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- ii -AbstractThe complexity and sophistication of numerical codes for the simulation of com-plex problems modelled by partial di�erential equations (PDEs) has increased greatly overthe last decade. This makes it di�cult for those without direct knowledge of the PDEsoftware to employ it e�ciently. Problem Solving Environments (PSEs) are seen as away of making it possible to provide an easy-to-use layer surrounding the numerical soft-ware. The users can then concentrate on gaining an understanding of the physical problemthrough the results the code is providing. PSEs aim to aid novice and expert users in theproblem speci�cation process and to provide a natural way to solve the problem. Theyalso decrease the time spent on the problem solving process.This study is concerned with the construction of a PSE for the numerical solutionof PDEs. This is one area where PSEs can be used to particularly good e�ect because thesolution process is complicated and error prone. It will be shown how PSEs can remedythese issues by allowing the user to easily specify and solve the problem.The construction of a prototype PSE is achieved through the utilisation andintegration of existing scienti�c software tools and systems. An examination of the so-lution process of PDEs is used to identify the various components required in a PSE forsuch problems. The PSE makes use of an open design environment and incorporates theknowledge of the users and developers of the numerical code together with a set of genericsoftware tools based on emerging standards. This combination of tools allows the PSE toautomate the solution procedure for a number of PDE problems. Finally, the success ofthis approach to building PSEs is examined by reference to an engineering PDE problem.
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- 1 -Chapter 1IntroductionRecent advances in scienti�c computing have resulted in the ability to buildpowerful numerical software capable of solving a wide range of di�cult problems. Withthis dramatic increase in the use of computers for the modelling and simulation of complexprocesses many scientists and engineers �nd that computing has become a predominantpart of their work. This has resulted in an increase in the use of scienti�c computing aswell as an increasing dependence upon it.However, with the increase in the complexity and sophistication of numericalsoftware it has become increasingly di�cult for those without detailed knowledge of thesoftware to employ it e�ciently. This is especially true in the area of computational 
uiddynamics. The speci�cation process from the way a scientist or engineer would naturallyspecify the problems to a form required by the numerical code to solve the problem is oftenlong and complicated. Even when the numerical code has been employed to good e�ectthe understanding of the results given again presents a similar problem. This is obviouslyunsatisfactory. In an ideal world those with the greatest knowledge of the problem shouldbe able to utilise the software as a powerful tool rather than getting tied up in the detailsof the software.The aim should be to reduce the time spent on the speci�cation of the problemand allow the focus to be on the results of the simulation, including visualisation aids tohelp the users to understand the result. In e�ect there should be an easy-to-use interfacelayer surrounding the software. This interface can then be utilised, to aid the solutionprocess, by not only those with in depth knowledge of the problem but also by noviceusers. It can also be used as an aid to the builders of the software to help in the software



- 2 -development process. This can allow developers to concentrate on one particular area ofa wider solution process. Problem solving environments (PSEs) are seen as the way toprovide this easy-to-use layer.In this thesis Problem Solving Environments surrounding numerical softwarefor the solution of two-dimensional partial di�erential equations will be discussed. Theconstruction of PSEs in this area will be discussed. A prototype PSE surrounding a generalpurpose PDE solver for two-dimensional convection-dominated PDEs will be undertakenas a case study to highlight this. The way in which PSEs are built, the environment inwhich they are built and the tools used to build the PSE will all be examined. The useof an open environment including the users and developers of the numerical code for thedevelopment of the PSE is looked at also if this open environment is advantageous andprovides the best way to focus the available resources.1.1 Contents of ThesisThis thesis is organised in the following way. Chapter 2 looks at the developmentof PSEs in scienti�c computing. It highlights the di�ering views of PSEs from earlyaspirations of PSEs to more recent views about the structure and layout of a PSE. Itlooks in particular at PSEs in the area of partial di�erential equations (PDEs). Fromthese varying viewpoints the aims and properties of a PSE can be determined. Thischapter also looks at some of the current tools available in scienti�c computing and if theycan be utilised to construct PSEs.Chapter 3 considers the numerical solution of PDEs as a backdrop for the nu-merical code the PSE will surround. It looks at what is required to solve these problemsand the current method used. It outlines what is needed by numerical software in thisarea and how the user is expected to provide this. Chapter 4 looks at the �rst of twogeneric software tools that are part of a prototype PSE surrounding the numerical code.The visual domain speci�cation tool (VDS tool) is concerned with the speci�cation of thenumerical domain required in PDE problems. The Visual Problem Speci�cation system(VPS system) described in Chapter 5 is a further tool that when combined with the VDStool allows the user to complete the speci�cation process. Both these chapters look at theconstruction of these tools and how they �t into the prototype PSE.Chapter 6 looks at a di�erent aspect of the problem solving process and discusses



- 3 -interpolation methods designed to compliment the numerical solution process. The inter-polant, as well as providing an aid to the visualisation of the solution, can also be usedwithin the numerical process to recover solution values and derivative values.Finally Chapter 7 aims to draw all this together to determine the success ofthe approach taken. It gives a critical evaluation of the PSE by looking at a di�cultengineering problem. This is used to highlight the gaps between what can currently beachieved and what is ultimately required in the future for PSEs in this area.



- 4 -Chapter 2Problem Solving Environments2.1 IntroductionThe increase in scope of problems that complex numerical codes can solve hasresulted in the emergence of computing as a large part of many scientist and engineerswork. The gap between those that can successfully use these powerful solvers and thosewho would wish to use them has widened. What is required is the addition of an easy-to-use interface layer surrounding the numerical software, this can enhance the problemsolving process and allow the focus to be on the results of the simulation. Problem SolvingEnvironments (PSEs) aim to provide this layer.As scienti�c software develops and general purpose PDE software to solve abroad class of problems emerges, any environment surrounding the software must be ableto adapt. It should therefore be stressed that the aim here is to distinguish betweena suitable PSE for a general purpose PDE solver and that of a user friendly speci�cenvironment surrounding a particular numerical solver. Whilst the latter can be seen asproviding an easy to use layer it is the former that can provide a more generic environment.It is this property that makes PSEs desirable.In this chapter the nature and layout of a PSE is investigated. The way PSEshave developed in the area of the numerical solution of partial di�erential equations willbe considered. The evolution of two PSEs is discussed and others systems surroundingnumerical solution packages are outlined. The use of symbolic algebra systems coupledwith numerical software is also examined.From this review, information about the requirements for a successful PSE may



- 5 -be obtained. This information can then be applied to the construction of a PSE as a casestudy to investigate the requirements. Tools to construct this PSE are then outlined andthe reasons why these can be considered suitable building blocks.2.2 Layout of Problem Solving EnvironmentsThe form of a PSE is by no means clear except that the system tends to be heavilyproblem orientated. Moreover the nature of PSEs have changed over time. Early ideasexpressed by Cryer [24] and Ford & Iles [34], de�ne a PSE as a user interface connectedto a knowledge base or expert system capable of driving numerical software. A workshopon future directions of PSEs in computer science [41] de�nes PSEs as capable of solvingproblems by communicating in the user's own terms. The report goes on to de�ne thecharacteristics a PSE should possess, use of modern computing facilities, state-of-the-artsolution methods, review of problem solving task, management of computer resources.The report states that a PSE should be all things to all people, supporting novice andexpert users, although they admit PSEs that ful�ll all these characteristics do not, as yet,exist. Stetter, in a recent paper Tools for Scienti�c Computing [82], looks at the widevariety of scienti�c tools currently available and advocates; the way forward for PSEsis the utilisation and integration of such tools to form PSEs systems that are devoid ofexplicit programming. A PSE can therefore be viewed as a collection of tools that providea bridge between the problem the user wishes to solve and a collection of scienti�c software.Such a view will �t the nature of a PSE outlined by Cryer, Ford & Iles and Stetter. Anyexpert system can be seen as another tool in the collection. The aim of a PSE is thatit should provide an enhancement to the solution process that would not otherwise bepresent. Such an enhancement, for example, may be to increase the reliability of thesolution, decrease the time or cost spent from speci�cation to solution, or provide a moreconvenient means to use the numerical software. This need to enhance the way computersare used in scienti�c computing is also recognised by Peskin et. al. [68] when looking atuser interfaces for scienti�c computing.Stetter, in his paper, discusses PSEs and points to the Parallel ELLPACK(//ELLPACK) system [47], [49] as probably the most advanced problem solving envi-ronment for a class of mathematical problems. Stetter continues by adding that such



- 6 -systems are not the norm in scienti�c computing, enormous expertise, experience and ef-fort has been expended in the development of the //ELLPACK environment. The amountof e�ort and the monetary costs involved lead Stetter to point towards less specialised andless perfect scienti�c environments utilising the range of currently available scienti�c tools.One example of this perhaps is the work by Flaherty et. al. [65], [33], [3] which looks atconstructing a collection of tools for the solution of PDEs. A similar approach of using acombination of software tools to form a PSE is the one taken in this thesis. A descriptionof the system outlined by Flaherty et. al. the //ELLPACK system, and some of the otherPSEs in scienti�c computing, especially the computational 
uid dynamics area, will begiven in the next section. The report on future directions for PSEs [41] also provides anoverview of the current status of PSEs in scienti�c computing and for PDE-based systems.2.3 Problem Solving Environments for Partial Di�erentialEquationsThe range of applications for PSEs for partial di�erential equations (PDEs) iswide. Many systems focus on the use of expert systems to select the appropriate algorithmsfor the problem class. Such systems may view the user as a non-expert in the areaunder consideration. However, in many areas of scienti�c computing the user may well beconsidered as an expert. Formulation of the problem as well as selection of the varioussolution methods available may not be a problem. In this case it is the creation of a suitabledriving code for the numerical or scienti�c software that is required. The assumption aboutthe user as a non-expert compared to an expert is one which will shape the developmentand focus of the PSEs evolution.Ga�ney et. al. look at PSEs for scienti�c computing in the NEXUS project [37]and they assume that the user is seen as a non-expert. The PSE then aims to helpthe user to choose the most appropriate routine in a library of mathematical software.The use of a tree like decision process based on the earlier NITPACK system [39], [38]helps this process by using a natural language approach to aid the selection of acceptablesoftware. The use of inference mechanisms avoids the need to ask explicit questions aboutthe mathematical properties of the problem. This approach has been applied to initialvalue ordinary di�erential equations [2]. The NEXUS project aimed to provide generic



- 7 -tools to allow the construction of information trees which can be applied to any area ofscienti�c computing. The result of traversing the information tree is, hopefully, to producea complete program capable of driving the numerical software. The NEXUS work stemsfrom the desire to help those who construct computer programs to make the best use ofthe wealth of available mathematical software.Many such expert systems and knowledge bases have been constructed to aid theuser in the selection of the algorithmic methods for the solution of PDEs and ordinarydi�erential equations, see [5], [56], [55] for details. The use of expert systems is notdiscussed here for several reasons, the �rst is that the user is seen as an expert whounderstands the solution process and the available software parts required. The secondis because the numerical solution process involved here has relatively few solution paths.Whilst the use of expert systems is not discussed here the user interface components ofsuch systems can still provide insight into the requirements for the visual interface of PSEs.When considering PSEs for PDEs the changing aims and the increase in thecapabilities of PSEs can be seen by examining the evolution of two such systems. Firstlythe //ELLPACK system, described by Stetter as probably the most advanced PSE yet fora class of mathematic problems, is given below. Following this is a description of anotherPSE, the Visual PDEQSOL system. It can be seen that both systems evolved in a similarway to utilise advances in computer hardware and software.2.3.1 The //ELLPACK Problem Solving EnvironmentThe //ELLPACK problem solving environment describes itself as a machine inde-pendent PSE for the prototyping of physical objects for a large class of partial di�erentialequations (PDEs). The //ELLPACK system stems from the earlier ELLPACK system[72] a very high level system for the solution of elliptic PDE problems. The ELLPACKsystem utilised a very high level language to specify the PDE equation, boundaries andgrid segments in a way that would be closer to the real world speci�cation of the prob-lem. The problem could then be solved using a modular approach, ELLPACK acting asa translator which produces FORTRAN code, from the high level speci�cation utilisingELLPACK modules to solve the various aspects of the problem.ELLPACK was �rst constructed as a environment for the evaluation of perfor-mance of the algorithms and software parts used in the solution of elliptic PDEs, however,



- 8 -it was soon recognised as a powerful modular based tool for solving a wide class of prob-lems. So despite the fact that ELLPACK was initially designed to solve second-order linearelliptic problems, the use of a modular structure allowed it to be used to solve problemsfrom other domains. The realisation that the ELLPACK system could become a powerfulproblem solving tool has led to many enhancements to the original system. The current//ELLPACK system is the latest in a line of improved ELLPACK environments.The initial ELLPACK system worked in a batch-like fashion and so an Interactivesystem was developed as an extension to the ELLPACK system. The Interactive ELL-PACK system [31] provides the user with the ability to interactively build grids, choosesolution methods and analyse computed results. Interactive ELLPACK provides a meansto construct menus of ELLPACK commands which allow the user to drive ELLPACK. Forexample, Interactive ELLPACK provided a powerful tool for the investigation of varyingparameter values in problems, the menus providing an easy means to alter the values.Interactive ELLPACK also allows the user to de�ne grid segments with the ability toadd and delete vertical and horizontal grid lines over the numerical domain. This gridspeci�cation could be done graphically or via a text based system. Interactive ELLPACKalso uses established plotting packages which allows the output to be examined via graph-ical windows or hardcopy devices. The system utilises existing software tools to producegraphical results.With the increasing development of graphical workstations the utilisation of suchcapabilities was the next logical step forward for ELLPACK. The resulting system XELL-PACK [15] allowed a window based Interactive environment with ELLPACK. XELLPACKseems to provides very little changes to the format of the Interactive ELLPACK system,providing a large dialogue window that allows the user to construct menus of ELLPACKcommands in a similar way to Interactive ELLPACK. Once constructed, the environmentallows the menus to be displayed as popup windows. The selection of menu items is madeusing mouse button presses. The addition of the entries next menu, prev menu and quiton each user de�ned menu provides the ability to manipulate menus. The graphical in-teractive grid speci�cation became menu driven as well as the production of graphicaloutput plots. The use of the X Window System applied to the capabilities of InteractiveELLPACK provides a standardised way to utilise the ELLPACK system via graphicalinteraction.The next stage in the ELLPACK evolution was seen as the construction of an



- 9 -expert system with the ability to help the user in the choice of the best solution path. Theevolution of the ELLPACK system provided an increase in both the range of problemsthat can be solved and the number of available modules. The inability of the XELLPACKsystem, as the original ELLPACK system, to help the user was considered a problem.The Elliptic Expert system [30] was constructed to provide this help. The Elliptic Expertpaper makes the statement that XELLPACK has 1147 distinct solution paths. With somany possible paths some form of help is required. The knowledge base used initiallyhas been extended for the //ELLPACK system, see [46] and incorporated into the �nal//ELLPACK PSE.The next stage in the development was the //ELLPACK PSE [47] [49] whichprovided the extension to the ELLPACK environments to allow for the increase in com-puter facilities available to scientists and engineers. Powerful graphical workstations andhigh performance parallel systems provided a considerable increase in the types of prob-lems that can be solved utilising an increasing knowledge in the area of computational
uid dynamics. The //ELLPACK system provides tools to specify a greater class of PDEproblems than its predecessor ELLPACK, to provide the tools to decompose problemsautomatically, to utilise the capabilities of parallel hardware and to construct parallelalgorithms.The //ELLPACK system provides a powerful PSE, the objectives of the systemare given as: to construct parallel algorithms for the simulation of physical objects and toprovide a machine independent PSE to support the analysis and design of physical objects.//ELLPACK also aims to support some form of modular programming, allowing newmodules to be constructed and the combination of existing modules to solve an increasingrange of problems and to support the development of PDE based applications on paralleland sequential computers. The latest //ELLPACK system consists of several subsystemsbased around three main elements. These elements support the speci�cation of the model,the processing of the model and the visualisation of the results. Figure 2.1 shows thelayout of the //ELLPACK system as outlined in [49].The subsystems are structured around the //ELLPACK expert system tool in aframework derived from the �nite element or �nite di�erence solution process used. Thesix subsystems located around this central //ELLPACK expert system tool are outlinedbelow along with a brief description of the roles they aim to ful�ll in the PSE.
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- 11 -� The User interface subsystem provides control via the //ELLPACK control tool.� The PDE problem speci�cation subsystem provides a means to specify the geometryof the numerical domain and to specify the governing equations in a graphical andnatural way.� The PDE solution preprocessing subsystem provides means to decompose the domainand to con�gure solution algorithms.� The PDE solution subsystem utilises the ELLPACK modular structure to solve thePDE.� The PDE postprocessing subsystem allows solution visualisation and performanceanalysis.� A run time support subsystem collects performance data and allows tracing of thecomputational process.The use of a modular approach with �xed interface conditions provides a solid frameworkfor the collection, combination and evolution of modules. It appears to be this, andthe exploitation of parallel hardware through decomposition techniques, that are nowthe driving forces behind the //ELLPACK project. The focus still seems to be aimedat supporting research endeavours although the system provides a powerful tool for thesolution of such problems.2.3.2 The Visual PDEQSOL SystemAnother system based around a very high level language for the speci�cationof PDEs is that of DEQSOL [59]. DEQSOL stands for the Di�erential Equation SolverLanguage and provides a natural way to specify PDE problems. An interactive and visualsystem has again been �tted round the DEQSOL system and the system itself has beenextended to form Visual PDEQSOL [86] which increases the range of problems to includepartial di�erential equations. Again the system generates FORTRAN code for �nite dif-ference and �nite element methods. This system again provides a further view of PSEs ashigh level programming language plus code generators for a range of subroutine librariessimilar to the ELLPACK system.



- 12 -The aims of the DEQSOL system were to shorten the time spent in the solutioncycle. The aim of �tting a visual/interactive system around DEQSOL was to provide amore user-oriented approach. The authors of the DEQSOL system claim that the envi-ronment it provides can shorten the total simulation time by an order of magnitude.The aims of the Visual PDEQSOL system are given as supporting a total simu-lation procedure under a graphical environment. The visual PDEQSOL PSE again takesthe form of a set of subsystems. The subsystems are listed below.� PDEQSOL, the high level language and code generation system.� A model visualiser to specify the physical domain and governing equations.� A PDEQSOL debugger tool.� A run time diagnosis system.� A results analyzer that provides solution and accuracy information.The design and layout of the systems as given in [86] is shown in Figure 2.2.Visual PDEQSOL is again built utilising the portability and standardisation ofthe X Window System to provide a machine independent environment and o�ers guidancefor the choice of numerical algorithms. Some comparisons have been carried out betweenELLPACK and PDEQSOL, see [84], however, the main focus was upon the numericalcapabilities of both systems. Both systems have led to more generic discussions of PSEs,after the PDEQSOL system see [85], after the initial ELLPACK system, see [71] and afterthe //ELLPACK development see [48].The evolution of the Visual PDEQSOL system seems to follow the same pathas the ELLPACK system into a graphical problem solving environment. Both systemso�er a good basis for determining the desired components for a graphical problem solvingenvironment.2.3.3 The RPI SystemWork by Flaherty et. al. at RPI (Rensselaer Polytechnic Institute) has resulted inthe development of a software laboratory of tools to help in the solution of two dimensionalPDEs, see [65], [33], [3]. The work here aims to identify the various components that arerequired to allow researchers with limited scienti�c computing experience to solve these
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- 14 -problems. The group identify eight components that a successful system should contain.These are listed below.� A computer algebra interface to describe the PDE and data in a natural way.� A geometric modelling system to describe the domain.� An automatic discretisation package to create a computational mesh over the do-main.� Solution procedure to solve the PDE.� Error estimation procedures to give local and global accuracy measures.� Adaptive strategies to improve solution resolution when needed.� Vector or parallel solution capabilities for increased performance when needed.� Visualisation tools to analyse and interpret results.The system is based around either using a �nite element method solution processor a �nite volume method depending on the nature of the problem. The use of adaptivemethods for automatically re�ning, coarsening and the relocation of mesh points over thecomputational domain aims to provide reliable and e�cient software for the solution ofthe problems under consideration.The various components of the system are grouped together to form a softwarelaboratory. This laboratory contains a collection of tools that satisfy the di�erent aspectsof the overall problem solving process. The combined tools provide not only a basis forsolving problems but serve as building blocks to create more advanced systems as the toolsdevelop and expand. The idea of a collection of tools which may be combined to form aPSE �ts closely with the views expressed by Stetter [82] earlier in this chapter.One key component of the RPI system is the symbolic interface tool. This allowsthe user to input the PDE, boundary and initial conditions in a natural way. The toolbuilt to perform this task is called pdefront and is built using C and the Maple computeralgebra system. The use of Maple allows pdefront to obtain certain properties of the PDEand allow these to be exploited in the solution method. The system also automaticallygenerates FORTRAN code from the users speci�cations to compute various functions that



- 15 -are required in the de�nition of the PDE. A further advantage is that the pdefront systemcan detect errors and mistakes in the speci�cation of the problem. These can then beremedied at this early stage. A further facility that is provided is the output of theequations, boundary and initial conditions in a document ready form using the Unix tro�document processing system.Other software tools provide the ability to create a computational mesh over thenumerical domain. This is achieved with the use of a �nite quadtree mesh generationmethod. The domain is enclosed via a square and then quartered recursively until theprescribed accuracy is reached. The data associated with each quadrant is managed usinga hierarchical tree structure. A solution is then obtained on this unstructured grid. Thesolution process is helped by an adaptive method with re�nement and coarsening of themesh, movement of mesh points and the variation in the order of accuracy over the mesh.Tools can also be used to split the computational domain and exploit parallel machines.The use of visualisation tools is also examined and the problems of using standard graphicspackages is outlined. These include the lack of support for certain data structures andthe machine dependent nature of such systems. The solution to this problem was to buildsome primitive graphical software tools capable of interpreting the results produced bythe system.The combined use of various software tools to provide a PSE seems to provide acomprehensive system in this case. The further integration of the di�erent software partsinto a more cohesive system is seen as one of the major steps forward in the RPI system.However, this aim is closely linked with that of developing and enhancing the softwaretools themselves.2.3.4 The NAG/AXIOM SystemThe Numerical Algorithm Group (NAG) has possibly the most well establishednumerical algorithm libraries in scienti�c computing. The range of the library coversmany areas from minimisation, linear algebra, curve and surface �tting to the solution ofordinary di�erential equations and PDEs, although much of the PDE software is limitedto one spatial dimension. New routines are constructed and existing routines continuallyimproved. NAG aims to provide software that is robust, reliable and portable acrossa wide range of hardware. The current NAG software library, release Mk16, has over



- 16 -1000 user-callable subroutines. NAG also provides other software for scienti�c computingincluding software for visualisation and symbolic computing.The AXIOM system (see [50], [26]) is a symbolic solver and is a relative newcomerto the area of computer algebra systems. Like many of the other computer algebra systemsAXIOM has a high level interactive language and graphical capabilities. It can be usedeither as a desk calculator or a mathematical tool solving complex problems.The AXIOM system was developed by IBM but the copyright belongs now toNAG. The AXIOM system works on the principle of a small kernel and high level modulesde�ning the algebraic facilities present this view is similar to that taken by the Maplesystem. AXIOM, unlike Maple, compiles the modules into machine code to gain speedand performance. The user also has the ability to add new modules to the existing AXIOMlibrary. AXIOM also contains a built-in hypertext system that provides on-line help,introductory text and tutorials. The hypertext system, built with the X Window system,also has a facility for the user to call the NAG software library [28]. This facility uses aform like interface system. The user is required to �ll in the blank gaps. Each form willhave an Ok button which can be pressed when the user has �lled in the required blanks.The information speci�ed in the �rst form is used to determine what the user needs tospecify in the next. Each routine has three pages and the last page contains a Do Itbutton. This button will take the information and generate a FORTRAN program thatwill call the desired library routine.The combined use of both the AXIOM system and the NAG libraries providea powerful problem solving tool. This combined with the use of an X based hypertextsystem provide another example of the combination and integration of software tools toform a PSE.2.4 Symbolic-Numeric Computing in PSEsMuch attention has been directed towards the symbolic-numeric interface for thePSEs in scienti�c computing. Such systems utilise the capabilities of symbolic packages,such as Maple [22] and MACSYMA [60], to generate numerical information.The use of symbolic systems to generate FORTRAN code which can utilise nu-merical libraries is discussed by Davenport in [25] and more recently using the AXIOM



- 17 -system to drive the NAG libraries, see Section 2.3.4.When looking at the solution of PDEs, early work on generating FORTRAN codeusing symbolic tools and �nite di�erences has been carried out by Steinberg and Roache[79], [78], [81], [80]. They again use MACSYMA to generate FORTRAN code.Many of the PSEs in the PDE area use solution preprocessors to generate in-formation that is needed or that can aid the solution process. Such systems have beenintegrated into packages for the solution of PDEs. The RPI system with pdefront seeSection 2.3.3 and Boubez et. al. [16] both use the Maple computer algebra system. Othersystems including the //ELLPACK system attempt to integrate symbolic manipulationtools into PSEs [89], [90] using MAXIMA, part of the MACSYMA package.The common problem experienced in this area is the interaction between thenumerical code and the symbolic system, especially at run time. The problem stems fromthe development of symbolic tools as stand alone user-level systems, unlike the libraryapproach of numerical software. The e�ect of this is that interaction taking place forcesthe client of the symbolic tool to pretend to be human. In e�ect the PSE must generateinstructions for the symbolic tool and some way must be found for the return of theinformation requested. The report on future research directions in PSEs [41] also highlightsthis problem. The ability to integrate existing software systems, such as symbolic algebrapackages, into larger PSEs is seen as one of the key ways forward.The //ELLPACK system also acknowledges these problems and resorts to, whatit describes as ad-hoc means to get round this problem. Others comment on the unrelia-bility of such systems to produce expected results due to possible con
ict of simpli�cationrules. This problem is highlighted by Garbey et. al. [42] when looking at di�erential equa-tions. The observations made are equally applicable to other areas of scienti�c computing.The need for symbolic systems to interface to other software systems is seen as a mainissue for the future direction of computer algebra systems, see Davenport [25]Symbolic computer systems have not only been used to preprocess PDEs butalso provide a suitable framework for the speci�cation of the governing equations. Therequirement to specify the PDE in a natural way has been seen as a way to speed up theoverall time involved in the solution process. One early description of such a language isdiscussed in [21], many of the ideas and notation here are still applicable today. The useof special languages and notation is seen in many of the interfaces of the systems discussedabove.
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Feedback Loop 1 Feedback Loop 2Figure 2.3: Design EnvironmentWith the increased use and availability of symbolic manipulation packages theinclusion of these in PSEs seems a logical step forward. They can be used not only to inputthe problem but also to process it. This can lead to a better formulation of the problemand to highlight certain properties of the problem. However, the lack of a back door intosuch systems has resulted in ad-hoc usage of such systems. Any interaction undertakenby the software pretending to be a human user.2.5 Design EnvironmentThe aim of this thesis is to extract the basic principles behind such PSEs and toapply these techniques to construct a set of tools to aid the solution of two-dimensionalconvection-dominated partial di�erential equations using numerical software under devel-opment at Leeds [88], [11]. As the numerical software changes the surrounding PSE mustalso adapt to the users needs. It is intended that the PSE will have the ability to extendallowing the inclusion of new facilities in the PSE as the solution process changes.The aim is to extract and exploit the generic nature of the problem class, toprovide self contained visual tools that are not limited to the numerical software theyare designed for but are applicable to the broad problem class of two-dimensional partialdi�erential equations.The design and construction of such tools will be undertaken in an open environ-ment that involves the users of the tools and the developers of the software, see Figure 2.3.The use of an iterative feedback loop with the users aims to ensure that the tools performthe tasks they are designed for in a manner that is acceptable and appropriate to the



- 19 -users. The involvement of the developers of the code ensures that the tools provide all theinformation that is required for the successful solution of the problem under consideration.This open environment for the development of the PSE is one which is seen as essentialfor success, see [64]. The importance of providing self contained tools is also highlighted.This view is further supported in the future directions report [41] along with the need forgeneric tools to add to those currently available.2.6 Building Tools for PSEsThe previous sections illustrate several PSEs and highlighted some of the aims orobjectives behind such systems. One common theme is the desire to construct a machineindependent environment. This is obviously a desirable requirement, enabling the PSE tobe used on many di�erent hardware platforms. Such an aim is an obvious requirementfor the PSE that contains the two-dimensional convection-dominated partial di�erentialequation numerical code. In order to maintain a machine independent environment thePSE will be constructed from tools that are either industry standard or are readily availableand widely used and therefore may be considered as de-facto standards. This section willoutline these building blocks.The rest of the section will give a brief outline of the tools that may be used asbuilding blocks for the PSE. The choice of each tool is explained and similar systems areoutlined. All programming is undertaken on a Unix platform using the C programminglanguage [73], itself a standard.2.6.1 The X Window SystemThe evolution of a text based PSE to a graphical PSE may be observed in thedevelopment of the ELLPACK and PDEQSOL systems. It is obvious that any successfulPSE must capitalise upon the increasing usage of graphical workstations and graphicaluser interfaces. Usage of the X Window System is essential to allow portability in thisarea. There are no real competitors to the X system in this area. The X Window System isan industry standard for the construction of portable graphical user interfaces. X providesa device independent architecture that allows the user the mechanisms to produce manydi�erent styles of interface. High level libraries built on the X protocol provide buildingblocks to aid the construction of X applications. X operates on a client server model
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Network ConnectionFigure 2.4: Client Server Model for Xwith the ability for many clients to be attached to one server. In general the server is aworkstation or personal computer. The clients are any other machines that are connectedto the server, clients and servers communicate via network protocols, see Figure 2.4.The basic X resource is a window. The windows have a hierarchical structuredescended from the root window, each with its own integer coordinate system. Thisallows text and graphics to be placed in a window without concern about the position ofthe window on the screen. The responsibility for displaying and redisplaying the contentsof a window rests with the client. The server communicates with the client by means ofevents. X recognises thirty three di�erent types of events and has the ability for the userto de�ne more. All X applications are event driven the two most common events are themouse as a pointer and button press device and the keyboard to enter key presses. Eventsare stored as a �rst in �rst out queue. Clients communicate with the server by sendingasynchronous requests to display a particular window.The XWindow System provides a set of low level commands via the Xlib librariesand also supports the higher level XToolkit along with higher level widgets sets built onX, see Figure 2.5. Many such widget sets exist and the facilities exist for the applicationprogrammer to construct new widgets. These widgets can be combined with the Xlibfunctions and the XToolkit to build machine independent applications that are supportedas an industry standard.
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Figure 2.5: Widget Set position in X Windowing System2.6.2 Building On X | Widget SetsWidget Sets are high level toolkits built on the X Window System, see Figure2.5. A widget is de�ned as an X window with associated manipulation procedures for thewindow and data structures. Widgets are de�ned in terms of classes, widgets with commoncharacteristics. Complex widgets are created from simpler widgets by the addition of newmanipulation routines or the extension of the data structure.Many di�erent types of widgets exist which allow the easy construction of basicparts of many X applications for example push buttons, menu, scrollbars and text widgetsas well as user de�ned widgets. Widget sets combined with the X Toolkit allow the easyconstruction of popup and dialogue widgets. The user can set the attributes or resourcesof the widgets, with the ability to specify size, colour and placement of the widget.Facilities exist to allow the user to easily map X events occurring in widgetwindows to user de�ned functions. These events may be the mouse pointer entering orleaving a widget or mouse buttons being pressed or released inside the widget. Thisallows the mapping of the user pressing a mouse button, whilst the mouse pointer is insidea push button widget, to cause the widget library to call a routine which changes the



- 22 -widgets attributes, then a user de�ned function may be executed. The combination ofthese actions gives the user the impression that the button has been pushed causing theapplication to do something.This ability to push buttons with the mouse and call user de�ned functionsallowing the combination of widgets to form X applications have ensured that the widgetsets available have been utilised widely.One such widget set is the Athena Widget Set [69]. This provides many of thefacilities outlined above. Each widget set has its own policy, style and consistency. TheOpen Software Foundation (OSF) Motif Widget Set [94] is another of these toolkits. TheOSF/Motif Widget set has a distinctive look and style which gives a three dimensionalappearance to the widgets created. It is this widget set that will be used in the constructionof the tool.2.6.3 Document Processor ToolsTwo document processing tools are outlined below, the tro� family of packages[66] and the LATEX system [61]. Both are similar but use of the LATEX system seems tobe widespread and seen as a replacement for the older tro� system. The ability for LATEXto produce high quality mathematical notation and equations seems to lend itself to thescienti�c computing community.The Tro� document processor packageThe tro� system is, in many respects, identical to the earlier nro� system but pro-vides laser quality output, the nro� system producing formatted Ascii. The tro� packageis provided as part of the Unix operating system and is therefore widely available.The tro� system operates on a suitable �le containing the text to be formattedand a set of commands. These commands can control text size and structure. They alsoallow text to be underlined, centered or indented. This provides the user with full controlover the format of the document.The basic tro� package cannot deal with mathematical notation, �gures, tablesor references. In order for the user to utilise these facilities several preprocessors can beused.� The eqn package to deal with equations [58].



