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Abstract
This thesis describes the practical application of scintillation detector tech-

niques and focuses on how to enhance their potential for use in the new concept

spectroscopy method called HELIOS, combination of the magnetic resonance im-

age (MRI) and positron emission tomography (PET) called PET-MRI system, and

other medical applications.

Optically coupled LaBr3(Ce) with Hamamatsu avalanche photomultiplier first

tested inside a (nearly) 1T magnetic field, resulting in the field does not have an

adverse impact on the performance of the detector. A magnetic resonance image

was also successfully obtained when a scintillation detector system interfaced with

a homogeneous magnetic field inside the brain phantom, but detector current

influenced on the MR image. In Chapter 2, there are the further investigations

into various scintillation detector systems such as Phoswich-PMT, CsI and LYSO

coupled with SensL position sensitive SiPM.

SensL new-generation blue sensitive B and C series SiPMs have an innova-

tive silicon photomultiplier structure resulting in an additional readout signal for

fast timing application. SensL SiPMs with the large photosensitive area studied

regarding their characteristics and coincidence time measurement. According to

the measurement result, the dependencies of bias voltage, temperature, gain and

dark current were consistent with the literature. Coincidence time resolution was

gradually improved from 512 ps to 276 ps for 6 mm C-SiPM by changing set-up

and adding transformer in the circuit.

A novel antimatter detector system developed for medical applications. GEANT4

based GATE 7.0 simulation was used for optimum scintillator thickness investiga-

tion to measure the activity directly from positrons rather than gamma radiation

without any interference between scintillator and radiopharmacy. Various detec-

tor designs successfully tested for microfluidic chip and blood counter applications

(measured volume from 94µ` to 0.11µ`). The half-life of 68Ga was experimentally

calculated to be 62.11±8 minutes resulting in agreement with the literature if

they overlap within their uncertainties. The new detector is cost-effective, based

on very simple working principle, user-friendly, easy to modify into another sys-

tem, and achievable nanoscale volume. Therefore, the objective of this research is

to aid significantly in deciding a final design for the detector system before serial

manufacturing and before applying for the patent.
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Chapter 1

Introduction

There is a trend to develop new scintillation crystals and photon counting de-

vices, in order to construct a gamma-ray detector system that can work inside

a solenoidal magnetic field. The successful integration of the functional imaging

technique (positron emission tomography (PET)) into magnetic resonance imag-

ing (MRI) has lead to a different approach to spectrometer technology, which has

become an important part of research on nuclear physics. A large bore super-

conducting solenoidal spectrometer with a uniform axial field is now used in the

investigation of the exotic nuclear structure and to achieve a deeper understand-

ing of the stable nuclei by single nucleon transfer reactions, pair transfer, inelastic

scattering, or even knockout-reactions.

This developing technique has strong synergies with current concepts in nu-

clear medicine. A PET-MRI detector system is used to obtain both functional

and anatomical information within one medical image. Generating simultaneous

PET and MRI images is helpful in obtaining accurate diagnostics and devising

more efficient treatment for patients by improving in medical images. Scintilla-

tion detector systems (essentially PET detectors) also play a major role in the

production of radiopharmacies and their quality controls in radioisotope centres.

This chapter provides a concise overview of the key physical aspects of recently

developed spectroscopy for studying critical subjects in nuclear physics and PET

systems with novel detector technology of PET-MRI capability.
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1.1 HELIOS (HELIcal Orbit Spectrometer)

1.1 HELIOS (HELIcal Orbit Spectrometer)

HELIcal Orbit Spectrometer (HELIOS) was constructed at Argonne National Lab-

oratory at ATLAS (Argonne Tandem Linac Accelerator System). This new con-

cept spectroscopy is significantly important to the study of critical reactions with

short-lived nuclei, particularly in the investigation of inverse kinematics reactions.

The HELIOS spectroscopy provides a more detailed understanding of the struc-

ture of exotic nuclei with such phenomena as pair and single nucleon transfer reac-

tions, inelastic scattering, and kick-out reactions. The superconducting solenoidal

spectrometer has great advantages over more traditional measurement methods,

including easier particle identification and availability for large solid angle and

effective resolution improvement [1]. The basic component of this device is a bore

diameter of a 60 cm solenoidal magnet (up to 5 Tesla), which is in fact a hospital

MRI magnet. A simple configuration of the HELIOS spectroscopy is illustrated

in Figure 1.1, complete with a target, silicon array detector, and recoil detector,

which detects reaction products after bending inside a uniform magnetic field.

Measured flight times, position and energy of detected particles are delivered to

effective information regarding particle identification, excitation energy, and cen-

tre of mass angle. The HELIOS can be easily modified for existing accelerators

with secondary beams, which will be very critical in research for future radioactive

beam facilities.

1.1.1 Future Physics Cases for the HELIOS Spectroscopy

Nuclear structure research has recently focused on nuclei that are far away from

the stability line. Around the world, over the past few decades research has re-

sulted in improvements in a variety of methods for the production of beams, rare

short-lived light exotic nuclei with satisfied intensity. The determination of nuclear

properties in direct reactions is easier than in decay process and inverse kinemat-

ics reactions. The energy transfer and interaction time are very small in direct

reactions compared to the incident beam energy.

When heavy nuclei beams are targeted to light nuclei, the reaction occurs in

inverse kinematics. The velocity of the centre of mass system in the laboratory

frame is higher than with conventional methods with light stable beams targeting
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1.1.1 Future Physics Cases for the HELIOS Spectroscopy

Figure 1.1: Configuration of the HELIOS spectrometer. Accelerated heavy-
ion beams enter the spectrometer from the left side, and then bombard a light
target in case of inverse kinematics reactions. The silicon array detector and
rotating target fan are developed to detect particle and beam diagnostics re-
spectively. The right side silicon detector array is present for recoil particle
detection [2].

heavy stable nuclei, resulting in lower energies from emitted light ions at the rele-

vant angles. Energy loss measurement in silicon detectors is used for identification

of particles. In traditional method, front silicon detector thickness (∆E) prefers

to be thin compared to the stopping range of incoming particles, therefore only

losing a fraction of their total energy. The rest of the incident particle energy is

deposited by the other silicon detector which has enough thickness (E) to stop

incident particles. The standard two layers silicon detector approach (∆E - E) is

problematic when the low energy light reaction product is identified in the critical

angle range. In inverse kinematics, angular distribution of emitted particles with

low energy is over a larger region of laboratory angles. This increases the detec-

tor array complexity and multi-segmentation. A large solid angle silicon array

can also detect the backgrounds, scattering of beams, and large numbers of emit-

ted particles from target and resulting undesirable measurement. Particle energy

variations depend strongly on angle, so detector angular resolution is a critical pa-

rameter [3, 4]. The energy separation sensitivity between excited states (Q-value

resolution) in the laboratory for inverse kinematics is very poor with traditional
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1.1.1 Future Physics Cases for the HELIOS Spectroscopy

spectroscopy method. HELIOS spectrometry addresses these issues while avoiding

the drawbacks of standard methods (as will be discussed in the next sections) and

as demonstrated in Figure 1.2 which aids in probing critical reactions.

Figure 1.2: A new type of solenoidal spectroscopy yields an effective means
to study unstable nuclei in inverse kinematics reactions with short-lived beams.
Critical problems of such reactions hindering an understanding of nuclear struc-
tures are addressed through the novel concept of the HELIOS spectroscopy.
The configuration of important reactions will be employed with solenoidal spec-
troscopy in future research projects [5].

1.1.1.1 Nucleon Transfer Reactions

A nucleon transfer reaction experiment involves the investigation of the single

particle structure of nuclei, such as (d,p), (α,t) or (3He,d) reactions, which are

well-known reactions. Widespread improvements in accelerator facilities have both

facilitated and altered the exploration of unstable nuclei with short-lived beams.

Using the new solenoidal spectroscopy with novel accelerator facilities will im-

prove the data quality in energy resolution and cleanliness, and require less beam

time compared to the traditional approach. The identification of changing sin-

gle particle structures on closed shell nuclei will be even clear with the HELIOS

spectrometry, enhancing an understanding of the nuclear structure.
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1.1.1 Future Physics Cases for the HELIOS Spectroscopy

1.1.1.2 Pair Transfer Reactions

Pair transfer reactions, such as (p,t), (t,p) and (3He,p) reactions, examine the

nature and strength of pairing correlations for nuclei away from the stability line.

The total isospin quantum number (T) is related to the strong interaction, which

is independent of the particle electric charge (proton-neutron, proton-proton and

neutron-neutron pairs are affected equally by the strong force). The HELIOS spec-

troscopy will be very useful in the study of T=0 pair transfer reactions in N=Z

nuclei, particularly n-p pair transfers using (3He,p) reactions in inverse kinemat-

ics [1].

This type of pairing is similar to the pairing between neutrons or protons

coupling to T=1, strongly correlated 0+ pairs, as well as electrons in BCS 1 super-

conductivity (boson-like behaviour of such electron pairs). The uncertainty may

be higher for heavy N=Z nuclei in which both neutrons and protons fill the same

orbits. Expected performance of solenoidal spectrometer was studied by Monte

Carlo simulation for 3He(56Ni,p)58Cu reaction, and then compared with result of

the conventional silicon array detector. As shown in Figure 1.3, the centre of en-

ergy resolution was found to be 50 keV and 180 keV for silicon detectors in the

HELIOS spectrometer and traditional silicon array, respectively. The HELIOS

spectroscopy with better detector resolution provides an excellent opportunity to

clarify excitation energy. The reaction Q-value is obtained from the measured

proton energy and position which is detected particle distance, z, from the target.

Different peaks in the spectra correspond to different excited states in 58Cu. The

separation of the proton energy between different groups of particles is equal to

that between their excitation energies.

1.1.1.3 Inelastic Scattering

Inelastic scattering of protons or α particles is an alternate means of studying

nuclear structure collectivity in cases when electromagnetic transition (Coulomb

excitation) is not accessible. Detected recoil particles have low energy because

1The first microscopic theory of superconductivity describes as a microscopic effect caused by
a condensation of Cooper pairs into a boson-like state. In nuclear physics, the theory describes
the pairing interaction between nucleons in atomic nucleus.
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1.1.1 Future Physics Cases for the HELIOS Spectroscopy

Figure 1.3: Expected representative Q-value spectra of 3He(56Ni,p)58Cu re-
action was obtained from : (a) detected proton energy of various states in 58Cu
from 3He(56Ni,p)58Cu reaction with 2◦ resolution angle of traditional array de-
tector measurement; (b) detected proton energy (or representative Q-values)
and 1 mm position sensitivity of z in a magnetic field with the same detector
energy resolution (assumed to be 50 keV energy resolution of the silicon detector
in all simulation cases) [1].

momentum transfers are small during inelastic scattering. Particle scattering oc-

curs forward of 90◦, so detection with solenoid spectroscopy is an improvement

over conventional methods.

1.1.1.4 Astrophysical Reactions

Astrophysical reactions can be probed by solenoid spectroscopic measurement to

provide more information for the mapping of astrophysics processes such as s, r,

and rp (rapid-proton capture) processes (Proposal for a solenoidal spectrometer to

study reactions with short-lived beams, page 12 [1]). The HELIOS spectroscopy

with its potential for superb Q-value resolution makes this concept a useful tool

in the study of astrophysics processes.
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1.1.2 Operation Principle for the HELIOS Spectrometer

1.1.1.5 Knockout Reactions

Knockout reactions are studied to gain additional information concerning single

hole orbitals, such as proton knockout with (p,2p) reaction. Solenoid allows for

the detection of protons over a large solid angle (4π) by two silicon array detectors

placing before and after the target as explained in the next section, Operation

Principle for The HELIOS spectrometer. However, the configuration must be

modified to capture high energy protons by changing target and detector positions.

Studying these reactions with traditional approaches requires the construction

of complex and large detector systems [4]. Improved Q-value energy resolution,

large solid angle, easy particle identification, and reduced complexity in detec-

tor systems make the HELIOS spectroscopy a very attractive tool for upcoming

research.

1.1.2 Operation Principle for the HELIOS Spectrometer

The charged particle spectroscopy is operated by a large-bore uniform magnetic

field superconducting solenoid (from 2 to 5 Tesla). A heavy ion beam aligned with

the magnetic axis passes through a hollow array of position-sensitive upstream Si

detectors, before hitting the target as demonstrated in Figure 1.4. Almost all of

Figure 1.4: Scheme for the HELIOS solenoid charged particle spectrometer.
The beam passes through the silicon detector before hitting the target. A hollow
array of position-sensitive Si detectors is placed before and after the target to
detect particles emitted either forward or backward. A heavy ions detector is
fixed at the end of the solenoid to detect heavy recoiling ions [1].

the light ions emitted from the reaction either in a forward or backward direction
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1.1.2 Operation Principle for the HELIOS Spectrometer

are detected by the position-sensitive upstream or downstream Si detectors after

following helical trajectories in the magnetic field. The motion of charged particles

depends on the strength of the uniform solenoidal field as given by Equation 1.1.

r =
m V⊥
q e B

(1.1)

The cyclotron period or one orbital rotation time is defined by Equation 1.2.

Tcyc =
2 π r

V⊥
=

2 π m

B q e
(1.2)

Where r is the radius of helical motion, m and q.e are the mass and charged state

of the particle, respectively, B is the strength of the magnetic field, and V⊥ is the

velocity of the particle perpendicular to the field line.

The time of flight of the detected particles is equal to the cyclotron period.

In nanosecond time range, the cyclotron period is calculated by Equation 1.3, in

which A/q denotes particle identification and A is the atomic mass number.

Tcyc(ns) = 65.5 x
A

q B
(1.3)

In principle, the emitted particles that do not impact the inner wall of the solenoid

chamber do not leave the magnetic field, but eventually go back to the solenoid

axis after completing the helical motion. Returned particles are detected by two

silicon array detectors, one before and one after the target, at close to a 4π solid

angle [6]. As illustrated in Figure 1.5, the return distance can be defined as a

vector diagram from the velocity of particles parallel to the field line (V‖) with

centre of mass velocity (Vcm), particle velocity (υ0) and angles (θcm in the centre

of mass frame and θlab in the laboratory frame) as detailed in Figure 1.6.
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1.1.2 Operation Principle for the HELIOS Spectrometer

Figure 1.5: Plot is shown that target return position distance as a function
of particle energy (atomic unit) in laboratory frame and radial. In the top
graph, the velocity of particles parallel to the field line depends on centre of
mass velocity (Vcm) and particle velocity (υ0), as demonstrated on the vector
diagram with angles (θcm and θlab) in Figure 1.6 [5].

Figure 1.6: The vector diagram showing the velocities of the ejected m particle
with ~V0 velocity. The velocity projections are illustrated with V‖ and V⊥. The
velocity in the laboratory frame, Vlab, can be written by velocity in the centre-
of-mass, Vcm, and the particle velocity ( ~Vlab = ~Vcm + ~V0) [6].

Longitudinal position (z ) is obtained from Equation 1.4.

z = Tcyc V‖ = Tcyc (Vcm + υ0 cos θcm) (1.4)
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Another critical measured quantity is detected particle energy (Elab), which is

determined from the particle velocity as given by Equation 1.5:

Elab =
m

2
(V 2
‖ + V 2

⊥) =
m

2
[(Vcm + υ0 cos θcm)2 + υ2

0 sin
2θcm] (1.5)

If the expression of υ0 cos θcm delivered from Equation 1.4 and centre of mass

energy value (E cm= m.
2
υ0

2) are inserted in Equation 1.5, particle energy in the

centre of mass frame is expressed as:

Ecm = Elab +
m

2
V 2
cm −

Vcm m z

Tcyc
(1.6)

and centre of mass angle will be given as:

θcm = arccos (
1

2 π

q e B z − 2 π m Vcm√
2 m Elab + m2 V 2

cm − m Vcm q e B z / π
) (1.7)

The excitation energy is delivered from the centre of mass energy as defined in

Equation 1.8. Where M is the mass of the reaction products (recoil mass), Tcm is

the total kinetic energy in the centre-of-mass system and Q is the energy gain or

loss in the system before and after the reaction.

Eexcitation = Tcm + Q − Ecm
m+M

M
(1.8)

Consequently, the measurements of time of flight, longitudinal position (z ) and

energy (E lab) are used to obtain particle ID, centre of mass energy Ecm and angle

θcm. In conventional silicon array detectors, the experimentally measured value

is used to estimate the centre of mass energy and scattering angle resulting in

uncertainty. However, using the solenoid method, Si array detectors measure

particle energies from a more precisely valued flight time (Tflight = Tcyc for small

relativistic corrections) and distance from the target (z ).

1.1.3 Comparisons Between the HELIOS Spectroscopy and

Conventional Method

One of the important concepts in solenoid charged particle spectroscopy is the

Q-value measurement with excellent energy resolution. The trajectory of detected

particle groups and particle energies correspond to the different excitation states of
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1.1.3 Comparisons Between the HELIOS Spectroscopy and Conventional Method

the residual nucleus. These energies will be separated by their centre of mass ener-

gies (Q-values). Particles with different energies are detected at different distances

by array detectors because of different emission angles. Figure 1.7(a) illustrates

that detected proton energy versus laboratory angle was obtained by conventional

approach for states in 133Sn from 132Sn(d,p)133Sn reaction. In Figure 1.7(b) shows

(a) Conventional method in simulation. (b) HELIOS spectrometer in simulation.

Figure 1.7: A comparison energy spectrum for traditional method and new
solenoidal approach. (a) Detected proton energy versus the emission angle of
protons for states in 133Sn from d(132Sn,p)133Sn reaction with conventional ap-
proach. (b) Energy separation between different kinematic groups for states in
133Sn from d(132Sn,p)133Sn inverse kinematic reaction with the HELIOS.

that the same reaction is simulated for a solenoidal spectrometer method. Each

straight line represents a kinematic line in the HELIOS. Energy separation be-

tween different kinematic groups is better than the energy versus angle plane in

laboratory frame as compared in Figure 1.7. Excitation energy spectra are ob-

tained from the centre-of-mass energy and shown in Figure 1.8 for both methods.

Each peak represents different states in 133Sn by separating energy difference equal

to the separation in excitation energy.
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1.1.3 Comparisons Between the HELIOS Spectroscopy and Conventional Method

Figure 1.8: Projected proton energy spectra obtained from the data in
Figure 1.7 for traditional method and the HELIOS. Excitation states for
132Sn(d,p)133Sn reaction (a) at 169◦< θ<171◦ with 8 MeV/u beam bombarding
energy in conventional method, (b) at fixed z=0±1 mm.
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1.1.3.1 Studying 28Si(d,p)29Si Reaction in Inverse Kinematics with the

HELIOS

To verify untested characteristic and properties of the solenoidal spectrometer,

the HELIOS was first studied with well-known (d,p) reaction in inverse kine-

matics. Figure 1.9 shows that the excitation energy spectrum for 28Si(d,p)29Si

reaction in non-inverse kinematics was studied by Mermaz et al. Strongly popu-

Figure 1.9: Energy spectrum for emitted protons from 28Si(d,p)29Si reaction
in normal kinematics (measured at θ lab =45◦). In this experiment, the target
was a silicon oxide with carbon contamination (that is why the states in 17O
and 12C). Figure from Lighthall [5]

lated eight states in 29Si from this reaction in inverse kinematics with excitation

energy between 0 and 7 MeV were simulated and then measured with the HELIOS

spectrometer. There is a pair of states near 6.2 MeV, and the best Q-value reso-

lution is the order of 116 keV under ideal conditions of the traditional detection

technique [6]. As we discussed in section 1.1.1.2 and stated in Reference [3], the
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representative Q-value energy resolution for solenoidal spectrometer is equal to

the order of intrinsic energy resolution of the silicon detector. Therefore, this pair

states could be clearly separated by the HELIOS spectrometer.

Figure 1.10(a) shows that the detected particle energy (Elab) versus the position

for states in 29Si obtained from simulation with defining the actual HELIOS field

map. And Figure 1.10(b) illustrates the spectrum obtained from the experimental

measurement. The active region of the array detector’s leading edge was placed at -

250 mm from the centre of the magnet. The target was positioned in three different

places as indicated the line sets I, II, and III in Figure 1.10. An intercepted particle

on the front of the detector array is defined as a low energy cut-off (acceptance

limit) illustrated by the dashed curves.

(a) Detected proton energy (Elab) versus distance from
target (z ) spectrum was plotted using the actual HE-
LIOS field map in the simulation. Populated seven
states in 29Si obtained from d(28Si,p)29Si reaction. [2]

(b) The spectrum obtained from the experimental
measurement. The dash lines represent excitation of
0.00, 1.27, 2.03, 3.07, 3.62 and 4.9 MeV. The groups
of detected alpha particle (orginate from calibration
source (228Th) cause the background with constant en-
ergy as indicated inside the red box. The other back-
ground throughout the plot arises from emitted protons
from the fusion evaporation reactions of 28Si+12C. [6]

Figure 1.10: Detected particle energy versus the position (z ) for three differ-
ent target-detector separations by placing at -95 mm, -340 mm and -490 mm
(to cover different centre of mass angle ranges [6]). The dash curves indicate
the low energy cut-off in both plots. Energy spectrum for emitted protons
from d(28Si,p)29Si reaction inverse kinematics obtained from (a) Monte Carlo
simulation, and (b) experimental measurement [2].

Excitation energy is obtained from the centre-of-mass energy taking into ac-

count Q-value and recoil mass (M) as defined in Equation 1.8. Figure 1.11 shows

the excitation energy spectra for 29Si obtained with the HELIOS. The background,

arising from the fusion evaporation, is subtracted from the data. Excitation en-

ergy levels are identified and labelled in keV with their spin number. Two states

at 6194 and 6381 keV are resolved as shown in Figure 1.11. The response of the
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spectrometer with simulation and experimental measurement are consistent with

expectation. The HELIOS represents the powerful new tool for studying nuclear

reaction in inverse kinematics with easy low-energy proton identification, better

Q-value resolution, and large range of centre of mass angles with large solid angle

coverage.

Figure 1.11: Excitation energy spectra of 29Si obtained with HELIOS. (a)
Fusion evaporation background is subtracted from the data which is the first
separation line set (I) at 4Z=95mm. The energy resolution is approximately
103 keV FWHM. (b) Spectrum for entire array (one detector per position) at
the same separation region. (c) Combination of all detectors at all three target-
detector separations with indicating background subtraction. Excitation energy
levels are identified and labelled in keV with their spin number. [6]

Excitation energy states in 13B from 12B(d,p)13B reaction inverse kinematics

are also studied with the HELIOS. Experimental centre of mass energy resolution

is sufficient to separate closely 3.48 and 3.68 MeV positive parity excited states

[7].
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Measurements of solenoid axis position and the energy of detected particles

are employed to obtain the emission angle of the particle in the laboratory frame,

so effective angular resolution is also significantly better than traditional Si array

detection. The magnetic field is beneficial for eliminating undesirable backgrounds

(such as electrons and scattered beam particles), making solenoid charged particle

spectroscopy an increasingly appreciated tool for use in nuclear research.

1.1.4 A HELIcal Orbit Spectroscopy for HIE-ISOLDE

As discussed in the previous section, the newly developed solenoid spectroscopy

has many advantages over conventional methods. Accordingly, the HIE-ISOLDE

project has invested in the production of a HELIcal Orbit spectrometer. The

world’s first 3T MRI scanner was moved from the University of Nottingham to

Daresbury Laboratory for preliminary tests before it will be constructed to CERN.

The first magnetic field measurement was not completed successfully due to the

quenching of cooling liquid nitrogen (Figure 1.12). As shown in the HELIOS

Figure 1.12: (Left) The world first hospital MRI scanner was moved from
the University of Nottingham to Daresbury Laboratory for preliminary tests.
(Right) MRI scanner was being cooled with liquid nitrogen in Daresbury Lab-
oratory. A magnetic field measurement could not be successfully carried out
because of quenching, followed by the termination of liquid nitrogen a few min-
utes later.

configuration (Figure 1.1), only the silicon detector array system was constructed

inside the uniform magnetic field. In addition to silicon detector systems, scintilla-

tor based gamma-ray detectors can be operated inside the magnetic field facilitat-

ing better understanding of nuclear structures through decay cascades. In many

experiments the time-of-flight measurement is required. If the coincidence time

resolution of this type of γ-ray detector is sufficiently higher than the lifetimes of

excited nuclear states, in some cases, decay cascades can be ordered and identified,
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which is why several aspects of the gamma-ray detector system were investigated

for this thesis.

First, silicon photomultiplier, SiPM, (PN-junction of the semiconductor with

silicon depletion region, which is detailed in Chapter 2) were optically coupled

with different types of scintillation crystals. Some measurements were operated in

the magnetic field from 1 Tesla to 3 Tesla in order to clarify interferences. The

performance of a novel silicon photomultiplier was studied resulting in important

measurements in terms of nuclear physics research. In order to stabilise time

resolution, a new generation blue sensitive silicon photomultiplier with special

fast timing output was used for coincidence time measurement. This research

project is based on similar goals as the PET-MRI combination device, which is a

very popular concept in medical physics.

1.2 PET and PET-MRI Capability

1.2.1 Positron Emission Tomography

Positron Emission Tomography (PET), a unique diagnostic method for produc-

ing 3D medical images of functional processes in the body is critically important

in the diagnosis of illnesses. PET helps to define metabolic processes, which in

oncology allows for the detection of primary tumours at the cellular level, as well

as monitoring responses to therapeutic interventions. PET imaging is also useful

in the diagnosis and evaluation of cardiovascular disease, and neurological, psy-

chiatric, and other medical conditions [8]. Figure 1.13 shows a standard positron

emission tomography model used in hospitals. Radioisotopes are generated in a

cyclotron using proton or deuteron beams are labelled by different compounds (glu-

cose, ammonia or water) depending on the biological properties of interested area.

For instance, 18F is labelled with glucose (Flurodeoxyglucose (FDG)) for brain

images. Radioactively produced labelled pharmaceuticals are then injected into

the patient’s circulation system, following which the radioactive tracer substance

accumulates inside a metabolically active place showing higher activity levels in

abnormal regions (malignant tissue) than in others.

When an unstable nucleus decays through β+ emission, one proton in the nu-

cleus converts into a neutron while releasing a positron and an electron neutrino.
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Emitted positron from the nucleus of an atom travels only several millimetres.

This path length depends on the positron energy which is different for each PET

radionuclide. The positron loses its energy by ionising many atoms in the medium

during the path length. When the positron slows down, it pairs up with an elec-

tron in spiral motion towards each other (the annihilation event). The rest of the

mass of both particles (matter and antimatter) is converted into electromagnetic

energy called 511 keV annihilation photons ( generated in 2 ns). The annihilation

event produces back-to-back photons (Figure 1.14), though in rare cases (<1%

probability) three annihilation photons can be emitted. The motion of the parti-

cles when the annihilation event occurs causes a minor variation from exactly 180

degrees. Therefore, back-to-back annihilation photons are not absolutely linear

in direction; a small angular variation is called a non-collinearity (180◦ ∓ ≈ 0.3).

The annihilation event occurs in a slightly different place from the actual location

of the positron emitted atom, resulting in a different scan performance. For ex-

ample, a scan performed with 18F produces a higher resolution than 82Rb because

the maximum range is 2.4 mm for 18F and 15.6 mm for 82Rb [10]. Radionu-

clides should have sufficient half-life to distribute through interested regions, yet

a short enough half-life to protect health tissues by reducing radiation exposure

time. These two 511 keV photons are detected by a ring of gamma-ray detectors

Figure 1.13: The configuration of a standard positron emission tomography
system. After the injected radiotracer is collected in the interested region or
organ, emitted positrons come across electrons in the medium, resulting in the
annihilation of both and the production of two gamma rays passing in nearly
opposite directions (because of the motion of the particles when annihilation
occurs). These photons are detected by scintillation detector arrays as a ring
system. Specific algorithms and data acquisition processes are applied in order
to reconstruct the medical image without blurriness [9].
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Figure 1.14: The positron losses its energy by ionising many atoms inside
the brain during the path length, which is only several millimetres. When the
positron slows down, it pairs up with an electron in spiral motion towards each
other (the annihilation event). The rest of the mass energy of the positron
and electron is converted into electromagnetic energy called 511 keV annihila-
tion photons. After producing annihilation photons in the brain, all possible
directions of gamma-ray pairs (coincidences) are recorded by ring scintillation
detectors positioned to surround the patient. Consequently, the reconstructed
slice-by-slice image is obtained after the application of algorithm processes [9].

to determine where the annihilation event occurs, resulting in a metabolic func-

tion map of the specific region. When the photons reach the scintillation crystals,

visible lights are produced as a result of the scintillation process, as explained in

Chapter 2. Scintillation photons are converted into electrical signals by a PMT

(Photomultiplier Tube) or silicon photomultipliers (SiPMs). Finally, slice-by-slice

images are obtained by reconstructing coincidence events with specific data acqui-

sition processes and algorithms.

1.2.2 Properties of Positron Emission Tomography Gamma-

ray Detectors

A PET detector must have sufficient sensitivity to detect annihilation photons and

provide high spatial resolution, low dead-time, good timing and energy resolution

with a cost effective scintillator. There are several critical properties that affect

medical image quality such as energy and spatial resolution. Annihilation photon

pairs would not travel in exactly opposite directions, thereby recording line of re-

sponse (LOR, which defines a line through the decay event location) will not result
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in accurate data. Furthermore, almost 30-50 percent of the total annihilation pho-

tons scatter in the medium, depending on the patient bone and tissue conditions.

Annihilation photon pairs are detected by PET detectors in three different types

of coincidence events: as a true coincidence; scattered or random as illustrated in

Figure 1.15. If two annihilation photons reach the scintillators without any inter-

Figure 1.15: Gamma ray detectors record three different coincidence events
(scattered, random and true coincidences respectively) depending on the path
of annihilation photons. If Compton scattering occurs in the medium before
photon detection, it will result in scattered coincidence and inaccurate LOR
data. The photons of two different annihilation event can be detected as a one
event, so line of response will again be recorded in inaccurately. Scattering and
random coincidence contribute noise to the medical image.

action, this constitutes a true coincidence as a result of recording accurate LOR.

When one of the annihilation photons scatters inside the medium before being de-

tected by the gamma ray detector (Compton scattering), LOR will be recorded as

a wrong line of response, causing noise in the image. Random coincidence happens

when two photons occur in different annihilation events but are detected at the

same time. It is again recorded as a wrong LOR, and results in noise in the image.

Obtaining true coincidence events or recording accurate LOR gives the correct in-

formation about the annihilation events point. Therefore, the number of random

and scattered coincidences will be reduced, and imaging quality improves with

better spatial resolution. This is limited by positron range (depends on positron

energy and type of nuclei) and non-collinearity of the annihilation photons.

