FORMALLY MODELLING AND
VERIFYING THE FREERTOS
REAL-TIME OPERATING SYSTEM

Shu Cheng

Doctor of Philosophy
University of York
Computer Science

September, 2014

Abstract

Formal methods is an alternative way to develop software, which applies math-
ematical techniques to software design and verification. It ensures logical
consistency between the requirements and the behaviour of the software, because
each step in the development process, i.e., abstracting the requirements, design,
refinement and implementation, is verified by mathematical techniques. However,
in ordinary software development, the correctness of the software is tested at the
end of the development process, which means it is limited and incomplete. Thus
formal methods provides higher quality software than ordinary software devel-
opment. At the same time, real-time operating systems are playing increasingly
more important roles in embedded applications. Formal verification of this kind of

software is therefore of strong interest.

FreeRTOS has a wide community of users: it is regarded by many as the
de facto standard for micro-controllers in embedded applications. This project
formally specifies the behaviour of FreeRTOS in Z, and its consistency is ver-
ified using the Z/Eves theorem prover. This includes a precise statement of
the preconditions for all APl commands. Based on this model, (a) code-level
annotations for verifying task related API are produced with Microsoft’s Verifying
C Complier (VCC); and (b) an abstract model for extension of FreeRTOS to

multi-core architectures is specified with the Z notation.

This work forms the basis of future work that is refinement of the models to

code to produce a verified implementation for both single and multi-core platforms.

Contents

[Abstract i
Contents| v
[ist of Figures| Xi
List of Tables| xiii
[List of Schemas| XV
|[Acknowledgements| XXix
Declaration XXXi
1__Introduction 1
{1 FormalMethodsl. 1
1.2 FreeRTOS|. 3
[1.2.1 Task Management| 4

[1.2.2 Communication and Synchronisation| 8

1.2. her APl functions| 11

A3 VCCT 12
{4 Multi-core Processorl 13
[1.5 Objectives and Challenges| 15
[1.5.1 Objectives| 15

1.5.2 r re VIew e e e 15

(1.5.3 Challenges| 16

vi

(1.6 Fontand Name Styles| 17

1.7 r

reof lhesis| 19

3 Abstract FreeRTOS

[3.2 Goaland Scope|. L 32
[3.3 Requirements| e 33
[3.3.1 Functional Requirements| 33
[3.3.2 Non-functional Requirements| 35
[3.3.3 Environment Requirements| 36

[3.4 Summary| 36
4 Modelling FreeRTOS| 37
4.1 lteration Process| 37
M2 TaskModel 40
4.2.1 Basi mentsf 40
4.2.2 Additional Schema for Reschedulel 47
[4.2.3 Creating and Deleting Tasks| 49
[4.2.4 Executing lasks|. L oL 60
[4.2.5 Suspending/Resuming lasks|. 60
[4.2.6 Changing Priorityof Tasks| 62

4.3 ueue Model 63
4.3.1 Basic Statements| o oL 63
432 Extension| 67

[4.3.4 Sending and Recelving ltems| 69
44 TmeModel e 72
4.4.1 Basic Statements| Lo 72
[4.42 EXxtension| 75
[4.4.3 Delayingfasks| 76
[4.4.4 Checking Delayed Tasks| 76
[4.45 Time-Sharing| o 78
45 MutexModel. 78
451 Basi ment 79
452 EXxtension| 81
[4.5.3 Creating and Deleting Semaphores and Mutexes| 83
[4.5.4 Taking Mutexes| L. 84
[4.5.5 GivingMutexes| oL 85
[4.6 Summaryofinterface. L. 88
[4.7 Some Properties| 89
[4.8 Summary| 91

5 VCC Verification of FreeRTOS

0.3 Creating Tasks| 101
[0.4 Deleting lasks|. 106
[5.5 Getting and Setting Priority|o L 110
[5.6 Suspending and Resuming fasks| 112
5.7 Summaryl 113

6 _Extension for Multi-Core 115
6.1 _Overviewl e e e 115
6.2 TaskModel 116
6.2.1 Basic Statements| oL 116

viii

[6.2.3 Creating and Deleting Tasks|
[6.2.4 Migrating Task|.
[6.2.5 Other Operations|
6.3 QueueModel

6.4.1 TimeSlicing|.
[6.4.2 TakingMutexes| o L.
6.4.3 GivingMutexes| oo

6.5 Summaryl

7 Evaluafi c Studies

(7.1 Project Summary|

/.2 €S| . . . e

. nclusionl

8.2 Future Work|
. lask M [with Promotion|

(8.4 Summary|

[Appendix A Introductory Appendix|

[Appendix B Summary of Z/Eves Proof Commands|

[Appendix C Summary of Interface|

[Appendix D Specification for Task Model|

[Appendix E Specification for Queue Model|

133
133
134
135
138
141
143
146

147
147
149
150
154

155

157

159

171

185

IAppendix F

Specification for Time Model|

IAppendix G

Specification for Mutex Model|

|Appendix H

Specification for Multi-core Task Model|

|Appendix |

Specification for Multi-core Queue Model|

IAppendix J

Specification for Multi-core Time Model|

[Appendix K

Specification for Multi-core Mutex Model|

[Appendix L

Spec for Multi-core Task with Promotion|

[Appendix M

VCC Annotated Source Code|

205

225

281

293

303

311

331

343

361

List of Figures

{1 StatechartforTasksl 5
(1.2 An example application that uses RT1OS (lask related).|. 6
[1.3 An example application that uses RTOS (Communication related).] . 10
(1.4 Overviewofproject| 17

| nstraints of tsk1CBl. 96
5.2 State and fransitionin VCCl. 97
5.3 FreeRTOS structurel. 98
[5.4 Contract for creatingtasks| 103
[5.5 Creating tasks pre-verification| 104
[5.6 Creating tasks verificationpart-1| 105
[5.7 Creating tasks verificationpart-2| 107
[5.8 Contract for deletingtasks| 108
[5.9 Postconditions for priority setting|o 111
[7.1 APl function execution history and result for Case 1| 136

[7.2 APl function execution history (above) and result (bottom) for Case 2| 140

[7.3 APl tfunction execution history (above) and result (bottom) for Case 3| 142

[7.4 Scenario for priority inversionissuel 145

Xi

List of Tables

1.1 Prefix of variable and function names used in FreeRIOS|. 18
1.2 OSuffixes used in schemanames| 18
[4.1 The constraints for giving mutexes (no waiting tasks)| 87
[4.2 The constraints for giving mutexes (with waiting tasks)| 87

[6.1 Conditions for giving mutex cases (have waiting tasks and the mutex |

holder inherits the priority)l 130
(C.1 APl mappings & preconditions for operations| 160
(C.2 APl mappings & preconditions for operations(continue)|. 161
[C.3 APl mappings & preconditions for operations(continue)|. 162
(C.4 APl mappings & preconditions for operations(continue)|. 163
[C.5 APl mappings & preconditions for operations(continue)|. 164
[C.6 APl mappings & preconditions for operations(continue)|. 165
(C.7 APl mappings & preconditions for operations(continue)|. 166
[C.8 APl mappings & preconditions for operations(continue)(. 167
(C.9 APl mappings & preconditions for operations(continue)|. 168
[C.10 APl mappings & preconditions for operations(continue)|. 169

Xiii

List of Schemas

A Task o 26
B2 SetPricl . . o o o 26
M1 FreeRTOS| e 38
42 TaskDatal e 42
4.3 StateDatal 43
4.4 ContextDatal i 43
4.5 PrioDatal e 43
4.6 Taskl. 44
4.7 Tmit TaskDatalo 44
4.8 TInit Datal 45
4.9 [Imt ContextDatal 45
410 [mit_PrioDatal e 45
A1 [nat _Taskl oo 45
BA2 ATask oo 47
413 Reschedulel e 48
.14 CreateTaskN _T| o o 49
[4.15 CreateTaskN _TFSBSig| o000 o .. 50
416 CreatelaskS T\. o oo o 54
[4.17 CreateTaskS _TFSBSw| 55

XVi

418 DeleteTaskS _T\. o 56
[4.19 DeleteTaskS_TFSBSwg|. 56
[4.20 QueueDatal 64
[4.21 WaitingDatal 64
[4.22 ()ReleasingDatal 65
4.23 Queue|o e 65
[4.24 TaskQueue| e e e e 65
[4.25 [nit_TaskQueuel e 66
4.26 L TaskXal . . . o o 67

xt'las | 67
M.28 DeleteTuskN_TQ| o i e i e e e s 68
[4.29 QueueSendN_TC)| 70
4.30 Toumel . ..o e 73
[4.31 TaskQueuelime| e 73
M4.32 Init_Tumel e 75
[4.33 QueueSendF _TQT| 76
[4.34 CheckDelayedTaskN _TQT| 77
4.35 MutexDatal 79
[4.36 OnriginalPrioDatal. o 79
[4.37 MReleasingDatal| 80
4.38 Mutexz! e 80
[4.39 TaskQueuelimeMutex|.o 80
[4.40 bOasePriorityMan|o o 86
6.1 TaskDatal 117
B2 Taskl. 118
6.3 Reschedulel 119
6.4 findTopReady| 119
6.5 findACore_T| 120
6.6 QueueDatal e 123
6.7 ChangeQueueLevel _TQ)| 125

6.8 TwmeSlicing _TOT| 126

81 TaskDatal e 151
B.2 Multe Taskl 151
B3 Inafl o e 152
8.4 PromoteC]. e 152
DA TaskDatalo 171
D.2 Init TaskDatal 172
D.3 StateDatal o 172
D.4 Init StateDatal 172
D /) Datal 172
D.6 [mit ContextDatal 172
D.7 PrioDatal e 173
D.8 Init PrioDatal 173
DO _Taskl oo 173
DIO ATk . . . o ot e 173
DA1 [nst_Taskl o 174
DA2 Reschedulel e 174
DA3 CreateTaskN _T| o oo 174
[D.14 CreateTaskN _TEFSBESigl o o o o o i oo o 175
DA5 CreateTaskS _T\. o o 175
D16 CreateTaskS _TFSBSwg| o o oo oo 176
DI7 DeleteTaskN_T1 176
eleteTaskN _ L 176

DA9 DeleteTaskS _T1. o o o 177
eletelaskS _ Gl e 177

[D.21 EzecuteRunningTask _T| 178
[D.22 EzxecuteRunningTask _TFSBSwg| 178
[D.23 SuspendTaskN_T| 178
[D.24 SuspendlaskN _TFSBSig| 178
.25 SuspendlaskS_T|. 179

.26 SuspendlaskS _ L 179

27 SuspendlaskO_T| 180

xViii

[D.28 SuspendTaskO_TFSBSwg| 180
D.29 ResumeTaskN _T|. 180

.30 ResumelaskN _ L7 181
D.31 T T . 181

.32 ResumelaskS _ L7 181
[D.33 ChangeTaskPriorityN_T| 181
[D.34 ChangeTaskPriorityN _TEFSBSwg| 182
[D.35 ChangeTaskPriorityS_T|. 182
[D.36 ChangeTaskPriorityS_TFSBESwg| 182
[D.37 ChangeTaskPriorityD _T| 183
[D.38 ChangeTaskPriorityD _TFSBSw| 183
[E.1T QueueDatal 185
[E.2 [nit_QueueDatal e 185
E.3 WaitingDatal 185
[E.4 [nit_WaitingDatal 185
[E.5 QReleasingDatal 186
[E.6 [nit_Q)ReleasingDatal. o 186
E.7 Queue| 186
[E.8 [nit_Queue| 187
[E.9 TaskQueue| e 187
[E. 10 Inat_TaskQueuel 187
[E11 FatendlaskXel oL 187

} xt’las G- - e e e 187
[E.13 DeleteTaskN_TOQ| 188
[E.14 SuspendTaskN_TQ| 189
[E.15 CreateQueue_TCQ)| 192
[E.16 CreateQueve TQFSBSwgl 193
[E.17 DeleteQueue_TCO|. 193
[E.18 DeleteQueue_TCOFSBSigl 193
[E.19 QueueSendN_TC)| 193

ueueSendN _ 77| 194

[E.21 QueueSendF _TC| 194
[E.22 QueueSendF _TQFSBSw| 195
[E.23 QueueSendW _TC)| 196
[E.24 QueueSendW _TOFSBSig| 196
E25 QueueSendWS_TQ| oo i 197

ueueSen _ L 197
[E.27 QueueRecewweN_TQ| 199
[E.28 QueueReceweN_TQFSBESw 199
[E.29 QueueRecewel _T0| 199
[E.30 QueueRecewel _TQFSBSwg| 200
[E.31 QueueRecewe W _TOQ|. 201
[E.32 QueueReceweW _TQFSBSwg 201
[E.33 QueueRecewwe WS_TCQ| 202
[E.34 QueueRecerwve WS _TOQFSBESw| 203
EI_Timel 205
[E2 Init _Twmel o 205
[F.3 TaskQueuelimel L e 205
[F.4 Inat_TaskQueuelimel o 206
[F.5 EztendlaskQueueXs| 206
[F6 DeleteTaskN_TQT| 207
[F.7 SuspenalaskN _TQT| 208
[F.8 QueueSendF _TQT| 212
[F9 QueueSendl _TQTFSBSigl o o o oo 212
[F10 QueueSendW _TQT| 213
[F11 QueueSendWS_TQT| 214
[F.12 QueueRecewel _TQT| 215
[F.13 QueueRecewell _T'QTESBSwg| o oo oo oo . 215
[F.14 QueueRecewe W _TOT|. 216
[F.15 QueueRecewe WS_TOQT| 217
[F16 DelayUntil_TOT]. oo e e e e 218

elayUntil_ L7 219

XX

.18 eckDelayedTaskN _TQT| 220
.19 eckDelayed TaskN _ Wl . 220
.20 eckDelayedTaskS_TQT|. 221
2 eckDelayed laskS _ WGl « o 222
22 TimeSticing _TQT) 223
mmedlicing _ wl .o 223

F24 NoSlicing_TOT| it 224
odlicing _ Gl . . 224

G.1 MutexDatal 225
G.2 [nit_MutexDatal 225
(G.3 OnrginalPrioDatal. 225
(G.4 [nit_OnriginalPrioDatal o . o oo 226
(G.5 MReleasingData| 226
(G.6 [mit_MReleasingDatal 226
G/ Mutexz! e 226
(G.8 [nit Mutex| 226
(G.9 TaskQueueTimeMutex| 226
(G.10 [t _TaskQueve TvmeMutex| 227
A1 BatendTQTXq| o o 0 o o o 227
A2 DeleteTaskN _TQTM| o o oo e 228
13 DeleteTaskN _TQT' L | 228
[GA4 DeleteTuskS_TQTM|. v it 228
A5 DeleteTaskS _ L 228
(G.16 ChangeTuaskPriorityNNotHolder _TQTM|. 231
(G.17 ChangeTaskPriorityNNotHolder _T'QTMFSBSw| 231
(G.18 ChangeTuaskPrioritySNotHolder _TQTM| 231
(G.19 ChangeTaskPrioritySNotHolder _T'QTMFSBSw| 232
(G.20 ChangelaskPriorityDNotHolder _TQTM|. 232
(G.21 ChangelaskPriorityDNotHolder _T'QTMFSBSwg| 232
(G.22 ChangelaskPriorityNNotInherited_TQTM| 233

(G.23 ChangelaskPriorityNNotInherited _TQTMFSBSwg| 233

(G.24 ChangelaskPrioritySNotInherited _TQTM| 233
(G.25 ChangeTaskPrioritySNotInherited _TQTMFSBSwg| 233
(G.26 ChangeTaskPriorityDNotInherited _TQTM| 234
(G.27 ChangeluskPriorityDNotinherited _T'QTMFESBSwg| 234
(G.28 ChangelauskPrioritylnheritedN _TQTM| 235
(G.29 ChangelaskPrioritylnheritedN _T'QTMESBSw| 235
(G.30 ChangelaskPrioritylnheritedU_TQTM| 236
(G.31 ChangelaskPriorityInheritedU _TQTMESBSw| 236
(G.32 ChangelaskPrioritylnheritedS_TQTM|. 236
(G.33 ChangelTuaskPrioritylnheritedS _TQTMFSBSwg| 236
(G.34 DeleteQueue _TOQTM| 237
eleteQQueue_ WG| - 237

(G.36 QueueSendN_TOQTM| 238
(G.37 QueueSendN_TOQTMESBSwg| 238
(G.38 QueueSendF _TOTM| 238
(G.39 QueueSendF _TQTMFSBSwg| 238
(G.40 QueueSendW _TQTM|. 239
(G.41 QueuveSendW _TQTMESBSw| 239
(G.42 QueueSendWS_TOQTM| 240
43 QueueSen _TOT gl .. 240
(G.44 QueueRecerveN _TQTM|. 241
(G.45 QueueRecewveN _TQTMESBSwg|. 242
(G.46 QueueRecewvell _TQTM| 242
47 QueueReceiel, _ gl ... 242
(G.48 QueueRecewe W _TQTM| 243
(G.49 QueueRecewe W _TQTMESBSwg 243
[G.50 QueueRecerveWS_TQTM| 244
.91 QueueRecerwe WS _ wgl. .o 244
(G.52 Create BinarySemaphore_TQTM| 249
(G.53 Create BinarySemaphore_TQTMFSBSwg| 249

(G.54 Delete BinarySemaphore_TQTM| 250

XXii

(G.55 DeleteBinarySemaphore _TQTMEFSBSw| 250
G56 CrealeMutet TOTM| . . . o o oo 250
o7 CreateMutex _ 19 e e e e 251
[G58 DeleteMutex _TQTM| oot 251
eleteMutex _ 1G] - 251

[G.60 MutexTakeNnonInh_TQTM] 252
utexlakeNnoninh_ WG . 252

[G.62 MutexTakeNInh_TQTM]. oo it 252
utexlakeNInh _ Gl 253

(G.64 MutexTakeEnoninh _TOQTM| 253
utexlakelmonlinh _ gl 253

|G.66 MutexTakeEInheritReady _TQTM| 254
(G.67 MutexTakeFInheritReady _TQTMFSBSigl 255
(G.68 MutexTakeFInheritHolder _TQTM| 256
(G.69 MutexTakeFInheritHolder _TQTMFSBSwg 257
(G.70 MutexTakeRecurswve _TQTM| 257
(G.71 MutexTakeRecursive _TQTMFSBSwg| 258
(G.72 basePriorityMan| 258
(G.73 MutexGiveNnoninh _TQTM|. 258
(G.74 MutexGiveNnoninh _TQTMEFESBSw| 259
A5 MutexGueNInhN _TQTM|. 259
.76 MutexGiveNInhN _ gl 260
A7 MutexGueNInhS _TQTM|o o 260
.78 MutexGiveNInhS _ gl .o 261
[G79 MutexGweWnonInhN_TQTM| 263
.80 MutexGive WnonInhN _ gl ... o 263
(G.81 MutexGive WnonInhS_TQTM| 265
.82 MutexGrve WnonInhS _ WG . e e e e 266
.83 MutexGuweWInhN_TQTM| 268
utexGrve WInhN _ Wl ... 269

[G.85 MutexGiveWInhSR_TOTM]|. i it 271

.86 MutexGive Win _ WG . o e 272

.87 MutexGrve Win _TQTM o 275

.88 MutexGive Win _ 19 .« e e e e 275
(G.89 MutexGrweNRecurswe_TQTM| 278
[G.90 MutexGrveNRecursive _T'QTMEFSBSig| 278
[HA TaskDatal o 0 282
H.2 Init TaskDatal 282
[H.3 StateDatal oo o 282
[H4 [nit StateDatalo 282
H.) Datal 282
H.6 Init ContextDatal 282
H7 PrioDatal 282
[H8 [Init PrioDatal 282
O Taskl o 283
HIO ATk . . . o oo 283
HAT1 fnet _Taskl o oo 0o 283
[H.12 create’laskSpeCoreN _T| 283
[HA3 findACore_T| 0 o 284
[H14 Reschedulel 284
[H.15 create’laskSpeCoreS_T| o o 285
[HA6 DeleteTaskN _T| o 285
[H.17 findlopReady|« o o o e 285
[HA8 DeleteTaskS _T1. o o o e 286
[H.19 EzecuteRunninglask_1T| L 286
[H.20 SuspendlaskN_T| 286
[H.21 SuspendlaskS_T|. 287
[H.22 SuspendTaskO_T| o o 287
H.23 ResumeTaskN_T|. 287
H.24 T T1 . e 287
[H.25 ChangeTaskPriorityN_T| 288

[H.26 ChangeTaskPriorityS_T|. 288

XXiv

[H.27 ChangeTaskPriorityD _T| 288
[H.28 MigrationN _T| 289
[H.29 MigrationS_T| o o o 289
[H.30 MigrationRulN_T| o 290
[H.31 MigrationRuS _T|. 290
(.1 QueueDatal 293
(.2 Init_QueueDatal 293
(.3 WaitingDatal 293
(.4 Inat_WaitingDatal 294
(.5 QReleasingDatal 294
(.6 Init_CQ)ReleasingDatal. 294
L7 Queue| e 294
(.8 [nat_Queue| 294
(.9 TaskQueue| e 295
(.10 [nat_TaskQueuel o 295
L1 FatendTaskXel o o o o oo 295
(.12 DeleteTaskN_TQ| o 295
(.13 SuspendlTaskN_TOQ| 296
(.14 CreateQueue _TCQ)| 296
[[L15 DeleteQueue_TQ|. 297
16 QueueSendN_TCQ)| 297
(.17 QueueSendF _TCQ| 297
.18 QueueSendW _TQ| 298
19 QueueSendWS_TQ| 299
.20 QueueRecewwveN_TQ| 299
(.21 QueueReceweF _TCO| 300
(.22 QueueRecerve W _TCO\|. o 300
(.28 QueueRecerve WS_TCO| 301
(.24 ChangeQueuelLevel _TCQ)| 302
U _Thmel 303

2 [Tumel . . . 303

(.3 TaskQueueTime|l o 303
M4 Tt _TaskQuevelvme| o ..o o 304
(J.5 FExtendTaskQueueXs|o oo 304
(.6 DeleteTaskN_TOT| 304
(.7 SuspendlaskN_TQT| 304
M.8 QueueSendlF _TOT| 305
(.9 QueueSendW _TOQT| 305
(.10 QueueSendWS_TOT| 305
(.11 QueueReceweE _TOQT| 306
(.12 QueueRecewe W _TQT|. 306
(.13 QueueRecewwe WS_TOQT| 306
M.14 DelayUntal _TQT|. o o o o oo oo 307
(.15 CheckDelayedTaskN_TQT| 307
(.16 CheckDelayedTaskS_TOT|. 308
M7 TimeShicing_TOT| o o oo o 308
M.18 NoSlicing _TQT| o 309
KA MutexDatal 311
K2 Init_MutexDatal 311
K.3 OriginalPrioDatal. o . o 311
[K.4 Init_OnriginalPrioDatal o oo oo oo 311
[K.5 MReleasingData] e 312
[K.6 [mit_MReleasingDatal 312
K/ Mutex! e 312
K8 Init _Mutexl 312
K.9 TaskQueueTimeMutex|. 312
KIO Tnadl oo 312
KA1 ExtendTQTXs| o o o e 313
K12 DeleteTask _TOQTM| 313
[K.13 ChangeTaskPriorityNotHolder _T'QTM| 313
[K.14 ChangeTaskPriorityNotInherited _T'QTM| 313

[K.15 ChangeTaskPriorityInheritedN _TOQTM| 314

XXVi

[K.16 ChangeTaskPriorityInheritedU _TQTM| 314
[K.17 Change TaskPrioritylnheritedS _TQTM|. 314
[K.A8 DeleteQueuve TOQTM| o o o 315
K19 QueueSend _TOQTM| 315
[K.20 QueueRecewve _TQTM| 315
[K.21 CreateBinarySemaphore_TQTM| 316
[K.22 DeleteBinarySemaphore_TQTM| 316
[K.23 CreateMutex_TOQTM| 317
[K.24 DeleteMutex _TQTM| 317
K25 MutexTakeNnonInh _TQTM] o .. 317
K26 MutexTakeNInh_TQTM]|. o i i 318
[K.27 MutexTakeRecurswe _TQTM| 318
[K.28 MutexTakeEnoninh _TQTM| 319
[K.29 MutexTakeE InheritSameCoreHolder _T'QTM| 319
[K.30 MutexTakelInheritSameCoreReady TQTM|. 320
(K.31 MutexTakel InheritDiff CoreN _TQTM| 321
K.32 MutexTakel InheritDiff CoreS _TQTM| 321
[K.33 basePriorityMan|o o 322
[K.34 MutexGirveNRecursiwve _TQTM| 323
K35 MutexGiveNnonlnh_TQTM|. 323
K36 MutexGiveNInAN _TQTM|. 324

utexGuueNInhS _TQTM| o 324
K.38 MutexGirve Wnoninh N _TQTM| 325
K.39 MutexGirve WnoninhS_TQTM| 325
[K.40 MutexGroe WInhN _TQTM| 326
K.41 MutexGroe WInhSR_TQTM|. 327
K.42 MutexGioeWInhSW _TOQTM| 328
K.43 MutexGirve WInhSBoth _T'QTM| 329
LA TaskDatal e 331
L2 Init TaskDatal o 332

L4 Datal e 332
L Init Datal 332
L6 PrioDatal 332
L7 Imit PrioDatal e 332
LB Task . . . o oo 332
CO ATasE. . . oo 332
LA0 [nat Taskl o o 333
L1 Reschedulel 333
L12 (' TaskN T\ oo o 333
L.1 reatelaskS T\, oo 333
LA4 DeleteTaskN T o oo 334
LA5 DeleteTaskS T|. o . o oo 334
L.16 SuspenalaskN_T| 335
L7 SuspenalaskS_T|. o 335
L.A8 SuspenalaskO_T| 335
LI9 ResumeTaskN_T1. o e i 335
L20 ResumeTaskS_T1 o o i i e i 336
[L.21 ChangelaskPriorityN _T| 336
[L.22 ChangelaskPriorityS_T|. o . o oo 336
[L.23 ChangelaskPriorityD T 336
L24 Multe Taskl oo 337
L25 [natl 337
L.26 PromoteCl. 337
[L.27 findACore _MT]. i 338
L28 P Dl e 338
L.29 Promotel. e 338
[L.30 MigrationN_MT| o 339
L.31 MigrationS_MT| 340
L.32 MigrationRuN_MT| 340
L.33 MigrationRuS_MT|. 341

[L.34 getRunmingTask| 342

XXViii

[L.35 getPriority|

Acknowledgements

First and foremost, | would like to thank my supervisor, Prof. Jim Woodcock,
whose patient and continuous guidance, constructive suggestions and kind en-
couragement helped me throughout my PhD. It has been great pleasure to work

with him.

| also want to express my great gratitude to my parents and family. Without their

boundless love, teaching and guidance | would never be who | am.

And | also want to thank my colleagues in the Computer Science Department at
the University of York, who have contributed to discussions and support about
my work. Especially, | appreciate Steve King, Rob Alexander, Jeremy Jacob,
Sam Simpson, Victor Bandur, Pakorn Waewsawangwong, Tasawer Khan, Chris
Poskitt, James Williams, and Detlef Plump. Thanks are also due to members
of the Indian Institute of Science in Bangalore for their helpful discussions and
comments of this work: thanks to Deepak D’Souza, Sumesh Divakaran, Anuridh

Kushwah, Virendra Singh, and Nigamanth Shridar.

| also want to thank my assessors, Steve King and Jonathan Bowen. Their pre-

cious feedback helps me to make the thesis much more better.

Last, but not least, | want to appreciate all my friends: especially to Lin Liu, Siyu
Wang, Lei Chen, Hao Sun, YunFeng Ma, Hengyu Wu, Wen Luo and Keshu Xu.
Their friendship, help and encouragement, always support me, even in the hardest

times, and bring me the most blissful memories.

XXiX

Declaration

The work in this thesis has been carried out by the author between September
2010 and September 2014 at the Department of Computer Science, University of
York. This work has not previously been presented for an award at this, or any
other, University. Apart from work whose authors are clearly acknowledged and
referenced, all other works presented in this thesis were carried out by the author.
First section of Chapter 4 of this thesis have appeared in previously published

paper:

e S. Cheng, J. Woodcock, and D. D’Souza, Using formal reasoning on a model
of tasks for FreeRTOS. Formal Aspects of Computing, pp. 1-26, 2014.
[Online]. Available: DOI:10.1007/s00165-014-0308-9

All the technical works presented in this paper are carried out by the

author of this thesis.

XXXi

Chapter 1

INTRODUCTION

This chapter begins by introducing formal methods and the international Verified
Software Initiative (VSI). It then introduces FreeRTOS, as formally verifying the
correctness of FreeRTOS is one of the pilot projects of the VSI. Next, this chapter
introduces VCC and shows that it is possible to combine formal specification and
code level annotations together to verify the source code. It then discusses the
limitations of single core processors and the benefits of multi-core processors. In
addition the objectives and challenges of verifying FreeRTOS are clarified. Finally,

the structure of the thesis is given.

1.1 Formal Methods

Formal methods apply mathematical techniques to software design and verification
and are normally supported by tools [1]. The general development process for

formal methods is:

(a) Use mathematical expressions to specify the state and the behaviour of the
software according to the documented requirements, which can generally be
expressed by state transitions. An abstract specification will be produced in
this step;

(b) Apply mathematical theorems and lemmas to verify the specification or model;

Page 1

(c) Refine the specification from abstract level to concrete model;
(d) Repeat steps [b] & [c| until executable code is generated. Note, the relation be-

tween each refinement also has to be verified.

Formal methods can provide higher quality software than ordinary software devel-
opment, because all models produced in the development process can be verified
and proved using mathematical logic. This can efficiently detect any faults in the
software at the initial stage of development, which may later have lead to huge
losses. For instance, an error in the Inertial Reference System (IRS) of Ariane 5
caused the explosion of the rocket in June 1996 [2], costing around half a billion US
dollars. The US Department of Commerce also estimates that the losses caused
by avoidable software errors is between 20 and 60 billion dollars every year [3, 4].
Without formal methods these kinds of faults are sometimes very hard to discover,

and even if revealed, may be too expensive to correct at a later stage [5].

However, formal methods have not been widely applied in industry, although they
have significant advantages. Hall [6] believes that there are seven common myths
or misunderstandings about formal methods, some of which cause this situation.
Firstly, it is thought that formal methods increase the cost of the development. Yet
Hall [6] indicates that in his experience, applying formal methods in commercial
projects decreases the development cost. Although there is a one-time cost for
learning the non-user-friendly tools which often support formal methods, the devel-
oper gains more benefits from the reduction of cost in the amount of testing and
maintenance. King et al. [7] claim that using formal methods is more efficient for
detecting faults than the most efficient testing phase, which also increases the cost.
The cost of verifying and testing software may occupy 30% to 50% of the total cost
of a software project [8]. This can increase to 70% for hardware. Even with this
huge investment, however, Dijkstra [9] believes testing can never guarantee that
software is free of bugs. Secondly, “formal methods involve complex mathematics
and are incomprehensible to clients” [6]. Although formal methods apply mathe-
matical technology in documentation and design, it only needs knowledge related

to logic and set theory, which is a fundamental part of mathematics. Meanwhile,

Page 2

using formal methods, developers may experiment with the model and demon-
strate it to clients using animation. Such animations can clearly show clients the
behaviour of the system. Formal methods help developers to organise documen-
tation much better and because of the mathematical rigour, the documentation is
also more likely to be unambiguous and precise. This makes it easier for clients to
use and understand the system [4]. Lastly, people believe that formal methods are
only used in academic and research fields or in highly critical systems. However,
it has been reported that formal methods are suitable for industrial-scale applica-
tions [6, 7, (10l 111]. Moreover, Berry [12], chief scientist at ESTEREL Technologies,
shows that the control system of the Airbus A380, which has five million lines of

code, was automatically generated by formal methods and all worked first time.

Fortunately, this situation is changing. In 2003, Hoare [13] suggested the interna-
tional Grand Challenge for Computing Research to build a verifying compiler, which
could automatically verify whether a program met its requirements [14]. Based on
this idea, the international Verified Software Initiative (VSI) [4, 5, 13| [15], led by
Hoare, was proposed. The main aim of the VSI is to work out a more approach-
able strategy for verifying software with the integrated support tools. Several pilot
projects have been selected for VSI, such as the Mondex electronic purse [16],
POSIX file store [17], etc.

1.2 FreeRTOS

As a widely used real-time operating system, the function of FreeRTOS can be
divided into three large categories: (a) multitasking task management; (b) inter-
task communication and synchronisation; and (c) memory management, interrupt

management and other features. The three key elements of FreeRTOS are:

Tasks: user processes.
Queues: communication mechanisms between tasks and interrupts.
Semaphores and Mutexes: the facilities which are used for resource manage-

ment, event counting, mutual exclusion locks, etc.

Page 3

1.2.1 Task Management
Tasks in FreeRTOS can be regarded as occupying one of two top-level states,

running or notRunning. The running task is recorded by the task control block
handler pxCurrentTCB and simply indicates that the task is currently executing
on the processor. The notRunning state can be decomposed into three sub-
states: ready, suspended, and blocked. The following lists in FreeRTOS are used

to manage this:

Ready Lists (pxReadyTasksLists) this is an array of the task lists, in which tasks

are available to be scheduled to the running state.

Delay List (xDelayedTaskList1) & Overflow Delay List (xDelayedTaskList2)
tasks in these lists are blocked by an event for a certain period. They
are sorted by wake-up time. Because the time is expressed by ticks
in FreeRTOS, if the wake-up time is later than the time represented by
maximum—_delay_ticks — current_ticks, the ticks for wake-up time could

overflow. Therefore, an overflow-delay list is required.

Suspended List (xSuspendedTaskList) tasks in this list have been suspended,

and wait until they are resumed by another task.

Pending Ready List (xPendingReadyList) tasks resumed from Interrupt Service
Routines (ISRs) are kept in this list temporarily, while the scheduler is not

running.

Waiting Termination List (xTaskWaitingTermination) deleted tasks stay here

and wait to be removed by the idle task.

Tasks transit between these states as described in Fig. For instance, a task
cannot directly transit from suspended to running, because only ready tasks can

be scheduled as running [18]

All tasks have their own priority, uxPriority, which is used by the scheduler. Tasks

can have another priority, uxBasePriority, which records the original priority of

Page 4

Figure 1.1: State chart for Tasks

\

vTaskSuspend()
vTaskSuspend() \Taskresume() callea
called * called
xTaskCreate()
vTaskSuspend() —~ @—1pp| Running
called

Event Blocking API

function called
Blocked

tasks when priority inheritance occurs. The scheduler is responsible for counting

the clock ticks, used to express time, and schedules the tasks. The scheduling pol-
icy adopted here is priority-based scheduling, which means that the task with the
highest priority and in the ready state can be executed. As a result, it is impossible
to use FreeRTOS in hard real-time environments. When a ready task has a higher
priority than the running task, it will displace the running task from the CPU. The
scheduler has two ways of switching tasks: pre-emptive and cooperative schedul-
ing. In pre-emptive mode, the task with the highest priority will block the running
task immediately and take the CPU. In cooperative mode, the running task can fin-
ish its CPU time before the task with the highest priority takes over. API functions
are provided for task creation, deletion, and control. It is worth noting that the dele-
tion API function does not actually delete a task from the system: it only adds the
task to xTasksWaitingTermination and removes its reference from related task
lists. The id1le task, with permanent priority 0, the lowest priority, is used to do the
deleting job and release the memory allocated by the kernel. However, it does not
collect the memory allocated by the user, so tasks have to release used memory

themselves, before being deleted.

In our specification, the function state, which is a total function from TASK to
STATE, in schema StateData (see Sect. [4.2.1, Page. is used to specify

the states of tasks. Further, the reverse function of state can be used to cal-

Page 5

Figure 1.2: An example application that uses RTOS (Task related).
xTaskHandle txh1;

void tx1(void * xPara){

xTaskCreate (tx3, (signed char x) "Task_3", 1000, NULL, 4, NULL);
for(;;);

1

void tx2(void * xPara){
for(;;){

10 vTaskPrioritySet(txh1, 3);
1}

12}

©CoONOOP,WN =

14 void tx3(void = xPara){
15 for(;;){

16 vTaskDelete (NULL) ;
17}

18 1}

20 int main(void){
21 xTaskCreate (tx1, (signed char x) "Task_1", 1000, NULL, 1, & txh1);
22 xTaskCreate(tx2, (signed char =) "Task_2", 1000, NULL, 2, NULL);

24 vTaskStartScheduler () ;
25 return O;
26 }

culate tasks in a specific state; for instance, pxReadyTasksLists can be repre-
sented by state™({ready} |). This also works for running tasks: the result of
state™({running} |) is a set with only one element—running_task, which rep-
resents the handler pxCurrentTCB. The function priority in schema PrioData
and old_priority in schema OriginalPrioData of Mutex model represents tasks’

uxPriority and uxBasePriority respectively. They are defined in Chap.

We use a simple example application to illustrate the functionality provided by
FreeRTOS. Fig. shows the C code of an application that uses the FreeRTOS
API function related to task management. |Initially, the application creates two
tasks: Taskl and Task2, with priority 1 and 2 respectively (a higher number in-
dicates higher priority), and then starts the FreeRTOS scheduler. The scheduler
then runs Task2, which immediately increases the priority of Taskl to 3. Task2
is now pre-empted by Taskl, which gets to execute and creates a new task—
Task3 with priority 4, which is the highest at the moment. Therefore, it pre-empts
Taskl and can execute. Once Task3 is executing, it deletes itself, which triggers
the scheduler to reschedule the system. As Task1 has the highest priority at this

moment, it gets to execute again and will continue to execute.

Page 6

We now describe in more detail what happens in the FreeRTOS implementa-
tion code. The application code for main, tx1, tx2 and tx3 is compiled along
with the FreeRTOS code (for the scheduler and the API function calls including
xTaskCreate) and loaded into memory. The scheduler code is loaded into the

Interrupt Service Routine (ISR) code area so that it services software interrupts.

By analysing the source code of FreeRTOS, we see that execution begins with the
first instruction in main, which is the call to the xTaskCreate API function. This
code is provided by FreeRTOS. It allocates 1 kilobyte (defined in the parameters
of xTaskCreate) of memory from the heap to the task stack, as well as space to
store its Task Control Block (TCB) [19, [18]. From the source code, we see that
the TCB contains all vital information about the task: where its code (tx1 in this
case) is located, where its stack begins, where its current top-of-stack pointer is,
what its priority is, and so on. The API function call initialises the TCB entries for
Taskl. It then creates and initialises the various lists that the OS maintains, such
as pxReadyTasksLists, xSuspendedTaskList and so on. It finally adds Task1 to
the ready list and returns. Next, main calls xTaskCreate for Task2 and the API
function call sets up the stack and TCB for Task2 and adds it to the ready list, in a
similar way. The next instruction in main is a call to the vTaskStartSchedular API
function, which is also provided by FreeRTOS [19, 18]. This call creates the idle
task with priority 0, and adds it to the ready list. It also sets the timer tick interrupt
to occur at the required frequency. Finally, it does a context-switch to the highest
priority ready task (i.e., it restores its execution state, namely the contents of its
registers, from the task’s stack where they were stored). The processor will next
execute the instruction in the task that is resumed. In our example, this means that

Task2 will now begin execution.

When Task2 begins execution it makes an API function call to vTaskPrioritySet.
The code for this API function call compares the new priority and the current priority
to decide whether scheduling is needed. If the API function increases the priority
of a task or decreases the priority of the current running task, a reschedule will be

requested. It then assigns the new priority to the target task, and moves the task to

Page 7

the proper position in the ready list, if it is a ready task. In our case, the priority of
Task1 is changed to 3, it is moved to the correct position in pxReadyTasksLists.
The API function code then execute a yield (a kind of software interrupt) that is
trapped by the scheduler. The scheduler picks the highest priority ready task, which
in this case is Task1, and makes it the running task. Before this, the scheduler
saves the registers of Task2 to its stack, and restores the register context of Task1

from its stack.

Task1 now creates the new task Task3. The process is similar to the xTaskCreate
call to create Taskl and Task2. The difference is that here xTaskCreate triggers

scheduling to make Task3 run.

When Task3 begins execution, it makes a call to the vTaskDelete API function.
The code for this API function is simple. It removes the target task from the state list
and related events list; in this case, Task3 is removed from pxReadyTasksLists.
As it is the current running task, the API function code triggers scheduling again to
make the highest priority ready task run, which is Task1. Task1 then executes its

trivial for-loop, ad infinitum.

The animation and formal verification of our specification for this process will be
illustrated in Chap.[7]

1.2.2 Communication and Synchronisation

In FreeRTOS, tasks and interrupts communicate and synchronise with each other
through queues. When two tasks in FreeRTOS need to exchange information, they
send and receive information to and from a queue. As items are exchanged be-
tween tasks and queues by being copied to or from a queue, the size of each item
in the queue must be the same. Otherwise, when a task receives an item from a
queue, it would be confused as to how many bytes needed to be received. Ev-
ery queue fixes the size of all items it can receive using uxItemSize. All queues
also have a capacity, uxLength, which indicates how many items can be held

by the queue. The number of items currently stored in the queue needs to be

Page 8

recorded as well. Tasks will be blocked while they attempt to send (receive) items
to (from) a full (empty) queue. The following two sequences are used to manage
this: (a) xTasksWaitingToSend records tasks blocked by sending operations; and
(b) xTasksWaitingToReceive records tasks blocked by receiving operations. As
well as these basic properties, a number of other fields are recorded also for a
queue, such as, pcHead and pcTail, which represent where the queue starts and

ends.

Semaphores and mutexes, which are used to manage resources, mutual exclu-
sion locks and so on, are implemented by queues. They are considered to be
special queues. Specifically, the item size for semaphores and mutexes is 0. This
is because, when tasks take a semaphore or mutex, they do not copy items from
semaphores and mutexes. What is of interest to the task which attempts to take
the semaphore or mutex, is whether it is available or not. The initial state of
semaphores and mutexes is full rather than of empty, which is the initial state for
normal queues. The main difference between semaphores and mutexes is that
the maximum length for mutexes is always 1; on the another hand, the size of
semaphores can be any unsigned number. Moreover, mutexes support the priority
inheritance mechanism when a higher priority task is waiting to take a mutex which
is hold by a lower priority task. Each mutex has its own mutex holder if it is taken
by a task. The holder of a mutex can repeatedly take it at any time. Therefore,
a mutex needs to know who is its holder. It overrides the field pcTail of normal

qgueue to pxMutexHolder for this purpose.

In our specification, functions ¢_max and ¢_size in the QueueData schema of the
Queue model (see Sect. Page. are used to represent the capacity and
the current size of the queue respectively. Functions wait_snd and wait_rcv are
used to indicate the blocked task for each queue in the system. Meanwhile, mu-
tex related information is included in the Mutez model (see Sect. Page. [79).
For instance, the function mutex_holder, which represents the pxMutexHolder, is

contained by MutezData schema of Mutex model. They are defined in Chap. [4]

Page 9

Figure 1.3: An example application that uses RTOS (Communication related).

xTaskHandle tskH;
xSemaphoreHandle xMutex;

void tx1(void * xPara){
xSemaphoreTake (xMutex, portMAX_DELAY) ;
for(;;);

}

void tx2 (void = xPara){
10 vTaskDelay(10);

©CoONOOP,WN =

12 xSemaphoreTake (xMutex, portMAX_DELAY) ;
13 for(;;);
14}

16 int main(void) {
17 xMutex = xSemaphoreCreateMutex () ;

19 xTaskCreate(tx1, (signed char x) "Task_1", 1000, NULL, 2, & tskH);
20 xTaskCreate(tx2, (signed char x) "Task_2", 1000, NULL, 3, NULL);

22 vTaskStartScheduler () ;
23 return O;
24}

Similar to Sect. we use a simple example application (Fig. to illustrate
functionality related to communication in FreeRTOS. Initially, the application cre-
ates a mutex, xMutex and two tasks: Taskl and Task?2, with priority 2 and 3 re-
spectively and then starts the scheduler, which runs Task2. It requests to delay
for 10ms, which blocks Task2 and lets Task1 execute. Once Taskl1 is executing, it
takes the mutex xMutex then executes its infinite loop. After 10ms, Task2 wakes
up. As it has higher priority than Taskl1, it preempts Taskl and starts to execute.
Task2 also tries to take the mutex, xMutex. However, it has been held by Task1.

Therefore, Task2 is blocked for portMAX_DELAY and Task1 can execute again.

In detail, main creates xMutex by calling xSemaphoreCreateMutex (Note, the
operations, such as load code, create task, etc., which have been de-
scribed in Sect. are not repeated here). As declared in semphr.h,
xSemaphoreCreateMutex actually executes the code of xQueueCreateMutex,
which is defined in queue.c [19, [18]. This code allocates space to store the new
queue structure (xQueue) and initialise the structure for xMutex. For instance, set
the type to queueQUEUE_IS_MUTEX, set the holder of the mutex to NULL, set item

size to 0, etc. Next, main creates Taskl and Task2 and starts the scheduler.

When Task2 begins execution, it makes a call to the vTaskDelay API function.

Page 10

The code for this API function call will add Task2 to an event list, which is a priority
queue associated with the delayed tasks, with a value that corresponds to the

current tick count plus 10. Then, Task1 is scheduled as the running task.

Once Task1 starts to execute, it calls xSemaphoreTake to take the mutex, xMutex.
xSemaphoreTake is also declared in semphr.h and executes code in queue.c, which
is xQueueGenericReceive. It checks whether there is an item available in the
queue (i.e., xMutex). If there is, the calling task receives the item. Otherwise, it
is blocked for a period which is specified by a parameter of the API function. As
there is no task holding xMutex at the moment, Task1 can successfully take the
mutex. It then executes its infinite for-loop, until an interrupt for the next timer tick
arrives from the hardware clock. This interrupt is again trapped by the scheduler
and it increments its tick count. The scheduler then checks if any of the delayed
tasks have a time-to-awake value that equals the current tick count. There is none
and the scheduler hands back control to Taskl. However, when the 10th timer
interrupt takes place, the scheduler finds that Task2’s time-to-awake equals the
current tick count, and moves it to the ready queue. Since there is now a higher
priority ready task, Taskl is swapped out and Task2 is restored and made to ex-
ecute. It then attempts to take the xMutex. As Taskl holds the xMutex at the
moment, Task2 is blocked by the mutex. The event list item of Task2 is added
to the xTaskWaitingToReceive of xMutex as well. Therefore, Task1l can execute

again and stay in an infinite for-loop.

This process will also be animated and formally verified in Chap.

1.2.3 Other API functions

FreeRTOS also provides an API function for other operations, such as memory
management, interrupt management, etc. Memory management related API func-
tion calls can be used to allocate and free memory. When a task or queue needs
memory, pvPortMalloc can be used to do this. It first locates one of the available
memory blocks, and then returns its pointer to the task or the queue. To release

memory, vPortFree can be used. Meanwhile, interrupt related API functions can

Page 11

be used to serve interrupts, enter/exit critical sections and so on. Specifically, all
the interrupts have a piece of server code, an Interrupt Service Routine (ISR).
When the operating system services the interrupt, it cannot accept another inter-
rupt. Furthermore, as a real-time operating system, some parts of the code may
be critical, which means they are unable to be interrupted. When the program en-
ters this section of code, the counter uxCriticalNesting would be increased and
portDISABLE INTERRUPTS is called to set a processor flag to refuse further inter-
rupts. When it exits the critical section, the counter is decreased. At this time, the
value of the counter will be checked. If it is greater than zero, the processor flag
remains the same, refusing further interrupts. Otherwise, if and only if it decreases
to zero, portENABLE_INTERRUPTS can be applied to reset the flag to enable inter-

rupts.

1.3 VCC

The Verifying C Complier (VCC) was developed by Microsoft for the Hypervisor
Verification Project [20Q]. It verifies the correctness of annotated C programs. An-
notations used for VCC include function specifications, state assertions, type in-
variants and so on [21]. As described above, normally, there are several steps of
refinement and verification from the abstract model to the concrete specification
and the executable code. Sometimes these are difficult and expensive to perform.
Using the specifications from verified abstract models to directly verify the C code

can be interesting and efficient.

Using Microsoft Visual Studio (MVS) for VCC is recommended. With macro def-
initions, the normal C compiler in Visual Studio can ignore the annotations used
by VCC. On the other hand, the VCC verifier may use the C code and annotation
together. They are translated into Boogie [22] files. These files are then used to
generate *.sx files, which can be used by the Z3 prover [23]. VCC translates the
C code and the annotation to mathematical formulas and verifies them using the
Z3 prover, rather than analysing the code and looking for bugs. Once a piece of

code has been verified by VCC, its correctness with respect to the preconditions

Page 12

and post conditions can be guaranteed. Verification in VCC is modular. It does not
go through every function call to verify the code of a function. Instead, it verifies a
function with the information of a function contract for each called function. VCC
assumes that the called functions are correct. In this case, it only needs to verify
that when the function call happens the system state satisfies the preconditions
of the called function. If it does, VCC knows that the post condition of the called
function is satisfied as well. With this feature, developers can verify a function,
even when its sub-functions are not finished or verified. In addition, with the bene-
fits of the Z3 prover, VCC provides the Model Viewer which shows an example for
each failure, when Z3 fails to verify the code. These examples contain a sequence
of the system states which lead to the failure. This is helpful for the developer to

understand why the code failed to verify.

1.4 Multi-core Processor

The Central Processing Unit (CPU) is the core component of the computer. lts
performance determines the performance of the whole computer system. There-
fore, the hardware industry has continued to try to improve the performance of the

processor. There are two common ways to achieve this:

(@) Increasing the number of transistors on the chip. The Intel 4004, the first micro-
processor built in 1971, had 2,300 MOS transistors [24]. According to Moore’s
Law, the number of transistors on a single chip will double approximately every
two years [25]. Thus, after around 50 years development, it is now possible to
put more than 500 million transistors on a single chip, e.g. the Intel i7-680UM
Processor [26]. Due to the large number of transistors, an increasing num-
ber of resources are now available on a chip and processors have become
progressively more powerful.

(b) Increasing the clock rate of the processor.

To use and control the resources on a single core processor efficiently, a large

number of complex circuits have been designed and used. Because of this, design

Page 13

and verification for a processor based on traditional single core architecture is in-
creasingly difficult. Bose et al. have reported that verification activities can take up
around 70% of the net development cost [27]. Meanwhile, increasing the clock rate
is one of the direct ways to improve the performance. Nevertheless, this is limited
by the physical features of the processors, power consumption and related thermal
problems, which have also become ever more critical [27]. After every pulse of the
clock, each transistor needs to take some time to transfer to a new state. If a clock
pulse occurs before that, the data and the state of the processor will be incorrect,
which is unacceptable. Furthermore, a higher clock rate means a higher power
cost. Taylor et al. have indicated that it would increase power consumption by the
increase in clock rate cubed [28]. In addition, the thermal issues also increase with
energy expended. Due to these issues, speeding up the clock frequency to obtain

higher performance has reached a bottleneck.

These issues are especially serious for embedded systems. This is because em-
bedded systems are designed for a small number of dedicated functions [29] and
they normally work in mobile systems and/or critical and real-time systems, such as
sensor controllers and car control systems, etc. Due to the function of embedded

systems, it is impossible to provide them with unlimited power.

Multi-core processors, which are composed of two or more independent cores on

a chip, seem an alternative way to solve the problem. Multi-core processes are:

(a) Easy to design — due to parallel computation, multi-core processors can use
several smaller and more simple cores to achieve a higher performance than a
huge, complex core. Therefore, the designer only needs to repeat the simple
cores across the chip and focus on the design of the communication method
between separate cores, such as on-chip networks, bus and so on. Intel Re-
search [30] reports that to design a single core chip with 100 million transistors
would take about twice as long with twice as many people than a multi-core

processor with the same number of transistors.

(b) Energy efficient — because multi-core processors can separate the task into

Page 14

independent subtasks and share them with different cores on the chip, they
gain high performance with a lower clock rate. As described above, the raising
of the clock rate would lead to higher power-consumption and related thermal
problems. With the reduction of the clock rate, these issues would be handled.
For instance, the power of the Intel® Pentium® 4 Processor 531, which is a
single core processor with a 3.00 GHz clock rate, is 84W [31]. However, the
Intel Teraflops Research Chip, which is a multi-core processor with a 3.16 GHz

clock frequency, consumes only 62W of power [30].

Scalable — because the multi-core processor repeats the simple core across
the chip, it is possible to place as many cores as the limits of the technology.

In the laboratory, processors with 1,024 cores on a chip are now available.

Due to these benefits, an increasing number of companies use multi-core architec-

ture.

1.5 Objectives and Challenges

1.5.1 Objectives
Our aim is to carry out a systematic exercise towards the verification of FreeRTOS

that will:

(@)
(b)
()
(d)

Produce a formal specification of its intended behaviour.

Produce an annotated version of the implementation for VCC to verify.

Identify aspects of its implementation that do not conform to this specification.
Produce a detailed model of the core scheduling-related functionality that can
serve as a basis for fixing the current implementation to obtain a “verified”
version of FreeRTOS, engineered as originally intended by the developers.
Produce an abstract model for a multi-core platform, which is an extension of
FreeRTOS.

