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Chapter 1IntroductionThe work described in this thesis was motivated by addressing a seemingly simple problem ± totrack the positions of a number of pedestrians in an outdoor scene. The aim of this work is to au-tomatically process sequences of images taken from a camera viewing outdoor pedestrian scenes.Some typical images are shown in ®gure 1.1. The system should be able to extract the position ofthe moving pedestrians in the scene and to follow each person throughout the sequence. Ideallyadditional information such as silhouette shape should be available for higher level event recog-nition routines such as deciding whether the person is walking or running. The system should besuitable for a range of applications such as automated surveillance, animation and human motionanalysis.This problem is an example of an inherently dif®cult class of problems in machine vision± the analysis of the motion of non-rigid objects. In order to tackle these problems some kind ofsimplifying assumptions are generally required to constrain the allowable object shape and mo-tion. These constraints allow the system to cope with missing data (where the object becomeshidden from view), noise in the image data and background clutter. These a priori constraintsembody a model of the object.1.1 A hierarchy of object modelsThe model-based approach to image understanding allows the incorporation of prior knowledgeinto the system. This approach has some biological foundations. Human beings interpret visual
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Figure 1.1: Example camera imagesinformation by comparison to knowledge in ourmemories. One important consideration in objectmodeling is the speci®city of the model. For instance, in studying the motion of a walking persona full 3Dmodel describing the precise position of limbs and joints over time could be used. How-ever, such a prescriptive model may only describe one particular walk by a particular pedestrian.At the other end of the spectrum, a very general model would be a deformable 3D parametricsurface represented by a mesh of 3D points which incorporates little knowledge into the system.Between these two extremes lie a range of possible models.A further practical consideration is the dimensionality of the model space. In general anymodel has an associated set of parameters such as joint angles, height, width, orientation, etc.Given the model and a set of parameters the object features can be projected into an image. Theproblem of image search becomes one of identifying the model parameters that when projectedmost closely resembles features in a given image. The computational expense of this process isrelated to the dimensionality of the model space (the higher the dimensionality the more costlythe search).



31.2 Approach takenTo some extent the choice of model is dependent on the application. In order to track movingpedestrians in cluttered noisy images some a priorimodel was found to be necessary (especiallywhen the video camera is not ®xed). The approach taken in this work is to build aªnon-representationalº model (i.e. with no notion of limbs etc) derived from real training data.Themodel is acquired automatically (requiringno operator input). The advantage of this approachis that the method can be applied to a wide range of problems without re-engineering the wholesystem. This contrasts withmore conventional hand-crafted models. The training data allows themodel to be tuned to the particular constraints of a given object in a given scenario. The methodis ªdata drivenº which allows the system to cope with shapes that are not usually represented inconventional models (e.g. variability in shape due to clothing).A feature of this work is that the 2D outline (or silhouette) of the object is modeled. Anadvantage of this approach is that in the majority of cases the object silhouette is observable inthe image (assuming the object is not occluded) whereas a complete set of internal features ofan object are rarely apparent in all images (due to self-occlusion). For example, in the case ofa walking pedestrian the arm is often hidden behind the rest of the person's body. Furthermorethe model parameters encapsulate variability in the outline due to orientation as well as change inshape due to articulation.The use of a 2Dmodel to describe a 3D object is a unique feature of this work. The pose ofthe 3D object is not completely unconstrained but represented by the typical poses in the trainingset. Hence the position of the imaging device (e.g. video camera) with respect to the ground planeis implicitly incorporated into themodel. Thismay appear to be a signi®cant drawback, but in realapplications the camera location is rarely completely unconstrained. For instance, the camera isunlikely to be looking directly up at a person's feet (although if this were the case, the systemcould still be trained up on these images). In fact unusual viewing angles are often confusing toa human observer.A deforming silhouette seems to incorporate considerable information in much the sameway as the moving light displays of Johansson [1] and it is not dif®cult for the human visual sys-



4tem to interpret silhouette sequences such as that shown in ®gure 1.2. This suggests that a sil-houette model may be applicable to high level recognition tasks as well as to the original trackingapplication.
Figure 1.2: Three images from a sequence of silhouettes1.3 Overview of the thesisIn this introduction some of the broader issues relating to the area have been discussed. Chapter2 gives a review of techniques relevant to the problem of tracking non-rigid objects and relatedproblems. The remaining chapters describe the original work of the thesis and include results onreal image sequences. The work is organised as follows :-� Chapter 3A novel method for automatically building a linear shape model of a moving object is de-scribed using training image sequences taken with a ®xed camera. A novel method for ex-tending conventional point based statistical methods to parametrised curves is given.� Chapter 4Anew ef®cient method for contour tracking based on a linear shape model is outlined. Cur-rent methods in optimal linear ®ltering are incorporated into the mechanism, resulting in afast and robust, variable scale tracking scheme.� Chapter 5A simple method for improving the linear shape model is detailed, based on an iterativefeedback mechanism. A compact linear model is automatically generated.



5� Chapter 6The linear spatial shapemodel is extended to a physically-basedspatiotemporalmodel learntfrom training sequences of typical object motion. The new spatiotemporal model is shownto be more robust than the previous spatial models.Finally, conclusions and future work are discussed in Chapter 7.



Chapter 2Background review2.1 IntroductionAutomatically tracking themotion of a non-rigidobject, such as a walking person, from sequencesof images is a challenging problem which in general requires some kind of prior information tobe solvable. In this chapter, current techniques in non-rigidmotion analysis are discussed as wellas some more speci®c techniques applicable to human motion analysis.Prior information can be derived statistically from training information using ªPrincipalComponent Analysisº (PCA) as in the Point DistributionModel (PDM) outlined in section 2.2.Alternatively, physically motivated constraints can be utilised which limit object shape to elas-tic deformations of a template as in the Finite Element approach outlined in section 2.3. Theseapproaches are usually regarded as ªmodel-basedº as the prior information contains the approxi-mate shape of the object. These two key approaches have many similarities and can be combined(see [2]). They are both to some extent linear models in that the model features are related by alinear transformation to model shape parameters. (This is only true if the pose parameters of thePDM are ®xed). In both cases linear shape ªmodesº are derived using an eigenanalysis methodand both methods produce highly compact models with a small set of parameters.Other approaches such as ªsnakesº, ªKalman snakesº and ªActive Splinesº (reviewed insections 2.4 and 2.5) make fewer shape assumptions. These methods are 2D, contour based ap-proaches where object shape is constrained to be continuous and smooth and to deform smoothly.



7These more general approaches are not conventionally described as model-based approaches (al-though any set of constraints can be regarded as a low-level model). In the interpretation of realimages ± that is images that have been captured from a camera in an outdoor environment ± moredetailed prior knowledge is generally required. Apart from the problems of self-occlusion previ-ously noted, real images are often of poor quality due to poor lighting and low resolution. Otherproblems include shadows, re¯ections (e.g. due towet road surfaces) and poor weather conditions(rain, cloud, etc). Such problems can only be overcome by incorporating more prior informationinto the model (i.e. using a higher level model).High-level models can incorporate a great deal of information about object shape and evenexpected motion over time. Examples of 3D representational models include the cylinder-basedmodel, WALKER [3], described in section 2.7 and a similar model used by Rohr [4]. These com-plexmodels are ªhand-craftedº and consist of an explicit 3D representation of the object generatedby a human expert (e.g. a programmer). The model has few parameters ± In the case of Rohr'smodel there is one ªposeº parameter. This results in fast and robust tracking but will fail when theinput walk does not ®t the typical walkingmotion described in the model (e.g. atypical behavioursuch as running or suddenly stopping) or when the imaging device is non-stationary. Similar 2Dªstickº models have also been used with some success in controlled environments, e.g. Leungand Yang [5]. These approaches utilise models based on a theoretical conceptualisation. Con-sequently such an approach suffers when the reality differs from this preconceived model (e.g.variability in shape due to clothing, atypical walks, etc) although some degree of error-tolerancecan be allowed. The alternative data-driven approach builds a model from a representative set ofreal training data.Other approaches assume the joints of the human body have been marked (e.g. Chen andLee [6], Bulpitt [7]). In section 2.6, the non-representational eigenimage model of Murphy et al[8] is summarised. This approach is related to the ªeigenfaceº approach of Turk and Pentland [9]and the grey-level extensions to the PDM [10, 11] and has many similarities with the approachtaken in this thesis. However, one of the drawbacks of ªimageº based representations is the com-putational cost involved in operating on relatively large windows of image pixels (e.g. in calcu-lating optical ¯ow). Furthermore the dimensionality of the resulting model is still high (typically30 model parameters are used) and the method usually relies on a ®xed camera.



8Commercial surveillance systems use a simple background subtraction image processingtechnique to recover moving objects within a scene. This technique (described in section 2.8) re-quires a ®xed camera (i.e. stationary, with ®xed zoom and aperture) and is the ®rst step in manyof the tracking systems described above. In fact this technique proves useful in the model acqui-sition method described in this thesis. Background subtraction has many limitations, not least ofwhich is the requirement that the camera is ®xed. Rowe and Blake [12] have extended this ap-proach by using a stationary steerable camera which can pan and tilt and mapping the image ontoa ®xed ªvirtual cameraº image plane. Evenwith a ®xed camera, subtractionmethods are sensitiveto changes in light, poor contrast, re¯ections as well as occlusion and imaging noise.2.2 The Linear Point Distribution Model2.2.1 Description of the modelStatistical analysis of 2D landmark data has become a well established tool in computer vision(e.g. morphological methods [13]). A recent advance in this area is the Point DistributionModel(PDM) introduced by Cootes et al [14, 15, 16]. In general, a PDM is a statistical model of a setof (2D or 3D) points. The statistical model described by Cootes et al is a linear model (ignoringthe rotational component of the model) and will be referred to as the ªLinear Point DistributionModelº or LPDM in this thesis. The LPDM has been used successfully for image interpretation(e.g. withmedical images [17, 16] and for automatic face identi®cation [18]) and image sequenceanalysis (e.g. using a stochastic deformable model [19]).In a PDM, shape is represented by a set of n labeled ªlandmarkº points (see ®gure 2.1 foran example). Each point corresponds to a particular (often biological) feature on the object suchas the tip of the index ®nger in the case of modeling a hand.The LPDM is based on a statistical analysis of the coordinates of these points over a train-ing set. Each training shape can be represented by a shape-vector x, consisting of the landmarkcoordinates. Modeling in 2D,x = (x0; y0; x1; y1; :::; xn�1; yn�1)Twhere (xi; yi) is the position of the i'th landmark point on the training shape.
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Figure 2.1: A PDM representation of a hand shapeThe training shapes are aligned using a Generalised Procrustes Analysis technique (as de-rived by Gower [20]). A weighted least squares method is used to align each shape to the meanshape. The weights are chosen so that more signi®cance is given to the more ªstableº landmarkpoints. This process results in a mean shape-vector x and a set of aligned training shape-vectorsxi. The next stage in the analysis is to subtract the mean shape-vector from each training shape-vector, i.e. let dxi = xi � x (2.1)The 2n� 2n covariance matrix S is then calculated usingS = E �dx dxT� (2.2)where E(:::) is the expectation (or averaging) operator over the training set.Modes of variation of the landmark points are represented by the 2n unit-length eigenvec-tors of S that solve Sei = �ieiwhere �0 � �1 � ::: � �2n�1 � 0. The eigenvectors form an orthonormal basis for the shapespace. Hence the shape-vectors dx can be rewritten in the formdx = 2n�1Xi=0 biei



10where bi = dx � eiIt can be shown that over the training set the parameters bi are linearly independent and thetotal variance explained by each eigenvector is equal to the associated eigenvalue. i.e.E(bibj) = 8><>: 0 : i 6= j�i : i = jThus the eigenvectors corresponding to the largest eigenvalues represent the most signif-icant modes of variation. A subset containing them most signi®cant eigenvectors is retained asa basis for the model shape space. A shape in the model space x can be written as a sum of themean shape and a weighted sum of eigenvectors usingx = x+ Pb (2.3)where P is a 2n�m matrix whose columns are them most signi®cant eigenvectors andb = (b0; :::; bm�1)T is a vector ofm coef®cients. Given an aligned shape vectorx0, theminimumleast squares approximation to the shape in the model space is given by a linear projection,b = PT �x0 � x� (2.4)This eigenvector analysis is an application of ªPrincipal Component Analysisº or theKarhunen-Loeve Transform (see for example, Gonzalez and Woods [21]).New ªfeasibleº shapes can be generated by varying the shape parameters bi within suitablelimits. As the variance of the i'th shape parameter within the training set is simply �i, suitablelimits might be �2p�i.2.2.2 Active Shape ModelsCootes et al describe a method (the ªActive Shape Modelº) for locally optimising the shape pa-rameters of the LPDM to ®t features in an image [15]. The ªActive Shape Modelº (ASM) canbe regarded as a 2D application of Lowe's re®nement technique [22]. The LPDM is particularlysuited to this kind of iterative approach due to the simplicity in deriving an appropriate Jacobianmatrix for updating the shape parameters.



11The ASM assumes a rough initial estimate for the orientation, scale and position of themodel as well as the linear shape parameters. Given these parameters the model shape can beprojected into the image frame usingX = Q(s; �) [x+ Pb] +Xc (2.5)whereQ(s; �) is a rotation by � and a scaling by s andXc is a translation by (Xc; Yc). The shape-vectorX represents the position of the n landmark points in image coordinates.At each iteration of the re®nement process, suggested movements for each landmark pointdXi are calculated from image features. The usual approach is to search for the strongest edge,along the normal to the model boundary at each landmark point. The vector dXi is set to thedisplacement of the estimated landmark position to the edge feature and scaled proportionally tothe edge strength (to re¯ect the con®dence in this measurement). The method is illustrated in®gure 2.2.
model point
suggested movement

model boundaryFigure 2.2: Updating an Active Shape ModelGiven this set of displacements represented by the shape-vector displacement dX, esti-mates for changes in the pose parameters dXc, dYc, d� and the relative change in scale ds arecalculated.



12Cootes et al project the point-displacements in the image frame to displacements in themodel coordinate frame, dx using the equationdx = Q((s(1 + ds))�1;�(� + d�))[Q(s; �)x+ dX� dXc]� xwhich can be rewritten in the formQ(s0; �0)dx = dX� �Q(s0; �0)�Q(s; �)� [x]| {z }term 1 � dXc|{z}term 2 (2.6)where s0 = s(1 + ds) and �0 = � + d�. Equation 2.6 can be interpreted as correcting the dis-placements dX, taking into account the updated pose: ªterm 1º removes the changes in scale androtation and ªterm 2º removes the change in origin.The model point displacements dx are projected into adjustments to the vector of shapeparameters b, using db = PTdxwhich is simply the least squares solution to the problemJdb = dX0where dX0 is the vector of corrected point displacements in the image frame and J is the Jacobianmatrix with respect to them shape parameters. i.e.Jij = �(dX0)i�bjFrom equation 2.5, J = QP .The shape and pose parameters are updated using a weighted update scheme as followsXc ! Xc + wtdXcYc ! Yc + wtdYc� ! � + w�d�s ! s(1 + wsds)b ! b+Wbdb (2.7)



13wherews, w�, wt are scalar weights andWb is a diagonalmatrix of weights for each shape param-eter. In the conventional ASM, Wb is set to the identity or preferably, each weight is set propor-tional to the standard deviation of the corresponding shape parameter over the training set. Thisallows the more signi®cant shape parameters to vary more freely.Each iterative step re®nes the shape and pose parameters to reduce the error between imageedge features and the projected model. After each iteration the shape parameters are further con-strained to ensure the shape is close enough to the mean shape in terms of a Mahalanobis distancemetric. Explicitly s2 = X b2i�ib0i = 8><>: � smaxs � bi s > smaxbi otherwise (2.8)where smax is the maximum allowed distance from the mean. The constraint ensures the vectorb lies within a hyper-ellipsoid centered about the origin. Points within this hyper-ellipsoid havea reasonably high a priori probability density, assuming the training shapes were sampled from aGaussian distribution about the mean shape (see Haslam et al [23]).In order to improve the speed and robustness of the ASM, a multi-scale search mechanismcan be used, described by Cootes et al [24].2.2.3 Lowe re®nementLowedescribes an iterative scheme for ®ttingparametrised 3Dmodels to images [22]. The schemeis based on Newton's method and is stabilised using a priori constraints. Given a vector of non-linear parameters p a sequence of estimates are calculated usingp(i+1) = p(i) � qAt each iteration q is calculated by minimising,kJq� ek2 + �2kW (q� d)k2 (2.9)where



14� e is the error between estimated and observed positions of model features in the image� d is a vector of a priori parameter constants (the ªprior modelº)� W is a diagonal matrix in which each weight is inversely proportional to the standard de-viation �i for parameter i� J is the Jacobian matrix.� � is a ªtrade-offº weight that is dynamically adjusted to affect the stability and rate of con-vergence.The 1st term in equation 2.9 pulls the solution towards the image data and the 2nd termstabilises the solution by pulling towards the starting position d. In order to ensure the ®nal so-lution closely ®ts the image data, the starting point of the prior model d is reset to the results ofthe previous iteration.Applying this scheme to the shape parameters of an ASM would minimise the followingerror at each iteration k(b0 � b)� dbk2 + �2kW (b0 � b)k2where b0 is the vector of updated shape parameters andW is a diagonal matrix of weights withWii = 1p�iThis leads to the update equationb0i = bi + � �i�2 + �i�dbi (2.10)which is similar (but not identical) to the ASM update of equation 2.7 in that the more signi®cantmodes with larger eigenvalues vary more freely than the less signi®cant modes.2.3 The Finite Element MethodThe Finite Element Method (FEM) is an engineering technique for ef®cient computational sim-ulation of physical systems (see, for example, Bathe [25]). Pentland and Sclaroff describe theapplication of these techniques to problems in computer vision [26, 27, 28, 29]. The approachtaken is to build an elastic physical model of a deformable object and use ®nite element analysis