The optical and physical properties of the inorganic scintillators most fre-

quently used in PET detection are given in Table 1.1. To achieve better detection

efficiency, effective atomic number and density of the scintillators must be as high
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1.2.2 Properties of Positron Emission Tomography Gamma-ray Detectors

``````````````````
Properties

Crystals
NaI(Tl) BaF2 LSO BGO CsI(Tl) GSO YAP LYSO LaBr3

Density (g/cm3) 3.67 4.89 7.4 7.13 4.51 6.71 5.37 7.10 5.29

Effective Atomic Number 51 53 65 75 54 59 26 63 47

Reflection Index 1.85 1.56 1.82 2.15 1.80 1.85 1.95 1.81 1.90

Decay Time (ns) 230 630 47 300 680 60 27 41 20

Emission Wavelength(nm) 415 310 420 480 540 440 370 428 380

Light Yield (Photons/MeV) 38000 9500 25000 8200 54000 9000 18000 32000 63000

Table 1.1: Properties of common scintillation crystals used in positron emis-
sion tomography for gamma ray detectors. LYSO and LaBr3 (Lanthanum
Bromide) have become very popular recently. LYSO is non-hygroscopic and
a cheaper scintillator than LaBr3, but properties of cerium doped lanthanum
bromide are much preferred to other scintillators.

as possible. BGO (Bismuth Germanate) has excellent stopping power for gamma

ray detections because of its higher atomic number and higher density than other

scintillators. Incident radiation absorption is as much as possible. However, its

timing performance is slightly poorer than NaI(Tl). Scintillators with fast decay

times are preferred for good coincidence time performance, which allows for the re-

duction of dead time and the number of random coincidence resulting in improved

medical image quality [11]. Intrinsic properties of LSO (Ce-doped Lutetium Or-

thosilicate; Lu2SiO5:Ce) and LYSO (Ce-doped Lutetium Yttrium Orthosilicate;

Lu0.6Y1.4SiO5:Ce) scintillators are different from other scintillators and include

natural radioactive isotopes (176Lu). Lu-176 decays to the excited state of Hf-176

by primarily emission of β−. This isotope emits photons with energies from 88 keV

to 307 keV, resulting of self emission inside the crystal. That causes the crystal to

be excited and then produced scintillation light (the total self count rate is only 39

counts per second per gram (cps/g), so that is not a serious issue in application of

PET) [11, 12]. Setting annihilation photon energy windows with these scintillators

facilitates their use for coincidence counting due to their very fast decay time con-

stants. In contrast, scintillators with a slower decay time constant cause a direct

rise in detector dead time and the number of random coincidences. A higher light

output influences the energy resolution and spatial resolution, leading to good

quality medical images. It is important for scintillators to be non-hygroscopic,

which means it is not damaged by exposure of the humidity. Therefore, scintilla-

tion material does not need to be sealed in a box. A non-hygroscopic scintillation
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1.2.3 PET-MRI Detector System

crystal facilitates easy packaging and mechanical ruggedness. Further content

about scintillators will be provided in the next chapter.

1.2.3 PET-MRI Detector System

As previously discussed, over the last two decades positron emission tomography

has been successfully integrated into MRI devices similar to gamma ray detectors

construction inside HELIcal orbit spectrometers. When positron emission tomog-

raphy is operated within a uniform high magnetic field, the positron range will be

perpendicular to the field due to Lorentz force. Positron annihilation points do

not spread over the interested region, so the spatial resolution of the PET detector

improves depending on the force of the magnetic field [13]. An MRI integrated

PET-CT image facilitates improved diagnosis in radiology, oncology and nuclear

medicine. This new concept opens the door to addressing some biomedical issues

affecting PET-MRI images. The magnetic resonance imaging technique provides

details of physical structure and anatomical features similar to CT, but positron

emission tomography (PET) depicts the contents of biological and metabolic pro-

cesses inside organisms. When diagnosis is worked with PET-CT, many patients

undergo X-ray exposure and PET radioisotopes. The combination of functional

and anatomic imaging in a single image enables a more exact diagnosis providing

significant information concerning soft tissue and anatomical detail from physio-

logic parameters, diffusion and changes in oxygenation levels, resulting in lower

radiation exposure and much more effective treatment for patients [8, 14]. After

treatment the activity of many diseases, such as cancer (tumour growth stages),

brain atrophy and other abnormalities could be monitored with PET-MRI images.

The main difficulties in the PET detector system concern the effects of the

magnetic field on PMTs in particular, and impairment of MRI image quality due

to electromagnetic interference (EMI) between MRI and PET. In order to protect

image quality, magnetic field homogeneity needs to be kept stable by eliminating

interference. The literature review described various ways to achieve a simulta-

neous PET-MRI image. In early phases of technological development research

groups were separated into two systems in order to reduce the effect of the mag-

netic field on PET systems. Separation was effected by, for example, splitting

the magnetic field volume from PET so that the PMTs measure in the zero field,

or using fibre-optic cables (a nonmagnetic component) to transfer light from the

22



1.2.3 PET-MRI Detector System

scintillation crystals to PMTs placed outside of the magnetic field [15]. In earlier

studies, forty-eight LSO scintillators were constructed as a 38 mm diameter ring

PET detector system with one crystal of dimensions of 2x2x10 mm3. Long fibre

optic cabling was used to connect crystals with PMTs, and photomultiplier tubes

were placed outside of the high magnetic field. Measurements were completed

resulting in 2 mm, 41% and 20 ns spatial resolution, energy resolution and time

resolution respectively. These results are not perfect, or even better than without

magnetic field measurements, but it were nonetheless effective in acquiring the

first simultaneous PET and MRI image. The effect of the electromagnetic inter-

ference is nearly nothing, but sensitivity is reduced with fibre optic cable because

of resulting losses in light yield during the transfer of visible light from scintillator

to PMTs.
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1.2.3 PET-MRI Detector System

The modern approach involves using solid-state photosensors such as avalanche

photodiodes (APDs) or silicon photomultipliers (SiPMs) rather than PMTs. Sev-

eral research groups have successfully developed prototype PET-MRI systems us-

ing APDs or SiPMs that are insensitive to the magnetic field [8, 16, 17]. A small

animal tomography is called RatCAP was integrated into the MRI field by Woody

(2006). RatCAP tomography consists of 12 detector modules each of which in-

cludes a 4 x 8 array of 2.3 x 2.3 x 5 mm3 LSO crystals coupled to Hamamatsu

S8550 APD. This research shows that RatCAP tomography and its various readout

components can be successfully operated inside a high magnetic field and obtain

individual PET and MRI images to search the effect of each system [17]. Similar

to this approach, Catana and Procissi used 8x8 PET detector modules coupled

to position sensitive avalanche photodiodes to examine magnetic field effects on

PET imaging and found that the spatial resolution of PET was not deformed by

the strong magnetic field. The effect of positron emission tomography on MRI

imaging did not result in any obvious deterioration of the signal to noise ratio in

that research, during which simultaneous PET-MRI imaging was carried out with

cancer cells injected in mice.

Hong and Choi (2013) developed brain PET with 72 detector modules as a ring

and insertable to MRI to achieve a simultaneous PET-MRI human brain image.

Each detector module had a SensL Geiger mode avalanche photodiode array (see

Figure 2.20) is optically coupled to 4x4 matrix LYSO crystals. The same PET

detector module was constructed for this study, as discussed in section 2.5.3.1 of

the next chapter. An almost 300 cm long flexible flat cable after shielded with

aluminium sheet was used to connect each detector module to the preamplifier,

thus placing all of the electronics outside of the MR. Research with the same brain

PET scanner was carried out using improved software, hardware or hybrid filtering

methods (combination of them). PET data acquisition filtered with hybrid was

found to be the best technique to reduce the effect of the electromagnetic inter-

ference (EMI) [18]. Figures 1.16(a) and 1.16(b) illustrate that simultaneous MRI

and PET images were successfully acquired independently without observing any

noticeable deterioration [16], while Figure 1.16(c) demonstrates the simultaneous

PET-MRI brain image. The performance of avalanche photodiode or Geiger mode

avalanche photodiodes is very sensitive to temperature variations and magnetic

resonance sequences cause increases in temperature or vibrations. The tempera-

ture of the shielded detector modules was therefore monitored to modify the gain

drift depending on the temperature [19].
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1.2.3 PET-MRI Detector System

(a) MRI (b) PET

(c) PET-MRI

Figure 1.16: Brain images of 3D Hoffman phantom for three different systems:
(a) Magnetic resonance imaging was acquired when PET was inserted into field.
(b) Positron emission tomography imaging was acquired when MRI image was
simultaneously acquired, and (c) simultaneous PET-MRI integrated image with
MRI spin echo sequence [16].

25



1.3 Quality Control of Positron Emission Tomography Radiopharmaceuticals

A different approach is the redesigned gantry of PET-MRI system to operate

photomultiplier tubes inside the MRI field after using magnetic shielding for the

PMT systems which allow to operate in the normal flux level (close to the Earth′s

magnetic field). The scientific measurements were found to be 12% and 520 ps

energy resolution and timing resolution respectively for GEMINI TF PET-MRI

scanner. These results are comparable with GEMINI TF PET-CT system mea-

surements. Both scanners (GEMINI TF PET-CT and GEMINI TF PET-MRI)

have a diameter of 90 cm, and each LYSO crystal element is 4x4x22 mm3 in size.

PET-CT scanner’s energy resolution was averaged over all crystals 11.5 % FWHM

at 511 keV with setting 440-665 keV energy window. Timing resolution for this

system was found 585 ps for point source. Therefore, the performance of PET-MRI

is very close to that of standard PET-CT [20, 21].

1.3 Quality Control of Positron Emission Tomog-

raphy Radiopharmaceuticals

Positron emission tomography radioisotopes are generated from small cyclotrons,

and are then formulated by specific chemical substances. Fluorine-18 FDG is a

well-known radioisotopes used in positron emission tomography, others, such as

Ga-68 and I-124 are also used in PET depending on the region of the interest. For

example, I-124 is preferred in investigations of the thyroid due to its sensitivity to

iodine. Therefore, iodine will accumulate in that region for suitable PET imaging.

There must be acceptable quality control parameters to protect patients from

extra radiation exposure before injecting them with radiopharmaceuticals. PET

radioisotopes quality control parameters must be checked for radiochemical purity,

radionuclide purity, pH level, sterility, safety, efficacy and radioactivity level before

being used [22].

Radionuclide purity of a radiopharmaceutical is defined as the ratio of the ra-

dioactivity of the desired radionuclide to the total radioactivity of the source. Ra-

dionuclide impurities originate from the various nuclear reactions and impure tar-

get materials. Impurities in the radioisotopes can negatively affect image quality

as well as expose patients to unnecessary radiation doses. Activity-time plot was

used to determine contaminated radioisotopes from the half-life measurements by

multichannel gamma spectrum. Thin layer chromatogram (radiochromatogram),
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1.4 Overview of the Thesis

scintillation counter and dose calibrators are used in determination of radiochem-

ical and radionuclide purity as a radiation detection instrument in the quality

control protocol. A radiochromatogram scanner is used on a long narrow piece of

radiochromatography paper for the quantification of the radioactivity distribution.

These measurements take more time than with a scintillation detector equipment

with an expensive radiochromatogram scanner [23]. The scintillation counter sys-

tem will be detailed in Chapter 2. For better quality control a plastic scintillation

detector was developed to measure the activity of PET radioisotopes directly from

positrons rather than annihilation photons as discussed in Chapter 5, which also

includes experimental measurements and simulations results.

1.4 Overview of the Thesis

The main aim of this project was to work with scintillation detector systems

which are a combination of novel scintillators and new generation silicon photo-

multipliers, and can be operated inside a strong magnetic field. In this chapter,

the motivation is presented in terms of number of nuclear physics cases and their

application in the field of medical physics in the imaging and PET radioisotope

quality control processes. Several important properties of scintillation detectors,

which enhance their potential for use in the HELIOS spectrometer and PET-MRI

systems, were investigated experimentally and a PET detector module was tested

after a detailed construction process. Avalanche photodiodes and silicon photo-

multiplier were tested inside the magnetic field, and we successfully obtained a

magnetic resonance image when a simple positron emission detector was located

inside the phantom as explained in Chapter 2. That chapter includes a review

of technical information about the nuclear instrumentation modules and signal

shape processes that were used during the experimental measurements. Following

this chapter, SensL blue sensitive B and C series silicon photomultiplier sensors are

characterised as exhibiting important parameters such as temperature dependence

and variation in gain.

Coincidence resolving time measurement is a critical measurement in nuclear

research subjects and ToF-PET systems. Timing measurements were successfully

completed using special fast timing output signals of SensL blue sensitive SiPMs,

then compared with standard Hamamatsu avalanche photodiodes and PMTs. In
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1.4 Overview of the Thesis

Chapter 4 describes how two different data acquisitions were used as an in ana-

logue and digital timing measurements. Signal shape processes were carried out

in ROOT, with the code written by myself. In order to obtain good time resolu-

tion, various methods were applied by improving the experimental setup step-by-

step. After the investigation of scintillation detectors and characterisation of their

properties, a new detector system was designed for measuring the activity of PET

radioisotopes. The major difference between this detector and standard detectors

used in PET research centre is that the measurement is obtained directly, with-

out any interference from particles rather than secondary products (annihilation

photons) through contact with radioactive substances. This increases detector ef-

ficiency, resulting in more accurate activity measurement, which is significantly

important for checking PET radionuclide-radiochemical purity in the quality con-

trol procedure. This detector design is obviously cost effective, capable and based

on very simple working principles. GEANT4 based Monte Carlo simulation work

was performed in this study to investigate the effect of annihilation photons on

the total scintillation photon number. In the last two chapters, there will be fur-

ther discussion about the simulation work, final summary of the thesis providing

experimental results, and future research plans.
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Chapter 2

Scintillation Detector Systems

Scintillation detector systems are widely used in nuclear, particle, and medical

physics for radiation detection spectroscopy, cross-sectional images, and quality

control of medical radioisotopes. When ionising radiation, for example γ-rays,

excite scintillation material and then visible or ultraviolet light appears by means

of luminescent crystals during the energy absorption of the incident radiation.

Then PMTs or photodiodes are used for converting light into an electrical pulse via

photoelectric effects. If that amplified signal is analysed, it gives information about

the interaction between incident radiation and scintillation crystals. Analysing this

signal is critical because of the complicated behaviours of atomic nuclei, radioactive

nuclei, γ-ray spectroscopy, and the high quality of medical images. They are

directly provided by timing and energy spectra of detectors.

There are two types of scintillation crystals: organic scintillators and inorganic

scintillators. Organic scintillators have a low light output and low stopping power

for γ-rays. Therefore, inorganic scintillators are commonly preferred particularly

in positron emission tomography [11, 24]. In this chapter, we will discuss scin-

tillation mechanisms, photomultiplier processes, and signal shape processing with

important nuclear instrumentation modules (NIM). In addition, experimental re-

sults will be presented by various scintillation detector systems.
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2.1 Organic Scintillator

2.1 Organic Scintillator

Organic crystals are the combination of aromatic hydrocarbon in benzene ring

structures. Scintillation lights are produced by excited valance electrons that

combine with molecules rather than a particular atom (in the case of inorganic

scintillators). The most common bond in an aromatic carbon ring structure is π

bond. Incident radiation can excite either an electron level or a vibrational level

of the π molecular orbitals. There are various singlet and tripled states of the π

molecular orbital state as shown in the energy level diagram in Figure 2.1.

Figure 2.1: π-states of an organic molecule. The ground state is donated by
S0. Singlet excited states and tripled excited states are presented by S1, S2, S3

and T1, T2, T3 respectively. Vibrational sub-levels are also shown as S00, S10,
S11 etc. [24]

Radiation absorption results in molecular vibration to the S1 state and is fol-

lowed by de-excitation to the ground state (S0). The fluorescence mechanism

arises by emitting scintillation photons from one of the vibrational levels above

the S0 state. The fluorescence process is also called the fast component. The slow
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2.1.1 Plastic Scintillator

component of the decaying process is observed when one of the triplet state is

excited (phosphorescence phenomena). Fast and slow components allow the use

of the pulse shape discrimination method which is possible to identify the particle

by looking at the pulse shape.

Organic crystals are long-lasting scintillators which are easily shaped, and they

can be found in both liquid and crystal forms with a combination of a solvent, a

scintillator, and other material, which helps to make it glow bright or places it on

the right wavelength.

2.1.1 Plastic Scintillator

Plastic scintillator is combination of a solid polymer matrix (base) and fluores-

cent emitter (Fluor). The base material is generally acrylic, polystyrene (PS),

or polyvinyltoluene (PVT). Convenient organic scintillators are homogeneously

mixed with the base material to produce sufficient light yield and then the mix-

ture is polymerized for plastic form. The plastic base material absorbs incoming

radiation (ionisation) by transferring energy to the primary fluor through resonant

dipole-dipole interaction (known as Forster energy transfer). As a result of that

interaction, ultraviolet radiation with short attenuation length is produced in the

plastic base (see Figure 2.2). Then secondary scintillator (fluor) shifts the wave-

length from UV photons to light photons (mostly emits blue light) [25]. Increasing

Figure 2.2: Operating system of an organic scintillator. Energy transfer dis-
tance for each process and approximate fluor concentrations are given in the
diagram [26].

fluor concentration in the scintillator and resonant dipole-dipole interaction (strong
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2.2 Inorganic Scintillator

coupling the base and fluor) can shorten the decay time, so plastic scintillator has

an extremely fast decay time constant (2-4 ns). The greatest advantage of using

plastic scintillation is that they are shaped easily, especially if a large detection

area is required, and that they are cost-effective. Generally, plastic scintillator
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Figure 2.3: Energy response of plastic detector systems for α and gamma
source separately. A full energy peak is not seen if a plastic scintillator interacts
with gamma source. The probability of photoelectric effect is very low, so only
the Compton edge is seen in the red spectrum. Plastic scintillator is generally
used for charged particles as seen in the blue spectrum.

material is used for detection of charged particles. Figure 2.3 shows the energy

response of plastic scintillation detectors for gamma and charged particles. There

is no full energy peak when plastic scintillators interact with a gamma source be-

cause of its low density (1.02 g/cc) (Photoelectric effect is proportional to Z4).

Plastic scintillation material will be discussed in more detail in Chapter 5.

2.2 Inorganic Scintillator

Higher stopping powers for γ-rays, good energy resolution, higher light yields,

a very fast decay time, and excellent linearity of inorganic crystals have made

inorganic scintillators very popular in particle and nuclear physics. The biggest
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2.2 Inorganic Scintillator

disadvantages of inorganic scintillation crystals are the difficulty of making specific

shapes and being hygroscopic.

Scintillation mechanisms for inorganic crystal occur in the electronic band

structure of crystals not in a molecular bond. In organic scintillator, fluores-

cence mechanism occurs independently of the physical state of scintillators (can

be observed in liquid, gas, and crystal structures). Pure inorganic scintillators

(alkali halides) are not suitable for producing more visible light at room temper-

ature. Incident radiation excites an electron from the valence band to the exciton

band. Then it instantly returns to valence level emitting photons as shown in

Figure 2.4(a) in the case of pure NaI scintillators. The energy gap between the
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Figure 2.4: Electron energy level is maximum (a) 333 nm for pure sodium
iodide (NaI) scintillator and (b) 410 nm for thallium activated sodium iodide.

valance band and conduction band (maximum 333 nm) are not in the visible light

frequency range [27]. Therefore, photons can be absorbed by crystals themselves

and the glass window of PMT or SiPM without converting signals. Pure crystals

have to be doped with a heavy metal activator like thallium in order to produce

more visible light. This causes interface energy levels to increase inside the for-

bidden band, and then photons emit with lower energy and longer wavelength

(maximum 410 nm) as illustrated in Figure 2.4 (b). As a result, collecting more

visible light improves the performance of the scintillation detector.
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2.3 Photomultiplier Process

2.3 Photomultiplier Process

2.3.1 Photomultiplier Tube (PMT)

Vacuum photomultiplier tubes or PMTs are highly sensitive to visible light (photo-

sensitive from ultraviolet to near-infrared range of the electromagnetic spectrum).

PMTs are used for converting visible light (emission scintillation photons) into an

electrical signal that is proportional to the incident radiation energy. There are

several important parts of standard photomultiplier tubes as shown in Figure 2.5.

Cathodes (photocathodes) are used for transferring visible light into electrical sig-

Figure 2.5: Configuration of a photomultiplier tube. Scintillation photons
(visible light) first interact with photocathodes, so photoelectrons are produced
via photoelectric effect. External resistance chains operate a desired output
voltage between dynodes to accelerate and multiply electrons through anodes.
Current obtained from accumulated and collected charges on anodes can be seen
as signals [28].

nals via photoelectric effect, photocathode must be very sensitive to visible light.

Furthermore, the emission of photon wavelengths, which occurs after the scintil-

lation mechanism between crystals and ionising radiation, has to be well matched
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2.3.2 Silicon Photomultiplier

with the PMTs sensitivity region [12]. Blue light sensitivity plays a critical role

in terms of emission wavelength, coherences, and timing resolution, which will be

discussed further in Chapter 4. The sensitivity of photocathodes is related to the

quantum efficiency (QE) of the photocathode which depends on the incident radi-

ation’s frequency and collected number of photons as defined in Equation 2.1 [24].

QE =
the number of emitted photoelectrons

the number of incident photons
(2.1)

The second important part of PMTs is a group of dynodes, which are used to

accelerate photo electrons from the first dynode to the last. This process repeats

itself until all electrons reach the anode. Consequently, the initial current is col-

lected and amplified by dynodes. The other significant part is the anode, which

accumulates all electrons after being multiplied by dynodes. All of these segments

need to be placed inside the vacuum tube in order to reduce the pressure effect on

the current.

2.3.2 Silicon Photomultiplier

2.3.2.1 PIN Diode

Incoming radiation produces 3-4 eV scintillation photons when interacting with

crystals (see previous section “inorganic scintillator”), and the average energy to

create an electron-hole (e-h) pair for silicon is about 3.6 eV (with 1.2 eV band gap

energy). Therefore, the energy of the scintillation photon is enough to generate e-h

pairs inside the undoped silicon wafer region (i-region), which is very sensitive to

radiation [27], as shown in Figure 2.6. P-type semiconductors (positive charge of

the hole) have a larger hole concentration than electron concentration by doping an

intrinsic semiconductor with acceptor impurities or doping n-type semiconductor.

In contrast, n-type semiconductors (negative charge of the electron) have a larger

electron concentration than a hole concentration by doping intrinsic semiconductor

with donor impurities or doping a p-type semiconductor. PN-junction structure

is obtained by joining together opposite doped semiconductors (p and n type

semiconductors). The width of the intrinsic region (i-region) should be larger

than the space charge width of a normal PN-junction, when an external reverse
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2.3.2 Silicon Photomultiplier

Figure 2.6: The basic structure of photodiodes. P-type layer refers to positive
charge of the hole or p-type semiconductor. N-type layer (or n-type semiconduc-
tor) is the negative charge of the electron. Semiconductor diode allows charge
to follow the current in only one direction. The region (i-region) between the p
layer and n layer is filled with undoped silicon to produce electron-hole pairs.
External potential is applied to accelerate electrons, and then a signal will be
obtained with the preamplifier [24].

voltage is applied across the PN-junction. When scintillation light hits the PN-

junction of the semiconductor, a current is generated by photodiodes, which easily

and accurately detect the variation of the visible light.

The p-layer has to be as thin as possible (< 1 µm), as the number of scintillation

photons passing through the silicon region from the crystal dramatically increases

with a thin p-layer. Optically transparent thin entrance window enhances the light

transmission from scintillator to the active volume in photodiodes (silicon wafer

region) [24].

If a bias voltage (25-100 V) between p and n-layers is applied, the electric field

force accelerates photoelectrons from the p-layer and silicon wafer region to the n-

layer. Applied external reverse voltage gives the advantage of measured low lights

at a high speed and the multiplication of photoelectrons in the internal region.

Multiplied electrons are collected on the pre-amplifier as a current, resulting in

output pulse. Consequently, scintillation photons are transferred from p-layers to

n-layers after being converted into photoelectrons.
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2.3.2 Silicon Photomultiplier

2.3.2.2 Geiger Mode Avalanche Photodiode (APD)

Geiger mode avalanche photodiode (APD) is designed to support high electric

fields, which is the main difference between ordinary PN-junction (PIN-diode).

Generation of electron-hole pairs in the depletion region is similar to producing

electron-hole pairs in PIN diode (section 2.3.2.1). Biasing voltage creates very high

electric-field strength inside the region. As shown in Figure 2.7, generated electron

Figure 2.7: Schematic diagram of Geiger mode process in SensL silicon pho-
tomultiplier [29]

(or hole) gains the sufficient kinetic energy from the field to collide with crystal

lattice, resulting generation of another electron-hole pair in the region. Electron-

hole pairs are created more, this process is called as an impact ionisation. Impact

ionisation mechanism causes an avalanche current in the depletion region.

Avalanche photodiode gain is stable until the breakdown voltage. At this

operating bias (VBR), the semiconductor junction breaks down and becomes a

conductor called Geiger discharge as a result of more than 105 signal gain (because

of a large single carries current). When the device is triggered, the junction breaks

down and the avalanche photodiode is stopped or reset. A large current flows to

the quenching resistor, then the voltage of the APD drops below the VBR. A single

photodiode device operates as a photo-triggered on and off switch by using this

breakdown cycle [29]. However, a Geiger discharger current cannot distinguish

between multiple photons and single photon trigger if multiple photons and a

single photon are detected at the same time. Optically and electrically isolated

Geiger mode photodiodes are integrated and then summed through the output
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2.3.2 Silicon Photomultiplier

signal to distinguish between multiple photons and a single photon. APD with

high single photon detection capabilities is defined as a pixel (or microcell) array

system as illustrated in Figure 2.8. Each element of an array (microcell) has

Figure 2.8: Standard Geiger mode APDs’ microcell cross section for 3x2 array,
which are connected together. Quenching resistor has been used to limit and
rapidly reduce the signal current (active and passive quenching techniques) [30].

an independent quenching resistor. Every microcell detects photons identically

and independently. The magnitude of the photon flux shows how many photons

are detected at the same time as illustrated in Figure 2.9. Therefore, the silicon

Figure 2.9: SensL Geiger mode avalanche photodiodes are integrated in par-
allel, and each microcell has individual quenching resistance as shown in the
left side. Detected photon numbers are illustrated on the oscilloscope, which is
obtained from SiPM output in the right side [29].

photomultiplier (SiPM), or multi pixel photon counter system, achieves to measure
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the number of incoming photons per pulse, which is not possible with a single

photon counting device (like an APD).

2.3.2.3 Technical Terms and Performance Parameters of SiPMs

This section will discuss important technical terms and several performance pa-

rameters of a silicon photomultiplier, which is used in the next two Chapters (3

and 4).

Overvoltage

When the Geiger discharge is created in the depletion region, this operating bias

value is called the breakdown voltage (VBR). Recommended working bias voltage

is between 1V and 5V above the breakdown voltage to optimise the performance of

SensL silicon photomultiplier [31]. That voltage range is called overvoltage (∆V )

and it can be expressed as;

∆V = VApplied V oltage − VBR (2.2)

Gain

Applied bias voltage strongly effects the ionisation rate (gain), because the

bias voltage increases the electric field strength across the avalanche layer. When

the voltage is increased in the normal operation range, the gain increases and

avalanche multiplication occurs. Even if a higher bias voltage is applied, PN

junction voltage in the depletion region decreases due to series resistance, then

the gain begins to drop [32]. The ratio of the total microcell output charge to an

electron charge (q) gives the SiPMs gain or ionisation rate. The total charge is

calculated by multiplying the microcells’ capacitance (C ) to overvoltage (∆V ) as

given in Equation 2.3

Gain =
Total Charge

Electron Charge
=

∆V.C

q
(2.3)

Quantum efficiency

If scintillation photon energy is higher than the band gap energy of depleted

material, electron-hole pairs are generated when photon enters an avalanche photo-

diode. The band gap energy for silicon is 1.12 eV, so silicon avalanche photodiode
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(APD) is sensitive to light wavelengths shorter than the cut-off wavelength (λ(nm)
∼=

1100 nm) and is expressed by Equation 2.4;

λ(nm) =
h.c

E
=

1240(eV.nm)

E(eV )

(2.4)

where h.c are the plank constant and the speed of light, E is the silicon band

gap energy [32]. Quantum efficiency for APD is the ratio of generated electron-

hole pairs to the number of incident photons in percent. Manufacturers often use

photosensitivity or photon detection efficiency instead of quantum efficiency among

their specifications. Photosensitivity “ S ” is given in electrical current generated

per incident watt of the optical power (A/W). Therefore, quantum efficiency is

defined with photosensitivity as expressed in Equation 2.5; where λ is wavelength

(nm).

QE =
S . 1240

λ
x 100 (%) (2.5)

Noise and dark count

Signal noise of silicon photodiode is a series problem, particularly in low ener-

getic radiation measurements. A lower limit of light detection in silicon photodiode

is defined as a noise characteristic of the detector and its amplifiers. Output sig-

nals are produced by either photoelectrons or thermally generated dark current

electrons, and they are identical in signal. Silicon photodiode noise current (in)

is the sum of the thermal noise current or Johnson noise current (iJ) of a resistor

and shot noise currents (shot noise of the dark current (iSD) and the photocurrent

(iSP )) [32] as expressed in Equation 2.6;

in =
√

(iJ)2 + (iSD)2 + (iSP )2 (2.6)

Unreal trigger level could be avoided from the noise by setting the appropriate

threshold level (above the single photon level), but the dark counts always deteri-

orate the measured signal [29]. If the dark count rate is stable, it can be removed

from the noise. However, if it fluctuates on the noise, the noise contribution will

be the square root of the dark count rate due to existing Poissonian behaviour

of dark pulses in time. This noise can be measured as a magnitude of pulse rate

(kHz or MHz) or dark current (µ A). The shot noise of the dark current (iSD) is
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expressed by Equation 2.7;

iSD =
√

2q.ID.B (2.7)

where q is electron charge, ID is the dark current and B is the noise bandwidth.

Thermal or Johnson noise can be expressed by the Equation 2.8;

iJ =

√
4κ.T.B

R
(2.8)

where κ is Boltzmann constant, T is the absolute temperature of photodiode and

R is the resistance of the photodiode. Shot noise of the photocurrent (iSP ) is given

by following Equation 2.9;

iSP =
√

2q.IP .B (2.9)

where I P is the incident light current. The electrical bandwidth of the detector

and signal processing equipment is expressed as a bandwidth (B). Noise sources

in the optical detector system are designed randomly in nature with very wide

frequency distributions. When electrical bandwidth is increased, the noise of the

detector system will be increased as given by Equation 2.10.

Noise =
√
B (2.10)

The electrical bandwidth of the detector system should be close to the required

bandwidth for reducing unnecessary noise. If applied bias voltage is constant,

intrinsic gain of avalanche photodiode will be the average of each carrier’s multi-

plication. Multiplication noise is known as an excess noise, so the shot noise of

the avalanche photodiode (iN) is larger than the shot noise of PIN photodiode as

given in Equation 2.11;

iN =
√

2q(IP + IDG)B.G 2.F + 2q.ID.B (2.11)

Where IDG is the current generated inside the substrate, which is the dark current

component multiplied, G is gain and F is excess noise factor [12, 32]. The number

of generated electron-hole pairs during the carries travel distance time is defined

as an ionisation rate. The ionisation rate of electron is indicated with α, and β is

the ionisation rate of holes. Each carries ionisation rate is not uniform and there

is statistical fluctuation. Device noise parameter is called an ionisation rate ratio

(k) which is the ratio of β to α (k = β/α) [32, 33]. When electrons are injected

inside the avalanche layer, the excess noise factor can be defined in terms of the

41



2.3.2 Silicon Photomultiplier

ionisation rate ratio as given in Equation 2.12.

F = G.k + (2− 1

G
)(1− k) (2.12)

If applied bias voltage is increased, this improves the photon detection efficiency,

however, the dark count will also increase. The dark current can be reduced by

lowering the temperate of photodiode. Another way to reduce the dark current is to

use different wafer products like mercuric iodide [24]. Choosing a semiconductor

material, which has a wider band gap (e.g 2.13 eV for mercuric iodide) than

silicon, produces lower dark current. There are also two additional noise sources;

afterpulse and crosstalk, which will be discussed in the next section.

Temperature Dependency

Temperature variation mainly affects the dark count rate and SiPM’s break-

down voltage. Thermal generation of the electrons will increase with temperature,

and that can be a limiting factor if a sensor is required to operate at high tempera-

ture applications [31]. As we discussed in the previous section, there are two ways

to reduce the dark count rate: cooling and changing the semiconductor material

inside the depletion region. Figure 2.10 shows the relationship between dark count

Figure 2.10: Dark count rate of SensL 1 mm, 35µm microcell silicon photo-
multiplier as a function of temperature and overvoltage [29].

rate of SensL silicon photomltiplier and temperature variation for three different

overvoltage values. If the applied overvoltage remains constant over the mea-

surement period at room temperature, SiPM gain, photo detection efficiency, and

timing could be stable. However, a change in temperature with stable overvoltage

will be altered by the dark count rate. Reducing the photodiode temperature by a

thermoelectric cooling device will be decreased bt the dark count rate. Every 10◦C
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reduction in the temperature of the device provides a factor of a 50% decrease in

the dark count rate for SensL silicon photomultiplier [29, 31].

Temperature variation also changes in the detector gain. When the tempera-

ture rises, the possibility of the collision between carries (electrons or holes) and

crystal lattice increases before reaching the sufficient energy for ionisation. There-