- 23 -� The pic package to deal with �gures [57].� The tbl package to deal with tables [62].� The refer package to deal with references [83].Combined together a powerful document processing tool is available. It appears that thisdistributed nature of the system seems to have led to the decline in its use.The LATEX document processorLATEX is a document processor based on the earlier TEX package. TEX is atypesetting package especially suited to mathematical notation, LATEX provides all thefacilities available in TEX but aims to provide an easier-to-use environment.LATEX provides many di�erent document styles, such as letters, reports and ar-ticles, each of which may use di�erent text sizes and fonts. The aim of LATEX is toautomatically format the document and allow the user to concentrate on the structure ofthe document without worrying about the layout. In practice users can control aspects ofthe layout, if required, and even de�ne new document styles to suit their needs.LATEX again does not provide a what-you-see-is-what-you-get system, LATEX isconstructed from a �le containing the users text and a set of commands. This �le isprocessed by LATEX to provide a device independent output �le which may be printed.Such commands allow the user to change text size and text properties, such as bold faceand italics, to use Greek and other special characters as well as de�ning mathematicalnotation such as fractions and partial derivative terms, for example the LATEX commands\frac{\partial{u}}{\partial{t}}will give the mathematical notation @u@tLATEX also provides the commands to construct tables and �gures easily, to in-clude imported postscript �les and to produce lists, quotations and footnotes. LATEXalso automatically handles cross referencing within documents for equations and sectionnumbers.This ability to format text easily and to provide support for mathematical nota-tion and equations combined with the other facilities o�ered by LATEX has made LATEX a



- 24 -widely used document preparation tool. It is therefore the LATEX system that will be usedhere. It is LATEX that has also been used to format this thesis.2.6.4 Computer Algebra SystemsThere are six main computer algebra systems widely available in the scienti�ccomputing area. These six systems are REDUCE [44], MACSYMA [60], Maple [22], Math-ematica [92], the Derive system based on the earlier muMATH system [93] and AXIOM[26], a recent newcomer to this area. Each system is a general purpose interactive packagethat provides similar operations. Much literature is devoted to the study of one particularpackage or an overview of several, see [43] for example, REDUCE, MACSYMA and Deriveare implemented using lisp, while Maple and Mathematica use C. The availability of thesesystems for di�erent operating systems is very similar except for the Derive package whichis only available on a DOS platform.Each system provides similar basic functions and operation, but the notation andsyntax of each does di�er. All the systems allow the user to manipulate expressions andformula containing integers, rational and real numbers, they also allow the constructionof other mathematical objects such as symbolic formulae, polynomials, sets, lists andequations. The systems then allow these to be symbolically manipulated or evaluated toan arbitrary length.Another important part of such systems is the ability to enhance the system bythe addition of new routines. All the above systems also provide the user with the abilityto output numerical expression in FORTRAN or C. Such programming languages allowquicker execution of 
oating point arithmetic albeit to a limited precision. This facilityof the systems will be exploited later. Some systems also provide routines to generateinstructions for the typesetting programs, tro� and TEX.The similarity of each of the systems allowed a choice of which package to use.The PSE will be constructed on a Unix platform so the Derive system was not considered.The use of a C based system was also preferred and the Maple system was available andappeared to be used widely in the scienti�c computing community. The Maple systemalso provided C and TEX output which provided links to the other building tools used.The Maple package is brie
y described below and the basic syntax is outlined.



- 25 -Maple Maple is an interactive computer algebra system developed at the University ofWaterloo. Maple uses its own syntax to construct these mathematical objects, for exampleif the user has a function f that is dependent on x and y then the user can de�ne this asf := x ** 2 - y ** 2;The ** notation is used to denote exponentiation. The user can then manipulate thisfunction. Maple provides routines to perform many mathematical operations on the ob-jects constructed and can give exact values, such functions include integration and di�er-entiation. For example di�erentiating f with respect to y can be achieved by the commanddiff(f, y);which gives the result -2yMaple can also compute roots of polynomials and factorise expressions, for examplefactor(f, y);gives the result (x-y)(x+y)Maple also has many other library packages for mathematical areas such as logic,statistics and linear algebra. Each package contains many functions applicable to that areaof mathematics. Maple also provide routines to output expressions suitable for inclusionin FORTRAN or C programs. Maple also provides routines to output simple expressionsin LATEX.2.7 SummaryIn this chapter the use of PSEs in scienti�c computing is examined. The apparentgap between those who need to use such tools and those that are able to use the tools intheir raw state is one which PSEs are trying to bridge. The utilisation of software tools by



- 26 -scientists and engineers to solve real world problems should not involve detailed knowledgeof the software.Looking at PSEs from this perspective provides a set of aims for the developmentof a PSE. These objectives may be seen as ease of problem speci�cation, the reductionof the time spent on the solution of the problem or the convenience a PSE can provide.However, examining many of the current PSEs available shows that the aims of thesesystems seem to focus on providing a development environment to enhance and improve thesoftware parts involved in the solution process itself. Such systems still provide powerfulproblem solving tools.The layout and nature of a PSE is not clear and several examples are given fromearly attempts to modern more complex systems developed in some areas of scienti�ccomputing. The di�erent views and outlines of these PSEs provide enough informationto establish the desired properties that a PSE should possess. The aim is to utilise thisinformation and construct a set of tools to aid in the solution of two dimensional convec-tion dominated PDEs. Several systems exist in this general area of computational 
uiddynamics e.g Flaherty et. al. [65]. An in depth look at two of the more advanced systems,the ELLPACK and PDEQSOL systems as well as other systems outline some of the keycomponents required. The need for a portable environment that allows the user to specifythe problem in natural terms using visual tools. Examining the symbolic numeric interfaceoutlines the use of symbolic algebra systems in scienti�c computing and highlights someof the problems that exist in the integration of these tools into large systems.A brief introductory description of the tools that can be used in the constructionof the PSE to meet the required objectives followed the examination of other work in thisarea. The suitability of the tools was examined, the need for portability and familiaritycoming from the use of building blocks that are either industry standard or widely usedin the scienti�c computing community.



- 27 -Chapter 3The Numerical Solution of PartialDi�erential Equations3.1 IntroductionIn this chapter aspects of the numerical solution of partial di�erential equations(PDEs) relevant to PSE will be discussed. These aspects will be illustrated by describinghow one particular PDE solver package is used and the features that are common to mostPDE software highlighted. An overview of the solution process is given to show what sortand form of information about the problem is required by the package. The interfaces of aparticular package are then shown in more detail and an example driver program walkedthrough.3.2 Scope of ProblemsThe package described here is designed to solve systems of two-dimensionalconvection{dominated PDEs that arise from many engineering applications. These maybe time-dependent problems where the solution evolves in time or steady problems wherea single solution is produced. Convection-dominated equations are typically solved as setsof conservation laws. The generic formula for a scalar conservation law is�@u@t + @fx@x + @fy@y = @gx@x + @gy@y + S (3.1)



- 28 -where u � u(x; y; t); � � �(u); fx � fx(u); fy � fy(u);gx � gx�u; @u@x; @u@y� ; gy � gy �u; @u@x; @u@y� ; S � S(u):For steady problems the term � is set to zero to remove the time dependence ofthe problem and the independent variable t is ignored. The majority of time-dependentproblems are scaled so that � is unity.The terms fx and fy de�ne the advective 
uxes which lead to wave-like structuresin the solution u. The terms gx and gy de�ne the di�usive 
uxes which lead to di�usionprocesses in the solution u. The term S, the source term, can be used to add otherprocesses such as reaction terms including chemical kinetics.As far as the user is concerned much of the information that needs to be speci�edis the same for both steady and time-dependent problems. The main di�erences lie inthe solution techniques employed. Di�erent numerical methods are needed to ensure theaccurate evolution of a time-dependent solution compared with the convergence of steadyproblems to an accurate solution. It will be shown later that the information required bythe numerical code can be split into four main groups, three of which are common to bothsteady and time-dependent problems.3.3 Numerical Solution of PDEsTo solve a PDE numerically the continuous di�erential operators must be re-placed by discrete operators. This process is referred to as discretisation. Schemes caneither be fully discrete where all di�erential operators are replaced or semi-discrete whereonly some are replaced. One popular technique for time-dependent problems is to dis-cretise the spatial di�erential operators leaving only the temporal ones. The PDE istherefore reduced to a system of ODEs (Ordinary Di�erential Equations) which can thenbe integrated using existing software packages. This is referred to as the Method of Lines.The main advantages of the Method of Lines compared to the fully discrete ap-proach are the separation of temporal and spatial discretisation and the ability to useexisting software. There are a wide variety of techniques for discretising in space and intime. Packages based around the Method of Lines are able to combine di�erent combina-tions of spatial and temporal discretisation as the user requires. The development of PDE



- 29 -package software is expensive and error-prone so the ability to make use of existing testedsoftware is of great concern. There exists a large collection of sophisticated and testedsoftware that can be used to solve the resulting ODEs.In one dimension this discretisation of the PDE requires the domain to be repre-sented by a number of mesh points. So the true solution u becomes the discrete solutionUi; i = 1 : : :n. The discrete solution is then found at these mesh points. Consider thelinear heat equation: @u@t = @2u@x2where @2U@x2 is approximated by the standard �nite di�erence operator, giving n ODEs ofthe form: dUidt = Ui+1 � 2Ui + Ui�1h2 ; where i = 1; : : : ; nwhich combined with appropriate boundary and initial conditions can be solved by anODE integrator.Three of the main classes of spatial discretisation schemes available are brie
ydescribed as:� Finite di�erence schemes are the earliest form of spatial discretisation. In �nitedi�erence continuous di�erential operators are replaced by discrete ones, usuallyderived from Taylor series expansion. The advantages of �nite di�erences are theease of implementation and error analysis for regular spaced square (or structured)meshes. However many physical domains are not suited to structured Cartesianmeshes. Combinations of transformed meshes provide one way for complex geome-tries to be modelled, eg aerofoils, see [19] for a more detailed description.� Finite element schemes approximate the continuous solution by some form of poly-nomial. This polynomial is normally constructed as a combination of simpler poly-nomials that are local to a few cells. The simplest case (and most popular perhaps)is when piecewise linears are used. Higher order approximations are also used. Avariational formulation is then constructed by multiplying the PDE by a test func-tion and then integrating by parts. The minimum of the variational formulation isthe closest approximation to the PDE with the chosen polynomial form. The �niteelement method is not just limited to structured grids. A popular choice for two-



- 30 -dimensional problems is triangular elements with piecewise linear functions used toapproximate the PDE, see [53] for further details.� Finite Volume schemes approximate the solution as a series of piecewise constantelements. The PDE is integrated over an element but, via the divergence theorem,the area integral for the 
uxes is replaced by a line integral around the edge of theelement. The 
ux functions in the PDE are then used to calculate the numerical
ux between adjoining elements. In principle �nite volume schemes may use anyform of spatial elements and a mesh may use several di�erent types. In practise theuse of a single element simpli�es the design and implementation. Quadrilaterals andtriangles are the most common elements for two-dimensional problems. The use oftriangular elements allows complex domains to be modelled, as in �nite element.The numerical solution process considered employs the �nite volume method so it will bethe focus of this chapter.For convection-dominated PDEs, careful discretisation in both time and space isessential to preserve the physical validity of the solution. Ad-hoc discretisation may resultin unphysical oscillations appearing in the discrete solution. A commonly used approachto ensure a stable solution is to introduce an upwind bias into the solution process. Theupwinding takes into consideration the directional aspects of the PDE. More emphasisis placed on the information coming from the direction of the 
ow { the upwind values.Since only the advective parts of the PDE have direction then upwinding techniques needonly to be applied to this part of the problem.Upwinding ensures a stable solution, however, the problem may still displayunphysical behaviour in the form of spurious extrema. These result from using too highan order scheme. This can be overcome by using a non-linear scheme that changes ordernear discontinuity by limiting the numerical 
ux that passes between cells. It is possibleto theoretically validate that such schemes do not introduce spurious oscillations providedcertain conditions are met, see [13].If a one dimensional problem is considered, a time dependent system of PDEscan be written in conservative form asut + [F (u)]x = [G(u; ux)]xwhere F de�nes the advective 
ux vector describing the wave like motion of the PDE and



- 31 -G de�nes the di�usive 
ux vector describing the di�usion of the solution.There is no need to use upwinding when evaluating G, see [74], so central di�er-ence like techniques can be employed. The 
ux G is evaluated by either calculating G inthe left and right cells and then averaging or G is calculated with some average value ofthe solution in the left and right cells.The advective 
ux F requires upwinding to ensure correct discretisation. Someprocess is needed to choose which direction the solution is to be upwinded. For simpleproblems this is obvious and unchanging, e.g. linear advection. However, for complexsystems it is not obvious and the direction may alternate or a combination of both leftand right values maybe needed for a system of PDEs, see [67]. Typically a Riemann solveris used that replaces the advective 
ux in the code and uses a combination of knowledgeabout the PDE and left and right solution values to construct the 
ux. It is possibleto construct exact Riemann solvers however this is generally complex and costly. Oftenapproximate Riemann solvers that do not compute exactly the correct 
ux but instead usea series of physical/numerical approximations to ease the task. This is acceptable sincenumerical errors have already been introduced in the discretisation procedure, see [67].Although it is possible to construct approximate Riemann solvers automaticallyusing symbolic manipulation packages, the current trend is still the user specifying theRiemann solver rather than the advective 
ux found in the conservative form of the PDE.One possible strategy is to average the left and right solution values and evaluate theadvective 
ux function using this in a similar way to the di�usive 
ux. Although thisignores the upwind information presented to the Riemann solver it is a default action thatcan be taken if the user does not supply a proper Riemann solver.When dealing with two dimensional problems the current trend is towards un-structured triangular meshes. They have the ability to model complex domains and whenused in conjunction with spatial adaptivity provide a powerful modelling environment.The numerical solution process considered here uses a cell{centered �nite volume schemeon unstructured triangular meshes, [87].The physical domain is represented by a triangular mesh, each mesh point is thecentroid of a triangle. The conservative form of the two dimensional equation is given inSection 3.2. The advective 
uxes are dealt with in a similar way to the one dimensionalscheme with an approximate Riemann solver being employed to calculate the advective
ux and simple averaging used for the di�usive 
ux. The Riemann solver is now used to



- 32 -compute the 
uxes travelling across the edge in the Cartesian directions. The left and rightvalues used by the Riemann solver are now internal and external values. These values areagain limited using a 
ux limiter scheme but now implemented on an unstructured mesh.Only the use of this unstructured 
ux limiter scheme is covered here, for more details see[13]. As for the one-dimensional case, initial and boundary conditions need to bespeci�ed. There are three types of boundary conditions allowed by the package:� Dirichlet Condition - allows the user to specify the dependent variable(s) at theboundary.� Neumann Condition - allows the user to specify the �rst derivative of the dependentvariable(s) normal to the boundary edge.� Flux Condition - allows the user to replace the approximate Riemann solver at theboundary by a speci�ed 
ux. Due to a feature of the 
ux limiter scheme this willresult in a loss of accuracy at the boundary.The numerical solution process requires the user to provide several pieces ofinformation in order to solve the PDE. This information will be discussed in the nextsection.3.4 The Numerical CodeThe numerical software used here is the SPRINT2D package. It is a generalpurpose solver for systems of PDEs in conservation law form. The PDEs must �t into thefollowing template class of PDEs as given below,�(U)@U@t + @@xF (U) = @@xG�U; @U@x �+ S(U)where x is [x; y] is the Cartesian position, F (U) de�nes the advective 
uxes, G(U; @U@x ) arethe di�usive 
uxes and S(U) are the source terms. For steady problems the � term is setto zero to eliminate the time-dependent aspect. Typically, for time-dependent problems� is set to unity.The SPRINT2D package has several features including:



- 33 -� unstructured triangular mesh spatial discretisation;� unstructured triangular mesh generation;� spatial adaptivity;� time integration with local error control;� error estimation and error control.Examples of the types of PDE problems that SPRINT2D has been applied toare given in [10].The program is driven by a user-supplied driving program. This driver programperforms two tasks. Firstly, it speci�es the PDE(s) to SPRINT2D. Secondly, it allowsthe user to specify the solution techniques to be used and pass over any miscellaneousinformation and hints about how to be successful. The software takes the form of aselection of numerical modules controlled by the SPRINT2D main driver. The user, inthe driver program, needs to specify the following information:� A Riemann solver for the advective 
uxes F .� The 
ux function for G.� The source term function S.� Boundary conditions.� Initial conditions.� A time interval over which to integrate (for time-dependent problems).� A �le containing a speci�cation of the physical domain.� Relative and absolute tolerances for the adaptivity routines.Extensive utility routines allow the user to provide additional information or examine thesolution during the solution process.The SPRINT2D package is implemented on top of two existing numerical pack-ages: SPRINT and NAESOL. After applying spatial discretisation to time-dependentproblems, the resulting system of ODEs is solved by the SPRINT integration package.



- 34 -Spatially discretising steady problems removes all di�erential operators and results in asystem of non-linear equations which are solved by the non-linear solver package NAESOL.The details of these packages are masked by SPRINT2D which provides a uni�ed interfacesince the two packages have signi�cant di�erences in their interface.There are currently two mesh generation software packages that can be usedby SPRINT2D. The KSLA mesh generator [35] and the GEOMPACK mesh generator[51]. The TRIAD package provides the routines to perform any spatial adaptivity. Anh{re�nement method is used to re�ne and coarsen the computational mesh.All SPRINT2D routines begin with S2D and speci�c solution modules have afurther set of letters to identify them. So the routine S2D FVM diffusive flux has thecode FVM to show that it is part of the Finite Volume Method solution module.There is a large overlap between the information required for time-dependent andsteady problems. The main di�erences occur internally to SPRINT2D due to the way inwhich the PDEs are solved. A time-dependent problem requires the user to specify whichtime integration method is required as well as the information about the time interval.These problems also require the user to specify the linear algebra package for the timeintegrator. Figure 3.1 shows the structure of a time dependent problem.The steady problems are solved in a di�erent way and need a solution strategymodule, for solving the non-linear equations, to be speci�ed. Figure 3.2 shows the structureof a steady problem.The modular nature of the software allows additional solution modules to beadded to the package. Whilst at present there is often only one option the nature of thepackage allows for additional routines to be added later. A brief outline of the type ofmodules available in the current version of the package is outlined below.� Spatial discretisation modules: there is currently only one spatial discretisationmodule, the �nite volume scheme (FVM) outlined previously.� Solution strategy modules: again there is one module, this is the black box solu-tion strategy module (BBOX). This is a simple invocation of the NAESOL package.� SPRINT linear algebra modules: there are currently three linear algebra mod-ules available. A dense direct linear algebra module (SLINPK), a sparse direct linearalgebra module (PSPARSE) and a sparse iterative module (SPWATSIT).
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- 37 -� SPRINT time integration modules: there are currently two time integrationmodules. A Theta method (STHMID) and a backward di�erentiation formulamethod (SPDASL).The next section will examine the way in which the user speci�es the relevantinformation to the package.3.5 Driving the Numerical CodeThe use of a driving program is a common way to drive PDE solvers. The user isrequired to specify the solution process and the modules to be used. The user also needs tospecify tolerances and numerical parameter values. This process is normally done in somehigh level language. Often the numerical code will have its own language, for examplethe ELLPACK system [72] and the PDEQSOL system [86] both have an internal highlevel language to specify the problem. Both then convert this internal language into atraditional programming language (FORTRAN).The SPRINT2D package driver programs are written in the C programminglanguage [73]. The SPRINT2D modules are selected and initialised from within thisC program. The driver program also allows the user to extract information about thenumerical solution each time it changes or is updated. This is achieved by the userproviding a monitor routine which SPRINT2D calls at regular intervals. The layout ofthe driver program follows the general form given below.� Include header �les for each module to be used by the code.� De�ne any functions required by the modules used.� De�ne the monitor routine.� Specify the relevant data needed for the solution process.� Initialise the modules used by the code.� Start the solution process.To better illustrate the structure of the driving program we will consider twoexample problems. The �rst is a steady problem and the second a time-dependent one.



- 38 -Both use the �nite volume spatial discretisation module. The steady problem uses theBlack Box solution strategy module whilst the time dependent problem uses the Thetaintegration module and the WATSIT linear algebra module.The �rst part of the driver program needs to include the relevant header �les forthe SPRINT2D package and modules that are to be used. The header �les for the steadyproblem are therefore:#include "S2D.h"#include "S2D_FVM_finite_volume_discretisation.h"#include "S2D_BBOX_black_box_soln_strategy.h"The header �les for the time dependent problem are:#include "S2D.h"#include "S2D_FVM_finite_volume_discretisation.h"#include "S2D_STHMID_theta_temporal_discretisation.h"#include "S2D_SPWATSIT_sparse_iterative_solver.h"The driver program then speci�es the various functions required by the modulesto be used. In both cases the �nite volume spatial discretisation requires several func-tions: initial conditions, boundary conditions, di�usion function, Riemann solver. Thesefunctions have to follow a speci�c interface where certain variables have to be returnedto SPRINT2D, eg numerical 
ux between cells in the Riemann solver. SPRINT2D callsthese functions with spatial and time information (x, y and t), as well as the number ofPDEs (npde) and other information relevant to each particular function, eg the boundaryconditions routine is given the name of the boundary edge to which it is being applied.� Initial conditions: this function speci�es the initial solution values for the PDEs.This function has to set the array u[npde] where the user's function must have thefollowing prototype:void problem_ic(TRIAD_Triangle *tri, int npde, double x,double y, double t, int sub_name,void *users_data, double u[])� Boundary conditions: this function speci�es the boundary conditions for eachPDE. This function has to set the type of boundary condition type[] and then,



- 39 -depending on the type set, one of the following dubdn[], ub[] or fb[] if the con-ditions are Neumann, Dirichlet or 
ux respectively. The user's function must havethe following prototype:void problem_bc(TRIAD_Line *line, int npde, double x,double y, double time, int edge_name,int sub_name, double norm_x, double norm_y,double *u, void *users_data,S2D_FVM_BC_Type type[], double ub[],double dubdn[], double fb[])� Di�usive function: this function de�nes the di�usive 
ux part of the PDE. Theuser sets the di�usive 
uxes in the Cartesian directions, g_x[] and g_y[], given the�rst derivatives in the Cartesian directions, dudx[] and dudy[]. The user's functionmust have the following prototype:void problem_g(TRIAD_Line *line, int npde, double x,double y, double t, int sub_name,double norm_x, double norm_y, double u[],double dudx[], double dudy[],void *users_data, double g_x[],double g_y[])� Riemann solver: this function de�nes the approximate Riemann solver used by thespatial discretisation code to calculate the advective 
ux passing between cells. Thisfunction has to return the numerical 
ux in nf[] given the left and right values atthe edge, u_l[] and u_r[]. The user's function must have the following prototype:void problem_rs(TRIAD_Line *line, int npde, double x,double y, double t, int sub_name,double norm_x, double norm_y, double u_l[],double u_r[], void *users_data, double nf[])The user can also specify a monitor function. This function allows the user tofollow the numerical solution. The monitor function is called at several di�erent stages



- 40 -during the integration but mainly it is invoked when the next successful solution has beengenerated. For time-dependent problems this is when the solution has been advanced bya time step. For steady problems this is when the solution has converged on the currentadaptive mesh. Typically the monitor function connects up to some visualisation systemto allow the user to investigate the current solution.void monitor(int neq, double u[], double udot[],double time, double err[], double ewt[],S2D_Res_Status_Type res_status,S2D_Monitor_Type mon_type,S2D_Mon_Status_Type *mon_status,S2D_Intgrtn_Obj_Type *integ_obj,void *space_disc_data, void *users_data )In the main function, the user passes over the numerical information needed bySPRINT2D and tells SPRINT2D which functions it needs to invoke. The user declaresan integration object, my_integ for example, and this carries the bulk of the informa-tion. Utility routines exist to allow the user to specify di�erent kinds of information. Theintegration object is initialised with default settings for most parameters. The user canoverwrite these later if he/she wishes. There are certain parameters that have to be spec-i�ed: maximum number of unknowns (e.g. ODEs or non-linear equations), the temporaldomain, the initial level of mesh re�nement and tolerances to specify the accuracy thesolver should try to obtain. Although its possible to specify these values explicitly wheninvoking the utility, most driver programs query the user for suitable values.As an illustration of the driving program, this Section will list and brie
y describethe SPRINT2D utility routines in a typical driving program. In both cases the integrationobject needs to be initialised with default valuesS2D_initialise( &my_integ );The type of problem is then given, steady or time-dependent. For a time dependentproblem the user gives SPRINT2D a start time t_start and an array, t_out, containingspeci�c times at which output is requested. SPRINT2D will invoke the monitor functionat these times. The last entry of t out is the time at which the integration will cease.S2D_time_dependent( &my_integ, 1, neqmax, t_start, n_t_out,



- 41 -t_out ) ;where n_t_out speci�es the number of entries in the t_out array. The neqmax gives themaximum number of unknowns to be allowed by the code. The driving program now setsthe temporal tolerances to specify the accuracy to which the solution is required.S2D_temporal_tol( &my_integ, 1.0e-7, 1.0e-7 ) ;where the second argument is absolute tolerance and the third is the relative tolerance.See [10] for an explanation of these types of tolerance. The steady problem is de�ned ina similar way, except no time information is needed.S2D_steady( &my_integ, 1, neqmax ) ;Both steady and time-dependent problems will need the computational mesh generatingfrom the textual description of the domain. SPRINT2D needs to know the name of the�le containing the description of the domain, for example "problem.dmn" and the initiallevel of mesh re�nement, ilevel to be inserted into the mesh.S2D_ksla_mesh_generator( &my_integ, "problem.dmn", ilevel ) ;The user now needs to specify information about the spatial adaptivity. One option is todisable spatial adaptivity.S2D_no_spatial_adaptivity( &my_integ ) ;Alternatively, if the spatial adaptivity is enabled then absolute and relative spatial toler-ance values, atol,rtol, are needed to control the spatial error.S2D_spatial_tol( &my_integ, S2D_Scalar_TOL, &atol, &rtol ) ;This concludes the core SPRINT2D information that needs to be speci�ed. Now thedi�erent solution technique modules need to be initialised. For example, if the �nitevolume spatial discretisation module is to be used then it needs to know where to �nd thefunctions that specify di�erent parts of the template equation.S2D_FVM_initialise( &my_integ ) ;S2D_FVM_initial_conditions( &my_integ, problem_ic ) ;S2D_FVM_boundary_conditions( &my_integ, problem_bc ) ;S2D_FVM_diffusive_flux( &my_integ, problem_g ) ;S2D_FVM_riemann_solver( &my_integ, problem_rs ) ;



- 42 -The other solution technique modules to be used are then speci�ed. For steady problemthe black box module could be used.S2D_BBOX_initialise( &my_integ, -1.0 ) ;where the value �1:0 implies solve to machine accuracy. For time-dependent problems theintegration and linear algebra methods modules require initialisation.S2D_STHMID_initialise( &my_integ, S2D_STHMID_Theta, 4,S2D_STHMID_FI, S2D_STHMID_NoSwitch,0.55 ) ;S2D_SPWATSIT_initialise( &my_integ, 10.0, 10.0 ) ;The �nal initialisation is for the user's monitor function, declared earlier in the drivingprogram.S2D_monitor( &my_integ, monitor ) ;Once all the required parts have been speci�ed and any other additional information theuser wishes to supply have been processed then the integration can proceed.S2D_integrate( &my_integ ) ;The minimum requirements to drive the numerical software are outlined above.As a further example of a driver programs, the program for a simple time dependent HeatEquation is shown. The PDE is given by the following equation@u@t = @2u@x2 + @2u@y2The initial conditions are set to 0:0 over the domain, the domain itself and boundaryconditions are shown in Figure 3.3. A full description of this problem is given later inChapter 5. The driver program below is a slightly modi�ed version (to conserve space) ofone that was produced by the Visual Problem Speci�cation system described in Chapter5. The aim of this program is to illustrate how the di�erent components described aboveare used in the �nal code generated to solve the problem./* Standard Include Files */#include <stdio.h>#include <stdlib.h>
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Figure 3.3: The Domain for the Heat Equation and Boundary Conditions#include <math.h>#include "S2D.h"/* Include file for FVM */#include "S2D_FVM_finite_volume_discretisation.h"/* Time Dependent Problem Include Files *//* Include file for theta method integrator */#include "S2D_STHMID_theta_temporal_discretisation.h"/* Include file for watsit linear algebra package */#include "S2D_SPWATSIT_sparse_iterative_solver.h"/* Include file for visual routines */#include "vwr_comms.h"/* Monitor Routine */void monitor (int neq,double *u, *udot, time, *err, *ewt,S2D_Res_Status_Type res_status,S2D_Monitor_Type mon_type,S2D_Mon_Status_Type *mon_status,S2D_Intgrtn_Obj_Type *integ_obj,



- 44 -void *space_disc_data,void *users_data){ /* ------------------------------------------- *//* Monitor Routine for user functions, allows *//* user to monitor process insert things here *//* ------------------------------------------- */int interact;/* Viewer routine */if ((mon_type == S2D_Initial_Mon) || (mon_type == S2D_PostAdapt_Mon))vwr_send_mesh(integ_obj);if (mon_type == S2D_Initial_Mon)vwr_send_frame(integ_obj,u,u,time,&interact);elseif (mon_type == S2D_Step_Mon)vwr_send_frame(integ_obj,u,err,time,&interact);/* Return monitor ok status */*mon_status = S2D_Mon_Okay;} /* Monitor routine *//* Initial conditions routine */void parabolic_ic(TRIAD_Triangle *tri,int npde,double x, y, t,int sub_name,void *users_data,double *u){ /* ------------------------------------------- *//* Initial conditions routine to specify the *//* initial conditions of the problem *//* ------------------------------------------- */u[0] = 0.0;} /* Initial conditions *//* Boundary conditions routine */void parabolic_bc(TRIAD_Line *line,



- 45 -int npde,double x, y, time,int edge_name, sub_name,double norm_x, norm_y, *u,void *users_data,S2D_FVM_BC_Type *type,double *ub, *dubdn, *fb){ /* ------------------------------------------- *//* Boundary conditions routine to specify the *//* boundary conditions of the problem *//* ------------------------------------------- */double t = time;if ( ( edge_name >= 221 ) && ( edge_name <= 225 ) ) {type[0] = S2D_FVM_Dirichlet;ub[0] = 0.1E1;} if ( ( edge_name >= 226 ) && ( edge_name <= 227 ) ) {type[0] = S2D_FVM_Neumann;dubdn[0] = 0.0;} if ( ( edge_name >= 228 ) && ( edge_name <= 228 ) ) {type[0] = S2D_FVM_Dirichlet;ub[0] = 0.0;} if ( ( edge_name >= 229 ) && ( edge_name <= 230 ) ) {type[0] = S2D_FVM_Neumann;dubdn[0] = 0.0;}} /* Boundary conditions *//* Diffusive function */void parabolic_g(TRIAD_Line *line,int npde,double x, y, t,int sub_name,double norm_x, norm_y, *u, *dudx, *dudy,void *users_data,double *g_x, *g_y){ /* ------------------------------------------- *//* Diffusive function routine to specify the *//* Diffusive function part of the problem *//* ------------------------------------------- */



- 46 -double ux = dudx[0];double uy = dudy[0];g_x[0] = ux;g_y[0] = uy;} /* Diffusive function *//* Riemann solver */void parabolic_rs(TRIAD_Line *line,int npde,double x, y, t,int sub_name,double norm_x, norm_y, *u_l, *u_r,void *users_data,double *nf){ /* ------------------------------------------- *//* Riemann solver routine to specify the *//* Riemann solver conditions of the problem *//* ------------------------------------------- */double u = ( u_l[0] + u_r[0] ) / 2.0 ;double f_x, f_y;/* ------------------------------------------- *//* A Simple Differencing is used to solve *//* this problem. More complex methods may *//* provide better results *//* ------------------------------------------- */f_x = 0.0;f_y = 0.0;nf[0] = f_x * norm_x + f_y * norm_y;} /* Riemann solver *//* Source Term */void parabolic_src(TRIAD_Triangle *tri,int npde,double x, y, t,



- 47 -int sub_name,double *u,void *users_data,double *src){ /* ------------------------------------------- *//* Source Term routine to specify the *//* Source Term part of the problem *//* ------------------------------------------- */src[0] = 0.0;} /* Source Term *//* Main */main(int argc, char *argv[]){ S2D_Intgrtn_Obj_Type my_integ;int ntrimax = 10000;int ilevel = 4;int n_t_out = 6;int t_start = 0.0;static double t_out[] = {0.25, 0.50, 0.75, 1.00, 1.25, 1.50};double atol = 0.050000;double rtol = 0.050000;double max_x = 0.900000, min_x = 0.100000;double max_y = 0.900000, min_y = 0.100000;/* End of variable declarations *//* Initialise integration object */S2D_initialise(&my_integ);/* Time Dependent *//* Specify a time dependent integration */S2D_time_dependent(&my_integ,1,ntrimax,t_start,n_t_out,t_out);/* set temporal tolerance */S2D_temporal_tol(&my_integ,1.0e-7,1.0e-7);/* Spatial tolerance on */S2D_spatial_tol(&my_integ,S2D_Scalar_TOL,&atol,&rtol);/* Use Finite Volume scheme */S2D_FVM_initialise(&my_integ);S2D_FVM_initial_conditions(&my_integ,parabolic_ic);



- 48 -S2D_FVM_boundary_conditions(&my_integ,parabolic_bc);S2D_FVM_riemann_solver(&my_integ,parabolic_rs);S2D_FVM_diffusive_flux(&my_integ,parabolic_g);S2D_FVM_source_term(&my_integ,parabolic_src);/* Initialise viewing routine */vwr_init( min_x, max_x, min_y, max_y, 1.4);/* Set KSLA mesh information */S2D_ksla_mesh_generator(&my_integ,"parabolic2.dmn",ilevel);/* Use theta method integrator */S2D_STHMID_initialise(&my_integ,S2D_STHMID_Theta, 4,S2D_STHMID_Newton, S2D_STHMID_NoSwitch, 0.55 );/* Use watsit sparse iterative solver */S2D_SPWATSIT_initialise(&my_integ,10.0,10.0);/* monitor routine */S2D_monitor(&my_integ,monitor);/* Integrate routine */S2D_integrate(&my_integ);/* close viewer */vwr_close();}/* End Of Driver */3.6 Output of the Numerical CodeSPRINT2D furnishes the monitor function with a large amount of informationeach time it is called. The user can choose to use or ignore this information as he/she sees�t. Each triangle has a solution value, an error in space value and, for time-dependentproblems, a temporal error value. The code can also provide a large quantity of spatialinformation about the unstructured mesh such as areas of triangles, lengths of edges, unitnormals to edges etc.This information is used by the visualisation package which complements theSPRINT2D solver. This visualisation package is developed in IRIS GL [91] and runs on alocal host whilst the SPRINT2D runs on a computationally intensive platform elsewhere.