15to produce a compact, orthogonal set of shape parameters suitable for tracking and recognitiontasks. Nastar and Ayache have successfully applied these techniques in the analysis of time se-quences of 3D medical data sets [30, 31].In contrast to the training based approach of the PDM, the FEM utilises a physical modelgenerated from a single example of the object's shape along with certain assumptions about thephysical material properties of the object. Using ªModal Analysisº it is possible to reduce thedimensionalityof the FEM shape representationwithout a signi®cant loss in accuracy. This allowsthe (theoretical) physical system to become over-constrainedwhere insuf®cientmeasurements areavailable as well as reducing the computational load of the simulation.2.3.1 Shape representation in Finite Element AnalysisThe basic concept of the FEM is to represent a body in terms of a set of regions or ªelementsºdescribed by a set of labeled nodes. The quantity of interest (in this case, displacement) is ap-proximated by a set of piecewise continuous functions over the body, de®ned over a ®nite numberof sub-domains called elements. The interpolation function used is continuous and usually a loworder polynomial. Some typical ®nite elements are illustrated in ®gure 2.3.
1D element

2D element

3D elementFigure 2.3: Some ®nite elements



16Hence object shape is represented by a set of nodal displacementsU from an initial shapewith nodal representationX. A shape is regarded as the result of pushing, pinching and pullinganinitial lump of elastic material. Unlike the PDM, the FEM provides an analytic characterisationof the object surface between nodes.2.3.2 Modal AnalysisUtilising known or assumed physical properties of the object (such as stress and strain matrices,uniform density), global mass, damping and stiffness matrices are derived by formulating appro-priate integrals over each element and summing over the whole domain.The resulting governing equation describes the evolution of the system over time underthe in¯uence of external loads acting on the nodes and for a system of n nodes in d dimensions isgiven by M �U + C _U+KU = R(t) (2.11)whereU is the dn�1 vector of nodal displacements,M ,C andK are dn�dn symmetric matricesdescribing the mass, damping and material stiffness between each point within the object andRis a dn� 1 vector of external forces acting on the nodes.The modal analysis approach decouples the above systemby transforming to a basis of ªM-orthogonalº free vibration modes derived by solving the eigenvalue problemK�i = !i2M�i (2.12)Assuming Rayleigh damping (C = a0M + a1K), the system of equations is decoupled into dnindependent2nd order differential equations. This is achieved by de®ning a transformationmatrix� whose columns are the eigenvectors �i.� = [�1; �2; :::; �dn]Then, lettingU = �~U, the governing equation (equation. 2.11) becomes�~U + ~C _~U+
2 ~U = �TR(t) (2.13)



17where 
2 is a diagonal matrix of eigenvalues,
2 = 0BBBBBBB@ !12 !22 . . . !dn2 1CCCCCCCAand ~C = a0I + a1
2 is also diagonal. Each vibration mode has an associated frequency !i. Thehigher frequency vibration modes can be ignored as theoretically they will have little amplitudeand are generally dif®cult to measure with any degree of accuracy. The lower frequency modestend to correspond to intuitive deformations such as ªbendingº and ªshearingº.The modal amplitudes and modal velocities can be dynamically estimated by time-integra-tion of the transformed governing equation (2.13) or equivalently using a Kalman ®lter mecha-nism (see, for example, Gelb [32]). The modal analysis approach has several bene®ts. The 2ndorder governing equation is decoupled and there is a reduction in dimensionality achieved by ig-noring high frequencymodes. This results in faster andmore ef®cient tracking and shape recoverymethods.2.4 Snakes and Kalman SnakesThe snake (or active contour model) of Kass et al [33] provides a powerful mechanism for low-level image interpretation (e.g. for tracking deformable objects in the plane [34]). A snake isan energy-minimising spline that is attracted to image features such as edges. An internal energyfunction regularises the problem, modeling the spline as an elastic membrane (with constraints onsmoothness). A local energy-minimisation technique (such as an Euler method) is employed sothat the discretised contour ªslithersº down the nearest well in the energy surface. The dynamicsystem can be viewed in terms of image forces pulling the contour towards edge features andinternal ªelasticº forces maintaining smoothness.A simple snake minimises the energyEsnake = Z 10 Eint [v(s)] +Eimage [v(s)]dswhere the contour's coordinate functions are denoted by v(s) = (x(s); y(s)).



18The internal deformation energy is given byEint = �(s)jvs(s)j2 + �(s)jvss(s)j2The two ªphysicalº parameters �(s) and �(s) control the ªtensionº and ªrigidityº of the contourat a given point.The external image forces are derived from the energy potentialEimage which can be setas follows Eimage(x; y) = �cjr(G� � I(x; y))jwhere G� � I denotes the convolution of a Gaussian ®lter with the image and � controls the spa-tial scale. The Gaussian blurring effectively increases the size of the energy well around a localminimum. As the snake reaches equilibrium, the spatial scale of the Gaussian ®lter is reduced torecover ®ner detail.In order to perform the minimisation, the snake is discretised at regular sample pointsvi = (xi; yi) and an iterative local optimisation procedure applied.Terzopoulos and Szeliski have shown that the elastic snake system is equivalent to a steadystate Kalman ®lter with constant unit covariance matrix [35]. They describe a true Kalman ®lterapproach, the ªKalman Snakeº which provides a mechanism for tracking an elastic snake contourover successive image frames. One advantage of this approach is that themodel parameters (suchas the weighting attributed to new measurements) can be derived from a statistical sensor modeland can be allowed to vary over time.Terzopoulos et al have extended the 2D snake model to elastically deformable 3D models[36, 37].2.5 Active SplinesBlake et al describe a statistical framework for ef®ciently tracking B-spline contours using aKalman ®lter mechanism [38]. These ªActive Splinesº are evolved from the principles of thesnake. For computational ef®ciency a contour is represented by a parametric curve such as a cubicB-spline. The implicit continuity and elasticityof the B-spline allows a simple stochasticmodel to



19be used for contour tracking without the need for an explicit ªregularisingº internal energy func-tion. Prior knowledge can be incorporated into the tracker by an elastic coupling with a templateB-spline (ªCoupled Contoursº [39]). This persistent template mechanism improves stability byincorporating shape memory, restricting the prior distribution of the contour shape. An extendedaf®ne invariant shape template is described [38] which allows the contour tomore readily undergoaf®ne transformations. In this section, the method will be examined in more detail.2.5.1 State SpaceA (closed) B-spline curve v(s) = (X(s); Y (s)) is de®ned parametrically for 0 � s � N in termsofN time varying control pointsQk = (Xk(t); Yk(t)) byv(s) = NXk=1Bk(s)Qk= H(s)Qkwhere Bk is a piecewise cubic interpolation function for the i'th control point andH(s) = (B1(s); B2(s); :::BN(s))The state space is represented by the state vectorsX = (X1; :::XN) andY = (Y1; :::YN).Blake et al introduce a distance metric associated with this state space given byd(X;X0) = jX�X0jwhere the norm j:::j is de®ned by jXj2 = Z N0 X(s)2ds= XTHXand the matrixH is given by Hi;j = Z N0 Bi(s)Bj(s)ds (2.14)2.5.2 Feature SearchAn observedcontour (Xf(s); Yf(s)) is de®ned by searching along normals (or parallel lines) fromthe current estimate ( bX; bY ) within a search window. An elliptical search window is derived



20analytically from the covariance of the current estimate. In the interests of speed the contrast isexamined at three points: on the estimated curve and at the two extremes of the search window.The point with the highest contrast (i.e. intensity gradient) is retained as the observed value of(Xf(s); Yf(s)). The contrast is measured at the given search scale. If there is no signi®cant mea-surement at the 3 points, the search window is halved and the process repeated. When there isno signi®cant feature found within the window (i.e ªlockº is lost), no observation is made. Andiagram illustrating feature search is shown in ®gure 2.4.
Image Intensity

image feature

estimated contour

search region

search along a normal

image intensity
sample point

positionFigure 2.4: Feature search along a normal ± Imageintensities are sampled at discrete points alongthe normalIn reality the measurements (Xf(s); Yf(s)) are made at discrete curve points. However,a theoretical, continuous sensor model can be shown to be equivalent to state space observations(Xf ;Yf), the least-squares approximation to the continuous observed curve points, with an as-sociated covariance matrix R, for each ofXf andYf given byR = rH�1where r is the measurement variance constant.The variance of a point measurement is set proportional to the size of the search windowto re¯ect the fact that measurement errors will be larger when the search scale is large. As eachpoint measurement is made by searching along a straight line, the X and Y measurements will



21be coupled (i.e. the measurement is not isotropic). In this summary, the isotropic case will beassumed although Blake et al describe the appropriate modi®cations.2.5.3 Stochastic Dynamic ModelThe control point positions are modeled using a constant velocity model with random accelera-tions expressed by the equation ddt X_X! =  _X0!+  0w!where w(t) is a zero-mean, temporally uncorrelated Gaussian noise process. A similar indepen-dent equation applies forY. Assuming an isotropic, homogeneous Gaussian noise distribution,the covariance matrix for w is proportional toH�1.2.5.4 Kalman ®lter mechanismBetween successive image frames no observations are made and the covariance matrix P , asso-ciated with the augmented state estimate ( bX; b_X) is updated appropriately. Observations of thepoint-feature (Xf(s); Yf(s)) at time t = tk are applied sequentially using the Kalman ®lter up-date equation  bXb_X!!  bXb_X!+K(s) �Xf(s; tk)�H(s) bX�where the Kalman gain is given byK(s) = P H(s)T0 !"(H(s)j0)P H(s)T0 !+ �2#�1and � is the standard deviation of the individual point measurement.A persistent template mechanism can be applied using a virtual input of 0 applied to the®lter but coupled outside the subspace V of af®ne transformations of the template. The templatestabilises the system preventing the contour from becoming tangled and increasing robustness.2.5.5 Spatio-temporal scaleOne advantage of using a statistical Kalman ®lter framework is that the covariance of the currentestimate models the positional variance of each point on the contour. Assuming isotropy, a cir-



22cular search window is constructed about each contour point with radius 2�(s; t) where �2 is thepositional variance at s given by�(s)2 = (H(s)j0)P (H(s)j0)TIn the absence of image measurements when ªlockº is lost over the whole contour, thesearch scale increases as the uncertainty of the state estimates increase with time. Similarly, theKalman gain will increase so that when new measurements are eventually applied, the contourwill react quickly and lock onto the image feature.Once the contour has ªlocked onº (i.e. the estimated contour is reasonably close to theunderlying object contour and this contour lies within the uncertainty bounds of the estimatedcontour) the search windowandKalman gain decrease allowingmotion coherence to be exploitedand the contour to be recovered more accurately.2.6 Eigenimage decompositionMurphy et al [8] describe a novel approach to analysis of human motion based on eigenimage de-composition. Their approach is ªtask-basedº as opposed to the conventional ªrepresentationalºcomputer vision paradigm. The basis of the method is to use the Karhunen-Loeve Transform(KLT) on a statistically representative set of training images.A modi®ed KLT procedure is used for computational ef®ciency. Images of size n�m areconsidered as nm element vectors. Typicallyn andm are large (> 64) resulting in image vectorswith over 8000 elements. In a similarmanner to the LPDM themean image vector is removed anda linearly independent eigenbasis calculated (these are called ªeigenimagesº). GivenN trainingimages, whereN is typically equal to 100, eigenimages can be calculated from the eigenvectorsof an N �N ªpseudo-covarianceº matrix.An image which is ªsimilarº to the images contained in the training set can be representedby a linear combination of a subset of the eigenimages (added to the mean image). Typically 30coef®cients are suf®cient to represent images for recognition of pose.In the experiments of Murphy et al raw images are not used. Instead, the magnitude of



23the optical ¯ow at each pixel is used as input to the KLT. Image sequences are represented bysequences of the 30most signi®cantKL coef®cients. The resulting information is fed into a neuralnet classi®er. The method has been applied to side view images of humans on a treadmill and tooutdoor images of subjects walking in front of a stationary camera. In order to extract suitableimage windows, a simple correlation process was required to track the person across the image.Using this method the pose of the subject can be identi®ed and it is possible to identify each of asmall class of subjects on the basis of gait.Although well suited to high level recognition tasks this approach is still computationallyexpensive requiring many pixel-based operations. The method does not appear to solve the gen-eral pedestrian tracking problem in a noisy environment (e.g. for a crowded scene) that has mo-tivated the work in this thesis. A similar approach is taken by Turk and Pentland for face repre-sentation [9]. Cootes et al have combined an eigenimage approach with the shape model of theLPDM [10, 11].2.7 The WALKER modelArticulated, primitive based 3D models have been used successfully in a variety of applications(e.g. DigitEyes [40], Lowe re®nement [22]). Much of this work is based on the work of Hogg[3] in which a representational model of a walking person (based on theMarr and Nishihara bodymodel [41]) is used. The WALKER model of Hogg represents object shape in terms of ellipticalcylinders representing rigid parts of the body and connected appropriately at the joints (see ®gure2.5). A pedestrian'sposture is parametrised by a set of joint angles, for example the angle betweenthe torso and the left thigh (the ªLeft Hipº joint angle).The WALKER model represents a class of walking motions in terms of an idealised walkcycle. Each joint angle is modeled as a periodic function of a parameter PSTR representing theposition in the walk cycle. The joint angle functions were precomputed by analysis of a partic-ular walk sequence and are represented by 10 point cubic B-splines. The allowable postures areconstrained by allowing each joint angle to be slightlyout of step with the idealised posture cycle.



24
Figure 2.5: A pedestrian shape in the WALKER modelFor instance, LEFT HIP = hip curve(PSTR +DPSTR)�0:04 < DPSTR < 0:04where LEFT HIP is the angle between the torso and the left thigh and the function hip curve isa smooth periodic function describing this angle for the idealised walk cycle.The posture parameter PSTR is constrained to vary slowly over time. The walker is con-strained to move in the direction he or she is facing and constraints on the speed of motion arealso explicitly incorporated into the model.2.7.1 Tracking withWALKERAt each image frame, Hogg propagates the WALKER model constraints to obtain a set of boxconstraints on the joint angles and position parameters. An evaluation or plausibility functionEVAL(s) of an instantaneousmodel instance s (representing the joint angles and positionparam-eters) is de®ned using aweighted sum of independent evaluations for the different body parts. Thesearch space is sampled and the most plausible model instance obtained for the current image us-ing a ªgenerate and testº strategy. The model constraints are then propagated to the next imageframe and the process repeated. By evaluating the plausibilityof each part independently, a moreef®cient search procedure is employed.



25The plausibility functions are based on projecting the cylinder model onto the image toobtain a set of ªribbonsº. Each ribbon consists of a pair of parallel line segments which corre-spond to the ªsideº edges of a projected cylinder. The plausibility of a ribbon is calculated usinga ªfuzzyº matching function, by searching a rectangular strip about each line segment for suitableedge features in the image.The tracking procedure works well when strong constraints exist and the resulting searchspace is not too large. For the ®rst image frame a change detection method (see section 2.8) or aglobal hierarchical search mechanism is required.A similar approach, based on the work of Hogg is described by Rohr [4]. In thiswork, Rohrreduces the parameter search space by only tracking one posture parameter based on the positionwithin a generic walk cycle (the generic model is based on a set of 60 male walks). The motion isconstrained to be parallel to the image plane. The signi®cant extensions in this work include theremoval of hidden model contours and the use of a Kalman ®lter.Both these methods have proven successful in recovering full 3D descriptions of a walkingpedestrian from real image data in a constrained environment. The models used contain a largeamount of prior information which has been hand-generated, requiring considerable time and re-sources. These approaches are domain dependent and require new (hand-generated) models to beapplied to new situations (e.g. other types of human motion). Murphy et al have shown that a full3D representation is not always necessary (such as for recognition on the basis of gait).2.8 Background subtraction and change detection2.8.1 Change detectionChange detection is amethod for detectingmovingobjects in an image sequence takenwith a ®xedcamera. Given two successive (grey-scale) image frames Ik+1(x; y) and Ik(x; y) a differencedimage is calculated by subtracting the image intensities at each pixel. i.e.Dk(x; y) = jIk+1(x; y)� Ik(x; y)j



26The differenced image Dk is usually thresholded to obtain a binary image with pixels ¯aggedwhere there is a signi®cant change in intensity.Under the assumptions of a ®xed camera, with ®xed aperture and constant lighting condi-tions the ¯agged pixels correspond to parts of a moving object. If the moving object is ª¯at ®lledºthen there will be ¯agged pixels corresponding to the leading and trailing edges of the object. Ifthe object is textured some of the internal pixels will also be ¯agged.The ¯agged pixels can be grouped by clustering to obtain a set of regions. Processing ascenewith one ormore moving objectswhich are well separated in the imagewill result in regionscorresponding to each moving object. A more robust approach, differencing image features (suchas edges) is described by Jain et al [42]. These techniques have been employed in a variety ofapplications (e.g. by Hogg [3], Rohr [4], Li-Qun [43], among others).2.8.2 Background subtractionAnother powerful technique, background subtraction, relies on the availability of a ªbackgroundºreference image Iref(x; y). This image may be obtained by acquiring an image from a ®xed cam-era when there are no moving objects in the scene. Alternatively, a background image can beobtained from a sequence of images Ik(x; y) by median ®ltering over time. ExplicitlyIref(x; y) = Median(I0(x; y); I1(x; y):::In(x; y))The median ®lter may be replaced by an appropriate robust running average, updated periodicallyto account for changing lighting conditions.Image subtraction (and thresholding) is performed as for change detection and the resulting¯agged pixels correspond to objects of interest (such as moving objects). Assuming the camerais stationary with ®xed lighting conditions and good contrast, the method can be used to segmentmoving objects in a scene. Connected components of ¯agged pixels usually correspond to sepa-rate objects and small regions can be ignored. However, when several moving objects overlap inthe image (or are too close together) only one amalgamated region is obtained.This technique has been used as a ®rst step in many vision applications (e.g. by Niyogiand Adelson [44], Murphy et al [8]). Both of these image subtraction techniques are sensitive to



27shadows, changes in lighting (e.g. due to the sun passing behind a cloud), camera vibrations, poorcontrast and occlusion.An extension of this method to deal with a steerable camera which is allowed to pan and tiltis described by Rowe and Blake [12]. The camera image is back-projected onto a ªvirtual cam-eraº image plane which remains ®xed. A background image is generated for the virtual cameraimage by sweeping the camera across the scene. A statistical model for each pixel is required tocope with errors in the projection process (due to unmodeled depth variation within the scene).The method is computationally expensive, typically taking several hours to build a model of thebackground. Once the background has been extracted, contour tracking can be performed in real-time.



