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AbstractThe bus driver scheduling problem involves assigning bus work to drivers in such a way thatall the bus work is covered and the number of drivers and duty costs is minimised. This iscomplicated by the fact that there are restrictions on the formation of valid duties.A review of computerised scheduling systems is presented, along with a more detailed descrip-tion of one such system which uses a set covering model to produce a schedule from a set ofpreviously generated valid duties. This method �rst solves the Linear Programming relaxation,and then uses Branch and Bound techniques to search for a good integer solution. Improve-ments to this system are detailed.Most systems which use mathematical programming methods to solve the driver schedulingproblem need heuristics to reduce the size of the problem since there are potentially manythousands of valid duties, even for small problems. Column generation is a technique whichimplicitly considers a much larger number of duties, whilst retaining a much smaller workingduty subset. A specialised column generation method is implemented within the existing setcovering system, and the results of tests on seven problems presented. Each problem instanceis solved with two sizes of duty set, and timings compared to those tested on the set coveringsystem. Results show an average reduction in execution time of 41% using column generation,and the larger data sets yield better schedules in terms of the number of duties and the overallcost.



Contents1 The Driver Scheduling Problem 11.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.2 Bus Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.3 Driver Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51.3.1 Labour Agreement Rules : : : : : : : : : : : : : : : : : : : : : : : : : : 61.3.2 Duty Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71.3.3 Schedule Representation : : : : : : : : : : : : : : : : : : : : : : : : : : : 91.3.4 Manual Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111.3.5 Computer Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112 Review of Driver Scheduling Methods and Applications of Column Genera-tion to Transportation 132.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132.2 Computerised Scheduling Systems : : : : : : : : : : : : : : : : : : : : : : : : : 142.2.1 A Crews First Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.2.2 The BDS System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.2.3 A System for Rural Vehicle and Driver Scheduling : : : : : : : : : : : : 152.2.4 The COMPACS System : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.2.5 The EXPRESS system : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.2.6 The HASTUS System : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.2.7 The HOT II System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 182.2.8 The INTERPLAN System : : : : : : : : : : : : : : : : : : : : : : : : : : 19i



2.2.9 The RUCUS II-System : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192.3 Driver Scheduling Processes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192.3.1 Driver Duty Estimator : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.3.2 Genetic Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 212.4 Review of Computer-Aided Bus Driver Scheduling : : : : : : : : : : : : : : : : 222.5 Overview of Other Driver Scheduling Systems : : : : : : : : : : : : : : : : : : : 232.5.1 Train Driver Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 232.5.2 Airline Crew Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 232.6 Column Generation Applications to Transportation : : : : : : : : : : : : : : : : 242.6.1 Bus Driver Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 252.6.2 Airline Crew Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 262.6.3 Vehicle Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 282.7 Review of Column Generation Approaches : : : : : : : : : : : : : : : : : : : : : 283 Inherent Scheduling Problems Explored 303.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 303.2 Mealbreak Chains : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 303.2.1 Mealbreak Chain Example : : : : : : : : : : : : : : : : : : : : : : : : : : 323.2.2 Possible Solution Methods : : : : : : : : : : : : : : : : : : : : : : : : : : 373.2.3 Using Mealbreak Chaining to Produce a Driver Schedule : : : : : : : : : 443.2.4 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.3 Exhaustive Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.3.1 Search Tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.3.2 Solution Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 473.3.3 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 513.3.4 Possible Improvements : : : : : : : : : : : : : : : : : : : : : : : : : : : : 513.3.5 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 533.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 534 The TRACS II Scheduling System 55ii



4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 554.2 The TRACS II Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 554.2.1 The Objective Function : : : : : : : : : : : : : : : : : : : : : : : : : : : 564.2.2 Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 584.2.3 Side Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 604.2.4 Model - Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 614.3 Runningmprovement routines : : : : : : : : : : : : : : : : : : : : : : : : : : : : 654.4 Data Files : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 654.4.1 Bus Schedule Data File : : : : : : : : : : : : : : : : : : : : : : : : : : : 654.4.2 Duty Generation Parameter File : : : : : : : : : : : : : : : : : : : : : : 674.4.3 ZIP �le : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 724.4.4 Info �le : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 734.4.5 Duty �le : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 744.5 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 745 Solving the TRACS II ILP Model 755.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75iii



5.2 Solution Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 755.3 An Alternative Solution Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : 795.3.1 Sherali Strategy for a Single Objective Model : : : : : : : : : : : : : : : 815.3.2 The New Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 825.3.3 New Solution Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : 835.4 Running ZIP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 845.4.1 The Initial Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 845.4.2 Solution of Relaxed LP : : : : : : : : : : : : : : : : : : : : : : : : : : : 865.4.3 Branch and Bound : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 875.5 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 906 A Column Generation Model 916.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 916.2 Related Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 916.3 Column Generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 926.3.1 Theory of the Simplex Method : : : : : : : : : : : : : : : : : : : : : : : 926.3.2 Method of Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 956.4 Application of Column Generation to Driver Scheduling : : : : : : : : : : : : : 966.4.1 Method of Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 966.4.2 The HASTUS Crew-Opt Method : : : : : : : : : : : : : : : : : : : : : : 976.4.3 Proposed Column Generation Implementation within ZIP : : : : : : : : 1027 Implementation of Column Generation Within ZIP 1067.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1067.2 A Standard Model/Sherali TRACS II : : : : : : : : : : : : : : : : : : : : : : : 1077.2.1 Sherali TRACS II Method : : : : : : : : : : : : : : : : : : : : : : : : : : 1087.2.2 Experimental Data Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : 1097.3 Column Generation Solution Procedure : : : : : : : : : : : : : : : : : : : : : : 1107.3.1 Implementation Considerations : : : : : : : : : : : : : : : : : : : : : : : 1107.3.2 Implementation Strategies and Results : : : : : : : : : : : : : : : : : : : 112iv



7.4 Results and Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1237.4.1 Continuous Solution Timings : : : : : : : : : : : : : : : : : : : : : : : : 1237.4.2 Overall Timings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1247.4.3 Detailed Analysis of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1257.4.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1338 Re�nement of the Column Generation Method Within ZIP 1358.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1358.2 Failure to Find an Integer Solution : : : : : : : : : : : : : : : : : : : : : : : : : 1358.2.1 Specifying a Target Number of Duties : : : : : : : : : : : : : : : : : : : 1378.2.2 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1398.3 Altering the Initial Subset Size and Duty Increase Per Iteration : : : : : : : : : 1398.3.1 Proposed Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1458.4 Implementation and Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1468.5 Sub-Optimal Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1478.6 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1489 Summary and Conclusions 1509.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1509.1.1 A Column Generation Technique : : : : : : : : : : : : : : : : : : : : : : 1509.1.2 An Algorithm for the Column Generation Procedure : : : : : : : : : : : 1519.2 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1529.3 Further Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1539.3.1 General Improvements : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1549.3.2 Alternative Pricing Strategies : : : : : : : : : : : : : : : : : : : : : : : : 1549.3.3 Branch and Bound : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1559.3.4 Column Removal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1559.4 Possible Application of System : : : : : : : : : : : : : : : : : : : : : : : : : : : 1569.5 Summary of Achievements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156v



Bibliography 158

vi



List of Tables3.1 Possible Valid Two-Part Duties for the Example Problem : : : : : : : : : : : : 473.2 List of all Spells Appearing in Generated Duties : : : : : : : : : : : : : : : : : 487.1 GMB(S): ranked subset and one simplex multiplier considered : : : : : : : : : : 1177.2 GMB(S): subset of initial solution and one simplex multiplier considered : : : : 1177.3 GMB(S): subset of initial solution and minimum duties added : : : : : : : : : : 1187.4 GMB(S): subset of better initial solution and minimum duties added : : : : : : 1187.5 GMB(S): subset of better initial solution and pure reduced costs calculated : : 1197.6 GMB(S): subset of better initial solution and eliminating certain duties : : : : 1207.7 GMB(S): subset of better initial solution and addition of more varied duties : : 1207.8 GMB(S): minimum coverage in initial subset and addition of more varied duties 1217.9 GMB(S): minimum coverage in initial subset and addition of more varied duties 1217.10 GMB(S): minimum coverage in initial subset and parameters governing additions 1227.11 Comparison of Timings to Continuous Solution : : : : : : : : : : : : : : : : : : 1237.12 Comparison of Branch and Bound Timings and Total Timings : : : : : : : : : 1247.13 AUC Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1267.14 CTJ Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1277.15 CTR Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1287.16 GMB Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : 1297.17 RI2 Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1307.18 STK Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 1317.19 SYD Data : Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : 132vii



8.1 Specifying a Target Number of Duties for Certain Problems : : : : : : : : : : : 1388.2 Altering the Initial Coverage Parameter : : : : : : : : : : : : : : : : : : : : : : 1418.3 Altering the Number of Additions Per Iteration : : : : : : : : : : : : : : : : : : 1438.4 Altering the Number of Duty Additions Per Piece of Work : : : : : : : : : : : : 1458.5 Comparison of Timings With Improved Column Generation System : : : : : : 1468.6 Results of Terminating at a Sub Optimal Solution : : : : : : : : : : : : : : : : 148

viii



List of Figures1.1 Representation of the Work of a Single Bus in a Day : : : : : : : : : : : : : : : 31.2 A Diagramatic Representation of a Bus Schedule : : : : : : : : : : : : : : : : : 41.3 Typical Daily Fluctuations on the Number of Buses on a Weekday : : : : : : : 51.4 The Types of Duty Used to Cover Daily Bus Work : : : : : : : : : : : : : : : 81.5 An Example of Possible Duties Used to Cover Part of a Schedule : : : : : : : : 91.6 A Typical Diagram Depicting a Driver Schedule : : : : : : : : : : : : : : : : : : 103.1 A Possible Duty Combination for a Portion of Bus Work : : : : : : : : : : : : : 313.2 A Possible Mealbreak Chain : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 323.3 A Busgraph Representing Part of the Cleveland Transit Operation : : : : : : : 333.4 The Window of Relief Opportunities Available : : : : : : : : : : : : : : : : : : 353.5 Matrix of Potential Mealbreak Links : : : : : : : : : : : : : : : : : : : : : : : : 363.6 Netform Representation of Mealbreak Chaining Problem : : : : : : : : : : : : : 383.7 Busgraph Test Data to Illustrate Searching Procedures : : : : : : : : : : : : : : 463.8 Construction of an Initial Solution : : : : : : : : : : : : : : : : : : : : : : : : : 503.9 Formation of a Search Tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 525.1 Example of Fractional Coverage of a Bus : : : : : : : : : : : : : : : : : : : : : : 876.1 Representation of a Duty as a Path Through a Network : : : : : : : : : : : : : 98ix



AcknowledgementsI acknowledge Derek Morley - the original inspiration!I would like to thank my supervisors, Professor A. Wren and Dr. L. G. Proll, for their guid-ance and ... well ... supervision. Friends at Leeds University have been very supportive, and inparticular I would like to mentionLisa Simpson and Jackie Carter. Good luck with your Ph.D.'s!Finally, I would like to thank Jeremy, and other close friends and family, for their continuedpatience. I would particularly like to thank my mother who tragically lost her partner inDecember 1995.