- 49 -Solution frames are sent across the network to the visualisation package within whichthe user can interrogate the solution whilst the next frame is being calculated. Thevisualisation package displays the solution values for each triangle in the spatial mesh anderror estimates in space and time. New frames are sent from the monitor function theycan be every time step or at a �xed times requested by the user in t_out[].Simple interaction is possible by return values sent to SPRINT2D from the vi-sualisation package. These values can instruct the SPRINT2D application to save thecurrent solution in either a SPRINT2D proprietary format or as a pyramid �le to be usedwith the IRIS Explorer visualisation system.3.7 SummaryIn this chapter the numerical solution of PDEs is outlined. The general solutionmethod is discussed via the method of lines approach to constructing PDE software. Abrief overview of the types of spatial discretisation schemes available is given. The �nitevolume scheme is then discussed in greater detail. Initially in one dimension and then intwo dimensions on unstructured triangular meshes.The SPRINT2D package is described as an example of a general purpose solverfor a certain class of PDEs. The modular nature of the code is highlighted, a featurecommon to much PDE numerical software. The information required by SPRINT2D iscategorised.The construction of a suitable driving program to invoke SPRINT2D is explained.The layout of the driver program is shown for both steady and time-dependent problems.



- 50 -Chapter 4A Visual Domain Speci�cationTool4.1 IntroductionAn important part of the speci�cation process for solution of two dimensionalconvection{dominated PDEs is the de�nition of the region over which the problem is to besolved. Given the increase in computing power and the speed at which numerical solutionscan be found, this aspect of the speci�cation process is one which is taking an increasingpercentage of the overall analysis time. Once a numerical speci�cation of a geometry ordomain is given, this numerically de�ned region can then be meshed to provide a suitabledomain for the numerical solution process to work with.The generation of a suitable model for the numerical solution process from a geo-metric description is one area where automation is desired, see [76]. With the widespreadavailability of numerical software to solve PDEs, mesh generation methods have changed.The traditional bottom{up mesh generation method, in which the user is required to spec-ify the nodal points, is now seen as outdated. As more and more general purpose solversbecome available they aim to automate many of the aspects of the solution process, eg.error control to a prescribed tolerance. An increase in the use of semi{automatic and fullyautomatic mesh generation packages has accompanied this. Both these methods aim tosimplify the generation process of a numerical model that the solution process uses, tocomplement the increasing use of automation within the solution process.



- 51 -Semi{automatic techniques require the geometry description and mesh param-eters which are used to determine how the geometry is to be split into subregions andmeshed. Subregions are constructed such that they can be meshed easily. One exampleof this type of package is GEOMPACK [51]. A full description of the GEOMPACK sys-tem is given later in Section 4.5. The fully automatic mesh generation system requiresonly the geometry description. The software itself is responsibility for the �nal mesh. Anexample of this is the KSLA mesh generation package [35], again a full description of theinformation required by this package is given in Section 4.5.This chapter looks at the construction of a visual domain speci�cation (VDS) toolfor the easy speci�cation of the initial domain so that it can be meshed, thus reducing thetime spent on that part of the problem speci�cation process. The VDS tool is concernedwith the speci�cation of geometry that de�nes the initial domain, the prototype systemoutlined here does not attempt to provide an interface to a geometric modeller, unlike[76]. The output requirements of the VDS tool are examined here and di�erent inputformats that particular mesh generation software requires are discussed. Two mesh gen-eration packages are discussed: one is in the class of semi{automatic mesh generators, theother is a fully automatic package. The di�erent formats required by each are outlinedand the VDS tool shown to be subsumed by a generic input medium to both. A thirdmesh generation package is also considered and the suitability of the VDS tool to providevalid input is examined. The postprocessing system of the tool undertakes the requiredtasks of producing suitable input for the individual mesh generation software packages.The design objectives behind the tools and the development of these objectivesover time are discussed. The design process of the tool was based on an iterative feedbackloop, additional features being added to the VDS tool from user requests. The basicelements such a tool requires are discussed in greater detail in Section 4.4. These elementscan be summarised as:� A suitable way for the user to specify the geometry.� A way for the user to visualise a coarse mesh de�ned over the domain.� The means for the user to control the tool and the underlying data structure requiredto store the geometry information.



- 52 -The evolution of the tool is then discussed from a minimal initial speci�cation.The changes to the VDS tools are outlined and related to the key areas of the VDS tools.Justi�cation for the changes will be given in the form of user requests or user observationsabout the tool.Finally some evaluation of the tool will be undertaken. This will take the formof user feedback about the VDS tool. The advantages that the tool provides will behighlighted such as the decrease in the time taken in the speci�cation of new domains, theconversion of a set of existing points into a domain and the ability to modify previouslyde�ned domains.4.2 Existing Interfaces to Mesh GeneratorsMany other PDE systems allow the users of the system to graphically de�ne thegeometry over which the problem is to be solved. The Visual PDEQSOL system [86]allows the user to input a region through the Model Visualizer component of its system.The system uses a X{based tool using the OSF/Motif Widget Set to ensure portability.The Model Visualizer part of the system is also concerned with the speci�cation of thePDE and constants involved as well as the initial conditions and boundary conditions forthe domain.The //ELLPACK system [47] also uses geometry speci�cation tools for two andthree dimensional domains. Again these tools are built in X to ensure portability. TheEve system [5] also has an input device driven by the mouse for the creation of, whatit terms, simple 2D domains. The interface is again built in X{Windows and links theboundary conditions to the geometry by means of naming the edges.Finally the RPI system [65] makes use of the Quadtree mesh procedure. TheQuadtree mesh generator interface allows the user to construct complex geometries usingmany di�erent drawing primitives. These include B�ezier curves, splines, quadratic andcubic curves as well as lines, arcs and circles. The user can input points via the keyboardor mouse. The interface also allows the user to specify the model attributes as well as thegeometry and to re�ne the computational mesh near certain points in the geometry.



- 53 -4.3 Aim of the VDS ToolThe initial objective was to design a VDS tool that allows the user to visuallyconstruct a numerical domain speci�cation �le for use with the mesh generation packageused by the numerical software described in Chapter 3. From this it was hoped that thegeneral principles about the construction of suitable tools for PSEs could be determined.As the VDS tool evolved over time this objective changed to that of producing a portablesoftware tool that allowed the user to visually specify, and manipulate, complex geometriesvia line and arc primitives.The VDS tool allows the user to construct, manipulate and modify geometries,thus providing a generic interface for the construction of two dimensional geometries. Theinternal data structure representing the domain can, if required, be supplemented withadditional user de�ned information, to produce suitable input for mesh generation softwarepackages via postprocessing routines attached to the tool.The other aims of the VDS tool are to speed up the process of specifying complexgeometries, thus reducing the overall time spent on the solution of problems. The VDS toolprovides a more natural way to de�ne the geometry through a visual speci�cation systemwhich is easier and more convenient for the users of the numerical software. Meeting theseobjectives should enable the VDS tool to be a successful component of a possible PSEsurrounding the numerical software.The divorce of the visual speci�cation from the postprocessing required to obtaina suitable numerical speci�cation for the mesh generation software allowed the issuesbehind the construction of a geometry speci�cation system to be explored. The result ofthis investigation was a generic tool for the speci�cation of two dimensional regions anda postprocessing system capable of producing information for mesh generation softwarepackages.The VDS tool uses an internal data structure to construct the geometry. Thisinformation is then transferred to an output �le suitable for use with mesh generationsoftware via a postprocessing routine. This intermediate step allowed the separation ofthe visual speci�cation process and the creation of the numerical domain speci�cation �lealthough these two processes are closely linked.Initially the mesh generation software used was the KSLA mesh generator [35].This was due to the use of this mesh generation package within the SPRINT2D project



- 54 -[9]. The KSLA mesh generator is of the class of fully automatic mesh generation packages.If this is the selected mesh generation package the tool can utilise the mesh generationsoftware to display to the user a representation of the resulting mesh produced for thespeci�ed domain.In addition to this another mesh generation software package was also catered for,this was to show that the tool has suitable generic properties. An additional postprocessorwas constructed to allow an output �le suitable for the GEOMPACK mesh generator [51][52]. GEOMPACK is a public domain mesh generator and belongs to the class of semi{automatic mesh generators. GEOMPACK represents a very di�erent way of specifying ageometric model. A brief examination of the mesh requirements of the PLTMG package[4], another semi{automatic mesh generator, has also taken place. It will be shown that, inprinciple, the VDS tool can be used to produce valid input for the PLTMGmesh generationroutines, this strengthening the claim that the VDS tool may act as a speci�cation mediumfor several mesh generation packages given suitable post{processing routines.The input to the �rst two mesh generation packages mentioned takes the form ofa numerical speci�cation �le. This �le based output was chosen to enable the separation ofthe visual speci�cation of the geometry and the production of the numerical speci�cation.Such a system allows both the tool and the mesh generation software to evolve.To strengthen the generic nature of the VDS tool the X Window system [54]and the OSF Motif Widget Set [94] were chosen to build the user interface part to thetool. The data structure manipulation and postprocessing parts are built using the Cprogramming language and overall the VDS tool is some 6000 lines of code. The use ofthese building blocks helps to ensures portability the need for which has already beendiscussed in Chapter 2.The aim is to construct a prototype with the basic elements of the visual spec-i�cation system incorporated in it. The VDS tool can then be re�ned with additionalfeatures being added to the tool from its initial state based on user feedback. This pro-cess will thus involve the users of the VDS tool providing feedback on features that arerequired. The next section will identify the basic elements require for the VDS tool, theroles they ful�ll and the justi�cation for their inclusion into the initial prototype state.
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Drawing Canvas Display Canvas

Control PanelFigure 4.1: The Basic Elements for the Prototype VDS Tool4.4 Construction of the PrototypeTo construct the prototype �rst requires the identi�cation of the basic elementsneeded for the domain speci�cation tool. After identifying these elements they can thenbe combined into a primitive software tool.This initial design can then be used as the starting point of the iterative loopto re�ne and strengthen the VDS tool with user feedback providing justi�cation for thechanges made.The domain speci�cation tool is split into three main visual components, seeFigure 4.1, these are� A Drawing Canvas, an area where the user can specify the geometry using the mouseas an input device.� A Display Canvas, an area that will show the result of calling the KSLA meshgeneration software with the user speci�ed geometry.



- 56 -� A Control Panel, containing a collection of buttons and labels that allow the user tocontrol the tool.As well as the visual components of the tool a suitable internal data structureneeds to be de�ned. All these areas are explained in more detail below. The evolutionof the VDS tool is described in a later section, the changes made from user requests willapply to one of the four areas outlined above.4.4.1 The Drawing CanvasThe drawing canvas is an area within the VDS tool that will accept mouse move-ment and mouse button presses as input. The drawing canvas allows the user to visuallyconstruct a geometry. As input is received the canvas will provide a visual representationof the geometry to the user. As the geometry is created and displayed the internal datastructure will store the information.4.4.2 The Display CanvasThe Display Canvas is an area that will take as input a KSLA input domainspeci�cation �le and call the KSLA mesh generation software to produce a mesh usingthe numerical speci�cation �le. The canvas will then display the resulting meshed domainwith an additional level of re�nement, each triangle in the original mesh represented byfour triangles created from bisecting the edges of the triangles. At the initial prototypestage the KSLA mesh generator was the primary mesh generation software package used.The display canvas is therefore driven by the KSLA mesh generator.4.4.3 The Control PanelThe Control Panel is a collection of buttons that provide the user with the com-mands needed to manipulate the VDS tool. In the prototype VDS tool the followingcommands were considered to be the bare minimum for the use of the VDS tool.� A Quit Button to kill the application� A Mesh Design Button that will prompt for a �lename, produce a numerical speci-�cation �le and pass this to the Display Canvas which will show the resulting mesh.



- 57 -� A Clear Button that will reinitialise the tool and allow a new design to commence.These controls provided a starting point for the VDS tool and many additionalcommand buttons are needed to create an e�ective tool. However, the emphasis is placedupon the users of the VDS tool to request additions and not to impose unwanted features.4.4.4 The Internal Data StructureThe problem faced is to design a data structure that �ts around the requirementsfor �nal output format and allows 
exibility for the input requirements. In order toconstruct this data structure the output required from the VDS tool must be examined.As stated previously, the output of the VDS tool takes the form of a numerical speci�cation�le that describes the user de�ned geometry. The initial mesh generation software usedby the VDS tool is the KSLA mesh generation software. The output format supported isa �le based system of the form shown in Figure 4.2.This description of the geometry is a hierarchical list that will specify the do-main to be meshed. Each level is built up from the lower levels, the DOMAIN andEND OF DOMAIN 
ags indicate the start and end of the speci�cation �le. Other keywords specify the di�erent levels and are de�ned as follows� VERTICES An integer as an unique identi�er (id) for the vertex followed by the(x; y) coordinates of the point.� ZERO D SUBDOMAINS An integer as an unique identi�er (id) for thezero d subdomain followed by the id of an associated vertex.� ONE D SUBDOMAINS An integer as an unique id followed by either an s andthen the id of two zero d subdomains for a straight line or a c then the id of azero d subdomain followed by an id of a vertex then the id of a zero d subdomainfor an arc.� TWO D SUBDOMAINS An integer as an unique identi�er (id) followed by alist of one d subdomains.The resulting mesh produced by the KSLA mesh generator, with an additionallevel of re�nement, is shown on the left hand side of Figure 4.3. The right hand side of



- 58 -DOMAIN mesh�le1VERTICES1 0.5000 4.50002 4.5000 4.50003 4.5000 0.50004 0.5000 0.50005 1.0000 4.00006 2.0000 4.00007 2.0000 3.00008 1.0000 3.00009 3.0000 2.000010 4.0000 2.000011 4.0000 1.000012 3.0000 1.0000ZERO D SUBDOMAINS101 1102 2103 3104 4105 5106 6107 7108 8109 9110 10111 11112 12ONE D SUBDOMAINS201 s 101 102202 s 102 103203 s 103 104204 s 104 101205 s 105 106206 s 106 107207 s 107 108208 s 108 105209 s 109 110210 s 110 111211 s 111 112212 s 112 109TWO D SUBDOMAINS301 201 202 203 204 205 206 207 208 209 210 211 212END OF DOMAIN Figure 4.2: KSLA speci�cation �le
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Figure 4.3: The resulting KSLA mesh (left) and GEOMPACK mesh (right)this �gure showing the mesh produced by the GEOMPACK mesh generator which will bediscussed later.A tree like structure will be used to de�ne the geometry, allowing top down andbottom up manipulation. Various elements in the data structure will represent di�erentlevels in the tree structure. The data structure created follows the same basic structure asthe KSLA output �le format. The vertex element representing the information of each userde�ned point. The one d subdomain element representing the basic drawing primitiveswhich are taken as a straight line or an arc. The two d subdomain element representinggroups of drawing primitives. The zero d subdomain element provides an additional linkbetween the vertex element and the one d subdomain element, this additional level isperhaps unnecessary, but it provides an easier way for the tool to output the numericalspeci�cation �le in the form required by the KSLA mesh generation software. Figure 4.4shows the basic elements of the data structure used in the VDS tool.In this data structure, the vertex element consists of an id variable and the (x; y)coordinates of the point it represents. It has a pointer up to a zero d subdomain andpointers to the next and previous vertex elements to provide a linked list of all verticesused to de�ne the geometry.The zero d subdomain element provides an id variable and another variable forthe region the point belongs to. It again provides pointers to the next and previous
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VertexFigure 4.4: The Basic Elements of the Data Structure for the Toolzero d subdomains to provide a linked list of all zero d subdomain elements. It also hastwo pointers up to one d subdomains this is because the zero d subdomain will be an endfor one line or arc and a start for the next line or arc. The domains speci�ed must beclosed so this fact is true for all zero d subdomains.The one d subdomains have variables for the id and the name, s or c depend-ing on which of the drawing primitives line or arc the one d subdomains represents. Italso has links to the next and previous one d subdomains. The link upwards is to atwo d subdomain element. The links down are to zero d subdomain with �rst and lastand to a vertex with other. The other pointer is used with arcs to specify the additionalpoint needed, this is not needed with the line speci�cation.The two d subdomains consist of an id, pointers to the next and previoustwo d subdomain the links down �rst and list point to one d subdomains.Whilst the names of the elements in the data structure match the names in theKSLA numerical speci�cation �le the data structure used seems 
exible enough to allowdevelopment of the interface tool. The ability of the data structure to store geometries ina tree like structure, where more complex elements, are constructed from simpler elementsis one which has proved successful as it allows top-down and bottom-up manipulation ofthe information stored in the data structure.For example, Figure 4.5 shows how a vertex can be deleted from the data struc-ture. Once a vertex has been tagged for deletion new links can be generated and the datastructure updated to be as that shown in the right hand side of the diagram. A similar
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New StructureFigure 4.5: The Deletion of an Vertex from the Geometrysituation occurs, but in reverse, if a new vertex is to be created. Care must be taken ifthe data structure is modi�ed near the start or end of the structure or at the start of anew region, special links to the �rst elements must be preserved.The nature of the data structure was useful when the output of the geometryin a form suitable for the GEOMPACK mesh generation software was required. TheGEOMPACK package input format is signi�cantly di�erent from the KSLA input format.The conversion between the internal data structure of the VDS tool and the numericalspeci�cation �les that the mesh generation software packages uses is described next.4.5 Output of the ToolThe VDS tool provides output in the form of a numerical speci�cation �le ofthe user-de�ned geometry. The numerical speci�cation �le produced by the VDS tool issuitable as input for the KSLA mesh generator [35], the resulting mesh from this is passed



- 62 -to the display canvas in the VDS tool. The VDS tool also provides the ability to providea numerical speci�cation �le suitable for the GEOMPACK system and can be extendedto allow suitable speci�cation �les to be produced for other mesh generation packages.The structure of the KSLA output �le is described in the previous section. Thissection gives information about the GEOMPACK input �le format and the conversion fromthe internal data structure of the tool for both numerical speci�cation �les. Firstly theoutput of the information suitable for the KSLA input �le is described. The GEOMPACKinput speci�cation is then outlined and the conversion from the internal representation tothis input speci�cation �le is outlined.4.5.1 The KSLA input �le formatAs stated before, the internal data structure is based heavily upon the KSLAmesh generator input speci�cation �le. Therefore the transfer of information from theinternal data structure to the numerical domain speci�cation is straightforward. Thespeci�cation �le has the format given by� The keyword DOMAIN followed by the name of the geometry, as supplied by theuser, is output.� The keyword VERTICES followed by the linked list of the vertex elements are outputwith the vertex identi�er (id) followed by the x and y coordinates of the point.� The list of zero d subdomain elements follow the ZERO D SUBDOMAIN keyword,the id of the zero d subdomain followed by the id of the vertex element attached toit.� The list of one d subdomain elements follow the ONE D SUBDOMAIN keyword,the id of the element is output followed by the name of the element, an s for astraight line or a c for an arc. A straight line is represented by the id of the twozero d subdomain elements pointed to by �rst and last. An arc is represented bythe id of the zero d subdomain pointed to by �rst followed by the id of their vertexelement pointed to by other and then the id of the zero d subdomain pointed to bylast.� The list of two d subdomain elements follow the TWO D SUBDOMAIN keyword.The id of the two d subdomain element followed by a list of the id's of the



- 63 -mesh�le10.0 30.0 20.0 0.25 0.5 10 2001 12 3 04440.500000 0.5000004.500000 0.5000004.500000 4.5000000.500000 4.5000001.000000 3.0000002.000000 3.0000002.000000 4.0000001.000000 4.0000003.000000 1.0000004.000000 1.0000004.000000 2.0000003.000000 2.000000Figure 4.6: GEOMPACK speci�cation �leone d subdomain elements that point to the same two d subdomain element.� The keyword END OF DOMAIN denotes the end of the speci�cation �le.The resulting mesh can be seen in Figure 4.3. As well as the �le structureexplained above the KSLA input speci�cation �le allows optional additional keywords inthe input �le. These keywords are NVMAX, NZMAX, NOMAX and NTMAX these allowthe user to specify a maximum number of vertices, zero d subdomains, one d subdomainsand triangles in the numerical speci�cation of the domain.4.5.2 The GEOMPACK input �le formatThe output of the internal data structure in a form that is acceptable to the GE-OMPACK mesh generation package is now discussed. Figure 4.6 shows the GEOMPACKnumerical speci�cation �le equivalent to the KSLA �le shown previously in Figure 4.2.The layout and structure of the �le is very di�erent from that of the KSLA input �le, itis much more compact, for example.The resulting mesh from this numerical speci�cation �le using the GEOMPACKmesh generator can be seen in the right hand side of Figure 4.3. The major di�erencesbetween the KSLA input speci�cations and the GEOMPACK speci�cation highlight the



- 64 -ability of the data structure to extract the relevant information from user de�ned geometry.The additional information required also illustrates the di�erence between semi{automaticand fully automatic mesh generation packages. Apart from the additional informationrequired by GEOMPACK the �rst major di�erence is that the GEOMPACK package onlyconsiders geometries speci�ed by a list of points. This fact forces GEOMPACK to onlyconsider geometries speci�ed by straight lines. This is very di�erent from the hierarchicalapproach taken by the KSLA mesh generator. A further requirement is that the pointsmust be speci�ed in anticlockwise order. The KSLA mesh generation package makesno such assumptions about the information that it receives. These requirements createadditional work that needs to be expended to ensure that the geometry is given in therequired form.GEOMPACK constructs the mesh by splitting the input geometry into simplerpolygons and then meshing the resulting polygons. As a semi{automatic mesh generatorGEOMPACK requires additional information at the beginning of the speci�cation �le toaccomplish this. This information provides the user with the ability to control variousaspects of the �nal mesh such as desired number of triangles, mesh smoothness and theway in which the geometry is decomposed into simpler polygons. Taking the speci�cation�le shown in Figure 4.6 as an example the various parameters needed are explained below.� mesh�le1 This is the name of the domain.� 0.0 This parameter, TOLIN, is the user supplied relative tolerance. It is used withthe machine tolerance to determine the tolerance factors used in the construction ofthe mesh.� 30.0 This parameter, ANGSPC, is the angle in degrees used to control the spacingof new vertices that may be created as the geometry is decomposed into simplerpolygons.� 20.0 This parameter, ANGTOL, is the user supplied angle tolerance; it provides alower bounds on the angles permitted when decomposing the geometry.� 0.25 This parameter, KAPPA, is the mesh smoothness parameter, it must lie inthe range of [0::1]. The higher this factor is the smoother the mesh. Mesh smooth-ness controls the rate of change in the size and properties of triangles between thepolygons the geometry has been split into.



- 65 -� 0.5 This parameter, DMIN, controls the variation of the mesh distribution functionin each polygon. The mesh distribution function depends upon the lengths of theedges of the triangles in the polygon and the desired number of triangles in eachpolygon. The variation of the function and therefore the variation of the distributionof the mesh is controlled by this parameter.� 10 This parameter, NMIN, is a parameter to ensure that each polygon has a suf-�ciently large number of triangles. It is the minimum number of triangles thatGEOMPACK will try to place in each polygon.� 200 This parameter, NTRID, allows the user to specify the desired number of tri-angles in the �nal mesh.� 1 This parameter, CASE, determines the remainder of the input �le, if case is set to1 then the �le contains the description of a simple region, if case is set to 2 then acomplex region is considered. A complex region requires a more complicated descrip-tion of the geometry with the input �le containing more information. GEOMPACK,rather strangely, de�nes the geometry in terms of curves, a curve consisting of aset of points. The additional information takes the form of specifying the type andlocation of each curve and also a list of the vertices used to de�ne the curves. Theadditional information required for a complex case, if this value is set to 2, will alsobe outlined below.� 12 This parameter, NVC, gives the total number of vertices used in the de�nitionof the geometry.� 3 This parameter, NCUR, gives the number of boundary curves used to de�ne thegeometry.� 0 This parameter, MSGLVL, is used to pass error messages during the mesh gener-ation process.� 4 4 4 These three values are the number of vertices in each of the three boundarycurves. The three comes from the NCUR parameter given previously. These valuesare read into an array, NVBC.



- 66 -� If a complex case is chosen the next item in the input �le will be the array containingNCUR elements describing the type and location of the curves. This value speci�esif the curve is a boundary curve, a hole inside a subregion or a hole interface insidea subregion. This information is stored in the array ICUR.� 0.50000 0.50000 ... This part of the input �le reads in the x and y coordinates incounter clockwise order. This is stored in the array VCL.� If a complex case is chosen, after the vertex speci�cation, the boundary curves arede�ned in terms of the indices of the array of the vertex array VCL. This informationis stored in another array, IVRT.In order to output the data stored internally in the VDS tool several issues hadto be addressed. The �rst was how to deal with the geometries that the user had designedusing arc drawing primitives. The decision here was to either disallow the use of arcs if theGEOMPACK input �le format was required or to approximate the arc by a series of pointsalong the arc. The second option was chosen because it allowed the user more 
exibilityin the construction of the geometries. The number of points used to approximate the arc,could if required, be a user speci�ed number. The other main problem was to ensure thatthe points were output in a counter clockwise order, as needed by GEOMPACK.The linked list of vertex elements in the internal data structure provided the bulkof the information needed here. This information was obtained via the one d subdomainelements, thus allowing arcs to be treated in a di�erent way from straight lines.The two meshes produced by the di�erent mesh generation packages show manydi�erences, especially since the KSLA mesh is shown with an additional level of re�nement.This di�erence and the apparent lack of control over the various aspects of the �nal KSLAmesh compared to the GEOMPACK mesh seem to occur from the principles behind thedesign of the mesh generation software. The KSLA mesh generator appears to be builtto provide a basic structure that can be re�ned and adapted by the numerical packagesusing the mesh. The GEOMPACK work is the result of looking at the triangulation ofpolygons for the �nite element method where adaptive techniques may not be employed.The added control that GEOMPACK provides may not always be an advantage the moreinformation that is needed then the greater the chance of making a mistake. Sensibledefaults may be needed for the GEOMPACK system to help ensure successful results.
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Boundary Vertices

Arc MidpointsFigure 4.7: Geometry �le for Texas4.5.3 The PLTMG input �le formatThe PLTMG system [4], is a software package for solving elliptic PDEs, using aPiecewise Linear Triangle Multi-Grid method, hence the name PLTMG. It was developedto allow multi-grid methods and adaptive local mesh re�nement algorithms to be appliedto elliptic PDEs. The PLTMG domain is two dimensional and is constructed from a setof simple closed curves that do not intersect. The user is required to either input a crudetriangulation of the domain or to de�ne a skeleton of the domain which routines withinPLTMG can take and produce a mesh. The regions de�ning the skeleton are a combinationof either straight lines or arcs. PLTMG also requires that these are de�ned in a counterclockwise order, as in GEOMPACK.The user de�nes this region by constructing a set of arrays to store the di�erentinformation, each region is de�ned by a list of boundary curves, each boundary curve isde�ned by a start vertex and an end vertex for a straight line, each arc is de�ned by a start



- 68 -vertex an end vertex and an additional third point. The user is also required to specifycertain mesh parameters to control the attributes of the �nal mesh. This level of userinput places the mesh generation routine is the class of semi{automatic mesh generators.As an example, consider the domain in Figure 4.7, The mesh generation routinein PLTMG is called by the following line of FORTRAN code.TRIGEN( VX, VY, XM, XY, ITNODE, IBNDRY, JB, GRADE, HMAX, IP, W);The boundary vertices are stored in the arrays VX and VY, the midpoints are stored inXM and YM. The IBNDRY array contains, for each boundary curve� The position in the VX, VY array of the start vertex.� The position in the VX, VY array of the end vertex.� The position in the XM, YM array of the middle point if the curve is an arc or 0otherwise.� The boundary condition, either -1, 0 or 1 for Dirichlet condition, an internal edgeor natural condition respectively.� A label to identify which region the curve belongs to.The JB array stores, in counter clockwise order, the indices of the IBNDRY array.The ITNODE array stores, for each region, the start curve in the JB array, the end curvein the JB array, some symmetry information and a label to identify the region. GRADEand HMAX de�ne two mesh control parameters to control the relative sizes of the trianglesin the mesh and the largest edge length. The IP array is used to pass information such asthe number of vertices, curved edges and the lengths of each array.It would therefore appear that the way PLTMG represents the geometry wouldclosely �t in with the VDS tool. The use of lines and arcs match, the counter clockwiseordering is already required by GEOMPACK, the additional information required couldbe obtained in a similar way to the GEOMPACK mesh control parameters. However,PLTMG has no concept of holes within domains, PLTMG represents such domains by twosubregions with cuts in the domain, see Figure 4.8, this may cause problems for anythingother than simple domains.However the relative merits of each mesh generation package or the way in whichthe domains are speci�ed is not discussed further here. The emphasis here is placed on
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Figure 4.8: Hole Representation by PLTMGthe ability of the visual domain speci�cation tool to produce input �les for two very dif-ferent mesh generation packages, and, in principle, be extended to other mesh generators,PLTMG being one example.4.6 Evolution of the toolAs stated earlier the aim of the VDS tool is to construct a prototype and thento use an interactive loop involving the user to enhance the VDS tool. The followingsection gives details of the re�nements, additions and changes made to the VDS tool fromthe initial state to a state that perhaps represents a powerful tool for visually specifyingcomplex geometries quickly and easily. However, the VDS tool by no means is completeand the wish list of features the user would like to see still has a few outstanding items.As a starting point the initial state is described, then the list of changes prompted by userfeedback are described.4.6.1 Initial speci�cationThe VDS tool, in its initial state, had �ve areas of user interest. These are theDrawing Canvas, the Display Canvas, The Quit Button, the Mesh Design Button and theClear Button. The functionality of these is described below.