Chapter 3Building a Contour Model3.1 IntroductionThe ªPoint DistributionModelº outlined in section 2.2 has proven a useful mechanism for build-ing a compact shape model from training examples of a class of shapes. In this thesis, the class ofshapes of interest are the 2D silhouettes of walking pedestrians viewed from a variety of angles.The conventional PDM requires a human operator to hand generate a set of labeled points (corre-sponding to particular features) from training images of the object of interest. This data set is thenprocessed automatically to generate a mean shape and a set of modes of variation with associatedshape parameters.A natural extension of this work is to automate the whole process, extracting a training setand building the model automatically. The problem is to extract a reasonably consistent shape-vector1 from real training images containing examples of the object. A simple approach to thisproblem is described in this chapter. By processing large amounts of data, the effects of noise dueto occlusion and mis-segmentation are reduced and a relatively simple segmentation scheme canbe employed. In order to extract a large training set of shape-vectors, the processing of image dataneeds to be suf®ciently fast. The system described has been implemented to run in near ªreal-timeº (processing over 4 image frames per second). This allows the use of live video input toimprove image quality.1i.e. an `n' dimensional vector that represents shape



29The control points of a B-spline are used as a shape-vector, since a spline is convenientfor data approximation and fast to render. Moreover, B-splines have successfully been used fortracking image contours (e.g. by Blake et al [38]). One of the advantages of this approach overthe conventional PDM method is that there is no need to estimate positions of features that do notappear in a particular training image. For example, consider the training image in ®gure 3.1. AconventionalPDMmight label the boundary points at the elbow, hand, hip, knee, feet, etc with ap-propriate extra boundary points evenly spaced between these feature points. However, in the ex-ample image the left arm is not visible (due to self-occlusion) and estimating the appropriate fea-ture points becomes dif®cult and prone to error. By regarding the silhouette as an abstract closedcontinuous shape (with no landmark features) an automatic procedure can be applied.The model described here is essentially 2D but is trained on a selection of arbitrary views.The variation in shape due to different viewpoints is treated as ¯exibility in 2D shape, allowingthe model to be used for tracking over the range of viewpoints for which it was trained.
Figure 3.1: Example training image3.2 Outline of the methodA system has been implemented to build a shape model automatically from real training images.The system takes live video images from a static camera, processes them and extracts ®xed lengthshape-vectors representing the moving objects in the scene. The data is then analysed off-line togenerate a model. A diagram illustrating this system is shown in ®gure 3.2.
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Component data fileFigure 3.2: Overview of the systemThere are four main stages:-� Image preprocessing to obtain a binary background-foreground image.� Outline extraction to obtain the boundary of each foreground shape.� Shape vector calculation to obtain an item of training data.� Off-line analysis to build the shape model.3.3 Image PreprocessingIn order to segment the moving objects from a sequence of images, a background subtractionscheme similar to the method described in section 2.8 is used. The background image is continu-ally updated (median ®ltering over time) to account for changing lighting conditions. An approx-imation to the median ®lter is used (kindly provided by Hyde and Worrall [45]). Two methods ofimage subtraction have been employed using grey-scale and colour images.3.3.1 Grey-scale subtractionGiven a sequence of grey-scale images the moving objects are segmented using standard back-ground subtraction. For a given image frame Ik(x; y), a differenced image�Ik(x; y) is calculated



31by pixel-wise absolute subtraction from the reference background image Iref(x; y). i.e.�Ik(x; y) = jIk(x; y)� Iref(x; y)jTo reduce the effects of noise in the images, the differenced image is blurred using a standardGaussian blur ®lter (see for example Gonzalez and Woods [21]) and the resulting blurred differ-ence image�I 0k thresholded to produce a binary image, Bk(x; y), whereBk(x; y) = 8><>: BACKGROUND �I 0k(x; y) < �yFOREGROUND �I 0k(x; y) � �yThe threshold value �y is chosen to be fairly low to ensure the foreground objects are wellde®ned connected regions in the binary image, although this increases the effects of noise. Theseregions correspond to moving objects in the scene (in this case, walking pedestrians).Results of this processing are shown in ®gure 3.3.3.3.2 Colour subtractionThe additional information contained in colour images can be combined to improve the segmen-tation of moving objects. Image sequences were obtained in YUV format, which consists of oneluminance ®eld, Y and two chrominance ®elds U and V 2. A background image was generated bytreating each ®eld independently, median ®ltering over time. For each pixel of an image framethe quantities Yimg, Uimg, Vimg and Yref , Uref, Vref were available i.e. the Y, U and V componentsof the current image and the reference (background) image. The differenced YUV values, �Y ,�U , �V are considered where �Y = Yimg � Yref�U = Uimg � Uref�V = Vimg � VrefUnder the null hypothesis that the current pixel is a ªbackground pixelº the quantities�Y ,�U ,�V are assumed to be sampled from independent zero-meaned, Gaussian distributionswith2This is the European equivalent to the YIQ standard as described in Foley and Van Dam [46]
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(a) (b)

(c) (d)Figure 3.3: Image Preprocessing: (a) background image, (b) videoinput image, (c) differenced image, (d) blurred andthresholded image



33variances �2Y , �2U and�2V . (A background pixel is assumed to have a ®xed value with some normalrandom noise present due to errors in the imaging process).Hence the quantity�S2 is calculated for each pixel where�S2 = �Y 2�2Y + �U2�2U + �V 2�2Vand the null hypothesis is rejected if �S2 > �yuv (and hence the pixel is assigned the valueFOREGROUND). Otherwise the null hypothesis is accepted (i.e. the pixel is assigned the valueBACKGROUND3 ). As for grey-scale subtraction, a conservative threshold is chosen for �yuv en-suring the foreground regions corresponding to moving objects are well de®ned and connected.In order to improve robustness the image�S2(x; y) is blurred with a Gaussian ®lter beforethresholding.This method requires estimates for the parameters �Y , �U and �V . These parameters areestimated from an initial image sequence where there is little or no movement. Values for �Y ,�U ,�V are calculated as above over the whole image and the sample variance of each ®eld usedas the estimate for the variance of the underlying noise distribution.3.3.3 Further noise reductionWhen there is poor contrast between the moving object and the background, fragmentation canoccur, resulting in several foreground regions where there should only be one connected region.This effect can be reduced by further image processing operations (at the expense of speed andresulting image resolution).Morphological ®lters were applied to ®ll these ªgapsº (see for example Sonka, Hlavac andBoyle [47]). In order to join regions separated by k pixels along an extended boundary, the fol-lowing operations were performed on the binary image� k successive dilation operations (i.e. region growing the FOREGROUND regions)� k successive erosion operations (i.e. region shrinking the FOREGROUND regions)3in fact, FOREGROUND = 255 and BACKGROUND = 0



343.4 Extracting silhouettesThe above image processing scheme generates a binary image in which every pixel where thereis evidence of movement is set to FOREGROUND. Each connected FOREGROUND region is po-tentially the silhouette of a single moving object within the scene. The following object speci®cconstraints may be utilised to reject regions which are unlikely to be a single pedestrian.NO PIXELS > MIN REGION SIZE (3.1)NO PIXELS < MAX REGION SIZE (3.2)REGION HEIGHT=REGION WIDTH < MAX HEIGHT TO WIDTH (3.3)REGION HEIGHT=REGION WIDTH > MIN HEIGHT TO WIDTH (3.4)where NO PIXELS is the number of pixels in the region, REGION HEIGHT is the height of theregion's bounding box4 and REGION WIDTH is the width of the region's bounding box.The ®rst constraint (equation 3.1) removes small regions which are often due to noiseªspikesº in the image data. Constraint 3.2 removes regions that are too large which may be theresult of a change in lighting conditions. Constraints 3.3 and 3.4 ensure the region has a tall rect-angular bounding box and removes regions where several moving pedestrians are amalgamatedinto one region or when the object is not a human (e.g. a car). The last two constraints are speci®cto images of pedestrians where the normal to the ground plane is roughly vertical in the image.These constraints are only required for noisy, cluttered training images where the moving objectsare not necessarily of interest or where several moving objects may overlap in the image.The connectedFOREGROUND pixels are segmented from the binary image using a standardª¯ood-®llº algorithm (see for example Foley and Van Dam [46]). Feasible regions that satisfy theabove constraints are traced (clockwise) to produce a chain of boundary points which is used asthe basis for the calculation of a training shape-vector.4i.e. minimum vertically aligned enclosing rectangle



353.5 Shape vector calculation3.5.1 Finding a point of reference on the boundaryIn order to proceed, a ®xed reference point on the closed boundary (which will have an associ-ated parameter value u = 0) is required. A consistent method is required which is not highlysusceptible to noise.The method used is to ®nd the principal axis (i.e. the axis through the centroid of the bound-ary points which minimises the sum of the perpendicular distances to that axis). The referencepoint is chosen to be the upper (in terms of image coordinates) of the two points where the axiscrosses the boundary. It is assumed that this point will be ®xed for humans in the scene. This isreasonable for scenes where people always appear in an upright position.A more general method may select the intersection point that is nearest to the centroid, orsome other suitable choice. In the case where the principal axis may be inappropriate (e.g. vehi-cles viewed from the side and head on), a very simple method may use the upper-most point (inimage coordinates) over the complete contour. This method is more suitable for training a model,speci®c to a ®xed viewing angle (e.g. images of cars taken from a ®xed camera).The boundary points are now reordered so that the ®rst point is the reference point andapproximated by a cubic B-spline (for an example see ®gure 3.4). Each shape can be re¯ectedabout its principal axis to double the volume of training data (as has been done by Hill, Thornhamand Taylor [48]).3.5.2 Approximating with a cubic B-splineThe control pointsof a length-wiseuniformly spacedB-spline are used as a shape vector. Previoussteps extract from each moving shape an ordered set of n boundary pointsWi = (Xi; Yi), with0 � i < n which are approximated with a (closed) splineP(u) = (Px(u); Py(u))with N controlpointsQk = (Rk; Sk) whereN � n. The functionP(u) is expressed as follows:P(u) = N�1Xk=0 QkBk(u)
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(a) (b)Figure 3.4: Extracting a spline:(a) data points with principal axis,(b) resulting spline.



37where the Bk are modi®ed B-spline basis functions. As the curves are closed the basis functionsare de®ned such that u = 0 is equivalent to u = N as follows:Bk(u) = 8><>: B(u� k) (u� k) � 0B(u+N � k) (u� k) < 0where B(u) is the standard B-spline basis function which is non-zero in the interval 0 < u < 4.The required approximating spline minimises the error function, erf, given byerf = n�1Xi=0 (Px(ui)�Xi)2 + (Py(ui)� Yi)2where ui is some parameter value associated with the i'th data point.Using standard methods (see for example Bartels, Beatty and Barsky [49]) the followingN equations are obtained: N�1Xk=0 Mi;kRk = n�1Xj=0Bi(uj)Xj (3.5)where 0 � i < N andMr;s =Pn�1k=0 Br(uk)Bs(uk). An analogous set of equations are obtainedfor Sk. For a reasonably close approximation of the boundary, the parameter values can be set asfollows: uk = 8><>: 0 for k = 0�Pki=1 jWi �W(i�1)j for k > 0 (3.6)whereWn �W0 and � is chosen such that un = N .To calculate the spline control points,Qk , the matrixMi;j must be inverted for each shape.In order to avoid this computationally expensive step, n0 = wN new data points are calculated(where w is a whole number, typically set to 8). These new data points correspond to the ®xeduniformly spaced parameter values: uk � k�Nn0�For details, see section 3.5.3.Using these new data points and their associated parameter values,Mi;j is ®xed and needonly be inverted once. This ef®ciently produces a uniformB-spline with the control points placedat approximately uniformly spaced intervals along the contour. Moreover, the method is fast androbust.



38The control points of the spline make up the shape vector x, wherex = (R0; S0; R1; S1; : : : ; RN ; SN)T3.5.3 Selecting Data Points for Spline ApproximationConventionally the parameter values associated with data pointsWk are based on the Euclideandistances between points (as in equation 3.6). This leads to a set of values uk corresponding to thedata valuesXk. The discrete mapping uk toXk can then be extended to a continuousmapping uto X(u) by linear interpolation. Hence given uk � u � uk+1 it is possible to interpolateX(u)using X(u) = � u� ukuk+1 � uk�Xk+1 + � uk+1 � uuk+1 � uk�XkA similar interpolationscheme is used to ®nd Y (u). Hence given a chosen parametric valueu, a corresponding new data point (X(u); Y (u)) is obtainable. Regularly spaced parametric val-ues (between 0 andN ) are chosen to ®nd n0 new data points. These new data points can now beef®ciently approximated with a uniform cubic B-spline.3.6 Component Analysis of the dataA straight forward method for analysing the training data has been implemented where the B-spline control points are treated in exactly the same way as the landmark points of the LPDM ofCootes et al , described in section 2.2. Hence the training shapes are aligned and a mean shape-vector calculated. A covariance matrix is calculated (using equations 2.1 and 2.2) and the eigen-vectors calculated. The resultingmodel consists of the mean shape x and a subset ofm eigenvec-tors p1;p2; : : : ;pm (of unit length) corresponding to them most signi®cant modes of variationin the training data.A slightly modi®ed method is described in section 3.9 which takes into account the na-ture of the training data (i.e. the fact that the shape-vectors are spline control points as opposedto landmark points). The required modi®cation, although providing a sound theoretical basis for



39subsequent methods, does not in fact produce a dramatic change in the ªmodes of variationº vi-sualised in section 3.7.3.7 Results3.7.1 Shape extraction from live videoImages were taken from 15 minutes of live video of a quiet pedestrian scene containing somemoving vehicles. Training shapes were automatically segmented and approximated by a cubic B-spline with 40 control points. Each shape was re¯ected about the principal axis resulting in over700 training shapes (corresponding to approximately 50 people). Some of these shapes are shownin ®gure 3.5. There are evident errors in the training shapes due to mis-segmentation. However,the majority of shapes are reasonably accurate and this large body of shapes dominates the sub-sequent statistical analysis.

Figure 3.5: Some training shape-vectors



403.7.2 Modes of variationEach training shape-vector had 80 parameters (40 control points in 2D). The ®rst 18 modes ac-counted for 90% of the variance of the training data. The largest 19 eigenvalues are displayedin ®gure 3.6. The graph shows that there is a small set of signi®cant eigenvalues and a largerset of relatively small eigenvalues. The small eigenvalues correspond to insigni®cant modes ofvariation that can be subsequently ignored.
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Figure 3.6: Plot of the ®rst 19 eigenvaluesThe ®rstm = 18 eigenvectors can thus be used as an orthonormal basis for themodel spaceof allowable shapes. Some of the signi®cant modes of variation of the shape-vectors are shownin ®gures 3.7, 3.8 and 3.9.
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Figure 3.7: The effect of varying the component of the ®rstmode by �1:5 standard deviations
Figure 3.8: The effect of varying the component of the secondmode by �1:5 standard deviations
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mode 4 mode 6 mode 8

mode 10 mode 12Figure 3.9: Diagrams illustrating some of the modes of variation



43Visualisation of ModesEach ªmode of variationº represented by an eigenvalue and eigenvector corresponds to a line inshape-space through the mean shape. In order to visualise a particular mode, a small set of shape-vectors on this line are calculated by varying the associated shape parameter between suitablelimits. Explicitly, for the i'th mode shape-vectors x(j) are calculated usingx(j) = x+ step� jp�i�eiwhere j varies between �k and k (e.g. j = �2;�1; 0; 1; 2) and step is a suitable step size instandard deviations (typically around 0.5).Each shape-vector represents a cubic B-spline and the splines are drawn either next to eachother as in ®gure 3.7 or superimposed together (distinguished by rendering style) as in ®gure 3.9.In ®gure 3.7 the mean shape is drawn in the centre of the diagram and in ®gure 3.9 theB-spline control points of the mean shape have been drawn in each diagram. The spline controlpoints do not generally lie on the curve.3.8 A simple application of the modelOne very simple application of the linear model that has been generated is removing the effectsof noise from a segmented shape. This can be done by projecting a shape-vector (obtained usingthe method described previously in this chapter) to the closest point in the a priorimodel spacederived from the training set.Hence given a noisy shape-vector x, the m shape parameters b = (b0; :::; bm�1)T werecalculated using equation 2.4. The shape parameters were further constrained so thatb lies withina hyper-ellipsoidcentered about the originusingequation 2.8. (The constant smaxwas set to 16.0).The shape parameters were then projected back into the spline representation using equation 2.3to get a ªcomponent-®lteredº spline.This process ®nds the closest point (with respect to the standard Euclidean distancemetric)within the constrained model space to the noisy input shape. Results are shown on some real data



44in ®gure 3.10.

