

SPECIFICATION FOR MUTEX MODEL

MutexData
semaphore : PQUEUE
mutex : PQUEUE
mutex holder : QUEUE 7→ TASK
mutex recursive : QUEUE 7→ N

mutex ∩ semaphore = ∅
dommutex recursive = mutex
∀m : mutex • m /∈ dommutex holder ⇔ mutex recursive(m) = 0

Init MutexData
MutexData ′

semaphore ′ = ∅
mutex ′ = ∅
mutex holder ′ = ∅
mutex recursive ′ = ∅

theorem MutexDataInit
∃MutexData ′ • Init MutexData

OriginalPrioData
base priority : TASK 7→ N
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Init OriginalPrioData
OriginalPrioData ′

base priority ′ = ∅

theorem OriginalPrioDataInit
∃OriginalPrioData ′ • Init OriginalPrioData

MReleasingData
release mutex : TASK 7→ QUEUE

Init MReleasingData
MReleasingData ′

release mutex ′ = ∅

theorem MReleasingDataInit
∃MReleasingData ′ • Init MReleasingData

Mutex
MutexData
OriginalPrioData
MReleasingData

dom base priority = ranmutex holder
ran release mutex ⊆ mutex

Init Mutex
Mutex ′

Init MutexData
Init OriginalPrioData
Init MReleasingData

theorem MutexInit
∃Mutex ′ • Init Mutex

TaskQueueTimeMutex
TaskQueueTime
Mutex
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semaphore ⊆ queue
∀ s : semaphore • q max (s) = 1
mutex ⊆ queue
∀m : mutex • q max (m) = 1
dommutex holder = {m : mutex | q size(m) = 0}
ranmutex holder ⊆ tasks
∀mh : ranmutex holder • priority(mh) ≥ base priority(mh)
∀ms : mutex ∪ semaphore • ms /∈ ranwait snd ∪ ran release snd
release mutex ⊆ release rcv

∆TaskQueueTimeMutex =̂ TaskQueueTimeMutex
∧ TaskQueueTimeMutex ′
∧ ∆Task

Init TaskQueueTimeMutex
TaskQueueTimeMutex ′

Init TaskQueueTime
Init Mutex

theorem TaskQueueTimeMutexInit
∃TaskQueueTimeMutex ′ • Init TaskQueueTimeMutex

ExtendTQTXi
∆TaskQueueTimeMutex

ΞMutex

CreateTaskN TQTM =̂ ExtendTQTXi ∧ CreateTaskN TQT

CreateTaskN TQTMFSBSig =̂ TaskQueueTimeMutex
∧ CreateTaskN TQTFSBSig

theorem CreateTaskN TQTM vc ref
∀CreateTaskN TQTMFSBSig | true • pre CreateTaskN TQTM

CreateTaskS TQTM =̂ ExtendTQTXi ∧ CreateTaskS TQT

CreateTaskS TQTMFSBSig =̂ TaskQueueTimeMutex
∧ CreateTaskS TQTFSBSig
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theorem CreateTaskS TQTM vc ref
∀CreateTaskS TQTMFSBSig | true • pre CreateTaskS TQTM

CreateTask TQTM =̂ CreateTaskN TQTM ∨ CreateTaskS TQTM

DeleteTaskN TQTM
∆TaskQueueTimeMutex
DeleteTaskN TQT

target? /∈ ranmutex holder
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {target?} −C release mutex

DeleteTaskN TQTMFSBSig
TaskQueueTimeMutex
DeleteTaskN TQTFSBSig

target? /∈ ranmutex holder

theorem DeleteTaskN TQTM vc ref
∀DeleteTaskN TQTMFSBSig | true • pre DeleteTaskN TQTM

DeleteTaskS TQTM
∆TaskQueueTimeMutex
DeleteTaskS TQT

target? /∈ ranmutex holder
ΞMutex

DeleteTaskS TQTMFSBSig
TaskQueueTimeMutex
DeleteTaskS TQTFSBSig

target? /∈ ranmutex holder

theorem lDeleteTaskS TQTM Lemma
∀TaskQueueTimeMutex ; topReady !, target? : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
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∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ target? /∈ ranmutex holder
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(target?, bare context)},
phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(target?, nonexistent)} ∪ {(topReady !, running)}),
tasks := tasks \ {target?}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(target?, nonexistent)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(target?, nonexistent)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem DeleteTaskS TQTM vc ref
∀DeleteTaskS TQTMFSBSig | true • pre DeleteTaskS TQTM

DeleteTask TQTM =̂ DeleteTaskN TQTM ∨ DeleteTaskS TQTM

ExecuteRunningTask TQTM =̂ ExtendTQTXi
∧ ExecuteRunningTask TQT

ExecuteRunningTask TQTMFSBSig =̂ TaskQueueTimeMutex
∧ ExecuteRunningTask TQTFSBSig

theorem ExecuteRunningTask TQTM vc ref
∀ExecuteRunningTask TQTMFSBSig | true
• pre ExecuteRunningTask TQTM

SuspendTaskN TQTM =̂ ExtendTQTXi ∧ SuspendTaskN TQT

SuspendTaskN TQTMFSBSig =̂ TaskQueueTimeMutex
∧ SuspendTaskN TQTFSBSig

theorem SuspendTaskN TQTM vc ref
∀ SuspendTaskN TQTMFSBSig | true • pre SuspendTaskN TQTM
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SuspendTaskS TQTM =̂ ExtendTQTXi ∧ SuspendTaskS TQT

SuspendTaskS TQTMFSBSig =̂ TaskQueueTimeMutex
∧ SuspendTaskS TQTFSBSig

theorem lSuspendTaskS TQTM Lemma
∀TaskQueueTimeMutex ; target?, topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ target? ∈ tasks \ {idle}
∧ state(target?) ∈ {running}
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTimeMutex [log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
running task := topReady !,
state := state ⊕ ({(running task , suspended)}∪
{(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , suspended)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , suspended)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem SuspendTaskS TQTM vc ref
∀ SuspendTaskS TQTMFSBSig | true • pre SuspendTaskS TQTM

SuspendTaskO TQTM =̂ ExtendTQTXi ∧ SuspendTaskO TQT

SuspendTaskO TQTMFSBSig =̂ TaskQueueTimeMutex
∧ SuspendTaskO TQTFSBSig

theorem SuspendTaskO TQTM vc ref
∀ SuspendTaskO TQTMFSBSig | true • pre SuspendTaskO TQTM

SuspendTask TQTM =̂ SuspendTaskN TQTM
∨ SuspendTaskS TQTM
∨ SuspendTaskO TQTM
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ResumeTaskN TQTM =̂ ExtendTQTXi ∧ ResumeTaskN TQT

ResumeTaskN TQTMFSBSig =̂ TaskQueueTimeMutex
∧ ResumeTaskN TQTFSBSig

theorem ResumeTaskN TQTM vc ref
∀ResumeTaskN TQTMFSBSig | true • pre ResumeTaskN TQTM

ResumeTaskS TQTM =̂ ExtendTQTXi ∧ ResumeTaskS TQT

ResumeTaskS TQTMFSBSig =̂ TaskQueueTimeMutex
∧ ResumeTaskS TQTFSBSig

theorem ResumeTaskS TQTM vc ref
∀ResumeTaskS TQTMFSBSig | true • pre ResumeTaskS TQTM

ResumeTask TQTM =̂ ResumeTaskN TQTM ∨ ResumeTaskS TQTM

ChangeTaskPriorityNNotHolder TQTM
∆TaskQueueTimeMutex
ChangeTaskPriorityN TQT

target? /∈ dom base priority
ΞMutex

ChangeTaskPriorityNNotHolder TQTMFSBSig
ChangeTaskPriorityN TQTFSBSig
TaskQueueTimeMutex

target? /∈ dom base priority

theorem ChangeTaskPriorityNNotHolder TQTM vc ref
∀ChangeTaskPriorityNNotHolder TQTMFSBSig | true
• pre ChangeTaskPriorityNNotHolder TQTM

ChangeTaskPrioritySNotHolder TQTM
ChangeTaskPriorityS TQT
∆TaskQueueTimeMutex

target? /∈ dom base priority
ΞMutex
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ChangeTaskPrioritySNotHolder TQTMFSBSig
ChangeTaskPriorityS TQTFSBSig
TaskQueueTimeMutex

target? /∈ dom base priority

theorem ChangeTaskPrioritySNotHolder TQTM vc ref
∀ChangeTaskPrioritySNotHolder TQTMFSBSig | true
• pre ChangeTaskPrioritySNotHolder TQTM

ChangeTaskPriorityDNotHolder TQTM
∆TaskQueueTimeMutex
ChangeTaskPriorityD TQT

target? /∈ dom base priority
ΞMutex

ChangeTaskPriorityDNotHolder TQTMFSBSig
TaskQueueTimeMutex
ChangeTaskPriorityD TQTFSBSig

target? /∈ dom base priority

theorem lChangeTaskPriorityDNotHolder TQTM Lemma
∀TaskQueueTimeMutex ; target?, topReady ! : TASK ; newpri? : N
| state(target?) = running
∧ (target? = idle ⇒ newpri? = 0)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ newpri? < priority(topReady !)
∧ target? /∈ dom base priority
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
priority := priority ⊕ {(target?, newpri?)},
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)})]
∧ newpri? < priority(topReady !)
∧ (st ∈ TASK
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∧ ¬ (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st = state(st)

⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem ChangeTaskPriorityDNotHolder TQTM vc ref
∀ChangeTaskPriorityDNotHolder TQTMFSBSig | true
• pre ChangeTaskPriorityDNotHolder TQTM

ChangeTaskPriorityNNotInherited TQTM
ChangeTaskPriorityN TQT
∆TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) = priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData

ChangeTaskPriorityNNotInherited TQTMFSBSig
ChangeTaskPriorityN TQTFSBSig
TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) = priority(target?)

theorem ChangeTaskPriorityNNotInherited TQTM vc ref
∀ChangeTaskPriorityNNotInherited TQTMFSBSig | true
• pre ChangeTaskPriorityNNotInherited TQTM

ChangeTaskPrioritySNotInherited TQTM
ChangeTaskPriorityS TQT
∆TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) = priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData
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ChangeTaskPrioritySNotInherited TQTMFSBSig
ChangeTaskPriorityS TQTFSBSig
TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) = priority(target?)

theorem ChangeTaskPrioritySNotInherited TQTM vc ref
∀ChangeTaskPrioritySNotInherited TQTMFSBSig | true
• pre ChangeTaskPrioritySNotInherited TQTM

ChangeTaskPriorityDNotInherited TQTM
∆TaskQueueTimeMutex
ChangeTaskPriorityD TQT

target? ∈ dom base priority
base priority(target?) = priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData

ChangeTaskPriorityDNotInherited TQTMFSBSig
TaskQueueTimeMutex
ChangeTaskPriorityD TQTFSBSig

target? ∈ dom base priority
base priority(target?) = priority(target?)

theorem lChangeTaskPriorityDNotInherited TQTM Lemma
∀TaskQueueTimeMutex ; target?, topReady ! : TASK ; newpri? : N
| state(target?) = running
∧ (target? = idle ⇒ newpri? = 0)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ newpri? < priority(topReady !)
∧ target? ∈ dom base priority
∧ base priority(target?) = priority(target?)
• ¬ (TaskQueueTimeMutex [base priority := base priority⊕

{(target?, newpri?)},
log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
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priority := priority ⊕ {(target?, newpri?)},
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)})]
∧ newpri? < priority(topReady !)
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem ChangeTaskPriorityDNotInherited TQTM vc ref
∀ChangeTaskPriorityDNotInherited TQTMFSBSig | true
• pre ChangeTaskPriorityDNotInherited TQTM

ChangeTaskPriorityInheritedN TQTM
∆TaskQueueTimeMutex
newpri? : N
target? : TASK
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? ≤ priority(target?)
state(target?) 6= nonexistent
target? = idle ⇒ newpri? = 0
ΞTaskQueueTime
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData
topReady ! = running task

ChangeTaskPriorityInheritedN TQTMFSBSig
TaskQueueTimeMutex
newpri? : N
target? : TASK

running task /∈ dom release snd ∪ dom release rcv
target? ∈ dom base priority
base priority(target?) 6= priority(target?)
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newpri? ≤ priority(target?)
state(target?) 6= nonexistent
target? = idle ⇒ newpri? = 0

theorem ChangeTaskPriorityInheritedN TQTM vc ref
∀ChangeTaskPriorityInheritedN TQTMFSBSig | true
• pre ChangeTaskPriorityInheritedN TQTM

ChangeTaskPriorityInheritedU TQTM
∆TaskQueueTimeMutex
ChangeTaskPriorityN TQT

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData

ChangeTaskPriorityInheritedU TQTMFSBSig
ChangeTaskPriorityN TQTFSBSig
TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)

theorem ChangeTaskPriorityInheritedU TQTM vc ref
∀ChangeTaskPriorityInheritedU TQTMFSBSig | true
• pre ChangeTaskPriorityInheritedU TQTM

ChangeTaskPriorityInheritedS TQTM
∆TaskQueueTimeMutex
ChangeTaskPriorityS TQT

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData
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ChangeTaskPriorityInheritedS TQTMFSBSig
ChangeTaskPriorityS TQTFSBSig
TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)

theorem ChangeTaskPriorityInheritedS TQTM vc ref
∀ChangeTaskPriorityInheritedS TQTMFSBSig | true
• pre ChangeTaskPriorityInheritedS TQTM

ChangeTaskPriority TQTM =̂ ChangeTaskPriorityNNotHolder TQTM
∨ ChangeTaskPrioritySNotHolder TQTM
∨ ChangeTaskPriorityDNotHolder TQTM
∨ ChangeTaskPriorityNNotInherited TQTM
∨ ChangeTaskPrioritySNotInherited TQTM
∨ ChangeTaskPriorityDNotInherited TQTM
∨ ChangeTaskPriorityInheritedN TQTM
∨ ChangeTaskPriorityInheritedU TQTM
∨ ChangeTaskPriorityInheritedS TQTM

CreateQueue TQTM =̂ ExtendTQTXi ∧ CreateQueue TQT

CreateQueue TQTMFSBSig =̂ TaskQueueTimeMutex
∧ CreateQueue TQTFSBSig

theorem CreateQueue TQTM vc ref
∀CreateQueue TQTMFSBSig | true • pre CreateQueue TQTM

DeleteQueue TQTM
DeleteQueue TQT
∆TaskQueueTimeMutex

que? /∈ semaphore ∪mutex
ΞMutex

DeleteQueue TQTMFSBSig
TaskQueueTimeMutex
DeleteQueue TQTFSBSig

que? /∈ semaphore ∪mutex
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theorem DeleteQueue TQTM vc ref
∀DeleteQueue TQTMFSBSig | true • pre DeleteQueue TQTM

QueueSendN TQTM
QueueSendN TQT
∆TaskQueueTimeMutex

que? /∈ mutex ∪ semaphore
ΞMutex

QueueSendN TQTMFSBSig
TaskQueueTimeMutex
QueueSendN TQTFSBSig

que? /∈ mutex ∪ semaphore

theorem QueueSendN TQTM vc ref
∀QueueSendN TQTMFSBSig | true • pre QueueSendN TQTM

QueueSendF TQTM
∆TaskQueueTimeMutex
QueueSendF TQT

que? /∈ mutex ∪ semaphore
ΞMutex

QueueSendF TQTMFSBSig
TaskQueueTimeMutex
QueueSendF TQTFSBSig

que? /∈ mutex ∪ semaphore

theorem lQueueSendF TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; que? : QUEUE ; wtime? : N
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) = q max (que?)
∧ running task 6= idle
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∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ wtime? > clock
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait snd := wait snd ⊕ {(running task , que?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem QueueSendF TQTM vc ref
∀QueueSendF TQTMFSBSig | true • pre QueueSendF TQTM

QueueSendW TQTM
∆TaskQueueTimeMutex
QueueSendW TQT

que? /∈ mutex ∪ semaphore
ΞMutex

QueueSendW TQTMFSBSig
TaskQueueTimeMutex
QueueSendW TQTFSBSig

que? /∈ mutex ∪ semaphore

theorem overrideIsDisjointUnion [X ,Y ]
∀ f , g : X 7→ Y | dom f ∩ dom g = ∅ • f ⊆ f ⊕ g
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theorem lQueueSendW TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; que? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(running task) ≥ priority(topReady !)
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [q size := q size ⊕ {(que?, (1+

q size(que?)))},
release rcv := release rcv ⊕ {(topReady !, que?)},
release snd := {running task} −C release snd ,
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK ∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = que?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem QueueSendW TQTM vc ref
∀QueueSendW TQTMFSBSig | true • pre QueueSendW TQTM

QueueSendWS TQTM
∆TaskQueueTimeMutex
QueueSendWS TQT

que? /∈ mutex ∪ semaphore
ΞMutex

QueueSendWS TQTMFSBSig
TaskQueueTimeMutex
QueueSendWS TQTFSBSig

que? /∈ mutex ∪ semaphore
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theorem lQueueSendWS TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; que? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ que? = release snd(running task))

∧ que? ∈ queue
∧ q size(que?) < q max (que?)
∧ topReady ! ∈ wait rcv∼(| {que?} |)
∧ (∀wrct : wait rcv∼(| {que?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) > priority(running task)
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait rcv(topReady !), (1+

q size(wait rcv(topReady !))))},
release rcv := release rcv⊕
{(topReady !,wait rcv(topReady !))},

release snd := {running task} −C release snd ,
running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = wait rcv(topReady !)
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem QueueSendWS TQTM vc ref
∀QueueSendWS TQTMFSBSig | true • pre QueueSendWS TQTM

QueueSend TQTM =̂ QueueSendN TQTM
∨ QueueSendF TQTM
∨ QueueSendW TQTM
∨ QueueSendWS TQTM

QueueReceiveN TQTM
QueueReceiveN TQT
∆TaskQueueTimeMutex
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running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore
ΞMutex

QueueReceiveN TQTMFSBSig
TaskQueueTimeMutex
QueueReceiveN TQTFSBSig

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore

theorem mutexDiffQue
∀TaskQueueTimeMutex | que? /∈ mutex ∪ semaphore
• dommutex holder = {f 1 : mutex
| (q size ⊕ {(que?, (q size(que?)− 1))})f 1 = 0}

theorem QueueReceiveN TQTM vc ref
∀QueueReceiveN TQTMFSBSig | true • pre QueueReceiveN TQTM

QueueReceiveE TQTM
∆TaskQueueTimeMutex
QueueReceiveE TQT

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore
ΞMutex

QueueReceiveE TQTMFSBSig
TaskQueueTimeMutex
QueueReceiveE TQTFSBSig

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore

theorem lQueueReceiveE TQTM Lemma
∀TaskQueueTimeMutex ; que? : QUEUE ; topReady ! : TASK ; wtime? : N
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) = 0
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∧ running task 6= idle
∧ topReady ! ∈ state∼(| {ready} |)
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ wtime? > clock
∧ running task /∈ dom release mutex
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release rcv := {running task} −C release rcv ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait rcv := wait rcv ⊕ {(running task , que?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem QueueReceiveE TQTM vc ref
∀QueueReceiveE TQTMFSBSig | true • pre QueueReceiveE TQTM

QueueReceiveW TQTM
∆TaskQueueTimeMutex
QueueReceiveW TQT

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore
ΞMutex

QueueReceiveW TQTMFSBSig
TaskQueueTimeMutex
QueueReceiveW TQTFSBSig

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore
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theorem lQueueReceiveW TQTM Lemma
∀TaskQueueTimeMutex ; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(running task) ≥ priority(topReady !)
∧ running task /∈ dom release mutex
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [q size := q size⊕

{(que?, (q size(que?)− 1))},
release rcv := {running task} −C release rcv ,
release snd := release snd ⊕ {(topReady !, que?)},
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait snd := {topReady !} −C wait snd ]

∧ priority(topReady !) ≤ priority(running task)
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ ws ∈ domwait snd
∧ wait snd(ws) = que?
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveW TQTM vc ref
∀QueueReceiveW TQTMFSBSig | true • pre QueueReceiveW TQTM

QueueReceiveWS TQTM
∆TaskQueueTimeMutex
QueueReceiveWS TQT

running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore
ΞMutex

QueueReceiveWS TQTMFSBSig
TaskQueueTimeMutex
QueueReceiveWS TQTFSBSig
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running task /∈ dom release mutex
que? /∈ mutex ∪ semaphore

theorem lQueueReceiveWS TQTM Lemma
∀TaskQueueTimeMutex ; que? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ que? = release rcv(running task))

∧ que? ∈ queue
∧ q size(que?) > 0
∧ topReady ! ∈ wait snd∼(| {que?} |)
∧ (∀wsnt : wait snd∼(| {que?} |)
• priority(topReady !) ≥ priority(wsnt))

∧ priority(topReady !) > priority(running task)
∧ running task /∈ dom release mutex
∧ que? /∈ mutex ∪ semaphore
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
q size := q size ⊕ {(wait snd(topReady !),

(q size(wait snd(topReady !))− 1))},
release rcv := {running task} −C release rcv ,
release snd := release snd⊕
{(topReady !,wait snd(topReady !))},

running task := topReady !,
state := state⊕

({(running task , ready)} ∪ {(topReady !, running)}),
wait time := {topReady !} −C wait time,
wait snd := {topReady !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ ws ∈ domwait snd
∧ wait snd(ws) = wait snd(topReady !)
∧ ¬ priority(topReady !) ≥ priority(ws))

theorem QueueReceiveWS TQTM vc ref
∀QueueReceiveWS TQTMFSBSig | true • pre QueueReceiveWS TQTM

QueueReceive TQTM =̂ QueueReceiveN TQTM
∨ QueueReceiveE TQTM
∨ QueueReceiveW TQTM
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∨ QueueReceiveWS TQTM