fore, detector gain at certain bias voltage decreases if the temperature increases.

To obtain constant gain, bias voltage must be adjusted or the temperature must

remain stable [31]. Figure 2.11 illustrates how overvoltage changes to minimise

the bad effect of the temperature variation as a function of temperature that will

result in a change of the breakdown voltage. SensL silicon photomultiplier has

Figure 2.11: Temperature coefficients comparing SensL silicon photomulti-
plier and a high voltage SiPM [31]. Temperature variation for SiPM with high
breakdown voltage is more influenced than SensL with a low breakdown voltage.

a low breakdown voltage (VBR) because of having a narrow depletion layer and

doping layer. Silicon photomultiplier sensors with higher breakdown voltage are

very likely to be influenced by a change in temperature than SiPM with low VBR

as shown in Figure 2.11. A one degree variation in the temperature of the SensL

SiPM will change only 21.5 mV. The temperature of SiPM can be fixed with either

a thermoelectric cooling device or by regulating the device. If that is not possible,

the bias voltage must be adjusted according to the altered breakdown voltage to

keep the overvoltage value constant.

Pulse Shape
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Signal rise time is a very important parameter in timing measurements. The

rise time depends on the total area of the SiPM and capacitance which is caused

from the total connection of microcells. They will be discussed in Chapter 4 in

more detail. The rise time of 1 mm SensL SiPM is 1 ns, but 10 ns for 6 mm SiPM.

Decay time or recovery time is expressed from the microcell reset period as given

by the following equation;

τreset = Rq . C (2.13)

where Rq is quenching resistance and C is the microcells’ effective capacitance. In

Figure 2.12, a single photoelectron signal is demonstrated for SensL C series SiPM

with a 6x6 mm2 detection area and 35 µm microcell size detector coupled with a

EJ212 plastic scintillator radiated by 137Cs.

Figure 2.12: A single photoelectron pulse is generated by a 6 mm SensL C
series. A Geiger mode silicon photomultiplier is coupled with a plastic scintil-
lator.

Photon Detection Efficiency (PDE)

The photon detection efficiency (PDE) of SiPMs is defined as the statistical

probability of converting incident photons into electrical signal. It is given by three

factors: QE is the APDs’ quantum efficiency as a function of incident photons

wavelength, F is the filling factor of the device, which is the ratio of the photon

sensitive area to the total pixel size with circuits, and ∈ is the probability of the

trigger a Geiger discharge with a function of bias voltage.

PDE = QE λincident photon
. F . ∈ v (Geiger)

(2.14)
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PDE is generally calculated by the average photo current generated per optical

power from a detector response (R). That is defined as a fraction of measured photo

current and incident optical power at a specific wavelength over the detection area.

This method gives an over estimated value of PDE because it does not include the

contribution of afterpulsing and crosstalk probability as defined in Equation 2.15

where G is expressed as SiPM microcells gain, h the Planck constant, c the speed

of light, λ incoming light wavelength, and e charge.

R =
PDE . G . λ . eelectronic charge

h . c
(2.15)

If crosstalk and afterpulsing probability contributions are taken into account in the

APD response, photo detection efficiency will be calculated from Equation 2.16,

where N is the number of incident photons, and ε and P ap are the probability of

crosstalk and afterpulse respectively.

R = PDE . G . (1 + ε) . (1 + Pap) . Nλincident photon
(2.16)

Crosstalk

The crosstalk is one of the additional noise components in SiPM. Some photo-

electrons generated in the avalanche process, can be produced by incoming photons

which are initially incident on neighbour pixels of SiPM. Created photon reaches

the neighbouring pixel in three ways; directly, inside the depletion layer, and

through reflection [34]. A neighbour pixel might be triggered by another Geiger

discharge. Consequently, there will be a higher number of photoelectrons in this

event than normal. That can be seen as a large amplitude in the pulse (by factor

two), and then deformation in device linearity will be observed. Crosstalk proba-

bility is defined as the ratio of the pulse rates from a SiPM measured at 1.5 times

single photoelectron amplitude (N1.5 p.e.) to 0.5 times of that (N0.5 p.e.) as given in

Equation 2.17;

ε =
N1.5 p.e.

N0.5 p.e.

(2.17)

Crosstalk probability has almost no dependence on the temperature, but it in-

creases with bias voltage and microcell size. Crosstalk and afterpulse events

strongly depend on the current density [35]. A large pixel size will have a large

gain, resulting in a high number of carries during the avalanche process as the

same as the result of the high bias voltage. Therefore, the probability of crosstalk
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and afterpulse become higher. Optically isolating each elementary pixel by trench

technology and then filling with an opaque material is the best approach to reduce

the optical crosstalk probability between neighbouring pixels. Crosstalk effects can

also be reduced by improving the manufacturing process (e.g purity of the material

reduces the defects).

Afterpulse

When microcell voltage is temporarily reduced by the quenching process to

stop the Geiger discharge mechanism, not all photoelectrons can be cleaned in the

sensitive area. Carries may be trapped by the lattice defects. After a certain time

delay (recovery time), non-original pulses are realised following the true signal,

which causes the detection error. Afterpulse depends on the bias voltage, doping

level design of SiPM, recovery time, and temperature. At high temperature the

trap carries lifetimes are shorter, so afterpulsing effect becomes weak at the fixed

repetition time. The probability of trapping carries inside the crystal increases

with lower temperature due to become long carries lifetime, therefore afterpuls-

ing effect will increase [36]. A short detection width or large reputation period

gives low released carries, hence afterpulse effect becomes weak according to the

Equation 2.18;

Nr = PD . Ntrap

exp(
∆t

τ
)− 1

exp(
T

τ
)− 1

(2.18)

where T is the repetition period, τ is trapped carrier lifetime, N r is the average

released carries within the detection width duration time (∆ t), N trap is the average

trapped carrier in one breakdown, and PD is the dark count probability.

2.4 Nuclear Instrumentation Module (NIM)

For the purpose of optimising the performance of a scintillation detector, signal

shaping methods are essential to generate the appropriate pulse by nuclear instru-

mentation module (NIM) in particle and nuclear physics, particularly in timing

measurement, as will be explained in Chapter 4. These electronic modules, such as

amplifiers, MCA, and TAC, etc. can fit easily into the bin power, which supplies

DC voltages during the measurements (Figure 2.13). This section will discuss the
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general principle of signal shaping processes that are commonly used in radiation

detection methods.

Figure 2.13: Common nuclear instrumentation modules are used worldwide
in laboratories as a cost efficient experimental method, resulting in optimum
pulse character in energy and timing spectroscopy.

2.4.1 Amplifiers

A pre-amplifier or amplifier are used for shaping the output signal of detector,

and amplify the pulse amplitude for further signal processing. An amplifier is

used to shape signals for optimum energy resolution and to reduce intersection

between sequences of pulses. While long pulse widths are used to achieve an

optimum energy resolution, short pulse widths are required for high counting rates.

Therefore, different amplifiers are chosen according to which quality needs to be

optimised in the measurements. See Appendix A.1 for common amplifiers used in

nuclear and particle physics applications for pulse shaping processes.

The output pulse amplitude is deteriorated by pile-up phenomena, which oc-

curs when two gamma rays arrive at the detector at the same time. Several pulses

are seen inside the width of the amplifier output pulse at a high count rate. Delay-

line pulse-shaping amplifier is well suited for avoiding a pulse pile-up phenomenon

by returning immediately to the baseline. The basic delay-line shaping amplifier

has replaced the original pulse after being inverted, delayed, and added back to

the original pulse (Figure 2.14). As a result, the pulse in the last step will be a

rectangular shape with a delay time the same size of the pulse width. A rectan-

gular output pulse of a delay-line amplifier has the advantage of generating a fast
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Figure 2.14: Pulse shaping circuit for single delay line [37]

rise time and fall time, so it is ideal for timing and pulse-shape discrimination

measurement for scintillation detectors at low and high counting rates.

Figure 2.15 shows the basic circuit of a common pulse-shaping amplifier. The

signal is first fed into a CR high pass filter, which improves the signal-to-noise ratio

by attenuating a low frequency (Figure 2.15(a)). Then, a pulse passes through an

RC low pass filter. A high frequency signal-to-noise ratio and the rise time of the

pulse are improved by this second filter (Figure 2.15(b)). The last pulse shape is

illustrated in Figure 2.15(c) after the signal has passed through both filters.

Generally, a CR-RC pulse-shaping amplifier is used for scintillation detector

systems with the appropriate shaping time constant (τ), which should be at least

three times the scintillation decay time constant in order to ensure complete inte-

gration of the scintillator signal for good resolution [25]. The pulse duration time

of a CR-RC shaping amplifier is much longer than the output pulse of a delay-line

shaping amplifier for scintillation detectors. In energy spectroscopy, for silicon and

germanium detectors, the CR-RC pulse-shaping amplifier plays a critical role in

the improvement of energy resolution by minimising noise.

2.4.1.1 Fast-Timing Amplifier

If the amplitude of a detector signal is sufficient for timing discriminator input, the

best rise time and a low noise in timing resolution will be provided from raw output

signals of the detector without an amplifier. When a detector signal requires

amplification, a specific amplifier must be used to obtain an appropriate signal

amplitude and output rise time (in a low nanosecond time range). A low noise

and fast rise time play a critical role in timing measurements, but detector linearity

and temperature stability are important characteristics of a detector. There are

two different kinds of timing amplifiers: wideband and time filter. Wideband

amplifiers are preferred because they can obtain good coincidence resolved time
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(a) CR high pass filter (differentiator).

(b) RC low pass filter (integrator).

(c) Combination of CR-RC high pass and low pass filters.

Figure 2.15: CR-RC shaping amplifier circuit. (a) Improves signal-to-noise
by attenuating the low frequency which is the source of the noise in the original
signal. (b) Improves signal-to-noise by attenuating high frequency, (c) Com-
bination of both filters and the output signal after applied CR-RC shaping
amplifier [37].

for output signal of PMTs and silicon charged particle detectors. This type of

fast-timing amplifier does not allow for control over the rise time or decay time

of pulse. Both types of timing amplifiers (Ortec FTA820A, ZFL-1000 LN and

ZX60-43+) have been used in timing measurement, and they will be detailed in

Chapter 4.

Modification of the pulse shape is highly possible by timing filter amplifiers

because CR high pass and RC low pass filters can be controlled separately. In

timing resolution measurement, the intrinsic rise time of the preamplifier should

be more than the rise time of the amplifier to avoid degradation of the signal rise

time. If the rise time of the fast amplifier is excessive, that will result with more

noise and will not improve the rise time of the signal. The differentiator time

constant should be set to a time that is long enough to optimise signal amplitude.

If the differentiator time constant is adjustable, it should be long enough to prevent
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losing the signal amplitude.
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2.4.2 Discriminator

Discriminators and single channel analysers are used for separation between pulse

and noise.

2.4.2.1 Fast Timing Discriminator

If the signal is very narrow at high count rates and it is required to correctly define

the arrival time of these pulses, a fast-timing discriminator must be used. The

best time resolution and highest counting rates can be achieved with fast-timing

discriminators. In counting applications, the analogue input pulses are converted

into standard logic pulses by using timing discriminators. The applied threshold

level, which is adjusted just above the noise, allows only real events to be counted

without counting noise in the timer or a multichannel scaler. Fast detectors (such

as PMTs, microchannel plate detectors, etc.) are used for single photon and ion

counting applications. They have a very short pulse width, therefore 5 ns pulse-

pair resolution can be achieved with the fastest discriminator. For scintillation,

germanium and silicon charged particle detector systems have a much longer pulse

width, so achieving pulse-pair resolution will be with a much higher threshold

level. When a fast timing discriminator is used for counting and coincidence time

measurements, the dead time will also limit the experimental results.

In timing applications, the essential principle of the timing discriminator is

consistently and precisely determined by detected radiations’ arrival times. The

achievement of optimum time resolution is a very critical phenomenon for several

applications, such as time spectroscopy and time-of-flight measurements in nuclear

physics and positron emission tomography. The optimum time resolution can be

achieved with the right timing discriminator, which depends on the characteristics

of the detector. There are three important factors that affect optimum timing

resolutions: jitter, walk, and drift as illustrated in Figure 2.16. A logic pulse is

generated if the leading edge analogue pulse intersects with the threshold level.

The initial point of the logic pulse is the analogue pulse arrival time. Many dis-

criminators do not minimise electronic noise level, so noise creates time uncertainty

or jitter in the pulse. In Figure 2.16, there are two similar shape pulses with differ-

ent pulse amplitudes. The highest height signal first meets with the discriminator

threshold level, and then the smallest pulse. This causes variation in the initial
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Figure 2.16: A simple leading-edge timing discriminator. The signal was set
to an appropriate threshold level to generate a logic pulse. Jitter and walk occur
during the generation of the logic pulse in a leading edge method [38].

arrival time of logic pulses, which is called time slewing or walk. If a logic pulse

amplitude has a wide range, the walk will cause critical deterioration of the time

resolution measurement. However, the effect of the walk in time resolution can be

optimised by applying zero-crossing technique or constant fraction discriminator

methods. The component age and temperature variations in the electrical circuits

for long measurement periods will be contributed as a long term error or drift. As

a result, the time resolution obtained will be worse.

2.4.2.2 Single Channel Analyser (SCA)

Analogue pulse amplitude is directly related to the detected radiation’s energy.

Therefore, a selected signal height will be directly proportional to energy range or

event charge. Discriminators and single channel analysers are used for achieving

energy selection.

An output logic pulse is generated when input signal takes over the threshold

level in a discriminator. The output signal is produced if the input pulse ampli-

tude is inside the window in a single-channel analyser. Therefore, there are two

threshold levels, upper and lower, in an SCA module.

2.4.3 Time Amplitude Converter (TAC)

A time amplitude converter, or TAC, transfers small time intervals between two

pulses into pulse amplitude. Electrical circuits of a TAC module have an on and

off switch for the start pulse and stop pulse. When an input signal is fed to a TAC,

a charged capacitor gives the voltage as proportional to the time interval. After
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a few milliseconds, all switches close down for a short period of time to prepare

for the next start-stop event. Therefore, one output pulse of a TAC will be a

rectangular signal and the pulse height will be the time differences between the

start and stop pulse. A TAC output pulse is fed to a multichannel analyser (MCA)

or an analogue-to-digital converter (ADC) for the pulse height measurement.

2.4.4 Multi Channel Analyser (MCA)

Multi channel pulse height analysers are commonly used in nuclear physics for

recording energy or time spectra. MCAs sort input signals according to the signal

amplitude. The signals are divided into different channels based on an analysis

of the analogue pulses. Each detected event produces an amount of electrical

charge, so the charge will be proportional to the detected photon’s energy. The

charge is collected on a preamplifier to be converted into a voltage pulse with

little added noise. Differentiators and integrators are applied with an amplifier

to improve signal-to-noise ratio and increase the pulse height. Consequently, each

output pulse has a duration in the order of microseconds. Filling the histogram

according to the pulse amplitude and keeping records will give the energy spectrum

of detected incident radiation. A MAESTRO multi channel analyser was used in

experimental measurements. Acquisition data was converted in ROOT software

to find the resolution and important parameters.

2.5 Various Inorganic Scintillator and Experi-

mental Results

This section will discuss experimental results, which have been carried out with

different types of scintillation detector systems. Figure 2.17 shows the experi-

mental setup of detector systems. Various scintillation crystals are coupled with

different types of photomultiplier devices such as APDs, SiPMs and PMTs.

2.5.1 NaI(Tl)

Thallium activated sodium iodide was used broadly as a detector inside positron

emission tomography in its early period. The biggest advantage of using NaI(Tl) as
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Figure 2.17: Experimental set-up for various scintillation detector systems.

a PET detector is that it had excellent light yields compared to other scintillators

at that time. However, its popularity dramatically decreased after the discovery

of new scintillation crystals, such as bismuth germanium oxide (BGO) because

of their more valuable properties. NaI(Tl) has a lower detection efficiency than

BGO for detecting 511 keV energy γ-rays (annihilation photons). In fact, it also

has a relatively ineffective atomic number and density compared to other crystals

(see Table 1.1 in Chapter 1). Thallium doped NaI is a hygroscopic scintillator and

it is not easily packaged for a specific detection volume with keeping away from

moisture for the long term.

2.5.2 BGO

The effective atomic number and density of BGO are much higher than that of

NaI(Tl), so it has better detection efficiency. However, the decay time constant is

very slow with low light output and it is a very costly crystal. Therefore, it is not

preferred for coincidence measurement and BGO is not a particularly good choice

for a PET detector, which is important for the detection of the annihilation.

2.5.3 LSO and LYSO

Lutetium oxyorthosilicate (LSO) and lutetium-yttrium oxyorthosilicate (LYSO)

are different from other scintillators because of their intrinsic background radia-

tion. They contain a natural radioactive element called 176Lu, but this is not a

serious problem for positron emission tomography. Background photons energy in

LYSO or LSO is between 88 keV and 307 keV, which are absorbed by the crystal
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itself. These photons create only 39 counts per second per gram (cps/g) [11, 12].

Setting energy window only for annihilation photons makes these scintillators suit-

able in PET devices to benefit from their very fast decay time constants. After

NaI(Tl), these scintillators have been used in PET devices and have become more

popular in nuclear medicine. They have better 511 keV γ-rays detection efficiency,

coincidence timing resolution, and energy resolution. Being mechanically rugged

and having non-hygroscopic properties also gives them an advantage over other

scintillators. However, they can be very expensive if a large volume is required

for the detector. Many research groups have successfully used these scintillators

inside PET-MRI capability devices. As a result, high-resolution performance in

brain tomography has been obtained [8, 16, 17, 39].

2.5.3.1 Making PET Detector

This section will discuss the making of a simple PET detector array process. In

modern PET, TOF-PET, or PET-MRI devices include more than thousands of

this detector array.

Cutting crystals and physical polishing

Hilger Crystal 3.5×4×60 mm3 LYSO and BGO scintillators were cut by a low

speed diamond wheel saw cutter as shown in Figure 2.18. There, different lengths

of crystals were obtained (10, 20 and 30 mm). After cutting all scintillators, the

York Nano Centre’s lapping machine was applied on the crystals’ cutting sides to

make them smooth. This process was successfully carried out by thick pads for

optical polishing, and then a 5 µm pad was used for fine polishing (Figure 2.18).

Furthermore a polishing method called chemical polishing, is based on heating the

crystals between 110-190◦C with a concentrated acid solution such as phosphoric

acid. The chemical polishing method is applied by a few research groups for the

purpose of improvement of more than 1% scintillation efficiency and energy reso-

lution while reducing cost and polishing process time. Slates et al reported that

chemical polishing is a more suitable and effective way to increase light collection,

which in turn improves energy and timing for narrow rectangular crystals [40]. We

also considered applying chemical treatment to crystals. However, the improve-

ment would be too significant; in addition, this facility is not accessible in the

department.
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Figure 2.18: A diamond wheel saw cutter was used for cutting LYSO and BGO
sticks without damaging the crystals (left). A lapping machine was employed
to make the cutting face of crystals smooth (right).

Reflector

Reflectance materials with high reflectivity play a critical role in the improve-

ment of light collection from the scintillator to the p-layer on the surface of the

photomultiplier diodes (efficient light transportation). Generally, PTFE (Poly-

tetrafluoroethylene) Teflon based reflector, Al foil, and black insulating tape are

used as wrapping materials in detector application technique. First, the detector

is wrapped with PTFE Teflon based reflector to minimise the scintillation light

loss for obtaining optimal light collection. And then Al foil is used to minimise the

ambient light effect. The last layer is wrapped with black insulating tape to ensure

light-tightness. Detector energy resolution can be improved by 2% by wrapping

carefully and using more effective reflector material. Covering the detector with

six layers of Teflon tape and a backing layer with 3M VM2000 radiant mirror film

around the detector successfully reduces the energy resolution from 11.6 % to 7.8

% for a BGO scintillator [41]. In our case, wrapping such a thick material is not

suitable for array structures due to the 2 mm space between the array grid ma-

terial and scintillator. Therefore, each crystal surface is wrapped in several layers

with PTFE thread seal tape 0.075 mm thickness Teflon based reflector and then

very thin radiant mirror film. The entire detector is finally wrapped with black

isolating tape.

Making grid

A three dimension printer was used to make a 4×4 array grid. Each square

size matched the crystal size exactly, adding extra space (≈ 2 mm) for very thin

56



2.5.3 LSO and LYSO

PTFE. First, a prototype array was drawn in SketchUp, a 3D modelling software

program, and then it was printed, as demonstrated in Figure 2.19. After physically

Figure 2.19: An example of an array grid was drawn in Google SketchUp
3D modelling software program with a size similar to the crystals. The array
was obtained from a 3D printer. The main material of the grid was plastic.
4.5×3×10 mm3 LYSO crystals were placed inside the grid after being covered
with several layers of PTFE (thread seal tape 0.075 mm thickness Teflon based
reflector [42]) and then a very thin radiant mirror film.

polishing and cutting scintillation crystals, 16 identical LYSO were placed inside

the grid.

Testing the array detector

4x4 array LYSO crystals were optically coupled to position-sensitive SensL 4x4

array silicon photomultiplier. SensL SiPM array offers the determination of the

depth-of-interaction (DOI), faster response, and high gain in the order of 106 for

each pixel. Visible light sensitivity range is between 400 nm and 850 nm. Each

pixel has 3640 microcells with 35 µm cell size and 200 µm space between two

pixels. Optimum performance of SensL 4x4 array obtains at a low bias voltage

∼30V with 2V above the breakdown voltage. The dark count rate is 8 MHz per

pixel and photo detection efficiency is 10-20% at maximum wavelength (λ max =

520 nm) [12, 43]. The SensL SiPM is connected by flexible printed circuit (FPC)

cables to four separate mother boards as demonstrated in Figure 2.20. This SiPM

can be operated in the magnetic fields by using shielded FPC cables [43]. The

main board reads either individual pixel signal or multiple signal outputs together

(16 pixels) as a large pulse. Electrical circuits of 4x4 array SensL solid state silicon

photomultiplier are shown in Figure 2.21. Each output is connected with other

outputs to FPC cables by a crocodile clip. Therefore, every pixel can be read

and analysed by an amplifier, time-filter amplifier, or oscilloscope. The energy

spectrum was obtained by a radiated detector with a standard 137Cs radioactive

source. Only one pixel signal was sent to the Ortec 572 shaping amplifier and then

fed to a maestro MCA. It only examined energy resolution, not position sensitivity.
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2.5.3 LSO and LYSO

Figure 2.20: SensL 4x4 array of 2.8 x 2.8 mm2 pixel position sensitive SiPM
was connected to an electronic board via flexible printed circuit (FPC) cables.
Output signal can be read either individual pixel or 16 pixels together by readout
board.

(a) Equivalent circuit diagram of SensL 4x4 ar-
ray. Each pixel includes light sensitive Geiger
mode avalanche photodiode connected in series
with a quenching resistor.

(b) Some outlets are grounded and the applied bias.
Two channels are fed into the bias to power 8 of the
16 pixels, which are upper (1-8 pixels) and lower (9-16
pixels) as shown in Figure 2.21(c).

(c) Upper and lower 8 of
the 16 pixels.

Figure 2.21: 4x4 array SensL position sensitive silicon photomultiplier elec-
tronic board circuit. It is used to read output pulses separately or together [12].

In Figure 2.22, the energy spectrum of Cs-137 was found to be very noisy, and

poor energy resolution (∼ 43.8 % at 662 keV). One of the pixel on array SiPM

was broken, so it could cause a noise in the output signal. In addition, detector

wrapping was not sufficiently completed because of significantly less space between

the scintillator and plastic grid, therefore excessive loss of scintillation light.
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Figure 2.22: 4x4 array 16 LYSO scintillator (one crystal size is 4.5×3×10mm3)
were coupled with the SensL 4x4 array silicon photomultiplier. Cs-137 energy
spectrum took only one of the 16 pixel signal outputs. ∼ 43.8 % at 662 keV

2.5.4 CsI(Tl)

Thallium activated caesium iodide inorganic scintillation crystals have a low ef-

fective atomic number and density, but have very high light yield as illustrated in

Table 1.1. Compared to NaI and BaF2, CsI has higher stopping power because

of its relative high density and atomic number, therefore, they have higher γ-ray

stopping power. CsI is cost effective, less expensive, and less hygroscopic material

than NaI(Tl) crystals, but it should still avoid contact with water and high hu-

midity conditions. The physical properties of CsI are independent of the doping

material, so it is easily machined in different shapes due to being soft and plastic.

Generally, CsI is used in space instrumentation or applications in thermal shock

conditions, because it is relatively quite rugged and more resistant to thermal and

mechanical shock conditions [44, 45]. The average decay time constant is relatively

slow (about 1 µs) compared to other scintillators, therefore timing resolution is

undesirable as discussed further in Chapter 4. CsI(Tl) consists of two decay times

with 0.6 µs the fastest component and 3.5 µs the slowest component. It can be

used with suitable shaping time of the electronics, which is between 4 and 6 µs

for the high count rate capability detector [45]. The ratio of the two decay time

component intensities depends on the ionising power of the absorbed radiation if

it is excited with highly ionising radiation such as α-particles or photons. There-

fore, CsI(Tl) scintillation can be used for particle discrimination by pulse shape

analysis [45].
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2.5.5 LaBr3 (Ce)

One of the brightest scintillators, CsI, was obtained from Saint-Gobain crystals

with a quoted 54 photons/keV light yield at 550 nm maximum peak emission. The

optimum sensitivity for normal bialkali photocathode PMT is not well-suited with

light output of the CsI scintillator; that is the reason the light yield is effectively

low [44]. For instance, the amount of the photoelectron yield is only 45% of

the value of NaI [45]. However, the emission wavelength range and sensitivity

of CsI(Tl) is well-matched with photodiode or SiPM. A SensL 4x4 array silicon

photomultiplier was optically coupled with CsI(Tl) scintillation crystal by silicon

grease (EJ-550). All of the pixel output signals were sent to a shaping amplifier,

and then the energy spectrum was acquired by an MCA as shown in Figure 4.27.

Energy resolution was found to be very poor (∼ 19.7 %), but this is unsurprising

Figure 2.23: CsI(Tl) is tested with SensL 4x4 array SiPM. Energy resolution
was found to be 19.7% at 662 keV.

because of its intrinsic resolution and slow component of the light pulses.

2.5.5 LaBr3 (Ce)

Recently a new generation of inorganic caesium activated lanthanum bromide has

become a very popular scintillator, with excellent timing (∼200 ps) and energy
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resolution (∼2.8 % at 662 keV) [12]. The very high light yields (60,700 pho-

tons/MeV) and the detection efficiency of lanthanum bromide give it a definite

advantage over the other scintillators with its fast emission, high stopping power

for γ-rays, and excellent temperature linearity. However, LaBr3(Ce) has internal

activity due to having natural unstable isotopes 138La and 227Ac contamination, so

the background radiation energy range is between 1,500 keV and 2,750 keV [46].

It is also a very hygroscopic material, so it has to be housed in air-tight containers

enclosed with aluminium to protect it from moisture in the air. Scintillation light

transmission is provided by quartz window on the container for readout.

0.5” length x 0.5” radius LaBr3(Ce) was optically coupled with single silicon

avalanche photodiodes by silicon grease. Hamamatsu avalanche photodiodes with

5x5 mm2 and 10x10 mm2 photosensitive areas were used in this measurement, as

illustrated in Figure 2.24. Several layers of PTFE, aluminium foil and black tape

(a) Hamamatsu single
avalanche photodiode with 5x5
mm2 size.

(b) Hamamatsu single
avalanche photodiode with
10x10 mm2 size.

(c) Saint Gobain LaBr3(Ce)
crystal is optically coupled to
APDs with silicon grease.

Figure 2.24: Hamamatsu avalanche photodiodes with (a) 5x5 mm 2 and (b)
10x10 mm 2 effective photosensitive area. (c) 0.5” length x 0.5” radius lan-
thanum bromide is optically coupled to Hamamatsu APDs.

were covered around the detector for light tight and optimum light output. Two

identical detectors were prepared with different sizes of avalanche photodiodes.

Standard 60Co radioactive source (370 kBq) was placed at 0.5 cm distance from

the detector. Radiation exposure time was set to approximately five minutes for

both detector systems. A detector signal was first fed into the Ortec shaping am-

plifier, and then passed to a single-channel Ortec MCA running maestro software.

The signals are then histogrammed into an energy spectrum for analysis. The

energy resolutions were found to be 4.5% and 3.5%, that are the full-width-half-

maximum (FWHM) of 1.17 MeV and 1.33 MeV photo-peaks respectively for 10x10

mm2 APD (Figure 2.25). This result is better than the energy resolutions of 5x5
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Figure 2.25: 60Co energy spectrum was acquired by LaBr3 optically coupled
with 10x10 mm2 APD.

mm2, which were 5.4% for 1.17 MeV and 4.2% for 1.33 MeV. The energy resolu-

tion performance with 10 mm APD was better than a 5 mm APD, mainly as the

quartz window surface area of the scintillation crystal was well-suited with a 10x10

mm2 photosensitive area APD. When the window surface area is bigger than the

sensitive area of the photodiode, the scintillation light transmission number from

the crystal into the photodiode becomes lower than the similar size of photodiode

and quartz window. The optimum obtainable energy resolution is influenced by

the crystal heterogeneity, uniformity in light collection efficiency, photodiode per-

formance, and the number of detected photons statistics. However, the primary

limiting factor in the energy resolution is the scintillation light yield [47].

A 5x5 mm2 APD-LaBr3 detector system was examined inside ∼ 1 Tesla mag-

netic field. Two cylindrical pole electromagnets (dipole electromagnet) use the

electric current to generate constant magnetic field as illustrated in Figure 2.26.

Two coils are surrounded by electrically isolated water with an internal over tem-

perature lock switch. Cooling coils with water allows to obtain higher coil current.

At the university of York magnetism laboratory, one Tesla magnetic field was

obtained by dipole electromagnet.

LaBr3 and 5x5 mm2 Hamamatsu avalanche photodiode were optically coupled

by silicon grease. Then the detector system was placed in one Tesla magnetic

field. Output signal was fed into the shaping amplifier and then sent to Ortec

MCA running maestro software. A standard 137Cs (370 kBq) was located in front
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Figure 2.26: LaBr3 and 5x5 mm2 Hamamatsu avalanche photodiode were
optically coupled by silicon grease. Then the detector system was placed in
one Tesla magnetic field, which is obtained in the university of York magnetism
laboratory. The electric current is used to generate constant magnetic field by
dipole electromagnet (two cylindrical pole electromagnets (black)).

of the detector. The energy spectrum was obtained separately, with and without

magnetic field. Energy resolutions at 662 keV were found to be 6.67% for magnetic

field applied and 6.66% without magnetic field as shown in the statistical fitting

parameters in Figure 2.27. Therefore, there is no magnetic field interference in the

detector’s energy performance.

After this satisfactory result, the same detector was tested in an MRI machine

to examine the interference in the magnetic resonance image. The same set-up

was established in the York Neuroimaging Centre without a radioactive source as

demonstrated in Figure 2.28. A detector was put into a brain phantom, which is a

plastic ball filled with paramagnetic substance. Nuclear magnetic resonance hori-

zontal cross section images were successfully acquired as illustrated in Figure 2.29,

when a scintillation detector system was interfaced in a homogeneous magnetic

field. From top to bottom, there is 5.5 mm gap between each transaxial slices.

The first image is taken in 5.5 mm depth of the phantom surface, and others going

through the depth of the phantom with 5.5 mm gap. As illustrated in Figure 2.29,

there is slight deterioration in the reconstructed MR image of the phantom (bright

white pattern as illustrated by detector). Magnetic field homogeneity must be de-

graded by the detector current and few connectors.
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Figure 2.27: Cs-137 energy spectrum was obtained separately, with and with-
out one Tesla magnetic field. Energy resolutions were found to be 6.67% when
1 Tesla magnetic field was applied. The energy resolution without the magnetic
field was 6.66%.
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Figure 2.28: Magnetic resonance imaging scanner in the York NeuroImaging
Centre. The detector system was placed into a brain phantom, and a cross-
sectional medical image was obtained. While the MRI device was operated for
medical imaging, the power supply of LaBr3-APD detector system was set to
work and each stage was checked on the oscilloscope.
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2.5.6 Phoswich (Phosphor Sandwich) and PARIS

Experimental measurements must be carried out without a radioactive source,

because using a standard source in the NeuroImaging research centre is strictly

forbidden due to health and safety local rules for ionising radiation. Therefore,

an energy spectrum could not be taken with a scintillation detector inside 3 Tesla

MRI field. However, as seen previously in Figure 2.27, we know that there is no

significant magnetic field impact on the energy spectrum. Yet, there was a high

frequency seen as a noise on the oscilloscope signal during the data acquisition

time, which originated from the Larmor frequency. That frequency (127.7 MHz)

is referred to the rate of precession of the magnetic moment of the proton around

the external homogeneous fields in 3 Tesla MRI. Therefore, the shielding box could

reduce of the noise on the detector caused by the radio frequency. It also needs

to be shielded to avoid electronic oscillations such as power supply, amplifier,

and MCA module. Non-magnetic and good electrical shielding materials, such as

copper and aluminium can be used for shielding.

2.5.6 Phoswich (Phosphor Sandwich) and PARIS

Two or more scintillators optically coupled with each other like a sandwich is called

a phoswich detector. This type of detector was developed for efficient detection

of low energy radiation in a higher energy ambient background radiation. Some

phoswich detectors were also designed to detect all energies simultaneously and

separately. Phoswich scintillators must have dissimilar pulse shape characteristics

and different rise and decay times. Therefore, rise time analysis of signals from

a phoswich detector gives an opportunity to distinguish incident radiation, which

can be a mixture of charged particles (β) and gamma rays. It also allows for the

separation and identification of which events occurred in which scintillators.

PARIS (the Photon Array for studies with Radioactive Ion and Stable Beams)

is a new, highly efficient gamma ray calorimeter used to detect gamma-rays in

the large range energy from 100 keV to 50 MeV. The combination of a 2”x2”x2”

size LaBr3:Ce fast scintillator and a 2”x2”x6” size NaI(Tl) slow scintillator was

sealed in an aluminium can with glass windows for light transfer. That is optically