Figure 3.10: Projecting into the model space: In each case, thecomponent ®ltered spline is shown to the right of theinitial noisy input spline.3.8.1 LimitationsThe above method can be regarded as combining two noise reducing effects:-1. Setting the components of the less signi®cant modes of variation to zero. This is achievedby the ®rst step of mapping into the space spanned by the signi®cant modes.2. Pulling the shape parameters towards the mean (when the shape is too far from the meanshape). This is achieved by constraining the vector b to lie within the hyper-ellipsoid. Thistakes a shape with low prior probability density to the closest point with a reasonably highprior probability density.



45If the segmentation of the input shape is poor (e.g. a leg is missing) then all the controlpoint positions will have signi®cant errors resulting in large errors in all shape parameters. Thusthere is insuf®cient information to reconstruct the original shape. Two examples of this problemare shown in ®gure 3.11.
Figure 3.11: Projecting mis-segmented shapes3.9 A modi®ed component model3.9.1 Principal Component AnalysisPCA aims to transform a correlated set of observed shape-vectors to a basis of linearly uncorre-lated parameters. This is equivalent to diagonalising the shape-vector covariance matrix using asimilarity transformation. The vector dx = (x� x) is transformed to a new basis usingdx = 2N�1Xi=0 biei= Pb (3.7)where b = (b0; :::; b2N�1)T and Pjk = [ek]j .Assuming P is invertible the covariance matrix for b is simplyE(bbT ) = P�1E(dx dxT )P�TIn order to enforce linear independence, the above covariance matrix for b is diagonalisedby appropriate choice of P�1. This does not uniquely de®ne P . A further orthogonalitycondition



46is required, namely ei � ej = �ij (3.8)which is equivalent to P�1 = PT .3.9.2 Distance metric for splinesEquation3.8 represents only one possibleorthogonalitycondition. The scalar product correspondsto a choice of a standardEuclidean distancemetric f(:::; :::) to measure the error between two setsof landmarks (xi; yi) and (x0i; y0i) wheref(x;x0) = jx� x0j=  N�1Xi=0 (xi � x0i)2 + (yi � y0i)2! 12Given two cubic B-splines P(u) and P0(u) de®ned by theirN control points (xi; yi) and(x0i; y0i), a more accurate error metric d, measures the distances between corresponding points oneach spline, sampled densely and uniformly over the parametric curves. i.e.d(x;x0) =  Z N0 jP(u)� P0(u)j2du!12=  Z N0 N�1Xi=0 �(xi � x0i)Bi(u)�2 du+ Z N0 N�1Xi=0 �(yi � y0i)Bi(u)�2 du! 12 (3.9)Equation 3.9 simpli®es to the formd(x;x0) = [(x� x0)TM(x� x0)] 12where the 2N � 2N symmetric matrixM is de®ned by0B@ M2i;2j M2i;2j+1M2i+1;2j M2i+1;2j+1 1CA = 0B@ Hi;j 00 Hi;j 1CA (3.10)and theN �N symmetric matrixH is given byHi;j = Z N0 Bi(u)Bj(u)du



47There is a unique inner product associated with this metric given byhx;x0i = xTMx0such that d(x;x0) = hx� x0;x� x0i 12(see for example Cohn [50] for details on inner products). The inner product is used in place ofthe scalar product in equation 3.8 to give a more suitable orthogonality condition.3.9.3 Eigenshape analysisThe desired transformation to a set of linearly independentM-orthogonal eigenvectors is foundby solving the eigenproblem SMei = �iei (3.11)where S is the training set covariance matrix E(dxdxT ).Using the notation of equation 3.7 the following results can be easily veri®ed1. The vectors ei are orthogonal with respect to the inner product h:::; :::i.2. Hence by suitable normalisation hei; eji = �ijor equivalently PTMP = I .3. Each shape coef®cient bi is given by projecting the shape-vector dx onto the line spannedby the i'th eigenvector (minimising the square distance d2 to the line). i.e.bi = hdx; eii4. The shape coef®cients are linearly uncorrelated over the training set.E(bibj) = eiTMSMei = hei; �jeji= �j�ij5. Assuming an unbiased, homogeneous, isotropic Gaussian measurement noise model (withdense measurements uniformly spaced over the contour) as described by Blake et al [38],measurements for the shape parameters are uncorrelated (see section 4.2.4).



48By analogy with equation 2.12 the eigenshape model can be regarded as a ®nite elementsystem with mass matrixM and stiffness matrix S�1.3.10 DiscussionIn this chapter a method for automatically generating a linear shape model from image sequenceshas been described. Results of an implementation have been shown for real image sequences ofwalking people. The system automatically extracts training shapes and labels these shapes usinga B-spline representation.By using a simple segmentation scheme to produce a large volume of noisy data a usefulmodel of the human pro®le has been generated. By restricting the input domain to reasonablequality images from a ®xed, colour video source, a model has been built which can be applied toless restricted problem domains.An ef®cient method for extractinga shape vector based on a cubicB-spline has been demon-strated. The system can process large amounts of data in near real time to generate a compact dataset. Statistical component analysis of the spline data gives a simple but effective model. A novelmethod for performing principal component analysis has been derived to provide a robust theo-retical framework for statistical analysis of a training set of parametrised contours.There are several advantages of using a B-spline contour to describe shape as opposed to asuitably dense set of ªlandmarkº points (as in the LPDM). One advantage is that the representa-tion provides an analytic characterisation of shape between nodes. This allows a relatively smallnumber of nodes to be employed which reduces the computational expense of the eigen-analysis.The resulting eigenvectors are consequently of low dimensionality (e.g. 80 components) whichreduces the amount of storage space required for the model (which is particularly important ifthe system requires many such models). Furthermore the spline representation will prove usefulin tracking applications by allowing measurements to be made between nodes and providing anef®cient method for calculating the normal to the curve at each point. Thus a large number ofmeasurements can be taken (if desired), resulting in a robust over-determined system.



Chapter 4Ef®cient Contour Tracking4.1 IntroductionThis chapter describes an ef®cient mechanism for tracking the model shape parameters describedin chapter 3 (representing the outline of a deforming object, such as the silhouette of a walkingpedestrian) through a sequence of images. The aim of the system is to track robustly one or morenon-rigid objects in an outdoor scene in ªreal timeº (i.e. processing images at 30 Hz) on mod-est hardware. The changes in shape between successive image frames captured at video rate canbe signi®cant and hence the contour can not be assumed to vary slowly. The tracking methodmust react well to large shape deformations but be simple enough to work in real-time. Suddendiscontinuous changes in shape can occur where previously self-occluded features become vis-ible. Noise and background clutter add to the dif®culty of the task. In order to overcome theseproblems, the trained a priori shape model is used.Cootes et al describe the ªActive Shape Modelº [15] (outlined in section 2.2.2) for locallyupdating shape parameters to ®t features in an image. The method described here extends thiswork by incorporating a statistical framework similar to the tracking framework of Blake et al[38] (outlined in section 2.5), allowing the automatic control of spatial (and temporal) scale. Astochastic shape model is described allowing the contour to deform more easily in modes of vari-ation that vary signi®cantly within the training set. The statistical framework can be used to au-tomatically control the search scale for feature search on an individual frame (in a similar mannerto the multi-scale extension to the ASM of Cootes et al [24]) as well as over successive frames



50(allowing motion coherence to be exploited when ªlockº has not been lost over the contour). Asimple method is described to cope with known occlusion (e.g. when two tracked objects overlapin the image) improving the robustness of the system.A signi®cant advantage of using an a priori linear shape model over the ªActive Splineºapproach ofBlake et al is that only a few shape parameters are required for tracking, improving thespeed of the system. Furthermore, it can be shown that assuming a theoretical isotropic continuoussensor model, the ®ltering process for the shape parameters can be decoupled allowing each shapeparameter to be ®ltered independently. In practice the (decoupled) system performs well, evenwhen these assumptions are violated and a discrete (ansiotropic) measurement process used.Results are included in this chapter, showing several pedestrians being tracked using im-ages taken from a ®xed camera, as well as the more dif®cult problem of tracking pedestrians inimages taken with a hand-held moving camera.4.2 Theoretical framework4.2.1 State SpaceThe eigenshape analysis described in section 3.9 allows the vectorx representing the 2D positionsofN control points to be de®ned in terms of a set ofm shape parameters b = (b0; :::; bm�1)T asfollows: x = Pb + xwhere P is an 2N �m matrix of eigenvectors and x is the mean shape-vector.A contour in the model frame is projected into the image frame by rotation, scaling andtranslation using  XiYi! = Q xiyi!+  oxoy!where the 2 x 2 matrixQ is given byQ = 0B@ ax �ayay ax 1CA = 0B@ s cos � �s sin �s sin � s cos � 1CA



51and the shape-vector X = (X0; Y0; :::; XN�1; YN�1)Trepresents the 2D control points of the B-spline contour in the image frame. Hence the state spaceconsists ofm shape parameters bi, the origin of the object (ox; oy), and the alignment 1 parametersax, ay , incorporating rotation and scaling. The state parameters are related to the shape-vectorXby X = Q(ax; ay)(Pb+ x) + o (4.1)where o = (ox; oy; : : : ; ox; oy)| {z }Ntimes Tand Q is a 2N � 2N rotation and scaling matrix given byQ = 0BBBB@ Q 0. . .0 Q 1CCCCA4.2.2 Stochastic ModelShape parametersThe shape part of the state vector is modeled as a simple discrete stochastic process as follows:b(k)i = b(k�1)i + w(k�1)i wki � N(0; �i)where bki models the i'th parameter value at frame k and the noise term wki is a zero-meaned,normally distributed random variable with variance �i . A dynamic model (assuming constantrate of change) was considered but found to be less stable with no appreciable improvement inperformance. The underlying assumption of the shape model is that the shape parameters varyindependently (the noise process is isotropic). This is reasonable as over the training set:E(bibj) = 0 i 6= j1In this thesis, the term alignment refers to rotation and scaling but not translation.



52As the variance of bi over the training set is equal to �i, it is natural to set the noise termsusing �i = ��iwhere � is an undetermined shape parameter and is typically set to 0:05. This allows the moresigni®cant shape modes to vary more freely. A diagram illustrating the resulting uncertainty el-lipsoid from this stochastic model (assuming initial values are known with absolute certainty) isgiven in ®gure 4.1. Note that� determines how easily the shape can deform with a value of� = 0corresponding to complete rigidity.
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53OriginThe origin of the object is assumed to undergo uniform 2Dmotion with an additive random noiseprocess (in both velocity and acceleration). This can be expressed by the differential equation:ddt 0B@ ox_ox 1CA = 0B@ _ox0 1CA+ 0B@ vxwx 1CAwhere vx � N(0; qv) and wx � N(0; qw). A corresponding model is used for oy . Over a walkcycle, changes in shape affect the positionof the origin. This can be accommodated by the randomvelocity term vx, allowing the underlying ªsmoothº motion to be recovered. In the absence ofsensor measurements this ªsmoothedº estimate of velocity determines the motion of the origin.Alignment parametersThe alignment parameters ax; ay are assumed to be constantwith added system noise as describedby the equation: 0B@ a(k+1)xa(k+1)y 1CA = 0B@ a(k)xa(k)y 1CA +0B@ waxway 1CAwhere wax; way � N(0; qa).4.2.3 The Discrete Kalman FilterThe standard discrete Kalman ®lter may be used to update state (and covariance) estimates of asystem with discrete measurements at regularly spaced time intervals t = k�t (see, for example,Gelb [32]). For a standard measurement model,zk = Hkxk + vk vk � N(0; Rk)(i.e. with measurement matrix Hk and measurement covariance matrix Rk), the state estimateupdate is given by x̂k(+) = x̂k(�) +Kk(zk �Hkx̂k(�))The Kalman gainKk is given by Kk = Pk(+)HTk R�1k



54and the covariance matrix Pk update is given byP�1k (+) = P�1k (�) +HTk R�1k Hk (4.2)Note that the covariance matrix, denoted Pk is distinct from the matrix of eigenvectors de-noted P .4.2.4 Theoretical basis for decoupling shape ®lterBlake et al [38] describe a theoretical continuous sensor model for measuring a B-spline contour(ªfeatureº) in an image. The sensor is assumed to be unbiased, homogeneous, isotropic and Gaus-sian. In Blake's notation the N control points of the B-spline are represented by the joint state-space vector (X(t);Y(t)) and the sensor measures the least squares approximation (Xf ;Yf) tothe continuous curve. TheN �N covariance matrix for the measurement process for each of theXf ;Yf measurements is given by RX = RY = rH�1where H is the matrix de®ned in equation 2.14.In terms of the shape-vector notationof this thesis, the sensormeasures the observed shape-vectorXobs with 2N � 2N covariance matrix Rk given byRk = rM�1whereM is the 2N � 2N matrix de®ned in equation 3.10 and r is a scalar.If the alignment and origin parameters are assumed to be ®xed and them shape parametersare ®ltered using a discrete Kalman ®lter (with measurements taken at each image frame), thenfrom equation 4.1 and equation 4.2, the covariance matrix update equation is given byP�1k (+) = P�1k (�) + [QP ]T [rM�1]�1[QP ]The above update equation is simpli®ed using the following easily obtainable results� The alignment matrix, Q, commutes with the ªmetricº matrixM. i.e. QM =MQ



55� The alignment matrix is a scaled rotation matrix. Hence QTQ = s2I� The matrix of eigenvectors P was derived such that PTMP = I (see section 3.9.3)Using these results, the update equation simpli®es toP�1k (+) = P�1k (�) + s2r�1PTMP= P�1k (�) + s2r�1IHence assumingPk(�) is diagonal, then after applying themeasurementXobs the updatedcovariance matrix is still diagonal. Assuming P0 is diagonal and noting the diagonal form of thestochastic shapemodel described in section 4.2.2, the covariance matrix is always diagonal. Thusthe system can be decoupled into m independent 1D Kalman ®lters 2. The covariance updateequation for the i'th ®lter becomes[�i(+)]�1 = [�i(�)]�1 + ri�1 (4.3)where r�1i = s2r�1 and �i = [Pk]i;i is simply the variance of the current estimate for bi.The corresponding shape parameter update equation is given byb̂i(+) = b̂i(�) + � �i(�)ri + �i(�)�dbiwhere dbi = [PTQTX]i � b̂i(�)is the observed change in the i'th shape parameter. Note the similarity to Lowe re®nement (equa-tion 2.10). In the absence of previous measurements, the stochastic shape model will result in thevariance �i(�) being directly proportional to the eigenvalue �i, and the Lowe re®nement shapeupdate becomes almost identical to the Kalman ®lter update for the theoretical isotropic sensormodel.2i.e. a ®lter with a 1 dimensional state space



564.2.5 Discrete Measurement ModelObserved featuresAlthough the object shape is represented by a continuous curve, it is convenient to sample thecurve atL regular intervals between control points. Hence there are n = NL points (pi; qi) givenby p = GXwhere p = (p0; q0; : : : ; pn�1; qn�1)Tand G is a 2n x 2N sparse matrix mapping the control points to regularly spaced points on thecurve, i.e. NXj=00B@ G2i;2j 00 G2i+1;2j+1 1CA0B@ XjYj 1CA = 0B@ piqi 1CANote thatG commutes with the rotation matrix Q.At each new frame, measurements are made by searching along the normal to the estimatedcontour at some or all of the sample points. The search is restricted to a speci®ed search windowobtained from the ®ltering process (see section 4.3.5). The point of maximum contrast is retainedas the observed feature. The contrast is measured at the search scale and for reasons of speed only3 points along the normal are examined: on the curve and at the extremes of the search window.This method is described by Blake et al [38] and was summarised in section 2.5.Measurement covariance matrixFor each point measurement there is an associated measurement variance vi which is set propor-tional to the square size of the search window at that point. Hence, if there are a total of L0Nmeasurements made within a unit frame-period, the pointwisemeasurement variance is given byvi = L0(c�i)2where �i is the size of the search window at the i'th sample point and c is a constant (typically setto 0:5). If there is no signi®cant point of contrast found within the search window (the feature hasbeen lost) then no measurement is made. This is achieved by setting vi to in®nity (i.e. v�1i = 0).