DelayUntil TQTM =̂ ExtendTQTXi ∧ DelayUntil TQT

DelayUntil TQTMFSBSig =̂ TaskQueueTimeMutex
∧ DelayUntil TQTFSBSig

theorem lDelayUntil TQTM Lemma
∀TaskQueueTimeMutex ; wtime? : N; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ running task 6= idle
∧ state(topReady !) = ready
∧ wtime? > clock
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTimeMutex [delayed task := delayed task∪
{running task},

log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem DelayUntil TQTM vc ref
∀DelayUntil TQTMFSBSig | true • pre DelayUntil TQTM

CheckDelayedTaskN TQTM =̂ ExtendTQTXi ∧ CheckDelayedTaskN TQT

CheckDelayedTaskN TQTMFSBSig =̂ TaskQueueTimeMutex
∧ CheckDelayedTaskN TQTFSBSig
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theorem lCheckDelayedTaskN TQTM Lemma
∀TaskQueueTimeMutex ; topWaiting ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ topWaiting ! ∈ domwait time
∧ (∀ dtk : domwait time
• wait time(topWaiting !) ≤ wait time(dtk))

∧ (∀ detk : domwait time
| wait time(detk) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(detk))

∧ priority(topWaiting !) ≤ priority(running task)
• ¬ (TaskQueueTimeMutex [clock := wait time(topWaiting !),

delayed task := delayed task \ {topWaiting !},
state := state ⊕ {(topWaiting !, ready)},
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ,
wait snd := {topWaiting !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topWaiting !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topWaiting !, ready)})st)
∈ transition)

∧ (wt ∈ domwait time
⇒ wait time(topWaiting !) ≤ wait time(wt))

⇒ wt 0 ∈ domwait time
∧ wait time(wt 0) = wait time(topWaiting !)
∧ ¬ priority(topWaiting !) ≥ priority(wt 0))

theorem CheckDelayedTaskN TQTM vc ref
∀CheckDelayedTaskN TQTMFSBSig | true
• pre CheckDelayedTaskN TQTM

CheckDelayedTaskS TQTM =̂ ExtendTQTXi ∧ CheckDelayedTaskS TQT

CheckDelayedTaskS TQTMFSBSig =̂ TaskQueueTimeMutex
∧ CheckDelayedTaskS TQTFSBSig

theorem lCheckDelayedTaskS TQTM Lemma
∀TaskQueueTimeMutex ; topWaiting ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ topWaiting ! ∈ domwait time
∧ (∀ dtk : domwait time
• wait time(topWaiting !) ≤ wait time(dtk))

∧ (∀ detk : domwait time
| wait time(detk) = wait time(topWaiting !)
• priority(topWaiting !) ≥ priority(detk))
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∧ priority(topWaiting !) > priority(running task)
• ¬ (wait time(topWaiting !) ∈ Z
∧ TaskQueueTimeMutex [clock := wait time(topWaiting !),

delayed task := delayed task \ {topWaiting !},
log context := log context⊕
{(running task , phys context)},

phys context := log context(topWaiting !),
running task := topWaiting !,
state := state⊕

({(running task , ready)} ∪ {(topWaiting !, running)}),
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ,
wait snd := {topWaiting !} −C wait snd ]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪

{(topWaiting !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , ready)}∪
{(topWaiting !, running)}))st) ∈ transition)

∧ (wt ∈ domwait time
⇒ wait time(topWaiting !) ≤ wait time(wt))

⇒ wt 0 ∈ domwait time
∧ wait time(wt 0) = wait time(topWaiting !)
∧ ¬ priority(topWaiting !) ≥ priority(wt 0))

theorem CheckDelayedTaskS TQTM vc ref
∀CheckDelayedTaskS TQTMFSBSig | true
• pre CheckDelayedTaskS TQTM

TimeSlicing TQTM =̂ ExtendTQTXi ∧ TimeSlicing TQT

TimeSlicing TQTMFSBSig =̂ TaskQueueTimeMutex
∧ TimeSlicing TQTFSBSig

theorem lTimeSlicing TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ state(topReady !) = ready
∧ priority(topReady !) = priority(running task)
∧ (∀ ts : domwait time • time slice ≤ wait time(ts))
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
running task := topReady !,
state := state⊕

Page 248



({(running task , ready)} ∪ {(topReady !, running)}),
time slice := time slice + slice delay ]

⇒ st ∈ TASK
∧ ¬ (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st = state(st)

∧ ¬ (state(st), (state ⊕ ({(running task , ready)}∪
{(topReady !, running)}))st) ∈ transition)

theorem TimeSlicing TQTM vc ref
∀TimeSlicing TQTMFSBSig | true • pre TimeSlicing TQTM

NoSlicing TQTM =̂ ExtendTQTXi ∧ NoSlicing TQT

NoSlicing TQTMFSBSig =̂ TaskQueueTimeMutex
∧ NoSlicing TQTFSBSig

theorem NoSlicing TQTM vc ref
∀NoSlicing TQTMFSBSig | true • pre NoSlicing TQTM

CreateBinarySemaphore TQTM
∆TaskQueueTimeMutex
sem? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
sem? /∈ queue
ΞTask
queue ′ = queue ∪ {sem?}
q max ′ = q max ⊕ {(sem? 7→ 1)}
q size ′ = q size ⊕ {(sem? 7→ 1)}
ΞWaitingData
ΞQReleasingData
ΞTime
semaphore ′ = semaphore ∪ {sem?}
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive
ΞOriginalPrioData
ΞMReleasingData

CreateBinarySemaphore TQTMFSBSig
TaskQueueTimeMutex
sem? : QUEUE
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running task /∈ dom release snd ∪ dom release rcv
sem? /∈ queue

theorem CreateBinarySemaphore TQTM vc ref
∀CreateBinarySemaphore TQTMFSBSig | true
• pre CreateBinarySemaphore TQTM

DeleteBinarySemaphore TQTM
∆TaskQueueTimeMutex
sem? : QUEUE

sem? ∈ semaphore
DeleteQueue TQT [sem?/que?]
semaphore ′ = semaphore \ {sem?}
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive
ΞOriginalPrioData
ΞMReleasingData

DeleteBinarySemaphore TQTMFSBSig
DeleteQueue TQTFSBSig [sem?/que?]
TaskQueueTimeMutex
sem? : QUEUE

sem? ∈ semaphore

theorem DeleteBinarySemaphore TQTM vc ref
∀DeleteBinarySemaphore TQTMFSBSig | true
• pre DeleteBinarySemaphore TQTM

CreateMutex TQTM
∆TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? /∈ queue
ΞTask
queue ′ = queue ∪ {mut?}
q max ′ = q max ⊕ {(mut? 7→ 1)}
q size ′ = q size ⊕ {(mut? 7→ 1)}
ΞWaitingData

Page 250



ΞQReleasingData
ΞTime
semaphore ′ = semaphore
mutex ′ = mutex ∪ {mut?}
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
ΞOriginalPrioData
ΞMReleasingData

CreateMutex TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? /∈ queue

theorem CreateMutex TQTM vc ref
∀CreateMutex TQTMFSBSig | true • pre CreateMutex TQTM

DeleteMutex TQTM
∆TaskQueueTimeMutex
mut? : QUEUE

mut? ∈ mutex \ dommutex holder
DeleteQueue TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex \ {mut?}
mutex holder ′ = mutex holder
mutex recursive ′ = {mut?} −Cmutex recursive
ΞOriginalPrioData
ΞMReleasingData

DeleteMutex TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

DeleteQueue TQTFSBSig [que? := mut?]
mut? ∈ mutex \ dommutex holder

theorem subPfun [X ,Y ]
∀ f , g : X 7→ Y ; y : Y | g ⊆ f • y /∈ ran f ⇒ y /∈ ran g

theorem DeleteMutex TQTM vc ref

Page 251



∀DeleteMutex TQTMFSBSig | true • pre DeleteMutex TQTM

MutexTakeNnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ mutex
running task /∈ dom base priority
QueueReceiveN TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder ⊕ {(mut? 7→ running task)}
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?) + 1)}

base priority ′ = base priority⊕
{(running task 7→ priority(running task))}

release mutex ′ = {running task} −C release mutex

MutexTakeNnonInh TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueReceiveN TQTFSBSig [que? := mut?]
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ mutex
running task /∈ dom base priority

theorem MutexTakeNnonInh TQTM vc ref
∀MutexTakeNnonInh TQTMFSBSig | true
• pre MutexTakeNnonInh TQTM

MutexTakeNInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ mutex
running task ∈ dom base priority
QueueReceiveN TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex
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mutex holder ′ = mutex holder ⊕ {(mut? 7→ running task)}
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?) + 1)}

ΞOriginalPrioData
release mutex ′ = {running task} −C release mutex

MutexTakeNInh TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueReceiveN TQTFSBSig [que? := mut?]
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ mutex
running task ∈ dom base priority

theorem MutexTakeNInh TQTM vc ref
∀MutexTakeNInh TQTMFSBSig | true • pre MutexTakeNInh TQTM

MutexTakeEnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK
wtime? : N

running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) ≤ priority(mutex holder(mut?))
running task 6= mutex holder(mut?)
QueueReceiveE TQT [que? := mut?]
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {running task} −C release mutex

MutexTakeEnonInh TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE
wtime? : N

QueueReceiveE TQTFSBSig [que? := mut?]
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) ≤ priority(mutex holder(mut?))
running task 6= mutex holder(mut?)
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theorem lMutexTakeEnonInh TQTM Lemma
∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK ;

wtime? : N
| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ mut? = release rcv(running task))

∧ mut? ∈ queue
∧ q size(mut?) = 0
∧ running task 6= idle
∧ topReady ! ∈ state∼(| {ready} |)
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ wtime? > clock
∧ (running task ∈ dom release rcv
⇒ running task ∈ dom release mutex )

∧ mut? ∈ dommutex holder
∧ q size(mut?) = 0
∧ priority(running task) ≤ priority(mutex holder(mut?))
∧ running task 6= mutex holder(mut?)
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(running task , phys context)},
phys context := log context(topReady !),
release mutex := {running task} −C release mutex ,
release rcv := {running task} −C release rcv ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait rcv := wait rcv ⊕ {(running task ,mut?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ t ∈ TASK
∧ state(t) = ready
∧ ¬ priority(topReady !) ≥ priority(t))

theorem MutexTakeEnonInh TQTM vc ref
∀MutexTakeEnonInh TQTMFSBSig | true
• pre MutexTakeEnonInh TQTM

MutexTakeEInheritReady TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
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topReady ! : TASK
wtime? : N

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ mut? = release rcv(running task)
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) > priority(mutex holder(mut?))
wtime? > clock
mutex holder(mut?) /∈ state∼(| {ready} |)
state(topReady !) = ready
∀ rt : state∼(| {ready} |) • priority(topReady !) ≥ priority(rt)
∃ st? : STATE ; pri? : TASK → N
| st? = blocked ∧ pri? = priority⊕
{(mutex holder(mut?) 7→ priority(running task))}

• Reschedule[topReady !/target?, tasks/tasks?]
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(running task 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {running task} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {running task} −C release mutex

MutexTakeEInheritReady TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE
wtime? : N

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ mut? = release rcv(running task)
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) > priority(mutex holder(mut?))
wtime? > clock
mutex holder(mut?) /∈ state∼(| {ready} |)

theorem lMutexTakeEInheritReady TQTM Lemma
∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK ;

wtime? : N
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| running task /∈ dom release snd
∧ (running task ∈ dom release rcv
⇒ mut? = release rcv(running task))

∧ (running task ∈ dom release rcv
⇒ running task ∈ dom release mutex )

∧ mut? ∈ dommutex holder
∧ priority(running task) > priority(mutex holder(mut?))
∧ wtime? > clock
∧ mutex holder(mut?) /∈ state∼(| {ready} |)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

• ¬ (TaskQueueTimeMutex [log context := log context⊕
{(running task , phys context)},

phys context := log context(topReady !),
priority := priority⊕
{(mutex holder(mut?), priority(running task))},

release mutex := {running task} −C release mutex ,
release rcv := {running task} −C release rcv ,
running task := topReady !,
state := state⊕

({(running task , blocked)} ∪ {(topReady !, running)}),
wait time := wait time ⊕ {(running task ,wtime?)},
wait rcv := wait rcv ⊕ {(running task ,mut?)}]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(running task , blocked)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state ⊕ ({(running task , blocked)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topReady !) ≥ priority(rt))

theorem MutexTakeEInheritReady TQTM vc ref
∀MutexTakeEInheritReady TQTMFSBSig | true
• pre MutexTakeEInheritReady TQTM

MutexTakeEInheritHolder TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK
wtime? : N

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ mut? = release rcv(running task)
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running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) > priority(mutex holder(mut?))
wtime? > clock
mutex holder(mut?) ∈ state∼(| {ready} |)
topReady ! = mutex holder(mut?)
topReady ! 6= idle
∃ st? : STATE ; pri? : TASK → N
| st? = blocked ∧ pri? = priority⊕
{(topReady ! 7→ priority(running task))}

• Reschedule[topReady !/target?, tasks/tasks?]
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(running task 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {running task} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = wait time ⊕ {(running task 7→ wtime?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {running task} −C release mutex

MutexTakeEInheritHolder TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE
wtime? : N

running task /∈ dom release snd
running task ∈ dom release rcv ⇒ mut? = release rcv(running task)
running task ∈ dom release rcv ⇒ running task ∈ dom release mutex
mut? ∈ dommutex holder
priority(running task) > priority(mutex holder(mut?))
wtime? > clock
mutex holder(mut?) 6= idle
mutex holder(mut?) ∈ state∼(| {ready} |)

theorem MutexTakeEInheritHolder TQTM vc ref
∀MutexTakeEInheritHolder TQTMFSBSig | true
• pre MutexTakeEInheritHolder TQTM

MutexTakeRecursive TQTM
∆TaskQueueTimeMutex
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mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
ΞTaskQueueTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?) + 1)}

ΞOriginalPrioData
ΞMReleasingData
topReady ! = running task

MutexTakeRecursive TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)

theorem MutexTakeRecursive TQTM vc ref
∀MutexTakeRecursive TQTMFSBSig | true
• pre MutexTakeRecursive TQTM

MutexTake TQTM =̂ MutexTakeNnonInh TQTM
∨ MutexTakeNInh TQTM
∨ MutexTakeEnonInh TQTM
∨ MutexTakeEInheritReady TQTM
∨ MutexTakeEInheritHolder TQTM
∨ MutexTakeRecursive TQTM

basePriorityMan
∆TaskQueueTimeMutex
mut? : QUEUE

running task ∈ ran({mut?} −Cmutex holder)⇒ ΞOriginalPrioData
running task /∈ ran({mut?} −Cmutex holder)
⇒ base priority ′ = {running task} −C base priority
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MutexGiveNnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) = priority(running task)
QueueSendN TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData

MutexGiveNnonInh TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueSendN TQTFSBSig [que? := mut?]
running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) = priority(running task)

theorem ranUnchanged [X ,Y ]
∀ f : X 7→ Y ; a : X | a ∈ dom f ∧ f (a) ∈ ran({a} −C f )
• ran f = ran({a} −C f )

theorem MutexGiveNnonInh TQTM vc ref
∀MutexGiveNnonInh TQTMFSBSig | true
• pre MutexGiveNnonInh TQTM

MutexGiveNInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
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running task = mutex holder(mut?)
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(running task) 6= priority(running task)
∀ rt : state∼(| {ready} |) • base priority(running task) ≥ priority(rt)
ΞTaskData
ΞStateData
ΞContextData
priority ′ = priority ⊕ {(running task 7→ base priority(running task))}
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
ΞWaitingData
ΞQReleasingData
ΞTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData
topReady ! = running task

MutexGiveNInhN TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(running task) 6= priority(running task)
∀ rt : state∼(| {ready} |) • base priority(running task) ≥ priority(rt)

theorem MutexGiveNInhN TQTMF vc ref
∀MutexGiveNInhN TQTMFSBSig | true
• pre MutexGiveNInhN TQTM

MutexGiveNInhS TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK
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running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(running task) 6= priority(running task)
state(topReady !) = ready
∀ rt : state∼(| {ready} |) • priority(topReady !) ≥ priority(rt)
base priority(running task) < priority(topReady !)
∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority⊕
{(running task 7→ base priority(running task))}

• Reschedule[topReady !/target?, tasks/tasks?]
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
ΞWaitingData
ΞQReleasingData
ΞTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData

MutexGiveNInhS TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(running task) 6= priority(running task)
∃ topReady ! : state∼(| {ready} |)
| ∀ rt : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rt)

• base priority(running task) < priority(topReady !)

theorem lMutexGiveNInhS TQTM Lemma
∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
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∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ mut? /∈ ranwait rcv
∧ base priority(running task) 6= priority(running task)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ base priority(running task) < priority(topReady !)
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(mutex holder(mut?), phys context)},
mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
phys context := log context(topReady !),
priority := priority ⊕ {(mutex holder(mut?),

base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
running task := topReady !,
state := state ⊕ ({(mutex holder(mut?), ready)}∪
{(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(mutex holder(mut?), ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state⊕

({(mutex holder(mut?), ready)}∪
{(topReady !, running)}))st)
∈ transition)

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topReady !) ≥ priority(rt))

theorem lMutexGiveNInhS TQTM Lemma1
∀TaskQueueTimeMutex ; mut? : QUEUE ; topReady ! : TASK
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ mut? /∈ ranwait rcv
∧ base priority(running task) 6= priority(running task)
∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ base priority(running task) < priority(topReady !)
∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(mut?)} −C base priority ,
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log context := log context⊕
{(mutex holder(mut?), phys context)},

mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
phys context := log context(topReady !),
priority := priority ⊕ {(mutex holder(mut?),

base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
running task := topReady !,
state := state ⊕ ({(mutex holder(mut?), ready)}∪
{(topReady !, running)})]

∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(mutex holder(mut?), ready)}∪

{(topReady !, running)}))st = state(st)
⇒ (state(st), (state⊕

({(mutex holder(mut?), ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topReady !) ≥ priority(rt))

theorem MutexGiveNInhS TQTM vc ref
∀MutexGiveNInhS TQTMFSBSig | true • pre MutexGiveNInhS TQTM

MutexGiveWnonInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) = priority(running task)
QueueSendW TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWnonInhN TQTMFSBSig
TaskQueueTimeMutex
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mut? : QUEUE

QueueSendW TQTFSBSig [que? := mut?]
running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) = priority(running task)

theorem lMutexGiveWnonInhN TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
| running task /∈ dom release rcv ∪ dom release snd
∧ mut? ∈ queue
∧ q size(mut?) < q max (mut?)
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(running task) ≥ priority(topReady !)
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ base priority(running task) = priority(running task)
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
q size := q size ⊕ {(mut?, (1 + q size(mut?)))},
release mutex := release mutex ⊕ {(topReady !,mut?)},
release rcv := release rcv ⊕ {(topReady !,mut?)},
release snd := {mutex holder(mut?)} −C release snd ,
running task := mutex holder(mut?),
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ priority(mutex holder(mut?))
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = mut?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem lMutexGiveWnonInhN TQTM Lemma1
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
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| running task /∈ dom release rcv ∪ dom release snd
∧ mut? ∈ queue
∧ q size(mut?) < q max (mut?)
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(running task) ≥ priority(topReady !)
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ base priority(running task) = priority(running task)
∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(mut?)} −C base priority ,
mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
q size := q size ⊕ {(mut?, (1 + q size(mut?)))},
release mutex := release mutex ⊕ {(topReady !,mut?)},
release rcv := release rcv ⊕ {(topReady !,mut?)},
release snd := {mutex holder(mut?)} −C release snd ,
running task := mutex holder(mut?),
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ priority(mutex holder(mut?))
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = mut?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem MutexGiveWnonInhN TQTM vc ref
∀MutexGiveWnonInhN TQTMFSBSig | true
• pre MutexGiveWnonInhN TQTM

MutexGiveWnonInhS TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
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mutex recursive(mut?) = 1
base priority(running task) = priority(running task)
QueueSendWS TQT [que? := mut?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWnonInhS TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueSendWS TQTFSBSig [que? := mut?]
running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) = priority(running task)

theorem lMutexGiveWnonInhS TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ mut? = release snd(running task))

∧ mut? ∈ queue
∧ q size(mut?) < q max (mut?)
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) > priority(running task)
∧ running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ base priority(running task) = priority(running task)
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(mutex holder(wait rcv(topReady !)), phys context)},
mutex holder := {wait rcv(topReady !)} −Cmutex holder ,
mutex recursive := mutex recursive⊕
{(wait rcv(topReady !), 0)},

phys context := log context(topReady !),
q size := q size ⊕ {(wait rcv(topReady !), (1+
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q size(wait rcv(topReady !))))},
release mutex := release mutex⊕
{(topReady !,wait rcv(topReady !))},

release rcv := release rcv⊕
{(topReady !,wait rcv(topReady !))},

release snd := {mutex holder(wait rcv(topReady !))}
−Crelease snd ,

running task := topReady !,
state := state⊕

({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}),

wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ (st ∈ TASK
∧ ¬ (state⊕

({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}))st = state(st)

⇒ (state(st), (state⊕
({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = wait rcv(topReady !)
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem lMutexGiveWnonInhS TQTM Lemma1
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
| running task /∈ dom release rcv
∧ (running task ∈ dom release snd
⇒ mut? = release snd(running task))

∧ mut? ∈ queue
∧ q size(mut?) < q max (mut?)
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) > priority(running task)
∧ running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ base priority(running task) = priority(running task)
∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(wait rcv(topReady !))}
−Cbase priority ,

log context := log context⊕
{(mutex holder(wait rcv(topReady !)), phys context)},
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mutex holder := {wait rcv(topReady !)} −Cmutex holder ,
mutex recursive := mutex recursive⊕
{(wait rcv(topReady !), 0)},

phys context := log context(topReady !),
q size := q size ⊕ {(wait rcv(topReady !), (1+

q size(wait rcv(topReady !))))},
release mutex := release mutex⊕
{(topReady !,wait rcv(topReady !))},

release rcv := release rcv⊕
{(topReady !,wait rcv(topReady !))},

release snd := {mutex holder(wait rcv(topReady !))}
−Crelease snd ,

running task := topReady !,
state := state⊕

({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}),

wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ (st ∈ TASK
∧ ¬ (state⊕

({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}))st = state(st)