1.5.2 Structure View
Fig. illustrates the whole structure of the project. To achieve these objec-

tives defined above, three tools (Z/Eves, VCC and ProZ) are used in the project,

Page 15

which are represented by rectangles in the figure. Specifically, VCC, introduced
in Sect. is used to verify the correctness of the annotated FreeRTOS source
code, based on the function contracts derived from validated Z specification. Next,
Z/Eves is a theorem prover [32], which we use in our project for analysing our Z
specifications, checking syntax and proving theorems automatically with some help
of human. Finally, ProZ [33] is used to animate the validated Z model. It demon-
strates the behaviour of the software described by a Z specification. Sect.
describes Z/Eves and ProZ in detail. Furthermore, inputs and outputs of the tools
are represented by circles, including documentations, FreeRTOS source code, Z
specifications, etc. And the relations between the tools and their inputs and out-
put are shown by arrows. In detail, as shown in Fig. from the documenta-
tion [18],[19, 134] and source code of FreeRTOS, a basic version of the requirement
is obtained by abstracting the documentation and reverse engineering the source
code, which is described in detail in Chap.[3] Then, the first version of the Z speci-
fication is specified, based on the requirement, which is validated with the theorem
prover, Z/Eves. After several rounds of iteration and improvements, the final ver-
sion of validated specification is produced, which can be directly used by ProZ for
animation. The validated specification and the iteration process is explained in
Chap. [4 Afterwards, inspired by Multi-BSP model [35], the final specification is
extended to multi-core platform and validated using Z/Eves (See Chap.[6) as well.
Meanwhile, we manually translate the validated specification into VCC annotation,

so, with FreeRTOS source code, the related source code can be verified (See
Chap.[5).

1.5.3 Challenges
The main scientific difficulty with the verification of FreeRTOS is the low level of the

code. The usual abstractions that make it easier to program systems software do

not exist; it is the purpose of FreeRTOS to provide them. They include:

(a) Communication and synchronisation.
(b) Scheduling guarantees.

(c) Interference freedom.

Page 16

Figure 1.4: Overview of project

Improve/Iterate

Multi-core
Specification

V4

Specification

Theorem Prove

Abstrac Z/Eves
Extend &

Theorem Prove

FreeRTOS

Source Code

Manually Translate Validated

into VCC Annofaﬁo@caﬁon

Demo

Source Code Module ProZ

vee

Source

Verified

(d) Direct hardware interaction using clocks and interrupts.

These are provided through a number of complex pointer-based operations, which
present yet another challenge: verifying pointer programs is a complex and difficult

business.

1.6 Font and Name Styles

In this thesis, text from specification and implementation are distinguished by dif-

ferent font styles. In detalil,
e File names of the source code are represented by italic font, e.g. task.c;

e Teletype font is used for text from FreeRTOS source code and VCC annota-

tion, e.g. pxCurrentTCB;

e For text and formulas from specification, naturally, the mathematical font is

used for them, Task.

Page 17

Table 1.1: Prefix of variable and function names used in FreeRTOS

Prefix Meaning

X Non-standard integer, e.g. portBASE_TYPE, portTickType, xTaskHandle, etc.

v void return type.

ux Unsigned non-standard integer type, e.g. unsigned portBASE_TYPE

e Enumerated type, e.g. eTaskState

prv | Private functions, e.g. prvDeleteTCB

Table 1.2: Suffixes used in schema names
Task Model | Queue Model | Time Model | Mutex Model

_T _TQ _TQT _TQTM

In addition, as there are four levels of models in the specification, each operation
may have more than one version of schema for different level of the model, for
instance, the operation creating task has schemas for all four models. We use suf-
fixes in Table. [1.2]to distinguish these schemas, e.g. CreateTask_T is the schema
name for creating task in the task model and CreateTask_T(Q is the schema name
for creating task in the queue model. Furthermore, each operation may also be
composed of different sub-operations. For example, depending on whether the op-
eration requests rescheduling, creating task has two sub-operations. We append
a suffix to the end of the operation name to indicate them, e.g. N and S used

respectively in CreatTaskN_T and CreatTaskS_T.

Similarly, FreeRTOS uses prefixes of variable and function names to indicate the
type of the variables and the return type of the functions. For instance, the prefix x
shows that a variable, or the return type of a function, is a non-standard integer, e.g.
portBASE_TYPE. There are two exceptions for the prefixes of the function names.
Specifically, the prefix v indicates that the return type of a function is void and
the prefix prv shows that a function is a private function. Table. summarises
some of the frequently used prefixes in FreeRTOS and the meaning of them. More

details can be found from [36].

Page 18

1.7 Structure of Thesis

The remainder of this thesis is divided into seven chapters:

Chapter 2] presents a review of the literature on formally specifying operating sys-
tems and related work in this field. It also reviews the tools used in this
research.

Chapter 3] analyses the API functions of FreeRTOS and abstracts the require-
ments for each API function.

Chapter[d] describes the formalisation work for FreeRTOS and explains the spec-
ifications and theorems in detail. The task model shown in this chapter has
been published in the journal Formal Aspects of Computing [37].

Chapter 5 illustrates the VCC verification for the API functions related to the task
model of specifications.

Chapter [6] shows the formalisation work for the multi-core version of FreeRTOS,
which is extended from the outcome of the previous chapter. The require-
ments are analysed and presented at the beginning. The extension to the
specification for the multi-core version of FreeRTOS is then covered in the
rest of the chapter.

Chapter|[7| evaluates the research project in different ways. It firstly summarises
the achievements of the research. It then also describes a carefully designed
case study to show how the specification would work properly using the ProZ
animator and the Z/Eves theorem prover.

Chapter[8 summarises the work done in this research project. Further, it reports
the experience gained from undertaking the research process. Finally, sug-
gestions for future work are presented.

Appendices introduces the structure of the following appendixes firstly. It, then,
summarises the proof commands (See Page[157) frequently used in proofs
of our model and the preconditions for the API functions of FreeRTOS (See
Page. [159), which is followed by the specification of our FreeRTOS model
and multi-core model, each of which is divided into four separate appendices

according to its sub-model structure. It also presents the specification for

Page 19

multi-core task model with promotion. Finally, the annotated source code

related to our VCC verification is listed.

Page 20

Chapter 2

LITERATURE REVIEW

This chapter reviews the literature related to the research. It begins with a detailed
discussion of FreeRTOS using examples to show how the API function is used
to implement various applications. Z formal notation, which is adopted in this re-
search, is then introduced, with related tools also described. Finally, the related

research on formally verifying operating systems is examined.

2.1 Related Work

This section presents the existing work on verifying operating systems:

1. Craig describes the specification and refinement in Z notation of, Labrosse’s
1C/OS operating system, a microkernel which is similar to FreeRTOS [38|
39, 140]. The refinement of the requirements targets mathematical data types
at a level of abstraction well above program data types. The lowest level of
refinement is also non-algorithmic and there are no real-time properties. Fre-
itas & Woodcock [41] have continued Craig’s refinement to target datatypes
at the level of FreeRTOS, but without pointer implementation. Bodrger &
Craig [42] also extend this work, modelling with pseudo-code descriptions
as Abstract State Machines (ASMs), which produces an elegant restructur-
ing of the model that makes it easier to understand and easier to refine into

executable code.

Page 21

2. Klein verifies selL4, a high-performance microkernel [43, 144, 45| 146, 147]. An
abstract specification in Isabelle/HOL is refined into an executable specifica-
tion in Haskell, which is then manually refined into a high performance imple-
mentation in the C programming language. The theoretical basis for the work
is in separation logic. There is an almost complete handling of the features of
seL4. The entire exercise involved 8,700 lines of C, 200,000+ lines of proof
script, and 30 person-years of effort to establish the functional correctness of

the operating system.

3. Buerki & Rueegsegger [48] introduce their design and implement a high as-
surance microkernel called Muen. They suggest that assuring the whole
microkernel system is very difficult, but also unnecessary. However, the mi-
crokernel can be separated into different function blocks, some of which are
critical. These are defined as the Trusted Computing Base (TCB) and it can
lead to a fatal system error if the TCBs misbehave. Therefore, the set of
TCBs can be treated as the smallest set of functions which are essential for

verification.

4. Déharbe et al. have produced a specification in the B language of a re-
stricted subset of FreeRTOS [49]. They provide a formalisation of a subset of
the API function, verifying that all its expressions are well defined and demon-
strate logical consistency. This model includes Task and Queue-related func-
tions. The model contains seven basic B-machines, FreeRTOSConfig, Type,
Task, Queue, Scheduler, FreeRTOSBasic, and FreeRTOS, with which the
first model without priority is formalised. It is then refined to the second
model, which takes priority into account. However, there are problems with
this model; for instance, it prevents task creation while the scheduler is run-
ning, which is allowed by FreeRTOS. It also forbids tasks from sending and
receiving messages to and from a queue when there is no task waiting to
receive or send. Comparing this with our work, we introduce a model cover-
ing more functions of FreeRTOS. Due to a finer structure of definitions and

abstractions, our specification has increased proof automation. Furthermore,

Page 22

we correct the problems discovered in Déharbe et al.

. Pronk looks at the verification problem for FreeRTOS [50]. He discusses
and compares the advantages and disadvantages of theorem proving and
refinement in this arena compared with model checking. He concentrates on

the latter, using Promela and the SPIN model checker.

. Lin, Freitas, & Woodcock produced a specification of FreeRTOS in Z cover-
ing the top-level functionality [51]. This was derived from Déharbe’s B spec-
ification [49] (see above item [4)), which was then extended to capture all the
main FreeRTOS functionality. An attempt was made to verify the consistency
using the Z/Eves theorem prover [32], although this could also be proved
in ProofPowerZ [52], Isabelle/HOL [53], or PVS [54]. Originally, there were
30 unproven theorems out of 241. We have carried out further work to re-
duce the number of unproven theorems to around 10. During this process,
we found the key reason for struggling with proofs is that the model is too con-
crete, which leads to proof complexity. For example, to represent the different
states in FreeRTOS, the model uses seven different type variables, such as
functions, sequences, finite sets, etc. Furthermore, even when Z/Eves can
prove a theorem, it takes considerable time. Compared with this, our model

is much more abstract and more tractable for proof.

. Mihlberg & Freitas report on the application of the SOCA and VeriFast tools
to FreeRTOS [55]. They focus on the verification of structural properties (e.g.,
pointer safety and arithmetic overflow) and liveness properties, but ultimately
aim at demonstrating functional correctness. This includes the reconstruc-
tion of a formal specification of FreeRTOS in Z (mentioned above in item[6),
bounded model-checking of the FreeRTOS code using the SOCAVerifier [56],
as well as annotating the source code with assertions in separation logic to

apply the VeriFast software verifier [57].

. Ferreira uses separation logic to verify code-level pointer structures in
FreeRTOS [58].

Page 23

9. Abrial [59] has an unpublished specification of much of the functionality of
FreeRTOS using the B method (excluding interrupts). The Z specification in
this thesis is based on his work, although the verification is necessarily very

different.

10. Mistry, Naylor, & Woodcock have developed a multi-core version of
FreeRTOS on a Field Programmable Gate Array (FPGA), which is able to
schedule tasks on multiple processors and support mutex in a concurrent
environment [60, [61]. They present an adapted version of FreeRTOS that is
able to schedule tasks on multiple processors, as well as provide full mutual
exclusion support for use in concurrent applications, which is independent
of the chosen platform, thus preserving one of FreeRTOS’s most attractive

features, portability.

11. In collaboration with the author of this thesis, an unpublished work from Kush-
wah, Divakaran, & D’Souza aims to give a proof of functional correctness by
proving that the C implementation refines the abstract Z specification. The
commonality with this work is that they also focus on the task-related func-
tionality of FreeRTOS. The points of difference are that their specification is
deterministic, more detailed, and closer to the implementation than ours. In

addition, they do not check consistency or prove properties for their Z model.

12. Based on the previous work (item [11)), Divakaran et al. [62] also attempt to
use VCC to verify the implementation of FreeRTOS with abstract Z specifi-
cation. The difference between these works is that they focus on checking
refinement steps. They promote three approaches (“Direct-Import”, “Com-
bined” and “Two-Step”) in VCC to check refinements between the abstract
model and the implementation. By comparing and applying them to the case
study, they claim that the “Two-Step” approach is much more efficient than
the other two, which splits the verification process into two steps: (a) The
behaviours of the function defined in the abstract model and the concrete

function are verified; (b) Then, the outputs from both functions satisfying the

Page 24

gluing invariants is checked. Furthermore, they also suggest how to translate

a subset of the Z notation to VCC.

2.2 Z Notation

Z, developed by Sarensen [63] in 1982, is a formal notation and became an inter-
national standard in 2002 [64]. It is based on set theory and mathematical logic.
Specifically, the Z notation uses set operators, set comprehensions, Cartesian
products and power sets. The logic part uses first-order predicate calculus [65].
With these mathematical theories, Z can describe the state and properties of the
system being specified. Z uses an abstract structure called a Schema to capture
a number of concepts in one named block. Subsequent schemas that refer to the
name of a previous schema can inherit all the concepts and constraints introduced
in that schema [10, 163,165, [66]. This provides reusability in the Z notation. In order
to manage system complexity, schemas are vital to keep the specification flexible
and manageable in a real, large-scale project [65]. Moreover, a schema can also

be used to specify the behaviour of the system.

Hoare [6/] introduced Hoare Triples in 1969, which describe the logical behaviour
of a computer program. This triple can later be verified by related logic theories

and lemmas. Specifically, the notation

P{Q} R

can be used to express that if the precondition P is true before the program @
is initialised, then the postcondition R will be true once @) terminates successfully.
Therefore, a schema is composed of two parts, a precondition and a postcondition.
The default relation between predicates in different lines of a schema is called

logical conjunction A.

For instance, the following shows part of a specification for a system. It is used to
record the relationship between tasks and their priority. (Note, this is just a example
to illustrate how schemas work; the definition here is not the same in our specifica-
tion of FreeRTOS.) Firstly, TASK is defined to represent tasks in the world using a

given set, which is used to introduce uninterpreted domain-specific types in Z.

Page 25

[TASK]

Subsequently, a schema, Tusk, is introduced to specify the basic abstract state of
the system. It includes two component declarations: (a) tasks, which is a subset
of TASK, indicates the tasks in our system; and (b) priority, which is a partial
function from TASK to N, illustrates that tasks may have a priority. As well as the
declaration, the constraint for these properties is also defined, indicating that the
domain of priority is tasks. This means tasks in set tasks have a priority and tasks

not in tasks do not.

_ Task

tasks : P TASK
priority : TASK + N

dom priority = tasks

Based on state schemas, operation schemas can be defined, such as setPrio
below, which specifies the operation for setting the priority of a task. It refers to the
Task schema, to obtain all the essential information about the system we defined.
Therefore, the variables defined in Task can be directly used.

__setPrio
A Task
t? . TASK
prio? : N
out! : N

t? € tasks

tasks’ = tasks
priority’ = priority @ {(t? — prio?)}
out! = priority’ (t7)

The declaration part of the schema starts with A Tusk, which refers to the pre-
and post-state of the Task schema and indicates that it is going to change the
state Tusk. Following this, it introduces some inputs (e.g., t7) and outputs (e.g.,
out!). They are distinguished through a decoration convention. Variables in the
pre-state (e.g., tasks) and post-state (e.g., tasks’) are similarly distinguished. This

schema has only one precondition, t? € tasks, indicating that before the operation

Page 26

setPrio the target task 7 is in the system. Therefore, it is in the domain of priority
as defined in Tusk schema. Consequently, after the operation has successfully
finished, the new priority of ¢7 is updated in the function priority’. The override
operator, &, is used to achieve this, which is the most common way to update
functions in the Z notation. If the first element of the pair specified in operation (e.g.,
t? in this case) exists in the domain of the function (e.g., priority), it would update
the result of function application (e.g., priority(t?)) to the new value (e.g., prio?);
otherwise it adds the pair into the function. Finally, the new priority of target task ¢?

is set as output, which should simply equal to prio?.

More explanation of the Z notation will be provided in Chap. [4|along with the expla-

nation of our specification.

2.2.1 Tools forZ

A leading proof tool for the Z notation is Z/Eves, which can be used for analysing
Z specifications, syntax checking and most importantly theorem proving. Using
Z/Eves, specifications can be entered by importing IXTEX source code [68] or by
typing directly from the editing facility provided by Z/Eves [69]. Once the spec-
ification has been entered, Z/Eves can automatically perform syntax checking,
type-checking, and some basic proving, by double clicking on paragraphs, such
as schemas. This is very useful for users to avoid syntax errors. Furthermore,
based on self-defined theorems or lemmas and the built-in theorems, which can
be found in [70Q], Z/Eves can be used to prove specifications automatically. More

details about how to use Z/Eves can be found in the user guide [69].

ProZ, which is extended from ProB [33], can be used to animate and check Z
specifications. It is worth noting that each specification animated by ProZ should
have one and only one schema named Init, which defines the initialisation state of
the model. Once the model is initialised, based on the current state of the model,
available operations will be shown and the user can apply them to the model by

simply double clicking on them.

Page 27

2.3 FreeRTOS

FreeRTOS is a widely used real-time operating system written by a team led by
Richard Barry of Wittenstein High-Integrity Systems in the UK [19]. Introductions
to FreeRTOS informally describe the application programming interface (API) for
the real-time operating system kernel [18]. Verifying the correctness of FreeRTOS
has also been proposed as a pilot project for the VSI. This verification experiment
presents two distinct challenges: (a) Code-level verification to automatically anal-
yse FreeRTOS for structural integrity properties; and (b) The creation of a rational
reconstruction of the refinement of the FreeRTOS code starting from an abstract
specification, discharging all verification conditions automatically. This project was
chosen as a contribution to the VSI at a workshop held at Microsoft Research,
Cambridge, in 2008, that was gathering difficult research problems from industry.
Modelling and verifying operating system kernels is considered to be scientifically
interesting, pushing the current capabilities of software verification research and
technology. Klein is the first to formally verify an operating system kernel and de-

scribe the main scientific challenges [43, [71].

FreeRTOS has a large community of users programming embedded microcon-
trollers: it was downloaded 107,000 times in 2013, putting it high in the top
100 SourceForge codes (there are more than 200,000 available). Verification
of FreeRTOS, which allowed the discovery of residual errors, would thus have a

strong impact on the international embedded system community.

FreeRTOS is a lightweight, embeddable, multi-tasking, Real-Time Operating Sys-
tem (RTOS). It makes the key assumption that the target system has a single pro-
cessing unit. It is really a library of types and functions that can be used to build
microkernels using a combination of C and assembly language, and has been
ported to most embedded systems architectures. It allows a very small kernel to
be produced to target microcontrollers, somewhere between 4—-9kB. In some spe-
cial cases, it can be less than 4kB. For instance, it takes less than 4kB of RAM,

when creating 13 tasks, 2 queues and 4 software timers for RL78 [34]. It provides

Page 28

services for embedded programming tasks, communication and synchronisation,

memory management, real-time events and I/O-device control.

Fourteen different compilers are used with FreeRTOS, giving complex configura-
tion options and extensive parametrisation. A version of the software, SafeRTOS,
has been certified to Safety Integrity Level 3 by the Technical University of Vienna
for the following safety standards: IEC 61508, FDA 510(k), and DO-178B. These
certificates are for the process of development, rather than for the correctness of

the software against stated requirements.

The objective of formally verifying FreeRTOS would be to find any errors and make
some guarantees about the code’s behaviour. Since the requirements are dis-
tributed throughout the documentation, there is a clear need to produce a formal
abstract specification. A broader aim of our work is to study the verification problem
for an entire class of software, namely real-time operating systems for embedded
applications, and we have chosen to focus on an exemplar of this class of system
namely the FreeRTOS kernel. The techniques and methodology developed here

can be expected to be applicable to other software in this class of system.

2.4 Summary

This chapter firstly reviewed previous work related to formalising operating sys-
tems, which is helpful for us to understand the background of the project. Sec-
ondly, it discussed the principle of formal verification and Z used in the project. In

addition, it reviewed the target system of the project, FreeRTOS.

Based on this, the next chapter will define the goals and scope of the project and

most importantly the requirements of the project can be abstracted.

Page 29

Page 30

Chapter 3

ANALYSIS AND ABSTRACT API

FUNCTIONS OF FREERTOS

This chapter discusses the requirements for the research. Because the devel-
opment process does not completely follow either a formal methods strategy or
reverse engineering strategy, it begins by giving an overview of our model. It then
discusses the goals and scope of the research, followed by the requirements anal-

ysis.

3.1 Model Overview

Normally, the development process in formal methods starts with the requirements,
modelling the behaviour of the system, and refining through several steps to exe-
cutable code. As FreeRTOS does not have explicitly articulated requirements and
has been implemented in C, we consider the user manual and the practical guide
to FreeRTOS [19} 18] the basis of the requirements. However, these sources are
not detailed enough for us to build the model; they just provide a basic functional
description of the API functions. Therefore, we also take the FreeRTOS source
code into consideration for modelling. Thus, the model is mainly based on the
API documentation to verify the functional correctness of FreeRTOS, with some

of the details of the specification derived from the source code. For instance, the

Page 31

xTaskCreate API function documentation states that if the API function returns
pdTRUE, then the task has been created. (NB, to simplify the model, we just con-
sider the successful case of API functions.) Nevertheless, it does not indicate how
it was created. Therefore, we analysed the source code to find out how it works

and formalised the behaviour of xTaskCreate based on that.

As described in the last chapter, the key elements of FreeRTOS can be divided
into three categories: (a) task management; (b) communication and synchroni-
sation; and (c) memory and interrupt management. However, functions related to
memory and interrupt management are quite hardware-dependent, so we abandon
them at this level of abstraction. Furthermore, according to whether they are time
dependent, task API functions can be divided into pure task operations or time-
related operations. Therefore, we focus on task, communication (i.e., queue), time
and synchronisation (i.e., semaphore and mutex) related FreeRTOS API functions.
Each of them is reasonably independent. Therefore, our modelling starts from the
core part of the system, Tusk model, and then expands to cover other features.
For each subsystem, we attempt to keep the model as simple as possible. This
can significantly reduce the difficulty of modelling and verification. In detail, we first
build the Task model. Based on this, the Queue model is added into the system,

followed by the Time and Mutex models.

3.2 Goal and Scope

The goal of this research is to provide a verified high level abstract formal model
for FreeRTOS, which can be used as the foundation for future research (i.e., re-
finement, extension, etc.). It describes the behaviour of FreeRTOS API func-
tions. Based on FreeRTOS’s manual [19)], 61 API functions are provided to the
user. However, some of them have similar functions, for instance, zQueueReceive
and zQueuePeek. Both of them attempt to receive an item from a queue, but
rQueueReceive actually receives data from the queue and zQueuePeek just checks
if there are any items available in the queue. Moreover, due to the abstract level

of the specification, some API functions perform the same function, for instance,

Page 32

rQueueSend, rQueueSendToBack, rQueueSendToFront. All of these try to send
an item to a queue. The difference is that with zQueueSend a user can send the
item to either the front or the back of the queue and the latter two API functions
can only send the item to the back and the front of the queue respectively. At this
level of abstraction, we do not need to consider the detail of the order of items in a
queue or how items are stored in a queue. Therefore, we only selected 15 of the
API functions for our model (listed in Sect. [3.3.1). To simplify the modelling and
verifying further, we assume that the system scheduler is continuously running and

only focus on cases where the API functions succeed.

Due to the complexity of the traditional refinement process and time limitations, we
have not refined our model into executable code. However, we attempt to use VCC
and our model to verify task-related FreeRTOS API functions to illustrate that the
VCC kind of verifier plus abstract specification can be an alternative approach to

verification. In addition, we also extend this model for multi-core platforms.

3.3 Requirements

Generally, the use case diagram, which shows the relation between the actor and
use cases, and the relation between different use cases, is the most common
approach to describing requirements. It is also used as a fundamental document
for further software development. However, in our project, FreeRTOS has been
implemented already and does not have a proper set of requirements. Therefore,

we summarise requirements for FreeRTOS according to its API function.

3.3.1 Functional Requirements

1. Task Related:

1.1 zTaskCreate Create a task and specify its priority, reschedule tasks
when the priority of the new task is greater than the running task;
1.2 vTaskDelete Remove a non-idle task from the system, reschedule tasks

if the deleted task is the running task;

Page 33

1.3 vTaskSuspend Set the state of a task to suspended, reschedule tasks if
the suspended task is the running task;

1.4 vTaskResume Set the state of a suspended task to ready, reschedule
when the priority of the resumed task is greater than that of the running
task;

1.5 vTaskPrioritySet Set new priority of a task (N.B. the priority of idle
task is always 0), reschedule tasks:

o if the priority of the running task is set lower than the priority of the
highest-priority ready task;
e if the priority of a ready task is set greater than that of the running

task.

2. Queue Related:

2.1 zQueueCreate Create a queue and specify its size;
2.2 vQueueDelete Delete a queue;
2.3 zQueueSend Send an item to the queue;
e block this task if the queue is full, add it to waiting send list;
¢ if the queue is empty, wake up the highest-priority task, which is
waiting to receive an item from the queue.
2.4 zQueueReceive Receive an item from the queue;
o if the queue is empty block the task and add it to waiting receive
list;
o ifthe queue is full, wake up the highest-priority task, which is waiting

to send an item to the queue.

3. Time Related:

3.1 vTaskDelayUntil Block current running task until the specified time,

reschedule the highest-priority ready task as the new running task;
4. Semaphore & Mutex Related:

4.1 vSemaphoreCreateBinary Create a binary semaphore;

Page 34

4.2 vSemaphoreDelete Delete a binary semaphore or a mutex;
4.3 zSemaphoreCreate Mutexr Create a mutex;
4.4 xSemaphoreTake Take a token from a semaphore or a mutex;

4.5 xSemaphoreGive Give a token back to a semaphore or mutex;

In addition, the following two time properties are related to task scheduling, which

are also of interest to us:

1. The function prvCheckDelayedTasks checks expiry time for blocked tasks.
When time increases, it checks if there are any blocked tasks that need to be
woken up. If there are, it moves them to the ready state, which may cause
rescheduling;

2. When the system increases the ticks counter, which represents the time, it
also checks whether there are any ready tasks with the same priority as the
running task to share the processor.

e If there is more than one ready task sharing the highest priority, they
need to share CPU time as well. Rescheduling is required in this case.

e Otherwise, the current running task keeps running.

3.3.2 Non-functional Requirements
Non-functional requirements specify the constraints on the services or functions
offered by the system. In our case, the non-functional requirements can be sum-

marised as:

1. Well-definedness. The specification should be well-defined;

2. Animatable. The specification should be able to be animated by ProZ.

3. Feasibility. The specification should be feasible (i.e. initial state and precon-
dition for each operation should be reachable);

4. Reproducible. The specification and verification should be easily reproduced
by other users.

5. Reusable. The specification should be able to be reused and expanded eas-

ily with little or no modification;

Page 35

3.3.3 Environment Requirements

Z/Eves and ProZ are used as the prover and animator during the project.
To reproduce the experiment, they are essential. Additionally, Community Z
Tools (CZT) [72] can be very helpful for modifying the specification source code.
CZT also integrates an interface for Z/Eves, as the original graphic interface of
Z/Eves is implemented in Python, which crashes easily in Windows 7. Further,

FreeRTOS v7.1.1 is used for the project.

3.4 Summary

In this chapter, the first section showed how we abstract the requirement for
FreeRTOS, following which the second section defined the goal and scope of the
project. Finally, the last section discussed the requirements of the project in three
parts: functional requirements, non-functional requirements and environment re-
quirements. Specifically, the functional requirements described the requirements
for FreeRTOS API functions we modelled in the project, which were divided into

four categories.

In the next chapter, following the categories of the functional requirements, the
abstract model of FreeRTOS, which is the core of the project, will be described
in detail. In addition, the experience gained from the modelling process will be

discussed, which is helpful for developers specifying large systems, like us.

Page 36

Chapter 4

MODELLING FREERTOS

This chapter describes the model in detail, following the structure described in the
previous chapter. Firstly, it shows how we approached the model. The Task model
is then described, being the simplest and most important part of the model. In this
section, some auxiliary theorems, which are helpful during proving and modelling
are also explained. Following this, the Queue model is illustrated, followed by the
Time and Mutex models. For each of these models, we also briefly explain how
the API functions of the previous model are expanded. In addition, we collect the
preconditions for each API function and some properties of the system. We also
give a summary of the proof commands in Appendix [B, so that the reader can
follow the general argument behind the formal proofs or even recreate the proof in

Z/Eves|l|

4.1 lteration Process

Following the requirement and the refinement strategy of [59], we started the mod-
elling process with the simplest and the most important part of the system, which
includes creating tasks, deleting tasks and rescheduling. Basically, the idea of
creating a task is adding a task, which does not belong to the system, to the sys-

tem. To describe this, besides the given set (TASK) representing tasks, we need

1Z/Eves project file and other related files can be found in supplementary material.

Page 37

a set (tasks) to help us to distinguish the tasks known by the system and others.
Similarly, to delete a task, we simply remove the task from the system, i.e. remove
the target task from the set tasks. Finally, to define the behaviour of rescheduling,
the simplest idea is setting the target task as the new running task, and perform-
ing a context switch. The variables, running_task, log_context and phy_context
are defined for this purpose. Therefore, we specified the first and tiniest model of

FreeRTOS, which contains only one base schema called FreeRTOS.

— FreeRTOS
phy_context : CONTEXT
running_task : TASK
log_context : TASK — CONTEXT
tasks : P TASK

running_task € tasks
idle € tasks

The schema FreeRTOS contains all the necessary variables described above to
describe creating, deleting and rescheduling tasks. Based on this, we defined the
specification for these three operations. As this model is really tiny and simple,
it is easy to understand and validate, but extremely incomplete. We then took
some fundamental attributes of tasks into consideration. First, a task in FreeRTOS
always has a state and it should be possible to change the state of a task from
one to another. Second, the scheduling policy adopted by FreeRTOS is priority-
based scheduling. A task in FreeRTOS must have a priority. The task then can be
scheduled according to its priority. Therefore, the functions, state and priority are
added into FreeRTOS. The specification for creating, deleting and rescheduling
tasks are updated accordingly. Meanwhile, due to these two new functions, we
can define the behaviour of suspending, resuming and changing priority of tasks.
At this stage, we obtained a reasonable complete task model of FreeRTOS. As
the model is still simple (compared to the expanded models) and we did not verify
preconditions for each schema, there were no issues during the modelling and
proving process. lIdentifying system attributes, encapsulating the attributes to a
base schema and specifying the related behaviour of the system based on the

schema can be considered as a good choice for a small system. Because of the

Page 38

simplicity of the system, the size of base schema can be reasonably small. In this
case, encapsulating all related attributes in the base schema does not raise the

difficulty and complexity of proof for other schemas in the model.

After this, following the structure described in Chap. |3, we extended the model
incrementally to contain queues, then added time, and finally added semaphores
and mutexes. Similarly, each time, all base information, which will be introduced
in detail in Sect. and was added to the base schema FreeRTOS and
the related operations are defined based on FreeRTOS. We found that during
this process we produced an unacceptably large base schema. At the end, when
semaphores and mutex related data were added to the model, the base schema
FreeRTOS was longer then an A4 page. As a consequence, operation schemas
also became unreasonably long, which increased the difficulty of validation and
made the preconditions for operation schemas impossible to verify. The successful
approach described above for the task model becomes unsuccessful, as the scale

of the system increases the difficulty and complexity of the model dramatically.

To solve this problem, we broke the base schema, FreeRTOS, down into smaller
pieces. As stated in the previous chapter, the base schema is split into four sub-
schemas, Task, Queue, Time and Mutex. They are the four sub-models which
are described in following sections. Using this strategy, the size and complexity of
the schemas of the model are reduced dramatically. However, these sub-schemas
still contain too much information to verify the preconditions for operation schemas,
which produce too much unrelated information in the proof condition. This trivial
information increases complexity and the difficulty of auto proving for the prover.
Thus, the sub-base schemas were broken down further to obtain the current ver-
sion of the model. Based on our experience, we can state that encapsulating all the
attributes of the system to a single base schema is definitely an unsuccessful ap-
proach for a large system; on the other hand, hierarchically structured incremental
base schema can be considered as a good choice, as it reduces the difficulty and
complexity of the modelling and proving process by: (a) hiding as much unrelated

information as possible, (b) proving theorems in the model which contains only the

Page 39

information related to the theorem, (c) reusing the previous proved theorems for

proving theorems in later complex model.

4.2 Task Model

As mentioned in Sect. task related API functions are the core part of the model
and fundamental to it. To define this model, it is essential to state some basic

context that will be used in the specification.

4.2.1 Basic Statements

The given sets CONTEXT and TASK are provided as given sets to represent
the environment of the processor and the tasks, respectively; in Z, given sets are

basic, maximal types.

[CONTEXT, TASK]

Two constants, bare_context and idle, are introduced by an axiomatic definition,
which contains a declaration and a constraint. Here, the constraint is trivially true
and is omitted. The constant bare_contest is an element of the set CONTEXT it
represents the initial state of the processor. The constant idle is of type TASK; it

represents the system task that runs when no other task is scheduled.

bare_context : CONTEXT
idle : TASK

STATE is defined using a free type in its simplest form, enumerating exactly five
distinct constants.

STATE ::= nonexistent | ready | blocked | suspended | running

The set of legal state transitions is described by an abbreviation: transition names

the appropriate set that models the diagram in Fig.

transition == ({blocked} x {nonezistent, ready, running, suspended})
U ({nonexistent} x {ready, running})
U ({ready} x {nonezistent, running, suspended})
U ({running} x {blocked, nonezistent, ready, suspended})
U ({suspended} x {nonexistent, ready, running})

Page 40

In particular, transitions (blocked, running) and (suspended, running) are included
because when a task is woken up from the blocked state or resumed from the
suspended state, its state actually transits to ready. However, if it has a higher
priority than the running task, it will be scheduled to running. At this level of
abstraction, we consider these two steps as a single step, which makes state tran-
sitions (blocked, running) and (suspended, running) possible. The definition for
transition turns out not to be very useful in automating proofs about transitions,
because Z/Eves would expand transition into the set in all possible proof contexts.
This greatly increases the load on the prover. Therefore, we disable the defini-
tion and add two theorems that are more helpful. The first is a typing lemma that
states that transition is a set of pairs of STATE; its proof is a very simple conse-
quence of the definition of transition. With the help of the proof command prefix
“with enabled (transition)”, Z/Eves will take the disabled definition of transition
into consideration during proof. The proof command “prove by reduce” requests
Z/Eves to explore possible theorems and lemmas to prove the goal automatically.
Therefore, the goal can be easily proved automatically by Z/Eves using the follow-

ing command.

Theorem 1 (gTransitionType)
transition € P(STATE x STATE)

proof g Transition Type]
with enabled (transition) prove by reduce;
|

Next, we add the following lemma to tell Z/Eves about each individual pair in
transition, which is helpful to Z/Eves for automatically proving. Similarly, the proof

is very simple.

Theorem 2 (rule linTransition)

Vi,r: STATE
| (I,) € {(nonezistent — ready), (running — ready),
(blocked — ready), (suspended — ready),
(ready — running), (blocked — running),

Page 41

(suspended — running), (nonexistent — running),
(running — suspended), (ready — suspended),
(blocked — suspended), (running — blocked),
(running — nonexistent), (ready — nonexistent),
(blocked — nonexistent), (suspended — nonexistent)}
e (I, r) € transition

proof [IInTransition|
with normalization with enabled (transition) prove by reduce;
|

Based on these definitions, the state schema of the model can be specified, de-
scribing basic system properties. For this stage of modelling, we focus only on
task-related information in FreeRTOS. Further information will be introduced in a
related model. To simplify the proof and the specification, we verify the system
only when the scheduler is running. Therefore, we assume the scheduler is always

running.

To describe the tasks in FreeRTOS, the following four kinds of data are needed,
which are defined by a schema definition. In the Z notation, the schema is used
to structure and compose descriptions. Once a schema is assigned a name, it is

possible to use that name to reuse the schema in other expressions or schemas.

1. Task data. The variables recorded in this category are directly related to
tasks. First, to simplify the description of the model and the following proofs,
we need to distinguish tasks that are known to the system from others; there-
fore, a set tasks is defined as a finite subset of TASK. Second, in the
FreeRTOS source code, task.c file, a pointer (pxCurrentTCB) is used to
record the current running task, which is useful in several cases, such as
scheduling. In the specification, a variable running_task of type TASK is
used to represent this. Two constraints are specified: the idle task and the
running_task have to be known to the system at all times.

TaskData
tasks : F TASK
running_task : TASK

Page 42

running_task € tasks
idle € tasks

2. State data. As described in Sect. FreeRTOS uses different lists to
manage the tasks known to the system. Abstractly, two tasks in different
lists have different states. Therefore, the variable state is used to indicate
the state of the tasks. Specifically, the idle task, which is a system task
with responsibility for maintenance jobs for the system (such as garbage col-
lection), can only be ready or running; it cannot be blocked, suspended, or

deleted (nonexistent).

__StateData
state : TASK — STATE

state(idle) € {ready, running}

3. Context data. The two variables phys_context and log_context, respectively,
represent the physical system context (e.g., register values, some stacks,
efc.) and the logical context for all the tasks that are not running (i.e., the

system states of a task when it exits the running state).

ContextData
(phys_context : CONTEXT

log_context : TASK — CONTEXT

4. Priority data. FreeRTOS is a priority-based operating system: all the tasks in
the system have their own priority, and a total function, priority, is introduced
to record this. The priority of idle task must always be the lowest priority,
which is 0.

__ PrioData
priority : TASK — N

priority(idle) =0

Page 43

Invariant Based on these definitions, we can describe the state schema for tasks

that are maintained by this part of FreeRTOS.

_ Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state™({nonexistent} |))
state™({running} |) = {running_task}
V pt : state™({ready} |) e priority(running_task) > priority(pt)

Apart from the four schemas describing the task, state, context, and priority data,

three more constraints are added to this schema. They show that:

e All the tasks whose state is not nonexistent are known to the system. Here,
as mentioned above, the state is a function, a special case of a relation.
The operator, ~, takes the inverse relation, so that state™ is a relation in
STATE < TASK. The operand, (and |) calculates relational image. The
result for this predicate is a set that contains all the TASK's whose states are

nonexistent.

e Only one task can occupy the running state at any given time, which is

running_task.

e The priority of the running_task is the highest of all the ready tasks.

Initialisation Based on the state definition and the assumptions mentioned
above, we describe the initialisation of the Task state in a similar piecewise fash-

ion: we separately initialise the four sub-states, and then combine them.

1. Task data. Initially, there are no user-defined tasks in the system; there is

only one task in the system, idle, which is also the initial running_task.

Init_TaskData
T TaskData’

Page 44

tasks’ = {idle}

running_task’ = idle

2. State data. Furthermore, every other task is in the nonexistent state, except
1dle whose state is running.

_Init_StateData
StateData’

state’ = (Az : TASK e nonezistent) & {(idle — running)}

3. Context data. Also, initially, the logical and physical contexts of all tasks is

the bare_context.

_Init_ContextData
ContextData’

phys_context’ = bare_context
log_context’ = (Ax : TASK e bare_context)

4. Priority data. Finally, all tasks have the lowest priority, 0.

__Init_PrioData
PrioData’

priority’ = (Ax : TASK e 0)

The initial state for Tusk can be defined using these four definitions.

__Init_Task
Task’

Init_TaskData
Init_StateData
Init_ContextData
Init_PrioData

In order to prove that all the initial states are reachable, the following five theorems
are introduced. They assert that there is at least one possible postcondition for
initialising each sub-state schema and the overall schema. Due to the simplicity of

these theorems, Z/Eves is able to fully prove them automatically.

Page 45

Theorem 3 (TaskDatalnit)

d TaskData' e Init_TaskData

proof [TaskDatalnit]
prove by reduce;
[|

Theorem 4 (StateDatalnit)

J StateData’ e Init_StateData

Theorem 5 (ContextDatalnit)

3 ContextData’ e Init_ContextData

Theorem 6 (PrioDatalnit)

d PrioData’ e Init_PrioData

It is easy to prove these theorems with the proof command “prove by reduce”,

except for TaskInit, because it has more constraints on its state variables.

Theorem 7 (Tasklnit)

d Task' e Init_Task

proof [TauskInit]
prove by reduce;
apply extensionality;
with enabled (applyOverride) prove;
[|

After the automatic proving ordered by prove by reduce, Z/Eves is confused about
the equivalence between sets defined in schema Task. The application of override
also confuses the prover. Therefore, we need to guide the prover to apply theo-
rems, extensionality and applyOverride, to discharge them. These theorems are
provided by the Z/Eves toolkit [70Q].

Page 46

We can check whether the state change respects the transition relation as a dy-
namic invariant that must be satisfied by all the operations on the Tusk state by

redefining A Task:

_ ATask
Task
Task’

Vst : TASK | state'(st) # state(st)
o state(st) — state'(st) € transition

It is worth mentioning that in this schema we use Tuask' to refer to the post state
of the Task. Initially, the expression “ASchema” (Schema refers to a state schema)
has been defined to contain both the pre- and post-state of Schema. We redefine

it here to add further constraints for Task.

Based on these fundamental definitions, operations related to tasks can be speci-
fied.

4.2.2 Additional Schema for Reschedule
In a multi-tasking real-time operating system, rescheduling tasks is essential and

occurs frequently. Generally, depending on the purpose of the system, the operat-
ing system would follow some suitable algorithm to determine the task to be sched-
uled. Other system states can then be updated accordingly. Therefore, at this level
of abstract specification, it is possible to define the rescheduling process nondeter-
ministically. However, the model described in this chapter focuses on FreeRTOS.
We will follow the algorithm used in FreeRTOS to specify rescheduling, which is
based on task priority. Specifically, once a ready task obtains a higher priority
than the running task, it will be scheduled as the new running task. Subsequently,
the system will switch the context of the current running task out and swap in the
context of the new running task. It is also necessary to manage related lists and
system states properly, for instance, by setting the selected task as the running

task and inserting the current running task in a suitable list.

In this specification, we introduce the schema Reschedule to perform the swap-

ping part of the rescheduling process, which can then be used by other schemas.

Page 47

The priority-based scheduling algorithm is embedded in the operation schemas for
different API functions that need rescheduling. The priority-based rescheduling be-
haviour depends on the destination to which the current running task is moved. For
example, when suspending the running task, the destination of the running task is
the suspended list; but when we create a task with a higher priority than the running
task, the destination of the current running task is actually one of the ready lists.
These lists are represented by the function state. Therefore, updating the state
with the variable st? manages these lists. In the Z notation, variables marked with
“?” and “!” indicate that they are I/O variables, respectively, for a schema. When
other schemas reuse the Reschedule schema, st? will be introduced within these
schemas with the value of the destination of the current running task. Because
both schemas contain a variable with the same name, these two variables will be
bound together. Consequently, the schema Reschedule can obtain the destination
of the running task by accessing the value of st?. The operator, &, is normally
used to update functions in Z. If the first element of a pair exists in the domain of
the function, it will update the second element of the pair in the function to the new
value; otherwise it appends the pair to the function. Therefore, it is used here to
update the state of running_task and target?. Similarly, for each case, the new
running task, the final state of tasks, and the priority of tasks may also be different.
We leave these decisions to the calling schemas. Therefore, variables—target?,

tasks? and pri?—are introduced to represent these properties.

__Reschedule
ATask
target? : TASK
tasks? : P TASK
st?: STATE
pri?: TASK — N

tasks' = tasks?

running_task’ = target?

state’ = state & {(target? — running), (running_task — st?)}
phys_context’ = log_context(target?)

log_context’ = log_context @ {(running_task — phys_context)}
priority’ = pri?

Page 48

The calling schema just needs to specify the correct values for these variables, the

Reschedule schema then handles the rest of the work.

4.2.3 Creating and Deleting Tasks

After initialising the system, there is only one task (:dle); in order to add more tasks
to the system, the Create operation can be used. Once a task finishes, it should
be Deleted (see Page. to allow other tasks to use the resources held by it.
xTaskCreate and vTaskDelete are also the first group of API functions provided
by FreeRTOS. Generally, there are two cases for each of these two operations: one
is to add or remove a task from the system; the other one leads to a re-scheduling

of tasks.

First Case of Creating Tasks If the assigned priority is not greater than the pri-
ority of the current running task, it adds the new task that does not already exist.
The input target? represents the task that will be created. The input newpr:? con-
tains the priority assigned to the new task. Therefore, the precondition is specified
as: first, target? is not known by the system; second, the assigned priority, newpri?
is no more than the priority of running_task. After the operation, the target? is
known to the system, the task target? is added to tasks and updates the state
function to record that the state of target? is ready. The input newpri? is assigned
to the task target? by updating the function priority. Because this operation will
not cause rescheduling, other properties of Task remain unchanged. The “=” op-
eration has been used here: it is defined in Z to show that the pre- and post-states
are unchanged. The schema C'reateTaskN _T can be introduced, which indicates
that this schema is used to Create Task operation in the normal case for the Task
model. Generally, we use postfix N for the Normal case of the operation, which
does not lead to rescheduling; and S for the Scheduling case. The postfix after the
underscore indicates which model it is specified for. For example, T in this case

shows the schema is part of the task model.

CreateTaskN_T
T ATask

Page 49

target? : TASK
newpri? : N

state(target?) = nonexistent

newpri? < priority(running_task)

tasks’ = tasks U {target?}

running_task’ = running_task

state’ = state & {(target? — ready)}
=EContextData

priority’ = priority @ {(target? — newpri?)}

Having defined this operation as a relation on Tusk states, we need to work out its
precondition. We posit that the before-state, the inputs, and the first two predicates
are the precondition, and collect these into the following schema, where the suffix

FSBSig in the schema name stands for Feasibility Signature.
__CreateTaskN _TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? < priority(running_task)

These declarations and predicates are clearly necessary for the actual precondition
as stated above. We show that they are also sufficient in the next theorem, which
can be automatically generated. Specifically, for any “state” that satisfies the defi-
nition of Create TaskN_TFSBSig, the precondition of CreateTaskN _T is satisfied.
The operator “pre Schema” is defined in Z to calculate the precondition schema
of a schema [65, Chap. 14]. For instance, the predicate “pre CreateTaskN_T”
in the following theorem obtains the precondition schema by calculating 3 Task’ e
CreateTaskN_T \ (outputs), where outputs refers to the list of output variables re-
lated to the operation, which will be hidden, and is empty in this case. The schema
hiding operator, “\”, hides the variables listed in the outputs from the declaration
of the operation by introducing them in the predicate part of the schema with an
existential quantifier.

Theorem 8 (CreateTaskN_T_vc_ref)
Y Create TaskN _TFSBSig | true o pre CreateTaskN _T

Page 50

It is interesting to understand the proof of this theorem. First of all, as mentioned
above, the Z/Eves prover is used to verify our specification. All the proof scripts
shown in this thesis are used to help Z/Eves to finish the proof work. Generally,
there are two ways to finish a proof [69, Chap. 5]: (a) exploratory proof — directly
prove the theorem without any previous plan and address any proof goals returned
by the prover; (b) planned proof — carry out a detailed plan for the proof, which
is enough to finish the proof by hand, then transfer the plan to a proof script for
the prover. To maximise the benefit of proof automation, we adopt the exploratory

proof approach in many cases. The general idea for this approach is:

1. Expand terms such as schema references and let Z/Eves prove the proof
goal automatically.

2. When Z/Eves is stuck, stop at the proof goals, guide Z/Eves by using or
applying related theorems or lemmas to rewrite the proof goals, provide more
conditions, etc.

3. Let Z/Eves progress based on the new goal.

4. Repeat step[2land step [3|until the proof is finished.

For efficiency, it is necessary to expand as few terms as possible in step [{] This
can significantly reduce the proof time, especially when the system is complex.

This is also one of the reasons for defining our system in parts.

Specifically, we first use the following proof command to expand all necessary
terms and then let the prover automatically apply rules and theorems, which are
included by Z/Eves, to prove the goal.

with disabled (ContextData) prove by reduce;

Meanwhile, because the ContextData is unchanged in this schema, we keep it
unexpanded. The prefix with disabled (ContextData) can achieve this by making
the prover ignore ContextData, when expanding the terms. Note that as some
theorems are rarely used when proving and other theorems are time consuming,
Z/Eves disables them by default. This is helpful for improving the efficiency of the

proof process; however, it is also one of the reasons why Z/Eves may become stuck

Page 51

in some cases. As a result, the original proof goal is transferred to the following

five goalg?]

1. The tasks known by the system are finite.

TASK \ ((state & {(target?, ready)})~ (| {nonezistent} |)) € F TASK

As defined in CreateTaskN_T, the expression state @ {(target?, ready)} is
equal to the post state. The left side of the expression indicates all the tasks
known by the system after the operation. It should be a finite set as defined
in TaskData.

2. The running_task remains the same before and after the operation:

(state @ {(target?, ready)})™({running} |) = state™({running} |

Similarly, the image of running under the inverse function (state @

{(target?, ready)})™ represents the running_task after the operation.

3. The target? task is added into the system by the operation:

TASK \ ((state @ {(target?, ready)})~({nonexistent} |)
= {target?} U (TASK \ (state™ (] {nonexistent} |)))

After the operation, the tasks known by the system should be the same as
the known tasks of the pre state of the system plus the created task, which

is target?.

4. The priority of the target? task is less than or equal to the running task:

((state @ {(target?, ready)})(pt) = ready A (pt = target? V pt € TASK)
=
priority(running_task) > (priority & {(target?, newpri?)})(pt))
Comparable to state, the post state of the priority function can also be writ-
ten as: priority & {(target?, newpri?)}. In this case, this expression is easy

to understand.

2Because the proof goals are too long to present in this thesis, we only list the most important
part here. Please download the Z/Eves project file from the supplementary material and open it

with Z/Eves to find the full details.

Page 52

5. Every state transition made by any task respects the transition relation.

(st € TASK A — (state @ {(target?, ready)})(st) = state(st)
=
(state(st), (state & {(target?, ready)})(st)) € transition)

It is easy to find that the key to proving both goals [1] & [3]is goal 3l As defined,
TASK \ (state™({nonexistent} |) which is tasks, is a finite set. If we can prove
goal [38] we can easily show that the union of two finite sets is a finite set. Further-
more, for goal 3} the prover is actually confused by the complex set calculation on
the left side of the equation. As these two goals are derived from the constraint of
the state schema, we expect they will repeat frequently in the precondition proofs
of other schemas. Therefore, we introduce a lemma, setminUpdate, to help Z/Eves
to discharge this kind of goal automatically. In Z/Eves, it is possible to use the key-
word, rule, to define an external lemma to help the proof. Z/Eves will use them

automatically when the prove command is called.

Theorem 9 (rule setminUpdate)

Vf:TASK — STATE; g : TASK - STATE e
TASK \ ((f ® g)~({nonezistent} |)) =
TASK \ (f~({nonezistent} |)) \ (¢~ ({nonexistent} |))U

(dom g \ (g~ ({nonexistent} |)))

Similarly, the proof goal [2|is also likely to repeat during the verification. We define

another lemma, runningUpdate, to improve automation of proof.

Theorem 10 (rule runningUpdate)

Vf:TASK — STATE; g: TASK - STATE |
running ¢ ran g A
(f~({running})) Ndomg=0e
(f ® 9)~({running}) = f~({running})

To prove these two lemmas, the extensionality rule in Z/Eves toolkit can be used.
The detailed proof script can be found in the supplementary material. After adding
these two lemmas before theorem (8| and restarting the proof, we can find that the

first three proof goals are discharged automatically.

Page 53

Proof goal /4| is then given by the constraint in Task schema. Tasks other than
target? maintain the requirement that the priority of the running task is at least as

great as that of all the ready tasks:

V pt : state™({ready} |) @ priority(running_task) > priority(pt)

A copy of this constraint is also in the assumption part of the goal, and to distinguish
pt in these two, Z/Eves renames one from pt to pt__0. Therefore, to prove that
tasks other than target? obey the constraint, we just need to indicate that pt__0
and pt are the same. For target?, the priority is defined as newpri?, which is
specified to be no higher than the priority of running_task as a precondition of this
schema. The rule applyOverride is applied to analyse expressions that contain
the operator @. Finally, the command with normalization prove; is used to finish
the prooﬂ Thus, the theorem CreateTaskN _T _vc_ref can be proved by following

script in Z/Eves.

proof [Create TaskN_T _vc_ref]
with disabled (ContextData) prove by reduce;
instantiate pt__ 0 == pt;
with enabled (applyOverride) prove;
apply applyOverride;
with normalization reduce;

Second Case of Creating Tasks |If the priority assigned to the new task is
greater than the priority of the running task, then rescheduling is required. This
is achieved by calling the Reschedule schema. The current running task will be
moved into the ready state; the new priority and initial context is allocated for the
new task, which is then scheduled to be the running task. To reuse Reschedule, the
variables st?, pri? and tasks? are declared and assigned appropriately. Note, the
default logical context for the new tasks is bare_context. We do not need to set it
separately. Therefore, the schema for the second case of the create task operation
can be defined as follows:

— CreateTaskS_T

3The details about the proof command, with normalization prove; , can be found in Appendix

Page 54

ATask
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority (running_task)
dst?: STATE; tasks? : F TASK; pri? : TASK — N
| st? = ready
A tasks? = tasks U {target?}
A pri? = priority & {(target? — newpri?)} e Reschedule

Similarly to the previous case, the signature schema and the precondition theorem
can be defined.

__ CreateTaskS_TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running_task)

Theorem 11 (CreateTaskS_T_vc_ref)

V CreateTaskS_TFSBSig | true e pre CreateTaskS_T

This indicates that the new task is unknown to the system before the operation and
the priority of the new task is higher than the priority of the running task. This is

sufficient and necessary for the precondition of schema CreateTaskS _T.

Deleting Tasks The first case for deleting a task is that it is not the running
task: the state of this task—provided it is not the idle task—can be ready, blocked,
or suspended, because, normally the handle of the idle task, xIdleTaskHandle,
is private to the system and impossible for the user to obtain. After the operation,
the deleted task will become unknown to the system by deleting it from tasks, set-

ting its state to nonexistent, and setting its logical context to the bare_context.