- 70 -� The Drawing Canvas, this area allows the user to specify the geometry, the initialstate included one drawing primitive, the line. The mouse is used to move the cursoraround this canvas, pressing di�erent mouse buttons will have di�erent actions. Theaction of specifying a geometry is referred to here as a drawing session.{ The Left Mouse Button will create a new point at the current cursor position.After this action mouse movement will rubber band a line from the currentcursor position to the last user speci�ed point in the drawing canvas.{ The Middle Mouse Button will join the last user speci�ed point and the �rstpoint in a region. For example, pressing the middle mouse button after specify-ing the fourth corner of a square will complete the square. Pressing the MiddleMouse button will not �nish the drawing session but allow the user to specifythe �rst point of another region.{ The Right Mouse Button will perform the same action as the Middle MouseButton but will terminate the drawing session. This allows the geometry to beoutput to a �le and passed to the Display canvas via the Mesh Design Button.� The Display Canvas, this area displays the resulting mesh when a numerical domainspeci�cation �le is passed to the KSLA mesh generation software.� The Quit Button, this kills the application.� The Clear Button, this reinitialises the tool and allows the user to commence anotherdrawing session.� The Mesh Design Button, this allows the user to specify the name of the �le inwhich to output the numerical speci�cation of the geometry as required by the meshgeneration software. The button also passes this �le to the Display Canvas.The initial design was built using the Athena widget set [69], the XToolkit andXlib routines. This provided the portability and standardisation required, the conversionof this to utilise the OSF/Motif Widget Set [94] was one of the �rst changes requested bythe users of the VDS tool.



- 71 -4.6.2 Changes To The ToolThe following section gives a description of the changes made to the visual domainspeci�cation tool. A full listing of all the changes is given in Appendix B. The changesmade were largely driven by user feedback on the VDS tool, however in some situations userrequested changes led to other changes in the VDS tool. As an example the initial drawingcanvas had a coordinate system of [0::1; 0::1] and a scale button provided a simple meansto translate this to say a [0::5; 0::5] region. The next stage in the development processallowed the user to specify the top right and bottom left coordinate pairs of the drawingarea, therefore the scale factor became simple to calculate and the scale button becameunnecessary.Many of the changes made to the visual speci�cation tool appear to be part ofa longer path moving from the initial state to the current state of the VDS tool. Othersappear to be additions to the functionality of the tool as the user requests. To illustratethis a list of changes are described and the way in which these changes are connected.The example given above shows a good example of this. The initial geometry designwas carried out on a [0::1; 0::1] region, the inclusion of a scale button allowed this regionto be expanded uniformly. The Co{ords button allowed even greater control over thecoordinates of the drawing canvas superseding the scale button.A similar stream of events started from the inclusion of a grid on the drawingcanvas. This aimed to provide the user with guidelines to help in the design process. Theincrease in the ability to control the spatial coordinates of the drawing canvas with theCo{ords button created the problem with the spacing of the grid lines. One solution tothis was to provide a �xed grid over the drawing canvas. This grid could then be controlledvia a grid button. This button could be set to one of three possible states o�, coarse and�ne. The o� state turned the grid o�, the coarse state produced a sparse grid over thedrawing canvas and the �ne state producing a �ner grid. The addition of two labels inthe control panel informed the user of the actual position of the mouse pointer in thespatial coordinates of the drawing canvas. Given this condition the grid lines representedguide lines only and had no signi�cant positioning in relation to the spatial coordinatesystem chosen by the user. However, this system did not appear to provide enough helpfor designing geometries, the users expressed a wish that the grid line spacing in the xand y direction could be speci�ed. This facility was added, expanding the Co{ords box



- 72 -to include a x and y increment for the grid. The facility changed the status of the gridbutton, the button now could have one of two states these being on and o�. A defaultvalue for the grid spacing was needed next, this was taken such that the grid mimickedthe previous �ne state. The result of this action increased the signi�cance of the gridlines with respect to the spatial properties of the drawing window. This allowed for twoadditional buttons to be added that could control the design of the geometry. The �rstof these buttons, the snap to grid button, this button could be set to on or o�, when setto on the creation of new points will automatically be placed at the point of the nearestintersection of the grid lines. The second, snap all to grid button, allowed the user to, atany time in the design process, move all the points to the nearest grid lines intersectionpoint. This allowed the user to rede�ne the grid lines and then snap the points to the newgrid. Other changes made to the VDS tool seem not to follow a longer path throughthe evolution of the tool as those described above. These changes provided additionalfunctionality to the VDS tool. These changes are described below, starting with thechanges to the drawing canvas, the �rst step was to allow the user the ability to editthe spatial position of the points used to de�ne a geometry after the drawing session wascomplete. This move from the drawing session to an editing session was controlled by thecompletion of the geometry. The signal of a completed geometry is controlled via the rightmouse button. Pressing the right mouse button closed the geometry and tidied up therepresentation of the geometry in the internal data structure. The editing session allowedthe user to click the left mouse button near a point and the x and y coordinates of thatpoint would be displayed. The user could then change these values and that would changethe position of the point in the drawing canvas. This allowed the user to initially producea rough outline of the geometry and to then re�ne the geometry later. The second wasto implement the ability of the user to specify arcs in the design process. This requiredthe inclusion of a button in the control panel that could control the drawing primitive inuse. This button allows the user to switch between using lines and arcs. The additionof a graphical indication at the location of the user de�ned points was also included, thisallowed for easier selection of the point in Edit mode and also for the user to judge betterthe middle point when using the arc drawing primitive. The inclusion of a marker toindicate the location of the user de�ned points provided further help in this respect.The remaining changes were made to the control panel. The �rst was the addition



- 73 -of a refresh button that forces the tool to redisplay the contents of the drawing canvasand the display canvas. This was done early in the iterative process. Many X applicationsappear to have a similar button. The next change was to provide the user with someonline help, the help button provided a brief explanation about how to create a geometry.The help system was upgraded later to provide a more comprehensive and up-to-date help.Also an additional quick help button was added. The aim of this button was to providedthe user with a reminder about the action of various mouse button presses during thedrawing and editing sessions. This quick help also appears on start up of the tool. Thiswas prompted by user feedback. The users experienced di�culty in remembering whichbutton closed the domain and �nished the drawing session if they had not used the toolfor some time. On a similar principle several warning messages were added that providedthe user with information if no action could be taken. For example, the VDS tool willonly allow the user to produce a mesh �le if the domain has been closed with the rightmouse button. Pressing this button at any other time would result in a message sayingthis. The ability to load existing mesh �les was expressed by users. This ability tosave a rough outline and re�ne later or to modify existing mesh �les was added to theVDS tool. The user, when entering a �le name to be loaded, had the ability to specifythe spatial coordinate bounds or alternatively the VDS tool will attempt to work outsuitable values. The user speci�ed coordinates can be ignored if the data in the �le liesoutside this range. With the addition of this facility a wish was expressed by users thatthe drawing canvas and the display canvas be proportional to the coordinate system used.This was implemented but provided a problem concerning resizing the windows in thetool. Previously the user had the ability to resize the window to any size. In order topreserve the aspect ratio of the coordinates this control had to be changed. The solutionto this problem was to include two additional buttons in the control panel. These buttonscould be used to increase or decrease the size of the drawing canvas and display canvas.A further feature requested by users was to read in a set of points from a �le. This�le would contain the x and y coordinate pairs used to specify all or part of a geometry.This was required because other packages may supply information in this form. Thisprovided a greater 
exibility in the design process. The tool will automatically change thecoordinates of the drawing window if the input data required it. Also the snap to gridlines facility would automatically be turned o�. Warning messages are displayed to the



- 74 -user if the tool changed the coordinate system when loading a �le or reading points froma �le. The inclusion of a Show Points button allowed the user to switch o� the markerindicating the user de�ned points.Another feature requested was the ability to add a new point to the geometry orto delete a rogue point. This has already been discussed in Section 4.4.4 showing how theinternal representation of the geometry can be manipulated to add or delete new vertices.The decision here was which vertices should the user be allowed to delete or where couldnew points be added. The choice with deleting a point was to allow any vertex which wasthe end point of one line and the start point of another to be removed. To create a newvertex, the new point could be created along a straight line, the new point created halfway along the edge. The user could then edit the position of the point. Both operationare allowed in Edit mode only and are triggered by the pressing the middle mouse buttonand right mouse button respectively.The VDS tool allows the user to quickly de�ne a geometry which is convertedinto a numerical mesh by whichever mesh generation package is used. The numericalsolution process then requires various boundary conditions which are applied to each edge.Although the VDS tool provides no mechanism to specify these boundary conditions at thedesign stage (the Visual Problem Speci�cation Systems described in Chapter 5 performsthis task) the user may still want the VDS tool to display the unique identi�ers assignedto each edge. The ability of the VDS tool to display this information is provided via theShow Information button.The �nal addition considered here provided the user with some control over whichpart of the geometry is meshed. This is combined with an explanation of the resultingmesh �le that should provide enough information for the user to edit the �le if the resultingmesh does not satisfy the users requirements. This is only currently available for use withthe KSLA mesh �le format, the mesh status 
ag is set to Simple for the GEOMPACKformat. The mesh status button is part of the mesh design popup. The state of the meshstatus button will change the numerical speci�cation �le and hence change the resultingmesh. The mesh status button can be set to one of the following Mesh Status : Simple,Mesh Status : Mesh Holes or Mesh Status : Mesh Interior. To explain how this willchange the mesh two examples are given below. The �rst is the example outlined earlierwhich produced the meshes in Figure 4.3, a large outer square with two interior squares,the second is a large outer square with a smaller square inside and a third smaller square
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Figure 4.9: The Geometry for Example 1 and Example 2 with Edge Namesinside both. These two geometries can be seen in Figure 4.9.The area of interest is the TWO D SUBDOMAINS section of the numericalspeci�cation �le. In the example �le given in Figure 4.2 the Mesh Status was set toSimple. To illustrate the di�erent states of the Mesh Status the right hand of Figure 4.10shown the same domain with the Mesh Status set to Mesh Holes. The changes made tothe numerical speci�cation �le are that the TWO D SUBDOMAINS section wasTWO D SUBDOMAINS301 201 202 203 204 205 206 207 208 209 210 211 212with the Mesh Status set to Mesh Holes this now becomesTWO D SUBDOMAINS301 201 202 203 204 205 206 207 208 209 210 211 212321 205 206 207 208322 209 210 211 212The two additional lines will cause the mesh generator to mesh the regions speci-�ed by the list of one d subdomains given. This means that the two d subdomain 321 willmesh the upper left hole and the two d subdomain 322 will mesh the bottom right hole.
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Figure 4.10: Mesh Status : Simple and Mesh Status : Mesh Holes for example 1The information given in the two d subdomain line can be traced back using the numer-ical speci�cation �le. In this example two d subdomain 321 has four one d subdomains,205, 206, 207 and 208. Going back further the one d subdomain 205 is a straight linefrom zero d subdomain 105 (a pointer to vertex number 5) and zero d subdomain 106 (apointer to vertex number 6).The second example shows the use of the Mesh Status : Mesh Interior, thegeometry is shown in the right hand picture of Figure 4.9. The di�erence between theMesh Status : Simple and setting Mesh Status : Mesh Interior is shown in Figure 4.11.For the Mesh Status : Simple the TWO D SUBDOMAINS section will beTWO D SUBDOMAINS301 201 202 203 204 205 206 207 208 209 210 211 212For the Mesh Status : Mesh Interior this will becomeTWO D SUBDOMAINS301 201 202 203 204 205 206 207 208 209 210 211 212321 205 206 207 208 209 210 211 212It is hoped that the three possible Mesh Status types will cover the majorityof the users needs. However, it is envisaged that in some circumstances the user may
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Figure 4.11: Mesh Status : Simple and Mesh Status : Mesh Interior for example 2construct a geometry with holes and interior regions. It is advised in this case to set theMesh Status to Simple and to change the numerical speci�cation �le. The VDS tool canbe used to view the mesh �le via the load �le button.4.6.3 Current Status of the ToolThe current status of the VDS tool is described in the users guide, which is alsothe on line help. The guide, in a slightly modi�ed form, is shown in appendix (A), theinformation about the mesh status button and editing the mesh �le is not repeated.The initial state of the VDS tool is shown in Figure 4.12. This shows the QuickHelp facility that appears on startup. As previously mentioned this help gives the user areminder of the actions of each button press. The �gure also shows the default state ofthe drawing primitive as well as the default settings for the grid and snap facilities.The ability to edit points used to specify the geometry is shown in Figure 4.13.This �gure also shows the mesh design popup allowing the user to specify a �lename and toselect the mesh status state. Figure 4.14 shows the GEOMPACK parameter speci�cationpopup. All popup windows have a cancel button that allows the user to remove the popupand to continue with no action taken. Finally the ability to alter the spatial coordinatesof the drawing window and the spacing of the grid lines is shown in Figure 4.15. Thisshow the Co{ords box popup which allows the user to specify the bottom left and top
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Figure 4.12: The Visual Interface Tool on Startup with the Quick Help Window
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Figure 4.13: The Mesh Domain and Edit Point Facilities of the Tool
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Figure 4.14: The GEOMPACK Parameter Speci�cation Popup



- 81 -right coordinate pairs as well as the x and y increment of the grid lines.As stated earlier the tool was constructed with the help of a user feedback loop.Given this situation there is still a users wish list, this list will be given at the end of thenext section. This next section also provides some user evaluation of the VDS tool.4.7 Evaluation of the ToolWriting a domain description �le can be troublesome for anything other thanthe simplest cases. The creation of this numerical representation can be one of the mostdaunting tasks that face a new user and usually one of the �rst. This is the view of one ofthe experienced users of the numerical software, SPRINT2D. The VDS tools is capable ofproducing a numerical domain description �le for SPRINT2D and this section will providesome user evaluation about the VDS tool.As mentioned earlier production of a domain description �le, or domain �le, thatcan be used by numerical software may represent a large percentage of the overall problemspeci�cation process. Current techniques, as described by users, involve the drawing ofthe domain on graph paper then the conversion from this paper representation into the�le format required by the mesh generation package. This is either done all at once andoften requires several attempts before the software correctly re
ects the paper diagram orthis can be undertaken incrementally where the domain �le is built up in stages addingmore detail when the user is happy with the previous stage. A further alternative to thiswould be to extract the geometry from another computer package, however this still hasto be converted into the correct �le format. The simpli�cation of the process is one of theprimary aims of the VDS tool.The initial drawing stage, or sketching stage, was seen by the users as an easyand natural way in which to work. It re
ected the way in which the user would draw thedomain on graph paper. It was seen as superior to a method where the user would haveto enter all the points �rst and then specify the connectivity between them. The editstage was at �rst seen as a bit awkward, the ability to pick up a point with the mouseand then move it was seen as a more natural way to edit the �le. However, often the userwas working with a technical design where the vertices would have to be placed at speci�cpositions, often the positions would be such that they may be unobtainable, or di�cultto place, given the resolution of the workstation screen. The snap to grid facilities were
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Figure 4.15: The Co{ords box of the Visual Interface Tool



- 83 -seen as a useful way in which the edit stage became unnecessary for simple domains.The ability to save a design and then reload it was seen as useful along withthe ability to load existing domain �les. These �les could then be modi�ed by the editstage. Another useful feature was the ability of the tool to read a list of coordinate pairs.This allowed the user to read in points from another package. Figures 4.16 and 4.17 showthis. Figure 4.16 shows a domain description �le constructed from a �le containing 344coordinate pairs, this domain represents the River Axe 
owing into a bay at Weston-Super-Mare. Figure 4.17 shows another domain constructed from 175 coordinate pairs,this represents a proposed canoe slalom course. The hand conversion of these �les wouldhave taken considerably longer than the seconds required by the VDS tool to do theconversion.The VDS tool also allowed the user to view the names given to the boundaryedges by the KSLA mesh generation software. This was seen as an essential part of theVDS tool by the users. The quick help was also found to be a useful aid to jog the memoryabout how to use the tool. The online help was seen as well laid out and the short tutorialhelpful. The user evaluation also consisted of a wish list of features that they would likethe VDS tool to have. It was noted that with any software tool once the user had seenan example of what was possible they are keen to suggest extensions. These extensionsincluded the ability to snap to a function of the grid lines, for example having the grid linesevery 1.0 but snap to every 0.2, the ability to annotate the grid lines was also mentionedas a possible extension to compliment the x and y position indicators at the bottom ofthe tool. Another wish was to be allowed to change the current coordinate scale but keepthe same spatial positions of the points already de�ned. At the current time the tool willrespect the relative position of the points.Overall the VDS tool was seen as a useful addition to the problem speci�cationprocess, one which automates the complex and monotonous task of creating a domaindescription �le by hand. It successfully reduces the time spent on this process and providesan easier method for one of most daunting tasks facing new users of the software.
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Figure 4.16: Example Geometry 1 and Mesh
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Figure 4.17: Example Geometry 2 and Mesh



- 86 -4.8 SummaryThe speci�cation of a domain or geometry is an important part of the speci�cationprocess for two dimensional PDEs. The use of mesh generation software allows the userto solve problems over complex geometries. The task of specifying these regions is onewhich is usually done manually and is therefore time consuming and prone to error. Inthis chapter the construction of a visual tool to aid the user in the de�nition of theseregions is discussed. The aims of the tool along with the properties it should have suchthat it may be considered part of a PSE surrounding general purpose software for thesolution of two dimensional PDEs are discussed. The ability to reduce the time taken tospecify these regions and to provide a more natural and convenient way for the user tode�ne the geometry are essential to achieving this goal. The divorce of the visual frontend from the postprocessing system allows the tool to be independent of the numericalsoftware used. The postprocessing system deals with the transformation of data. Theinternal representation of the geometry is converted to a form suitable for input to themesh generation software under consideration.The visual interface and postprocessing systems are constructed using buildingtools that are considered as standards and will ensure the portability of the tool, anotherrequirement of a PSE. The design process of the tool is discussed and the use of aniterative loop involving the users, this design process took the form of the constructionof a prototype with minimal functionality followed by the evolution of this system into amore comprehensive tool. The changes made to the tool are discussed and the reasonsbehind the changes are given. This process produced a general purpose software tool forthe construction of two dimensional geometries.The visual speci�cation system can be considered as a generic front end and thepostprocessing systems can be constructed to generate suitable input �les for the meshgeneration packages. To show this two di�erent mesh generation packages are consideredand their input formats are discussed and shown to be very di�erent. The relative meritsof the mesh generation packages are not discussed but the process of producing the inputrequirements for these packages as well as the ability of the tool to act as a speci�cationsystem for both.



- 87 -Chapter 5A Visual Problem Speci�cationSystem5.1 IntroductionThis chapter is concerned with the construction of a visual problem speci�cationsystem which combines a set of visual interfaces allowing the user to specify the informa-tion needed to solve two dimensional convection-dominated PDEs. These interfaces arecombined with a postprocessing system that will convert this information to a suitabledriver program for numerical software. A family of interfaces is used to allow the di�erentparts of the problem to be de�ned independently, thus allowing the user easily to alterone without a�ecting the other.This chapter will look at some existing visual speci�cation interfaces in the areaof two dimensional PDEs. The information obtained from looking at these interfaces,combined with the solution process used for PDEs in two space dimensions, will allow ageneric description of the information needed for the solution of the these PDE problemsto be devised.This framework, for the class of problems considered, is outlined and the logicalgrouping of the information within it is discussed. This devised framework provides astarting point for the construction of the interfaces. The aims of the interfaces are exam-ined to ensure that they meet the requirements of a PSE surrounding the PDE software.The layout of each interface is described and its implementation outlined. The evolution of



- 88 -each is then discussed along with the output of each module. The postprocessing systemfor combining this information to produce a suitable driver program for the numericalcode is then examined.Three case studies are then considered, two time dependent problems and asteady state problem. Each of the three problems has di�erent characteristics and sodemonstrates how the information supplied is utilised to produce suitable driver programsfor each. Finally some user evaluation of the system is presented.5.2 Other Visual Speci�cation Tools For PSEsMany other PDE systems or PSEs surrounding numerical PDE solvers make useof visual interfaces to allow the easy speci�cation of the information needed to solve theproblem. The interfaces used by such systems take many di�erent forms and often focuson one particular part of the information that needs to be speci�ed. Many concentrate onthe speci�cation of the governing equations combined with initial and boundary conditionsof the problem. The hope is that certain properties may be deduced from this information.Other systems provide a more comprehensive interface which also looks at the solutionprocess and the algorithm used.The combination of equation speci�cation and symbolic computer algebra toolshas been discussed previously in Chapter 2. A good example of this is the equationinterface pdefront of the RPI system [65]. The pdefront system utilises Maple [22] to deduceproperties of the equations speci�ed. Unlike many other equation interfaces pdefrontrequires the user to enter the full equation in Maple like syntax. The RPI system solvesproblems in a general form, which is the case for most numerical codes. The system allowsthe user to specify the independent and dependent variables used or default values maybe used. The properties of the system may then be determined. The initial conditions,and the boundary conditions on each of the boundary segment are speci�ed in a similarway. The system also generates a tro�, [66] formatted speci�cation of the data providedand uses this to display the information, in mathematical notation, to the user. Finallythe system generates FORTRAN or C procedures to calculate the functions and matricescontained within the solution. The pdefront system has no geometric modelling facility sothe domain is limited to a rectangle. Visualisation capabilities are provided via MAPLE orNCAR graphic facilities. The pdefront system is constructed using the X Window system



- 89 -[54] for portability.The Eve system [5] is built around a knowledge based system (KBS) containinginformation about the algorithmic methods available for the numerical solution of PDEs.The system accepts as input a description of the PDEs. There is no prede�ned set ofequations Eve can solve, the ability to solve a system depending upon the contents of theknowledge base. However, the class of equations acceptable is again given by a genericformula. The input of the equations and the domain over which the system is to be solvedinvolves the use of a graphical user interface. The interface allows the choice of one of theknown domains or a new two dimensional domain may be constructed using straight linesvia an interactive geometry tool. The equation interface consists of several icons depictingnumerical operators, the equation is constructed from these. As the icons are selectedthey are inserted into the equation to match the generic form allowed. This rewriting inthe generic form allows easier extraction of any mathematical properties that the equationhas. A similar process is applied to the boundary conditions. The system then uses thisinformation with its knowledge base to determine a solution strategy. The decision processis displayed providing an explanation facility. The graphical interface to the system is againbuilt using the portability of the X Window system. The knowledge base itself is builtusing LISP and relies upon a frame{based model to represent the knowledge.The visual interfaces for two other PSEs are discussed next. The //ELLPACKsystem [47] and the Visual PDEQSOL system [86] both utilise the portability of the XWindow system to construct interfaces allowing the speci�cation of the information neededfor the solution of PDEs.The PDEQSOL system provides a series of interfaces, these are controlled viaan interactive control panel. The control panel is split into three groups. Each grouphaving its own visual interface, described as an input guidance template, to specify theinformation required. Selection of one the buttons on the top level interface opens theguidance template for that particular aspect of the speci�cation process. For examplethe PDE button on the top level will open the interface allowing the user to de�ne thegoverning equations for the problem.The �rst group of buttons allows the user to specify the physical aspects ofthe problem. This deals with the physical domain, the variables used and governingequations as well as initial and boundary conditions. An interactive geometry tool allowsthe speci�cation of the domain. The equation information, boundary and initial conditions



- 90 -are speci�ed by selecting and combining variable names and numerical operators from anequation interface. These are then built into equations and functions respectively. Thesecond group deals with the mathematical model to carry out the numerical simulation.This provides information about meshing schemes and numerical algorithms. Solutionschemes can be speci�ed, the user highlighting one from a list provided by the system,for each solution part. The guidance information o�ered by the system is obtained byexamining the input PDEs. The choice of, for example, dealing with the time dependentpart of the problem may then �x the choice of one of the other solution parts. Thethird group deals with the execution of the computation and calculation of numericalresults. The Visual PDEQSOL system makes the claim that through this interactive visualspeci�cation system the total simulation procedures are shorten considerably compared towhat they consider as conventional methods.The //ELLPACK system also utilises visual speci�cation tools to obtain infor-mation. The //ELLPACK system describes these as intelligent editors to deal with allthe aspects required to specify the problem. The initial input to the system is done viaa PDE speci�cation editor combined with geometry tools which are used to specify theregion under consideration as well as boundary conditions. The governing equations areagain constructed via a combination of numerical operators and permitted variables. Thespeci�cation of equations in a natural form is a main objective of this step. The PDEspeci�cation editor also provides lists of possible selections for various aspects of the solu-tion process, such as discretisation method, indexing method and solution method. Otherparts of the speci�cation process include obtaining time step information with the user re-quired to specify starting time, stopping time and time step values. The PDE speci�cationeditor also generates a //ELLPACK program from the information supplied.All of the above interfaces appear to group together information in di�erent ways,the PDEQSOL interface splitting the physical aspects of the problem from the numericalaspects. The //ELLPACK system splitting the geometric modelling from the rest of thespeci�cation process. The distinction between the physical and numerical aspects seemvalid as does the separation of the geometric modelling. The system discussed here hasalready had the geometric modelling removed, however, the system will aim to separatethe physical nature of the problem from the numerical algorithm selection part of thesolution process.The information gathered by these interfaces often takes one of two forms, a �ll



- 91 -in the blanks for certain parts and a select one item from a list for others. The �ll in theblanks method is used when numerical information is needed and also when governingequations and boundary and initial conditions are de�ned. The lists are used when achoice is needed, for example, discretisation methods. Both options aim to provide themost natural way to specify the problem and remove the need for explicit programming.The time saved by this facility is a main driving force for such visual interfaces but notthe only one. The other advantages provided are to ensure that all information is input,sensible defaults are chosen and that errors, that can occur from the hand conversion ofthe information to a suitable driving program for the numerical software, are eliminated.The information obtained from the examination of other work in this area can becombined with feedback from the developers of the numerical code considered in this thesisand from the users of the code. This can then be utilised to outline a series of aims for a setof visual speci�cation systems to complement to visual design tool, described in Chapter4. This package provides an easy to use layer surrounding the numerical software for thesolution of two dimensional PDEs that can eliminate the need for explicit programming.5.3 Aim of the SystemThe objective when designing the visual problem speci�cation system was toconstruct a portable set of interfaces that, when combined with a suitable postprocessingsystem, could act as part of a PSE surrounding the numerical software. There are severaladvantages that a visual interface can provide, many of which have been touched upon inthe previous section. The interface can represent a signi�cant decrease in the time spentin the speci�cation process, this allows the user to concentrate on the results the code issupplying. Therefore one aim of the visual problem speci�cation system constructed hereis to reduce the time taken to specify a problem and produce a valid driver program forthe numerical software.The user interface part of the system will ensure that the user has supplied allthe information needed for the problem speci�cation. A �ll in the gaps, form-like interface,indicates which information is required. The interfaces can also provide sensible defaultvalues for di�erent numerical and physical solution parts which will provide guidance forthe users. Sensible default values are essential for novice users of the system. This alsoenables users with limited experience of the numerical solution of PDEs to utilise the



- 92 -software and obtain results. The aim of a visual user interface to the speci�cation systemmust be to ensure that all the relevant information is speci�ed. This information is giveneither by the user or by the system in the way of sensible default values.The use of a visual interface will also enable the user to specify the informationin a natural form. Equations can be speci�ed in a natural way, the functions needed bythe numerical code constructed by utilising one of the many computer algebra systemsavailable, Maple in this case. Boundary and initial conditions can be de�ned in a similarway. The choice of methods for the various solution parts are presented in list form foruser selection. Any numerical information that is required, such as tolerance values, canbe requested when needed. A visual problem speci�cation system should therefore allowthe user to de�ne the information in a natural way which is quicker, easier and moreconvenient than the previous method.Finally the visual speci�cation system will reduce the chance of mistakes fromthe translation of the problem information to a valid driver program. The use of a postpro-cessing system to automate this process again speeds up the overall problem speci�cationprocess. The production of the driver program should be detached from the visual in-terface dealing with the speci�cation process. This will allow the visual interface part ofsuch a system to be constructed as a generic interface for two dimensional PDE problems.This is another important aim; to construct a visual user interface around the genericnature of the problem under consideration. The validity of the system will be demon-strated by using such a system to specify the information needed for the numerical codeconsidered in this thesis. A suitable postprocessing step from the visual user interfaceproducing the �nal driver program. The visual interface constructed here will therefore betailored to accommodate the numerical code although many aspects will be generic andequally applicable to other numerical software in this area when combined with a suitablepostprocessing subsystem.The aims of a visual problem speci�cation system as an integral component of aPSE for the numerical solution of PDEs are therefore given as� To decrease the time taken from the speci�cation of the problem to the creation ofa valid driver program.� To ensure that all the information needed by the numerical code is provided.� To guide the user in the speci�cation process.