⇒ (state(st), (state⊕
({(mutex holder(wait rcv(topReady !)), ready)}∪
{(topReady !, running)}))st) ∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = wait rcv(topReady !)
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem MutexGiveWnonInhS TQTM vc ref
∀MutexGiveWnonInhS TQTMFSBSig | true
• pre MutexGiveWnonInhS TQTM

MutexGiveWInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
topReady ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) ≤ base priority(running task)
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base priority(running task) 6= priority(running task)
∀ rt : state∼(| {ready} |) • base priority(running task) ≥ priority(rt)
ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
priority ′ = priority ⊕ {(running task 7→ base priority(running task))}
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topReady !} −C wait time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWInhN TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
∀wr : wait rcv∼(| {mut?} |)
• base priority(running task) ≥ priority(wr)

base priority(running task) 6= priority(running task)
∀ rt : state∼(| {ready} |) • base priority(running task) ≥ priority(rt)

theorem lMutexGiveWInhN TQTM Lemma
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
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• priority(topReady !) ≥ priority(wrct))
∧ priority(topReady !) ≤ base priority(running task)
∧ base priority(running task) 6= priority(running task)
∧ (∀ rtsk : state∼(| {ready} |)
• base priority(running task) ≥ priority(rtsk))
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
priority := priority ⊕ {(mutex holder(mut?),

base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
release mutex := release mutex ⊕ {(topReady !,mut?)},
release rcv := release rcv ⊕ {(topReady !,mut?)},
running task := mutex holder(mut?),
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ base priority(mutex holder(mut?))
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = mut?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem lMutexGiveWInhN TQTM Lemma1
∀TaskQueueTimeMutex ; topReady ! : TASK ; mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topReady ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topReady !) ≥ priority(wrct))

∧ priority(topReady !) ≤ base priority(running task)
∧ base priority(running task) 6= priority(running task)
∧ (∀ rtsk : state∼(| {ready} |)
• base priority(running task) ≥ priority(rtsk))

∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(mut?)} −C base priority ,
mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
priority := priority ⊕ {(mutex holder(mut?),
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base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
release mutex := release mutex ⊕ {(topReady !,mut?)},
release rcv := release rcv ⊕ {(topReady !,mut?)},
running task := mutex holder(mut?),
state := state ⊕ {(topReady !, ready)},
wait time := {topReady !} −C wait time,
wait rcv := {topReady !} −C wait rcv ]

∧ priority(topReady !) ≤ base priority(mutex holder(mut?))
∧ (st ∈ TASK
∧ ¬ (state ⊕ {(topReady !, ready)})st = state(st)
⇒ (state(st), (state ⊕ {(topReady !, ready)})st)
∈ transition)

⇒ wr ∈ domwait rcv
∧ wait rcv(wr) = mut?
∧ ¬ priority(topReady !) ≥ priority(wr))

theorem MutexGiveWInhN TQTM vc ref
∀MutexGiveWInhN TQTMFSBSig | true
• pre MutexGiveWInhN TQTM

MutexGiveWInhSR TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topWaiting ! : TASK
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
topWaiting ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr)
state(topReady !) = ready
∀ rt : state∼(| {ready} |) • priority(topReady !) ≥ priority(rt)
base priority(running task) 6= priority(running task)
priority(topReady !) > priority(topWaiting !)
priority(topReady !) > base priority(running task)
tasks ′ = tasks
running task ′ = topReady !
state ′ = state ⊕ {(running task 7→ ready),

(topReady ! 7→ running), (topWaiting ! 7→ ready)}
phys context ′ = log context(topReady !)
log context ′ = log context ⊕ {(running task 7→ phys context)}
priority ′ = priority ⊕ {(running task 7→ base priority(running task))}
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queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
wait snd ′ = wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topWaiting ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topWaiting !} −C wait time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topWaiting ! 7→ mut?)}

MutexGiveWInhSR TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) 6= priority(running task)
∃ topReady ! : state∼(| {ready} |)
• (∀ rt : state∼(| {ready} |) • priority(topReady !) ≥ priority(rt))
∧ (∀wr : wait rcv∼(| {mut?} |)
• priority(topReady !) > priority(wr))

∧ priority(topReady !) > base priority(running task)

theorem lMutexGiveWInhSR TQTM Lemma
∀TaskQueueTimeMutex ; topReady !, topWaiting ! : TASK ;

mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topWaiting ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topWaiting !) ≥ priority(wrct))

∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
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• priority(topReady !) ≥ priority(rtsk))
∧ base priority(running task) 6= priority(running task)
∧ priority(topReady !) > priority(topWaiting !)
∧ priority(topReady !) > base priority(running task)
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(mutex holder(mut?), phys context)},
mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
phys context := log context(topReady !),
priority := priority ⊕ {(mutex holder(mut?),

base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
release mutex := release mutex ⊕ {(topWaiting !,mut?)},
release rcv := release rcv ⊕ {(topWaiting !,mut?)},
running task := topReady !,
state := state ⊕ ({(mutex holder(mut?), ready)}∪

({(topReady !, running)} ∪ {(topWaiting !, ready)})),
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ]

∧ priority(topReady !) > priority(topWaiting !)
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(mutex holder(mut?), ready)}∪

({(topReady !, running)}∪
{(topWaiting !, ready)})))st = state(st)

⇒ (state(st), (state⊕
({(mutex holder(mut?), ready)}∪

({(topReady !, running)}∪
{(topWaiting !, ready)})))st)
∈ transition)

∧ (wr ∈ domwait rcv ∧ wait rcv(wr) = mut?
⇒ priority(topWaiting !) ≥ priority(wr))

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topReady !) ≥ priority(rt))

theorem lMutexGiveWInhSR TQTM Lemma1
∀TaskQueueTimeMutex ; topReady !, topWaiting ! : TASK ;

mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topWaiting ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topWaiting !) ≥ priority(wrct))

Page 273



∧ state(topReady !) = ready
∧ (∀ rtsk : state∼(| {ready} |)
• priority(topReady !) ≥ priority(rtsk))

∧ base priority(running task) 6= priority(running task)
∧ priority(topReady !) > priority(topWaiting !)
∧ priority(topReady !) > base priority(running task)
∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(mut?)} −C base priority ,
log context := log context⊕
{(mutex holder(mut?), phys context)},

mutex holder := {mut?} −Cmutex holder ,
mutex recursive := mutex recursive ⊕ {(mut?, 0)},
phys context := log context(topReady !),
priority := priority ⊕ {(mutex holder(mut?),

base priority(mutex holder(mut?)))},
q size := q size ⊕ {(mut?, 1)},
release mutex := release mutex ⊕ {(topWaiting !,mut?)},
release rcv := release rcv ⊕ {(topWaiting !,mut?)},
running task := topReady !,
state := state ⊕ ({(mutex holder(mut?), ready)}∪

({(topReady !, running)} ∪ {(topWaiting !, ready)})),
wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ]

∧ priority(topReady !) > priority(topWaiting !)
∧ (st ∈ TASK
∧ ¬ (state ⊕ ({(mutex holder(mut?), ready)}∪

({(topReady !, running)}∪
{(topWaiting !, ready)})))st = state(st)

⇒ (state(st), (state⊕
({(mutex holder(mut?), ready)}∪

({(topReady !, running)}∪
{(topWaiting !, ready)})))st) ∈ transition)

∧ (wr ∈ domwait rcv ∧ wait rcv(wr) = mut?
⇒ priority(topWaiting !) ≥ priority(wr))

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topReady !) ≥ priority(rt))

theorem MutexGiveWInhSR TQTM vc ref
∀MutexGiveWInhSR TQTMFSBSig | true
• pre MutexGiveWInhSR TQTM
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MutexGiveWInhSW TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topWaiting ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
topWaiting ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr)
∀ rt : state∼(| {ready} |) • priority(topWaiting !) ≥ priority(rt)
base priority(running task) 6= priority(running task)
priority(topWaiting !) > base priority(running task)
∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority⊕
{(running task 7→ base priority(running task))}

• Reschedule[topWaiting !/target?, tasks/tasks?]
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
wait snd ′ = wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topWaiting ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
wait time ′ = {topWaiting !} −C wait time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topWaiting ! 7→ mut?)}

MutexGiveWInhSW TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(running task) 6= priority(running task)
∃ topWaiting ! : wait rcv∼(| {mut?} |)
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• (∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr))
∧ (∀ rt : state∼(| {ready} |) • priority(topWaiting !) ≥ priority(rt))
∧ priority(topWaiting !) > base priority(running task)

theorem lMutexGiveWInhSW TQTM Lemma
∀TaskQueueTimeMutex ; topWaiting ! : TASK ;

mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topWaiting ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topWaiting !) ≥ priority(wrct))

∧ (∀ rtsk : state∼(| {ready} |)
• priority(topWaiting !) ≥ priority(rtsk))

∧ base priority(running task) 6= priority(running task)
∧ priority(topWaiting !) > base priority(running task)
∧ running task ∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [log context := log context⊕

{(mutex holder(wait rcv(topWaiting !)),
phys context)},

mutex holder := {wait rcv(topWaiting !)} −Cmutex holder ,
mutex recursive := mutex recursive⊕
{(wait rcv(topWaiting !), 0)},

phys context := log context(topWaiting !),
priority := priority⊕
{(mutex holder(wait rcv(topWaiting !)),

base priority(mutex holder(
wait rcv(topWaiting !))))},

q size := q size ⊕ {(wait rcv(topWaiting !), 1)},
release mutex := release mutex⊕
{(topWaiting !,wait rcv(topWaiting !))},

release rcv := release rcv⊕
{(topWaiting !,wait rcv(topWaiting !))},

running task := topWaiting !,
state := state⊕

({(mutex holder(wait rcv(topWaiting !)), ready)}
∪{(topWaiting !, running)}),

wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ]

∧ (st ∈ TASK
∧ ¬ (state⊕

({(mutex holder(wait rcv(topWaiting !)), ready)}∪
{(topWaiting !, running)}))st = state(st)
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⇒ (state(st), (state⊕
({(mutex holder(wait rcv(topWaiting !)), ready)}∪
{(topWaiting !, running)}))st) ∈ transition)

∧ (wr ∈ domwait rcv ∧ wait rcv(wr) = wait rcv(topWaiting !)
⇒ priority(topWaiting !) ≥ priority(wr))

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topWaiting !) ≥ priority(rt))

theorem lMutexGiveWInhSW TQTM Lemma1
∀TaskQueueTimeMutex ; topWaiting ! : TASK ;

mut? : QUEUE
| running task /∈ dom release snd ∪ dom release rcv
∧ mut? ∈ dommutex holder
∧ running task = mutex holder(mut?)
∧ mutex recursive(mut?) = 1
∧ topWaiting ! ∈ wait rcv∼(| {mut?} |)
∧ (∀wrct : wait rcv∼(| {mut?} |)
• priority(topWaiting !) ≥ priority(wrct))

∧ (∀ rtsk : state∼(| {ready} |)
• priority(topWaiting !) ≥ priority(rtsk))

∧ base priority(running task) 6= priority(running task)
∧ priority(topWaiting !) > base priority(running task)
∧ running task /∈ ran({mut?} −Cmutex holder)
• ¬ (TaskQueueTimeMutex [

base priority := {mutex holder(wait rcv(topWaiting !))}
−Cbase priority ,

log context := log context⊕
{(mutex holder(wait rcv(topWaiting !)), phys context)},

mutex holder := {wait rcv(topWaiting !)} −Cmutex holder ,
mutex recursive := mutex recursive⊕
{(wait rcv(topWaiting !), 0)},

phys context := log context(topWaiting !),
priority := priority⊕
{(mutex holder(wait rcv(topWaiting !)),

base priority(
mutex holder(wait rcv(topWaiting !))))},

q size := q size ⊕ {(wait rcv(topWaiting !), 1)},
release mutex := release mutex⊕
{(topWaiting !,wait rcv(topWaiting !))},

release rcv := release rcv⊕
{(topWaiting !,wait rcv(topWaiting !))},

running task := topWaiting !,
state := state⊕

({(mutex holder(wait rcv(topWaiting !)), ready)}∪
{(topWaiting !, running)}),
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wait time := {topWaiting !} −C wait time,
wait rcv := {topWaiting !} −C wait rcv ]

∧ (st ∈ TASK
∧ ¬ (state⊕

({(mutex holder(wait rcv(topWaiting !)), ready)} ∪ {(topWaiting !, running)}))st = state(st)
⇒ (state(st), (state⊕

({(mutex holder(wait rcv(topWaiting !)), ready)}∪
{(topWaiting !, running)}))st) ∈ transition)

∧ (wr ∈ domwait rcv ∧ wait rcv(wr) = wait rcv(topWaiting !)
⇒ priority(topWaiting !) ≥ priority(wr))

⇒ rt ∈ TASK
∧ state(rt) = ready
∧ ¬ priority(topWaiting !) ≥ priority(rt))

theorem MutexGiveWInhSW TQTM vc ref
∀MutexGiveWInhSW TQTMFSBSig | true
• pre MutexGiveWInhSW TQTM

MutexGiveNRecursive TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
topReady ! : TASK

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
mutex recursive(mut?) > 1
ΞTaskQueueTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?)− 1)}

ΞOriginalPrioData
ΞMReleasingData
topReady ! = running task

MutexGiveNRecursive TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running task /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
running task = mutex holder(mut?)
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mutex recursive(mut?) > 1

theorem MutexGiveNRecursive TQTM vc ref
∀MutexGiveNRecursive TQTMFSBSig | true
• pre MutexGiveNRecursive TQTM

MutexGive TQTM =̂ MutexGiveNnonInh TQTM
∨ MutexGiveNInhN TQTM
∨ MutexGiveNInhS TQTM
∨ MutexGiveWnonInhN TQTM
∨ MutexGiveWnonInhS TQTM
∨ MutexGiveWInhN TQTM
∨ MutexGiveWInhSR TQTM
∨ MutexGiveWInhSW TQTM
∨ MutexGiveNRecursive TQTM
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Appendix H

SPECIFICATION FOR MULTI-CORE

TASK MODEL

[CONTEXT ,TASK ,CORE ]

bare context : CONTEXT
idles : FTASK
cores : FCORE

#cores = #idle
cores 6= ∅

STATE ::= nonexistent | ready | blocked | suspended | running

transition == ({blocked} × {nonexistent , ready , running , suspended})
∪ ({nonexistent} × {ready , running})
∪ ({ready} × {nonexistent , running , suspended})
∪ ({running} × {blocked , nonexistent , ready , suspended})
∪ ({suspended} × {nonexistent , ready , running})

slice delay : N

slice delay = 1

BOOL ::= TRUE | FALSE
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TaskData
tasks : FTASK
running tasks : cores � TASK
executable : TASK 7→→ cores

ran running tasks ⊆ tasks
idles ⊆ tasks
dom executable = tasks
∀ t : ran running tasks • running tasks∼t = executable(t)

Init TaskData
TaskData ′

tasks ′ = idles

StateData
state : TASK → STATE

∀ i : idles • state(i) ∈ {ready , running}

Init StateData
StateData ′

state ′ = (λ x : TASK • nonexistent)⊕ (idles × {running})

ContextData
phys context : cores → CONTEXT
log context : TASK → CONTEXT

Init ContextData
ContextData ′

phys context ′ = (λ c : cores • bare context)
log context ′ = (λ x : TASK • bare context)

PrioData
priority : TASK → N

∀ i : idles • priority(i) = 0
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Init PrioData
PrioData ′

priority ′ = (λ x : TASK • 0)

Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state∼(| {nonexistent} |))
state∼(| {running} |) = ran running tasks
∀ pt : state∼(| {ready} |); r : ran running tasks
| executable(pt) = executable(r) • priority(r) ≥ priority(pt)

∆Task
Task
Task ′

∀ st : TASK | state ′(st) 6= state(st) • state(st) 7→ state ′(st) ∈ transition

Init Task
Task ′

Init TaskData
Init StateData
Init ContextData
Init PrioData

createTaskSpeCoreN T
∆Task
target? : TASK
newpri? : N
executeCore : CORE

executeCore ∈ cores
state(target?) = nonexistent
newpri? ≤ priority(running tasks(executeCore))
tasks ′ = tasks ∪ {target?}
running tasks ′ = running tasks
executable ′ = executable ⊕ {(target? 7→ executeCore)}
state ′ = state ⊕ {(target? 7→ ready)}
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ΞContextData
priority ′ = priority ⊕ {(target? 7→ newpri?)}

findACore T
∆Task
target? : TASK
newpri? : N
executeCore? : CORE
executeCore : CORE

executeCore? /∈ cores
executeCore ∈ cores
∃ tcs , cs : F cores |

tcs = { pc : cores | newpri? > priority(running tasks(pc)) }
• (tcs = ∅ ⇒ cs = cores) ∧ (tcs 6= ∅ ⇒ cs = tcs)
∧ (∀ oc : cs • executeCore ∈ cs
∧ #(executable∼(| {executeCore} |))
≤ #(executable∼(| {oc} |)))

CreateTaskN T =̂ ([executeCore?, executeCore : CORE
| executeCore? ∈ cores ∧ executeCore = executeCore?] ∨ findACore T )
∧ createTaskSpeCoreN T

Reschedule
∆Task
target? : TASK
tasks? : FTASK
executable? : TASK 7→→ cores
st? : STATE
pri? : TASK → N

tasks ′ = tasks?
running tasks ′ = running tasks ⊕ {(executable?(target?) 7→ target?)}
executable ′ = executable?
state ′ = state ⊕ {(target? 7→ running),

(running tasks(executable?(target?)) 7→ st?)}
phys context ′ = phys context⊕
{(executable?(target?) 7→ log context(target?))}

log context ′ = log context⊕
{(running tasks(executable?(target?))
7→ phys context(executable?(target?)))}

priority ′ = pri?

disableReschedule =̂ [Task | false] ∧ Reschedule
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createTaskSpeCoreS T
∆Task
target? : TASK
newpri? : N
executeCore : CORE

executeCore ∈ cores
state(target?) = nonexistent
newpri? > priority(running tasks(executeCore))
∃ st? : STATE ; tasks? : FTASK ; executable? : TASK 7→→ cores ;

pri? : TASK → N
| st? = ready ∧ tasks? = tasks ∪ {target?}
∧ executable? = executable ⊕ {(target? 7→ executeCore)}
∧ pri? = priority ⊕ {(target? 7→ newpri?)} • Reschedule

CreateTaskS T =̂ ([executeCore?, executeCore : CORE
| executeCore? ∈ cores ∧ executeCore = executeCore?] ∨ findACore T )
∧ createTaskSpeCoreS T

CreateTask T =̂ CreateTaskN T ∨ CreateTaskS T

DeleteTaskN T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ idles
state(target?) ∈ {ready , blocked , suspended}
tasks ′ = tasks \ {target?}
running tasks ′ = running tasks
executable ′ = {target?} −C executable
state ′ = state ⊕ {(target? 7→ nonexistent)}
phys context ′ = phys context
log context ′ = log context ⊕ {(target? 7→ bare context)}
ΞPrioData
topReady ! = running tasks(executable(target?))

findTopReady
Task
target? : TASK
topReady ! : TASK

state(topReady !) = ready
executable(topReady !) = executable(target?)
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∀ rt : state∼(| {ready} |) | executable(rt) = executable(topReady !)
• priority(topReady !) ≥ priority(rt)

DeleteTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ idles
state(target?) = running
findTopReady
tasks ′ = tasks \ {target?}
running tasks ′ = running tasks ⊕ {executable(target?) 7→ topReady !}
executable ′ = {target?} −C executable
state ′ = state ⊕ {(topReady ! 7→ running), (target? 7→ nonexistent)}
phys context ′ = phys context⊕
{(executable(target?) 7→ log context(topReady !))}

log context ′ = log context ⊕ {(target? 7→ bare context)}
ΞPrioData

DeleteTask T =̂ DeleteTaskN T ∨ DeleteTaskS T

ExecuteRunningTask T
∆Task
target ! : FTASK

ΞTaskData
ΞStateData
∀ c : cores • phys context ′(c) 6= phys context(c)
log context ′ = log context
ΞPrioData
target ! = ran running tasks

SuspendTaskN T
∆Task
target? : TASK
topReady ! : TASK

state(target?) ∈ {ready , blocked}
target? /∈ idles
ΞTaskData
state ′ = state ⊕ {(target? 7→ suspended)}
ΞContextData
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ΞPrioData
topReady ! = running tasks(executable(target?))

SuspendTaskS T
∆Task
target? : TASK
topReady ! : TASK

state(target?) = running
target? /∈ idles
findTopReady
∃ st? : STATE | st? = suspended
• Reschedule[tasks/tasks?, executable/executable?, priority/pri?,

topReady !/target?]

SuspendTaskO T
ΞTask
target? : TASK
topReady ! : TASK

state(target?) = suspended
topReady ! = running tasks(executable(target?))

SuspendTask T =̂ SuspendTaskN T
∨ SuspendTaskS T
∨ SuspendTaskO T

ResumeTaskN T
∆Task
target? : TASK

state(target?) = suspended
priority(target?) ≤ priority(running tasks(executable(target?)))
ΞTaskData
state ′ = state ⊕ {(target? 7→ ready)}
ΞContextData
ΞPrioData

ResumeTaskS T
∆Task
target? : TASK
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state(target?) = suspended
priority(target?) > priority(running tasks(executable(target?)))
∃ st? : STATE | st? = ready
• Reschedule[tasks/tasks?, executable/executable?, priority/pri?]