57The ªaperture problemº, described by Horn [51], allows only the normal component of thedisplacement of the contour to bemeasured. Thusmeasurements are made by searching along thenormals ni to the estimated contour at each sample point. This results in coupling in the x and ycomponents of the measurements. The inverse covariance matrix is given by the partitioning:R�1k = 0BBBB@ A0 0. . .0 An 1CCCCAwhere Ai is the 2 x 2 pointwise inverse covariance matrix given byAi = v�1i niniT4.3 Tracking FilterThe point measurements are related to the state space parameters by the equationp = Q(ax; ay)G[Pb+ x] +Gowhich is essentially non-linear (due to the dependence of Q on ax and ay). In the interests ofspeed, the shape, alignment and translation effects are ®ltered separately using the followingscheme:1. Assume the shape and alignment parameters are ®xed2. Estimate the change in origin using a dynamic Kalman ®lter3. Remove the effects of this origin shift from the observations4. Estimate the change in alignment parameters5. Remove the effects of change in alignment6. Update each shape parameter estimate independently using a 1D Kalman ®lterIf the effects of change in alignment are suf®ciently small, the shape, alignment and trans-lation effects can be ®ltered in parallel, ignoring changes in alignment and translation in the shape®lter mechanism (i.e. omitting steps 3 and 5).



584.3.1 Updating the OriginThe x and y components of the origin are ®ltered independently. The measurement model for thex component of the origin, assuming the other parameters are ®xed at their current estimates, isgiven by p0i = ox + (vk)2iwhere the noise term vk � N(0; Rk) and similarly for the y componentq0i = oy + (vk)2i+1The ªmeasurementsº p0 = (p00; q00; :::) are calculated from the observed contour points p usingp0 = p� Q(âx; ây)G(P b̂+ x)For the x component ®lter, the 2� 2 covariance matrix Pox for the state estimate (ôx; _̂ox)is updated using the standard Kalman ®lter equations. Explicitly[Pox(+)]�1 = [Pox(�)]�1 +0B@ r�1 00 0 1CAwhere r�1 =Pn�1i=0 (R�1k )2i;2i.Between image frames the standardKalman ®lter equations are used to obtain the estimatedorigin at the next frame.4.3.2 Updating the AlignmentIf the origin and shape parameters are ®xed at their current estimates, the measurement model forthe alignment parameters is given byp�Gô = H 0B@ axay 1CA+ vkwhere H is the 2n x 2 measurement matrix de®ned by0B@ H2i;0 H2i;1H2i+1;0 H2i+1;1 1CA = 0B@ s2i �s2i+1s2i+1 s2i 1CA



59where s = G(P b̂+ x).The estimates âx, ây and the 2 x 2 covariance matrix are updated with the correspondingKalman ®lter equations. The alignment parameters are not assumed to be independent althoughfor simplicity the system noise is assumed isotropic.4.3.3 Updating the Shape parametersThe theoretical isotropic sensor model results in a decoupled Kalman ®lter. This provides a the-oretical motivation for ®ltering each shape parameter independently, even when the ansiotropicdiscrete measurement process is used. In order to achieve this decoupling, the covariance matrixfor them shape parameters is restricted to be diagonal by ignoring off-diagonal elements in thecovariance update equation.Writing�p = p� p̂, the measurement model for the i'th shape ®lter is given by�p = h(i)(bi � b̂i) + vkwhere the vector h(i) is an 2n� 1 measurement matrix given by[h(i)]j = [Q(âx; ây)GP ]jiThe covariance update equation for each ®lter is given by equation 4.3 where the ªmea-surement varianceº for the i'th shape parameter, ri, is now de®ned byri�1 = (h(i))TR�1k h(i)The state update equation for each ®lter is given byb̂i(+) = b̂i(�) + �i(+)((h(i))TR�1k (�p))4.3.4 Enforcing the global shape constraintCootes et al constrain the model space of feasible shapes by ensuring the vector b lies within ahyper-ellipsoid (so that the Mahalanobis distance to the mean shape is constrained). This con-straint can be applied using equation 2.8 after the shape parameters have been updated. This



60method has been implemented with some success. An alternative method, which produces a sim-ilar increase in stability, has also been implemented. A virtual input of 0 is applied to each shape®lter at the start of each image frame with measurement variance for each shape parameter pro-portional to �i. This approach has several advantages.� In the absence of image measurements (e.g. due to occlusion) the variance of each shapeparameter estimate will rapidly increase (due to the stochastic shape model). The virtualinput ensures each variance is bounded. This is valid, because the object shape is assumedto have come from the same (Gaussian) distribution as the training data. Hence the virtualinput adds prior knowledge to the system.� The virtual input will ªpullº the solution towards the mean shape before image measure-ments are made. This discourages a priori unlikely solutions but does not prevent them ifthere is strongly supporting image evidence.� These techniques can be combined by applying the virtual input at the start of each frameand the shape constraint after applying image measurements.4.3.5 Automatic control of search scaleThe Kalman ®lter provides a mechanism for automatically setting the search scale (as demon-strated by Blake et al [38]). The search window size at the i'th sample point is related to thepositional variance V (pi) and V (qi) at the estimated contour point given byV (pi) = [(QGP )Pk(QGP )T ]2i;2i + V (ox)= l�1Xj=0((QGP )2i;j)2�j + V (ox)where V (ox) denotes the variance of the estimate ôx (and a similar equation is obtained for qi).For simplicity, the alignmentmatrixQ is assumed constant in this calculation. An elliptical searchwindow is usedwith semi-axes of length 2pV (pi) and 2pV (qi). Hence the search scale �i alongthe normal ni is given by �i = 2s V (pi)V (qi)(ni)2xV (qi) + (ni)2yV (pi)



614.4 Implementation4.4.1 Iterative SchemeAn iterative ®lter has been implemented so that the contour shape is re®ned several times foreach frame. In order to improve the speed of the tracking mechanism, a subset of theNL samplepoints is used at each iteration. The method picks a random starting sample point and (nsub� 1)additional evenly spaced points. The measurements are combined using the updating scheme de-scribed previously to ®nd improved estimates for the state parameters. Subsequent iterations takesets of nsub measurements using the current estimates to calculate the estimated point positionsand search scale. A diagram illustrating this scheme is shown in ®gure 4.2.
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observations q’iFigure 4.2: Diagram illustrating tracking ®lter mechanismThismechanism is essentially a multi-scale search techniquewhere the search scale is auto-matically controlled by the Kalman ®lter mechanism. The scheme allows the rough contour shapeand position to be found quickly so that subsequentmeasurements of a particular contour point aremore likely to lock on to the correct image feature. The choice of nsub is a compromise betweena minimum value corresponding to the total number of state parameters (as the measurements are



62coupled, each point measurement constrains only one free parameter) and a suitably large valuecorresponding to a ªdenseº set of measurements (ensuring the state update mechanism is overde-termined and hence robust).4.4.2 InitialisationThe tracking mechanism requires initial estimates for the state parameters for each tracked ob-ject. In this implementation a crude motion detector is used using background subtraction on asubsampled image. The camera is assumed to be ®xed (at this initialisation step) and in the in-terests of speed the noise reduction step described in chapter 3 is not carried out. The result ofthis processing is a binary ªdifferenced imageº where the foreground pixel regions correspond tomoving objects in the scene. Objects that are already being tracked are removed from this imageby clearing the bounding box of the tracked object in the binary image. The remaining signi®-cantly sized (in terms of numbers of pixels) connected components are assumed to correspond tonew moving objects.For each of these connected components the bounding box is calculated and the state pa-rameters are initialised as follows âx(0) = (yr � yl)=hmây(0) = 0ôx(0) = 12(xl + xr)ôy(0) = 12(yl + yr)b̂(0) = 0where the bounding box has a lower left-hand corner (xl; yl) and an upper-right corner (xr; yr).The constant hm is the height of the mean shape. The initial variance of each shape parameterestimate is set to the associated eigenvalue �i.Hence the estimated shape is initialised to the mean shape aligned vertically, centred at theorigin of the bounding box and scaled to the height of the bounding box.



634.4.3 Measuring contrastTwo measures of contrast have been used to drive the tracking mechanism. The ®rst assumes thecamera is ®xed and a reference background image has been calculated. The second uses a singleimage frame allowing the camera to be non-stationary.Fixed camera methodAbackground (reference) image is calculated (at full resolution) in the usualmanner. The contrastmeasure essentially looks at the intensity gradient of the differenced image (without thresholding)at the desired search scale. Rather than performing image differencing and edge operations on thewhole image at multiple scales, the system only measures contrast where required by the trackingmechanism (allowing real time performance without image processing hardware).The trackingmechanism requires a contrastmeasure at 3 pointsalong the normalni throughthe estimated point pi using the scale �i. De®ning the points p(k) as followsp(k) = pi + k�ini (4.4)contrast is measured at p(1), p(0) and p(�1). The contrast ck at p(k) is measured by examiningimage intensities at p(k+1) and p(k�1) usingck = jI(p(k�1))� Iref(p(k�1))j � jI(p(k+1))� Iref(p(k+1))jwhere I(q) is the image intensity at the nearest pixel to the real-valued coordinates ([q]x; [q]y)and Iref is similarly the intensity for the background image.Note, the contrast measure is signed such that positive contrast corresponds to a larger ab-solute image difference at the inward facing sample point and a smaller absolute image differenceat the outward facing sample point (see ®gure 4.3). The contour is attracted to points with high(positive) contrast so that the whole curve lies on the boundary of a moving region.
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large image difference (motion)

no image difference (no motion)

estimated contourFigure 4.3: Diagram showing signed contrast measureEdge-based methodWhen the camera is non-stationary, an edge-based ªcontrastº measure is necessary. A 3�3 sobeledge ®lter on a subsampled grid is used. Horizontal and vertical sobel edge ®lters are applied andthe resulting edge strength along these two directions projected along the normal direction. Theabsolute value of the edge strength along the normal direction is used. For each contrast measure-ment image intensities are sampled in a regularly spaced grid centred about the closest pixel tothe (real-valued) position p(k), de®ned in equation 4.4. The grid spacing is the closest integer tothe search scale �i.This method is suitably fast and robust for the purposes of tracking in scenes with reason-able contrast. For colour input, contrast is measured on each colour ®eld and the resulting edgestrengths summed over all the ®elds.4.4.4 Modeling OcclusionIn order to increase the robustness of the system in more dif®cult scenes where there are severalobjects being tracked, occlusion can be modeled. The method used is based on the work of



65Koller et al [52]. In their work, it is assumed that nearer objects appear lower in the image planeand occlude farther away objects. Measurements that occur within known regions of occlusionare ignored, improving the robustness of object tracking.A similar method is employed here, with the following simpli®cations:-� Object regions that overlap are assumed to occlude one another (i.e. no depth assumptionis used).� An enlarged bounding box is used instead of an enlarged contour to model the object inthe image plane (for the purposes of occlusion reasoning). This simpli®cation reduces thecomputational burden of the occlusion reasoning.Hence, at the start of each new image frame the currently tracked objects are drawn intoan ªocclusion imageº using an enlarged bounding box centred about the estimated origin of eachobject. The height andwidth are set to 105%of the height andwidthof the contour'sboundingboxin the previous frame. Each rectangle is renderedwith a new pixel value except where twoormorerectangles overlap in which case a particular value is used to ¯ag the pixel as being ªoccludedº.When measurements are made in the tracking mechanism at an estimated contour pointpi,the associated pixel in the occlusion image is checked. If there is possible occlusion no measure-ment is made at that point (i.e. the measurement inverse variance is set to zero). This increasesthe overall measurement variance for each state parameter reducing the Kalman gain and increas-ing the state parameter uncertainties. The method is found to improve robustness where there ispartial occlusion of tracked pedestrians.4.5 Results4.5.1 Quantitative AnalysisIn order to measure the performance of the tracking system, eight reasonable quality image se-quences were obtained in which the same person is seen walking in eight different directionsrelative to a ®xed camera. A background image was also captured in which there are no mov-ing objects. The images are of suf®ciently good contrast to obtain an accurate segmentation of



66the pedestrian's silhouette using image subtraction as described previously. The resulting set ofshapes is used to build a ªgenericº model for this camera view. The ®rst and last frame from eachsequence is shown in ®gure 4.4.
Figure 4.4: Training images for generic modelThe system was tested on an additional ªtestº sequence showing the same person walkingfrom left to right. The image subtraction segmentation for the test sequence appears to be fairlyaccurate and is used as the ªground truthº for subsequent analysis. The segmented (binary) imagesequence was corrupted by adding randomly generated artifacts to the image. The ®rst image ineach sequence was left uncorrupted to ensure the initialisation phase was accurate (i.e. ensuringthe initial position and size of the contour were close to the ground truth).



67Three eigenshape models were used:-1. A ªrough modelº generated from a noisy training set of shapes extracted from live video(unsupervised) from a ®xed camera viewing a similar scene from a slightly different angle.This is the model from chapter 3. Each training shape was represented by a spline withN = 40 control points.2. The ªgenericº model generated from the eight sequences described above. The model rep-resents shapes of the silhouette of a person walking in a variety of directions. 40 controlpoints were used.3. A ªspeci®cº model generated from segmented shapes from the ®rst training sequence only.In this sequence, the pedestrian walks from left to right across the image (i.e. in the samedirection as in the test sequence). 32 control points were used.Corrupting the imagesNoisy binary images were generated by adding artefacts to the binary segmented test sequence.Randomly generated circles (with random position and radius) were drawn over the ground truthbinary image in either the foreground or background colour. This type of noise was chosen totest the robustness of the system, for several reasons. Firstly the noise cannot be thresholded out(e.g. by ignoringobservationswhere no ªsigni®cantº contrastwasmeasured). Secondly, the noiseprocess will result in signi®cant errors in contourmeasurements over whole sections of the curve.Hence these images are suitable for a rigorous test of the tracking system. Some corrupted imagesare shown in ®gure 4.5. It can be seen that the silhouette shape is disrupted and a conventionalnonmodel-based approach such as the ªsnakeº of Kass et alwould be unable to recover the objectshape. Also note that the changes in shape are large so that the shapes can not be well representedby arbitrary small deformations of a mean shape or the shape in the previous frame.Two types of noise were generated ± using a temporally uncorrelated and a temporally cor-related noise process. The initial temporally uncorrelated method adds the random artefacts toeach image independently. The temporally correlated process adds identical artefacts to each im-age, thus generating partial occlusion of the whole scene.



68The signal-to-noise-ratio (SNR) of the noisy images is calculated over the image sequenceusing SNRin(dB) = 10log signalnoisewith signal = XimagesXx;y [Iref(x; y)� I0]2noise = XimagesXx;y [Iref(x; y)� I 0(x; y)]2where Iref(x; y) is the pixel value at (x; y) for the ground truth image and I 0(x; y) is the cor-responding pixel in the corrupted image. The constant I0 is set to halfway between the ªback-groundº and ªforegroundº pixel values, so that a patch of foreground and a patch of backgroundboth have the same signal strength, thus ensuring the SNR is independent of the relative imageand object size.Measuring the accuracy of trackingIn order to measure the accuracy of the tracking process (i.e. the accuracy of shape, position andorientation of the tracked contour) an image based measure is used. Thus the error measure isindependentof the parametrisation of the contour. The contour resulting from the tracking processis rendered ¯at ®lled in the ªforegroundº colour into the image Itrack.The trackingprocess is ªlocalº so that the signal far from the object is never sampled. Hence,in this case, it is more appropriate tomeasure the signal in terms of the area of ªforegroundº pixelsin the ground truth image. The signal and noise are calculated usingsignal = 2 XimagesXx;y [Iref(x; y)]2 (4.5)noise = XimagesXx;y [Iref(x; y)� Itrack(x; y)]2 (4.6)where the pixel value for a ªbackgroundº pixel is 0. The scale factor of 2 in equation 4.5 waschosen so that a SNR of 0 (i.e. signal = noise) would occur if the tracker silhouette consistedof a shape of the same area as the ground truth shape but inaccurately placed so that there is nooverlap between the two. This is the ªworst caseº scenariowhere the tracker has completely failed
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(a) (b)(c) (d)(e) (f)(g) (h)Figure 4.5: Some corrupted images:(a), (b) original images(c), (d) 12 dB (uncorrelated) noise added(e), (f) 6 dB (uncorrelated) noise added(g), (h) 6 dB correlated noise