- 93 -� To have sensible default values for the solution parts.� To allow the user to specify the problem in a natural way and avoid the need forexplicit programmingOverall these aim to provide a more convenient and easier way to specify the problem.The next section will look at the construction of the visual speci�cation system,the high level structure of the user interface and the implementation of it to ensure porta-bility. A description of the postprocessing subsystem dealing with the actual constructionof the driver program will follow.5.4 Construction of the InterfacesThe starting point for the construction of the user interface to the problem spec-i�cation system was to consider the nature of the problem to be solved. The informationneeded to specify the problem was examined and this was split into four main groups.The mesh information including boundary and initial conditions, the solution informationincluding adaptivity, the equation speci�cation and �nally the problem information look-ing at the nature of the problem, a time dependent or steady problem. The informationrequired by the numerical code for a time dependent problem is given in Figure 5.1.The �gure shows the information needed to solve a time dependent two spacedimensional PDE. The system can then use the information required to create a suitabledriver program for the numerical software via the postprocessing step. The aim is tocreate a user interface for the visual problem speci�cation system that is independentof the postprocessing subsystem and the numerical software under consideration. Thiswould only appear to be possible at the high level outlined in Figure 5.1, the actualimplementation having to consider the numerical code and the di�erent ways it is able tosolve various parts of the problem. The remainder of this section will look at each partof the overall speci�cation, describe the information required and look at the constructionof an interface for each group to obtain the information from the user. In this way thenumerical and physical aspects of the problem can be separated.Each user interface is constructed using the XWindow system and the OSF/MotifWidget set [94] to ensure that portability. Other basic building tools, as outlined inChapter 2 are also used In the construction of the user interfaces. These include the
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- 95 -LATEX document processing tool [61] and the Maple computer algebra system. A fulldescription of how these are used is given in the relevant subsection.The user interfaces described below have many facilities in common, each inter-face has a help button. The help button provides a text window which will give a briefdescription of the information required and the structure of the interface. Each interfacestarts with default values or settings, these values were obtained from the developers ofthe numerical code. At the end of each user speci�cation process the information suppliedwill be stored so that the postprocessing subsystem can use it to create the driver pro-gram. This information is used as the new default values for the user interfaces when nextinvoked. This allows the user to then change one or two parameters easily to create a newdriver program; to re�ne a particular problem rather than having to specify the wholeproblem again. The way in which this information is stored and the creation of the driverprogram from this is described later. Each interface also has a cancel button, this allowsthe user to kill the visual interface without changing the previously selected options andvalues.5.4.1 The Solution InterfaceThe solution part of the problem speci�cation deals with four areas: the spatialdiscretisation scheme, the adaptivity information, the maximum number of triangles andthe use of the visual program accompanying the numerical code. The information requiredfor each of these is outlined below along with the way the user interface requests thisinformation. The default values for each are given along with a justi�cation for the choiceof each value.The user interface for the solution part of the problem is in two stages. The userselects the values for the maximum number of triangles, selects the spatial discretisationscheme and sets the adaptivity and visual states to either on or o�. If the adaptivity isset to on pressing the ok button on the interface will create another window promptingfor the absolute and relative spatial tolerance values needed for the adaptivity routines tocontrol the spatial error. If the adaptivity is set to o� no further information is requiredand no further action is needed. Figure 5.2 shows this interface, the adaptivity is set toon and therefore the interface prompts for the numerical tolerance values required.� The Spatial Discretisation Scheme information is used to determine the numer-
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Figure 5.2: The User Interface for the Speci�cation of the Solution Informationical scheme used to solve the problem. The numerical code under consideration hasonly one scheme for this, the �nite volume method. The default value for this optionis therefore the �nite volume method. A menu of options is provided for this infor-mation, the user selecting one from the menu. This allows the number of methodsto be increased easily by simply adding more options to the menu. The output fromthis interface also allows easy expansion of all menu driven choices.� TheAdaptivity Information is concerned with the use of adaptive routines withinthe solution process. This option may be switched on or o�. If adaptivity is required,the on option, the absolute and relative spatial tolerance values are required tocontrol the spatial error. The default value is set to o�, if the user switches this onthen the default numerical values for the tolerance variables used are 0:005, thesevalues are given as sensible defaults by the developers of the numerical code.� Max No. Of Triangles is used to get a value for the maximum number of trianglesthat the numerical code may use. This limits the number of triangles in the meshand therefore the number of points over the numerical domain. This therefore placesbounds on the adaptivity routines, hence its inclusion in the solution part rather than



- 97 -the mesh part. It can also be seen as limiting the overall speed of the computationthe fewer triangles that are allowed, the quicker the solution process.� The Visual Information is concerned with allowing the user to specify some formof visual output during the solution process. With the numerical code under con-sideration a graphics package developed with the code may be used to visualise thesolution. The visual information can be switched on or o�, the default is o�. Thevisual program with the code requires some information to successfully run but thismay be easily obtained from the numerical domain speci�cation �le and thereforethe user is not required to supply any further information. The visual program alsorequires the IRIS GL [91] graphics language.5.4.2 The Equation InterfaceThe equation part of the problem speci�cation aims to allow the user to de�ne theequation. At the current time only single equations may be speci�ed. This is an obviousarea for enhancement as problems consisting of systems of PDEs over a spatial domain arevery common. Many problems can be de�ned in terms of a single PDE and the facilitiesprovided by the equation interface are equally applicable to multiple PDE speci�cation.As with many numerical codes the code under consideration deals with equations givenby a generic formula. Figure 5.3 shows the equation interface giving the master equationin terms of a set of functions and the dependency of these functions.For steady problems the term � is set to zero to remove the time dependence ofthe problem and the independent variable t is ignored. For the majority of time dependentproblems � is unity. The terms fx and fy de�ne the advective 
uxes which lead to wavelike structures in the solution u. The terms gx and gy de�ne the di�usive 
uxes whichlead to di�usion processes in the solution u. The term S, the source term, can be used toadd other processes such as chemical kinetics.The main aim of the user interface for the equation part is to provide a way for theuser to de�ne the equation in a natural way. The help button on the interface providessome guidance on the use of the interface and the structure. The interface utilises theMaple computer algebra system to provide suitable input giving the user a standard andeasy way to express complicated functions. Maple is also used to convert the functionde�ned by the user into C functions which the driver program requires. A full description
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Figure 5.3: The User Interface for the Speci�cation of the Equation Informationof this will be given later.The equation interface also allows the user to specify constants that can be usedto de�ne the PDE and these are then transferred to the driver program. Figure 5.4 showsthe subwindow of the interface which is created when the user presses the Const buttonon the interface and which allows numerical constants to be de�ned by the userAnother feature of the equation interface is its facility to create a LATEX documentof the equation speci�ed by the user. This provides a high quality copy of the equation infull mathematical notation. Again Maple is utilised in this step, Maple provides routines toconvert simple mathematical functions into LATEX compatible text. When combined witha suitable template �le a LATEX document can be produced. The interface communicateswith Maple on a primitive level, see Chapter 2 for a discussion on this, a set of commandsare output to a temporary �le, Maple executes the commands and outputs the results to
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Figure 5.4: The Constant Part of the Equation Interfaceanother temporary �le. The interface program can then read the results from this output�le. These are then combined with prede�ned strings to produce a suitable input �le forLATEX.5.4.3 The Mesh InterfaceThe mesh information interface provides a way for the user to enter informationrelated to the numerical simulation of the physical domain and information for the meshgeneration software. The interface again is in two stages, the structure of the seconddependent upon the information the user supplies in the �rst stage. The �rst stage of themesh interface is shown in Figure 5.5.The information asked for in the �rst stage of the mesh interface is given below.The �rst stage deals with three pieces of information from Figure 5.1 and also requiresthe user to specify the number of boundary conditions. This information is used in thesecond stage of the mesh interface.� The Mesh File is the name of �le containing the numerical speci�cation of thedomain. The default is set to square �le; a simple square domain with corners at(0; 1); (1; 1); (1; 0); (0; 0).� The Mesh Generator is the software to be used to generate a triangular mesh
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Figure 5.5: The First Stage of the Mesh Interfacefrom the numerical speci�cation �le. At the time of the initial development of thisinterface the numerical code considered here had the ability to utilise only one meshgeneration software package. A second mesh generator has since been added. Theresult of this is that the mesh interface relies on the �lename speci�ed by the usercontaining the numerical speci�cation of the domain is in the KSLA input format[35]. A full description of this is given in Chapter 4 The default selection for themesh generator is set to the KSLA option.� The Initial Mesh Level is the initial level of re�nement the numerical softwarewill add to the mesh returned by the mesh generation software. The default initialmesh level is set to 1.The second stage of the interface allows the speci�cation of the initial conditions,boundary conditions and the boundary types, Figure 5.6 illustrates this.An outline of the boundary is also displayed and the boundary edges are namedwith a unique integers, see Figure 5.7. This deals with the remaining information outlinedin Figure 5.1.The second stage of the interface needs to know enough about the numericalspeci�cation �le to extract and reproduce the geometry. Because of this it needs to knowabout the format of the numerical speci�cation �le used by the mesh generation software.This creates problems with regards to the generic nature of this interface. The advantages
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Figure 5.6: The Second Stage of the Mesh Interface I
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Figure 5.7: The Second Stage of the Mesh Interface IIthat a visual representation of the domain bring to the speci�cation of the boundaryconditions provide more than enough justi�cation for this however.Other user interfaces combine the boundary speci�cation with the geometricmodelling process or limit the numerical domain such that a text description is adequate.Neither of these options seemed appropriate and so the use of the mesh generation softwareto extract the geometry was chosen.� The Initial conditions are speci�ed using Maple syntax allowing complex functionsto be constructed. Maple is used to convert this information into a function requiredby the driver program is the same way as the equation information. The default valueis 0:0.� The Boundary conditions are speci�ed again using Maple. The boundary con-dition on each edge is speci�ed by placing conditions on consecutive lists of edges.
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PROBLEM PART II

Problem Name

Solution StrategyFigure 5.8: The information required for a steady problem.The start edge and end edge need to be speci�ed. The boundary condition uponthose edges can then be de�ned. The default boundary conditions are set to 0:0.� The Boundary type is allowed to be one of three possible values, Neumann, Dirich-let or Flux. The default value is set to a Dirichlet boundary condition. Other formsof boundary conditions such as combinations of the above conditions are not cateredfor at this current time.5.4.4 The Problem InterfaceThe problem interface can follow one of two paths depending on the nature of theproblem. Figure 5.1 shows the information required for a time dependent problem. Theother main class is that of a steady state problems in which the solution to the problemdoes not vary in time. The information for a steady problem is shown in Figure 5.8.The �rst stage of the problem interface requires the user to specify the type ofproblem, either time dependent or steady. The other item requested by the interface atthis stage is the Problem name name given by the user. The default string for this isgiven as test.If a time dependent problem is chosen then the interface has two further stages.The second stage will ask for the integrator software module and the linear algebra softwaremodule used. The third stage then deals with the time step information that is required.The three stages of the interface can be seen in Figure 5.9. The default values for theseitems were again obtained by consulting the developers of the code.� The Integrator method looks at selecting a module in the overall solution process



- 104 -to handle the integration. At present the numerical code supports two methods, theDASSL type integrator [70] and the theta method [87]. The default value at presentis the theta method.� The Linear Algebra method looks at the module responsible for the linear algebrapart of the solution process. The default selection for this is the Watsit package [87].Other possible options are to use the NAG sparse matrix routine.� The Time Step information is dealt with in the third stage of the problem in-terface. The interface prompts the user for the Start time of the computation,then the Number of Time Output Points where the code will halt computationto show the solution and then the Time increment between each output point.The computation will end when the last speci�ed time output point is reached. Forexample a start time of 0:0 with 10 time output points and a time increment of 0:1will stop at time 1:0. The default values for these values are set to, 0:000, 20 and0:050 respectively.If the problem is a steady problem, Figure 5.8 shows the information required.There are only two levels of the interface, the second level dealing with the solution strategymodule used, see Figure 5.10.� The Solution strategy looks at selecting the module for steady state problems.There is currently one module, the black box solution strategy module (BBOX). Thisis a simple invocation of the NAESOL package. The default for this is therefore theblack box module [75].The problem here as with the other part of the visual speci�cation system isthe desire to construct a set of generic interfaces for the speci�cation of two dimensionalPDEs. However, in many cases the numerical code considered has a limited number ofmodules to select, in many cases only one is available.Due to this fact many of the options appear super
uous to the information re-quired to construct a successful driver program. Whilst this has been the situation withthe user interfaces it is hoped that these are constructed such that the expansion of possi-ble choices is provided for. This is true not only in the visual aspect of the user interfacebut also in the output produced by these. The use of a simple �le based system which the
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Figure 5.9: The Problem Interface for a Time Dependent Problem.
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Figure 5.10: The Problem Interface for a Steady State Problem.postprocessing subsystem uses as input is also able to be easily expanded. This system isexplained in the next section.5.5 Output of the InterfacesThe following section describes the output of each of the user interfaces. Thistakes the form of a �le containing integers, reals, �lenames or the Maple notation for afunction or mathematical expression.The �les are also used as default values for the user interfaces when next invoked.This system of a visual user interface with a �le based intermediate step between themand the postprocessing subsystem responsible for the creation of the driver program allowsthe two to be kept separate and allows a visual summary window to be �tted to thepostprocessing system. The visual summary allows the user, at a glance, to check thatall the information is present and correct. If a mistake is spotted or various parts of theproblem speci�cation need to be changed then the user can simply reinvoke the requiredvisual user interface, change the value and instruct the visual summary window to rescanthe output �les produced by the user interface. The following subsections will describe theoutput �les for each interface and demonstrate that this system can be expanded easily.



- 107 -5.5.1 The Solution InterfaceThe output from the solution interface takes the following form� An integer, the value for the maximum number of triangles� An integer to represent the spatial discretisation scheme used. A 0 to select thedefault value, a 1 to select the �nite volume method. As more solution methodsbecome available they can easily be represented this way.� An integer to represent the adaptivity state, 0 = OFF, 1 = ON.� An integer to represent the visual state, 0 = OFF, 1 = ON.� A real, the absolute spatial tolerance value, if the adaptivity is turned on.� A real, the relative spatial tolerance value, if the adaptivity is turned on.5.5.2 The Equation InterfaceThe output from the equation interface takes a di�erent form, a set of stringsrepresent the di�erent functions of the governing equation, see Figure 5.3. These arefollowed by the user de�ned constants.� The Maple notation to represent the function �.� The Maple notation to represent the function fx.� The Maple notation to represent the function fy .� The Maple notation to represent the function gx.� The Maple notation to represent the function gy.� The Maple notation to represent the function S.� The name then value of the �rst constant, if used.� The name then value of the second constant, if used.� The name then value of the third constant, if used.� The name then value of the fourth constant, if used.



- 108 -5.5.3 The Mesh InterfaceThe output from the mesh interface takes the following form� The name of the �le containing the numerical speci�cation of the domain.� An integer, the value of the initial level of mesh re�nement.� An integer to represent the mesh generation package to be used, 0 is the default, 1is the KSLA package, 2 will, for example, represent the GEOMPACK package [51].� An integer to give the number of boundary conditions.� For each boundary condition there is the boundary condition function speci�ed inMaple syntax. This is followed by the names of the start edge and �nish edge of a listof consecutive edges which this boundary condition function applies to. These arethen followed by an integer to represent one of the three di�erent boundary types,Dirchlet, Neumann or Flux boundary.� The Maple notation of the initial condition function over the domain.5.5.4 The Problem InterfaceThe problem interface output �le is dependent upon the problem type, eithertime dependent or steady problem. The data structure for the time dependent problemsis � The name of the problem, which is user de�ned.� An integer to represent the problem type, 0 = Steady, 1 = Time dependent, 1 inthis case.� An integer to represent which integrator method to use.� An integer to represent which linear algebra method to use.� An integer giving the number of time output points.� the value of the start time.� The value of the time increment for each step.



- 109 -The output �le for the steady problem is� The name of the problem, which is user de�ned.� An integer to represent the problem type, 0 = Steady, 1 = Time dependent, 0 is inthis case.� An integer to represent which solution method to use.5.6 Construction of the Driver ProgramThe information provided by the users and encoded by the interfaces is thenpassed to the postprocessing subsystem responsible for creating the driver program forthe numerical code. This postprocessing subsystem has two main stages, the �rst stage ofthe procedure is to provide a visual summary of the information such that the user mayeasily validate the problem de�nition. The user can then trigger the creation of the driverprogram, the second stage. This process is triggered from the visual summary window.The �nal output of the postprocessing subsystem is a valid driver program which can becompiled and linked to run the numerical software. Various examples of this process willbe discussed in the next section where three problems are considered as case studies.The postprocessing subsystem makes use of the Maple computer algebra systemto generate C code to include in the driver program. Maple is used by the driver in asimilar way to the equation interface when it produces LATEX output. The interaction withMaple is again via a �le based system with commands output to a temporary �le. This �leis used as input to Maple. Maple produces another temporary �le containing the results.These results are then read from the �le by the postprocessing subsystem and transferredto the driver program. The utilisation of Maple in this way stems from the developmentof computer algebra systems as user orientated stand alone systems, see Chapter 2. Thepostprocessing system is utilising Maple by pretending to be a human user.The second stage of the postprocessing system deals with building the driverprogram from the information speci�ed. The structure of the driver program deals �rstwith including the relevant header �les for the solution parts considered, followed by thedeclaration of the user de�ned constants. The various functions required are then de�ned;the initial conditions, the boundary conditions and the appropriate functions required forthe �nite volume method. A monitor routine is also de�ned and his provides a way for



- 110 -the user to examine various aspects of the solution process. The numerical information isthen de�ned followed by a set of routines to instruct the numerical code where to �nd thepreviously de�ned functions it requires and which software packages to use. The driverprogram then starts the solution process.This idea of �tting information into a template program has been used manytimes before in scienti�c computing and PDE software. Enquist and Smedsaas used amathematical language to de�ne and describe one dimensional hyperbolic and parabolicinitial boundary problems [32]. The results of the speci�cation language was to produce aFORTRAN program to solve the problem. More recently Bentley et al. look at templatedriven interfaces for numerical subroutines [7]. They look at using a mathematical lan-guage that can be combined with well established robust software libraries. The result ofthis language is again to produce a FORTRAN program which will call a library routineand then return the result to the user. This system has been used to solve PDEs in onespace variable.The driver program, as well as having the ability to execute the numerical soft-ware, must also be easy to understand, well structured and well documented to allow theuser to modify the driver program if required. One example where this is important isthe Riemann solver function required by the �nite volume method. The current trendis for the user to specify the approximate Riemann solver by one of the many numericalmethods available, see Chapter 3 for a discussion on this. A simple di�erencing schemeis used by the postprocessing subsystem. This uses the advective 
ux, de�ned by the fxand fy functions of the equation. More complex Riemann solver may need to be employedto give better numerical results, this issue will be addressed further in Chapter 7. Thedriver needs to advise the user of this fact. The ability of the postprocessing subsystemto recognise where potential problems in the driver program may arise is as importantas automating the simplier parts of the process. The driver program can then at leastprovide a well structured template program which more experienced users may modify.5.7 Three Case StudiesThe following section looks at three di�erent problems. The visual problemspeci�cation system is applied to each. The aim is to create valid driver programs foreach. The driver programs can then be compared to the driver program manually written



- 111 -by users of the software. A description of the problem is given, the domain, boundaryconditions, initial conditions and solution process. This section aims to show that theexamples given will display the ability of the interface to produce valid driver programs.The summary windows of each problem along with the driver programs producedby the visual speci�cation system are given in Appendix C.5.7.1 A Parabolic PDE { Heat EquationThe �rst problem is one already mentioned in Chapter 3, a time dependentPoisson problem given by the following equation@u@t = @2u@x2 + @2u@y2The domain and boundary conditions are given in Figure 5.11 the initial conditions areset to 0:0 over the domain.� Problem Name: Parabolic.� Spatial Discretisation Scheme: Finite Volume Method.� Problem Nature: Time-Dependent.{ Integrator Method: Theta Integration Module.{ Linear Algebra Method: WATSIT Linear Algebra Module.{ Start Time: 0.00.{ Number of Time Output Points: 6.{ Time Increment Between Output Points: 0.25.� Adaptivity: Yes.{ Absolute Spatial Tolerance: 0.05.{ Relative Spatial Tolerance: 0.05.� Maximum Number of Triangles: 10000.� Numerical Domain File: parabolic1.dmn, See Figure 5.11.� Mesh Generation Package: KSLA.
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Figure 5.11: The Domain for the Heat Eqn and Boundary Conditions.� Initial Mesh Re�nement Level: 4.� Initial Conditions: 0:0.� Boundary Conditions & Type: See Figure 5.11.The full driver program for this example produced by the visual speci�cationsystem can be seen in Chapter 3. This example shows the ability of the system to dealwith simple time dependent problems. Figure 5.12 shows the solution to this problem attime t = 6:5361e� 2.5.7.2 An Elliptic PDE { Laplaces EquationThe second problem is an elliptic problem de�ned by the following equation.@2u@x2 + @2u@y2 = 0The initial conditions are set to 0:0 over the domain, this and the boundary conditions areshown in Figure 5.13 The problem is a steady-state problem, the speci�cations requiredby the visual problem speci�cation systems are� Problem Name: Elliptic.
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Figure 5.12: The Solution of the Heat Equation at time t = 6:5361e� 2
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Figure 5.13: The Domain for the Elliptic Problem and Boundary Conditions.� Spatial Discretisation Scheme: Finite Volume Method.� Problem Nature: Steady-State.{ Solution Strategy Module: Black Box.� Adaptivity: Yes.{ Absolute Spatial Tolerance: 0.05.{ Relative Spatial Tolerance: 0.05.� Maximum Number of Triangles: 8000.� Numerical Domain File: elliptic1.dmn, See Figure 5.13.� Mesh Generation Package: KSLA.� Initial Mesh Re�nement Level: 1.� Initial Conditions: 0.0.� Boundary Conditions & Type: See Figure 5.13.



- 115 -Part of the driver program produced by this speci�cation is given below; theinclude �les required, the monitor routine and the main part of the program that willdrive the numerical software. The various �nite volume routines are omitted, in this case,as the form of these is similar to the example program given in Chapter 3./* Standard Include Files */#include <stdio.h>#include <stdlib.h>#include <math.h>#include "S2D.h"/* Include file for FVM */#include "S2D_FVM_finite_volume_discretisation.h"/* Steady Problem Include Files *//* Include File for Black Box Solver */#include "S2D_BBOX_black_box_soln_strategy.h"/* Include file for visual routines */#include "vwr_comms.h"/* Monitor Routine */void monitor (int neq,double *u,double *udot,double time,double *err,double *ewt,S2D_Res_Status_Type res_status,S2D_Monitor_Type mon_type,S2D_Mon_Status_Type *mon_status,S2D_Intgrtn_Obj_Type *integ_obj,void *space_disc_data,void *users_data){ /* ------------------------------------------- *//* Monitor Routine for user functions, allows *//* user to monitor process insert things here *//* ------------------------------------------- */int interact;/* Viewer routine */



- 116 -vwr_send_mesh(integ_obj);if (mon_type == S2D_Initial_Mon)vwr_send_frame(integ_obj,u,u,time,&interact);elsevwr_send_frame(integ_obj,u,err,time,&interact);/* ------------------------------------------- *//* *//* Insert Code Here If Required *//* *//* ------------------------------------------- *//* Return monitor ok status */*mon_status = S2D_Mon_Okay;} /* Monitor routine *//* Initial conditions routine */void elliptic_ic( ... );/* Boundary conditions routine */void elliptic_bc( ... );/* Diffusive function */void elliptic_g( ... );/* Riemann solver */void elliptic_rs( ... );/* Source Term */void elliptic_src( ... );/* Main */main(int argc, char *argv[]){ S2D_Intgrtn_Obj_Type my_integ;int ntrimax = 8000;int ilevel = 1;double atol = 0.050000;double rtol = 0.050000;double max_x = 10.000000;double min_x = 0.000000;double max_y = 10.000000;double min_y = 0.000000;



- 117 -/* End of variable declarations *//* Initialise integration object */S2D_initialise(&my_integ);/* Steady Problem */S2D_steady(&my_integ,1,ntrimax);/* Spatial tolerance on */S2D_spatial_tol(&my_integ,S2D_Scalar_TOL,&atol,&rtol);/* Use Finite Volume scheme */S2D_FVM_initialise(&my_integ);S2D_FVM_initial_conditions(&my_integ,elliptic_ic);S2D_FVM_boundary_conditions(&my_integ,elliptic_bc);S2D_FVM_riemann_solver(&my_integ,elliptic_rs);S2D_FVM_diffusive_flux(&my_integ,elliptic_g);S2D_FVM_source_term(&my_integ,elliptic_src);/* Initialise viewing routine */vwr_init( min_x, max_x, min_y, max_y, 1.4);/* Set KSLA mesh information */S2D_ksla_mesh_generator(&my_integ,"elliptic.dmn",ilevel);/* Use Black Box Package */S2D_BBOX_initialise(&my_integ,-1.0);/* monitor routine */S2D_monitor(&my_integ,monitor);/* Integrate routine */S2D_integrate(&my_integ);/* close viewer */vwr_close();}/* End Of Driver */This example shows the ability of the visual speci�cation system to deal with simplesteady-state problems. Figure 5.14 shows the solution to this problem.
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Figure 5.14: The Solution of the Elliptic Equation
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Figure 5.15: The Domain for the Burgers' Problem and Boundary Conditions.5.7.3 Convection-Dominated PDE { Burgers' EquationThe �nal problem is a Burgers' equation given by@u@t + @@x  u22 !+ @@y  u22 ! = p@2u@x2 + p@2u@y2where p is a constant de�ned as 0:01. The domain and boundary conditions are given inFigure 5.15, the initial conditions over the domain are11 + expx+y�tp� Problem Name: Burgers'.� Spatial Discretisation Scheme: Finite Volume Method.� Problem Nature: Time-Dependent.{ Integrator Method: Theta Integration Module.{ Linear Algebra Method: WATSIT Linear Algebra Module.{ Start Time: 0.15.



- 120 -{ Number of Time Output Points: 15.{ Time Increment Between Output Points: 0.10.� Adaptivity: Yes.{ Absolute Spatial Tolerance: 0.05.{ Relative Spatial Tolerance: 0.05.� Maximum Number of Triangles: 10000� Numerical Domain File: burgers.dmn, See Figure 5.15.� Mesh Generation Package: KSLA� Initial Mesh Re�nement Level: 3.� Initial Conditions: 11+expx+y�tp� Boundary Conditions & Type: See Figure 5.15.This example demonstrates the construction of the approximate Riemann solverby the postprocessing subsystem for the driver program. It also shows how the system candeal with more complex functions for the initial and boundary conditions. The routinesfrom the driver program for the initial conditions and Riemann solver are given below.It must be noted that due to the naivety of the Riemann solver used in this examplethe solution is negative close to the wave front, the problems associated with this will bediscussed later in Chapter 7./* Initial conditions routine */void burgers_ic(TRIAD_Triangle *tri,int npde,double x, y, t,int sub_name,void *users_data,double *u){ /* ------------------------------------------- *//* Initial conditions routine to specify the *//* initial conditions of the problem *//* ------------------------------------------- */



- 121 -u[0] = 0.1E1/(0.1E1+exp(0.1E3*x+0.1E3*y-0.1E3*t));} /* Initial conditions *//* Riemann solver */void burgers_rs(TRIAD_Line *line,int npde,double x, y, t,int sub_name,double norm_x, norm_y,double *u_l, *u_r,void *users_data,double *nf){ /* ------------------------------------------- *//* Riemann solver routine to specify the *//* Riemann solver conditions of the problem *//* ------------------------------------------- */double u = ( u_l[0] + u_r[0] ) / 2.0 ;double f_x, f_y;/* ------------------------------------------- *//* A Simple Differencing is used to solve *//* this problem. More complex methods may *//* provide better results *//* ------------------------------------------- */f_x = 0.5*u*u;f_y = 0.5*u*u;nf[0] = f_x * norm_x + f_y * norm_y;} /* Riemann solver */The solution to this problem at time t = 9:8070e� 1 is shown in Figure 5.16.5.8 Evaluation of the ToolkitWhen a user wishes to use the SPRINT2D numerical software a driver programmust be created. At best the user will �nd a driver program for a previous problem withsimilar properties. At worst the user must construct a driver program from scratch. This
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Figure 5.16: The Solution of the Burgers' Equation at time t = 9:8070e� 1



- 123 -can be a lengthly process, the user must �rst de�ne the problem, often hand drawing thenumerical domain, extracting boundary names from the mesh speci�cation �le in order tode�ne the boundary conditions. The various modules used need to be determined and thenthe appropriate SPRINT2D command to initialise them. The numerical code requires allaspects of the problem to be identi�ed, if one item is not de�ned in the driver program,for example, the mesh generation package to use, the numerical software will fail. Thiscan often be one of the very simple mistakes that are hard to spot. The VPS systems aimsto provide an easy and natural way for the user to visually specify all aspects required bythe numerical code and to produce a suitable driver program.This section aims to provide some user evaluation on the VPS system, as with theVisual Domain Speci�cation (VDS) tool described in Chapter 4, the evaluation includedsome additional features the user would wish to see. Overall the tool was seen as havinga positive e�ect on the solution speci�cation process. The users saw the tool as very easyto use and very accessible and intuitive. The view was that the VPS system provided aneasier method than programming from scratch and was also less error prone than takingan existing program and modifying it. The layout of the visual interfaces made it veryclear what information was required, the VPS system identifying what the numerical coderequired, something the code itself fails to do.The use of a visual interface to display the numerical domain and the boundaryedge names was seen as helpful and much simpler than manually performing the sametask. The equation interface was also seen as a very natural way to de�ne the PDE.As mentioned earlier several comments about what additional features could beincluded were expressed. The speci�cation of the boundary conditions by mathematicalfunction were mentioned and the wish for a mechanism where the condition could beswitched depending upon values within the code. It was noted that the current methodwould cover the majority of users and that with many other aspects of the driver programmore complex mechanisms could be hand coded from the driver program produced by theVPS system. The wish to have the ability to change aspects of the numerical domainwithout specifying the interface displaying the boundary information was also expressed.The wish to save complete speci�cations and reload them was also suggested in additionto the last speci�cation taken as new default values.The current state of the VPS system is not as advanced as the VDS tool. It isclear to see that more work needs to be carried out on the initial prototype system to make



- 124 -it more cohesive, robust and functional. The user evaluation and feedback presented hereprovides a starting point for this. Loading and saving speci�cation details and switches forboundary conditions. Other possible enhancements, not mentioned by users, may includeallowing the changing of the values presented in the summary window and the addition ofa button in the summary window for viewing the domain.Overall the VPS system was seen as a useful addition to the problem speci�cationprocess, automating the construction of a valid driver program. It can reduce the overalltime spent on this part of the problem, identify what the user needs to specify to drivethe numerical code and provide an intuitive and natural way to specify the problem.5.9 SummaryA visual user interface for de�ning the information needed to solve two dimen-sional PDEs brings many advantages. Combining this visual interface with a suitablepostprocessing subsystem capable of producing a driver program for the numerical soft-ware places such a combination into the class of tools that form part of a PSE around thenumerical software.The visual problem speci�cation system provides a considerable decrease in thetime spent specifying the problem, thus allowing more time for examining the solutionof the problem. The visual system ensures that all the required information is provided,either by the user or by the system itself and produces a driver program. The interfaceprovides a suitable medium for allowing the user to specify the problem information ina more natural way. The logical grouping of the elements of the problem as well as theutilisation of previous information to help in the selection of the latter both help in thisrespect. The way in which the user is asked to provide the information also allows a morenatural approach to the speci�cation process than writing a single driving program.The translation of the problem information into a driver program for the numer-ical code via the visual speci�cation system eliminates any errors that may arise if thisprocess is done manually. Such a system provides a more convenient, easier and quickerway to generate the driver program and eliminates the need for explicit programming.The visual speci�cation system is built around the generic description of twodimensional PDEs using the X Window system and the OSF/Motif widget set to ensureportability. The Maple computer algebra system is also used as well as the LATEX document



- 125 -processing system both of which are widely used in the scienti�c computing community.The validity of the system is demonstrated by using it to produce driver programs fornumerical software for solving two dimensional convection{dominated PDEs developedat Leeds. Three case studies have been described to show this. The visual speci�cationsystem has therefore been modi�ed to accomplish this, but the design and constructionof the user interface to the system is hoped to be strongly independent of the numericalsoftware considered.