ResumeTask T =̂ ResumeTaskN T ∨ ResumeTaskS T

ChangeTaskPriorityN T
∆Task
newpri? : N
target? : TASK
topReady ! : TASK

state(target?) = ready
⇒ newpri? ≤ priority(running tasks(executable(target?)))

state(target?) = running ⇒
(∀ rt : state∼(| {ready} |) | executable(rt) = executable(target?)
• newpri? ≥ priority(rt))

state(target?) 6= nonexistent
target? ∈ idles ⇒ newpri? = 0
ΞTaskData
ΞStateData
ΞContextData
priority ′ = priority ⊕ {(target? 7→ newpri?)}
topReady ! = running tasks(executable(target?))

ChangeTaskPriorityS T
∆Task
newpri? : N
target? : TASK
topReady ! : TASK

state(target?) = ready
newpri? > priority(running tasks(executable(target?)))
target? ∈ idles ⇒ newpri? = 0
∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority ⊕ {(target? 7→ newpri?)}
• Reschedule[tasks/tasks?, executable/executable?]

topReady ! = target?

ChangeTaskPriorityD T
∆Task
newpri? : N
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target? : TASK
topReady ! : TASK

state(target?) = running
target? ∈ idles ⇒ newpri? = 0
findTopReady
newpri? < priority(topReady !)
∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority ⊕ {(target? 7→ newpri?)}
• Reschedule[tasks/tasks?, executable/executable?, topReady !/target?]

ChangeTaskPriority T =̂ ChangeTaskPriorityN T
∨ ChangeTaskPriorityS T
∨ ChangeTaskPriorityD T

MigrationN T
∆Task
target? : TASK
topReady ! : TASK
newCore? : cores

state(target?) ∈ {ready , blocked , suspended}
state(target?) = ready ⇒

priority(target?) ≤ priority(running tasks(newCore?))
target? /∈ idles
newCore? 6= executable(target?)
tasks ′ = tasks
running tasks ′ = running tasks
executable ′ = executable ⊕ {(target? 7→ newCore?)}
ΞStateData
ΞContextData
ΞPrioData
topReady ! = running tasks(newCore?)

MigrationS T
∆Task
target? : TASK
topReady ! : TASK
newCore? : cores

state(target?) = ready
priority(target?) > priority(running tasks(newCore?))
target? /∈ idles
newCore? 6= executable(target?)
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∃ st? : STATE ; executable? : TASK 7→→ cores
| st? = ready ∧ executable? = executable ⊕ {(target? 7→ newCore?)}
• Reschedule[tasks/tasks?, priority/pri?]

topReady ! = target?

MigrationRuN T
∆Task
target? : TASK
topReady ! : TASK
newCore? : cores

state(target?) = running
priority(target?) ≤ priority(running tasks(newCore?))
target? /∈ idles
newCore? 6= executable(target?)
findTopReady
∃ st? : STATE ; executable? : TASK 7→→ cores
| st? = ready ∧ executable? = executable ⊕ {(target? 7→ newCore?)}
• Reschedule[tasks/tasks?, priority/pri?]

MigrationRuS T
∆Task
target? : TASK
topReady ! : TASK
newCore? : cores

state(target?) = running
priority(target?) > priority(running tasks(newCore?))
target? /∈ idles
newCore? 6= executable(target?)
findTopReady
tasks ′ = tasks
running tasks ′ = running tasks
⊕{(executable(target?) 7→ topReady !), (newCore? 7→ target?)}

executable ′ = executable ⊕ {(target? 7→ newCore?)}
state ′ = state
⊕{(topReady ! 7→ running), (running tasks(newCore?) 7→ ready)}

phys context ′ = phys context
⊕{(executable(topReady !) 7→ log context(topReady !)),
(newCore? 7→ phys context(executable(topReady !)))}

log context ′ = log context
⊕{(running tasks(newCore?) 7→ phys context(newCore?))}

priority ′ = priority
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Migration T =̂ MigrationN T
∨ MigrationS T
∨ MigrationRuN T
∨ MigrationRuS T
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Appendix I

SPECIFICATION FOR MULTI-CORE

QUEUE MODEL

[QUEUE ]

QueueData
queue : PQUEUE
q max : QUEUE 7→ N1

q size : QUEUE 7→ N
q ava : QUEUE 7→ FCORE

dom q max = dom q size
dom q size = dom q ava
dom q ava = queue
ran q ava ⊆ F cores
∀ q : QUEUE | q ∈ queue • q size(q) ≤ q max (q)

Init QueueData
QueueData ′

queue ′ = ∅
q max ′ = ∅
q size ′ = ∅
q ava ′ = ∅

WaitingData
wait snd : TASK 7→ QUEUE
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wait rcv : TASK 7→ QUEUE

domwait snd ∩ domwait rcv = ∅

Init WaitingData
WaitingData ′

wait snd ′ = ∅
wait rcv ′ = ∅

QReleasingData
release snd : TASK 7→ QUEUE
release rcv : TASK 7→ QUEUE

dom release snd ∩ dom release rcv = ∅

Init QReleasingData
QReleasingData ′

release snd ′ = ∅
release rcv ′ = ∅

Queue
QueueData
WaitingData
QReleasingData

ranwait snd ⊆ queue
ranwait rcv ⊆ queue
ran release snd ⊆ queue
ran release rcv ⊆ queue
(domwait snd ∪ domwait rcv)
∩(dom release snd ∩ dom release rcv) = ∅

Init Queue
Queue ′

Init QueueData
Init WaitingData
Init QReleasingData
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TaskQueue
Task
Queue

domwait snd ⊆ state∼(| {blocked} |)
domwait rcv ⊆ state∼(| {blocked} |)

Init TaskQueue
TaskQueue ′

Init Task
Init Queue

∆TaskQueue =̂ TaskQueue ∧ TaskQueue ′ ∧ ∆Task

ExtendTaskXi
∆TaskQueue
self ? : TASK

state(self ?) = running
self ? /∈ dom release snd ∪ dom release rcv
ΞQueue

CreateTask TQ =̂ ExtendTaskXi ∧ CreateTask T

DeleteTaskN TQ
DeleteTaskN T
∆TaskQueue
self ? : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
ΞQueueData
wait snd ′ = {target?} −C wait snd
wait rcv ′ = {target?} −C wait rcv
release snd ′ = {target?} −C release snd
release rcv ′ = {target?} −C release rcv

DeleteTaskS TQ =̂ ExtendTaskXi ∧ DeleteTaskS T

DeleteTask TQ =̂ DeleteTaskN TQ ∨ DeleteTaskS TQ
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ExecuteRunningTask TQ =̂ ExtendTaskXi ∧ ExecuteRunningTask T

SuspendTaskN TQ
SuspendTaskN T
∆TaskQueue
self ? : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
ΞQueueData
wait snd ′ = {target?} −C wait snd
wait rcv ′ = {target?} −C wait rcv
ΞQReleasingData

SuspendTask TQ =̂ SuspendTaskN TQ
∨ (ExtendTaskXi ∧ (SuspendTaskS T ∨ SuspendTaskO T ))

ResumeTask TQ =̂ ExtendTaskXi ∧ ResumeTask T

ChangeTaskPriority TQ =̂ ExtendTaskXi ∧ ChangeTaskPriority T

Migration TQ =̂ ExtendTaskXi ∧ Migration T

CreateQueue TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
cset? : F cores
size? : N

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
que? /∈ queue
size? > 0
cset? 6= ∅
ΞTask
queue ′ = queue ∪ {que?}
q max ′ = q max ⊕ {(que? 7→ size?)}
q size ′ = q size ⊕ {(que? 7→ 0)}
q ava ′ = q ava ⊕ {(que? 7→ cset?)}
ΞWaitingData
ΞQReleasingData
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DeleteQueue TQ
∆TaskQueue
que? : QUEUE
self ? : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
que? ∈ queue
executable(self ?) ∈ q ava(que?)
que? /∈ ranwait snd ∪ ranwait rcv
que? /∈ ran release snd ∪ ran release rcv
ΞTask
queue ′ = queue \ {que?}
q max ′ = {que?} −C q max
q size ′ = {que?} −C q size
q ava ′ = {que?} −C q ava
ΞWaitingData
ΞQReleasingData

QueueSendN TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release rcv
self ? ∈ dom release snd ⇒ que? = release snd(self ?)
que? ∈ queue
q size(que?) < q max (que?)
state(self ?) = running
executable(self ?) ∈ q ava(que?)
que? /∈ ranwait rcv
ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?) + 1)}
q ava ′ = q ava
ΞWaitingData
release snd ′ = {self ?} −C release snd
release rcv ′ = release rcv
topReady ! = self ?

QueueSendF TQ
∆TaskQueue
que? : QUEUE
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self ? : TASK
topReady ! : TASK

self ? /∈ dom release rcv
self ? ∈ dom release snd ⇒ que? = release snd(self ?)
que? ∈ queue
q size(que?) = q max (que?)
state(self ?) = running
executable(self ?) ∈ q ava(que?)
self ? /∈ idles
findTopReady [self ?/target?]
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
ΞQueueData
wait snd ′ = wait snd ⊕ {(self ? 7→ que?)}
wait rcv ′ = wait rcv
release snd ′ = {self ?} −C release snd
release rcv ′ = release rcv

QueueSendW TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release rcv
self ? ∈ dom release snd ⇒ que? = release snd(self ?)
que? ∈ queue
state(self ?) = running
executable(self ?) ∈ q ava(que?)
topReady ! ∈ wait rcv∼(| {que?} |)
∀wr : wait rcv∼(| {que?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) ≤ priority(running tasks(executable(topReady !)))
ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
ΞPrioData
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
release snd ′ = {self ?} −C release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ que?)}
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QueueSendWS TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release rcv
self ? ∈ dom release snd ⇒ que? = release snd(self ?)
que? ∈ queue
state(self ?) = running
executable(self ?) ∈ q ava(que?)
self ? /∈ idles
topReady ! ∈ wait rcv∼(| {que?} |)
∀wr : wait rcv∼(| {que?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) > priority(running tasks(executable(topReady !)))
∃ st? : STATE | st? = ready
• Reschedule[topReady !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
release snd ′ = {self ?} −C release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ que?)}

QueueSend TQ =̂ QueueSendN TQ
∨ QueueSendF TQ
∨ QueueSendW TQ
∨ QueueSendWS TQ

QueueReceiveN TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ que? = release rcv(self ?)
que? ∈ queue
q size(que?) 6= 0
state(self ?) = running
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executable(self ?) ∈ q ava(que?)
que? /∈ ranwait snd
ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q size(que?)− 1)}
q ava ′ = q ava
ΞWaitingData
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv
topReady ! = self ?

QueueReceiveE TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ que? = release rcv(self ?)
que? ∈ queue
q size(que?) = 0
state(self ?) = running
executable(self ?) ∈ q ava(que?)
self ? /∈ idles
findTopReady [self ?/target?]
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(self ? 7→ que?)}
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv

QueueReceiveW TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ que? = release rcv(self ?)
que? ∈ queue
state(self ?) = running
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executable(self ?) ∈ q ava(que?)
topReady ! ∈ wait snd∼(| {que?} |)
∀ws : wait snd∼(| {que?} |) • priority(topReady !) ≥ priority(ws)
priority(topReady !) ≤ priority(running tasks(executable(topReady !)))
ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
ΞPrioData
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q max (que?)− 1)}
q ava ′ = q ava
wait snd ′ = {topReady !} −C wait snd
wait rcv ′ = wait rcv
release snd ′ = release snd ⊕ {(self ? 7→ que?)}
release rcv ′ = {self ?} −C release rcv

QueueReceiveWS TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ que? = release rcv(self ?)
que? ∈ queue
state(self ?) = running
executable(self ?) ∈ q ava(que?)
self ? /∈ idles
topReady ! ∈ wait snd∼(| {que?} |)
∀ws : wait snd∼(| {que?} |) • priority(topReady !) ≥ priority(ws)
priority(topReady !) > priority(running tasks(executable(topReady !)))
∃ st? : STATE | st? = ready
• Reschedule[topReady !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(que? 7→ q max (que?)− 1)}
q ava ′ = q ava
wait snd ′ = {topReady !} −C wait snd
wait rcv ′ = wait rcv
release snd ′ = release snd ⊕ {(topReady ! 7→ que?)}
release rcv ′ = {self ?} −C release rcv
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QueueReceive TQ =̂ QueueReceiveN TQ
∨ QueueReceiveE TQ
∨ QueueReceiveW TQ
∨ QueueReceiveWS TQ

ChangeQueueLevel TQ
∆TaskQueue
que? : QUEUE
self ? : TASK
cset? : F cores

self ? /∈ dom release snd ∪ dom release rcv
que? ∈ queue
state(self ?) = running
executable(self ?) ∈ q ava(que?)
cset? 6= q ava(que?)
cset? 6= ∅
∀ t : wait rcv∼(| {que?} |) ∪ wait snd∼(| {que?} |)
• executable(t) ∈ cset?

ΞTask
queue ′ = queue
q max ′ = q max
q size ′ = q size
q ava ′ = q ava ⊕ {(que? 7→ cset?)}
ΞWaitingData
ΞQReleasingData
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Appendix J

SPECIFICATION FOR MULTI-CORE TIME

MODEL

Time
clock : N
delayed task : PTASK
time : TASK 7→ N
time slice : N

∀ t : dom time • time(t) ≥ clock

Init Time
Time ′

clock ′ = 0
delayed task ′ = ∅
time ′ = ∅
time slice ′ = slice delay

TaskQueueTime
TaskQueue
Time

〈delayed task , domwait snd , domwait rcv〉 partition dom time
delayed task ⊆ state∼(| {blocked} |)
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Init TaskQueueTime
TaskQueueTime ′

Init TaskQueue
Init Time

∆TaskQueueTime =̂ TaskQueueTime ∧ TaskQueueTime ′ ∧ ∆Task

ExtendTaskQueueXi
∆TaskQueueTime

ΞTime

CreateTask TQT =̂ ExtendTaskQueueXi ∧ CreateTask TQ

DeleteTaskN TQT
DeleteTaskN TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task \ {target?}
time ′ = {target?} −C time
time slice ′ = time slice

DeleteTaskS TQT =̂ ExtendTaskQueueXi ∧ DeleteTaskS TQ

DeleteTask TQT =̂ DeleteTaskN TQT ∨ DeleteTaskS TQT

ExecuteRunningTask TQT =̂ ExtendTaskQueueXi
∧ ExecuteRunningTask TQ

SuspendTaskN TQT
SuspendTaskN TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task \ {target?}
time ′ = {target?} −C time
time slice ′ = time slice
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SuspendTask TQT =̂ SuspendTaskN TQT ∨
(ExtendTaskQueueXi ∧ (SuspendTaskS T ∨ SuspendTaskO T ))

ResumeTask TQT =̂ ExtendTaskQueueXi ∧ ResumeTask TQ

ChangeTaskPriority TQT =̂ ExtendTaskQueueXi
∧ ChangeTaskPriority TQ

Migration TQT =̂ ExtendTaskQueueXi ∧ Migration TQ

CreateQueue TQT =̂ ExtendTaskQueueXi ∧ CreateQueue TQ

DeleteQueue TQT =̂ ExtendTaskQueueXi ∧ DeleteQueue TQ

QueueSendN TQT =̂ ExtendTaskQueueXi ∧ QueueSendN TQ

QueueSendF TQT
QueueSendF TQ
∆TaskQueueTime
n? : N

n? > clock
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice

QueueSendW TQT
QueueSendW TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task
time ′ = {topReady !} −C time
time slice ′ = time slice

QueueSendWS TQT
QueueSendWS TQ
∆TaskQueueTime

clock ′ = clock
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delayed task ′ = delayed task
time ′ = {topReady !} −C time
time slice ′ = time slice

QueueSend TQT =̂ QueueSendN TQT
∨ QueueSendF TQT
∨ QueueSendW TQT
∨ QueueSendWS TQT

QueueReceiveN TQT =̂ ExtendTaskQueueXi ∧ QueueReceiveN TQ

QueueReceiveE TQT
QueueReceiveE TQ
∆TaskQueueTime
n? : N

n? > clock
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice

QueueReceiveW TQT
QueueReceiveW TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task
time ′ = {topReady !} −C time
time slice ′ = time slice

QueueReceiveWS TQT
QueueReceiveWS TQ
∆TaskQueueTime

clock ′ = clock
delayed task ′ = delayed task
time ′ = {topReady !} −C time
time slice ′ = time slice

QueueReceive TQT =̂ QueueReceiveN TQT ∨ QueueReceiveE TQT
∨ QueueReceiveW TQT ∨ QueueReceiveWS TQT
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ChangeQueueLevel TQT =̂ ExtendTaskQueueXi ∧ ChangeQueueLevel TQ

DelayUntil TQT
∆TaskQueueTime
n? : N
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
self ? /∈ idles
findTopReady [self ?/target?]
n? > clock
∃ st? : STATE | st? = blocked
• Reschedule[topReady !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
ΞQueue
clock ′ = clock
delayed task ′ = delayed task ∪ {self ?}
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice

CheckDelayedTaskN TQT
∆TaskQueueTime
topWaiting ! : TASK
self ? : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
topWaiting ! ∈ dom time
∀wt : dom time • time(topWaiting !) ≤ time(wt)
∀wt : dom time | time(wt) = time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt)

priority(topWaiting !)
≤ priority(running tasks(executable(topWaiting !)))

ΞTaskData
state ′ = state ⊕ {(topWaiting ! 7→ ready)}
ΞContextData
ΞPrioData
ΞQueueData
wait snd ′ = {topWaiting !} −C wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
ΞQReleasingData
clock ′ = time(topWaiting !)
delayed task ′ = delayed task \ {topWaiting !}
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time ′ = {topWaiting !} −C time
time slice ′ = time slice

CheckDelayedTaskS TQT
∆TaskQueueTime
topWaiting ! : TASK
self ? : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
topWaiting ! ∈ dom time
∀wt : dom time • time(topWaiting !) ≤ time(wt)
∀wt : dom time | time(wt) = time(topWaiting !)
• priority(topWaiting !) ≥ priority(wt)

priority(topWaiting !)
> priority(running tasks(executable(topWaiting !)))

∃ st? : STATE | st? = ready
• Reschedule[topWaiting !/target?, tasks/tasks?,

executable/executable?, priority/pri?]
ΞQueueData
wait snd ′ = {topWaiting !} −C wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
ΞQReleasingData
clock ′ = time(topWaiting !)
delayed task ′ = delayed task \ {topWaiting !}
time ′ = {topWaiting !} −C time
time slice ′ = time slice

CheckDelayedTask TQT =̂ CheckDelayedTaskN TQT
∨ CheckDelayedTaskS TQT

TimeSlicing TQT
∆TaskQueueTime
topReadys ! : FTASK

#topReadys ! ≤ #cores
∀ t : topReadys ! • state(t) = ready
∧ priority(t) = priority(running tasks(executable(t)))

∀ t1, t2 : topReadys ! | executable(t1) = executable(t2) • t1 = t2
∀ c : cores | (∀ t : topReadys ! • executable(t) 6= c)
• (∀ t : executable∼(| {c} |) | state(t) = ready
• priority(t) < priority(running tasks(c)))

topReadys ! 6= ∅
∀ t : dom time • time slice ≤ time(t)
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tasks ′ = tasks
executable(| topReadys ! |)−C running tasks ′

= executable(| topReadys ! |)−C running tasks
executable ′ = executable
(running tasks(| executable(| topReadys ! |) |) ∪ topReadys !)−C state ′

= (running tasks(| executable(| topReadys ! |) |) ∪ topReadys !)−C state
executable(| topReadys ! |)−C phys context ′

= executable(| topReadys ! |)−C phys context
running tasks(| executable(| topReadys ! |) |)−C log context ′

= running tasks(| executable(| topReadys ! |) |)−C log context
priority ′ = priority
∀ trt : topReadys !
• running tasks ′(executable(trt)) = trt
∧ state ′(trt) = running
∧ state ′(running tasks(executable(trt))) = ready
∧ phys context ′(executable(trt)) = log context(trt)
∧ log context ′(running tasks(executable(trt)))

= phys context(executable(trt))
ΞQueue
clock ′ = clock
delayed task ′ = delayed task
time ′ = time
time slice ′ = time slice + slice delay

NoSlicing TQT
∆TaskQueueTime

∀ c : cores
• ∀ rt : state∼(| {ready} |) | executable(rt) = c
• priority(rt) < priority(running tasks(c))

∀ t : dom time • time slice ≤ time(t)
ΞTaskQueue
clock ′ = clock
delayed task ′ = delayed task
time ′ = time
time slice ′ = time slice + slice delay
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Appendix K

SPECIFICATION FOR MULTI-CORE

MUTEX MODEL

MutexData
semaphore : PQUEUE
mutex : PQUEUE
mutex holder : QUEUE 7→ TASK
mutex recursive : QUEUE 7→ N

mutex ∩ semaphore = ∅
dommutex recursive = mutex
∀m : mutex • m /∈ dommutex holder ⇔ mutex recursive(m) = 0

Init MutexData
MutexData ′

semaphore ′ = ∅
mutex ′ = ∅
mutex holder ′ = ∅
mutex recursive ′ = ∅

OriginalPrioData
base priority : TASK 7→ N

Init OriginalPrioData
OriginalPrioData ′
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base priority ′ = ∅

MReleasingData
release mutex : TASK 7→ QUEUE

Init MReleasingData
MReleasingData ′

release mutex ′ = ∅

Mutex
MutexData
OriginalPrioData
MReleasingData

dom base priority = ranmutex holder
ran release mutex ⊆ mutex

Init Mutex
Mutex ′

Init MutexData
Init OriginalPrioData
Init MReleasingData

TaskQueueTimeMutex
TaskQueueTime
Mutex

semaphore ⊆ queue
∀ s : semaphore • q max (s) = 1
mutex ⊆ queue
∀m : mutex • q max (m) = 1
dommutex holder = {m : mutex | q size(m) = 0 }
∀m : dommutex holder • executable(mutex holder(m)) ∈ q ava(m)
∀mh : ranmutex holder • priority(mh) ≥ base priority(mh)
∀ms : mutex ∪ semaphore • ms /∈ ranwait snd ∪ ran release snd
release mutex ⊆ release rcv

Init
TaskQueueTimeMutex ′
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Init TaskQueueTime
Init Mutex

ExtendTQTXi
∆TaskQueueTimeMutex

ΞMutex

CreateTask TQTM =̂ ExtendTQTXi ∧ CreateTask TQT

DeleteTask TQTM
DeleteTask TQT
∆TaskQueueTimeMutex

target? /∈ ranmutex holder
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {target?} −C release mutex

ExecuteRunningTask TQTM =̂ ExtendTQTXi ∧ ExecuteRunningTask TQT

SuspendTask TQTM =̂ ExtendTQTXi ∧ SuspendTask TQT

ResumeTask TQTM =̂ ExtendTQTXi ∧ ResumeTask TQT

ChangeTaskPriorityNotHolder TQTM
ChangeTaskPriority TQT
∆TaskQueueTimeMutex

target? /∈ dom base priority
ΞMutex

ChangeTaskPriorityNotInherited TQTM
ChangeTaskPriority TQT
∆TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) = priority(target?)
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
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ΞMReleasingData

ChangeTaskPriorityInheritedN TQTM
∆TaskQueueTimeMutex
newpri? : N
target? : TASK
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
target? ∈ dom base priority
base priority(target?) 6= priority(target?)
state(target?) 6= nonexistent
newpri? ≤ priority(target?)
target? ∈ idles ⇒ newpri? = 0
ΞTaskQueueTime
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData
topReady ! = self ?