coupled with the PMT (Hamamatsu R7723-100), which in some cases can be easily

modified for APD or SiPMs. Figure 2.30 demonstrates the PARIS phoshwich

detector configuration.
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2.5.6 Phoswich (Phosphor Sandwich) and PARIS

Figure 2.30: A single phoswich detector with a PMT is shown in the middle.
The detector is designed by the combination of a fast scintillator LaBr3 and
slow scintillator NaI(Tl). Data accusation was acquired by DC252 digitiser. (a)
The blue signal illustrates a single event detected by both scintillation detector
combination, which is called phoswich. After applying the pulse shape analyser
on the mixed signal, two separate pulses were acquired by using the difference
between two scintillators’ decay time. (b) The slow decay time component be-
longs to NaI(Tl), which is illustrated as cyan colour signal tracer. (c) The white
signal with fast decay time constant (nearly 10 ns) was obtained by LaBr3(Ce).

A Phoswich should give a good performance for high-energy range (to 50 MeV)

gamma rays as well as low-energy range (from 100 keV). We have investigated the

performance of the existing phoswich detector system and LaBr3 response at high

energy γ radiation, using radioactive source and nuclear reactions. Experimental

set-up, which was performed with three phoswiches and a single LaBr3(Ce) detec-

tor system is illustrated in Figure 2.31. 27Al(p,γ)28Si resonance reaction occurred

with a 992 keV proton beam delivered by an accelerator at IFJ PAN in Kraków,

Poland. Populated energy levels are clearly seen with LaBr3 up to 12 MeV as

illustrated in Figure 2.32.

Pulse shape discrimination had to be applied to define separate contribution

of the slow (NaI(Tl)) and the fast component (LaBr3) of the phoswich detector.

An advanced Pulse Stretcher (APS) module, which was developed in Milano, was

used for the discrimination method. Two Gaussian signals were obtained by the
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2.5.6 Phoswich (Phosphor Sandwich) and PARIS

Figure 2.31: An experimental set-up is performed with three phoswiches and
a single LaBr3 detector system. Proton beam with 992 keV was conducted by
Van de Graaff accelerator in Kraków.

Figure 2.32: The populated energy levels for LaBr in 27Al(p,γ)28Si resonance
reaction (Ep=992 keV).

APS module, which were proportional to the amplitude of the fast signal com-

ponent (only LaBr3(Ce)) and proportional to the energy of the entire signal (the

combination of LaBr3(Ce) and NaI(Tl)) [48]. These two amplitudes are obtained

from the APS module as called Qfast and Qslow respectively, and then the 2D plot

is acquired, which is the Qfast amplitudes versus Qslow amplitudes, as illustrated in

Figure 2.33(a). Therefore, the separation between two different components of the

phoswich (LaBr3(Ce) and NaI(Tl)) is clearly seen in Figure 2.33(a). The events

corresponding to the energy release only in fast scintillator LaBr3 or slow crystal
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2.5.6 Phoswich (Phosphor Sandwich) and PARIS

(a) Qfast is proportional to the amplitude of the fast signal component. Qslow is proportional
to the energy of the combination of LaBr3(Ce) and NaI(Tl) amplitude. 2D plot is obtained
from the Qfast amplitudes versus Qslow amplitudes.

(b) Matrix points projection on tilted axis (indicated as a dash line collected charge in fast
and slow gates for 6.13 MeV gamma rays in Figure 2.33(a)) gives the total energy spectra
(the full addback spectrum).

Figure 2.33: (a) PARIS phoswich detector collected charge in fast and slow
gates for 6.13 MeV gamma rays. (b) Addback spectrum acquired from the
projection on the tilted axis (Eγ) [48].

NaI indicated as two semi-diagonal stripes. The events inside these two stripes

regions demonstrated the shared energy deposition between two scintillations in
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phoswich (Compton Scattering process). Each scintillation components of the

phoswich had different energy gains; the gain matched gamma energies (Eγ) were

defined as a tilted axis (indicated as a dash line) to obtain the total energy spectra.

Matrix points projection on this axis gives the full addback spectrum as shown

in Figure 2.33(b). If a gamma ray interacts with a single crystal (LaBr3 or NaI),

its full energy will be deposited resulting in collected charge proportional to this

energy (Photoelectric effect is shown as semi-diagonal stripes in Figure 2.33(a)).

In Compton scattering process, a gamma may interact with two or more crystals.

Therefore, the energy of gamma ray will be shared by the crystals. In this case,

the process is called addback, in which the collected charge by each crystal can

be summed up to determine of the incident gamma ray energy. Consequently,

the total deposit energy in the detector, is measured using the addback mode to

produce clean γ-ray spectra with good energy resolution [48].

Phoswiches were tested for more than just resonance reaction using the pro-

ton beam facility in the PAN lab in Krakow. Three phoswiches’ performances

were also examined by using Agilent DC252 (10 bits, 4 GS/s) digitizer system.

The Experimental setup is shown in Figure 2.34 with different PARIS detectors

(LaBr3(Ce)-NaI(Tl), LaBr3(Ce)-Csl and LaBr3(Ce) were optically coupled with

Hamamatsu R7723-100 PMTs). The right of Figure 2.34 illustrates optically bond

Figure 2.34: At the institute of nuclear physics in Krakow Poland, three
phoswich detector systems were operated and tested. A radioactive source was
placed in a different position than the detector. Coincidence time measurement
was also successfully completed by using the Agilent DC252 digitiser system.
On the right, the bond between NaI and LaBr scintillators is clearly visible.
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surface between NaI and LaBr3, and the glass window is coupled with PMT. The

performance of detectors was studied with standard radioactive sources by placing

these at different positions on the detector. Readout signals were recorded by the

digital system (Agilent DC252 10 bits, 4 GS/s)) and analogue MCA module. Co-

60 spectra for two PARIS detectors are obtained by MCA (see Figure 2.35(a)) and

writing code in ROOT 1 software to analyse digitiser data (see Figure 2.35(b)).

1ROOT is a scientific software module to deal with big data processing, statistical analysis,
and storage.
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(a) 2”x2”x2” LaBr3(Ce) PARIS scintillation detector was coupled with
Hamamatsu R7723-100 PMT. Analogue MCA module was acquired for
the spectrum.

(b) 2”x2”x2” LaBr3:Ce and backed 2”x2”x6” NaI(Tl) PARIS poswich scin-
tillation detector was coupled with Hamamatsu R7723-100 PMT. Spec-
trum obtained with Acqiris DC252 (10 bits, 4 GS/s) digitiser.

Figure 2.35: Cobalt-60 energy spectra were taken separately using analogue
and digital algorithms. (a) 3.67% and 3.26% energy resolution were found for
only LaBr3 detector at 1.33 MeV and 1.17 MeV respectively. (b) 5.33% and
4.43% energy resolution were found for phoswich detector system (LaBr3(Ce)-
NaI(Tl)) at 1.33 MeV and 1.17 MeV respectively. LaBr3 detector system shows
better energy performance and less signal-to-noise ratio.
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LaBr3 energy resolution is lower (3.67% at 1.17 MeV) than phoswich detector’s

energy resolution (5.31% at 1.17 MeV). A combination of LaBr3 and NaI phoswich

detector’s signal-to-noise ratio is worse than only a LaBr3 detector system noise

ratio. In this experiment, the timing performance of PARIS detectors was also

tested by using annihilation photons (Na22 radioactive source) in the PAN lab;

however, digitiser data analysing in ROOT has not been completed. At the IPN

in ORSAY, the original PARIS phoswich cluster (as shown in Figure 2.36) was

tested with various targets and energetic proton beams. High energy addback

Figure 2.36: The cluster module comprising nine PARIS poswiches detector.
Four phoswiches were tested in Tandem-ALTO at the IPN in Orsay, France.

capabilities (as detailed previously) were tested by using 11Bi(p,γ)12C reaction at

7.2 MeV with detecting gamma rays up to 22.56 MeV. In this experiment there was

a GANAS collaboration, so the new generation scintillators were also tested such

as, CeBr3, SrI2, CLYC, and GYGAY. The data, obtained from that experiment is

yet to undergo analysis.
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Chapter 3

Characterisation of SensL

Blue-Sensitive Silicon

Photomultipliers

3.1 SensL Silicon Photodiode

Semiconductor light sensors have gained a favourable position through photo-

multiplier tubes (PMTs) in the last few decades. SensL silicon photomultipliers

(SiPMs) provide blue sensitivity and separate fast-timing signals beside standard

output. These sensors are produced using innovative designs and employ novel

manufacturing techniques. Figure 3.1 illustrates that the internal capacitance of

each microcell is coupled with individual diodes, resulting in a low capacitance

of fast output, which is a distinctive aspect of SensL’s SiPMs (order of 2 to 4

percent of microcells’ total capacitance). For instance, SensL silicon photomulti-

plier’s capacitance for 6x6 mm2 effective area is reduced from 3400 pF to 48 pF.

That offers a significant advantage regarding coincidence-resolved time measure-

ments (as discussed in Chapter 4). SensL SiPMs are also designed with minimal

undesirable resistance. Fast output, capacitor and a quenching resistor for a single

microcell are labelled in Figure 3.1. The electrical diagram (Figure 3.1) shows 12

microcells of SiPM, which form only a fraction of the total number of cells. The

number of microchips included depends on the size of the silicon photomultiplier;

for example, for the work presented in this thesis, we employed 6x6 mm2 SiPMs

(containing 18980 microcells).
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3.1 SensL Silicon Photodiode

Figure 3.1: Schematic diagram of 3x4 microcell arrays for SensL blue sensi-
tive silicon photomultiplier. A low light sensor has three separate terminals:
cathode, anode, and fast output as labelled [49]. A unique modification in
the standard SiPM structure is developed by SensL resulting in an additional
terminal, ultra fast output signal.

Complementary metal-oxide-semiconductor (CMOS) technology is used in the

manufacture of wafers, which are the main products of the SensL standard sil-

icon photomultiplier. That holds several benefits: it allows for the provision of

a high density of logic functions on the chip, maximum uniformity, and low heat

waste. Moreover, the low temperature coefficient and the homogeneity of the SiPM

structure reduce variations in the breakdown voltage of the sensor. Using CMOS

technology, the P-N junction is extremely close to the surface of the SiPMs (Fig-

ure 3.2), thus, it can detect shorter wavelength photons (from blue light to UV)

as a direct consequence of having excellent photo detection efficiency. In addition,

when the silicon photomultiplier is fabricated in semiconductor materials, called

the polysilicon, CMOS technology [49] minimise metal and oxide layers damage to

the SiPM during the process. Therefore, dark current and noise are reduced with

C-series SiPMs. Dark current is improved from 10-24 µA for SensL B series SiPM

to 0.68-1.75 µA with SensL C-series SiPM as indicated in Table 3.1.

The performance of the blue sensitive silicon photomultiplier and comparison

with the vacuum tube (PMT), or old generation SiPMs, such as Hamamatsu

MPPC, are presented in this chapter. SensL first marketed the B-series blue-

sensitive SiPM, and then made the C-series silicon photomultiplier available with

an improvement in properties such as lower dark current, higher photon detection

efficiency (PDE) and optimised breakdown voltage stability. Therefore, C-series

photosensors were also examined to provide an improved comparison between B

and C type SiPMs. Important properties of SiPMs are provided in Table 3.1.
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3.1 SensL Silicon Photodiode
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3.2 Experimental Set-up

Figure 3.2: P-N junction structure for SensL B- and C-series silicon photo-
multiplier. Incoming scintillation photon (hν) first enter the positive charge of
the hole region. The positively doped region is called p+, and its thickness is
extremely thin 0.1 µm. The depletion region is filled with undoped silicon to
produce electron-hole pairs, which is labelled ”n” in Figure with 4 µm thickness
and 20%-80% filling factor. The depletion region is on the surface for optimi-
sation of blue light ( 420 nm), which distinguishes it from standard SiPMs by
detecting short wavelengths (sensitive range 300-800 nm). The average energy
to create electron-hole pairs in silicon is about 3.6 eV with 1.2 eV band gap
energy. If the incident radiation has enough energy to produce electron-hole
pairs, applied reverse bias voltage accelerates generated electrons from p+ layer
to n+ layer [54, 55].

3.2 Experimental Set-up

The SensL B-series blue sensitive silicon photomultiplier was coupled with LaBr3

to evaluate the character of B-type SiPMs (Figure 3.3(a)). The SensL SiPM has

an integrated cathode and built-in resistance; the read-out electronics were set-up

according to the scheme is shown in Figure 3.3(b). The SensL blue sensitive silicon

photomultiplier has two separate outputs: fast and standard terminals. A standard

terminal, which is the signal from the cathode or anode terminal depending on

the applied bias voltage polarity and application.

A standard terminal mode was used to obtain characterisation measurements

of the SiPM, such as temperature dependency and energy measurement. While

the fast output mode was studied in the coincidence-resolved time measurement

(as detailed in chapter 4).
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3.2 Experimental Set-up

(a)

MCA

Cs-137Scintillator

HV

SiPM50 Ohm

Amp Amp : ORTEC 571 Shapping Amplifier

Fast Output

u

bc

bc

b

bc

MCA : ORTEC Maestro multi channel analyser

b

(b)

Figure 3.3: (a) SensL blue sensitive B series 6 mm SiPM with two separate
outputs (standard and fast timing signals). A SiPM was coupled with 0.5 inch
length x 0.5 inch diameter LaBr3 and wrapped with PTFE. (b) Experiment
setup used for initial SiPM tests. An Ortec 556 NIM power supply is used,
which provides ± 1-2 mV stability in applied bias voltage. Readout in standard
terminal, positive bias is applied to the cathode, so the signal was taken from
the anode with positive polarity. When the standard terminal was used in the
measurement, fast output was connected to a 50 ohm terminal.

When the negative bias is applied to the anode with the cathode at 0V, the

signal polarity of the fast terminal will be positive, and a standard signal will

obtain from the cathode with negative polarity. That is the recommended biasing

and readout of SensL B- and C-series SiPMs in fast output mode as illustrated in

Figure 3.4. In this measurement, we have used a standard readout mode. Positive

bias is applied to the cathode, so the signal was taken from the anode with positive

polarity. The value of the applied bias and the ambient temperature is changeable

according to the measurement (as detailed in next sections). The variety of the

standard radioactive source distance from the detector was fixed at 0.5 cm in the

measurement.

Figure 3.4: Recommended negative biasing and readout signal in fast terminal
mode. In terms of standard readout mode, positive bias is applied to the cathode
and readout signal is used from the anode with connecting 50 Ohm terminal to
the fast readout terminal [50].
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3.3 Energy Resolution - Voltage and Temperature Variation

3.3 Energy Resolution - Voltage and Tempera-

ture Variation

The performance of the B-series SiPM detector system was investigated as a func-

tion of bias voltage at both room temperature (Figure 3.5(a)) and low temperature

(Figure 3.5(b)). The experimental set-up is explained in the previous section. An

Ortec 571 module (CR-RC pulse-shaping technique and amplifier) was fed by the

standard readout signal of the sensor to generate a smooth pulse. All tests were

conducted using 0.5 µs shaping time to produce spectra in Ortec MCA. Shaping
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Figure 3.5: Energy resolution at 662 keV as a function of bias voltage for
SensL B-series SiPM coupled to LaBr3 crystal at (a) room temperature of 21.6
± 0.1 ◦C and (b) lowered temperature of 6.1 ± 0.1 ◦C.
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3.3 Energy Resolution - Voltage and Temperature Variation

time constant should be chosen at least three times the scintillation decay time

constant (∼26 ns decay time constant for LaBr3) in order to ensure complete in-

tegration of the scintillator signal for good energy resolution. This shaping time

constant is long enough to allow full light collection from the scintillator. To elim-

inate the effect of environmental conditions on the measurement (such as dark

current), a temperature controlled chamber was used to stabilise the temperature

and cooling or heating within ± 0.1◦C uncertainty. A Fluke digital thermometer

probe was attached on top of the SiPM board (after wrapping the detector system

to make it light tight) using black tape to monitor the temperature. A detector

system, which was an optical combination of LaBr3 and SensL B series 6 mm2

active area SiPM, was placed inside the temperature chamber (see Figure 3.7).

A standard 137Cs source (370 kBq) was located inside the chamber at a 0.5 cm

distance from the detector system. The isolated lid then covered the temperature

controller chamber; almost 10 minutes later, the temperature variation started

to be stable. When the temperature stabilised, the measurement was acquired.

The performance of the detector system was studied at two different temperatures

(21.6 ± 0.1 ◦C room temperature and 6.1 ± 0.1 ◦C low temperature). The applied

bias voltage uncertainty was ± 1-2 mV supplied by Ortec 556 NIM power.

Investigation of the bias voltage effects on the energy resolution at fixed tem-

perature was studied as illustrated in Figure 3.5 for two different temperatures.

The SiPM exhibits the best performance regarding energy resolution for bias volt-

ages between 30 V and 31 V; if the voltage is increased above 31 V, the full energy

peak resolution in the spectrum begins to deteriorate and the dark current rapidly

increases, which was also observed during the measurement. However, energy res-

olution at 662 keV with an error at room temperature is not as fluctuated as at the

low temperature measurement. Therefore, the performance at room temperature

appears to be more stable than at a lowered temperature of 6.1◦ (see variation in

Figures 3.5(a) and 3.5(b)). However, better energy resolutions were obtained at

low temperature than room temperature. The best energy resolution was found

to be at 30.592 ± 0.002 V bias value in the previous measurement. That is why

the applied bias voltage was fixed at that bias voltage. The energy resolution was

also found to be nearly stable with temperature variation from 5.0 ± 0.1◦C to 40.0

± 0.1◦C as shown in Figure 3.6.
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3.4 Voltage vs. Current Temperature Dependence
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Figure 3.6: Energy resolution against temperature.

3.4 Voltage vs. Current Temperature Depen-

dence

To stabilise the temperature during the data acquisition, a temperature controlled

chamber, providing stability to ±0.1◦C; was used (Figure 3.7). A Fluke digital

thermometer probe was attached on top of the SiPM board using a black tape to

monitor the temperature. A detector system was placed inside the temperature

chamber. In this measurement, a radioactive source was not used, as we mea-

sured only dark current, without producing light yield. Then, the temperature

Figure 3.7: Detector system set-up inside the thermally-isolated temperature
controlled chamber. (a) A Fluke digital thermometer probe was attached to the
sensor board by a black tape, and it was then placed inside the chamber. (b)
A thermally isolated lid was used to cover the chamber after the experimental
set-up was completed.
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3.4 Voltage vs. Current Temperature Dependence

controller chamber was covered by a thermally isolated lid. Almost 10 minutes

later, the temperature variation started to stabilise, after setting the desired tem-

perature. When the temperature appeared to stabilise on the digital and chamber

thermometers, the measurement was acquired.

Figure 3.8 illustrates the bias voltage against the dark current for SensL B

series 6 mm SiPM. The current measurement was performed by a Keithley model
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Figure 3.8: Bias voltage against the dark current for SensL B series. A Keith-
ley model 6487 Picoammeter/Voltage supply and temperature controlled cham-
ber are used at different ambient temperatures from 6◦C to room temperature
21◦C.

6487 Picoammeter/Voltage supply at different ambient temperatures from 6◦C to

room temperature 21◦C. After a breakdown of voltage, thermally generated dark

current electrons become more dominant. When the environment temperature

rises, the dark current also increases as shown in Figure 3.8.

Figure 3.9(a) shows the dark current as a function of the applied bias voltage

for SensL B and C series SiPMs. According to the graphs, the dark current of the

C-series SiPM was improved by SensL manufacturing methods. CMOS technology

reduces the damage to SiPM during the manufacturing process, so dark current is

improved from 10-24 µA to 0.68-1.75 µA as detailed in the previous section. Dark

current versus bias voltage for Hamamatsu 2x2 MPPC array (a single module

has 3 mm2 photosensitive area) was also examined as shown in Figure 3.9(b).

After the breakdown on the plot’s dark current suddenly increases, but before

breakdown voltage, the dark current is very low almost zero. Overall, the dark
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3.4 Voltage vs. Current Temperature Dependence
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(b) The 2x2 array was made from four 3 mm S12572-
010P Hamamatsu MPPC modules.

Figure 3.9: Dark current against bias voltage for different detector systems:
(a) for B- and C-series SiPMs at room temperature; and (b) for 6 mm2 size active
area 2x2 array Hamamatsu MPPC at room temperature. The measurement was
carried by a Keithley model 6487 Picoammeter/Voltage supply.

current increases as a square of the reverse voltage (V2) as a similar trend with

the literature [29].
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3.5 Voltage vs. Gain and Gain vs. Temperature dependence

3.5 Voltage vs. Gain and Gain vs. Temperature

dependence

Voltage and temperature significantly influence the detector gain. If the detector

is used in the high or low ambient temperature applications, the gain value of

the detector has to be constant, because a change in temperature will vary the

detector gain and detector performance. When temperature control is difficult,

applied reversed voltage can be modified and vice versa; therefore, we studied

gain relationship with temperature and bias voltage. The performance of the

detector was examined between 5 and 40◦C for SensL 6 mm B series SiPM by

using the thermally-isolated chamber. A standard 137Cs radioactive source (370

kBq) was placed inside the temperature chamber with a 0.5 cm detector distance

as explained in the previous section. Photon spectra were acquired for various

reverse voltage. An increase in each bias voltage value gives the extraction in the

detector gain as a distance of the full energy peak in the spectrum [56]. Therefore,

we have determined the full energy peak position (channels) as a detector gain.

Figure 3.10 illustrates the voltage variation with photoelectrons peak distri-

bution (channels) at room temperature (Figure 3.10(b)) and at low temperature

(Figure 3.10(a)). As indicated in Figures 3.10(b) and 3.10(a), linear fitting pa-

rameters are used to determine the breakdown voltage (horizontal intercept gives

the breakdown voltage; y = p0 + p1.x ). SensL B series SiPM’s breakdown voltage

is decelerated between 24-25 V in the technical data sheet as shown in Table 3.1.

According to the plots, the calculated breakdown voltage was found to be 26.2 ±
0.6 V for room temperature measurement (4.8 % agreement with technical data

value) and 25.8 ± 0.2V for low temperature measurement (3.2 % agreement with

technical data value). Any deterioration during the ambient temperature stabil-

isation by a thermally isolated chamber could cause the shift in the breakdown

voltage, which can create errors. The centroid of the 662 keV (mean value) shifts

by one channel per 2.84 ± 0.05 mV and 1.94 ± 0.01 mV at room temperature and

low temperature respectively according to the linear fitting parameters. Similar

measurements were also carried out with SensL 6 mm C type SiPM and 6 mm

Hamamatsu MPPC module (2x2 array which is made by four 3 mm S12572-010P

MPPC). The breakdown voltage was found to be 26.23 ± 1.02 V for SensL C-SiPM

and 66.3 ± 6.3 V for Hamamatsu MPPC (see the Table 3.1 for breakdown voltage

value obtained from technical datasheet). Voltage dependence of the detector gain
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3.5 Voltage vs. Gain and Gain vs. Temperature dependence

(a) Gain versus bias voltage at room temperature (21 ± 0.1 ◦C)

(b) Gain versus bias voltage at low temperature (6 ± 0.1 ◦C)

Figure 3.10: An optically coupled SensL B series 6 mm SiPM-LaBr3 detector
system, 137Cs radioactive source and thermally isolated temperature controlled
chamber were used in this measurement. Energy spectra with various bias
voltage were recorded. Gaussian distribution mean value (channels), which is
defined as a detector gain, was plotted as a function of bias voltage (a) at room
temperature and (b) at a lowered temperature.

is also found to be 2.85 ± 0.10 mV for SensL C series SiPM that is very close to

SensL B type SiPM voltage-gain relationship. Hamamatsu MPPC sensor is less

affected by the change in voltage, one channel shifts per 8.5 ± 0.6 mV.

In this part of the measurements, we investigated temperature dependence of
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3.5 Voltage vs. Gain and Gain vs. Temperature dependence

the gain and bias voltage. The change in temperature also influences the detec-

tor gain. When the temperature rises, the possibility of collision between carries

(electrons or holes) and crystal lattice increases. The hot electron-hole pairs passes

through the depletion region losing their energy by more lattice scattering than

cold caries scatters. Therefore, caries could not have sufficient energy to overcome

a higher applied bias voltage (potential difference). Pairs with insufficient energy

can not generate more electron-hole pairs and avalanche discharge in the depletion

region [57], resulting in a decrease in the sensor breakdown voltage. The break-

down voltage of the SiPM changes with temperature variation, so the applied bias

change will depend on the change of the temperature. Figure 3.11 shows linear re-
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Figure 3.11: The temperature dependence of the detector gain (at 662 keV
full energy peak position, mean value of the Gaussian distribution as a chan-
nel). An optically coupled B-series SiPM-LaBr3 detector system was irradiated
by standard 137Cs (370 kBq), after placing the experimental set-up inside the
thermally isolated temperature control chamber. Data acquisition was recorded
between 5.0 ± 0.1 ◦C and 40.0 ± 0.1 ◦C at stable bias voltage (29.014± 0.001
V).

lationship between gain and temperature (inverse proportion). The gain increases

with decreasing temperature and vice versa. A single centigrade variation will

shift 3.72 ± 0.13 channels in the gain. According to the fitting parameters, 0.52

± 0.02 percentage of gain changes per degree ◦C (-0.52 ± 0.02 %/◦C), which is

not very close to the measured value of SensL B series SiPM (-0.8%/◦C [50]).

If it is not possible to keep the sensor temperature constant, the bias voltage

must be modified to obtain the stable gain. The gain is not directly affected

by the temperature; it is directly related to the breakdown voltage. The plot
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3.5 Voltage vs. Gain and Gain vs. Temperature dependence

in Figure 3.12 shows the linear correlation of the overvoltage with temperature.

The breakdown voltage grows with a slope of 22.73 ± 0.72 mV/◦C. In conclusion,

Figure 3.12: The temperature dependence of the breakdown voltage mea-
surement at fixed centre of peak position (Channel number). Optically coupled
SensL B series 6 mm SiPM-LaBr3 and standard 137Cs (370 kBq) radioactive
source were located inside the thermally isolated temperature chamber as de-
tailed in the introduction. At 662 keV full energy peak mean was fixed on the
MCA and recorded voltage variation to shift the central of the peak for each
temperature value. When the temperature increases, the applied bias voltage
was increased until the full energy peak position matched with the reference
spectrum peak position. Data acquisition was recorded between 5 and 40◦C
with 0.1 uncertainty.

temperature, bias voltage and breakdown voltage dependence of the detector gain

were studied by using full energy peak position obtained from a radioactive source

(Cs-137). Overall, measurement results are in agreement with the literature and

the technical data provided by SensL and Hamamatsu.

88



3.6 Energy Resolution

3.6 Energy Resolution

Various scintillation detector systems were exposed to standard radioactive sources

such as 241Am (5.3 kBq activity and 59.54 keV gamma energy), 137Cs (370 kBq

activity and 661.73 keV gamma energy) and 22Na (370 kBq and 511 keV - 1274

keV gamma energies). Different scintillation crystals were optically coupled with

a photomultiplier (PMT or SiPMs) to compare the energy response of the scin-

tillation detector systems. In this measurement, applied bias voltage was fixed

with 1-2 mV uncertainty, and all measurements were taken at 22.2 ± 0.1 ◦C. An

Ortec 572 amplifier amplified a readout signal with an appropriate shaping time

(depending on the decay time constant of the scintillation), and then an amplified

output signal was fed to an Ortec Maestro multichannel analyser to acquire the

energy spectrum. Figure 3.13 illustrates the representative energy spectra of the
241Am, 22Na, and 137Cs (with clearly seen 32 keV X-ray emitted from 137Ba) for

the LaBr3-SensL C-SiPM detector system (data acquisition was acquired individ-

ually).
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Figure 3.13: LaBr3 was optically coupled with SensL 6 mm C-type SiPM, and
the detector was irradiated by various radioactive sources. Applied bias voltage
was set to 30 ± 0.001 V and all measurements were taken at 22.2 ± 0.1 ◦C.
The readout signal was amplified by Ortec 572 amplifier with 0.5 µs shaping
time; then an amplified output signal was fed to an Ortec Maestro multichannel
analyser to acquire the energy spectrum.
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3.6 Energy Resolution

The ability of differentiation between slightly different energies of gamma rays

or characteristics of X-rays is one of the critical properties of the γ-rays spectrom-

eter, which is called an energy resolution. It is defined as the width FWHM (Full

Width Half Maximum) or % full width half maximum of the photopeak energy

(Eγ: energy of the radiation). Recorded energy spectra were plotted in ROOT,

and then energy resolutions were calculated by Equation 3.1;

FWHM(%) =
∆E

Eγ
× 100 (3.1)

where ∆E is defined as the full width at half maximum height in photopeak.

Table 3.2 provides the energy resolution of the detector systems in the energy

range 32 keV to 1274 keV. According to the calculated energy resolution, the

Detector
Energy (keV)

32 59.54 511 662 1274
LaBr3 - SensL B-SiPM 26.18 ± 0.62 - 7.38 ± 0.03 5.86 ± 0.02 3.95 ± 0.05

LaBr3 - SensL C-SiPM 23.40 ± 0.46 12.04 ± 0.10 6.14 ± 0.02 5.09 ± 0.04 3.21 ± 0.04

LaBr3 - Hamamatsu MPPC - - 13.44 ± 0.09 10.10 ± 0.02 7.49± 0.14

LaBr3 - Hamamatsu PMT 33.35 ± 0.09 26.50 ± 0.73 6.80 ± 0.04 5.27 ± 0.02 2.07 ± 0.15

CeBr3 - SensL C type SiPM 51.03 ± 0.47 - 7.37 ± 0.09 8.84 ± 0.71 4.06 ± 0.67

LYSO - SensL C type SiPM 55.44 ± 0.17 - - 8.37 ± 0.02 -
CsI - SensL C type SiPM 30.55 ± 0.11 16.22 ± 0.46 6.33± 0.03 5.36 ± 0.02 3.57 ± 0.05

Table 3.2: Calculated energy resolutions for different detector systems at the
different energy from 32 keV to 1274 keV. LaBr3, CeBr3, LYSO, and CsI scin-
tillation crystals were optically coupled to Hamamatsu PMT (R9880U-210 fast
photomultiplier tube as detailed in chapter 4) and MPPC, SensL B and C-series
SiPMs. Detectors were irradiated using 22Na and 137Cs radioactive sources.

resolution of the higher energy gamma rays is better than the energy resolution

of the lower energy γ-rays. The width of the FWHM is directly dominated by

the created photoelectrons at the photocathode (for PMT) or depletion layer (for

SiPM). Consequently, higher energy gamma rays create more electrons than lower

energy radiation. Broad-full energy photopeaks were generated by the low energy

gamma rays or X-rays, which will give poor energy resolution. Not only the

energy resolution of the scintillation detector system is affected by the gamma ray

energy, but it is also influenced by the scintillator light yield, detector size, light

collection which are related to wrapping quality and optical interference between

photomultiplier and scintillator, and photomultiplier properties such as quantum

efficiency. In this measurement, we had to use diverse scintillation crystal sizes and

shapes, for example, 6X6X10 mm3 for CsI, and 0.5 inch length 0.5 inch diameter
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3.7 Detector Linearity and Efficiency

cylindrical LaBr3. Therefore, the photosensitive area of the photomultiplier tubes

or SiPMs was not properly matched with the face of the scintillation crystals.

3.7 Detector Linearity and Efficiency

A 152Eu (403 kBq) radioactive source was used to investigate detector linearity for

both SiPMs and PMTs. Europium-152 disintegrates mainly by electron capture

(72.1%) and β decays (β− emission to 152Gd (27.9%) and β + emission to 152Sm

(0.027%)). Table 3.3 shows the gamma emission energies and their yields1 per 100

disintegration of the gamma rays emitted in each decay mode for 125
63Eu89. Different

Gamma Emission Energy (keV) Yields [%]
γ1,0 (Sm) 121.78 28.41
γ2,1 (Sm) 244.70 7.55
γ1,0 (Gd) 344.28 26.59
γ3,1 (Gd) 411.12 2.24
γ13,9 (Sm) 443.97 2.80
γ7,1 (Gd) 778.90 12.97
γ10,2 (Sm) 867.38 4.24
γ9,1 (Sm) 964.08 14.50
γ9,0 (Sm) 1085.84 10.13
γ11,1 (Gd) 1089.74 1.73
γ10,1 (Sm) 1112.08 13.41
γ14,2 (Gd) 1212.95 1.42
γ14,1 (Gd) 1299.14 1.63
γ13,1 (Sm) 1408.01 20.85

Table 3.3: Strong gamma rays, emitted from 152Eu decay, energies and their
intensities (yields[%]) [58]

types of optically coupled detector systems were irradiated by 152Eu source. En-

ergy spectrum obtained in the range between 40.11 keV X-ray and 1408 keV

gamma rays. Gaussian distribution fitted full energy peaks, and then pulse height

photopeak centroid were determined as a channel number. The energy linearity

was obtained for each detector system as illustrated in Figure 3.14. This data

was recorded at a constant temperature of 21.6◦C. A non-linear relationship was

observed as expected, because of the contribution of the finite number of photo-

cells into the signals. The quadratic fitting parameters (non-linearity correction)

1More than 1% gamma emission yields are listed in the Table 3.3.
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will be used to convert the pulse amplitude histograms to the energy spectra. Ac-

cording to the plot, linearity of Hamamatsu MPPC (2x2 arrays)-LaBr3 is much

better than others and is particularly better than SiPM. This conclusion was also

established in similar research [59]. The other interesting result is that the detec-

tor performance with the PMT is not as good as with the SiPM or MPPC. Each

Figure 3.14: Pulse height photopeak centroid of the observed full energy peaks
in the Eu-152 spectra as a channel number vs. input radiation energy. A non-
linear relationship was observed as expected. A black dash line represents the
lineal calibration line.

Eu-152 spectra was calibrated by its specific non-linearity corrections. Figure 3.15

shows the representative calibrated 152Eu energy spectrum with its non-linearity

corrections.

Furthermore, detection efficiency was investigated for three different detector

systems: LaBr3-PMT, LaBr3-C SiPM, and LaBr3-MPPC. The efficiency curve was

generated by the calibrated energy spectrum of Europium-152, as illustrated in

Figures 3.16(a), 3.17(a), and 3.18(a). The full energy peaks (except 40.11 keV X-

ray, as we were only interested in gamma emissions) were fitted with the Gaussian

distribution plus a continuous background function fitted with written sort code

in ROOT. Therefore, the fitting parameters with their statistical errors of the

photopeaks were determined, such as peak height, photopeak centroid (mean),

and standard deviation (σ). If photopeak includes the combination of two or

more full energy peaks because of the poor energy resolution of the detector as

mentioned in Figure 3.15, combined Gaussian fitting function plus a continuous

background should be used for peak fitting. Finally, a normalisation factor with
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Figure 3.15: Optically coupled LaBr3-SensL C-SiPM detector system was irra-
diated by 152Eu source (403 kBq). Energy spectrum obtained in the range from
40.11 keV X-ray to 1408 keV gamma rays. The combination of the photopeaks
in the spectrum is the results of the poor energy resolution. Nonlinear correction
was found from the quadratic fitting parameters, which was y=x21.8×10−4 +
0.34x + 23.38 ; where x is the channel number, and y is the energy of the incident
radiation. Therefore spectrum was calibrated using this non-linear correction.

its uncertainty was found from the Gaussian fitting parameters and the relative

intensity of the interested source gamma ray. Each full energy peaks’ intensities

with their errors were recorded corresponding to the gamma rays’ energy in keV.

The efficiency data points with errors was fitted by the Equation 3.2,

ε = EXP [(P0 + P1.×+P2.×2)−P3 + (P4 + P5.Y + P6.Y
2)−P3 ]

− 1
P3 (3.2)

where × is defined as a log(Eγ
E1

), and Y is determined as a log(Eγ
E2

); here Eγ is

the gamma ray energy, E1 is the low energy constant (100 keV), and E2 is the

high energy constant (1000 keV). The values of the seven fitted parameters (from

p0 to p6) are represented in Figures 3.16(b), 3.17(b), and 3.18(b). In the fitted

parameters, p0, p1, and p2 give the efficiency at low energies, and p2 is not

necessary can be default [60]. The other parameters (p4, p5, and p6) are defined

as high energies efficiency. Between two regions (low and high energies efficiency

curves) the interaction parameter is given by p3. If p3 is large, there will be

sharper turnover at the top between two efficiency curves. In contrast, if p3 is

small, the efficiency curve turns over gradually. At low energy, the efficiency of

Hamamatsu MPPC is higher than the efficiency for PMTs and SensL C-SiPM. In
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3.7 Detector Linearity and Efficiency

terms of the efficiency at the high energy, SensL C-SiPM and Hamamatsu PMT

are similar to each other.
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(a) Calibrated energy spectrum of Europium 152 for LaBr3- Hamamatsu
(R9880U-210) PMT detector.
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Figure 3.16: LaBr3-Hamamatsu (R9880U-210) PMT detector efficiency curve.
(a) Calibrated 152Eu energy spectrum obtained from LaBr3-Hamamatsu PMT
detector. Gaussian fitting function included the background and some fitting
function was accrued by a combined Gaussian function as detailed in the text.
(b) Detection efficiency curve for PMT. These curve data points were obtained