- 126 -Chapter 6Quadratic Interpolants forTriangular Cell-CenteredFinite-Volume Schemes6.1 IntroductionIn this chapter the use of interpolation schemes as part of the numerical solutionof PDEs is discussed. The desirable properties that such interpolants should have areoutlined. The interpolant should complement rather than impose a particular form on thesolution process. Such an interpolant is not only required within the numerical solutionprocess, for the recovery of solution values and estimates of spatial derivative values, butis also needed for the visualisation of the solution to the PDE. Good visualisation is anessential aid to understanding the phenomenon being modelled for complex PDE problems.Initially the focus of the chapter is on an interpolant that will produce numericaland graphical results respecting the underlying properties of the data, for example posi-tivity. The aim is to construct such an interpolant for a two dimensional triangular basedPDE solver. However, the conditions required will be constructed from the one dimen-sional case. Numerical and graphical results are presented. The use of such interpolantsto construct spatial derivative estimates is then outlined. The current methods used aredescribed and numerical results given.



- 127 -6.2 Interpolation Schemes for PDEsMany areas of scienti�c computing involve modelling real world problems. Thevisualisation of the solution to these problems is an essential aid in the understandingof the phenomenon being modelled. Interpolation schemes that will respect the physicalproperties of the underlying data are thus needed. One example of respecting this physicalnature of the data is to produce values within a speci�c range, for example, to ensurepositivity.Many problems that require such treatment can be modelled by di�erentialequations, either ordinary di�erential equations (ODEs) or partial di�erential equations(PDEs). An important feature of some hyperbolic PDEs is that initial smooth conditionsmay develop into shocks and discontinuities. Some interpolation schemes may produceresults that introduce physically unreal values for such problems.A wide range of numerical software exists for solving such problems in one spatialdimension, for example, the NAG numerical library provides routines to solve PDEs, [67].However, perhaps more work has been done regarding preservation of inherent propertiesof data arising from the solution of ODEs, see Brankin & Gladwell for preservation of con-vexity [17], Higham for monotonicity [45] and Butt & Brodlie for preservation of positivity[20]. In two spatial dimensions, the numerical solution of partial di�erential equa-tions (PDEs) often use triangular elements because they can accurately represent complexdomains and may be used in conjunction with adaptive spatial meshes. The class ofconvection{dominated PDEs can be used to represent a large number of problems. Anumber of schemes for solving such problems use a cell{centred �nite volume spatial dis-cretisation scheme, see [11], [88], [63] and [29], [6] for details. Such schemes use triangularmeshes and generate computed solution values at the centroid of each triangle and, as aby{product, interpolated values at the mid{points of the edges. It is important to stressthat no solution values at the vertices of the triangles are known but it is still necessaryto use this raw data at the centroid and edge midpoints to construct a satisfactory inter-polant to calculate the solution values at non centroid points. This is useful in many areassuch as spatial remeshing [87] and the visualisation of the solution.An important feature of convection{dominated PDEs is that smooth initial con-ditions in such problems may develop into shocks and discontinuities. Many spatial dis-



- 128 -cretisation schemes used within the solution process reduce their order of accuracy aroundshocks and discontinuities to ensure that spurious oscillations do not occur. In particu-lar when the solution to the PDE is dominated by shock{like or steep wave features theaccuracy may be only �rst order, and standard high{order approaches based on smoothexact solutions will not necessarily give the expected order of accuracy. This chapter willshow that, not surprisingly, this phenomenon also applies to the interpolation methodused. In the area of discretisation methods, for example, the scheme of Durlofsky et al.[29] is concerned with the construction of a linear interpolant over each triangle from sur-rounding centroid values but resorts to piecewise constant interpolation using the centroidvalue to preserve non-oscillatory behaviour in the PDE solution. The scheme by Devineand Flaherty [27] uses projection limiters to try to overcome the need to 
atten extremato �rst order accuracy. This is done by limiting the coe�cients of Legendre polynomialssuccessively; in this way lower order coe�cients are only limited when needed and after allhigher order terms have been limited. In this case accuracy is not lost in smooth regions.The scheme by Lin, Wu & Chin [63] uses local solution limiters to ensure that no newextrema are created. Two other important interpolation methods are those of Abgrall [1]and Barth [36]. Both these schemes have the common approach of using adaptive multi-triangle stencils to achieve high order accuracy for problems which may have shocks anddiscontinuities.Abgrall's adaptive essentially non{oscillatory (ENO) scheme takes the form ofeither the centroid of a triangle acting as a control volume for that triangle or the con-struction of control volumes around each node in the mesh. The method involves theconstruction of an interpolant of order n by several steps. The initial step involves theconstruction of a linear interpolant and each following step will increase the order of theinterpolant. Several possible combinations of points can be used at each step. The choiceof which points to use is made by examining the coe�cients of the Lagrange polynomialsconstructed from each combination. The set chosen is the one in which the sum of theabsolute values of the coe�cients of the Lagrange polynomial is minimal. For example,if control volumes are constructed around each node in the mesh, then for each controlvolume there will be a choice of which three points to consider to construct a linear inter-polant. The possible combinations will be the node itself and any two of the neighbouringnodes. From the three points chosen for the linear interpolant, three further points canbe added, in the next step, to construct a quadratic, then four more can be added to



- 129 -construct a cubic and so on. The problem is that the number of possible combinationsgrows rapidly, and the stencil used is potentially large. Abgrall controls the choice of theadditional values considered at each step by only considering neighbouring nodes of nodesalready chosen. Even so the growth is rapid and the points considered may be far removedfrom the original node. Abgrall's good results provide a more than adequate justi�cationof the scheme however.The intention here is to consider a simpler alternative to Abgrall's scheme usinga �xed stencil based only on solution values at centroids of triangles and mid{points ofedges. These values are obtained by the discretisation method via a 10 triangle stencilfor each triangle, (see [88], [11]). The nine additional triangles are either �rst or secondgeneration neighbours, unlike the Abgrall scheme with its adaptive stencil. Given thatthe methods used for spatial discretisation and time integration take great care to avoidintroducing new extrema, it is important to use an interpolant in the postprocessing stepthat does not violate this principle. The aim is to construct a quadratic interpolant fromthe initial data at the centroids and edge mid{points of the triangles. There are two stagesin this procedure. The �rst stage is to construct values at the vertices. This is done byusing limited interpolants similar to those used in the discretisation methods, see [11], [88],[63]. This approach gives an interpolant which is multivalued at the vertices and hencediscontinuous. A single value at each node in the mesh may then be calculated, such aprocedure is desirable when visual results are the primary concern. The forcing of singlenodal values produces a continuous surface over the numerical domain. The second stepis to construct an interpolant which avoids introducing new extrema, an area in which thestandard quadratic interpolant fails. This property is achieved by modifying the standardquadratic shape functions over each triangle. The result of this modi�cation is the newinterpolant may not pass through all the data points used to de�ne it. This use of theinterpolation information as control points rather than data points, is not uncommonin other forms of interpolation. B�ezier curves must lie within the convex hull of thecorresponding B�ezier polynomial [18]. The justi�cation for this is that other propertiesof the curve are more important, in this case the curve is aesthetically pleasing, in factthe B�ezier curve is constructed from Bernstein basis functions which are all positive andsum to unity over the parametric coordinates. The approach taken here thus has somesimilarities with B�ezier interpolants.The remainder of this chapter will describe and analyse the way which this is



- 130 -achieved. Standard interpolation techniques are examined, the principles are discussedwith reference to 1D then extended to 2D, the linear cases are examined �rst to introducemuch of the ideas and notation used. Quadratic interpolation is then discussed with thestandard 1D case and again its extension to 2D.The quadratic scheme is examined and thefailure of the scheme to avoid undershoot and overshoot is shown. The modi�cation of thequadratic shape functions in 1D to create a quadratic scheme that will not introduce anynew extrema is then shown and its extension into 2D described. The properties of the newscheme are examined and some numerical justi�cation for the choice of methods given.The construction of the scheme from the initial data is described and the method usedto compute the values at the vertices. Some numerical results are given and in particularthe numerical results will show that on shock wave type problems the modi�ed quadraticinterpolant is as accurate as the original quadratic interpolant without generating newextrema. The extension of the interpolation schemes to generate derivative values at edgemidpoints is then given with further numerical results for this. These are compared tocurrent techniques used in cell-centred schemes for determining derivative estimates.6.3 Linear Interpolation6.3.1 1D Linear InterpolationLinear interpolation requires two function values, say f1 and f2 at two data pointsx1 and x2. These may be mapped onto a unit scale with the �rst point at L = 0 and thesecond at L = 1, where L is the parametric coordinate, de�ned by L = (x� x1)=(x2� x1)see Figure 6.1
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L=0 L=1Figure 6.1: Mapping to Parametric coordinates in 1DThen two standard linear shape functions, �1, �2 are �1 = 1�L and �2 = L and



- 131 -the linear interpolant is then P�ifi i = 1; 2. The two linear shape functions are shown inFigure 6.2.These shape functions also have the following properties, 0 � �i � 1, they arealways positive and they sum to unity: P�i = 1 i = 1; 2. These properties ensure thatthe interpolant de�ned in this way is bounded by the two values used. In the linear caseno new extrema are introduced.
L=1 L=1L=0 L=0Figure 6.2: The Linear Shape functions6.3.2 2D Linear InterpolationLinear shape functions de�ned over a triangle require three pieces of information.The three values allow three shape functions to be constructed over the triangle. Eachtriangle is mapped to area coordinates with each point expressed in terms of three factors,L1; L2; L3 which are derived from the ratio of the areas that the point divides the triangleinto, see Figure 6.3.Usually the three values are de�ned at the vertices of the triangle. In this casethe vertices are mapped to the points (1; 0; 0); (0; 1; 0); (0; 0; 1) in (L1; L2; L3) coordinates.The area coordinates are not independent and L1 + L2 + L3 = 1. The shape functionshave the same properties as in 1D where they are unity at their associated data pointsand vanish at the others. The method of undetermined coe�cients can be used to expressthese shape functions.When the vertex values are used to determine a linear interpolant over the tri-angle the shape functions are �1 = L1; �2 = L2; �3 = L3. The shape functions are of theform shown in Figure 6.4. The shape functions have the following properties: 0 � �i � 1,
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2AFigure 6.3: Mapping To Area Coordinates�i is always positive and P�i = 1; i = 1::3. Therefore any point de�ned by the inter-polant will be a positive combination of the three data points and bounded by the valuesthemselves. Again no new extrema are introduced.
Figure 6.4: 2D Linear Shape function, Vertex Linear (left) & Midpoint Linear (Right)As the raw data for the interpolant includes edge midpoint values: these maybe used in a linear interpolant. In this case the shape functions are �1 = 1 � 2L1; �2 =1 � 2L2; �3 = 1 � 2L3. The shape functions have the following properties: �1 � �i � 1,P�i = 1; i = 1::3, however, �i is no longer always positive. Therefore any point de�nedby the interpolant will not be a positive combination of the three data points and thevalue given by the interpolant is not bounded by the data values used to de�ne it. Newextrema may be introduced in this case and for this reason the midpoint linear schemewill be discarded.



- 133 -6.4 Quadratic Interpolation6.4.1 1D Quadratic InterpolationQuadratic interpolation requires three function values, f1, f2 and f3. These areat the mapped to the points f1 at L = 0, f2 at L = 1=2 and f3 at L = 1 using linearmapping such as in Section (6.3.1). Three standard shape functions associated with thethree points �1, �2 and �3 such that they are unity at one point and vanish at the othertwo, see Figure 6.5.
L=1/2 L=1/2 L=1L=0L=0L=0 L=1L=1L=1/2 Figure 6.5: The 1D Standard Quadratic Shape FunctionsThese shape functions, written as a combination of linear and quadratic parts,are de�ned by �1 = (1� L) + (2L2 � 2L)�2 = (4L� 4L2)�3 = (L) + (2L2 � 2L) (6.1)Unlike the linear shape functions, the quadratic shape functions associated withthe end points become negative over the region considered. The shape functions againhave the property that they sum to unity, but at particular points, it is possible to createa new maximum or minimum, for example, at L = 1=4, the shape functions have values�1 = 3=8, �2 = 6=8 and �3 = �1=8, and �1 and �2 sum to greater than unity.The elimination of the possibility of creating new extrema is forced by ensuringthat all shape functions are bounded by the constraint, 0 � �i � 1 and also thatP�i = 1for i = 1::3, as in the linear case.The value produced by a linear interpolant, fL, will satisfy these constraints.However, the value given by the quadratic interpolant, fs does not satisfy the required



- 134 -constraints and can therefore create new extrema. A modi�ed interpolant can be writtenas fM = �fL + (1� �)fSthen a value of � = 1 will give the standard linear interpolant and a value � = 0 willgive the standard quadratic. The question is what range of values will always ensure themodi�ed scheme displays the desired behaviour ? To guarantee that the shape functionsremain positive a value of � between the range of 1=2 � � � 1 must be chosen. Underthe assumption that a quadratic interpolant will produce better results that a linear in-terpolant, then the smallest value of � is taken. This giving the largest quadratic part inthe modi�ed scheme. Figure 6.6 illustrates these shape functions
L=0 L=1/2 L=1/2 L=1L=0L=0 L=1 L=1Figure 6.6: The 1D Modi�ed Quadratic Shape FunctionsExamination of the shape function identi�es the following properties. �1 nolonger vanishes at L = 1=2 but is unity at L = 0 and vanishes at L = 1. �3 also no longervanishes at L = 1=2 but is unity at L = 1 and vanishes at L = 0. �2 vanishes at L = 0and at L = 1 but is no longer unity at L = 1=2. In fact at L = 1=2 �1 = �3 = 1=4 and�2 = 1=2 this means that the interpolant no longer has the property f(xi) = fi at themidpoint, where fi is the given function value at xi. However, all shape functions satisfythe constraint 0 � �i � 1.These new shape functions are then�1 = (1� L)2�2 = 2L(1� L)�3 = L2 (6.2)



- 135 -All shape functions are positive, thereforef = 3Xi=1 �ifi (6.3)is a positive combination of the fi's and because of this will create no new extrema. Notehowever that an error has been introduced at the midpoint. This error can be seen bylooking at the shape functions at the midpoint. The modi�ed interpolant is de�ned asf1(1� L)2 + f22L(1� L) + f3L2at the midpoint, L = 1=2, the interpolated value, f�, is given byf� = 14f1 + 12f2 + 14f3= f2 + 14(f1 � 2f2 + f3)� f2 + h24 f 002 +O(h4)where h is the distance between data points and assuming that the function de�ned byf1; f2; f3 has a second derivative. An error is introduced which is proportional to thedistance between data points and the second derivative of the function at x2, the midpoint.6.4.2 2D Quadratic InterpolationA 2D quadratic interpolant needs six data points: these points are usually at thevertices of the triangle and the mid{points of the sides. These can be mapped to areacoordinates (L1; L2; L3). Six shape functions can be �tted to these points such that theyare unity at one point and vanish at the others, see [40] for details.These shape functions are shown in Table 6.1 and have the property that theysum to unity. However, the shape functions associated with the three vertex values, arenegative over large parts of the triangle, see Figure 6.7. Thus it is possible for new extremato be introduced. This is unsatisfactory for the purpose the interpolant is intended for.The elimination of the possibility of creating new extrema is achieved by ensuringthat all shape functions are bounded by the constraint, 0 � �i � 1 and also maintain thecondition that P�i = 1 for i = 1::6. To ensure that �1; �2 and �3 are always positivethe proportion of the quadratic part of each shape function used in a modi�ed schemethat displays the desired properties is reduced, as in the 1D case. The condition that
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Figure 6.7: Standard 2D Quadratic Shape FunctionsP�i = 1 for i = 1::6 still holds true. The new shape functions are shown in Table (6.1)and are shown in Figure 6.8.
Figure 6.8: Modi�ed 2D Quadratic Shape FunctionsThe new modi�ed shape functions �̂1; �̂2 and �̂3 no longer vanish at the adjacentedge mid{points but have a value of 1=4. The mid{point shape functions do vanish atall other points but are not unity at their associated point but in fact have values of 1=2.This is similar to B�ezier curve interpolation as described in Section 6.1. The interpolanttherefore will no longer exactly match the function value at the mid{points. However, thespatial discretisation schemes used to solve the PDEs [11] [88] [63] create solution valuesat the centroids which will respect the physical properties of the solution. The eliminationof spurious oscillations is a prime concern in the PDE solution process. The modi�edinterpolant will also ensure that no new extrema are created. It is this �nal property thatis of special interest, the ability of the scheme not to introduce spurious oscillations andinterpolate solution values outside the range of existing values.



- 137 -�1 = (2L1 � 1)L1 �̂1 = L21�2 = (2L2 � 1)L2 �̂2 = L22�3 = (2L3 � 1)L3 �̂3 = L23�4 = 4L2L3 �̂4 = 2L2L3�5 = 4L3L1 �̂5 = 2L3L1�6 = 4L1L2 �̂6 = 2L1L2Table 6.1: The standard (left) [40] and modi�ed (right) quadratic shape functions6.5 Construction Of Vertex ValuesWhen dealing with cell{centred �nite volume codes the information given bythe code is at the edge mid{points and the centroid of each triangle. In order to use aquadratic interpolant a method is required that will generate values at the vertices of eachtriangle. There are several ways to accomplish the creation of the vertex values. The aimis to �nd a way that will ensure that an accurate value is obtained and that this is donewithout introducing new extrema.6.5.1 A Two Dimensional Linear SchemeOne method for the construction of the vertex values is to use a two dimensionalscheme based on the values at the edge mid{points. The three edge midpoint values providea way to construct a linear interpolation scheme with three shape functions de�ned at themid{points. This method may create new extrema at the nodes so a capping procedureis used to ensure that the values given at the vertices do not exceed the range of thesurrounding values. This ensures that no new extrema are created during this phase. Thenumerical results in Section 6.8 show results using this method.6.5.2 A One Dimensional ApproachConsider a cross section through a triangle, see Figure 6.9, the values shown areu0 at mid{point M0, u1 at the centroid C and u2 is the linear interpolated value betweenM1 and M2. The value required is u3, the vertex value. The distances between thesepoints are h1; h2 and h3.Given this information a one dimensional quadratic can be constructed through
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Figure 6.9: Cross Section through a Triangleu0, u1 and u2 to give a value u3 at the vertex. Evaluating a quadratic interpolant, f =ax2 + bx+ c, at x = 0; f = u1 gives c = u1 (6.4)at x = �h1; f = u0 gives ah21 � bh1 + c = u0 (6.5)at x = h2; f = u2 gives ah22 + bh2 + c = u2 (6.6)multiplying (6.5) by h2 and (6.6) by h1 and adding these givesa(h21h2 + h1h22) = h2(u0 � u1) + h1(u2 � u1)a = (u0 � u1)h1(h1 + h2) + (u2 � u1)h2(h1 + h2) (6.7)substituting this into (6.5) givesb = (u1 � u0)h1 + h1 � (u0 � u1)h1(h1 + h2) + (u2 � u1)h2(h1 + h2)�b = h2(u1 � u0)h1(h1 + h2) + h1(u2 � u1)h2(h1 + h2) (6.8)This gives the quadratic interpolant de�ned by (6.6), (6.7) and (6.8) as� (u0 � u1)h1(h1 + h2) + (u2 � u1)h2(h1 + h2)� x2 + �h2(u1 � u0)h1(h1 + h2) + h1(u2 � u1)h2(h1 + h2)�x+ u1



- 139 -evaluating this at x = h2 + h3, the value at the vertex, gives the value at u3 asu1 + (u1 � u0)h1(h1 + h2) hh2(h2 + h3)� (h2 + h3)2i+ (u2 � u1)h2(h1 + h2) hh1(h2 + h3) + (h2 + h3)2iu3 = u1 + (h2 + h3)(h1 + h2) ��h3(u1 � u0)h1 + (h1 + h2 + h3)(u2 � u1)h2 �de�ning r = (u2 � u1)h2 h1(u1 � u0)gives u3 = u1 + (h2 + h3)(h1 + h2) �(u1 � u0)h1 (r(h1 + h2 + h3)� h3)�u3 = u1 + (h2 + h3)(u1 � u0)h1 �r(h1 + h2 + h3)(h1 + h2) � h3(h1 + h2)�u3 = u1 + (h2 + h3)(u1 � u0)h1 �1 + (h1 + h2 + h3)(h1 + h2) (r � 1)� (6.9)However, there is no guarantee that this quadratic will produce physically sensiblevalues of u3 and so a linear approximation might be favoured using the values of u0 and u1.It would be sensible to construct an interpolant where the quadratic part can be switchedo�. In Equation (6.9) the terms u1 + (h2 + h3)(u1 � u0)h1comprise the linear interpolant and the multiplier�(h1 + h2 + h3)(h1 + h2) (r� 1)�gives the quadratic part of the interpolant. The assumption here is that the linear andconstant interpolants will yield appropriate solution values as the edge mid{point andcentroid values accurately represent the solution. A limiter based method is then used toensure that the value generated by the quadratic interpolant lies between the linear andconstant values, i.e. 0 � �1 + (h1 + h2 + h3)(h1 + h2) (r � 1)� � 1this is controlled by limiting r, bounded byh3h1 + h2 + h3 � r � 1Given a value of r outside this range the quadratic interpolant is likely to createsolution values outside the range of the existing centroid values and because of this the



- 140 -quadratic part is turned o� and the linear or constant interpolant, whichever is closest tothe disguarded quadratic is preferred. The operation can be repeated for each vertex ofthe triangle to obtain the three values required. The underlying assumption is that as u2is constructed by linear interpolation it is less accurate than u0 and u1, for this reasonalso the linear interpolant is based on u0 and u1 rather than u1 and u2. The linear valuemay still be outside the range of the centroid values adjacent to the nodes and so a simplecapping procedure ensures that no new extrema are created by ensuring that each vertexvalue is bounded by the extrema of the surrounding centroid values. This process willyield a discontinuous representation of the mesh with each triangle de�ned now by thecentroid value, the edge mid{point values and the vertex values.6.6 Error AnalysisWhen determining the vertex values the error at these values will be at best aquadratic error and at worst a linear error. In the case where r > 1 and so is reset to beone, the second order error isError = h1 + h2 + h3h1 + h2 ��u2 � u1h2 �� �u1 � u0h1 �� (h2 + h3)In the case where r = � h3h1+h2+h3 , where � < 1, and r is reset to be h3h1+h2+h3the �rst order error isError = h3h1 + h2 (h2 + h3) �u1 � u0h1 � (�� 1):The modi�ed shape functions give an error at mid{point values. If the 1D situ-ation along the edge of the triangle is considered then the modi�ed interpolant along theedge can be de�ned as f1(1� L)2 + f22L(1� L) + f3L2at the mid{point, L = 1=2, the interpolated value, f�, is given byf� = 14f1 + 12f2 + 14f3= f2 + 14(f1 � 2f2 + f3)� f2 + h24 f 002 +O(h4)



- 141 -where f1 and f3 are the vertex values and f2 is the edge mid{point value and h is thedistance between data points and assuming that the function de�ned by f1; f2; f3 has asecond derivative. An error is introduced which is proportional to the distance betweendata points and the second derivative of the function at f2, the mid{point. Althoughthis approach gives an error of the same order as the linear interpolant the di�erence inaccuracy is signi�cant, numerical results later showing this.A further source of error when the interpolant is used with the �nite volumescheme of Ware and Berzins, [88], is that the original mid{point and centroid valuesalready contains a second order error. It should be noted that this additional source oferror is not present in any of the numerical experiments described below as exact valuesat the mid-points of edges were used.6.7 Options and Extensions6.7.1 Continuous or Discontinuous InterpolantsA further decision when determining the vertex values is that of a unique valueat each node of the mesh or a discontinuous representation. The former, as mentionedearlier, would be better suited for visualisation purposes whilst the latter more suitablefor the recovery of numerical values. The operation of forcing a single value at each nodecreates additional errors, given this it will be shown in Section 6.8 that a trade{o� mayexist between good numerical and good visual results.The several values at each vertex, one for each triangle, can be converted into asingle value, f� by using a weighted average of the values:f� = ntriXi=1 fiAintriXi=1 Ai (6.10)where Ai is the area of the triangle with the vertex value fi and ntri is a list of trianglesthat fi is a member of.



- 142 -6.7.2 Use of Centroid ValuesThe interpolation schemes examined considered using data at the edge mid{points and centroids to create vertex values, the vertex values are then capped. Theinterpolant may not pass through the value at the centroid of each triangle. This centroidvalue is the primary one calculated by the discretisation method used in the solutionprocess.The condition that the interpolant should pass through the centroid value can,however, be ensured. The approach taken here is to construct an additional shape functionthat can be used as an added correction to the interpolant. The idea originates from thestandard cubic interpolation techniques. A shape function is �tted to the centroid valuewhich is unity at the centroid and vanishes along the edges of the triangle. This shapefunction is de�ned by �c = 27L1L2L3. To utilise this cubic bubble an estimate of thevalue at the centroid is obtained via the interpolation scheme and the di�erence betweenthis and the primary value is multiplied by the bubble and then added as a correction.The numerical results in Section 6.8 will show that the centroid shape function improvesthe accuracy of the interpolant. However, it must be stressed that, the use of the cubicbubble correction term may result in new extrema being created.6.7.3 Using Linear Interpolants Over Each TriangleTwo other ways in which undershoot and overshoot can be eliminated is by usinglinear interpolation over each triangle after the construction of the vertex values has takenplace. The �rst is to simply �t a linear interpolant over each triangle using the vertexvalue. The second is to �t four linear interpolants over each triangle using the vertex andedge midpoint values. The �rst three interpolants are de�ned using each vertex values andthe two adjacent edge midpoint values. The �nal interpolant is de�ned using the threeedge midpoint values. The use of four linears will not introduce any new extrema andwill also pass through the edge midpoint values unlike the linear interpolant based on thevertex values alone. This means the four linear scheme, understandably, produces betterresults than the single linear but at a much higher computational cost since it uses fourinterpolants over each triangle in the domain.



- 143 -6.8 Numerical TestingSeveral di�erent variants of the interpolation schemes above will now be comparedusing the standard and modi�ed quadratic shape functions given in Table 6.1. Thesemethods are:� Scheme A: The standard quadratic shape functions using the true function valuesat all six points.� Scheme B1: The modi�ed quadratic shape functions using vertex values obtainedby the one dimensional quadratic method.� Scheme B2: The standard quadratic shape functions using vertex values obtainedby the one dimensional quadratic method.� Scheme C1: The modi�ed quadratic shape functions using vertex values obtainedby the two dimensional mid{point linear scheme.� Scheme C2: The standard quadratic shape functions using vertex values obtainedby the two dimensional mid{point linear scheme.� Scheme D1: Scheme B1 with the cubic bubble correction.� Scheme D2: Scheme B2 with the cubic bubble correction.� Scheme E1: Scheme C1 with the cubic bubble correction.� Scheme E2: Scheme C2 with the cubic bubble correction.� Scheme F: The standard linear interpolant using the true function values at thevertices of each triangle.The interpolant was tested on a number of numerical examples using the L1 normand a seven point �fth order Gaussian quadrature scheme, see [96], for the numericalintegration over each triangle. The quadrature scheme used was chosen because of thelocation of the quadrature points. These points seem to often coincide with areas of thetriangle that are prone to overshoot and undershoot. The summation of the errors overeach triangle then provide an error estimate over the whole domain. This can be expressed



- 144 -as ntriXtri=1 " 7Xi=1 jTruei � Interpolatedij wi# areatri!where Truei is the true function value at quadrature point i and Interpolatedi is theinterpolated value at i.All the numerical results given use a discontinuous representation of the physicaldomain, no forcing of a single value at each mesh node is made. Several test problemsare considered, the �rst is a simple sine function where the expected rate of convergenceis shown. The next three problems are all shock wave problems typical to this area. The�nal problem is a complex function with many shocks and discontinuties, this problem ispresented with graphical results also to demonstrate the ability of the modi�ed quadraticinterpolant to accurately capture shocks without the spurious oscillations found whenusing the standard quadratic interpolant.6.8.1 Simple sine functionThe results for a simple sine function de�ned by u(x; y) = sin(x+ y) are shown.Table 6.2 gives numerical results, taken from a [0::1; 0::1] domain with a regular triangularmesh with 2N2 triangles where N = 8; 27; 81; 243. These results indicate that for smoothfunctions, without severe gradients, the quadratic scheme using exact vertex values outperforms the other schemes. Although this is to be expected this quadratic interpolantcannot, of course, be used with the cell-centred discretisation scheme for which no vertexvalues are available.
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Burgers’ Function Discontinuous Interpolants
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- 147 -The di�erences between the methods A, B1, B2, C1 and C2 are shown in Figure6.10. The graphs show the error against mesh size on a log log scale for the discontinuousrepresentation (left) and continuous representation (right).The graphs show little di�erence between using the two dimensional linear schemeor the one dimensional quadratic scheme for the construction of the vertex values. HoweverFigures 6.11 and 6.12 show a similar analysis for two of the other test problems whichcontain shocks and discontinuities, see Section 6.8.5 and Section 6.8.2. These indicatemore clearly that a discontinuous representation appears to give better numerical resultsthan forcing a unique vertex value.No of Triangles 162 1458 13122 118098Scheme A 9.5316e-06 3.4645e-07 1.2745e-08 4.7097e-10Scheme B1 1.3476e-03 1.3229e-04 1.3856e-05 1.5103e-06Scheme D1 1.0706e-03 1.0361e-04 1.0833e-05 1.1796e-06Scheme B2 1.0668e-03 1.0325e-04 1.0883e-05 1.1858e-06Scheme D2 7.2835e-04 7.0648e-05 7.4451e-06 8.1173e-07Scheme C1 1.3667e-03 1.2945e-04 1.3381e-05 1.4505e-06Scheme E1 1.0267e-03 9.8569e-05 1.0340e-05 1.1253e-06Scheme C2 1.1246e-03 1.1798e-04 1.2991e-05 1.4355e-06Scheme E2 8.5682e-04 9.1231e-05 1.0079e-05 1.1154e-06Scheme F 2.3873e-03 2.6530e-04 2.9478e-05 3.2754e-06Table 6.2: Numerical results for Sine problem (discontinuous representation)6.8.2 Burgers' Equation ProblemThis function is given byu(x; y; t) = w(x; t)w(y; t) where w(x; t) = 0:1A+ 0:5B + CA+B + Cand A = e�0:005(x�0:5+4:95t)=v; B = e�0:25(x�0:5+0:75t)=v; C = e�0:5(x�0:375)=vThis function is the solution to the Burgers' equation, see [8], de�ned by@u@t + w(x; t)@u@x + w(y; t)@u@y � v @2u@x2 + @2u@y2! = 0; v = 0:0001The Problem time is taken at t = 0:45, results are shown in Table 6.3. The numericalresults are for a [0::1; 0::1] domain with regular triangular meshes of 2N2 triangles where