70to track the object. The output SNR (in dB), denoted SNRout is calculated in the usual manner,using the new values for the signal and noise.Quantitative resultsIn order to ensure that the results were representative of the tracking performance, each experi-ment was repeated 20 times and the SNR (input and output) was calculated summing the signaland noise values over the whole set.A plot showing the effect of temporally uncorrelated noise on the accuracy of the trackingsystem is shown in ®gure 4.6. For each eigenshape model, the number of modes of variation thatencapsulated 95% of the appropriate training data were used. The main system parameters were®xed as follows nsub = 32L0N = 320c = 0:6� = 0:2An output SNR of 10 dB corresponds to 10% error in terms of the number of incorrectpixels over the number of pixels of interest. The performance of the tracker appears to be fairlyrobust even with signi®cant input noise. The ªspeci®cº model incorporates more information ap-propriate to the input test sequence and hence produces a more accurate and more robust resultwhereas the ªroughº model with a larger and more varied training set performs less well. As theinput SNR increases the output SNR tends to values between 14.5 and 15.5 dB corresponding toerrors of around 3%.A further plot showing the effect of scene occlusion (temporally correlated noise) is givenin ®gure 4.7. The effect of this type of noise is greater than that of temporally uncorrelated noiseand an output SNR less than around 6 dB resulted when the system completely failed to track thepedestrian over part or all of the image sequence. For limited partial occlusion both the ªspeci®cºand ªgenericº models perform well.
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Figure 4.6: Effect of adding temporally uncorrelated noise on accuracy
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Figure 4.7: Effect of adding temporally ®xed noise on accuracyThe effects of varying the total number of ®lter measurements (per frame) and the constantnsub were investigated and the results shown in ®gures 4.8 and 4.9 respectively. Figure 4.8 showsthe effect of varying these parameters on the accuracy of tracking. The input SNR for these ex-periments was ®xed at 6:1 and the ªgenericº shape model was used. The surface plot shows thatincreasing these parameters generally results in an increase in accuracy. Figure 4.9 shows the ef-fect of the number of measurements on the processing time taken. It can be seen that the timetaken is linearly related to the number of measurements taken.The number of shape parameters used, m, was also varied whilst keeping the remainingparameters ®xed and using the ªgenericº shapemodel. The accuracy and speed of the resultsweremeasured as before and the results are shown in ®gures 4.10 and 4.11 respectively. The input SNRwas ®xed at approximately 4:6. The resulting accuracy tends to increase as the number of shapeparameters is increased up to an optimal value of about 20. Subsequent modes contribute little tothe shape representation and in fact can decrease the robustness of the system.The processing time taken is linearly related to the number of shape parameters. This is
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75due to the decoupling of the Kalman ®lter mechanism (the coupled ®lter is theoreticallyO(m2)).Further experiments investigated the choice of the ªmeasurement parameterº c and the ªnoisemodel parameterº �. For each pair of values 9 different noise-corrupted sequences of the sametest sequence were processed and the results compared with the ªground truthº as before. Tem-porally uncorrelated noise and ®xed temporally correlated noise was used with an input SNR ofapproximately 6 dB in both cases. The resulting surface plots are shown in ®gures 4.12 and 4.13respectively. In order to aid the visualisation, the raw output signal to noise ratio is used (i.e. with-out using a logarithmic scale) and a smoothed surface approximating the data is drawn. It can beseen that optimal tracking performance is obtained for values of c = 0:25 and � = 0:25 ap-proximately and that these values are not too critical. Small values of � prevent the contour fromdeforming too quickly increasing robustness in the presence of noise. Too small a value however,freezes the contour preventing the tracking of a deforming shape. The optimal value for c is re-lated to the choice of � and in general will be larger for larger values of �. In practice it is oftendesirable to use a more tolerant value of c of around 0.6 to allow the system to cope with shapesthat are not well represented within the training set (e.g. when using a different camera view tothat used in the training phase).4.5.2 Qualitative resultsTracking with a ®xed cameraTwo test sequences of a walking pedestrian taken with a ®xed camera were used. The genericmodel was used with 14 shape modes. The test sequences were not used in the generation of theshape model although the silhouettes are similar to those found in the model training set. The testsequence with the estimated contour superimposed is illustrated in ®gure 4.14. The frames areshown left to right top to bottom with every 4th frame displayed. The sequence was processedat 14.75 Hz (including the time taken accessing image ®les). The second processed sequence isshown in ®gure 4.15
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Figure 4.14: Results on 1st test sequence
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Figure 4.15: Results on 2nd test sequence



79Search windowFigure 4.16 shows the initial search window obtained when tracking a walk sequence using thegeneric shape model with 14 shape parameters. As would be expected, the search window islargest near the walker's legs where the most signi®cant shape deformation usually occurs.Figure 4.17 shows the search window for a single image frame over successive iterations, illus-trating themulti-scale nature of the algorithm. For visualisationpurposesnsub was set fairly largefor both these experiments.
(a)

(f)

(b) (c)

(d) (e)Figure 4.16: Search window: (a) to (f) frames 0, 1, 2, 16, 32 and 50Tracking with modeled occlusionWhen twoormore tracked pedestriansoverlap, the system copes by ignoringmeasurementswherethere is likely to be occlusion. A new test sequence, inwhich twopedestrians cross in front of eachother, was used to demonstrate the occlusion reasoning. The results for this sequence are shownin ®gure 4.18. The estimated contour shape for each tracked pedestrian has been superimposed inseparate colours. The ªgenericº model was used with 16 shape parameters. The three pedestriansare successfully tracked throughout the sequence with a qualitatively high degree of accuracy.



80
Figure 4.17: Search window for successive iterations on a single frameFigure 4.19 shows a closeup of one of the image frames where partial occlusion occurs andthe corresponding ªocclusionº image for this frame. The white area in this image indicates pixelsthat are ignored in the measurement process. A further diagram (®gure 4.20) shows the normalsto the estimated contour where measurements were taken for one of the contours. It can be seenthat the occlusion reasoning prevents potentially inaccurate measurements being taken.Tracking with a moving cameraThe system was tested on several sequences taken with a moving camera. In the ®rst sequencethe camera is initially fairly still, allowing image subtraction to be used for contour initialisation.The camera was hand held and a pedestrian was kept within the image by eye whilst zooming inon the walking pedestrian. This image sequence presents numerous dif®culties as conventionalsubtraction based techniques can no longer be used. Furthermore, the camera is zooming andmoving relative to the ground plane and there is also some camera shake.The tracking system was applied to this dif®cult image sequence. The initialisation wasdone in the usual way (the camera was initially fairly still). Subsequent processing utilised anedge based contrast measure and the results are shown in ®gure 4.21. The images are orderedfrom left to right and from top to bottomwith every 5'th image displayed. The estimated contourshape has been visualised over each input image frame.
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Figure 4.18: Results on test sequence with occlusion
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Figure 4.19: Occlusion Reasoning:top: closeup of image with contours superimposedbottom: corresponding occlusion image
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Figure 4.20: Measurements taken near occluded region



84In order to improve the robustness of the system a highly constrained solution space wasrequired and only 4modes of variationwere used (using the ªgenericºmodel) and themodel spacewas constrained with a maximum Mahalanobis distance of 6. The results show the system copesreasonably well although the contour shape is only a ªlooseº ®t to the underlying object shape.A second similar (moving camera) image sequencewas processed by the system (see ®gure4.22). In this sequence two pedestrians are tracked as the hand-held camera pans and zooms. Thetwopedestrians aremoving close together and in the same directionmaking the tracking taskmoredif®cult. The occlusion reasoningdescribed previously,where an enlarged rectangle is used, helpsprevent the two contours becoming tangled together.Towards the end of this sequence an unmodeled third pedestrian walks into the image andoccludes the tracked pedestrians. The system copes with this situation treating the occlusion sim-ply as noise (there is no occlusion reasoning in this case as the 3rd object is not tracked). A closeupof one of these frames is shown in ®gure 4.23. As before 4 shape modes were used and an edge-based contrast measure drives the mechanism.4.6 DiscussionThe quantitative results show that the performance of the tracking system is affected by the systemparameters and more importantly by the suitability of the linear shape model used. The errorsmeasured in the quantitative analysis come from several sources.� Smoothing error ± due to the smoothing of the spline representation.� Truncation error ± caused by ignoring the less signi®cant shape modes.� Modeling error ± due to an inaccurate a priori probability distribution (e.g. due to seg-mentation errors in the training shapes). Also due to inaccurate a priori assumptions in thestochastic model (e.g. unexpectedly large shape changes).� Filtering error ± due to ignoring of the off diagonal elements of the (shape) covariance ma-trix. These error are particularly noticeable if nsub is too small and the shape parametercorrelations are no longer insigni®cant.
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Figure 4.21: Tracking with a zooming camera
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Figure 4.22: Tracking with a moving camera
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Figure 4.23: Closeup showing a third pedestrian occluding two trackedpedestrians



88� Poor correspondence ± even in the absence of image noise themeasurement process is proneto errors as the contour can lock onto the wrong part of the image feature.The modeling errors are typical of model-based vision. The model allows the system toperform robustly in the presence of noise but as a consequence will prevent 100% accurate track-ing in the absence of noisewhen the object does not exactly conform to themodeling assumptions.Consequently, care must be taken to ensure that the desired output shapes are well represented inthe training set.By allowing some inaccuracies in the tracking system using only 10 shape modes from theªgenericº model and a total of 160 measurements per image frame, real time performance of over33 Hz was achieved with an output SNR of 13. In highly constrained situations (e.g. trackingpeople moving left to right across the image plane) the number of shape parameters and mea-surements can be further reduced allowing very high frame rates to be achieved. Note that theprocessing times in the above experiments include data accessing times (from movie ®les) andthe experiments were run on a 100MHz R4000 Indy workstation.The observed (and theoretical) complexity of the tracking system is O(L0m), wherem isthe number of shape parameters andNL0 is the total number of measurements per image frame.This contrasts with the conventional coupled Kalman ®lter which can be shown to be O(m2).



Chapter 5Adaptive Improvements5.1 IntroductionOne of the problems associated with landmark free methods is that a large degree of variability inany shape descriptor may be due to the choice of parametrisation. In this chapter, an automatedtraining method is described which utilises an iterative feedback scheme to overcome this prob-lem. The aim is to build a compact contour model that describes the shapes in a training set. Themore compact the model, the fewer shape parameters are required for accurate shape represen-tation which leads to faster and more ef®cient image search and object tracking procedures. Amore compact model also increases robustness by producing a more restricted solution space offeasible shapes.In chapter 3, a consistent method for parametrising a shape is described and a linear eigen-shape model similar to the PDM of Cootes et al is derived. In this chapter, the model is mademore compact by eliminating some of the variability caused by control points shifting along thecontour (which cause little change to the actual observed shape). This work has some similarityto the work of Williams [53] in that a covariance matrix associated with control point positionsis learned from training data using an iterative learning process, although in his work the initialmodel is hand generated and a computationally expensive ªgenerativeº image ®tting process isused. Furthermore, the methods are applied to hand-writing recognition of individual characterswhere a relatively simple B-spline model with only 4 control points can be used.



90Hill and Taylor outline an approach to automating the placing of landmark points on train-ing shapes [17]. In their work a two stage process is described ± an initial scheme for generatinga PDM and a re®nement stage for making the model more compact. The initial scheme relieson an underlying method for ®nding correspondences between two shapes (e.g. using physicallybased vibration modes). Such a ªcorresponderº may fail in certain applications where the objectshape can vary non-elastically (for instance the two shapes in ®gure 5.1). The re®nement phaselocally optimises each training shape's landmark points using a computationally expensive Sim-plexminimisationof an energy function. Each training shape is represented by t shape parametersrepresenting themost signi®cant eigenvectors of the current model where t is chosen heuristically(e.g. t can be chosen such that 90% of the variability of the training data is captured). The energyfunction encourages the landmarks to move closer to the mean shape (in terms of a Mahalanobisdistance) if the improvement is not outweighed by an increase in representation error.In this chapter, a simpler, alternative approach to automating the model building processis presented. An advantage of the method described here is that the complete contour shape ismodeled as opposed to selected points on the boundary. Another bene®t of this approach is thatthe implementation of the feedback learning scheme requires only twomain modules to be imple-mented ± an eigenshape analysis module (model building) and a tracking module (model ®tting)± both of which are key elements of any comparable system. Thus, the system is ªbootstrappedºallowing a more compact and subsequently more reliable model to be generated without engi-neering any new modules. Both methods reparametrise each shape in terms of the current shapemodel. The system described here utilises an additional ªnoiseº process which allows the currentshape model to change signi®cantly without any loss in training shape representation. This ad-ditional step allows the system to ªbreak freeº from a poor initial model so that the initial modelneed not be close to the ®nal optimal solution.Results are shown illustrating the qualitative and quantitative bene®ts of utilising the newadapted eigenshape models over the models generated in previous chapters.A related ªbootstrappedº approach is described by Syn and Prager [54]. They described asemi-automated system for building a PCAmodel for 3Dmedical data sets. The model is updatedincrementally using a FEM modal analysis to provide correspondences between recovered 3D
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Figure 5.1: Two shapes where amatcher may failmesh descriptions and landmark feature points. The statistical component model is then used toimprove the mesh shape recovery process.5.2 Generating the initial modelIn chapter 3, a method for parametrising an arbitrary shape (i.e. a closed boundary) is describedbased on one ®xed point and the length round the contour. The ®xed point used was the uppermost point at which the principal axis crossed the object boundary. An N -point uniform cubicB-spline was used to represent each shape conveniently allowing every point on the boundary tobe modeled without using an arbitrary dense set of boundary landmark points.This method produced reasonably good results and the eigenshape analysis of the trainingshapes resulted in a signi®cant reduction in dimensionality, suggesting that the initial parametri-sation was reasonably consistent. However, the model still required a relatively large numberof shape parameters for accurate shape representation (see ®gure 4.10). This was partly due tothe problem of control points ªshiftingº along the object boundary producing little change in ob-served shape. Thus, similar training shapesmay have slightly different nodal representations (dueto variation in the material parameter values of corresponding boundary points) increasing the to-tal variance of the training set.Furthermore, principal component analysis attempts to linearise shape changes from themean shape, which may in reality be non-linear. By reparametrising the shapes it may be possi-



92ble to ensure that the shape changes are closer to a linear model. A similar effect is apparent inthe ªCartesian-Polar Hybridº PDM described by Heap and Hogg [55] where the choice of shaperepresentation can signi®cantly improve the resulting model.Another way of looking at the problem is to consider the initial training set to lie within alower dimensional, constrained shape space, within the original shape-vector space. This spaceis de®ned by the constraint that control points are equally spaced around the contour. The meanshape does not necessarily lie within this constrained space, resulting in a reduction in the com-pactness and consistency of the model. By relaxing the constraints on the training shapes thereparametrised training set can result in a more compact model where the mean shape is morerepresentative of the ªaverageº shape.The initial eigenshape model is regarded as the ®rst step in an iterative process. Conse-quently, the exact method of shape parametrisation (e.g. the choice of ®xed point) will not becritical. For instance, if the shapes are already reasonably well registered, the ®xed point may bethe upper most boundary point.5.3 Adaptively improving the modelIn order to adapt the shape model an iterative learning process will be utilised. However, in orderto proceed further an accurate contour ®tting scheme will be required.5.3.1 Accurate image search using the shape modelIn chapter 4, an active search method for ®tting a linear shapemodel to an image (from a sequenceof images) containing an example of the object of interest is described. The method relies on cer-tain a priori assumptions being made about the object shape. Speci®cally, the estimated shape isinitialised to the mean shape with the variance of each shape parameter estimate set to the asso-ciated eigenvalue. In subsequent image frames the shape parameters are allowed to vary slowlyby using a noise term for each shape parameter set proportional to the eigenvalue for that shapeparameter. The Kalman ®lter mechanism can be regarded as a physical systemwhere there are in-ternal forces pulling the shape parameters towards the current shape estimate and external forces



93pulling the shape towards image features. The ®lter is suitable for robust and fast tracking butmay lead to compromise solutions when the internal forces balance the image forces.A method is required for accurately ®tting the shape model to a (possibly pre-segmented)shape in an image. By treating a single image as a sequence of identical images, the trackingsystem can be adapted to give very accurate ®tting at the expense of computational load. Theresulting method is similar to Lowe re®nement where the prior model at each iteration is set tothe result from the previous iteration (see section 2.2.3). Each iteration of Lowe re®nement iscomparable to running the tracking system on one of the identical image frames. The method iscomputationally expensive but allows optimal accuracy to be obtained, given that the shape isto be approximated by an N point cubic B-spline. A diagram illustrating the modi®ed trackingsystem (for accurate shape ®tting) is shown in ®gure 5.2. Note that ªglobal shape constraintº isrelaxed to ensure a good ®t is obtained. Figure 5.3 shows an example of accurate shape ®ttingcomparing the initial ®t obtained on the ®rst frame and themore accurate ®t on the ®nal (identical)frame. There is an obvious improvement although the difference is not large. Note that when lockis lost over part of the contour the local search scalewill lengthenallowing the contour to recapturea lost feature. This method ensures that the ®nal contour is locked onto a suitable feature over thewhole curve and hence a very accurate ®t is obtained.TheKalman®lter mechanism allows all the shapemodes to be used (as opposed to the usualsubset of ªsigni®cant modesº) without the system failing, although in the presence of signi®cantimage noise the use of additional modes can increase errors (see ®gure 4.10).5.3.2 Improving the model: Theoretical basisThe motivation for the method described in this chapter is based on the following assumptions:-� The optimal parametrisation for each training shape is the parametrisation obtained by ac-curately ®tting the optimal model to each shape.� The optimal model is the model obtained from the analysis of the optimally parametrisedtraining shapes.
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95These assumptions appear to be reasonable. Consider the opposite case, where the parametri-sation obtained from ®tting with the optimal model is different from that used in the generationof the model. Such a model is based on an ªinconsistentº parametrisation of the training shapesand suggests that it is not the best representation of the available training information. If the as-sumptions are satis®ed then the results of the image search can provide a useful nodal descriptionof a new image contour that can be directly compared with the nodal description of each trainingshape used in model generation.5.3.3 Initial approachAn obvious approach to ªbootstrappingº the eigenshape model is to utilise the accurate imagesearch mechanism on the training images. The resulting shape parameters bi, can be mapped intothe corresponding shape vectors and this new training set used to calculate a newmean shape andcovariance matrix and hence a new eigenshape model. The process is repeated until convergence(which may not be guaranteed) at an optimal solution. The scheme may be regarded as a closedloop energyminimisation scheme (see, for example, Haykin [56]) similar to a neural net and otherlearning scheme.The method requires high quality (possibly pre-segmented) training images. For each im-age, the approximate object size, orientation and location within the image are known. A newset of training shape vectors can be obtained by running the active search method on these im-ages. The new training shape vectors are aligned and a new covariance matrix generated. Notethe parametrisation of the shapes is no longer explicitly calculated but implicitly derived from thecurrent eigenshape model.Each training shape can be reparametrisedwithout affecting the apparent shape by allowingthe control points to shift along the contour boundary. The feedback scheme tends to pull thecontrol points towards the more signi®cant modes of variation (which vary more easily) whilstmaintaining the contour shape. The result is a more compact model. A diagram illustrating thiseffect is shown in ®gure 5.4.
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Figure 5.4: Diagram illustrating effect of reparametrisation5.3.4 Improved iterative methodEven if the full set of 2N eigenmodes are utilised in the active search method, shape variationswhich do not occur within the initial training set will never become apparent in subsequent mod-els. For example, supposing there are only two training shapes, the search space will effectivelybe a 1D shape space, since there is only one non-zero eigenvalue and the estimated shapeparameters for the remaining 2N � 1 modes will therefore be ®xed at zero.As the initial model is only an estimate of the optimal model an additional step is taken.The current eigenshape model is perturbed by a simulated noise process. The eigenvalues �i areupdated as follows �i0 = �i + �2This is equivalent to adding Gaussian isotropic noise with variance �2 to the boundary points ofthe training shapes. i.e. generating a new covariance matrix S 0 given byS 0 = S + �2H�1