Page 55

It is worth mentioning that in the source code of vTaskDelete in FreeRTOS,
the context of the deleted task is not actually deleted, but instead moved to the
xTasksWaitingTermination list. Itis the idle task that actually performs garbage
collection to recover the resources allocated by the system. At this level of abstrac-
tion, we consider all this as part of the deletion operation, resetting the log_context
of the deleted task to the bare_context. Note, due to space limitations, we only list
the parts of our model which contain something of interest; the rest of the speci-
fications, precondition theorems, and proof scripts can be found from the supple-

mentary material.

Secondly, if the task to be deleted is the running task—but not the idle task—then
we remove it from the system. This leaves a vacuum to be filled: we need to sched-
ule another process to use the CPU. We will choose the task in a ready state with
the highest priority. However, we cannot use Reschedule to achieve this because
the logical context of the running task, which is requested by this operation but
not supported by Reschedule, will be reset. The output variable topReady! is intro-
duced. The universally quantified expression specifies that the top Ready! holds the
highest priority. It is worth mentioning here that if there are several solutions, then
topReady! is chosen nondeterministically. Similarly, the tasks, state, phys_context

and log_context are updated.

__DeleteTaskS_T
ATask
target? : TASK
topReady! : TASK

target? € tasks \ {idle}

state(target?) € {running}

state(topReady!) = ready

Vit state™({ready} |) e priority(topReady!) > priority(t)

tasks’ = tasks \ {target?}

running_task’ = topReady!

state’ = state @ {(topReady! — running), (target? — nonexistent)}
phys_context’ = log_context(topReady!)

log_context’ = log_context & {(target? — bare_context)}
=PrioData

The signature schema of this can be obtained as follows.

Page 56

_DeleteTaskS_TFSBSig
Task
target? : TASK

target? € tasks \ {idle}
state(target?) € {running}

Theorem 12 (DeleteTaskS_T_vc_ref)

Y DeleteTaskS_TFSBSig | true e pre DeleteTaskS_T

As mentioned above, the “pre ” operator calculates the precondition schema for
DeleteTaskS_T, which is the result of 3 Task’ e DeleteTaskS_T \ (topReady!).
When the prover automatically discharges this predicate, it attempts to eliminate
existentially quantified variables. Because the post state of the system, Task’,
has been defined in the operation, the one-point ruI is applied to handle them.
However, the variable running_task’ and topReady! can only eliminate one of them,
because the output variable topReady! is assigned the value of running_task’ in

this operation. Therefore, the proof goal will become:

Frunning_task’ : TASK e
Task[log_context := log_context & {(target?, bare_context)},
phys_context := log_context(running_task’),
running_task := running_task’,
state := state @ ({(target?, nonexistent)}
U{ (running_task’, running)}),
tasks := tasks \ {target?}]
A (Vst: TASK |
- (state ® ({(target?, nonexistent) }U
{(running_task’, running)}))(st) = state(st) o
(state(st), (state @ ({(target?, nonexistent)}U
{(running_task’, running)}))(st)) € transition)
A state(running_task’) = ready
A (Vt_0: state™({ready} |) o
priority(running_task') > priority(t—0)

“One-pointrule: 3z : X [pe g Az =t < p[t/z] A q[t/z] At € X, provided that z is not free

in t.

Page 57

Meanwhile, as defined in the specification, one of the highest priority ready tasks is
nondeterministically assigned to the variable running_task’. In this case, with the
existential-elimination rule, if we can find an instance of these tasks that satisfies
this predicate, the proof goal can be verified. Therefore, we introduce the following
function (f) to discover a member of a set of tasks that has the highest value of
its ¢, which can be replaced by priority, among other tasks in that set. A label
“findDelegate” is assigned to this lemma, which can be referred to during later
proofs.

f:PTASK - TASK

0 ¢ dom f

((findDelegate))

V Task; a : P TASK; g: TASK + Z
eagcdomfAf(a)caNaCdomgA (Vt:aeg(f(a)) > g(t))

It is then possible to use this function to find the highest priority task in a ready state
and use it to instantiate the running_task’, when the function priority is assigned
to the variable ¢g. If we let p,3x : X e ¢ represent the conditions and the goal of

proof above, the predicate to be proved can be considered as
p=dzr: X eq. (4.1)

Further, let t represent f(state™({ready}|). When we instantiate the
running_task’ with the delegate, with one-point rule, we have 3z : X e ¢ A z =
t<te X Aq[t/z],whichgivesIz: X e g dz: X e gV (te X Aq[t/z]).
Therefore, equation transfers into:

p=3z:Xeq)V(teXAq[t/z]). (4.2)
Reorganising the equation, the relation
pA-(te X Aq[t/z]) =Tz : X egq. (4.3)

can be acquired.

Therefore, applying the proof command “instantiate running_task’ == f(state™ (|

{ready} |)); ”, a negative copy of this proof goal will be added to the condition part,

Page 58

of which running_task’ will be replaced by f(state™({ready} |)). Analysing the

negative copy of the goal, we find

Task[log_context = log_context @ {(target?, bare_context)},
phys_context = log_context(f(state™({ready} |))),
=
t € TASK A

state(t) = ready N

= priority(f (state™ (| {ready} |))) > priority(t) (4.4)

which conflicts with the definition of function f; therefore, it is not true. However,
according to the implication, if we can prove that the condition is false, the re-
sult of proof is true. As proving this condition is false presents difficulties due to
the complexity, an auxiliary theorem, [Delete TaskS_T_Lemma, is introduced and
proved separately. When we use it to prove Delete TaskS_T _vc_ref, the variable

topReady! can be substituted by f(state™ (| {ready}).

Theorem 13 (IDeleteTaskS_T_Lemma)

V Task; topReady!, target? : TASK
| target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Y rtsk - state™({ready} |) e priority(topReady!) > priority(rtsk))
e — (Task[log_context := log_context & {(target?, bare_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(target?, nonezistent)} U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A = (state & ({(target?, nonexistent) }U
{(topReady!, running)}))(st) = state(st)
= (state(st), (state & ({(target?, nonezistent) }U
{(topReady!, running)}))(st)) € transition)
=t e TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

Page 59

Generally, the purpose of Theorem is to prove and notify Z/Eves that for
all the states that satisfy the definition of Task, based on the precondition of
schema DeleteTaskS_T', the proof goal is false. With this information and
the following script, Z/Eves can easily prove the result of Theorem is true.

DeleteTaskS_T _vc_ref can be continued.

proof [Delete TaskS_T _vc_ref]
use findDelegate[a := state ~ (| {ready} |), g := priority];
with disabled (Task) prove by reduce;

instantiate running_task’ == f(state ~ (| {ready} |);

prove;

use [DeleteTaskS_T_LemmaltopReady! := f(state ~ ({ready}))];
prove;

stantiate t__0 == rtsk;

prove;

|

4.2.4 Executing Tasks

In FreeRTOS, there is no API function for this: once the task is scheduled, it will
be executed automatically. However, it is helpful for specifications to show the task
being executed, especially when executing the specification with an animator (such
as ProZ). In detail, when the processor executes a task, it updates registers, flags,
memory location, and so on. We model this by updating the physical context of
the processor. Here, we are not interested in the new value after the operation, but
want to know that it has changed and the new value has some special property.
Therefore, we use a nondeterministic definition again for updating phys_context.
Because the schema Ezxecute RunningTask_T describes executing the task, if the

new value of phys_context is different from the original, it will be satisfied.

4.2.5 Suspending/Resuming Tasks

Like creating and deleting, suspending and resuming tasks also have two cases.
When the system suspends a ready or blocked task, it does not lead to reschedul-
ing. However, if the task to be suspended is the running task, then the system
needs to find another task to take the processor. If a resumed task has a higher

priority than the running task, it becomes the new running task, otherwise, it goes

Page 60

to the ready state. As mentioned above, normally the handle of the idle task is
not obtainable. Even though the user may extend the behaviour of the idle task by
modifying the vApplicationIdleHook function, the idle task must never be sus-
pended [18], and consequently can never be resumed. It is possible to suspend
an already suspended task: the system keeps everything the same as before. So,
the first case concerns suspending a task that is ready or blocked; the only change
necessary is to update the task’s state. The following script shows the precondition

theorem and proof script of the schema of this case.

Theorem 14 (SuspendTaskN_T_vc_ref)
Y SuspendTaskN _TFSBSig | true e pre SuspendTaskN_T

proof [SuspendTaskN_T _vc_ref]

prove by reduce;

apply extensionality to predicate TASK \ (state ~ (| {nonexistent} |)) =
TASK \ ((state @ {(target?, suspended)}) ™~ ({nonexistent} |);

apply extensionality to predicate (state &
{(target?, suspended)}) ™ (| {running}) = state ~ ({running} |);

mstantiate pt__ 0 == pt;

prove;

apply applyOverride;

with normalization prove;

Due to the complication of the proof goal, the final proof command
“with normalization prove;” requires a significant amount of time to complete.
However, if we use the “cases, next” commands to separate the proof goals into dif-
ferent cases and then apply “with normalization prove;”, it becomes much more

efficient.

The second case of the suspend operation is when the suspended task is the
running task. Clearly, this leads to rescheduling. This operation ensures that
the running task is not the idle task. It selects a target that is ready and
is one of the ready tasks with the highest priority (there may be many such
tasks). The Reschedule schema is used to achieve the necessary reschedul-

ing. Similar to DeleteTaskS_T, a nondeterministically chosen value is assigned

Page 61

to running_task’. The prover is therefore confused about its value. An additional
theorem, [SuspendTaskS_T_Lemma, is introduced to help the prover with the pre-
condition. Finally, it is also possible to suspend a suspended task. According to
the reference manual of FreeRTOS [19], nothing changes when a suspended task
is suspended. A single call to vTaskResume can resume the task that has been
suspended several times. For this reason, in schema SuspendTaskO_T, predicate
=Task is used to show that the pre- and post-value of all variables within Task

schema are unchanged.

Similarly, the first case of resuming a task does not cause rescheduling. The pri-
ority of the resumed task must be no higher than the running task. The task is
moved to the ready state and everything else is unchanged. In the second case,
the resumed task has a higher priority than the running task, and rescheduling is

required. Again, the schema Reschedule is used to approach this.

4.2.6 Changing Priority of Tasks

Because the priority of the idle task is permanently 0, if the target task is idle, the
newpri? should equal 0. Specifically, to change the priority of tasks, there are three
different cases that need to be considered. In the first case, there is no scheduling

required, and this follows if one of the following conditions hold:

1. The target is the running task and the new priority is at least as high as
every other ready task.

2. The target is ready and the new priority does not have a greater priority than
the running task.

3. The target is the idle task and the new priority is 0.

4. The target is blocked.

5. The target is suspended.

Note that we cannot change the priority of nonexistent tasks. Further, as the set
TASK is composed of running, ready, blocked, suspend, and nonexistent, tasks

in these states are disjoint. Therefore, the predicate state(target?) # nonexistent

Page 62

implies that the target? is in one of the other four states. That means for condi-
tions related to the blocked and suspended states, we do not need other predicates.
Finally, the effect of the operation is to only change the priority of the target, but
nothing else. Then, we update the function priority by overriding the priority of the

target? task with newpri?.

In the second case, the target is a ready task whose new priority is higher than
that of the running task. The target displaces the running task as the tasks are

rescheduled. Similarly, the Reschedule schema is used to achieve this.

In the third case, similar to the second, rescheduling is required. However, the tar-
get task, whose priority we wish to change, is the running task. Meanwhile, the new
priority is not the highest of the ready tasks. The schema for this would firstly pick
up the task with the highest priority in the ready tasks. It updates the value of the
priority of the running task. Finally, it reschedules the system with the Reschedule
schema. The variable “topReady!” here, similar to the schedule case of delete task
and suspend task, is used to represent which ready task holds the highest priority
among other ready tasks and would be scheduled as the new running task after the
operation. Also, the schema [ChangeTaskPriorityD_T_Lemma (See Page.

is introduced to handle the nondeterministically chosen value of “running_task".

4.3 Queue Model

Queue is the facility provided by FreeRTOS for communication between tasks. Sim-

ilar to the task model, to define this model, we need to specify some basic states.

4.3.1 Basic Statements
Firstly, we define QUEUEF to represent the queues.
[QUEUE]

The properties of queues in FreeRTOS, can generally be divided into the following

three parts:

Page 63

1. Queue data. In this schema, variables are used to record the basic prop-
erties of queues. First, set queue is given to distinguish the queues known
to the system from others. Second, it is necessary to know the maximum
size and the actual size of each queue in the system. Therefore, two func-
tions, ¢_max and q_size, are respectively used for these, and the domain of
these two functions should equal queue. Furthermore, for each queue in the

system, its actual size cannot exceed its maximum size.

__ QueueData

queue : P QUEUE

g-maz : QUEUE + N,
q_size : QUEUE + N

dom g_maz = dom q_size = queue
Vq: QUEUE | q € queue o q_size(q) < g_maz(q)

2. Waiting data. As the maximum size of a queue is finite, queues can be
full when a task attempts to send an item to them. In this case, FreeRTOS
allows the task to wait until spaces become available in the queue. Similarly,
when a task wants to receive items from a queue which is empty, the task
may also wait for some resources to be available in the queue. Therefore,
two functions wait_snd and wait_rcv are defined, respectively. Due to the
definition of these two functions, a task cannot both be waiting to send and
to receive items at the same time. A constraint is specified for this property,

that the intersection of the domain of these two functions is the empty set.

— WaitingData
wait_snd : TASK + QUEUE
wait_rcv : TASK + QUEUE

dom wait_snd N dom wait_rcv = ()

3. Releasing data. According to the implementation of FreeRTOS, when a task
is released from a waiting event, it should continue the operation which it was

performing before the event. For instance, if the task is blocked by sending

Page 64

an item to a queue, when it is released from wait_snd it should continue
sending the item to the queue. To achieve this, two assistant functions are
provided to indicate if a task has just been released from the waiting event

and also record the queue it was dealing with.

— QReleasingData
release_snd : TASK - QUEUE
release_rcv : TASK - QUFEUE

dom release_snd N dom release_rcv = ()

Gathering these three schemas, we can define the schema Queue for the proper-
ties across each sub-state.

_ Queue
QueueData
WaitingData
QReleasingData

ran wait_snd C queue
ran wait_rcv C queue
ran release_snd C queue
ran release_rcv C queue
(dom wait_snd U dom wait_rcv)
N(dom release_snd U dom release_rcv) = ()

First, the range of functions described in WaitingData and QReleasingData are
queue, because a task cannot send or receive items from a queue which is
unknown to the system. Additionally, the tasks of functions in WaitingData
and (QReleasingData are disjoint, because only when a task is removed from
the functions in WaitingData, it can then be added to the related function in

(Q)ReleasingData.

Finally, the state data for the queue level model can be defined using these defini-

tions.

TaskQueue
Task
Queue

Page 65

dom wait_snd C state™ (| {blocked})
dom wait_rcv C state™ (| {blocked} |)

There are two extra constraints for this schema, which indicate that the state of

tasks in the domain of wait_snd and wait_rcv is blocked.

Initialisation We have defined the initialisation for the Task schema in the previ-
ous section. Now, we only need to specify the initialisation for Queue, then combine
them to obtain the initialisation for the queue model (i.e. TaskQueue schema). Ini-
tially, no queues exist in the system, therefore, the initial state of the set queue and
all other functions in QueueData, WaitingData and (QReleasingData are the empty
set. Finally, the initialisation of TaskQueue can be defined as

_ Init_TaskQueue
TaskQueue’

Init_Task
Init_Queue

To prove the reachability of these initial states, initialisation theorems are also in-
troduced. As the definition of the Queue schema and its sub-state are quite sim-
ple, these theorems are easily proved using the command prove by reduce. With
the definition of theorem TuskInit, the initialisation theorem of TuskQueue can be

proved by the following script.

Theorem 15 (TaskQueuelnit)

3 TaskQueue’ o Init_TaskQueue

proof [TuskQueuelnit]
use TaskInit;
prove by reduce;

Page 66

4.3.2 Extension

Before specifying operation schemas for the queue model, it is necessary to extend
the operations for the task model satisfying the state of the queue model. Firstly,
as ATask is overridden in order to check the state transition, we need to override

A TaskQueue for this purpose as well.

ATaskQueue = TaskQueue N\ TaskQueue’ N A Task

Generally, most task related operations do not need to update information about
queues. Schema EztendTaskXt is given to extend the base state of task related
schemas from ATask to ATaskQueue, to show that the running task is not re-
leased from sending or receiving events and to specify that queue related states

are unchanged with = Queue.

__ ExtendTaskXt
A TaskQueue

running_task ¢ dom release_snd U dom release_rcv
=ZQueue

With this schema, a conjunction relation can be used to easily extend task related
schemas to the queue model. For example, to extend Create TaskN _T to this level,

the following script can be used.

CreateTaskN_T() = FExtendTaskXi N\ CreateTaskN_T

Similarly, the following scripts can be used to extend the signature schema of

Create TaskN _T to the queue level.

— ExtTaskFSBSig
TaskQueue

running_task ¢ dom release_snd U dom release_rcv

CreateTaskN_TQFSBSig = FxtTaskF'SBSig N CreateTaskN_TFSBSig

To show that the precondition of CreateTaskN_T() is sufficient, theorem [16|is in-

troduced.

Page 67

Theorem 16 (CreateTaskN_TQ_vc_ref)

V CreateTaskN_TQFSBSig | true o pre CreateTaskN_T(Q

As two key components of this theorem, CreateTaskN_TQFSBSig and
CreateTaskN_T(Q, are extended from task level, theorem [8|is very helpful to sim-

plify the proving. The command “use CreateTaskN_T _vc_ref” reuses theorem

Exceptionally, there are some schemas that need to update information about
queue related variables. If a task is blocked by a waiting event or it has just been
released from a waiting event, it is recorded by waiting or releasing functions in
WaitingData and @QQReleasingData. Deleting or suspending it requires updating
related data. For instance, when expanding the schema to delete the task in the
normal case to this level, information about the target task needs to be removed

from wait_snd, wait_rcv, release_snd and release_rcv.

__DeleteTaskN_TQ
DeleteTaskN_T
A TaskQueue

running_task ¢ dom release_snd U dom release_rcv
=ZQueueData

wait_snd" = {target?} < wait_snd

wait_rcv’ = {target?} <9 wait_rcv

release_snd' = {target?} 4 release_snd
release_rcv’ = {target?} <4 release_rcv

Similarly to the general case of extension, the task level schema, Delete TaskN_T,
is reused to introduce constraints and maintain task information. For queue in-
formation, variables in QueueData are unchanged, and target task related pairs
are removed from functions in WaitingData and QReleasingData. Domain anti-
restriction operator < is used to approach this. It excludes the set on the left-hand
side of an operator from the domain of a relation. Specifically, in our case, pairs
whose first element is target? are removed from the functions. If target? does not

exist in the domain of the functions, nothing happens to that function.

Page 68

As only one constraint is added to this new schema, which is the same
as FErtTaskFSBSig, the signature schema and precondition theorem of

DeleteTaskN_T() can be given with the same strategy as the creating task case.

4.3.3 Creating and Deleting Queues

The first API function related to queue is xQueueCreate, it is used to add new
queues into the system. Once a queue is no longer needed, it is deleted by
xQueueDelete to release the resources. The schema CreateQueue_T(and

DeleteQueue_T() are defined for these operations respectively.

Specifically, to create a queue, the user needs to specify its capacity (size?) which
should be greater than 0. A new queue (que?), which is unknown to the system
before the operation, can then be added to the set queue. Meanwhile, its maximum
and real size can be specified by size? and initial size, which is 0, respectively. In
addition, other information should remain unchanged before and after the opera-

tion.

In contrast, to delete a queue, we need to remove the information related to the
queue from queue, q_maz and ¢q_size. However, we can only delete a queue,
which is known to the system when no task is using it. This means no task is
waiting for it and no task has just been released from a waiting event related to the

queue.

4.3.4 Sending and Receiving Items

Sending an item to a queue can be represented by increasing the current size of
the queue. However, the exact behaviour depends on whether the queue is full,
whether there is a task waiting to receive an item from the queue, and whether
the waiting task has a higher priority than the running task. It can be divided into
four cases, described below. In cases where the running task is released from a
waiting-to-send event, it has to continue its attempt at sending and the target queue
has to be the queue which the running task attempted to send to before the waiting

event.

Page 69

The first is the most general case. There is space left in the queue, which means
the running task can successfully send an item to the queue. Meanwhile, there are
no other tasks waiting to receive an item from the queue. Therefore, the running
task can send the item to the queue normally. Consequentially, after the operation,
the size of que? should be increased by 1; the running task should be removed

from the function release_snd and all other data should remain unchanged.

— QueueSendN_TQ)
ATaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_rcv
running_task € dom release_snd

= que? = release_snd(running_task)
que? € queue
q_size(que?) < g—max(que?)
que? ¢ ran wait_rcv
=Task
queue’ = queue
g_max’ = g_max
q-size’ = q_size ® {(que? — q_size(que?) + 1)}
= WaitingData
release_snd' = {running_task} < release_snd
release_rcv’ = release_rcv
topReady! = running_task

The schema QueueSendW _T(Q is introduced for the second case. The postfix
W used here represents that there are waiting tasks. In detail, there is also
space in the queue. However, there are tasks waiting to receive an item from
the queue and the priority of the highest priority task (topReady!) is lower than or
equal to the current running task. As a result, topReady! will be woken up and
recorded in release_rcv, as it has just been released from a waiting-to-receive
event. In other respects, it is the same as the normal case. As the topReady!
is chosen nondeterministically from the domain of wait_rcv, the assistant theorem

IQueueSendW _T()_Lemma is used to help with the proof.

Third, similar to the previous case, there is space in the queue and tasks wait-

Page 70

ing to receive, but the priority of the highest priority waiting task (topReady!) is
greater then the running task. The schema QueueSend WS_T(Q represents this
case. When the waiting task is woken up, it is rescheduled as the new running
task. Therefore, the schema for this case uses the schema Reschedule to maintain
task related information and a similar script to the previous case is used to manage

queue related data.

In the fourth case, when the target queue is full (the schema QueueSendF _T(Q)
is defined for this case), the running task is blocked. Similar to the suspend-
ing running task, this leads to rescheduling, which is achieved by using the
schema Reschedule. Furthermore, because the running task is blocked by a
waiting-to-send event, the maplet (running_task — que?) is added to the func-
tion wait_snd. Finally, running task related information also needs to be removed
from release_snd. Similarly, the new running task is nondeterministically selected.

The theorem [QueueSendF _T(Q)_Lemma is introduced to help with the proof.

Just like sending an item to a queue, receiving an item from a queue can be
specified as decreasing the size of the queue and there are four cases for the
receiving operation: (a) Normal case (QueueReceiveN_T()). There are items
available in the queue and no other tasks are waiting to send an item to the
queue. The size of the queue is decreased by one; we remove running task re-
lated information from release_rcv and keep everything else unchanged; (b) Wait-
ing case (QueueReceive W _T(Q)). There are items available in the queue and some
tasks waiting to send an item to the queue. Moreover, the priority of the high-
est priority waiting task is no higher than the running task. The highest prior-
ity waiting task is moved to the ready state and recorded in release_snd. The
schema maintains other variables as in the first case; (c) Waiting and schedul-
ing case (QueueReceive WS_T(Q). There are items in the queue and some tasks
waiting to be sent. The highest priority waiting task has a higher priority than
the running task and rescheduling is required. The schema Reschedule is used
for this. Other variables are maintained in a similar way to the previous case;

(d) Queue is empty case (QueueReceiveE). The running task is blocked by the

Page 71

waiting-to-receive event. The running task is rescheduled to the blocked state by
the Reschedule schema and recorded in the function wait_rcv. Further, the oper-
ation removes running task related information from release_rcv and keeps other

variables unchanged.

4.4 Time Model

At this level of modelling, we take time properties into consideration. As a real-time
multi-tasking system, this is crucial. For instance, the processor is shared by tasks
with the same priority based on time sharing. Different tasks may also need to
cooperate with each other based on the same system clock, etc. As in previous

models, to illustrate the time model, we start from the basic information.

4.4.1 Basic Statements

A constant, slice_delay is defined to represent the unit of time for each time slice,
which is specified as 1 in this case. A label, “disabled slice_delay_def”, is given
to this lemma. With the disabled mark, this lemma is automatically omitted by

Z/Eves during proofs.

slice_delay : N

((disabled slice_delay_def))
slice_delay = 1

Compared with the task and queue models, the base state of the time model is very
simple, as it only contains four variables. First, the system clock is represented by
a variable, clock. Second, when tasks block themselves by calling delay API func-
tions, the set delayed_task is used to mark them. The key difference between the
blocked and the suspended state is blocking time. Tasks in the suspended state
can only be resumed by certain types of events. However, tasks in a blocked state
can be woken up by both events and time. Third, to record how long a blocked task
will be blocked, a function wait_time is introduced. In a single-core multi-task op-
erating system, CPU time is divided into individual time slices; tasks with the same

priority can then take one slice in turn, to share CPU time equally. In FreeRTOS, a

Page 72

similar strategy is used for CPU sharing. For this purpose, time_slice is defined to

show the number of time slices that have passed.

__Time
clock : N
delayed_task : P TASK
wait_time : TASK + N
time_slice : N

V¢ : dom wait_time e wait_time(t) > clock

In wait_time, each task is mapped to the time at which it should finish waiting, so
each element of the range should be greater than (after) the system clock, which

is clock.

Because the range of wait_time indicates the time tasks need to wait, no members

should be less than the system clock, which is clock.

Similar to the schema TuskQueue, the state schema for this level of model can be

specified by combining TaskQueue and Time.

__ TaskQueueTime

TaskQueue
Time

(delayed_task, dom wait_snd,dom wait_rcv) partition dom wait_time
delayed_task C state™({blocked} |

As the function wait_time records blocking time for each blocked task, its domain
has to contain all the tasks in blocked state (i.e., delay_task, dom wait_snd and
dom wait_rcv). Similar to the relation between dom wait_snd and dom wait_rcv
described in Sect. once a task is blocked by an event, it cannot continue
its execution and be blocked by another event. The intersection of each two of
these sets should be the empty set. Therefore, we can define that delay_task,
dom wait_snd and dom wait_rcv partition dom wait_time. As mentioned above,
the set delayed_task marks tasks which are blocked by themselves. All tasks in

delayed_task are in the blocked state.

Page 73

Additionally, it is clear that the state of tasks in the domain of wait_time have to
be blocked. The prover, however, cannot get this assertion directly. Theorem
is provided to guide the prover. The proof is also quite simple; we need to indi-
cate that: (a) The tasks in the domain of wait_time are also tasks in delay_task,
dom wait_rcv or dom wait_snd; (b) The state of tasks in delay_task, dom wait_rcv
and dom wait_snd is blocked. After this, Z/Eves can handle the rest of the work
using the proof command “with normalization rewrite”. Specifically, the first three
proof commands in the following script are used to expand TaskQueueTime and
TaskQueue schemas, as they contain the necessary information, for instance, the
relation between the domain of wait_time and the other three sets (delay_task,
dom wait_rcv and dom wait_snd), and the state of the tasks in these sets. The
fourth and fifth commands indicate to the prover that the union of delay_task,
dom wait_rcv and dom wait_snd equals the domain of wait_time and t can be
a member of one of these three sets. The final five proof commands request that
the prover rewrites the proof goal with the theorem inPowerf| and then proves that

the state of the task ¢ is blocked.

Theorem 17 (rule domTime)

V TaskQueueTime; t : TASK | t € dom wait_time o t € state™(| {blocked} |)

proof [dom Time]
mvoke TaskQueueTime;
mvoke TaskQueue;

prove;
apply extensionality to predicate delayed_task
U (dom wait_rcv U dom wait_snd) = dom wait_time;
mstantiate y == t;
with enabled (inPower) prove;
mstantiate e == {;
mstantiate e_ 0 == {;
mstantiate e_ 1 == {;
with normalization rewrite;
[|

SXePY & (Ve:XeecY)

Page 74

Initialisation Initially, the system clock is 0 and in the first CPU time slice. More-
over, there is no task blocked, so the set delayed_task and the function wait_time

should be empty.

_ Init_Time
Time’
clock’ =0

delayed_task’ = ()
wait_time' = ()
time_slice’ = slice_delay

Combining the schema Init_Time and Init_TaskQueue, the initialisation schema
for the time model can be generated. With the help of theorem|[15] the initialisation

theorem for this model is also easy to prove.

4.4.2 Extension

Similar to the queue model, we need to override the schema A TaskQueueTime
to enable the state transition check for related schemas and define an extension
schema to help upgrade the schemas for the queue model to this level, which
expands the base state to A TuskQueueTime and keeps variables in Time un-
changed. Most schemas can be easily upgraded by a conjunction between the
queue level schema and the extension schema, like the extension for the general
case described in Sect. However, there are schemas that need to update

variables in the Time schema as well.

e Similar to the queue model, deleting and suspending operations need to re-
move the target task from delayed_task and wait_time, if it is blocked;

e Schemas that unblock a task from the blocked state also need to remove
the unblocked task from the function wait_time;

e Finally, schemas that block the running task need to add blocking time infor-

mation into the function wait_time.

For instance, when a queue is full, sending items to that queue blocks the run-

ning task. Originally, the API function xQueueSend blocked the running task for a

Page 75

period of time. To simplify our model, the running task will block until a specified
time (wtime? in the specification). Therefore, an extra precondition is given, that the
waking time is later than the current clock. The maplet, (running_task — wtime?),
is appended to wait_time to record this. (Signature schema and the precondition
theorem proof of this schema can be found on Page.[212]and in the supplementary

material as well.)

— QueueSendF_TQT
A TaskQueueTime
QueueSendF _TQ

wtime? : N

wtime? > clock

clock! = clock

delayed_task’ = delayed_task

wait_time' = wait_time @ {(running_task — wtime?)}
time_slice’ = time_slice

4.4.3 Delaying Tasks

In FreeRTOS, there are two API functions for delaying tasks, vTaskDelay and
vTaskDelayUntil. One delays tasks for a certain period and the other delays
tasks until a specific time. To simplify the model, we only modelled one of them,

specifying vTaskDelayUntil.

To delay a task, firstly, delaying time (wtime?) needs to be specified as later than
the system clock. As the running task is blocked, rescheduling is requested. Like
other schemas requesting rescheduling, the schema Reschedule is used to do this.
Furthermore, delayed_task and wait_time have to be updated to record this infor-

mation as well.

4.4.4 Checking Delayed Tasks

Once the blocking time of a blocked task has expired, it needs to be woken auto-
matically by the system. This is performed by the function prvCheckDelayedTasks
in FreeRTOS. When the scheduler increases the clock ticks, this function is called

to check if there are any tasks that need to be woken up. If there are, these tasks

Page 76

are moved to the ready list for scheduling. Two cases are used to model this.
When the priority of a woken task is no higher than the running task, it is moved
from blocked state to ready state. However, when its priority is higher than the

running task, rescheduling is requested.

Specifically, in our model, when tasks’ blocking time expires, we unblock them
in the order of priority. Therefore, the next unblocked task (top Waiting!) should
have the earliest waking time. If there is more than one task that holds the same
wake up time, it should be the highest priority task first. Depending on whether its
priority is greater than the running task or not, there are two separate schemas.
For normal cases, it does not need to reschedule. For task related variables, we
only need to override the state of top Waiting! to ready and keep everything else
unchanged. Meanwhile, top Waiting! has to be removed from one of the block
related lists (i.e., delay_task, wait_snd, wait_rcv) and wait_time. In addition, we
also need to update the system clock to the wake up time of top Waiting! to show
that time has passed. This is because at this level of abstraction, we are not
interested in the behaviour of the system at each time tick. Our main objective is
verifying the correctness of the API functions. In this way, we can ensure that tasks
are unblocked in the correct order, while focusing on the behaviour of the operation
and ignoring the trivial details (at this level of abstraction) of the clock ticks.

_ CheckDelayedTaskN_TQT
A TaskQueueTime
top Waiting! : TASK

running_task ¢ dom release_snd U dom release_rcv

top Waiting! € dom wait_time

YV wt : dom wait_time o wait_time(top Waiting!) < wait_time(wt)

YV wt : dom wait_time | wait_time(wt) = wait_time(top Waiting!)
e priority(top Waiting!) > priority (wt)

priority(top Waiting!) < priority(running_task)

=TaskData

state’ = state @ {(top Waiting! — ready)}

=ContextData

=PrioData

=ZQueueData

wait_snd" = {top Waiting!} < wait_snd

wait_rcv’ = {top Waiting!} 9 wait_rcv

Page 77

ZQReleasingData

clock! = wait_time(top Waiting!)
delayed_task’ = delayed_task \ {top Waiting!}
wait_time’ = {top Waiting!} < wait_time
time_slice’ = time_slice

In contrast, if the priority of top Waiting! is higher than the running task, reschedul-
ing is required. The schema Reschedule is used to maintain task related variables.

For other variables, it is the same as the normal case.

As topWaiting! is selected nondeterministically, assistant lemmas,
[CheckDelayedTaskN_TQT_Lemma and [CheckDelayedTaskS_TQT _Lemma,
are introduced to help prove the precondition theorems of these two cases

respectively.

4.4.5 Time-Sharing

As a multi-task operating system, if there are any ready tasks that have the same
priority as the running task, they will share the CPU time. In FreeRTOS, this is
implemented by an interrupt service routine. When a time slice passes, it will trigger
an internal interrupt to check whether it is necessary to perform rescheduling. If
there are other tasks holding the same priority as the running task, the next task in
the ready list for that priority will be rescheduled. In our specification, the schema
TimeSlicing_TQT is specified for this case. It nondeterministically selects the next
running task from ready tasks, which have the same priority as the current running
task. The schema Reschedule can be used for rescheduling. Then time_slice is
increased to indicate that one time slice has passed. However, if the running task
is the only task that has the highest priority, it can continue to occupy CPU time. In
this case, the schema NoSlicing_TQT only needs to increase the time_slice and

keeps everything else unchanged.

4.5 Mutex Model

As described in Sect. [1.2.2] semaphores and mutexes are used to manage

shared resources and are special queues. There are two types of semaphores

Page 78

in FreeRTOS, counting semaphores and binary semaphores. The counting
semaphores allow more than one task to hold the semaphore, which is specified
by its size. However, the binary semaphores are similar to mutexes, which only
allow one task to hold the semaphore. The difference between binary semaphores
and mutexes is that binary semaphores do not support priority inheritance when
competition happens. These two types of semaphores have similar properties. To

simplify the specification, we only model the binary one.

4.5.1 Basic Statement
Basic information about semaphores and mutexes is gathered in the schema

MutexData, which defines that semaphores and mutexes are members of
QUEUE. As a task holds a mutex, it can take the mutex repeatedly. The func-
tion mutex_holder is introduced to record the mutex holder for each mutex. Mean-
while, it is also necessary to know how many times the mutex holder retakes the
mutex; because, it has to return the mutex the same number of times to actually re-
turn the mutex. There are three constraints for MutexData: (a) The intersection of
semaphore and mutex should be the empty set. Although, in FreeRTOS, the mutex
is treated as a special semaphore, they have different properties and operations.
Therefore, we separate them into two disjoint sets. (b) The domain of the function
mutexr_recursive has to be mutex, as it records how many time a mutex holder
repeatedly takes the mutex. (c) If a mutex is not held by a task, its muter_recursive

has to be 0.

_ MutexData
semaphore : P QUEUFE
mutezr : P QUEUE
mutex_holder : QUEUE -+ TASK
mutex_recursive : QUEUE - N

mutex N semaphore = ()
dom mutex_recursive = mutex
V'm : mutex @ m ¢ dom mutex_holder < mutex_recursive(m) =0

To enable the priority inheritance mechanism, the schema OriginalPrioData is
provided, which has only one function base_priority recording the original priority

of a mutex holder.

Page 79

OriginalPrioData
base_priority : TASK -+ N

Similar to queues, when a task is released from waiting to take a mutex event, it
has to continue its attempt. However, because only the mutex holder can give the
mutex back, it is impossible to block a task from giving back a mutex. The schema
MReleasingData is defined to record the task which has just been released from
waiting to take a mutex.

MReleasingData
Treleasemutex : TASK -+ QUEUFE

Based on these definitions, the constraints between them can be defined in the
schema Mutez.

_ Mutex
MutexData

OriginalPrioData
MReleasingData

dom base_priority = ran mutex_holder
ran release_muter C muter

Finally, the base state of the mutex model can be defined as follows. First,
semaphores and mutexes are special cases of queues, which have a maximum
size of 1. Second, if a mutex is held by a task, its size should be 0. Therefore, the
domain of mutex_holder is all the mutexes with size 0. Third, only tasks known by
the system can take and hold a mutex, which means the range of mutex_holder
is a subset of tasks. Priority inheritance is used to avoid a higher priority task be-
ing blocked by a lower priority mutex holder. If a mutex holder inherits a priority
from another task, the new priority has to be greater than its original priority. Fur-
thermore, only the holder of a mutex or a semaphore can return the mutex or the
semaphore, so it is impossible for a task to be blocked and released by a sending
event. Finally, as mutexes are a subset of queues and taking a mutex is imple-
mented by receiving from a queue, the function release_mutexr should be a subset

of the function release_rcv as well.

Page 80

__ TaskQueueTimeMutex
TaskQueueTime
Mutez

semaphore C queue

Vs : semaphore ® q¢_mazx(s) = 1

muter C queue

V'm : mutex ® g_maz(m) =1

dom mutex_holder = {m : mutex | q_size(m) = 0}

ran mutex_holder C tasks

¥V mh : ran mutex_holder e priority(mh) > base_priority(mh)

V' ms : mutex U semaphore ® ms ¢ ran wait_snd U ran release_snd
release_mutex C release_rcv

Initially, no semaphore or mutex exists in the system. All variables in Mutex should

be empty at this point.

4.5.2 Extension
A similar strategy of extension to that in Sect. can be used to upgrade the

specification of the time model to the mutex model. The schema ExtendTQTX:
is introduced, which expands the base state and leaves variables in Mutex un-
changed. However, there are some operations that need to update variables in

Mutez.

e A mutex holder cannot be deleted by the system. The resource locked by
the mutex would no longer be available for other tasks, if the mutex holder is
deleted before it releases the mutex.

e Semaphores and mutexes are special queues, which means the queue op-
erations may treat a semaphore or mutex as a normal queue. However, the
operations for queues are not actually correct for semaphores and mutexes.
For instance, when creating a queue, it should be empty by default. Then the
user can use it for communication. However, for a semaphore or a mutex, the
user wants it to be full initially as this indicates that a resource is available. It
is important to prevent queue operations from dealing with the semaphores
and mutexes. Therefore, the constraint “que? ¢ semaphore Umautex” is added

to all schemas for queue operations.

Page 81

e Similarly, as the function release_mutez is a sub-function of release_rcv, it is
also vital to indicate that the running task is not released from taking a mutex
for the queue receiving schemas.

e Finally, the changing priority operations are the most complex extensions
for this level. In the previous model, we have three cases for changing
task priorities. At this level, it depends on whether: (a) the target task is
holding a mutex, or not; (b) the target task is inheriting a priority, or not;
(c) the new priority is higher than the inherited priority and the priority of
the running task, or not. Each case can be subdivided into three more
cases. Specifically, for tasks not holding a mutex, we keep Mutex unchanged
and append the precondition to indicate the target task is not a member of
the domain of base_priority, which equals the domain of mutex_holder, for
the three cases, NNotHolder | SNotHolder and DNotHolder. For tasks
holding a mutex but not inheriting a priority, the schemas for the three
cases (NNotInherited, SNotInherited and DNotInherited) have to update
the information of base_priority as well. When the target task is a mem-
ber of the domain of the base priority and is equal to its current priority, it
implies that the task is not inheriting a priority. The preconditions are ap-
pended to extend the three cases of changing task priority. Finally, in the
case of the target inheriting a priority from another task, (a) if the new pri-
ority is not greater than its inheriting priority, the operation updates the base
priority of the target task only; (b) meanwhile, if its new priority is greater
than its inheriting priority but it is lower than or equal to the running task, it
is based on the normal case of changing the priority of a task and updates
the base priority of the target task; (c) however, if its new priority is greater
than that of the running task, its base priority is updated and rescheduling is
requested; the schema Change TaskPriorityS_TQT is used to simplify the
specification. The schema InheritedN, InheritedU and InheritedS are de-

fined for this case.

8Due to the length of these schema names, we present the postfix for each schema here only; i.e.

the postfix NNotHolder represents the schema ChangeTaskPriorityNNotHolder _TQTM

Page 82

4.5.3 Creating and Deleting Semaphores and Mutexes

As described in Sect. initially there is no semaphore or mutex in the
system. FreeRTOS provides the API functions vSemaphoreCreateBinary and
xSemaphoreCreateMutex to introduce a new binary semaphore and mutex to the
system. Later, when these structures are no longer needed, they can be removed

from the system by the API function vSemaphoreDelete.

Semaphores and mutexes are special queues, which have a maximum capacity
of 1. The behaviour of their creating and deleting operations is similar to that of
queues. In FreeRTOS, creating a semaphore or mutex actually creates a new
queue with capacity 1. It then sends an item to fill the semaphore or mutex,
which makes the semaphore or mutex available. Meanwhile, the API function

vSemaphoreDelete is directly defined by vQueueDelete.

We also try to follow this strategy to reuse existing specifications in new schemas.
This not only simplifies the definition of new schema, but also dramatically reduces
the complexity of the verification, because the precondition theorem for existing
schemas can be used directly in the proof of the precondition theorem for the new
schema. Therefore, when defining the schemas DeleteBinarySemaphore_TQTM
and DeleteMutex_TQTM , the schema Delete Queue_TQT is used to manage sys-
tem information before the mutex model. The deleted semaphore and mutex are
then removed from related variables, semaphore, mutexr and mutex_recursive re-
spectively. It is worth noting that when deleting a mutex from the system, it should

not be held by any task.

However, when creating operations, as the initial size of the new semaphore and
mutex is full instead of empty, CreateQueue_TQT cannot be used. The schema
CreateBinarySemaphore_TQTM and CreateMuter_T(QTM add a new queue to
the queue and set its capacity and size to 1. The queue is also added to semaphore,

mutex and mutex_recursive. All other variables remain unchanged.

Page 83

4.5.4 Taking Mutexes

As a special queue, taking a mutex can be treated as receiving an item from the
mutex. Basically, we attempt to reuse specifications for the queue receiving opera-
tion in our specification for mutex taking. In Sect. [4.3.4] four cases are defined for
receiving an item from a queue. However, the second and third cases are impossi-
ble for mutex taking, as they are introduced for cases where there are tasks waiting
to send an item to the queue and there is no wait to send events for semaphores
and mutexes. Based on the normal and empty cases of the receiving operation,
the specification for the mutex taking operation can be defined. Specifically, there
are two sub-cases for the normal case, depending on whether the running task

previously held a mutex.

o MutexTakeNnonInh_TQTM If the running task did not previously hold a mu-
tex, which means its base priority was not initialised, we need to initialise it
with the value of its current priority.

o MutexTakeNInh_TQTM Otherwise, the base priority of the running task

should not be changed.

In addition, the remaining part of these two sub-cases are the same: (a) They
reuse the schema QueueReceiveN_TQT to receive the item from the mutex, which
shows that the running task takes the mutex; (b) Set the running task as the holder
of the mutex; (c) Increase the value of mutex_recursive; (d) Finally, remove infor-
mation about the running task from release_mutex to enable the running task to

execute other operations.

When the mutex is not available, the running task will be blocked by waiting for a
receiving event. Depending on the relationship between the priorities of the running

task and the mutex holder, there are also three cases.

o MutexTakeEnonInh_TQTM If the priority of the running task is not higher
than that of the mutex holder, the mutex holder keeps its priority and the

running task is replaced by a ready task with the highest priority, which is

Page 84

the same as the empty case of the queue receiving operation. The schema
QueueReceiveEl_TQT is used to achieve this and running task related infor-
mation is also removed from release_mutez.

e On the other hand, if the priority of the running task is higher than the mu-
tex holder, the mutex holder inherits the priority of the running task and the
running task is blocked.

— MutexTokeFEInheritReady_TQTM If the state of the mutex holder is
ready, it becomes the new running task.
— MutexTakeEInheritHolder _TQTM Otherwise, a task with highest pri-
ority in the ready state is selected as the new running task.
In these cases, the schema QueueReceive E_T(Q)T cannot be used, because
the priority of the mutex holder is updated. However, Reschedule is used
to manage rescheduling. Similarly, it also needs to remove information
about the running task from related release functions (i.e., release_rcv and
release_mutex). As the running task is blocked, data about the blocking time
needs to be appended to the wait_time function as well. Other variables

remain unchanged.

Finally, the last case, MutexTakeRecursive_TQTM, is for recursively taking the
mutex, which is the simplest case. It increases the value of the mutex in

mutex_recursive and keeps everything else the same.

In summary, taking mutexes has six cases in total.

4.5.5 Giving Mutexes

Similar to taking mutexes, when a mutex holder gives the mutex back, it actually
sends an item back to the mutex, even if the item size is zero. Therefore, the
schemas for queue sending are reused here to develop new specifications for giv-
ing mutexes. As we define the domain of base_priority to be equal to the range of
the mutex_holder, when a task gives all its mutexes back, its base priority has to be
removed as well. This can happen to every case of giving mutexes. The schema

basePriorityMan is introduced to perform base priority management. It checks

Page 85

whether the running task is giving its last mutex. If it is, basePriorityMan removes
the running task related pairs from base_priority; otherwise, base_priority remains
unchanged.

__basePriorityMan

A TaskQueueTimeMutex
mut? : QUEUE

running_task € ran({mut?} 9 mutex_holder)
= ZO0riginalPrioData
running_task ¢ ran({mut?} <9 mutex_holder)
= base_priority’ = {running_task} <9 base_priority

The first case of giving mutexes (MutexGiveNRecursive_TQTM) is the simplest
one, which handles the recursive return. When the mutex holder has taken the
mutex several times, the mutex holder has to return the mutex the same number
of times to make the mutex available for other tasks. When the value of the mutex
in mutex_recursive is greater than 1, the schema MutexGiveNRecursive_TQTM
decreases mutex_recursive by 1 each time. In addition, there are eight cases for
giving mutexes. The behaviour depends on: (a) Whether there are tasks waiting to
take the mutex; (b) Whether the priority of the mutex holder is inherited from other
task; (c) Which priority is the highest (the base priority of the running task; the
priority of the running task, the priority of the top priority ready task or the priority of
the top priority waiting task). Table and illustrate the relationship between

each casdl

Table shows that based on the normal case of the queue sending operation
there are three different cases. Specifically, for the first case (NnoniInh case),
there are no tasks waiting to take the mutex and the mutex holder does not in-
herit priority from other tasks. As the mutex holder is the current running task,
we know its priority is the highest of the ready tasks. Therefore, there is no
rescheduling request. We just need to send an item to the mutex to indicate

that the mutex holder returns the mutex. Meanwhile, information about the mu-

"Due to the length of schema names, only the postfixes for each schema are presented in the

table; i.e., the postfix NnonInh stands for the schema MutexGiveNnonInh_TQTM

Page 86

Table 4.1: The constraints for giving mutexes (no waiting tasks)

Inh N Y
Highest Prio - Base | Ready
Postfix NnonInh | NInhN | NInhS

Table 4.2: The constraints for giving mutexes (with waiting tasks)

Inh N Y
Highest Prio Run Waiting Base Ready Waiting
Postfix WnonInhN | WnonInhS | WInhN | WInhSR | WInhSW

tex in mutex_holder and mutex_recursive has to be reset. Finally, the schema
basePriorityMan is used to manage the base priority of the mutex holder. The
schema MutexGiveNnonInh_TQTM uses QueueSendN_TQT to send an item
to the mutex. If the mutex holder inherits a priority from another task, its priority
has to be reset to its original priority when it gives the mutex back. The second
and third cases in this group are defined for this. The difference between them is
when the original priority of the mutex holder (i.e., the running task) is lower than
the priority of a ready task, rescheduling is requested. Unfortunately, the schema
QueueSendN_T()T cannot be used, as the priority of the mutex holder needs to

be modified, which is not covered by the definition of QueueSendN_TQT.

Similar to the last group of cases, the cases in Table [4.2are based on waiting, and
waiting and rescheduling cases of queue sending operations. There are tasks wait-
ing to take the mutex. It is necessary to wake these tasks when the mutex holder
returns the mutex. When the mutex holder does not inherit a priority, these cases
are extensions from QueueSendW _TQT and QueueSendWS_TQT. Otherwise,
the priority of the mutex holder needs to be revised to its original priority. Moreover,
depending on the relationship between the base priority of the running task, the
priority of the top priority ready task and the priority of the top priority waiting task,
each case needs to decide which task should be the new running task after the

operation (i.e., the highest priority task can be executed).

Page 87

4.6 Summary of Interface

The preconditions for the interface, and the API function mapping can be found in
Appendix [Cl When we define the schemas for API functions, in order to simplify
the specification, we use different schemas to define the different cases of API
functions. We use disjunction to connect them together to get the schema that rep-
resents the API function in FreeRTOS. The precondition for these new schemas
is also obtained from the preconditions of the old schemas, which are also dis-
joint. For instance, the FreeRTOS API function for creating a task, xTaskCreate, is
represented by the schema Create Task_T, which has two cases, CreateTaskN_T
and CreateTaskS_T, as defined above. Therefore, it is defined by these two sub-
schemas linked by “v”. In the first case, the precondition is that target? is not
known to the system and the priority of the new task is lower than or equal to the
priority of the running task. The precondition for the second case is that target? is
not known to the system and the priority of the new task is greater than that of the
running task. Therefore, the precondition for the new schema is only that target?

is not known to the system before the operation.

It is worth noticing that the functions in QReleasingData and MReleasingData are
auxiliary functions. They are used to help specify the behaviours of queue sending,
receiving, and mutex taking operations. In the implementation of FreeRTOS, when
a task is woken up after being blocked during the execution of these operations,
(for instance, the running task is blocked by sending an item to a full queue) the
task continues any unfinished work. However, in the specification, once a task
is blocked in a schema, its state will be simply transferred to blocked. When it is
rescheduled as the running task later, it does not have to continue its unfinished job.
It can perform any schema whose precondition is satisfied. Therefore, the functions
in QReleasingData and MReleasingData are necessary to distinguish continuing
schemas from the others. These functions do not actually represent anything in
FreeRTOS. Consequently, preconditions related to them in the specifications are

omitted in the tables of Appendix[C]

Page 88

Based on the content of these tables, it is possible to produce code-level annota-
tions for VCC. These preconditions can be used in VCC as the content of requires
clauses, “_(requires ...)". Further, the postconditions of the schemas can also
be transferred into ensures clauses, “_(ensures ...)”, of the notation of VCC.

We have also verified the task-related functions with VCC, which is presented in
Chap. 5

4.7 Some Properties

Finally, there are properties of the specifications that are important for the prover,
which have been verified as well. Some of these help to ensure that the specifica-
tions have the correct behaviours, the properties of the system are consistent with
the APl document and source code, etc. Others are used to help Z/Eves prove our
model correct. These theorems may seem trivial to the human eye; however, they
are particularly helpful for the prover. Therefore, in this section, we present a few
of these theorems as examples. Further details can be found in the supplementary

material.

1. As described above, in some schemas we need to find the task with the high-
est priority of all ready tasks. In these cases, ensuring the running task is not
a member of the ready tasks is important, otherwise the reschedule algo-
rithm would be chaotic. Moreover, ensuring the running task does not belong
to the ready tasks is also important for the prover to prove the related prop-

erties of the task. For instance it helps to prove the theorem TaskProperty6.

Theorem 18 (TaskProperty3)
Y Task; t : state™({ready} |) ® t € tasks \ {running_task}

2. The variable tasks is used to record tasks known to the system. In other
words, if the task is not recorded in tasks, it is unknown to the system.
This theorem is helpful for the prover to determine the state of this task in

nonexistent.

Page 89

Theorem 19 (TaskProperty4)
V Task; t : TASK \ tasks e state(t) = nonezistent

3. As defined by FreeRTOS, the idle task always has the lowest priority. If the
priority of a task is greater than 0, this task cannot be the idle task. The

command prove by reduce can be used to prove this.

Theorem 20 (TaskPriority5)
Y Task; t : tasks | priority(t) > 0 e t # idle

4. ltis also interesting to check that the behaviour of the operation schemas are
properly described. To illustrate this, we select the schema Suspend TaskS_T
to check. This theorem will check that for any proper case of Tusk, after the
SuspendTaskS_T operation, the old running task will be suspended and the
new running_task has the highest priority of the ready tasks. To prove this
theorem, the theorem TaskProperty3 will be used. Following that, we apply

the one-point rule to the condition. The goal can then be proved.

Theorem 21 (TaskProperty6)
Y Task | SuspendTaskS_T

o state'(running_task) = suspended
A (Yt : state™({ready} |
e priority(running_task’) > priority(t))

proof [TaskProperty6]
with disabled (A Task, Task) prove by reduce;
use TaskProperty3[t := target!];
instantiate I 0 == t;
Prove;

5. As mentioned in Sect. the operator @ is commonly used to update the
values of a function. However, when the domain of two operands of the
operation are disjoint, the effect of this operator is to comprise an union set
with the first operand and the second one, which also means that the first

function is a subset of the result of the operation.

Page 90

Theorem 22 (overridelsAppend)

Vf,g: X+ Y |domfNdomg=0efCfdyg

6. For a normal function, it is possible that many different elements in the do-
main of the function can match to one element in the range of the function.
In this case, if domain subtraction is applied to this kind of function and there
are other elements that can match to the same result as the elements in the

subtracted set, the range of the function should not be changed.