x



ForewordThe following summary of contents outlines the purpose of each chapter.Chapter 1 presents the driver scheduling problem, and brie
y covers the need for computersystems to be used in the solution process.Chapter 2 summarises the computerised scheduling systems and techniques available. Noscheduling system presented can solve the driver scheduling problem optimally, but methodsincorporating column generation give encouraging results and a summary of these methodsapplied to scheduling problems is presented.Chapter 3 introduces some of the problems inherent in solving driver scheduling problems.A technique is proposed in which the number of mealbreak chains in any given time period isoptimised, and an exhaustive search solution method is considered.Chapter 4 outlines the solution method and steps involved in using the computerised systemTRACS II which was developed at the University of Leeds.Chapter 5 details the mathematical programming component of TRACS II, which is used toproduce a schedule with the fewest number of drivers at least cost from a set of previouslygenerated valid duties. An alternative solution strategy is also detailed which has been shownto reduce computation time.Chapter 6 introduces the theory of column generation and describes a system which incorpo-rates column generation to solve the driver scheduling problem. An algorithm is proposed toincorporate column generation within the mathematical programming component of TRACS II.xi



Chapter 7 describes various column generation strategies tested and the results of a successfulimplemetation on seven problems.Chapter 8 proposes and tests various potential improvements to the column generation method.Successful techniques are implemented to derive a re�ned column generation method, and re-sults on the seven problems are presented.Chapter 9 presents a summary of the successful column generation method, and suggestionsfor further re�nement of the method.

xii



Chapter 1The Driver Scheduling Problem1.1 IntroductionThe driver scheduling problem presented is that of a bus company but could equally well beconsidered for other operations requiring the assignment of crews to a predetermined vehicleschedule. Bus companies are required to provide a timetabled bus service for a particular areaof operation and also, possibly, contract vehicles to clients, e.g. for the transportation of schoolchildren or less regular long-distance holiday services. Normally the timetable would remainconstant for a period of months, requiring little or no alteration to the duty contents or thedaily operations during that time, although increased competition between operators raises thepossibility that schedules are changed more frequently than in the past.As well as drivers many other sta� are employed in bus companies to deal with administrationand vehicle maintenance and hence labour costs are high, making it essential to maintain e�-cient driver allocations. A bus crew can be thought of as a one or two person operation depend-ing on the requirement of a particular bus company to employ a conductor. It is increasinglyrare for a company to allocate conductors to vehicles, and certainly in all experimental dataprovided in this thesis it was only required to assign drivers, but the methodology used canbe extended to situations requiring more than one person. Since deregulation in the UnitedKingdom, many small companies were formed which each covered a relatively small geograph-ical area. In many cases this means that the operation is run from only one depot. It is usualfor larger bus companies to divide the bus work by garage in order to use a separate groupof drivers for each area with a separate scheduling process. Bus companies may also group1



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 2certain routes together and schedule them for a subset of drivers, with enough variety to allowrostering. Even though this system may be more ine�cient with regard to the whole of the buswork, it allows drivers to become accustomed to certain routes and provides more familiarityfor regular passengers.A minor alteration of a start or end time for a bus may improve the e�ciency of a schedule byavoiding the need for an extra driver or removing unnecessary waiting at the garage. For thisand other reasons it may seem preferable to schedule the vehicles and drivers simultaneously toattain global optimality. However, for the majority of cases it is impracticable and the vehicleand driver schedules are compiled separately. Ball [1, 2] has proposed methods for schedulingthe processes simultaneously, but in practice bus operators generally wish to inspect and amendthe bus schedule in order to satisfy local conditions before allocating the driver work. Driverscheduling must also take into account the fact that drivers have more limitations on worktime than the vehicles and so the rules used to compile the two processes are very di�erent. Itis, however, useful to have the ability to analyse quickly the impact that changes in a vehicleschedule may have on the number of drivers in a driver schedule.Please note that Hartley [3] provides a complete description of all terms used in bus and driverscheduling, including variations used in di�erent countries.1.2 Bus SchedulingThe bus scheduling process takes a set of predetermined journeys to be operated and allocatesa vehicle to each trip. The routes and frequency of services are best obtained from knowledgeof passenger demand from previous schedules. The objective is to minimise the total numberof vehicles and running costs, whilst still serving a particular area. Running costs may beminimised by avoiding the need for unnecessary dead running (unproductive time not used tocarry passengers) since this incurs driver and fuel costs but o�ers no gain from fares. Dead run-ning includes idle time at termini which must not be more than is compensatory for late running.There are predetermined location points throughout the journey, each with a particular arrivaland departure time. These are places at which the passengers can board or depart from thevehicle, and/or places which allow a convenient changeover of drivers. The designated locationsat which a driver can be relieved by another are known as relief points and there may be more



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 3than one of these throughout any particular bus journey. Each relief point has a correspondingtime and these point-time pairs are known as relief opportunities. The work of each individualbus in a day is known as a running board.
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Figure 1.3: Typical Daily Fluctuations on the Number of Buses on a Weekdayreduced operation on a Sunday. Account must also be taken of any contract vehicles such asschool buses. Figure 1.3 shows how the demand on an urban weekday may a�ect the numberof buses in operation throughout the day.1.3 Driver SchedulingIt is a necessity that any bus in operation must have a driver, and possibly a conductor, as-signed to it at all times. Labour agreement rules are present to ensure that drivers do not workunacceptable duties and provide certain guidelines restricting the construction of duties. Allchangeovers of drivers have to take place at relief opportunities (which are de�ned as any timeidenti�ed as a relief point on the vehicle schedule). Driver scheduling then involves dividing thebus work into a set of duties such that every piece of work in operation is allocated to a driver,unless a period where the bus can be left unattended is allowed, and each duty conforms to thegoverning rules.It is usual in the U.K and most European bus companies for drivers to work on two or morebuses with a mealbreak taken away from the vehicle. There are some companies however whereno mealbreak requirements are necessary, which simpli�es the problem as the running boards



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 6can be divided and allocated to a driver. The data presented will be relevant to the �rstinstance where mealbreaks will be necessary. Since it is always possible to cover the bus work,the problem for the company becomes one of minimising the total number of duties and thetotal duty costs. In fact, the minimisation of the total number of duties is regarded as moreimportant since there are many costs which depend directly on the number of drivers regardlessof their wages. Duty costs depend on the combination of work that they contain, incorporatingthe hourly wage and including penalty costs for undesirable features such as long or unsociablehours. The overall duty preference should also be considered, which may include a requirementthat a limit is put on the number of duties of a certain type.1.3.1 Labour Agreement RulesThe rules governing the construction of duties are mostly determined by past practice and lo-cal conditions, and are agreed between the bus company and the union as internal regulations,whilst other regulations are provided by the Government. Some of the rules given are meantas guidelines which can be relaxed (SOFT rules), whereas others must be adhered to (HARDrules). Most rules are relevant to all bus companies even though their parameters di�er, butit is likely that each bus company has developed its own additional rules which need to beconsidered for its drivers requirements.Typically, global rules will relate to :� The paid allowance for signing on and o� at the garage.� The maximum time which a driver can work without a mealbreak. This is usually fourto �ve hours and may consist of work on more than one bus with a joinup allowed totransfer onto another vehicle.� The minimum length of a mealbreak. This will usually be a �xed time, say 30 minutes,plus travel time to the canteen.� The total working time.� The total spreadover (duration between the beginning and end of a duty).The tightness of the rules plays an important part in the scheduling process. For instance,schedulers �nd it more di�cult to compile e�cient duties where the maximum time that maybe worked without a break is short, although the existence of a tight constraint on this time



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 7may help by reducing the number of potential valid duties.Local rules tend to be built around traditional duty formations, such as drivers retaining thesame bus after a mealbreak and large penalties to deter duties with particular features frombeing included in the �nal schedule.1.3.2 Duty TypesThere are two main types of duties - STRAIGHT and SPLIT. The straight duties are normallycategorised depending on the time of day that they are worked, although this distinction isused more for producing a fair roster than for providing separate rules used in the formationof individual duties. The timing of the peaks in bus service, as illustrated in Figure 1.3, makesit impossible for drivers of straight duties to work both peaks during the duty, illustrating theneed to introduce split duties. Figure 1.4 divides a typical weekday operation into the types ofduty required to cover the bus schedule, indicating the times of day that each duty type wouldnormally be worked. This however is only an indication since bus companies de�ne the dutytypes they wish to use and the times at which they will be restricted.A spell of work is de�ned as a series of consecutive pieces of work on the same bus and astretch is de�ned as a series of spells without an intervening mealbreak. A duty is de�ned astwo stretches of work separated by a mealbreak. Joinups may be used to allow a driver to linktwo spells of work. Although it is legal to have duties which work several buses, it is usual andpreferable to restrict the driver to two or three spells of work as time spent changing vehicleswithin a stretch will count as worked time not contributing to productivity. Enlarging thisnumber may improve overall e�ciency, since a duty which is not restricted to the number ofbuses worked may combine well with good two-part duties giving a better schedule overall, andthe construction of more duties allows a greater choice of combination. However it increasesthe potential number of valid duties considerably and would complicate the schedule from theviewpoint of both the drivers and the bus company.
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Figure 1.4: The Types of Duty Used to Cover Daily Bus WorkSTRAIGHT DutiesThese duties can be classi�ed as EARLY, LATE, MIDDLE, and DAY depending on the timeof day that they are covering. The drivers operating early duties would be required to take the�rst bus trip out of the garage, and those with late duties return the buses to the garage afterthe last trip.The straight duties are usually formed as two or three spells separated by a mealbreak of around30 minutes to an hour such that the total spreadover of the duty is around nine hours.SPLIT dutiesThe main purpose of the split duty is to provide drivers to cover the peak periods when morebuses are in operation. They also assist in maintaining the service whilst drivers from otherduties take their mealbreaks. The total spreadover of these duties would be around twelvehours with a longer break between stretches, making them more unpopular with the drivers,and so higher penalty costs are often attached to these duties to restrict the number created.The maximum driving time would generally be the same as for straight duties.