- 148 -No of Triangles 162 1458 13122 118098Scheme A 1.3038e-02 6.0654e-03 1.9130e-03 3.1350e-04Scheme B1 2.9608e-02 8.9322e-03 2.9958e-03 6.2836e-04Scheme D1 2.7022e-02 8.1619e-03 2.5298e-03 5.6399e-04Scheme B2 2.7489e-02 8.2318e-03 3.0856e-03 5.3931e-04Scheme D2 2.2515e-02 6.7277e-03 2.1070e-03 4.3124e-04Scheme C1 1.4706e-02 6.6242e-03 2.2643e-03 4.6404e-04Scheme E1 1.0873e-02 4.6134e-03 1.5714e-03 3.7217e-04Scheme C2 1.3791e-02 5.0152e-03 2.1307e-03 4.4422e-04Scheme E2 1.0941e-02 4.6399e-03 1.4616e-03 2.9217e-04Scheme F 1.4525e-02 1.3600e-02 3.6574e-03 8.9352e-04Table 6.3: Numerical results for Burgers' problemN = 8; 27; 81; 243. Again it should be stressed that the expected higher order of accuracyof the standard quadratic interpolant is not observed.6.8.3 Anisotropy test problemThe next test function is de�ned byu(x; y; t) = 34 � 14 + 4eB where B = 0:125(�x+ y � 0:75t)=vand is the exact solution to a PDE similar to that used by Zegeling [95],@u@t + 3u@u@x + 3(1:5� u)@u@y � 3v @2u@x2 + @2u@y2! = 0; v = 1:0e� 9:for t = 0:45, results are shown below in Table 6.4. These numerical results are taken from a[0::1; 0::1] domain with regular triangular meshes of 2N2 triangles where N = 8; 27; 81; 2436.8.4 Burgers' test problem IIThe next function is u(x; y; t) = 11 + eBwhere B = (x+ y � t)=v which is a nonlinear version of Burgers' problem I, see [8],@u@t + u@u@x + u@u@y � v @2u@x2 + @2u@y2! = 0



- 149 -No of Triangles 162 1458 13122 118098Scheme A 4.2894e-03 8.6585e-04 4.2829e-04 1.6442e-04Scheme B1 1.5432e-03 1.0880e-03 5.1692e-04 5.6803e-05Scheme D1 7.9691e-04 9.8026e-04 4.3545e-04 2.9333e-05Scheme B2 3.0864e-03 9.8996e-04 5.0469e-04 1.1361e-04Scheme D2 1.5938e-03 7.7450e-04 3.4175e-04 5.8666e-05Scheme C1 4.6296e-03 7.5089e-04 4.0318e-04 1.7041e-04Scheme E1 2.9110e-03 4.6010e-04 3.0802e-04 1.0715e-04Scheme C2 3.3675e-03 5.1758e-04 4.2829e-04 1.2395e-04Scheme E2 2.7892e-03 4.6586e-04 2.6117e-04 1.0267e-04Scheme E2 8.7448e-03 2.0495e-03 5.4307e-04 3.4011e-04Table 6.4: Numerical results for Anisotropy problemNo of Triangles 162 1458 13122 118098Scheme A 1.5975e-02 4.9972e-03 2.0005e-03 4.3140e-04Scheme B1 1.3198e-02 4.3993e-03 2.0350e-03 6.1499e-04Scheme D1 1.0864e-02 3.6213e-03 1.6601e-03 5.2542e-04Scheme B2 1.3639e-02 4.5462e-03 2.7271e-03 6.7450e-04Scheme D2 8.9703e-03 2.9901e-03 1.9774e-03 4.6269e-04Scheme C1 1.5841e-02 5.2804e-03 2.9710e-03 7.5680e-04Scheme E1 9.9676e-03 3.3225e-03 2.0876e-03 5.0006e-04Scheme C2 1.0976e-02 3.6587e-03 2.3489e-03 5.4759e-04Scheme E2 9.5381e-03 3.1794e-03 2.0735e-03 4.8442e-04Scheme F 3.3727e-02 1.0328e-02 2.8169e-03 8.8633e-04Table 6.5: Numerical results for second Burgers' problemwhere v = 0:0001:The time for the problem is t = 0:45 results are shown in Table 6.5. Thesenumerical results are taken from a [0::1; 0::1] domain with regular triangular meshes of2N2 triangles where N = 8; 27; 81; 2436.8.5 Abgrall's functionA complex test function with many discontinuities was also considered and theperformance of the modi�ed scheme was compared with the standard interpolation tech-niques. The function used was taken from Abgrall [1] and provides a very challengingexample. All results for this function are taken on a domain of [�1::1;�1::1] as in [1]. The



- 150 -function used by Abgrall is de�ned as followsif � is any angle, let f� bef� = 8>>>>>>>>>>>><>>>>>>>>>>>>: if r � �1=3f�(x; y) = �r sin(3�r22 )if r � 1=3f�(x; y) = 2r � 1 + sin(3�r)6if j r j < 1=3f�(x; y) =j sin(2�r) jwhere r = x� cos(�)sin(�) y and let u(x; y) be:u(x; y) = 8>>>>>>><>>>>>>>: if x � 1=2 cos(�y)u(x; y) = fp�=2(x; y)if x > 1=2 cos(�y)u(x; y) = f�p�=2(x; y) + cos(2�y)A contour plot of the solution is shown in Figure 6.13. To better illustrate theproblem encountered when using standard quadratic interpolant, Scheme A, Figure 6.14shows where the undershoots and overshoots are found, i.e. when the value produced bythe standard interpolant is outside the local range of the true function.The areas of overshoot can be seen to coincide with the discontinuities presentin the function. Both plots were produced by Xprism3, part of the Khoros visualisationsoftware suite, using 32 contour lines.The visual results displayed later, see Figures 6.15, (6.16) and (6.17), show crosssections through the function. These clearly show the absence of overshoot and undershootwhen the modi�ed interpolant is used. These graphs illustrate the ability of the modi�edinterpolant not to create any new extrema and to show the magnitude of the failings ofthe standard interpolant in this respect. The �gures again show the challenging nature ofthe function.The results compare favourably with those of Abgrall, see [1]. The modi�edscheme proposed here ensures that in the problems considered undershoot and overshootare eliminated. Abgrall does not make such a claim for his ENO reconstruction methodalthough it might be expected that this is the case. These numerical results, see Table 6.6,are taken with regular triangular meshes of 2N2 triangles where N = 8; 27; 81; 243. Again
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Figure 6.13: Contour Plot of the True Functionwe stress that the expected higher order of accuracy of the standard quadratic interpolantis not observed.
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Figure 6.14: Contour Plot of the Overshoot and Undershoot when using Standard Quad-ratic Interpolation



- 153 -No of Triangles 162 1458 13122 118098Scheme A 2.9262e-01 9.1925e-02 3.0001e-02 9.7310e-03Scheme B1 5.2601e-01 1.2606e-01 3.5235e-02 1.0542e-02Scheme D1 4.3515e-01 1.0293e-01 2.9004e-02 8.8092e-03Scheme B2 4.7890e-01 1.2153e-01 3.5812e-02 1.1009e-02Scheme D2 3.6250e-01 8.8959e-02 2.5456e-02 7.8131e-03Scheme C1 5.0248e-01 1.1867e-01 3.5556e-02 1.1025e-02Scheme E1 3.6240e-01 8.3194e-02 2.4874e-02 7.5536e-03Scheme C2 4.1424e-01 1.0056e-01 2.9981e-02 8.8636e-03Scheme E2 3.3316e-01 8.0133e-02 2.3962e-02 7.2855e-03Scheme F 8.3655e-01 2.1235e-01 5.8062e-02 1.8089e-02Table 6.6: Numerical results for Abgrall problem
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- 156 -6.9 Calculating Derivative ValuesWhen dealing with the numerical solution of PDEs the scheme needs to deal withthe discretisation of advective and di�usive 
uxes. When dealing with the di�usive termswe require some approximation of the spatial derivatives at the midpoints of the edges.Conventional methods for the construction of spatial derivative values in cell{centred schemes use the centroid values of the triangle and surrounding centroid valuesto construct the approximation. Three points allow a linear interpolant to be constructedover a triangle which can be used to give an estimate of the spatial derivatives. Thescheme by Durlofsky et al. [29] uses linear interpolants as described above to constructthese derivative values. Given that the derivative value at the edge midpoint is requiredthen the choice of the �rst two points are the centroids of the triangles sharing the edge.The third point is taken from one of the neighbours of these triangles, see Figure 6.18. Thecentroid of e, f, c or d is chosen depending upon the spatial positioning of the centroids.The triangle, formed by the three points, that has the closest to a right angle is deemedto provide the good estimate.
a b

dc

e f

Figure 6.18: Triangular Stencil for Derivative CalculationsAn alternative to the use of a linear is that of Berzins & Ware [12]. In this schemean additional point is used and a bilinear interpolant is constructed. The four points areeither abef or abcd depending on the position of the edge midpoint. When the triangle isat or near a boundary then the linear case may be used if a bilinear cannot be constructed.



- 157 -An alternative method is provided by the recovery of sensible vertex values foreach triangle. This allows the use of linear or quadratic interpolation schemes to be usedto estimate these spatial derivatives. Therefore, given a linear interpolant de�ned by thevertices of a triangle, a linear interpolant can be de�ned, see Section 6.3.2. This interpolantis expressed as f = 3Xi=1 �ifiwhere the fi are the vertex values of the triangle and �i = Li are the shape functions,where Li are the area coordinates of the point.This interpolant can be di�erentiated with respect to the two spatial coordinatesx and y to give @f@x = 3Xi=1 fi@Li@x@f@y = 3Xi=1 fi@Li@yThe area coordinates, Li, are de�ned as the ratio of areas that a point withinthe triangle divides the triangle, see Figure 6.3. These are algebraically expressed asLi(x; y) = x(yj � yk) + y(xk � xj) + (xjyk � xkyj)xjyk � yjxk + xiyj � ykxi + xkyi � yixjfor a cyclic permutation of (i; j; k) wherexjyk � yjxk + xiyj � ykxi + xkyi � yixjis twice the area of the triangle formed by the vertices of (xi; yi); (xj; yj); (xk; yk) andx(yj � yk) + y(xk � xj) + (xjyk � xkyj)is twice the area of the subtriangle Ai formed by the vertices (x; y); (xj; yj); (xk; yk) whichare associated with Li.Therefore the following expressions can be obtained@Li@x = yj � ykP@Li@y = xk � xjP



- 158 -for a cyclic permutation of (i; j; k) and P is de�ned asP = xjyk � yjxk + xiyj � ykxi + xkyi � yixjAs higher order shape functions are also expressed in terms of area coordi-nates spatial derivative approximations can also be determined. Therefore, the standardquadratic de�ned byf = f1(2L21 � L1) + f2(2L22 � L2) + f3(2L23 � L3) + f4(4L2L3) + f5(4L3L1) + f6(4L1L2)gives an approximation to the spatial derivative in the x direction as@f@x = f1@L1@x (4L1 � 1) + f2@L2@x (4L2 � 1) + f3@L3@x (4L3 � 1)+f4 �@L2@x 4L3 + @L3@x 4L2�+ f5 �@L3@x 4L1 + @L1@x 4L3�+ f6 �@L1@x 4L2 + @L2@x 4L1�with a similar expression for the @f@y term, but with the @Li@x replaced by @Li@y . The modi�edquadratic interpolant de�ned byf = f1L21 + f2L22 + f3L23 + f4(2L2L3) + f5(2L3L1) + f6(2L1L2)gives a approximation of the spatial derivative in the x direction as@f@x = f1@L1@x (2L1) + f2@L2@x (2L2) + f3@L3@x (2L3)+f4 �@L2@x 2L3 + @L3@x 2L2�+ f5 �@L3@x 2L1 + @L1@x 2L3�+ f6 �@L1@x 2L2 + @L2@x 2L1�with again a similar expression for the @f@y term.6.9.1 Numerical resultsSeveral interpolation schemes will be used to obtain the numerical results con-sidered here. These schemes are� Scheme A: The standard quadratic shape functions using the true function valuesat all six points.� Scheme B1: The modi�ed quadratic shape functions using vertex values obtainedby the one dimensional quadratic method.



- 159 -� Scheme C1: The modi�ed quadratic shape functions using vertex values obtainedby the two dimensional midpoint linear scheme.� Scheme B2: The standard quadratic shape functions using vertex values obtainedby the one dimensional quadratic method.� Scheme C2: The standard quadratic shape functions using vertex values obtainedby the two dimensional midpoint linear scheme.� Scheme D: The standard linear shape functions using the true vertex values.� Scheme E1: The standard linear shape functions using vertex values obtained by theone dimensional quadratic method.� Scheme E2: The standard linear shape functions using vertex values obtained by thetwo dimensional midpoint linear scheme.� Scheme F: The scheme of Durlofsky et al. [29] using linear interpolants constructedfrom the surrounding centroid values.� Scheme G: The scheme of Berzins & Ware [12] using a bilinear interpolants con-structed from the surrounding centroid values.Three problems will be considered, the �rst is the simple sine function de�nedin Section 6.8.1. The second is a simple Poisson equation given in [12]. The third is thecomplex function from Abgrall [1] given in Section 6.8.5.Three error analyses are calculated using a three point second order quadraturerule, [23]. The points located at the edge midpoints, each with a weighting factor of 1=3.This scheme is used as the edge midpoints are the points in the domain that the numericalsolution process requires the spatial derivative values.6.9.2 Simple sine functionThe �rst problem is that given in Section 6.8.1, a simple sine function. Theresults are given for the spatial derivatives in the x direction only as the function is sym-metric. This is not the case for the results provided by the linear and bilinear interpolantsconstructed from the centroid of the triangle and the surrounding centroid values and



- 160 -thus both the x and y are shown. The results are for a [0::1; 0::1] domain with a regulartriangular mesh. Each mesh has 2N2 triangles where N = 8; 27; 81 in these results.No of Triangles 162 1458 13122Scheme A 8.9534e-04 9.9610e-05 1.1068e-05Scheme B1 4.1186e-02 1.2594e-02 4.0520e-03Scheme C1 4.1108e-02 1.1769e-02 3.7001e-03Scheme B2 3.9110e-02 1.2266e-02 4.0168e-03Scheme C2 4.2077e-02 1.2645e-02 4.0580e-03Scheme D 4.3077e-02 1.4337e-02 4.7767e-03Scheme E1 4.6847e-02 1.4097e-02 4.4824e-03Scheme E2 4.2917e-02 1.2776e-02 4.0708e-03Table 6.7: Numerical derivative results for sine functionNo of Triangles 162 1458 13122Scheme F (x) 9.3348e-02 3.1835e-02 1.0713e-02Scheme F (y) 9.8595e-02 3.2729e-02 1.0945e-02Scheme G (x) 5.5201e-02 1.9550e-02 6.1416e-03Scheme G (y) 5.4101e-02 1.9495e-02 5.7389e-03Table 6.8: Numerical derivative results for sine function using schemes F & GThe expected order of convergence for the quadratic with the true values at thevertices is observed, however, this not the case for the quadratic interpolants using theconstructed values. The linear interpolant using the true values also gives the expectedorder of convergence with the linear interpolant using the constructed values giving asimilar error. In fact the linear interpolants, schemes E1 & E2 appear to give a similarerror to the quadratic interpolants with less computation.6.9.3 Simple Poisson functionThe second function is a simple Poisson equation given by the analytic solution.u(x; y) = 3ex+y(x� x2)(y � y2):The results are given for the spatial derivatives in the x only except again for thoseprovided by schemes F & G. The results are given for a [0::1; 0::1] domain with a regulartriangular mesh. Each mesh has 2N2 triangles where N = 8; 27; 81.



- 161 -No of Triangles 162 1458 13122Scheme A 1.3466e-02 1.5050e-03 1.6731e-04Scheme B1 1.9822e-01 7.7606e-02 2.7417e-02Scheme C1 1.7993e-01 7.0594e-02 2.4957e-02Scheme B2 2.5103e-01 1.0173e-01 3.6322e-02Scheme C2 2.3801e-01 9.4077e-02 3.3307e-02Scheme D 1.2303e-01 4.0906e-02 1.3604e-02Scheme E1 2.2064e-01 8.5316e-02 3.0084e-02Scheme E2 1.6547e-01 6.8723e-02 2.4748e-02Table 6.9: Numerical derivative results for Poisson functionNo of Triangles 162 1458 13122Scheme F (x) 2.6829e-01 9.6712e-02 3.2731e-02Scheme F (y) 3.0672e-01 1.0403e-01 3.4906e-02Scheme G (x) 1.7759e-01 6.3530e-02 2.0881e-02Scheme G (y) 2.0738e-01 7.4691e-02 2.2735e-02Table 6.10: Numerical derivative results for Poisson function using schemes F & GAs expected, the quadratic interpolant using true solution values at all six pointsoutperforms the rest. The linear interpolants also give comparable results to the quadraticwhen using constructed vertex values.6.9.4 Abgrall's function [1]The third problem is that given in Section 6.8.5, a complex problem from Abgrall.The function has many shocks and discontinuities. The domain considered is [�1::1;�1::1]with a regular triangular mesh of 2N2 triangles where N = 8; 27; 81. The function is notsymmetric so the x and y derivative estimates are shown. The x and y results will begiven in separate tables for clarity and the results from schemes F & G will be shownseparately.The linear interpolation schemes E1 & E2 give similar errors to the quadraticinterpolants. The triangular based scheme also seem to be comparing favourably with theschemes currently used in the numerical process, F & G.



- 162 -No of Triangles 162 1458 13122Scheme A (x) 1.1063e+01 9.7435e+00 9.5171e+00Scheme B1 (x) 9.0377e+00 5.9248e+00 4.8047e+00Scheme C1 (x) 9.7830e+00 7.0967e+00 6.0303e+00Scheme B2 (x) 1.1478e+01 8.1140e+00 7.1376e+00Scheme C2 (x) 1.0493e+01 7.8437e+00 6.8951e+00Scheme D (x) 1.0064e+01 8.6168e+00 7.6777e+00Scheme E1 (x) 7.5616e+00 4.2109e+00 2.6671e+00Scheme E2 (x) 9.4244e+00 6.4923e+00 5.2328e+00Table 6.11: Numerical derivative results (x direction) for Abgrall functionNo of Triangles 162 1458 13122Scheme A (y) 5.2240e+00 4.8617e+00 4.9823e+00Scheme B1 (y) 6.3855e+00 3.9724e+00 3.0443e+00Scheme C1 (y) 5.5467e+00 3.4395e+00 2.8341e+00Scheme B2 (y) 8.4761e+00 6.0752e+00 5.0813e+00Scheme C2 (y) 6.0580e+00 3.8589e+00 3.3032e+00Scheme D (y) 6.4901e+00 4.5566e+00 3.7463e+00Scheme E1 (y) 6.4901e+00 4.5566e+00 3.7463e+00Scheme E2 (y) 5.6615e+00 3.1276e+00 2.3939e+00Table 6.12: Numerical derivative results (y direction) for Abgrall function6.10 SummaryWhen looking at calculating solution values for convection{dominated PDEs, thisnew method based on modi�ed quadratic shape functions will not create any new extremain the data since they are always positive and sum to unity. The method appears to workas well as a standard quadratic interpolant when the nodal values are created in both casesby interpolation, as in Section 6.5. In the applications of interest, the new method hasthe same rate of convergence on di�cult problems i.e. those with steep gradients, as anunmodi�ed quadratic. It is important to stress that for the situation considered here theunmodi�ed quadratic cannot be used directly as solution values at the vertices of trianglesare not known. The modi�ed quadratic has the important advantage that the interpolantcreated will be bounded by the maximum and minimum function values used to de�ne it.The interpolant can also be used an an essential aid to the visualisation of the problem,



- 163 -No of Triangles 162 1458 13122Scheme F (x) 1.4653e+01 1.2955e+01 1.1305e+01Scheme F (y) 1.3806e+01 1.0916e+01 9.3596e+00Scheme G (x) 1.1221e+01 9.3464e+00 8.5086e+00Scheme G (y) 1.0127e+01 7.3450e+00 6.3749e+00Table 6.13: Numerical derivative results for Abgrall function using schemes F & Grespecting the physical properties of the underlying data. These factors have been a keyrequirement when considering the problem class the interpolant is designed for.The interpolant can also be used to give spatial derivative values over each tri-angle only using values local to that triangle. This is compared to current techniquesfor obtaining spatial derivative values in cell{centred schemes. Such schemes use the sur-rounding centroid values to construct interpolants. Numerical testing shows favourableresults when comparing these two methods.



- 164 -Chapter 7Summary and ConclusionsThe previous chapters in this thesis have outlined the various components of aprototype Problem Solving Environment (PSE) surrounding a general purpose PDE solverfor two dimensional convection-dominated problems. In this chapter an attempt will bemade to draw together what has been learnt so far, to try and make an initial assessmentof the PSE by considering a real problem, and to make some conclusions.In Chapter 2 of this thesis the role and nature of PSEs in scienti�c computingwas examined. A PSE was seen as trying to provide a bridge between the gap of those whowish to take full advantage of the tools available in the scienti�c computing communityand those who are actually able to use these tools in their raw state. A PSE was thenshown to need to satisfy one or more of the following conditions� To ease the problem solution process.� To reduce the overall time spent on the solution of a problem.� To be a more natural or convenient way to solve a problem.The focus of this thesis then moved to look at the area of the numerical solution ofpartial di�erential equations (PDEs) and in particular two space dimensional problems.Several numerical codes capable of solving such problems were examined. The user-friendlyenvironments surrounding these solvers were outlined. Several of these may be consideredto meet the criteria of PSEs. The aims and driving forces behind these PSEs were examinedand, whilst diverse, the systems constructed can be seen to ful�ll the requirements of aPSE. However, the time, e�ort and expertise expended on such PSEs is large, for example



- 165 -the //ELLPACK systems [47] and the Visual PDEQSOL system [86]. The way forwardis seen by many, [82], as utilising and integrating existing scienti�c software tools andtechniques to construct portable generic software tools as has been shown in Chapter2. These can be used to aid in the solution of two dimensional convection-dominatedPDEs. In order to construct these generic software tools suitable building blocks needto be found. These building blocks should be widely used, portable and familiar to thescienti�c computing community. Tools that meet these criteria were discussed in Chapter2 and will be critically examined later in Section 7.2.Chapter 3 looked at the numerical solution of convection-dominated PDEs in twodimensions and the techniques used to solve these problems. The SPRINT2D numericalsoftware, based on the earlier SPRINT package [9], is a general purpose solver for twodimensional convection-dominated PDEs, was taken as a basis for this discussion. Theinput requirements for SPRINT2D was shown to take the form of a driving program. Thiswas shown to be common for numerical solvers in this area.The next three chapters looked at the construction of software tools that can beused to aid in the solution of two dimensional PDE problems. Chapter 4 looked at a visualspeci�cation tool to de�ne the numerical domain required. Chapter 5 at a visual problemspeci�cation system where a PDE can be speci�ed in a quick and natural way. Both thesetools deal with the problem speci�cation side of the overall solution process. Chapter 6 wasconcerned with interpolation routines designed to compliment the numerical solution ofPDEs. These can be used within the numerical solution process itself to recover solutionvalues or used as an aid to the visualisation of the solution. These three areas will bediscussed in more detail in the next section.7.1 Review of PSE ComponentsThis section will give a review of the components of the PSE discussed in thisthesis; the visual domain speci�cation tool for constructing geometries in two dimensions;the visual problem speci�cation systems for specifying modules and parameters used withinthe numerical code and, �nally, interpolation routines designed to respect the physicalnature of the solution. In particular this section will aim to highlight what can be learnedfrom constructing PSE components in an open environment working along side users anddevelopers of numerical software.



- 166 -7.1.1 The Visual Domain Speci�cation ToolWhen solving two dimensional PDE problems, the numerical code requires amathematical representation of a domain over which the problem is to be solved. Meshgeneration packages provide this model but, in turn, they require a numerical representa-tion of the domain. This representation is usually carried out manually, a pen and papermethod is used to draw the domain, this is hand converted into suitable input for the meshgeneration software. This is a simple enough task but prone to error and time consuming.The simpli�cation of this task for the user was seen as an advantage. This was achievedby providing a visual tool to replace the pen and paper and a post-processing system toreplace the hand conversion. The visual domain speci�cation tool (VDS tool) providedthis. The layout and form of the VDS tool has developed over time, to best focus thisdevelopment, feedback from the users of the tool were included. In this way the VDS toolwould meet the users needs and perform the tasks the users required of such a tool. Thiswas an important part of the VDS construction process and ensured that the tool didwhat the users needed rather than restricting or imposing its own nature onto the users.The VDS tool also needed to be generic, in order for it to be included in a PSE.It could not a�ord to be tied down to one particular mesh generation package. The visualpen and paper part should be as in real life. The geometry constructed should be equallyapplicable to any mesh generation package. The visual interface part of the tool stores thedomain in a generic format, the post-processing system is responsible for converting thisinto suitable input for mesh generation software. The tool was shown to produce validinput to two mesh generation packages and to be capable of producing input for othersthis was another key part in the construction of the VDS tool.The VDS tool and post-processing system needed to be portable, the visualinterface of the tool utilises the X Windowing system [54] and the OSF/Motif Widget set[94] to obtain this. The internal aspects of the tool and the post-processing system usedC in an UNIX environment to gain this portability. This is essential for the VDS tool beconsidered part of a PSE.The VDS tool does provide a simple but powerful tool for specifying the numericaldomain required by the numerical code. The VDS tool simpli�es the construction process,provides a more natural way to specify the domain and its use leads to a considerable



- 167 -decrease in the time spent on this part of the speci�cation process. In this way the VDStool is shown to be a valid part of any PSE surrounding numerical code for solving twodimensional PDE problems.7.1.2 The Visual Problem Speci�cation SystemMany scienti�c software packages require the user to construct a program thatwill initialise and drive the code. The use of these driver programs is common. This is truewhen looking at the numerical solution of PDEs. The usual method is to �nd an existingprogram and modify it or to construct a program from scratch. Both are error prone,time consuming and require the user to understand the programming language used. Oneof the aims of PSEs is to allow those who know about the problem to be able to solve it.The removal of this need to manually create a driver program, or at least to create a wellstructured template which the user can use, was one of the main aims of the VPS system.To make this speci�cation process easier, quicker, less error prone and more natural werealso of prime concern.As with the VDS tool, described in the previous section, the VPS system mustaim not be tied exclusively to the code. The generic problem class of two-dimensionalPDEs was then used as the framework upon which to build the interfaces. The interfacewas split into four logical groupings, the equation, the numerical domain, the spatialdiscretisation method and the nature of the problem. The requirements of numericalsoftware in this area was matched to these groups. An open design environment talkingwith the developers and users of the code helped to determine these groups.As well as the generic structure of the VPS system the visual interfaces andpost-processing systems needed to be portable. The visual interface was written in X andMotif for this purpose, the remaining programming was in C on a UNIX platform. Otherpackages used needed to be widely used and accessible to the scienti�c computing com-munity, the Maple symbolic algebra package [22] and the LATEX[61] document processingtool were also used. The portability of these tools will be examined later in Section 7.2.The VPS system o�ers sensible default values for the information that is required.This is essential as it allows novice users to construct a valid driving program, againthe developers and users of the numerical code provided essential advice when choosingthese values. It also ensured that the numerical code has all the information it requires.



- 168 -For the more experienced user, the VPS system is by no means complete, the scope ofproblems that can be successfully solved is small. More complex problems may requireuser modi�cation to the driver program, however, the VPS system provides a suitabletemplate driver program with which the user can work.This gap between what can currently be done in this area and what is requiredto solve a more complex problem is highlighted in Section 7.3.1. Despite these limitationsthe VPS system simpli�es the speci�cation process for the problem. It provides a morenatural way to specify the problem and can eliminate the need for explicit programming.It provides sensible default values, allowing novice users to use the system. It also givesa considerable saving in the time spent in this part of the speci�cation process. Theopen design environment under which this was done utilised the expertise of users anddevelopers of the numerical code to great bene�t.7.1.3 Quadratic Interpolation for Triangular Cell-CenteredFinite-Volume SchemesWhen solving two dimensional convection-dominated PDEs great care must betaken to avoid introducing physically unreal values into the solution. For example phys-ical values such as density should always be positive. The solution to PDE problemsare often characterised by shocks and discontinuities present in the solutions. NumericalPDE solvers take great care to respect the nature of the solution, this is a prime concern.However, such conditions can lead to undershoot and overshoot around these features ifstandard interpolation techniques are used, such interpolants fail to respect these proper-ties, in e�ect destroying the e�orts of the numerical solver.In Chapter 6 a triangular based interpolant was described. The interpolantachieved the desired properties by bounding the values it produced between the maximumand minimum values used to de�ne it. This was made possible by modifying the standardquadratic shape functions such that they were always positive and summed to unity. Inthis way any interpolated solution value in the triangle will be bounded. This will alwaysrespect the nature of the solution and in doing so compliment the numerical code. Thiscan be used during spatial remeshing to recover solution values and in the visualisation ofthe solution.The interpolant requires six functions values for each triangle, the three edge mid-



- 169 -points and the three vertex values. As several numerical schemes produce only centroidvalues and edge-midpoint values this chapter also looked at a way to construct sensiblebounded vertex values from these known values. This took one of two forms a one dimen-sional quadratic approach or a two dimensional linear scheme. Numerical results showthat similar errors are obtained when comparing the new method with standard interpo-lation methods. Graphical results show that undershoot and overshoot when using thenew method were eliminated.Another area where interpolation techniques are used in the numerical process isto determine spatial derivative values. The interpolant allows a way for spatial derivativevalues to be constructed from solution values local to each triangle. Current techniquesuse surrounding values to gain these estimates. This can cause problems if the triangle isclose to a discontinuity. Again numerical results show favourable results when comparedwith current techniques.The interpolant described �ts into the general PSE framework by providing anaid to the solution process and a more natural way for the user to view the solution. Inthis way it can be seen to add to the overall solution process. It can also reduce the timespent in the solution process by preserving the nature of the solution data thus allowingthe user to easily interpret the results.7.2 Portability IssuesIn this section the portability of the various components described above will beexamined. One of the aims of these software tools was to construct them from highlyportable building blocks. This was achieved by using industry standard or de-facto stan-dard software tools and programming languages. This section will give a brief descriptionof these building blocks and discuss how portable they are, along with problems that mightoccur and possible remedies.As mentioned earlier the aim is to produce software tools that are generic innature and also portable. When looking at graphical user interfaces the X Window system[54] stands alone in this area. The X Windowing system is an industry standard and isavailable in a wide range of hardware, from top of the range workstations to personalcomputers. Using X as a backbone to the system gives the portability desired of thesoftware tools. The X system provides various libraries and toolkits that allow the user to



- 170 -construct portable graphical interfaces. Sitting on top of the X Windowing system is theOSF/Motif widget set [94]. The Motif Widget set is one of many widget sets that sit on topof the facilities o�ered by X, allowing easier construction of graphical user interfaces. TheMotif widget set is a a commercial widget set developed by the Open Software Foundation,it is widely-accepted and is also available on a wide variety of hardware platforms.The software was developed on a UNIX platform using the C programming lan-guage. All UNIX machines will have a C compiler, both UNIX and C are widely usedand it is unlikely that the use of these will create any serious portability problems. Thenumerical code considered here also requires a FORTRAN compiler, this is again widelyavailable. It is possible however to install and run the interface software on one platformand then to transfer the driver program and numerical mesh speci�cation �le onto anothersystem capable of running the numerical code.The remaining building blocks may present more problems when looking at theportability of the system. The �rst is the use of the Maple symbolic algebra system [22],this is used to convert user input into C functions for the driver program and also toproduce LATEX output, [61]. The ability to switch o� the typesetting facilities of the toolsis possible, therefore the use of the LATEX system is not an essential prerequisite. Mapleis one of many symbolic algebra systems available, many of which have similar routinesto produce functions in a programming language or instructions for typesetting programs,see Chapter 2. It would also be feasible to utilise another symbolic package to convert theusers input to a programming language. The tools to do this are written in such a waythat this would simply involve changing two routines in the post-processing system.The �nal two tools that are used are for the visualisation of the results fromthe numerical code. At present the code uses a visualisation package based on IRIS GL,[91]. This package may be switched o�. The system also has the ability to produce�les compatible with the IRIS Explorer visualisation system [77], this is not required tosuccessfully run the numerical software.In summary, the majority of the system is highly portable, however, problemsmay occur with the symbolic algebra system Maple and the typesetting system LATEX.The latter is not required for the code to produce a driver program but the former is,although the substitution of another symbolic package is possible.