97This step allows (arbitrary) small perturbations of the nodal positions. This hybrid modelallows ®ne detail that is not well represented by the original model to be more accurately recov-ered. The method is similar to that employed by Cootes and Taylor to combine the PDM with a®nite element, physical model [2]. It is important to note that all the eigenmodes are used sincethe noise process ensures that no mode of variation can be regarded as insigni®cant. The Kalman®lter active search mechanism allows the more signi®cant modes to vary more easily so that allof the 2N modes can be employed without the method becoming unstable.The parameter � is initially set to around 4 pixels and subsequentlydecreased gradually (de-caying exponentially at a heuristically chosen rate). A diagram illustrating the scheme is shownin ®gure 5.5. Using too large a value for � would reduce the effectiveness of the current shapemodel which is required for accurate image ®tting (and hence for shape parametrisation).
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new training Figure 5.5: Iterative feedback scheme5.3.5 ImplementationIn this implementation the initial training set was generated using background subtraction andthresholding. The shapes were parametrised using the ®xed-point method described in chapter



983 and a mean shape and covariance matrix calculated in the usual way. Subsequent image ®ttingwas performed using the unprocessed training images and contrast was measured using the ª®xedcamera methodº of chapter 4. The reason for using the unsegmented training images is that inac-curacies in the initial segmentation, due to the choice of threshold, are reduced. Each image wastreated as a new image sequence of twenty identical frames.5.4 Results5.4.1 Single walk data set ± the ªspeci®c modelºThe data set contained 59 shapes (silhouettes) segmented from an image sequence of a pedestrianwalking from left to right across the image. (This is the training set used for the ªspeci®cº modelin chapter 4.) Background subtraction was used to segment the silhouette of the walker. Four ofthese training shapes are shown in ®gure 5.6.
Figure 5.6: Training shapes from thesingle walk setThe feedback scheme described previously was implemented with and without the addi-tional noise process. Each iterative step generated a new eigenshape model which was then usedfor subsequent active image search. The initial model is the ªspeci®c modelº from chapter 4. Aªcompactnessº measure was calculated for each model as follows:compactness = �1 + �2P2ni=1 �i � 100%where�1, �2 are the two largest eigenvalues in themodel. The compactnessmeasures the percent-age the principal two ªmodes of variationº contribute to the total variance. A large compactnessmeasure indicates that most of the variance is encapsulated by these two modes. The compact-



99ness of each model is shown in ®gure 5.7. The graph indicates that in both cases the compactnessincreases from under 65% for the initial model to almost 90% for the ®nal, adapted model. Theadditive noise process has little effect on this increase in compactness.
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Figure 5.7: Compactness of single walk modelsA ª®tnessº measure was also calculated at each iteration. This was a crude measure ofhow close the ®nal contour lies to the true object shape after each image search. The averageimage contrast at sampled points on the contour was used and this ª®tnessº was averaged overthe training set. A high average ®t indicates that most of the contour points lie close to an edgeand hence the segmentation should be accurate. The results for both methods are shown in ®gure5.8. The plot shows that without the noise process the bene®ts of increasing compactness areoffset by the decrease in average ®t. However, the inclusion of the noise process generally resultsin a better ®t reaching a stable maximum.Note that these plots show that the iterative process converges quickly, due to the fact thatthe initial model is fairly good, with the signi®cant improvements occurring within the ®rst few
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101iterations.Figure 5.9(a) shows a graphical representation of the effect of varying the principal shapeparameter in the initial model. Figure 5.9(b) shows the principal mode of variation for the ®naladapted model. It is clear that there is more information encapsulated in the principal mode of theadapted model.
(a) initial model (b) ®nal modelFigure 5.9: Principal modes of variation5.4.2 Large data set ± ªgeneric modelºA second data set was generated containing 462 shapes of the silhouette of a pedestrian walkingin a variety of directions. The training images from the ªgeneric modelº in chapter 4 were used.(A sample of the training shapes is shown in ®gure 5.10.) In this experiment the results of the twomethods were very similar. This is probably due to the fact that the initial data set is very largeand already quite noisy. Hence, there is no need to add simulated noise. Results are shown forthe simpler scheme outlined in section 5.3.3.Fitness and compactness measures were calculated as before and the results are shown in®gures 5.11 and 5.12 respectively. Figure 5.13 shows the ®rst 10 eigenvalues for each successivemodel. The principal variationmodes of the initial and adapted eigenshape models are visualisedin ®gures 5.14(a) and 5.14(b) respectively.



102
Figure 5.10: Training shapes from largetraining set
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Figure 5.11: Compactness of generic models
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1055.5 Results of tracking with the adapted models5.5.1 Quantitative resultsThe experiments from chapter 4, testing the tracking system on noisy input images, were repeatedwith the new ªadaptedºmodels. Figure 5.15 shows a plot of the outputSNR against the input SNRfor a noisy test sequence using the initial and adapted models (ªgenericº and ªspeci®cº). Thenoise was temporally uncorrelated. As before, the number of shape modes used for each modelwas chosen so that over 95% of the total variance of the appropriate training set was encapsulated.From the graphs it is clear that the new models are an improvement over the original ones with asigni®cant increase in performance for all the noisy sequences tested.
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106(simulating scene occlusion). Again, the results show a signi®cant increase in performance forthe new adapted models.
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Figure 5.16: Plot showing accuracy of models with partial occlusion5.5.2 Qualitative resultsResults of applying the new adapted speci®c model, processing a test sequence of a person walk-ing across the image (left to right), are given in ®gure 5.17. As before, the estimated contour issuperimposed over the image. The system was run using only 4 shape parameters.Two of the ªdif®cultº sequences, along with the tracked contours superimposed, are shownin ®gures 5.18 and 5.19. The new adapted generic model was used in both cases with 5 shapeparameters. The system performs well in both cases and the contour appears to be a better ®t tothe underlying pedestrian silhouette than obtained previously.



107
Figure 5.17: Results using adapted model on 2nd test sequence
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Figure 5.18: Results on test sequence with zooming camera and adapted model



109
Figure 5.19: Results on test sequence with moving camera and adapted model



1105.6 DiscussionIn this chapter a novel method for generating a compact shape model has been described. Themajor advantage of this method is that once a rough initial model has been generated the re®ne-ment process can be run on unprocessed images (assuming a rough position, orientation and scaleis known). Hence, the model re®nement and training shape extraction steps can be combined sothat the improved model can be used to extract more accurate training shapes which are then usedto generate a more accurate model. This process will only work if the initial shape model is suf-®ciently robust. A poor initial model will allow the contour to become tangled and the resultingsegmentation to be poor, causing the system to diverge from the optimal solution. This was notfound to be the case when the initial model generated in chapter 3 was used and the system wasfound to converge quickly.From ®gure 5.13 it is clear that the adapted models become more compact and that the totalvariance of the training data decreases resulting in a more robustmodel. The adaptedmodels havebeen shown to give better results for processing new sequences that were not used in the trainingphase. Hence a compact, linear shape model has been automatically generated and this model hasproved to be useful in the application of tracking human motion.



Chapter 6A spatiotemporal extension6.1 IntroductionPrevious chapters have demonstrated methods for modeling and subsequent tracking of ¯exibleshapes based on purely spatial representations. The tracking system described in chapter 4 pre-dicts the position and shape of a contour using a simple stochastic model that assumes a stableunderlying velocity. The changes in shape parameters between successive frames are assumed tovary randomly with zero mean. Consequently, the predicted shape at a given frame is set to theshape obtained from the previous frame. Hence the prediction is often inaccurate and is basedon the results on the previous frame without taking into account any trends in the observed shapedeformations over time.In the application of tracking human motion it should be possible to obtain a more accurateprediction for the shape, based on the previous observations and domain knowledge about howthe object deforms. This is particularly apparent in restricted environments such as in pedestrianscenes where all the objects of interest are walking people. One such spatiotemporal model is theWALKER model described by Hogg [3]. Hogg represents instantaneous shape in terms of jointangles of a 3D model. A complete walk cycle is modeled by periodic functions of these jointangles with respect to a walk cycle parameter. One problem with this approach is that a handgenerated model is required for each activity of interest.In this chapter the contour shape representation described previously is extended. A train-



112ing set of motions is used to build a spatiotemporal model allowing more accurate temporal ex-trapolation of shape. By improving the estimate of object shape at a given frame, a smaller searchwindow can be used for feature search, reducing the chances of the contour being ªdistractedºby background features and improving the robustness of the tracking system. Furthermore, aspatiotemporal model allows information to be integrated over time giving more reliable results.Such a model also has the potential to eliminate plausible shapes that do not deform over time asexpected and are thus unlikely to be the object of interest.The method described in this chapter is related to the recent work of Blake and Isard [57,58] in which a contour tracker is trained on motion sequences to build a stochastic model. Intheir work, Blake et al generate an unconstrained complex 2nd order stochastic model. Such asystem can not, in general, be decoupled into a set of independent orthogonal modes and hencethe resulting tracking system will be computationally expensive for complex objects that deformin a high dimensional shape space. In contrast, the system described here is based on a physicalmodel which can be decoupled into vibration modes that can be treated independently.By considering an object as a physical system with internal forces it is possible to modelthe evolution of the system over time under the action of external forces. Hence, given a reason-ably accurate physical model of an object, it is possible to predict how the object will deform overshort time intervals (such as between image frames) assuming the external forces are not signi®-cant over this time interval. Such a physically-basedapproach is exempli®ed by the applicationofFinite Element Methods (FEM's) by Pentland and Horowitz [26] described in section 2.3. In thiswork an object represented by a nodal parametrisation is modeled as an elastically deformablephysical object with assumed density and elastic properties (i.e. known stress and strain matri-ces). Modal analysis is used to generate a compact, reduced basis of ªvibrationmodesº for objecttracking and data approximation based on the assumed physical properties of the object.In this chapter, a novelmethod is described for generatingphysicallybased vibrationmodesfrom a set of training examples of an object deforming, tuning the elastic propertiesof themodel tore¯ect how the object actually deforms. The method calculates the optimal stiffness and dampingmatrices that describe the motion observed in the training data. The resulting ªTrained VibrationMode Modelº provides a good basis for the types of motion represented in the training set (e.g.



113walking). The model retains the bene®ts of conventional modal analysis (e.g. low dimensionalparametrisation, decoupled ®lter mechanism for rapid tracking), whilst utilisingthe training infor-mation to improve accuracy. The training set removes the necessity for using theoretical physicalassumptions about the object (e.g. modeling a walking person as a simple lump of elastic ªclayº)resulting in improved vibration modes that re¯ects how the object actually deforms.6.2 Learning by example6.2.1 Training dataIt is assumed that training data can be generated in which nodal (or point) displacements for anobject have been tracked over short intervals of time allowing derivatives to be calculated. It isalso assumed that the nodal points have been matched throughout the training set and that thetraining information has been rotated and scaled to some normal frame (e.g. using the Hotellingtransform, see [21]). Each training shape is represented by n nodes in d dimensions. Hence thetraining set consists of a set of matched, aligned shape vectors consisting of nodal (or point) po-sitions observed over short intervals of time. e.g. a set of shape vectors x(k) each representing ncontrol points in d = 2 dimensionsx(0) = (P 1x ; P 1y ; : : : ; Pnx ; Pny )with x(0), x(1), x(2) observations of the nodes at time t = 0;�t; 2�t. From this data set, a set ofnodal displacements u(k) is extracted by subtracting off the mean shape vector. The correspond-ing nodal velocities _u(k) and nodal accelerations �u(k) are then calculated by ®nite difference ap-proximations.One approach to generating this training data would be to utilise previous approaches suchas standard modal analysis or other mesh-like deformable models (described by Terzopoulos etal [37]) applied to good quality training images. Alternatively point data can be hand-generated,although this would be laborious.The method chosen for generating training data was to apply the spatial models generatedin previous chapters to good quality training images.



1146.2.2 Eliminating the mass matrixThe object to be modeled is currently assumed to have a constant (uniform) density �, and themass matrixM is calculated in the usual way (see, for example, Bathe [25]) usingMi;j = � Z Hi(u)Hj(u)duwhereHi(u) is the interpolation function for the i'th nodal parameter. Without loss of generality,unit density is assumed with � = 1 since any uniform change in density can be incorporated intothe stiffness matrix. Hence, the above mass matrix M is identical to the symmetric matrix Mde®ned in chapter 3.The mass matrix de®nes an inner product and an associated distance metric that measuresthe ªerrorº between two parametrised curves (d = 2) or surfaces (d = 3) as follows.hU;U0i = UTMU0 (6.1)whereU andU0 are the vectors of nodal displacements representing the two curves as in section2.3. In order to simplify the problem we consider the mappingV =M 12U (6.2)whereM 12 is the positive de®nite square root of the matrixM. Note thatM andM 12 are bothreal, symmetric, positive-de®nite, invertible matrices.Substituting equation 6.2 into equation 6.1 giveshU;U0i = V:V0where V:V0 is the standard dot product. The training data is mapped to a new data set v(k) =M 12u(k).Assuming an unbiased, homogeneous, isotropic Gaussian noise model for the unmappeddata, it can be shown that the associated noise covariance matrix, RU , is proportional toM�1(see Blake et al [38]). The associated covariance matrix for measurements in ªV-spaceº, RV , isgiven by RV = [(M� 12 )TR�1U (M� 12 )]�1 = rI (6.3)



115i.e. some scalar multiple of the identity matrix.Note that the density is assumed to be uniform with respect to the nodal parametrisation(as opposed to uniform spatial distribution of mass). Hence, for a given object it is assumed thatnodes are equally distributed over the mass of the object. The mass matrix can be regarded asmodeling the sensor characteristics, since an unbiased uniform isotropic sensor will measure M-orthogonal vibration modes independently (i.e. measurements for each mode are uncorrelated).For objects with unknown signi®cantly non-uniform density, it is hoped that by using a feedbackmechanism similar to that described in chapter 5, it will be possible to ensure the training shapesare reparametrised with the nodes equally distributed over the object's mass.6.2.3 Generating vibration modesWe are not concerned with explicitly obtaining the mass, damping and stiffness matrices M , Cand K but in generating the associated vibration modes of the system. Making the substitutionde®ned in equation 6.2, the governing equation for the ®nite element system (equation 2.11) canbe rewritten in the form �V+ B _V +AV =M�1Swhere B = M� 12CM� 12 S = M 12RA = M� 12KM� 12 V = M 12Uand assuming Rayleigh damping B = b0I + b1AThe basic idea of the training method is to assume there are no external forces (i.e. theobserved deformations are simply a sum of the object's free vibrations) with some random noisepresent incorporating measurement noise as well as the effect of input and internal disturbance.Hence, the quantity hM�1R;M�1Ri = (M�1S):(M�1S)(the observed ªexternal accelerationº) is minimised over the training set. The following errorfunction is minimised J(A; b0; b1) = E �j�v(k) +B _v(k) + Av(k)j2� (6.4)



116where E(:::) is the expectation (or averaging) operator over the data set and j:j is the standardEuclidean norm.In fact, this is an off-line system identi®cation problem where the residual error covariancematrix (in ªV-spaceº) has been shown to be proportional to the identity matrix (equation 6.3).Hence the ordinary least squares estimate is also the minimum variance estimate (see, for exam-ple, Sinha and Kuszta [59]).For a physically plausible solution, the stiffness matrix is symmetric and hence the matrixA is constrained to be a real, symmetric matrix. i.e. AT = A. The symmetric constraint ensuresthe resultingmodes are real and orthogonal and hence the 2nd order dn�dn system is decoupledinto dn independent 2nd order systems. Note that in this formulation the stiffness matrix K isnot further constrained to be banded as in the purely theoretical, physical model. Physically thiscorresponds to virtual springs attached between non-adjacent as well as adjacent points. Thus,an object is modeled to be a dense set of points (represented by some nodal parametrisation withn nodes) where each point can be displaced about a rest position and is connected via springs toevery other point.6.2.4 Solving the constrained minimisation problemIn order to solve equation 6.4 subject to the constraintAT = A, the matrix A is parametrised interms of n2 (n+1) parameters fai;j : i � jg and the unconstrained minimisation ofJ(a0;0; a1;0; a1;1; a2;0; :::; b0; b1) is solved.As the training set may be large, equation 6.4 is expanded to the formJ =Xi;j S22i;i +Bi;j(BS11)i;j +Ai;j(AS00)i;j +2Bi;jS12j;i +2Ai;jS02j;i +2Ai;j(S01BT )j;i (6.5)where the n� n matrices S�� need only be calculated once for a given training set and are givenby S00 = E(vvT ) S01 = E(v_vT ) S02 = E(v�vT )S11 = E( _v _vT ) S12 = E( _v�vT )S22 = E(�v�vT )



117Analytic expressions for the partial derivatives of J are easily derived and a standard lo-cal optimisation routine used to perform the minimisation. A quasi-Newton conjugate gradientmethod was used (see, for example, Ciarlet [60]). The problem can be simpli®ed a little by ignor-ing damping effects (i.e. settingB = 0). The assumption of Rayleigh damping can be extendedto Cauchy damping by adding higher order terms to the series B(A).Any minimisation scheme used to solve the problem may converge to a non-optimal lo-cal minimum. The minimisation scheme requires a reasonable initial estimate of the solution toensure that the numerical solution is useful. To ®nd the initial estimate we project the global un-constrained solution into the constrained solution space. The global solution ~A, ~B minimises theerror function ~J(A;B) = E �j�v(k) + B _v(k) + Av(k)j2�and is given by  ~A~B! = �0B@ S00 [S01]TS01 S11 1CA�1 [S02]T[S12]T!The initial estimate,A(0), is calculated by projecting ~A into the space of symmetric matrices. i.e.A(0) = 12 � ~A+ ~AT�The initial estimates for b0 and b1 are calculated by solving the minimisation of J(A; b0; b1) withA ®xed equal to A(0). Alternatively, the untrained theoretical physics based model can be usedto generate mass and stiffness matrices which can be used to calculate initial estimates for thematrices A and B.Once the local optimisation scheme has converged the vibration modes �i are calculatedfrom the eigenvectors of A,  i, using �i =M� 12 iand these trained vibration modes can be utilised in the usual way (see Pentland et al [26]).