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 9OVERTIME DutiesIn some cases bus trips can be covered by overtime work, which consist of one-part duties ofaround two to four hours. These are in addition to normal duties for relatively high payment andmay be useful in covering peaks in demand. Most companies however, prefer not to incorporateovertime duties unless they become necessary due to work remaining uncovered once a schedulehas been formed.1.3.3 Schedule Representation
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Figure 1.5: An Example of Possible Duties Used to Cover Part of a ScheduleFigure 1.5 represents a possible driver schedule that could be built around the bus work shownin Figure 1.1. The dotted line indicates a mealbreak. Duties are identi�ed by a number anda letter representing the duty type. In order to explain the diagram the work of one duty willbe described. Duty 3D begins, after signing on at the garage, on the �rst bus at 0949. The�rst stretch lasts for three hours, taking a mealbreak at 1249. Including the travelling time tothe canteen and back, the break has a total duration of 1 hour and 27 minutes, returning torelieve the driver of the second bus at 1416. The second stretch also lasts for three hours wherethe driver then returns to the garage to sign o�. Complete duties are only shown for duties3, 4, and 5 which are respectively Day, Middle and Middle duties. Some companies preferthe driver to retain the same bus after a mealbreak, although this rearrangement is performedindependently from driver scheduling.Figure 1.6 shows how a typical driver schedule might look for the bus schedule given earlier.All duties in this example are only two-part but display all possible duty types.
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CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 111.3.4 Manual SchedulingScheduling, both of vehicles and drivers, has been acknowledged as a di�cult task for manyyears [4]. The principles involved are still valid even with the intervention of computer methods.Manual schedulers have to generate duties which �t together to cover the bus work, with eachduty needing to be checked to ensure that it conforms to the rules, and the overall sched-ule must not violate any constraints restricting particular duty types. Scheduling mealbreakscauses complications as there are many choices for a second stretch of a duty after a mealbreakonce a �rst stretch has been determined. Even if the bus schedule has been divided so thatsmaller groups of buses are considered at any one time, it is still a complicated manual process.Experienced manual schedulers may be able to produce a schedule containing the minimumnumber of duties, but the vast number of valid duty combinations may prevent the moste�cient combination from being created. Once a schedule has been produced for a company,a manual scheduler will probably only have to update it when alterations are made to the busschedule, rather than the process having to be started from scratch each time. The skills andknowledge that a manual scheduler possesses cannot easily be transcribed into rules which canbe incorporated into a computerised system.1.3.5 Computer SchedulingThe earliest successful computer systems for driver scheduling were developed in the 1970s anda series of workshops [5, 6, 7, 8, 9, 10] have been organised since then to discuss the latesttechniques and software evolving with rapid developments in technology. Wren and Rousseau[11] give an outline of the driver scheduling problem and computer approaches to solving it,with emphasis on the more recent developments.The limitations of computer technology meant that earlier systems found heuristic solutionsrather than using known mathematical programming models [12, 13]. Most of these systemsused heuristics to re�ne some initial schedule and are not easily portable to other bus compa-nies. More recently mathematical programming techniques have been applied to solve the driverscheduling problem with a given set of valid duties. Due to the large number of valid dutiesthat can be formed for each individual problem, mathematical programming methods cannotbe used in isolation and hence most research has been directed at producing systems with a



CHAPTER 1. THE DRIVER SCHEDULING PROBLEM 12combination of mathematical programming and heuristics to reduce the problem size. As theuser requirements are hard to de�ne and the knowledge of the manual scheduler is invaluable,most computer scheduling systems aim to aid the scheduler rather than provide a `black box'problem solver. Since computer scheduling was �rst introduced much more powerful computershave become available, allowing results to be calculated even more quickly, more duties to beconsidered in forming a driver schedule, and more options to be available to the user. Withpresent competition between operators, many of them require a system which can perform sen-sitivity analysis on a schedule to predict e�ects that revisions in the timetable would make onthe overall cost. Another popular recent feature of scheduling packages is graphics, not only tomake the systems more attractive to clients, but also to allow the user to manipulate schedulesby diagram. However, in many cases with particularly large problems, it is still not possible to�nd the optimal solution, that is, the particular combination of duties which have the lowestpossible cost to the operator, taking all legal requirements into consideration. Computer-aidedscheduling is intended to calculate more e�cient schedules more quickly, with the drawbackbeing the cost in setting up such a system.Several bus driver scheduling systems are in widespread commercial use and are described insection 2.2. It should be noted that the quality of existing methods is acceptable to users eventhough an optimal solution is not guaranteed. The implementation of computer schedulingpackages has created large cost savings to bus companies but although any further improve-ments would allow more savings, small bene�ts may be outweighed by further purchasing costsor a greater time incurred in the scheduling process.This thesis is concerned with investigating a mathematical programming technique which willconsider more duties from which to form a driver schedule. This is implemented into an existingmathematical programming system and will be tested to ascertain any improvements in driverschedules in terms of number of drivers and overall cost, and also in terms of execution time,which remains an important issue to schedulers who may wish to analyse the e�ects of timetablealterations quickly.



Chapter 2Review of Driver SchedulingMethods and Applications ofColumn Generation toTransportation2.1 IntroductionSince the early 1960s when computers were �rst introduced to solve bus and driver schedulingproblems, many di�erent techniques have been developed. Whilst some work has concentratedon building complete computer scheduling packages, research has also taken place to test newtechniques and algorithms which may aid or improve parts of the solution process. The pur-pose of this chapter is both to review some of the di�erent approaches which have been usedin attempting to produce driver schedules, and also to describe some of the applications of acolumn generation technique which is used to solve certain types of mathematical programmingproblems including driver scheduling problems.
13



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 142.2 Computerised Scheduling SystemsSince there are many papers detailing the theory and application of computer based driverscheduling systems in the proceedings of the six workshops on computer-aided scheduling ofpublic transport [5, 6, 7, 8, 9, 10], this chapter will concentrate on those published more recentlyand any others which relate to current work. Willers [14] presents a fuller review of the materialin the proceedings.Complete scheduling packages which are in most common use are : IMPACS [15, 16, 17, 18],HASTUS [19, 20, 21, 22, 23, 24], HOT II [25, 26, 27], UMA(Trapeze) and Teleride Sage. Othersystems are in use such as TransTec EDP in Germany, and a system called BERTA [28] isbeing developed in Berlin to provide automatic bus and driver schedules for an underground,bus and tram system, but details of these systems have not been published. Also, details havenot been published for the systems UMA and Teleride Sage and so they will be omitted fromthis review. Details regarding the driver scheduling approach used by IMPACS are similar tothose in TRACS II because they both originated as IMPACS developed at the University ofLeeds. TRACS II is the system retained for research purposes and is described in detail inChapter 4.2.2.1 A Crews First ApproachThe approach, described by Patrikalakis and Xerocostas [29], �rst develops driver schedules andthen forms the vehicle schedules around them. The opposite approach from standard systemswas motivated by the fact that driver costs dominate vehicle costs and so if these are optimised�rst an e�cient driver schedule will create large cost savings and will also aid the formation ofan e�cient vehicle schedule.The system constructs a set of driver duties which cover all the timetabled trips by decomposingthe problem into duty types. Early duties and �rst halves of split duties are chosen �rst and aset covering formulation selects some of these. Workpieces covered by these duties are removedfrom the problem and the duties covering the remainder of the trips are formed by a similarmethod. The optimisation of the model can only take into account approximate costs of dutiessince these are dependent upon vehicle locations which have not yet been ascertained.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 15The vehicle scheduling problem is then formulated as a network 
ow problem on a graph formedby the duties chosen initially. Solving the minimum cost network 
ow problem, with side con-straints to ensure the compatibility of driver and vehicle schedule, produces a �nal vehicleschedule. The driver scheduling problem then has to be re-solved using a network 
ow modelto derive a driver schedule which is consistent with the vehicle schedule.Satisfactory results are reported for two small problems but much possible further work is de-tailed with regard to extending the model to deal with larger and more complicated problems.2.2.2 The BDS SystemCarraresi et al. [30] describe the BDS (Bus Driver's Scheduling) system which uses combina-torial optimisation and logic programming.The paper details an implementation of the system at ATAF in Florence incorporating a totalof 684 vehicle trips throughout the day. The vehicle schedule is �rst simpli�ed by selectingsome duties and workpieces which will temporarily be removed from the problem. The result-ing vehicle schedule is then partitioned by �nding feasible paths through a graph representingthe vehicle schedule. The workpieces formed are then matched to form valid duties by using aLagrangean relaxation of the driver scheduling algorithm, and the driver scheduling problem iscompleted by forming duties for the previously excluded workpieces. At this stage, since somelabour agreement rules were not speci�ed initially, the duties formed are modi�ed so as to sat-isfy all rules. The paper describes an expert system approach which more e�ciently schedulesdrivers for the excluded workpieces but results are not given.2.2.3 A System for Rural Vehicle and Driver SchedulingGeneral purpose methods of scheduling drivers are often di�cult to achieve due to di�erencesin labour agreement rules between organisations, although the methodology often remains thesame. Rural vehicle operations however require a di�erent technique due to particular require-ments. It is possibly ine�cient to schedule vehicles before drivers in the rural situation dueto problems of transferring drivers between locations and needing to take into considerationsubsistence payments to drivers for time spent away from their residency.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 16Tosini and Vercellis [31] describe an interactive method of scheduling vehicles and drivers basedupon rules relating to many rural operations in Italy. The drivers are scheduled �rst as a min-imum cost network 
ow model and the schedule can be amended or improved interactively.The corresponding workpieces are then combined using a minimum cost formulation to createa vehicle schedule.2.2.4 The COMPACS SystemCOMPACS (COMPuter Assisted Crew Scheduling) is an interactive driver scheduling systemwhich is described by Wren and Chamberlain [32].The system �rst estimates the number of drivers needed to cover the bus work and then aidsthe construction of the driver schedule by verifying and costing duties entered by the schedulerand by suggesting duties which cover particular pieces of work. At any stage the estimator canbe utilised to check how many duties are required to cover the remaining bus work so that anyalterations can be made to the chosen duties if necessary.This interactive system is best used to amend manually or add to a schedule already producedas COMPACS itself does not contain any optimisation techniques.2.2.5 The EXPRESS systemThe EXPRESS system [33] is based on a set partitioning model of the driver scheduling prob-lem, �rstly using heuristics to reduce the problem size and then a three-stage approach todevelop the driver duties. The set partitioning model is solved using the ZIP package [34]which is also used within TRACS II.The approach was developed to apply to the New Zealand bus driver scheduling rules whichrequire scheduled mealbreaks, all work to be covered, and the possibility of four or more partduties. The bus work is split into �ve route groups and each group allocated drivers separately.The driver scheduling process aids the completion of the vehicle schedule by determining theend location of vehicles in order to suit the duties.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 17The three-stage approach used to allocates drivers to vehicles within each route group is asfollows :� Stage 1 The early part of the bus schedule is excluded whilst forming middle and lateduties. The formation is done using a mathematical programming model to select froma large set of generated duties the minimum number of middle and late duties such thatall workpieces which cannot appear in split duties are covered. Workpieces now coveredare removed from the schedule.� Stage 2 Those pieces of work which would be covered by early duties are identi�ed and asmall set is generated from which some early duties are selected by using a mathematicalmodel. Of these duties, those which would start later than split duties have to be chosen.Workpieces covered by these early duties are then removed from the schedule.� Stage 3 Extra early duties and all half duties are chosen to cover the remaining twothirds of the vehicle schedule. A set partitioning model ensures that each piece of workis covered exactly once and an assignment algorithm is then used to optimally pair thehalf-duties.This method has the e�ect that interaction is lost between each stage. Side constraints areintroduced to limit the number of drivers taking mealbreaks at certain times, avoiding the needto form unnecessary split duties. Also, many side constraints which are used are speci�c to itsimplementation in Christchurch.2.2.6 The HASTUS SystemHASTUS is a complete scheduling package developed originally in 1974 by the University ofMontreal's Center for Research on Transportation, and consequently in collaboration withGIRO inc., Canada. The system is widely used throughout the world and many papers havebeen published regarding its method and results [19, 20, 21, 22, 23, 24]. Apart from its use inscheduling vehicles and drivers, related software is available for passenger information systems,transit operation systems and advanced planning tools. Much work has taken place in orderto provide companies with a user-friendly system including a database providing interfaces toother systems and a dictionary allowing the use of local terminology. Versions are available inseveral languages and for several installations.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 18HASTUS-macro and HASTUS-micro are the driver scheduling components of the HASTUSpackage although a new driver scheduling system called Crew-Opt has been developed in re-cent years and will be described in more detail in the column generation review in section 2.6.1and also in section 6.4.2.The method involves �rst splitting the day into short periods, the time interval being speci�edby the scheduler, and then forming many possible idealised duties which are valid according tothe labour agreements imposed upon them. The duties generally include two stretches and startand �nish at the beginning of one of the small time periods. An integer linear programmingmodel then �nds the minimum cost schedule from the idealised duties ensuring that each buswhich is operational during the de�ned short time period is covered by at least one duty. Amatching procedure then amends the individual duty stretches and �ts them to the actual busesusing a least squares �t. The stretches are then paired optimally and heuristically amended toproduce the �nal schedule.2.2.7 The HOT II SystemHOT II (Hamburg Optimisation Techniques) is marketed by HanseCom and can provide eitherindividual scheduling modules or a comprehensive planning system. The complete system in-corporates modules to address individual tasks; data management, sensitivity analysis, vehiclescheduling, driver scheduling and driver rostering; all accessing information from a commondatabase. Improvements have taken place resulting in the most recent version which has beendescribed by V�olker and Sch�utze [27] but many of the concepts introduced in the original ver-sion HOT [25, 26] remain.The driver scheduling process is basically heuristic and may need some extensions to adapt tothe needs of new users.The method schedules duties in order of type. Firstly the early duties are formed one by one bysplitting almost all of the pieces of work on each bus up to the latest relief opportunity whichcould be included, and then recombining them to derive many valid duties. Wage and penaltycosts which are added to each duty de�ne which one is chosen at any stage to be included inthe schedule. An attempt to form mealbreak chains aids the ordering of the formation of du-ties. Once all reasonable early duties have been formed, a similar process forms the late duties.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 19The remaining work is recombined into bus work and then cut to form half-duties which arecombined using an assignment algorithm to form respectively straight and split duties. Anyuncovered work is left for manual amendment or overtime work.The most recent version attempts to minimise the reliance on schedulers' knowledge to optimisethe schedule. It has introduced more parameters to reduce the user interaction and can generatefour-part duties.2.2.8 The INTERPLAN SystemINTERPLAN [35] is an interactive system for driver scheduling and rostering using an heuristicalgorithm to split the vehicle work and combine the resulting trips to form a selection of thebest duties from many possible valid duties. A matching algorithm is used to determine theoptimal combination of two-part duties.2.2.9 The RUCUS II-SystemRUCUS-II (RUn CUtting and Scheduling) [36, 37] is a newer version of the original RUCUSsystem [38] which was developed in the 1960s and is now believed to be obsolete. The originalRUCUS system used the technique of making improvements to an initial set of duties but wasdi�cult to operate as many parameters had to be de�ned and many runs were necessary toachieve satisfactory results. RUCUS-II improved the parameter speci�cation entry and slightlyaltered the method of producing the initial solution, but still used the same heuristics whichconsider swapping parts of duties or shifting them to an alternative relief opportunity. Theheuristic search is still very ine�cient and the enhanced version of RUCUS-II has amended theswitching and swapping heuristics to use a matching algorithm which minimises a cost func-tion. This version achieved better results than previously although they are dependent uponthe quality of the initial schedule.2.3 Driver Scheduling ProcessesApart from research into mathematical programming and heuristic methods of solving thedriver scheduling problem, some work has been carried out to investigate if other techniques



