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Abstract

The analysis and automatic interpretation of images containing moving non-rigid objects,
such as walking people, has been the subject of considerable research in the field of computer vi-
sion and pattern recognition. In order to build fast and reliable systems some kind of prior model
is generally required. A model enables the system to cope with situations where there is consid-
erable background clutter or where information is missing from the image data. This may be due
to imaging errors (e.g. bluring due to motion) or due to part of an object becoming hidden from
view.

Conventional approaches to the problem of tracking non-rigid objects require complex hand-
crafted models which are not easily adapted to different problems. A more recent approach uses
training information to build models for image analysis. This thesis extends this approach by
building flexible 2D models, automatically, from sequences of training images. Efficient methods
are described for using the resulting models for real time contour tracking using optimal linear fil-
tering techniques. The method is further extended by incorporating a feedback scheme to generate
a more compact linear model which is shown to be more robust and accurate for tracking.

Models of the shape of an object do not utilise the temporal information contained within
the training sequences. A novel method is described for automatically learning a spatiotemporal,
physically-based model that allows the system to accurately predict the expected change in object
shape over time. This approach is shown to increase the reliability of the system, requiring only
a modest increase in computational processing.

The system can be automatically trained on video sequences to learn constraints on the ap-
parent shape and motion of a particular non-rigid object in a particular environment. Results show
the system is capable of tracking several walking pedestrians in real time without the use of ex-
pensive dedicated hardware. The output from this system has potential uses in the areas of surveil-
lance, animation and gait analysis.
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Chapter 1

Introduction

The work described in this thesis was motivated by addressing a seemingly simple problem — to
track the positions of a number of pedestrians in an outdoor scene. The aim of this work is to au-
tomatically process sequences of images taken from a camera viewing outdoor pedestrian scenes.
Some typical images are shown in figure 1.1. The system should be able to extract the position of
the moving pedestrians in the scene and to follow each person throughout the sequence. Ideally
additional information such as silhouette shape should be available for higher level event recog-
nition routines such as deciding whether the person is walking or running. The system should be
suitable for a range of applications such as automated surveillance, animation and human motion

analysis.

This problem is an example of an inherently difficult class of problems in machine vision
— the analysis of the motion of non-rigid objects. In order to tackle these problems some kind of
simplifying assumptions are generally required to constrain the allowable object shape and mo-
tion. These constraints allow the system to cope with missing data (where the object becomes
hidden from view), noise in the image data and background clutter. These a priori constraints

embody a model of the object.

1.1 A hierarchy of object models

The model-based approach to image understanding allows the incorporation of prior knowledge

into the system. This approach has some biological foundations. Human beings interpret visual



Figure1.1: Example camera images

information by comparison to knowledge in our memories. One important consideration in object
modeling is the specificity of the model. For instance, in studying the motion of a walking person
a full 3D model describing the precise position of limbs and joints over time could be used. How-
ever, such a prescriptive model may only describe one particular walk by a particular pedestrian.
At the other end of the spectrum, a very general model would be a deformable 3D parametric
surface represented by a mesh of 3D points which incorporates little knowledge into the system.

Between these two extremes lie a range of possible models.

A further practical consideration is the dimensionality of the model space. In general any
model has an associated set of parameters such as joint angles, height, width, orientation, etc.
Given the model and a set of parameters the object features can be projected into an image. The
problem of image search becomes one of identifying the model parameters that when projected
most closely resembles features in a given image. The computational expense of this process is
related to the dimensionality of the model space (the higher the dimensionality the more costly

the search).



1.2 Approach taken

To some extent the choice of model is dependent on the application. In order to track moving
pedestrians in cluttered noisy images some a priori model was found to be necessary (especially
when the video camera is not fixed). The approach taken in this work is to build a
“non-representational” model (i.e. with no notion of limbs etc) derived from real training data.
The model is acquired automatically (requiring no operator input). The advantage of this approach
is that the method can be applied to a wide range of problems without re-engineering the whole
system. This contrasts with more conventional hand-crafted models. The training data allows the
model to be tuned to the particular constraints of a given object in a given scenario. The method
is “data driven” which allows the system to cope with shapes that are not usually represented in

conventional models (e.g. variability in shape due to clothing).

A feature of this work is that the 2D outline (or silhouette) of the object is modeled. An
advantage of this approach is that in the majority of cases the object silhouette is observable in
the image (assuming the object is not occluded) whereas a complete set of internal features of
an object are rarely apparent in all images (due to self-occlusion). For example, in the case of
a walking pedestrian the arm is often hidden behind the rest of the person’s body. Furthermore
the model parameters encapsulate variability in the outline due to orientation as well as change in

shape due to articulation.

The use of a 2D model to describe a 3D object is a unique feature of this work. The pose of
the 3D object is not completely unconstrained but represented by the typical poses in the training
set. Hence the position of the imaging device (e.g. video camera) with respect to the ground plane
is implicitly incorporated into the model. This may appear to be a significant drawback, butin real
applications the camera location is rarely completely unconstrained. For instance, the camera is
unlikely to be looking directly up at a person’s feet (although if this were the case, the system
could still be trained up on these images). In fact unusual viewing angles are often confusing to

a human observer.

A deforming silhouette seems to incorporate considerable information in much the same

way as the moving light displays of Johansson [1] and it is not difficult for the human visual sys-



tem to interpret silhouette sequences such as that shown in figure 1.2. This suggests that a sil-
houette model may be applicable to high level recognition tasks as well as to the original tracking

application.

Figure1.2: Three images from a sequence of silhouettes

1.3 Overview of the thesis

In this introduction some of the broader issues relating to the area have been discussed. Chapter
2 gives a review of techniques relevant to the problem of tracking non-rigid objects and related
problems. The remaining chapters describe the original work of the thesis and include results on

real image sequences. The work is organised as follows :-

e Chapter 3

A novel method for automatically building a linear shape model of a moving object is de-
scribed using training image sequences taken with a fixed camera. A novel method for ex-

tending conventional point based statistical methods to parametrised curves is given.

e Chapter 4

A new efficient method for contour tracking based on a linear shape model is outlined. Cur-
rent methods in optimal linear filtering are incorporated into the mechanism, resulting in a

fast and robust, variable scale tracking scheme.

e Chapter 5

A simple method for improving the linear shape model is detailed, based on an iterative

feedback mechanism. A compact linear model is automatically generated.




e Chapter 6

The linear spatial shape model is extended to a physically-based spatiotemporal model learnt
from training sequences of typical object motion. The new spatiotemporal model is shown

to be more robust than the previous spatial models.

Finally, conclusions and future work are discussed in Chapter 7.



Chapter 2

Background review

2.1 Introduction

Automatically tracking the motion of a non-rigid object, such as a walking person, from sequences
of images is a challenging problem which in general requires some kind of prior information to
be solvable. In this chapter, current techniques in non-rigid motion analysis are discussed as well

as some more specific techniques applicable to human motion analysis.

Prior information can be derived statistically from training information using “Principal
Component Analysis” (PCA) as in the Point Distribution Model (PDM) outlined in section 2.2,
Alternatively, physically motivated constraints can be utilised which limit object shape to elas-
tic deformations of a template as in the Finite Element approach outlined in section 2.3. These
approaches are usually regarded as “model-based” as the prior information contains the approxi-
mate shape of the object. These two key approaches have many similarities and can be combined
(see [2]). They are both to some extent linear models in that the model features are related by a
linear transformation to model shape parameters. (This is only true if the pose parameters of the
PDM are fixed). In both cases linear shape “modes” are derived using an eigenanalysis method

and both methods produce highly compact models with a small set of parameters.

Other approaches such as “snakes”, “Kalman snakes” and “Active Splines” (reviewed in
sections 2.4 and 2.5) make fewer shape assumptions. These methods are 2D, contour based ap-

proaches where object shape is constrained to be continuous and smooth and to deform smoothly.



These more general approaches are not conventionally described as model-based approaches (al-
though any set of constraints can be regarded as a low-level model). In the interpretation of real
images — that is images that have been captured from a camera in an outdoor environment — more
detailed prior knowledge is generally required. Apart from the problems of self-occlusion previ-
ously noted, real images are often of poor quality due to poor lighting and low resolution. Other
problems include shadows, reflections (e.g. due to wet road surfaces) and poor weather conditions
(rain, cloud, etc). Such problems can only be overcome by incorporating more prior information

into the model (i.e. using a higher level model).

High-level models can incorporate a great deal of information about object shape and even
expected motion over time. Examples of 3D representational models include the cylinder-based
model, WALKER [3], described in section 2.7 and a similar model used by Rohr [4]. These com-
plex models are “hand-crafted” and consist of an explicit 3D representation of the object generated
by a human expert (e.g. a programmer). The model has few parameters — In the case of Rohr’s
model there is one “pose” parameter. This results in fast and robust tracking but will fail when the
input walk does not fit the typical walking motion described in the model (e.g. atypical behaviour
such as running or suddenly stopping) or when the imaging device is non-stationary. Similar 2D
“stick” models have also been used with some success in controlled environments, e.g. Leung
and Yang [5]. These approaches utilise models based on a theoretical conceptualisation. Con-
sequently such an approach suffers when the reality differs from this preconceived model (e.g.
variability in shape due to clothing, atypical walks, etc) although some degree of error-tolerance
can be allowed. The alternative data-driven approach builds a model from a representative set of

real training data.

Other approaches assume the joints of the human body have been marked (e.g. Chen and
Lee [6], Bulpitt [7]). In section 2.6, the non-representational eigenimage model of Murphy et al
[8] is summarised. This approach is related to the “eigenface” approach of Turk and Pentland [9]
and the grey-level extensions to the PDM [10, 11] and has many similarities with the approach
taken in this thesis. However, one of the drawbacks of “image” based representations is the com-
putational cost involved in operating on relatively large windows of image pixels (e.g. in calcu-
lating optical flow). Furthermore the dimensionality of the resulting model is still high (typically

30 model parameters are used) and the method usually relies on a fixed camera.



Commercial surveillance systems use a simple background subtraction image processing
technique to recover moving objects within a scene. This technique (described in section 2.8) re-
quires a fixed camera (i.e. stationary, with fixed zoom and aperture) and is the first step in many
of the tracking systems described above. In fact this technique proves useful in the model acqui-
sition method described in this thesis. Background subtraction has many limitations, not least of
which is the requirement that the camera is fixed. Rowe and Blake [12] have extended this ap-
proach by using a stationary steerable camera which can pan and tilt and mapping the image onto
afixed “virtual camera” image plane. Even with a fixed camera, subtraction methods are sensitive

to changes in light, poor contrast, reflections as well as occlusion and imaging noise.

2.2 The Linear Point Distribution Model

2.2.1 Description of the model

Statistical analysis of 2D landmark data has become a well established tool in computer vision
(e.g. morphological methods [13]). A recent advance in this area is the Point Distribution Model
(PDM) introduced by Cootes et al [14, 15, 16]. In general, a PDM is a statistical model of a set
of (2D or 3D) points. The statistical model described by Cootes et al is a linear model (ignoring
the rotational component of the model) and will be referred to as the “Linear Point Distribution
Model” or LPDM in this thesis. The LPDM has been used successfully for image interpretation
(e.g. with medical images [17, 16] and for automatic face identification [18]) and image sequence

analysis (e.g. using a stochastic deformable model [19]).

In a PDM, shape is represented by a set of n labeled “landmark” points (see figure 2.1 for
an example). Each point corresponds to a particular (often biological) feature on the object such

as the tip of the index finger in the case of modeling a hand.

The LPDM is based on a statistical analysis of the coordinates of these points over a train-
ing set. Each training shape can be represented by a shape-vector x, consisting of the landmark

coordinates. Modeling in 2D,

T
X = ($07 Yo, L1y Y1y ooy Tn—1, yn—l)

where (z;, y;) is the position of the 7’th landmark point on the training shape.
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Figure2.1: A PDM representation of a hand shape

The training shapes are aligned using a Generalised Procrustes Analysis technique (as de-
rived by Gower [20]). A weighted least squares method is used to align each shape to the mean
shape. The weights are chosen so that more significance is given to the more “stable” landmark
points. This process results in a mean shape-vector X and a set of aligned training shape-vectors
xj. The next stage in the analysis is to subtract the mean shape-vector from each training shape-
vector, i.e. let

dx; = x;— X 2.1

The 2n X 2n covariance matrix S is then calculated using
S=F (dx de) 2.2)
where F/(...) is the expectation (or averaging) operator over the training set.

Modes of variation of the landmark points are represented by the 27 unit-length eigenvec-
tors of .S’ that solve

Se; = \e;

where A\p > A1 > ... > Ag,—1 > 0. The eigenvectors form an orthonormal basis for the shape

space. Hence the shape-vectors dx can be rewritten in the form

2n—1

dx = Z b;e;
1=0



where b; = dx - ¢;

It can be shown that over the training set the parameters b; are linearly independent and the

total variance explained by each eigenvector is equal to the associated eigenvalue. i.e.

0 @ t#y
Ai 1=

E(bb;) =

Thus the eigenvectors corresponding to the largest eigenvalues represent the most signif-
icant modes of variation. A subset containing the m most significant eigenvectors is retained as
a basis for the model shape space. A shape in the model space x can be written as a sum of the

mean shape and a weighted sum of eigenvectors using
x=X+ Fb (2.3)

where P is a 2n X m matrix whose columns are the m most significant eigenvectors and
b = (by, ..., bm_l)T is a vector of m coefficients. Given an aligned shape vector x’, the minimum

least squares approximation to the shape in the model space is given by a linear projection,

b= P (x' -%) (2.4)

This eigenvector analysis is an application of “Principal Component Analysis” or the

Karhunen-Loeve Transform (see for example, Gonzalez and Woods [21]).

New “feasible” shapes can be generated by varying the shape parameters b; within suitable
limits. As the variance of the ¢’th shape parameter within the training set is simply A;, suitable

limits might be +2/A;.

2.2.2 Active Shape Models

Cootes et al describe a method (the “Active Shape Model”) for locally optimising the shape pa-
rameters of the LPDM to fit features in an image [15]. The “Active Shape Model” (ASM) can
be regarded as a 2D application of Lowe’s refinement technique [22]. The LPDM is particularly
suited to this kind of iterative approach due to the simplicity in deriving an appropriate Jacobian

matrix for updating the shape parameters.



The ASM assumes a rough initial estimate for the orientation, scale and position of the
model as well as the linear shape parameters. Given these parameters the model shape can be

projected into the image frame using
X =Q(s,0) X+ Pb] + X, 2.5)

where () (s, #) is a rotation by 6 and a scaling by s and X_. is a translation by (X, Y..). The shape-

vector X represents the position of the n landmark points in image coordinates.

At each iteration of the refinement process, suggested movements for each landmark point
dX; are calculated from image features. The usual approach is to search for the strongest edge,
along the normal to the model boundary at each landmark point. The vector dXj is set to the
displacement of the estimated landmark position to the edge feature and scaled proportionally to
the edge strength (to reflect the confidence in this measurement). The method is illustrated in

figure 2.2.

e model point
— suggested movement

Figure 2.2: Updating an Active Shape Model

Given this set of displacements represented by the shape-vector displacement dX, esti-
mates for changes in the pose parameters d.X ., dY., dé and the relative change in scale ds are

calculated.



Cootes et al project the point-displacements in the image frame to displacements in the

model coordinate frame, dx using the equation
dx = Q((s(14ds))™", —(8 + d8))[Q(s, 0)x + dX — dX ] — x

which can be rewritten in the form

QU ) dx = X — (Q(,0) = Qs,0) ] - dXe .6
term 1 term 2

where s’ = s(1 4 ds) and ' = 6 4 df. Equation 2.6 can be interpreted as correcting the dis-
placements dX, taking into account the updated pose: “term 1” removes the changes in scale and

rotation and “term 2” removes the change in origin.

The model point displacements dx are projected into adjustments to the vector of shape

parameters b, using

db = PTdx

which is simply the least squares solution to the problem
Jdb = dX’

where dX' is the vector of corrected point displacements in the image frame and .J is the Jacobian
matrix with respect to the m shape parameters. i.e.

§(dX');

Jij = 5b;

From equation 2.5, J = QP.

The shape and pose parameters are updated using a weighted update scheme as follows

o = XetwdX.
Y, — Y.+ wdY,
0 — 04 wedb
s = s(1+ wyds)
b — b4 Wydb 2.7



where w;, wg, wy are scalar weights and W is a diagonal matrix of weights for each shape param-
eter. In the conventional ASM, W} is set to the identity or preferably, each weight is set propor-
tional to the standard deviation of the corresponding shape parameter over the training set. This

allows the more significant shape parameters to vary more freely.

Each iterative step refines the shape and pose parameters to reduce the error between image
edge features and the projected model. After each iteration the shape parameters are further con-
strained to ensure the shape is close enough to the mean shape in terms of a Mahalanobis distance

metric. Explicitly

b2

2 i

s Y
Smax bz S > Smax

b, = ( 5 ) (2.8)
b; otherwise

where s, is the maximum allowed distance from the mean. The constraint ensures the vector
b lies within a hyper-ellipsoid centered about the origin. Points within this hyper-ellipsoid have
a reasonably high a priori probability density, assuming the training shapes were sampled from a

Gaussian distribution about the mean shape (see Haslam et al [23]).