Theorem 23 (ranUnchanged)

Vi: X+ Y;a:X]aecdomf A f(a) eran({a} 9f)
eranf =ran({a} 4 f)

4.8 Summary

In this chapter, the first section revealed how and why the model is structured in
the way described in this chapter. The following four sections described the model
in detail, also showing how the model can be extended layer by layer. Finally, the
preconditions for the APl modelled in the project and some properties of the system

were summarised in the last two sections.

In the next chapter, the preconditions, which were calculated in this chapter for task
related operations, will be used to develop the VCC annotations and the process
of verifying the FreeRTOS implementation (task related API functions) with VCC is

described.

Page 91

Page 92

Chapter 5

VCC VERIFICATION OF FREERTOS

As mentioned in Chap.[4, the specification defined in the model for FreeRTOS can
be used to develop VCC annotations to verify the implementation of FreeRTOS.
This chapter illustrates our work on this. Due to time limitations, only task-related
functions are verified, to demonstrate the possibility of verifying source code with

the abstract model and VCC.

This chapter begins by introducing an overview of VCC and our verification, de-
scribing how we organised the specification and the source code. A basic state-
ment of the specification is then given. Finally, annotated functions explain how
to use the specification to verify the implementation of FreeRTOS. The full code
is not given in the thesis; however, full details can be found in the supplementary
material. An explanation of VCC annotations is given, along with a description of

the verification.

5.1 Overview

As introduced in Sect.[1.3, VCC is a verifier based on the Z3 prover. It uses annota-
tions, which are ignored by a normal C compiler, to describe the virtual model and
the properties of the source code. The following annotations are most frequently

used in VCC:

Page 93

e The most basic annotations in VCC are assumptions and assertions. As-
sumptions are used so that the prover considers predicates declared in the
assumptions to be logically true and therefore does not attempt to prove
them. In contrast, the prover does attempt to prove predicates specified in
assertions. However, whether the result is true or false, they are also con-

sidered as logically true in later proofs.

e ltis also possible to define virtual variables and code, which are hidden to an
ordinary C compiler, with ghost code. This can be used to introduce a virtual

model of the specification to the implementation of the C source code.

e Constraints can be defined for data structures (concrete and virtual), which

are called Object Invariants in VCC.

e An instance of a structure in VCC, called an object, has two states, open
and closed. When it is in the open state, it is mutable and its constraints
can be broken. Moreover, if the object is owned by the executing thread, it is
writeable for the thread. However, once it is closed, all constraints specified

for the data structure have to hold for that instance.

e A function contract can be specified for each function, which is similar to pre-
and post-conditions for a schema in Z. This defines the behaviours of a func-
tion. VCC assumes the predicates in requires annotations in the contract to
be true at the beginning of the function and verifies the predicates in ensures

at the end of the function.

If the function with the contract is called by another function, the prover does
not attempt to prove the called function. It just checks whether the precondi-
tions of the function hold when it is called. If they do, the prover assumes the

function is verified, i.e., the postconditions are satisfied.

e In VCC, parameters and global variables are not writeable for a function by

default. They have to be included in writes annotations to inform the prover

Page 94

that the function is going to modify the value of the variable. When data is
closed and owned by the thread, it is called wrapped. Even if it is in a writes

annotation, we also need to unwrap it to update the data of the structure.

In addition, there are also other annotations, such as claim and mutable, etc., that
are not as common as the annotations described above. Further details can be
found in [21]. They will be briefly described below, where they are used in the
verification. It is also worth noting that the concept of hierarchical ownership for
variables in VCC exists. For instance, a thread can own several structures and
each structure can have its own variables and structures. To update a variable, it

has to be included in the writes annotations, opened and owned by the thread.

In theory, we can directly annotate the FreeRTOS source code to verify the imple-
mentations. However, as we are only verifying the implementation of task related
API functions, due to time limitations, we need to minimise the FreeRTOS source
code to only include task-related code. Specifically, we create two files, viask.h
and vtask.c. In the header file, vtask.h, we include some essential predefinitions
for verification, such as type definitions for the given sets introduced in the Z spec-
ification. This file also contains the functions declarations and their contracts. The
file vtask.c is an annotated and minimised version of the FreeRTOS source code
task.c, which includes all definitions of the related API functions. We also modify
the API functions to simplify the verification process. We first remove any code
not related to the functions verified in the Z specification, such as memory man-
agement. Next, we use equivalent code to replace some of the function calls, for
instance, portYIELD_WITHIN_API(). The most important reason for this decision
is that during function calls, the prover may believe that global variables may be
changed and it will “forget” information about them. For some cases, it is possible
to use claims to inform the prover that this information is not changed during func-
tion calls. However, this makes the verification extremely complex. There are also
other reasons for different function replacement, which will be explained in detail

below, along with the verification.

Page 95

Figure 5.1: Constraints of tskTCB

1 _(dynamic_owns) typedef struct tskTaskControlBlock

2 |

3 xListltem xGenericlListltem; /x< The list that the state list
item of a task is reference from denotes the state of that task (
Ready, Blocked, Suspended). x/

4 xListltem xEventListltem; /x< Used to reference a task from an
event list. =/

5 unsigned portBASE_TYPE wuxPriority; /x< The priority of the task.
0 is the lowest priority. =/

6

7 _(invariant uxPriority < configMAX_PRIORITIES)

8 _(invariant \mine(&xGenericListltem))

9 _(invariant \mine(&xEventListltem))

10 } tskTCB;

12 _(ghost typedef tskTCB x TASK;)

5.2 Statement Definition

To create the annotations to verify the FreeRTOS implementation with our abstract
model, we first need to transform our specification to VCC style annotations. For
the task model, the first definition of the specification is the given sets of TASK
and CONTEXT. Similar to our Z model, we are not interested in the memory
management and the detail of context switches, which are mainly implemented
by assembly language. We use a pointer of void type (i.e., void *) to define
CONTEXT in a ghost annotation. However, it is not actually used in the verifi-
cation. As mentioned in Sect. a structure called Task Control Block (tskTCB)
is defined in FreeRTOS to record the properties of a task, such as the priority of
the task, general list item (in state lists to represent the state of the task), event
list item (in event lists), etc. We use a simplified version of the tskTCB structure
to define TASK in the verification, which removes memory management-related

declarations and some other unrelated fields from the tskTCB structure.

As shown in Fig. firstly, the priority of a task has to be lower than the maximum
priority defined in the configuration file. Then, the list items of each task have to be
held by the task. The task cannot be modified by a thread without it being opened,
otherwise, the constraints of the system might be broken. Therefore, we state that
the pointers for these list items are owned by the tskTCB structure, which can later
transfer to the thread when it unwraps the task structure. Because of these own-

ership declarations, it is necessary to mark the structure as “_(dynamic_owns)”.

Page 96

Figure 5.2: State and transition in VCC

1 _(ghost typedef enum{

2 nonexistent = 0, ready, blocked, suspended, running

3 } STATE;)

4

5 _(ghost \bool transition[5][5];)

6 _(def \bool Trans()

7 {

8 // nonexistent, ready, blocked, suspended, running |

9 / +

10 //{{ \false, \true, \false, \false, \true '} | nonexistent
11 // { \true, \false , |\ false, \true , \true } | ready

12 /! { \true, \true, \false, |\true, \true } | blocked
13 // { \true, \true, \false, |\false, \true } | suspended
14 // { \true, \true, \true, \true , \false }}| running
15 return

16 transition [0][0] == \false && transition[0][1] == \true &&

17 o &&

18 transition [4][4] == \false; // running

19 }

20)

This will request the user to manage the ownership of the object components man-

ually (e.g., manage the ownership of the generic list item, &xGenericListItem).

Following this, in Fig.[5.2] an enumerated type, which contains five states of tasks
defined in the Z model, is used to translate the free type definition for STATE into
VCC. In Z, a set of mappings is used to represent the transition rules, because
we know all the elements of this set. Similarly here, the following boolean type
two-dimensional array is used to represent this set. Each mapping included in
transition can be matched to a boolean true in the array to represent that the
transition is valid. Otherwise, if an element of the array is false, the represented
transition is invalid in this case. It is worth noticing that, in VCC, the curly brackets
are overridden to declare object sets. We cannot directly use it to initialise the
array. An assistant logic function is used to do this. The logic function in VCC is
a virtual function, which contains a specification for a given activity. It is normally
used to perform some logic checking. As a virtual function, it should not have any
operations about memory writes. Specifically, the function Trans () returns logical
true, once the value of each element of transition satisfies the table included in

the comments.

Based on these definitions, the virtual structure, FreeRT0S, for the base model

can be given as below, which organises all the essential elements of verification.

Page 97

The relationship between these elements and the concrete variables in the original
source code can be specified in this virtual structure. Their constraints are also
defined here (see Fig.[5.3).

Figure 5.3: FreeRTOS structure

1 _(ghost _(dynamic_owns) typedef struct{
2 \bool tasks[TASK];
3 STATE state [TASK];
4 //CONTEXT phys_context;
5 //CONTEXT log_context[TASK];
6
7 \natural priority [TASK];
8
9 //READY
10 _(invariant \forall TASK t; (tasks[t] && xSchedulerRunning != pdFALSE)
==>
11 ((((xList =) ((tskTCB x*) t)—>xGenericListltem.pvContainer) == &
pxReadyTasksLists [((tskTCB =) t)—>uxPriority] &&
12 ((tskTCB x) t) != pxCurrentTCB) <==> state[t] == ready))
13 //BLOCKED
14 _(invariant \forall TASK t; (tasks[t] && xSchedulerRunning != pdFALSE)
==>
15 ((((xList =) ((tskTCB x*) t)—>xGenericListltem.pvContainer) == &
xDelayedTaskList1 ||
16 ((xList =) ((tskTCB %) t)—>xGenericListltem.pvContainer) == &
xDelayedTaskList2) <==> state[t] == blocked))
17 //SUSPENDED
18 _(invariant \forall TASK t; (tasks[t] && xSchedulerRunning != pdFALSE)
==>
19 (((xList *)((tskTCB %) t)—>xGenericListltem.pvContainer) ==
xSuspendedTaskList <==> state[t] == suspended))
20 //RUNNING
21 _(invariant \forall TASK t; (tasks[t] && xSchedulerRunning != pdFALSE)
==>
22 (t == (TASK) pxCurrentTCB <==> state[t] == running))
23 _(invariant ((xList %) pxCurrentTCB—>xGenericListltem.pvContainer) ==

&pxReadyTasksLists [pxCurrentTCB—uxPriority])
24 //NONEXISTENT

25 _(invariant \forall TASK t; (t—>\closed && xSchedulerRunning !=
pdFALSE) ==>

26 ((((xList =) ((tskTCB) t)—>xGenericListltem.pvContainer) == &

xTasksWaitingTermination ||

27 t == NULL) <==> state[t] == nonexistent))

28

29 _(invariant \forall TASK t; xSchedulerRunning != pdFALSE ==> (state[t]
I= nonexistent <==> tasks[t]))

30 _(invariant \forall TASK t; tasks[t] ==> \mine(t))

31 _(invariant \forall TASK t; tasks[t] ==> t—>\closed)

32 _(invariant \forall TASK t; tasks[t] ==> priority[t] == t—>uxPriority)

33 _(invariant \forall TASK t; tasks[t] ==> state[t] <= 4)

34 _(invariant \mine (\embedding(& xldleTaskHandle)))

35 _(invariant \mine (\embedding(& pxCurrentTCB)))

36 _(invariant xSchedulerRunning != pdFALSE ==> (tasks[xldleTaskHandle]
&& tasks[pxCurrentTCB]))

37 _(invariant xSchedulerRunning != pdFALSE && xldleTaskHandle != NULL
==> priority [xldleTaskHandle] == 0)

38 _(invariant \forall TASK t; xSchedulerRunning != pdFALSE && state[t]
== ready ==> priority [pxCurrentTCB] >= priority[t])

39

40 } * FreeRTOS;)

This structure translates the schema Tuask into a VCC style base model. The map
tasks from TASK to \bool in Ln. 2| is used to represent tasks in the Z model. In

VCC, map type is a type similar to an array, which can only be used in ghost

Page 98

code. It maps a value of the type in the square bracket to a value of the type
before the variable name. In this case, \bool tasks[TASK] maps each task to
a boolean type value to indicate whether the task is known by the system or not.
Similarly, a map from TASK to STATE and a map from TASK to natural numbers are
used to represent state and priority, respectively. As we mentioned above, the
context related variables are not used in the verification. They are declared, but

commented out, which has no effect on our model.

After the declarations of the virtual variables, the links between them and the real
variables are specified. Specifically, lines[9to [27]in Fig. show the relationship
between the virtual state in the specification to the real state lists in FreeRTOS.
For instance, FreeRTOS declares an array of tskTCB lists to store ready tasks. An
invariant (Ln. [9]to[12) is used to specify this, which defines that all the tasks in a list
of pxReadyTasksLists are exactly those that are in a ready state, i.e., state[t]

== ready.

Following that, line 29 translates a constraint from the tasks schema. It states that
all tasks which are not in a nonexistent state are known by the system (i.e., they
map to true in tasks). However, if a task is known to the system, we can also say
it belongs to the structure FreeRTOS (Ln.[30), as this structure describes the base
of the whole system and is the root of the hierarchy ownership tree. When a thread
unwraps the FreeRTOS structure from its wrapped state, the thread automatically
obtains ownership of all tasks, which makes these tasks in the wrapped state at
the moment. Otherwise, to verify the properties of the tasks for a function, it would
have to have all the tasks in the parameter list of the function, which is not possible.

A binding from the virtual priority to the real priority of each task is stated in Ln.

Next, the handlers of the idle task and pxCurrent task are declared as global
variables in FreeRTOS. If we want to specify the properties of these two handlers,
we need to transfer their ownership to the FreeRTOS structure. To do this, we
first need to transfer ownership of their container to FreeRT0S. In VCC, all global

fields are included in a virtual container. Due to their definition in Ln. [30} setting

Page 99

their entry in tasks to true transfers ownership to the FreeRTOS structure. The
constraint that the priority of idle task has to be 0 can then be specified. The last
invariant shows that the priority of the running task is the highest of all ready tasks,

which is also the last constraint of the Task schema in Z.

Finally, another logic function, excList () (details of which can be found from the
supplementary material), is given to ensure that the state lists for tasks are exclu-

sive (i.e., one list cannot be used as more than one state).

5.2.1 Translation from Z to VCC

In summary, to translate types from Z to VCC, the following rules can be considered

as a guide.

e Given sets in Z can be translated to point types or structures defined in C,
e.g. TASK is translated to tskTCB .

e Generally, functions can be translated into two ways, (a) As functions are sets
of mappings in Z, they can be naturally translated to maps in VCC, e.g. the
function priority is translated to \natural priority[TASK]; (b) If a func-
tion is defined from a given set which has been translated as a structure, to
another type, the value of this function can be defined as a ghost field in the
structure, e.g. the function priority can also be translated as a ghost field in
the structure tskTCB. We chose the former way to translate priority, as it is
closer to our Z specification.

e Sets in Z can be understood as power sets of their own type. Therefore, in
VCC a set can be defined by a boolean type map that maps each element
of its type into a boolean type value to indicate whether the element is a
member of the set e.g. tasks is translated to \bool tasks[TASK].

e Simple free types can be translated as enumerated types e.g. STATFE de-
fined in Fig.[5.2]

e Finally, static functions can be defined as two-dimensional arrays of

Booleans, e.g. transition is represented by \bool transition[5] [5].

Page 100

VCC provides plenty of operators for the ghost fields and logical operations, in-
cluding quantifiers (V and J), implication, etc. Once all the variables in our Z spec-
ification have been translated to corresponding VCC variables or C variables, we
can use operators defined in VCC and C for these types of variables to represent

predicates used in the Z specification. For example,

e For functions, which are translated as mappings, we can simply apply the
function to an element in the domain to obtain the value of the function, e.g.
state[t] used in Ln.[12 of Fig.[5.3|

e Similarly, for sets in Z,

— we can calculate the result of a map applied to an element to check
whether the element is in the set, e.g. tasks[t] == \true;

— we can also set the value of a map for an element to \true or \false
to add or remove the element to or from the set respectively.

e As VCC supports quantifiers, we can directly translate such predicates from

Z specification to VCC annotations, e.g. we use plenty of quantifier \forall

in Fig. 6.3

More detailed explanation will be provided during the explanation of each API func-

tions in following sections.

Following this, we can use the preconditions and postconditions verified in the Z

model to verify the implementation of FreeRTOS task API functions.

5.3 Creating Tasks

To verify the API function for creating tasks in FreeRTOS, xTaskGenericCreate,
we first append two ghost parameters, FreeRTOS and newTask, to the function
parameter list. These represent the virtual model and the new task created by
the function respectively. The contract of the API function can then be specified
as in Fig. 5.4, The first annotation, _(updates FreeRTO0S), is used to tell the
prover that the structure is wrapped before and after the operation. It may be

modified by the operation (i.e., FreeRTO0S is writeable and in a writes clause). It is

Page 101

actually equivalent to _(requires \wrapped(FreeRT0S)), _(writes FreeRTOS)

and _(ensures \wrapped(FreeRT0S)).

As our specification in Z assumes that the scheduler is always executing (see
Sect. [4.2.7), it is stated for VCC verification as well. Following this, the logic func-
tion excList () is used to ensure that all items in the state list are exclusive when
the API function starts. Because the value of newTask and pxCreatedTask will be
updated to the handler of the created task, they have to be included in the writes
clause of the VCC annotation. In addition, the postconditions can be specified with

ensures clauses.

In the Z specification, we separate the creating operation into two cases, normal
and rescheduling. The postconditions for these need to be mixed together in the
same way as the postconditions for the API function. VCC provides \o1d () func-
tion to obtain the pre-state of a variable, which is used here to refer to the old
value of pxCurrentTCB. Then the priority of the old running task can be accessed.
Comparing the new priority of the new task and the priority of the old running task,
the difference between the two cases can be specified separately. In the normal
case of task creation (see Ln.[9|to[11), the priority of the new task is less or equal
to the priority of the old running task. The created task is set to the ready state.
Otherwise (see Ln. to [T4), it requests rescheduling and replaces the value of
pxCurrentTCB. The state of the created task and the old running task should also
be set to running and ready, respectively. For both cases, the priority in the pa-

rameter list should be assigned to the new task.

It is worth noting that in the Z model, we do not restrict the maximum
value of the priority. In FreeRTOS, however, the maximum value of priority,
configMAX_ PRIORITIES, is defined in the configuration file. If the new priority
is not less than the maximum priority, it is set to the maximum priority of the sys-

tem (i.e., configMAX_PRIORITIES-1).

The only precondition for creating tasks in the Z model is that the created task is

not in the system before the operation. As it is newly created during the operation,

Page 102

Figure 5.4: Contract for creating tasks

1 signed portBASE_TYPE xTaskGenericCreate (pdTASK CODE pxTaskCode, const
signed char * const pcName, unsigned short usStackDepth, void =x
pvParameters, unsigned portBASE_TYPE uxPriority , xTaskHandle x
pxCreatedTask, portSTACK_TYPE xpuxStackBuffer, const xMemoryRegion
+x const xRegions _(ghost FRTOS FreeRTOS) _(ghost TASK xnewTask))

_(updates FreeRTOS)

_(requires xSchedulerRunning == pdTRUE)

_(requires exclList())

_(writes newTask, pxCreatedTask)

Co~NoOORrWN

_(ensures \result == pdPASS ==>

10 uxPriority <= \old(pxCurrentTCB)—>uxPriority ==>

11 (FreeRTOS—>state [xnewTask]) == ready)

12 _(ensures \result == pdPASS ==>

13 uxPriority > \old(pxCurrentTCB)—>uxPriority ==>

14 (FreeRTOS—>state [(TASK) \old (pxCurrentTCB)]) == ready && (FreeRTOS—
state [(TASK) pxCurrentTCB]) == running)

15 _(ensures \result == pdPASS ==> FreeRTOS—>priority [*xnewTask] ==

16 (\natural) (uxPriority < configMAX_PRIORITIES ? uxPriority :

configMAX_PRIORITIES — (unsigned portBASE_TYPE) 1U))

17 _(ensures \result == pdPASS ==> pxCurrentTCB —>\closed)

18 _(ensures \result == pdPASS ==> \fresh (xnewTask))

19 _(ensures \forall TASK t; (FreeRTOS—tasks[t] &&

20 \old (FreeRTOS—state[t]) != FreeRTOS—>state[t]) ==>

21 transition [\ old (FreeRTOS—>state[t])][FreeRTOS—state [t]])

it is not easy to describe with requires clauses; therefore, it is stated in the post-
condition instead. The function, \fresh () is provided by VCC to indicate that the
object is freshly allocated. Finally, the last predicate requests VCC to check that

the state transitions obey transition.

To improve the efficiency of the prover, VCC does not make forward inferences
from the precondition by default. For instance, in the precondition, we state that
FreeRTOS is wrapped, which means all the constraints have to hold at the begin-
ning of the function. In the constraints of the FreeRTOS structure, we state that
pxCurrentTCB is owned by FreeRTOS and all the tasks owned by FreeRTOS have
to be closed. From these definitions, we can easily conclude that pxCurrentTCB
has to be in the closed state, when FreeRTOS is wrapped. However, VCC cannot
obtain this result automatically. Therefore, the script in Fig. is used to show
that pxCurrentTCB is closed at the beginning along with some other properties
which may be helpful for later verification. After the declaration of some local vari-
ables, the first statement calls the function prvInitialiseTCBVariables, which
allocates memory for the new task and its stack. To simplify the verification, we

replaced it with malloc. An annotation is added here to make sure that the prover

Page 103

Figure 5.5: Creating tasks pre-verification

_(assert \wrapped (FreeRTOS))

_(assert \inv (FreeRTOS))

_(assert xSchedulerRunning == pdTRUE)
_(assert FreeRTOS—tasks[pxCurrentTCB])
_(assert pxCurrentTCB \in FreeRTOS—>\owns)

CO~NO O~ WN =

_(assert \forall TASK t; FreeRTOS—tasks[t] ==> \inv(t))
_(assert \forall TASK t; FreeRTOS—tasks[t] ==> FreeRTOS—priority [t] <
configMAX_PRIORITIES)

9
10 _(assert \forall TASK t; FreeRTOS—tasks[t] ==> FreeRTOS—state[t] <= 4)
11 _(assert pxCurrentTCB—>\closed)

13 signed portBASE_TYPE xReturn;
14 tskTCB % pxNewTCB;

16 \\pxNewTCB = prvinitialiseTCBVariables(usStackDepth, puxStackBuffer);
17 pxNewTCB = (tskTCB x) malloc (sizeof (tskTCB));
18 _(assert pxNewTCB != pxCurrentTCB)

ensures that the handler for the new task is not equal to pxCurrentTCB, otherwise,
when it is updated, the prover may confuse these two tasks as they refer to the

same task.

As shown in Fig. when pxNewTCB is successfully assigned memory, two as-
sertions (Ln. |2/ and [3) are added to help the prover ensure that pxNewTCB is suc-
cessfully and newly allocated by the function. It is then necessary to complete
the details of the created task. As we only focus on the functions we specified
in the Z model, we remove all unrelated code and only keep functions related to
the priority and the generic list item of the new task, which sets the new priority
for the task and places it in the proper position in the ready task lists. The task
is then physically created. The rest of the creation function manages the sys-
tem state for the new task. In VCC, before verifying system properties related
to pxNewTCB, the structure has to be wrapped in advance. To do this, the own-
ership of all pxNewTCB components has to be taken by the structure. However,
for the new created task, the thread keeps the ownership of pxNewTCB and all its
components, i.e., the generic and event list items, which need to be transferred to
pxNewTCB. Two ghost statements in Ln. |13 and [14] are used to perform this and
then the statement _(wrap pxNewTCB) is used to wrap it. In the critical section,
the original source code manages the system states according to the properties

of the new tasks, for instance, the maximum priority of existing tasks, the total

Page 104

number of the tasks in the system, etc. However, they are not included in our re-
duced version. The variable xReturn is then set to pdPASS to indicate that the new
task has been successfully created and added to the system. In cases of failure
to allocate memory to pxNewTCB, the function does nothing but set the value of
xReturn to errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY. In this case, an asser-
tion is needed to remind the prover that the invariants of FreeRT0S still hold at that

time.

Figure 5.6: Creating tasks verification part-1

if (pxNewTCB != NULL) {
_(assert pxNewTCB)
_(assert \fresh (pxNewTCB))

ahwWwN =

//prvinitialiseTCBVariables (pxNewTCB, pcName, uxPriority , xRegions,
usStackDepth) ;

pxNewTCB—>uxPriority = (uxPriority < configMAX_PRIORITIES ? uxPriority
: configMAX_PRIORITIES — (unsigned portBASE_TYPE) 1U);

7 pxNewTCB—xGenericListltem.pvContainer = &pxReadyTasksLists [pxNewTCB—>

uxPriority];

2]

8 _(assert \writable (& (pxNewTCB—xGenericListltem)))

9 _(assert \writable (& (pxNewTCB—>xEventListltem)))

10 _(wrap &(pxNewTCB—>xGenericListltem))

11 _(wrap &(pxNewTCB—>xEventListltem))

12

13 _(ghost pxNewTCB—>\owns = (\objset) {&(pxNewTCB—xGenericListltem)})
14 _(ghost pxNewTCB—>\owns += &(pxNewTCB—xEventListitem))
15 _(assert !(FreeRTOS \in pxNewTCB—>\owns))

16 _(wrap pxNewTCB)

17

18 if ((void x) pxCreatedTask != NULL) {

19 xpxCreatedTask = (xTaskHandle) pxNewTCB;

20 }

21 taskENTER_CRITICAL () ;

22 { /77...

23 xReturn = pdPASS;

24

}
25 taskEXIT_CRITICAL () ;
26 } else {

27 _(assert \inv (FreeRTOS))
28 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ;
29 |}

When xReturn is set to pdPASS, the system needs to check whether rescheduling
is requested and the ghost code for managing system states is placed here, as
shown in Fig. Firstly, before the system checks for rescheduling, we unwrap
the FreeRTOS, set the priority of pxNewTCB, temporarily set the state of pxNewTCB
to ready, add it to tasks and transfer its ownership to FreeRTO0S. Finally, we assign
pxNewTCB to the virtual parameter * newTask. Some assertions are used here to
ensure that the assignments of the virtual code work. The system then checks the

relationship between the priority for the new task and the priority for the running

Page 105

task to determine whether the system needs to reschedule or not.

As a global volatile variable, pxCurrentTCB can be accessed and updated by a
thread in VCC which does not hold its ownership. To access pxCurrentTCB, an
atomic_read annotation is applied to the container of pxCurrentTCB, which is
\embedding (&pxCurrentTCB) in this case. When the priority of pxCurrentTCB
is lower than the new priority, the system needs to reschedule. We also mod-
ify the state of pxNewTCB and pxCurrentTCB to running and ready, respec-
tively. A system function call to portYIELD_WITHIN_API is used to perform
rescheduling, which is replaced by directly assigning the handler of the new task

to pxCurrentTCB in our reduced version.

Similar to accessing pxCurrentTCB, in order to modify it, we need to apply the
atomic annotation to its container. It is worth noting that during the atomic opera-
tion, information about global variable FreeRTOS is lost. Ideally, this can be handled
by the claim annotation, which claims that the state of FreeRTO0S is kept unchanged.
However, this complicates the verification and due to the time limits of the project,
we simply assert that the invariant of FreeRTOS holds before the atomic operation
and assume them after the operation. In addition to these, some assertions are
used to ensure that the properties for FreeRT0OS are well maintained. It can then
be wrapped. Finally, the assumption of the logic function, Trans (), is used to set

the value of the array transition.

5.4 Deleting Tasks

Similar to creating tasks, to prove the API function for deleting tasks, vTaskDelete,
two extra ghost parameters are appended, FreeRTOS and topReady. As shown in
Fig. 5.8} the first four annotations in the function contract are similar to used in
creating tasks. They describe the basic properties of the system. In addition, the
preconditions specific to deleting tasks can be defined following our Z specification,
which states the target task has to be a member of tasks but not idle and the
topReady! is the highest priority ready task in the system. In the source code,

the target task is named pxTaskToDelete. We first state that at the beginning of

Page 106

©CoOoONOORrWON =

Figure 5.7: Creating tasks verification part-2

if (xReturn == pdPASS)
{
_(unwrapping FreeRTOS) ({
_(assert \inv (FreeRTOS))

_(ghost {
FreeRTOS—priority [(TASK) pxNewTCB] = pxNewTCB—uxPriority ;
FreeRTOS—state [(TASK) pxNewTCB] = ready;
FreeRTOS—tasks [(TASK) pxNewTCB] = \true;
FreeRTOS—>\owns += pxNewTCB;
xnewTask = pxNewTCB;
b
_(assert FreeRTOS—>state [(TASK) pxNewTCB] == ready)
_(assert FreeRTOS—state [(TASK) pxCurrentTCB] == running)
_(assert FreeRTOS—priority [(TASK) pxNewTCB] == pxNewTCB—uxPriority

)
_(assert \forall TASK t; (FreeRTOS—tasks[t] && ((tskTCB x)t !=
pxNewTCB) && xSchedulerRunning != pdFALSE) ==>
((((xList =) ((tskTCB x) t)—>xGenericListltem.pvContainer) == &
pxReadyTasksLists [((tskTCB x) t)—>uxPriority] &&
((tskTCB x) t) != pxCurrentTCB) <==> FreeRTOS—>state[t] ==
ready))

if(_(atomic_read \embedding(&pxCurrentTCB))
pxCurrentTCB—>uxPriority < uxPriority)
{

_(ghost {
FreeRTOS—>state [(TASK) pxCurrentTCB] = ready;
FreeRTOS—>state [(TASK) pxNewTCB] = running;

b
_(assert FreeRTOS—state [(TASK) \old (pxCurrentTCB)] == ready)
//portYIELD_WITHIN_API () ;
_(atomic \embedding(&pxCurrentTCB)) {

pxCurrentTCB = pxNewTCB;

_(bump_volatile_version \embedding(&pxCurrentTCB))

}

_(assert \old (pxCurrentTCB)—>uxPriority >= uxPriority ==> (FreeRTOS
—>state [(TASK) pxNewTCB] == ready && FreeRTOS—>state [(TASK)
pxCurrentTCB] == running))

_(assert \old (pxCurrentTCB)—>uxPriority < uxPriority ==>

(FreeRTOS—>state [(TASK) pxNewTCB] == running &&
pxNewTCB == pxCurrentTCB &&
FreeRTOS—state [(TASK) \old (pxCurrentTCB)] == ready
)

)
_(assert FreeRTOS—priority [(TASK) pxNewTCB] == pxNewTCB—uxPriority

)

_(assert FreeRTOS—priority [(TASK) \old (pxCurrentTCB)] == \old(
pxCurrentTCB)—>uxPriority)

_(assert FreeRTOS—tasks [(TASK) \old (pxCurrentTCB)])

_(assume \forall TASK t; (FreeRTOS—tasks[t] && ((tskTCB x)t !=
pxNewTCB) && xSchedulerRunning != pdFALSE) ==>
((((xList =) ((tskTCB x*) t)—>xGenericListltem.pvContainer) == &
pxReadyTasksLists [((tskTCB *) t)—>uxPriority] &&
((tskTCB) t) != pxCurrentTCB) <==> FreeRTOS—>state[t] ==
ready))

_(assert \forall TASK t; FreeRTOS—tasks[t] ==> t—>\closed)
}//wrapping FreeRTOS
1
_(assume Trans())
return xReturn;

Page 107

Figure 5.8: Contract for deleting tasks

1 _(updates FreeRTOS)

2 _(requires \mutable(&xSchedulerRunning))

3 _(requires xSchedulerRunning == pdTRUE)

4 _(requires exclList())

5

6 _(requires FreeRTOS—>tasks [(TASK) pxTaskToDelete])

7 _(requires (tskTCB x)pxTaskToDelete != (tskTCB =x)xldleTaskHandle)
8

9 _(requires FreeRTOS—>tasks|[topReady])

10 _(requires FreeRTOS—>state [topReady] == ready)

11 _(requires \forall TASK rts;

12 (FreeRTOS—>tasks[rts] && FreeRTOS—state[rts] == ready)

13 ==> FreeRTOS—priority [topReady] >= FreeRTOS—priority[rts])

14 _(requires topReady != (TASK) pxTaskToDelete)
15 _(requires topReady != (TASK) pxCurrentTCB)

17 _(ensures ((TASK) pxTaskToDelete)—>\closed)

18 _(ensures pxTaskToDelete != NULL ==> | FreeRTOS—tasks [(TASK)
pxTaskToDelete])

19 _(ensures pxTaskToDelete == NULL ==> ! FreeRTOS—tasks [(TASK) \old(
pxCurrentTCB)])

20 _(ensures pxTaskToDelete == NULL ==> (TASK) pxCurrentTCB == topReady)

21 _(ensures \forall TASK t; (FreeRTOS—tasks[t] &&

22 \old (FreeRTOS—state[t]) != FreeRTOS—>state[t]) ==>

23 transition [\ old (FreeRTOS—>state[t])][FreeRTOS—state[t]])

the function, pxTaskToDelete has to be in tasks and not equal to the handler
of the idle task, xIdleTaskHandle. Then, topReady has to be in tasks with a
state of ready and have the highest priority of the ready tasks. Moreover, it is also
important to state that the topReady must not be the same as the running task or
the task to be deleted. Otherwise, the deleted task can be set to the new running

task after the operation, which is not sensible.

Compared to creating tasks, the postconditions for deleting tasks are quite simple.
They ensure that the target task is removed from the system by checking the value
of the tasks. When the deleted task is the old running task, topReady is used to
replace the running task. It needs to be noted that in FreeRTOS, if the handler of
the deleted task in parameter list is NULL, the running task will be deleted. Like
creating tasks, the last postcondition ensures that the state transfer for all tasks

follows the restriction defined by transition.

Again, similar to creating tasks, we firstly need to ensure the prover retains the
necessary information about the system. Before entering the critical section, we
unwrap FreeRT0S (see Ln.[347on Page.[348), as the deleted task is already owned
by FreeRTOS. To delete it, FreeRTOS has to be opened. As mentioned above,

Page 108

FreeRTOS defines a NULL value for the target task, which indicates that the target
task is the running task. This is because the macro prvGetTCBFromHandle is used

to obtain the control block for a task from its handle.

Meanwhile, the macro returns the control block of the running task, while the
handle is NULL. To simplify the code, FreeRTOS sets the value of the parame-
ter pxTaskToDelete to NULL, if it is equal to pxCurrentTCB. It then assigns the
task obtained from pxTaskToDelete to pxTCB, which represents the task to be
deleted afterwards. These two steps require access to the global volatile variable,
pxCurrentTCB. The atomic read declaration is needed for this. As the virtual struc-
ture FreeRTOS has been unwrapped, the ownership of tasks in the system is now
transferred to the thread and hence they are now wrapped. Assertion (in Ln.
on Page. is used to ensure that pxTCB is wrapped at that time, and can then

be unwrapped.

The function, uxListRemove, is used to remove pxTCB’s generic list item from the
system. Furthermore, it can be added to the list xTasksWaitingTermination to
mark that it needs to be removed. Then the idle task will make the deletion when
it is executed. It is also necessary to remove the event list of the target task, if it
is in any event list. Three assertions are used to ensure these operations perform
properly. Following this, a piece of ghost virtual code (between Ln.[403]and Ln.[406|
on Page. is used to maintain the system state. The state of pxTCB is set to
nonexistent, and the value of pxTCB in tasks is set to \false as well. Exiting
the critical session, the API function checks whether the running task has been
deleted. If it has been, rescheduling is required. Specifications and code similar
to creating task are used here to perform rescheduling. Again, due to the atomic
operation, we assert and assume the necessary properties of FreeRTOS before
and after atomic access. It can then be wrapped. Finally, assumption of Trans is
used to initialise the array transition, which can be used for the postcondition

check, at a later point.

Page 109

5.5 Getting and Setting Priority

The API function, uxTaskPriorityGet, is the simplest to verify (see Ln. 508539
on Page. [351). It keeps everything unchanged and returns the priority of the
target task. The precondition states that the target task (i.e., pxTask) is known
to the system and other general system preconditions, such as the one to cre-
ate tasks. The postcondition ensures that the returned value, \result, equals

FreeRTOS->priority[(TASK) pxTask].

To set the priority of a task, the API function vTaskPrioritySet can be used. To
verify this, similar to deleting a task, the extra virtual parameters FreeRT0S and
topReady are appended. However, in this case, the details of topReady remain
undefined at the beginning. The key reason for this is that vTaskPrioritySet re-
quests a system reschedule, when the priority of the running task is reduced. In
this case, the running task may still be scheduled as the new running task again.
Therefore, the definitions for the details of topReady are specified when reschedul-

ing is required.

As well as the four general preconditions, there are three extra annotations for
the precondition (see Ln. [551}560| on Page. [357). These state that topReady and
pxTask are in the system and that when the target task is the idle task, the priority
has to be 0. The postconditions for the vTaskPrioritySet (see Fig. first state
that the target task has to be closed and known by the system. The key feature for
this API function is then to update the priority of the target task. An annotation is
used to ensure that this has been done successfully. In our specification, there are
two cases where the system needs to be rescheduled, (a) when the target task is
in the ready state and obtains a higher priority than the running task; and (b) when
the priority of the running task is reduced to less than one of the ready tasks. The
following two predicates are specified to check that in these two cases the system
is rescheduled properly. Finally, it is verified that the state transitions are valid for

this operation.

Similarly, some assertions are used to show basic properties. After the dec-

Page 110

Figure 5.9: Postconditions for priority setting

1 _(ensures ((TASK) pxTask)—>\closed)
2 _(ensures FreeRTOS—tasks|[(TASK) pxTask])
3 _(ensures FreeRTOS—priority [(TASK) pxTask] ==
4 (\natural) (uxNewPriority < configMAX_PRIORITIES ? uxNewPriority :
configMAX_PRIORITIES — (unsigned portBASE_TYPE) 1U))
5 _(ensures (FreeRTOS—>state [(TASK) pxTask] == ready && FreeRTOS—priority
[(TASK) pxTask] > \old(pxCurrentTCB)—>uxPriority) ==>
6 (FreeRTOS—>state [(TASK) \old (pxCurrentTCB)] == ready && FreeRTOS—>
state [(TASK) pxTask] == running)
7)
8 _(ensures ((pxTask == NULL || (tskTCB x) pxTask == \old(pxCurrentTCB))
&& I
9 \forall TASK t; FreeRTOS—state[t] == ready ==> FreeRTOS—
priority [(TASK) pxTask] >= FreeRTOS—priority[t]
10)) ==> (FreeRTOS—>state [(TASK) \old (pxCurrentTCB)] == ready &&
11 FreeRTOS—state [(TASK) pxCurrentTCB] == running &&
12 \old (FreeRTOS—state [(TASK) pxCurrentTCB]) == ready)

13)

14 _(ensures \forall TASK t; (FreeRTOS—tasks[t] && \old (FreeRTOS—state [t
1) !'= FreeRTOS—>state[t]) ==> transition [\ old (FreeRTOS—>state[t])][
FreeRTOS—state [t]])

laration, the API function first checks whether the new priority is less than
configMAX_PRIORITIES (see Ln. on Page. [352). If it is not, it is set to the
maximum priority. An assertion is added to ensure this. It then enters the critical
session to update the priority of the target task and manage the system states. In
this case, the FreeRTOS structure needs to be unwrapped. It transfers the owner-
ship of pxTCB to the threads. As in the case of deleting tasks, if pxTask is equal
to pxCurrentTCB, it is set to NULL. With the macro prvGetTCBFromHandle the task
control block for the target task is obtained and assigned to pxTCB. Atomic read
annotations are also used for reading from pxCurrentTCB. The functions use a
local variable, uxCurrentPriority to record the old priority of the target task. Af-
ter obtaining the control block for the target task, its priority is also accessible and

assigned to uxCurrentPriority.

Afterwards, the local variable xYieldRequired is set to pdTRUE to indicate that
rescheduling is requested, according to the relation between the old and new pri-
ority of the target task (see Ln.[641}{663|on Page.[353). Specifically, if it is increased
and the target task is not the running task, or the target task is the running task and
its priority is decreased, it indicates that there may be a ready task that has a higher
priority than the running task. xYieldRequired is set. Following this, the function

starts to update the priority of pxTCB and manage the related system variables. At

Page 111

this point, some assertions are inserted into the source code to verify that pxTCB is
wrapped. We then unwrap it to allow the thread to update the priority of pxTCB. The
priority of the target task is also updated to the mapping priority of the virtual
model. Furthermore, if a task is in the ready or running state, its generic list item
should be placed in one of the ready lists, according to its priority. Therefore, the
target task has to be replaced in the new list based on its new priority, which helps

the system perform rescheduling correctly.

During this process, we first need to inform the prover that while pxTCB’s generic list
item is placed in one of pxReadyTasksLists, it is in the ready or running state (see
Ln. on Page.[354). Moreover, to replace its generic list item to the new position

of the pxReadyTasksLists, & (pxTCB->xGenericListItem) iS unwrapped.

Finally, assertions are inserted to verify that after this process, the target task is still
in the mapping tasks and its generic list item is replaced in the correct position.
The last part of the function is used to reschedule the system, if xYieldRequired
is set to pdTRUE (see Ln.[726]on Page.[354). Similar to the previous API functions,
portYIELD_WITHIN_API is used to perform this. It is replaced with ghost code as
well. The assertions and assumptions are used to ensure the operation works.
The only thing different here is that we need to specify the details of topReady
above the ghost code. Because the API function requests rescheduling when the
priority of the running task is reduced, it can still have the highest priority compared
to the other ready tasks. Therefore, topReady can be pxCurrentTCB for this API
function. Further, it has to have the highest priority compared to the other ready
tasks. If the running task still has the highest priority, it is set to topReady. Like the
previous API functions, the atomic access has lost some of the information about
FreeRTOS, so we simply assume that they hold. It can then be wrapped before

exiting the critical session. Finally, the assumption for Trans () is inserted.

5.6 Suspending and Resuming Tasks
In the FreeRTOS task model in Z, we also verify the API functions for suspend-

ing (see Page. 358) and resuming (see Page. 359) tasks, which are sim-

Page 112

ilar to deleting and creating tasks. The key difference between suspending and
deleting tasks is the destiny of the target task, which are the suspended state and
the non-existent state respectively. Due to space limitations they are not presented

here, but can be found from the supplementary material.

5.7 Summary

This chapter firstly introduced VCC and the overview of our verification with VCC.
The rest of the chapter showed our verification for task related functions in the
FreeRTOS implementation. The work described in this chapter shows the possibil-

ity of verifying executable code with an abstract specification and code verifier.

In the next chapter, the FreeRTOS model described in Chap. [4] will be extended to

suit a multi-core platform.

Page 113

Page 114

Chapter 6

EXTENSION FOR MULTI-CORE

This chapter extends the model described in Chap. |4 to a multi-core platform. It
also follows the structure adapted in Chap. [4, which develops the Tusk, Queue,
Tvme and Mutex models. Due to time limitations, we were only able to extend the
FreeRTOS specification to a multi-core platform; the proof of the consistency of the
model could not be completed and is part of our future work. In addition, it was
not possible to show all details of the model in the thesis. Full details can be found

from the supplementary material.

6.1 Overview

To migrate FreeRTOS to a multi-core platform, it is important to find a new schedul-
ing policy for tasks. Similar to the model for FreeRTOS, this is an abstract model.
Therefore, one option is to leave the scheduling algorithm as nondeterministic. It
could then be refined as required at the refinement stage. However, because the
system described is an extension of FreeRTOS, we decided to extend the schedul-
ing algorithm for FreeRTOS to a multi-core algorithm. This provides benefits for
the development in later stages. For instance, if we apply the promotion tech-
nigue to develop the new specification of the multi-core mode[], the specification

for FreeRTOS can be reused. As mentioned previously, in FreeRTOS, tasks are

'We produced another version of the task model with promotion, which is shown in Sect.

Page 115

scheduled based on their priority. On a multi-core platform, tasks execute in paral-
lel. Therefore, rather than time-slicing a single processor, a simple scheduling pol-
icy is used to extend the notion of a highest-priority ready task to a set of highest-
priority tasks sufficient for the number of cores available. This is called global
scheduling. However, it is known to be less efficient than partitioned scheduling,
where each task is bound to a specified core and scheduling occurs within the
core [73]. The main reason for this is the cost of migrating tasks from one core to

another. We adopted a priority-based partitioned scheduling policy.

As this was the first attempt, we aimed to keep everything as simple as possi-
ble. Therefore, we avoided specifying details about the architecture of the multi-
core platform, memory and interrupt management. Following the structure of the
FreeRTOS model, we divided our specification for the multi-core platform into four
major parts: Task, Queue, Time and Mutex. The well-definedness of these mod-

els was checked by Z/Eves. Furthermore, they can also be animated by ProZ.

6.2 Task Model

This is the core part of the specification. It includes operations for task manage-
ment, such as creating tasks and deleting tasks, etc. Similar to Sect. [4.2.1] we also

need to define some basic statements that are used in the specification.

6.2.1 Basic Statements
As well as the given sets defined in Sect. [4.2.1, we introduce another given set,

CORFE, to represent the cores.
[CONTEXT, TASK, CORFE]

The constant, bare_context represents the initial state of the processors, similar to
the FreeRTOS model. The multi-core operating system may have multiple idle
tasks, one for each core; therefore, the constant idle need to be updated to idles,
a finite set of tasks. The last constant cores represents all the cores available for
the system. As each core can have only one idle task, the number for cores and

idle tasks should be the same.

Page 116

bare_context : CONTEXT
idles : F TASK
cores : F CORE

#cores = #idles
cores # ()

As in FreeRTOS, we defined five states for tasks in our system. Their state transi-
tions should also obey transition defined in Sect.

Similar to the FreeRTOS model, we also have four sub-state schemas to describe
all essential properties of tasks in the system: TaskData, StateData, ContextData
and PrioData. TaskData includes the most basic properties of the system. It
first introduces a finite set tasks to represent all the tasks in the system. As a
multi-core system, there is more than one running task in the system: each core
must always have a running task and the running task is uniquely run on one core.
Therefore, the definition of the running task is updated to an injective total function,
running_tasks, which shows the relation between cores and their running tasks.
Finally, a partial surjective function, executable, is given to record the relation be-
tween each task and its core. As we adopted a partitioned scheduling policy in our
system, this information is essential for scheduling. To guarantee the properties
mentioned above, four constraints are specified.

__TaskData
tasks : F TASK
running_tasks : cores — TASK
executable : TASK —» cores

ran running_tasks C tasks

1dles C tasks

dom executable = tasks

YVt : ran running_tasks e running_tasks™(t) = executable(t)

The definition for StateData and PrioData are similar to the FreeRTOS model.
The only difference is that rather than checking only one idle task, we need to
ensure that for all id1e tasks, their states are ready or running and their priorities
are 0. Originally, there was only one core in the system, which meant that only one

physical context needed to be recorded. Here, in the new ContextData, a function

Page 117

from cores to CONTEXT is used to record the physical context for each core. With
these schema definitions, the schema for the base system, Tusk, can be defined

as follows:

_ Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state™({nonexistent} |))
state™ (| {running} |) = ran running_tasks
V pt : state™({ready} |); r : ran running_tasks
| executable(pt) = executable(r) o priority(r) > priority(pt)

It appends three extra constraints to the system. Comparing it to the Task schema
in the FreeRTOS model, we can see that the meaning of these constraints are the
same. However, as the number of running tasks changes from one to many, the

expression has to be updated accordingly.

It is essential to provide the schema to initialise Task. When the system starts,
(@) There are only idle tasks in the system; (b) The state for all tasks is
nonexistent, except idle tasks, which are the running tasks for their cores; (c) The
physical and logical context is empty at the moment, i.e., bare_context; (d) The pri-
ority is 0 for all tasks. Because each core only has an idle task in the initial
state, the initial value for running_tasks and ezecutable should be pairs of idles
and cores. However, although it is important to know there is an idle task from
i1dles executing on each core from cores, we do not care which idle task maps to
which core. Therefore, we leave the initial value for running_tasks and executable

as nondeterministic.

Similar to the previous model, the A schema for Tusk has been overridden to insist
that the state transfer for each task should follow the rule defined in transition as

well.

Page 118

6.2.2 Additional Schemas

First, the schema Reschedule is modified to satisfy priority-based partitioned
scheduling for the multi-core environment. Specifically, all the tasks are bound
to a core, which is available in the system; they will be scheduled later within the
core, based on their priority. When there is a task whose priority is higher than the

running task of its core, it will be scheduled as the new running task.

__ Reschedule
A Task
target? : TASK
tasks? : F TASK
executable? : TASK — cores
st? : STATE
pri? . TASK — N

target? € tasks?

dom ezxecutable? = tasks?
tasks’ = tasks?
running_tasks’ = running_tasks

®{ (executable?(target?) — target?)}
executable’ = executable?
state’ = state & {(target? — running),

(running_tasks(executable?(target?)) — st?)}
phys_context’ = phys_context

®{ (executable?(target?) — log_context(target?))}
log_context’ = log_context

@{(running_tasks(executable?(target?))

— phys_context(executable?(target?)))}

priority’ = pri?

As well as the interface variables introduced in the FreeRTOS model, target?,
tasks?, st?, pri?, another input variable is provided, executable?, which updates

the executable information for tasks.

Second, there is also a frequently reused operation to search for the ready task

that is bound to the same core as the given task and holds the highest priority.

findTopReady
Task

target? : TASK
topReady! : TASK

Page 119

target? € tasks

state(topReady!) = ready

executable(topReady!) = executable(target?)

Vrt : state™({ready} |) | exzecutable(rt) = executable(topReady!)
e priority(topReady!) > priority(rt)

This schema is reasonably simple compared to the previous one. It takes the given
task in the input target” and returns the highest-priority ready task with topReady!,
which is nondeterministically selected because we are not concerned about the
details of any particular scheduling algorithm, only that this task holds the highest

priority among the other ready tasks within the same core.

Third, due to partitioned scheduling, when creating a task it is necessary to al-
locate it to one specific core, which may have access to a particular resource or
have the shortest distance property. If, however, the location of the task is not
of interest to the user, then the system will allocate a suitable core. The algorithm
used here is inspired by Best-Fit Algorithm [74] for memory allocation. The schema
findACore_T is designed to be used by the task creation schemas to find a proper

core for new task.

— findACore_T
Task
newpri? : N
executeCore? : CORE
executeCore : CORE

executeCore? & cores
executeCore € cores
Jtcs, cs : F cores |
tes = { pc = cores | newpri? > priority(running_tasks(pc)) }
o (tcs =) = cs = cores) A (tes # 0 = cs = tes)
A (Y oc: cs o executeCore € cs
A #(ezecutable™ (| {executeCore} |)) <

#(executable™({oc} |))

The key aim of this algorithm is to find the best core for the task, so that it can be
executed as soon as possible. It also attempts to minimise the maximum loads

of all the cores, thus helping other tasks to meet their deadlines. Specifically, this

Page 120

schema takes two input variables from the task creation schemas, newpri? and
executeCore?, which represent the new priority of the target task and the target
core specified by the user. When ezecuteCore? is specified by the developer, this
schema will have no effect. Otherwise, it compares the priority of the new task
with the priority of all running tasks to find out whether it is possible to schedule
the new task immediately. If it is possible, then the set ics includes all possible
cores. Otherwise, it is set to cores, which indicates all the cores available in the
system. Subsequently, it examines which core has the minimum load and sets it to

ezecuteCore, which can be used later by related schemas.

6.2.3 Creating and Deleting Tasks
Similar to creating tasks for FreeRTOS, the relation between the priority of the

new task and the priority of the running task, both of which are executed in the
same core, splits task creation into two separate cases, normal and rescheduling.
Depending on whether the associated core for the new task is specified, each of
these cases can be further divided into two sub-cases. Therefore, the definition for
task creation can be divided into four cases. When the user specifies the executing
core, the new task target? is added to the system with the new priority newpr:i? and
the bound core information recorded in related functions. If the priority of the new
task is not higher than the priority of the running task, the system does not need
rescheduling; the state of the new task is set to ready. Otherwise, Reschedule is
used to reschedule the system. When the executing core is not provided by the
developer, the schema findACore_T is used to determine the core to which the
new task will be bound. Therefore these cases, where the user does not provide

the executing core, are covered by the cases where the executing core is specified.

The delete operation is simpler than the create operation, because it considers only
two cases, rescheduling or not. These cases are similar to the FreeRTOS model. If
the deleted task is not the running task, it removes the target task from the system
and updates related functions; otherwise, it leads to rescheduling. As tasks are
bound to different cores, we cannot simply get the task with the highest priority from

the ready state, like the rescheduling case for task deletion in the FreeRTOS model.

Page 121

The schema findTopReady is used to find which task is going to be rescheduled
as the new running task for that core after the operation. Otherwise, it does a
similar job to the FreeRTOS model: removes target?, which is a running task, from
tasks, and executable; updates topReady!, which is defined by findTopReady, to be
the running task in its core; updates the physical context of the executing core of
topReady! to its logical context; and finally, sets the logical context of the previous

running task to bare_context.

6.2.4 Migrating Task
As a multi-core system, it is also necessary to provide facilities for the user to move

a task from one core to another. The schema, Migration_T, is introduced for this

purpose. There are four cases for migrating tasks:

1. MigrationN_T The task that is going to be migrated is a non-running task
with a priority that is not greater than the priority of the running task of the
target core, and therefore does not cause rescheduling, either in the orig-
inal core or in the target core. All that needs to be done is to update the

information about the target task in the new core for executable.