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 20could be used to improve part or all of the processes involved in scheduling.2.3.1 Driver Duty EstimatorContained within the TRACS II system is a decomposition process to solve larger problems,which incorporates an analysis of the bus schedule to produce a lower-bound estimate of thenumber of duties that will be needed to cover the bus work. This idea provoked further inves-tigations into how the estimator may be made more sophisticated, providing a tighter lowerbound, by incorporating knowledge from individual schedulers [39, 40]. There have been fewprevious attempts to analyse the bus scheduling problem in order to take advantage of thestructure of the problem and match duties to its critical features.Work began in 1992 on developing an heuristic search system based upon a driver duty Esti-mator whose function is to predict how many duties will be required to cover a given set of buswork. This process then requires a new duty generation process which builds up the scheduleprogressively. A Generator uses rules gained from knowledge of the schedule to cut down thesearch space. An additional process called the Organiser then performs the necessary orderingand backtracking of the search based upon updated information from the Estimator after eachnew duty has been added to the partial schedule.Further work concentrated on developing the driver duty Estimator rather than incorporatingit into a search system. Zhao, Wren and Kwan [41] reported that the Estimator would alsoprovide other useful information, such as which relief opportunities are critical and a quickevaluation of how the driver schedule will be a�ected by any changes in vehicle schedule. Thelatter is a useful tool for users whose existing systems require complete system execution foreach individual vehicle schedule. The Estimator incorporates rules based upon knowledge ofboth current problems and previous problems and becomes more accurate with the growth ofits rule-base. The Estimator calculates the duty requirement based on the number of vehicles inservice throughout the day, in particular the maximum number in the peaks gives an absoluteminimum number of drivers required and the schedule is further analysed regarding mealbreakchains and other factors to give a tighter lower bound. Zhao [42] provides a full description ofthe Estimator method. Results give identical total duty estimates to the TRACS II system forall problems tested, although the individual breakdown of duties di�ered because the use of dif-ferent relief opportunities may result in di�erent duty types appearing in the schedule estimate.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 212.3.2 Genetic AlgorithmsA feasibility study was carried out by Wren and Wren [43] in order to test whether or not ge-netic algorithms could be used to solve larger driver scheduling problems more robustly, morequickly and more cost-e�ectively than any of the methods detailed in the previous sections.The initial test aimed to replace the Integer Linear Programming technique within TRACS II,which selects the �nal schedule from a large previously generated set of duties. By representingthe pieces of bus work as chromosomes such that the values of each gene identi�es the dutieswhich cover it, many possible valid schedules can be formed by discarding or choosing dutiesfrom the complete set until the bus work is covered and no duty is redundant. Processes basedupon genetic algorithm techniques of crossover (forming a schedule from a combination of twoor more others) and mutation (slightly altering a schedule in some small way) can be appliedto the schedules in the hope of producing better solutions and allowing a limited number ofschedules to evolve. Results obtained using a genetic algorithm approach without the optionof mutation and with limited constraints on small test problems produced very good solutionsquickly, encouraging further investigations.Further work was carried out by Clement and Wren [44] which depicted chromosomes as an un-ordered set of duties, each with a binary value dependent on whether or not the duty is presentin the schedule. Di�erent methods of crossover and mutation techniques were experimentedwith and tested on three real world problems. Although the genetic algorithm was successfullyapplied to real world scheduling problems with relatively limited research, the results producedwere generally poorer than those of more established techniques. However, genetic algorithmspotentially perform better on larger problems.Further investigations into the use of genetic algorithms to solve the driver scheduling prob-lem involved combining its strengths with the strengths of the intelligent rule based Estimatordescribed in section 2.3.1 [45]. This hybrid technique uses the genetic algorithm approach todetermine which set of relief opportunities will produce the best schedules. The `�tness' (qual-ity) of any subset of relief opportunities depends upon the number of duties needed to coverthe bus work de�ned by the subset, and this can be predicted by the Estimator. Duties arethen generated using only the relief opportunities selected and the Integer Linear Programmingtechnique used within TRACS II is utilised on the smaller duty set.The introduction of genetic algorithm techniques to solve scheduling problems continues to be



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 22an active area of research.2.4 Review of Computer-Aided Bus Driver SchedulingAlthough earlier attempts at driver scheduling were heuristic based and later attempts aremathematical programming based, it is often di�cult to categorise systems as many now use acombination of the two.Heuristic systems (Rural Based System, COMPACS, HOT II) rely upon the knowledge of ex-pert schedulers to build schedules or restrict the duty formation to those duties which are likelyto appear in good schedules. They often have the advantage of being understood and modi�edmore easily by the user of the computer system. The disadvantage of using heuristic basedsystems is that the schedules produced are unlikely to improve signi�cantly upon the manualschedule and the methods cannot consider optimisation routines.Many systems use matching algorithms (BDS, HASTUS, RUCUS-II, INTERPLAN) to solveparts of the driver scheduling process. These involve cutting the bus work into part-dutiesand then matching these in pairs to form complete duties. Although some systems have beendeveloped to incorporate three-part duties, separate rules have to be formed to do so and tendto be considered after two-part duties have been paired. Matching algorithms also cut thebus work without taking into consideration the overall bus schedule and so it is possible thatthe part-duties cannot be all be paired to form valid duties or do not form an overall e�cientschedule leaving pieces of work to be covered by overtime pieces. Also, matching approachestend not to be able to incorporate any side constraints.Mathematical Programming approaches (Crews First, EXPRESS, TRACS II) work on the def-inition that each variable represents a duty, and constraints represent pieces of work that needto be covered. Set partitioning models therefore attempt to cover each piece of work withexactly one duty, and set covering models allow pieces of work to be overcovered. Since thenumber of potential valid duties for any problem is typically very large, most systems incorpo-rate heuristics to eliminate duties which are unlikely to be used in good schedules, and so thereduced model can be solved much faster. The disadvantages of using mathematical program-ming approaches are that optimality is limited to the set of duties generated, and the scheduler



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 23has little control over the process after initially setting up any constraints. The scheduler mayalso wish to add further constraints depending on the resulting schedule. Although computingtime for these systems tends to be longer than for those of heuristic or matching based systems,the schedules produced tend to be better.The methods described in this thesis are based on a version of TRACS II, which is describedin full in Chapter 4.2.5 Overview of Other Driver Scheduling Systems2.5.1 Train Driver SchedulingWren et al. [46] observed that although many bus driver scheduling systems have been devel-oped and reported over the years, there appeared to be no practical driver scheduling systemfor the rail industry. Some of the di�erences between bus driver and train driver schedulinginclude the larger distances between relief opportunities for rail services, the peaks of vehicleservice, and the often 24 hour service of trains. However, train driver scheduling is consideredto be more similar to bus driver scheduling than is air crew scheduling, and a TRACS II-basedmodel was successfully adapted to estimate likely costs of each of a wide variety of rail schedul-ing problems. Parker et al. [47] detail the modi�cations which were needed to accurately modelthe train driver rules, and also the proposed changes to the rules which were tested to observetheir e�ect on the resulting schedules. Much more work has been done recently to furthercustomise the system to train driver scheduling [48].2.5.2 Airline Crew SchedulingThe airline crew scheduling problem requires duties to consist of a sequence of 
ights overa number of days such that the crew start and end their duty at the same airport. Labouragreements will vary greatly from those of the bus and rail industries as mealbreaks do nothave to be speci�cally formed and typically only a maximumworking time and a minimum restperiod need to be de�ned. All recently published airline crew scheduling systems appear to usemathematical programming based methods which tend to be solved more easily than similarlysolved bus driver scheduling problems.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 24Marsten and Shepardson [49] use a set partitioning method to solve the relaxed LP modelover a set of generated duties and then perform a branch and bound search to form an integerschedule. Results report that in many cases the continuous solution was integral and where itwas not, an integer solution could be found very quickly.Graves et al. [50] describe an interactive system which solves a sequence of subproblems bymathematical or local search techniques and can produce optimal solutions for small problems.Ho�man and Padberg [51] have developed a system which uses a set partitioning method andcan run independently of any company. This system also produced many integer LP solutionsand for the remaining problems an integer solution could be formed after applying a cuttingplane method.Some papers have been published which use column generation techniques to solve the airlinecrew scheduling problem and some of these are discussed in section 2.6.2.2.6 Column Generation Applications to TransportationSet partitioning or set covering models are guaranteed to �nd optimal solutions to the driverscheduling problem only if all valid duties can be represented and the model does not use anyheuristics which may compromise the optimality in any way. Most mathematical programmingdriver scheduling systems limit the generation of duties initially and/or heuristically reduce thegenerated duty set before solving the model. Also, branch and bound processes often terminatethe search for an integer solution once one has been found, in order to reduce execution times.At the point of solving a mathematical programmingmodel using the simplex method, columnsare priced out to �nd a new column which will improve the solution. Column generation meth-ods attempt to create new columns as required so as to implicitly consider all valid columnswithout the need to generate them beforehand. Ford and Fulkerson [52] describe the methodwhere the problem is a shortest-path problem and Dantzig and Wolfe [53] describe the decom-position of a linear programming problem. Early applications of a column generation techniquewere reported by Gilmore and Gomory [54] which used column generation principles to solve