In order to improve the speed and robustness of the ASM, a multi-scale search mechanism

can be used, described by Cootes et al [24].

2.2.3 Lowe refinement

Lowe describes an iterative scheme for fitting parametrised 3D models to images [22]. The scheme
is based on Newton’s method and is stabilised using a priori constraints. Given a vector of non-

linear parameters p a sequence of estimates are calculated using

pli+1) — p) _ g

At each iteration q is calculated by minimising,
Ia —el* + o*|W(a - d)|* 2.9)

where



e e is the error between estimated and observed positions of model features in the image

e d is a vector of a priori parameter constants (the “prior model”)

e IV is a diagonal matrix in which each weight is inversely proportional to the standard de-
viation o; for parameter 7

e J is the Jacobian matrix.

e o is a “trade-off” weight that is dynamically adjusted to affect the stability and rate of con-

vergence.

The 1st term in equation 2.9 pulls the solution towards the image data and the 2nd term
stabilises the solution by pulling towards the starting position d. In order to ensure the final so-
lution closely fits the image data, the starting point of the prior model d is reset to the results of

the previous iteration.

Applying this scheme to the shape parameters of an ASM would minimise the following
error at each iteration

I(b" = b) = db]|* + a?|[W (b’ — b)|*

where b’ is the vector of updated shape parameters and W is a diagonal matrix of weights with

1
Wi =
VA
This leads to the update equation
b’—b»—|—< A )db» (2.10)
R P W A '

which is similar (but not identical) to the ASM update of equation 2.7 in that the more significant

modes with larger eigenvalues vary more freely than the less significant modes.

2.3 The Finite Element Method

The Finite Element Method (FEM) is an engineering technique for efficient computational sim-
ulation of physical systems (see, for example, Bathe [25]). Pentland and Sclaroff describe the
application of these techniques to problems in computer vision [26, 27, 28, 29]. The approach

taken is to build an elastic physical model of a deformable object and use finite element analysis



to produce a compact, orthogonal set of shape parameters suitable for tracking and recognition
tasks. Nastar and Ayache have successfully applied these techniques in the analysis of time se-

quences of 3D medical data sets [30, 31].

In contrast to the training based approach of the PDM, the FEM utilises a physical model
generated from a single example of the object’s shape along with certain assumptions about the
physical material properties of the object. Using “Modal Analysis” it is possible to reduce the
dimensionality of the FEM shape representation without a significant loss in accuracy. This allows
the (theoretical) physical system to become over-constrained where insufficient measurements are

available as well as reducing the computational load of the simulation.

2.3.1 Shape representation in Finite Element Analysis

The basic concept of the FEM is to represent a body in terms of a set of regions or “clements”
described by a set of labeled nodes. The quantity of interest (in this case, displacement) is ap-
proximated by a set of piecewise continuous functions over the body, defined over a finite number
of sub-domains called elements. The interpolation function used is continuous and usually a low

order polynomial. Some typical finite elements are illustrated in figure 2.3.
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Figure 2.3: Some finite elements




Hence object shape is represented by a set of nodal displacements U from an initial shape
with nodal representation X. A shape is regarded as the result of pushing, pinching and pulling an
initial lump of elastic material. Unlike the PDM, the FEM provides an analytic characterisation

of the object surface between nodes.

2.3.2 Modal Analysis

Utilising known or assumed physical properties of the object (such as stress and strain matrices,
uniform density), global mass, damping and stiffness matrices are derived by formulating appro-

priate integrals over each element and summing over the whole domain.

The resulting governing equation describes the evolution of the system over time under
the influence of external loads acting on the nodes and for a system of n nodes in d dimensions is
given by

MU +CU+ KU = R(t) (2.11)

where U is the dn x 1 vector of nodal displacements, M, C'and K are dn X dn symmetric matrices
describing the mass, damping and material stiffness between each point within the object and R

isa dn x 1 vector of external forces acting on the nodes.

The modal analysis approach decouples the above system by transforming to a basis of “M-

orthogonal” free vibration modes derived by solving the eigenvalue problem
Koé; = w Mo, (2.12)

Assuming Rayleigh damping (C' = agM + a1 K), the system of equations is decoupled into dn
independent 2nd order differential equations. This is achieved by defining a transformation matrix

® whose columns are the eigenvectors ¢;.

¢ = [¢17 ¢27 ceey ¢dn]

Then, letting U = ®U, the governing equation (equation. 2.11) becomes

U+ 0+ 020 = oTR() 2.13)



where Q? is a diagonal matrix of eigenvalues,

w12

w2

wan
and C' = agl + a;9? is also diagonal. Each vibration mode has an associated frequency w;. The
higher frequency vibration modes can be ignored as theoretically they will have little amplitude
and are generally difficult to measure with any degree of accuracy. The lower frequency modes

tend to correspond to intuitive deformations such as “bending” and “shearing”.

The modal amplitudes and modal velocities can be dynamically estimated by time-integra-
tion of the transformed governing equation (2.13) or equivalently using a Kalman filter mecha-
nism (see, for example, Gelb [32]). The modal analysis approach has several benefits. The 2nd
order governing equation is decoupled and there is a reduction in dimensionality achieved by ig-
noring high frequency modes. This results in faster and more efficient tracking and shape recovery

methods.

2.4 Snakes and Kalman Snakes

The snake (or active contour model) of Kass ef al [33] provides a powerful mechanism for low-
level image interpretation (e.g. for tracking deformable objects in the plane [34]). A snake is
an energy-minimising spline that is attracted to image features such as edges. An internal energy
function regularises the problem, modeling the spline as an elastic membrane (with constraints on
smoothness). A local energy-minimisation technique (such as an Euler method) is employed so
that the discretised contour “slithers” down the nearest well in the energy surface. The dynamic
system can be viewed in terms of image forces pulling the contour towards edge features and

internal “elastic” forces maintaining smoothness.

A simple snake minimises the energy

Esnake = /01 Eint [V(S)] + Eimage [V(S)] ds

where the contour’s coordinate functions are denoted by v(s) = (z(s), y(s)).



The internal deformation energy is given by
Eine = a(s)[vs(s) [ + B(s) |[Vas(s) ]

The two “physical” parameters «/(s) and 3(s) control the “tension” and “rigidity” of the contour

at a given point.

The external image forces are derived from the energy potential Fjp,age Which can be set

as follows
Eimage($7 y) = _C|V(GU © I($7 y))|

where GG, o I denotes the convolution of a Gaussian filter with the image and o controls the spa-
tial scale. The Gaussian blurring effectively increases the size of the energy well around a local
minimum. As the snake reaches equilibrium, the spatial scale of the Gaussian filter is reduced to

recover finer detail.

In order to perform the minimisation, the snake is discretised at regular sample points

vi = (24, y;) and an iterative local optimisation procedure applied.

Terzopoulos and Szeliski have shown that the elastic snake system is equivalent to a steady
state Kalman filter with constant unit covariance matrix [35]. They describe a true Kalman filter
approach, the “Kalman Snake” which provides a mechanism for tracking an elastic snake contour
over successive image frames. One advantage of this approach is that the model parameters (such
as the weighting attributed to new measurements) can be derived from a statistical sensor model

and can be allowed to vary over time.

Terzopoulos et al have extended the 2D snake model to elastically deformable 3D models

[36, 37].

2.5 Active Splines

Blake ef al describe a statistical framework for efficiently tracking B-spline contours using a
Kalman filter mechanism [38]. These “Active Splines” are evolved from the principles of the
snake. For computational efficiency a contour is represented by a parametric curve such as a cubic

B-spline. The implicit continuity and elasticity of the B-spline allows a simple stochastic model to



be used for contour tracking without the need for an explicit “regularising” internal energy func-
tion. Prior knowledge can be incorporated into the tracker by an elastic coupling with a template
B-spline (“Coupled Contours” [39]). This persistent template mechanism improves stability by
incorporating shape memory, restricting the prior distribution of the contour shape. An extended
affine invariant shape template is described [38] which allows the contour to more readily undergo

affine transformations. In this section, the method will be examined in more detail.
2.5.1 State Space

A (closed) B-spline curve v (s) = (X (s), Y(s)) is defined parametrically for 0 < s < N in terms

of N time varying control points Qi = (Xy(¢), Yx(t)) by
N
v(s) = > Bi(s)Qu
k=1
= H(s)Qx
where By, is a piecewise cubic interpolation function for the i’th control point and

H(s) = (Bi(s), B2(s), ...Bn(s))

The state space is represented by the state vectors X = (X5, ...Xy)and Y = (Y7, ...Yn).

Blake ef al introduce a distance metric associated with this state space given by
d(X, X") = |X - X'
where the norm |...| is defined by
N
x> = / X (5)%ds
0
= XTHX

and the matrix X is given by

N
Hij :/o B;(s)Bj(s)ds (2.14)

2.5.2 Feature Search

An observed contour (X f(s), Y/(s)) is defined by searching along normals (or parallel lines) from

the current estimate (X, Y') within a scarch window. An elliptical search window is derived



analytically from the covariance of the current estimate. In the interests of speed the contrast is
examined at three points: on the estimated curve and at the two extremes of the search window.
The point with the highest contrast (i.e. intensity gradient) is retained as the observed value of
(Xf(s),Ys(s)). The contrast is measured at the given search scale. If there is no significant mea-
surement at the 3 points, the search window is halved and the process repeated. When there is
no significant feature found within the window (i.e “lock” is lost), no observation is made. An

diagram illustrating feature search is shown in figure 2.4.

image feature

e imageintensity ¢
sample point /

Image Intensity

/S

search along anormal %,
(O
\

\
\
\ 1
/ \ !
search region

estimated contour

position

Figure 2.4: Feature search along a normal — Image
intensities are sampled at discrete points along
the normal

In reality the measurements (X f(s), Y((s)) are made at discrete curve points. However,
a theoretical, continuous sensor model can be shown to be equivalent to state space observations
(X¢, Yg), the least-squares approximation to the continuous observed curve points, with an as-

sociated covariance matrix F?, for each of X¢ and Y¢ given by
_ a1
R=rH
where r is the measurement variance constant.
The variance of a point measurement is set proportional to the size of the search window

to reflect the fact that measurement errors will be larger when the search scale is large. As each

point measurement is made by searching along a straight line, the X and Y measurements will



be coupled (i.e. the measurement is not isotropic). In this summary, the isotropic case will be

assumed although Blake et al describe the appropriate modifications.
2.5.3 Stochastic Dynamic Model

The control point positions are modeled using a constant velocity model with random accelera-

{)-()-()

where w(¢) is a zero-mean, temporally uncorrelated Gaussian noise process. A similar indepen-

tions expressed by the equation

dent equation applies for Y. Assuming an isotropic, homogeneous Gaussian noise distribution,

the covariance matrix for w is proportional to H 1.
2.54 Kalman filter mechanism

Between successive image frames no observations are made and the covariance matrix P, asso-
ciated with the augmented state estimate (X, X) is updated appropriately. Observations of the
point-feature (X f(s), Yy(s)) at time ¢ = ¢, are applied sequentially using the Kalman filter up-
date equation

X X . -

(X) - (X) + K(s) (Xs(s,t8) — H(5)X)

where the Kalman gain is given by

S T S T !
K(s) :P(H(O) ) l(H(s)|O)P(H(O) )ﬂ?]

and o is the standard deviation of the individual point measurement.

A persistent template mechanism can be applied using a virtual input of O applied to the
filter but coupled outside the subspace V of affine transformations of the template. The template

stabilises the system preventing the contour from becoming tangled and increasing robustness.

2.5.5 Spatio-temporal scale

One advantage of using a statistical Kalman filter framework is that the covariance of the current

estimate models the positional variance of each point on the contour. Assuming isotropy, a cir-



cular search window is constructed about each contour point with radius 2p(s, t) where p? is the

positional variance at s given by

p(s)* = (H(s)|0)P (H(s)]0)"

In the absence of image measurements when “lock” is lost over the whole contour, the
search scale increases as the uncertainty of the state estimates increase with time. Similarly, the
Kalman gain will increase so that when new measurements are eventually applied, the contour

will react quickly and lock onto the image feature.

Once the contour has “locked on” (i.e. the estimated contour is reasonably close to the
underlying object contour and this contour lies within the uncertainty bounds of the estimated
contour) the search window and Kalman gain decrease allowing motion coherence to be exploited

and the contour to be recovered more accurately.

2.6 Eigenimage decomposition

Murphy et al [8] describe a novel approach to analysis of human motion based on eigenimage de-
composition. Their approach is “task-based” as opposed to the conventional “representational”
computer vision paradigm. The basis of the method is to use the Karhunen-Loeve Transform

(KLT) on a statistically representative set of training images.

A modified KLT procedure is used for computational efficiency. Images of size n X m are
considered as nm element vectors. Typically n and m are large (> 64) resulting in image vectors
with over 8000 elements. In a similar manner to the LPDM the mean image vector is removed and
a linearly independent eigenbasis calculated (these are called “eigenimages”). Given N training
images, where N is typically equal to 100, eigenimages can be calculated from the eigenvectors

ofan NV x N “pseudo-covariance” matrix.

An image which is “similar” to the images contained in the training set can be represented
by a linear combination of a subset of the eigenimages (added to the mean image). Typically 30

coefficients are sufficient to represent images for recognition of pose.

In the experiments of Murphy et al raw images are not used. Instead, the magnitude of



the optical flow at each pixel is used as input to the KLT. Image sequences are represented by
sequences of the 30 most significant KL coefficients. The resulting information is fed into a neural
net classifier. The method has been applied to side view images of humans on a treadmill and to
outdoor images of subjects walking in front of a stationary camera. In order to extract suitable
image windows, a simple correlation process was required to track the person across the image.
Using this method the pose of the subject can be identified and it is possible to identify each of a

small class of subjects on the basis of gait.

Although well suited to high level recognition tasks this approach is still computationally
expensive requiring many pixel-based operations. The method does not appear to solve the gen-
eral pedestrian tracking problem in a noisy environment (e.g. for a crowded scene) that has mo-
tivated the work in this thesis. A similar approach is taken by Turk and Pentland for face repre-
sentation [9]. Cootes et al have combined an eigenimage approach with the shape model of the

LPDM [10, 11].

2.7 The WALKER model

Articulated, primitive based 3D models have been used successfully in a variety of applications
(e.g. DigitEyes [40], Lowe refinement [22]). Much of this work is based on the work of Hogg
[3] in which a representational model of a walking person (based on the Marr and Nishihara body
model [41]) is used. The WALKER model of Hogg represents object shape in terms of elliptical
cylinders representing rigid parts of the body and connected appropriately at the joints (see figure
2.5). A pedestrian’s posture is parametrised by a set of joint angles, for example the angle between

the torso and the left thigh (the “Left Hip” joint angle).

The WALKER model represents a class of walking motions in terms of an idealised walk
cycle. Each joint angle is modeled as a periodic function of a parameter PSTR representing the
position in the walk cycle. The joint angle functions were precomputed by analysis of a partic-
ular walk sequence and are represented by 10 point cubic B-splines. The allowable postures are

constrained by allowing each joint angle to be slightly out of step with the idealised posture cycle.



Figure 2.5: A pedestrian shape in the WALKER model

For instance,

LEFT_HIP = hip_curve(PSTR + DPSTR)

—-0.04 < DPSTR < 0.04

where LEFT_HIP is the angle between the torso and the left thigh and the function hip_curve is

a smooth periodic function describing this angle for the idealised walk cycle.

The posture parameter PSTR is constrained to vary slowly over time. The walker is con-
strained to move in the direction he or she is facing and constraints on the speed of motion are

also explicitly incorporated into the model.

2.7.1 Tracking with WALKER

At each image frame, Hogg propagates the WALKER model constraints to obtain a set of box
constraints on the joint angles and position parameters. An evaluation or plausibility function
EVAL(s) of an instantaneous model instance s (representing the joint angles and position param-
eters) is defined using a weighted sum of independent evaluations for the different body parts. The
search space is sampled and the most plausible model instance obtained for the current image us-
ing a “generate and test” strategy. The model constraints are then propagated to the next image
frame and the process repeated. By evaluating the plausibility of each part independently, a more

efficient search procedure is employed.



The plausibility functions are based on projecting the cylinder model onto the image to
obtain a set of “ribbons”. Each ribbon consists of a pair of parallel line segments which corre-
spond to the “side” edges of a projected cylinder. The plausibility of a ribbon is calculated using
a “fuzzy” matching function, by searching a rectangular strip about each line segment for suitable

edge features in the image.

The tracking procedure works well when strong constraints exist and the resulting search
space is not too large. For the first image frame a change detection method (see section 2.8) or a

global hierarchical search mechanism is required.

A similar approach, based on the work of Hogg is described by Rohr [4]. In this work, Rohr
reduces the parameter search space by only tracking one posture parameter based on the position
within a generic walk cycle (the generic model is based on a set of 60 male walks). The motion is
constrained to be parallel to the image plane. The significant extensions in this work include the

removal of hidden model contours and the use of a Kalman filter.

Both these methods have proven successtul in recovering full 3D descriptions of a walking
pedestrian from real image data in a constrained environment. The models used contain a large
amount of prior information which has been hand-generated, requiring considerable time and re-
sources. These approaches are domain dependent and require new (hand-generated) models to be
applied to new situations (e.g. other types of human motion). Murphy et al have shown that a full

3D representation is not always necessary (such as for recognition on the basis of gait).