2. MigrationS_T The migrating task is a non-running task with priority higher
than the running task of the new core. The original core does not perform
rescheduling, but the migrating task causes a reschedule in the target core.

The schema Reschedule is used to do this.

3. MigrationRuN _T The migrating task is running in its core, but has a priority
lower than or a priority equal to the running task of the target core. As the
migrating task is moved out, rescheduling is requested to find a suitable ready
task to fill the core. In the target core, however, the migrant is simply added

to the ready list.

4. MigrationRuS_T The migrant task is the running task in its core and also
has a higher priority than the running task in the target core. Both source

and target cores need rescheduling (and Reschedule cannot do this).

Page 122

6.2.5 Other Operations

In addition to the operations described above, other operations are also for task
management, such as suspending tasks, resuming tasks and changing the priority
of tasks. However, their effects are isolated to a single core, the one in which the
target task is executing. Their definitions are almost the same as in the FreeRTOS
model. Therefore, they are not described in detail here. Their specification can be
found in the supplementary material. It is worth noticing that as the definition of
the running tasks is different, the related expressions are different and we need to

keep the function ezecutable unchanged for these operations.

6.3 Queue Model

Queue is also defined as a communication facility for tasks in our system. As
tasks which need to communicate with each other may be resident in the different
cores, queues should be accessible for different cores. At the same time, the base
statement definition for the queue model in the FreeRTOS model includes all the
essential information about a queue. However, each queue is limited to a single
core only. Therefore, the function ¢_ava is appended to the schema QueueData
to enable multiple accessibility for the new model. This function records a set of
cores for each queue, which can access the queue. Similar to the functions, ¢_size
and ¢_max, the domain of this function should also be the queues known by the
system, i.e., queue. The range also has to be a set of cores known by the system,

i.e., cores.

_ QueueData
queue : P QUEUE
g-maz : QUEUE + N;
q_size : QUEUE + N

g_ava : QUEUE + F CORE

dom g_max = dom q_size

dom ¢g_size = dom q_ava

dom g_ava = queue

ran g_ava C IF cores

Vq: QUEUE | q € queue o g_size(q) < g-maz(q)

Page 123

To extend operations from the task model to the queue level, the same strategy in
Sect.[4.3.2/can be used. In addition, when deleting or suspending a task, it is nec-
essary to remove related data from functions in WaitingData and Q) ReleasingData.
It is worth noticing that although it is easy to use the variable running_task to re-
fer to the task executing the operation in the FreeRTOS model, we have multiple
running tasks in the new model. A new input variable, self?, has to be introduced
to each schema which needs to refer to the task executing the operation. For in-
stance, to distinguish whether a task has just been released from the waiting event,
we check whether the running task belongs to the domain of releasing functions
in the FreeRTOS model. Here, we need to verify whether self? belongs to the

releasing functions.

To create a queue, as well as the constraints and the behaviours described in
Sect. |4.3.3) we also need to know the set of cores, cset?, which can access the
queue. This information is recorded by appending the ordered pair, (que?, cset?),

to the function ¢_ava.

When deleting a queue, we first need to check whether the calling task belongs to
a core which can access the queue. Because there is more than one running task
in the system, it is impossible to refer to the calling task by using the running task.
The input variable self? is introduced to indicate the calling task. Then, with the
function executable, its bound core can be identified. If this core is one of the cores
which can access the queue, deleting can be performed. The information related

to the queue should be removed from queue, ¢_mazx, q_size and q_ava.

For sending and receiving items to and from a queue, we also use the variable
self 7 to identify the calling task, and the schema findTopReady is used to find the
correct highest-priority ready task when rescheduling is required. The behaviours
of these operations are the same as the FreeRTOS model (see Sect. [4.3.4).

Because a queue can only be accessed by a particular set of cores in the sys-
tem, if a task which is using the queue migrates to another core which is not au-

thorised to access the queue, the set of available cores for the queue has to be

Page 124

updated to include the core, or the task loses its ability to access the queue. The
last operation for the queue model is introduced to handle this, which is called
ChangeQueueLevel _TQ).

__ ChangeQueueLevel _T(Q)
A TaskQueue
que? : QUEUE
self?: TASK
cset? : IF cores

self? ¢ dom release_snd U dom release_rcv

que? € queue

state(self?) = running

executable(self?) € q_ava(que?)

cset? # q_ava(que?)

cset? £

Vit wait_rcv™({que?} |) U wait_snd™({que?} |

Urelease_rcv™ (| {que?} |) U release_snd™ (| {que?} |

o cxecutable(t) € cset?

=Task

queue’ = queue

g—max’ = g_max

q_size! = q_size

q_ava’' = q_ava ® {(que? — cset?)}

=WaitingData

ZQReleasingData

As we can see from the specification, the behaviour of the operation is really sim-
ple. It updates the value of ¢_ava(que?) and keeps everything else unchanged.
However, it can be performed only when the new set of cores is not empty and not
equal to the original set. In addition, it also has to include all the cores in which
there are some tasks using the queue. Otherwise some of these tasks may lose

access to the queue.

6.4 Time and Mutex Model

The semaphores and mutexes in this multi-core model are also defined as special
cases of queues. The properties of time facilities and semaphores and mutexes
are the same as the FreeRTOS model. The operation schema of the lower level

model can be extended to the higher level by the same strategy. Moreover, for the

Page 125

operation schemas for the time and the mutex model except TimeSlicing_TQT,
schemas for mutex tasking and mutex given, they focus on the behaviour of one
task in one core, so their definitions are close to the FreeRTOS model. Due to
length limitations, they are not repeated here (see Sect. [4.4] & [4.5/and Page.
and [225) for the details).

6.4.1 Time Slicing

The most interesting schema for this model is TimeSlicing_TQT. When time-
slicing happens, the running tasks need to be replaced in all the cores in which
there are some ready tasks that have the same priority as their running task. To
achieve this, we first define a set of ready tasks with the same priority as their
running task, called top Readys!. With this set and the inverse function of executable,
we can find all the cores which need to be rescheduled. Therefore, the following
schema is given.

__TimeSlicing_TQT
A TaskQueueTime
topReadys! : F TASK

#topReadys! < #cores

V¢ : topReadys! e state(t) = ready

A priority(t) = priority(running_tasks(ezecutable(t)))
Vi1, 12 : topReadys! | executable(tl) = executable(t2) o t1 = ¢2
Vc: cores | (Vt: topReadys! e executable(t) # c)

o (Vt: executable™({c} | | state(t) = ready

e priority(t) < priority(running_tasks(c)))

topReadys! # ()
V't : dom time o time_slice < time(t)
tasks’ = tasks
executable(topReadys! |) 9 running_tasks’

= executable(| topReadys! |) 9 running_tasks
executable’ = executable
(running_tasks(executable(topReadys! |) |) U topReadys!) < state’

= (running_tasks(executable(topReadys! |) |

UtopReadys!) < state

executable(topReadys! |) € phys_context’

= executable(| topReadys! |) 9 phys_context
running_tasks(executable(| topReadys! |) |) < log_context’

= running_tasks(executable(| topReadys! |)) < log_context
priority’ = priority
Y trt : topReadys!

Page 126

e running_tasks'(executable(trt)) = trt
A state'(trt) = running
A state’ (running_tasks(executable(trt))) = ready
A phys_context'(executable(trt)) = log_context(trt)
A log_context' (running_tasks(executable(trt)))
= phys_context(executable(trt))

ZQueue

clock’ = clock

delayed_task’ = delayed_task

time’ = time

time_slice’ = time_slice + slice_delay

For this operation, the post condition for running_tasks has to be discussed in two
parts: (a) for the cores which do not need to be rescheduled, the value has to be
equal to its original value; (b) on the other hand, the value has to be updated with
tasks in topReadys! according to its executable core. Similarly, the post conditions
for variables state, phys_context and log_context also need to be considered in two
parts. Moreover, the value of time_slice has to be increased and the rest of the

variables should be the same as before.

6.4.2 Taking Mutexes
As mentioned in Sect. |4.5.4} for a single core system, there are six cases for taking

a mutex. When this operation migrates to a multi-core platform, there are two
extra cases. First, if the task which is executing is taking the mutex and holds
the mutex already, the specification simply increases the value of mutex_recursive
for the mutex. Then, if the mutex is available, there are two cases for taking a
mutex depending on whether the calling task has held a mutex already. Similar to
the FreeRTOS model, the schema QueueReceiveN_TQT is used to simplify the
specification. When the mutex is not available and the priority of the calling task
is not greater than the priority of the mutex holder, the calling task will be blocked
by the operation and no priority inheritance requested, QueueReceiveE_TQT is
used for this case. In addition, once the priority of the calling task is higher than
the mutex holder, the mutex holder needs to inherit the priority of the calling task.
As a multi-core system, the mutex holder and the calling task may be executing

in different cores. If they are executing in the same core, the operations are close

Page 127

to the FreeRTOS model. The mutex holder or the top priority ready task replaces
the calling task, which is blocked by the waiting event. However, when the mutex
holder belongs to a different core of the calling task, there are two additional cases.
When the inherited priority of the mutex holder is lower than or equal to its running
task or the mutex holder is not in the ready state, for that core, no rescheduling
is requested. We just need to reschedule the top priority ready task of the calling
task as the new running task. On the other hand, once the mutex holder is in the
ready state and the inherited priority is higher than its running task, rescheduling
needs to be performed in both cores. For these two schemas, Reschedule cannot
be used for rescheduling. This is because of the need to update the state of three

and four tasks respectively. Reschedule cannot handle this.

6.4.3 Giving Mutexes

Like the FreeRTOS model, the mutex giving operation is the most complex of the
whole model. The new version of basePriorityMan is also introduced to help man-
age the base priority of the calling task. The first case for this operation is also
for a recursively returning mutex. It decreases the mutex_recursive of the mu-
tex and keeps everything else unchanged if the mutex holder takes the mutex
several times. When there is no task waiting to take the mutex, we have three
cases: (a) The mutex holder, i.e., the calling task, did not inherit priority from an-
other task. It just uses the schema QueueSendN_TQT to return the mutex, re-
moves the mutex holder from the mutex, sets the mutex_recursive of the mutex
to 0, uses the schema basePriorityMan to manage the base priority of the call-
ing task and keeps the rest of the variables unchanged; (b) When the priority of
the mutex holder is inherited from another task, it needs to reset its priority to the
original. Further, if its original priority is still the highest of the ready tasks in the
same core, it can keep executing. As the priority of the mutex holder has to be
updated, the schema QueueSendN_TQT cannot be used. The behaviour has to
be defined from scratch. It first updates the priority of the mutex holder, sets the
size of the mutex to 1 make the mutex available for other tasks and also updates

mutex_holder, mutexr_recursive, etc. as in the previous case; (c) Finally, when the

Page 128

original priority of the mutex holder is not the highest; rescheduling is requested
and the schema Reschedule is used. Furthermore, if there are tasks waiting to take
the mutex, when the mutex holder returns the mutex, the highest priority waiting
task is woken up. Meanwhile, if the mutex holder did not inherit the priority, the
priority of the mutex holder does not need to be updated after the operation. What
we need to do is return the mutex, and unblock the highest priority waiting task.
However, depending on the priority of the woken-up task, rescheduling needs to
be considered. If its priority is not higher than the running task of its core, the wo-
ken task is placed in the ready state. Otherwise, the running task is replaced in
its core. The behaviour of these two cases is the same as that of the queue send-
ing operation except variables related to mutexes. Therefore, the specification for
these two schemas can be defined with the schema of QueueSendW _TQT and
QueueSendWS_TQT respectively, and an update of the functions mutex_holder

and mutez_recursive.

Finally, different from last two cases, the mutex holder inherits priority from other
tasks in the remaining cases. After the returning operation, the priority of the mutex
holder has to be reset and the highest priority waiting task has to be woken up. In
detail, the following conditions have to be considered to decide the behaviour of

these cases:
1. Do the woken task and the calling task belong to the same core?

2. The relationship between the original priority of the mutex holder, the top
priority ready task which executes in the same core as the mutex holder, the

woken task and the running task in the same core as the woken task.

Table illustrates the cases and their conditions in detail. In this table, Running
Task refers to the running task which executes on the same core as the woken
task, if the executing core for the woken up task is different from the executing core
for the calling task; Top Waiting refers to the highest priority waiting task of the
mutex; and Top Ready represents the highest priority ready task of the core of the

calling task.

Page 129

holder inherits the priority)

Table 6.1: Conditions for giving mutex cases (have waiting tasks and the mutex

Running Task | Top Waiting Calling Task Top Ready
C2 1 1 1
Py - - Py
Running Ready Ready Running
Ca 1 1 1
Py Py - -
Running Running Ready Ready
Ca C1 1 1
Py - Py -
Running Ready Running Ready
C2 C2 1 1
- PH PH -
Ready Running Running Ready
C2 C2 1 1
- Py - Py
Ready Running Ready Running
Ca Co 1 1
Py - Py -
Running Ready Running Ready
Co Co C1 €1
PH - - PH
Running Ready Ready Running

From this table, firstly we can see that the effect of cases 3 & 6 are the
same. They do not need to reschedule the tasks in any core. The schema
MutexGive WInhN _TQTM is defined for this case, which is the normal case for
mutex returning. Secondly, cases 1 & 7 have the same effect as well. Although the
relation between the executing cores for the top priority waiting task and the calling
task are different in these two cases, they both request to use the top priority ready
task replacing calling task as the new running task and do not reschedule for any
other cores. When the woken task belongs to the core of the calling task, the pri-
ority of the top priority ready task has to be the highest compared with the original
priority of the calling task and the priority of the woken task. When the operation
resets the priority of the calling task, the system needs to be rescheduled. Simi-

larly, cases 2 & 4 can also be recognised as the same case. Even through the post

Page 130

states for these four tasks are different in these two cases, it can be considered as

the top priority waiting task being rescheduled as the new running task in its core.

Specifically, if it belongs to the core of the calling task and its priority is the highest
compared with the original priority of the calling task and the priority of the top
priority ready task, it is scheduled as the new running task in its core (c;). There
is no rescheduling for other cores (¢;). On the other hand, when the woken task
belongs to a different core from the calling task, and its priority is also higher than
the priority of the running task in the core and the original priority of the calling task
is no less than the priority of the top priority ready task in that core, the rescheduling
also occurs in the core of the woken task (c;) and no rescheduling is requested for
other cores (c;). Finally, case 5 is the last case for giving mutexes. It requests
rescheduling for both cores of the calling task and the woken task. As shown in
Table [6.1], the top waiting task and the calling task belong to different cores. The
priority of the top waiting task and the top ready task are the highest in their cores.
Rescheduling happens in both cores. As well as these differences for task related
variables, the new values for the other variables are the same as the other cases

of mutex giving. The specification for these schemas can be found from Page.

6.5 Summary

This chapter presented the extended FreeRTOS model, which is used for a multi-
core platform. The first section highlighted the differences between the original
version and the multi-core version of the model. Following the structure used in
Chap. 4, the model for the multi-core platform was shown, which focused on the
differences between the original model and the new model. This piece of work

shows that the model is easy to reuse and extend.

The next chapter will evaluate our project. Case studies will also be shown in the

next chapter.

Page 131

Page 132

Chapter 7

EVALUATION AND CASE STUDIES

This chapter evaluates our research project. It compares the project with the ob-
jectives listed in Sect. it also summarises the achievements of the project, fol-
lowed by animations and proofs for the case studies discussed in Chap.[3 Finally,

some issues about the implementation of FreeRTOS are discussed.

7.1 Project Summary

We will now show that, except objective [d| in Sect. (which is included in
Sect. as a future work), our project meets the objectives (Sect. and
requirements (Sect. proposed at the beginning of the project. During the
project, we produced an abstract formal model for FreeRTOS (Obj. [a). This in-
cludes 514 Z paragraphs, including basic definitions for the model, schemas for
the operations, theorems for the consistency verifications and some assistant lem-
mas. From these paragraphs, 598 theorems were derived, all of which have been
proved with Z/Eves (Well-definedness and Feasibility). In particular, around
half of them (240) were proved automatically. The specified behaviour of the
FreeRTOS API functions meets the requirements list in Sect. 3.3.11 The sum-
mary of the relationship between the APl interfaces and the schemas in the speci-

fication is included in Appendix [C] In addition, the model can also be animated by

Page 133

ProZ [33] (Animatable). Based on our specification, the function contracts for task-
related API functions were developed and the functions verified with VCC (Obj.).
However, due to time limitations, we only verified the task-related API functions
and reduced the code complexity to focus on the functions modelled with the Z
notation, we believe it is enough to demonstrate the possibility of directly verifying
the implementation with the abstract formal specification. During the modelling and
verification of FreeRTOS, we detected some issues with the FreeRTOS implemen-
tation, which are discussed in detail in Sect. (Obj.[c). Finally, we extended the
model of FreeRTOS to a multi-core platform, as described in Chap. [} The well-
definedness of our multi-core model was also verified with Z/Eves, which includes
the basic syntax and domain check for all the definitions. Further, the multi-core
model can also be animated by ProZ (Obj. [e). These extensions show that our
specification for FreeRTOS is reusable. We also provide the source code and
project file of our work in the supplementary material. This makes it easy to repro-
duce (Reproducible). Therefore, our model satisfies non-functional requirement

stated in Sect.[3.3.2

In summary, except objective[d] this project meets the objectives and requirements,

both functional and non-functional, proposed at the beginning of the project.

7.2 Case Studies

As discussed in Chap. |1, we have shown how our specification illustrates the exe-
cution of FreeRTOS code. Due to the different format requirements between ProZ,
CZT and Z/Eves, we modified the source files to fit them. However, to animate our

model with ProZ, some extra modifications were still needed, as follows:

e Remove the definition for the findDelegate function, which is defined to help
in proof and has no effect for animation. Most importantly, ProZ struggles
with it and runs out of time;

e Remove the disabled mark for transition, i.e., use \begin{zed} to replace
\begin[disabled]{zed}. Otherwise, ProZ cannot use this definition, as

[disabled] is not defined in ProZ;

Page 134

e Use “Init” to replace the name of the top-level initialisation schema of the
model. For instance, to animate the Task model, the name of the schema
Init_Task, should be replaced. This is the entrance for ProZ to detect the
model state and initialise the model;

e Remove the label, (disabled slice_delay_def)), which is not defined in ProZ;

e For the mutex model, use “XXX7/que?” to replace all “que? := XXX7” in
the schema reuse, as CZT cannot recognise the second format; in addition,
ProZ cannot handle the first one.

e For the mutex model, we use the schema basePriorityMan (See Page.
to simplify the definitions for returning mutex, which is helpful for modelling.
However, it dramatically increases the load for the animator. Therefore, it
has to be removed and its contents have to be used to replace all calls to
the schema. For example, the schema MutexGiveNnoninh_TQTM (See
Page. uses the schema basePriorityMan to manage the base priority
of the running task, which should be replaced by:

running_task € ran({mut?} <9 mutex_holder)
= = Original PriorityData
running_task ¢ ran({mut?} <9 mutex_holder)
= base_priority’ = {running_task} <9 base_priority

7.21 Case 1
The application for the first case is shown in Fig.[1.2] Page. 6] Firstly, ProZ is used

to animate the model. Before animation, we set the size of our given sets to 4; the
maximum integer needs to be set to 4 as well. This is because we have four tasks
in the application, idle, Task1, Task2 and Task3, and the maximum number used
is the priority of Task3, namely 4. Afterwards, the .tex file is loaded in ProZ.
Although we have three tasks in the application, these tasks execute in a single-
core processor. Therefore, it is possible to predict the sequence of API function

calling, which ig}

xTaskCreate Create Task2 with priority of 1;

'As idle task is created when the animator is initialising, it is actually Task1 for the animator.

Therefore, the first task we created in the application (i.e. Task1) is Task2 in ProZ.

Page 135

Figure 7.1: API function execution history and result for Case 1

K] State Properties —/4

log_context(idle) = bare_context
log_context(TASK2) = bare_context
log_context(TASK3) = bare_context
log_context(TASK4) = bare_context
phys_context = bare_context

History

DeleteTask_T(TASK4)-->TASK2
CreateTask _T(4, TASK4)
ChangeTaskPriority_T(3, TASK2)-->TASK2
CreateTask_T(2, TASK3) priority(idle) = 0
CreateTask_T(1 .Ta‘QSKQ} priority(TASK2) = 3
INITIALISATION({(idle|->bare_context),(TASKZ|-> priority(TASK3) = 2

priority(TASK4) = 4
running_task = TASK2
state(idle) = ready
state(TASK2) = running
state(TASK3) = ready
state(TASK4) = nonexistent
tasks = {idle, TASK2, TASK3}

xTaskCreate Create Task3 with priority of 2;
vTaskPrioritySet Change the priority of Task?2 to 3;
xTaskCreate Create Task4 with priority of 4;
vTaskDelete Delete Task4;

After initialising the machine in ProZ, we call the API function in this order (see
Fig. [7.1). As we analysed in Sect. [1.2.1] the expected final state of execution
should be:

1. There are three tasks left in the system, idle, Task2, and Task3;
Task?2 is the running task, as it has priority of 3.

Task3 is in ready state with priority 2.

> 0D

Task4 is unknown to the system, therefore its state is nonexistent.

As we can see from the screen shot of state properties, the result generated from

our model matches our expectations.

In addition to this, we also let Z/Eves verify our result. We use a theorem, simi-
lar to Theorem: [21] (see Page. [90), to show that the behaviour of the API function
matches our expectation. The API function call xTaskCreate is repeated three
times in the application, but we only show the theorem for one of these calls. There-

fore, we have the following theorems to show our model works for the application.

1. Create Taskl. When we execute this, there is only the idle task in the

system, which is the running task; therefore, we have to indicate this situation

Page 136

to the prover. The input variables need to be introduced and we need to
specify the value of newpri? as 1. After this operation, we expect that the
new task is created, which means it is in the set tasks’. It should be the

running task with priority 1, which is higher than the priority of the idle task.

Theorem 24 (CaseStudyStep1)

V Task; target? : TASK; newpri? : N
| tasks = {idle} A running_task = idle
A newpri? =1 A CreateTask_T
o target? € tasks' N state'(target?) = running
A priority’ (target?) = 1

To prove this, we know that the system needs to be scheduled. Therefore, we
try to eliminate the non-schedule part of the specification of CreateTask_T.
The key condition to distinguish these two cases is whether the priority of the
new task is greater than the running task. Thus, we expand the necessary
schemas of the proof goal and then let the prover discharge the proof goal

automatically by the prove_by_reduce; command.

proof [CaseStudyStepl]
with disabled (CreateTaskS_T, StateData,
TaskData, ContextData) reduce;
prove by reduce;

. Change the priority of Task2 to 3. Similarly, we need to inform the prover
about the pre-state of the system. The key element of the expected result of
this API function call is that Task2 is scheduled as running task with priority
of 3. By eliminating the unrelated case of ChangeTaskPriority_T, like the

previous case for CreateTask_T, it is easy to prove this theorem.

Theorem 25 (CaseStudyStep3)

V Task; Task2, Task3, target? : TASK; newpri? : N
| tasks = {idle, Task2, Task3}
A priority(Task2) = 1 A priority(Task3) = 2
A state(Task2) = ready N running_task = Task3

Page 137

A target? = Task2 N\ newpri? = 3
A ChangeTaskPriority_T
o priority’(Task2) = 3 A running_task’ = Task?2

3. Finally, we verify the properties related to the last step of the API function
call, delete Task4. Following the strategy introduced before, the theorem
and proof can be obtained. The only difficulty in proving this theorem is
in the nondeterministic definition for topReady!. In order to solve this, it is
necessary to inform Z/Eves that (a) the possible value of topReady! is one
of the elements of tasks; and (b) the priority of topReady! is the greatest
amongst all ready tasks, i.e., the priority of topReady! has to be greater than

or equal to the priority of Task2.

Theorem 26 (CaseStudyStep5)

Y Task; Task2, Task3, Task4, target? : TASK; newpri? : N
| tasks = {idle, Task2, Task3, Task4}
A priority(Task2) = 3 A priority(Task3) = 2
A priority(Task4) = 4 A state(Task2) = ready
N state(Task3) = ready N state(Task4) = running
A target? = Task4 A DeleteTask_T
o state’(Task4) = nonexistent A\ running_task’ = Task2

7.2.2 Case?2

In Fig.[1.3] we provided example code demonstrating communication and synchro-
nisation related API functions (see Page.[10). As described, it is also animated and
verified with ProZ and Z/Eves, respectively. Similar to the previous case, we first
animate it with the ProZ animator. In this case, we have two tasks in the system,
together with the idle task. Therefore, it is necessary to set the size of the given
set to 3 for this case. Similarly, 3 would be sufficient for the maximum integer, as
the highest priority in the system is 3, the priority for Task3. After loading the model

to the animator, the following sequence of API functions is called.

xSemaphoreCreateMutex Create a mutex xMutex;

xTaskCreate Create Task2 with priority of 2;

Page 138

xTaskCreate Create Task3 with priority of 3;
vTaskDelay Delay Task3 for 1 time units;
xSemaphoreTask Task?2 attempts to take the mutex xMutex;

xSemaphoreTask Task3 attempts to take the mutex xMutex.

After initialising the machine in ProZ, the sequence of API functions are called as
shown in Fig. [7.2(Above). It should be noted that when we invoke the schema
DelayUntil_TQTM, we selected 1 time unit instead of 10 which was originally
defined on Page. because the maximum number of the integer is 3. If
we increase it to 10 the load of the animator would be dramatically increased.
At the same time, the purpose of this function call is to block the high prior-
ity task. This replacement has no effect on the result. Moreover, the schema
CheckDelayedTaskS_TQTM is called after Task2 has taken the mutex to release
Task3 from the blocked state. In addition, we use the sub operation schemas for
mutex take instead of MutexTake_TQTM. The key reason is that due to the com-
plexity of MutexTake_TQTM, if we use it directly, it considerably increases the
load of the animator. The animator will therefore take a long time to calculate and

may fail to respond at all.

The main behaviour of this piece of code is that two tasks compete for a single
mutex. The lower priority task holds the mutex and blocks the higher priority task.
As the higher priority task is blocked by the mutex taking operation, priority inher-
itance happens. The lower priority task inherits the priority of the higher priority
task. Therefore, the final priority of Task2 should be 3 and it should be in the run-
ning state, while Task3 is in the blocked state with its own priority. As shown on
the bottom side of Fig. [7.2}Bottom, the actual animation result matches our expec-

tation.

Because we have shown the verification of the theorem of xTaskCreate in the pre-
vious section, it is not repeated here. The following theorems show two cases of
xSemaphoreTake. The first one illustrates the case when Task2 attempts to take

the mutex. As the mutex is free initially, it successfully takes the mutex with nor-

Page 139

Figure 7.2: API function execution history (above) and result (bottom) for Case 2

History

MutexTakeElnheritHolder TQTM(QUEUE1,2)-->TASK2
CheckDelayedTaskS_TQTM-->TASK3
MutexTakeNnoninh_TQTM(QUEUE1)-->TASK2
DelayUntil_TQTM(1)--=TASK2

CreateTask_TQTM(3, TASK3)

CreateTask TQTM(2, TASK2)

CreateMutex_TQTM({QUEUE1)
INITIALISATION({},0,{}.{(idle|->bare_context),(TASK2|-=bare |
ISETUP_CONSTANTS(1)

[OK]| State Properties — [OE]| State Properties —

ase_priority(TASK2) = 2 _max(QUEUEL) = 1
clock = 1 q_size(QUEUEL) = 0
delayed_task = {} queue = {QUEUEL}
log_context(idle) = bare_context release_mutex = {}
log_context(TASK2) = bare_context release_rcv = {}
log_context(TASK3) = bare_context release_snd = {}
mutex = {QUEUEL} running_task = TASK2
mutex_holder(QUEUEL) = TASK2 semaphore = {}
mutex_recursive(QUEUEL) = 1 state(idle) = ready
phys_context = bare_context state(TASK2) = running
priority(idle) = 0 state(TASK3) = blocked
priority(TASK2) = 3 tasks = {idle, TASK2 TASK3}
priority(TASK3) = 3 time(TASK3) = 2

mal case in the specification. Meanwhile, the second represents the case when
Task3 attempts to take xMutex, which matches the case when the mutex is un-
available, priority inheritance is requested and the mutex holder is scheduled as
the new running task. Both of them can be easily proved by the Z/Eves command

“prove by reduce”.

Theorem 27 (caseStudyTask1Take)

V TaskQueuveTimeMutex; mut? : QUEUE; topReady! : TASK
| tasks = {idle, Task2, Task3} N queue = {QUEUE1}
A priority(Task2) = 2 A priority(Task3) = 3
A state(Task3) = blocked N running_task = Task2
A mut? = QUEUEL N QUEUE1 ¢ dom mutex_holder
A QUEUE1 € mutex A release_rcv = ()
A release_snd = () \ base_priority = ()
A MutexTakeNnonInh_TQTM
e mutez_holder' (QUEUEL) = Task2
A priority’ (Task2) = 2 A priority’ (Task3) = 3
A running_task’ = Task?2

Theorem 28 (caseStudyTask2Take)

V TaskQueueTimeMutex; mut? : QUEUE; topReady! : TASK
| tasks = {idle, Task2, Task3} N queuve = { QUEUE1}

Page 140

A priority(Task2) = 2 A priority(Task3) = 3
A state(Task2) = ready N running_task = Task3
A mut? = QUEUE1 N QUEUFE1 € mutex
A QUEUE1 € dom mutex_holder
A mutex_holder(QUEUE1) = Task2
A release_rcv = () N\ release_snd = ()
A base_priority = 0 A clock =1 A n? =2
A MutexTakeEInheritHolder _TQTM
o mutex_holder'(QUEUEL) = Task2 A state’(Task3) = blocked
A priority’(Task2) = 3 A priority’(Task3) = 3
A running_task’ = Task?2

7.2.3 Case3

Our extension model for the multi-core platform can also be animated with ProZ.
Similarly, we formulate some sequences of operation calls that illustrate the be-
haviour of the model. Consider the following sequence, assuming there are two

cores available to the system.

1. Initially, there are two tasks, Task3 and Task4, created on Corel with priority
of 1 and 2, respectively.

2. Change the priority of Task3 to 3.

3. Create Task5 with priority of 4.

4. Move Task3 to Core2.

When the system is initialised, Task4 occupies Corel, as it has the highest pri-
ority within Corel. Meanwhile, on Core2, the idle task is executing. When the
priority of Task3 is changed to 3, it preempts Task4 and can execute. There-
upon, Task5 is created with a priority of 4. As it is not specified on which core
the new task is created, the system selects one to accommodate the new task,
based on the algorithm described in Sect. In this case, Task5 will be cre-
ated on Core2. Finally, Task3 is moved to Core2. Because Task3 is the cur-
rent running task on Corel, moving it to Core2 causes Task4 to be scheduled as
the next running task. Therefore, the final state of the system should be as fol-
lows: (a) there are five tasks in the system; (b) Task4 and Task5 are executing

on Corel and Core2, respectively; (c) Task3 is ready in Core2. To animate this

Page 141

Figure 7.3: API function execution history (above) and result (bottom) for Case 3
History

MigrationRuN_T(CORE2,TASK3)-->TASK4
CreateTaskS_T(CORE4,4,TASKSE)
ChangeTaskPriorityS_T(3,TASK3)-->TASK3
CreateTaskS_T(CORE1,2, TASK4)
CreateTaskS_T(CORE1,1,TASK3)
INITIALISATION({{TASK1|->CORE1),(TASK2|->CORE2)},{(T
SETUP_CONSTANTS({CORE1,COREZ},{TASK1,TASK2},1)

] State Properties 1 |E State Properties —

cores = {CORE1,CORE2} phys_context(CORE1) = bare_context

idles = {TASK1,TASK2} phys_context(CORE2) = bare_context

slice_delay = 1 priority(TASK1) = 0

executable(TASK1) = CORE1 priority(TASK2) = 0

executable(TASK2) = CORE2 priority(TASK3) = 3

executable(TASK3) = CORE2 priority(TASK4) = 2

executable(TASK4) = CORE1 riority(TASKS) = 4

executable(TASKS) = CORE2 running_tasks(CORE1) = TASK4

log_context(TASK1) = bare_context running_tasks(CORE2) = TASKS

log_context(TASK2) = bare_context state(TASK1) = ready

log_context(TASK3) = bare_context state(TASK2) = ready

log_context(TASK4) = bare_context state(TASK3) = ready

log_context(TASKS) = bare_context state(TASK4) = running

phys_context{(CORE1) = bare_context state(TASKS) = running

phys_context{CORE2) = bare_context tasks = {TASK1,TASK2 TASK3 TASK4, TASKS}
i i ST ACL N Fal

process, we need at least five individual tasks and two cores available from the
animator with a maximum natural number of 4. We initialise the system with the
setup_constants and initialisation commands. For the setup_constants
command, we need sets { CORE1, CORE2}&{TASK1, TASK?2} as the param-
eters. Next, the initialisation command is used to initialise the system with
maplets TASK1 — CORFE1, TASK2 — CORE?2 and so on, as parameters. This
initialises the system with some definitions, such as, TASK1 and TASK?2 as the
idle task for CORE1 and CORE?2, respectively. At this moment, we can animate
the system following the sequence described above (see Fig. [7.3-Above). After
these operations, we find the system status has been changed to Fig.[7.3(Bottom),

which matches our expectation.

Again, we can verify the API functions with the Z/Eves theorem prover. For in-
stance, consider the scenario where we initialise the state as shown above and

then call CreateTask_T to create Task3 on Corel with priority 1.

Page 142

Theorem 29 (createTaskOverTwoCores)

V Task; target? : TASK; newpri? : N; ¢?: CORFE
| cores = {cl, c2} A running_tasks = {(cl — il), (c2 — i2)}
A newpri? =1 A tasks = {i1,i2} A ¢? = ¢l
A executable = {(il — c1), (i2 — ¢2)} A CreateTask_T
o target? € tasks' N\ state(target?) = running
A priority’(target?) = 1 A executable'(target?) = cl

, Where i1, 12 represent idle tasks for two cores (i.e. c1 and c2), respectively.

7.3 Issues of FreeRTOS

During the modelling and verifying process of our project, we detected some issues
with FreeRTOS. These issues were revealed at different stages of the project. For
instance, when we analysed the implementation to complete the requirements for
modelling, we found an issue with changing the priority of a mutex holder (see,
item [5). When we proved the precondition theorems, we found that deleting the
idle task violated the system constraints (see, item [1) and so on. Due to the
limitation of our VCC model, only item [f] can be detected during VCC verification.
But it shows the possibility of verifying the implementation with the VCC and the

abstract specification.

1. As shown in the precondition for vTaskDelete (Sect.[5.4), there is one pred-
icate, which states the target task does not equal the idle task. If this pred-
icate is removed, the verification would fail. The reason is that the opera-
tion may delete the idle task, which breaks the constraints of the system.
Generally, the handler of the idle task is hidden from the user. However,
it is possible to obtain it from vApplicationIdleHook, which is provided by
FreeRTOS and used to define extra behaviours of the idle task. Therefore,
we need an extra precondition to ensure that the id1e task cannot be deleted

by the operation.

2. Similar to the previous issue, the delete API function does not check if the

target is the holder of a mutex. Because our VCC model does not include the

Page 143

context related to mutex, this issue has no effect on our verification. However,
if a mutex holder is deleted without returning its mutex, then the resource is

locked permanently.

3. According to [19], if vTaskSuspendAll is called, xTaskResumeAll has to
be called as many times as the suspend operation to resume the sched-
uler. FreeRTOS uses an unsigned counter, uxSchedulerSuspended, to
record this. However, the API function vTaskSuspendAll does not check
the overflow of the counter. In other words, when it overflows, only one
call to xTaskResumeAll can resume the scheduler from millions of calls
of vTaskSuspendAll. Although calling vTaskSuspendAll millions of times

might not happen in real life, this could still be a weak point in the system.

4. Similar to the issues related to vTaskDelete, the API function vQueueDelete
also does not verify that the target queue is not in use. If a task is blocked by
waiting to send/receive an event to/from the queue, when it is woken up be-
fore the expiration time, it attempts to continue its operation. At this moment,
the target queue could be an invalid pointer, if the queue has been deleted.
Furthermore, in FreeRTOS, the API function vSemaphoreDelete is used to
delete a mutex, which actually uses vQueueDelete directly to perform the
deleting operation. It is then possible to delete a mutex, which is held by a
task. This can even be performed by a task which is not the holder of the
mutex. When the holder returns the mutex or recursively takes it, the handler

of the mutex can be an invalid pointer again.

5. Finally, we reveal an issue, which is not about the implementation, but related
to the design. When the running task fails to take a mutex of which the
holder has a lower priority, then the higher priority task is blocked and a
lower priority task can be executed prior to a high priority task. This is called
priority inversion. FreeRTOS adopts priority inheritance to solve this. To
implement this, a base priority is introduced for each task. This records the

original priority of each task. Afterwards, when a user calls the API function

Page 144

Figure 7.4: Scenario for priority inversion issue

Priority Inheritance for Mutex Holder

: PT(Prio:H) . PT(Prio:H)

PT(Priority:H)

MH(Prio:H) Y__MH(Prio:L)

MH(Priority:L)

" >
PT Requests MH Releases PT Completes
MH Starts PT Starts Mutex hold the P
by MH Requested
Mutex
The Higher Priority Is BLOCKED by the Lower One
HP(Priority:H) HP(Prio:H) > HP(Prio:H) >
- PT(Prio:M) i
PT(Priority:M)
: I
: io: MH(Prio:M i io:
MH(Priority:L) -~ MH(Prio:t)) Y () [MH(Prio:HH)
: ’ * - " =
PT Requests HP Raises
MH Starts PT Starts Mutex hold HP Starts the Priority
by MH of MH

to change the priority of the mutex holder, which has inherited priority from
another task, FreeRTOS only updates its base priority. Generally, this works
fine. However, if the new priority of the mutex holder is even higher than its

inherited priority, this can cause priority inversion again.

Consider the following scenario (see Figl7.4). The upper chart shows the
normal case for priority inheritance. When a higher priority task requests a
mutex held by a lower priority task, the lower priority task inherits the priority
of the higher priority task. When it is scheduled as running, it finishes the
job, releases the mutex and recovers its own priority. Then the higher priority
task can take the mutex and continue its task. This works fine in this case.
However, the problem happens at the end of the scenario shown in the lower
chart. There are three tasks in this scenario, MH, PT, HP, which represent the
mutex holder, the preemptive task, and the higher priority task respectively.
Firstly, MH starts running and takes the mutex. When the preemptive task,

which has a higher priority than the mutex holder, joins the system, it pre-

Page 145

empts the system and starts to execute. It then attempts to take the mutex
and is blocked by the failure to take the unavailable mutex. MH resumes its
execution and inherits priority from the PT. Before it finishes its job and re-
leases the mutex, HP preempts the system and updates the priority of MH to a
even higher priority than HP. Theoretically, the mutex holder has the highest
priority in the system at the moment, since it should be running. However,
because FreeRTOS only updates the base priority of the mutex holder, which

is not used for scheduling, HP would continues its execution.

We have produced sample code for each of these cases, which are included in
the supplementary material. They can be directly used with the FreeRTOS v7.3.0

simulator.

7.4 Summary

This chapter has evaluated our project in terms of achievement and the case study.
It first described the achievement of this project against the objectives, which were
stated in Sect. and requirements, which were abstracted in Chap. |3} Then, it
illustrated the animation and theorem proof for case studies in ProZ and Z/Eves

respectively to show the correctness of the model.

It is worth noting that the theorems for the case studies are composed manually.
Due to the complexity of the system, it is possible that there are mistakes in these
theorems. Especially, when a mistake happens in the condition part of a theorem,
the theorem is still able to be proved by Z/Eves. Because, according to the defi-
nition of implication, the false condition can imply anything. Therefore, if there is
contradiction in the condition part, it is extremely difficult to locate. To avoid this
kind of problem, we wrote some simple theorems to check the condition for these
theorems, which simply state the condition implies to false. If there is a contradic-
tion in the condition, which makes the condition false, the theorem can be proved

easily by Z/Eves. Otherwise, the condition is correct.

Page 146

Chapter 8

CONCLUSION AND FUTURE WORK

This chapter concludes the project, including experience gained during the project.
It discusses possible future work for the project and reports on some attempts

related to future work.

8.1 Conclusion

We have produced the first complete abstract specification of FreeRTOS. The
model can be animated by the ProZ tool to show how FreeRTOS works. We have
shown that the model is internally consistent by discharging all the verification con-
ditions for well-definedness of the specification and by calculating the exact pre-
conditions for the successful operation of each part of the FreeRTOS API function.

Experiments were performed based on this model.

Firstly, we translated the base state of the model, and pre and postconditions of
task-related schemas into the virtual model structure and function contracts of
VCC, respectively, to build an annotated version of the FreeRTOS implementation,

which was then verified by VCC.

However, due to time limitations, we were only able to focus on task API functions
and a simplified implementation. This still shows the possibility of verifying soft-

ware implementation directly with a high-level abstract specification and a code

Page 147

verifier. The typical way to obtain the implementation in formal methods is refine-
ment, which is normally complex and time consuming. Although it guarantees the
correctness of the design and the implementation, it also increases the difficulty
and expense of the development. However, not every piece of software requires
this high level of correctness, and for such pieces of software, we expect the way

we have demonstrated to be an easier approach to formalisation.

Secondly, we have developed an extended model for a multi-core platform. The
requirements of the specification were inspired (but not limited) by the Multi-BSP
model [35]. As a high-level abstract model, we described the general behaviours
for each operation, which can then be refined for a specific architecture. We also
validated the model with the theorem prover, Z/Eves, by performing the syntax and
domain checking for all the definitions. This work demonstrates the reusability of
our verified specification. It also builds the foundations for developing a verified

RTOS for the multi-core platform.

During the project, there were plenty of difficulties in both modelling and verifying,

for instance:

1. Some operations (e.g., sending items to a queue) may have intermediate

states and it was necessary to find the correct way to describe them.

2. The Z/Eves prover provided reasonable proof automation. However, it also
had some problems. For example, in some cases, the order of predicates
in a schema had an effect on the result of a proof, which should not be the

case.

3. We also found that although there were many similar proof goals, we needed
to guide the prover to prove them repeatedly. This increased the work load
dramatically. A well-designed proof structure would be helpful for simplifying

the proof process.

4. We spent considerable time on VCC experiments. It was not as easy as we

imagined at the beginning. For simple cases, it was very clear and easy.

Page 148

However, when the hierarchical ownership tree, which is one of the most im-
portant concepts of VCC, became involved, it was easy to become confused.
Ideally, VCC should notice and highlight all false assertions or predicates that
lead to conflict. However, if conflicts happen in the code, VCC may consider
false to be true, which makes later proofs meaningless. Furthermore, the
error model report provided by VCC was not detailed enough for the user to
understand why the proof failed. This increased the difficulty of working with

VCC.

We also learnt that the Z notation is sufficient for verifying the correctness of a
single function, which is similar to the unit test in normal software engineering.
However, for some of the system properties of the RTOS (such as time-related

issues), other techniques have to be used (like CSP).

We provide all the definitions and proofs in the supplementary material, so that
the entire verification can be replayed to check its authenticity. This means that

crucially our experiment is repeatable.

8.2 Future Work

For future work,

1. As mentioned in Chap. 6| promotion is an alternative way to extend our spec-
ification to a multi-core platform. This would be the first project we expect
to finish as future work and provides several benefits for the specification.
The most important is the possibility for code reuse during development. We
have finished the first part of the model, the task model, with the Z promotion

approach, which is described below.

2. Currently, we translated Z specification to VCC manually without any verifi-
cation about data refinement. As Z notation provides richer data types and
operations than VCC, we would expect that the data types of variables in our

FreeRTOS model can be refined to data types, which can be directly used

Page 149

with VCC, in Z notation and verified with Z/Eves automatically. Then directly
use these refined variables in VCC. This will increase the reliability of our ver-
ification during translation process. Furthermore, when the data refinement
is achieved and the variables in the Z specification can be directly used in
VCC, the translation process will become more straightforward. We would
also expect the translation process can be performed automatically by some

software.

3. We expect to verify the whole implementation of FreeRTOS with VCC and our
abstract specification. This will not only provide more solid evidence to sup-
port our expectations in the previous section, but also assure the correctness

of the implementation of FreeRTOS.

4. The models, both for FreeRTOS and multi-core RTOS, can be refined, level
by level, to executable source code in order to obtain a fully verified imple-
mentation of RTOS. This will provide a highly assured RTOS for industrial

and research use.

We are keen to encourage others to use our specifications and proofs as bench-

marks for comparing other notation and tools.

8.3 Task Model with Promotion

We attempted to apply the Z promotion technique to improve our multi-core model.
The modelT| for task API functions is developed as an example to illustrate how
that can be achieved, and how it can also be animated with ProZ [33]. To promote
the task model for FreeRTOS to a multi-core platform, we consider that there is a
sub system, which is an instance of FreeRTOS, executing in each core. Therefore,
we can use the task model for FreeRTOS, except the definition for the idle task,

directly as a part of the new model. In the FreeRTOS model, we define the idle

'Although it can be very slow, this model can be animated with ProZ with some modification,
which is stated in the comments of the source file. We also provide example animation in the

supplementary material.

Page 150

task as a global constant of TASK. However, for the multi-core model, we need
one idle task for each core. We modify the definition of the idle task for a core
as a “local” variable of the schema TuaskData and introduce constants, idles and

cores, globally with constraints similar to the model shown in Chap. [6|

_TaskData
tasks : F TASK
running_task : TASK
idle : TASK

running_task € tasks
1dle € tasks
wdle € idles

As the id1le task should never change for all operations, we appended an additional
constraint to the schema A Tusk, which states that the idle task is equal before
and after the operation. The rest of the task model can be used directly. The base
state schema for the multi-core model can then be defined as follows:

_ Multi_Task
subTask : cores — Task
exeCore : TASK —» cores

Vel,e2:cores | cl # c2 e
(subTask(cl)).tasks N (subTask(c2)).tasks = ()
dom ezeCore € F TASK
dom exeCore = |J{ ¢ : cores o (subTask(c)).tasks}

Firstly, the total function, sub Task, is used to match cores and their local FreeRTOS.
In Z, a state schema (e.g., Task) can be used as a data type. Its characteristic
binding can be obtained by the operator “6”, which binds the values of variables of
an instance of the schema to the name of the variables of the schema, and this
can then be used to assign the instance of the schema to a variable. Simply, it can
be understood as a handler of an instance of the schema. Similar to the model
described in Chap.[6], the partial surjective function, exeCore, is given to record the
relationship between the tasks and their executable core. Three constraints are
introduced to describe the properties of the system. First, we state that the tasks

set for each core are disjoint; then, the domain of exeCore is defined as the union of

Page 151

all the tasks for each core; based on the previous constraints, we can easily prove
that the domain of exeCore has to be a finite set, because tasks for each core and
the set of all the cores in the system, cores, are finite sets. However, it is hard to
prove this with Z/Eves. We chose to append another constraint to allow Z/Eves
to recognise this. Initially, there were only the idle tasks for each core in the
system. Therefore, we defined the domain of the initial state of exeCore as equal
to idles. In addition to this, the initialise schema for the task model, Init_Task, was
used to help us to initialise the system for the multi-core model by initialising each

subsystem for each core.

__Init
Multi_Task'

dom exeCore’ = idles
Vc: cores
e 3 Task' | Init_Task
o subTask'(c) = 0Task’ N exeCore'((subTask’(c)).idle) = ¢

Based on these definitions, the promotion schema was defined. This describes
the link between the global and local operations. In this case, three promotion
schemas are specified, because the creating, deleting, and remaining operations

have different behaviours. Specifically:

1. The promotion schema for the creating operations can be defined as the
schema, PromoteC, which takes A Task, the input variable (i.e., target?) and
an extra temporary variable (i.e., executeCore) as parameters. In particular,
ATask is actually provided by the local operation of FreeRTOS. As a new
task, the value of target? should not be in the system. The first precondi-
tion is used to restrict the target task from being included in the domain of
exeCore. At the same time, we need to identify which instance of Tusk is ex-
ecuting in the core, ezecuteCore. The second predicate of the preconditions
is used to achieve this. Finally, for the post-state of operations, the maplet
of executeCore and the characteristic binding of the post state of Task is up-
dated to subTask and the relation between target? and ezecuteCore is added

to ezeCore.

Page 152

__ PromoteC
AMulti_Task
ATask

target? : TASK
executeCore : cores

target? ¢ dom exeCore

subTask(executeCore) = 0 Task

subTask’ = subTask & {executeCore — 0 Task'}
exeCore’ = exeCore @ {target? — executeCore}

2. Unlike the promotion operation for creating tasks, we need to remove the
target task from the system. The promotion schema for deleting tasks,
PromoteD, needs to remove target? from exeCore, instead of adding it to
exeCore. The other constraints should be the same, in order to identify the

local Task and update it with the post state of Task to subTask.

3. For the remaining operations, which can be described with promotion, there
is no effect on the function executable core, whether suspending tasks, re-
suming tasks or changing the priority of tasks. Similar to the previous case,
the difference between the promotion schemas, Promote and PromoteC, is

the function ezeCore, which stays the same.

Furthermore, with the promotion schemas, the sub-definitions for creating tasks

can be defined as:

createTaskN_MT = 3 A Task e CreateTaskN_T A PromoteC

createTaskS_MT = 3 ATask e CreateTaskS_T N PromoteC

Like the multi-core model described in Chap. [6] the schema, findACore_MT, is
introduced to locate the best position for a new task if its executable core is not
specified by a user. The creating operation can be defined similarly. The same

strategy can be applied to specify the rest of the operations.

We also specify the behaviours of migrating a task from one core to another, which

also contains four cases, as in Sect. [6.2.4. However, the definitions are slightly

Page 153

more complex than those for the old multi-core model. The reason for this is that
in the old model, the function state, priority, etc., are global total functions, which
are easy to access by the operation schema. Instead, in the promotion model, they
are private for each subsystem and can only be accessed by the function subTask.
Due to the complexity of the expressions, we introduce two assistant variables,
sreSys and tarSys, to represent the subsystems for the original core and the target
core respectively. The behaviour of this operation can then be defined similarly to

the one for the old model.

8.4 Summary

This chapter has summarised the project and suggested some future works after
the project. It firstly described the whole process of the project, and identified the
difficulties we experienced during the project. It then shows the potential future
works based on the results of the project. Finally, as an example, we presented

our attempt on specifying multi-core task model with promotion technique.

In general, in this project, we produced the first complete abstract specification in Z
of FreeRTOS, together with proofs of consistency (well-definedness, initialisation,
precondition, and a few properties). Then, the model is extended for multicore plat-
form, with basic proofs of well-definedness (including syntax checking and domain
validating). The abstract characterisation of both models is a first step towards a
verified implementation of FreeRTOS on multicore. We were the first to promote
FreeRTOS as a pilot project in VSI, and the work presented continues this by es-
tablishing a benchmark for others to follow. We believe that this is an important
contribution to both the verification community and also the embedded systems
community. We also demonstrated the possibility to verify a software system by
combining the formal modelling (Z model) and code verifier (VCC), which can be

an easier approach for improving the quality of the software.

Page 154

Appendix A

INTRODUCTORY APPENDIX

There are twelve appendixes provided after this introductory appendix. They con-

tain auxiliary information for the main body of the thesis. Specifically,

(@) The summary of frequently used proof commands is shown in Appendix[B] It is

helpful for understanding the proof script provided in supplementary material.

(b) As stated in Sect. the mapping between API functions and the precondition

for schema interface from FreeRTOS model can be found in Appendix [C]

(c) The specification for our FreeRTOS model can be found in Appendix [DHG]
They include all the definitions, schemas and theorems (i.e. precondition theo-
rems for operation schemas, auxiliary theorems and theorems for some system
properties). Unfortunately, the proof scripts for the model cannot be included,
due to the length of the script itself. However, they can be found in supplemen-

tary material and can be used directly in the theorem prover, Z/Eves.

(d) Similarly, the specification for multi-core model can also be found in Ap-
pendix And the the specification for the multi-core task model with pro-

motion technique is shown in Appendix [L|

Page 155

(e) Finally, the VCC annotated source code of task related API functions (i.e. cre-
ating, deleting, suspending, resuming tasks and changing the priority of tasks)

is listed in Appendix [M]

Page 156

Appendix B

SUMMARY OF Z/EVES PROOF

COMMANDS

We summarise the proof commands used in proving of the model. For full instruc-

tion of the proof commands, please see Chap. 5 of [32].

prove The prover automatically applies sequences of proof commands. For ex-
ample, simplify, rewrite, rearrange. Besides this, the mathematical rules

included in Z/Eves’ mathematical toolkit [70] are applied, if possible.

prove by reduce The prover repeatedly reduces the current proof goal. In addi-

tion to what prove does, the prover expands all names.

with enabled (theorem) This is a prefix that is applied to the prove,
prove by reduce, or an already prefixed command. Many inefficient rules are
disabled by default, and this prefix enables them for the current command.
For example, with enabled (applyOverride) prove allows the prover to use

the disabled theorem applyOverride within the scope of the prove command.

with disabled (theorem) This is similar to the previous command, except that it

disables the theorem rather than enabling it.