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 25the cutting-stock problem.Although column generation techniques have successfully been applied to many problems, e.g.the binary cutting stock problem [55], graph colouring problems [56], and tra�c assignmentproblems [57], sections 2.6.1, 2.6.2 and 2.6.3 refer only to column generation methods whichhave been implemented to solve transportation problems.2.6.1 Bus Driver SchedulingCarraresi et al. [58] describe mathematical models and algorithms which have been used tosolve bus driver scheduling problems, but propose its application for driver scheduling of othertransportation types. A network is de�ned where the nodes represent feasible pieces of workand the edges represent feasible duty parts, where the corresponding nodes can be allocatedto the same driver without violating any union restrictions. Solving the Lagrangean dual ofa corresponding network model will provide a solution lower bound and a reasonably sizedset partitioning problem, but column generation and row deletion techniques are required toadequately solve such a large problem. Columns are generated which have negative reducedcosts relative to the Lagrangean multipliers by using a k-shortest paths enumeration.Crew-Opt [59, 60] is a new driver scheduling module implemented within the HASTUS system,which uses a column generation technique to solve a set covering formulation of the problem.A detailed description of the system will be given in section 6.4.2. The system uses a shortestpath algorithm to generate further duties which have negative reduced costs until the optimalsolution to the relaxed model has been reached. A branch and bound algorithm then formsan integer solution where necessary. Rousseau [61] reports on the results obtained by usingCrew-Opt on a number of di�erent problems. Bus companies which assign drivers line-by-lineproduced solutions at least as good as the HASTUS-Micro solutions although solution timesare not given for these problems. Typically the smaller problems consist of schedules containingup to 40 drivers. Crew-Opt also produced better results than those produced manually for aproblem with around 77 duties but a problem with around 160 duties had to be decomposedin three subsets. The larger problem also produced better results but on the version availablethe execution time was around 24 hours on a Sun Sparc10/31.



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 262.6.2 Airline Crew SchedulingThe airline crew scheduling problem has previously been modelled as a set partitioning prob-lem and requires the assignment of 
ight crews to a schedule for a single aircraft type at theminimum cost. A duty period is a single workday for a crew and these are then paired to forma sequence of duty periods with overnight rests between them. The formation of duty periodsand pairings are restricted by legal considerations but the formation of duty periods is heavilyconstrained so that the problem lies in the large number of possible crew pairings from theseperiods.The problem of assigning crews to 
ight services at minimum cost has been investigated byMinoux and Lavoie et al. [62, 63]. The crew pairings are formulated as valid paths on a graphwhich is deduced from the 
ight service information. At each optimal subproblem the crewpairing with the minimum reduced cost amongst the remaining crew pairings equates to �ndingthe shortest path in the graph. The column generation subproblem is then solved using Dijk-stra's algorithm. Early experimentation introduced only one column per iteration which provedtime consuming and so multiple pricing was introduced to allow more columns to be added foreach call to the column generation procedure. For each call the method introduces any negativereduced cost crew pairing into the subproblem. For any crew pairing provided by the gener-ator its mirror image, relating to 
ight services over the second week of a two week period,is also added since it is intuitive that it will also have a negative reduced cost. Results fromthis implementation report some signi�cant cost savings over manual solutions and executiontimes are competitive compared to previous computational methods. In a high proportion ofcases the solution for the relaxed model is integral as a consequence of the integrality propertyof network 
ow problems, but the paper suggests that a way of forming near-optimal integersolutions from fractional solutions is to apply an integer linear programming routine to the setcovering problem consisting of the generated pairings.Vance et al. [64] present a column generation approach for solving the domestic daily 
ightproblem which operates over a hub and spoke structure. The problem is decomposed into twostages of selecting duty periods and then forming the crew pairings so that the pairings arebuilt from good sets of duty periods. Two types of column then need to be generated in orderto ensure overall optimality. Columns representing duty periods can be priced out by solvinga set partitioning problem with costs derived from the sum of the cost and simplex multiplierfor that period. This can be used as a lower bound to terminate the column generation process



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 27when a solution within a speci�c tolerance of the optimal solution has been found. Columnswith negative reduced costs representing crew pairings are derived by a constrained shortestpath procedure over a network. Results were reported to converge more quickly with feasi-ble starting solutions rather than arti�cial ones but the formulation was further modi�ed tospeed up convergence. An alternative strategy for generating duty period columns involvesusing general mixed integer programming techniques to solve the set partitioning problem, andwhere the LP to be solved is large a keypath formulation allows duty exchanges which representpossible modi�cations to the set of duty periods. The pairing subproblem is then only solvedafter every sixth call to the duty period subproblem as it takes more computational e�ort. Thesolution provided by the LP relaxation of the decomposed system gives a better bound thanthat from the traditional set partitioning problem over the pairings but is more di�cult to solve.Barnhart et al. [65] tackle the problem of the long-haul 
ights which typically do not operateon a daily basis. The problem becomes one of reducing the amount of extended rest periodsfor crews by assigning them to 
ights as passengers for repositioning. This process is knownas deadheading. The column generation method on the linear programming relaxation beginswith an initial set consisting of some or all of the airline's 
ights and then selects further 
ightsto add to the set from which deadheading is allowed. At any iteration the selection of 
ights toadd to the subset is based upon eliminating certain types of 
ight which are unlikely to improvethe crew pairing problem, eliminating all 
ights which do not price out favourably, and �nallyall 
ights which are not contained within the most negative reduced cost pairings. The pricingstrategy is achieved by using an approximation scheme which estimates the minimum reducedcost pairing containing any deadhead by evaluating the reduced costs of partial pairings andsumming them along arcs in a network. Calculations for many potential deadhead 
ights canthen be achieved by summing an arrival pro�le at a station, a departure pro�le at anotherstation and the costs of the deadhead 
ight, and if this is negative then the 
ight prices outfavourably. The process terminates when the objective improvement between iterations is suf-�ciently small and the deadheads then provide the integer programming package with a goodset of crew pairings from which to choose.Brusco et al. [66] consider the problem of scheduling ground personnel at airports. The relaxedmodel is solved over a subset of possible legal duties and the dual variables are used to select afurther subset of candidate duties whose reduced costs are calculated. The generation methodis not explicitly de�ned. Only the duty with the greatest potential objective improvement isadded to the duty subset at each iteration. Once a good continuous solution has been found,



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 28the generated duties and the number of employees assigned to these duties are considered by alocal search heuristic which attempts to �nd the lowest cost solution.2.6.3 Vehicle SchedulingThe vehicle scheduling problem requires a set of timetabled trips to be covered by a 
eet ofvehicles, possibly from di�erent depots, such that the cost is minimised. The solution proceduredi�ers from that of driver scheduling because no labour agreement rules need to be considered.Since the model di�ers from that used to schedule drivers no algorithmic details regarding thecolumn generation procedure will be given here.Riberio and Soumis [67] and Bianco et al. [68] use column generation techniques to solve themultiple depot vehicle scheduling problem. Bianco et al. [69] extend the multiple depot vehiclescheduling problem to freight transport. Reddington [70] incorporates a column generationtechnique into a solution procedure to schedule locomotives to work a set of timetabled trains.2.7 Review of Column Generation ApproachesColumn generation systems for driver scheduling solve a relaxed set partitioning or set cover-ing model and generate further duties from the dual prices. In this way all columns can beconsidered implicitly whilst retaining a much smaller set of columns from which to produce theoptimal continuous solution. The method of generating further duties varies widely betweenproblems, with methods consisting only of heuristics, a shortest path enumeration, or an elimi-nation technique. Also, the number of columns selected to enter the subset varies and can rangefrom only one column to all further columns which have a negative reduced cost. One of thedi�culties inherent in column generation systems is the costing of columns. In particular, net-work representations of problems consider an objective function which merely minimises dutycosts which may not include any penalties for undesirable features, and may not adequatelyprioritise an objective which wishes to minimise the number of duties in a �nal schedule. Thepricing strategy may also vary in order to reduce calculations or ensure an e�cient set of du-ties is considered. Where an integer solution needs to be formed di�erent methods have beenadopted, including a branch and bound technique on the generated duties, a column generationtechnique within the branch and bound, and a local search heuristic.Column generation methods which have been used to solve the driver scheduling problem



CHAPTER 2. REVIEW OF BUS DRIVER SCHEDULING METHODS 29can produce guaranteed optimal solutions on small problems, but the duty costing does notapparently incorporate any penalty costs added to duties with undesirable features. This makesthe network formulation less applicable to the driver scheduling problem presented in Chapter 1.Also, although it is reported that the methods will be extended to solve much larger problems,currently they are embedded within a heuristic process so that integer schedules are no longerguaranteed to be optimal. Results, however, are encouraging and a column generation strategywhich does not use a network formulation is implemented within an existing set covering systemand described and tested in this thesis.