2.8 Background subtraction and change detection

2.8.1 Change detection

Change detection is a method for detecting moving objects in an image sequence taken with a fixed
camera. Given two successive (grey-scale) image frames /41 (z,y) and I;(z,y) a differenced

image is calculated by subtracting the image intensities at each pixel. i.e.

Di(z,y) = [r41(z,y) — Iz, y)|



The differenced image Dy, is usually thresholded to obtain a binary image with pixels flagged

where there is a significant change in intensity.

Under the assumptions of a fixed camera, with fixed aperture and constant lighting condi-
tions the flagged pixels correspond to parts of a moving object. If the moving object is “flat filled”
then there will be flagged pixels corresponding to the leading and trailing edges of the object. If

the object is textured some of the internal pixels will also be flagged.

The flagged pixels can be grouped by clustering to obtain a set of regions. Processing a
scene with one or more moving objects which are well separated in the image will result in regions
corresponding to each moving object. A more robust approach, differencing image features (such
as edges) is described by Jain ef al [42]. These techniques have been employed in a variety of

applications (e.g. by Hogg [3], Rohr [4], Li-Qun [43], among others).

2.8.2 Background subtraction

Another powerful technique, background subtraction, relies on the availability of a “background”
reference image /¢ (2, y). This image may be obtained by acquiring an image from a fixed cam-
era when there are no moving objects in the scene. Alternatively, a background image can be

obtained from a sequence of images [ (z, y) by median filtering over time. Explicitly

Let(z,y) = Median (Ip(z, y), 1(z,y)...I.(x,y))

The median filter may be replaced by an appropriate robust running average, updated periodically

to account for changing lighting conditions.

Image subtraction (and thresholding) is performed as for change detection and the resulting
flagged pixels correspond to objects of interest (such as moving objects). Assuming the camera
is stationary with fixed lighting conditions and good contrast, the method can be used to segment
moving objects in a scene. Connected components of flagged pixels usually correspond to sepa-
rate objects and small regions can be ignored. However, when several moving objects overlap in

the image (or are too close together) only one amalgamated region is obtained.

This technique has been used as a first step in many vision applications (e.g. by Niyogi

and Adelson [44], Murphy et al [8]). Both of these image subtraction techniques are sensitive to



shadows, changes in lighting (e.g. due to the sun passing behind a cloud), camera vibrations, poor

contrast and occlusion.

An extension of this method to deal with a steerable camera which is allowed to pan and tilt
is described by Rowe and Blake [12]. The camera image is back-projected onto a “virtual cam-
era” image plane which remains fixed. A background image is generated for the virtual camera
image by sweeping the camera across the scene. A statistical model for each pixel is required to
cope with errors in the projection process (due to unmodeled depth variation within the scene).
The method is computationally expensive, typically taking several hours to build a model of the
background. Once the background has been extracted, contour tracking can be performed in real-

time.



Chapter 3

Building a Contour Model

3.1 Introduction

The “Point Distribution Model” outlined in section 2.2 has proven a useful mechanism for build-
ing a compact shape model from training examples of a class of shapes. In this thesis, the class of
shapes of interest are the 2D silhouettes of walking pedestrians viewed from a variety of angles.
The conventional PDM requires a human operator to hand generate a set of labeled points (corre-
sponding to particular features) from training images of the object of interest. This data set is then
processed automatically to generate a mean shape and a set of modes of variation with associated

shape parameters.

A natural extension of this work is to automate the whole process, extracting a training set
and building the model automatically. The problem is to extract a reasonably consistent shape-
vector! from real training images containing examples of the object. A simple approach to this
problem is described in this chapter. By processing large amounts of data, the effects of noise due
to occlusion and mis-segmentation are reduced and a relatively simple segmentation scheme can
be employed. In order to extract a large training set of shape-vectors, the processing of image data
needs to be sufficiently fast. The system described has been implemented to run in near “real-
time” (processing over 4 image frames per second). This allows the use of live video input to

improve image quality.

!ie. an ‘n’ dimensional vector that represents shape



The control points of a B-spline are used as a shape-vector, since a spline is convenient
for data approximation and fast to render. Moreover, B-splines have successfully been used for
tracking image contours (e.g. by Blake ef al [38]). One of the advantages of this approach over
the conventional PDM method is that there is no need to estimate positions of features that do not
appear in a particular training image. For example, consider the training image in figure 3.1. A
conventional PDM might label the boundary points at the elbow, hand, hip, knee, feet, etc with ap-
propriate extra boundary points evenly spaced between these feature points. However, in the ex-
ample image the left arm is not visible (due to self-occlusion) and estimating the appropriate fea-
ture points becomes difficult and prone to error. By regarding the silhouette as an abstract closed

continuous shape (with no landmark features) an automatic procedure can be applied.

The model described here is essentially 2D but is trained on a selection of arbitrary views.
The variation in shape due to different viewpoints is treated as flexibility in 2D shape, allowing

the model to be used for tracking over the range of viewpoints for which it was trained.

Figure 3.1: Example training image

3.2 Outline of the method

A system has been implemented to build a shape model automatically from real training images.
The system takes live video images from a static camera, processes them and extracts fixed length
shape-vectors representing the moving objects in the scene. The data is then analysed off-line to

generate a model. A diagram illustrating this system is shown in figure 3.2.



Backgrolund background
Extraction image
pedestrian video image Colour foreground Outline
scene = > Camera Differencing image Extraction
| Future Applications ©  component Component datafile Shape Vector silhouette
. p - = - - - - - - - — - —
(e.g.Tracking) model Andlysis Calculation outlines

Figure 3.2: Overview of the system

There are four main stages:-

Image preprocessing to obtain a binary background-foreground image.

Outline extraction to obtain the boundary of each foreground shape.

Shape vector calculation to obtain an item of training data.

Off-line analysis to build the shape model.

3.3 Image Preprocessing

In order to segment the moving objects from a sequence of images, a background subtraction
scheme similar to the method described in section 2.8 is used. The background image is continu-
ally updated (median filtering over time) to account for changing lighting conditions. An approx-
imation to the median filter is used (kindly provided by Hyde and Worrall [45]). Two methods of

image subtraction have been employed using grey-scale and colour images.

3.3.1 Grey-scale subtraction

Given a sequence of grey-scale images the moving objects are segmented using standard back-

ground subtraction. For a given image frame [}, (z, y), adifferenced image Ay (z, y) is calculated



by pixel-wise absolute subtraction from the reference background image I,.(z, y). i.e.

Alk($7y) = |Ik($7y) - Iref(xvy”

To reduce the effects of noise in the images, the differenced image is blurred using a standard
Gaussian blur filter (see for example Gonzalez and Woods [21]) and the resulting blurred differ-

ence image A} thresholded to produce a binary image, By (z, y), where

BACKGROUND ATl (z,y) < A,
Bk ($7 y) =
FOREGROUND AIl(z,y) > A,

The threshold value A, is chosen to be fairly low to ensure the foreground objects are well
defined connected regions in the binary image, although this increases the effects of noise. These

regions correspond to moving objects in the scene (in this case, walking pedestrians).

Results of this processing are shown in figure 3.3.

3.3.2 Colour subtraction

The additional information contained in colour images can be combined to improve the segmen-
tation of moving objects. Image sequences were obtained in YUV format, which consists of one
luminance field, Y and two chrominance fields U and V 2. A background image was generated by
treating each field independently, median filtering over time. For each pixel of an image frame
the quantities Ying, Uimg, Vimg and Yief, Uret, Vier were available i.e. the Y, U and V components
of the current image and the reference (background) image. The differenced YUV values, AY,

AU, AV are considered where

AY = Yvimg_YVref
AU = Uimg_Uref

AV = ‘/img_‘/ref

Under the null hypothesis that the current pixel is a “background pixel” the quantities AY’,

AU, AV are assumed to be sampled from independent zero-meaned, Gaussian distributions with

2This is the European equivalent to the YIQ standard as described in Foley and Van Dam [46]
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Figure 3.3: Image Preprocessing: (a) background image, (b) video
input image, (c) differenced image, (d) blurred and
thresholded image




variances 0%, o, and 0. (A background pixel is assumed to have a fixed value with some normal

random noise present due to errors in the imaging process).

Hence the quantity AS? is calculated for each pixel where

AY?  AU?  AV?
ok o ol

AS? =

and the null hypothesis is rejected if AS? > Ay, (and hence the pixel is assigned the value
FOREGROUND). Otherwise the null hypothesis is accepted (i.e. the pixel is assigned the value
BACKGROUND?). As for grey-scale subtraction, a conservative threshold is chosen for Ay, en-

suring the foreground regions corresponding to moving objects are well defined and connected.

In order to improve robustness the image AS?(z, y) is blurred with a Gaussian filter before

thresholding.

This method requires estimates for the parameters oy, oy and oy . These parameters are
estimated from an initial image sequence where there is little or no movement. Values for AY,
AU, AV are calculated as above over the whole image and the sample variance of each field used

as the estimate for the variance of the underlying noise distribution.

3.3.3 Further noise reduction

When there is poor contrast between the moving object and the background, fragmentation can
occur, resulting in several foreground regions where there should only be one connected region.
This effect can be reduced by further image processing operations (at the expense of speed and

resulting image resolution).

Morphological filters were applied to fill these “gaps” (see for example Sonka, Hlavac and
Boyle [47]). In order to join regions separated by k pixels along an extended boundary, the fol-

lowing operations were performed on the binary image

e [ successive dilation operations (i.e. region growing the FOREGROUND regions)

e k successive erosion operations (i.e. region shrinking the FOREGROUND regions)

Jin fact, FOREGROUND = 255 and BACKGROUND = 0



3.4 Extracting silhouettes

The above image processing scheme generates a binary image in which every pixel where there
is evidence of movement is set to FOREGROUND. Each connected FOREGROUND region is po-
tentially the silhouette of a single moving object within the scene. The following object specific

constraints may be utilised to reject regions which are unlikely to be a single pedestrian.

NO_PIXELS > MIN_REGION_SIZE 3.1
NO_PIXELS <« MAX REGION_SIZE 3.2)
REGION HEIGHT/REGION WIDTH < MAX HEIGHT TO_WIDTH 3.3)
REGION HEIGHT/REGION WIDTH > MIN HEIGHT TO_WIDTH 34

where NO_PIXELS is the number of pixels in the region, REGITON_HEIGHT is the height of the

region’s bounding box? and REGTON_WIDTH is the width of the region’s bounding box.

The first constraint (equation 3.1) removes small regions which are often due to noise
“spikes” in the image data. Constraint 3.2 removes regions that are too large which may be the
result of a change in lighting conditions. Constraints 3.3 and 3.4 ensure the region has a tall rect-
angular bounding box and removes regions where several moving pedestrians are amalgamated
into one region or when the object is not a human (e.g. a car). The last two constraints are specific
to images of pedestrians where the normal to the ground plane is roughly vertical in the image.
These constraints are only required for noisy, cluttered training images where the moving objects

are not necessarily of interest or where several moving objects may overlap in the image.

The connected FOREGROUND pixels are segmented from the binary image using a standard
“flood-fill” algorithm (see for example Foley and Van Dam [46]). Feasible regions that satisfy the
above constraints are traced (clockwise) to produce a chain of boundary points which is used as

the basis for the calculation of a training shape-vector.

*i.e. minimum vertically aligned enclosing rectangle



3.5 Shape vector calculation

3.5.1 Finding a point of reference on the boundary

In order to proceed, a fixed reference point on the closed boundary (which will have an associ-
ated parameter value v = 0) is required. A consistent method is required which is not highly

susceptible to noise.

The method used is to find the principal axis (i.e. the axis through the centroid of the bound-
ary points which minimises the sum of the perpendicular distances to that axis). The reference
point is chosen to be the upper (in terms of image coordinates) of the two points where the axis
crosses the boundary. It is assumed that this point will be fixed for humans in the scene. This is

reasonable for scenes where people always appear in an upright position.

A more general method may select the intersection point that is nearest to the centroid, or
some other suitable choice. In the case where the principal axis may be inappropriate (e.g. vehi-
cles viewed from the side and head on), a very simple method may use the upper-most point (in
image coordinates) over the complete contour. This method is more suitable for training a model,

specific to a fixed viewing angle (e.g. images of cars taken from a fixed camera).

The boundary points are now reordered so that the first point is the reference point and
approximated by a cubic B-spline (for an example see figure 3.4). Each shape can be reflected
about its principal axis to double the volume of training data (as has been done by Hill, Thornham

and Taylor [48]).

3.5.2 Approximating with a cubic B-spline

The control points of a length-wise uniformly spaced B-spline are used as a shape vector. Previous
steps extract from each moving shape an ordered set of n boundary points W; = (X;, Y;), with
0 < ¢ < n which are approximated with a (closed) spline P (u) = (P;(u), P,(u)) with N control

points Qi = (R, Sk) where N < n. The function P (u) is expressed as follows:

N-1
P(u) = Y QuBx(u)
k=0



(a) (b)

Figure 3.4:

Extracting a spline:
(a) data points with principal axis,
(b) resulting spline.




where the By, are modified B-spline basis functions. As the curves are closed the basis functions

are defined such that © = 0 is equivalent to u = N as follows:

B(u— k) (u—k)>0
Blu+N—-Fk) (u—Fk)<O0

Bi(u) =

where B(u) is the standard B-spline basis function which is non-zero in the interval 0 < u < 4.

The required approximating spline minimises the error function, erf, given by

erf = ”Z—: (Pr(u;) — XZ')2 + (Py(u;) — Yz’)2

=0

where u; is some parameter value associated with the 7’th data point.

Using standard methods (see for example Bartels, Beatty and Barsky [49]) the following

N equations are obtained:

N-1 n—1
> MigRi= ) Bi(uj)X; (3.5)
k=0 7=0

where 0 < i < Nand M, ;, = Z;é B, (ur) Bs(ug). An analogous set of equations are obtained

for Si. For a reasonably close approximation of the boundary, the parameter values can be sct as

follows:

0 fork =20 (3.6)
U = .
AS Wi — W,y fork >0

where W, = Wy and A is chosen such that «,, = N.

To calculate the spline control points, Q, the matrix M; ; must be inverted for each shape.
In order to avoid this computationally expensive step, n’ = wN new data points are calculated

(where w is a whole number, typically set to 8). These new data points correspond to the fixed

N

uniformly spaced parameter values:

For details, see section 3.5.3.

Using these new data points and their associated parameter values, M; ; is fixed and need
only be inverted once. This efficiently produces a uniform B-spline with the control points placed
at approximately uniformly spaced intervals along the contour. Moreover, the method is fast and

robust.



The control points of the spline make up the shape vector x, where

X = (Ro, So, Rl, Sl, ey ]%N7 SN)T
3.5.3 Selecting Data Points for Spline Approximation

Conventionally the parameter values associated with data points W, are based on the Euclidean
distances between points (as in equation 3.6). This leads to a set of values uj, corresponding to the
data values X. The discrete mapping uy to X, can then be extended to a continuous mapping u
to X (u) by linear interpolation. Hence given uy < u < wujg4q it is possible to interpolate X (u)

using

X (u) = (M) Xeps + (M) X,
Up4+1 — U Up4+1 — Uk

A similar interpolation scheme is used to find Y (). Hence given a chosen parametric value
u, a corresponding new data point (X (u), Y'(u)) is obtainable. Regularly spaced parametric val-
ues (between 0 and N) are chosen to find n’ new data points. These new data points can now be

efficiently approximated with a uniform cubic B-spline.

3.6 Component Analysis of the data

A straight forward method for analysing the training data has been implemented where the B-
spline control points are treated in exactly the same way as the landmark points of the LPDM of
Cootes et al , described in section 2.2. Hence the training shapes are aligned and a mean shape-
vector calculated. A covariance matrix is calculated (using equations 2.1 and 2.2) and the eigen-
vectors calculated. The resulting model consists of the mean shape X and a subset of m eigenvec-
tors p1, P2, - - -, Pm (of unit length) corresponding to the m most significant modes of variation

in the training data.

A slightly modified method is described in section 3.9 which takes into account the na-
ture of the training data (i.e. the fact that the shape-vectors are spline control points as opposed

to landmark points). The required modification, although providing a sound theoretical basis for



subsequent methods, does not in fact produce a dramatic change in the “modes of variation” vi-

sualised in section 3.7.

3.7 Results

3.7.1 Shape extraction from live video

Images were taken from 15 minutes of live video of a quiet pedestrian scene containing some
moving vehicles. Training shapes were automatically segmented and approximated by a cubic B-
spline with 40 control points. Each shape was reflected about the principal axis resulting in over
700 training shapes (corresponding to approximately 50 people). Some of these shapes are shown
in figure 3.5. There are evident errors in the training shapes due to mis-segmentation. However,

the majority of shapes are reasonably accurate and this large body of shapes dominates the sub-

A
&

sequent statistical analysis.
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Figure 3.5: Some training shape-vectors




3.7.2 Modes of variation

Each training shape-vector had 80 parameters (40 control points in 2D). The first 18 modes ac-
counted for 90% of the variance of the training data. The largest 19 eigenvalues are displayed
in figure 3.6. The graph shows that there is a small set of significant eigenvalues and a larger
set of relatively small eigenvalues. The small eigenvalues correspond to insignificant modes of

variation that can be subsequently ignored.
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Figure 3.6: Plot of the first 19 eigenvalues

The first m = 18 eigenvectors can thus be used as an orthonormal basis for the model space
of allowable shapes. Some of the significant modes of variation of the shape-vectors are shown

in figures 3.7, 3.8 and 3.9.