from eight photopeaks (Gaussian fitting curves labelled as red), which are clearly
seen in the spectrum. p0, p1, and p2 are the efficiency at low energies; p4, p5,
and p6 are the efficiency at high energies.
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(a) Calibrated energy spectrum of Europium 152 for LaBr3-C SiPM detector.
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Figure 3.17: LaBr3-C SiPM detector efficiency curve. (a) Calibrated 152Eu
energy spectrum obtained from LaBr3-C SiPM detector system. (b) Detection
efficiency curve for SensL C series SiPM.
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(a) Calibrated energy spectrum of Europium 152 for LaBr3-Hamamatsu array
of multi-pixel photon counter (S12572-010P) detector.
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(b) Detector efficiency curve for Hamamatsu multi-pixel photon counter
(S12572-010P).

Figure 3.18: LaBr3-Hamamatsu array of multi-pixel photon counter (S12572-
010P) detector efficiency curve. (a) Calibrated 152Eu energy spectrum obtained
from LaBr3-Hamamatsu array of multi-pixel photon counter (S12572-010P) de-
tector system. (b) Detection efficiency curve for Hamamatsu array of multi-pixel
photon counter (S12572-010P).
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3.8 Result

Several important properties, such as temperature dependency, gain dependence

of voltage and temperature, and the effect of bias voltage on energy resolution and

detector efficiency play a critical role in nuclear detection instrumentation. This

chapter investigated important properties and compared the results obtained from

standard silicon photomultiplier (Hamamatsu MPPC), PMTs, and SensL B and

C-types SiPMs.

Energy resolution measurement with SensL silicon photomultiplier was found

to be more stable at room temperature than at the low temperature. The energy

resolution decreases with reducing the temperature due to the decline in the dark

count rate or dark current. Regarding the dark current, SensL C-types SiPM has

lower dark current than B-series SiPM (it reduces from 10-24 µA to 0.68-1.75 µA),

because SensL improved their manufacturing methods by using CMOS technology.

Therefore, SiPM homogeneity becomes better with reducing the damage on the

detector during the production process. Dark current increases as a square of the

bias voltage in our measurement, which is consistent with the literature.

Another important parameter gain was also studied, which found the linear

correlation between the bias voltage and the detector gain at room temperature

and low temperature respectively. If the temperature increases, the collision pos-

sibility between electron-hole pairs and silicon crystal lattice rises. Therefore,

pairs could not have sufficient energy to overcome the reversed potential inside

the depletion region and for the avalanche process resulting in a drop in the gain.

As similar to the literature, we obtained the reverse proportional relationship be-

tween gain and temperature. However, a single centigrade temperature variation

will shift 3.72 ± 0.13 centroid of the photopeak (change in the gain), which was

not very close to the value provided by the manufacturer. The gain is not directly

related to the temperature; it directly depends on the breakdown voltage. The

breakdown voltage increases if the temperature increases, but the gain will reduce.

Studied temperature, bias voltage, and breakdown voltage dependence of the gain

were consistent with the literature and the scientific data values provided by the

manufacturers (SensL and Hamamatsu).

Finally, we investigated the detector energy linearity with the best result with

Hamamatsu MPPC, which is also in agreement with similar research. Further-

more, studies were presented in the Chapter 4 by focusing only on SensL C types
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SiPM with its special readout signals for timing applications.
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Chapter 4

Coincidence Resolved Time

(FWHM) Measurement Based

Scintillation Detectors

4.1 Silicon Photodiode Timing Performance

Coupling scintillator crystals with photomultiplier tubes is a well-established ap-

proach to γ-ray detection. The technology is, for example, used extensively in the

field of nuclear physics and finds widespread application in medical imaging, where

it is employed in PET (positron emission tomography) and SPECT (single-photon

emission computed tomography). Silicon photomultipliers offer an attractive re-

placement for photomultiplier tubes in certain applications, particularly when it

is desirable to operate in regions with high magnetic fields. Historically, the per-

formance of silicon photodiode devices is poor in terms of timing resolution, which

would disbar applications such as time-of-flight PET in medical imaging, or fast-

timing measurements in nuclear physics [61]. The approach taken in PET is to

determine lines of response through coincident detection of annihilation photons;

hence, good timing resolution is crucial. If the timing resolution of the detectors

is high enough (subnanosecond) then it enters the regime of time-of-flight PET

(TOF-PET), in which the line of response can be reduced in length according to

the time difference recorded between the detected photons [62]. Additionally, im-

proving timing resolution reduces false coincidences. Therefore, there is a strong

drive to improve the timing resolution of detector elements used in PET.
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It is striking that the demands of contemporary medical imaging significantly

overlap with those of experimental nuclear physics. Of great interest in nuclear

physics are fast-timing measurements, which allow the lifetimes of excited states of

the order of 100 ps to be measured. In the past, these were conducted with barium

fluoride detectors, using the fast component of the BaF2 signal to extract timing

information. Increasingly, next-generation scintillators such as LaBr3 are being

used because they offer both excellent timing resolution and energy resolution,

which makes it easier to select γ-ray transitions of interest [63, 64].

In summary, developing scintillation detector systems with excellent timing

resolution that can operate in high magnetic fields is of great value in both med-

ical imaging and nuclear physics. Attractive in this regard are newly-available

blue-sensitive silicon photomultipliers such as the B-series or C-series available

from SensL, since they will operate directly in a high magnetic field, but also

have a fast timing (< ns) output. Their blue sensitivity is particularly relevant,

as they may be coupled with next-generation scintillators, such as LaBr3, which

are known for their excellent energy resolution and detection efficiency. Moreover,

the number of collected photoelectrons is inversely proportional to the square of

the time resolution. Quantum efficiency and gain times collection efficiency are

two major factors in the timing resolution [65]. The quantum efficiency for silicon

photomultiplier is higher than 80% in the blue light range, but it is required to

reduce the absorption length from 5 µm for red light absorption to 1 µm for blue

light absorption. That is why blue light sensitive photodiode junction must be

located at a shallow at depth of 0.5 µm or less [61], as discussed in Chapter 3.

Therefore, the blue sensitivity of the photomultiplier is critical for achieving op-

timal timing resolution. Several important parameters also indirectly affect the

timing performance, such as the capacitance (Cd) of SiPM microcells, quenching

resistance (Rq), and readout electronic noise (S/N). These parameters can play a

critical role in the pulse decay time, and in particular, affect the pulse rise time.

The exponential time constant (τ), timing resolution (σt) and signal-to-noise ratio

(S/N) are described by Equations 4.1, 4.2 and 4.3 respectively [66, 67],

τ = Cd.(Rq +Rinput.Nmicrocells) (4.1)

σt =
N

dV/dt
=

√
k.T.(F − 1)Cd

2.28.Qc(e, h).BWA

(4.2)
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S

N
=

Qc(e, h)√
k.T.(F − 1).Cd

(4.3)

where k is the Boltzmann constant, T is the temperature, Qc(e,h) is the collected

charge, and F and BWA are the noise factor and bandwidth. The characteristic

exponential time constant of a typical silicon photomultiplier is between 30 and

50 ns, depending on the type of scintillation crystals. However, PMTs’ time con-

stant can be a few nano seconds (lower than SiPM). According to Equations 4.2

and 4.3, time resolution (σ t) is proportional to the square root of the detector

capacitance (
√
C). The internal detector capacitance from the fast terminal to

the cathode is 12 pF for 3x3 mm2 active area SensL C type SiPM, which consists

of 4774 microcells with 35µ size [54]. The internal capacitance increases to 48 pF

with a larger dimension of 6 mm SiPM with 18980 microcells. As a result of the

difference in the values of capacitance, the time resolution would be doubled when

dimensions are increased from 3 mm to 6 mm SensL C type SiPMs. According to

the result of the coincidence timing resolution measurement (which was success-

fully achieved by Kevin O’Neill et al.), the full width at high maximum (FWHM)

was 226 ps for 3x3x15mm3 LYSO crystals coupled to 3 mm SiPMs. Therefore,

one would expect the FWHM to be approximately 452 ps for 6 mm SiPMs [68].

A similar timing measurement was completed with a 3 mm SiPM coupled with

a 3x3x10 mm3 LYSO crystal, and obtained 180 ps [66]. Yeom et al. report tim-

ing resolution of 290 ps for 10 mm-long LYSO crystals coupled with Hamamatsu

MPPC S10931-050P 3 × 3 mm2 silicon photomultipliers [69]. If 6 mm SiPMs

were used in these measurements, then one would expect FWHM of 360 ps and

580 ps respectively for the SensL C-series SiPM and Hamamatsu MPPC (Multi-

Pixel-Photon-Counter). It should be noted that although the time resolutions are

worse for larger dimensions, for various nuclear physics and nuclear astrophysics

applications, larger dimensions are needed and can be used for measurements that

do not require the best possible time resolutions.

The primary focus of the present work is to compare the coincidence timing

resolution of SensL SiPMs (both the B-series and C-series blue-sensitive types

with 6 mm square active area [50, 54]), standard SiPMs (Hamamatsu S12572-010

with a 3 mm square effective area [52]) and fast PMTs, in conjunction with next-

generation scintillators. A Hamamatsu 6 mm square active areas MPPC device

was not available. Therefore, 2x2 array of MPPC (with a 3 mm square active area)

was used (Figure 4.1(a)), thus allowing a comparison with SensL devices with 6
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mm square active area (Appendix A.2). The PMTs were the Hamamatsu R9880U-

210 and super bialkali R3998-100-02 (see Table 4.1 for the relevant parameters).

(a) 2x2 arrays were made from four 3 mm S12572-010P
Hamamatsu SiPMs. Each SiPM is connected as a parallel
to the circuit (to obtain proper combined readout signal
because the circuit readout will be the total of the each
MPPC currents with parallel connection). The electrical
connection is shown in Appendix A.2

(b) Hamamatsu PMT, SensL blue-sensitive SiPM and scintilla-
tion crystals.

Figure 4.1: Photomultiplier and scintillator used for timing measurements.

The performance of these devices was evaluated in combination with crystals of

novel scintillators: a 0.5 inch diameter x 0.5 inch long LaBr3, a 0.4 inch diameter

x 0.4 inch long CeBr3, 6 x 6 x 25 mm3 CsI and 3.5 x 4 x 10 mm3 LYSO crystals

(Figure 4.1). The measurements were conducted using analogue as well as digital

systems. Timing measurement using a digitiser was successfully completed after

improving the rise time of the C-series SiPM’s fast-timing signals, as explained in
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Properties
Hamamatsu SensL SiPMs Hamamatsu PMTs

SiPMs B- and C-Series R3998-100-02 R9880U-210

Bias Voltage (VBR+V) (65 ∓ 10) + 4.5 (24-25) + 5 1000 1000

Rise Time (ns) - 1 3.4 0.57

Pixel Size (µm) 10 35 - -

Pixel Number 90 000 18 980 - -

Capacitance (pF) 320 48 - -

Transit Time (ns) - - 23 2.7

Gain 1.35x105 4.3x104 1.0x106 2x106

Blue Sensitivity index - - 13.5 15.5

Peak Wavelength (nm) 470 420 350 400

Diameter (mm) or
3 x 3 6 x 6 25.4 16

Active Area (mm2)

Table 4.1: The properties of SiPMs and PMTs studied in the present work.

the section 4.3.5. Signal processing was completed using leading edge and constant

fraction methods.

4.2 Timing Measurement with Analogue Setup

For subsequent timing resolution measurements, different combinations were ex-

plored for the 0.5 inch x 0.5 inch LaBr3 and 0.4 inch x 0.4 inch CeBr3 crystals

optically coupled either with the 6 mm SensL B-series blue-sensitive silicon photo-

multipliers or with the Hamamatsu PMTs. Since the quality of crystal wrapping

and surface treatment can change the timing resolution, a consistent technique

was employed in which the crystal and photomultiplier were coupled using Bicron

BC-630 silicone grease. The exposed areas were wrapped with a PTFE reflector

with 3 mm effective thickness (optimum thickness for scintillation light-tight and

reflection), and a few layers of black tape, to avoid interaction between the ambient

light and the detector. Figure 4.2 shows the electronic block diagram used in the

analogue timing measurement. A 22Na (451 kBq) source was placed between two

detector systems; all data were obtained with an Ortec maestro multichannel anal-

yser. The fast output of the SiPM is fed into the Ortec 820 fast-timing amplifier,

and then a signal is sent to the Ortec 473A CFD module. Ortec 416A gate delay

generators are used for adjusting the time difference between the start and stop

signals to the desired value, typically to place the peak in the middle of the ADC
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4.2 Timing Measurement with Analogue Setup

Figure 4.2: Electronic block diagram used for analogue coincidence timing
measurements.

range. Cathode signals are used for the energy gate by applying an appropriate

threshold level for picking up signals generated by 511 keV annihilation photons.

Therefore, coincidence signals are sent to the MCA module with the energy gate

to obtain a desirable timing spectrum. When the threshold level and energy gate

are adjusted, each module output is checked step-by-step, with as low a threshold

value as possible to eliminate signal noise. The intrinsic coincidence-resolved time

(FWHM) of the electronics was found to be 76.28 ± 0.01 ps from the Gaussian-

fitting parameters (Figure 4.3). For this measurement, a Philips PM5786 pulse

generator was used for the initial pulses. Results from a systematic investigation

of the coincidence-resolved time (FWHM) for different combinations of crystals

and sensors are given in Table 4.2. The best result of 365 ps (at 511 keV) was ob-

tained from a LaBr3 crystal coupled to a fast Hamamatsu PMTs-R9880U-210, but

the results listed in Table 4.2 were not close to literature values. SensL achieved

the coincidence-resolved time measurement 180 ps for 3x3 mm2 SiPM coupled

to 3x3x10 mm3 LYSO as discussed in the section 4.1. In addition, SiPM (3x3

mm2) based in combination with LaBr3 (3x3x5 mm2) timing performance was

found approximately to be 100 ps FWHM (nearly 15 mm positioning resolution in

TOF-PET) for 511 keV annihilation photons emitted from 22Na point source [70].

Another research in coincidence-resolved time measurement was conducted with

a large effective area of 4x4 mm2 near UV-SiPM (sensitive to ultraviolet) cou-

pled with a 4x4x5 mm3 30% Cerium doped LaBr3 resulting with a 100 ps time

resolution [71].
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4.2 Timing Measurement with Analogue Setup

Analogue Intrinsic Time Resolution
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Figure 4.3: Intrinsic coincidence resolved time of the electronic modules (76.28
± 0.01 ps).

FWHM
Scintillator ←→ Photomultiplier FWHM after subtraction of intrinsic

(ps) (ps)

LaBr3 ←→ PMT-R9880U-210
373 365

LaBr3 ←→ PMT-R9880U-210

LaBr3 ←→ PMT-R9880U-210
381 373

CeBr3 ←→ PMT-R9880U-210

LaBr3 ←→ PMT-R9880U-210
518 512

LaBr3 ←→ SiPM

LaBr3 ←→ PMT-R3998-100-02
684 677

LaBr3 ←→ SiPM

LaBr3 ←→ PMT-R9880U-210
690 686

CeBr3 ←→ SiPM

CeBr3 ←→ PMT-R3998-100-02
720 716

LaBr3 ←→ SiPM

LaBr3 ←→ SiPM
852 849

LaBr3 ←→ SiPM

CeBr3 ←→ SiPM
1017 1014

LaBr3 ←→ SiPM

Table 4.2: Coincidence-resolved time for various detector systems measured
by analogue setup.

NIM modules used in the analogue measurement were not perfectly suited for

the type of fast signals present in these measurements. Therefore, there is room for

improvement by using a digital acquisition and processing method. In addition,

the active area of the PMTs and SiPM did not exactly match the surface area of

the scintillation crystals, as unfortunately it ’s hard to make specific shapes with
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4.3 Timing Measurement with DT5742 Digitiser

very hygroscopic inorganic scintillation crystals, such as LaBr3 and CeBr3. As a

result, there was a loss of light collection by the sensor, which will also influence

coincidence timing resolution.

4.3 Timing Measurement with DT5742 Digitiser

The SensL C type silicon photomultiplier was preferred to the B-series SiPMs

for a digital timing measurement. Figure 4.4 shows that the signal-to-noise ratio

improved with the C-series SiPMs from 6.6 to 12.9 with better signal amplitude.

The SensL improved the manufacturing process in the C-SiPM. Less damage to

the depletion region and better homogeneity are successfully developed by CMOS

technology, resulting in a low dark current, and low noise, as detailed in Chapter 3.

That novel technology does not influence the SiPM rise time because Geiger dis-

charge time and the recovery time controls the decay time and the rise time of the

signal. Both parameters increase with the photodetector capacitance; therefore,

the large area of SiPM will be slower than a small area photodiode. Scintillation

crystal rise and decay time are also affected by the readout signal shape.

A fast Hamamatsu R9880U-210 PMT, SensL C type SiPMs and Hamamatsu

MPPC 2x2 arrays (6x6 mm2 photosensitive area, as shown in Figure 4.1(a)) are

coupled with various scintillation crystals such as LaBr3, CeBr3, LYSO and CsI

for digital timing measurements (Figure 4.1(b)). A raw signal must be fed to an

appropriate time filter amplifier such as an Ortec 820 FTA to optimise the signal

and filter the noise. Digital signals are obtained by CAEN DT5742 16+1 channels

12 bit 5GS/s digitiser (Figure 4.5). The software was written in C++ and analysed

in ROOT. Two different standard methods are applied separately to the analysis:

leading edge and constant fraction (see sections 4.3.1 and 4.3.2 for more details).

The electronic block diagram is shown in Figure 4.6 to stabilise time measurement

with fast Hamamatsu LaBr3-PMT detector systems. One LaBr3-PMT detector

system was fixed, while several others were tested one-by-one in combination with

this reference detector.

Coincidence-resolved time (FWHM) of 136 ps for two identical LaBr3-PMT

detector systems was achieved (Figure 4.7). The leading edge method was applied,

and a suitable threshold level was identified after the defined energy gate (511 keV

annihilation photons).
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4.3 Timing Measurement with DT5742 Digitiser

Figure 4.4: Fast-timing signals obtained by SensL B- and C-series SiPMs after
coupled to LaBr3. Bias voltage was at -28V for both silicon photomultipliers.
Signal-to-noise ratio improved from 6.6 to 12.9 with C-series SiPMs. Therefore,
the time resolution is reduced with SensL B-series SiPMs from C-series SiPMs.
The fast readout signal shape is bipolar, and the rise time is much quicker than
the standard readout signal (for standard mode and fast signal mode connections
see Chapter 3.

Figure 4.5: Picture of a DT5742 desktop waveform digitiser with 16 chan-
nels, a trigger, and other connections. A CAEN Waveform digitiser was used
to obtain accurate and very fast time measurement (which can achieve few
picoseconds time resolution).
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4.3.1 Leading Edge Method and Energy Gate

Figure 4.6: Electronic block diagram for two identical detector systems: the
combination of LaBr3-PMT detectors. The 708 Philips discriminator generated
appropriate signals for the coincidence unit. A C04020 logic module gave AND
signals for trigger input on the digitiser. If two signals were generated simulta-
neously, then the digitiser trigger allowed acquisition of signals fed to channel 0
and channel 1.
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Figure 4.7: Gaussian fit function obtained from two identical LaBr3-PMT de-
tector systems after using the leading edge method and finding the best thresh-
old level for two different spontaneous signals.

4.3.1 Leading Edge Method and Energy Gate

Two identical signals were generated by a Philips PM5786 pulse generator for

intrinsic time resolution and two detector systems were radiated by a radioac-

tive source for CRT (Coincidence Resolving Time) measurements. Digital data

acquisition was conducted with suitable NIM modules such as an amplifier and

discriminator. The recorded coincidence data were then analysed. The software
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4.3.1 Leading Edge Method and Energy Gate

was written in C++ and run in conjunction with the ROOT package for an anal-

ysis of the signals according to the leading edge method. Several important steps

were applied for the signal processing in the software. First, two signals, gener-

ated at the same time, inverted if they were negative, and then subtracted from

the baseline. Second, the constant discriminator level (threshold) was applied as

shown in Figure 4.8.
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Figure 4.8: Two identical pulses generated from a Philips PM5786 pulse gen-
erator. The software was written in C++ and the analysis was carried out
using the ROOT package in order to find crossing points. The time differences
between the two pulses were then calculated.

Different values were chosen for the constant discriminator levels, depending

on the signal height for non-identical pulses. In order to find the first crossing

points, upper and lower threshold levels were recorded by using predefined thresh-

olds. When the code found two bin numbers that were close to the threshold

level, the crossing point was accurately calculated by a quadratic function, rather

than a linear function (Figure 4.9). Then, the software calculated the time differ-

ence between the two different pulses and repeated the same calculation for 5000

coincidence pulses (Figure 4.10). Finally, the Gaussian distribution plotted and

then obtained FWHM from the fitting parameters (FWHM = 2.35 x σ t) [24].

However, plotted Gaussian distribution does not tell which energy gamma ray is

in coincidence with which the other gamma ray. Recorded time coincidence of

two logical signals can occur accidentally or from Compton scattering events in

coincidence. In the analogue measurement, single-channel analysers were used to

set only one gamma ray (511 keV for 22Na) for each detector. In order to improve

the timing resolution in the digital measurement, the energy filtering method must

be used, and Compton scattering events and accidental coincidences must be sep-

arated from the annihilation events (511 keV). For this reason, another software

was developed based on the pulse height. The amplitude versus time difference
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4.3.1 Leading Edge Method and Energy Gate
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Figure 4.9: Blue and red colour two identical signals are produced by a Philips
PM5786 pulse generator. A previously defined discriminator level was first
crossed with blue signal and then a red signal. A quadratic fitting method was
used to calculate the first crossing point at a discriminator level for each pulse
separately.
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Figure 4.10: The identical two signals (blue and red) were generated by a
Philips PM5786 pulse generator. After finding the first crossing points for each
signal, the time differences between the two signals were recorded to create a
Gaussian distribution for electronic time resolution (intrinsic time resolution)
as illustrated in Appendix A.3.

was then plotted on a 2D histogram, which allowed us to define the energy gate

(Figure 4.11). The software was modified to include the energy gate and then the

Gaussian distribution of the time differences was plotted, as shown in Figure 4.12.

In this plot, coincidence-resolving times for each case were found to be 409 ± 9 ps

for without the energy gate and 371 ± 5 ps after applying the energy gate. It is

clear that more accurate coincidence-resolved time measurement could be achieved
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4.3.1 Leading Edge Method and Energy Gate

(a) Amplitude vs. time difference in 2D histogram for C-SiPM coupled to LaBr3.

(b) Amplitude vs. time difference in 2D histogram for PMT coupled to LaBr3.

Figure 4.11: Amplitude versus time difference 2D histogram corresponding
to (a) SensL C-SiPM and (b) Hamamatsu PMT-R9880U-210 coupled to LaBr3.
Annihilation photons and Compton scattered photon events are clearly seen.
Only the annihilation photons (511 keV gamma) were used for timing resolution
calculations; the rest of the data were ignored in the software.

with the energy gate.
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4.3.1 Leading Edge Method and Energy Gate
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sigma is improved by eliminating Compton scattering and noise during the data
analysis process from 0.87 ± 0.02 to 0.79 ± 0.01 .
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4.3.2 Constant Fraction Method

4.3.2 Constant Fraction Method

The second method is constant fraction: the pulse-shaping process is shown in

Figure 4.13. The raw signal was inverted, delayed, and amplified with constant

value, and was added to the raw-signal. The final signal (Figure 4.13 (bottom))

(a) Orginal LaBr3-PMT detector fast timing readout signal without pulse shaping

(b) Orginal signal was inverted, delayed and amplified.

(c) Added two signals, whhich one is the original signal, and second one is inverted-delayed-amplified
signal.

Figure 4.13: Signal processing in the constant fraction timing method. (a) A
raw LaBr3-PMT detector signal. (b) Inverted, delayed, and amplified signals.
(c) Added resulting from top and middle signals.

had zero crossing points after the highest point, as shown in Figure 4.14. The

software recorded the first zero crossing point in memory. A similar procedure

was applied for the other detector’s coincidence signals, and this was recorded

in the second memory. Therefore, the time differences for the two detectors’

signals were calculated by subtracting two recorded values. This calculation was

repeated for 5000 coincidence signals after picking up only the 511 keV energy

range as explained above. Time resolution was obtained using the constant fraction

method, but the result was not as good as that obtained using the leading edge
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4.3.3 Filtering Noise

method. For instance, intrinsic time resolution was found to be 127 ± 3 ps with

the constant fraction method, but 70 ± 1 ps with the leading edge method. The

constant fraction method can lead to very poor timing resolution if there is a pulse

shape distortion, poorly shaped, or noisy pulses [72]. SensL fast readout signal

of SiPM is not as good as the standard readout mode, the pulse shape changes

from pulse-to-pulse. Therefore, we preferred to use the results calculated from

the leading edge method, rather than that obtained using the constant fraction

method.
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Figure 4.14: First zero crossing points of the signals after the peak. Difference
between these two points gave the time differences between two signals.

4.3.3 Filtering Noise

In the software, a filtering procedure for the signal noise was also used, and then

the signal was amplified. The common digital filter method known as a moving

average filter was applied for a specific data length (from 3 to 10 data length). In

this filtering, the average value of the data length was subtracted from the original

data. Therefore, the new data was much smoother than the raw data without high

frequency noise. Figure 4.15 illustrates an example of the moving average filter

method applied to 10 data length.

However, coincidence-resolving time (FWHM) did not improve after filtering

the noise; for example, 616 ± 9 ps was found for C-SiPM coupled with a LaBr3

and a Hamamatsu fast PMT-R9880U-210 coupled with the other LaBr3 that was

found at 338 ± 7 ps without a moving average filter.
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4.3.4 C-Series SiPMs without Balun

(a) LaBr3-C SiPM detector fast timing terminal readout signal.

(b) Original signal subtracted for moving to the baseline.

(c) Digital filter method (moving average filter) was applied to 10 data length.

Figure 4.15: (a) LaBr3-C SiPM detector signal from fast timing terminal.
(b) Signal subtracted for baseline and inverted if necessary. (c) Digital filter
method, known as a moving average filter was applied to 10 data length resulting
in smooth data and eliminating the high frequency noise component. It is also
amplified 1.5 times higher than the raw signal to obtain a better rise time for
the lowest threshold level as possible.

4.3.4 C-Series SiPMs without Balun

For the case of the fast Hamamatsu PMTs optically coupled with LaBr3, there was

a coincidence-resolved time or resolution (FWHM) of 136 ps (Figure 4.7). After

optimising the timing measurements for these detector systems, one of the Hama-

matsu PMT-LaBr3 detectors was replaced with LaBr3-SiPM. An Ortec 820 fast

timing amplifier (FTA) was used to obtain the desired signal from the timing out-

put of SensL C type SiPMs, as schematically shown by an electronic block diagram
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4.3.4 C-Series SiPMs without Balun

in Figure 4.16. Impedance matching is significantly important for RF/microwave

Figure 4.16: Electronic block diagram for coincidence time measurement of C
type SiPM-LaBr3 and PMT-LaBr3 detectors. An Ortec 820 fast timing amplifier
was used to generate an appropriate signal from a C-SiPM fast terminal readout
to send to the discriminator and channel 1 in the digitiser system. Two different
output signals of the discriminator fed into the coincidence unit. A CO4020
module was arranged for an AND logic unit. If the two detector signals occur
at the same time, the digitiser trigger allows data to be recorded from channel
0 and channel 1. One of the detector signals was delayed to monitor both
coincidence signals efficiently on the screen.

design when the digital signal is extremely fast. In higher frequency, tolerance will

be less, so the PCB designer must be kept at 50 ohms during the transmission.

The fast readout signal (48 pF) is significantly smaller than the standard read-

out signal (3400 pF) in C-SiPM. A transimpedance amplifier can not be used for

low capacitance; instead, any RF style solution can be used with connecting 50

ohms impedance. That is why 50 Ω was connected to the standard signal during

the data acquisition. FTA signals are fed into one channel in the digitiser and

discriminator for the trigger. A CO4020 logic unit allowed the generation of co-

incidence triggers using AND logic. The trigger was then fed into the digitiser

to acquire coincident-timing signals from the two detectors. The intrinsic time

resolution (FWHM) of the electronics was found to be 70 ± 1 ps from the leading

edge method (Appendix A.3). A Philips PM5786 pulse generator was used for

electronic timing measurements. Coincidence-resolved time measurements were

studied for several detector systems; the results are given in Table 4.3. According

to Table 4.3, there was a major issue with the Ortec 820 FTA when it was used for

C type SiPM’s timing signal. The output from FTA module was rather different

from the input signal in shape. There were two parts of the signal: inverted and
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4.3.4 C-Series SiPMs without Balun

FWHM
Scintillator ←→ Photomultiplier FWHM after subtraction of intrinsic

(ps) (ps)

LaBr3 ←→ PMT-R9880U-210
136 ∓ 6 117 ∓ 7

LaBr3 ←→ PMT-R9880U-210

LaBr3 ←→ PMT-R9880U-210
150 ∓ 5 133 ∓ 5

CeBr3 ←→ PMT-R9880U-210

LaBr3 ←→ PMT-R9880U-210
869 ∓ 14 867 ∓ 14

LaBr3 ←→ C-SiPM (With ORTEC 820 FTA non-inverted part)

LaBr3 ←→ PMT-R9880U-210
486 ∓ 9 481 ∓ 9

LaBr3 ←→ C-SiPM (With ORTEC 820 FTA inverted part)

LaBr3 ←→ PMT-R9880U-210
338 ∓ 7 331 ∓ 7

LaBr3 ←→ C-SiPM (Without amplifier)

LaBr3 ←→ PMT-R9880U-210
437 ∓ 4 431 ∓ 4

LaBr3 ←→ B-SiPM (Without Amplifier)

Table 4.3: Coincidence-resolved time for various detector systems measured by
a digital system (without a transformer). Coincidence-resolving time resolution
was very different from the PMT measurement. There was a major issue with an
Ortec 820 FTA when it was used for C type SiPM’s timing signal. The output
from the FTA module reshaped the original signals with inverting them, but
should not according to the module information provided by the manufacturer
data. Therefore, the coincidence-resolved time resolution was found to be 338
± 7 without using any amplifier, which is better than using the FTA.

non-inverted. That may be related to the fact that the raw signal has a bipolar

shape while the module only processes a negative part as expected (Figure 4.17).

When the non-inverted part made the coincidence-resolved time calculation in the
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Figure 4.17: LaBr3-C series SiPM fast-timing signal fed into the Ortec 820
fast-timing amplifier. The amplification part of the signal seemed to invert, but
this module cannot invert the signal. Therefore, a small non-amplified part of
the signal should be the fast component of the detector signal.

software, the timing result was lower than with the inverted section. That explains
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4.3.4 C-Series SiPMs without Balun

the timing resolution we found was not accurate. Therefore, the Ortec 820 FTA

was not suitable for a SensL fast-timing signal. The coincidence resolving time

resolution was found to be 338 ± 7 ps at 5 mV threshold level and without using

any amplifier, which is better than using FTA.

In addition, we investigated how the bias voltage affects coincidence-resolving

time measurement (FWHM): Figure 4.18 shows this parabolic relationship. In this

Figure 4.18: Dependence of the coincidence resolving time resolution
(FWHM) and applied bias voltage from 27 V to 35 V. The detector systems were
LaBr3-SensL C-series SiPM and LaBr3 optically coupled to PMT. An Ortec 820
fast-timing filter amplifier (FTA) was not used in the measurement.

measurement, the SensL C-type SiPM-LaBr3 detector’s timing output is directly

connected to the digitiser without any amplification (the Ortec 820 fast timing

filter amplifier was not used. Applied bias voltage was adjusted from 27 V to 35

V to find the optimum bias voltage, which minimises the coincidence resolving

time resolution. In the data analyses process, the leading edge method was used

with setting threshold level at 20 mV. The trend was found what expected, and

the result is consistent with the literature [66, 73, 74]. When the applied reversed

voltage increases, the detector gain and photodetection efficiency (improvement in

the photon statistics [73]) also increase. The higher gain gives a better rise time

and signal-to-noise ratio [74]. Noise becomes less important in the higher pulse

amplitude. Consequently, coincidence resolving time resolution becomes lower

until the noise becomes more dominant in the signal. After that bias voltage,

the noise negatively impacts the time resolution. According to the plot, a 6 mm2

SensL C-SiPM does not need to be used with very fast amplifiers between 33 V

119



4.3.5 C-Series SiPMs with a Balun

and 34 V bias voltage. However, current amplifiers must use to minimise the noise

in the signal for good time resolution.

4.3.5 C-Series SiPMs with a Balun

Photodiode current is commonly converted into the usable voltage by a tran-

simpedance amplifier; however, a very low capacitance of the fast terminal does

not allow that. Therefore, a microwave-RF style solution was applied by connect-

ing 50-ohm impedance directly connected to coaxial cable. However, for optimum

performance from the fast timing signal of SiPM with 3 mm2 or 6 mm2 effective

area, that is not a suitable solution as this is a higher capacitance than a 1 mm2. In

that situation, it is highly recommended to connect an RF transformer, such as the

RFXF9503, into the fast output for providing impedance matching and improving

the fast output signal amplitude [50, 54, 76]. The standard readout signal and

fast timing signal work against each other (this is not important ground and the

currents are equal in magnitude), which is called a balanced signal. A balun is an

electric device which converts a balanced signal into an unbalanced signal or vice

versa. After connecting the balun to the circuit, the standard output work against

the electrical ground and the fast readout carries the signal, which is called an un-

balanced signal. That allows the electronic impedance matching for the efficient

transfer of power and reduces the signal reflection from load [50, 54]. Therefore,

the rise time of the detector pulse improves with the balun by routeing the signal

trace (because timing output is extremely fast, it needs to be routed on a PCB).

Figure 4.19 represents the recommended readout circuit by the manufacturer for

optimum timing performance of the SensL SiPM. After the balun (transformer)

was connected to the circuit, the signal rise time dramatically decreased from 40-

35 ns to 10-6 ns. Balun connected SensL C-SiPM optically coupled with a LaBr3

scintillator. This detector system was irradiated by a 22Na radioactive source. A

standard output signal and fast-timing signal of the detector were generated by the

same event as shown in Figure 4.20, which exhibits different rise times. The rise

time of the fast-timing signal obtained much faster than the standard signal and

the fast readout signal generated without balun. SensL recommends a negative

bias voltage for the optimum performance of the fast readout mode as illustrated

in the biasing scheme in Figure 3.4 in Chapter 3. When the negative bias voltage

is applied to the anode with the cathode at 0V, the signal polarity of the fast
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4.3.5 C-Series SiPMs with a Balun

Figure 4.19: Recommended readout circuit for fast time output [54].

(a) Fast terminal readout signal.

(b) Standard signal, the anode readout signal with negative polarity (negative bias voltage
applied for optimum performance in fast timing mode)

Figure 4.20: Balun connected SensL 6 mm2 C-SiPM was optically coupled
with LaBr3, and then the detector system was irradiated by 22Na. (a) Standard
and (b) fast-timing readout signals were obtained from the same event.

terminal will be positive, and a standard signal will obtain from the cathode with

negative polarity.

Although the better rise time is obtained with the balun, the fast readout

signal needs to be amplified and the noise filtered out to achieve the optimum
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4.3.5 C-Series SiPMs with a Balun

performance in coincidence-resolving time measurement. It seems that using the

Ortec 820 fast-timing amplifier could not be compatible with the fast terminal

signal of the SensL C-series SiPMs, as explained in section 4.3.4. Mini-Circuits

ZFL-1000LN and ZX60-43-S+ amplifiers were used to obtain an adequate signal

for coincidence resolving time measurement [54]. The circuit schematic of a 6

mm SensL SiPM and fast timing signal processes with the amplifier is illustrated

in Figure 4.21. The fast output signal of SiPM was first fed to Mini-Circuits