ChangeTaskPriorityInheritedU TQTM
ChangeTaskPriorityN T
∆TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)
ΞQueue
ΞTime
ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData

ChangeTaskPriorityInheritedS TQTM
ChangeTaskPriorityS T
∆TaskQueueTimeMutex

target? ∈ dom base priority
base priority(target?) 6= priority(target?)
newpri? > priority(target?)
ΞQueue
ΞTime
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ΞMutexData
base priority ′ = base priority ⊕ {(target? 7→ newpri?)}
ΞMReleasingData

ChangeTaskPriority TQTM =̂ ChangeTaskPriorityNotHolder TQTM
∨ ChangeTaskPriorityNotInherited TQTM
∨ ChangeTaskPriorityInheritedN TQTM
∨ ChangeTaskPriorityInheritedU TQTM
∨ ChangeTaskPriorityInheritedS TQTM

Migration TQTM =̂ ExtendTQTXi ∧ Migration TQT

CreateQueue TQTM =̂ ExtendTQTXi ∧ CreateQueue TQT

DeleteQueue TQTM
DeleteQueue TQT
∆TaskQueueTimeMutex

que? /∈ semaphore ∪mutex
ΞMutex

QueueSend TQTM
QueueSend TQT
∆TaskQueueTimeMutex

que? /∈ mutex ∪mutex
ΞMutex

QueueReceive TQTM
QueueReceive TQT
∆TaskQueueTimeMutex

self ? /∈ dom release mutex
que? /∈ mutex ∪ semaphore
ΞMutex

ChangeQueueLevel TQTM =̂ ExtendTQTXi ∧ ChangeQueueLevel TQT

DelayUntil TQTM =̂ ExtendTQTXi ∧ DelayUntil TQT

CheckDelayedTask TQTM =̂ ExtendTQTXi ∧ CheckDelayedTask TQT
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TimeSlicing TQTM =̂ ExtendTQTXi ∧ TimeSlicing TQT

NoSlicing TQTM =̂ ExtendTQTXi ∧ NoSlicing TQT

CreateBinarySemaphore TQTM
∆TaskQueueTimeMutex
sem? : QUEUE
self ? : TASK
cset? : F cores

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
sem? /∈ queue
cset? 6= ∅
ΞTask
queue ′ = queue ∪ {sem?}
q max ′ = q max ⊕ {(sem? 7→ 1)}
q size ′ = q size ⊕ {(sem? 7→ 1)}
q ava ′ = q ava ⊕ {(sem? 7→ cset?)}
ΞWaitingData
ΞQReleasingData
ΞTime
semaphore ′ = semaphore ∪ {sem?}
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive
ΞOriginalPrioData
ΞMReleasingData

DeleteBinarySemaphore TQTM
∆TaskQueueTimeMutex
sem? : QUEUE
self ? : TASK

sem? ∈ semaphore
DeleteQueue TQT [sem?/que?]
semaphore ′ = semaphore \ {sem?}
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive
ΞOriginalPrioData
ΞMReleasingData
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CreateMutex TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
cset? : F cores

self ? /∈ dom release snd ∪ dom release rcv
state(self ?) = running
mut? /∈ queue
cset? 6= ∅
ΞTask
queue ′ = queue ∪ {mut?}
q max ′ = q max ⊕ {(mut? 7→ 1)}
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava ⊕ {(mut? 7→ cset?)}
ΞWaitingData
ΞTime
semaphore ′ = semaphore
mutex ′ = mutex ∪ {mut?}
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
ΞOriginalPrioData
ΞMReleasingData

DeleteMutex TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK

mut? ∈ mutex \ dommutex holder
DeleteQueue TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex \ {mut?}
mutex holder ′ = mutex holder
mutex recursive ′ = {mut?} −Cmutex recursive
ΞOriginalPrioData
ΞMReleasingData

MutexTakeNnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
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mut? ∈ mutex
self ? /∈ dom base priority
QueueReceiveN TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder ⊕ {(mut? 7→ self ?)}
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?) + 1)}

base priority ′ = base priority ⊕ {(self ? 7→ priority(self ?))}
release mutex ′ = {self ?} −C release mutex

MutexTakeNInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ mutex
self ? ∈ dom base priority
QueueReceiveN TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder ⊕ {(mut? 7→ self ?)}
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?) + 1)}

ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex

MutexTakeRecursive TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ mutex
state(self ?) = running
executable(self ?) ∈ q ava(mut?)
self ? = mutex holder(mut?)
ΞTaskQueueTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive⊕
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{(mut? 7→ mutex recursive(mut?) + 1)}
ΞOriginalPrioData
ΞMReleasingData
topReady ! = self ?

MutexTakeEnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
n? : N

self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ dommutex holder
priority(self ?) ≤ priority(mutex holder(mut?))
self ? 6= mutex holder(mut?)
QueueReceiveE TQT [mut?/que?]
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex

MutexTakeEInheritSameCoreHolder TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
n? : N

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ mut? = release rcv(self ?)
self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ dommutex holder
state(self ?) = running
executable(self ?) ∈ q ava(mut?)
priority(self ?) > priority(mutex holder(mut?))
n? > clock
executable(mutex holder(mut?)) = executable(self ?)
mutex holder(mut?) ∈ state∼(| {ready} |)
topReady ! = mutex holder(mut?)
∃ st? : STATE ; pri? : TASK → N
| st? = blocked
∧ pri? = priority ⊕ {(topReady ! 7→ priority(self ?))}

• Reschedule[topReady !/target?, tasks/tasks?, executable/executable?]
ΞQueueData
wait snd ′ = wait snd
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wait rcv ′ = wait rcv ⊕ {(self ? 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex

MutexTakeEInheritSameCoreReady TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
n? : N

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ mut? = release rcv(self ?)
self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ dommutex holder
state(self ?) = running
executable(self ?) ∈ q ava(mut?)
priority(self ?) > priority(mutex holder(mut?))
n? > clock
executable(mutex holder(mut?)) = executable(self ?)
mutex holder(mut?) /∈ state∼(| {ready} |)
findTopReady [self ?/target?]
∃ st? : STATE ; pri? : TASK → N
| st? = blocked
∧ pri? = priority ⊕ {(mutex holder(mut?) 7→ priority(self ?))}

• Reschedule[topReady !/target?, tasks/tasks?, executable/executable?]
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(self ? 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex
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MutexTakeEInheritDiffCoreN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
n? : N

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ mut? = release rcv(self ?)
self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ dommutex holder
state(self ?) = running
executable(self ?) ∈ q ava(mut?)
priority(self ?) > priority(mutex holder(mut?))
n? > clock
executable(mutex holder(mut?)) 6= executable(self ?)
priority(self ?) >

priority(running tasks(executable(mutex holder(mut?))))
⇒ mutex holder(mut?) /∈ state∼(| {ready} |)

findTopReady [self ?/target?]
tasks ′ = tasks
running tasks ′ = running tasks ⊕ {(executable(self ?) 7→ topReady !)}
executable ′ = executable
state ′ = state ⊕ {(self ? 7→ blocked),

(topReady ! 7→ running),
(mutex holder(mut?) 7→ ready)}

phys context ′ = phys context⊕
{(executable(self ?) 7→ log context(topReady !))}

log context ′ = log context ⊕ {(self ? 7→ phys context(executable(self ?)))}
priority ′ = priority ⊕ {(mutex holder(mut?) 7→ priority(self ?))}
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(self ? 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex

MutexTakeEInheritDiffCoreS TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
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self ? : TASK
topReady ! : TASK
n? : N

self ? /∈ dom release snd
self ? ∈ dom release rcv ⇒ mut? = release rcv(self ?)
self ? ∈ dom release rcv ⇒ self ? ∈ dom release mutex
mut? ∈ dommutex holder
state(self ?) = running
executable(self ?) ∈ q ava(mut?)
priority(self ?) > priority(mutex holder(mut?))
n? > clock
executable(mutex holder(mut?)) 6= executable(self ?)
priority(self ?) >

priority(running tasks(executable(mutex holder(mut?))))
mutex holder(mut?) ∈ state∼(| {ready} |)
findTopReady [self ?/target?]
tasks ′ = tasks
running tasks ′ = running tasks ⊕ {(executable(self ?) 7→ topReady !),

(executable(mutex holder(mut?)) 7→ mutex holder(mut?))}
executable ′ = executable
state ′ = state ⊕ {(self ? 7→ blocked),

(topReady ! 7→ running),
(running tasks(executable(mutex holder(mut?))) 7→ ready),
(mutex holder(mut?) 7→ running)}

phys context ′ = phys context⊕
{(executable(self ?) 7→ log context(topReady !)),

(executable(mutex holder(mut?)) 7→
log context(mutex holder(mut?)))}

log context ′ = log context ⊕ {(self ? 7→ phys context(executable(self ?))),
(running tasks(executable(mutex holder(mut?)))
7→ phys context(executable(mutex holder(mut?))))}

priority ′ = priority ⊕ {(mutex holder(mut?) 7→ priority(self ?))}
ΞQueueData
wait snd ′ = wait snd
wait rcv ′ = wait rcv ⊕ {(self ? 7→ mut?)}
release snd ′ = release snd
release rcv ′ = {self ?} −C release rcv
clock ′ = clock
delayed task ′ = delayed task
time ′ = time ⊕ {(self ? 7→ n?)}
time slice ′ = time slice
ΞMutexData
ΞOriginalPrioData
release mutex ′ = {self ?} −C release mutex
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basePriorityMan
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK

self ? ∈ ran({mut?} −Cmutex holder)⇒ ΞOriginalPrioData
self ? /∈ ran({mut?} −Cmutex holder)
⇒ base priority ′ = {self ?} −C base priority

MutexGiveNRecursive TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) > 1
ΞTaskQueueTime
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = mutex holder
mutex recursive ′ = mutex recursive⊕
{(mut? 7→ mutex recursive(mut?)− 1)}

ΞOriginalPrioData
ΞMReleasingData
topReady ! = self ?

MutexGiveNnonInh TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(self ?) = priority(self ?)
QueueSendN TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
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mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData

MutexGiveNInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(self ?) 6= priority(self ?)
∀ rt : state∼(| {ready} |) | executable(rt) = executable(self ?)
• base priority(self ?) ≥ priority(rt)

ΞTaskData
ΞStateData
ΞContextData
priority ′ = priority ⊕ {(self ? 7→ base priority(self ?))}
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
ΞWaitingData
ΞQReleasingData
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData
topReady ! = self ?

MutexGiveNInhS TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
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self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
mut? /∈ ranwait rcv
base priority(self ?) 6= priority(self ?)
findTopReady [self ?/target?]
base priority(self ?) < priority(topReady !)
∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority ⊕ {(self ? 7→ base priority(self ?))}
• Reschedule[topReady !/target?, tasks/tasks?, executable/executable?]

queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
ΞWaitingData
ΞQReleasingData
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
ΞMReleasingData

MutexGiveWnonInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(self ?) = priority(self ?)
QueueSendW TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWnonInhS TQTM
∆TaskQueueTimeMutex
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mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
mutex recursive(mut?) = 1
base priority(self ?) = priority(self ?)
QueueSendWS TQT [mut?/que?]
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWInhN TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
topReady ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topReady !) ≥ priority(wr)
priority(topReady !) ≤ priority(running tasks(executable(topReady !)))
base priority(self ?) 6= priority(self ?)
∀ rt : state∼(| {ready} |) | executable(self ?) = executable(rt)
• base priority(self ?) ≥ priority(rt)

executable(self ?) = executable(topReady !)
⇒ priority(topReady !) ≤ base priority(self ?)

ΞTaskData
state ′ = state ⊕ {(topReady ! 7→ ready)}
ΞContextData
priority ′ = priority ⊕ {(self ? 7→ base priority(self ?))}
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topReady !} −C wait rcv
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release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topReady ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
time ′ = {topReady !} −C time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topReady ! 7→ mut?)}

MutexGiveWInhSR TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
topWaiting ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
topWaiting ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr)
findTopReady [self ?/target?]
base priority(self ?) 6= priority(self ?)
executable(topWaiting !) 6= executable(self ?)
⇒ (priority(topWaiting !)
≤ priority(running tasks(executable(topWaiting !)))
∧ base priority(self ?) < priority(topReady !))

executable(topWaiting !) = executable(self ?)
⇒ (priority(topReady !) > base priority(self ?)
∧ priority(topReady !) > priority(topWaiting !))

tasks ′ = tasks
running tasks ′ = running tasks ⊕ {(executable(topReady !) 7→ topReady !)}
executable ′ = executable
state ′ = state⊕
{(self ? 7→ ready), (topReady ! 7→ running), (topWaiting ! 7→ ready)}

phys context ′ = phys context⊕
{(executable(topReady !) 7→ log context(topReady !))}

log context ′ = log context⊕
{(self ? 7→ phys context(executable(topReady !)))}

priority ′ = priority ⊕ {(self ? 7→ base priority(self ?))}
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queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topWaiting ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
time ′ = {topWaiting !} −C time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topWaiting ! 7→ mut?)}

MutexGiveWInhSW TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
topWaiting ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
topWaiting ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr)
findTopReady [self ?/target?]
base priority(self ?) 6= priority(self ?)
executable(topWaiting !) 6= executable(self ?)
⇒ (priority(topWaiting !)

> priority(running tasks(executable(topWaiting !)))
∧ base priority(self ?) ≥ priority(topReady !))

executable(topWaiting !) = executable(self ?)
⇒ (priority(topWaiting !) > base priority(self ?)
∧ priority(topWaiting !) ≥ priority(topReady !))

∃ st? : STATE ; pri? : TASK → N
| st? = ready ∧ pri? = priority ⊕ {(self ? 7→ base priority(self ?))}
• Reschedule[topWaiting !/target?, tasks/tasks?,

executable/executable?]
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queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topWaiting ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
time ′ = {topWaiting !} −C time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topWaiting ! 7→ mut?)}

MutexGiveWInhSBoth TQTM
∆TaskQueueTimeMutex
mut? : QUEUE
self ? : TASK
topReady ! : TASK
topWaiting ! : TASK

self ? /∈ dom release snd ∪ dom release rcv
mut? ∈ dommutex holder
self ? = mutex holder(mut?)
state(self ?) = running
mutex recursive(mut?) = 1
topWaiting ! ∈ wait rcv∼(| {mut?} |)
∀wr : wait rcv∼(| {mut?} |) • priority(topWaiting !) ≥ priority(wr)
findTopReady [self ?/target?]
base priority(self ?) 6= priority(self ?)
executable(topWaiting !) 6= executable(self ?)
priority(topWaiting !) > priority(running tasks(executable(topWaiting !)))
priority(topReady !) > base priority(self ?)
tasks ′ = tasks
running tasks ′ = running tasks⊕
{(executable(topWaiting !) 7→ topWaiting !),

(executable(topReady !) 7→ topReady !)}
executable ′ = executable
state ′ = state ⊕ {(self ? 7→ ready), (topReady ! 7→ running),

(topWaiting ! 7→ running),
(running tasks(executable(topWaiting !)) 7→ ready)}
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phys context ′ = phys context⊕
{(executable(topWaiting !) 7→ log context(topWaiting !)),

(executable(topReady !) 7→ log context(topReady !))}
log context ′ = log context⊕
{(running tasks(executable(topWaiting !))
7→ phys context(executable(topWaiting !))),

(self ? 7→ phys context(executable(self ?)))}
priority ′ = priority ⊕ {(self ? 7→ base priority(self ?))}
queue ′ = queue
q max ′ = q max
q size ′ = q size ⊕ {(mut? 7→ 1)}
q ava ′ = q ava
wait snd ′ = wait snd
wait rcv ′ = {topWaiting !} −C wait rcv
release snd ′ = release snd
release rcv ′ = release rcv ⊕ {(topWaiting ! 7→ mut?)}
clock ′ = clock
delayed task ′ = delayed task
time ′ = {topWaiting !} −C time
time slice ′ = time slice
semaphore ′ = semaphore
mutex ′ = mutex
mutex holder ′ = {mut?} −Cmutex holder
mutex recursive ′ = mutex recursive ⊕ {(mut? 7→ 0)}
basePriorityMan
release mutex ′ = release mutex ⊕ {(topWaiting ! 7→ mut?)}
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Appendix L

SPECIFICATION FOR MULTI-CORE

TASK MODEL WITH PROMOTION

[CONTEXT ,TASK ,CORE ]

bare context : CONTEXT
idles : FTASK
cores : FCORE

#cores = #idles

STATE ::= nonexistent | ready | blocked | suspended | running

transition == ({blocked} × {nonexistent , ready , running , suspended})
∪({nonexistent} × {ready , running})
∪({ready} × {nonexistent , running , suspended})
∪({running} × {blocked , nonexistent , ready , suspended})
∪({suspended} × {nonexistent , ready , running})

TaskData
tasks : FTASK
running task : TASK
idle : TASK

running task ∈ tasks
idle ∈ tasks
idle ∈ idles
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Init TaskData
TaskData ′

tasks ′ = {idle ′}
running task ′ = idle ′
idle ′ ∈ idles

StateData
state : TASK → STATE

ContextData
phys context : CONTEXT
log context : TASK → CONTEXT

Init ContextData
ContextData ′

phys context ′ = bare context
log context ′ = (λ x : TASK • bare context)

PrioData
priority : TASK → N

∀ i : idles • priority(i) = 0

Init PrioData
PrioData ′

priority ′ = (λ x : TASK • 0)

Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state∼(| {nonexistent} |))
state∼(| {running} |) = {running task}
∀ pt : state∼(| {ready} |) • priority(running task) ≥ priority(pt)
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∆Task
Task
Task ′

∀ st : TASK | state ′(st) 6= state(st)
• state(st) 7→ state ′(st) ∈ transition

idle ′ = idle

Init Task
Task ′

Init TaskData
state ′ = (λ x : TASK • nonexistent)⊕ {(idle ′ 7→ running)}
Init ContextData
Init PrioData

Reschedule
∆Task
target? : TASK
tasks? : PTASK
st? : STATE
pri? : TASK → N

tasks ′ = tasks?
running task ′ = target?
state ′ = state ⊕ {(target? 7→ running), (running task 7→ st?)}
phys context ′ = log context(target?)
log context ′ = log context ⊕ {(running task 7→ phys context)}
priority ′ = pri?

CreateTaskN T
∆Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? ≤ priority(running task)
tasks ′ = tasks ∪ {target?}
running task ′ = running task
state ′ = state ⊕ {(target?, ready)}
ΞContextData
priority ′ = priority ⊕ {(target?, newpri?)}
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CreateTaskS T
∆Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running task)
∃ st? : STATE ; tasks? : PTASK ; pri? : TASK → N
| st? = ready ∧ tasks? = tasks ∪ {(target?)}
∧ pri? = priority ⊕ {(target?, newpri?)} • Reschedule

DeleteTaskN T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {ready , blocked , suspended}
tasks ′ = tasks \ {target?}
running task ′ = running task
state ′ = state ⊕ {(target?, nonexistent)}
phys context ′ = phys context
log context ′ = log context ⊕ {(target?, bare context)}
ΞPrioData
topReady ! = running task

DeleteTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
tasks ′ = tasks \ {target?}
running task ′ = topReady !
state ′ = state ⊕ {(topReady !, running), (target?, nonexistent)}
phys context ′ = log context(topReady !)
log context ′ = log context ⊕ {(target?, bare context)}
ΞPrioData
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SuspendTaskN T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {ready , blocked}
ΞTaskData
state ′ = state ⊕ {(target?, suspended)}
ΞContextData
ΞPrioData
topReady ! = running task

SuspendTaskS T
∆Task
target? : TASK
topReady ! : TASK

target? ∈ tasks \ {idle}
state(target?) ∈ {running}
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
∃ st? : STATE | st? = suspended
• Reschedule[tasks/tasks?, priority/pri?, topReady !/target?]

SuspendTaskO T
ΞTask
target? : TASK
topReady ! : TASK

state(target?) ∈ {suspended}
topReady ! = running task

ResumeTaskN T
∆Task
target? : TASK

state(target?) = suspended
priority(target?) ≤ priority(running task)
ΞTaskData
state ′ = state ⊕ {(target?, ready)}
ΞContextData
ΞPrioData
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ResumeTaskS T
∆Task
target? : TASK

state(target?) = suspended
priority(target?) > priority(running task)
∃ st? : STATE | st? = ready • Reschedule[tasks/tasks?, priority/pri?]