Figure 3.7: 'The effect of varying the component of the first
mode by £1.5 standard deviations
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Figure 3.8: The effect of varying the component of the second
mode by £1.5 standard deviations
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Figure 3.9: Diagrams illustrating some of the modes of variation




Visualisation of Modes

Each “mode of variation” represented by an eigenvalue and eigenvector corresponds to a line in
shape-space through the mean shape. In order to visualise a particular mode, a small set of shape-
vectors on this line are calculated by varying the associated shape parameter between suitable
limits. Explicitly, for the i’th mode shape-vectors x4 are calculated using
xW =x + step (L) e;
A
where j varies between —k and k (e.g. j = —2,—1,0, 1, 2) and step is a suitable step size in

standard deviations (typically around 0.5).

Each shape-vector represents a cubic B-spline and the splines are drawn either next to each

other as in figure 3.7 or superimposed together (distinguished by rendering style) as in figure 3.9.

In figure 3.7 the mean shape is drawn in the centre of the diagram and in figure 3.9 the
B-spline control points of the mean shape have been drawn in each diagram. The spline control

points do not generally lie on the curve.

3.8 A simple application of the model

One very simple application of the linear model that has been generated is removing the effects
of noise from a segmented shape. This can be done by projecting a shape-vector (obtained using
the method described previously in this chapter) to the closest point in the a priori model space

derived from the training set.

Hence given a noisy shape-vector x, the m shape parameters b = (bo, ..., b,,_1)7 were
calculated using equation 2.4. The shape parameters were further constrained so that b lies within
ahyper-ellipsoid centered about the origin using equation 2.8. (The constant s, Was setto 16.0).
The shape parameters were then projected back into the spline representation using equation 2.3

to get a “component-filtered” spline.

This process finds the closest point (with respect to the standard Euclidean distance metric)

within the constrained model space to the noisy input shape. Results are shown on some real data



in figure 3.10.

Figure 3.10: Projecting into the model space: In each case, the

component filtered spline is shown to the right of the
initial noisy input spline.

3.8.1 Limitations

The above method can be regarded as combining two noise reducing effects:-

1. Setting the components of the less significant modes of variation to zero. This is achieved
by the first step of mapping into the space spanned by the significant modes.

2. Pulling the shape parameters towards the mean (when the shape is too far from the mean
shape). This is achieved by constraining the vector b to lie within the hyper-ellipsoid. This
takes a shape with low prior probability density to the closest point with a reasonably high

prior probability density.



If the segmentation of the input shape is poor (e.g. a leg is missing) then all the control
point positions will have significant errors resulting in large errors in all shape parameters. Thus
there is insufficient information to reconstruct the original shape. Two examples of this problem

are shown in figure 3.11.

Figure 3.11: Projecting mis-segmented shapes

3.9 A modified component model

3.9.1 Principal Component Analysis

PCA aims to transform a correlated set of observed shape-vectors to a basis of linearly uncorre-
lated parameters. This is equivalent to diagonalising the shape-vector covariance matrix using a
similarity transformation. The vector dx = (x — X) is transformed to a new basis using

2N-1
dx = Z b;e;

= Pb 3.7
where b = (bo7 ceey bQN_l)T and P]‘k = [ek]]‘.
Assuming P is invertible the covariance matrix for b is simply

E®bl) = PlE(dx dxT)P~T

In order to enforce linear independence, the above covariance matrix for b is diagonalised

by appropriate choice of P!, This does not uniquely define P. A further orthogonality condition



is required, namely

e -ej =10 (3.8)

which is equivalent to P~' = PT,
3.9.2 Distance metric for splines

Equation 3.8 represents only one possible orthogonality condition. The scalar product corresponds
to a choice of a standard Euclidean distance metric f(..., ...) to measure the error between two sets

of landmarks (z;, y;) and (2}, y;) where
fx,x) = |x-x|

N-1 >

= (zjwr—mf+@ﬁ—mf)
=0

Given two cubic B-splines P («) and P’(u) defined by their N control points (z;, y;) and

(2}, y), a more accurate error metric d, measures the distances between corresponding points on

each spline, sampled densely and uniformly over the parametric curves. i.e.

1

d(x,x') = (/ON|P(u)—P’(u)|2du)2

NN-1

NN-1
= (/0 Z: ((ﬂﬁi—ﬂ@?)Bi(U))zdqu/o Z_: ((yz'—yf)Bi(u))Qdu) (3.9)

N

Equation 3.9 simplifies to the form
d(x,x') = [(x = x) T M(x = x))2
where the 2N X 2N symmetric matrix M is defined by

Moo Ma;9; H; s 0
21,27 21,27+1 _ ] (310)

Maivi12; Maivi,2j41 0 H;;

and the N x N symmetric matrix # is given by

Hii = /0 " Bi(u) B, (w)du



There is a unique inner product associated with this metric given by
(x,x') = xT Mx'
such that
1
d(x,x') = (x —x',x — x)2

(see for example Cohn [50] for details on inner products). The inner product is used in place of

the scalar product in equation 3.8 to give a more suitable orthogonality condition.

3.9.3 Eigenshape analysis

The desired transformation to a set of linearly independent M -orthogonal eigenvectors is found

by solving the eigenproblem
SMe; = \ej 3.11)

where S is the training set covariance matrix F(dx dx7).

Using the notation of equation 3.7 the following results can be easily verified

1. The vectors e; are orthogonal with respect to the inner product (..., ...).
2. Hence by suitable normalisation
(ei,€)) = i
or equivalently PT M P = I.
3. Each shape coefficient b; is given by projecting the shape-vector dx onto the line spanned

by the i’th eigenvector (minimising the square distance d? to the line). i.e.

b; = (dx, e;)
4. The shape coefficients are linearly uncorrelated over the training set.
Ebb;) = el MSMe; = (e, )\jej)
= Ajdyj

5. Assuming an unbiased, homogeneous, isotropic Gaussian measurement noise model (with
dense measurements uniformly spaced over the contour) as described by Blake et al [38],

measurements for the shape parameters are uncorrelated (see section 4.2.4).



By analogy with equation 2.12 the eigenshape model can be regarded as a finite element

system with mass matrix M and stiffness matrix S~

3.10 Discussion

In this chapter a method for automatically generating a linear shape model from image sequences
has been described. Results of an implementation have been shown for real image sequences of
walking people. The system automatically extracts training shapes and labels these shapes using

a B-spline representation.

By using a simple segmentation scheme to produce a large volume of noisy data a useful
model of the human profile has been generated. By restricting the input domain to reasonable
quality images from a fixed, colour video source, a model has been built which can be applied to

less restricted problem domains.

An efficient method for extracting a shape vector based on a cubic B-spline has been demon-
strated. The system can process large amounts of data in near real time to generate a compact data
set. Statistical component analysis of the spline data gives a simple but effective model. A novel
method for performing principal component analysis has been derived to provide a robust theo-

retical framework for statistical analysis of a training set of parametrised contours.

There are several advantages of using a B-spline contour to describe shape as opposed to a
suitably dense set of “landmark” points (as in the LPDM). One advantage is that the representa-
tion provides an analytic characterisation of shape between nodes. This allows a relatively small
number of nodes to be employed which reduces the computational expense of the eigen-analysis.
The resulting eigenvectors are consequently of low dimensionality (e.g. 80 components) which
reduces the amount of storage space required for the model (which is particularly important if
the system requires many such models). Furthermore the spline representation will prove usetful
in tracking applications by allowing measurements to be made between nodes and providing an
efficient method for calculating the normal to the curve at each point. Thus a large number of

measurements can be taken (if desired), resulting in a robust over-determined system.



Chapter 4

Efficient Contour Tracking

4.1 Introduction

This chapter describes an efficient mechanism for tracking the model shape parameters described
in chapter 3 (representing the outline of a deforming object, such as the silhouette of a walking
pedestrian) through a sequence of images. The aim of the system is to track robustly one or more
non-rigid objects in an outdoor scene in “real time” (i.e. processing images at 30 Hz) on mod-
est hardware. The changes in shape between successive image frames captured at video rate can
be significant and hence the contour can not be assumed to vary slowly. The tracking method
must react well to large shape deformations but be simple enough to work in real-time. Sudden
discontinuous changes in shape can occur where previously self-occluded features become vis-
ible. Noise and background clutter add to the difficulty of the task. In order to overcome these

problems, the trained a priori shape model is used.

Cootes et al describe the “Active Shape Model” [15] (outlined in section 2.2.2) for locally
updating shape parameters to fit features in an image. The method described here extends this
work by incorporating a statistical framework similar to the tracking framework of Blake ef al
[38] (outlined in section 2.5), allowing the automatic control of spatial (and temporal) scale. A
stochastic shape model is described allowing the contour to deform more easily in modes of vari-
ation that vary significantly within the training set. The statistical framework can be used to au-
tomatically control the search scale for feature search on an individual frame (in a similar manner

to the multi-scale extension to the ASM of Cootes et al [24]) as well as over successive frames



(allowing motion coherence to be exploited when “lock™ has not been lost over the contour). A
simple method is described to cope with known occlusion (e.g. when two tracked objects overlap

in the image) improving the robustness of the system.

A significant advantage of using an a priori linear shape model over the “Active Spline”
approach of Blake et al is that only a few shape parameters are required for tracking, improving the
speed of the system. Furthermore, it can be shown that assuming a theoretical isotropic continuous
sensor model, the filtering process for the shape parameters can be decoupled allowing each shape
parameter to be filtered independently. In practice the (decoupled) system performs well, even

when these assumptions are violated and a discrete (ansiotropic) measurement process used.

Results are included in this chapter, showing several pedestrians being tracked using im-
ages taken from a fixed camera, as well as the more difficult problem of tracking pedestrians in

images taken with a hand-held moving camera.

4.2 Theoretical framework

4.2.1 State Space

The eigenshape analysis described in section 3.9 allows the vector x representing the 2D positions
of N control points to be defined in terms of a set of m shape parameters b = (b, ..., b,,_1)" as
follows:

x=Pb4+Xx

where P is an 2N X m matrix of eigenvectors and X is the mean shape-vector.

A contour in the model frame is projected into the image frame by rotation, scaling and
Xi g O
Y;' Yi Oy

Ay —ay scosf —ssind

translation using

ay Gy ssinfd  scosé



and the shape-vector

X = (Xo, Yoy ey Xno1, Yvo)©

represents the 2D control points of the B-spline contour in the image frame. Hence the state space
consists of m shape parameters b;, the origin of the object (o, 0, ), and the alignment ! parameters
@, dy, incorporating rotation and scaling. The state parameters are related to the shape-vector X
by

X =Q(az, ay)(Pb+X) + o0 4.1)

where

0= (03,0y,...,04, oy)T

Ntimes

and () is a 2N x 2N rotation and scaling matrix given by

4.2.2 Stochastic Model

Shape parameters

The shape part of the state vector is modeled as a simple discrete stochastic process as follows:
p*) — ph=1) + wD ko N(0, ;)

where b* models the i’th parameter value at frame & and the noise term w¥ is a zero-meaned,
normally distributed random variable with variance y; . A dynamic model (assuming constant
rate of change) was considered but found to be less stable with no appreciable improvement in
performance. The underlying assumption of the shape model is that the shape parameters vary

independently (the noise process is isotropic). This is reasonable as over the training set:

EMbb)=0 i#j

'In this thesis, the term alignment refers to rotation and scaling but not translation.




As the variance of b; over the training set is equal to A;, it is natural to set the noise terms
using

Pi = A

where p is an undetermined shape parameter and is typically set to 0.05. This allows the more
significant shape modes to vary more freely. A diagram illustrating the resulting uncertainty el-
lipsoid from this stochastic model (assuming initial values are known with absolute certainty) is
givenin figure 4.1. Note that 1+ determines how easily the shape can deform with a valueof ¢ = 0

corresponding to complete rigidity.

uncertainty ellipsoid for
by current shape estimate

RZN

Yo

projection of model
hyper-ellipsoid

X0

Figure4.1: Diagram showing shape estimate uncertainty




Origin

The origin of the object is assumed to undergo uniform 2D motion with an additive random noise

process (in both velocity and acceleration). This can be expressed by the differential equation:

di\ 4 0

Oy Wy

where v, ~ N (0, ¢,) and w, ~ N (0, q,). A corresponding model is used for o,. Over a walk
cycle, changes in shape affect the position of the origin. This can be accommodated by the random
velocity term v,, allowing the underlying “smooth” motion to be recovered. In the absence of

sensor measurements this “smoothed” estimate of velocity determines the motion of the origin.
Alignment parameters

The alignment parameters «.., a, are assumed to be constant with added system noise as described

by the equation:
a{ a Wag
= +
azgk-l—l) az(/k) Way

where Wz, way ~ N (0, q,).
4.2.3 The Discrete Kalman Filter

The standard discrete Kalman filter may be used to update state (and covariance) estimates of a
system with discrete measurements at regularly spaced time intervals ¢ = kA (see, for example,
Gelb [32]). For a standard measurement model,

7z, = Hpxp +vy v~ N(O,Rk)

(i.e. with measurement matrix H; and measurement covariance matrix Rj), the state estimate
update is given by

e (+) = %i (=) + Ki(zp — Hike(—))

The Kalman gain K is given by

Ky = P(+)HIR!



and the covariance matrix P} update is given by
Pl () = BN (=) + Hy By Hy 4.2)

Note that the covariance matrix, denoted P, is distinct from the matrix of eigenvectors de-

noted P.

4.2.4 Theoretical basis for decoupling shape filter

Blake ef al [38] describe a theoretical continuous sensor model for measuring a B-spline contour
(“feature”) in an image. The sensor is assumed to be unbiased, homogeneous, isotropic and Gaus-
sian. In Blake’s notation the N control points of the B-spline are represented by the joint state-
space vector (X (¢), Y(¢)) and the sensor measures the least squares approximation (X¢, Y¢) to
the continuous curve. The NV X N covariance matrix for the measurement process for each of the

Xt, Yr measurements is given by
Rx = Ry = rH !
where H is the matrix defined in equation 2.14.

In terms of the shape-vector notation of this thesis, the sensor measures the observed shape-

vector Xopg with 2N X 2N covariance matrix Ry given by
R, = rm1
where M is the 2N x 2N matrix defined in equation 3.10 and r is a scalar.

If the alignment and origin parameters are assumed to be fixed and the m shape parameters
are filtered using a discrete Kalman filter (with measurements taken at each image frame), then

from equation 4.1 and equation 4.2, the covariance matrix update equation is given by
P ) = P () + [QPY rMTTH QP

The above update equation is simplified using the following easily obtainable results

e The alignment matrix, (), commutes with the “metric” matrix M. i.e. QM = MQ



e The alignment matrix is a scaled rotation matrix. Hence Q7Q = 521

o The matrix of eigenvectors P was derived such that PT MP = I (see section 3.9.3)

Using these results, the update equation simplifies to

P+ = POY=) +s57tPTap

= Pk_l(—) + 21T

Hence assuming Py (—) is diagonal, then after applying the measurement X s the updated
covariance matrix is still diagonal. Assuming F is diagonal and noting the diagonal form of the
stochastic shape model described in section 4.2.2, the covariance matrix is always diagonal. Thus
the system can be decoupled into m independent 1D Kalman filters 2. The covariance update

equation for the 7’th filter becomes

[0 ()7 = [oa( =)+ 7! 4.3)

where r; L ¢pLando; = [P, ; is simply the variance of the current estimate for b;.

The corresponding shape parameter update equation is given by

where

db; = [PTQTX]; — b;(—)

is the observed change in the i’th shape parameter. Note the similarity to Lowe refinement (equa-
tion 2.10). In the absence of previous measurements, the stochastic shape model will result in the
variance o;(—) being directly proportional to the eigenvalue )\;, and the Lowe refinement shape
update becomes almost identical to the Kalman filter update for the theoretical isotropic sensor

model.

%i.e. afilter with a 1 dimensional state space



4.2.5 Discrete Measurement Model

Observed features

Although the object shape is represented by a continuous curve, it is convenient to sample the
curve at [ regular intervals between control points. Hence there are n = N L points (p;, ¢;) given
by
p=GX
where
P = (P00 -+ Pty Gn1)”
and (7 is a 2n x 2N sparse matrix mapping the control points to regularly spaced points on the
curve, i.e.
Gaio; 0 X;y | pi
=0 0 G2z’-|—1,2j-|—1 Y] q;

Note that G commutes with the rotation matrix ).

At each new frame, measurements are made by searching along the normal to the estimated
contour at some or all of the sample points. The search is restricted to a specified search window
obtained from the filtering process (see section 4.3.5). The point of maximum contrast is retained
as the observed feature. The contrast is measured at the search scale and for reasons of speed only
3 points along the normal are examined: on the curve and at the extremes of the search window.

This method is described by Blake et al [38] and was summarised in section 2.5.