Chapter 3Inherent Scheduling ProblemsExplored3.1 IntroductionIn order to investigate the problem of bus driver scheduling more fully, it is appropriate toconsider some of the problems and complexities encountered by both manual and computerschedulers and look at possible methods of solution.This chapter is split into two sections. The �rst is concerned with driver mealbreaks, wheree�cient changeovers of drivers to form breaks is fundamental in creating a solution with theminimumworkforce. The second section investigates the problems associated with attemptingto �nd an optimal schedule by considering every possible duty combination from a previouslygenerated set.3.2 Mealbreak ChainsA subset of the driver scheduling problem is concerned with e�cient timetabling of driver meal-breaks.Figure 3.1 shows typical bus work at the beginning of the day for three vehicles, where the30
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Figure 3.1: A Possible Duty Combination for a Portion of Bus Work"X's" are available relief opportunities and the shaded portion contains the latest relief oppor-tunities at which the �rst driver can leave the vehicle. This maximum time limit for a driver towork without a break is speci�ed in the labour agreement rules. Supposing that the minimumlength of a mealbreak is 30 minutes and the width of the shaded portion only represents 25minutes, then it is not possible in this scenario for a driver to �nish his/her mealbreak andreturn to relieve another driver within this time interval. Since the objective is to minimise thetotal number of duties, the worst possible case for the example is where the �rst three driverswork the maximum time allowed for a �rst stretch and three new drivers are allocated to theremaining work as indicated on the diagram. Hence the total number of drivers needed to coverthis bus work would be six (assuming the existence of other buses does not create other dutycombinations).Now consider �gure 3.2. If the driver of bus 1 is relieved at an earlier relief opportunity, it ispossible for the driver to �nish his/her mealbreak and return to relieve the driver of bus 3 atthe point shown. This driver in turn can then return to bus 2 after a mealbreak and the totalnumber of drivers needed reduces to four.When it becomes necessary for drivers to take mealbreaks it is more e�cient to relieve them bydrivers having already �nished mealbreaks as opposed to new drivers.In turn this suggests that :A driver schedule with the minimum number of drivers will require mealbreak chains to beformed, to limit the number of new drivers that are introduced throughout the schedule.
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Figure 3.2: A Possible Mealbreak ChainSince the chaining of mealbreaks is fundamental in producing an e�cient schedule, driverscheduling systems which systematically build duties without regard to the complete vehicleschedule are unlikely to produce satisfactory results. It is also the case though that if the meal-break chaining mechanism is built up systematically then the later duties which are formedmay be very short or invalid.3.2.1 Mealbreak Chain ExampleConsider the bus schedule as shown in Figure 3.3. The relief opportunities are marked withtheir respective relief times and each bus has been labelled alphabetically for the purpose ofidenti�cation. Note that the example given is being used to demonstrate the principles behindmealbreak chaining and hence depicts only a subset of an operative bus schedule. Also it treatsall times in the labour agreement rules as strict times so as not to introduce further complexi-ties. These properties will be discussed later.It is unusual for a minimum stretch length to be speci�ed as a labour agreement rule, butsince the introduction of computer scheduling it has become a feature introduced to reduce thenumber of valid duties which could be formed. The minimum stretch length is a lower limitnormally agreed by the scheduler and the bus company to avoid creating ine�cient duties. To-gether with maximum stretch lengths we have a window of times within which we can considerpossible relief opportunities for any drivers.
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CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 34By �rst observing drivers taking the morning bus out of the garage we are at present only deal-ing with duties which would be classed as EARLY. Hence we only need consider the relevanttime limits for such duties as speci�ed in the labour agreement rules.For this problem:the MINIMUM LENGTH OF 1ST STRETCH is de�ned as 2 hours and 15 minsthe MINIMUM LENGTH OF 2ND STRETCH is de�ned as 2 hoursthe MAXIMUM STRETCH LENGTH is de�ned as 5 hours and 30 minsthe MINIMUM LENGTH OF A SPELL is de�ned as 1 hourthe MINIMUM LENGTH OF A MEALBREAK is de�ned as 1 hourthe MAXIMUM LENGTH OF A MEALBREAK is de�ned as 1 hour and 25 minutesSince the majority of bus companies prefer to avoid three-part duties, for simplicity they willonly be considered through necessity. In this example the interval between the earliest andlatest start times is 2 hours and 13 minutes. This is insu�cient to allow any driver to completethe �rst stretch of a duty and be allocated to the �rst journey of another early bus after a meal-break. This implies that ten drivers are required to begin their duties on buses A,B, and E to L.The drivers leaving buses A and B at 0901 and 0900 respectively have done insu�cient work forour de�ned �rst stretch length of 2 hours and 15 minutes. They are valid �rst spells and thuswill have joinups to other buses, creating necessary three-part duties. Therefore this gives thefollowing list of possible relief opportunities available to the other eight drivers having takenthe vehicles out of the garage:E1 : 0920 E2 : 1024 E3 : 1120F1 : 0949 F2 : 1049 F3 : 1149G1 : 0910 G2 : 1115H1 : 1020 H2 : 1124 H3 : 1220I1 : 1016 I2 : 1116 I3 : 1216J1 : 1115 J2 : 1215 J3 : 1315K1 : 1004 K2 : 1104L1 : 1051 L2 : 1151
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0625Figure 3.4: The Window of Relief Opportunities AvailableFigure 3.4 displays the working subset of relief opportunities on the early section of the bus-graph. As in the previous example, for any one vehicle the window of opportunities is notsu�ciently wide to allow an early stretch to be formed within it, implying that as soon as oneof the above relief opportunities has been chosen for each bus the others can be eliminated asfurther possible changeovers.E1 and G1 will be chosen as the most e�cient joinups for the drivers having taken buses Aand B from the garage, since they are the earliest available changeovers thus reducing waitingtime at the relief point. (These are valid changeovers in that travel time between the two reliefopportunities does not exceed the available time) Since we are using E1 and G1, we can omitrelief opportunities E2, E3 and G2 as potential links in a mealbreak chain.A table of possible changeovers can be formed using information regarding the acceptablelengths of mealbreaks, and from this table it can be shown that since F3 never appears as apossible changeover it is super
uous to our problem at this stage, although it may be reintro-duced later. Figure 3.5 represents the simpli�ed version of the table. The numbers enteredin the boxes represent costs, which are calculated to be the excess minutes over a one hourmealbreak. The bold sections identify groups of relief opportunities from which only one canbe selected as a changeover of drivers. From Figure 3.5, it can be seen that an upper boundon the number of mealbreak assignments is four as there are at most four relief opportunitieswhich can begin a second stretch.The object is thus to :
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11Figure 3.5: Matrix of Potential Mealbreak LinksMINIMISE THE TOTAL COST OF CHAINING THE MAXIMUM NUMBER OF MEAL-BREAK LINKS.Since the example given is relatively small, by repeated examination of the possible links it waspossible to deduce the optimal solution as :E1->H1F1->L1K1->J1->I3TOTAL NO. OF LINKS = 4TOTAL COST = 14 minutesIt was considered how to solve the general problem of assigning mealbreaks so as to achieveoptimality for any given part of a vehicle schedule.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 373.2.2 Possible Solution MethodsASSIGNMENT PROBLEMThe task is to assign as many second stretches to drivers having completed their mealbreaks aspossible, i.e. given the above example there are 11 potential relief opportunities where driverscan begin their mealbreaks and 11 available relief opportunities which can start the secondstretch. A feature of the Assignment Problem is that ONE relief opportunity would be as-signed to ONE AND ONLY ONE driver. The problem need not be square in that a dummyvariable can be assigned to any extra drivers. Given that the optimal solution contains onlyfour links some invalid assignments would have to be formed, although high costing on suchpossibilities would discourage choosing too many invalid links over valid ones. Invalid assign-ments would have to be removed from the �nal solution.The main complication arises in that the row(column) entries are not necessarily independentof each other. In the example it is not permitted to use more than one of the available reliefopportunities for any one bus because it leaves too short a spell of work to be covered. Inthe general case there may be some relief opportunity combinations which are valid and somewhich are not. Methods of solving the assignment problem, e.g. the Hungarian algorithm,involve choosing an assignment and then eliminating its corresponding row and column entriesin the table. For the dependent-entried table, groups of column and row entries would have tobe eliminated, as identi�ed in the table. This is further complicated by the fact that rows andcolumns are not independent of each other either, and an assignment of one relief opportunityin a particular column(row) a�ects other rows(columns) containing alternative relief opportu-nities for that bus.A possible way to overcome the above complications might be to choose only one relief pointfor each bus and solve the resulting table as an assignment problem using standard techniques.However, even using such a small example as the one above there are 216 combinations of reliefopportunities and each selection leads only to a local optimum. The solution could be re�nedby swapping relief opportunities and resolving the problem at each stage creating a tree search,but intelligent heuristics would be needed to decide on which relief point to branch. Certaincostly links can be bounded because their inclusion is unlikely to improve on the current bestsolution. For large problems however, since the penalty costs are low in comparison to thetotal cost of a feasible solution, it is less obvious which relief opportunities are likely to bedetrimental to the overall solution.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 38NETWORK PROGRAMMINGIt was also considered how to solve the problem graphically. The di�culty of choosing only onerelief point per bus to start a second stretch can be overcome by introducing one sink node foreach bus. Similarly the beginning of mealbreaks can be depicted as source nodes with only onesource node per bus. The network 
ow diagram is illustrated in diagram 3.6.
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ects whethera link is used or not. The previously de�ned costs can then be placed on each link with azero cost to/from the newly de�ned source and sink nodes. By solving the network programusing KHNET [71] on a Silicon Graphics (Iris Indigo Workstation with 33MHz R3000 MIPSprocessor) the optimal mealbreak chain is ascertained.However there remains the problem which occurred with the assignment problem techniqueregarding di�erent relief opportunities on the same bus being available as both the start andend of a mealbreak. The netform diagram shows that whilst a restriction is placed on the



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 39combinations of either source or sink nodes, there is no restriction banning certain sink nodesfrom being used if certain source nodes are used and vice versa. These constraints cannot beformulated in a manner which preserves the (linear) network program.One possible approach which can incorporate such constraints is Lagrangean Relaxation. Theconstraints can be modelled in integer programming terms and used as a penalty on the objec-tive cost if the constraints are not satis�ed.MATHEMATICAL PROGRAMMING MODELBy using the variables linkij to represent every cell in the matrix and the parameters usedijto ban invalid links, we can formulate the problem in mathematical programming terms. Theobjective is to minimise the cost of using the maximum number of mealbreak links, subject toconstraints which ensure that the combination of mealbreak links which are selected is valid.The main objective is to maximise the number of mealbreak links and so this can be isolatedas the only objective at present; the cost objective can be considered afterwards.The objective function can be written as:Maximise P11i=1P11j=1 usedij linkij (3.1)usedij = 8<: 0 if cell (i,j) contains an invalid link1 otherwiselinkij = 8<: 1 if cell (i,j) is used as a link in the solution0 otherwise.We need constraints to ensure that a driver relieves only one other and similarly that one driveris relieved by only one who is eligible to do so. This is equivalent to ensuring that there is onlyone entry per row or column of the table.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 40P11i=1 linkij � 1 for all j = 1,11P11j=1 linkij � 1 for all i = 1,11 (3.2)Once a relief opportunity has been chosen for a particular bus the others are eliminated aspossible changeover points. These constraints involve ensuring that at most one relief pointper bus can have the value 1. The �rst case to be considered is the columns, where only onecolumn can be chosen from each block shown in the matrix.Constraints : P3j=1P11i=1 linkij � 1 (Bus H - points 1,2,3)P6j=4P11i=1 linkij � 1 (Bus I - points 1,2,3)P9j=7P11i=1 linkij � 1 (Bus J - points 1,2,3)P11j=10P11i=1 linkij � 1 (Bus L - points 1,2) (3.3)The equivalent constraints for the rows of the table are as follows :P3i=2P11j=1 linkij � 1 (Bus F - points 1,2)P6i=5P11j=1 linkij � 1 (Bus I - points 1,2)P9i=8P11j=1 linkij � 1 (Bus K - points 1,2)P11i=10P11j=1 linkij � 1 (Bus L - points 1,2) (3.4)However, there is also the situation where some relief opportunities for buses appear both inrows and columns. Therefore every combination of choice of relief opportunity for a particular