Figure 4.21: AC coupled readout for 6 mm SiPM circuit schematic with tran-
simpedance amplifier. The fast signal transits to Mini-Circuits ZFL-1000LN
and ZX60-43-S+ amplifiers obtain an appropriate signal for coincidence mea-
surement.

ZFL-1000 and then ZX60-43-S+: Figure 4.22 shows the signal processes for each

devices. The first amplifier was used to amplification of the signal, so the signal

to noise ratio becomes a large. Therefore, the noise would not be significant in

the signal (elimination of the high-frequency noise). Then the signal was sent

to the second amplifier. The second amplifier used for the low-frequency noise

within the fast frequency bandwidth to 4000 MHz. If the signals pass through a

non-linear phase device, the signal frequency will delay in the output signal. The

two amplifiers used were not in the linear phase. In addition, the signal output of

the second amplifier was inverted resulting in an 180◦ phase shift. Therefore, the

extra delay in the signal was observed as illustrated in Figure 4.22(c).
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4.3.5 C-Series SiPMs with a Balun

(a) Original fast timing readout signal.

(b) Mini-Circuits ZFL-1000LN amplifier output.

(c) Mini-Circuits ZX60-43-S+ amplifier output.

Figure 4.22: LaBr3-C type SiPM detector was irradiated by 22Na, the silicon
photomultiplier then generated a fast timing signal. (a) Detector fast-timing
readout signal (without signal processes). (b) The output signal of the first
amplifier; original fast-timing signal fed to the first amplifier (Mini-Circuits
ZFL-1000LN). The high-frequency noise was filtered out and the signal ampli-
fied. (c) The first amplifier signal was sent to the second amplifier (Mini-Circuits
ZX60-43-S+). The low-frequency noise (with fast frequency bandwidth to 4000
MHz) was filtered out from the input signal. The output signal was amplified
and inverted with time delay. If the signals pass through a non-linear phase
device, the signal frequency will delay. The signal is also inverted during the
signal process in the second amplifier, resulting in 180◦ additional phase shift.
That is why delay time is greater than the first amplifier’s delay time [77].

An appropriate fast timing signal was obtained after the usage of the two differ-

ent amplifiers. The first detector system (LaBr3-Hamamatsu PMT-R9880U-210)
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4.3.5 C-Series SiPMs with a Balun

was fixed and the second detector system used various combinations of scintilla-

tion materials and SiPMs. The electronic block diagram of the coincidence time

measurement is shown in Figures 4.23 and 4.24.

Figure 4.23: Electronic block diagram of the coincidence timing measure-
ment. LaBr3-Hamamatsu R9880U-210 PMT detector system was fixed and
various scintillation crystals optically coupled with SensL C series SiPM. A
Hamamatsu S12572-010P MPPC 2x2 array was also tested in coincidence re-
solving time measurement. When the Hamamatsu MPPC readout signal was fed
into the first amplifier (ZFL-1000LN), this amplifier suddenly stopped working.
According to the technical report obtained from the manufacturer, a VLM-
52-S+ limiter should have been used before the amplifier to protect it against
possible overstress from the MPPC. This limiter can operate at a low frequency,
down to 100 kHz [75].

124



4.3.5 C-Series SiPMs with a Balun

Figure 4.24: Experimental set-up of the coincidence resolving time measure-
ment. Two different detector systems, a LaBr3-Hamamatsu PMT and a LaBr3-
SensL C-SiPM were placed (0.5 cm) at the each side of the radioactive source
(2Na). The SiPM fast signal was fed into two amplifiers, and then sent to a
digitiser. The standard readout signal was also sent to the other channel of the
digitiser as well as a PMT output.

The intrinsic time resolution (FWHM electronic devices) was calculated as 68

∓ 1 ps (Appendix A.4). The lowest possible threshold was chosen, between 10 mV

and 15 mV in the software, depending on the noise level of the detector signals.

However, in the electronic intrinsic time measurement the threshold level was set

to 5 mV. The energy gate, or energy window does not need to be set due to having

only true coincidence (the radioactive source did not generate signals). A Philips

PM5786 fast pulse generator was used for electronic timing measurement, as in the

electronic block diagram shown in Figure 4.25. A pulse generator generated signals

with 3-2 ns rise time, and then divided into two identical signals. One of the signal

was fed to Mini-Circuits amplifiers, and then to the digitiser and discriminator,

which is the same as the LaBr3-SensL C-SiPM detector’s experimental set-up.

The other pulse was sent to the Philips discriminator, then the logic unit for

coincidence and finally to the digitiser. This was similar to the LaBr3-Hamamatsu

detector’s set-up. Subtracting intrinsic time resolution of the electronics from the

actual measurement (with scintillation detector systems) gives the intrinsic time

resolution for both detector systems. The results of coincidence-resolved time

measurement are listed in Table 4.4.

Thallium doped CsI scintillation crystals were also investigated, even though

these are known as slow scintillators. Figure 4.26 shows different rise times for

standard and timing output of SensL C-series SiPM coupled with 25 mm CsI. The

LaBr3-PMT detector was again fixed and the second detector was replaced by the

125



4.3.5 C-Series SiPMs with a Balun

Figure 4.25: Setup for measuring intrinsic time resolution from the electronic
modules used for timing measurement with Mini-Circuits amplifiers.

FWHM
Scintillator ←→ Photomultiplier FWHM after subtraction of intrinsic

(ps) (ps)

LaBr3 ←→ PMT-R9880U-210
284 ± 8 276 ± 8

LaBr3 ←→ C-SiPM

LaBr3 ←→ PMT-R9880U-210
301 ± 15 293 ± 15

LYSO ←→ C-SiPM

LaBr3 ←→ PMT-R9880U-210
348 ± 27 341 ± 27

CeBr3 ←→ C-SiPM

LaBr3 ←→ PMT-R9880U-210
1222 ± 55 1220 ± 55

LaBr3 ←→ MPPC(2x2 Arrays)-S12572-010P

LaBr3 ←→ PMT-R9880U-210
3572 ± 94 3571 ± 94

CsI(Tl) ←→ C-SiPM

Table 4.4: Coincidence resolved time for various detector systems measured
by digital system (with a transformer).

CsI(Tl) – C-series SiPM detector system. Timing resolutions were successfully

calculated for standard and timing signals separately. The timing resolution could

improve ∼ 3.6 ns by fast terminal (Figure 4.27). Gaussian-distributions were

obtained after applying the leading edge method and energy gate for both outputs.
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4.3.5 C-Series SiPMs with a Balun

(a) Fast terminal readout signal. (b) Standard readout signal.

Figure 4.26: CsI(Tl) - C SiPM detector irradiated by 22Na. Fast-timing and
standard readout signals generated by the slow scintillation detector with two
different rise times. The original fast timing output signal had to be fed by the
time filter amplifier to obtain a signal in the digitiser. (a) Timing signal after
time filter amplifier. (b) Standard output.
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4.3.5 C-Series SiPMs with a Balun

(a) Time resolution was obtained by fast time output of SensL C-series SiPM coupled
with CsI and LaBr3-PMT detectors.

(b) Time resolution is obtained by standard output of SensL C-series SiPM coupled
with CsI and LaBr3-PMT detectors.

Figure 4.27: Timing measurement for CsI(Tl)-SensL C-type SiPM detector
system and LaBr3-PMT detector. (a) Fast-timing terminal signals of CsI-SiPM
and LaBr3-PMT signal were used to obtain Gaussian distribution, and found
3.6 ns. (b) Standard terminal signals of CsI-SiPM and LaBr3-PMT signal were
used to obtain Gaussian distribution and calculated as 7.2 ns.
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4.4 Conclusion and Summary

4.4 Conclusion and Summary

Obtaining fast timing resolution is an essential requirement for medical and nu-

clear physics applications. Silicon photomultipliers have many advantages over

photomultiplier tubes, but the timing performance is not yet similar to PMTs’

response to simultaneous measurement of fast light pulses. In this research, a new

generation SensL blue-sensitive silicon photomultiplier was optically coupled with

various scintillation crystals to investigate timing resolution performance from the

separate fast timing readout signal of SiPMs. For these measurements, analogue

and digital system setups were used. Timing resolution performance obtained by

a digitiser was completed with remarkable progress. The first critical approach

was adding the transformer in the circuit and using Mini-Circuits amplifiers for

different reasons in the set-up. Second, an appropriate threshold level for the

analyses was sought (between 10 mV and 15 mV depending on the noise level,

just above the noise), and the correct energy gate (only 511 keV energy window

to mitigate the accidental coincidences) in the software applied. The code for

analysing data was carefully written to find an accurate interpolated value; for ex-

ample, a quadratic fitting equation rather than a linear equation was used. Similar

to the findings of the literature review, the leading edge method gave better re-

sults, even though the constant fraction technique was employed independently.

After the intrinsic time resolution was subtracted from the measured coincidence

time resolution (FWHM), the resolved time for the unknown detector system was

calculated from Equation 4.4.

Unknown Detector =
√
M2 −R2 (4.4)

where M measures coincidence timing resolution of two detector systems (FWHM),

and R is the reference detector’s time resolution. LaBr3-PMT-R9880U-210 was

used as a reference detector. The diversity of detector systems was then computed,

as given in Table 4.5. Time resolution directly correlates with the square root of

the SiPMs’ capacitance. In consequence, CRT measurement doubles by using 6

mm SiPM instead of 3 mm, as detailed in the introduction. If it is considered that

the slow decay time, the length of the scintillation crystal, and capacitance of a 6

mm active area SiPM adversely affect the coincidence resolving time, 264 ± 9 ps

is a highly promising result for a 12.7 mm length LaBr3-C series SiPM detector

system. According to the CRT measurement result, the timing performance of
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FWHM√
2

(ps)Scintillator ←→ Photomultiplier

LaBr3 ←→ PMT-R9880U-210 82 ∓ 5

CeBr3 ←→ PMT-R9880U-210 94 ∓ 4

LaBr3 ←→ C-SiPM 264 ∓ 9

LYSO ←→ C-SiPM 281 ∓ 16

CeBr3 ←→ C-SiPM 331 ∓ 28

LaBr3 ←→ Hamamatsu SiPM (2x2 Array) 1217 ∓ 55

CsI ←→ C-SiPM 3570 ∓ 94

Table 4.5: Timing resolution performance for diverse detector systems used
in the CRT measurements. The best result was found when the digitiser system
was used with balun and Mini-Circuits amplifiers for the SensL C-series silicon
photomultiplier.

the detector system based on SensL C-series SiPM is better that standard silicon

photomultiplier (Hamamatsu MPPC).

Furthermore, the investigation was completed that the bias voltage affects

on the coincidence resolving time measurement (FWHM). If the bias voltage in-

creases, photon statistics, detector gain and photodetection efficiency rise with

applied voltage [73]. Therefore, the signal rise time will be faster with less noise

by a higher gain (or signal amplitude) [74] resulting in lower coincidence resolving

time resolution. The resolution will improve until the noise again becomes more

dominant in the signal. The coincidence resolving time relationship with the bias

voltage in the experiment was consistent with the literature [66, 73, 74].
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Chapter 5

Development of an Antimatter

Detector for Nuclear Medicine

5.1 Introduction

Scintillation detector systems are employed in the radiopharmaceutical substance

activity measurement as a part of the quality control protocol. After radioactive

isotopes produced in a cyclotron, they are then formulated by specific chemical

substances. For example, Fluorine-18 is a common radioisotope labelled with glu-

cose (Fludeoxyglucose-FDG). After the radiopharmaceutical substance is injected

into the patient circulation system, the radiochemical substance will accumulate

around of the affected region. There must be acceptable quality control parame-

ters to protect patients from the extra radiation. These parameters also include

a reduction in the radiochemical impurity and radionuclide impurity to mitigate

the adverse effect on the medical imaging. Therefore, PET radioisotopes quality

control parameters must be checked for radiochemical purity, radionuclide pu-

rity, pH level, sterility, safety, efficacy, and radioactivity before the injection [22].

Furthermore, during the radiopharmaceutical substance investigation in the PET

research centres, the activity of the radioisotopes must be measured in a short time

to protect researcher from unnecessary radiation. In the quality control protocol,

radiation detection instruments; thin layer chromatogram (radiochromatogram),

scintillation counter, and dose calibrators, which are used for the determination of

the radionuclide purity and the radioactivity. Radiochromatogram scanner, which
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5.1 Introduction

consists a long narrow piece of radiochromatography paper, is used for the quan-

tification of the radioactivity distribution [23]. However, the measurement time

with this expensive scanner is longer than the detection time with a scintillation

counter. Although scintillation detector systems measure the radiation in a short

period, there are also drawbacks of the using them, such as limited solid angle and

the detector efficiency. These disadvantages seriously affect the medical image

quality and the activity measurement.

The positron emission tomography research centre at the University of Hull

scintillation detector system, LabLogic’s Scan-RAM NaI optically coupled to PMT,

is used for measuring the activity in radiopharmacologic research. Alternatively,

novel plastic scintillation detector system is being developed to measure the ac-

tivity directly from the emitted particles rather than annihilation photons. Radi-

olabelled substances are placed directly in contact with the scintillation detector

to obtain a better detection efficiency. In standard detection design, there is not

directly interaction between the detector and radiochemical substance. We have

successfully finished initial measurements with encouraging results. It is a very

simple detector system, cheap, user-friendly and an achievable nanoscale volume

for a microfluidic chip application. Blood sample counting device or microfluidic

system (based on silicon charged particle detector) has a few mL or less detection

volume, being the useful tool for experimenting on small animals like rats and

mice in PET research centres. These type of systems must take a time-dependent

spectrum as a function of whole body radioactivity concentration from 0.70 µL

to 0.22 µL sample volume precisely in a short time [78]. Very short measurement

time with a low detection volume also helps to minimise the radiation exposure

time for the researcher performing the process. In this application, the measure-

ment time should be shorter than the decay time of the radioisotope and short

delay time for diffusion of a blood curve [79].

In this chapter, there was an estimated positron range calculation with the

empirical formula. Positron stopping power and range calculation by using ESTAR

programme gave the similar result with the estimated positron range value. Monte

Carlo simulation was studied with and without annihilation photons, generating

optical photons, and without optical photons to find out the optimum thickness

of scintillation. This approach gave the optimum thickness for measuring the

positrons with the least effect of the annihilation photons on the measurement.

Various detector designs were successfully studied with using MicroMCA software,
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5.2 Positron Range Calculation

which was specially developed for activity measurement. Radiotracers continuous

energy spectra (non-monoenergetic positrons) and decay curve obtained within

the experimental uncertainty consistent with the literature. In the last part of

this chapter, there is also the investigation into the novel scintillation detector

system, which can be modified to a microfluidic chip with very low detection

volume (from 94 µ` to 0.11 µ`). A radioactive fluid contamination inside the

scintillator underwent during the experimental measurement; that was a serious

challenge. Microscopic cracks on the scintillation channel surface could cause the

leakage or chemical reaction between scintillator material and radiochemical fluid.

Various approaches were examined resulting in one of them addressed the issue.

5.2 Positron Range Calculation

The radiation absorption of β particles inside the medium can calculate by using

Equation 5.1 in the specific energy region (0.01≤ Eβ ≤2.5 MeV) [80]. This em-

pirical formula might be used to estimate the range of the electron or positron in

low Z (atomic number) material.

R = 0.412.E
(1.265− 0.0954 . lnEβ)

β (5.1)

Where; Eβ is the kinetic energy of positron (or electron) in the unit of MeV,

and R is a positron (or an electron) range. The range of the charged particle

in g/cm2 can be converted to a distance using the material density (1.032 g/cm3

for EJ212; which is the plastic scintillation material). According to Equation 5.1,

approximately positron ranges were calculated at two different energies of positrons

emitted from 18F radioisotopes. The positron ranges have been computed to be

2.27 mm for the maximum energy (Eβ = 634 keV), and 0.98 mm for the average

energy (Eβ average=350 keV) of 18F.

Figures 5.1 and 5.2 show the range and energy loss as functions of energy in

the plastic scintillation medium, respectively. Stopping power and range data are

calculated from the ESTAR calculation program [81]. In ESTAR, the calculation

of the stopping power is evaluated from the theory of Bethe with density effect

correction. Positrons emit from 18F are not mono-energetic, but their energy

distribution is continuous energy spectrum from zero to maximum value or end

point energy (as shown in Figure 5.22). According to the theoretical calculation
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Figure 5.1: Positron (or electron) range in the plastic scintillation for low
energy positron was obtained from the theoretical calculation.
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Figure 5.2: Energy loss (dE/dx) of positrons as a function of energy in the
plastic scintillation obtained from the theoretical calculation in ESTAR.

obtained from the ESTAR data as illustrated in Figure 5.1 and estimated values of

the positron range, between 1.0 and 2.3 mm plastic material could absorb 90-100%

of positrons emitted with a distribution of energies from a 18F source.

5.3 Simulation Work

A simulation code developed to study the response of a detector with basic geom-

etry in which is SiPM coupled to EJ212 plastic scintillator (series number of the
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5.3.1 Geant4 Simulation Without Optical Photons

plastic scintillators from Eljen Technologies) irradiated by cylindrical 18F positron

source. The code, based on the GATE 7.0 simulation package, was written and

used to find out the optimum thickness of the plastic detector for beta particle

detection. For this reason, the simulation is run with and without optical photons

as explained in the following subsections.

5.3.1 Geant4 Simulation Without Optical Photons

A non-monoenergetic and cylindrical Fluorine-18 radioisotope is placed in front

of the scintillation materials as visualized in Figure 5.3. Two different tracking

paths (displacement or positron range) illustrate for plastic scintillation material

(EJ212) and LYSO scintillation before positron annihilates. In Figures 5.3(a) and

5.3(b), positron displacement in plastic scintillation material is more than in LYSO

scintillation due to having a low density. Several scintillation materials were also

(a) Positron displacement in EJ212-Plastic scintillation. (b) Positron displacement in LYSO.

Figure 5.3: 6.2 x 6.2 x 1 mm3 SiPM is coupled with 6.5 x 6.5 x 2.2 mm3 di-
mension of the scintillator. (a) EJ212 and (b) LYSO scintillation materials were
irradiated by cylindrical 18F radioisotope. Positron range in EJ212 is more than
in LYSO due to density differences. The red points are represented electrons;
interaction points between positron and electron in the material. After positron
interacts with electron, annihilation event occurs following that the creation of
the two 511 keV annihilation photons. Gamma ray interactions will then start
to affect the measurement. This simulation was run without annihilation events.

studied to find the optimum thickness for positrons emitted from 18F. A positron’s

travel distance inside the medium depends on the material density as shown in

Figure 5.4 for common scintillation crystals. Positrons have a small displacement
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Figure 5.4: Various scintillation crystals with 10 mm thickness are investigated
for positron range by using simulation without producing optical photons. This
thickness will be sufficient to stop almost all positrons inside material because of
short positron range in the medium. Beta particles are randomly emitted from
non-monoenergetic 18F radioisotopes. Calculated positrons displacement inside
the CsI(Tl) is almost half of the EJ212 due to the density effect. Annihilation
photons occur when the positron loses its total energy, so there must be more
than one interaction before the annihilation events occur. In each interaction
positron moves away from the source. The total displacement is defined as the
distance between the radioactive source and the last interaction position. After
the last interaction, positron annihilates (annihilation photons occur).

inside the high-density scintillators (inorganic scintillators). They usually prefer

to detect gamma ray rather than charged particles because of their higher stopping

power for gamma rays as explained in Chapter 2. If inorganic crystals are used

to detect positrons emitted from fluorine 18, it would have very thin thickness.

For example; several research groups developed beta microprobes separately using

a very short LSO and plastic scintillation materials. Beta microprobes are used

during the surgery operation as a very useful medical imaging tool. Using this

device is an effective way to find the abnormal part of the surgery region by

detecting accumulated radioisotopes. That kind of microprobes was focused on

only measuring positrons rather than annihilation photons. Therefore, a very

short LSO crystal had to be used to measure beta particles for the reduction in

the effect of the annihilation photons [82, 83]. Successfully, beta microprobe device

was designed in that research; however, LSO or LYSO scintillation crystals have

an intrinsic radioactivity coming from 176Lu. As a result of that, the activity curve

must include some background radiation. The distance between the source and
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5.3.1 Geant4 Simulation Without Optical Photons

detector is also critical during the operation. Therefore, the thickness must be

less than 0.5 mm, or very close to examined region. Nearly 0.5 mm length of

scintillation crystal can make it too fragile and difficult to design.

In the section 5.2, ESTAR calculation and estimated value show that the

positron range is 1.0 - 2.3 mm for plastic scintillation (EJ212). That thickness

will be sufficient to stop positrons which have the same energy range as the con-

tinuous energy distribution of 18F (Figure 5.22). However, more than 90% of

the positrons’ kinetic energy is lower than 634 keV (the maximum energy of 18F

positrons), because of the continuous energy spectrum of beta particles. According

to the simulation, Figures 5.5 and 5.6 show that the optimum thickness must be
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Figure 5.5: Percentage of the positrons is calculated as a function of thickness
for 10 mm EJ212. Almost 90% of positrons stops at 1.2 mm according to the
simulation without annihilation events.

between 1.0 to 1.8 mm to stop 90-100 % of positrons. The direction of positrons

significantly changes with an elastic scattering (occurs between positrons and ab-

sorbing material’s electrons). That is why the positron can not displace as a

straightforward inside the material. Figure 5.3 illustrates that the displacement

of the positron is sharply and suddenly turning in a various direction as same as

the zigzag. Positron movement is also affected by the absorbing material density.

Therefore, the positron displacement inside the plastic scintillators is more than

in the inorganic scintillators (BGO, LYSO or CsI). Almost 10 % of high energetic

positrons displacement will be more than the rest of the positrons in the energy

distribution (90% of positrons). Therefore, the scattering points energy range is
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5.3.2 Geant4 Simulation With Optical Photons

between 250 keV and higher after 1 mm thickness of plastic scintillator as shown in

Figure 5.6. The positron range simulation without optical photons is also studied
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Figure 5.6: Positron energy deposition inside the absorbing material versus
the total track length (displacement) of the particles inside 10 mm thickness
for various scintillation materials. This plot’s data obtained from Geant4 based
simulation, used in Penelope model calculation (PENetration and Energy LOss
of Positrons and Electrons at low energy) without scintillation and annihilation
process. Positrons enter into the material at 0 mm, and particles then lose their
energy with an each interaction. These interaction points represent a track
length in the GEANT4 simulation. An elastic scattering between a positron
and absorbing material electron becomes more dominant for the high energetic
positron (almost 10 % of positrons from 18F energy distribution) between 1.0
mm and 1.8 mm thickness of plastic scintillator (EJ212). It is also the effect of
the density of the plastic scintillations (PVT). EJ212 plastic scintillator density
is lower than others.

with the actual detector geometry. The same thickness range was concluded in

Chapter 6 (see the Figure 6.3).

5.3.2 Geant4 Simulation With Optical Photons

Geant4 simulation (without optical photons) shows that almost ninety percent

of the positrons stopped until 1.0 mm plastic scintillation material. The further

simulation was also completed by generating optical photons. That is more close

to the real experimental situation and allows us to investigate the annihilation

photons effect on the measurement. The visualisation of the detector geometry

and radiochemical source (F-18) are illustrated in Figure 5.7.
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5.3.2 Geant4 Simulation With Optical Photons

Figure 5.7: 6.2 x 6.2 x 1 mm3 SiPM is coupled with 6.5 x 6.5 x MX mm3

EJ212. Two millimetre PTFE reflector surrounds the detector for keeping opti-
cal photons inside. Red cylindrical volume is defined as a 18F radioactive source
with two-millimetre diameter and 6.5 mm length. MX is changed from 0.1 to
10 mm.

Two different physics lists in the simulation are defined to distinguish optical

photons, produce by positrons and annihilation photons plus positrons (because

the effect of the annihilation photons is in almost each thickness). Figures 5.8(a)

and 5.8(b) show a single event with 511 keV and without respectively. In the

(a) With annihilation photons in physics list. (b) Without annihilation photons in physics list.

Figure 5.8: With and without annihilation photons in the simulation physics
list. (a) The physics list includes an annihilation event. Short green lines rep-
resent the optical (scintillation) photons inside the scintillator. Long cyan lines
are 511 keV annihilation photons. Red points are electrons and a few of the blue
zigzags (positrons). (b) Without annihilation in the physics list; only positrons
generate optical photons (short bright green lines inside the scintillator).

simulation, there are different colours to represent particles and photons. Red

points are electrons which collide with the low energetic positrons, then annihila-

tion events occur. Long cyan lines, which can penetrate the detector, are 511 keV
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5.3.2 Geant4 Simulation With Optical Photons

annihilation photons. Short green lines inside the detector represent florescences

(optical photons).

The light yield of EJ212 plastic scintillation is 10 000 photons per MeV of

deposited energy [84]. The total number of optical photons for with and without

annihilation events is individually plotted at various length as shown in Figure 5.9.

The optical photons number sharply increases until 1 mm thickness of the plastic
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Figure 5.9: The number of optical photons in various thickness of scintillator
with and without annihilation photons. The optical photons number sharply in-
creases until 1 mm thickness of the plastic scintillator. 90% of positrons, which
is the positron energy distribution of 18F, creates the optical photons until 1
mm. After that thickness, the optical photons number gradually increases until
the 10% of positrons (from F-18 energy distribution) losses their energy by in-
teraction with the absorbing material’s electrons. The optical photons number
after that thickness remains nearly constant (because there is a statistical vari-
ation). Plot points with annihilation photons, however, slightly increases due
to the interaction between 511 keV annihilation photons and scintillator

scintillator. After that thickness, the number of scintillation photons gradually

increases, the 10% of positrons stop by annihilation events occur between the

positron and the electron, which is inside the absorbing material. That is why the

optical photon number nearly stays the same after whole positrons losses their en-

ergy with interactions (ionisation) in the simulation without annihilation events.

However, in the case of annihilation event, there is steadily increase in the num-

ber of optical photons. That is the effect of the annihilation photons (511 keV).

Therefore, more scintillation photons occur with annihilation events as shown

in Figure 5.10. Interactions betweenγ-rays and the material are different from
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Figure 5.10: The effect of the annihilation photons as the number of optical
photons for different thickness. This plot’s data obtained from the statistical
calculation and created randomly positrons by random number generator in the
simulation. Almost 90 % of positrons interacts with scintillator by generating
optical photons until 1 mm thick of plastic scintillator (Ej212). After that thick-
ness optical photons number growth less than the number of optical photons
trend between 0 and 1 mm.

positron interactions with the material. The main interactions are the Compton

scattering, photoelectric effect and pair production for electromagnetic radiations.

The major impact of annihilation photons in the number of optical photons comes

from the Compton scattering, as illustrated in Figure 5.11. In simulation without

annihilation photons, there are a few photoelectric effect and Compton scattering

events as a result of X-ray interactions which arise from Bremsstrahlung scattering

as shown in Figure 5.11. Generating optical photons within the actual detector

geometry was also researched in Chapter 6. The result of the simulation con-

ducted with the simple detector geometry was consistent with the conclusion of

the simulation investigated with the real detector geometry as discussed in the

next chapter.

Approximately, 90% of positrons lost their energy and stopped before 1 mm.

Optical photons between 1 and 2 mm depth of the plastic scintillator are generated

by annihilation photons (511 keV gammas) plus 10% of the positrons from the 18F

positron energy distribution (high energetic positrons in the distribution). After

that thickness, optical photons are only produced by gamma rays. In conclusion,

the optimum thickness must be approximately 1 mm to detect optical photons
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Figure 5.11: The graph shows the number of the Compton scattering events
as a function of thickness for with and without annihilation photons. The main
differences on the optical photons come from the Compton scattering events.
Gamma radiation mainly loses its energy by Compton scattering, however,
positron loses its energy by the interaction with absorbing material electrons
(ionisation).

produced by positrons and the lowest effect of the annihilation photons on the

measurement resulting in almost 90% of positrons measured. After 1.0 mm, the

effect of the annihilation photons increases.

5.4 Detector Design

In order to eliminate the effect of the annihilation photons, optimum thicknesses

were investigated with Geant4 based GATE Monte Carlo simulation program (for

more details see the section 5.3). Before studying the simulations, the first ex-

periment was conducted with 2.25 mm wall thickness as shown detector design in

Figures 5.12 and Figure 5.13. A cylindrical channel was made in the middle of the

plastic scintillator for the radioactive liquid to pass through. After interactions

between radiation and scintillation material, scintillation photons (or optical pho-

tons) were created. The SensL C series SiPM were used to convert optical photons

into the electrical signal which is related to the amount of the radiation absorp-

tion. The signal then sent to the multi-channel scale to measure the activity. In

this stage, assuming that there was not interaction between needle and positrons
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5.4 Detector Design

Figure 5.12: The dimension of the plastic scintillation detector, 2.25 mm wall
thickness and cylindrical empty volume for flowing positron source inside the
detector. Two needles are used for joining plastic and tubing system together.
They are glued and then leakage is tested with water.

while the radioactive liquid was passing thought inside the plastic scintillator. If

there is interaction, positrons will displace shorter than the positron displacement

inside the plastic scintillator because of the density effect. Also, particles can not

directly interact with the fluoropolymer tubing system, when the particle was in-

side the plastic scintillator (Figure 5.13). If there is interaction, it will again be

quite weak due to very short positron range. However, the measurement must be

slightly influenced by annihilation photons (511 keV gamma radiation), because

annihilation photons are detected in the each part of the system.

Figure 5.13: First prototype plastic scintillation detector system. Plastic
scintillator and fluoropolymer tubing system (with 0.51-0.66 mm inside diameter
and 0.25-0.31 mm wall thickness [85]) were connected each other by gluing
between needles and fluoropolymer tubing.
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5.4 Detector Design

The electronic board (Figure 5.14) contains 527 miniature multichannel anal-

yser modules with pre-amplifier (the signal process details are shown schemati-

cally in Appendix. B.1). The module can be adapted to the different SiPM with

Figure 5.14: 527 MicroMCA module to measure the number of detected par-
ticles as a function of time. This electronic board can be easily adapted to the
different types of SiPMs with negative and positive bias capability.

negative and positive bias capability. The signal readout can also be monitored

with the oscilloscope while the data accusation is recording. WinSPEC software

was used to record multi-channel analyser for energy spectrum and multi-channel

scale for the activity measurement at the same time. The MCS (multi-channel

scale) module is used to convert the output signal into the number of detected

particles in a particular time. Figure 5.15 shows the spectra obtained from detec-

tor system irradiated by 137Cs radioactive source. In this measurement, detector

system was EJ212 plastic scintillator optically coupled with the SensL 6 mm C

type SiPM. During the data acquisition time, radioactive source was being quickly

moved away from the detector. This source displacement effects on the number

of detected particle per millisecond as shown in Figure 5.15(a). At the same time

an energy spectrum was also accrued (Figure 5.15(b)). The Compton Edge and

backscattering are clearly seen in Figure 5.15(b). The full energy peak or photo-

peak is not observed because positrons interactions are dominantly the Compton

scattering rather than Photoelectric effect. The composition of the plastic mate-

rial contains low Z elements as opposed to the most of the inorganic scintillators

[24].
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(a) When 137Cs source was suddenly moved away from
the detector, the number of detected particles was dra-
matically decreased in every millisecond, to obtain the
activity curve. In the software called WinSpec, the
number of photoelectrons, which are the proportional
to the amount of the radiation absorption or generated
optical photons in the scintillator, are measured by the
SensL C-series SiPM. The number of photoelectrons is
recorded in each millisecond by the multi-channel scale.
Therefore, the number of the generated optical photons
or the number of photoelectrons will be affected by the
source position.

Scop
Entries  2048
Mean    290.4
RMS     184.2

Channels
0 100 200 300 400 500 600 700 800

C
o

u
n

ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Scop

Entries  2048
Mean    290.4
RMS     184.2

32 keV X-rays

Backscatter
Compton Edge

Cs  (C-SiPM-EJ212)137Energy spectrum for 

(b) While the multi channel scale was recording the
variation in the number of the photoelectrons as shown
in Figure 5.15(a), multi channel analyser was taking
the energy spectrum of 137Cs radioactive source. The
WinSpec software of 527 MicroMCA module has a ca-
pability to record both at the same time.

Figure 5.15: The performance of the MCS module obtained by the EJ212-
SiPM detector. (a) While the data acquisition, radioactive source was being
suddenly moved away from the detector system. Taking away the source from
the detector was dramatically reduced the number of the detected particles in
every millisecond. In this part of the measurement, multi channel scale (MCS)
was used. (b) The energy spectrum of the 137Cs radioactive source was taken by
using MCA module. While the MCS was recording the photoelectrons number
in every millisecond, the data acquisition was also taken by MCA (multi-channel
analyser). In the energy spectrum, backscattering and the Compton edge are
clearly observed. Plastic scintillator and gamma radiation interaction primarily
is Compton Scattering, that is why the full energy peaks (photopeaks) are not
observed.

5.5 Detector Performance for Annihilation Pho-

tons in Experiment and Simulation

Various thickness of plastic scintillation (EJ212) materials were irradiated by

the 22Na radioactive source, which produces annihilation events similar to 18F.

Sodium-22 decays predominantly to the 1275 keV level of 22Ne by emitting positrons

and γ-rays with high probability. 511 keV annihilation photons occur after 546

keV energetic β+ emission (with high positron yields of 90%). Additionally, 22Na

emits 1274 keV gamma ray with high probability. The MCS module was used to

measure the number of the photoelectrons in every second while the MCA module

145



5.5 Detector Performance for Annihilation Photons in Experiment and
Simulation

was recording an energy spectrum. There are several options for channel numbers

(from 64 to 4096) in the software (WinSpec) depending on the acquisition time (or

exposure time from microseconds to hours). Therefore, acquisition time was set to

17 minutes and 4 seconds, so obtained one channel was a second resulting in 1024

channels. The MCA module recorded the number of created optical photons inside