Measurement covariance matrix

For each point measurement there is an associated measurement variance v; which is set propor-
tional to the square size of the search window at that point. Hence, if there are a total of L' N

measurements made within a unit frame-period, the pointwise measurement variance is given by
2
vi = L'(cps)
where p; is the size of the search window at the 7’th sample point and c is a constant (typically set

to 0.5). If there is no significant point of contrast found within the search window (the feature has

been lost) then no measurement is made. This is achieved by setting v; to infinity (i.e. v;” L=0).



The “aperture problem”, described by Horn [51], allows only the normal component of the
displacement of the contour to be measured. Thus measurements are made by searching along the
normals n; to the estimated contour at each sample point. This results in coupling in the x and y

components of the measurements. The inverse covariance matrix is given by the partitioning:

where A; is the 2 x 2 pointwise inverse covariance matrix given by

-1 T
A; = v nin

4.3 Tracking Filter

The point measurements are related to the state space parameters by the equation
p = Q(ay, ay)G[Pb +X| + Go

which is essentially non-linear (due to the dependence of () on a, and a,). In the interests of
speed, the shape, alignment and translation effects are filtered separately using the following
scheme:

1. Assume the shape and alignment parameters are fixed

2. Estimate the change in origin using a dynamic Kalman filter

3. Remove the effects of this origin shift from the observations

4. Estimate the change in alignment parameters

5. Remove the effects of change in alignment

6. Update each shape parameter estimate independently using a 1D Kalman filter

If the effects of change in alignment are sufficiently small, the shape, alignment and trans-

lation effects can be filtered in parallel, ignoring changes in alignment and translation in the shape

filter mechanism (i.e. omitting steps 3 and 5).



4.3.1 Updating the Origin

The x and y components of the origin are filtered independently. The measurement model for the
x component of the origin, assuming the other parameters are fixed at their current estimates, is
given by

ph= 0, + (Vk)2i

where the noise term v, ~ N (0, Ry;) and similarly for the y component

%" = 0y + (Vk)2i+1

The “measurements” p’ = (py), i, ---) are calculated from the observed contour points p using

~

p' =p - Qa,,a,)G(Pb +X)

For the x component filter, the 2 x 2 covariance matrix P, for the state estimate (0, 51,)

is updated using the standard Kalman filter equations. Explicitly

where r~! = Z?:_Ol(RI;I)Qi,Qi'

Between image frames the standard Kalman filter equations are used to obtain the estimated

origin at the next frame.

4.3.2 Updating the Alignment

If the origin and shape parameters are fixed at their current estimates, the measurement model for

the alignment parameters is given by

Qg
p—-Go=H + vk
@y
where H is the 2n x 2 measurement matrix defined by

H2i,0 Hzm 52 —82i41

H2i+1,0 H2i—|—1,1 S2i+1 524



where s = G(Pb + ).

The estimates a,., a, and the 2 x 2 covariance matrix are updated with the corresponding
Kalman filter equations. The alignment parameters are not assumed to be independent although

for simplicity the system noise is assumed isotropic.

4.3.3 Updating the Shape parameters

The theoretical isotropic sensor model results in a decoupled Kalman filter. This provides a the-
oretical motivation for filtering each shape parameter independently, even when the ansiotropic
discrete measurement process is used. In order to achieve this decoupling, the covariance matrix
for the m shape parameters is restricted to be diagonal by ignoring off-diagonal elements in the

covariance update equation.
Writing Ap = p — P, the measurement model for the ¢’th shape filter is given by
Ap = h@D(b; — b)) + vy
where the vector h® is an 27 x 1 measurement matrix given by

D], = [Q(éx, ay)GP);

The covariance update equation for each filter is given by equation 4.3 where the “mea-

surement variance” for the ¢’th shape parameter, r;, is now defined by
ri_l — (h(l))TRlzlh(l)

The state update equation for each filter is given by

bi(+) = bi(=) + os(+) (D) B (Ap))
4.3.4 Enforcing the global shape constraint

Cootes et al constrain the model space of feasible shapes by ensuring the vector b lies within a
hyper-ellipsoid (so that the Mahalanobis distance to the mean shape is constrained). This con-

straint can be applied using equation 2.8 after the shape parameters have been updated. This



method has been implemented with some success. An alternative method, which produces a sim-
ilar increase in stability, has also been implemented. A virtual input of 0 is applied to each shape
filter at the start of each image frame with measurement variance for each shape parameter pro-

portional to A;. This approach has several advantages.

o In the absence of image measurements (e.g. due to occlusion) the variance of each shape
parameter estimate will rapidly increase (due to the stochastic shape model). The virtual
input ensures each variance is bounded. This is valid, because the object shape is assumed
to have come from the same (Gaussian) distribution as the training data. Hence the virtual
input adds prior knowledge to the system.

e The virtual input will “pull” the solution towards the mean shape before image measure-
ments are made. This discourages a priori unlikely solutions but does not prevent them if
there is strongly supporting image evidence.

e These techniques can be combined by applying the virtual input at the start of each frame

and the shape constraint after applying image measurements.

4.3.5 Automatic control of search scale

The Kalman filter provides a mechanism for automatically setting the search scale (as demon-
strated by Blake ef al [38]). The search window size at the :’th sample point is related to the

positional variance V' (p;) and V' (¢;) at the estimated contour point given by

Vip) = [(QGP)P(QGP) ]yizi+V(02)
[—
= Y (QGP)ai )0+ V(oy)

J=0

—_

where V (0,) denotes the variance of the estimate 6,; (and a similar equation is obtained for ¢;).
For simplicity, the alignment matrix () is assumed constant in this calculation. An elliptical search
window is used with semi-axes of length 2,/V (p;) and 21/V (¢;). Hence the search scale p; along

the normal nj is given by




4.4 Implementation

4.4.1 Iterative Scheme

An iterative filter has been implemented so that the contour shape is refined several times for
each frame. In order to improve the speed of the tracking mechanism, a subset of the /V I sample
points is used at each iteration. The method picks a random starting sample point and (ngyp, — 1)
additional evenly spaced points. The measurements are combined using the updating scheme de-
scribed previously to find improved estimates for the state parameters. Subsequent iterations take

sets of ng,, measurements using the current estimates to calculate the estimated point positions

and search scale. A diagram illustrating this scheme is shown in figure 4.2.
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Figure4.2: Diagram illustrating tracking filter mechanism

This mechanism is essentially a multi-scale search technique where the search scale is auto-
matically controlled by the Kalman filter mechanism. The scheme allows the rough contour shape
and position to be found quickly so that subsequent measurements of a particular contour point are
more likely to lock on to the correct image feature. The choice of 74,1, is a compromise between

a minimum value corresponding to the total number of state parameters (as the measurements are




coupled, each point measurement constrains only one free parameter) and a suitably large value
corresponding to a “dense” set of measurements (ensuring the state update mechanism is overde-

termined and hence robust).

4.4.2 Initialisation

The tracking mechanism requires initial estimates for the state parameters for each tracked ob-
ject. In this implementation a crude motion detector is used using background subtraction on a
subsampled image. The camera is assumed to be fixed (at this initialisation step) and in the in-
terests of speed the noise reduction step described in chapter 3 is not carried out. The result of
this processing is a binary “differenced image” where the foreground pixel regions correspond to
moving objects in the scene. Objects that are already being tracked are removed from this image
by clearing the bounding box of the tracked object in the binary image. The remaining signifi-
cantly sized (in terms of numbers of pixels) connected components are assumed to correspond to

new moving objects.

For each of these connected components the bounding box is calculated and the state pa-

rameters are initialised as follows

ax(0) = (yr —y)/hm
i, (0) = 0

N 1

0.(0) = S+ e)

0(0) = S+

b(0) = o

where the bounding box has a lower left-hand corner (2, y;) and an upper-right corner (z,, y,).
The constant £, is the height of the mean shape. The initial variance of each shape parameter

estimate is set to the associated eigenvalue A;.

Hence the estimated shape is initialised to the mean shape aligned vertically, centred at the

origin of the bounding box and scaled to the height of the bounding box.



4.4.3 Measuring contrast

Two measures of contrast have been used to drive the tracking mechanism. The first assumes the
camera is fixed and a reference background image has been calculated. The second uses a single

image frame allowing the camera to be non-stationary.

Fixed camera method

A background (reference) image is calculated (at full resolution) in the usual manner. The contrast
measure essentially looks at the intensity gradient of the differenced image (without thresholding)
at the desired search scale. Rather than performing image differencing and edge operations on the
whole image at multiple scales, the system only measures contrast where required by the tracking

mechanism (allowing real time performance without image processing hardware).

The tracking mechanism requires a contrast measure at 3 points along the normal n; through

the estimated point p; using the scale p;. Defining the points p¥) as follows
p" = pi + kpn; (44)

contrast is measured at p(l), p(o) and p(_l). The contrast c;, at p(k) is measured by examining

image intensities at p(*+1) and p(*~1) using
ex = [T(PF™Y) = Lep(pPD)| = [T(p*HY) — L (pF+Y)y)]

where /(q) is the image intensity at the nearest pixel to the real-valued coordinates ([q]., [q],)

and [, is similarly the intensity for the background image.

Note, the contrast measure is signed such that positive contrast corresponds to a larger ab-
solute image difference at the inward facing sample point and a smaller absolute image difference
at the outward facing sample point (see figure 4.3). The contour is attracted to points with high

(positive) contrast so that the whole curve lies on the boundary of a moving region.
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Figure4.3: Diagram showing signed contrast measure

Edge-based method

When the camera is non-stationary, an edge-based “contrast” measure is necessary. A 3 X 3 sobel
edge filter on a subsampled grid is used. Horizontal and vertical sobel edge filters are applied and
the resulting edge strength along these two directions projected along the normal direction. The
absolute value of the edge strength along the normal direction is used. For each contrast measure-
ment image intensities are sampled in a regularly spaced grid centred about the closest pixel to
the (real-valued) position p(#), defined in equation 4.4. The grid spacing is the closest integer to

the search scale p;.

This method is suitably fast and robust for the purposes of tracking in scenes with reason-
able contrast. For colour input, contrast is measured on each colour field and the resulting edge

strengths summed over all the fields.

4.4.4 Modeling Occlusion

In order to increase the robustness of the system in more difficult scenes where there are several

objects being tracked, occlusion can be modeled. The method used is based on the work of



Koller et al [52]. In their work, it is assumed that nearer objects appear lower in the image plane
and occlude farther away objects. Measurements that occur within known regions of occlusion

are ignored, improving the robustness of object tracking.
A similar method is employed here, with the following simplifications:-

e Object regions that overlap are assumed to occlude one another (i.e. no depth assumption
is used).

e An enlarged bounding box is used instead of an enlarged contour to model the object in
the image plane (for the purposes of occlusion reasoning). This simplification reduces the

computational burden of the occlusion reasoning.

Hence, at the start of each new image frame the currently tracked objects are drawn into
an “occlusion image” using an enlarged bounding box centred about the estimated origin of each
object. The height and width are set to 105% of the height and width of the contour’s bounding box
in the previous frame. Each rectangle is rendered with a new pixel value except where two or more

rectangles overlap in which case a particular value is used to flag the pixel as being “occluded”.

When measurements are made in the tracking mechanism at an estimated contour point pj,
the associated pixel in the occlusion image is checked. If there is possible occlusion no measure-
ment is made at that point (i.e. the measurement inverse variance is set to zero). This increases
the overall measurement variance for each state parameter reducing the Kalman gain and increas-
ing the state parameter uncertainties. The method is found to improve robustness where there is

partial occlusion of tracked pedestrians.

4.5 Results

4.5.1 Quantitative Analysis

In order to measure the performance of the tracking system, eight reasonable quality image se-
quences were obtained in which the same person is seen walking in eight different directions
relative to a fixed camera. A background image was also captured in which there are no mov-

ing objects. The images are of sufficiently good contrast to obtain an accurate segmentation of



the pedestrian’s silhouette using image subtraction as described previously. The resulting set of
shapes is used to build a “generic” model for this camera view. The first and last frame from each

sequence is shown in figure 4.4.

Figure 4.4: Training images for generic model

The system was tested on an additional “test” sequence showing the same person walking
from left to right. The image subtraction segmentation for the test sequence appears to be fairly
accurate and is used as the “ground truth” for subsequent analysis. The segmented (binary) image
sequence was corrupted by adding randomly generated artifacts to the image. The first image in
each sequence was left uncorrupted to ensure the initialisation phase was accurate (i.e. ensuring

the initial position and size of the contour were close to the ground truth).



Three eigenshape models were used:-

1. A “rough model” generated from a noisy training set of shapes extracted from live video
(unsupervised) from a fixed camera viewing a similar scene from a slightly ditferent angle.
This is the model from chapter 3. Each training shape was represented by a spline with

N = 40 control points.

2. The “generic” model generated from the eight sequences described above. The model rep-
resents shapes of the silhouette of a person walking in a variety of directions. 40 control

points were used.

3. A “specific” model generated from segmented shapes from the first training sequence only.
In this sequence, the pedestrian walks from left to right across the image (i.e. in the same

direction as in the test sequence). 32 control points were used.

Corrupting the images

Noisy binary images were generated by adding artefacts to the binary segmented test sequence.
Randomly generated circles (with random position and radius) were drawn over the ground truth
binary image in either the foreground or background colour. This type of noise was chosen to
test the robustness of the system, for several reasons. Firstly the noise cannot be thresholded out
(e.g. by ignoring observations where no “significant” contrast was measured). Secondly, the noise
process will result in significant errors in contour measurements over whole sections of the curve.
Hence these images are suitable for a rigorous test of the tracking system. Some corrupted images
are shown in figure 4.5. It can be seen that the silhouette shape is disrupted and a conventional
non model-based approach such as the “snake” of Kass ef al would be unable to recover the object
shape. Also note that the changes in shape are large so that the shapes can not be well represented

by arbitrary small deformations of a mean shape or the shape in the previous frame.

Two types of noise were generated — using a temporally uncorrelated and a temporally cor-
related noise process. The initial temporally uncorrelated method adds the random artefacts to
each image independently. The temporally correlated process adds identical artefacts to each im-

age, thus generating partial occlusion of the whole scene.



The signal-to-noise-ratio (SNR) of the noisy images is calculated over the image sequence

using
signal

SNRin(dB) = 10log

noise

with

signal = Y > [Ler(w,y) — Io]?

images .Y

noise = Z Z[Iref(x,y)—fl(ac,y)]z

images ,y
where Ier(2,y) is the pixel value at (z,y) for the ground truth image and I'(z, y) is the cor-
responding pixel in the corrupted image. The constant /j is set to halfway between the “back-
ground” and “foreground” pixel values, so that a patch of foreground and a patch of background
both have the same signal strength, thus ensuring the SNR is independent of the relative image

and object size.

Measuring the accuracy of tracking

In order to measure the accuracy of the tracking process (i.e. the accuracy of shape, position and
orientation of the tracked contour) an image based measure is used. Thus the error measure is
independent of the parametrisation of the contour. The contour resulting from the tracking process

is rendered flat filled in the “foreground” colour into the image i ,ck.

The tracking process is “local” so that the signal far from the object is never sampled. Hence,
in this case, it is more appropriate to measure the signal in terms of the area of “foreground” pixels

in the ground truth image. The signal and noise are calculated using

signal = 2 Z Z[Iref(x,y)]2 4.5)

images TyY

noise = Z Z[Iref($7 y) - Itrack(xv y)]2 (4.6)

images TyY
where the pixel value for a “background” pixel is 0. The scale factor of 2 in equation 4.5 was
chosen so that a SNR of 0 (i.e. signal = noise) would occur if the tracker silhouette consisted
of a shape of the same area as the ground truth shape but inaccurately placed so that there is no

overlap between the two. This is the “worst case” scenario where the tracker has completely failed
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Figure 4.5: Some corrupted images:
(a), (b) original images

(c
(e
(g), (h) 6 dB correlated noise

), (d) 12 dB (uncorrelated) noise added
), (f) 6 dB (uncorrelated) noise added




to track the object. The output SNR (in dB), denoted SNR,,t is calculated in the usual manner,

using the new values for the signal and noise.

Quantitative results

In order to ensure that the results were representative of the tracking performance, each experi-
ment was repeated 20 times and the SNR (input and output) was calculated summing the signal

and noise values over the whole set.

A plot showing the effect of temporally uncorrelated noise on the accuracy of the tracking
system is shown in figure 4.6. For each eigenshape model, the number of modes of variation that
encapsulated 95% of the appropriate training data were used. The main system parameters were

fixed as follows

Neub = 32

L'N = 320
c = 06
o= 0.2

An output SNR of 10 dB corresponds to 10% error in terms of the number of incorrect
pixels over the number of pixels of interest. The performance of the tracker appears to be fairly
robust even with significant input noise. The “specific” model incorporates more information ap-
propriate to the input test sequence and hence produces a more accurate and more robust result
whereas the “rough” model with a larger and more varied training set performs less well. As the
input SNR increases the output SNR tends to values between 14.5 and 15.5 dB corresponding to

errors of around 3%.