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 41bus must be eliminated.P11j=1 link5j +P6j=5P11i=1 linkij � 1 (Constraint on relief point I1)P11j=1 link6j +P11i=1 linki4 +P11i=1 linki6 � 1 (Constraint on relief point I2)P11j=1 link7j +P9j=8P11i=1 linkij � 1 (Constraint on relief point J1)P11j=1 link10j +P11i=1 linki11 � 1 (Constraint on relief point L1)P11j=1 link11j +P11i=1 linki10 � 1 (Constraint on relief point L2) (3.5)The package XPRESS-MP [72] on a Silicon Graphics (Iris Indigo Workstation with 33MHzR3000 MIPS processor) was used to solve the model for this problem to give:E1->H1G1->I1K1->J1F1->L1TOTAL NO. OF LINKS = 4TOTAL COST = 19 minutesTo then minimise the cost, we could again use the same constraints as above, in a mathematicalmodel, with the new objective function :Minimise P11i=1P11j=1 costij linkij (3.6)Rather than using the usedij values to ban certain links from a solution, it is adequate to sethigh costs for these links, so that the minimisation process distinguishes between them.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 42The previous objective solution would then be added in as a constraint:P11i=1P11j=1 linkij = 4 (3.7)This gives the optimal solution :E1->H1F2->L1K1->J1->I3TOTAL NO. OF LINKS = 4TOTAL COST = 14 minutesThis procedure accurately indicates the most e�cient chaining of mealbreaks for a given timeinterval and corresponding relief opportunities. However, even on such a small problem, manyconstraints had to be modelled. The amount of computational e�ort would increase enormouslyfor larger problems, particularly if smaller mealbreaks are allowed (increasing the number ofpossible links) or if more complicated labour agreement rules were available (increasing thenumber and complexity of constraints).ALTERNATIVE METHODSIn the example, constraints on combinations of relief points which could occur in a solutioncreate an obvious upper bound on the number of allocations which could be formed. It maybe possible to directly use this �gure in the cost minimisation as the de�nitive number of linksnecessary for a solution. The value would be reduced where no solution could satisfy this con-straint. However, it will not always be the case that only one relief point from each bus can bechosen, as this was solely determined from the labour agreement limit on the minimum lengthof a stretch. In practice a spell within a three-part duty could cover a considerably smallerlength of time on any bus, and restrictions on relief point combinations become fewer. Hence,in theory, the upper bound could be merely the lower of the number of rows or number ofcolumns in the matrix.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 43Using the above approach takes two separate models to determine the minimum cost solution.Since the �rst model merely returns the maximum number of links, where the details of theresulting mealbreak allocations are not required, an alternative strategy may be useful. Thetwo objective functions could be combined, making sure that the objective which ascertainsthe maximum number of links is prioritised by a weighting factor. This could be achieved byusing a Sherali weighted objective function which has been implemented by Willers [14] intothe TRACS II scheduling system developed at Leeds University and is detailed in section 5.3.For this problem, combining the objectives �rst involves ensuring that the objectives do notcon
ict by turning both into minimisation problems. A Sherali weight is then added to priori-tise the maximisation of the number of mealbreak chains, which should be de�ned as an upperbound on the objective cost.In this example this evaluates as (maximum number of links) * (maximum cost of link).The maximum number of links could be calculated crudely as the minimum of the number ofrows or columns, i.e. 11, and the maximum cost is the maximum allowed minutes over a onehour mealbreak, i.e. 25. By then introducing high costs to discourage invalid links from beingincluded in the solution, the Sherali weighted objective function is then :Minimise P11i=1P10j=1�275 � (25� costij)linkij : (3.8)This has been proved to produce the optimal solution using XPRESS-MP [72]. The methodspeeds up the the process by only having one optimisation stage, but it is still be necessary tomodel all constraints as before.LIMITATIONSThe method of using a mathematical model to solve the mealbreak chaining problem requireshuman interaction to ensure that the relief opportunities and potential links chosen are validwithin a complete schedule, so that duties or part-duties formed can be incorporated into it.The following list describes some of the di�culties a scheduler would have to consider in orderto set up the mathematical programming model.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 44� For each chaining problem careful note must be taken of whether a relief point is thestart of a mealbreak, the end of a mealbreak, or potentially both. With a combination ofstart times and end times available it may be the case that constraints on combinationsof relief opportunities become much more complicated to generate. Also, by selecting arelief point which acts as the start of a second stretch, a limit may be placed on the lengthof the previous driver's work.� The depth of search is also important. By considering a large selection of relief timesunnecessary computation may be introduced, along with a wider variety of duty typeswhich can be considered. However, if the time span is not wide enough then vital assign-ments may never be considered.� Some assignments are not valid due to the non-availability of convenient relief times laterin the day, e.g. a driver may exceed the maximum spreadover because an assignment toa second stretch provided no opportunity to leave the vehicle within the speci�ed interval.� All labour agreement rules would have to be strictly adhered to without the bene�t ofhindsight, previous experience, or impression of the overall work which needs to be cov-ered. For any alteration in times the whole process has to be repeated. It would bedi�cult to develop intelligent heuristics which could relax some soft labour agreementrules in order to produce the most e�cient schedule, if the relief opportunity selectionwere to be automated.� Where no chains can be found at any stage decisions would have to be made as to wherenew duties should be introduced, or which duties will be split over the peak bus work.3.2.3 Using Mealbreak Chaining to Produce a Driver ScheduleUsing mathematical programming methods to �nd mealbreak chains at intervals throughoutthe day, a driver schedule was formed for the given example with 20 duties; the driver schedulingpackage TRACS II found a solution with only 18 duties. The major discrepancies between thesolutions were caused by the relaxation of some of the soft labour agreement rules in the TRACSII version. In particular the short working on buses A and B were allowed as valid stretches.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 45Also TRACS II produced a two hour period which was covered by more than one driver. Thetendency was for the chaining solution to include many duties whose total spreadover was underthe minimumpaid day value and hence quite ine�cient for the bus company as well as requiringmore duties in total. Since the chaining problem maximises the number of changeovers it willoften reduce the working content of a duty to create an additional changeover rather then usinga later opportunity in the next time interval. Also, whether the solution progresses chrono-logically or towards the middle of a bus schedule, due to the `greedy' nature of the solutionmethod the existence of e�cient or valid duties in the �nal stages of forming a schedule cannotbe guaranteed. Manual swapping and shifting of duties may be needed to complete the process.3.2.4 ConclusionThe di�culties described above suggest that it would be extremely di�cult to build an auto-matic system which could create a schedule based solely on systematically forming mealbreakchains. The resulting schedule may serve the purpose of creating an initial solution but isunlikely to produce the optimal solution.3.3 Exhaustive SearchA driver schedule for any given problem can be guaranteed to be optimal over its availableduty set if every possible duty combination has been explored. It would obviously be too time-and memory-consuming to consider every possibility for realistic data sets, but an exhaustivesearch which incorporates heuristics to limit searching on certain schedules may be a feasibletechnique for �nding the optimal driver allocation for subproblems.3.3.1 Search TreeA driver schedule consists of group of duties which adequately1cover a bus schedule. By de-picting the duties as branches and building up a tree structure based upon valid combinationsof duties, a schedule will be any complete route through the tree. Once an initial solution isfound, duties can be `swapped' at nodes to see if any improvements can be made. The currentbest solution can then be used to limit searching on certain branches in two ways:1It is preferable to cover each piece of work with exactly one driver, but in some circumstances it is acceptedthat some pieces of work are covered by more than one duty and the duties are manually adjusted afterwards.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 46� The number of duties in the current best schedule will limit the depth of search, since thenumber of branches equates to the number of duties.� The current lowest cost schedule will limit searching on branches where it is known thatby adding further duties the cost will be exceeded. This is achieved most e�ciently bysearching in increasing cost order.Figure 3.7 displays a very small set of test data which will be used to illustrate a simple imple-mentation of a search tree.
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The numbers above the lines represent pieces of work.Figure 3.7: Busgraph Test Data to Illustrate Searching ProceduresSince schedules are based upon pieces of work being covered it would be bene�cial to store theduties in lists depending on the pieces of work that they cover. One method might be to havea list of pieces of work and for each a corresponding list of duties which cover it. Each time apiece of work is uncovered this duty list can be traversed and a duty chosen to be included inthe current schedule. However, for each piece of work there will be a large number of dutieswhich cover it and since duties often cover many pieces of work there will be a large amount ofrepetition. A method has been implemented which extracts each unique spell that is containedwithin the duty set. Since certain spells will appear often, the list size will be limited. Eachspell can then be given an identi�er and a corresponding list of duties which contain it, andthe original duty list can be written in terms of the spell identi�er that it covers. Duties withonly two spells will then only appear in two lists.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 47Duty Pieces Covered Pieces Covered Spell Spell Costno. (Stretch 1) (Stretch 2) ID 1 ID 21 2 ! 3 11 ! 12 1 2 3892 3 ! 3 14 ! 14 3 4 3963 13 ! 13 14 ! 14 5 4 3994 6 ! 8 14 ! 14 6 4 4005 9 ! 9 5 ! 5 7 8 4076 8 ! 8 11 ! 12 9 2 4127 1 ! 2 14 ! 14 10 4 4218 7 ! 8 12 ! 12 11 12 4309 1 ! 2 10 ! 12 10 13 44110 6 ! 6 9 ! 11 14 15 44211 13 ! 13 11 ! 12 5 2 45012 1 ! 3 11 ! 12 16 2 45113 1 ! 3 14 ! 14 16 4 45614 9 ! 10 14 ! 14 17 4 45715 2 ! 3 14 ! 14 1 4 46216 6 ! 7 4 ! 5 18 19 46617 13 ! 13 3 ! 5 5 20 467Table 3.1: Possible Valid Two-Part Duties for the Example ProblemWithout the use of any labour agreement �les to ensure that duties are valid, table 3.1 displaysa small list of possible two-part duties for problem shown in Figure 3.7, in terms of the piecesof work that each spell covers. The duties have been sorted in order of cost to aid the pruningof the search tree. As each unique spell is identi�ed it is labelled. Table 3.2 then displays allunique spells in the generated duty set, along with corresponding lists of those duties whichincorporate each spell.3.3.2 Solution StrategyIt is necessary �rstly to construct an initial solution and then attempt to improve upon iteither by �nding a schedule with fewer duties, or one with the same number of duties but at alower cost. This can be done by appending duties to part-schedules until all of the bus workis covered. By allocating a 
ag to indicate the status of the pieces of work it is possible to