ChangeTaskPriorityN T
∆Task
target? : TASK
newpri? : N
topReady ! : TASK

state(target?) = ready ⇒ newpri? ≤ priority(running task)
state(target?) = running ⇒ (∀ t : state∼(| {ready} |)
• newpri? ≥ priority(t))

state(target?) 6= nonexistent
target? = idle ⇒ newpri? = 0
ΞTaskData
ΞStateData
ΞContextData
priority ′ = priority ⊕ {(target?, newpri?)}
topReady ! = running task

ChangeTaskPriorityS T
∆Task
target? : TASK
newpri? : N
topReady ! : TASK

state(target?) = ready
newpri? > priority(running task)
target? = idle ⇒ newpri? = 0
∃ st? : STATE ; pri? : TASK → N
| st? = ready
∧ pri? = priority ⊕ {(target?, newpri?)}

• Reschedule[tasks/tasks?]
topReady ! = target?

ChangeTaskPriorityD T
∆Task
target? : TASK
newpri? : N
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topReady ! : TASK

state(target?) = running
target? = idle ⇒ newpri? = 0
state(topReady !) = ready
∀ t : state∼(| {ready} |) • priority(topReady !) ≥ priority(t)
newpri? < priority(topReady !)
∃ st? : STATE ; pri? : TASK → N
| st? = ready
∧ pri? = priority ⊕ {(target?, newpri?)}

• Reschedule[tasks/tasks?, topReady !/target?]

Multi Task
subTask : cores → Task
exeCore : TASK 7→→ cores

∀ c1, c2 : cores | c1 6= c2 •
(subTask c1).tasks ∩ (subTask c2).tasks = ∅
dom exeCore ∈ FTASK
dom exeCore =

⋃{c : cores • (subTask(c)).tasks}

Init
Multi Task ′

dom exeCore ′ = idles
∀ c : cores • ∃Task ′
| Init Task • subTask ′(c) = θTask ′
∧ exeCore ′((subTask ′(c)).idle) = c

PromoteC
∆Multi Task
∆Task
target? : TASK
executeCore : cores

target? /∈ dom exeCore
subTask(executeCore) = θTask
subTask ′ = subTask ⊕ {(executeCore, θTask ′)}
exeCore ′ = exeCore ⊕ {(target?, executeCore)}

createTaskN MT =̂ ∃∆Task • CreateTaskN T ∧ PromoteC

createTaskS MT =̂ ∃∆Task • CreateTaskS T ∧ PromoteC
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findACore MT
Multi Task
target? : TASK
newpri? : N
executeCore? : CORE
executeCore : CORE

executeCore? /∈ cores
executeCore ∈ cores
∃ tcs , cs : F cores
| tcs = { pc : cores ; subS : Task
| subS = subTask(pc)
∧ newpri? > subS .priority(subS .running task) • pc }

• (tcs = ∅ ⇒ cs = cores)
∧ (tcs 6= ∅ ⇒ cs = tcs)
∧ (∀ oc : cs • executeCore ∈ cs
∧ #(exeCore∼(| {executeCore} |)) ≤

#(exeCore∼(| {oc} |)))

CreateTaskN MT =̂ ([executeCore?, executeCore : CORE
| executeCore? ∈ cores ∧ executeCore = executeCore?]
∨ findACore MT ) ∧ createTaskN MT

CreateTaskS MT =̂ ([executeCore?, executeCore : CORE
| executeCore? ∈ cores ∧ executeCore = executeCore?]
∨ findACore MT ) ∧ createTaskS MT

PromoteD
∆Multi Task
∆Task
target? : TASK

target? ∈ dom exeCore
subTask(exeCore(target?)) = θTask
subTask ′ = subTask ⊕ {(exeCore(target?), θTask ′)}
exeCore ′ = {target?} −C exeCore

DeleteTaskN MT =̂ ∃∆Task • DeleteTaskN T ∧ PromoteD

DeleteTaskS MT =̂ ∃∆Task • DeleteTaskS T ∧ PromoteD

Promote
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∆Multi Task
∆Task
target? : TASK

target? ∈ dom exeCore
subTask(exeCore(target?)) = θTask
subTask ′ = subTask ⊕ {(exeCore(target?), θTask ′)}
exeCore ′ = exeCore

SuspendTaskN MT =̂ ∃∆Task • SuspendTaskN T ∧ Promote

SuspendTaskS MT =̂ ∃∆Task • SuspendTaskS T ∧ Promote

SuspendTaskO MT =̂ ∃∆Task • SuspendTaskO T ∧ Promote

ResumeTaskN MT =̂ ∃∆Task • ResumeTaskN T ∧ Promote

ResumeTaskS MT =̂ ∃∆Task • ResumeTaskS T ∧ Promote

ChangeTaskPriorityN MT =̂
∃∆Task • ChangeTaskPriorityN T ∧ Promote

ChangeTaskPriorityS MT =̂
∃∆Task • ChangeTaskPriorityS T ∧ Promote

ChangeTaskPriorityD MT =̂
∃∆Task • ChangeTaskPriorityD T ∧ Promote

MigrationN MT
∆Multi Task
target? : TASK
topReady ! : TASK
newCore? : cores
srcSys , tarSys : Task

target? ∈ dom exeCore
srcSys = subTask(exeCore(target?))
tarSys = subTask(newCore?)
srcSys .state(target?) ∈ {ready , blocked , suspended}
srcSys .state(target?) = ready ⇒

srcSys .priority(target?) ≤ tarSys .priority(tarSys .running task)
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target? /∈ idles
newCore? 6= exeCore(target?)
{exeCore(target?), newCore?} −C subTask ′ =
{exeCore(target?), newCore?} −C subTask

∃∆Task •
subTask(exeCore(target?)) = θTask
∧ DeleteTaskN T
∧ subTask ′(exeCore(target?)) = θTask ′

∃∆Task ; tpri : N |
tpri = (srcSys .priority(target?)) •

subTask(newCore?) = θTask
∧ CreateTaskN T [tpri/newpri?]
∧ subTask ′(newCore?) = θTask ′

exeCore ′ = exeCore ⊕ {(target?, newCore?)}

MigrationS MT
∆Multi Task
target? : TASK
topReady ! : TASK
newCore? : cores
srcSys , tarSys : Task

target? ∈ dom exeCore
srcSys = subTask(exeCore(target?))
tarSys = subTask(newCore?)
srcSys .state(target?) = ready
srcSys .priority(target?) > tarSys .priority(tarSys .running task)
target? /∈ idles
newCore? 6= exeCore(target?)
{exeCore(target?), newCore?} −C subTask ′ =
{exeCore(target?), newCore?} −C subTask

∃∆Task •
subTask(exeCore(target?)) = θTask
∧ DeleteTaskN T
∧ subTask ′(exeCore(target?)) = θTask ′
∃∆Task ; tpri : N |
tpri = (srcSys .priority(target?)) •
subTask(newCore?) = θTask
∧ CreateTaskS T [tpri/newpri?]
∧ subTask ′(newCore?) = θTask ′
exeCore ′ = exeCore ⊕ {(target?, newCore?)}

MigrationRuN MT
∆Multi Task
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target? : TASK
topReady ! : TASK
newCore? : cores
srcSys , tarSys : Task

target? ∈ dom exeCore
srcSys = subTask(exeCore(target?))
tarSys = subTask(newCore?)
srcSys .state(target?) = running
srcSys .priority(target?) ≤ tarSys .priority(tarSys .running task)
target? /∈ idles
newCore? 6= exeCore(target?)
{exeCore(target?), newCore?} −C subTask ′ =
{exeCore(target?), newCore?} −C subTask

∃∆Task •
subTask(exeCore(target?)) = θTask
∧ DeleteTaskS T
∧ subTask ′(exeCore(target?)) = θTask ′
∃∆Task ; tpri : N |
tpri = (srcSys .priority(target?)) •
subTask(newCore?) = θTask
∧ CreateTaskN T [tpri/newpri?]
∧ subTask ′(newCore?) = θTask ′
exeCore ′ = exeCore ⊕ {(target?, newCore?)}

MigrationRuS MT
∆Multi Task
target? : TASK
topReady ! : TASK
newCore? : cores
srcSys , tarSys : Task

target? ∈ dom exeCore
srcSys = subTask(exeCore(target?))
tarSys = subTask(newCore?)
srcSys .state(target?) = running
srcSys .priority(target?) > tarSys .priority(tarSys .running task)
target? /∈ idles
newCore? 6= exeCore(target?)
{exeCore(target?), newCore?} −C subTask ′ =
{exeCore(target?), newCore?} −C subTask

∃∆Task •
subTask(exeCore(target?)) = θTask
∧ DeleteTaskS T
∧ subTask ′(exeCore(target?)) = θTask ′
∃∆Task ; tpri : N |
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tpri = (srcSys .priority(target?)) •
subTask(newCore?) = θTask
∧ CreateTaskS T [tpri/newpri?]
∧ subTask ′(newCore?) = θTask ′
exeCore ′ = exeCore ⊕ {(target?, newCore?)}

CN T =̂ CreateTaskN T

CS T =̂ CreateTaskS T

DN T =̂ DeleteTaskN T

DS T =̂ DeleteTaskS T

SN T =̂ SuspendTaskN T

SS T =̂ SuspendTaskS T

SO T =̂ SuspendTaskO T

RN T =̂ ResumeTaskN T

RS T =̂ ResumeTaskS T

ChN T =̂ ChangeTaskPriorityN T

ChS T =̂ ChangeTaskPriorityS T

ChD T =̂ ChangeTaskPriorityD T

getRunningTask
ΞMulti Task
core? : cores
RT ! : TASK

RT ! = (subTask(core?)).running task

getPriority
ΞMulti Task
task? : TASK
PRIORITY ! : N

∃ core : cores | task? ∈ (subTask(core)).tasks
• PRIORITY ! = (subTask(core)).priority(task?)
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Appendix M

VCC ANNOTATED SOURCE CODE

1 #include < s t d i o . h>
2 #include < s t d l i b . h>
3 #include < s t r i n g . h>
4
5 #include "FreeRTOS . h "
6 #include " task . h "
7
8 _ ( dynamic_owns ) typedef struct tskTaskCont ro lB lock
9 {

10 x L i s t I t e m xGener icL is t I tem ; /∗< The l i s t t h a t the s ta te l i s t i tem
of a task i s re ference from denotes the s ta te o f t h a t task ( Ready , Blocked ,
Suspended ) . ∗ /

11 x L i s t I t e m xEventL is t I tem ; /∗< Used to re ference a task from an event
l i s t . ∗ /

12 unsigned portBASE_TYPE u x P r i o r i t y ; /∗< The p r i o r i t y o f the task . 0 i s the
lowest p r i o r i t y . ∗ /

13
14 _ ( i n v a r i a n t u x P r i o r i t y < configMAX_PRIORITIES )
15 _ ( i n v a r i a n t \ mine(& xGener icL is t I tem ) )
16 _ ( i n v a r i a n t \ mine(& xEventL is t I tem ) )
17 } tskTCB ;
18
19 PRIVILEGED_DATA tskTCB ∗ v o l a t i l e pxCurrentTCB = NULL;
20
21 PRIVILEGED_DATA s t a t i c x L i s t pxReadyTasksLists [ configMAX_PRIORITIES ] ; /∗< P r i o r i t i s e d

ready tasks . ∗ /
22 PRIVILEGED_DATA s t a t i c x L i s t xDelayedTaskList1 ; /∗< Delayed tasks .

∗ /
23 PRIVILEGED_DATA s t a t i c x L i s t xDelayedTaskList2 ; /∗< Delayed tasks

( two l i s t s are used − one f o r delays t h a t have overf lowed the cu r ren t t i c k count . ∗ /
24 PRIVILEGED_DATA s t a t i c x L i s t ∗ v o l a t i l e pxDelayedTaskList ; /∗< Poin ts to the

delayed task l i s t c u r r e n t l y being used . ∗ /
25 PRIVILEGED_DATA s t a t i c x L i s t ∗ v o l a t i l e pxOverf lowDelayedTaskList ; /∗< Poin ts to the

delayed task l i s t c u r r e n t l y being used to hold tasks t h a t have overf lowed the cu r ren t
t i c k count . ∗ /

26 PRIVILEGED_DATA s t a t i c x L i s t xPendingReadyList ; /∗< Tasks t h a t
have been readied whi le the scheduler was suspended . They w i l l be moved to the ready
queue when the scheduler i s resumed . ∗ /

27
28 PRIVILEGED_DATA s t a t i c x L i s t xTasksWait ingTerminat ion ; /∗< Tasks t h a t have

been dele ted − but the t h e i r memory not yet f reed . ∗ /
29
30 PRIVILEGED_DATA s t a t i c x L i s t xSuspendedTaskList ;
31
32 _ ( def \ bool excL i s t ( ) {
33
34 \ bool tmp = (
35 \ f o r a l l i n t i1 , i 2 ; ( 0 <= i 1 && i 1 < i 2 && i 2 < configMAX_PRIORITIES )
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36 ==> ! ( ( & pxReadyTasksLists [ i 1 ] ) == (& pxReadyTasksLists [ i 2 ] ) )
37 ) && (
38 \ f o r a l l i n t i ; ( 0 <= i && i < configMAX_PRIORITIES )
39 ==> ( ! ( ( & pxReadyTasksLists [ i ] ) == &xDelayedTaskList1 )
40 && ! ( ( & pxReadyTasksLists [ i ] ) == &xDelayedTaskList2 )
41 && ! ( ( & pxReadyTasksLists [ i ] ) == &xSuspendedTaskList )
42 && ! ( ( & pxReadyTasksLists [ i ] ) == &xTasksWait ingTerminat ion ) )
43 ) && (
44 &xDelayedTaskList1 != &xDelayedTaskList2
45 ) && (
46 &xDelayedTaskList1 != &xSuspendedTaskList
47 ) && (
48 &xDelayedTaskList1 != &xTasksWait ingTerminat ion
49 ) && (
50 &xDelayedTaskList2 != &xSuspendedTaskList
51 ) && (
52 &xDelayedTaskList2 != &xTasksWait ingTerminat ion
53 ) && (
54 &xSuspendedTaskList != &xTasksWait ingTerminat ion
55 ) ;
56
57 return tmp ;
58 } )
59
60 PRIVILEGED_DATA s t a t i c xTaskHandle xIdleTaskHandle = NULL; /∗< Holds the handle

o f the i d l e task . The i d l e task i s created a u t o m a t i c a l l y when the scheduler i s
s t a r t e d . ∗ /

61
62 PRIVILEGED_DATA s t a t i c v o l a t i l e signed portBASE_TYPE xSchedulerRunning = pdFALSE ;
63
64 #define prvGetTCBFromHandle ( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( tskTCB ∗ )

pxCurrentTCB : ( tskTCB ∗ ) ( pxHandle ) )
65
66 _ ( ghost typedef tskTCB ∗ TASK ; )
67
68 _ ( ghost _ ( dynamic_owns ) typedef struct {
69 \ bool tasks [TASK ] ;
70 STATE s ta te [TASK ] ;
71 / / CONTEXT phys_context ;
72 / / CONTEXT log_con tex t [TASK ] ;
73
74 \ n a t u r a l p r i o r i t y [TASK ] ;
75
76 / / READY
77 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE) ==>
78 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &pxReadyTasksLists [ ( (

tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
79 ( ( tskTCB ∗ ) t ) != pxCurrentTCB ) <==> s ta te [ t ] == ready ) )
80 / / BLOCKED
81 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE) ==>
82 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &xDelayedTaskList1 | |
83 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &xDelayedTaskList2 )

<==> s ta te [ t ] == blocked ) )
84 / /SUSPENDED
85 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE) ==>
86 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &xSuspendedTaskList

<==> s ta te [ t ] == suspended ) )
87 / / RUNNING
88 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( tasks [ t ] && xSchedulerRunning != pdFALSE) ==>
89 ( t == (TASK) pxCurrentTCB <==> s ta te [ t ] == running ) )
90 _ ( i n v a r i a n t ( ( x L i s t ∗ ) pxCurrentTCB−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ pxCurrentTCB−>u x P r i o r i t y ] )
91 / / NONEXISTENT
92 _ ( i n v a r i a n t \ f o r a l l TASK t ; ( t−>\closed && xSchedulerRunning != pdFALSE) ==>
93 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
94 t == NULL) <==> s ta te [ t ] == nonex is ten t ) )
95
96 _ ( i n v a r i a n t \ f o r a l l TASK t ; xSchedulerRunning != pdFALSE ==> ( s ta te [ t ] != nonex is ten t

<==> tasks [ t ] ) )
97 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> \ mine ( t ) )
98 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> t−>\closed )
99 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> p r i o r i t y [ t ] == t−>u x P r i o r i t y )

100 _ ( i n v a r i a n t \ f o r a l l TASK t ; tasks [ t ] ==> s ta te [ t ] <= 4)
101 _ ( i n v a r i a n t \ mine ( \ embedding(& xIdleTaskHandle ) ) )
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102 _ ( i n v a r i a n t \ mine ( \ embedding(& pxCurrentTCB ) ) )
103 _ ( i n v a r i a n t xSchedulerRunning != pdFALSE ==> ( tasks [ xIdleTaskHandle ] && tasks [

pxCurrentTCB ] ) )
104 _ ( i n v a r i a n t xSchedulerRunning != pdFALSE && xIdleTaskHandle != NULL ==> p r i o r i t y [

xIdleTaskHandle ] == 0)
105 _ ( i n v a r i a n t \ f o r a l l TASK t ; xSchedulerRunning != pdFALSE && s ta te [ t ] == ready ==>

p r i o r i t y [ pxCurrentTCB ] >= p r i o r i t y [ t ] )
106 } ∗ FRTOS; )
107
108 / / s igned portBASE_TYPE xTaskGenericCreate ( unsigned portBASE_TYPE u x P r i o r i t y , xTaskHandle ∗

pxCreatedTask _ ( ghost FRTOS FreeRTOS) _ ( ghost TASK ∗newTask ) )
109 signed portBASE_TYPE xTaskGenericCreate ( pdTASK_CODE pxTaskCode , const signed char ∗ const

pcName, unsigned short usStackDepth , void ∗pvParameters , unsigned portBASE_TYPE
u x P r i o r i t y , xTaskHandle ∗pxCreatedTask , portSTACK_TYPE ∗puxStackBuffer , const
xMemoryRegion ∗ const xRegions _ ( ghost FRTOS FreeRTOS) _ ( ghost TASK ∗newTask ) )

110 _ ( updates FreeRTOS)
111 _ ( requ i res \ mutable (& xSchedulerRunning ) )
112 _ ( requ i res xSchedulerRunning == pdTRUE)
113 _ ( requ i res excL i s t ( ) )
114
115 / / _ ( w r i t e s newTask , pxCreatedTask ,
116 / / &pxReadyTasksLists [ u x P r i o r i t y >= configMAX_PRIORITIES ? configMAX_PRIORITIES − (

unsigned portBASE_TYPE ) 1U : u x P r i o r i t y ] ,
117 / / \ embedding(& pxReadyTasksLists [ u x P r i o r i t y >= configMAX_PRIORITIES ?

configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U : u x P r i o r i t y ] ) )
118 _ ( w r i t e s newTask , pxCreatedTask )
119
120 _ ( ensures \ r e s u l t == pdPASS ==> u x P r i o r i t y > \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ==> (

FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] ) == ready && (FreeRTOS−>s ta te [ ( TASK)
pxCurrentTCB ] ) == running )

121 _ ( ensures \ r e s u l t == pdPASS ==> u x P r i o r i t y <= \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ==> (
FreeRTOS−>s ta te [∗newTask ] ) == ready )

122 _ ( ensures \ r e s u l t == pdPASS ==> FreeRTOS−>p r i o r i t y [∗newTask ] ==
123 ( \ n a t u r a l ) ( u x P r i o r i t y < configMAX_PRIORITIES ? u x P r i o r i t y : configMAX_PRIORITIES −

( unsigned portBASE_TYPE ) 1U) )
124 _ ( ensures \ r e s u l t == pdPASS ==> pxCurrentTCB−>\closed )
125 _ ( ensures \ r e s u l t == pdPASS ==> \ f resh (∗newTask ) )
126 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t ] ) != FreeRTOS

−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t ] ] )
127 {
128 _ ( asser t \ wrapped (FreeRTOS) )
129 _ ( asser t \ i nv (FreeRTOS) )
130 _ ( asser t xSchedulerRunning == pdTRUE)
131 _ ( asser t FreeRTOS−>tasks [ pxCurrentTCB ] )
132 _ ( asser t pxCurrentTCB \ i n FreeRTOS−>\owns )
133
134 / / _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> ( t \ i n FreeRTOS−>\owns && t−>\closed

) )
135 / / _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> t−>\closed )
136 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
137 / / _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] == t−>

u x P r i o r i t y )
138 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] <

configMAX_PRIORITIES )
139
140 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
141 _ ( asser t pxCurrentTCB−>\closed )
142
143 signed portBASE_TYPE xReturn ;
144 tskTCB ∗ pxNewTCB;
145
146 pxNewTCB = ( tskTCB ∗ ) mal loc ( sizeof ( tskTCB ) ) ;
147
148 _ ( asser t pxNewTCB != pxCurrentTCB )
149 / / _ ( asser t \ wrapped ( pxCurrentTCB ) )
150
151 i f ( pxNewTCB != NULL )
152 {
153 _ ( asser t pxNewTCB)
154 _ ( asser t \ f resh (pxNewTCB) )
155
156 /∗ Setup the newly a l l o ca t e d TCB wi th the i n i t i a l s t a t e o f the task . ∗ /
157 / / p r v I n i t i a l i s e T C B V a r i a b l e s ( pxNewTCB, pcName, u x P r i o r i t y , xRegions ,

usStackDepth ) ;
158
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159 pxNewTCB−>u x P r i o r i t y = ( u x P r i o r i t y < configMAX_PRIORITIES ? u x P r i o r i t y :
configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U) ;

160 pxNewTCB−>xGener icL is t I tem . pvContainer = &pxReadyTasksLists [pxNewTCB−>
u x P r i o r i t y ] ;