the detector (or photoelectrons) in every second. Five various thickness of plastic

scintillator from 2 mm to 30 mm were irradiated by 22Na. The exposure time for

each measurement was set to 17 minutes and 4 seconds. The total number of pho-

toelectrons were then calculated by adding each recorded photoelectrons number

in every channel. The total number of optical photons as plotted as a function of

scintillator thickness (Figure 5.16). The blue exponential growth and fitting coef-
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Figure 5.16: The number of optical photons versus the thickness of the plastic
scintillation. The various thickness of plastic scintillation material was irradi-
ated by the 22Na. The MCS module with WinSPEC software recorded the
number of optical photons in every second. After 17 minutes and 4 seconds, the
total number of optical photons was calculated by accumulating every recorded
number in a second. The optical photon number was then plotted as a function
of thickness. The same measurement was conducted by using simulation. The
exponential function fitted data points of measurements. Experimental fitting
parameters are similar to the fitting parameters obtained by the simulation as
shown in Figure 5.16.

ficients in the Figure 5.16 represent the experimental measurement. Equation 5.2

defines this exponential relationship between number of optical photons created

by plastic scintillator and scintillator thickness;

T = 0.55 e(7.5 10−7) . OPexp (5.2)
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Where OPexp is the number of optical photons generated in experimental mea-

surement and T is the thickness of the plastic scintillator. For comparison between

experimental and simulation results, the same conditions in the experiment were

successfully defined in the simulation. Besides, several relevant parameters must

be defined for the optical photon generation, such as scintillation quantum effi-

ciency (0.8), photodetector quantum efficiency (0.8), transfer efficiency (1) , and

light yield (10 000 scintillation photons per MeV). However, data acquisition time

or exposure time could not be set longer than one minute due to very slow simula-

tion running time for optical photon’s calculation. The simulation time was fixed

to a minute for each thickness (it took a day in the real time). The relationship

between thickness and optical photons will be independent of data acquisition time

unless setting different exposure time. Therefore, the simulation data acquisition

time remained constant as a minute. The exponential growth fitting coefficients

obtained by the simulation well match with fitting coefficients obtained by the

experimental measurement as indicated in Figure 5.16. Equation 5.3 defines the

exponential fitting function acquired by the simulation.

T = 0.45 e(6.9 10−7) . OPsim (5.3)

Where OPsim is the number of optical photons generated in the simulation and T

is the plastic scintillation thickness. Only annihilation photons interacted with the

plastic scintillator because the distance between the detector and the source was

approximately 1 cm. The short positrons range does not allow the positrons to

reach the detector. Therefore, only annihilation photons produce optical photons,

and the number of optical photons will change with the scintillation thickness

(variation in the number of Compton scattering). The sensitivity of gamma-ray

for the plastic detector is also studied and obtained the graph as shown in Fig-

ure 5.17. 22Na gamma ray (511 keV) source placed in front of the detector and

then moved away after five minutes acquisition time to plot the average number

of detected particle versus to various source-detector distance. According to the

graph, there are gamma ray interactions (mainly Compton scattering) with the

plastic scintillation until 25 cm. Therefore, it should be considered for making

appropriate gamma ray shielding to eliminate the background radiation. In PET

research centre, the background radiation can arise from the other radioisotopes

or impurity of the radiochemical substance. Various radioisotope contaminations

can occur during the reaction in the cyclotron because of the target impurity. The

shielding box not only requires to minimise the background radiation, but it also
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Figure 5.17: 22Na source moved away from the detector and plot shows the
total optical electrons number in the various distance. MCS spectra were taken
nearly five minutes for each distance.

needs to reduce the effect of the annihilation photons. While the radioactive fluid

is passing through the circulation system, there must be annihilation photons ef-

fect in everywhere of the system. There will be more discussion later about the

radiation contamination arises from the tubing circulation system.

5.6 Testing Detector in Hull PET Research Cen-

tre

The new antimatter detector system was tested at the university of Hull PET

research centre as shown in Figure 5.18. Before the experiment, the detector and

shrinkable tubes were carefully wrapped with several layers of PTFE Teflon tape

resulting in the thickness of a few millimetres to reflect the scintillation photons

inside the detector. Also, black tape and aluminium foil were used to cover the

detector to minimise the ambient light leak. A 68Ga radiotracer was injected into

the cylindrical channel, the signal from which we obtained on the oscilloscope

(Figure 5.19). However, this measurement was unsuccessful due to liquid leakage

which then damaged the SiPM. In the second measurement, three various detectors

were successfully tested with 18F the experimental set-up as shown in Figures 5.20

and 5.21. Figure 5.20 illustrates the first and second plastic detector designs with
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(a) LabLogic detector systems.

(b) New detector system.

Figure 5.18: NaI and new plastic detector systems set-up at the University of
Hull PET research centre. (a) LabLogic (NaI/PMT) detector system is used for
the gamma ray spectroscopy. (b) The new plastic detector system is adjusted
to the LabLogic NaI detector system. The NaI detector first detects radioactive
fluid. Then radiochemical substance is being passed through the new plastic
detector for the detection of positrons by the circulation system with a constant
flow rate (0.5 m` min−1).

several detection volume. The detection volume of the first detector is 78 µ`,

and it is optically coupled with 3 mm Hamamatsu S12572-010P MPPC. That

detector was used to compare standard LabLogic NaI-PMT detector system with

newly designed plastic scintillator-SiPM. The second detector’s detection volume

is higher than the first detector (94 µ`), and it is optically coupled with SensL 6

mm C-SiPM. This detector was used only for measuring energy spectrum and the

decay curve of 18F.

The last detector; 2µ` channel volume is designed for the blood sample counter

application as illustrated in Figure 5.21. These detectors were carefully glued

around the connection between needle (Figure 5.12) and tubing (fluoropolymer)

to prevent fluid leakage; they were then tested with water for safety.
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Figure 5.19: The first plastic scintillator design was optically coupled to the
6x6 mm2 SensL blue sensitive SiPM. While 68Ga radioactive fluid source was
passing through inside the plastic scintillation detector, SiPM readout signal
was obtained by oscilloscope.

Figure 5.20: Experimental set-up for EJ212 plastic scintillation detector cou-
pled with 3x3 mm2 Hamamatsu SiPM (∼ 69V) with 78 µ` cylindrical detection
volume. The low volume of radioisotope was injected into the water circulation
system. This radiochemical volume first passed through the NaI-PMT detector
with the flow, then plastic scintillation detector system. The second detector
design was the same as this detector device; however, the detection volume was
94 µ` and it was optically coupled to the SensL C-types SiPM. The second
detector was only used to measure the energy spectrum and the decay curve of
18F .

The comparison measurement between standard LabLogic detector system

(NaI-PMT) and the new detector system (plastic scintillator-SiPM) was completed

by using the first detector (78 µ` detection volume) and third detector (2µ` channel

volume). The measurement result will present in the next section 5.6.1. However,
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Figure 5.21: Experimental set-up for the EJ212 plastic scintillation detector
was coupled with 6x6 mm2 SensL C series SiPM. Detector channel volume is only
2 µ`. Radiochemical fluid volume was first passed through NaI-PMT detector
system, then the plastic chip detector system by the flow in the circulation
system.5.20

the second detector was constructed for obtaining the energy spectrum and the de-

cay curve of the radiochemical substance. The second detector device is the same

as the detector design in Figure 5.20. The detection volume, however, was 94 µ`

with 6 mm blue sensitive C series SiPM was optically coupled to that detector.

After 18F (1.167 MBq/ml) was injected into the plastic detector, the energy spec-

trum and decay curve were obtained (exposure time was 4096 seconds) as shown

in Figures 5.22 and 5.23 respectively, Positrons have a continuous energy spectrum

starting with zero up to the end point (maximum energy of positrons). This end

point depends on the nuclei (18F the end point is 634 keV). Experimental measure-

ment of 18F energy distribution was the same as the energy spectrum conducted

with the simulation with a lower statistic. These energy spectra are consistent with

the expected energy spectrum of 18F. MicroMCA module with WinSpec software

recorded for both applications, multi-channel analyser (MCA) and multi-channel

scale (MCS), at the same time as we discussed previously. While the energy

spectrum of 18F was recording, the multi-channel scale was being recorded the

generated number of photoelectrons in every second. Therefore, MCS gave the

information about the activity (decay curve of 18F) as presented in Figure 5.23.
18F was inside the detector for 4096 seconds, and the detector was then cleaned up

with the solution, which contains 40% acetonitrile and 60%water dilutions. How-

ever, there must be some radioactive fluid leakage from the surface to the inside of

the detector. After flushing the solution inside the detector, the activity or counts

number in normal condition could switch back to the ground radiation level or
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(a) 18F energy spectrum obtained from experiment. (b) 18F energy spectrum obtained from simulation.

Figure 5.22: 18F energy spectra were obtained from experiment and simula-
tion. Plastic scintillation design (94 µ` detection volume) was optically coupled
with 6 mm blue sensitive C series SiPM. The source of positrons; 18F (1.167
MBq/ml) was placed inside the detector. (a) Almost one hour later energy
spectrum obtained from the experimental measurement. (b) In the simulation,
detector design and conditions were defined the same as the experimental condi-
tions, but the data acquisition time had to be set only 2 seconds due to the slow
optical photon calculation. Positrons have a continuous energy spectrum (not
monoenergetic) from zero to a definite maximum energy value (βmax), depend-
ing on the nuclide. The highest energy of positrons, which emit from 18F, is 634
keV. The continuous energy spectrum of 18F obtained by the experimental mea-
surement was the same as the energy spectrum conducted with the simulation.
These energy spectra are also consistent with the expected energy spectrum of
18F.

zero.

5.6.1 Comparison LabLogic Detector System with New

Detector

Various detector designs were connected into the LabLogic circulation system as

the set-up shown in Figures 5.20 and 5.21. During the experiment flow rate was

stable with 0.5 m` min−1 and 18F activity was 1.018 MBq per mL. A fraction of the

fluid radioactive source was injected into the circulation system (only water). The

radioactive volume was first detected by the NaI-PMT gamma detector system

(the peak labelled with red), then passed through the new EJ212-Hamamatsu

MPPC detector system (the peak labelled with blue) as shown in Figure 5.24.

Although plastic scintillation detector had a low detection volume (78 µ`), the

detection counts with new detector system measured greater than the NaI-PMT
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Figure 5.23: 18F decay spectrum and cleaning up 4096 seconds later. When
the MCA module recorded the energy spectrum, multi-channel scale (MCS) was
also recording the decay spectrum of 18F as detailed in Figure 5.22. The detec-
tor filled by radiochemical fluide was flushed with solutions, which contain 40%
acetonitrile and 60%water dilutions, to clean up inside the plastic scintillation
4096 second later. However, after several second the activity unexpectedly in-
creased instead of reduction. There must be fluid contamination on the detector
surface. Therefore, there is a fluctuation in the number of counts (not switch
back to the non-radioactive level) after cleaning up.

system. NaI-PMT system firstly detected a low fraction of radiochemical sub-

stance (18F) inside the water circulation system, the activity level then switched

back to the standard background radiation level (nearly zero) as illustrated in

Figure 5.24 with red spectrum. After radiation completely left the tubing system,

which was below the NaI-PMT system, 18F passed through the new plastic scin-

tillator detector system (at around 200 seconds). The radiochemical fluid should

have flown away from the detector, by observing counts lever switching back to

the background radiation level, similar to the NaI-PMT system. However, there

must be radiochemical substance contamination (leakage problem) as illustrated

in Figure 5.24. The radioactive fluid leaked in the vicinity of the plastic detected.

While the plastic scintillator was being drilled to open a channel into it, the mate-

rial (PVT) could have been damaged by the pressure and the force. That is why

there must be cracks on the plastic scintillation surface. Therefore, after cleaning

up the detector several times by flashing the solution inside, the contamination

was still observed.

Measuring the activity is not the only important parameter, but it is also crucial
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Figure 5.24: Comparison NaI-PMT detector system with the EJ212-SiPM
detector in the same flow. The detection volume of the plastic scintillator was
78 µ`. There must be fluid radiochemical fraction leakage from the detector
surface into the plastic scintillator. Therefore, the number of counts did not
switch back the background radiation ∼ 320 seconds later.

to detect the activity from the tiny blood volume of the small animal research

such as microfluidic devices. For this reason, the other detector was designed with

the channel volume was only 2 µ` as shown the experimental set-up sketched in

Figure 5.21. The counts number of the low volume plastic was not greater than the

counts number of NaI-PMT detector system as shown in Figure 5.25. However,

this spectra indicates that the microfluidic system can be achievable with plastic

detector approach (EJ212-SiPM). In the second run for testing the same detector,

there was a flow rate issue as illustrated in Figure 5.25(b). The activity peak

did not obtain, but the contamination was the same as the previous measurement

radiochemical fluid contamination.

5.6.2 Low Detection Volume

New plastic scintillation detector was designed to measure the activity from very

low detection volume (0.65 -0.70 µ`) as shown in Figure 5.26. Nanotechnology

was used to drill the detector, so there were not cracks on the surface of the

plastic scintillation. To achieve a low detection volume in the half of the detector

was made by PMMA (non-scintillation plastic). Therefore, there will be the only
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Figure 5.25: (a) Activity of 18F as measured by 2 µ` channel volume detector,
and comparison with NaI-PMT detector system. (b) In the second measurement
there was a flow rate problem. Activity peak could not obtained, but the con-
tamination was again observed.

interaction between one surface area which is made by plastic scintillation. That

means the detection volume might be approximately half 0.70 µ`, because half of

the positrons would pass through without scintillator interaction.

Figure 5.27 shows that the comparison between Lablogic NaI-PMT detector

system and plastic detector which had very low detection volume. Total acqui-

sition time was set to about 20 minutes and the circulation flow rate was 0.5

µ` min−1. The acquisition started, after only 0.7 µ` 18F radioactive concentration

pumped into the circulation system (working with water). Radioactive volume was

firstly passed through the tubing system, which was below the NaI-PMT detector

system. Then second detector (plastic scintillation chip) detected the radiochemi-

cal substance activity. As a result, the number of counts per second was obtained

for each independent systems. However, there are several important points which

need to consider before the comparison of two detectors. The radiation interac-

tion time for NaI-PMT system is nearly three times more than the new detector

system. In addition, the plastic detector size is considerably smaller than the NaI

scintillation detector as shown in Figure 5.18. Even though new detector has very

low radiation interaction time, detection volume and small detector size, the new

plastic detector allowed to measure the activity and the result could be improved

in the future work. Furthermore, energy and decay spectra of 68Ga were taken for

one hour as illustrated in Figure 5.28. For that measurement 1.5 mm thickness

of plastic scintillation was used instead of one millimetre. The positron energy
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(a)

(b)

(c)

Figure 5.26: (a) - (b) A new detector is designed for low detection volume
(0.65 - 0.70 µ`) by nano technological approach. (c) Different thickness of plastic
scintillation.

range of 18F is lower than the positron energy range of 68Ga. Data acquisition

was obtained by using the multi-channel analyser (for energy spectrum) and the

multi-channel scale (for decay curve). In Figure 5.28(b) blue spectrum represents

the number of photoelectrons (measured by SiPM) as a function of time (counts

per second). Radioactive nuclei decrease with the same fraction of radionuclides

in every second so that the decay will be an exponential. ROOT software fitted
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Figure 5.27: Comparison of two different systems; plastic detector with 0.70
µ` detection volume and standard NaI-PMT detector. (a) The acquisition time
was nearly 20 minutes. (b) The chromatography column of the circulation
system was removed, so acquisition time went down from 20 minutes to 10
minutes and three times the same loop was run.

exponential decay with fitting parameters as given by Equation;

Counts = 3463 . e−(1.86 × 10−4) . t (5.4)

Where; Counts is the number of photoelectrons (proportional to the activity), t

is the time in second, and 3463 was the first counts number or N0 which is the

activity of the source at time 0. If the half of the activity of the source (N) is found

at time t, that time will define as a half-life (t1/2). Exponential fitting Equation 5.4
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Figure 5.28: 0.7 µ` 68Ga radioactive concentration was injected into the plastic
detector system with 0.65 - 0.7µ` detection volume. (a) The energy spectrum of
68Ga. (b) Decay curve and exponential fitting function with fitting coefficients.

can be modified by;

N = N0 . e
−(1.86 × 10−4) . t1/2 (5.5)

Calculated half-life of Ga-68 is 62.11± 8 minutes according to the fitting param-

eters (Equations 5.4 and 5.5). The excepted half-life for 68Ga is 67.71 ± 9 min-

utes [86]. The decay curve is not quite sufficient, the data acquisition time should

be more than an hour for better fitting parameters. Furthermore, the error could

be more because of the statistical variation in the decay rate. However, half-life

measurement was completed resulting in the literature value and the experimental

value agree with each other if they overlap within their uncertainties.
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5.6.3 Surface Treatment

5.6.3 Surface Treatment

According to the measurement we discussed in the previous section, there is a seri-

ous problem related to radiation contamination on the plastic scintillation surface.

When radioactive fraction within water circulation system passes through plastic

scintillator detection volume, radioactive fluid directly interacts with detector. If

cracks occur during the drill (stress can damage the scintillator), radiochemical

fluid could leak into the plastic scintillator. That contamination will not allow

us to measure accurately radionuclide activity. Two different surface treatment

approaches; plasma oxidation and cold fluoride were tested in Hull PET research

centre. Plasma electrolytic oxidation is an electrochemical surface treatment to

protect the surface from the physical and the chemical damage with the electrical

isolation by a creating oxide layer on the surface. The dealkalization treatment

with fluorine creates very thin alkali ions structure by using the lower concentra-

tion of alkali ions than 18F concentration. That will change the features of the

surface by increasing resistance against to the chemical reaction between fluid and

the plastic scintillator. Instead of surface treatment, yellow PEEK tube was also

used to make a barrier between scintillator and radiochemical liquid. In this ap-

proach, radioactive source can not directly interact with the plastic scintillator.

Furthermore, yellow PEEK tubing wall thickness is only 360µm and this thick-

ness could be ignorable comparing to the positron range [87] inside the plastic

scintillator.

Acquisition time was nearly 20 minutes and each chip treatments were tested

three times in order to make a clear observation by adding radioactive contami-

nation on the detector surface. 10 µ` 18F injected inside the circulation system.

The radioactive tracer first passed through tubing system, which is located un-

der the NaI-PMT detector. Then radiochemical volume was detected by the cold

fluoride treated chip (0.65-0.70 µ` detection volume). Figure 5.29 shows that the

two individual detector’s activity spectra and radiotracer contamination defined

as a background counts after radiochemical volume poured the waste container.

According to Figures 5.29(b) and 5.30(b), radiotracer contamination could be in-

side the entire tubing system, not only surface of the plastic detector. That is

why the observed background radiation increased in every circulation loop. The

background radiations, measured by the first counter (NaI-PMT), were 107, 135,

and 170 counts after each loop as shown in Figure 5.29(b). This trend is also seen

in Figure 5.30(b), counted activity number increases from 238 to 286. Radiotracer
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Figure 5.29: 10 µ` 18F (157 MBq mL−1) injected inside the circulation system.
Cold fluoride treated chip’s detection volume is 0.65-0.70 µ`. (a) Background
radiation for NaI-PMT detector. (b) Background radiation for plastic detector.

contamination was also observed in plasma oxidisation and cold fluoride treated

plastic scintillator chips as shown in Figures 5.30(c) and 5.29(c). However, there is

more contamination in the plastic detector, which is treated by a plasma oxidation

despite measured lower activity. Background radiation contamination increased

from 262 to 331 counts for the plastic scintillator chip, which has been processed

by plasma electrolytic oxidation. However, radioactive fluid contamination for the

plastic chip applied dealkalisation treatment by fluorine is slightly increase from 90

to 133 counts. As a result, surface treatments (dealkalisation and oxidation) did

not succeed the leakage or contamination problem. According to the background

radiation activities, not only plastic scintillation material has radiation contami-

nation, but also the entire circulation system (or tubing system) has radioactive

fluid contamination.
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Figure 5.30: 10 µ` 18F (158.9 MBq mL−1) was injected into the circulation
system. Plasma oxidation treated chip detection volume is 0.65-0.70 µ`. (a)
Background radiation for the NaI-PMT detector system. (b) Background radi-
ation for the plastic scintillator chip.

Another approach is using the silicon PEEK tubing, which has 360µm wall

thickness and 0.006” diameter. The detection volume of tubing is nearly 0.11

µ`. The effect of the PEEK wall on the positron detection measurement can be

ignored because of remarkably thin wall thickness. In Figure 5.31, there is not

radiochemical contamination or leakage problem between the activity peaks. In

conclusion, contamination problem is solved by using PEEK tubing. Because after

source passed through the detector the level of activity turned back to background

level. There is not any contamination on the surface of the tubing. It is highly

possible to use that silicon tubing for blood counter device application with a low

volume.
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Figure 5.31: Yellow PEEK tubing was mounted inside the plastic detector
chip. 0.7µL 18F was injected into the circulation system. Three same loops
were run to see the accumulated contamination on the detector surface. Yellow
PEEK tubing was the best approach to deal with the leakage problem. Because
there was not observed radiochemical fluid counts between activity peaks.

5.6.4 Testing Different Thickness of Plastic Scintillation

The experiment in Hull PET research centre was successfully conducted by using

different thickness of detector to clarify the effect of the annihilation photons. Ac-

cording to the simulation work, optical photons are produced by 511 keV gamma

ray as a result of Compton scattering and the detector thickness. The number of

counts (proportional to the generated optical photons) for 3 mm thickness of plas-

tic scintillator is greater than optical photons produced in 2 thickness of plastic

scintillator even though using less source activity (Figure 5.32). Photoelectrons

difference between 2 and three 3 mm plastic scintillation detectors gives the an-

nihilation photons’ effect. According to the simulation, approximately %10 per-

centage of positrons with higher energy did not stop within 1 millimetre plastic

scintillation. It was the conclusion of the simulation, and these positrons would

reach the SiPM by direct interact. The high energy positron losses their energy

by interacting with absorber material electron, then positron hits the SiPM with

lower energy. These positrons measured by the SiPM as shown in Figure 5.33.

In a short period, it could be ignorable, but for long term silicon photomultiplier

performance will be affected badly. Consequently, plastic scintillation thickness

should be between 1.4 mm to 1.6 mm to minimise annihilation photons effect and

stop all positrons inside the detector.
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Figure 5.33: Untreated chip with 1 and 2 mm thickness of plastic scintilla-
tions. The energy spectrum of 18F (157.1 MBq mL−1) for different thickness.
It is obvious that 1 mm plastic scintillation detector is not suitable concerning
SiPM’s performance.

5.7 Summary of the Tests on the Antimatter De-

tector and Conclusion

Scintillation detector systems are regularly used in the medical application such as;

Compton camera, positron emission tomography (PET), beta camera and micro-

probes. These useful medical imaging tools measured gamma radiation or annihi-

lation photon. Furthermore, scintillation detector is also measured the radiotracers
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activity in PET research centres as a standard quality control procedure to obtain

acceptance parameters from the radiochemical substance. Clinical quality control

parameters must be in the acceptable value before using; these parameters are

radiochemical purity, pH level, sterility, safety, radionuclide purity (occurs during

the reaction in cyclotron if the target is impure), and radioactivity. Accurate ra-

dioactivity measurement is critically necessary to protect the patient against to the

unnecessary radiation. In addition, during the investigation of the radiopharma-

ceutical in the research centre, activity measurement must be completed in a short

time to protect researcher from the extra radiation. Thin layer chromatograph,

dose calibrator or scintillation counter are used to measure the activity. How-

ever, these useful medical devices are very expensive. Also, measurement with

radiochromatograph is slower than the scintillator. Scintillation counters have the

limit in the detection efficiency and the solid angle. Therefore, a novel antimatter

detector system is being developed to use in PET research centre and medical

applications. That detector system is measured radiochemical substance activity

from direct positrons rather than annihilation photons to increase the detector ef-

ficiency and the solid angle for more accurate measurement. Radiopharmaceutical

fluid directly interacts with the antimatter detector (PVT or plastic scintillation

material - EJ212) for better detection efficiency. It is very simple detector system,

user-friendly, cheap and very easy to modify into the other system.

Empirical formula theoretically calculates estimated positron range for 18F.

This estimated position range is well-matched with the range calculation obtained

from ESTAR stopping power and range calculation programme, based on the

theory of Bethe with density effect correction. Then GEANT4 based Monte Carlo

simulation programme, GATE 7.0, is used to investigate annihilation photons

effect on the positron measurement. Therefore, simulation code is written in two

different ways; generating annihilation photons and without creating annihilation

photons. Data obtained from the simulation was analysed in ROOT software. Non

monoenergetic positrons (with continuous energy spectrum) displacement inside

the plastic scintillator (1-1.6 mm) is found longer than displacement in inorganic

scintillator (0.5 mm or less) such as LYSO. As a result of the comparison, detector

design will be easy with plastic scintillator than others because it would not be

too fragile.

Simulation without generating optical photons is found that 1.2 mm thickness

of scintillator suffices to stop nearly 90% of positrons emit from 18F (because of
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its non-monoenergetic energy distribution). Approximately 10% of positrons emit

from radionuclide with higher energy will scatter more than other positrons inside

the material with low Z and density. Elastic scattering is related to the positron

range direction, so movement inside the medium will be sharply different directions

not straightforward by elastic scattering between positron and electrons of plastic

scintillator. Although generated optical photons calculation in the simulation was

too slow, important several results successfully obtained and compared to the

experimental data.

Optical photons are created by nearly 90% of positrons and annihilation pho-

tons until 1 mm thickness of plastic scintillator. Between 1 mm and 2 mm plastic

scintillation, 10% of positrons (from 18F energy distribution) and annihilation pho-

tons generate scintillation photons. All positrons will stop around 2 mm, and then

optical photons are produced by only annihilation photons. Annihilation photons

interaction with plastic scintillator is dominantly Compton scattering and slightly

Photoelectric effect. For without annihilation photons there is a few number of

Compton Scattering and Photoelectric effect as a result of X-ray interactions which

created by Bremsstrahlung scattering. After completed the investigation of the

appropriate thickness of plastic scintillator, antimatter detector design was per-

formed with developing 527 MicroMCA module. In that module, there is a capa-

bility to run two different functions at the same time (multi-channel analyser for

energy and multi-channel scale for activity measurement). Detector construction

was varied depending on the application, and then Hamamatsu MPPC and SensL

C-SiPM were optically coupled to plastic scintillator to obtain readout signal.

Initial measurement of new detector system was successfully tested with en-

couraging results. An expected continuous energy spectra for 18F and 68Ga ob-

tained very nicely. Furthermore, the half-life of 68Ga radioisotope was experimen-

tally calculated resulting good agreement with accepted value. Plastic scintillator

with 0.65 -0.70 µ` detection volume was also devised for the low volume of sam-

ple blood counter and microfluidic chip applications. During the measurement,

we found out that there must be radiochemical fluid contamination inside the

whole tubing circulation system in particularly plastic surface which directly con-

tact with the radiochemical liquid. For this reason, various surface treatment

(plasma oxidation and cold fluoride) were tested. Instead of surface treatment,

different approach was also examined that yellow PEEK tubing with very thin

wall thickness was mounted inside the scintillator. In this measurement detector
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with 0.11 µ` detection volume was achieved without observing any radiochemical

fluid contamination.
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Chapter 6

GEANT4 Based Monte Carlo

Simulation with GATE for

Medical Applications

Monte Carlo simulation method is widely used in scientific research to identify

the scatter distribution, model the new medical imaging device, and improve the

image quality. That can be the most efficient technique in the investigation if

the study is not be experimented, such as; scatter components and their effect on

the medical image. Various type of particles and radiation interaction with the

material can simulate by a well known Monte Carlo simulation toolkit package

program called GEANT4. It has worldwide users in applications from the high-

energy physics to the medical physics (accelerator, shielding, space and radiation

technologies). The GEANT4 package includes particular tool structures which

must contain the system geometry, material properties, physics processes, models,

particle tracking, hits and visualisation.

GATE, based on GEANT4, is an open-source advanced numerical simulation

software, which is developed by OpenGATE collaborators. It commonly uses in

medical physics and radiotherapy (dose calculation). Recently, GATE has played

a critical role in the optimisation of acquisition protocols, the new medical imag-

ing device design with its complex image reconstructions techniques, and the ra-

diotherapy dose calculation. The other simulation, GAMOS, is also built upon

GEANT4 libraries for medical applications. However, GEANT4 improvement is
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frequently updated in GATE software, and writing code in GATE is more user-

friendly than in GAMOS.

In this chapter, there will be overview explanation about the GATE simulation.

In the last section, further simulation work related to the antimatter detector

system, as given in the previous chapter, will be presented.

6.1 GATE

GATE is a combination of the GEANT4 simulation toolkits including well-defined

physics models, complex geometry definitions and medical visualisations. In GATE,

the time dependent parameters can define, such as radioactive source decay kinet-

ics and movements of the source or detectors. The Monte Carlo simulation con-

trolled by the macro language without advanced C++ knowledge, macro codes

create commands for the GEANT4 interpreter. That is why defining a sophisti-

cated geometry of the detector, radioactive source, and phantom construction in

GATE is easier than in GEANT4. Various critical sections merged into the GATE

simulation, such as detector geometry and materials, physics processes, digitiser,

a radioactive source, data output, visualisation, and experiment acquisition [88].

6.1.1 Definition of Geometry and Materials

The definition of the geometry is necessary because simulated particles track in-

side the predefined volume, these tracking data are then used to provide medical

imaging or other applications. First the world volume must be defined, and other

volumes called daughter or granddaughter have to be inside the word volume.

That gives a hierarchical structure without overlapping each others, so the world

volume should be as broad as to cover all volumes in the simulation. Particle

tracking data will capture inside the world volume, but it will stop outside the

volume. Geometrical volume daughter or granddaughter in the world volume can

be repeated, placed or moved in the specific systems such as PET. If detector sys-

tem has a movement during the experiment, all volumes defined in the world will

update within the certain time interval. The volume geometry must define as an

element, molecule or mixture with material properties in the material database.

In the more complicated detector definition, a surface boundary must be defined
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for two different volumes. For example, the surface boundary between scintilla-

tion crystal and silicon photomultiplier must be determined for optical photons

transfer. Further definitions will require in the simulation such as reflectivity, and

the backscatter constant if optical photons and scintillation are studied.

6.1.2 Physics Process

The physics lists are chosen depending on either the particle or radiation energy

and type. Each physics process has the final state model and the interaction

probability (cross section).

6.1.2.1 Electromagnetic Physics Process

The particle interactions with the matter in the physics list define as an electromag-

netic process, which includes photoelectric effects, Compton scattering, ionisation,

and so on. In the physics list, each process can be set as a default. For instance,

positron annihilation photons were set as a default after recording the data with

annihilation photons to search the effect of the annihilation photons on the mea-

surement. Each electromagnetic process has three different models depending on

the energy; the standard model (from 1 keV to 100 TeV), the low-energy model

(from 250 eV to 100 GeV) and the Penelope model (from 250 eV to 1 GeV) [89].

6.1.2.2 Optical Physics Process

Optical photons and optical physics processes are used to investigate the scintilla-

tion detector properties, such as energy resolution. The optical photon generation

and tracking must determine, before the definition of the optical photon physics

process. The optical photon tracking is extremely fast, but the tracking process

completes after a factor of thousand or more photons tacked. Consequently, the

optical photons process in the simulation is always slow, and it takes a long time.

There is a fast analysis option in the digitiser architecture. However, that cuts the

data acquisition time without recording all information into the output files such

as coincidence.

Various parameters must be known to define the scintillation material prop-

erties and boundary surface. Finding these parameters can be difficult if there is
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no literature or measurement about them. The optical absorption is the critical

parameter, which is the travel distance of the optical photons in the material be-

fore absorbed. The optical boundary between scintillator (dielectric) and SiPMs

(metal) is also important because generated optical photons could either reflect

back into the scintillator or be absorbed by the SiPM depending on the surface

boundary parameters and incoming optical photon’s angle and wavelength. As

discussed in Chapter 5, two optical boundary surface are defined for antimatter