A further plot showing the effect of scene occlusion (temporally correlated noise) is given
in figure 4.7. The effect of this type of noise is greater than that of temporally uncorrelated noise
and an output SNR less than around 6 dB resulted when the system completely failed to track the
pedestrian over part or all of the image sequence. For limited partial occlusion both the “specific”

and “generic” models perform well.
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Performance for temporally correlated noise
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Figure 4.7: Effect of adding temporally fixed noise on accuracy

The effects of varying the total number of filter measurements (per frame) and the constant
Nsub Were investigated and the results shown in figures 4.8 and 4.9 respectively. Figure 4.8 shows
the effect of varying these parameters on the accuracy of tracking. The input SNR for these ex-
periments was fixed at 6.1 and the “generic” shape model was used. The surface plot shows that
increasing these parameters generally results in an increase in accuracy. Figure 4.9 shows the ef-
fect of the number of measurements on the processing time taken. It can be seen that the time

taken is linearly related to the number of measurements taken.

The number of shape parameters used, m, was also varied whilst keeping the remaining
parameters fixed and using the “generic” shape model. The accuracy and speed of the results were
measured as before and the results are shown in figures 4.10 and 4.11 respectively. The input SNR
was fixed at approximately 4.6. The resulting accuracy tends to increase as the number of shape
parameters is increased up to an optimal value of about 20. Subsequent modes contribute little to

the shape representation and in fact can decrease the robustness of the system.

The processing time taken is linearly related to the number of shape parameters. This is
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due to the decoupling of the Kalman filter mechanism (the coupled filter is theoretically O (m?)).

Further experiments investigated the choice of the “measurement parameter” ¢ and the “noise
model parameter” y. For each pair of values 9 different noise-corrupted sequences of the same
test sequence were processed and the results compared with the “ground truth” as before. Tem-
porally uncorrelated noise and fixed temporally correlated noise was used with an input SNR of
approximately 6 dB in both cases. The resulting surface plots are shown in figures 4.12 and 4.13
respectively. In order to aid the visualisation, the raw output signal to noise ratio is used (i.e. with-
out using a logarithmic scale) and a smoothed surface approximating the data is drawn. It can be
seen that optimal tracking performance is obtained for values of ¢ = 0.25 and y+ = 0.25 ap-
proximately and that these values are not too critical. Small values of i prevent the contour from
deforming too quickly increasing robustness in the presence of noise. Too small a value however,
freezes the contour preventing the tracking of a deforming shape. The optimal value for ¢ is re-
lated to the choice of 1 and in general will be larger for larger values of . In practice it is often
desirable to use a more tolerant value of ¢ of around 0.6 to allow the system to cope with shapes
that are not well represented within the training set (e.g. when using a different camera view to

that used in the training phase).

4.5.2 Qualitative results

Tracking with a fixed camera

Two test sequences of a walking pedestrian taken with a fixed camera were used. The generic
model was used with 14 shape modes. The test sequences were not used in the generation of the
shape model although the silhouettes are similar to those found in the model training set. The test
sequence with the estimated contour superimposed is illustrated in figure 4.14. The frames are
shown left to right top to bottom with every 4th frame displayed. The sequence was processed
at 14.75 Hz (including the time taken accessing image files). The second processed sequence is

shown in figure 4.15
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Figure 4.14: Results on 1st test sequence



Figure 4.15: Results on 2nd test sequence



Search window

Figure 4.16 shows the initial search window obtained when tracking a walk sequence using the
generic shape model with 14 shape parameters. As would be expected, the search window is
largest near the walker’s legs where the most significant shape deformation usually occurs.

Figure 4.17 shows the search window for a single image frame over successive iterations, illus-
trating the multi-scale nature of the algorithm. For visualisation purposes 74,1, was set fairly large

for both these experiments.

(b)

®

Figure 4.16: Search window: (a) to (f) frames 0, 1, 2, 16, 32 and 50

Tracking with modeled occlusion

When two or more tracked pedestrians overlap, the system copes by ignoring measurements where
there is likely to be occlusion. A new test sequence, in which two pedestrians cross in front of each
other, was used to demonstrate the occlusion reasoning. The results for this sequence are shown
in figure 4.18. The estimated contour shape for each tracked pedestrian has been superimposed in
separate colours. The “generic” model was used with 16 shape parameters. The three pedestrians

are successfully tracked throughout the sequence with a qualitatively high degree of accuracy.



Figure 4.17: Search window for successive iterations on a single frame

Figure 4.19 shows a closeup of one of the image frames where partial occlusion occurs and
the corresponding “occlusion” image for this frame. The white area in this image indicates pixels
that are ignored in the measurement process. A further diagram (figure 4.20) shows the normals
to the estimated contour where measurements were taken for one of the contours. It can be seen

that the occlusion reasoning prevents potentially inaccurate measurements being taken.

Tracking with a moving camera

The system was tested on several sequences taken with a moving camera. In the first sequence
the camera is initially fairly still, allowing image subtraction to be used for contour initialisation.
The camera was hand held and a pedestrian was kept within the image by eye whilst zooming in
on the walking pedestrian. This image sequence presents numerous difficulties as conventional
subtraction based techniques can no longer be used. Furthermore, the camera is zooming and

moving relative to the ground plane and there is also some camera shake.

The tracking system was applied to this difficult image sequence. The initialisation was
done in the usual way (the camera was initially fairly still). Subsequent processing utilised an
edge based contrast measure and the results are shown in figure 4.21. The images are ordered
from left to right and from top to bottom with every 5°th image displayed. The estimated contour

shape has been visualised over each input image frame.



Figure 4.18: Results on test sequence with occlusion



Figure 4.19: Occlusion Reasoning;:
top: closeup of image with contours superimposed
bottom: corresponding occlusion image




Figure 4.20: Measurements taken near occluded region




In order to improve the robustness of the system a highly constrained solution space was
required and only 4 modes of variation were used (using the “generic” model) and the model space
was constrained with a maximum Mahalanobis distance of 6. The results show the system copes

reasonably well although the contour shape is only a “loose” fit to the underlying object shape.

A second similar (moving camera) image sequence was processed by the system (see figure
4.22). In this sequence two pedestrians are tracked as the hand-held camera pans and zooms. The
two pedestrians are moving close together and in the same direction making the tracking task more
difficult. The occlusionreasoning described previously, where an enlarged rectangle is used, helps

prevent the two contours becoming tangled together.

Towards the end of this sequence an unmodeled third pedestrian walks into the image and
occludes the tracked pedestrians. The system copes with this situation treating the occlusion sim-
ply as noise (there is no occlusion reasoning in this case as the 3rd object is not tracked). A closeup
of one of these frames is shown in figure 4.23. As before 4 shape modes were used and an edge-

based contrast measure drives the mechanism.

4.6 Discussion

The quantitative results show that the performance of the tracking system is affected by the system
parameters and more importantly by the suitability of the linear shape model used. The errors

measured in the quantitative analysis come from several sources.

e Smoothing error — due to the smoothing of the spline representation.

e Truncation error — caused by ignoring the less significant shape modes.

e Modeling error — due to an inaccurate a priori probability distribution (e.g. due to seg-
mentation errors in the training shapes). Also due to inaccurate a priori assumptions in the

stochastic model (e.g. unexpectedly large shape changes).

o Filtering error — due to ignoring of the off diagonal elements of the (shape) covariance ma-
trix. These error are particularly noticeable if 74,1}, is too small and the shape parameter

correlations are no longer insignificant.



Figure 4.21: Tracking with a zooming camera



Figure 4.22: Tracking with a moving camera



Figure 4.23: Closeup showing a third pedestrian occluding two tracked
pedestrians




e Poor correspondence — even in the absence of image noise the measurement process is prone

to errors as the contour can lock onto the wrong part of the image feature.

The modeling errors are typical of model-based vision. The model allows the system to
perform robustly in the presence of noise but as a consequence will prevent 100% accurate track-
ing in the absence of noise when the object does not exactly conform to the modeling assumptions.
Consequently, care must be taken to ensure that the desired output shapes are well represented in

the training set.

By allowing some inaccuracies in the tracking system using only 10 shape modes from the
“generic” model and a total of 160 measurements per image frame, real time performance of over
33 Hz was achieved with an output SNR of 13. In highly constrained situations (e.g. tracking
people moving left to right across the image plane) the number of shape parameters and mea-
surements can be further reduced allowing very high frame rates to be achieved. Note that the
processing times in the above experiments include data accessing times (from movie files) and

the experiments were run on a 100MHz R4000 Indy workstation.

The observed (and theoretical) complexity of the tracking system is O(L'm), where m is
the number of shape parameters and N ./ is the total number of measurements per image frame.

This contrasts with the conventional coupled Kalman filter which can be shown to be O(m?).



Chapter 5

Adaptive Improvements

5.1 Introduction

One of the problems associated with landmark free methods is that a large degree of variability in
any shape descriptor may be due to the choice of parametrisation. In this chapter, an automated
training method is described which utilises an iterative feedback scheme to overcome this prob-
lem. The aim is to build a compact contour model that describes the shapes in a training set. The
more compact the model, the fewer shape parameters are required for accurate shape represen-
tation which leads to faster and more efficient image search and object tracking procedures. A
more compact model also increases robustness by producing a more restricted solution space of

feasible shapes.

In chapter 3, a consistent method for parametrising a shape is described and a linear eigen-
shape model similar to the PDM of Cootes ef al is derived. In this chapter, the model is made
more compact by eliminating some of the variability caused by control points shifting along the
contour (which cause little change to the actual observed shape). This work has some similarity
to the work of Williams [53] in that a covariance matrix associated with control point positions
is learned from training data using an iterative learning process, although in his work the initial
model is hand generated and a computationally expensive “generative” image fitting process is
used. Furthermore, the methods are applied to hand-writing recognition of individual characters

where a relatively simple B-spline model with only 4 control points can be used.



Hill and Taylor outline an approach to automating the placing of landmark points on train-
ing shapes [17]. In their work a two stage process is described — an initial scheme for generating
a PDM and a refinement stage for making the model more compact. The initial scheme relies
on an underlying method for finding correspondences between two shapes (e.g. using physically
based vibration modes). Such a “corresponder” may fail in certain applications where the object
shape can vary non-elastically (for instance the two shapes in figure 5.1). The refinement phase
locally optimises each training shape’s landmark points using a computationally expensive Sim-
plex minimisation of an energy function. Each training shape is represented by ¢ shape parameters
representing the most significant eigenvectors of the current model where ? is chosen heuristically
(e.g. t can be chosen such that 90% of the variability of the training data is captured). The energy
function encourages the landmarks to move closer to the mean shape (in terms of a Mahalanobis

distance) if the improvement is not outweighed by an increase in representation error.

In this chapter, a simpler, alternative approach to automating the model building process
is presented. An advantage of the method described here is that the complete contour shape is
modeled as opposed to selected points on the boundary. Another benefit of this approach is that
the implementation of the feedback learning scheme requires only two main modules to be imple-
mented — an eigenshape analysis module (model building) and a tracking module (model fitting)
— both of which are key elements of any comparable system. Thus, the system is “bootstrapped”
allowing a more compact and subsequently more reliable model to be generated without engi-
neering any new modules. Both methods reparametrise each shape in terms of the current shape
model. The system described here utilises an additional “noise” process which allows the current
shape model to change significantly without any loss in training shape representation. This ad-
ditional step allows the system to “break free” from a poor initial model so that the initial model

need not be close to the final optimal solution.

Results are shown illustrating the qualitative and quantitative benefits of utilising the new

adapted eigenshape models over the models generated in previous chapters.

A related “bootstrapped” approach is described by Syn and Prager [54]. They described a
semi-automated system for building a PCA model for 3D medical data sets. The model is updated

incrementally using a FEM modal analysis to provide correspondences between recovered 3D



Figure 5.1: 'Two shapes where a
matcher may fail

mesh descriptions and landmark feature points. The statistical component model is then used to

improve the mesh shape recovery process.

5.2 Generating the initial model

In chapter 3, a method for parametrising an arbitrary shape (i.e. a closed boundary) is described
based on one fixed point and the length round the contour. The fixed point used was the upper
most point at which the principal axis crossed the object boundary. An /N-point uniform cubic
B-spline was used to represent each shape conveniently allowing every point on the boundary to

be modeled without using an arbitrary dense set of boundary landmark points.

This method produced reasonably good results and the eigenshape analysis of the training
shapes resulted in a significant reduction in dimensionality, suggesting that the initial parametri-
sation was reasonably consistent. However, the model still required a relatively large number
of shape parameters for accurate shape representation (see figure 4.10). This was partly due to
the problem of control points “shifting” along the object boundary producing little change in ob-
served shape. Thus, similar training shapes may have slightly different nodal representations (due
to variation in the material parameter values of corresponding boundary points) increasing the to-

tal variance of the training set.

Furthermore, principal component analysis attempts to linearise shape changes from the

mean shape, which may in reality be non-linear. By reparametrising the shapes it may be possi-



ble to ensure that the shape changes are closer to a linear model. A similar effect is apparent in
the “Cartesian-Polar Hybrid” PDM described by Heap and Hogg [55] where the choice of shape

representation can significantly improve the resulting model.

Another way of looking at the problem is to consider the initial training set to lie within a
lower dimensional, constrained shape space, within the original shape-vector space. This space
is defined by the constraint that control points are equally spaced around the contour. The mean
shape does not necessarily lie within this constrained space, resulting in a reduction in the com-
pactness and consistency of the model. By relaxing the constraints on the training shapes the
reparametrised training set can result in a more compact model where the mean shape is more

representative of the “average” shape.

The initial eigenshape model is regarded as the first step in an iterative process. Conse-
quently, the exact method of shape parametrisation (e.g. the choice of fixed point) will not be
critical. For instance, if the shapes are already reasonably well registered, the fixed point may be

the upper most boundary point.

5.3 Adaptively improving the model

In order to adapt the shape model an iterative learning process will be utilised. However, in order

to proceed further an accurate contour fitting scheme will be required.

5.3.1 Accurate image search using the shape model

In chapter 4, an active search method for fitting a linear shape model to an image (from a sequence
of images) containing an example of the object of interest is described. The method relies on cer-
tain a priori assumptions being made about the object shape. Specifically, the estimated shape is
initialised to the mean shape with the variance of each shape parameter estimate set to the asso-
ciated eigenvalue. In subsequent image frames the shape parameters are allowed to vary slowly
by using a noise term for each shape parameter set proportional to the eigenvalue for that shape
parameter. The Kalman filter mechanism can be regarded as a physical system where there are in-

ternal forces pulling the shape parameters towards the current shape estimate and external forces



pulling the shape towards image features. The filter is suitable for robust and fast tracking but

may lead to compromise solutions when the internal forces balance the image forces.

A method is required for accurately fitting the shape model to a (possibly pre-segmented)
shape in an image. By treating a single image as a sequence of identical images, the tracking
system can be adapted to give very accurate fitting at the expense of computational load. The
resulting method is similar to Lowe refinement where the prior model at each iteration is set to
the result from the previous iteration (see section 2.2.3). Each iteration of Lowe refinement is
comparable to running the tracking system on one of the identical image frames. The method is
computationally expensive but allows optimal accuracy to be obtained, given that the shape is
to be approximated by an /N point cubic B-spline. A diagram illustrating the modified tracking
system (for accurate shape fitting) is shown in figure 5.2. Note that “global shape constraint” is
relaxed to ensure a good fit is obtained. Figure 5.3 shows an example of accurate shape fitting
comparing the initial fit obtained on the first frame and the more accurate fit on the final (identical)
frame. There is an obvious improvement although the difference is not large. Note that when lock
is lost over part of the contour the local search scale will lengthen allowing the contour to recapture
a lost feature. This method ensures that the final contour is locked onto a suitable feature over the

whole curve and hence a very accurate fit is obtained.

The Kalman filter mechanism allows all the shape modes to be used (as opposed to the usual
subset of “significant modes”) without the system failing, although in the presence of significant

image noise the use of additional modes can increase errors (see figure 4.10).

5.3.2 Improving the model: Theoretical basis

The motivation for the method described in this chapter is based on the following assumptions:-

o The optimal parametrisation for each training shape is the parametrisation obtained by ac-

curately fitting the optimal model to each shape.

o The optimal model is the model obtained from the analysis of the optimally parametrised

training shapes.
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Figure5.2: Accurate image fitting
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Figure 5.3: An example of accurate fitting




These assumptions appear to be reasonable. Consider the opposite case, where the parametri-
sation obtained from fitting with the optimal model is different from that used in the generation
of the model. Such a model is based on an “inconsistent” parametrisation of the training shapes
and suggests that it is not the best representation of the available training information. If the as-
sumptions are satisfied then the results of the image search can provide a useful nodal description
of a new image contour that can be directly compared with the nodal description of each training

shape used in model generation.

5.3.3 Initial approach

An obvious approach to “bootstrapping” the eigenshape model is to utilise the accurate image
search mechanism on the training images. The resulting shape parameters b;, can be mapped into
the corresponding shape vectors and this new training set used to calculate a new mean shape and
covariance matrix and hence a new eigenshape model. The process is repeated until convergence
(which may not be guaranteed) at an optimal solution. The scheme may be regarded as a closed
loop energy minimisation scheme (see, for example, Haykin [56]) similar to a neural net and other

learning scheme.