161
162 _ ( asser t \ w r i t a b l e (&(pxNewTCB−>xGener icL is t I tem ) ) )
163 _ ( asser t \ w r i t a b l e (&(pxNewTCB−>xEventL is t I tem ) ) )
164 _ ( wrap &(pxNewTCB−>xGener icL is t I tem ) )
165 _ ( wrap &(pxNewTCB−>xEventL is t I tem ) )
166
167 _ ( ghost pxNewTCB−>\owns = ( \ ob j se t ) {&(pxNewTCB−>xGener icL is t I tem ) } )
168 _ ( ghost pxNewTCB−>\owns += &(pxNewTCB−>xEventL is t I tem ) )
169
170 _ ( asser t ! ( FreeRTOS \ i n pxNewTCB−>\owns ) )
171 _ ( wrap pxNewTCB)
172
173 i f ( ( void ∗ ) pxCreatedTask != NULL )
174 {
175 ∗pxCreatedTask = ( xTaskHandle ) pxNewTCB;
176 }
177
178 / / _ ( asser t \ f a l s e )
179 taskENTER_CRITICAL ( ) ;
180 {
181 / / . . .
182 xReturn = pdPASS;
183 }
184 taskEXIT_CRITICAL ( ) ;
185 }
186 else
187 {
188 _ ( asser t \ i nv (FreeRTOS) )
189 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
190 }
191
192 i f ( xReturn == pdPASS )
193 {
194 _ ( unwrapping FreeRTOS) {
195 _ ( asser t \ i nv (FreeRTOS) )
196
197 _ ( ghost {
198 FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] = pxNewTCB−>u x P r i o r i t y ;
199 FreeRTOS−>s ta te [ ( TASK) pxNewTCB] = ready ;
200 FreeRTOS−>tasks [ ( TASK) pxNewTCB] = \ t r ue ;
201 FreeRTOS−>\owns += pxNewTCB;
202 ∗newTask = pxNewTCB;
203 } )
204
205 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxNewTCB] == ready )
206 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running )
207 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] == pxNewTCB−>u x P r i o r i t y )
208 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
209 (
210 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
211 ( ( tskTCB ∗ ) t ) != pxCurrentTCB ) <==> FreeRTOS−>s ta te [ t ] == ready
212 )
213 )
214
215 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
216 (
217 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
218 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
219 <==> FreeRTOS−>s ta te [ t ] == blocked
220 )
221 )
222
223 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
224 (
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225 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &
xSuspendedTaskList

226 <==> FreeRTOS−>s ta te [ t ] == suspended
227 )
228 )
229
230 _ ( asser t \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxNewTCB) &&

xSchedulerRunning != pdFALSE) ==>
231 (
232 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
233 t == NULL)
234 <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
235 )
236 )
237
238
239 i f ( _ ( atomic_read \ embedding(&pxCurrentTCB ) )
240 pxCurrentTCB−>u x P r i o r i t y < u x P r i o r i t y )
241 {
242 _ ( ghost {
243 FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] = ready ;
244 FreeRTOS−>s ta te [ ( TASK) pxNewTCB] = running ;
245 } )
246
247 _ ( asser t FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready )
248
249 / / portYIELD_WITHIN_API ( ) ;
250 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
251 pxCurrentTCB = pxNewTCB;
252 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
253 }
254 }
255
256 _ ( asser t \ o ld ( pxCurrentTCB )−>u x P r i o r i t y >= u x P r i o r i t y ==> (FreeRTOS−>s ta te

[ ( TASK) pxNewTCB] == ready && FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] ==
running ) )

257 _ ( asser t \ o ld ( pxCurrentTCB )−>u x P r i o r i t y < u x P r i o r i t y ==>
258 (FreeRTOS−>s ta te [ ( TASK) pxNewTCB] == running &&
259 pxNewTCB == pxCurrentTCB &&
260 FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready
261 )
262 )
263 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxNewTCB] == pxNewTCB−>u x P r i o r i t y )
264 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) \ o ld ( pxCurrentTCB ) ] == \ o ld (

pxCurrentTCB )−>u x P r i o r i t y )
265 _ ( asser t FreeRTOS−>tasks [ ( TASK) \ o ld ( pxCurrentTCB ) ] )
266
267 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
268 (
269 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
270 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
271 <==> FreeRTOS−>s ta te [ t ] == ready
272 )
273 )
274
275 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
276 (
277 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
278 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
279 <==> FreeRTOS−>s ta te [ t ] == blocked
280 )
281 )
282
283 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxNewTCB)

&& xSchedulerRunning != pdFALSE) ==>
284 (
285 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
286 <==> FreeRTOS−>s ta te [ t ] == suspended
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287 )
288 )
289
290 _ ( assume \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxNewTCB) &&

xSchedulerRunning != pdFALSE) ==>
291 (
292 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
293 t == NULL)
294 <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
295 )
296 )
297
298 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> t−>\closed )
299
300
301 / / _ ( assume \ inv (FreeRTOS) )
302 } / / wrapping FreeRTOS
303
304 }
305 _ ( assume Trans ( ) )
306 return xReturn ;
307 }
308
309 void vTaskDelete ( xTaskHandle pxTaskToDelete _ ( ghost FRTOS FreeRTOS) _ ( ghost TASK topReady

) )
310 _ ( updates FreeRTOS)
311
312 _ ( requ i res FreeRTOS−>tasks [ topReady ] )
313 _ ( requ i res FreeRTOS−>s ta te [ topReady ] == ready )
314 _ ( requ i res \ f o r a l l TASK r t s ;
315 (FreeRTOS−>tasks [ r t s ] && FreeRTOS−>s ta te [ r t s ] == ready )
316 ==> FreeRTOS−>p r i o r i t y [ topReady ] >= FreeRTOS−>p r i o r i t y [ r t s ] )
317 _ ( requ i res topReady != (TASK) pxTaskToDelete )
318 _ ( requ i res topReady != (TASK) pxCurrentTCB )
319
320 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTaskToDelete ] )
321 _ ( requ i res ( tskTCB ∗ ) pxTaskToDelete != ( tskTCB ∗ ) xIdleTaskHandle )
322 / / _ ( requ i res (TASK) pxTaskToDelete−>\closed )
323
324 _ ( requ i res \ mutable (& xSchedulerRunning ) )
325 _ ( requ i res xSchedulerRunning == pdTRUE)
326 _ ( requ i res excL i s t ( ) )
327
328 _ ( ensures ( (TASK) pxTaskToDelete )−>\closed )
329 _ ( ensures pxTaskToDelete != NULL ==> ! FreeRTOS−>tasks [ ( TASK) pxTaskToDelete ] )
330 _ ( ensures pxTaskToDelete == NULL ==> ! FreeRTOS−>tasks [ ( TASK) \ o ld ( pxCurrentTCB ) ] )
331 _ ( ensures pxTaskToDelete == NULL ==> (TASK) pxCurrentTCB == topReady )
332 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t ] ) != FreeRTOS

−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t ] ] )
333 {
334 _ ( asser t \ wrapped (FreeRTOS) )
335 _ ( asser t \ i nv (FreeRTOS) )
336 _ ( asser t xSchedulerRunning == pdTRUE)
337 / / _ ( asser t FreeRTOS−>tasks [ ( TASK) pxTaskToDelete ] )
338 / / _ ( asser t pxCurrentTCB \ i n FreeRTOS−>\owns )
339 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
340 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] <

configMAX_PRIORITIES )
341 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
342 _ ( asser t pxCurrentTCB−>\closed )
343 _ ( asser t ( (TASK) pxTaskToDelete )−>\closed )
344
345 tskTCB ∗pxTCB ;
346
347 _ ( unwrapping FreeRTOS) {
348 taskENTER_CRITICAL ( ) ;
349 {
350 _ ( asser t \ i nv (FreeRTOS) )
351 / / /∗ Ensure a y i e l d i s performed i f the cu r ren t task i s being
352 / / de le ted . ∗ /
353 / /
354
355 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
356 i f ( pxTaskToDelete == pxCurrentTCB )
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357 {
358 pxTaskToDelete = NULL ;
359 }
360 }
361 / /
362 / / /∗ I f n u l l i s passed i n here then we are d e l e t i n g ourse lves . ∗ /
363 / / pxTCB = prvGetTCBFromHandle ( pxTaskToDelete ) ;
364 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
365 pxTCB = pxTaskToDelete != NULL ? ( tskTCB ∗ ) pxTaskToDelete
366 : pxCurrentTCB ;
367 }
368 _ ( asser t (TASK) pxTaskToDelete == (TASK) pxCurrentTCB ==>
369 pxTCB == pxCurrentTCB )
370 _ ( asser t \ wrapped (pxTCB) )
371
372 _ ( unwrapping pxTCB) {
373 /∗ Remove task from the ready l i s t and place i n the te rm ina t i on l i s t .
374 This w i l l s top the task from be scheduled . The i d l e task w i l l check
375 the te rm ina t i on l i s t and f ree up any memory a l l o c a t e d by the
376 scheduler f o r the TCB and stack . ∗ /
377
378 _ ( asser t \ wrapped (&(pxTCB−>xGener icL is t I tem ) ) )
379 i f ( uxListRemove ( ( x L i s t I t e m ∗ ) &( pxTCB−>xGener icL is t I tem ) ) == 0 )
380 {
381 / / taskRESET_READY_PRIORITY( pxTCB−>u x P r i o r i t y ) ;
382 }
383
384 / / _ ( asser t \ wrapped (&(pxTCB−>xGener icL is t I tem ) ) )
385 / / _ ( unwrapping &(pxTCB−>xGener icL is t I tem ) ) {
386 / / pxTCB−>xGener icL is t I tem . pvContainer = NULL ;
387 / / }
388
389 _ ( asser t pxTCB−>xGener icL is t I tem . pvContainer == NULL)
390
391 /∗ I s the task wa i t i ng on an event a lso? ∗ /
392 i f ( pxTCB−>xEventL is t I tem . pvContainer != NULL )
393 {
394 uxListRemove ( &( pxTCB−>xEventL is t I tem ) ) ;
395 }
396
397 _ ( asser t pxTCB−>xEventL is t I tem . pvContainer == NULL)
398
399 vL i s t I nse r tEnd ( ( x L i s t ∗ ) &xTasksWait ingTerminat ion , &( pxTCB−>

xGener icL is t I tem ) ) ;
400 _ ( asser t ( x L i s t ∗ ) (pxTCB−>xGener icL is t I tem . pvContainer ) == ( x L i s t ∗ ) &

xTasksWait ingTerminat ion )
401 }
402
403 _ ( ghost {
404 FreeRTOS−>s ta te [ ( TASK) pxTCB ] = nonex is ten t ;
405 FreeRTOS−>tasks [ ( TASK) pxTCB ] = \ f a l s e ;
406 } )
407
408 }
409 taskEXIT_CRITICAL ( ) ;
410
411 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
412 (
413 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
414 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
415 <==> FreeRTOS−>s ta te [ t ] == ready
416 )
417 )
418
419 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
420 (
421 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
422 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
423 <==> FreeRTOS−>s ta te [ t ] == blocked
424 )
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425 )
426
427 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
428 (
429 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
430 <==> FreeRTOS−>s ta te [ t ] == suspended
431 )
432 )
433
434 / / _ ( asser t \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
435 / / (
436 / / ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
437 / / t == NULL)
438 / / <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
439 / / )
440 / / )
441
442 /∗ Force a reschedule i f we have j u s t de le ted the cu r ren t task . ∗ /
443
444 i f ( xSchedulerRunning != pdFALSE )
445 {
446 i f ( ( void ∗ ) pxTaskToDelete == NULL )
447 {
448 / / portYIELD_WITHIN_API ( ) ;
449 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
450 _ ( ghost pxCurrentTCB = topReady )
451 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
452 }
453 _ ( ghost FreeRTOS−>s ta te [ topReady ] = running )
454
455 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxTCB ] == nonex is ten t )
456 _ ( asser t ( x L i s t ∗ ) (pxTCB−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion )
457 _ ( asser t ! FreeRTOS−>tasks [ ( TASK) pxTCB ] )
458
459 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running )
460 _ ( asser t \ o ld ( pxCurrentTCB ) == pxTCB)
461 _ ( asser t FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == nonex is ten t )
462 }
463 }
464
465 _ ( asser t pxTaskToDelete != NULL ==> FreeRTOS−>s ta te [ topReady ] == ready )
466
467 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
468 (
469 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
470 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
471 <==> FreeRTOS−>s ta te [ t ] == ready
472 )
473 )
474
475 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
476 (
477 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
478 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
479 <==> FreeRTOS−>s ta te [ t ] == blocked
480 )
481 )
482
483 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
484 (
485 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
486 <==> FreeRTOS−>s ta te [ t ] == suspended
487 )
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488 )
489
490 _ ( assume \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
491 (
492 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
493 t == NULL)
494 <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
495 )
496 )
497
498 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> t−>\closed )
499
500 }
501
502 _ ( assume Trans ( ) )
503 / / _ ( asser t \ f a l s e )
504 }
505
506 # i f ( INCLUDE_uxTaskPriorityGet == 1 )
507
508 unsigned portBASE_TYPE uxTaskPr io r i t yGet ( xTaskHandle pxTask _ ( ghost FRTOS FreeRTOS) )
509 _ ( mainta ins \ wrapped (FreeRTOS) )
510 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTask ] )
511 _ ( requ i res xSchedulerRunning == pdTRUE)
512 _ ( requ i res excL i s t ( ) )
513
514 _ ( w r i t e s FreeRTOS)
515
516 _ ( ensures \ r e s u l t == FreeRTOS−>p r i o r i t y [ ( TASK) pxTask ] )
517 {
518 tskTCB ∗pxTCB ;
519 unsigned portBASE_TYPE uxReturn ;
520
521 taskENTER_CRITICAL ( ) ;
522 {
523 /∗ I f n u l l i s passed i n here then we are changing the
524 p r i o r i t y o f the c a l l i n g f u n c t i o n . ∗ /
525 / / pxTCB = prvGetTCBFromHandle ( pxTask ) ;
526
527 _ ( unwrapping FreeRTOS) {
528 _ ( asser t \ i nv (FreeRTOS) )
529 pxTCB = pxTask != NULL ? ( tskTCB ∗ ) pxTask
530 : pxCurrentTCB ;
531
532 _ ( asser t \ wrapped (pxTCB) )
533 uxReturn = pxTCB−>u x P r i o r i t y ;
534 }
535 }
536 taskEXIT_CRITICAL ( ) ;
537
538 return uxReturn ;
539 }
540
541 #endif
542
543 # i f ( INCLUDE_vTaskPrioritySet == 1 )
544
545 void vTaskPr i o r i t ySe t ( xTaskHandle pxTask , unsigned portBASE_TYPE uxNewPr ior i ty _ (

ghost FRTOS FreeRTOS) _ ( ghost TASK topReady ) )
546 _ ( updates FreeRTOS)
547 _ ( requ i res \ mutable (& xSchedulerRunning ) )
548 _ ( requ i res xSchedulerRunning == pdTRUE)
549 _ ( requ i res excL i s t ( ) )
550
551 _ ( requ i res FreeRTOS−>tasks [ topReady ] )
552 / / _ ( requ i res FreeRTOS−>s ta te [ topReady ] == ready )
553 / / _ ( requ i res \ f o r a l l TASK r t s ;
554 / / (FreeRTOS−>tasks [ r t s ] && FreeRTOS−>s ta te [ r t s ] == ready )
555 / / ==> FreeRTOS−>p r i o r i t y [ topReady ] >= FreeRTOS−>p r i o r i t y [ r t s ] )
556 / / _ ( requ i res topReady != (TASK) pxTask )
557 / / _ ( requ i res topReady != (TASK) pxCurrentTCB )
558
559 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTask ] )
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560 _ ( requ i res ( tskTCB ∗ ) pxTask == ( tskTCB ∗ ) xIdleTaskHandle ==> uxNewPr ior i ty == 0)

561
562 _ ( ensures ( (TASK) pxTask )−>\closed )
563 _ ( ensures FreeRTOS−>tasks [ ( TASK) pxTask ] )
564 _ ( ensures FreeRTOS−>p r i o r i t y [ ( TASK) pxTask ] ==
565 ( \ n a t u r a l ) ( uxNewPr ior i ty < configMAX_PRIORITIES ? uxNewPr ior i ty :

configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U) )
566 _ ( ensures (FreeRTOS−>s ta te [ ( TASK) pxTask ] == ready && FreeRTOS−>p r i o r i t y [ ( TASK)

pxTask ] > \ o ld ( pxCurrentTCB )−>u x P r i o r i t y ) ==>
567 (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready && FreeRTOS−>s ta te [ ( TASK)

pxTask ] == running )
568 )
569 _ ( ensures ( ( pxTask == NULL | | ( tskTCB ∗ ) pxTask == \ o ld ( pxCurrentTCB ) ) && ! (
570 \ f o r a l l TASK t ; FreeRTOS−>s ta te [ t ] == ready ==> FreeRTOS−>p r i o r i t y [ ( TASK)

pxTask ] >= FreeRTOS−>p r i o r i t y [ t ]
571 ) ) ==> (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready &&
572 FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running &&
573 \ o ld (FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] ) == ready )
574 )
575 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t ] ) !=

FreeRTOS−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t
] ] )

576 {
577 _ ( asser t \ i nv (FreeRTOS) )
578 _ ( asser t xSchedulerRunning == pdTRUE)
579 _ ( asser t FreeRTOS−>tasks [ pxCurrentTCB ] )
580 _ ( asser t pxTask != NULL ==> FreeRTOS−>tasks [ ( TASK) pxTask ] )
581 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
582 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] <

configMAX_PRIORITIES )
583 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
584 _ ( asser t pxCurrentTCB−>\closed )
585 _ ( asser t pxCurrentTCB \ i n FreeRTOS−>\owns )
586 _ ( asser t pxTask != NULL ==> ( (TASK) pxTask )−>\closed )
587 _ ( asser t pxTask != NULL ==> ( (TASK) pxTask ) \ i n FreeRTOS−>\owns )
588
589 tskTCB ∗pxTCB ;
590 unsigned portBASE_TYPE u x C u r r e n t P r i o r i t y , uxPr ior i tyUsedOnEntry ;
591 portBASE_TYPE xYie ldRequired = pdFALSE ;
592
593 /∗ Ensure the new p r i o r i t y i s v a l i d . ∗ /
594 i f ( uxNewPr ior i ty >= configMAX_PRIORITIES )
595 {
596 uxNewPr ior i ty = configMAX_PRIORITIES − ( unsigned portBASE_TYPE ) 1U;
597 }
598 _ ( asser t uxNewPr ior i ty < configMAX_PRIORITIES )
599
600 taskENTER_CRITICAL ( ) ;
601 {
602 _ ( unwrapping FreeRTOS) {
603 _ ( asser t \ i nv (FreeRTOS) )
604 _ ( asser t \ f o r a l l TASK t ; ( t−>\closed && xSchedulerRunning != pdFALSE) ==>
605 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
606 t == NULL) <==> FreeRTOS−>s ta te [ t ] == nonex is ten t ) )
607 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
608 i f ( pxTask == pxCurrentTCB )
609 {
610 pxTask = NULL ;
611 }
612 }
613
614 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
615 pxTCB = pxTask != NULL ? ( tskTCB ∗ ) pxTask
616 : pxCurrentTCB ;
617 }
618 _ ( assume \ f o r a l l TASK t ; ( t−>\closed && xSchedulerRunning != pdFALSE) ==>
619 ( ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
620 t == NULL) <==> FreeRTOS−>s ta te [ t ] == nonex is ten t ) )
621
622 _ ( asser t (TASK) pxTask == (TASK) pxCurrentTCB ==>
623 pxTCB == pxCurrentTCB )
624
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625 _ ( asser t \ i nv (FreeRTOS) )
626 _ ( asser t \ wrapped ( pxCurrentTCB ) )
627 _ ( asser t pxTask != NULL ==> FreeRTOS−>tasks [ ( TASK) pxTask ] )
628 _ ( asser t pxTask != NULL ==> \ wrapped ( (TASK) pxTask ) )
629 _ ( asser t \ wrapped (pxTCB) )
630
631 / / # i f ( configUSE_MUTEXES == 1 )
632 / / {
633 / / u x C u r r e n t P r i o r i t y = pxTCB−>uxBasePr io r i t y ;
634 / / }
635 / / #e lse
636 / / {
637 u x C u r r e n t P r i o r i t y = pxTCB−>u x P r i o r i t y ;
638 / / }
639 / / # end i f
640
641 i f ( u x C u r r e n t P r i o r i t y != uxNewPr ior i ty )
642 {
643 /∗ The p r i o r i t y change may have readied a task o f h igher
644 p r i o r i t y than the c a l l i n g task . ∗ /
645
646 i f ( uxNewPr ior i ty > u x C u r r e n t P r i o r i t y )
647 {
648 i f ( pxTask != NULL )
649 {
650 /∗ The p r i o r i t y o f another task i s being ra ised . I f we
651 were r a i s i n g the p r i o r i t y o f the c u r r e n t l y running task
652 there would be no need to swi tch as i t must have a l ready
653 been the h ighes t p r i o r i t y task . ∗ /
654 xYie ldRequired = pdTRUE;
655 }
656 }
657 else i f ( pxTask == NULL )
658 {
659 /∗ Se t t i ng our own p r i o r i t y down means there may now be another
660 task o f h igher p r i o r i t y t h a t i s ready to execute . ∗ /
661 xYie ldRequired = pdTRUE;
662 }
663 }
664
665 uxPr ior i tyUsedOnEntry = pxTCB−>u x P r i o r i t y ;
666
667 / / # i f ( configUSE_MUTEXES == 1 )
668 / / { {
669
670 / / /∗ Only change the p r i o r i t y being used i f the task i s not
671 / / c u r r e n t l y using an i n h e r i t e d p r i o r i t y . ∗ /
672 / / i f ( pxTCB−>uxBasePr io r i t y == pxTCB−>u x P r i o r i t y )
673 / / {
674 / / pxTCB−>u x P r i o r i t y = uxNewPr ior i ty ;
675 / / }
676
677 / / /∗ The base p r i o r i t y gets set whatever . ∗ /
678 / / pxTCB−>uxBasePr io r i t y = uxNewPr ior i ty ;
679 / / }
680 / / #e lse
681 / / {
682 _ ( asser t \ i nv (FreeRTOS) )
683 _ ( unwrapping pxTCB) {
684
685 pxTCB−>u x P r i o r i t y = uxNewPr ior i ty ;
686
687 _ ( ghost FreeRTOS−>p r i o r i t y [ ( TASK) pxTCB ] = uxNewPr ior i ty )
688 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxTCB ] == pxTCB−>u x P r i o r i t y )
689 / / }
690 / / # end i f
691 /∗ I f the task i s i n the blocked or suspended l i s t we need do
692 noth ing more than change i t ’ s p r i o r i t y v a r i a b l e . However , i f
693 the task i s i n a ready l i s t i t needs to be removed and placed
694 i n the queue appropr ia te to i t s new p r i o r i t y . ∗ /
695 / / i f ( listIS_CONTAINED_WITHIN ( &( pxReadyTasksLists [ u x C u r r e n t P r i o r i t y