- 171 -7.3 A Critical Evaluation of the PSEIn this section the PSE described in this thesis will be critically examined. Thiswill be done by looking at a combustion problem relating to the modelling of knock in carengines. This problem is taken from [14] where the SPRINT2D numerical code discussedin this thesis is used to solve this problem.It must be stated that in order to solve this problem additions were made to theway the numerical software is driven from those given in Chapter 3. The evaluation willtake the form at looking at the gaps between the PSE outlined and the requirements ofthis combustion problem. It is hoped that this evaluation will show that whilst the PSEhas been shown to allow users to solve simple PDEs there is still a large gap between whatcan currently be o�ered and what the ultimate aims of a PSE in this area should be. Itwill also be shown that in the case of many of the shortcomings the additions required toremedy them are non-trivial.The rest of this section will �rst describe the combustion problem. The remainderwill outline the main areas where additions to the driver program were made, the reasonsfor these changes, and possible enhancements to the software tools in the PSE. It must bestated that these changes will apply to the visual problem speci�cation interfaces discussedin Chapter 5. It is this part of the speci�cation process that is perhaps most closely linkedto the numerical software. It is also encouraging that the other areas of the PSE, thevisual domain speci�cation tool and the interpolation routines, remain unchanged. Thiswould seem to highlights the generic nature of these components.7.3.1 The Knock-Modelling ProblemThe problem is speci�ed by a system of �ve PDEs. The �rst four represent theconservation of mass, momentum and energy. The �fth is a species equation dealing withburning fuel. @u@t + @f@x + @g@y = S



- 172 -where u = 0BBBBBBBBB@ ��u�vE�z 1CCCCCCCCCA ; f = 0BBBBBBBBB@ �u�u2 + p�uvu[E + p]�uz 1CCCCCCCCCA ; g = 0BBBBBBBBB@ �v�uv�v2 + pv[E + p]�vz 1CCCCCCCCCA ;S = 0BBBBBBBBB@ 0000��s exp �� �1� 1T �� 1CCCCCCCCCAwhere T = p=� and � = 20:0.The variable �; u; v; p are the density, velocities in the x and y dimensions andthe pressure, z represents the scaled fuel concentration. The energy E is de�ned by theequation of state E = p(
 � 1) + �u2 + �v22 + ��zwhere 
 = 1:2 and � = 8:0.The geometry of the problem and the initial conditions for the problem are givenin Figure 7.1. The irregular solid line represents the initial position of the 
ame front. Thisis obtained from experimental data. The dotted concentric circles indicate temperaturehot spots which will lead to autoignition. These will cause pressure pulses that will travelacross the cylinder and lead to knock. The four numbered points on the circumferenceof the cylinder are pressure transducers where pressure histories from experiments areavailable.7.3.2 Solving the Knock-Modelling ProblemThe following section will highlight the gaps between what can currently beo�ered by the PSE described here and the way in which the developers of the numericalcode are solving this practical problem. There are several areas discussed here from thenumerics of the solution process to the use of new visualisation routines to view the results.
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- 174 -System of EquationsThe �rst major step up from the current state to solving complex problemsis the ability of the system to handle systems of equations. This issue has been brie
ytouched upon when describing the equation interface in Chapter 5. The combustion knock-modelling problem is de�ned by a system of �ve PDEs, the ability for the user to entersystems of equations in a natural way is an obvious extension to the PSE.Initial ConditionsThe initial conditions for the combustion knock-modelling problem are morecomplex than the form allowed in the PSE. The initial conditions cannot be speci�ed bya mathematical function but are speci�ed on a triangle by triangle basis. These are takenfrom camera data. The driver program for this problem reads in these results from adata �le. This routine involves approximately 450 lines of code. It is not easy to see howthis may be done visually in an e�ective way. One possible way would be to extract theinternal representation of the numerical domain from the numerical code and allow theuser to specify a triangle or group of triangles and specify the initial conditions of theunknowns. Another way would be to perhaps simply display the name of each triangleand then provide a template �le for the user to work with. Both methods would requirethe PSE to communicate with the numerical software and extract information about theinternal representation of the numerical mesh.Numerical DomainAs the initial conditions are taken from observational data, at the start thereis no error present. However, numerical errors will quickly appear at the location of the
ame front, see Figure 7.1. Heavy re�nement of the computational mesh will be required.The ability to instruct the numerical code to re�ne around these areas is required. Thisis also true for areas where other phenomenon have been observed in experimental runs,or are likely to occur. To combat this the numerical code has been modi�ed to allow theincreased mesh re�nement around a speci�c location. The user has the ability to specifythe x and y coordinates of the point and a re�nement level. The user can also allow thecode to do one of the following� Dere�ne this area when the surrounding area has reached a similar re�nement level.



- 175 -� Re�ne the initial mesh to this level then allow normal spatial adaptivity routines tore�ne/dere�ne when necessary.The addition of these new functions to the numerical software would appear to lend itselfto a visual interface. The user could view the numerical domain, with or without a mesh,and then click on a speci�c location. A popup could then request the level of re�nementwhen the code is allowed to dere�ne.Riemann SolverPerhaps the largest problem faced with producing a driver program capable ofgiving a valid solution is that of the Riemann solver. The problems seen here have alreadybeen highlighted in Chapter 5. The current method used can perhaps be best describedas naive. A central di�erencing scheme is employed which ignores all the directional in-formation about the 
ow. A naive Riemann solver can lead to a poor solution and maybreakdown with complex problems. For the combustion knock-modelling problem theRiemann solver function within the driver program is approximately 650 lines of code.The Riemann solver took an experienced user of the numerical software with a full un-derstanding of the numerical processes involved about 5 days to construct. This is frominitial theory via an intermediate one dimensional problem to the �nal version used in thetwo dimensional problem. It is easy to see that this is not a trivial task, often requiringsymbolic manipulation of the equations.It is perhaps this area that presents the greatest barrier to the construction of,what might be described as, a complete PSE surrounding numerical codes using the �nitevolume method. Much can be achieved by providing the users with a template driverprogram and automating much of the speci�cation process. However, for problems thatrequire more complex Riemann solvers the user is still required to construct an appropriatefunction.Switch O� Di�usionAs the combustion knock-modelling problem has no di�usion terms then thenumerical code can be instructed to switch o� that part of the calculations. This functioncould easily be added to the visual speci�cation system or be deduced from the equationspeci�cation part.



- 176 -Operator SplittingA feature added to the numerical code in order to solve this problem much moree�ciently is operator splitting. When problems containing chemistry and 
ow terms areencountered the PDEs that model the 
ow can often take on the characteristics of thechemistry system. The problem here is that the chemistry requires the use of an implicitODE solver. Typically implicit solvers use linear algebra to solve non-linear systems andthis can be very expensive in terms of computational power. Some savings may be madeif the structure of the ODE system is exploited or iterative methods are used but thereis still a substantial overhead associated with such solvers. Explicit ODE solvers aremuch more e�ective when looking at 
ow problems, but have problems when dealing withthe chemistry terms as the stability of the system limits the step size. In general, thechemical reactions will operate on a much smaller time scale than the 
ow reactions. Thisimplies that chemical reactions inside a cell (or triangle) is much more important than theinteraction between 
ow and chemistry. It is therefore possible to ignore the chemistry-
ow interaction and use an explicit ODE solver which treats the chemistry terms implicity.This technique is known as operator splitting, see [14] for more details. This processresults in a modi�ed \explicit" scheme that is capable of handling the chemistry termsbut performs much more e�ciently than a fully implicit scheme. It must be noted thatthis operation does result in a splitting error being introduced into the solution of thenonlinear equations that may limit the rate of convergence or the accuracy that can beachieved, [14]. At present this splitting is done manually, however, it may be possible forthis to be done numerically within the code. If this is the case then this may be switchedon or o� in the VPS tool.Output RoutinesSeveral new output routines have been constructed for this problem. An X pro-gram providing contour plots of the solution has been constructed. There has also beenother new output routines, created to mimic the results that can be obtained by ex-perimental results. These include producing results at the pressure transducers locatedaround the circumference of the cylinder. The pressure results can also be collected alongthe circumference of the cylinder, both are measured when experimental results are un-dertaken. The �nal output routine to mimic the experimental results is that of particle



- 177 -tracking. In experimental runs, pepper corns are placed in the cylinder and tracked fromcamera produced results. The numerical code therefore allows the user to place a particleat a location and track its movement. All these output routines are very much problemdependent.SummaryIn this section the solution of a complex problem such as a combustion knock-modelling problem is considered. The requirements of the numeric code to solve thisproblem have been highlighted and the gaps between this and what can be currentlyo�ered by the PSE. In some areas, as the code evolves, the additions to the tools in thePSE are simple. In other cases the gaps seem vast without an easy solution or a knowledgebase upon which to build. One good example of this is the Riemann solver.7.4 ConclusionsIn this thesis we have looked at PSEs in scienti�c computing. There exists severaldi�erent views and di�erent perspectives, about the form and nature of PSEs which havechanged over time. The aims of PSE system builders have changed, however, is it possibleto combine many viewpoints, to give the essence of what a PSE should do. A PSE isprobably best viewed as an enhancement to the problem solving process, a bridge betweenthose who wish to use the available facilities o�ered by modern scienti�c computing andthose who can actually use them. The advantages a PSE can bring are to reduce the timespent on the total problem solving task, to provide a more natural or more convenient wayto specify and solve the problem and to understand the results. The PSE should enhanceand clarify this process. The view of a PSE as a large complex system has perhaps changedto the opinion that PSEs are best de�ned by a collection of scienti�c computing tools whichcan be combined e�ectively.In this thesis PSEs in the area of the numerical solution of two dimensional partialdi�erential equations have been considered. There are again a wide variety of PSEs in thisarea, most being heavily problem oriented. Many numerical codes in this area have user-friendly environments surrounding them. Some of these environments are both complexand powerful, however, these tend to be expensive in terms of time and e�ort spent ontheir development. Two such examples of these are the //ELLPACK system [47] and the



- 178 -Visual PDEQSOL system [86]. The way forward for PSEs is seen as utilising existingtechnologies to form a collection of tools which can be combined to form PSEs, see [82],two good examples of this are the RPI system and the NAG/AXIOM system. All of thesesystems aim to enhance the problem solving process and provide powerful problem solvingtools. The aim here was to abstract the ideas presented by these PSEs and to look at amore generic approach for the construction of PSEs in this area. The utilisation of suitablesoftware packages and systems as building blocks showed how to provide portability. Theuse of industry standards such as the XWindowing systems and other widely used scienti�ctools helped to achieve this. The inclusion of the end users of the PSE and developers ofthe scienti�c code which the PSE surrounds helping to focus these e�orts. An open designenvironment essential to make best use of the time and resources available.The question posed is; is it possible to do this ? In order to demonstrate that itis possible this thesis has looked at one general purpose numerical solver and attempted toconstruct tools that are suited to the generic solution process. The aim was, not to let thecode take over and simply produce a user-friendly environment for the code. This has beeneasier for some areas than others. The Visual Domain Speci�cation (VDS) tool describedin Chapter 4 and the Interpolation routines in Chapter 6 perhaps do achieve this. Whenlooking at the Visual Problem Speci�cation (VPS) system described in Chapter 5 it is notas clear that this has been achieved. The very nature of this system and the problems hasforced a greater interaction with the numerical code.The thesis has looked at the construction of tools and systems that can be con-sidered as generic tools which stand around numerical code. Visual user interfaces arecombined with post-processing system for problem speci�cation tools such as the VDStool and the VPS system. The interpolation routines are designed for the problem class torespect the nature of the problems. These go some way to form a PSE for the numericalsolution of PDEs in two spatial dimensions. In this respect the aims have been met. Thetools can enhance the solution process, reduce the time spent and provide a more naturaland convenient way to solve the problem. The open nature of the design environmenthelped in this task.Whilst these aims have been met it is easy to see that this is only part of theway to a complete PSE, there is still a long way to go. There are still many di�cult areaswhen looking at the problems that users wish to solve, the combustion knock-modelling



- 179 -problem described in this chapter highlights the areas where the numerical software itselfneeds modifying to solve such problems. The di�culties faced when experienced usersuse the numerical software; such as constructing a Riemann solver and inputting initialconditions show that there are still di�cult tasks to be performed before we gain goodresults. As understanding in these areas increases the PSEs can develop alongside thenumerical code, the advantages that an open design environment bring is important inthis respect.This thesis has shown that despite the limitations much can still be achieved.Tools with a generic nature combined with post-processing systems can be constructed.These tools can then be enhanced and expanded. It is possible to utilise current scienti�ccomputing technology to build software tools and packages that when combined forman easy-to-use layer surrounding complex computational code. This layer can help bothnovice and experienced users to better utilise their time, e�orts and knowledge, even if thelayer provides only partial help for di�cult problems. Inclusion of users and developersin the design process of such tools can help to focus the development of the PSE and thetools it encompasses.



- 180 -Appendix AUsers Guide and Help for Xdesign(VDS Tool)A.1 IntroductionThe Xdesign tool is designed to help the user quickly and easily to create ageometry speci�cation for a mesh domain �le. The tool is an interactive graphical userinterface that produces a numerical domain speci�cation �le. This users' guide will explainthe features of the Xdesign tool that allow the user to produce a domain speci�cation �le.The guide will also explain the output �le format and provide the user with advice on howto edit the �le if required.The Xdesign tool consists of three main parts, the Drawing window (right win-dow), the Canvas window (left window) and the Control panel (bottom part of tool).The drawing window provides the user with an area where a geometry can bespeci�ed quickly and easily using the mouse as an input device. The canvas window allowsthe user to see the resulting geometry meshed with an additional level of re�nement. Thecontrol panel provides several buttons and labels which give the user control of the tool.Each of these will be described in detail in this guide and an example user session is given.A.2 The Control panelThe Control panel consists of several buttons that when pressed will a�ect thebehaviour of the tool. The actions of the buttons are described below.



- 181 -� The Quit Button This will terminate the Xdesign tool.� The Clear Button This will reset the Xdesign tool to the default state, all windowswill be cleared, the drawing shape will be set to Line and the Grid will be switchedon. The default coordinates for the drawing window are [0.0{5.0, 0.0{5.0] with thedefault grid lines at 0.5 intervals in the x and y direction.� The Refresh Button This will redraw the content of the drawing window and thecanvas window.� The Shape:Line/Arc Button This will toggle the drawing shape between Lineand Arc. To de�ne a line the two end points are needed. When the Shape typeis set to line the application will rubber-band a line from the current mouse pointerposition and the last user de�ned point, whenever relevant. Three points are neededto specify an arc, the start point, an interior point and the end point. The drawingof the arc will not be rubber-banded.� The Grid:On/O� Button This will switch the grid in the drawing window on ando�.� The Snap:On/O� Button This will switch the snap to grid points mechanism onand o�. When the snap is switched on the creation of new points will automaticallybe placed at the point of the nearest intersection of the grid lines.� The Snap All To Grid Button This allows the user to draw with the snap o�,then at any point in the drawing or editing session, move all the points to the nearestgrid intersection point. This facility allows the user to change to grid and then snapthe points to the new grid.� The Show Points Button This switches On and O� the markers to show thelocation of the user de�ned points.� The Size { and Size + Button This buttons allow the user to increase anddecrease the size of the drawing window. The window itself is sized according to theration of the x and y coordinates speci�ed by the user. These buttons will resize thewindow and keep this aspect ratio.



- 182 -� The Mesh Design Button This button activates a popup that allows the user tospecify the name of the domain �le the geometry will be speci�ed in. If the KSLAoption is chosen it will also automatically pass the �le to the Canvas window to bedisplayed. It also provides the user with the option to select the mesh status. Themesh status can be either mesh simple, mesh hole or mesh interior. The variousoptions are explained later in the section on how to edit the speci�cation �le. If theGEOMPACK option is chosen then the mesh status is set to Simple and a popup willprompt the user for the additional information required by GEOMPACK to meshthe domain.� The Co-ords Button This button activates a popup that allows the user to specifythe coordinates of the drawing area. The window the user actually draws on has a[0.0{1.0, 0.0{1.0] coordinate scale. The user then speci�es a bottom left coordinatepair and a top right coordinate pair which are used to transform these coordinatesto the user speci�ed coordinates. The Co-ords box also allows the user to specifythe x-increment and y-increment for the grid lines.� The Load File Button This button activates a popup that prompts the user forthe name of a previous domain speci�cation �le. This �le is then loaded into theXdesign tool, the tool is set to edit mode and the user may then edit the points.When loading in a �le the user may explicitly state the top right and bottom leftcoordinate pairs or the computer will attempt a best guess from the data in the �le.This option is set by pressing the Specify Co-ords button in the load �le popup.This will toggle between AUTO and USER.� The Points From File Button This button again activates a popup and promptsthe user for a �le name. This allows the user to read in a �le containing x andy coordinate pairs. This enables the user to use coordinates generated by otherprograms or mathematical functions.� The Help Button This provides the help on how to use the Xdesign tool.� The Quick Help Button This provide a quick help on the operations of the mousebuttons during the drawing and edit stages.



- 183 -� The Show Info Button This can be set to On or O�, when On the names associatedwith the boundary edges will be displayed� The X and Y labels These labels give the x and y position of the mouse pointerin the drawing window.A.3 The Canvas WindowThe canvas window shows the resulting mesh produced by passing the domainspeci�cation to the mesh generator. The mesh shown has an additional level of re�nement.A.4 The Drawing WindowThe drawing window allows the user to specify a geometry using the mouse. Italso allows the user to edit a geometry depending upon the mode of the drawing window.The drawing window can exist in one of two modes, the drawing mode and theediting mode. The initial mode of the window on startup is the drawing mode the editingmode is switched on by the user �nishing the geometry. The user can create new pointsvia mouse button presses and build complex geometries with lines and arcs.The editing mode allows the user to change the spatial position of the pointsused to specify the geometry. The commands for the drawing window in both modes aregiven below.A.4.1 In Drawing Mode� The Left Mouse Button will create a new point at the current mouse pointer position.All new points are created with this button.� The Middle Mouse Button will close a region by joining the last and �rst userspeci�ed points in that region. The window will remain in edit mode.� The Right Mouse Button will close a region and will switch the window into editmode.The current position of the Mouse Pointer, in the coordinates of the drawingwindow, is shown in the bottom right hand corner of the tool.



- 184 -A.4.2 In Edit Mode:-� The Left Mouse Button will activate a popup that will give the x and y coordinatesof the point nearest to the mouse pointer when the button was pressed. The usermay then change these x and y coordinates and the location of the point will bechanged. The geometry will be redrawn re
ecting the position of the new point.� The Middle Mouse Button will Delete the nearest point to the mouse pointer. Thismay not be allowed if it is the �rst point or there are not enough points in the regionor the point belongs to an arc.� The Right Mouse Button will add a new point if the closest point to the mousepointer is the �rst point in a straight line. The new point will be added to themiddle of the line.These commands are best explained by providing the user with an example thatillustrates how these are used in a drawing session, the right hand picture in Figure 4.9shows a geometry comprising of square with two smaller interior squares, or holes insidethe outer. The following is the actions taken to achieve this� The Co-ords Button was pressed, this produced the co-ords popup. The BottomLeft and Top Right coordinate pair were selected and the Grid Increment was alsoselected. Once these were set the ok button on the popup can be pressed, thecoordinates of the drawing window and the grid lines are updated and the popup isremoved.� The Shape:Line/Arc Button, the Snap:On/O� Button and the Grid:On/O� Buttonare checked to ensure that the correct settings are chosen. The Shape is set to Line,the Snap is set to On and the Grid is also set to On.� The Left Mouse Button is pressed when the mouse is at the position of the top rightcorner of the outside square. This creates the �rst point.� The Left Mouse Button is pressed a further three times, once at each corner of theoutside square. This creates the next three points. Since the snap is switched onthe points are created at the intersection of the grid lines.



- 185 -� The Middle Mouse Button is then pressed, this will join up the �rst point and thelast point. This will create the outside square. The drawing session has not endedsince the Middle Mouse Button is used.� The Left Mouse Button is pressed a further four times when the mouse pointer is atthe positions of the corners of the top left internal square.� The Middle Mouse Button is used again to close the square without terminating thedrawing session.� The Left Mouse Button is pressed a further four times when the mouse pointer is atthe positions of the corners of the bottom right internal square.� The Right Mouse Button is now used to close the square and to terminate thedrawing session. The drawing Window now moves into edit mode.� From this point the Mesh design Button may be used and the resulting mesh willbe shown in the Canvas Window. The user may now edit the geometry.



- 186 -Appendix BChanges To The Visual DomainSpeci�cation ToolThe following section gives a list of the modi�cations made to the tool as wellas the reasons behind the changes. Many of the earlier changes are superseded by laterchanges. The iterative process involving the users of the tool, builds upon the last cycle ofthe design process to enhance the functionality of the tool. At this stage of the developmentprocess the tool was converted from using the Athena widget set to using the Motif widgetset. The change was requested by the users of the tool. This made little di�erence exceptfor cosmetic changes to the tool, the tool still had the portability of the X windows system.� Scale Button added to tool. The mesh is drawn on a [0::1; 0::1] region, the scale buttonallows the user to scale this to a positive or negative domain. The need for more
exability was expressed by the users.� Addition of a Grid on the Drawing Canvas. The grid was a �xed size grid to act as anaid to the design process.� Refresh Button added. This was added to redisplay the tool in case of missed X exposeevents.� Move from Scale Button to Co{ords Button. The scale button was replaced by a co{ords button. The new button allowed the user to specify the top right and bottom leftcoordinate pairs. The drawing region could then be scaled and translated to �t the user



- 187 -speci�ed coordinates. This provides an easy means of specifying the spatial domainunder consideration.� Ability to Sketch then Edit design. The ability to place the points of the geometryaccurately on the drawing canvas. The ability to sketch the shape and then to lookat each of the points and to specify the numerical value of the x and y coordinates.This function was added by switching the drawing canvas from the initial design stateto an edit state after completion of a geometry, by pressing the right mouse button.The action of pressing the left mouse button in the edit state would be to produce apopup window with the x and y coordinates of the nearest point to the mouse pointer.The user can then change these coordinates, if required, and by pressing the Ok buttonthe position of the point will move to the user speci�ed point. The Cancel button willremove the popup without e�ecting the position of the point.� Addition of Arcs as a drawing primitive. The KSLA mesh generator supports domainsspeci�ed by arcs as well as lines. The arc is de�ned by a start point, an end point anda middle point. The ability to use arcs enables the tool to be used to create a widerrange of geometries. The increase in the complexity of the geometries was requested bythe users to ensure the tool could create geometries currently used. The use of rubber-banding for arcs proved di�cult since three points are needed, so any rubber-bandingcould only be done after the �rst two points had been speci�ed. Also the movement ofthe mouse pointer after the speci�cation of the �rst two points of the arc would resultin large changes in the de�nition of the arc.� Shape: Line, Shape: Arc Button. The Shape button will toggle between the two shapeprimitives line and arc. The addition of arcs as drawing primitives creates the need forthis button.� Help Button, this was added to give details of the three main areas involved, the DrawingCanvas, the Display Canvas and the Control Panel.� Addition of a Grid: Coarse / Fine / None Button. The Grid button allows the userto toggle between a coarse grid, a �ne grid and no grid on the Drawing Canvas. Thereason behind this was to provide a visible aid to the user during the design process.It replaced the need to determine a sensible grid spacing value from the user-speci�edcoordinates.



- 188 -� X and Y spatial coordinates labels. With the grid no longer giving easy reference pointsin the Drawing Canvas in many situations the addition of these labels gives the userthe position of the mouse pointer in the user de�ned coordinate system of the DrawingCanvas.� Load Button added to the tool. The user expressed a wish to load previous or existingmesh �les into the tool so that these maybe modi�ed. Also this allowed a sketchedoutline to be stored and re�ned later. The load button enabled an external KSLA mesh�le to be transferred into the tools internal data structure. The tool will then determineautomatic values for the maximum and minimum coordinates of the Display Canvasobtained from the data in the mesh�le. The tool was then placed in edit mode allowingthe geometry to be modi�ed.� At times the automatic determination of the coordinates of the Display Canvas gaveunwanted results. The Load button was therefore modi�ed to allow the user to specifythese values or for the tool to obtain these values from the mesh�le. The user optionallowed the to specify the top right and bottom left coordinate pairs. This allowed theuser more control over the loading in of new �les but also provided the option for thetool to automate this process.� The users requested that the Drawing Canvas and the Display Canvas be proportionalto the aspect ratio of the coordinate speci�cation. This feature was added such thata coordinate speci�cation of 0..2 in the x direction and 0..3 in the y direction wouldresult in the Drawing Canvas and Display Canvas changing size so that the dimensionsof the window would be 1:5 : 1:0 i.e. the y dimension 1.5 times bigger than the xdimension. To allow the user to resize the tool and to still preserve the aspect ratio twoadditional buttons were added. The Size + button allowed the Drawing Canvas andDisplay Canvas to be enlarged and the Size � button allowed these to be shrunk.� Modi�cation to the grid capabilities. The users requested a change in the way in whichthe grid was de�ned. The user requested control over the spacing of the grid lines byspecifying an x increment and y increment.� Changing of Grid Button. The ability for the user to specify the grid allowed the GridCoarse/Fine/None button to be replaced by a Grid On/O� button.



- 189 -� Snap To Grid Button. The facility was included to allow the user de�ned points to beplaced at the intersection of the grid lines. The Snap to Grid can be switched on ando� during the Design session.� Snap All To Grid Button. This function allows the user to sketch and de�ne the gridspacing and then snap all the points to the grid.� Load Points From File. The users stated that at times the points used to de�ne a geom-etry would occasionally be stored in an external �le containing a list of x,y coordinatepairs. This function allowed the user to read a series of points in from a �le rather thanspecifying the points with the mouse.� Addition of a Mesh Status button on the Mesh Design Popup. The mesh generatorhas the facility to allow holes and internal regions to be meshed or not to be meshed.This facility relies on the speci�cation of the geometry in the mesh�le. The Mesh Statusbutton allows the user to specify a Mesh Staus of Simple, Mesh Holes and Mesh Interior.� Update of Help system. A more comprehensive help system was added. The help systemprovided information about the controls for the Drawing Canvas, Display Canvas andControls. It also provided an example design session along with help on the e�ects ofthe Mesh Status button.� The addition of a GEOMPACK mesh button on the Mesh Design popup to allows anumerical speci�cation �le suitable for the GEOMPACK mesh generator. The MeshStatus would automatically be set to Simple in this case. A GEOMPACK Informationpopup requests the additional information required by the GEOMPACK package.� Addition of a Show Info button. This could be set to on or o�. When set to On itwould show the unique integer identi�er assigned to each boundary edge in the domain.These names are used to assign boundary conditions to the domain.� The ability to add and delete points in Edit mode. This allowed the user to deletecertain points and create new ones. The middle and right mouse buttons were used tocontrol this.� A show points button was added to switch on or o� the markers used to show the userde�ned points. This enabled domains with many points to be viewed easily.



- 190 -� The Quick Help and Online help are updated to explain the additional features.



- 191 -Appendix CSummary Windows for the ThreeExample Problems
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Figure C.1: Summary Window for Heat Problem
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Figure C.2: Summary Window for Elliptic Problem
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Figure C.3: Summary Window for Burgers' Problem



- 195 -Appendix DInterpolation Schemes for PDEproblems { Related WorkD.1 Using Natural Logs in InterpolationA further way in which the spurious oscillations that may occur in interpolationschemes can be eliminated is by con�ning the range of values the interpolant can produce.In the cases considered here the range is usually given by the data points used to de�nethe interpolant. If all the data points are positive then this provides a logical lower boundof zero for the interpolant. If an interpolant is constructed that will always give a non{negative value then a lower limit of zero is enforced.Such an interpolant can be de�ned by utilising the natural logarithm and ex-ponential functions. This interpolant di�ers from the standard interpolant although theshape functions used in both cases are identical. The values, however, are not, in that theinterpolant is constructed using the value given by the natural log of each data point valuerather than the value itself. The value the interpolation process then yields will be thenatural log of the value at any point in the domain considered. Taking the exponential ofthis value will give the solution value. For n data points each having a value fi, i = 1 : : :n,this process is; �rstly ensure fi is positive by some mapping function, then the interpolatedvalue f� is given by f� = exp nXi=1 �i ln(fi)!where �i is the shape function associated with the value fi at data point i, i.e. �i = 1 at



- 196 -fi and �i = 0 at fj , j 6= i. The reverse mapping function is then applied to f�The advantage of this scheme is that, even if the standard interpolation of the logvalues gives a negative value, then the solution value for that point will still be positive.The �rst step in the process is to ensure that all the data point values are positive.This is necessary to derive the natural log value. This will involve some form of mappingfunction. This mapping function is only used when negative data values are encountered.The purpose of the mapping is simply to ensure that all data points are positive. This isachieved by adding some constant, say k, to all data.Let fmin = min (fi) , i = 1 : : :n.If fmin < 0 Then fi = fi + k, i = 1 : : :n.The reverse of the process is then to subtract this 
oor after the solution value has beenfound i.e. f� = f� � k. However, the choice of this value k does present a problem. Thenatural log interpolant will ensure that all data is positive, however, it is not an idealsituation if the data points used for the interpolant are large. For example, the data setconsidered here has a maximum value of � 2:6 and a minimum value of � �1:4. If thee�ect of the mapping is to change this range from [�1:4 : : :2:6] to [3:6 : : :7:6], k = 5 willyield poor results as left graph in �gure D.1 shows. This is because, while the scheme willyield positive values, it is unlikely that these values will be close to zero. The advantageof placing a lower bound on the interpolated value is lost.The idea is to utilise the ability of the scheme to place a lower bound on theinterpolant values. To do this it would appear sensible to have the mapping transform thevalue of the lowest data point used to a value close to zero. In this case the interpolantis bounded by the value of the smallest data point. However, the phrase close to zerois unclear, in the example considered a value of 0:5 (right graph �gure D.1) gives betterresults than the value of 5:0. A further reduction in the size of this value to 0.01 (left graph�gure D.2) gives better results in some areas of the problem but not in others. Howevera further drop to say 0:0001 cause problems (right graph �gure D.2). In the latter casethe natural log value becomes too large, e.g. ln(0:01) = �4:6052, ln(0:0001) = �9:2103compared to the range of values for [ln(0:25) : : : ln(2:5)] , [�1:3863 : : :0:9163], with thelarge di�erence between data point values the standard interpolation techniques becomeunstable.All these examples fail to avoid overshoot, a correction for this de�ciency is di�-
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oor of 5.0 (left) and0.5 (right)cult to envisage. Another disadvantage of the scheme is the increase in c.p.u. time neededto implement, the table below shows the di�erence in time between this interpolationmethod and standard interpolation. The time measured is the c.p.u. time spent on cal-culating the L1 norm over the domain using a seven point Gaussian quadrature scheme.A [�1::1;�1::1] domain is considered.No. of �'s ln Time Std Time ln Error Std Error162 0.21 0.09 8.127e-01 2.926e-011458 1.77 0.83 2.372e-01 9.192e-0213122 16.03 8.25 6.749e-01 3.000e-02As the table shows the c.p.u. time spent on the interpolation method using natural logs isapproximately twice that of the standard quadratic interpolant, the errors are larger andundershoot and overshoot have not been eliminated.
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