The method requires high quality (possibly pre-segmented) training images. For each im-
age, the approximate object size, orientation and location within the image are known. A new
set of training shape vectors can be obtained by running the active search method on these im-
ages. The new training shape vectors are aligned and a new covariance matrix generated. Note
the parametrisation of the shapes is no longer explicitly calculated but implicitly derived from the

current eigenshape model.

Each training shape can be reparametrised without affecting the apparent shape by allowing
the control points to shift along the contour boundary. The feedback scheme tends to pull the
control points towards the more significant modes of variation (which vary more easily) whilst
maintaining the contour shape. The result is a more compact model. A diagram illustrating this

cffect is shown in figure 5.4.
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Figure 5.4: Diagram illustrating effect of reparametrisation

5.3.4 Improved iterative method

Even if the full set of 2V eigenmodes are utilised in the active search method, shape variations
which do not occur within the initial training set will never become apparent in subsequent mod-

els. For example, supposing there are only two training shapes, the search space will effectively

be a 1D shape space, since there is only one non-zero eigenvalue and the estimated shape

parameters for the remaining 2N — 1 modes will therefore be fixed at zero.

The current eigenshape model is perturbed by a simulated noise process. The eigenvalues A; are

As the initial model is only an estimate of the optimal model an additional step is taken.

updated as follows

This is equivalent to adding Gaussian isotropic noise with variance ¢ to the boundary points of

A =X+ o’

the training shapes. i.e. generating a new covariance matrix S’ given by

S =8+ a?H !




This step allows (arbitrary) small perturbations of the nodal positions. This hybrid model
allows fine detail that is not well represented by the original model to be more accurately recov-
ered. The method is similar to that employed by Cootes and Taylor to combine the PDM with a
finite element, physical model [2]. It is important to note that a// the eigenmodes are used since
the noise process ensures that no mode of variation can be regarded as insignificant. The Kalman
filter active search mechanism allows the more significant modes to vary more easily so that all

of the 2N modes can be employed without the method becoming unstable.

The parameter o is initially set to around 4 pixels and subsequently decreased gradually (de-
caying exponentially at a heuristically chosen rate). A diagram illustrating the scheme is shown
in figure 5.5. Using too large a value for ¢ would reduce the effectiveness of the current shape

model which is required for accurate image fitting (and hence for shape parametrisation).

Isotropic Noise Model

Training Images

Current Eigenshape Hybrid Eigenshape
Model Model
T : Active Search :
I Mechanism :
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: Shape Component I new training
! Analysis | shape-vectors

Figure5.5: Iterative feedback scheme

5.3.5 Implementation

In this implementation the initial training set was generated using background subtraction and

thresholding. The shapes were parametrised using the fixed-point method described in chapter



3 and a mean shape and covariance matrix calculated in the usual way. Subsequent image fitting
was performed using the unprocessed training images and contrast was measured using the “fixed
camera method” of chapter 4. The reason for using the unsegmented training images is that inac-
curacies in the initial segmentation, due to the choice of threshold, are reduced. Each image was

treated as a new image sequence of twenty identical frames.

5.4 Results

5.4.1 Single walk data set — the “specific model”

The data set contained 59 shapes (silhouettes) segmented from an image sequence of a pedestrian
walking from left to right across the image. (This is the training set used for the “specific” model
in chapter 4.) Background subtraction was used to segment the silhouette of the walker. Four of

these training shapes are shown in figure 5.6.

AALD

Figure 5.6: 'Training shapes from the
single walk set

The feedback scheme described previously was implemented with and without the addi-
tional noise process. Each iterative step generated a new eigenshape model which was then used
for subsequent active image search. The initial model is the “specific model” from chapter 4. A
“compactness” measure was calculated for each model as follows:

AL+ A

S % 100%
=1 13

compactness =

where A1, Ay are the two largest eigenvalues in the model. The compactness measures the percent-
age the principal two “modes of variation” contribute to the total variance. A large compactness

measure indicates that most of the variance is encapsulated by these two modes. The compact-



ness of each model is shown in figure 5.7. The graph indicates that in both cases the compactness
increases from under 65% for the initial model to almost 90% for the final, adapted model. The

additive noise process has little effect on this increase in compactness.
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Figure5.7: Compactness of single walk models

A “fitness” measure was also calculated at each iteration. This was a crude measure of
how close the final contour lies to the true object shape after each image search. The average
image contrast at sampled points on the contour was used and this “fitness” was averaged over
the training set. A high average fit indicates that most of the contour points lie close to an edge
and hence the segmentation should be accurate. The results for both methods are shown in figure
5.8. The plot shows that without the noise process the benefits of increasing compactness are
offset by the decrease in average fit. However, the inclusion of the noise process generally results

in a better fit reaching a stable maximum.

Note that these plots show that the iterative process converges quickly, due to the fact that

the initial model is fairly good, with the significant improvements occurring within the first few



Average fit for each iteration

80 T T T T T T
without noise model —<—
with noise model -+~
78 ]
76 -

average contrast

62 L ! ! ! ! ! !

0 1 2 3 4 5 6 7
no. of iterations

Figure5.8: Average ‘fitness’ of single walk models




iterations.

Figure 5.9(a) shows a graphical representation of the effect of varying the principal shape
parameter in the initial model. Figure 5.9(b) shows the principal mode of variation for the final
adapted model. It is clear that there is more information encapsulated in the principal mode of the

adapted model.

(a) initial model (b) final model

Figure 5.9: Principal modes of variation

5.4.2 Large data set — “generic model”

A second data set was generated containing 462 shapes of the silhouette of a pedestrian walking
in a variety of directions. The training images from the “generic model” in chapter 4 were used.
(A sample of the training shapes is shown in figure 5.10.) In this experiment the results of the two
methods were very similar. This is probably due to the fact that the initial data set is very large
and already quite noisy. Hence, there is no need to add simulated noise. Results are shown for

the simpler scheme outlined in section 5.3.3.

Fitness and compactness measures were calculated as before and the results are shown in
figures 5.11 and 5.12 respectively. Figure 5.13 shows the first 10 eigenvalues for each successive
model. The principal variation modes of the initial and adapted eigenshape models are visualised

in figures 5.14(a) and 5.14(b) respectively.
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eigenvalue

4000

3500

2000

Plot of eigenvalues of models

model after 1 iteration -+~
model after 2 iterations -&--
model after 4 iterations -

initial model <—

final model

5

3Ll|‘| e ) / /;-\\\\
)7\

(a) initial model (b) adapted model

Figure 5.14: Principal modes of variation
for generic models




5.5 Results of tracking with the adapted models
5.5.1 Quantitative results

The experiments from chapter 4, testing the tracking system on noisy input images, were repeated
with the new “adapted” models. Figure 5.15 shows a plot of the output SNR against the input SNR
for a noisy test sequence using the initial and adapted models (“generic” and “specific”). The
noise was temporally uncorrelated. As before, the number of shape modes used for each model
was chosen so that over 95% of the total variance of the appropriate training set was encapsulated.
From the graphs it is clear that the new models are an improvement over the original ones with a

significant increase in performance for all the noisy sequences tested.

Performance for temporally uncorrelated noise
20 T T T T T T T T T T
19 | :
18 g
17 + 1
)
Z 16} P .
= A
> ’ -8
oI L
z b LB I
nh / g -
/*‘Jr . X
14 + v g adapted specific model —~— -
e adapted generic model -+
ey specific model -2
13 ¢ J e generic model - 1
12 + :
ll 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22
SNR_in (dB)
Figure 5.15: Plot showing accuracy of models

Figure 5.16 shows the results of the same experiments with temporally correlated noise



(simulating scene occlusion). Again, the results show a significant increase in performance for

the new adapted models.
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Figure5.16: Plot showing accuracy of models with partial occlusion

5.5.2 Qualitative results

Results of applying the new adapted specific model, processing a test sequence of a person walk-
ing across the image (left to right), are given in figure 5.17. As before, the estimated contour is

superimposed over the image. The system was run using only 4 shape parameters.

Two of the “difficult” sequences, along with the tracked contours superimposed, are shown
in figures 5.18 and 5.19. The new adapted generic model was used in both cases with 5 shape
parameters. The system performs well in both cases and the contour appears to be a better fit to

the underlying pedestrian silhouette than obtained previously.



Figure 5.17: Results using adapted model on 2nd test sequence



Figure 5.18: Results on test sequence with zooming camera and adapted model



Figure 5.19: Results on test sequence with moving camera and adapted model



5.6 Discussion

In this chapter a novel method for generating a compact shape model has been described. The
major advantage of this method is that once a rough initial model has been generated the refine-
ment process can be run on unprocessed images (assuming a rough position, orientation and scale
is known). Hence, the model refinement and training shape extraction steps can be combined so
that the improved model can be used to extract more accurate training shapes which are then used
to generate a more accurate model. This process will only work if the initial shape model is suf-
ficiently robust. A poor initial model will allow the contour to become tangled and the resulting
segmentation to be poor, causing the system to diverge from the optimal solution. This was not
found to be the case when the initial model generated in chapter 3 was used and the system was

found to converge quickly.

From figure 5.13 it is clear that the adapted models become more compact and that the total
variance of the training data decreases resulting in a more robust model. The adapted models have
been shown to give better results for processing new sequences that were not used in the training
phase. Hence a compact, linear shape model has been automatically generated and this model has

proved to be useful in the application of tracking human motion.



Chapter 6

A spatiotemporal extension

6.1 Introduction

Previous chapters have demonstrated methods for modeling and subsequent tracking of flexible
shapes based on purely spatial representations. The tracking system described in chapter 4 pre-
dicts the position and shape of a contour using a simple stochastic model that assumes a stable
underlying velocity. The changes in shape parameters between successive frames are assumed to
vary randomly with zero mean. Consequently, the predicted shape at a given frame is set to the
shape obtained from the previous frame. Hence the prediction is often inaccurate and is based
on the results on the previous frame without taking into account any trends in the observed shape

deformations over time.

In the application of tracking human motion it should be possible to obtain a more accurate
prediction for the shape, based on the previous observations and domain knowledge about how
the object deforms. This is particularly apparent in restricted environments such as in pedestrian
scenes where all the objects of interest are walking people. One such spatiotemporal model is the
WALKER model described by Hogg [3]. Hogg represents instantaneous shape in terms of joint
angles of a 3D model. A complete walk cycle is modeled by periodic functions of these joint
angles with respect to a walk cycle parameter. One problem with this approach is that a hand

generated model is required for each activity of interest.

In this chapter the contour shape representation described previously is extended. A train-



ing set of motions is used to build a spatiotemporal model allowing more accurate temporal ex-
trapolation of shape. By improving the estimate of object shape at a given frame, a smaller search
window can be used for feature search, reducing the chances of the contour being “distracted”
by background features and improving the robustness of the tracking system. Furthermore, a
spatiotemporal model allows information to be integrated over time giving more reliable results.
Such a model also has the potential to eliminate plausible shapes that do not deform over time as

expected and are thus unlikely to be the object of interest.

The method described in this chapter is related to the recent work of Blake and Isard [57,
58] in which a contour tracker is trained on motion sequences to build a stochastic model. In
their work, Blake ef al generate an unconstrained complex 2nd order stochastic model. Such a
system can not, in general, be decoupled into a set of independent orthogonal modes and hence
the resulting tracking system will be computationally expensive for complex objects that deform
in a high dimensional shape space. In contrast, the system described here is based on a physical

model which can be decoupled into vibration modes that can be treated independently.

By considering an object as a physical system with internal forces it is possible to model
the evolution of the system over time under the action of external forces. Hence, given a reason-
ably accurate physical model of an object, it is possible to predict how the object will deform over
short time intervals (such as between image frames) assuming the external forces are not signifi-
cant over this time interval. Such a physically-based approach is exemplified by the application of
Finite Element Methods (FEM’s) by Pentland and Horowitz [26] described in section 2.3. In this
work an object represented by a nodal parametrisation is modeled as an elastically deformable
physical object with assumed density and elastic properties (i.e. known stress and strain matri-
ces). Modal analysis is used to generate a compact, reduced basis of “vibration modes” for object

tracking and data approximation based on the assumed physical properties of the object.

In this chapter, a novel method is described for generating physically based vibration modes
from a set of training examples of an object deforming, tuning the elastic properties of the model to
reflect how the object actually deforms. The method calculates the optimal stiffness and damping
matrices that describe the motion observed in the training data. The resulting “Trained Vibration

Mode Model” provides a good basis for the types of motion represented in the training set (e.g.



walking). The model retains the benefits of conventional modal analysis (e.g. low dimensional
parametrisation, decoupled filter mechanism for rapid tracking), whilst utilising the training infor-
mation to improve accuracy. The training set removes the necessity for using theoretical physical
assumptions about the object (e.g. modeling a walking person as a simple lump of elastic “clay”)

resulting in improved vibration modes that reflects how the object actually deforms.

6.2 Learning by example

6.2.1 Training data

It is assumed that training data can be generated in which nodal (or point) displacements for an
object have been tracked over short intervals of time allowing derivatives to be calculated. It is
also assumed that the nodal points have been matched throughout the training set and that the
training information has been rotated and scaled to some normal frame (e.g. using the Hotelling
transform, see [21]). Each training shape is represented by n nodes in d dimensions. Hence the
training set consists of a set of matched, aligned shape vectors consisting of nodal (or point) po-
sitions observed over short intervals of time. e.g. a set of shape vectors x(¥) each representing n

control points in d = 2 dimensions
xO = (PLF),..., Pl P))

with x(9), x(1), x(2) observations of the nodes at time ¢ = 0, At, 2At. From this data set, a set of
nodal displacements u®) is extracted by subtracting off the mean shape vector. The correspond-

F)

ing nodal velocities u*) and nodal accelerations ii(*) are then calculated by finite ditference ap-

proximations.

One approach to generating this training data would be to utilise previous approaches such
as standard modal analysis or other mesh-like deformable models (described by Terzopoulos ef
al [37]) applied to good quality training images. Alternatively point data can be hand-generated,

although this would be laborious.

The method chosen for generating training data was to apply the spatial models generated

in previous chapters to good quality training images.



6.2.2 Eliminating the mass matrix

The object to be modeled is currently assumed to have a constant (uniform) density p, and the

mass matrix M is calculated in the usual way (see, for example, Bathe [25]) using

Mg =p [ Hiw) H(w)du
where H;(u) is the interpolation function for the ¢’th nodal parameter. Without loss of generality,
unit density is assumed with p = 1 since any uniform change in density can be incorporated into

the stiffness matrix. Hence, the above mass matrix M is identical to the symmetric matrix M

defined in chapter 3.

The mass matrix defines an inner product and an associated distance metric that measures

the “error” between two parametrised curves (d = 2) or surfaces (d = 3) as follows.
(U, U = ut mu’ (6.1)
where U and U’ are the vectors of nodal displacements representing the two curves as in section

2.3.

In order to simplify the problem we consider the mapping
V= M:U (6.2)

L. . . . 1
where M2 is the positive definite square root of the matrix M. Note that M and M2 are both

real, symmetric, positive-definite, invertible matrices.

Substituting equation 6.2 into equation 6.1 gives
(U, U =V.V

where V.V’ is the standard dot product. The training data is mapped to a new data set vk =

Mzu®,

Assuming an unbiased, homogeneous, isotropic Gaussian noise model for the unmapped
data, it can be shown that the associated noise covariance matrix, Ry, is proportional to MT
(see Blake et al [38]). The associated covariance matrix for measurements in “V-space”, Ry, is
given by

Ry = (M3 RGN M5 =1 63)



i.e. some scalar multiple of the identity matrix.

Note that the density is assumed to be uniform with respect to the nodal parametrisation
(as opposed to uniform spatial distribution of mass). Hence, for a given object it is assumed that
nodes are equally distributed over the mass of the object. The mass matrix can be regarded as
modeling the sensor characteristics, since an unbiased uniform isotropic sensor will measure M-
orthogonal vibration modes independently (i.e. measurements for each mode are uncorrelated).
For objects with unknown significantly non-uniform density, it is hoped that by using a feedback
mechanism similar to that described in chapter 5, it will be possible to ensure the training shapes

are reparametrised with the nodes equally distributed over the object’s mass.

6.2.3 Generating vibration modes

We are not concerned with explicitly obtaining the mass, damping and stiffness matrices M, C
and K but in generating the associated vibration modes of the system. Making the substitution
defined in equation 6.2, the governing equation for the finite element system (equation 2.11) can
be rewritten in the form
V+ BV + AV = M!S

where

B = M2CM™2 S = M:R

A = M3KM™2 V = MU
and assuming Rayleigh damping

B =byl +b1A

The basic idea of the training method is to assume there are no external forces (i.e. the
observed deformations are simply a sum of the object’s free vibrations) with some random noise
present incorporating measurement noise as well as the effect of input and internal disturbance.
Hence, the quantity

(M™T'R,M™'R) = (M™'8).(M™'S)
(the observed “external acceleration™) is minimised over the training set. The following error

function is minimised

J(A,bo,by) = E (|99 4+ Bv W 4 Avi9)[7) (6.4)



where F/(...) is the expectation (or averaging) operator over the data set and |.| is the standard

Euclidean norm.

In fact, this is an off-line system identification problem where the residual error covariance
matrix (in “V-space”) has been shown to be proportional to the identity matrix (equation 6.3).
Hence the ordinary least squares estimate is also the minimum variance estimate (see, for exam-

ple, Sinha and Kuszta [59]).