] ) , &( pxTCB−>xGener icL is t I tem ) ) )
696 i f ( ( x L i s t ∗ ) pxTCB−>xGener icL is t I tem . pvContainer == &(

pxReadyTasksLists [ u x C u r r e n t P r i o r i t y ] ) )
697 {
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698 / / _ ( asser t ( x L i s t ∗ ) pxTCB−>xGener icL is t I tem . pvContainer == &(
pxReadyTasksLists [ u x C u r r e n t P r i o r i t y ] ) )

699 / / _ ( asser t ( x L i s t ∗ ) pxTCB−>xGener icL is t I tem . pvContainer == &(
pxReadyTasksLists [ u x C u r r e n t P r i o r i t y ] ) <==>

700 / / (FreeRTOS−>s ta te [ ( TASK) pxTCB ] == running | | FreeRTOS−>s ta te
[ ( TASK) pxTCB ] == ready )

701 / / )
702 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxTCB ] == running | | FreeRTOS−>

s ta te [ ( TASK) pxTCB ] == ready )
703 /∗ The task i s c u r r e n t l y i n i t s ready l i s t − remove before adding
704 i t to i t ’ s new ready l i s t . As we are i n a c r i t i c a l sec t ion we
705 can do t h i s even i f the scheduler i s suspended . ∗ /
706 _ ( asser t \ wrapped (&(pxTCB−>xGener icL is t I tem ) ) )
707 i f ( uxListRemove ( ( x L i s t I t e m ∗ ) &( pxTCB−>xGener icL is t I tem ) )

== 0 )
708 {
709 / / taskRESET_READY_PRIORITY( uxPr ior i tyUsedOnEntry ) ;
710 }
711 / / prvAddTaskToReadyQueue ( pxTCB ) ;
712 _ ( asser t (&(pxTCB−>xGener icL is t I tem ) )−>\closed )
713 _ ( unwrapping &(pxTCB−>xGener icL is t I tem ) ) {
714 pxTCB−>xGener icL is t I tem . pvContainer = ( x L i s t ∗ ) &(

pxReadyTasksLists [ pxTCB−>u x P r i o r i t y ] ) ;
715 }
716
717 _ ( asser t FreeRTOS−>tasks [ ( TASK) pxTCB ] )
718
719 _ ( asser t ( x L i s t ∗ ) pxTCB−>xGener icL is t I tem . pvContainer == &(

pxReadyTasksLists [ pxTCB−>u x P r i o r i t y ] ) )
720 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxTCB ] == running | | FreeRTOS−>

s ta te [ ( TASK) pxTCB ] == ready )
721 }
722
723 _ ( asser t (FreeRTOS−>s ta te [ ( TASK) pxTCB ] == running | | FreeRTOS−>s ta te

[ ( TASK) pxTCB ] == ready ) ==>
724 ( x L i s t ∗ ) pxTCB−>xGener icL is t I tem . pvContainer == &(

pxReadyTasksLists [ pxTCB−>u x P r i o r i t y ] ) )
725
726 i f ( xYie ldRequi red == pdTRUE )
727 {
728 _ ( asser t FreeRTOS−>tasks [ topReady ] )
729
730 _ ( assume FreeRTOS−>s ta te [ topReady ] == ready | |
731 topReady == (TASK) pxCurrentTCB )
732 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>s ta te [ t ] == ready | | FreeRTOS

−>s ta te [ t ] == running ) ==>
733 FreeRTOS−>p r i o r i t y [ topReady ] >= FreeRTOS−>p r i o r i t y [ t ] )
734 _ ( assume FreeRTOS−>p r i o r i t y [ topReady ] == FreeRTOS−>p r i o r i t y [ ( TASK)

pxCurrentTCB ]
735 ==> topReady == (TASK) pxCurrentTCB )
736
737 _ ( ghost {
738 FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] = ready ;
739 FreeRTOS−>s ta te [ topReady ] = running ;
740 } )
741
742 / / portYIELD_WITHIN_API ( ) ;
743 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
744 _ ( ghost pxCurrentTCB = topReady )
745 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
746 }
747 _ ( asser t topReady != \ o ld ( (TASK) pxCurrentTCB ) ==> FreeRTOS−>s ta te

[ ( TASK) \ o ld ( pxCurrentTCB ) ] == ready )
748 }
749
750 } / / wrapping pxTCB
751 / / _ ( asser t \ f a l s e )
752
753 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
754 (
755 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
756 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
757 <==> FreeRTOS−>s ta te [ t ] == ready
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758 )
759 )
760
761 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
762 (
763 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
764 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
765 <==> FreeRTOS−>s ta te [ t ] == blocked
766 )
767 )
768
769 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
770 (
771 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
772 <==> FreeRTOS−>s ta te [ t ] == suspended
773 )
774 )
775
776 _ ( assume \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
777 (
778 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
779 t == NULL)
780 <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
781 )
782 )
783
784 } / / wrapping FreeRTOS
785
786 _ ( asser t \ i nv (FreeRTOS) )
787 }
788 taskEXIT_CRITICAL ( ) ;
789 _ ( assume Trans ( ) )
790 }
791
792 #endif
793
794
795 # i f ( INCLUDE_vTaskSuspend == 1 )
796
797 void vTaskSuspend ( xTaskHandle pxTaskToSuspend _ ( ghost FRTOS FreeRTOS) _ ( ghost TASK

topReady ) )
798 _ ( updates FreeRTOS)
799 _ ( requ i res \ mutable (& xSchedulerRunning ) )
800 _ ( requ i res xSchedulerRunning == pdTRUE)
801 _ ( requ i res excL i s t ( ) )
802
803 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTaskToSuspend ] )
804 _ ( requ i res ( tskTCB ∗ ) pxTaskToSuspend != ( tskTCB ∗ ) xIdleTaskHandle )
805
806 _ ( requ i res FreeRTOS−>tasks [ topReady ] )
807 _ ( requ i res FreeRTOS−>s ta te [ topReady ] == ready )
808 _ ( requ i res \ f o r a l l TASK r t s ;
809 (FreeRTOS−>tasks [ r t s ] && FreeRTOS−>s ta te [ r t s ] == ready )
810 ==> FreeRTOS−>p r i o r i t y [ topReady ] >= FreeRTOS−>p r i o r i t y [ r t s ] )
811 _ ( requ i res topReady != (TASK) pxTaskToSuspend )
812 _ ( requ i res topReady != (TASK) pxCurrentTCB )
813
814 _ ( ensures FreeRTOS−>s ta te [ ( TASK) pxTaskToSuspend ] == suspended )
815 _ ( ensures pxTaskToSuspend == NULL ==> (TASK) pxTaskToSuspend == \ o ld ( pxCurrentTCB ) )
816 _ ( ensures pxTaskToSuspend == NULL ==> (TASK) pxCurrentTCB == topReady )
817 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t ] ) != FreeRTOS

−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t ] ] )
818 {
819 _ ( asser t \ wrapped (FreeRTOS) )
820 _ ( asser t \ i nv (FreeRTOS) )
821 _ ( asser t xSchedulerRunning == pdTRUE)
822 / / _ ( asser t FreeRTOS−>tasks [ ( TASK) pxTaskToDelete ] )
823 / / _ ( asser t pxCurrentTCB \ i n FreeRTOS−>\owns )
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824 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
825 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>p r i o r i t y [ t ] <

configMAX_PRIORITIES )
826 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
827 _ ( asser t pxCurrentTCB−>\closed )
828 _ ( asser t ( (TASK) pxTaskToSuspend )−>\closed )
829
830 tskTCB ∗pxTCB ;
831
832 _ ( unwrapping FreeRTOS) {
833 taskENTER_CRITICAL ( ) ;
834 {
835 _ ( asser t \ i nv (FreeRTOS) )
836 /∗ Ensure a y i e l d i s performed i f the cu r ren t task i s being
837 suspended . ∗ /
838 i f ( pxTaskToSuspend == _ ( atomic_read \ embedding(&pxCurrentTCB ) )
839 pxCurrentTCB )
840 {
841 pxTaskToSuspend = NULL ;
842 }
843
844 /∗ I f n u l l i s passed i n here then we are suspending ourse lves . ∗ /
845 pxTCB = _ ( atomic_read \ embedding(&pxCurrentTCB ) )
846 prvGetTCBFromHandle ( pxTaskToSuspend ) ;
847 _ ( asser t (TASK) pxTaskToSuspend == (TASK) pxCurrentTCB ==>
848 pxTCB == pxCurrentTCB )
849 _ ( asser t \ wrapped (pxTCB) )
850
851 _ ( unwrapping pxTCB) {
852 /∗ Remove task from the ready / delayed l i s t and place i n the suspended l i s t

. ∗ /
853 _ ( asser t \ wrapped (&(pxTCB−>xGener icL is t I tem ) ) )
854 i f ( uxListRemove ( ( x L i s t I t e m ∗ ) &( pxTCB−>xGener icL is t I tem ) ) == 0 )
855 {
856 / / taskRESET_READY_PRIORITY( pxTCB−>u x P r i o r i t y ) ;
857 }
858
859 _ ( asser t pxTCB−>xGener icL is t I tem . pvContainer == NULL)
860
861 /∗ I s the task wa i t i ng on an event a lso? ∗ /
862 i f ( pxTCB−>xEventL is t I tem . pvContainer != NULL )
863 {
864 uxListRemove ( &( pxTCB−>xEventL is t I tem ) ) ;
865 }
866
867 _ ( asser t pxTCB−>xEventL is t I tem . pvContainer == NULL)
868
869 vL i s t I nse r tEnd ( ( x L i s t ∗ ) &xSuspendedTaskList , &( pxTCB−>

xGener icL is t I tem ) ) ;
870 _ ( asser t ( x L i s t ∗ ) (pxTCB−>xGener icL is t I tem . pvContainer ) == ( x L i s t ∗ ) &

xSuspendedTaskList )
871
872 }
873
874 _ ( ghost {
875 FreeRTOS−>s ta te [ ( TASK) pxTCB ] = suspended ;
876 } )
877 }
878 taskEXIT_CRITICAL ( ) ;
879
880 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
881 (
882 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
883 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
884 <==> FreeRTOS−>s ta te [ t ] == ready
885 )
886 )
887
888 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
889 (
890 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
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891 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &
xDelayedTaskList2 )

892 <==> FreeRTOS−>s ta te [ t ] == blocked
893 )
894 )
895
896 _ ( asser t \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
897 (
898 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
899 <==> FreeRTOS−>s ta te [ t ] == suspended
900 )
901 )
902
903 i f ( ( void ∗ ) pxTaskToSuspend == NULL )
904 {
905 i f ( xSchedulerRunning != pdFALSE )
906 {
907 /∗ We have j u s t suspended the cu r ren t task . ∗ /
908 / / portYIELD_WITHIN_API ( ) ;
909 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
910 _ ( ghost pxCurrentTCB = topReady )
911 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
912 }
913 _ ( ghost FreeRTOS−>s ta te [ topReady ] = running )
914
915 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxTCB ] ==suspended )
916 _ ( asser t ( x L i s t ∗ ) (pxTCB−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList )
917
918 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] == running )
919 _ ( asser t \ o ld ( pxCurrentTCB ) == pxTCB)
920 _ ( asser t FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] == suspended )
921 }
922 / / e lse
923 / / {
924 / / /∗ The scheduler i s not running , but the task t h a t was poin ted
925 / / to by pxCurrentTCB has j u s t been suspended and pxCurrentTCB
926 / / must be adjusted to po in t to a d i f f e r e n t task . ∗ /
927 / / i f ( listCURRENT_LIST_LENGTH ( &xSuspendedTaskList ) ==

uxCurrentNumberOfTasks )
928 / / {
929 / / /∗ No other tasks are ready , so set pxCurrentTCB back to
930 / / NULL so when the next task i s created pxCurrentTCB w i l l
931 / / be set to po in t to i t no mat ter what i t s r e l a t i v e p r i o r i t y
932 / / i s . ∗ /
933 / / pxCurrentTCB = NULL;
934 / / }
935 / / e lse
936 / / {
937 / / vTaskSwitchContext ( ) ;
938 / / }
939 / / }
940 }
941
942 _ ( asser t pxTaskToSuspend != NULL ==> FreeRTOS−>s ta te [ topReady ] == ready )
943
944 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
945 (
946 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

pxReadyTasksLists [ ( ( tskTCB ∗ ) t )−>u x P r i o r i t y ] &&
947 ( ( tskTCB ∗ ) t ) != pxCurrentTCB )
948 <==> FreeRTOS−>s ta te [ t ] == ready
949 )
950 )
951
952 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
953 (
954 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList1 | |
955 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xDelayedTaskList2 )
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956 <==> FreeRTOS−>s ta te [ t ] == blocked
957 )
958 )
959
960 _ ( assume \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
961 (
962 ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList
963 <==> FreeRTOS−>s ta te [ t ] == suspended
964 )
965 )
966
967 _ ( assume \ f o r a l l TASK t ; ( t−>\closed && ( ( tskTCB ∗ ) t != pxTCB) &&

xSchedulerRunning != pdFALSE) ==>
968 (
969 ( ( ( x L i s t ∗ ) ( ( tskTCB ∗ ) t )−>xGener icL is t I tem . pvContainer ) == &

xTasksWait ingTerminat ion | |
970 t == NULL)
971 <==> FreeRTOS−>s ta te [ t ] == nonex is ten t
972 )
973 )
974
975 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> t−>\closed )
976 }
977
978 _ ( assume Trans ( ) )
979 }
980
981 #endif
982
983 # i f ( INCLUDE_vTaskSuspend == 1 )
984
985 void vTaskResume ( xTaskHandle pxTaskToResume _ ( ghost FRTOS FreeRTOS) )
986 _ ( updates FreeRTOS)
987 _ ( requ i res xSchedulerRunning == pdTRUE)
988 _ ( requ i res excL i s t ( ) )
989
990 _ ( requ i res FreeRTOS−>tasks [ ( TASK) pxTaskToResume ] )
991 _ ( requ i res FreeRTOS−>s ta te [ ( TASK) pxTaskToResume ] == suspended )
992
993 _ ( ensures ( (TASK) pxTaskToResume )−>\closed )
994 _ ( ensures pxCurrentTCB−>\closed )
995 _ ( ensures FreeRTOS−>tasks [ ( TASK) pxTaskToResume ] )
996 _ ( ensures FreeRTOS−>tasks [ ( TASK) pxCurrentTCB ] )
997 _ ( ensures ( ( tskTCB ∗ )pxTaskToResume )−>u x P r i o r i t y > \ o ld ( pxCurrentTCB )−>u x P r i o r i t y

==> (FreeRTOS−>s ta te [ ( TASK) \ o ld ( pxCurrentTCB ) ] ) == ready && (TASK)
pxCurrentTCB == (TASK) pxTaskToResume && (FreeRTOS−>s ta te [ ( TASK) pxCurrentTCB ] )
== running )

998 _ ( ensures ( ( tskTCB ∗ )pxTaskToResume )−>u x P r i o r i t y <= \ o ld ( pxCurrentTCB )−>u x P r i o r i t y
==> (FreeRTOS−>s ta te [ ( TASK) pxTaskToResume ] ) == ready && FreeRTOS−>s ta te [ (

TASK) \ o ld ( pxCurrentTCB ) ] == running && \ o ld ( pxCurrentTCB ) == pxCurrentTCB )
999 _ ( ensures \ f o r a l l TASK t ; (FreeRTOS−>tasks [ t ] && \ o ld (FreeRTOS−>s ta te [ t ] ) !=

FreeRTOS−>s ta te [ t ] ) ==> t r a n s i t i o n [ \ o ld (FreeRTOS−>s ta te [ t ] ) ] [ FreeRTOS−>s ta te [ t
] ] )

1000 {
1001 _ ( asser t \ wrapped (FreeRTOS) )
1002 _ ( asser t \ i nv (FreeRTOS) )
1003 _ ( asser t xSchedulerRunning == pdTRUE)
1004 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> FreeRTOS−>s ta te [ t ] <= 4)
1005 _ ( asser t ( (TASK) pxTaskToResume )−>\closed )
1006 _ ( asser t ( (TASK) pxTaskToResume ) \ i n FreeRTOS−>\owns )
1007 _ ( asser t ( (TASK) pxCurrentTCB )−>\closed )
1008 _ ( asser t ( (TASK) pxCurrentTCB ) \ i n FreeRTOS−>\owns )
1009 _ ( asser t FreeRTOS−>tasks [ ( TASK) pxTaskToResume ] )
1010 _ ( asser t FreeRTOS−>tasks [ ( TASK) pxCurrentTCB ] )
1011 _ ( asser t (TASK) pxTaskToResume != (TASK) pxCurrentTCB )
1012
1013 _ ( asser t \ f o r a l l TASK t ; FreeRTOS−>tasks [ t ] ==> \ inv ( t ) )
1014
1015 tskTCB ∗pxTCB ;
1016
1017 /∗ I t does not make sense to resume the c a l l i n g task . ∗ /
1018 / / configASSERT ( pxTaskToResume ) ;
1019
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1020 /∗ Remove the task from whichever l i s t i t i s c u r r e n t l y in , and place
1021 i t i n the ready l i s t . ∗ /
1022 pxTCB = ( tskTCB ∗ ) pxTaskToResume ;
1023
1024 _ ( asser t pxTCB != pxCurrentTCB )
1025 _ ( asser t pxTCB == ( tskTCB ∗ ) pxTaskToResume )
1026
1027 /∗ The parameter cannot be NULL as i t i s imposs ib le to resume the
1028 c u r r e n t l y execut ing task . ∗ /
1029 _ ( asser t pxCurrentTCB−>\closed )
1030
1031
1032 _ ( unwrapping FreeRTOS) {
1033 _ ( asser t \ wrapped ( pxCurrentTCB ) )
1034 _ ( asser t \ i nv (FreeRTOS) )
1035
1036 i f ( ( pxTCB != NULL ) && ( pxTCB != _ ( atomic_read \ embedding(&pxCurrentTCB ) )

pxCurrentTCB ) )
1037 {
1038 _ ( assume \ inv (FreeRTOS) )
1039
1040 taskENTER_CRITICAL ( ) ;
1041 {
1042 _ ( asser t \ i nv (FreeRTOS) )
1043 _ ( asser t FreeRTOS−>tasks [ ( TASK) pxTCB ] )
1044 _ ( asser t FreeRTOS−>tasks [ pxCurrentTCB ] )
1045 _ ( asser t \ wrapped ( (TASK) pxTCB) )
1046 _ ( asser t \ wrapped ( (TASK) pxCurrentTCB ) )
1047 _ ( unwrapping pxTCB) {
1048 / / i f ( xTaskIsTaskSuspended ( pxTCB ) == pdTRUE )
1049 i f ( ( ( x L i s t ∗ ) (pxTCB)−>xGener icL is t I tem . pvContainer ) == &

xSuspendedTaskList )
1050 {
1051 _ ( asser t FreeRTOS−>s ta te [ ( TASK) pxTCB ] == suspended )
1052 / / traceTASK_RESUME( pxTCB ) ;
1053 /∗ As we are i n a c r i t i c a l sec t ion we can access the ready
1054 l i s t s even i f the scheduler i s suspended . ∗ /
1055 _ ( asser t \ wrapped (&(pxTCB−>xGener icL is t I tem ) ) )
1056 uxListRemove ( &( pxTCB−>xGener icL is t I tem ) ) ;
1057 _ ( ghost FreeRTOS−>s ta te [ ( TASK) pxTCB ] = ready )
1058 / / prvAddTaskToReadyQueue ( pxTCB ) ;
1059
1060 _ ( asser t \ wrapped ( pxCurrentTCB ) )
1061 /∗ We may have j u s t resumed a h igher p r i o r i t y task . ∗ /
1062 i f ( pxTCB−>u x P r i o r i t y >= _ ( atomic_read \ embedding(&

pxCurrentTCB ) ) pxCurrentTCB−>u x P r i o r i t y )
1063 {
1064 _ ( asser t FreeRTOS−>p r i o r i t y [ ( TASK) pxTCB ] == pxTCB−>

u x P r i o r i t y )
1065 /∗ This y i e l d may not cause the task j u s t resumed to

run , but
1066 w i l l leave the l i s t s i n the c o r r e c t s t a t e f o r the next

y i e l d . ∗ /
1067 / / portYIELD_WITHIN_API ( ) ;
1068 _ ( atomic \ embedding(&pxCurrentTCB ) ) {
1069 _ ( ghost pxCurrentTCB = pxTCB)
1070 _ ( bump_vo la t i le_vers ion \ embedding(&pxCurrentTCB ) )
1071 }
1072
1073 }
1074
1075 }
1076 }
1077 }
1078 _ ( assume \ inv (FreeRTOS) )
1079 }
1080 taskEXIT_CRITICAL ( ) ;
1081 _ ( assume Trans ( ) )
1082 }
1083 }
1084
1085 #endif
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