1186.3 Implementation6.3.1 The local optimisation schemeA conjugate gradient algorithm for optimising a function of several variables using 1st derivatives(NAG 1 functionE04DGF)was used. The error function J takes (dn(dn� 1)=2 + 2) parameterscorresponding to the stiffness matrix parameters ai;j and the damping parameters b0 and b1.It is convenient to parametrise the symmetric matrix A usingAi;j = 8>>>><>>>>: ai;j i > j2ai;i i = jaj;i i < jThe free parameters are stored in a single concatenated state vector. The local optimiserroutine requires a single function for evaluating J and its partial derivatives. The function is im-plemented using the following scheme:-� Unpack the state vector to reconstruct the matrix A and the parameters b0 and b1.� ConstructB = b0I + b1A� Evaluate J using equation (6.5)� Calculate the matrixX given byX = S02 + S01BT + AS00 + b1 �S12 +BS11 +AS01�� Calculate a matrix of partial derivatives using�J�ar;s = 2hX +XTir;s� Calculate the remaining partial derivatives using�J�b0 = 2tr �S12 + BS11 + AS01��J�b1 = 2tr �AS12 + AS11BT + AS01AT�where tr(:::) is the trace of a matrix.1NAG is a registered trademark



119� Pack the matrix �J�ar;s and the terms �J�b0 , �J�b1 into a state gradient vector.The packing scheme simply reads off the lower triangle (including the diagonal) of the ma-trix term and concatenates the remaining two scalar terms into a single vector. By calculating allthe partial derivatives simultaneously, the computational expense of the scheme is signi®cantlyreduced.6.3.2 Reducing the initial dimensionalityWhen the number of nodes is large the method may appear computationally expensive. Howeverin many cases the object shape does not vary arbitrarily within the high dimensional shape spaceand the dimensionality of the problem may be reduced by using the Karhunen-Loeve transform(i.e. Principal Component Analysis). This step involves reparametrising the training shapes v(i)in terms of a truncated basis of ns spatial eigenvectors and calculating vibrationmodes as before.This is achieved by transforming the covariance matrices S�� using[S��]0 = PTS��Pwhere P is a matrix whose columns are the ns most signi®cant eigenvectors of S00.The resulting eigenvectors  i0 of the ns � ns matrix A are mapped into vibration modesin the full shape space using �i =M� 12P i0This step also ensures the problem is well de®ned in cases where the training set is smallcompared to the number of nodes used, ensuring that the global solution exists. The optimisationscheme was found to converge within 1 minute on a 100MHz R4000 Indy workstation.6.4 Results6.4.1 Arti®cial data ± recovery of SHMAn arti®cial training set was generated in which a 2D point undergoes simple harmonic motion(SHM) along a 1D axis with a ®xed frequency. 2D Gaussian noise was added and the result-



120ing training set processed. Figure 6.1 shows a graph of the relative error in the recovered periodof motion against the signal-to-noise ratio (SNR) of the training data (in dB). The relative errorconverges to zero as the signal-to-noise ratio increases. The method is fairly robust although foraccurate modeling it is desirable for the training data to be as noise-free as possible.
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Figure 6.1: Recovery of arti®cial motion6.4.2 Real data ± one walkThe single walk shape model from chapter 5 was used on the original training images (containinga pedestrian walking across the image plane) to obtain a training set of spline control points forsuccessive image frames.A subset of the training set for this experiment is shown in ®gure 6.2. The sequence con-tains 57 shapes of a pedestrian walking from left to right across the image with each shape rep-resented by a spline with 40 control points. The shapes were aligned about the principal axis andscaled to be a ®xed height. The lowest frequency vibration modes generated from this training



121set are shown in ®gure 6.3.
Figure 6.2: Training dataThere is some similarity between these spatiotemporal modes and the spatiotemporal sur-face for a walking person generated by Niyogi and Adelson [44].

Figure 6.3: Low frequency vibration modes for single walk model6.4.3 Real data - several walksA ªgenericº pedestrian model was created using a training set consisting of a pedestrian walk-ing in a variety of directions. The aim was to build a rough generic model which incorporatesspatiotemporal vibrationmodes approximating the various types of motion observed. To accountfor the fact that the mean shape for each sequence varies between walks, the nodal displacementswere takenwith respect to themean of each sequence (as opposed to themean over all sequences).



122Hence, for a training shape x(j), taken from the k'th walk sequence the nodal displacement isgiven by u(j) = x(j) � x(k)where x(k) is the mean shape vector for the k'th walk sequence.A low frequency vibration mode is shown in ®gure 6.4. For visualisation purposes the vi-bration mode shows the nodal displacements relative to the mean shape over all the sequences.
Figure 6.4: Low frequency vibration modes for generic model6.4.4 Fitting the low dimensional model to new input dataA sequence of 10 consecutive data frames was selected from a new shape sequence not used inthe training set. An attempt was then made to represent this data using the vibration modes with®xed amplitude and phase. Hence, only two parameters were calculated for each vibration modein order to approximate the whole sequence. A least squares method was utilised minimising theerrors in the nodal positions.A graph of signal-to-noise ratio of the recovered motion (with respect to the original data)against the number of vibrationmodes used is shown in ®gure 6.5. Two experiments were carriedout using the single pedestrian and generic pedestrian training sets. It is clear that the bene®ts ofutilising additional modes decreases. Note the errors in the nodal positions are small (typicallyless than 2%) when a reasonable number of vibration modes are used.Figure 6.6 shows another input sequence and the approximated sequence using the genericmodel. The nodal errors were minimised over the ®rst 8 frames and the subsequent frames are
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Figure 6.5: Fitting the spatiotemporal models to data



124purely extrapolations. For simplicity, nodal displacements were calculated relative to the meanshape over the whole training set. As before, the amplitude and phase of each vibration mode is®xed over the approximated sequence.6.5 Tracking with the spatiotemporal model6.5.1 Modifying the tracking systemThe vibration eigenmodes can be used as a basis for shape representation in exactly the same wayas the eigenvectors obtained previously using spatial statistical analysis. The contour trackingsystem outlined in chapter 4 can be easily modi®ed to use the trained spatiotemporal model.As before, the contour is parametrised in terms of a set of m shape parametersb = (b0; :::bm�1)T where the shape parameters are now the coef®cients for each vibrationmode,�i. i.e. x =Xi bi�i + xA dynamic model is used in place of the stochastic shape model used previously. Each shapeparameter is treated independently. The model for a given parameter can be expressed by thedifferential equation: ddt 0B@ bi_bi 1CA = 0B@ 0 1��i ��i 1CA0B@ bi_bi 1CA+ 0B@ 0ri 1CAwhere ri is a zero-meaned Gaussian variable with variance �i andM 12�i =  iA i = �i iB i = �i iThe noise variance �i can be chosen by examining the variance of the external accelerationfor each vibrationmode over the training set or more simply set using a physically based approachas follows �i = �j�ij
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Figure 6.6: Modeling a walk sequence



126i.e. the standard deviation of the noise term for the i'th mode is set inversely proportional to thefrequency of that vibration mode , allowing the low frequency modes to vary more easily.A second order Kalman ®lter is used to update estimates for each coef®cient between imageframes. Measurements are applied to each ®lter as described previously in chapter 4.6.5.2 ResultsQuantitative resultsThe ªleft-rightº trained vibration mode model and the ªleft-rightº adapted spatial model werecompared on a segmented sequence containing a pedestrian walking from left to right across theimage plane. The sequence was corrupted with temporally correlated noise as described pre-viously in section 4.5.1. A graph showing the performance of the two methods with varyingamounts of input noise is given in ®gure 6.7. Tracking was performed on the same noisy inputsequence using each model and the experiments were repeated 20 times for each noise value. Itis clear that the spatiotemporal model performs better over the whole range and the differencebecomes more acute as the input SNR decreases. The additional information in the spatiotempo-ral model accounts for this increase in robustness. The noise process results in certain sequencesbeing more dif®cult to track than others (e.g. when the legs are totally occluded). The same se-quences were used to test both models and the results appear consistent over the trials. To obtaina smoother graph, the experiments would have had to be run over a prohibitively large number oftrials. A similar experiment was performed using the generic spatiotemporal model. In this case,the ªrestº shape x was also ®ltered using a simple running average. Temporally correlated noisewas only added to the last 15 frames so that a good estimate for x had been found before thesystem was tested. A graph showing the performance of the spatiotemporal model compared tothe adapted spatial model is given in ®gure 6.8. Experiments were run 20 times for each noisevalue and it is clear that the spatiotemporalmodel proves to bemore robust for the noisy sequencesused.
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Figure 6.7: Graph showing the robustness of theleft-right models
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1286.5.3 Qualitative resultsThe above image sequence containing a pedestrian walking across the image plane was edited byreplacing frames 20 to 30 with the background image. (The pedestrian thus disappears from thesequence for 10 frames, reappearing in the correct position and pose).The results of tracking on this sequence are shown in ®gure 6.9 (frames 8, 10, 12, ..., 30are displayed). The spatiotemporal model correctly estimates the shape of the pedestrian overthe ªmissingº frames so that when the pedestrian reappears the estimated contour is close to theunderlying pedestrian shape.6.6 DiscussionIn this chapter a method has been described for automatically generating physics based ªvibra-tion modesº for a speci®c deformable object using training information. The resulting modes areintended to represent the typical motions contained within the training set with a minimal set ofM-orthogonal parameters. The method has been shown to be fairly robust to noise and has beenapplied to a real automatically acquired noisy training set. The use of training data removes thenecessity for making a theoretical constant elasticity assumption resulting in improved vibrationmodes that re¯ect how the object actually deforms. The method described has potential uses fortracking, recognition and data compression of deformable or articulated objects undergoing com-plex motions.The model has been shown to be useful for object tracking in noisy situations where thereis partial occlusion. The advantage of using a ªvibration mode modelº is that a tracking ®ltermechanism consisting ofm independent 2nd order systems can be utilised (each with a 1 dimen-sional parameter space). The system is robust and fast, requiring only slightlymore computationalexpense than the spatial methods described previously. The increase in robustness is due to thetracking ®lter's ability to predict shape changes between image frames.
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Figure 6.9: Tracking with missing data



Chapter 7Conclusions7.1 Summary of workThe work in this thesis addresses the problem of tracking one or more walking pedestrians in nat-ural outdoor scenes. Deformable models are used to represent object shape and these models arelearned, automatically, using training data. Results are included, obtained from a prototype track-ing system, which demonstrate the potential of the methods for real-time surveillance.In chapter 3, a method is described for automatically buildinga linear 2D shapemodel fromsequences of training images of a moving object. The system automatically segments trainingshapes and labels these shapes using a B-spline representation. Large amounts of data are pro-cessed in near real time to generate a compact data set. Statistical component analysis of thespline data gives a simple but effective model. A novel method for performing principal com-ponent analysis on a continuous curve is derived, providing a robust theoretical framework forstatistical analysis of parametrised contours.An ef®cient mechanism for tracking the derived shape parameters is outlined in chapter4. A Kalman ®lter mechanism is utilised and the system demonstrated by tracking the silhouetteof walking pedestrians through sequences of images. The method has been thoroughly tested onreal images and the effect of the system parameters investigated. Qualitative results show thatthe system successfully tracks several pedestrians in images taken with a moving and zoomingcamera, where conventional image subtraction methods fail.



131In chapter 5, the linear shape model is adapted using an iterative feedback learning scheme.The method is used to resegment and reparametrise the training data producing a more accurateand compact linear shape model. Results are shown using data sets containing the silhouette of apersonwalkingacross the image plane and amore general training set containinga personwalkingin a variety of directions relative to the camera. The performance of the new models is comparedwith the previous shape models for tracking pedestrian silhouettes. The qualitative and quantita-tive results show the adapted models are more robust and more accurate.The spatial linear shape model is extended to a novel spatiotemporal linear model in chap-ter 6. This model is based on an underlying ®nite element physical model of an object. Train-ing sequences are used to learn the physical properties of the ®nite element model. The resultingvibration modes are intended to represent the typical motions contained within the training setwith a minimal set of orthogonal parameters. The use of training data allows the theoretical con-stant elasticity assumption to be unnecessary, resulting in vibration modes that re¯ect how theobject actually deforms. The spatiotemporal model is applied to the problem of tracking a walk-ing pedestrian in noisy situations where there is signi®cant occlusion. Results show that the newspatiotemporal model is signi®cantly more robust than the adapted spatial models. The increasein robustness is due to the tracker's ability to predict shape changes between image frames.7.2 DiscussionIn this thesis, 2Dmodels of shape have been successfullyused to track a 3D deforming object froma variety of viewpoints. Changes in apparent shape due to variability in viewpoint are treated as¯exibility in 2D shape. This approach bene®ts from the relative simplicity of 2D algorithms overmore complex 3D approaches. In the application of surveillance and human motion analysis it isoften not necessary to recover full Euclidean (or even projective) 3D descriptions of the object ofinterest.The methods used involve learning techniques using training information. The advantageof such a methodology is that the system can be applied to new problems without requiring com-plex hand-crafted models to be regenerated. The information implicit in the models allows thesystem to track robustly in real-world situations where there is background clutter, imaging er-



132rors and occlusion. The trained models are still ¯exible enough to be applied to a broad rangeof image scenes although the system performs more robustly for ªspecialisedº training sets ap-plicable to a narrow range of shapes or deformations. The techniques described here have beenapplied to the problem of tracking the outline of a walking pedestrian. However the methods canpotentially be applied to a wide range of applications (e.g. tracking farmyard animals, a beatingheart muscle etc).7.3 Future WorkBy clustering the training data or simple classi®cation based on direction of motion it may bepossible to build a set of more accurate linear models that prove to be more reliable than one singlegeneric model. The use of multiple models requires reliable techniques for switchingmodels andan effective approach to this problem has been outlined byAhmad et al for tracking hand gestures[61]. Future work may look at the potential of such an approach in the application of trackingpedestrians.Further work is required to investigatewhether the physical model identi®ed using the me-thod described in chapter 6 may be successfully applied to temporal medical data sets (such as abeating heart sequence). It is hoped that the recovered physical parameters of the model obtainedfrom observed training motion may contain useful information for medical research and clinicaldiagnosis. The trained vibrationmode method may also be signi®cantly improved by incorporat-ing a feedback scheme similar to the adapted spatial method outlined in chapter 5.It is hoped that the methods described in this thesis will provide a sound basis for buildinga usable surveillance system. Further methods are required for controlling the initialisation andtermination phase of the tracking process, for instance where objects become occluded for signif-icant time periods. One approach to this problem is described by Hutber and Zhang [62]. Such asystem will also require high level control systems for recognition of signi®cant events (such as acar being stolen). JohnsonandHogg [63] have successfully used the outputof the prototype track-ing system, described in this thesis, to learn the distributionof trajectories in an outdoorpedestrianscene for event recognition.
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