Page 157

with normalization This is also a prefix for prove commands. It allows the prover

to use “if-then-else” normal-form to represent all logical connectives [70].

instantiate This command allows the prover to instantiate quantified variables

(universal in the assumptions, existential in the goal).

apply theorem As mentioned above, there are plenty of disabled rules in Z/Eves’
mathematical toolkit. This command applies the specified theorem to rewrite

the goal.
use theorem This command allows a specified theorem to be used to deduce
additional assumptions.

extensionality A theorem included in Z/Eves Mathematical Toolkits [70], which
defined as:

X=YeVzr:XezecY)ANNVy:YeyecX)

Page 158

Appendix C

SUMMARY OF INTERFACE

Page 159

Table C.1: APl mappings & preconditions for operations

API Operation

Precondition

xTaskCreate CreateTask_T = CreateTaskN_T
V CreateTaskS_T

state(target?) = nonexistent

CreateTaskN_T

state(target?) = nonexistent
newpri? < priority(running_task)

CreateTaskS_T

state(target?) = nonexistent
newpri? > priority(running_task)

vTaskDelete DeleteTask_T = DeleteTaskN_T
V DeleteTaskS_T

target? € tasks \ {idle}
state(target?) = running =
(F topReady! : state™({ready} |
o (Vt: state™({ready} |
e priority(topReady!) > priority(t)))

DeleteTaskN_T

target? € tasks \ {idle}
state(target?) € {ready, blocked, suspended }

DeleteTaskS_T

target? € tasks \ {idle}
state(target?) € {running}
JtopReady! : state™({ready} |
o (Vt: state™({ready} |
e priority(topReady!) > priority(t))

- ExecuteRunning Task_T

I phys_context’ : CONTEXT
e phys_context’ # phys_context

Page 160

Table C.2: APl mappings & preconditions for operations(continue)

vTaskSuspend SuspendTask_T = SuspendTaskN_T target? € tasks \ {idle}
V SuspendTaskS_T state(target?) = running =
V SuspendTaskO_T (F topReady! : state™({ready} |
o (Vt: state™({ready} |
e priority(topReady!) > priority(t)))

SuspendTaskN_T target? € tasks \ {idle}
state(target?) € {ready, blocked }
SuspendTaskS_T target? € tasks \ {idle}

state(target?) € {running}
JtopReady! : state™({ready} |
o (Vt: state™({ready} |
o priority(topReady!) > priority(t))

SuspendTaskO_T state(target?) = suspended

vTaskResume ResumeTask_T = ResumeTaskN_T state(target?) = suspended
V ResumeTaskS_T

ResumeTaskN_T state(target?) = suspended
priority(target?) < priority(running_task)
ResumeTaskS_T state(target?) = suspended

priority(target?) > priority(running_task)

Page 161

Table C.3: APl mappings & preconditions for operations(continue)

vTaskPrioritySet ChangeTaskPriority_T

= ChangeTaskPriorityN_T
Change TaskPriorityS_T
ChangeTaskPriorityD_T

V
V

state(target?) # nonexistent
target? = idle = newpri? =0
JtopReady! : state™({ready} |
o (state(target?) € {running}
A = (Vrtsk : TASK | state(rtsk) = ready
e newpri? > priority(rtsk)))
= newpri? < priority(topReady!)
A (Yt state™({ready} |
e priority(topReady!) > priority(t))

ChangeTaskPriorityN _T

state(target?) = ready =
newpri < priority(running_task)
state(target?) = running
= (Vt: state™({ready} |) ® newpri? > priority(t))
state(target?) # nonexistent
target? = idle = newpri? =0

Change TaskPriorityS_T

state(target?) = ready
newpri? > priority(running_task)
target? = idle = newpri? =0

ChangeTaskPriorityD_T

state(target?) € {running}
target? = idle = newpri? =0
JtopReady! : state™ (| {ready} |
e newpri < priority(topReady!)
A (Yt state™({ready} |
e priority(topReady!) > priority(t))

Page 162

Table C.4: APl mappings & preconditions for operations(continue)

xQueueCreate CreateQueue_TQ

que? & queue
size? >0

xQueueDelete DeleteQueue_TQ

que? € queue
que? ¢ ran wait_snd U ran wait_rcv
que? ¢ ran release_snd U ran release_rcv

xQueueSend

QueueSend_TQ)
= QueueSendN_TQ)
V QueueSend W _T(Q)
V QueueSendWS_TQ
V QueueSendF _TQ)

que? € queue
q_size(que?) = q_mazx(que?) = running_task # idle

QueueSendN_TQ

que? € queue
q_size(que?) < g_maz(que?)
que? ¢ ran wait_rcv

QueueSendW_TQ

que? € queue
q_size(que?) < g_maz(que?)
YV wr : wait_rcv™({que?} |) o priority(running_task) > priority(wr)

QueueSendWS_T(Q)

que? € queue

q_size(que?) < q_max(que?)

JtopReady! : wait_rcv™({que?} |
| (Y wr : wait_rcv™({que?} |) ® priority(topReady!) > priority(wr))
e priority(topReady!) > priority(running_task)

QueueSendF _TQ

que? € queue
q_size(que?) = q_max(que?)
running_task # idle

Page 163

Table C.5: APl mappings & preconditions for operations(continue)

xQueueReceive QueueReceive_T(Q)

= QueueReceiveN_TQ)
V QueueReceive W _TQ)
V QueueReceive WS_T(Q)
V QueueReceiveF_T(Q)

que? € queue
q—size(que?) = 0 = running_task # idle

QueueReceive N_T(Q)

que? € queue
q_size(que?) > 0
que? ¢ ran wait_snd

QueueReceive W _TQ

que? € queue
q_size(que?) > 0
YV ws : wait_snd™({que?} |) ® priority(running_task) > priority(ws)

QueueReceive WS_TQ)

que? € queue

q_size(que?) >0

JtopReady! : wait_snd™({que?} |
| (Vws : wait_snd™({que?} |) o priority(topReady!) > priority(ws))
e priority(topReady!) > priority(running_task)

QueueReceiveE_T(Q)

que? € queue
q-size(que?) =0
running_task # idle

vTaskDelayUntil

DelayUntil_TQT

n? > clock

Page 164

Table C.6: APl mappings & preconditions for operations(continue)

vSemaphoreCreateBinary

CreateBinarySemaphore_TQTM

sem? & queue

vSemaphoreDelete

Delete BinarySemaphore_TQTM

sem? € semaphore

xSemaphoreCreateMutex

CreateMutex_TQTM

mut? ¢ queue

vSemaphoreDelete

DeleteMutex_TQTM

mut? € muter \ dom mutez_holder

xSemaphoreTake

MutexTake_TQTM
= MutexTakeNnonInh_TQTM
V MutezTakeNInh_TQTM
V MutezTakeEnonInh_TQTM
V MutexTakeEInheritReady_TQTM
V MutexTakeEInheritHolder_TQTM
V MutezTakeRecursive_TQTM

mut? € mutex
q_size(mut?) =0 =
(running_task # idle
A n? > clock
A mutez_holder(mut?) # idle)

MutexTakeNnonInh_TQTM

mut? € mutex
q_size(mut?) >0
running_task ¢ dom base_priority

MutexTakeNInh_TQTM

mut? € mutex
q_size(mut?) >0
running_task € dom base_priority

MutexTakeEnonInh_TQTM

mut? € dom muter_holder

priority(running_task) < priority(mutex_holder(mut?))
n? > clock

running_task # idle

running_task # mutex_holder(mut?)

Page 165

Table C.7: APl mappings & preconditions for operations(continue)

MutexTakeEInheritReady_TQTM

mut? € dom mutex_holder

priority(running_task) > priority(mutex_holder(mut?))
n? > clock

mutex_holder(mut?) # idle

state(mutex_holder(mut?)) # ready

MutexTakeEInheritHolder_TQTM

mut? € dom mutex_holder

priority(running_task) > priority(mutex_holder(mut?))
n? > clock

mutex_holder(mut?) # idle

state(mutex_holder(mut?)) = ready

MutexTakeRecursive_TQTM

mut? € dom mutex_holder
running_task = mutex_holder(mut?)

xSemaphoreGive MutexGive_TQTM
= MutexGiveNRecursive_TQTM
V MutexGiveNnonInh_TQTM
V MutexGiveNInhN _TQTM
V MutexGiveNInhS_TQTM
V MutexGiveWnonInhN_TQTM
V MutexGive WnonInhS_TQTM
V MutexGive WInhN_TQTM
V MutexGive WInhSR_TQTM
V MutexGive WInhSW _TQTM

mut? € dom mutex_holder
running_task = mutex_holder(mut?)

Page 166

Table C.8: APl mappings & preconditions for operations(continue)

MutexGiveNRecursive_TQTM

mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) > 1

MutexGiveNnonInh_TQTM

mut? € dom mutex_holder

mut? ¢ ran wait_rcv

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1

base_priority (running_task) = priority (running_task)

MutexGiveNInhN_TQTM

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

mut? ¢ ran wait_rcv

base_priority (running_task) # priority(running_task)

Vrt : state™({ready} |) ® base_priority(running_task) > priority(rt)

MutexGiveNInhS_TQTM

mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
mut? ¢ ran wait_rcv
base_priority (running_task) # priority(running_task)
JtopReady! : state™({ready} |) | V1t : state™({ready} |

e priority(topReady!) > priority(rt)

e base_priority(running_task) < priority(topReady!)

Page 167

Table C.9: APl mappings & preconditions for operations(continue)

MutexGive WnonInhN _TQTM

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

base_priority(running_task) = priority(running_task)

YV wr @ wait_rcv™ (| {mut?} |) e priority(running_task) > priority(wr)

MutexGive WnonInhS_TQTM

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

base_priority(running_task) = priority(running_task)

JtopReady! : wait_rcv™({mut?} |
| (Vwr : wait_rcv™({mut?} |) ® priority(topReady!) > priority(wr))
e priority(topReady!) > priority(running_task)

MutexGive WInhN _TQTM

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

YV wr @ wait_rcv™({mut?} |) ® base_priority(running_task) > priority(wr)
base_priority(running_task) # priority(running_task)

Vrt : state™({ready} |) ® base_priority(running_task) > priority(rt)

Page 168

Table C.10: API mappings & preconditions for operations(continue)

MutexGive WInhSR_TQTM

mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority (running_task) # priority(running_task)
JtopReady! : state™ (| {ready} |)
o (Vrt: state™({ready} |) ® priority(topReady!) > priority(rt))
A (Y wr = wait_rev™({mut?})
e priority(topReady!) > priority(wr))
A priority(topReady!) > base_priority(running_task)

MutexGive WInhSW _TQTM

mut? € dom muter_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority(running_task) # priority(running_task)
3 top Waiting! : wait_rco™({mut?} |
o (Ywr : wait_rcv™({mut?} |) e priority(top Waiting!) > priority(wr))
A (Vrt : state™({ready} |
e priority(top Waiting!) > priority(rt))
A priority(top Waiting!) > base_priority(running_task)

Page 169

Page 170

Appendix D

SPECIFICATION FOR TASK MODEL

[CONTEXT, TASK]

bare_context : CONTEXT
idle : TASK

STATE ::= nonexistent | ready | blocked | suspended | running

transition == ({blocked} x {nonezistent, ready, running, suspended})
U ({nonexistent} x {ready, running})
U ({ready} x {nonezxistent, running, suspended})
U ({running} x {blocked, nonexistent, ready, suspended})
U ({suspended} x {nonexistent, ready, running})
theorem grule gTransitionType
transition € P(STATE x STATE)

theorem rule lInTransition
Vi, r:STATE | (I,r) € {nonezistent — ready, running — ready,
blocked — ready, suspended — ready, ready — running,
blocked — running, suspended — running,
nonexistent — running, running — suspended,
ready > suspended, blocked — suspended,
running — blocked, running — nonexistent,
ready — nonexistent, blocked — nonexistent,
suspended +— nonexistent }
e (I, r) € transition

Page 171

__TaskData

tasks : F TASK
running_task : TASK

running_task € tasks
idle € tasks

_ Init_TaskData

TaskData’

tasks’ = {idle}
running_task’ = idle

theorem TaskDatalnit
d TaskData' e Init_TaskData

__StateData

state : TASK — STATE

state(idle) € {ready, running}

__Init_StateData

StateData’

state’ = (Az : TASK e nonezistent) @ {(idle — running)}

theorem StateDatalnit
d StateData’ e Init_StateData

ContextData

phys_context : CONTEXT
log_context : TASK — CONTEXT

_Init_ContextData
ContextData’

phys_context’ = bare_context
log_context’ = (Az : TASK e bare_context)

Page 172

theorem ContextDatalnit
3 ContextData’ e Init_ContextData

_ PrioData
priority : TASK — N

priority(idle) =0

__Init_PrioData
PrioData’

priority’ = (Axz : TASK e 0)

theorem PrioDatalnit
3 PrioData’ e Init_PrioData

__Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state™({nonezistent} |))
state™ (| {running} |) = {running_task}
V pt : state™({ready} |) priority(running_task) > priority(pt)

_ ATask
Task
Task’

Vst : TASK | state’(st) # state(st)
o state(st) — state’(st) € transition

f:PTASK — TASK

((findDelegate))
YV Task; a : P TASK; g: TASK + Z e
fla) € aNaCdomgA
(Vi:aeg(f(a)) > g(t))

theorem TaskPropertyl
V Task e state(running_task) = running

Page 173

theorem TaskProperty2
V Task @ V't : TASK | t € state™({blocked} |) ® t € tasks

theorem TaskProperty3
V Task e V't : state™(| {ready} |) ® t € tasks \ {running_task}

theorem TaskProperty6
V Task; t : TASK | 0 < priority(t) e idle # t

_ Init_Task

Task’

Init_TaskData
Init_StateData
Init_ContextData
Init_PrioData

theorem TaskInit
d Task' e Init_Task

_ Reschedule

ATask

target? : TASK
tasks? : F TASK
st?: STATE

pri? : TASK — N

tasks’ = tasks?

running_task’ = target?

state’ = state & {(target? — running), (running_task — st?)}
phys_context’ = log_context(target?)

log_context’ = log_context @ {(running_task — phys_context)}
priority’ = pri?

disableReschedule = [Task | false] A Reschedule

_ CreateTaskN_T

A Task
target? : TASK
newpri? : N

state(target?) = nonexistent

Page 174

newpri? < priority(running_task)

tasks' = tasks U {target?}

running_task’ = running_task

state’ = state ® {(target? — ready)}
=ContextData

priority’ = priority & {(target? — newpri?)}

— CreateTaskN _TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? < priority(running_task)

theorem rule runningUpdate
Vf: TASK — STATE; g : TASK + STATE | running ¢ ran g
A (f~({running})) Ndom g = ()
o (f & g)~({running}) = f~({running} |

theorem rule setminUpdate
Vf: TASK — STATE; g : TASK + STATE
o TASK \ ((f ® g)~({nonezistent} |)
= TASK \ (f~({nonezistent} |)) \ (¢~ ({nonexistent} |))
U(dom g \ (g7 ({nonezistent} |)))

theorem CreateTaskN_T _vc_ref
V CreateTaskN_TFSBSig | true e pre CreateTaskN_T

_ CreateTaskS_T

ATask
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running_task)
dst? . STATE; tasks? : F TASK; pri?: TASK — N
| st? = ready A tasks? = tasks U {target?}
A pri? = priority & {(target? — newpri?)}
o Reschedule

Page 175

_ CreateTaskS_TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running_task)

theorem CreateTaskS_T_vc_ref
V CreateTaskS_TFSBSig | true ® pre CreateTaskS_T

CreateTask_T = CreateTaskN_T V CreateTaskS_T

_ DeleteTaskN_T

ATask
target? : TASK
topReady! : TASK

target? € tasks \ {idle}
state(target?) € {ready, blocked, suspended }
tasks’” = tasks \ {target?}
running_task’ = running_task
state’ = state @ {(target? — nonexistent)}
phys_context’ = phys_context
log_context’ = log_context & {(target? — bare_context)}
=PrioData
topReady! = running_task

__DeleteTaskN_TFSBSig

Task
target? : TASK

target? € tasks \ {idle}
state(target?) € {ready, blocked, suspended }

theorem finsetIsFinset
VX :FTASK; z: TASK ¢ X \ {z} € F TASK

theorem DeleteTaskN_T _vc_ref
Y DeleteTaskN _TFSBSig | true e pre DeleteTaskN_T

Page 176

__DeleteTaskS_T
ATask
target? : TASK
topReady! : TASK

target? € tasks \ {idle}

state(target?) € {running}

state(topReady!) = ready

V't : state™({ready} |) e priority(topReady!) > priority(t)

tasks’ = tasks \ {target?}

running_task’ = topReady!

state’ = state @ {(topReady! — running), (target? — nonezistent)}
phys_context’ = log_context(topReady!)

log_context’ = log_context & {(target? — bare_context)}
=PrioData

— DeleteTaskS_TFSBSig
Task
target? : TASK

target? € tasks \ {idle}
state(target?) € {running}

theorem 1DeleteTaskS_T_Lemma
Y Task; topReady!, target? : TASK
| target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Y rtsk : state™({ready} |) e priority(topReady!) > priority(rtsk))
o — (Task[log_context := log_context & {(target?, bare_context)},
phys_context = log_context(topReady!),
running_task := topReady!,
state := state®
({(target?, nonezistent)} U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A — (state @ ({(target?, nonexistent) }U
{(topReady!, running)}))(st) = state(st)
= (state(st), (state @ ({(target?, nonexistent)}U
{(topReady!, running)}))(st)) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

Page 177

theorem DeleteTaskS_T_vc_ref
V Delete TaskS_TFSBSig | true o pre DeleteTaskS_T

DeleteTask_T = DeleteTaskN_T V DeleteTaskS_T

_ FxecuteRunningTask_T
ATask
target! : TASK

=TaskData

=StateData

phys_context’ # phys_context
log_context’ = log_context
=PrioData

target! = running_task

— EzecuteRunningTask_TFSBSig
Task

I phys_context’ : CONTEXT e phys_context’ # phys_context

theorem ExecuteRunningTask T _vc_ref
V Ezecute Running Task_TFSBSig | true e pre ExecuteRunningTask_T

__SuspendTaskN_T
A Task
target? : TASK
topReady! : TASK

target? € tasks \ {idle}

state(target?) € {ready, blocked}
=TaskData

state’ = state @ {(target? — suspended)}
=ConteztData

=PrioData

topReady! = running_task

SuspendTaskN_TFSBSig
Task
target? : TASK

target? € tasks \ {idle}

Page 178

‘ state(target?) € {ready, blocked }

theorem SuspendTaskN_T _vc_ref
Y SuspendTaskN _TFSBSig | true e pre SuspendTaskN_T

__SuspendTaskS_T
ATask

target? : TASK
topReady! : TASK

target? € tasks \ {idle}
state(target?) € {running}
state(topReady!) = ready
Vit state™({ready} |) priority(topReady!) > priority(t)
dst?: STATE | st? = suspended
e Reschedule[tasks/tasks?, priority/pri?, topReady!/target?]

theorem TaskProperty4
V Task | SuspendTaskS_T
o state’(running_task) = suspended
A (Yt : state™({ready} |) e priority(running_task’) > priority(t))

theorem TaskProperty5
V Task e V't : TASK | t ¢ tasks e state(t) = nonezistent

— SuspendTaskS_TFSBSig
Task
target? : TASK

target? € tasks \ {idle}
state(target?) € {running}

theorem ISuspendTaskS_T_Lemma
V Task; target?, topReady! : TASK
| target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Y rtsk : state™ (| {ready} |) ® priority(topReady!) > priority(rtsk))
e — (Task[log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
running_task := topReady!,

Page 179

state := state®
({ (running_task, suspended)} U {(topReady!, running)})]
A (st € TASK
A = (state & ({(running_task, suspended)}
U{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, suspended)}
U{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem SuspendTaskS_T _vc_ref
V SuspendTaskS_TFSBSig | true e pre SuspendTaskS_T

_ SuspendTaskO_T
=Task
target? : TASK
topReady! : TASK

state(target?) € {suspended}
topReady! = running_task

_ SuspendTaskO_TFSBSig
Task
target? : TASK
topReady! : TASK

state(target?) € {suspended}

theorem SuspendTaskO _T _vc_ref
Y SuspendTaskO_TFSBSig | true e pre SuspendTaskO_T

SuspendTask_T = SuspendTaskN_T
V SuspendTaskS_T
V SuspendTaskO_T

_ ResumeTaskN_T
A Task
target? : TASK

state(target?) = suspended
priority(target?) < priority(running_task)
= TaskData

Page 180

state’ = state @ {(target? — ready)}
=ContextData
=PrioData

_ ResumeTaskN_TFSBSig

Task
target? : TASK

state(target?) = suspended
priority(target?) < priority(running_task)

theorem ResumeTaskN_T_vc_ref
V ResumeTaskN_TFSBSiq | true e pre ResumeTaskN_T

_ ResumeTaskS_T

ATask
target? : TASK

state(target?) = suspended
priority(target?) > priority(running_task)
dst?: STATE | st? = ready

e Reschedule[tasks/tasks?, priority /pri?]

— ResumeTaskS_TFSBSig
Task
target? : TASK

state(target?) = suspended
priority(target?) > priority(running_task)

theorem ResumeTaskS_T _vc_ref
V ResumeTaskS_TFSBSig | true e pre ResumeTaskS_T

ResumeTask_T = ResumeTaskN_T V ResumeTaskS_T

_ ChangeTaskPriorityN_T

ATask

newpri? : N
target? : TASK
topReady! : TASK

Page 181

(target?) = ready = newpri? < priority(running_task)
(target?) = running =
(Vt: state™({ready} |) ® newpri? > priority(t))
state(target?) # nonexistent
target? = idle = newpri? =0
= TaskData
=EStateData
=ContextData
priority’ = priority @ {(target? — newpri?)}
topReady! = running_task

state
state

_ ChangeTaskPriorityN _TFSBSig
Task
newpri? : N
target? : TASK

(target?) = ready = newpri? < priority(running_task)
(target?) = running =

(Vt: state™({ready} |) ® newpri? > priority(t))
state(target?) # nonexistent
target? = idle = newpri? =0

state
state

theorem ChangeTaskPriorityN_T _vc_ref
Y Change TaskPriorityN _TFSBSig | true ® pre ChangeTaskPriorityN_T

— ChangeTaskPriorityS_T

A Task
target? : TASK
newpri? : N

topReady! : TASK

state(target?) = ready
newpri? > priority(running_task)
target? = idle = newpri? =0
dst?: STATE; pri?: TASK — N
| st? = ready
A pri? = priority ® {(target? — newpri?)}
e Reschedule[tasks/tasks?]
topReady! = target?

ChangeTaskPriorityS_TFSBSig
Task
newpri? : N

Page 182

target? : TASK

state(target?) = ready
newpri? > priority(running_task)
target? = idle = newpri? =0

theorem ChangeTaskPriorityS_T_vc_ref
V ChangeTaskPriorityS_TFSBSig | true e pre ChangeTaskPriorityS_T

— ChangeTaskPriorityD_T
ATask

target? : TASK
topReady! : TASK
newpri? : N

state(target?) = running
target? = idle = newpri? =0
state(topReady!) = ready
V't : state™({ready} |) e priority(topReady!) > priority(t)
newpri? < priority(topReady!)
dst? . STATE; pri? : TASK — N

| st? = ready

A pri? = priority & {(target? — newpri?)}
e Reschedule[tasks/tasks?, topReady!/target?]

— ChangeTaskPriorityD_TFSBSig
Task

newpri? : N

target? : TASK

state(target?) = running
target? = idle = newpri? =0
dreadyTask : state™({ready} |) ® newpri? < priority(readyTask)

theorem 1ChangeTaskPriorityD _T_Lemma
V Task; target?, topReady! : TASK; newpri? : N
| state(target?) = running
A (target? = idle = newpri? = 0)
A state(topReady!) = ready
A (Y rtsk = state™({ready} |) e priority(topReady!) > priority(rtsk))
A newpri? < priority(topReady!)
e — (Task[log_context := log_context®
{(running_task, phys_context)},

Page 183

phys_context := log_context(topReady!),
priority := priority ® {(target?, newpri?)},
running_task := topReady!,

state := state®

({(running_task, ready)} U {(topReady!, running)})]
A (st € TASK

A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}U

{(topReady!, running)}))st) € transition)
=t € TASK

A state(t) = ready
A = priority(topReady!) > priority(t))

theorem ChangeTaskPriorityD _T_vc_ref
V ChangeTaskPriorityD_TFSBSiqg | true e pre ChangeTaskPriorityD_T

ChangeTaskPriority_T = ChangeTaskPriorityN_T
V ChangeTaskPriorityS_T
V' ChangeTaskPriorityD_T

Page 184

Appendix E

SPECIFICATION FOR QUEUE MODEL

[QUEUE)

__ QueueData

queuve : P QUEUE

g-maz : QUEUE + N;
q_size : QUEUE - N

dom g_max = dom q_size = queue
Vq: QUEUE | q € queue o q_size(q) < qg_maz(q)

__Init_QueueData
QueueData’

queue’ =)
q_max’ =)
q_size' =

theorem QueueDatalnit
3 QueueData’ e Init_QueueData

__ WaitingData
wait_snd : TASK + QUEUE
wait_rcv : TASK + QUEUE

dom wait_snd N dom wait_rcv = ()

Page 185

__Init_WaitingData
WaitingData’

wait_snd' =)
wait_rcv’ =0

theorem WaitingDatalnit
3 WaitingData' e Init_WaitingData

— QReleasingData
release_snd : TASK - QUEUE
release_rcv : TASK - QUEUFE

dom release_snd N dom release_rcv = ()

__Init_QReleasingData
QReleasingData’

release_snd' = ()
release_rcv’ = ()

theorem QReleasingDatalnit
3 QReleasingData’ e Init_(QReleasingData

__ Queue
QueueData
WaitingData
QReleasingData

ran wait_snd C queue
ran wait_rcv C queue
ran release_snd C queue
ran release_rcv C queue
(dom wait_snd U dom wait_rcv)
N(dom release_snd U dom release_rcv) = ()

theorem QueuePropertyl
V Queue o Y q : queue ® q_maz(q) > 0

theorem ImagePropertyl
Vf:TASK + QUEUE eNy: QUEUE e f~({y}) #0 < y €ranf

Page 186

__Init_Queue
Queue’

Init_QueueData
Init_WastingData
Init_QReleasingData

theorem Queuelnit
3 Queue’ o Init_Queue

_ TaskQueue
Task
Queue

dom wait_snd C state™ (| {blocked})
dom wait_rcv C state™ (| {blocked})

__Init_TaskQueue
TaskQueue’

Init_Task
Init_Queue

theorem TaskQueuelnit
3 TaskQueue’ o Init_TaskQueue

ATaskQueue = TaskQueue N\ TaskQueue’ N A Task

_ ExtendTaskXi
A TaskQueue

running_task ¢ dom release_snd U dom release_rcv
=ZQueue

— ExtTaskFSBSig
TaskQueue

running_task ¢ dom release_snd U dom release_rcv

CreateTaskN_T(Q = ExtendTaskXi N\ CreateTaskN_T

Page 187

CreateTaskN_TQFSBSig = ExtTaskFSBSig N Create TaskN_TFSBSig

theorem CreateTaskN_TQ_vc_ref
V CreateTaskN _TQFSBSig | true o pre CreateTaskN_TQ

CreateTaskS_T(Q) = ExtendTaskXi N\ CreateTaskS_T

CreateTaskS_TQFSBSig = ExtTaskFSBSig N\ Create TaskS_TFSBSig

theorem CreateTaskS_TQ_vc_ref
V CreateTaskS_TQFSBSig | true o pre CreateTaskS_TQ

CreateTask_TQ = CreateTaskN_TQ V CreateTaskS_T()

__DeleteTaskN_T(Q
DeleteTaskN_T
A TaskQueue

running_task ¢ dom release_snd U dom release_rcv
=ZQueueData
wait_snd" = {target?} <9 wait_snd
wait_rcv’ = {target?} 9 wait_rcv
release_snd' = {target?} <4 release_snd
release_rcv’ = {target?} <4 release_rcv

DeleteTaskN _TQFSBSig = FExtTaskFSBSig N\ Delete TaskN_TFSBSig

theorem DeleteTaskN_TQ_vc_ref
V DeleteTaskN_TQFSBSig | true e pre DeleteTaskN_TQ

DeleteTaskS_TQ = ExtendTaskXt N\ DeleteTaskS_T

DeleteTaskS_TQFSBSig = ExtTaskFSBSig N\ DeleteTaskS_TFSBSig

theorem 1DecleteTaskS_T(Q_Lemma
V TaskQueue; topReady!, target? : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready

Page 188

A (Y rtsk : state™({ready} |) ® priority(topReady') > priority(rtsk))
e — (TaskQueue|log_context := log_context®
{(target?, bare_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(target?, nonexistent) } U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A = (state & ({(target?, nonexistent) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(target?, nonexistent)}U
{(topReady!, running)}))st) € transition)
=t e TASK
A state(t) = ready
A — priority(topReady!) > priority(t))

theorem DeleteTaskS_TQ_vc_ref
V DeleteTaskS_TQFSBSiq | true e pre DeleteTaskS_TQ

DeleteTask_TQ = DeleteTaskN_TQ V DeleteTaskS_T()

FExecuteRunningTask_T(Q) = ExtendTaskXi N EzrecuteRunning Task_T

FExecuteRunningTask_TQFSBSig = ExtTaskFSBSig
A ExecuteRunningTask_TFSBSig

theorem ExecuteRunningTask TQ_vc_ref
V EzecuteRunning Task_TQFSBSig | true e pre ExecuteRunningTask_TQ)

_ SuspendTaskN_T(Q)
SuspendTaskN_T
ATaskQueue

running_task ¢ dom release_snd U dom release_rcv
=ZQueueData

wait_snd" = {target?} <9 wait_snd

wait_rcv’ = {target?} < wait_rcv
=ZQReleasingData

SuspendTaskN_TQFSBSig = ExtTaskFSBSig N\ SuspendTaskN_TFSBSig

Page 189

theorem SuspendTaskN_TQ_vc_ref
V SuspendTaskN_TQFSBSig | true e pre SuspendTaskN_TQ

SuspendTaskS_T(Q) = ExtendTaskXi N\ SuspendTaskS_T
SuspendTaskS_TQFSBSig = ExtTaskFSBSig A SuspendTaskS_TFSBSig

theorem ISuspendTaskS_TQ_Lemma
V TaskQueue; target?, topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Vrtsk : state™(| {ready} |) e priority(topReady!) > priority(rtsk))
o — (TaskQueue|log_context := log_contextd®
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state @ ({(running_task, suspended) }U
{(topReady!, running)})]
A (st € TASK
A = (state @& ({(running_task, suspended) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, suspended) }U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem SuspendTaskS_TQ_vc_ref
V SuspendTaskS_TQFSBSiqg | true e pre SuspendTaskS_TQ

SuspendTaskO_T() = ExtendTaskXi N\ SuspendTaskO_T
SuspendTaskO_TQFSBSig = ExtTaskFSBSig N\ SuspendTaskO_TFSBSig

theorem SuspendTaskO_TQ_vc_ref
V SuspendTaskO_TQFSBSig | true o pre Suspend TaskO_TQ

SuspendTask_TQ = SuspendTaskN_T(Q)
V SuspendTaskS_TQ
V SuspendTaskO_T(Q)

Page 190

ResumeTaskN_T(Q) = ExtendTaskXi N ResumeTaskN_T

ResumeTaskN_TQFSBSig = ExtTaskFSBSig N ResumeTaskN _TFSBSig

theorem ResumeTaskN_TQ_vc_ref
Y ResumeTaskN _TQFSBSiqg | true o pre ResumeTaskN_TQ

ResumeTaskS_T(Q) = FExtendTaskXi N ResumeTaskS_T

ResumeTaskS_TQFSBSig = FxtTaskFSBSig N ResumeTaskS_TFSBSig

theorem ResumeTaskS_TQ_vc_ref
Y ResumeTaskS_TQFSBSig | true e pre ResumeTaskS_TQ

ResumeTask_TQ = ResumeTaskN_TQ V ResumeTaskS_TQ)

ChangeTaskPriorityN_T(Q = FExtendTaskXi N ChangeTaskPriorityN_T

ChangeTaskPriorityN _TQFSBSig = FxtTaskFSBSig
A ChangeTaskPriorityN _TFSBSig

theorem ChangeTaskPriorityN_TQ_vc_ref
V ChangeTaskPriorityN _TQFSBSig | true
e pre ChangeTaskPriorityN_T(Q)

Change TaskPriorityS_TQ) = FExtendTaskXi N\ Change TaskPriorityS_T

Change TaskPriorityS_TQFSBS1g = FExtTaskFSBSig
A ChangeTaskPriorityS_TFSBSig

theorem ChangeTaskPriorityS_TQ_vc_ref
Y ChangeTaskPriorityS_TQFSBSig | true
e pre ChangeTaskPriorityS_TQ

Change TaskPriorityD_T(Q = ExtendTaskXt N\ ChangeTaskPriorityD_T

Change TaskPriorityD_TQFSBSi1g = ExtTaskFSBSig
A ChangeTaskPriorityD_TFSBSig

Page 191

theorem IChangeTaskPriorityD_TQ_Lemma
V TaskQueue; target?, topReady! : TASK; newpri? : N
| state(target?) = running
A (target? = idle = newpri? = 0)
A state(topReady!) = ready
A (Y rtsk - state™({ready} |) ® priority(topReady') > priority(rtsk))
A newpri? < priority(topReady!)
o — (TaskQueue|[log_context := log_contert®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
priority := priority ® {(target?, newpri?)},
running_task := topReady!,
state := state®
({ (running_task, ready) } U {(topReady!, running)})]
A newpri? < priority(topReady!)
A (st € TASK
A = (state & ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem ChangeTaskPriorityD_TQ_vc_ref
Y ChangeTaskPriorityD_TQFSBSig | true
e pre ChangeTaskPriorityD_T(Q)

— CreateQueue_TQ
A TaskQueue
que? : QUEUE
size? : N

running_task ¢ dom release_snd U dom release_rcv
que? & queue
size? >0
=Task
queue’ = queue U {que?}
q-max’ = q_maz & {(que? — size?)}
q_size’ = q_size ® {(que? — 0)}
= WaitingData
=ZQReleasingData

Page 192

_ CreateQueue_TQFSBSig
TaskQueue
que? : QUEUE
size? : N

running_task ¢ dom release_snd U dom release_rcv
que? ¢ queue
size? > 0

theorem CreateQueue_TQ_vc_ref
V CreateQueue_TQFSBSig | true e pre CreateQueue_TQ)

__DeleteQueue_TQ
A TaskQueue
que? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
que? € queue

que? ¢ ran wait_snd U ran wait_rcv

que? ¢ ran release_snd U ran release_rcv

=Task

queue’ = queue \ {que?}

g-mazx’ = {que?} Q q_max

q_size' = {que?} < q_size

= WaitingData

=ZQReleasingData

__DeleteQueue_TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
que? € queue

que? ¢ ran wait_snd U ran wait_rcv

que? ¢ ran release_snd U ran release_rcv

theorem DeleteQueue_TQ_vc_ref
V DeleteQueue_TQFSBSig | true e pre DeleteQueue_T(Q

QueueSendN_TQ
A TaskQueue

que? : QUEUE
topReady! : TASK

Page 193

running_task ¢ dom release_rcv

running_task € dom release_snd = que? = release_snd(running_task)
que? € queue

q_size(que?) < q_mazx(que?)

que? ¢ ran wait_rcv

=Task

queue’ = queue

g_maz’ = g_mazx

q_size' = q_size ® {(que? — q_size(que?) + 1)}
= WaitingData

release_snd' = {running_task} < release_snd
release_rcv’ = release_rcv

topReady! = running_task

_ QueueSendN_TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_rcv

running_task € dom release_snd = que? = release_snd(running_task)
que? € queue

q-size(que?) < g—mazx(que?)

que? & ran wait_rcv

theorem QueueSendN_TQ_vc_ref
V QueueSendN_TQFSBSig | true e pre QueueSendN_TQ

— QueueSendF_TQ)
A TaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_rcv
running_task € dom release_snd = que? = release_snd(running_task)
que? € queue
q_size(que?) = q_mazx(que?)
running_task # idle
state(topReady!) = ready
V't : state™({ready} |) e priority(topReady!) > priority(t)
Ist?: STATE | st? = blocked
e Reschedule[topReady!/target?, tasks/tasks?, priority / pri?]
=QueueData
wait_snd" = wait_snd & {(running_task — que?)}

Page 194

watt_rcv’ = wait_rcv
release_snd' = {running_task} < release_snd
release_rcv' = release_rcv

— QueueSendF_TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_rcv

running_task € dom release_snd = que? = release_snd(running_task)
que? € queue

q_size(que?) = q_mazx(que?)

running_task # idle

theorem 1QueueSendF_TQ_Lemma
V TaskQueue; topReady! : TASK; que? : QUEUFE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) = q_maz(que?)
A running_task # idle
A state(topReady!) = ready
A (Y rtsk : state™({ready} |) ® priority(topReady!) > priority(rtsk))
e — (TaskQueue|log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
release_snd = {running_task} < release_snd,
running_task := topReady!,
state := state®
({(running_task, blocked)} U {(topReady!, running)}),
wait_snd := wait_snd & {(running_task, que?)}]
A (t € TASK A state(t) = ready
= priority(topReady!) > priority(t))
= st € TASK
A = (state @ ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
A = (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)

theorem QueueSendF _TQ_vc_ref
V QueueSendF_TQFSBSig | true e pre QueueSendF_TQ

Page 195

_ QueueSendW_TQ
ATaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_rcv

running_task € dom release_snd = que? = release_snd(running_task)
que? € queue

q_size(que?) < q_max(que?)

topReady! € wait_rcv™({que?} |

Y wr : wait_rcv™({que?} |) o priority(topReady!) > priority(wr)
priority(topReady!) < priority(running_task)

= TaskData

state’ = state @ {(topReady! — ready)}

=EContextData

=PrioData

queue’ = queue

g—max’ = g_max

q_size! = q_size ® {(que? — q_size(que?) + 1)}

wait_snd' = wait_snd

wait_rcv’ = {topReady!} < wait_rcv

release_snd' = {running_task} < release_snd

release_rcv’ = release_rcv @ {(topReady! — que?)}

_ QueueSendW_TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_rcv

running_task € dom release_snd = que? = release_snd(running_task)
que? € queue

q-size(que?) < g—maz(que?)

YV wr : wait_rcv™({que?} |) o priority(running_task) > priority(wr)

theorem 1QueueSendW_TQ_Lemma
V TaskQueue; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) < qg-maz(que?)
A topReady! € wait_rcv™({que?} |
A (Ywret : wait_rev™ (| {que?} |
e priority(topReady!) > priority(wrct))
A priority(running_task) > priority(topReady!)

Page 196

o — (TaskQueue|q_size := q_size ® {(que?, (1 + q_size(que?)))},
release_rcv := release_rcv & {(topReady!, que?)},
release_snd := {running_task} < release_snd,
state = state & {(topReady!, ready)},
wait_rcv := {topReady!} 9 wait_rcv]

A priority(topReady!) < priority(running_task)
A (st € TASK A — (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state @ {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rcv(wr) = que?
A — priority(topReady!) > priority(wr))

theorem QueueSendW_TQ _vc_ref
V QueueSendW _TQFSBSig | true e pre QueueSendW _TQ

theorem TaskQueuePropertyl
V TaskQueue o ¥Vt : TASK | t € dom wait_rcv e state(t) = blocked

— QueueSendWS_TQ
A TaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_rcv
running_task € dom release_snd = que? = release_snd(running_task)
que? € queue
q_size(que?) < q_mazx(que?)
topReady! € wait_rcv™({que?} |
YV wr @ wait_rcv™({que?} |) o priority(topReady') > priority(wr)
priority(topReady!) > priority(running_task)
dst?: STATE | st? = ready
e Reschedule[topReady!/target?, tasks/tasks?, priority/pri?]
queue’ = queue
g_max’ = g_max
q_size' = q_size ® {(que? — q_size(que?) + 1)}
wait_snd' = wait_snd
wait_rcv’ = {topReady!} 9 wait_rcv
release_snd’ = {running_task} < release_snd
release_rcv' = release_rcv @ {(topReady! — que?)}

QueueSendWS_TQFSBSig

TaskQueue
que? : QUEUE

Page 197

running_task ¢ dom release_rcv
running_task € dom release_snd = que? = release_snd(running_task)
que? € queue
q_size(que?) < q_mazx(que?)
JtopReady! : wait_rcv™({que?} |

| YV wr : wait_rcv™({que?} |

e priority(topReady!) > priority(wr)
e priority(topReady!) > priority(running_task)

theorem 1QueueSendWS_TQ_Lemma
V TaskQueue; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) < q-maz(que?)
A topReady! € wait_rcv™({que?} |
A (Y wret - wait_rcv™ (| {que?} |)
e priority(topReady!) > priority(wrct))
A priority(topReady!) > priority(running_task)
o — (TaskQueue|[log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
q_size ;= q_size ® {(wait_rcv(topReady!), (1+
q_size(wait_rcv(topReady!))))},
release_rcv = release_rcv®
{(topReady!, wait_rcv(topReady!))},
release_snd = {running_task} < release_snd,
running_task := topReady!,
state := state®
({(running_task, ready) } U {(topReady!, running)}),
wait_rcv = {topReady'} 9 wait_rcv]
A (wr € dom wait_rcv A wait_rcv(wr) = wait_rcv(topReady!)
= priority(topReady!) > priority(wr))
= st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
A = (state(st), (state @ ({(running_task, ready) }U
{(topReady!, running)}))st) € transition)

theorem QueueSendWS_TQ_vc_ref
V QueueSendWS_TQFSBSig | true e pre QueueSendWS_TQ

Page 198

QueueSend_T(Q = QueueSendN_T(Q
V QueueSendF _TQ
V QueueSendW _T(Q)
V QueueSendWS_TQ

_ QueueReceiveN_TQ)

A TaskQueue

que? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd

running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue

q_size(que?) > 0

que? ¢ ran wait_snd

=Task

queue’ = queue

g—max’ = g_max

q_size' = q_size @ {(que? — q_size(que?) — 1)}
= WaitingData

release_snd' = release_snd

release_rcv' = {running_task} < release_rcv
topReady! = running_task

_ QueueReceiveN _TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_snd

running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue

q_size(que?) >0

que? ¢ ran wait_snd

theorem QueueReceiveN_TQ _vc_ref
V QueueReceiveN_TQFSBSig | true e pre QueueReceiveN_T()

__ QueueReceiveE_TQ
ATaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd
running_task € dom release_rcv = que? = release_rcv(running_task)

Page 199

que? € queue
q_size(que?) =0
running_task # idle
state(topReady!) = ready
V't state™({ready} |) e priority(topReady!) > priority(t)
Ist?: STATE | st? = blocked
e Reschedule[topReady!/target?, tasks/tasks?, priority/pri?]
=ZQueueData
wait_snd' = wait_snd
wait_rcv’ = wait_rcv & {(running_task — que?)}
release_snd' = release_snd
release_rcv’ = {running_task} < release_rcv

— QueueReceiveE_TQFSBSig

TaskQueue
que? : QUEUE

running_task ¢ dom release_snd

running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue

q_size(que?) =0

running_task # idle

theorem 1QueueReceiveE_TQ_Lemma
V TaskQueue; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) =0
A running_task # idle
A topReady! € state™({ready} |)
A (Vrtsk = state™(| {ready} |)
e priority(topReady!) > priority(rtsk))
o — (TaskQueue|[log_context := log_contextd
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
release_rcv := {running_task} < release_rcv,
running_task := topReady!,
state := state®
({(running_task, blocked) } U {(topReady!, running)}),
wait_rcv := wait_rcv & {(running_task, que?)}|
A (st € TASK
A = (state & ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)

Page 200

= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem QueueReceiveE_TQ_vc_ref
V QueueReceiveE_TQFSBSig | true e pre QueueReceiveE_T(Q)

_ QueueReceive W _T(Q)
A TaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd

running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue

q_size(que?) >0

topReady! € wait_snd™({que?} |

YV ws : wait_snd™({que?} |) ® priority(topReady!) > priority(ws)
priority(topReady!) < priority(running_task)

=TaskData

state’ = state @ {(topReady! — ready)}

=ConteztData

=PrioData

queue’ = queue

g_max’ = g_max

q_size' = q_size @ {(que? — q_size(que?) — 1)}

wait_snd’ = {topReady'} 9 wait_snd

wait_rcv’ = wait_rcv

release_snd’ = release_snd & {(topReady! — que?)}

release_rcv’ = {running_task} < release_rcv

__ QueueReceive W _TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_snd

running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue

q_size(que?) >0

YV ws : wait_snd™({que?} |) ® priority(running_task) > priority(ws)

Page 201

theorem 1QueueReceiveW_TQ_Lemma
V TaskQueue; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_snd

A (running_task € dom release_rcv

= que? = release_rcv(running_task))

A que? € queue

A q_size(que?) > 0

A topReady! € wait_snd™({que?} |

A (Y wsnt : wait_snd™({que?} |)

o priority(topReady!) > priority(wsnt))

A priority(running_task) > priority(topReady!)

o — (TaskQueue|q_size :== q_size ® {(que?, (q_size(que?) — 1))},
release_rcv := {running_task} < release_rcv,
release_snd = release_snd @ {(topReady!, que?)},
state = state @& {(topReady!, ready)},
wait_snd := {topReady!} 9 wait_snd]

A priority(topReady!) < priority(running_task)
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state & {(topReady!, ready)})st)
€ transition)
= ws € dom wait_snd
A wait_snd(ws) = que?
A = priority(topReady!) > priority(ws))

theorem QueueReceiveW _TQ_vc_ref
YV QueueReceive W _TQFSBSig | true e pre QueueReceive W _TQ

_ QueueReceiwe WS_TQ
A TaskQueue
que? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd
running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue
q_size(que?) >0
topReady! € wait_snd™({que?} |
YV ws : wait_snd™({que?} |) ® priority(topReady!) > priority(ws)
priority(topReady!) > priority(running_task)
Ist?: STATE | st? = ready
e Reschedule[topReady!/target?, tasks/tasks?, priority /pri?]
queue’ = queue
g_maz’ = g_mazx
q_size' = q_size @ {(que? — q_size(que?) — 1)}

Page 202

wait_snd" = {topReady!} 9 wait_snd

wait_rcv’ = wait_rcv

release_snd’ = release_snd @ {(topReady! — que?)}
release_rcv’ = {running_task} < release_rcv

_ QueueReceive WS_TQFSBSig
TaskQueue
que? : QUEUE

running_task ¢ dom release_snd
running_task € dom release_rcv = que? = release_rcv(running_task)
que? € queue
q_size(que?) > 0
JtopReady! : wait_snd™ (| {que?} |

| Vws : wait_snd™({que?} |

e priority(topReady!) > priority(ws)
e priority(topReady!) > priority(running_task)

theorem 1QueucReceiveWS_TQ_Lemma
V TaskQueue; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) >0
A topReady! € wait_snd™ (| {que?} |
A (Y wsnt = wait_snd™({que?})
o priority(topReady!) > priority(wsnt))
A priority(topReady!) > priority(running_task)
e — (TaskQueue|log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
q_size := q_size @ {(wait_snd(topReady!),
(q_size(wait_snd(topReady!)) — 1))},
release_rcv := {running_task} < release_rcv,
release_snd = release_snd®
{(topReady!, wait_snd(topReady!))},
running_task := topReady!,
state := state®
({(running_task, ready)} U {(topReady!, running)}),
wait_snd := {topReady'} 9 wait_snd]
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, ready)}U

Page 203

{(topReady!, running)}))st) € transition)
= ws € dom wait_snd
A wait_snd(ws) = wait_snd(topReady!)
A = priority(topReady!) > priority(ws))

theorem QueueReceiveWS_TQ_vc_ref
V QueueReceive WS_TQFSBSig | true e pre QueueReceive WS_T(Q)

QueueReceive_T() = QueueReceiveN_T()
V QueueReceiveEl _T()
V QueueReceive W _T(Q
V QueueReceive WS_TQ)

Page 204

Appendix F

SPECIFICATION FOR TIME MODEL

slice_delay : N

((disabled slice_delay_def))
slice_delay = 1

__Time
clock : N
delayed_task : P TASK
wait_time : TASK + N
time_slice : N

V¢ : dom wait_time e wait_time(t) > clock

_ Init_Time
Time'
clock’ =0

delayed_task’ = ()
wait_time' = ()
time_slice’ = slice_delay

theorem Timelnit
3 Time’ o Init_Time

TaskQueueTime

TaskQueue
Time

Page 205

(delayed_task, dom wait_snd, dom wait_rcv) partition dom wait_time
delayed_task C state™({blocked})

theorem rule domTime
V TaskQueueTime; t: TASK | t € dom wait_time
o { € state™({blocked} |

_ Init_TaskQueueTime
TaskQueueTime’

Init_TaskQueue
Init_Time

theorem TaskQueueTimelnit
3 TaskQueueTime' o Init_TaskQueueTime

ATaskQueueTime = TaskQueueTime N TaskQueueTime’ N ATask

__ FExtendTaskQueueXi
A TaskQueueTime

=Time

CreateTaskN_TQT = ExtendTaskQueueXi N CreateTaskN_T(Q)

CreateTaskN_TQTFSBSig = TaskQueueTime N CreateTaskN _TQFSBSig

theorem CreateTaskN_TQT _vc_ref
V CreateTaskN_TQTFSBSig | true e pre CreateTaskN_TQT

CreateTaskS_TQT = ExtendTaskQueueXi N\ CreateTaskS_TQ

CreateTaskS_TQTFSBSig = TaskQueueTime A CreateTaskS_TQFSBSig

theorem CreateTaskS_TQT _vc_ref
Y Create TaskS_TQTFSBSig | true o pre CreateTaskS_TQT

CreateTask_TQT = CreateTaskN_TQT V CreateTaskS_TQT

Page 206

_ DeleteTaskN_TQT
DeleteTaskN_T(Q)
A TaskQueueTime

clock’ = clock

delayed_task’ = delayed_task \ {target?}
wait_time' = {target?} 9 wait_time
time_slice’ = time_slice

DeleteTaskN_TQTFSBSig = TaskQueueTime N DeleteTaskN_TQFSBSig

theorem DeleteTaskN_TQT _vc_ref
V DeleteTaskN _TQTFSBSig | true e pre DeleteTaskN_TQT

DeleteTaskS_TQT = ExtendTaskQueueXi N\ DeleteTaskS_TQ)

DeleteTaskS_TQTFSBSig = TaskQueueTime A DeleteTaskS_TQFSBSig

theorem I1DeleteTaskS_TQT _Lemma
V TaskQueueTime; topReady!, target? : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Y rtsk = state™({ready})
e priority(topReady!) > priority(rtsk))
e — (TaskQueueTimellog_context := log_context®
{(target?, bare_context)},
phys_context = log_context(topReady!),
running_task := topReady!,
state := state®
({(target?, nonexistent)} U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A = (state @ ({(target?, nonexistent) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(target?, nonexistent)}U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

Page 207

theorem DeleteTaskS_TQT _vc_ref
V DeleteTaskS_TQTFSBSig | true e pre DeleteTaskS_TQT

DeleteTask_TQT = DeleteTaskN_TQT V DeleteTaskS_TQT

FExecuteRunningTask_TQT = ExtendTaskQueueXi
A EzxecuteRunningTask_TQ

FEzxecuteRunningTask_TQTFSBSig = TaskQueueTime
A EzxecuteRunningTask_TQFSBSig

theorem ExecuteRunningTask_TQT _vc_ref
V ExecuteRunning Task_TQTFSBSig | true
e pre FrecuteRunningTask_TQT

— SuspendTaskN_TQT
SuspendTaskN_T(Q)
A TaskQueueTime

clock’ = clock

delayed_task’ = delayed_task \ {target?}
wait_time’ = {target?} < wait_time
time_slice’ = time_slice

SuspendTaskN_TQTFSBS1g = TaskQueueTime
A SuspendTaskN _TQFSBSig

theorem SuspendTaskN_TQT _vc_ref
Y SuspendTaskN_TQTFSBSig | true e pre SuspendTaskN_TQT

SuspendTaskS_TQT = ExtendTaskQueueXi N SuspendTaskS_T(Q)

SuspendTaskS_TQTFSBSig = TaskQueueTime
A SuspendTaskS_TQFSBSig

theorem ISuspendTaskS_TQT_Lemma
V TaskQueueTime; target?, topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready

Page 208

A (Y rtsk : state™ (| {ready} |
e priority(topReady!) > priority(rtsk))
e — (TaskQueueTimellog_context := log_context®
{(running_task, phys_context)},
phys_context = log_context(topReady!),
running_task := topReady!,
state := state @ ({(running_task, suspended) }U
{(topReady!, running)})]
A (st € TASK
A = (state & ({(running_task, suspended) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, suspended) }U
{(topReady!, running)}))st) € transition)
=t e TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem SuspendTaskS_TQT _vc_ref
V SuspendTaskS_TQTFSBSig | true e pre SuspendTaskS_TQT

SuspendTaskO_TQT = ExtendTaskQueueXi N SuspendTaskO_TQ

SuspendTaskO_TQTFSBSig = TaskQueueTime
A SuspendTaskO_TQFSBS1g

theorem SuspendTaskO_TQT _vc_ref
Y SuspendTaskO_TQTFSBSig | true o pre SuspendTaskO_TQT

SuspendTask_TQT = SuspendTaskN_TQT
V SuspendTaskS_TQT
V SuspendTaskO_TQT

ResumeTaskN_TQT = ExtendTaskQueueXi N ResumeTaskN_TQ

ResumeTaskN_TQTFSBSig = TaskQueueTime
A ResumeTaskN_TQFSBSig

theorem ResumeTaskN_TQT _vc_ref
V ResumeTaskN_TQTFSBSig | true e pre ResumeTaskN_TQT

ResumeTaskS_TQT = ExtendTaskQueueXi N ResumeTaskS_TQ

Page 209

ResumeTaskS_TQTFSBSig = TaskQueueTime
A ResumeTaskS_TQFSBSig

theorem ResumeTaskS_TQT _vc_ref
V ResumeTaskS_TQTFSBSig | true ® pre ResumeTaskS_TQT