For a physically plausible solution, the stiffness matrix is symmetric and hence the matrix
A is constrained to be a real, symmetric matrix. i.e. AT = A. The symmetric constraint ensures
the resulting modes are real and orthogonal and hence the 2nd order dn X dn system is decoupled
into dn independent 2nd order systems. Note that in this formulation the stiffness matrix K is
not further constrained to be banded as in the purely theoretical, physical model. Physically this
corresponds to virtual springs attached between non-adjacent as well as adjacent points. Thus,
an object is modeled to be a dense set of points (represented by some nodal parametrisation with
n nodes) where each point can be displaced about a rest position and is connected via springs to

every other point.

6.2.4 Solving the constrained minimisation problem

In order to solve equation 6.4 subject to the constraint A7 = A, the matrix A is parametrised in
terms of Z(n+1) parameters {a;; : ¢ > j} and the unconstrained minimisation of

J(aop7 611707 611717 612707 ceey bo7 bl) is SOIVCd.
As the training set may be large, equation 6.4 is expanded to the form

J = 2522+B BS™), 4 Ai j(AS), 4 2B jS1E4 24, ;5% + 24, (S BT, . (6.5)

where the n X n matrices S™* need only be calculated once for a given training set and are given
by

S0 = B(vwl) SO = B(vwwT) §%% = E(viT)

st = pvl) 512 = B(vv7)

52 = pvvT)



Analytic expressions for the partial derivatives of .J are easily derived and a standard lo-
cal optimisation routine used to perform the minimisation. A quasi-Newton conjugate gradient
method was used (see, for example, Ciarlet [60]). The problem can be simplified a little by ignor-
ing damping effects (i.e. setting B = 0). The assumption of Rayleigh damping can be extended

to Cauchy damping by adding higher order terms to the series B(A).

Any minimisation scheme used to solve the problem may converge to a non-optimal lo-
cal minimum. The minimisation scheme requires a reasonable initial estimate of the solution to
ensure that the numerical solution is useful. To find the initial estimate we project the global un-
constrained solution into the constrained solution space. The global solution A, B minimises the

error function

J(4,B) = E (| 4 B® 4 av|)

and is given by
-1

A SOO [SOI]T [SOQ]T
(B) R W ([5”]T)
The initial estimate, A(%), is calculated by projecting A into the space of symmetric matrices. i.e.
AO = 2 (A4 A7)
2

The initial estimates for by and b are calculated by solving the minimisation of .J (A, bg, b1) with
A fixed equal to A(), Alternatively, the untrained theoretical physics based model can be used
to generate mass and stiffness matrices which can be used to calculate initial estimates for the

matrices A and B.

Once the local optimisation scheme has converged the vibration modes ¢; are calculated

from the eigenvectors of A, 4, using
1
@i = M2

and these trained vibration modes can be utilised in the usual way (see Pentland ef al [26]).



6.3 Implementation

6.3.1 The local optimisation scheme

A conjugate gradient algorithm for optimising a function of several variables using 1st derivatives
(NAG ! function EO4DGF) was used. The error function .J takes (dn(dn — 1)/2 + 2) parameters

corresponding to the stiffness matrix parameters a; ; and the damping parameters by and b;.

It is convenient to parametrise the symmetric matrix A using

a;; 7 >j
Aij =19 2a;; i=3
a;q 1< J

The free parameters are stored in a single concatenated state vector. The local optimiser
routine requires a single function for evaluating ./ and its partial derivatives. The function is im-

plemented using the following scheme:-

Unpack the state vector to reconstruct the matrix A and the parameters by and b;.

Construct B = bgl + b1 A

Evaluate .J using equation (6.5)

Calculate the matrix X given by

XISOQ—I-S(HBT—I-ASOO—I-IM (512+B511+A501)

e (Calculate a matrix of partial derivatives using
0 T
5“7’,5 =2 {X X L”S
e Calculate the remaining partial derivatives using
6 12 11 01
0
= 2 (AS™ 4+ AT BT + 4501 AT)
0by

where tr(...) is the trace of a matrix.

'NAG is a registered trademark



o Pack the matrix 55—‘] and the terms (?TJ, (?TJ into a state gradient vector.
ar s 0 1
The packing scheme simply reads off the lower triangle (including the diagonal) of the ma-
trix term and concatenates the remaining two scalar terms into a single vector. By calculating all
the partial derivatives simultaneously, the computational expense of the scheme is significantly

reduced.
6.3.2 Reducing the initial dimensionality

When the number of nodes is large the method may appear computationally expensive. However
in many cases the object shape does not vary arbitrarily within the high dimensional shape space
and the dimensionality of the problem may be reduced by using the Karhunen-Loeve transform
(i.e. Principal Component Analysis). This step involves reparametrising the training shapes v(®)
in terms of a truncated basis of 7, spatial eigenvectors and calculating vibration modes as before.

This is achieved by transforming the covariance matrices S** using
[S**]/ _ PTS**P
where P is a matrix whose columns are the 7, most significant eigenvectors of S0,

The resulting eigenvectors ;" of the ngs X ng matrix A are mapped into vibration modes

in the full shape space using

by = M3 Papy/

This step also ensures the problem is well defined in cases where the training set is small
compared to the number of nodes used, ensuring that the global solution exists. The optimisation

scheme was found to converge within 1 minute on a 100MHz R4000 Indy workstation.

6.4 Results

6.4.1 Artificial data — recovery of SHM

An artificial training set was generated in which a 2D point undergoes simple harmonic motion

(SHM) along a 1D axis with a fixed frequency. 2D Gaussian noise was added and the result-



ing training set processed. Figure 6.1 shows a graph of the relative error in the recovered period
of motion against the signal-to-noise ratio (SNR) of the training data (in dB). The relative error
converges to zero as the signal-to-noise ratio increases. The method is fairly robust although for

accurate modeling it is desirable for the training data to be as noise-free as possible.

Accuracy of recovered mode
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Figure 6.1: Recovery of artificial motion

6.4.2 Real data — one walk

The single walk shape model from chapter 5 was used on the original training images (containing
a pedestrian walking across the image plane) to obtain a training set of spline control points for

successive image frames.

A subset of the training set for this experiment is shown in figure 6.2. The sequence con-
tains 57 shapes of a pedestrian walking from left to right across the image with each shape rep-
resented by a spline with 40 control points. The shapes were aligned about the principal axis and

scaled to be a fixed height. The lowest frequency vibration modes generated from this training



set are shown in figure 6.3.

i
177

There is some similarity between these spatiotemporal modes and the spatiotemporal sur-

Figure 6.2: Training data

face for a walking person generated by Niyogi and Adelson [44].

Wl

A\ N

Figure 6.3: Low frequency vibration modes for single walk model

6.4.3 Real data - several walks

A “generic” pedestrian model was created using a training set consisting of a pedestrian walk-
ing in a variety of directions. The aim was to build a rough generic model which incorporates
spatiotemporal vibration modes approximating the various types of motion observed. To account
for the fact that the mean shape for each sequence varies between walks, the nodal displacements

were taken with respect to the mean of each sequence (as opposed to the mean over all sequences).




Hence, for a training shape xJ, taken from the k’th walk sequence the nodal displacement is
given by

u®) = x® _ 5
where X(®) is the mean shape vector for the k’th walk sequence.

A low frequency vibration mode is shown in figure 6.4. For visualisation purposes the vi-

bration mode shows the nodal displacements relative to the mean shape over all the sequences.

T

il

Figure 6.4: Low frequency vibration modes for generic model

6.4.4 Fitting the low dimensional model to new input data

A sequence of 10 consecutive data frames was selected from a new shape sequence not used in
the training set. An attempt was then made to represent this data using the vibration modes with
fixed amplitude and phase. Hence, only two parameters were calculated for each vibration mode
in order to approximate the whole sequence. A least squares method was utilised minimising the

errors in the nodal positions.

A graph of signal-to-noise ratio of the recovered motion (with respect to the original data)
against the number of vibration modes used is shown in figure 6.5. Two experiments were carried
out using the single pedestrian and generic pedestrian training sets. It is clear that the benefits of
utilising additional modes decreases. Note the errors in the nodal positions are small (typically

less than 2%) when a reasonable number of vibration modes are used.

Figure 6.6 shows another input sequence and the approximated sequence using the generic

model. The nodal errors were minimised over the first 8 frames and the subsequent frames are
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Figure 6.5: Fitting the spatiotemporal models to data




purely extrapolations. For simplicity, nodal displacements were calculated relative to the mean
shape over the whole training set. As before, the amplitude and phase of each vibration mode is

fixed over the approximated sequence.

6.5 Tracking with the spatiotemporal model

6.5.1 Modifying the tracking system

The vibration eigenmodes can be used as a basis for shape representation in exactly the same way
as the eigenvectors obtained previously using spatial statistical analysis. The contour tracking

system outlined in chapter 4 can be easily modified to use the trained spatiotemporal model.

As before, the contour is parametrised in terms of a set of m shape parameters
b = (bo, ...bm_l)T where the shape parameters are now the coefficients for each vibration mode,
@;. i.e.
x=> bi¢i+X
A dynamic model is used in place of the stochastic shape model used previously. Each shape

parameter is treated independently. The model for a given parameter can be expressed by the

differential equation:

d b; 0 1 b; n 0
i\ b, —a; =3 bi ri

where r; is a zero-meaned Gaussian variable with variance u; and

Mgy =
Ay = ad;
By = B

The noise variance y; can be chosen by examining the variance of the external acceleration
for each vibration mode over the training set or more simply set using a physically based approach

as follows
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i.e. the standard deviation of the noise term for the :’th mode is set inversely proportional to the

frequency of that vibration mode , allowing the low frequency modes to vary more easily.

A second order Kalman filter is used to update estimates for each coefficient between image

frames. Measurements are applied to each filter as described previously in chapter 4.

6.5.2 Results

Quantitative results

The “left-right” trained vibration mode model and the “left-right” adapted spatial model were
compared on a segmented sequence containing a pedestrian walking from left to right across the
image plane. The sequence was corrupted with temporally correlated noise as described pre-
viously in section 4.5.1. A graph showing the performance of the two methods with varying
amounts of input noise is given in figure 6.7. Tracking was performed on the same noisy input
sequence using each model and the experiments were repeated 20 times for each noise value. It
is clear that the spatiotemporal model performs better over the whole range and the difference
becomes more acute as the input SNR decreases. The additional information in the spatiotempo-
ral model accounts for this increase in robustness. The noise process results in certain sequences
being more difficult to track than others (e.g. when the legs are totally occluded). The same se-
quences were used to test both models and the results appear consistent over the trials. To obtain
a smoother graph, the experiments would have had to be run over a prohibitively large number of

trials.

A similar experiment was performed using the generic spatiotemporal model. In this case,
the “rest” shape X was also filtered using a simple running average. Temporally correlated noise
was only added to the last 15 frames so that a good estimate for X had been found before the
system was tested. A graph showing the performance of the spatiotemporal model compared to
the adapted spatial model is given in figure 6.8. Experiments were run 20 times for each noise
value and it is clear that the spatiotemporal model proves to be more robust for the noisy sequences

used.
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6.5.3 Qualitative results

The above image sequence containing a pedestrian walking across the image plane was edited by
replacing frames 20 to 30 with the background image. (The pedestrian thus disappears from the

sequence for 10 frames, reappearing in the correct position and pose).

The results of tracking on this sequence are shown in figure 6.9 (frames 8, 10, 12, ..., 30
are displayed). The spatiotemporal model correctly estimates the shape of the pedestrian over
the “missing” frames so that when the pedestrian reappears the estimated contour is close to the

underlying pedestrian shape.

6.6 Discussion

In this chapter a method has been described for automatically generating physics based “vibra-
tion modes” for a specific deformable object using training information. The resulting modes are
intended to represent the typical motions contained within the training set with a minimal set of
M-orthogonal parameters. The method has been shown to be fairly robust to noise and has been
applied to a real automatically acquired noisy training set. The use of training data removes the
necessity for making a theoretical constant elasticity assumption resulting in improved vibration
modes that reflect how the object actually deforms. The method described has potential uses for
tracking, recognition and data compression of deformable or articulated objects undergoing com-

plex motions.

The model has been shown to be useful for object tracking in noisy situations where there
is partial occlusion. The advantage of using a “vibration mode model” is that a tracking filter
mechanism consisting of m independent 2nd order systems can be utilised (each with a 1 dimen-
sional parameter space). The system is robust and fast, requiring only slightly more computational
expense than the spatial methods described previously. The increase in robustness is due to the

tracking filter’s ability to predict shape changes between image frames.



Figure 6.9: Tracking with missing data



Chapter 7

Conclusions

7.1 Summary of work

The work in this thesis addresses the problem of tracking one or more walking pedestrians in nat-
ural outdoor scenes. Deformable models are used to represent object shape and these models are
learned, automatically, using training data. Results are included, obtained from a prototype track-

ing system, which demonstrate the potential of the methods for real-time surveillance.

In chapter 3, a method is described for automatically building a linear 2D shape model from
sequences of training images of a moving object. The system automatically segments training
shapes and labels these shapes using a B-spline representation. Large amounts of data are pro-
cessed in near real time to generate a compact data set. Statistical component analysis of the
spline data gives a simple but effective model. A novel method for performing principal com-
ponent analysis on a continuous curve is derived, providing a robust theoretical framework for

statistical analysis of parametrised contours.

An efficient mechanism for tracking the derived shape parameters is outlined in chapter
4. A Kalman filter mechanism is utilised and the system demonstrated by tracking the silhouette
of walking pedestrians through sequences of images. The method has been thoroughly tested on
real images and the effect of the system parameters investigated. Qualitative results show that
the system successfully tracks several pedestrians in images taken with a moving and zooming

camera, where conventional image subtraction methods fail.



In chapter 5, the linear shape model is adapted using an iterative feedback learning scheme.
The method is used to resegment and reparametrise the training data producing a more accurate
and compact linear shape model. Results are shown using data sets containing the silhouette of a
person walking across the image plane and a more general training set containing a person walking
in a variety of directions relative to the camera. The performance of the new models is compared
with the previous shape models for tracking pedestrian silhouettes. The qualitative and quantita-

tive results show the adapted models are more robust and more accurate.

The spatial linear shape model is extended to a novel spatiotemporal linear model in chap-
ter 6. This model is based on an underlying finite element physical model of an object. Train-
ing sequences are used to learn the physical properties of the finite element model. The resulting
vibration modes are intended to represent the typical motions contained within the training set
with a minimal set of orthogonal parameters. The use of training data allows the theoretical con-
stant elasticity assumption to be unnecessary, resulting in vibration modes that reflect how the
object actually deforms. The spatiotemporal model is applied to the problem of tracking a walk-
ing pedestrian in noisy situations where there is significant occlusion. Results show that the new
spatiotemporal model is significantly more robust than the adapted spatial models. The increase

in robustness is due to the tracker’s ability to predict shape changes between image frames.

7.2 Discussion

In this thesis, 2D models of shape have been successfully used to track a 3D deforming object from
a variety of viewpoints. Changes in apparent shape due to variability in viewpoint are treated as
flexibility in 2D shape. This approach benefits from the relative simplicity of 2D algorithms over
more complex 3D approaches. In the application of surveillance and human motion analysis it is
often not necessary to recover full Euclidean (or even projective) 3D descriptions of the object of

interest.

The methods used involve learning techniques using training information. The advantage
of such a methodology is that the system can be applied to new problems without requiring com-
plex hand-crafted models to be regenerated. The information implicit in the models allows the

system to track robustly in real-world situations where there is background clutter, imaging er-



rors and occlusion. The trained models are still flexible enough to be applied to a broad range
of image scenes although the system performs more robustly for “specialised” training sets ap-
plicable to a narrow range of shapes or deformations. The techniques described here have been
applied to the problem of tracking the outline of a walking pedestrian. However the methods can
potentially be applied to a wide range of applications (e.g. tracking farmyard animals, a beating

heart muscle etc).

7.3 Future Work

By clustering the training data or simple classification based on direction of motion it may be
possible to build a set of more accurate linear models that prove to be more reliable than one single
generic model. The use of multiple models requires reliable techniques for switching models and
an effective approach to this problem has been outlined by Ahmad et al for tracking hand gestures
[61]. Future work may look at the potential of such an approach in the application of tracking

pedestrians.

Further work is required to investigate whether the physical model identified using the me-
thod described in chapter 6 may be successfully applied to temporal medical data sets (such as a
beating heart sequence). It is hoped that the recovered physical parameters of the model obtained
from observed training motion may contain useful information for medical research and clinical
diagnosis. The trained vibration mode method may also be significantly improved by incorporat-

ing a feedback scheme similar to the adapted spatial method outlined in chapter 5.

It is hoped that the methods described in this thesis will provide a sound basis for building
a usable surveillance system. Further methods are required for controlling the initialisation and
termination phase of the tracking process, for instance where objects become occluded for signif-
icant time periods. One approach to this problem is described by Hutber and Zhang [62]. Such a
system will also require high level control systems for recognition of significant events (such as a
car being stolen). Johnson and Hogg [63] have successfully used the output of the prototype track-
ing system, described in this thesis, to learn the distribution of trajectories in an outdoor pedestrian

scene for event recognition.
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