detector system; interference between SiPM and scintillator and interference be-

tween scintillator and reflector (PTFE material). Therefore, generated optical

photons undergo the total internal reflection; reflection into the scintillator with

high probability and reflection into the PTFE with low probability [90].

6.1.2.3 Hadronic Physics Process

Hadron or ions interaction process defines as the decay process in the hadronic

physics list. The main processes for fusion are fragmentation and inelastic scat-

tering, which includes Cascade, thermalisation and deexcitation.

6.1.3 Radioactive Sources and Particles

There are various source forms in GATE simulation, such as voxelised, linacBeam,

Pencilbeam and GPS (general particle source). A source manager is responsible

for generating randomly radioactive decay. The definition of the source first de-

fines followed by source energy, the angular distribution of emission, shape and

position. If the source has a movement, it must be attached to the daughter or

granddaughter volume with its movement. For medical imaging and radiotherapy

applications, a voxelised source and phantom are defined as an attached sensitive

detector to provide the absorbed dose in the output file.

6.1.4 Digitiser

Detector pulses or digitiser algorithms use for the particle interaction with the

material. Each track inside the sensitive volume (defined as a sensitive detector as

shown in Figure 6.1) records as a hit in the output file. All critical information of

the interaction obtains from the hits such as deposited energy, position and time of
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Figure 6.1: Recording particle interaction process inside the sensitive detector.
After defining the system, some volumes must be chosen as a sensitive detectors,
which allow the storage of particle interaction information. If a volume defines
as a sensitive detector, the signal processing chain begins to digitise. Therefore,
particle interaction inside the sensitive detector volume is recorded as namely;
hits, singles and coincidences [89].

the step, momentum and energy of the track, and interaction type. However, the

hits information do not relate to the real detector response. The digitiser module

(a series of signal processors) must be used to obtain an actual detector interaction

response. A chain of the module begins with hits, followed by the adder, readout,

energy response, spatial response, threshold electronics, dead time and singles.

When the optical photons study with GATE, relevant parameters must be

determined, such as light yield (LY), transfer efficiency (ē) and quantum efficiency

(QE) of the detector. If these parameters define in the simulation, the energy

variable of the pulse represents the number of photoelectrons (Npe).

6.1.5 Data Outputs

Readout data are the most important aspect of the software applications. In

GATE simulation, there are various data output formats such as ASCII, binary,

interfile output of projection set and image CT.
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6.1.6 Radiotherapy Applications

6.1.5.1 Root

In this research, readout files in GATE simulation obtained and analysed in root

software to investigate annihilation photon effects. Root is a particular structure

of systems for processing large amounts of data, born at CERN and forming the

main part of research in high energy physics [91]. In GATE simulation, a root

output file is generated with histograms and trees that allow extremely fast access

to a huge amount of data. In that output file, Coincidences, Hits and Singles trees

contain numerous histograms related to particle tracking data, such as energy,

position, time and angle.

Using MakeClass in root classes, two files are generated as MyClass.h (the

class definition) and MyClass.C (allows the user to loop over tree entries). When

a MyClass.C file is modified and improved in C++, the specific information inside

each tree of recorded events can be obtained, as shown in our simulation results,

which were gained using this knowledge of MakeClass.

6.1.6 Radiotherapy Applications

Initially, GATE simulation is started for positron emission tomography, before

special tools developed for radiotherapy dose calculations. When a simulation is

running, actor tools save specific information regarding interactions in the volume,

such as the number of created particles, an amount of energy deposited, simulation

statistics, dose measurements, secondary productions, Q-value and cross section

production. In radiotherapy, energy and dose deposited (Edep) provided by dose

measurement actors in 3D images.

172



6.2 Investigation of the Positron Displacement in Antimatter Detector System

6.2 Investigation of the Positron Displacement

in Antimatter Detector System

6.2.1 Without Generating Optical Photons and Annihila-

tion Photons

In Chapter 5, simulation works were successfully conducted with the simple detec-

tor geometry, and placing the radioactive source in front of the scintillator (see the

Figure 5.3). In this section, the scintillation detector geometry defined the same

as the real detector geometry with detector channel. Radiochemical substance

(non-monoenergetic cylindrical Fluorine-18) placed at the centre of the scintilla-

tion materials (filled the channel space homogeneously) similar to the experimental

conditions as discussed in Chapter 5. Figure 6.2 illustrates a real detector geom-

etry and radiochemical source visualisation in the simulation. The grey box was

the plastic scintillation (EJ212) material, and its properties were determined in

the material database. The small blue box on the top of the scintillator was the

SensL C-series SiPM with 1 mm thick and 6 mm2 photosensitive area. Blue non-

linear tracking paths indicate the positron displacement inside the EJ212 plastic

scintillator.

Beta particles randomly emitted from the 18F radioactive source in the simu-

lation. These particles (positrons) travel distance (displacement) in the material

depends on the absorber material density and the particle energy. The positron

displacement in the high density scintillator (inorganic scintillator) is shorter than

in the low-density scintillator as discussed in the previous chapter. Figure 6.3

shows the positron movement in the EJ212 with the real detector geometry. In

each hit (or interaction) positron moves away from the source. The track length

or displacement defines as the distance between the first position of the particle

and the last position as illustrated in Figure 6.1. In the last interaction, positron

annihilates and annihilation photons occur. In this simulation, the generation of

annihilation photons and optical photons (or scintillation) events were set as a

default, so after the last interaction positrons will stop. Figure 6.3 shows the total

displacement of the positrons in the EJ212 plastic scintillator. As discussed in

Chapter 5, the low energetic positron’s displacement will be shorter than the high

energetic positrons’ because of the beta particles continuous energy spectrum. Al-

most 90% of positrons emitted from 18F stop before 1.2 mm thickness of the plastic
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(a) (b)

Figure 6.2: Investigation of the positron displacement in the real detector
geometry. The non-monoenergetic Fluorine-18 source (blue cylindrical vol-
ume) placed at the centre of the detector (homogeneously filled the channel).
Positrons displacement inside the EJ212 plastic scintillator (grey box) showed
with blue non-linear tracking paths visualisation; (a) from the centre of the
detector and (b) from the left side of the detector. The small blue box, at the
top of the scintillator, defined as the SensL C-SiPM with 1 mm thickness and
6 mm 2 sensitive area. The pink box frame is the world volume and other vol-
umes placed inside the world volume. This simulation was set to run without
annihilation and scintillation events (not generated optical photons).
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Figure 6.3: The total tracking length (displacement) of the positrons inside
the plastic scintillation material. Simulation code was defined for real detector
dimension and without annihilation photons and optical photon generation.

scintillator. Nearly 10% of positrons will lose its energy between 1.2 and 1.8 mm.

This result is consistent with the conclusion of the simulation completed with the

basic geometry.
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6.2.2 Generating Optical Photons

There are several disadvantages of the using optical photons in the simulation.

Optical photon generation is very fast, but tracking optical photons is too slow.

That dramatically increases the simulation time. To perform the optical photons

in the simulation many parameters must be defined, and some of them may be

difficult to determine. Though drawbacks of the using optical photons in the sim-

ulation, generating optical photons is the only way to investigate the scintillation

detector properties in the simulation.

First, plastic scintillation material (EJ212) properties determined in the mate-

rial database such as scintillation light yield, absorption length, emission spectrum

with probabilities, and so on. Scintillation features and optical properties (surface

and surface boundary for optical photon transfer) of the plastic scintillation de-

fined in the macro codes. The detector geometry and generated optical photons

illustrate in Figure 6.4. The blue box volume defined as the SensL C-SiPM and

(a) Scintillation events resulting in optical photons, (source
was not visible)

(b) The source position shifted to change the scin-
tillator thickness.

Figure 6.4: Optical photon simulation with real detector geometry: blue box
volume defined as the SensL C-SiPM, and grey material was plastic scintillator
(EJ212). Radioactive source placed at the centre of the detector, which is in
the black tubing system. After simulation source became invisible, and only
particle interactions observed. Pink frame defined as a 2 mm PTFE reflector to
keep optical photons inside the detector. (a) There are only a few scintillation
events resulting in many optical photons (green lines) generations inside the
plastic scintillation. (b) 18F source position changed to investigate the optimum
thickness of the scintillator.

grey material was plastic scintillator (EJ212). The pink frame defined as a 2 mm

PTFE reflector to keep the scintillation photons inside the detector. The interfer-

ence between two volumes must be defined to transfer optical photons from the

scintillator to the SiPM (scintillator and SiPM) and keep optical photons inside

the scintillator (scintillator and PTFE). Positron interaction with the plastic scin-

tillator creates optical photons as indicated with green lines inside the detector.
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6.2.2 Generating Optical Photons

Additional physics processes need to define to produce optical photons such as

scintillation process and optical boundary.

The thickness was altered from 0.1 mm to 4 mm to find the optimum thickness

of the scintillator by changing the 18F source position as shown in Figure 6.4(b).

Figure 6.5 illustrates the number of optical photons versus the scintillator thick-

ness. Until 1 mm almost 90% of positrons produces scintillation photons the same

as the simulation result with simple detector geometry given in the previous chap-

ter. The 10% of positrons emitted from the continuous energy spectrum generates
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Figure 6.5: The number of optical photons versus the scintillator thickness.
Until 1 mm almost 90% positrons produced scintillation photons, between nearly
1 mm and 2 mm thickness the rest of positrons (10% with high energy) from the
continuous energy spectrum of the 18F generated the optical photons. That is
why after 2 mm thickness of scintillator the number of optical photons remained
constant. In this simulation, annihilation photons were set as a default.

the less optical photons between approximately 1 mm and 2 mm with statistical

variation. Optical photon simulation acquired for each thickness of scintillation,

source decays randomly and the random generator also used in the simulation as

a Monte Carlo tool. After 2 mm thickness, the number of optical photons re-

mains constant because all positrons generate optical photons. In this part of the

simulation, annihilation photons were set as a default.
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6.3 Summary and Conclusion

In Chapter 5, the simple detector geometry used to investigate the effect of the

annihilation photons on the optical photons measurement. In this chapter, there

was a further investigation for positron range with and without generating optical

photons within the actual detector dimension. The simulation results with the

real detector geometry are the same as the simulation performed with the simple

detector geometry. Consequently, almost 90% of positrons (from continuous en-

ergy spectrum) generate optical photons and then annihilate with electrons in the

material. Defining optical and scintillation properties of the EJ212 plastic scintil-

lator and finding parameters were not difficult, but the data acquisition time in

the simulation was extremely long. That is why the simulation time set in seconds

or incoming particle numbers set as a constant (5000 primaries particles).
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Chapter 7

Summary and Future Plans

7.1 Summary and Experimental Results

In this work, several important properties of the scintillation detector system were

experimentally investigated to enhance their potential for use in HELIOS spec-

trometer and PET-MRI medical imaging system. The integration of the functional

imaging technique (PET) into the magnetic resonance imaging (MRI) opened the

door to lead an innovative approach to the spectrometer technology. This new con-

cept has become an important part of the nuclear structure research. A solenoidal

spectrometer, called HELIOS, is now being used to investigate the exotic nuclear

structure and deeply understanding of the stable nuclei by single nucleon transfer

reactions, pair transfer, inelastic scattering, and knockout-reactions. In general,

scintillation detection systems are widely employed in nuclear, particle, and med-

ical physics for radiation detection, cross-sectional images and the activity mea-

surement of the radiopharmacy. The optically combined scintillation material and

photomultiplier tube (PMT) or silicon photomultiplier (SiPM) can operate inside

a strong magnetic field (such as PET-MRI system or HELIOS spectrometer). Re-

garding PMT, it needs to be shielded to eliminate the effect of the magnetic field

on the PMT current or must be operated outside of the field [15]. However, the

combination of the scintillator and SiPM (or APD) can work in the magnetic field

because of photodiode’s insensitivity of the magnetic field [8, 16, 17].

Silicon photomultipliers have many advantages over photomultiplier tubes, so

they are an attractive replacement for photomultiplier tubes. In this research, scin-

tillation detector system, which is the combination of novel scintillators and new
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generation silicon photomultiplier are studied. The work is particularly focused on

the characterisation of the SensL 6 mm blue sensitive silicon photomultiplier and

the coincidence time measurement with using unique fast timing readout signal of

the SensL SiPM. In addition, novel scintillation detector system was successfully

modified into the medical applications to measure the radiopharmacy activity and

microfluidic chip applications in the PET research centre. Primary measurement

of this new detector system was completed with encouraging results.

First, various scintillation detector systems were examined as detailed in Chap-

ter 2. A simple PET detector module (4 x 4 matrix) was constructed by using

sixteen LYSO crystals. The previous generation SensL position sensitive silicon

photomultiplier was optically coupled to this detector module. That detector con-

struction was the same as PET detector module performed by Hong and Choi [16].

The readout board of the SensL 4x4 array MPPC had already broken, and one sig-

nal output only used in the energy spectrum. Additionally, the wrapping material

was not sufficiently completed because of the little space between the scintillator

and plastic grid resulting in excessive loss of scintillation light yield. Therefore,

the PET detector module performed insufficiently. After that, a new generation

scintillator, LaBr3, was optically coupled to 5 mm Hamamatsu avalanche photo-

diodes to examine inside a magnetic field. The LaBr3-APD detector system was

used to take the energy spectra of the standard radioactive source (137Cs with 370

kBq activity) inside approximately 1 Tesla magnetic field. The energy resolutions

were calculated with and without magnetic field at 662 keV gamma energy; 6.67%

and 6.66% respectively. Therefore, the energy performance of the detector system

was not affected by the magnetic field. After a simple positron emission detector

had been placed inside the phantom, which is the plastic ball filled with param-

agnetic substance, an MRI image was also obtained to investigate the interference

in the magnetic resonance image. A hospital MRI machine successfully acquired

horizontal cross section images. The magnetic field homogeneity was slightly dete-

riorated by the scintillation detector system, as observed in the reconstructed MR

image of the phantom. Magnetic field degradation must be the effect of the detec-

tor current and its connectors placed inside the field. High-frequency noise, which

originated from the Larmor frequency, was observed on the readout signal of the

scintillation detector, so the shielding box could be used to reduce the noise [16].

Furthermore, scintillation detector system operating with the electronic modules

such as power supply, amplifier, and MCA module should be shielded to minimise

the effect of the electronic oscillations on the detector measurement. Furthermore,
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experimental phoswiches data, gathered by the PARIS collaboration was analysed

using ROOT software. Additional experimental data has been obtained by using

the phoswich cluster and new-generation scintillators, such as SrI2, CLYC, and

GYGAY. However, these data are yet to undergo analysis.

Using novel technological techniques (such as complementary metal oxide semi-

conductor (CMOS)) and innovative designs in the manufacturing process of the

photodiode gain the several advantages in the SiPM applications. CMOS technol-

ogy reduces damage to the depletion region during the fabrication process, so dark

current (improved from 10-24 µA to 0.68-1.75 µA) and noise decrease with SensL

C series SiPM by using CMOS technology. Also, P-N junction can be constructed

extremely close to the surface of the SiPM, that dramatically increases the blue

sensitivity via detecting shorter wavelength photons (from blue light to UV). In

Chapter 3, various types of SiPM were characterised in terms of the energy per-

formance, temperature dependence, and bias voltage and gain dependencies by

generally focusing on SensL SiPM. SensL B-series SiPM energy resolution for 662

keV at room temperature (21.6 ± 0.1 ◦C) versus bias voltage measurement is not

as fluctuated as at low temperature (6.1± 0.1 ◦C) measurement. The bias voltage

against the dark current at different ambient temperatures from 6 ◦C to room tem-

perature 21◦C measurement was completed for SensL B series 6 mm SiPM. The

dark currents were measured almost zero before the breakdown voltage. However,

after the breakdown voltage dark current electrons (thermally generated) become

more dominant, that is why the dark current suddenly increases after VBR. The

dark current rises if the environment temperature increases. Overall, the dark

current increases as a square of the bias voltage (V2) after breakdown voltage as

a similar trend measured with the literature [29]. The detector gain, defined as a

channel number (at the FWHM of the 662 keV full energy peak), is significantly

influenced by the voltage variation and change in the temperature. If the detec-

tor gain changes, the performance of the detector will vary. Therefore, the gain

must be kept a stable by modifying the voltage or temperature. For SensL B

series SiPM, the breakdown voltage was calculated to be 26.2 ± 0.6 V at room

temperature (4.8 % agreement with the technic data) and 25.8 ± 0.2V at low tem-

perature (3.2 % agreement with the technic data value). One channel shifts with

each 2.84 ± 0.05 mV variation at room temperature and 1.94 ± 0.01 mV varia-

tion at low temperature according to the experimental measurement. The similar

measurement was conducted for SensL 6 mm C type SiPM and 6 mm Hamamatsu
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MPPC module (2x2 array made by four 3 mm S12572-010P MPPC). The break-

down voltage was found to be 26.23 ± 1.02 V for SensL C-SiPM and 66.29 ±
6.30 V for Hamamatsu MPPC. Experimental breakdown voltage calculations are

well-matched with the technical data values obtained from manufacturers. The

dependence of the detector gain and voltage is also found to be 2.85 ± 0.10 mV for

SensL C series SiPM, which is very close to the SensL B type SiPM voltage-gain

relationship. Hamamatsu MPPC sensor is less affected by the voltage variation,

one channel shifts with every 8.5 ± 0.6 mV. The temperature dependence of the

gain and the connection between temperature and bias voltage were also investi-

gated. If the temperature decreases, the detector gain will increase or vice versa.

A single centigrade variation will shift 3.72 ± 0.13 channels for SensL B-series

SiPM. According to the measurement, only one centigrade variation in the tem-

perature will change 0.52 ± 0.02 percentage of gain, which is not in agreement

with the technical data value (0.8 %/◦C [50]). This error could originate from

the thermally-isolated temperature controller chamber, so the temperature sta-

bilisation could not accurate. The fact that the detector gain does not directly

change with the temperature, the breakdown voltage variation will directly alter

the detector gain. For SensL B-series SiPM the breakdown voltage was found

to be 22.73 ± 0.72 mV growth with every centigrade variation. Various detector

systems’ non-linearity corrections were calculated with the experimental data. En-

ergy linearity of Hamamatsu MPPC (2x2 arrays)-LaBr3 detector system is found

to be much better than SiPMs. This conclusion is also consistent with the similar

research [59].

The coincidence-resolved time is a critical measurement in nuclear research

subjects and ToF-PET systems. In many experiments, time-of-flight measure-

ments are required. If the coincidence time resolution of scintillation detector (γ

radiation detector system) is sufficiently higher than the lifetimes of excited nu-

clear states, in some cases, decay cascades can be ordered and identified distinctly.

Regarding medical applications, the quality of the positron emission tomography’s

image increases with a better time resolution of the PET detector. This param-

eter directly affects the line of response (LOR) by reducing Compton scattering

and random coincidence effects on the medical imaging. A coincidence time res-

olution is influenced by the SiPM capacitance because the silicon photomultiplier

capacitance affects the photodiode rise time. SensL producer successfully achieved

the lower capacitance silicon photomultiplier by innovative design. For instance,
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SensL silicon photomultiplier’s capacitance for 6x6 mm2 photosensitive area is re-

duced from 3400 pF to 48 pF. The effect of the SiPM capacitance could be less in

timing measurement, which is conducted by SiPM with the lower photosensitive

area (such as 1 mm2), but this effect will be more if SiPM has large sensitive

area. That is why the timing resolution is found poor by using SiPM with a large

photosensitive area. SensL B and C series blue sensitive SiPMs structure has a

great advantage with the additional signal output (lower capacitance readout for

timing applications) beside of the standard output (used for energy spectrum).

In Chapter 4, the coincidence time resolutions of the various scintillation detector

systems were investigated by analogue and digital timing methods. Timing resolu-

tion performance of the SensL C series SiPM with 6 mm2 photosensitive area was

completed by using the digitiser with remarkable progress (from 512 ps to 331 ps).

The first critical approach was combining the transformer in the circuit. Secondly,

Mini-Circuits amplifiers for different purposes were used in the set-up to obtain the

better rise time of the signals. The coincidence time resolution was improved from

481 ± 9 ps to 276 ± 8 ps by using these amplifiers. Finally, an appropriate thresh-

old level during the analyses was sought depending on the signal amplitude, and

the correct energy gate (only 511 keV annihilation photons) in the software applied

during the data analysing process. The code for analysing data was carefully writ-

ten to find an accurate interpolated value; a quadratic fitting equation was used

instead of a linear equation. The leading edge method gave the better results,

even though the constant fraction technique was employed independently. The

coincidence time resolution (FWHM /
√

2) was found to be 264 ± 9 ps for LaBr3-

C series SiPM detector after the intrinsic time resolution subtracted from the

measured coincidence time resolution. Furthermore, the coincidence-resolved time

measurement (FWHM) dependence of the bias voltage was investigated. When

the bias voltage increases, the detector gain and photodetection efficiency also in-

crease due to the improvement in the photon statistics [73]. Therefore, the higher

gain gives a better rise time and signal-to-noise ratio [74] because noise becomes

less dominant in the higher pulse amplitude. Consequently, coincidence-resolved

time resolution becomes lower until the noise again becomes more dominant in the

signal. The coincidence-resolved time relationship with the bias voltage obtained

by the experimental measurement was consistent with the literature [66, 73, 74].

Scintillation detector systems are also used to measure the activity of the ra-

diopharmacy in the radioisotope or research centres as a standard quality control

procedure. Clinical radiochemical and radionuclide parameters must be in the
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acceptable value. These parameters, which are radiochemical purity, pH level,

sterility, safety, radionuclide purity, and radioactivity, must be checked before in-

jected into the patient circulation system [22]. Radioactivity measurement must

be accurately conducted for the patients health to protect them from the extra ra-

diations and minimisation of the adverse effect on the medical image. In addition,

the activity measurement in a short time is crucial for researchers to protect them

from the unnecessary radiation during the investigation of the radiopharmaceu-

ticals in the research centres. In general, expensive radiochromatogram scanner

and scintillation counter systems are used for the quantification of the radioactivity

distribution [23]. However, the measurement time with radiochromatogram scan-

ner is longer than the scintillation counter, and scintillation detector system has a

limited detector efficiency and solid angle. Therefore, a novel antimatter detector

system is being developed to use in PET research centre and medical applica-

tions. In this detector design, radiochemical substance activity is measured from

positrons rather than annihilation photons, and radiochemical substance directly

contacts with the scintillator without any interference between the detector and

the radioactive source. These are the major differences between the new detector

system and standard detector systems used in nuclear medicine; such as blood

counter, beta probes and scintillation detector system. Furthermore, this detec-

tor design is obviously cheaper than standard detectors, and it has a very simple

working principle with being user-friendly, easy to modify into another systems,

and achievable nanoscale volume for a microfluidic chip application. Blood sam-

ple counting device or microfluidic systems must precisely take a time-dependent

spectrum as a function of the whole body radioactivity concentration from 0.70

µL to 0.22 µL sample volume in a short time [78]. In PET research centre, the

standard scintillation detector system, which is LabLogic’s Scan-RAM NaI opti-

cally coupled to PMT, is used for measuring the activity in radiopharmacologic

research. The initial measurements were completed with various new detector de-

signs, and results compared with the standard NaI-PMT detector system. First,

empirical formula theoretically calculated the positron range in the plastic scin-

tillator and that well-matched with the calculation obtained by ESTAR stopping

power and range calculation program. Then GEANT4 based Monte Carlo simu-

lation program, GATE 7.0, is used to examine the annihilation photons effect by

two different ways in the simulation; generating annihilation photons and without

annihilation photons. That gave the optimum thickness for the least effect of the
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annihilation photons on the positron measurement. Various detectors were de-

signed, and they were then tested in the PET research centre at the University of

Hull. During the experiment, we observed the radiochemical fluid contamination

inside the whole tubing circulation system especially on the plastic scintillator sur-

face, which directly contact with the fluid. The novel scintillation detector designs

were also tested for the low volume blood sample counter and microfluidic chip ap-

plications (measured from 94 µ` to 0.11 µ`). Surface treatments (plasma oxidation

and cold fluoride) were applied on the plastic scintillator surface before the exper-

iment to remove the radiochemical contamination. Moreover, PEEK tubing with

very thin wall thickness were tested resulting in successfully measurement with

0.11 µ` detection volume without radiochemical fluid contamination. Continuous

beta particle spectra from 18F and 68Ga were obtained as what expected. Besides,

the half-life of 68Ga radioisotope was experimentally calculated to be 62.11± 8

minutes (accepted half-life is 67.71 ± 9 minutes [86]). Therefore, the literature

value and the experimental value agree with each other if they overlap within their

uncertainties.

7.2 Future Plans

A patent application has been completed following a collaborative agreement be-

tween the University of York and Hull University for this new concept scintillation

detector design, which is used in the PET radioisotopes research centre. Further

investigation must be conducted with different thickness of scintillator, designing

prototype microfluidic blood counter device and the calibration of the detector

systems. This new detector system is also highly possible to modify into a com-

plex gradient microfabricated device. That medical device is used to vary the

radioactivity level of the radiopharmacy as illustrated in Figure 7.1. There are

two inlets; radiochemical sample (showing with the blue solution) is injected into

the first inlet and radioisotope labelled sample (showing with the red solution) is

injected into the second inlet. When red and blue colour samples pass through in-

side the tubing system, radioisotope and radiochemical concentration will change

in gradually. Consequently, six different concentration levels are obtained in the

outlets. From the first outlet to the last outlet, radioactivity level reduces, but

radiochemical concentration increases. The new detector design must measure the

activity in the each outlet. The standard complex gradient microfabricated device
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Figure 7.1: A complex gradient microfabricated device. Two different sam-
ples are injected into the inlets; one sample contains radiochemical component
(represents with blue solution), and the other is radioisotope sample (represents
with red solution). When red and blue colour samples pass through inside the
tubing system, the main sample mixes each other with different concentrations.
This device is used as a mixer or concentration gradient generator. There are
six different radioactivity levels with the different chemical concentration in the
each outlet. The highest radioactive isotope concentration and the lowest ra-
diochemical concentration is in the first outlet. Radioactivity concentration will
decrease from the first outlet to the last outlet.

is produced from the non-scintillator material such as plastic. Figure 7.2 shows

the detector design with two different size of SensL silicon photomultiplier array

is coupled with scintillator. In this detector design, the main board is scintillation

material. When the fluids mix in the way of the each path, the activity level can

be monitored by using scintillation material coupled with the silicon photomulti-

plier. Figure 7.2(a) shows the detector for the SensL C-series 1 mm2 active area

4 x 4 array SiPM. Four outlets monitor activity variation as a movement of time.

Radioactivity level at the last region of the outlet can be measured with the second

design, as shown in Figure 7.2(b).

Measurements with these devices are more complicated than a single detector

measurement. At least six channels of digital readouts must be used for data

acquisition. Furthermore, a new scintillator material is being made in the Hull
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(a) For a 1 mm2 active area, a 4 x 4 matrix array of SensL C-series blue sensitive
SiPMs.

(b) For a 6 mm2 active area,a 6 x 1 matrix array of SensL C-series blue-sensitive
SiPMs.

Figure 7.2: A complex gradient microfabricated device. Two different samples
with different radioactivity levels are injected inside the inlets. Six outlets are
obtained with various activity levels.

research centre as an alternative to the plastic scintillation (EJ212). There was

a radiochemical contamination on the surface of the scintillator detector as we

discussed in Chapter 5. Two different possibilities can cause of that problem. The

first probability is that the scintillation material reacts with the radiochemical fluid

resulting in radiopharmacy contamination into the detector (called the leakage

problem). The second possibility is that the plastic scintillator can be damaged

(cracks on the surface) by the drill. That is why we were searching different

scintillation material. Until now, encouraging result has been obtained, but the

light output of the scintillator is insufficient.
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Choosing a suitable amplifier in the specific measurement (such as, energy and

time spectroscopy) is a critical point to optimise the signal during the data acqui-

sition. Figure A.1 shows the electronic block diagram for specific measurements

with pre-amplifiers, amplifiers, and discriminator, which are commonly used in

nuclear physics and particle physics as discussed in Chapter 2and Section 2.4.

Figure A.1: Common amplifiers used in nuclear and particle physics applica-
tions for signal shaping processes [37].
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Hamamatsu does not release large photosensitive area (6 mm 2) multi-pixel

photo counter (MPPC or SiPM). Therefore, we constructed 2x2 arrays from four

S12572-010P MPPC with 3 mm2 photosensitive area (Figure A.2). These MPPCs

connected in parallel to obtain a combination of the four signal outputs (because

the circuit readout will be the total of the each MPPC currents). Therefore, SensL

C and B series SiPM with 6 mm2 photosensitive area was compared with 6 mm2

Hamamatsu MPPC as shown in Chapter 4 in Figure 4.1(a).
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Figure A.2: Readout circuitry for the 2x2 array of Hamamatsu multi-pixel
photon counter (MPPC conventional SiPMs). A single S12572-010P MPPC
has 320 pF terminal capacitance, 90000 number of pixels, 3 mm 2 active area.
Four MPPC have been connected parallel.

Philips PM5786 pulse generator used for electronic time resolution measure-

ment. Two identical pulses first obtained, generator pulses were then fed into the

digitiser (CEAN DT5742), Ortec 820 fast timing amplifier, and Philips 708 dis-

criminator, which is the same electronic block diagram as shown in Figure 4.16.

The digitiser recorded 5000 pulses, data was then analysed with leading edge

method as detailed in Chapter 4 in Section 4.3.1. Calculated time difference

between two identical pulses was histogrammed and created the Gaussian distri-

bution for intrinsic time resolution, which illustrates in Figure A.3
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Figure A.3: Intrinsic time resolution (Full-Width-Half-Maximum (FWHM))
of the electronics. Philips PM5786 pulse generator used for producing simulta-
neous two identical pulses.

The Philips PM5786 pulse generator used for electronic time resolution mea-

surement (intrinsic time resolution) with the different experimental set-up. After

obtained two identical pulses, these signals were fed into Mini-Circuits amplifiers

(ZFL-1000LN and ZX60-43-S+), digitiser, and discriminator as shown the elec-

tronic block diagram in Figure 4.25 in Chapter 4. The digitiser recorded 5000

pulses, data then analysed with using leading edge method. Calculated time dif-

ferences between two identical pulses were histogrammed and created the Gaussian

distribution for intrinsic time resolution, which illustrates in Figure A.4.
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Figure A.4: Intrinsic resolved time measurement of the electronics. The
Philips PM5786 pulse generator used to produce simultaneous two identical
pulses. For the experimental set-up see Figure 4.25. The Full-Width-Half-
Maximum (FWHM) is calculated to be 0.34 channels (68 ∓ 1 ps).
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527 MicroMCA module was developed to measure the number of photoelec-

trons as a function of time in per seconds or microseconds (for activity measure-

ment). Figure B.1 shows the layout diagram of the electronic board, which used in

activity measurement. This module can modify for different SiPM by negative or

positive bias voltage capability. The readout signal can also be monitored by os-

cilloscope when MCA acquisition records the data. The software called WinSPEC

used for the record of the data. It has the capability to record the energy spectrum

with multichannel analyser and activity spectrum with the multi-channel scale at

the same time.

Figure B.1: The layout diagram of the developed MCS model. The SiPMs
signal can be monitored by oscilloscope when MCA acquisition records the data
by using WinSPEC software.
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Abbreviations

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

PET-MRI Positron Emission Tomography integrated Magnetic Resonance Imaging

HELIOS HELIcal Orbit Spectrometer

ATLAS Argonne Tandem Linac Accelerator System

rp-process rapid proton capture process

FDG FluroDeoxyGlucose

PMTs PhotoMultiplier Tubes

SiPM Silicon PhotoMultiplier

APDs Avalanche PhotoDiodes

MPPC Multi Pixel Phonton Counter

LOR Line Of Response

PET-CT Positron Emission Tomography Computed Tomography

ToF-PET Time Of Flight Positron Emission Tomography

SPECT Single Photon Emission Computed Tomography

GEANT GEometry ANd Tracking

NIM Nuclear Instrumentation Modules

QE Quantum Efficiency

PDE Photon Detection Efficiency

MCA Multi Channel Analayser

SCA Single Channel Analayser

TAC Time Amplitude Converter

ADC Analogue to Digital Converter

PARIS The Photon Array for the studies with Radioactive Ion and Stable beams

CMOS Complementary Metal Oxide Semiconductor

FTA Fast Timing Amplifier

GDG Gate and Delay Generator

CFD Constant Fraction Discriminator

CRT Coincidence Resolving Time
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