ResumeTask_TQT = ResumeTaskN_TQT V ResumeTaskS_TQT

ChangeTaskPriorityN_TQT = EzxtendTaskQueueXi
A Change TaskPriorityN _TQ)

ChangeTaskPriorityN _TQTFSBSig = TaskQueueTime
A ChangeTaskPriorityN_TQFSBSig

theorem ChangeTaskPriorityN_TQT _vc_ref
V ChangeTaskPriorityN _TQTFSBSig | true
e pre ChangeTaskPriorityN_TQT

ChangeTaskPriorityS_TQT = ExtendTaskQueueXi
A Change TaskPriorityS_TQ

ChangeTaskPriorityS_TQTFSBSig = TaskQueueTime
A Change TaskPriorityS_TQFSBSig

theorem ChangeTaskPriorityS_TQT _vc_ref
V ChangeTaskPriorityS_TQTFSBSig | true
e pre ChangeTaskPriorityS_TQT

ChangeTaskPriorityD_TQT = FExtendTaskQueueX:
A ChangeTaskPriorityD_T(Q

ChangeTaskPriorityD_TQTFSBSig = TaskQueueTime
A ChangeTaskPriorityD_TQFSBSig

theorem 1ChangeTaskPriorityD_TQT _Lemma
V TaskQueueTime; target?, topReady! : TASK:; newpri? : N
| state(target?) = running
A (target? = idle = newpri? = 0)
A state(topReady!) = ready
A (Y rtsk - state™({ready} |)

Page 210

e priority(topReady!) > priority(rtsk))
A newpri? < priority(topReady!)
e — (TaskQueueTimellog_context := log_context®
{(running_task, phys_context)},
phys_context = log_context(topReady!),
priority = priority ® {(target?, newpri?)},
running_task := topReady!,
state := state®
({(running_task, ready)} U {(topReady!, running)})]
A newpri? < priority(topReady!)
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}J
{(topReady!, running)}))st) € transition)
=t c TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem ChangeTaskPriorityD _TQT _vc_ref
Y ChangeTaskPriorityD_TQTFSBSig | true
e pre ChangeTaskPriorityD_TQT

CreateQueue_TQT = ExtendTaskQueueXi N CreateQueue_T(Q)

CreateQueue_TQTFSBSig = TaskQueueTime N\ CreateQueue_TQFSBSig

theorem CreateQueue _TQT _vc_ref
V CreateQueue_TQTFSBSig | true e pre CreateQueue_TQT

DeleteQueue_TQT = ExtendTaskQueueXi A DeleteQueue_TQ)
DeleteQueue_TQTFSBSig = TaskQueueTime N DeleteQueue_TQFSBSig

theorem DeleteQueue_TQT _vc_ref
V DeleteQueue_TQTFSBSig | true e pre DeleteQueue_TQT

QueueSendN_TQT = ExtendTaskQueueXi N QueueSendN_T(Q

QueueSendN_TQTFSBSig = TaskQueueTime N QueueSendN _TQFSBSig

Page 211

theorem QueueSendN_TQT _vc_ref
V QueueSendN_TQTFSBSig | true o pre QueueSendN_TQT

— QueueSendF_TQT
A TaskQueueTime
QueueSendF_T(Q)

wtime? : N

wtime? > clock
clock’ = clock
delayed_task’ = delayed_task
wait_time' = wait_time & {(running_task — wtime?)}
time_slice’ = time_slice

— QueueSendF _TQTFSBSig
TaskQueueTime
QueueSendF _TQFSBSig

wtime? : N

wtime? > clock

theorem 1QueueSendF_TQT _Lemma
V TaskQueueTime; topReady! : TASK; que? : QUEUFE; wtime? : N
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) = q_maz(que?)
A running_task # idle
A state(topReady!) = ready
A (Vrtsk = state™(| {ready} |)
e priority(topReady!) > priority(rtsk))
A wtime? > clock
o — (TaskQueueTimellog_context := log_context®
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
release_snd = {running_task} < release_snd,
running_task := topReady!,
state := state®
({(running_task, blocked) } U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)},
wait_snd := wait_snd & {(running_task, que?)}]
A (st € TASK
A = (state & ({(running_task, blocked) }U

Page 212

{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
=t e TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem QueueSendF_TQT _vc_ref
V QueueSendF_TQTFSBSig | true e pre QueueSendF_TQT

_ QueueSendW _TQT
A TaskQueueTime
QueueSendW _TQ)

clock’ = clock

delayed_task’ = delayed_task
wait_time' = {topReady!} < wait_time
time_slice’ = time_slice

QueueSendW _TQTFSBSig = TaskQueueTime
A QueueSendW _TQFSBSig

theorem 1QueueSendW_TQT _Lemma
V TaskQueueTime; topReady! : TASK; que? : QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) < g_maz(que?)
A topReady! € wait_rcv™({que?} |
A (Ywret : wait_rcv™({que?})
o priority(topReady!) > priority(wrct))
A priority(running_task) > priority(topReady!)
o — (TaskQueueTime|q_size := q_size & {(que?, (1+
o_size(que?)))},
release_rcv := release_rcv & {(topReady!, que?)},
release_snd := {running_task} < release_snd,
state = state & {(topReady!, ready)},
wait_time := {topReady!} <9 wait_time,
wait_rcv := {topReady!} 9 wait_rcv]
A priority(topReady!) < priority(running_task)
A (st € TASK
A = (state & {(topReady!, ready)})st = state(st)
= (state(st), (stated

Page 213

{(topReady!, ready)})st) € transition)

= wr € dom wait_rcv

A wait_rcv(wr) = que?
A = priority(topReady!) > priority(wr))

theorem QueueSendW _TQT _vc_ref
V QueueSendW _TQTFSBSig | true e pre QueueSendW_TQT

— QueueSendWS_TQT

A TaskQueueTime
QueueSendWS_TQ

clock’ = clock

delayed_task’ = delayed_task
wait_time’ = {topReady!} < wait_time
time_slice’ = time_slice

QueueSendWS_TQTFSBSig = TaskQueueTime
A QueueSendWS_TQFSBSig

theorem 1QueueSendWS_TQT_Lemma

V TaskQueueTime; topReady! : TASK; que? : QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
N q_size(que?) < q_maz(que?)
A topReady! € wait_rcv™({que?} |
A (Y wret : wait_rcv™ (| {que?} |)
e priority(topReady!) > priority(wrct))
A priority(topReady!) > priority(running_task)
e — (TaskQueueTimellog_context := log_context®
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),

q_size := q_size ® {(wait_rcv(topReady!), (1+

q—size(wait_rcv(topReady!))))},
release_rcv = release_rcv®
{(topReady!, wait_rcv(topReady!))},

release_snd = {running_task} < release_snd,

running_task := topReady!,
state := state®

({(running_task, ready)} U {(topReady!, running)}),

wait_time := {topReady!} < wait_time,
wait_rcv := {topReady!} 9 wait_rcv]

Page 214

A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, ready) }U
{(topReady!, running)}))st) € transition)
= wr € dom wait_rcv
A wait_rcv(wr) = wait_rcv(topReady!)
A = priority(topReady!) > priority(wr))

theorem QueueSendWS_TQT _vc_ref
YV QueueSendWS_TQTFSBSig | true e pre QueueSendWS_TQT

QueueSend_TQT = QueueSendN_TQT
V QueueSendF_TQT
V QueueSendW _TQT
V QueueSendWS_TQT

QueueReceiveN_TQT = ExtendTaskQueueXi N QueueReceiveN_TQ)

QueueReceiveN_TQTFSBSig = TaskQueueTime
A QueueReceiveN _TQFSBSig

theorem QueueReceiveN_TQT _vc_ref
V QueueReceiveN_TQTFSBSig | true pre QueueReceiveN_TQT

_ QueueReceiveE_TQT
A TaskQueueTime
QueueReceiveE _TQ
wtime? : N

wtime? > clock
clock’ = clock
delayed_task’ = delayed_task
wait_time’ = wait_time ® {(running_task — wtime?)}
time_slice’ = time_slice

— QueueReceiweE _TQTFSBSig
TaskQueueTime
QueueReceiveE_TQFSBSig
wtime? : N

wtime? > clock

Page 215

theorem 1QueueReceiveE_TQT _Lemma
V TaskQueueTime; que? : QUEUFE; topReady! : TASK; wtime? : N
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) =0
A running_task # idle
A topReady! € state™ (| {ready} |)
A (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
A wtime? > clock
e — (TaskQueueTimellog_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
release_rcv := {running_task} < release_rcv,
running_task := topReady!,
state := state®
({ (running_task, blocked) } U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)},
wait_rcv == wait_rcv & {(running_task, que?)}|
A (st € TASK
A = (state @ ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked)}U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem QueueReceiveE_TQT _vc_ref
V QueueReceiveE_TQTFSBSig | true pre QueueReceiveE_TQT

— QueueRecewe W _TQT
A TaskQueueTime
QueueReceive W _T(Q

clock’ = clock

delayed_task’ = delayed_task
wait_time' = {topReady!} < wait_time
time_slice’ = time_slice

QueueReceive W _TQTFSBSig = TaskQueue Time
A QueueReceive W _TQFSBS1g

Page 216

theorem 1QueueReceiveW_TQT _Lemma
V TaskQueueTime; que? : QUEUFE; topReady! : TASK
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) >0
A topReady! € wait_snd™({que?} |
A (Ywsnt : wait_snd™({que?})
e priority(topReady!) > priority(wsnt))
A priority(running_task) > priority(topReady!)
o — (TaskQueueTime[q_size := q_size®
{(que?, (q_size(que?) — 1))},
release_rcv := {running_task} < release_rcv,
release_snd = release_snd & {(topReady!, que?)},
state = state @ {(topReady!, ready)},
wait_time := {topReady!} <9 wait_time,
wait_snd := {topReady'} 9 wait_snd]
A priority(topReady!) < priority(running_task)
A (st € TASK
A = (state & {(topReady!, ready)})st = state(st)
= (state(st), (state®
{(topReady!, ready)})st) € transition)
= ws € dom wait_snd
A wait_snd(ws) = que?
A = priority(topReady!) > priority(ws))

theorem QueueReceiveW _TQT _vc_ref
V QueueReceive W _TQTFSBSig | true e pre QueueReceive W _TQT

— QueueReceiwve WS_TQT
A TaskQueueTime
QueueReceive WS_TQ)

clock’ = clock

delayed_task’ = delayed_task
wait_time’ = {topReady!} < wait_time
time_slice’ = time_slice

QueueReceive WS_TQTFSBSig = TaskQueueTime
A QueueReceive WS_TQFSBSig

theorem 1QueueReceiveWS_TQT_Lemma
V TaskQueueTime; que? : QUEUE; topReady! : TASK

Page 217

| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) >0
A topReady! € wait_snd™({que?} |
A (Y wsnt = wait_snd™({que?} |)
e priority(topReady!) > priority(wsnt))
A priority(topReady!) > priority(running_task)
o — (TaskQueueTimellog_context := log_context®
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
q_size := q_size @ {(wait_snd(topReady!),
(q—size(wait_snd(topReady!)) — 1))},
release_rcv 1= {running_task} < release_rcv,
release_snd = release_snd®
{(topReady!, wait_snd(topReady!))},
running_task := topReady!,
state := state®
({(running_task, ready)} U {(topReady!, running)}),
wait_time := {topReady'} <9 wait_time,
wait_snd := {topReady!} 9 wait_snd]
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, ready)}U
{(topReady!, running)}))st) € transition)
= ws € dom wait_snd
A wait_snd(ws) = wait_snd(topReady!)
A = priority(topReady!) > priority(ws))

theorem QueueReceiveWS_TQT _vc_ref
V QueueReceive WS_TQTFSBSig | true o pre QueueReceive WS_TQT

QueueReceive_TQT = QueueReceiveN_TQT
V QueueReceiveE _TQT
V QueueReceive W _TQT
V QueueReceive WS_TQT

— DelayUntil_TQT
A TaskQueueTime
wtime? : N

topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv

Page 218

state(topReady!) = ready
running_task # idle
Vt: TASK | state(t) = ready e priority(topReady!) > priority(t)
wtime? > clock
dst?: STATE | st? = blocked
e Reschedule[topReady!/target?, tasks/tasks?, priority /pri?]
ZQueue
clock’ = clock
delayed_task’ = delayed_task U {running_task}
wait_time’ = wait_time & {(running_task — wtime?)}
time_slice’ = time_slice

__DelayUntil_TQTFSBSig
TaskQueueTime
wtime? : N

running_task ¢ dom release_snd U dom release_rcv
running_task # idle
wtime? > clock

theorem 1DelayUntil_TQT_Lemma
V TaskQueueTime; wtime? : N; topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A running_task # idle
A state(topReady!) = ready
A wtime? > clock
A (VY rtsk = state™({ready} |
o priority(topReady!) > priority(rtsk))
o — (TaskQueueTime|delayed_task := delayed_taskU
{running_task},
log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(running_task, blocked)} U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)}|
A (st € TASK
A = (state & ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
=t e TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

Page 219

theorem DelayUntil _TQT _vc_ref
V DelayUntil_TQTFSBSig | true pre DelayUntil_TQT

— CheckDelayedTaskN_TQT
A TaskQueueTime
top Waiting! : TASK

running_task ¢ dom release_snd U dom release_rcv

top Waiting! € dom wait_time

YV wt : dom wait_time o wait_time(top Waiting!) < wait_time(wt)

YV wt : dom wait_time | wait_time(wt) = wait_time(top Waiting!)
e priority(top Waiting!) > priority(wt)

priority(top Waiting!) < priority(running_task)

=TaskData

state’ = state @ {(top Waiting! — ready)}

=ContextData

=PrioData

=ZQueueData

wait_snd' = {top Waiting!} 9 wait_snd

wait_rcv’ = {top Waiting!} 9 wait_rcv

ZQReleasingData

clock’ = wait_time(top Waiting!)

delayed_task’ = delayed_task \ {top Waiting!}

wait_time’ = {top Waiting!} < wait_time

time_slice’ = time_slice

_ CheckDelayedTaskN _TQTFSBSig
TaskQueueTime

running_task ¢ dom release_snd U dom release_rcv
Jtop Waiting! : dom wait_time
o (Vwt : dom wait_time o wait_time(top Waiting!) < wait_time(wt))
A (Y wt : dom wait_time | wait_time(wt) = wait_time(top Waiting!)
e priority(top Waiting!) > priority(wt))
A priority(top Waiting!) < priority(running_task)

theorem ICheckDelayed TaskN_TQT_Lemma
Y TaskQueueTime; top Waiting! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A top Waiting! € dom wait_time
A (V dtk - dom wait_time
e wait_time(top Waiting!) < wait_time(dtk))
A (Y detk : dom wait_time
| wait_time(detk) = wait_time(top Waiting!)

Page 220

e priority(top Waiting!) > priority(detk))
A priority(top Waiting!) < priority(running_task)
o — (TaskQueueTime[clock := wait_time(top Waiting!),
delayed_task := delayed_task \ {top Waiting!},
state = state & {(top Waiting!, ready)},
wait_time := {top Waiting'} 9 wait_time,
wait_rcv = {top Waiting!} < wait_rcv,
wait_snd := {top Waiting} <9 wait_snd]
A (st € TASK

A = (state & {(top Waiting!, ready)}) st = state(st)

= (state(st), (state®
{(top Waiting!, ready)})st) € transition)

A (wt € dom wait_time

= wait_time(top Waiting!) < wait_time(wt))
= wt__0 € dom wait_time

A wait_time(wt_0) = wait_time(top Waiting!)

A = priority(top Waiting!) > priority(wt_0))

theorem CheckDelayedTaskN_TQT _vc_ref
Y CheckDelayed TaskN_TQTFSBSig | true
e pre CheckDelayedTaskN_TQT

_ CheckDelayedTaskS_TQT
A TaskQueueTime
top Waiting! : TASK

running_task ¢ dom release_snd U dom release_rcv

top Waiting! € dom wait_time

YV wt : dom wait_time o wait_time(top Waiting!) < wait_time(wt)

YV wt : dom wait_time | wait_time(wt) = wait_time(top Waiting!)
e priority(top Waiting!) > priority(wt)

priority(top Waiting!) > priority(running_task)

dst?: STATE | st? = ready
e Reschedule[top Waiting!/target?, tasks/tasks?, priority /pri?)

=ZQueueData

wait_snd = {top Waiting!} 9 wait_snd

wait_rcv’ = {top Waiting!} 9 wait_rcv

=ZQReleasingData

clock! = wait_time(top Waiting!)

delayed_task’ = delayed_task \ {top Waiting!}

wait_time' = {top Waiting!} < wait_time

time_slice’ = time_slice

Page 221

_ CheckDelayedTaskS_TQTFSBSig
TaskQueueTime

running_task ¢ dom release_snd U dom release_rcv
dtop Waiting! : dom wait_time
o (VY wt : dom wait_time o wait_time(top Waiting!) < wait_time(wt))
A (Vwt : dom wait_time | wait_time(wt) = wait_time(top Waiting!)
o priority(top Waiting!) > priority(wt))
A priority(top Waiting!) > priority(running_task)

theorem 1CheckDelayed TaskS_TQT_Lemma
V TaskQueueTime; top Waiting! : TASK

| running_task ¢ dom release_snd U dom release_rcv

A top Waiting! € dom wait_time

A (Y dtk : dom wait_time

o wait_time(top Waiting!) < wait_time(dtk))

A (Y detk : dom wait_time

| wait_time(detk) = wait_time(top Waiting!)
e priority(top Waiting!) > priority(detk))

A priority(top Waiting!) > priority(running_task)

o — (TaskQueueTime|clock := wait_time(top Waiting!),
delayed_task = delayed_task \ {top Waiting!},
log_context := log_context®

{(running_task, phys_context)},
phys_context := log_context(top Waiting!),
running_task := top Waiting!,
state := state®
({(running_task, ready)} U {(top Waiting!, running)}),
wait_time := {top Waiting!} <9 wait_time,
wait_rcv = {top Waiting} <9 wait_rcv,
wait_snd := {top Waiting!} < wait_snd]
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(top Waiting!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}U
{(top Waiting!, running)}))st) € transition)
A (wt € dom wait_time
= wait_time(top Waiting!) < wait_time(wt))
= wt_0 € dom wart_time
A wait_time(wt—0) = wait_time(top Waiting!)
A = priority(top Waiting!) > priority(wt__0))

theorem CheckDelayed TaskS_TQT _vc_ref
Y CheckDelayed TaskS_TQTFSBSig | true
e pre CheckDelayedTaskS_TQT

Page 222

— TimeSlicing_TQT
A TaskQueueTime
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
state(topReady!) = ready
priority(topReady!) = priority(running_task)
V't : dom wait_time o time_slice < wait_time(t)
dst?: STATE | st? = ready
e Reschedule[topReady!/target?, tasks/tasks?, priority /pri?]
ZQueue
clock’ = clock
delayed_task’ = delayed_task
wait_time' = wait_time
time_slice’ = time_slice + slice_delay

— TimeSlicing_TQTFSBSig
TaskQueueTime

running_task ¢ dom release_snd U dom release_rcv
V't : dom wait_time o time_slice < wait_time(t)
JtopReady! : state™(| {ready} |

e priority(topReady!) = priority(running_task)

theorem 1TimeSlicing TQT_Lemma
V TaskQueueTime; topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
N state(topReady!) = ready
A priority(topReady!) = priority(running_task)
A (Yts : dom wait_time o time_slice < wait_time(ts))
e — (TaskQueueTimellog_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(running_task, ready) } U {(topReady!, running)}),
time_slice := time_slice + slice_delay|
= st € TASK
A = (state & ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
A = (state(st), (state @ ({(running_task, ready)}U
{(topReady!, running)}))st) € transition)

Page 223

theorem TimeSlicing TQT _vc_ref
Y TimeSlicing_TQTFSBSig | true e pre TimeSlicing_TQT

— NoSlicing_TQT

A TaskQueueTime

running_task ¢ dom release_snd U dom release_rcv

V't : dom wait_time o time_slice < wait_time(t)

Vi state™({ready} |) e priority(t) < priority(running_task)
=Task

ZQueue

clock! = clock

delayed_task’ = delayed_task

wait_time' = wait_time

time_slice’ = time_slice 4 slice_delay

— NoSlicing_TQTFSBSig

TaskQueueTime

running_task ¢ dom release_snd U dom release_rcv
V't : dom wait_time o time_slice < wait_time(t)
Vit state™({ready} |) e priority(t) < priority(running_task)

theorem NoSlicing_TQT _vc_ref
Y NoSlicing_TQTFSBSig | true e pre NoSlicing_TQT

Page 224

Appendix G

SPECIFICATION FOR MUTEX MODEL

_ MutexData
semaphore : P QUEUE
mutexr : P QUEUE
mutex_holder : QUEUE -+ TASK
mutex_recursive : QUEUE -+ N

mutex N semaphore =)
dom mutex_recursive = mutex
V'm : mutex @ m ¢ dom mutex_holder < mutex_recursive(m) = 0

_ Init_MutexData
MutexData’

semaphore’ = ()
muter’ = ()
mutex_holder’ = ()
mutex_recursive’ =

0

theorem MutexDatalnit
d MutexData' e Init_MutexData

Original PrioData
Fbasepm’om’ty : TASK + N

Page 225

_ Init_OriginalPrioData

OriginalPrioData’

base_priority’ = ()

theorem OriginalPrioDatalnit
3 OriginalPrioData’ e Init_OriginalPrioData

MReleasingData

Tr@leasemutex : TASK + QUEUE

__ Init_MReleasingData

MReleasingData’

release_mutex’ = ()

theorem MReleasingDatalnit
d MReleasingData’ e Init_MReleasingData

_ Mutex

MutexData
OriginalPrioData
MReleasingData

dom base_priority = ran mutex_holder
ran release_muter C mutex

_ Init_Mutex

Mutez’

Init_MutexData
Init_OriginalPrioData
Init_MReleasingData

theorem MutexInit
3 Mutex ' o Init_Mutex

TaskQueue TimeMutex

TaskQueueTime
Mutex

Page 226

semaphore C queue

Vs : semaphore ® q¢_mazx(s) = 1

mutexr C queue

V'm : mutex ® g_maz(m) =1

dom mutex_holder = {m : mutex | q_size(m) = 0}

ran mutex_holder C tasks

¥V mh : ran mutex_holder e priority(mh) > base_priority(mh)

YV ms : mutex U semaphore ® ms ¢ ran wait_snd U ran release_snd
release_mutex C release_rcv

A TaskQueue TimeMutexr = TaskQueue TimeMutex
A TaskQueue TimeMutex’
A ATask

__Init_TaskQueueTimeMutex
TaskQueuveTimeMutex’

Init_TaskQueueTime
Init_Mutex

theorem TaskQueueTimeMutexInit
3 TaskQueue TimeMutex " o Init_TaskQueue TimeMutex

_ ExtendTQTXi
A TaskQueueTimeMutex

=Mutex

CreateTaskN_TQTM = ExtendTQTXv N\ CreateTaskN_TQT

CreateTaskN_TQTMFSBSig = TaskQueueTimeMutex
A CreateTaskN_TQTFSBSig

theorem CreateTaskN_TQTM _vc_ref
Y Create TaskN _TQTMFSBSig | true e pre CreateTaskN_TQTM

CreateTaskS_TQTM = ExtendTQTX:i N\ CreateTaskS_TQT

CreateTaskS_TQTMFSBSig = TaskQueue TimeMutex
A CreateTaskS_TQTFSBSig

Page 227

theorem CreateTaskS_TQTM _vc_ref
V Create TaskS_TQTMFSBSig | true e pre CreateTaskS_TQTM

CreateTask_TQTM = CreateTaskN_TQTM V CreateTaskS_TQTM

__DeleteTaskN_TQTM

A TaskQueue TimeMutex
DeleteTaskN_TQT

target? ¢ ran mutex_holder

=EMutexData

= O0riginalPrioData

release_muter’ = {target?} < release_mutex

_ DeleteTaskN_TQTMFSBSig

TaskQueueTimeMutex
DeleteTaskN _TQTFSBSig

target? ¢ ran mutex_holder

theorem DeleteTaskN_TQTM _vc_ref
V DeleteTaskN_TQTMFSBSig | true e pre Delete TaskN_TQTM

_ DeleteTaskS_TQTM

A TaskQueue TimeMutex
DeleteTaskS_TQT

target? ¢ ran mutex_holder
EMutex

— DeleteTaskS_TQTMFSBSig

TaskQueuveTimeMutex
DeleteTaskS_TQTFSBSig

target? ¢ ran mutex_holder

theorem IDeleteTaskS_TQTM _Lemma
V TaskQueueTimeMutex; topReady!, target? : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}

Page 228

A state(topReady!) = ready
A (Y rtsk = state™({ready})
e priority(topReady!) > priority(rtsk))
A target? ¢ ran mutex_holder
o — (TaskQueueTimeMutex|[log_context := log_contert®d
{(target?, bare_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(target?, nonezistent)} U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A = (state @ ({(target?, nonexistent) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(target?, nonexistent) }U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem DeleteTaskS_TQTM _vc_ref
Y DeleteTaskS_TQTMFSBSig | true e pre DeleteTaskS_TQTM

DeleteTask_TQTM = DeleteTaskN_TQTM V DeleteTaskS_TQTM

ExecuteRunningTask_TQTM = ExtendTQTXi
A ExecuteRunningTask_TQT

FEzxecuteRunningTask_TQTMFSBS1g = TaskQueueTimeMutex
A ExecuteRunningTask_TQTFSBSig

theorem ExecuteRunningTask _TQTM _vc_ref
V EzecuteRunning Task_TQTMFSBSiqg | true
e pre FrecuteRunningTask_TQTM

SuspendTaskN_TQTM = FExtendTQTXi N SuspendTaskN_TQT

SuspendTaskN_TQTMFSBS1g = TaskQueue TimeMutex
A SuspendTaskN_TQTFSBSig

theorem SuspendTaskN_TQTM _vc_ref
Y SuspendTaskN _TQTMFSBSig | true e pre SuspendTaskN_TQTM

Page 229

SuspendTaskS_TQTM = ExtendTQTXi N\ SuspendTaskS_TQT

SuspendTaskS_TQTMFSBSig = TaskQueueTimeMutex
A SuspendTaskS_TQTFSBSig

theorem ISuspendTaskS_TQTM_Lemma
V TaskQueueTimeMutex; target?, topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
N (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
o = (TaskQueue TimeMutex[log_context := log_context®d
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state @& ({(running_task, suspended) }U
{(topReady!, running)})]
A (st € TASK
A = (state @ ({(running_task, suspended) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, suspended) }U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem SuspendTaskS_TQTM _vc_ref
V SuspendTaskS_TQTMFSBSig | true e pre SuspendTaskS_TQTM

SuspendTaskO_TQTM = ExtendTQTX: N\ SuspendTaskO_TQT

SuspendTaskO_TQTMFSBSig = TaskQueueTimeMutex
A SuspendTaskO_TQTFSBSig

theorem SuspendTaskO_TQTM _vc_ref
V SuspendTaskO_TQTMFSBSig | true o pre SuspendTaskO_TQTM

SuspendTask_TQTM = SuspendTaskN_TQTM
V SuspendTaskS_TQTM
V SuspendTaskO_TQTM

Page 230

ResumeTaskN_TQTM = ExtendTQTXi N ResumeTaskN_TQT

ResumeTaskN_TQTMFSBSig = TaskQueueTimeMutex
A ResumeTaskN_TQTFSBSig

theorem ResumeTaskN_TQTM _vc_ref
V ResumeTaskN_TQTMFSBSig | true e pre ResumeTaskN_TQTM

ResumeTaskS_TQTM = ExtendTQTXi N ResumeTaskS_TQT

ResumeTaskS_TQTMFSBSig = TaskQueue TimeMutex
A ResumeTaskS_TQTFSBSig

theorem ResumeTaskS_TQTM _vc_ref
V ResumeTaskS_TQTMFSBSig | true o pre ResumeTaskS_TQTM

ResumeTask_TQTM = ResumeTaskN_TQTM V ResumeTaskS_TQTM

__ ChangeTaskPriorityNNotHolder _TQTM
A TaskQueue TimeMutex
ChangeTaskPriorityN_TQT

target? ¢ dom base_priority
=Mutex

_ ChangeTaskPriorityNNotHolder _TQTMFSBSig
ChangeTaskPriorityN_TQTFSBSig
TaskQueueTimeMutex

target? ¢ dom base_priority

theorem ChangeTaskPriorityNNotHolder " TQTM _vc_ref
Y ChangeTaskPriorityNNotHolder _TQTMFSBSig | true
e pre ChangeTaskPriorityNNotHolder _TQTM

__ ChangeTaskPrioritySNotHolder_TQTM
ChangeTaskPriorityS_TQT
A TaskQueue TimeMutex

target? ¢ dom base_priority
=Mutex

Page 231

— ChangeTaskPrioritySNotHolder _TQTMFSBSig
ChangeTaskPriorityS_TQTFSBSig
TaskQueueTimeMutex

target? ¢ dom base_priority

theorem ChangeTaskPrioritySNotHolder _"TQTM _vc_ref
Y ChangeTaskPrioritySNotHolder _TQTMFSBSig | true
e pre ChangeTaskPrioritySNotHolder _TQTM

__ ChangeTaskPriorityDNotHolder_TQTM
A TaskQueue TimeMutex
ChangeTaskPriorityD_TQT

target? ¢ dom base_priority
=Mutex

__ ChangeTaskPriorityDNotHolder _TQTMFSBSiqg
TaskQueue TimeMutex
ChangeTaskPriorityD_TQTFSBSig

target? ¢ dom base_priority

theorem 1ChangeTaskPriorityDNotHolder " TQTM _Lemma
V TaskQueueTimeMutex; target?, topReady! : TASK; newpri? : N
| state(target?) = running
A (target? = idle = newpri? = 0)
A state(topReady!) = ready
A (Vrtsk = state™(| {ready} |)
e priority(topReady!) > priority(rtsk))
A newpri? < priority(topReady!)
A target? ¢ dom base_priority
e — (TaskQueue TimeMutex[log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
priority := priority ® {(target?, newpri?)},
running_task := topReady!,
state := state®
({(running_task, ready) } U {(topReady!, running)})]
A newpri? < priority(topReady!)
A (st € TASK

Page 232

A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}J
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem ChangeTaskPriorityDNotHolder _ TQTM _vc_ref
Y ChangeTaskPriorityDNotHolder _TQTMFSBSig | true
e pre ChangeTaskPriorityDNotHolder _TQTM

__ ChangeTaskPriorityNNotInherited_TQTM
ChangeTaskPriorityN_TQT
A TaskQueueTimeMutex

target? € dom base_priority

base_priority(target?) = priority(target?)

=MutexData

base_priority’ = base_priority & {(target? — newpri?)}
=MReleasingData

_ ChangeTaskPriorityNNotInherited_TQTMFSBSig
ChangeTaskPriorityN_TQTFSBSig
TaskQueueTimeMutex

target? € dom base_priority
base_priority(target?) = priority(target?)

theorem ChangeTaskPriorityNNotInherited _TQTM _vc_ref
Y Change TaskPriorityNNotInherited_TQTMFSBSig | true
e pre ChangeTaskPriorityNNotInherited_TQTM

_ ChangeTaskPrioritySNotInherited_TQTM
ChangeTaskPriorityS_TQT
A TaskQueueTimeMutex

target? € dom base_priority

base_priority(target?) = priority(target?)

=MutezxData

base_priority’ = base_priority & {(target? — newpri?)}
=MReleasingData

Page 233

_ ChangeTaskPrioritySNotInherited_TQTMFSBSig

ChangeTaskPriorityS_TQTFSBSig
TaskQueue TimeMutex

target? € dom base_priority
base_priority(target?) = priority(target?)

theorem ChangeTaskPrioritySNotInherited _TQTM_vc_ref
Y Change TaskPrioritySNotInherited_TQTMFSBSig | true
e pre ChangeTaskPrioritySNotInherited_TQTM

__ ChangeTaskPriorityD NotInherited_TQTM

A TaskQueue TimeMutex
ChangeTaskPriorityD_TQT

target? € dom base_priority
base_priority(target?) = priority(target?)

=MutexData
base_priority’ = base_priority ® {(target? — newpri?)}
ZMReleasingData

__ ChangeTaskPriorityD NotInherited_TQTMFSBSig

TaskQueue TimeMutex
Change TaskPriorityD_TQTFSBSig

target? € dom base_priority
base_priority(target?) = priority(target?)

theorem IChangeTaskPriorityDNotInherited _TQTM_Lemma
V TaskQueueTimeMutex; target?, topReady! : TASK; newpri? : N
| state(target?) = running
A (target? = idle = newpri? = 0)
A state(topReady!) = ready
A (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
A newpri? < priority(topReady!)
A target? € dom base_priority
A base_priority(target?) = priority(target?)
o = (TaskQueue TimeMutex|[base_priority := base_priority®
{(target?, newpri?)},
log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),

Page 234

priority := priority & {(target?, newpri?)},
running_task := topReady!,
state := state®
({(running_task, ready) } U {(topReady!, running)})]
A newpri? < priority(topReady!)
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}J
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem ChangeTaskPriorityDNotInherited _"TQTM_vc_ref
Y ChangeTaskPriorityDNotInherited _TQTMFSBSig | true
e pre ChangeTaskPriorityDNotInherited_TQTM

__ ChangeTaskPriorityInheritedN_TQTM
A TaskQueue TimeMutex
newpri? : N
target? : TASK
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
target? € dom base_priority

base_priority(target?) # priority(target?)

newpri? < priority(target?)

state(target?) # nonexistent

target? = idle = newpri? =0

= TaskQueueTime

=MutexData

base_priority’ = base_priority & {(target? — newpri?)}
=ZMReleasingData

topReady! = running_task

— ChangeTaskPriorityInheritedN _TQTMFSBSig
TaskQueueTimeMutex
newpri? : N
target? : TASK

running_task ¢ dom release_snd U dom release_rcv
target? € dom base_priority
base_priority(target?) # priority(target?)

Page 235

newpri? < priority(target?)
state(target?) # nonexistent
target? = idle = newpri? =0

theorem ChangeTaskPrioritylnheritedN_TQTM _vc_ref
V ChangeTaskPriorityInheritedN_TQTMFSBSig | true
e pre ChangeTaskPriorityInheritedN _TQTM

— ChangeTaskPriorityInheritedU_TQTM

A TaskQueue TimeMutex
Change TaskPriorityN _TQT

target? € dom base_priority
base_priority(target?) # priority(target?)
newpri? > priority(target?)

EMutexrData
base_priority’ = base_priority ® {(target? — newpri?)}
ZMReleasingData

__ ChangeTaskPriorityInheritedU _TQTMFSBSig

Change TaskPriorityN _TQTFSBSig
TaskQueue TimeMutex

target? € dom base_priority
base_priority(target?) # priority(target?)
newpri? > priority(target?)

theorem ChangeTaskPrioritylnheritedU_TQTM _vc_ref
Y Change TaskPriorityInheritedU_TQTMEFSBSig | true
e pre ChangeTaskPrioritylnheritedU_TQTM

_ ChangeTaskPriorityInheritedS_TQTM

A TaskQueue TimeMutex
Change TaskPriorityS_TQT

target? € dom base_priority
base_priority(target?) # priority(target?)
newpri? > priority(target?)

=MutexData
base_priority’ = base_priority & {(target? — newpri?)}
=ZMReleasingData

Page 236

_ ChangeTaskPriorityInheritedS_TQTMFSBSig
ChangeTaskPriorityS_TQTFSBSig
TaskQueueTimeMutex

target? € dom base_priority
base_priority(target?) # priority(target?)
newpri? > priority(target?)

theorem ChangeTaskPrioritylnheritedS_TQTM _vc_ref
Y Change TaskPriorityInheritedS_TQTMFSBSig | true
e pre ChangeTaskPriorityInheritedS_TQTM

ChangeTaskPriority_TQTM = ChangeTaskPriorityNNotHolder_TQTM
V' ChangeTaskPrioritySNotHolder _TQTM
V ChangeTaskPriorityDNotHolder _TQTM
V ChangeTaskPriorityNNotInherited _TQTM
V ChangeTaskPrioritySNotInherited_TQTM
V ChangeTaskPriorityDNotInherited_T(QTM
V' Change TaskPriorityInheritedN _TQTM
V' ChangeTaskPriorityInheritedU_TQTM
V ChangeTaskPriorityInheritedS_TQTM

CreateQueue_TQTM = ExtendTQTX: N\ CreateQueue_TQT

CreateQueue_TQTMFSBS1g = TaskQueueTimeMutex
A CreateQueue_TQTFSBSig

theorem CreateQueue_TQTM _vc_ref
V CreateQueue_TQTMFSBSig | true e pre CreateQueue_TQTM

_ DeleteQueue_TQTM
DeleteQueue_TQT
A TaskQueueTimeMutex

que? ¢ semaphore U mutex
=Mutex

DeleteQueue_TQTMFSBSig
TaskQueueTimeMutex
DeleteQueue_TQTFSBSig

que? & semaphore U mutex

Page 237

theorem DeleteQueue _TQTM _vc_ref
V DeleteQueue_TQTMFSBSig | true e pre DeleteQueue_TQTM

— QueueSendN_TQTM
QueueSendN_TQT
A TaskQueueTimeMutex

que? ¢ mutex U semaphore
=Mutex

__ QueueSendN_TQTMFSBSig
TaskQueue TimeMutex
QueueSendN_TQTFSBSig

que? & mutex U semaphore

theorem QueueSendN_TQTM _vc_ref
V QueueSendN_TQTMFSBSig | true ® pre QueueSendN_TQTM

— QueueSendF _TQTM
A TaskQueue TimeMutex
QueueSendF_TQT

que? ¢ mutex U semaphore
=Mutex

_ QueueSendF _TQTMFSBSig
TaskQueue TimeMutex
QueueSendF _TQTFSBSig

que? ¢ mutex U semaphore

theorem 1QueueSendF_TQTM_Lemma
YV TaskQueueTimeMutex; topReady! : TASK; que? : QUEUE; wtime? : N
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))

A que? € queue
A q_size(que?) = q_maz(que?)
A running_task # idle

Page 238

A state(topReady!) = ready
A (Y rtsk = state™({ready})
e priority(topReady!) > priority(rtsk))
N wtime? > clock
A que? ¢ mutex U semaphore
e — (TaskQueueTimeMutex|[log_context := log_contert®d
{(running_task, phys_context)},
phys_context := log_context(topReady!),
release_snd := {running_task} < release_snd,
running_task := topReady!,
state := state®
({(running_task, blocked)} U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)},
wait_snd := wait_snd & {(running_task, que?)}]
A (st € TASK
A = (state @& ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state ® ({(running_task, blocked) }U

{(topReady!, running)}))st) € transition)
=t € TASK

A state(t) = ready
A — priority(topReady!) > priority(t))

theorem QueueSendF_TQTM _vc_ref
YV QueueSendF _TQTMFSBSig | true ® pre QueueSendF_TQTM

— QueueSendW _TQTM
A TaskQueueTimeMutex
QueueSendW _TQT

que? & mutex U semaphore
=Mutex

— QueueSendW _TQTMFSBSig
TaskQueueTimeMutex
QueueSendW _TQTFSBSig

que? ¢ mutex U semaphore

theorem overridelsDisjointUnion [X, Y]
Vf,g: X Y |domfNndomg=0efC fdyg

Page 239

theorem 1QueueSendW_TQTM _Lemma
V TaskQueueTimeMutex; topReady!: TASK:; que?: QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) < qg-maz(que?)
A topReady! € wait_rcv™({que?} |
A (Y wret : wait_rcv™ (| {que?} |
e priority(topReady!) > priority(wrct))
A priority(running_task) > priority(topReady!)
A que? §Z mutex U semaphore
o — (TaskQueue TimeMutex|[q_size :== q_size & {(que?, (1+
g_size(que?)))},
release_rcv = release_rcv & {(topReady!, que?)},
release_snd = {running_task} < release_snd,
state = state ® {(topReady!, ready)},
wait_time := {topReady!} <9 wait_time,
wait_rcv = {topReady'} 9 wait_rcv]
A priority(topReady!) < priority(running_task)
A (st € TASK A — (state ® {(topReady!, ready)})st = state(st)
= (state(st), (state @ {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rcv(wr) = que?
A = priority(topReady!) > priority(wr))

theorem QueueSendW_TQTM _vc_ref
V QueueSendW _TQTMFSBSig | true ® pre QueueSendW _TQTM

_ QueueSendWS_TQTM
A TaskQueue TimeMutex
QueueSendWS_TQT

que? ¢ mutex U semaphore
=Mutex

— QueueSendWS_TQTMFSBSig
TaskQueueTimeMutex
QueueSendWS_TQTFSBSig

que? ¢ mutex U semaphore

Page 240

theorem 1QueueSendWS_TQTM _Lemma
V TaskQueueTimeMutex; topReady!: TASK:; que?: QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= que? = release_snd(running_task))
A que? € queue
A q_size(que?) < q_maz(que?)
A topReady! € wait_rcv™({que?} |
A (Ywret : wait_rev™({que?} |
o priority(topReady!) > priority(wrct))
A priority(topReady!) > priority(running_task)
A que? ¢ mutex U semaphore
e — (TaskQueue TimeMutex[log_context := log_contert®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
q_size := q_size ® {(wait_rcv(topReady!), (1+
q_size(wait_rcv(topReady!))))},
release_rcv = release_rcv®
{(topReady!, wait_rcv(topReady!))},
release_snd = {running_task} < release_snd,
running_task := topReady!,
state := state®
({(running_task, ready)} U {(topReady!, running)}),
wait_time := {topReady'} 9 wait_time,
wait_rcv := {topReady!} < wait_rcv]
A (st € TASK
A = (state @ ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state @ ({(running_task, ready)}J
{(topReady!, running)}))st) € transition)
= wr € dom wait_rcv
A wait_rcv(wr) = wait_rcv(topReady!)
A — priority(topReady!) > priority(wr))

theorem QueueSendWS_TQTM _vc_ref
V QueueSendWS_TQTMFSBSig | true o pre QueueSendWS_TQTM

QueueSend_TQTM = QueueSendN_TQTM
V QueueSendF_TQTM
V QueueSendW_TQTM
V QueueSendWS_TQTM

QueueReceiveN_TQTM
(QueueReceiveN_TQT

A TaskQueueTimeMutex

Page 241

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore
=EMutex

_ QueueReceiveN _TQTMFSBSig
TaskQueueTimeMutex
QueueReceiveN _TQTFSBSig

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore

theorem mutexDiffQue
V TaskQueue TimeMutez | que? ¢ mutex U semaphore
e dom mutex_holder = {f__1 : mutex

| (g-size & {(que?, (q-size(que?) —1))})f —1 = 0}

theorem QueueReceiveN_TQTM _vc_ref
V QueueReceiveN_TQTMFSBSig | true ® pre QueueReceiveN_TQTM

— QueueReceweE_TQTM
A TaskQueue TimeMutex
QueueReceiweE_TQT

running_task ¢ dom release_mutex
que? & mutex U semaphore
=EMutex

— QueueReceiveE_TQTMFSBSig
TaskQueue TimeMutex
QueueReceiveEl_TQTFSBS1g

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore

theorem 1QueueReceiveE_TQTM _Lemma
V TaskQueueTimeMutex; que? : QUEUFE; topReady! : TASK; wtime? : N
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) =0

Page 242

A running_task # idle

A topReady! € state™({ready} |)

A (Y rtsk = state™({ready})

e priority(topReady!) > priority(rtsk))

A wtime? > clock

A running_task ¢ dom release_mutex

A que? ¢ mutex U semaphore

e — (TaskQueue TimeMutex[log_context := log_contert®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
release_rcv := {running_task} < release_rcv,
running_task := topReady!,

state := state®

({(running_task, blocked)} U {(topReady!, running)}),
wait_time = wait_time & {(running_task, wtime?)},

wait_rcv 1= wait_rcv ® {(running_task, que?)}|

A (st € TASK

A = (state @ ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)

= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)

=t e TASK
A state(t) = ready

A = priority(topReady!) > priority(t))

theorem QueueReceiveEE_TQTM _vc_ref

V QueueReceive E_TQTMFSBSig | true ® pre QueueReceiveE_TQTM

— QueueRecetwve W _TQTM
A TaskQueueTimeMutex
QueueReceive W _TQT

running_task ¢ dom release_mutex
que? & mutex U semaphore
=Mutex

— QueueReceive W _TQTMFSBSig

TaskQueueTimeMutex
QueueReceive W _TQTFSBSig

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore

Page 243

theorem 1QueueReceiveW_TQTM_Lemma
V TaskQueueTimeMutex; que? : QUEUE; topReady!: TASK
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) > 0
A topReady! € wait_snd™({que?} |
A (Y wsnt : wait_snd™({que?} |)
o priority(topReady!) > priority(wsnt))
A priority(running_task) > priority(topReady!)
A running_task ¢ dom release_mutex
A que? ¢ mutex U semaphore
o = (TaskQueue TimeMutex|[q_size := q_size®
{(que?, (q_size(que?) — 1))},
release_rcv := {running_task} < release_rcv,
release_snd = release_snd @ {(topReady!, que?)},
state := state @ {(topReady!, ready)},
wait_time := {topReady'} 9 wait_time,
wait_snd := {topReady!} < wait_snd]
A priority(topReady!) < priority(running_task)
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state @ {(topReady!, ready)})st)
€ transition)
= ws € dom wait_snd
A wait_snd(ws) = que?
A = priority(topReady!) > priority(ws))

theorem QueueReceiveW_TQTM _vc_ref
V QueueReceive W _TQTMFSBSiq | true ® pre QueueReceive W _TQTM

_ QueueReceive WS_TQTM
A TaskQueueTimeMutex
QueueReceive WS_TQT

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore
=EMutex

_ QueueReceiwve WS_TQTMFSBSig
TaskQueue TimeMutex
QueueReceive WS_TQTFSBSig

Page 244

running_task ¢ dom release_mutex
que? ¢ mutex U semaphore

theorem 1QueueReceiveWS_TQTM_Lemma
V TaskQueueTimeMutex; que? : QUEUE; topReady!: TASK
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= que? = release_rcv(running_task))
A que? € queue
A q_size(que?) >0
A topReady! € wait_snd™({que?} |)
A (Y wsnt : wait_snd™({que?})
e priority(topReady!) > priority(wsnt))
A priority(topReady!) > priority(running_task)
A running_task ¢ dom release_mutex
A que? ¢ mutex U semaphore
o — (TaskQueue TimeMutex[log_context := log_contert®d
{(running_task, phys_context)},
phys_context := log_context(topReady!),
q_size := q_size ® {(wait_snd(topReady!),
(q_size(wait_snd(topReady!)) — 1))},
release_rcv := {running_task} < release_rcv,
release_snd = release_snd®
{(topReady!, wait_snd(topReady!))},
running_task := topReady!,
state := stated
({(running_task, ready)} U {(topReady!, running)}),
wait_time := {topReady'} <9 wait_time,
wait_snd := {topReady'} 9 wait_snd]
A (st € TASK
A = (state & ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, ready)}J
{(topReady!, running)}))st) € transition)
= ws € dom wait_snd
A wait_snd(ws) = wait_snd(topReady!)
A = priority(topReady!) > priority(ws))

theorem QueueReceiveWS_TQTM _vc_ref
V QueueReceive WS_TQTMFSBSig | true e pre QueueReceiveWS_TQTM

QueueReceive_TQTM = QueueReceiveN _TQTM
V QueueReceiwvell _TQTM
V QueueReceive W_TQTM

Page 245

V QueueRecetve WS_TQTM
DelayUntil_TQTM = ExtendTQTX: N\ DelayUntil_TQT

DelayUntil_TQTMFSBSig = TaskQueueTimeMutex
A DelayUntil_TQTFSBSig

theorem IDelayUntil _TQTM_Lemma
V TaskQueueTimeMutex; wtime? : N; topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A running_task # idle
A state(topReady!) = ready
A wtime? > clock
A (Vrtsk = state™(| {ready} |)
o priority(topReady!) > priority(rtsk))
o — (TaskQueueTimeMutex|delayed_task = delayed_taskU
{running_task},
log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
running_task := topReady!,
state := state®
({(running_task, blocked) } U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)}|
A (st € TASK
A = (state @ ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
=t e TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem DelayUntil_TQTM _vc_ref
Y DelayUntil_TQTMFSBSig | true e pre DelayUntil_TQTM

CheckDelayedTaskN_TQTM = ExtendTQTXi N CheckDelayedTaskN_TQT

CheckDelayedTaskN _TQTMFSBSig = TaskQueueTimeMutex
A CheckDelayedTaskN _TQTFSBSig

Page 246

theorem 1CheckDelayed TaskN_TQTM_Lemma
V TaskQueueTimeMutex; top Waiting! : TASK

| running_task ¢ dom release_snd U dom release_rcv

A top Waiting! € dom wait_time

A (Y dtk . dom wait_time

o wait_time(top Waiting!) < wait_time(dtk))

A (V detk : dom wait_time

| wait_time(detk) = wait_time(top Waiting!)
o priority(top Waiting!) > priority(detk))

A priority(top Waiting!) < priority(running_task)

o — (TaskQueueTimeMutex|[clock := wait_time(top Waiting!),
delayed_task = delayed_task \ {top Waiting!},
state := state @ {(top Waiting!, ready)},
wait_time := {top Waiting!} < wait_time,
wait_rcv = {top Waiting!} < wait_rcv,
wait_snd := {top Waiting!} 9 wait_snd]

A (st € TASK
A = (state @ {(top Waiting!, ready) })st = state(st)
= (state(st), (state @ {(top Waiting!, ready)})st)
€ transition)
A (wt € dom wait_time
= wait_time(top Waiting!) < wait_time(wt))
= wt_0 € dom wait_time
A wait_time(wt_0) = wait_time(top Waiting!)
A = priority(top Waiting!) > priority(wt__0))

theorem CheckDelayed TaskN_TQTM _vc_ref
Y CheckDelayed TaskN_TQTMFSBSig | true
e pre CheckDelayedTaskN_TQTM

CheckDelayedTaskS_TQTM = ExtendTQTXi N CheckDelayedTaskS_TQT

CheckDelayedTaskS_TQTMFSBSig = TaskQueue TimeMutex
A CheckDelayed TaskS_TQTFSBSig

theorem 1CheckDelayed TaskS_TQTM _Lemma
V TaskQueueTimeMutex; top Waiting! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A top Waiting! € dom wait_time
A (Y dtk : dom wait_time
o wait_time(top Waiting!) < wait_time(dtk))
A (V detk : dom wait_time
| wait_time(detk) = wait_time(top Waiting!)
e priority(top Waiting!) > priority(detk))

Page 247

A priority(top Waiting!) > priority(running_task)
e — (wait_time(top Waiting!) € Z
A TaskQueue TimeMutex|[clock := wait_time(top Waiting!),
delayed_task = delayed_task \ {top Waiting!},
log_context := log_context®
{(running_task, phys_contezt)},
phys_context := log_context(top Waiting!),
running_task := top Waiting!,
state := state®
({(running_task, ready)} U {(top Waiting!, running)}),
wait_time := {top Waiting!} < wait_time,
wait_rcv := {top Waiting} 9 wait_rcv,
wait_snd := {top Waiting!} 9 wait_snd]
A (st € TASK
A = (state & ({(running_task, ready) }U
{(top Waiting!, running)}))st = state(st)
= (state(st), (state & ({(running_task, ready)}J
{(top Waiting!, running)}))st) € transition)
A (wt € dom wait_time
= wait_time(top Waiting!) < wait_time(wt))
= wt__0 € dom wait_time
A wait_time(wt__0) = wait_time(top Waiting!)
A = priority(top Waiting!) > priority(wt—0))

theorem CheckDelayed TaskS_TQTM _vc_ref
V CheckDelayedTaskS_TQTMFSBSig | true

e pre CheckDelayedTaskS_TQTM

TimeSlicing_TQTM = ExtendTQTXi N TimeSlicing_TQT

TimeSlicing_TQTMFSBSig = TaskQueue TimeMutex

A TimeSlicing_TQTFSBSig

theorem I'TimeSlicing TQTM _Lemma
V TaskQueueTimeMutex; topReady!: TASK

Page 248

| running_task ¢ dom release_snd U dom release_rcv

A state(topReady!) = ready

A priority(topReady!) = priority(running_task)

A (Yts : dom wait_time o time_slice < wait_time(ts))

o = (TaskQueue TimeMutex[log_context := log_context®d

{(running_task, phys_context)},

phys_context := log_context(topReady!),
running_task := topReady!,
state := state®

({(running_task, ready)} U {(topReady!, running)}),
time_slice := time_slice + slice_delay|
= st € TASK
A = (state & ({(running_task, ready) }U
{(topReady!, running)}))st = state(st)
A = (state(st), (state @ ({(running_task, ready) }U
{(topReady!, running)}))st) € transition)

theorem TimeSlicing TQTM _vc_ref
V TimeSlicing_TQTMFSBSig | true e pre TimeSlicing_TQTM

NoSlicing_TQTM = ExtendTQTXi AN NoSlicing_TQT

NoSlicing_TQTMFSBSig = TaskQueueTimeMutex
A NoSlicing_TQTFSBSig

theorem NoSlicing TQTM _vc_ref
V NoSlicing_TQTMFSBSig | true ® pre NoSlicing_TQTM

— CreateBinarySemaphore_TQTM
A TaskQueueTimeMutex
sem? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
sem? & queue

=Task

queue’ = queue U {sem?}

q-maz' = q_maz & {(sem? — 1)}
q_size' = q_size ® {(sem? — 1)}

= WaitingData

=ZQReleasingData

=Time

semaphore’ = semaphore U {sem?}
mutex’ = mutex

mutex_holder’ = mutex_holder
mutex_recursive’ = mutexr_recursive
=O0riginalPrioData
=ZMReleasingData

CreateBinarySemaphore_TQTMFSBSig

TaskQueueTimeMutex
sem? : QUEUE

Page 249

running_task ¢ dom release_snd U dom release_rcv
sem? & queue

theorem CreateBinarySemaphore _TQTM _vc_ref
Y Create BinarySemaphore_TQTMFSBSig | true
e pre CreateBinarySemaphore_TQTM

__DeleteBinarySemaphore_TQTM

A TaskQueue TimeMutex
sem? : QUEUE

sem? € semaphore
DeleteQueue_TQT [sem?] que?]
semaphore’ = semaphore \ {sem?}
mutexr’ = mutex

mutex_holder’ = mutex_holder
mutex_recursive’ = mutex_recursive
=O0riginalPrioData
=MReleasingData

_ DeleteBinarySemaphore_TQTMFSBSig

DeleteQueue_TQTFSBSig[sem?/que?]
TaskQueueTimeMutex
sem? : QUEUE

sem? € semaphore

theorem DeleteBinarySemaphore _TQTM _vc_ref
V Delete BinarySemaphore_TQTMFSBSig | true
e pre DeleteBinarySemaphore_TQTM

_ CreateMutex_TQTM

A TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? & queue

=Task

queue’ = queue U {mut?}

g-max’ = qg_maz & {(mut? — 1)}

q_size' = q_size & {(mut? — 1)}

= WaitingData

Page 250

=ZQReleasingData

=Time

semaphore’ = semaphore

mutex’ = mutex U {mut?}

mutez_holder’ = mutex_holder

mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
=OriginalPrioData

=MReleasingData

_ CreateMutex_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? & queue

theorem CreateMutex _TQTM _vc_ref
Y CreateMutex_TQTMFSBSig | true e pre CreateMutexr_TQTM

__ DeleteMutex_TQTM
A TaskQueueTimeMutex
mut? : QUEUE

mut? € muter \ dom mutex_holder
DeleteQueue_TQT [que? := mut?]

semaphore’ = semaphore

mutex’ = mutez \ {mut?}

mutex_holder’ = mutex_holder
mutex_recursive’ = {mut?} 9 mutex_recursive
=0riginalPrioData

=MReleasingData

_ DeleteMutex_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

DeleteQueue_TQTFSBSig[que? := mut?]
mut? € muter \ dom mutex_holder

theorem subPfun [X, Y]
Vig: X+ Y;y:Y][gCfeydranf=y¢grang

theorem DeleteMutex_TQTM _vc_ref

Page 251

V DeleteMutex_TQTMFSBSig | true e pre DeleteMutex_TQTM

_ MutexTakeNnonInh_TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK

running_task € dom release_rcv = running_task € dom release_mutex
mut? € mutex
running_task ¢ dom base_priority
QueueReceiveN_TQT [que? := mut?]
semaphore’ = semaphore
mutexr’ = mutex
mutex_holder’ = mutex_holder & {(mut? — running_task)}
mutex_recursive’ = muter_recursived®

{(mut? — mutex_recursive(mut?) + 1)}
base_priority’ = base_priorityd

{(running_task — priority(running_task))}
release_mutex’ = {running_task} < release_mutex

_ MutexTakeNnonInh_TQTMFSBSig
TaskQueuveTimeMutex
mut? : QUEUE

QueueReceiveN_TQTFSBSig|que? := mut?]

running_task € dom release_rcv = running_task € dom release_mutex
mut? € mutex

running_task ¢ dom base_priority

theorem MutexTakeNnonInh_ TQTM _vc_ref
V MutexTakeNnonInh_TQTMFSBSig | true
e pre MutexTakeNnonInh_TQTM

_ MutexTakeNInh_TQTM
A TaskQueueTimeMutex
mut? : QUEUE
topReady! : TASK

running_task € dom release_rcv = running_task € dom release_mutex
mut? € mutex

running_task € dom base_priority

QueueReceiveN_TQT [que? := mut?]

semaphore’ = semaphore

mutexr’ = mutex

Page 252

mutex_holder’ = mutex_holder & {(mut? — running_task)}
mutez_recursive’ = muter_recursived

{(mut? — mutex_recursive(mut?) + 1)}
=O0riginalPrioData
release_muter’ = {running_task} < release_mutex

_ MutezTakeNInh_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueReceiveN_TQTFSBSig|que? := mut?]

running_task € dom release_rcv = running_task € dom release_mutex
mut? € mutex

running_task € dom base_priority

theorem MutexTakeNInh_TQTM _vc_ref
YV MutexTakeNInh_TQTMFSBSig | true pre MutezTakeNInh_TQTM

_ MutezTakeEnonInh_TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK
wtime? : N

running_task € dom release_rcv = running_task € dom release_mutex
mut? € dom mutex_holder
priority (running_task) < priority(mutex_holder(mut?))
running_task # mutex_holder(mut?)
QueueReceive E_TQT [que? := mut?]
=MutexData
= 0riginalPrioData
release_muter’ = {running_task} < release_mutex

— MutexTakeEnonInh_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

wtime? : N

QueueReceiveE_TQTFSBSig|que? := mut?]
running_task € dom release_rcv = runming_task € dom release_mutex
mut? € dom mutex_holder
priority(running_task) < priority(mutex_holder(mut?))
running_task # mutex_holder(mut?)

Page 253

theorem IMutexTakeEnonInh_TQTM _Lemma
V TaskQueueTimeMutex; mut? : QUEUE; topReady! : TASK;
wtime? : N
| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= mut? = release_rcv(running_task))
A mut? € queue
A q_size(mut?) =0
A running_task # idle
A topReady! € state™({ready} |
A (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
A wtime? > clock
A (running_task € dom release_rcv
= running_task € dom release_mutex)
A mut? € dom mutex_holder
A q_size(mut?) =0
A priority(running_task) < priority(mutex_holder(mut?))
A running_task # mutex_holder(mut?)
o — (TaskQueue TimeMutex[log_context := log_contert®
{(running_task, phys_contezt)},
phys_context := log_context(topReady!),
release_mutex := {running_task} < release_mutezr,
release_rcv := {running_task} < release_rcv,
running_task := topReady!,
state := state®
({(running_task, blocked) } U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)},
wait_rcv := wait_rcv @ {(running_task, mut?)}]
A (st € TASK
A = (state @& ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
=t € TASK
A state(t) = ready
A = priority(topReady!) > priority(t))

theorem MutexTakeEnonInh _TQTM _vc_ref
V MutexTakeEnonInh_TQTMFSBSig | true
e pre MutexTakeEnonInh_TQTM

MutexTakeEInheritReady_TQTM

A TaskQueue TimeMutex
mut? : QUEUE

Page 254

topReady! : TASK
wtime? : N

running_task ¢ dom release_snd
running_task € dom release_rcv = mut? = release_rcv(running_task)
running_task € dom release_rcv = runmning_task € dom release_mutex
mut? € dom mutex_holder
priority(running_task) > priority(mutex_holder(mut?))
wtime? > clock
mutex_holder(mut?) ¢ state™({ready} |
state(topReady!) = ready
Vrt . state™({ready} |) ® priority(topReady') > priority(rt)
Jst?: STATE; pri?: TASK — N

| st? = blocked N pri? = priority®

{(mutex_holder(mut?) — priority(running_task))}

e Reschedule[topReady!/target?, tasks/tasks?)
=ZQueueData
wait_snd" = wait_snd
wait_rcv’ = wait_rcv & {(running_task — mut?)}
release_snd' = release_snd
release_rcv' = {running_task} <4 release_rcv
clock’ = clock
delayed_task’ = delayed_task
wait_time’ = wait_time ® {(running_task — wtime?)}
time_slice’ = time_slice
=MutexData
=0riginalPrioData
release_muter’ = {running_task} < release_mutex

— MutezTakeEInheritReady_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

wtime? : N

running_task ¢ dom release_snd

running_task € dom release_rcv = mut? = release_rcv(running_task)
running_task € dom release_rcv = running_task € dom release_mutex
mut? € dom mutex_holder

priority(running_task) > priority(mutex_holder(mut?))

wtime? > clock

mutex_holder(mut?) ¢ state™({ready} |

theorem IMutexTakeEInheritReady _TQTM_Lemma
V TaskQueueTimeMutex; mut? : QUEUE; topReady! : TASK,
wtime? : N

Page 255

| running_task ¢ dom release_snd
A (running_task € dom release_rcv
= mut? = release_rcv(running_task))
A (running_task € dom release_rcv
= running_task € dom release_mutex)
A mut? € dom mutex_holder
A priority(running_task) > priority(mutex_holder(mut?))
A wtime? > clock
A mutez_holder(mut?) ¢ state™({ready} |
A state(topReady!) = ready
A (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
e — (TaskQueue TimeMutex[log_context := log_context®
{(running_task, phys_context)},
phys_context := log_context(topReady!),
priority = priority®d
{(mutex_holder(mut?), priority(running_task))},
release_mutex := {running_task} < release_mutezr,
release_rcv := {running_task} < release_rcv,
running_task := topReady!,
state := state®
({(running_task, blocked) } U {(topReady!, running)}),
wait_time := wait_time & {(running_task, wtime?)},
wait_rcv := wait_rcv & {(running_task, mut?)}]
A (st € TASK
A = (state & ({(running_task, blocked) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state & ({(running_task, blocked) }U
{(topReady!, running)}))st) € transition)
= rt € TASK
A state(rt) = ready
A = priority(topReady!) > priority(rt))

theorem MutexTakeEInheritReady _TQTM _vc_ref
V MutexTake EInheritReady_TQTMFSBSig | true
e pre MutexTakeEInheritReady_TQTM

_ MutexTakeFEInheritHolder _TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK
wtime? : N

running_task ¢ dom release_snd
running_task € dom release_rcv = mut? = release_rcv(running_task)

Page 256

mut? € dom mutex_holder
priority(running_task) > priority(mutex_holder(mut?))
wtime? > clock
mutex_holder(mut?) € state™({ready} |
topReady! = mutex_holder(mut?)
topReady! # idle
Jst? . STATE; pri? : TASK — N

| st? = blocked A pri? = priority®

{(topReady! — priority(running_task))}

e Reschedule[topReady!/target?, tasks/tasks?]
=ZQueueData
wait_snd’ = wait_snd
wait_rcv’ = wait_rcv ® {(running_task — mut?)}
release_snd' = release_snd
release_rcv’ = {running_task} < release_rcv
clock’ = clock
delayed_task’ = delayed_task
wait_time’ = wait_time ® {(running_task — wtime?)}
time_slice’ = time_slice
=EMutexData
=OriginalPrioData
release_muter’ = {running_task} < release_mutex

running_task € dom release_rcv = running_task € dom release_mutex

__ MutexTakeEInheritHolder _TQTMFSBSig

TaskQueueTimeMutex

mut? : QUEUFE
wtime? : N

running_task ¢ dom release_snd

mut? € dom mutex_holder

priority(running_task) > priority(mutex_holder(mut?))
wtime? > clock

mutex_holder(mut?) # idle

mutez_holder(mut?) € state™({ready} |)

running_task € dom release_rcv = mut? = release_rcv(running_task)
running_task € dom release_rcv = running_task € dom release_mutex

theorem MutexTakeEInheritHolder TQTM _vc_ref
V MutexTakeEInheritHolder_TQTMFSBSig | true
e pre MutexTakeEInheritHolder_TQTM

MutexTakeRecursive_TQTM
A TaskQueueTimeMutex

Page 257

mut? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

=TaskQueueTime

semaphore’ = semaphore

mutexr’ = mutex

mutex_holder’ = mutex_holder

mutex_recursive’ = mutex_recursive®
{(mut? — mutex_recursive(mut?) + 1)}

=O0riginalPrioData

=MReleasingData

topReady! = running_task

__ MutexTakeRecursive_TQTMFSBSig
TaskQueue TimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)

theorem MutexTakeRecursive_TQTM _vc_ref
V MutexTakeRecursive_ TQTMFSBSig | true
e pre MutexTakeRecursive_TQTM

MutexTake_TQTM = MutexTakeNnonInh_TQTM
V MutexTakeNInh_TQTM
V MutexTakeEnonInh_TQTM
V MutexTaokeEInheritReady_TQTM
V MutexTakeFEInheritHolder _TQTM
V MutexTakeRecursive_TQTM

__basePriorityMan
A TaskQueue TimeMutex
mut? : QUEUE

running_task € ran({mut?} < mutez_holder) = =ZOriginalPrioData
running_task ¢ ran({mut?} < mutez_holder)
= base_priority’ = {running_task} < base_priority

Page 258

_ MutexGiveNnonInh_TQTM
A TaskQueue TimeMutex
mut? : QUEUFE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority(running_task) = priority(running_task)
QueueSendN_TQT [que? := mut?]

semaphore’ = semaphore

muter’ = mutex

mutex_holder’ = {mut?} < mutex_holder
mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan

=MReleasingData

— MutexGiveNnonInh_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

QueueSendN_TQTFSBSig|que? := mut?]
running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority (running_task) = priority(running_task)

theorem ranUnchanged [X, Y|
Vi: X+ Y;a:X|acdomf A f(a) €ran({a} <f)
eranf =ran({a} <f)

theorem MutexGiveNnonlnh_TQTM _vc_ref
V MutexGiveNnonInh_TQTMFSBSig | true
e pre MutexGiveNnonInh_TQTM

__ MutexGiveNInhN_TQTM
A TaskQueueTimeMutex
mut? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder

Page 259

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1

mut? ¢ ran wait_rcv

base_priority (running_task) # priority(running_task)
Vrt . state™({ready} |) ® base_priority(running_task) > priority(rt)
= TaskData

=StateData

= ContextData

priority’ = priority & {(running_task — base_priority(running_task))}
queue’ = queue

g_max’ = g_max

q-size’ = q_size ® {(mut? — 1)}

= WaitingData

ZQReleasingData

=Time

semaphore’ = semaphore

mutexr’ = mutex

mutez_holder’ = {mut?} < mutex_holder
mutez_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan

=MReleasingData

topReady! = running_task

— MutexGiveNInhN_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv

mut? € dom mutex_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

mut? ¢ ran wait_rcv

base_priority (running_task) # priority(running_task)

Vrt : state™({ready} |) ® base_priority(running_task) > priority(rt)

theorem MutexGiveNInhN_TQTMF _vc_ref
YV MutexGiveNInhN_TQTMFSBSig | true
e pre MutexGiveNInhN_TQTM

MutexGiveNInhS_TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK

Page 260

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
mut? ¢ ran wait_rcv
base_priority (running_task) # priority(running_task)
state(topReady!) = ready
V1t : state™ (| {ready} |) ® priority(topReady!) > priority(rt)
base_priority(running_task) < priority(topReady!)
Jst?: STATE; pri?: TASK — N

| st? = ready N pri? = priority®

{(running_task — base_priority(running_task))}

e Reschedule[topReady!/target?, tasks/tasks?)
queue’ = queue
q_max’ = g_mazx
q_size! = q_size & {(mut? — 1)}
= WaitingData
= QReleasingData
=Time
semaphore’ = semaphore
mutex’ = mutex
mutex_holder’ = {mut?} 9 mutex_holder
mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan
=MReleasingData

— MutexGiveNInhS_TQTMFSBSig

TaskQueue TimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
mut? ¢ ran wait_rcv
base_priority (running_task) # priority(running_task)
JtopReady! : state™({ready} |

|Vt : state™({ready} |

e priority(topReady!) > priority(rt)
e base_priority(running_task) < priority(topReady!)

theorem IMutexGiveNInhS_TQTM_Lemma

V TaskQueueTimeMutexr; mut? : QUEUE; topReady! : TASK
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder

Page 261

A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) = 1
A mut? ¢ ran wait_rcv
A base_priority(running_task) # priority(running_task)
N state(topReady!) = ready
A (Y rtsk - state™({ready} |)
e priority(topReady!) > priority(rtsk))
A base_priority(running_task) < priority(topReady!)
A running_task € ran({mut?} <9 mutex_holder)
o — (TaskQueue TimeMutex[log_context := log_context®d
{(mutex_holder(mut?), phys_context)},
mutex_holder := {mut?} € mutex_holder,
mutez_recursive := mutex_recursive @ {(mut?,0)},
phys_context := log_context(topReady!),
priority := priority & {(mutex_holder(mut?),
base_priority(mutez_holder(mut?)))},
q-size == q_size @ {(mut?, 1)},
running_task := topReady!,
state := state @ ({(mutex_holder(mut?), ready) }U
{(topReady!, running)})]
A (st € TASK
A = (state @ ({(mutex_holder(mut?), ready)}U
{(topReady!, running)}))st = state(st)
= (state(st), (state®
({(mutex_holder(mut?), ready) }U
{(topReady!, running)}))st)
€ transition)
= rt € TASK
A state(rt) = ready
A = priority(topReady!) > priority(rt))

theorem IMutexGiveNInhS_TQTM_Lemmal
V TaskQueueTimeMutexr; mut? : QUEUE; topReady! : TASK

Page 262

| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutex_recursive(mut?) = 1
A mut? ¢ ran wait_rcv
A base_priority(running_task) # priority(running_task)
A state(topReady!) = ready
A (Y rtsk - state™({ready} |)

e priority(topReady!) > priority(rtsk))
A base_priority(running_task) < priority(topReady!)
A running_task ¢ ran({mut?} 9 mutex_holder)
o — (TaskQueueTimeMutex|

base_priority = {mutex_holder(mut?)} < base_priority,

log_context := log_context®
{(mutex_holder(mut?), phys_context)},

mutex_holder := {mut?} < mutex_holder,

mutex_recursive := mutex_recursive & {(mut?,0)},

phys_context = log_context(topReady!),

priority = priority & {(mutex_holder(mut?),
base_priority(mutez_holder(mut?)))},

q_size := q_size ® {(mut?, 1)},

running_task := topReady!,

state = state & ({(mutex_holder(mut?), ready) }U
{(topReady!, running)})]

A (st € TASK
A = (state @ ({(mutex_holder(mut?), ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (stated
({(mutex_holder(mut?), ready) }U
{(topReady!, running)}))st) € transition)
= rt € TASK
A state(rt) = ready
A = priority(topReady!) > priority(rt))

theorem MutexGiveNInhS_TQTM _vc_ref
YV MutexGiveNInhS_TQTMFSBSiq | true e pre MutexGiveNInhS_TQTM

— MutexGiveWnonInhN_TQTM
A TaskQueueTimeMutex
mut? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1

base_priority (running_task) = priority(running_task)
QueueSendW _TQT [que? := mut?]

semaphore’ = semaphore

muter’ = mutex

mutex_holder’ = {mut?} < mutex_holder
mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan

release_muter’ = release_mutex & {(topReady! — mut?)}

MutexGive WnonInhN _TQTMFSBSig
TaskQueueTimeMutex

Page 263

mut? : QUEUE

QueueSendW _TQTFSBSig[que? := mut?]
running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1

base_priority (running_task) = priority(running_task)

theorem IMutexGiveWnonInhN_TQTM_Lemma
V TaskQueueTimeMutex; topReady! : TASK; mut? : QUEUE

| running_task ¢ dom release_rcv U dom release_snd
A mut? € queue
A q_size(mut?) < g_maz(mut?)
A topReady! € wait_rcv™({mut?} |
A (Y wret : wait_rcv™ (| {mut?})
e priority(topReady') > priority(wrct))
A priority(running_task) > priority(topReady!)
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
N mutex_recursive(mut?) = 1
A base_priority(running_task) = priority(running_task)
A running_task € ran({mut?} € mutex_holder)
o = (TaskQueue TimeMutex|
mutez_holder := {mut?} € mutex_holder,

mutez_recursive := mutex_recursive @ {(mut?,0)},
q_size := q_size ® {(mut?, (1 4+ q_size(mut?)))},
release_mutex := release_mutex & {(topReady!, mut?)},

release_rcv 1= release_rcv & {(topReady!, mut?)},
release_snd = {mutex_holder(mut?)} < release_snd,
running_task := mutex_holder(mut?),
state := state @ {(topReady!, ready)},
wait_time := {topReady!} < wait_time,
wait_rcv := {topReady'} 9 wait_rcv]
A priority(topReady!) < priority(mutex_holder(mut?))
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state & {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rcv(wr) = mut?
A = priority(topReady!) > priority(wr))

theorem IMutexGiveWnonInhN_TQTM _Lemmal
V TaskQueueTimeMutex; topReady!: TASK; mut? : QUEUE

Page 264

| running_task ¢ dom release_rcv U dom release_snd
A mut? € queue
A q_size(mut?) < g_mazx(mut?)
A topReady! € wait_rco™({mut?} |
A (Ywret : wait_rcv™ (| {mut?} |
e priority(topReady!) > priority(wrct))
A priority(running_task) > priority(topReady!)
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutex_recursive(mut?) = 1
A base_priority(running_task) = priority(running_task)
A running_task ¢ ran({mut?} € mutez_holder)
o — (TaskQueueTimeMutez|
base_priority := {mutex_holder(mut?)} < base_priority,
mutex_holder := {mut?} < mutex_holder,
mutex_recursive := mutex_recursive @& {(mut?,0)},
q_size == q_size @ {(mut?, (1 + g_size(mut?)))},
release_mutex := release_mutexr @ {(topReady!, mut?)},
release_rcv := release_rcv @ {(topReady!, mut?)},
release_snd := {mutex_holder(mut?)} 4 release_snd,
running_task := mutex_holder(mut?),
state = state ® {(topReady!, ready)},
wait_time := {topReady'} <9 wait_time,
wait_rcv = {topReady} <9 wait_rcv]
A priority(topReady!) < priority(mutex_holder(mut?))
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state & {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rev(wr) = mut?
A = priority(topReady!) > priority(wr))

theorem MutexGiveWnonInhN_TQTM _vc_ref
YV MutexGive WnonInhN _TQTMFSBSig | true
e pre MutexGive WnonInhN_TQTM

— MutexGive WnonInhS_TQTM
A TaskQueueTimeMutex
mut? : QUEUE

topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)

Page 265

mutex_recursive(mut?) = 1

base_priority (running_task) = priority(running_task)
QueueSendWS_TQT [que? := mut?]

semaphore’ = semaphore

mutex’ = mutex

mutex_holder’ = {mut?} < mutex_holder
mutez_recursive’ = mutex_recursive & {(mut? — 0)}
basePriorityMan

release_muter’ = release_mutex @ {(topReady! — mut?)}

_ MutexGive WnonInhS_TQTMFSBSig

TaskQueueTimeMutex
mut? : QUEUE

QueueSendWS_TQTFSBSig|que? := mut?]
running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority (running_task) = priority(running_task)

theorem IMutexGiveWnonInhS_TQTM_Lemma
V TaskQueueTimeMutex; topReady!: TASK; mut? : QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= mut? = release_snd(running_task))
A mut? € queue
A q_size(mut?) < q_maz(mut?)
A topReady! € wait_rcv™({mut?} |
A (Y wret : wait_rcv™({mut?} |
e priority(topReady!) > priority(wrct))
A priority(topReady!) > priority(running_task)
A running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutex_recursive(mut?) = 1
A base_priority(running_task) = priority(running_task)
A running_task € ran({mut?} <9 mutez_holder)
o — (TaskQueue TimeMutex[log_context := log_contert®

{(mutex_holder(wait_rcv(topReady')), phys_context)},
mutex_holder := {wait_rcv(topReady!)} € mutex_holder,

muter_recursive ;= muter_recursive®
{(wait_rcv(topReady!),0)},

phys_context := log_context(topReady!),

q_size := q_size & {(wait_rcv(topReady!), (1+

Page 266

q_size(wait_rcv(topReady!))))},
release_mutex := release_muter®
{(topReady!, wait_rcv(topReady!))},
release_rcv = release_rcvd
{(topReady!, wait_rcv(topReady!))},
release_snd = {mutex_holder(wait_rcv(topReady!))}
Srelease_snd,
running_task := topReady!,
state := state®
({(mutex_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}),
wait_time := {topReady'} <9 wait_time,
wait_rcv = {topReady} < wait_rcv]
A (st € TASK
A — (state®
({(mutex_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state®
({ (mutex_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}))st) € transition)
= wr € dom wait_rcv
A wait_rcv(wr) = wait_rcv(topReady!)
A = priority(topReady!) > priority(wr))

theorem IMutexGiveWnonInhS_TQTM _Lemmal
V TaskQueueTimeMutex; topReady! : TASK; mut? : QUEUE
| running_task ¢ dom release_rcv
A (running_task € dom release_snd
= mut? = release_snd(running_task))
A mut? € queue
A q_size(mut?) < g_maz(mut?)
A topReady! € wait_rcv™({mut?} |
A (Ywret : wait_rcv™ (| {mut?})
o priority(topReady!) > priority(wrct))
A priority(topReady!) > priority(running_task)
A running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) =1
N base_priority(running_task) = priority(running_task)
A running_task ¢ ran({mut?} < mutez_holder)
e — (TaskQueueTimeMutez|
base_priority = {mutez_holder(wait_rcv(topReady!))}
Sbase_priority,
log_context := log_context®
{(mutex_holder(wait_rcv(topReady!)), phys_context)},

Page 267

mutex_holder := {wait_rcv(topReady!)} € mutex_holder,
muter_recursive := muter_recursived
{(wait_rcv(topReady!),0)},
phys_context := log_context(topReady!),
q_size ;= q_size & {(wait_rcv(topReady!), (1+
q_size(wait_rcv(topReady!))))},
release_mutexr := release_mutex®
{(topReady!, wait_rcv(topReady!))},
release_rcv = release_rcv®
{(topReady!, wait_rcv(topReady!))},
release_snd = {mutex_holder(wait_rcv(topReady!))}
Srelease_snd,
running_task := topReady!,
state := state®
({(mutex_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}),
wait_time := {topReady'} 9 wait_time,
wait_rcv = {topReady'} 9 wait_rcv]
A (st € TASK
A — (state®
({(mutex_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}))st = state(st)
= (state(st), (state®
({(mutez_holder(wait_rcv(topReady!)), ready) }U
{(topReady!, running)}))st) € transition)
= wr € dom wait_rcv
A wait_rcv(wr) = wait_rcv(topReady!)
A = priority(topReady!) > priority(wr))

theorem MutexGiveWnonInhS_TQTM _vc_ref
V MutezGive WnonlInhS_TQTMFSBSig | true
e pre MutexGive WnonInhS_TQTM

_ MutexGive WInhN_TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv

mut? € dom muter_holder

running_task = mutex_holder(mut?)

mutex_recursive(mut?) = 1

topReady! € wait_rcv™({mut?} |

YV wr : wait_rcv™ (| {mut?} |) e priority(topReady!) > priority(wr)
priority(topReady!) < base_priority(running_task)

Page 268

base_priority (running_task) # priority(running_task)
Vrt : state™({ready} |) ® base_priority(running_task) > priority(rt)
=TaskData

state’ = state & {(topReady! — ready)}

=ContextData

priority’ = priority & {(running_task — base_priority(running_task))}
queue’ = queue

g—max’ = g_max

q_size' = q_size ® {(mut? — 1)}

wait_snd’ = wait_snd

wait_rcv’ = {topReady!} 9 wait_rcv

release_snd' = release_snd

release_rcv' = release_rcv @ {(topReady! — mut?)}
clock’ = clock

delayed_task’ = delayed_task

wait_time' = {topReady!} < wait_time

time_slice’ = time_slice

semaphore’ = semaphore

muter’ = mutex

mutex_holder’ = {mut?} < mutex_holder
mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan

release_muter’ = release_mutex & {(topReady! — mut?)}

— MutexGive WInhN_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
Y wr : wait_rcv™ (| {mut?} |)
e base_priority(running_task) > priority(wr)
base_priority(running_task) # priority(running_task)
Vrt . state™({ready} |) ® base_priority(running_task) > priority(rt)

theorem IMutexGiveWInhN_TQTM _Lemma
V TaskQueueTimeMutex; topReady! : TASK; mut? : QUEUFE

| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) = 1
A topReady! € wait_rco™({mut?} |
A (Ywret : wait_rcv™ (| {mut?} |)

Page 269

e priority(topReady!) > priority(wrct))
A priority(topReady!) < base_priority(running_task)
A base_priority(running_task) # priority(running_task)
A (Y rtsk - state™({ready} |)
e base_priority(running_task) > priority(rtsk))
A running_task € ran({mut?} € mutex_holder)
o - (TaskQueue TimeMutex|
mutez_holder := {mut?} € mutex_holder,
mutez_recursive := mutex_recursive @ {(mut?,0)},
priority := priority & {(mutex_holder(mut?),
base_priority(mutex_holder(mut?)))},
q-size := q_size @ {(mut?, 1)},
release_mutez := release_mutex @ {(topReady!, mut?)},
release_rcv := release_rcv @ {(topReady!, mut?)},
running_task = mutex_holder(mut?),
state := state @ {(topReady!, ready)},
wait_time := {topReady'} 9 wait_time,
wait_rcv = {topReady'} 9 wait_rcv]
A priority(topReady!) < base_priority(mutex_holder(mut?))
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state @ {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rcv(wr) = mut?
A = priority(topReady!) > priority(wr))

theorem IMutexGiveWInhN_TQTM _Lemmal
V TaskQueueTimeMutex; topReady!: TASK; mut? : QUEUE
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) = 1
A topReady! € wait_rcv™({mut?} |
A (Y wret : wait_rcv™({mut?} |
e priority(topReady!) > priority(wrct))
A priority(topReady!) < base_priority(running_task)
A base_priority(running_task) # priority(running_task)
A (Vrtsk = state™(| {ready} |)
e base_priority(running_task) > priority(rtsk))
A running_task ¢ ran({mut?} € mutez_holder)
o = (TaskQueue TimeMutex|
base_priority = {mutex_holder(mut?)} < base_priority,
mutez_holder := {mut?} € mutex_holder,
mutex_recursive := mutex_recursive & {(mut?,0)},
priority := priority & {(mutex_holder(mut?),

Page 270

base_priority(mutez_holder(mut?)))},
q_size := q_size & {(mut?, 1)},
release_mutex := release_mutexr @ {(topReady!, mut?)},
release_rcv = release_rcv & {(topReady!, mut?)},
running_task := mutex_holder(mut?),
state = state ® {(topReady!, ready)},
wait_time := {topReady'} < wait_time,
wait_rcv = {topReady} < wait_rcv]
A priority(topReady!) < base_priority(mutex_holder(mut?))
A (st € TASK
A = (state @ {(topReady!, ready)})st = state(st)
= (state(st), (state @ {(topReady!, ready)})st)
€ transition)
= wr € dom wait_rcv
A wait_rcv(wr) = mut?
A = priority(topReady!) > priority(wr))

theorem MutexGiveWInhN_TQTM _vc_ref
YV MutexGive WInhN_TQTMFSBSig | true
e pre MutexGive WInhN_TQTM

_ MutexGive WInhSR_TQTM
A TaskQueueTimeMutex
mut? : QUEUE

top Waiting! : TASK
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
top Waiting! € wait_rcv™ (| {mut?} |
YV wr : wait_rcv™ (| {mut?} |) o priority(top Waiting!) > priority(wr)
state(topReady!) = ready
Vrt : state™({ready} |) ® priority(topReady') > priority(rt)
base_priority (running_task) # priority(running_task)
priority(topReady!) > priority(top Waiting!)
priority(topReady!) > base_priority(running_task)
tasks' = tasks
running_task’ = topReady!
state’ = state @ {(running_task — ready),
(topReady! — running), (top Waiting! — ready)}
phys_context’ = log_context(topReady!)
log_context’ = log_context & {(running_task — phys_context)}
priority’ = priority & {(running_task — base_priority(running_task))}

Page 271

queue’ = queue

g—max’ = g_max

q_size' = q_size ® {(mut? — 1)}

wait_snd' = wait_snd

wait_rcv’ = {top Waiting!} 9 wait_rcv

release_snd' = release_snd

release_rcv’ = release_rcv @ {(top Waiting! — mut?)}
clock’ = clock

delayed_task’ = delayed_task

wait_time’ = {top Waiting!} < wait_time

time_slice’ = time_slice

semaphore’ = semaphore

muter’ = mutex

mutez_holder’ = {mut?} <9 mutex_holder
mutex_recursive’ = mutex_recursive & {(mut? — 0)}
basePriorityMan

release_muter’ = release_mutex @ {(top Waiting! — mut?)}

_ MutexGive WInhSR_TQTMFSBSig
TaskQueue TimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom muter_holder
running_task = mutex_holder(mut?)
mutexr_recursive(mut?) = 1
base_priority (running_task) # priority(running_task)
JtopReady! : state™({ready} |
o (Vrt: state™({ready} |) ® priority(topReady!) > priority(rt))
A (Y wr : wait_rcv™({mut?} |)
e priority(topReady!) > priority(wr))
A priority(topReady!) > base_priority(running_task)

theorem IMutexGiveWInhSR_TQTM_Lemma
V TaskQueueTimeMutex; topReady!, top Waiting! : TASK,
mut? : QUEUE
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutex_recursive(mut?) = 1
A top Waiting! € wait_rcv™({mut?} |)
A (Y wret : wait_rcv™ (| {mut?})
e priority(top Waiting!) > priority(wrct))
A state(topReady!) = ready
A (Y rtsk - state™({ready} |)

Page 272

e priority(topReady!) > priority(rtsk))
A base_priority(running_task) # priority(running_task)
A priority(topReady!) > priority(top Waiting!)
A priority(topReady!) > base_priority(running_task)
A running_task € ran({mut?} 9 mutex_holder)
e — (TaskQueueTimeMutex[log_context := log_contert®d
{(mutex_holder(mut?), phys_context)},
mutex_holder := {mut?} < mutex_holder,
mutez_recursive := mutex_recursive @ {(mut?,0)},
phys_context := log_context(topReady!),
priority = priority & {(mutex_holder(mut?),
base_priority(mutex_holder(mut?)))},
q_size := q_size ® {(mut?, 1)},
release_mutexr := release_mutex @ {(top Waiting!, mut?)},
release_rcv := release_rcv @ {(top Waiting!, mut?)},
running_task := topReady!,
state = state @ ({(mutex_holder(mut?), ready) }U
({(topReady!, running)} U {(top Waiting!, ready)})),
wait_time := {top Waiting!} < wait_time,
wait_rcv := {top Waiting!} 9 wait_rcv]
A priority(topReady!) > priority(top Waiting!)
A (st € TASK
A = (state @ ({(mutex_holder(mut?), ready) }U
({(topReady!, running) }U
{(top Waiting!, ready)})))st = state(st)
= (state(st), (stated
({(mutex_holder(mut?), ready) }U
({(topReady!, running) }U
{(top Waiting!, ready)})))st)
€ transition)
A (wr € dom wait_rcv A wait_rcv(wr) = mut?
= priority(top Waiting!) > priority(wr))
= rt € TASK
A state(rt) = ready
A = priority(topReady!) > priority(rt))

theorem IMutexGiveWInhSR_TQTM_Lemmal
V TaskQueueTimeMutex; topReady!, top Waiting! : TASK;
mut? : QUEUE
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) = 1
A top Waiting! € wait_rcv™ (| {mut?} |)
A (Ywret : wait_rcv™ (| {mut?} |)
e priority(top Waiting!) > priority(wrct))

Page 273

A state(topReady!) = ready
A (Vrtsk = state™ (| {ready} |)
e priority(topReady!) > priority(rtsk))
A base_priority(running_task) # priority(running_task)
A priority(topReady!) > priority(top Waiting!)
A priority(topReady!) > base_priority(running_task)
A running_task ¢ ran({mut?} < mutez_holder)
o — (TaskQueue TimeMutex|
base_priority := {mutex_holder(mut?)} < base_priority,
log_context := log_context®
{(mutex_holder(mut?), phys_context)},
mutex_holder := {mut?} € mutex_holder,
mutez_recursive := mutex_recursive @ {(mut?,0)},
phys_context := log_context(topReady!),
priority := priority & {(mutex_holder(mut?),
base_priority(mutez_holder(mut?)))},
q-size == q_size @ {(mut?, 1)},
release_mutex := release_mutex @ {(top Waiting!, mut?)},
release_rcv := release_rcv @ {(top Waiting!, mut?)},
running_task := topReady!,
state = state & ({(mutex_holder(mut?), ready) }U
({(topReady!, running)} U {(top Waiting!, ready)})),
wait_time := {top Waiting!} <9 wait_time,
wait_rcv = {top Waiting!} < wait_rcv]
A priority(topReady!) > priority(top Waiting!)
A (st € TASK
A = (state @ ({(mutex_holder(mut?), ready) }U
({(topReady!, running) }U
{(topWaiting!, ready)})))st = state(st)
= (state(st), (state®
({(mutex_holder(mut?), ready) }U
({(topReady!, running) }U
{(top Waiting!, ready)})))st) € transition)
A (wr € dom wait_rcv A wait_rcv(wr) = mut?
= priority(top Waiting!) > priority(wr))
= rt € TASK
A state(rt) = ready
A = priority(topReady!) > priority(rt))

theorem MutexGiveWInhSR_TQTM _vc_ref
V MutexGive WInhSR_TQTMFSBSig | true

Page 274

e pre MutexGive WInhSR_TQTM

— MutexGive WInhSW _TQTM
A TaskQueue TimeMutex
mut? : QUEUFE
top Waiting! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
top Waiting! € wait_rcv™({mut?})
YV wr : wait_rcv™ (| {mut?} |) e priority(top Waiting!) > priority(wr)
Vrt . state™({ready} |) ® priority(top Waiting!) > priority(rt)
base_priority (running_task) # priority(running_task)
priority(top Waiting!) > base_priority(running_task)
Jst?: STATE; pri?: TASK — N

| st? = ready N pri? = priority®

{(running_task — base_priority(running_task))}

e Reschedule[top Waiting!/target?, tasks/tasks?]
queue’ = queue
g_maz’ = g_mazx
q_size' = q_size ® {(mut? — 1)}
wait_snd" = wait_snd
wait_rcv’ = {top Waiting!} < wait_rcv
release_snd' = release_snd
release_rcv’ = release_rcv & {(top Waiting! — mut?)}
clock’ = clock
delayed_task’ = delayed_task
wait_time' = {top Waiting!} < wait_time
time_slice’ = time_slice
semaphore’ = semaphore
mutex’ = mutex
mutex_holder’ = {mut?} 9 mutex_holder
mutex_recursive’ = mutex_recursive @ {(mut? — 0)}
basePriorityMan
release_muter’ = release_mutex & {(top Waiting! — mut?)}

_ MutexGive WInhSW _TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder

running_task = mutex_holder(mut?)
mutex_recursive(mut?) = 1
base_priority(running_task) # priority(running_task)
3 top Waiting! : wait_rcvo™({mut?})

Page 275

o (Ywr : wait_rcv™({mut?} |) e priority(top Waiting!) > priority(wr))
N (Y1t : state™({ready} |) ® priority(top Waiting!) > priority(rt))
A priority(top Waiting!) > base_priority(running_task)

theorem IMutexGiveWInhSW_TQTM_Lemma
V TaskQueueTimeMutex; top Waiting! : TASK
mut? : QUEUE
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
A mutez_recursive(mut?) = 1
A top Waiting! € wait_rcv™({mut?} |)
A (Y wret : wait_rcv™({mut?} |
e priority(top Waiting!) > priority(wrct))
A (Y rtsk - state™({ready} |)
e priority(top Waiting!) > priority(rtsk))
A base_priority(running_task) # priority(running_task)
A priority(top Waiting!) > base_priority(running_task)
A running_task € ran({mut?} € mutez_holder)
o = (TaskQueue TimeMutex[log_context := log_context®d
{(mutez_holder(wait_rcv(top Waiting!)),
phys_context)},
mutex_holder := {wait_rcv(top Waiting!)} <€ mutex_holder,
mutexr_recursive := muter_recursived
{(wait_rcv(top Waiting!),0)},
phys_context := log_context(top Waiting!),
priority = priorityP
{(mutex_holder(wait_rcv(top Waiting!)),
base_priority(mutex_holder(
wait_rcv(top Waiting!))))},
q_size := q_size ® {(wait_rcv(top Waiting!), 1)},
release_muter = release_muter®
{(top Waiting!, wait_rcv(top Waiting!))},
release_rcv = release_rcv®
{(top Waiting!, wait_rcv(top Waiting!))},
running_task := top Waiting!,
state := state®
({ (mutex_holder(wait_rcv(top Waiting!)), ready)}
U{ (top Waiting!, running)}),
wait_time := {top Waiting!} < wait_time,
wait_rcv := {top Waiting'} 9 wait_rcv]
A (st € TASK
A — (state®
({ (mutex_holder(wait_rcv(top Waiting!)), ready) }U
{(top Waiting!, running)}))st = state(st)

Page 276

= (state(st), (state®
({ (mutex_holder(wait_rcv(top Waiting!)), ready) }U
{(top Waiting!, running)}))st) € transition)

A (wr € dom wait_rcv A wait_rcv(wr) = wait_rcv(top Waiting!)

= priority(top Waiting!) > priority(wr))
=1t € TASK

A state(rt) = ready

A = priority(top Waiting!) > priority(rt))

theorem IMutexGiveWInhSW_TQTM_Lemmal
V TaskQueueTimeMutex; top Waiting! : TASK,
mut? : QUEUE
| running_task ¢ dom release_snd U dom release_rcv
A mut? € dom mutex_holder
A running_task = mutex_holder(mut?)
N mutex_recursive(mut?) = 1
A top Waiting! € wait_rcv™({mut?} |)
A (Ywret : wait_rcv™ (| {mut?})
e priority(top Waiting!) > priority(wrct))
A (Y rtsk : state™({ready} |
e priority(top Waiting!) > priority(rtsk))
A base_priority(running_task) # priority(running_task)
A priority(top Waiting!) > base_priority(running_task)
A running_task ¢ ran({mut?} < mutex_holder)
o — (TaskQueueTimeMutez|
base_priority = {mutex_holder(wait_rcv(top Waiting!)) }
Sbase_priority,
log_context := log_context®
{(mutex_holder(wait_rcv(top Waiting")), phys_context)},
mutex_holder := {wait_rcv(top Waiting!)} < mutez_holder,
mutex_recursive := muter_recursived
{(wait_rcv(top Waiting!),0)},
phys_context := log_context(top Waiting!),
priority = priorityPd
{(mutex_holder(wait_rcv(top Waiting!)),
base_priority(
mutex_holder(wait_rcv(top Waiting!))))},
q_size := q_size ® {(wait_rcv(top Waiting!), 1)},
release_muter := release_muter®
{(top Waiting!, wait_rcv(top Waiting')) },
release_rcv 1= release_rcvd
{(top Waiting!, wait_rcv(top Waiting'))},
running_task := top Waiting!,
state := state®
({(mutex_holder(wait_rcv(top Waiting!)), ready) }U
{(top Waiting!, running)}),

Page 277

wait_time := {top Waiting!} < wait_time,
wait_rcv := {top Waiting'} 9 wait_rcv]
A (st € TASK
A = (state®
({ (mutex_holder(wait_rcv(top Waiting')), ready) } U
= (state(st), (state®
({(mutez_holder(wait_rcv(top Waiting)), ready) }U
{(top Waiting!, running)}))st) € transition)
A (wr € dom wait_rcv A wait_rcv(wr) = wait_rcv(top Waiting!)
= priority(top Waiting!) > priority(wr))
= 1t € TASK
A state(rt) = ready
A = priority(top Waiting!) > priority(rt))

theorem MutexGiveWInhSW_TQTM _vc_ref
YV MutexGive WInhSW _TQTMFSBSiqg | true
o pre MutexGive WInhSW _TQTM

— MutexGiveNRecursive_TQTM
A TaskQueue TimeMutex
mut? : QUEUE
topReady! : TASK

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)
mutex_recursive(mut?) > 1
= TaskQueueTime
semaphore’ = semaphore
mutexr’ = mutex
mutex_holder’ = mutex_holder
mutex_recursive’ = muter_recursived

{(mut? — mutex_recursive(mut?) — 1)}

=O0riginalPrioData
=MReleasingData
topReady! = running_task

_ MutexGiveNRecursive_TQTMFSBSig
TaskQueueTimeMutex
mut? : QUEUE

running_task ¢ dom release_snd U dom release_rcv
mut? € dom mutex_holder
running_task = mutex_holder(mut?)

Page 278

mutez_recursive(mut?) > 1

theorem MutexGiveNRecursive_TQTM _vc_ref
V MutexGiveNRecursive_ TQTMFSBSig | true
e pre MutexGiveNRecursive_TQTM

MutexGive_TQTM = MutexGiveNnonInh_TQTM
V MutexGiveNInhN _TQTM
V MutexGiveNInhS_TQTM
V' MutexGive WnonInhN _TQTM
V' MutexGive WnonInhS_TQTM
V MutexGive WInhN _TQTM
V MutexGive WInhSR_TQTM
V MutexGive WInhSW _TQTM
V MutexGiveNRecursive_TQTM

Page 279

Page 280

Appendix H

SPECIFICATION FOR MULTI-CORE

TASK MODEL

[CONTEXT, TASK, CORE]

bare_context : CONTEXT
idles : F TASK
cores : F CORE

#cores = #idle
cores #)

STATE ::= nonexistent | ready | blocked | suspended | running

transition == ({blocked} x {nonezistent, ready, running, suspended})
({nonezistent} x {ready, running})

({ready} x {nonexistent, running, suspended})
({running} x {blocked, nonexistent, ready, suspended})
({suspended} x {nonezistent, ready, running})

slice_delay : N
slice_delay = 1

BOOL ::= TRUE | FALSE

U
U
U
U

Page 281

__TaskData

tasks : F TASK
running_tasks : cores — TASK
executable : TASK — cores

ran running_tasks C tasks

idles C tasks

dom executable = tasks

V't : ran running_tasks e running_tasks™t = executable(t)

_Init_TaskData

TaskData'

tasks' = idles

__StateData

state : TASK — STATE

Vi : idles o state(i) € {ready, running}

__Init_StateData

StateData’

state’ = (Az : TASK e nonezistent) @ (idles x {running})

ContextData

phys_context : cores - CONTEXT
log_context : TASK — CONTEXT

_ Init_ContextData

ContextData’

phys_context’ = (X ¢ : cores o bare_context)
log_context’ = (Az : TASK e bare_context)

__PrioData

priority : TASK — N

Vi : idles o priority(i) =0

Page 282

__Init_PrioData

PrioData’

priority’ = (Ax : TASK e 0)

_ Task

TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state™({nonezistent} |))
state™ (| {running} |) = ran running_tasks
V pt : state™({ready} |); r : ran running_tasks

| executable(pt) = executable(r) o priority(r) > priority(pt)

_ ATask

Task
Task'

Vst : TASK | state’(st) # state(st) o state(st) — state’(st) € transition

_Init_Task

Task’

Init_TaskData
Init_StateData
Init_ContextData
Init_PrioData

__createTaskSpeCoreN_T

ATask
target? : TASK
newpri? : N

executeCore : CORE

executeCore € cores

state(target?) = nonexistent

newpri? < priority(running_tasks(ezecuteCore))
tasks' = tasks U {target?}

running_tasks’ = running_tasks

ezecutable’ = executable ® {(target? — executeCore)}
state’ = state @ {(target? — ready)}

Page 283

=ContextData
priority’ = priority @ {(target? — newpri?)}

— findACore_T
ATask
target? : TASK
newpri? : N
executeCore? : CORE
executeCore : CORE

executeCore? & cores
executeCore € cores
Jtcs, cs : F cores |

tes = { pc = cores | newpri? > priority(running_tasks(pc)) }

o (tcs =) = cs = cores) A (tes # 0 = cs = tes)

A (Y oc: cs o executeCore € cs
A #(ezxecutable™ (| {executeCore} |))
< #(executable™ (| {oc}))))

CreateTaskN_T = ([executeCore?, executeCore : CORE
| executeCore? € cores N executeCore = executeCore?] V findACore_T)
A create TaskSpeCoreN _T

__Reschedule
ATask
target? : TASK
tasks? : F TASK
executable? : TASK — cores
st?: STATE
pri? : TASK — N

tasks’ = tasks?
running_tasks' = running_tasks @ {(executable?(target?) — target?)}
executable’ = executable?
state’ = state @ {(target? — running),
(running_tasks(executable?(target?)) — st?)}
phys_context’ = phys_context®
{(executable?(target?) — log_context(target?))}
log_context’ = log_context®
{(running_tasks(executable?(target?))
— phys_context(executable?(target?)))}
priority’ = pri?

disableReschedule = [Task | false] A Reschedule

Page 284

__createTaskSpeCoreS_T

ATask
target? : TASK
newpri? : N

executeCore : CORE

executeCore € cores
state(target?) = nonezistent
newpri? > priority(running_tasks(executeCore))
Jst? . STATE; tasks? : F TASK; executable? : TASK — cores;
pri? : TASK — N
| st? = ready A tasks? = tasks U {target?}
A executable? = executable ® {(target? — executeCore)}
A pri? = priority ® {(target? — newpri?)} o Reschedule

CreateTaskS_T = ([executeCore?, executeCore : CORE
| executeCore? € cores N executeCore = executeCore?] V findACore_T)
A create TaskSpeCoreS_T

CreateTask_T = CreateTaskN_T VvV CreateTaskS_T

__DeleteTaskN_T
A Task
target? : TASK
topReady! : TASK

target? € tasks \ idles

state(target?) € {ready, blocked, suspended }

tasks’ = tasks \ {target?}

running_tasks’ = running_tasks

executable’ = {target?} < executable

state’ = state @ {(target? — nonexistent)}
phys_context’ = phys_context

log_context’ = log_context ® {(target? — bare_context)}
=PrioData

topReady! = running_tasks(executable(target?))

_findTopReady
Task
target? : TASK
topReady! : TASK

state(topReady!) = ready
ezecutable(topReady!) = executable(target?)

Page 285

Vrt : state™({ready} |) | exzecutable(rt) = executable(topReady!)
e priority(topReady!) > priority(rt)

— DeleteTaskS_T
A Task
target? : TASK
topReady! : TASK

target? € tasks \ idles
state(target?) = running
findTopReady
tasks’ = tasks \ {target?}
running_tasks' = running_tasks @ { executable(target?) — topReady!}
executable’ = {target?} < executable
state’ = state & {(topReady! — running), (target? — nonexistent)}
phys_context’ = phys_context®

{(executable(target?) — log_context(topReady!))}

log_context’ = log_context @ {(target? — bare_context)}
=PrioData

DeleteTask_T = DeleteTaskN_T V DeleteTaskS_T

__ EzxecuteRunningTask_T
ATask
target! : F TASK

=TaskData

=StateData

V¢ : cores o phys_context'(c) # phys_context(c)
log_context’ = log_context

=PrioData

target! = ran running_tasks

__SuspendTaskN_T
ATask
target? : TASK
topReady! : TASK

state(target?) € {ready, blocked}

target? ¢ idles

= TaskData

state’ = state & {(target? — suspended)}
=ContextData

Page 286

=PrioData
topReady! = running_tasks(executable(target?))

__SuspendTaskS_T
ATask
target? : TASK
topReady! : TASK

state(target?) = running
target? ¢ idles
findTopReady
dst?: STATE | st? = suspended
e Reschedule[tasks/tasks?, executable / executable?, priority / pri?,
topReady! /target?

__ SuspendTaskO_T
=Task
target? : TASK
topReady! : TASK

state(target?) = suspended
topReady! = running_tasks(executable(target?))

SuspendTask_T = SuspendTaskN_T
V SuspendTaskS_T
V SuspendTaskO_T

_ ResumeTaskN_T
ATask
target? : TASK

state(target?) = suspended
priority(target?) < priority(running_tasks(executable(target?)))
=TaskData
state’ = state @ {(target? — ready)}
=ContextData
=PrioData

_ ResumeTaskS_T
ATask
target? : TASK

Page 287

state(target?) = suspended
priority(target?) > priority(running_tasks(executable(target?)))
Ist?: STATE | st? = ready

e Reschedule[tasks/tasks?, executable | executable?, priority /pri?]

ResumeTask_T = ResumeTaskN_T V ResumeTaskS_T

— ChangeTaskPriorityN_T
ATask
newpri? : N
target? : TASK
topReady! : TASK

state(target?) = ready
= newpri? < priority(running_tasks(executable(target?)))
state(target?) = running =
(Vrt : state™({ready} |) | executable(rt) = executable(target?)
e newpri? > priority(rt))
state(target?) # nonexistent
target? € idles = newpri? =0
=TaskData
=EStateData
EContextData
priority’ = priority @ {(target? — newpri?)}
topReady! = running_tasks(executable(target?))

_ ChangeTaskPriorityS_T
A Task
newpri? : N
target? : TASK
topReady! : TASK

state(target?) = ready
newpri? > priority(running_tasks(ezecutable(target?)))
target? € idles = newpri? =0
dst?: STATE; pri?: TASK — N
| st? = ready N pri? = priority @ {(target? — newpri?)}
e Reschedule[tasks/tasks?, executable /executable?]
topReady! = target?

ChangeTaskPriorityD_T
ATask
newpri? : N

Page 288

target? : TASK
topReady! : TASK

state(target?) = running
target? € idles = newpri? =0
findTopReady
newpri? < priority(topReady!)
Jst?: STATE; pri?: TASK — N
| st? = ready N pri? = priority ® {(target? — newpri?)}
e Reschedule[tasks/tasks?, executable / executable?, topReady!/target?]

Change TaskPriority_T = ChangeTaskPriorityN _T
V' ChangeTaskPriorityS_T
V ChangeTaskPriorityD_T

__ MigrationN_T
ATask
target? : TASK
topReady! : TASK
newC