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 48id start of end of duties including id start of end of duties includingspell spell this spell spell spell this spell1 2 3 1,15 11 7 8 82 11 12 1,6,11,12 12 12 12 83 3 3 2 13 10 12 94 14 14 2,3,4,7,13,14,15 14 6 6 105 13 13 3,11,17 15 9 11 106 6 8 4 16 1 3 12,137 9 9 5 17 9 10 148 5 5 5 18 6 7 169 8 8 6 19 4 5 1610 1 2 7,9 20 3 5 17Table 3.2: List of all Spells Appearing in Generated Dutiesascertain when a complete schedule has been formed. It is then possible to backtrack and see ifany improvement can be made by making di�erent choices of duty to be included at each stage.Every duty combination can be depicted as a series of branches (duties) in the tree formulation.Where it is known that no improvement can be made to the current best schedule by exploringcertain branches they can be fathomed.Initial SolutionInitially no piece of work will be covered. The search looks through the list of statuses to �ndthe �rst uncovered unit, i.e unit one. By inspecting the list of available spells it can be seenthat spell id 10 covers units 1 and 2, and spell id 16 covers the �rst 3 units. By arbitrarily con-sidering spell id 10 �rst it is possible to identify duties 7 and 9 which are suitable for our currentsearch. Since the duties are in cost order duty 7 will be chosen as the cheapest alternative, andits second spell also covers the units relating to spell id 4. By de�ning the values; -1 to repre-sent a piece of work which is covered, and 1 to represent pieces of work which are not covered,the status values for the problem are now updated to coincide with the choice of duty as follows :-1 -1 1 1 1 1 1 1 1 1 1 1 1 -1The �rst uncovered unit is now piece three, i.e a driver needs to take over bus one at reliefpoint three. For each duty that is available to cover this unit we calculate two values. MOST



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 49signi�es the total number of units that this duty will cover in the schedule, and PENALTYsigni�es how much of this duty is already covered. Hence we will attempt to �nd duties whichcover the least previously covered work, and from this set the duty covering the most work ischosen. Where more than one duty displays equally good characteristics the cheaper duty willbe chosen. By introducing a measure of the quality of duty added at each stage it is hopedthat a good initial solution will be found, and the better the initial solution the more branchescan be fathomed in the branching strategy.The following list displays the corresponding MOST and PENALTY values for all appropriateduties covering unit 3.Spell ID 1 :Duty 1 : MOST = 4, PENALTY = 1Duty 15 : MOST = 3, PENALTY = 2Spell ID 3 :Duty 2 : MOST = 2, PENALTY = 1Spell ID 16 :Duty 12 : MOST = 5, PENALTY = 2Duty 13 : MOST = 4, PENALTY = 3Spell ID 20 :Duty 17 : MOST = 4, PENALTY = 0 <---The most appropriate duty covering unit 3 is duty 17. (In practice, to reduce time, searchingis halted as soon as the �rst duty with a value of 0 for PENALTY is found).Again the unit statuses are updated, and this process is continued until all pieces of work havebeen covered.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 50Figure 3.8 shows the �rst branch of the search tree, which forms an initial solution for thesimple example. The initial solution has 4 duties with no overcovered pieces of work, at a totalcost of 1760
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DUTY 8Figure 3.8: Construction of an Initial SolutionBranch And BoundThe objective now is to eitheri) �nd a solution with � 4 dutiesor ii) �nd a cheaper solution with 4 duties.A `depth-�rst' search is used so that duties added to the initial schedule later will be swappedfor other appropriate duties in order to see if any improvement in the �nal schedule can bemade. As all possibilities become exhausted the method backtracks to earlier workpieces.There are two available pruning methods.� Firstly, if the number of duties exceeds four then we need look no further along the branch.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 51� Secondly, if at any later stage in the tree a set of unit statuses identical to one alreadyexplored is encountered, they are compared. Since we no longer take into account theovercover of duties, but merely branch in cost order, unless this new node has less dutiesto reach this point we need not look any further down this branch.Figure 3.9 shows how a search tree for the simple problem develops, reading from left to right.A tree search as outlined above was coded onto a UNIX workstation in the C programminglanguage. The �nal solution produced is the optimal solution :DUTY 9DUTY 17DUTY 4DUTY 5COST = 1715This result was achieved in 0.2 seconds and traversed 63 nodes; however the schedule itself wasformed at the 36th node.3.3.3 ResultsIn order to test the feasibility of the tree search on realistic problems the program was run ona relatively small data set containing 4199 duties. After 1000 nodes and 3.5 hours, the bestsolution found contained 39 duties. The known optimal integer solution contains 34 duties.This solution method is unrealistic on real data sets in terms of time and memory.3.3.4 Possible ImprovementsThe search tree is an obvious method of guaranteeing an optimal solution over a set of duties,but is very time consuming. The heuristics which have been added to the branching strategyserve to reduce the problem size without compromising optimality but it is still ine�cient evenon small problems.The current method of selecting the piece of work to cover is based solely on its logical number-ing within the problem. Since the branching strategy relies on a depth �rst search it would be
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CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 53more e�cient if the pieces of work chosen earlier in formation of the schedule had fewer dutiesavailable to cover them. This would then allow the schedules to develop more quickly at thebottom of the tree. It could be implemented by selecting the pieces of work to be covered inthe initial solution in increasing order of the number of duties covering them.Further possibilities for the search tree include incorporating more intelligent heuristics to re-duce the execution time of the program. However, in order to reduce the timings to whatwould be acceptable to users may require introducing heuristics which may compromise theoptimality of the solution. One possible heuristic which could be incorporated is an Estimatordeveloped by Zhao [40, 41, 42] and described brie
y in section 2.3.1. The Estimator wouldaid the pruning of the tree by giving information as to how many duties are needed to coverthe schedule, and which duties are likely candidates for the �nal solution. Since the Estimatorwas originally written for the PC some alterations were required to operate it on the UNIXworkstation. No more work has yet been done on including this into the tree as the Estimatorworks on di�erent input �les.3.3.5 ApplicationsIf memory and time allowed, the exhaustive tree search would be the obvious method forobtaining an optimal subset of duties to cover a bus schedule. Hence it was a useful exercise toprogram this search so that tests can be made to determine the size of problem that can easilybe solved by this method. If a future improvement to the algorithms involves reducing the sizeof the duty list, or if a problem creates a relatively small duty list, the exhaustive search wouldbe a possible method of solution. Alternatively, the tree search could be extended to includeheuristics to prune the tree, so that larger data sets could be used.3.4 OverviewThe problem of assigning mealbreak chains throughout a driver schedule is essential in produc-ing an e�cient schedule, but the number and complexity of constraints inherent in any problemmake it di�cult to solve. Certainly methods can be adopted which optimally pair stretches ofwork for any period in time but this cannot be done systematically to produce the �nal scheduleany more e�ciently than existing systems.



CHAPTER 3. INHERENT SCHEDULING PROBLEMS EXPLORED 54An exhaustive searching mechanism would �nd the optimal schedule for any given set of gen-erated duties, but without heuristic reduction it is currently unrealistic as a driver schedulingsystem.These two examples emphasize the di�culties inherent in driver scheduling problems. Theremainder of this thesis is concerned with the TRACS II scheduling system developed at theUniversity of Leeds, and ways of improving its mathematical programming component whichproduces a schedule from a set of previously generated valid duties.



Chapter 4The TRACS II SchedulingSystem4.1 IntroductionThis chapter describes a computerised scheduling system which was developed at the Universityof Leeds by Smith and Wren [15, 16, 17]. The IMPACS (Integer Mathematical Programmingfor Automatic Crew Scheduling) system was installed by the University in London Transport(now London Buses Ltd.) in 1984 and Greater Manchester Transport in 1985. It has beenmaintained and altered for commercial use within the BUSMAN system [73] whilst an updatedversion is retained at the University of Leeds for research purposes and will be referred to asTRACS II (Techniques for Running Automatic Crew Schedules). Both versions attempt to �nddriver schedules using the same processes and the following sections outline both the proposedmethod of solution, and the separate stages of solution. Subsequent chapters will describe al-ternative strategies for part of the system.4.2 The TRACS II ModelTRACS II consists of a suite of Fortran programs which �rst generate a set of valid duties, thenreduce the set to a manageable size and �nally select from them a set of duties which cover thebus work. Since not all valid duties are available for selection it may be necessary to have somepieces of work covered by more than one duty. These pieces of work are referred to as being55



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 56overcovered.Once a set of valid duties has been formed we can de�ne N and M where,Ndenotes the total number of duties availableMdenotes the total number of pieces of work in the bus schedule.Since pieces of work are de�ned as indivisible time intervals between two relief opportunities, itis assumed that any relief opportunities which are not used by at least one duty will be deemedredundant and the adjoining pieces of work combined. The following can now be de�ned :For j = 1; ::; N xj = 8<: 1 if duty j is used in the solution0 otherwiseFor i = 1; ::;M ui = 8<: 1 if workpiece i is uncovered0 otherwiseoi = number of times that workpiece i is overcovered (4.1)The existence of the variables ui and oi allows workpieces to remain uncovered and have morethan one duty covering them respectively. The desired situation would be where a piece of workis covered by exactly one duty so that the variables ui and oi would both have the value zero.4.2.1 The Objective FunctionThe complexity of requirements to produce an e�cient driver schedule leads to �ve objectivesbeing necessary. They are listed in decreasing order of importance as:� To minimise the number of uncovered pieces of work.� To minimise the number of duties used in the schedule.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 57� To avoid duties which contain undesirable features.� To minimise wage costs.� To minimise the total duration of overcovered pieces of work.This has been represented by an objective function of the form :MinimisePNj=1 Cjxj +PMi=1Diui +PMi=1Eioi: (4.2)The most important requirement is to remove uncovered pieces of work, indicating that thecoe�cient Di should be set at a large value to ensure that this issue is addressed �rst. Normallya large constant is added to the duration of the particular piece of work so that it becomesexpensive to leave it uncovered.Di = cost of not covering workpiece i= (constant to deter undercover)1 + duration of workpiece i. (4.3)The Ei coe�cient on the other hand should be lower to re
ect a less important objective. Thecalculation of this value involves multiplying the duration of the overcovered workpiece by asmall constant.Ei = cost of overcovering workpiece i= (cost of overcover per minute)1 * duration of workpiece i. (4.4)The remaining objectives require the Cj coe�cient to re
ect duty costs, penalty costs andwage costs. However, high penalty costs re
ecting duties which are unattractive to either a buscompany or its drivers would normally be added in later so as not to detract from the moreimportant objective of minimising the number of drivers. To prioritise the objectives a largeconstant is added to each duty cost so that minimisation favours a schedule with fewer duties.The duty costs themselves are expressed as the number of minutes of work for which a driver is1Constants used in weighting the objectives are de�ned by the scheduler in the ZIP parameter �le. Anexample of the values used can be found at the end of this chapter.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 58paid. If work content is such that the guaranteed minimumwage is higher than the duty cost,the duty cost will be replaced by this higher value.Cj = cost of duty j= wage cost + (constant to prioritise reduction of duty total)1. (4.5)4.2.2 ConstraintsSince some duties will be ine�cient and the time taken to solve the model is dependent uponthe number of variables used, heuristics are used to limit the number of duties to be enteredinto the model. The heuristics attempt to retain individually e�cient duties and hence discardmany shorter potential duties. This may result in a �nal set of duties which do not easily �ttogether without overlapping when considered over the whole bus schedule.For this reason a set partitioning model which would ensure that every workpiece is covered byexactly one duty is not used. Although it is unacceptable to schedulers to allocate more thanone duty to the same piece of work, a set covering approach is chosen which ensures that everyworkpiece is covered by at least one duty. This can be written as:PNj=1Aijxj � 1 for i = 1; ::;M (4.6)where the Aij identify which pieces of work are covered by which duties:Aij = 8<: 1 if duty j covers workpiece i0 otherwise. (4.7)Since the objective function includes minimisingwage costs and also the amount of overcover, ingeneral very few pieces of work will be covered by more than one duty in the �nal schedule. Inpractice any overcover which appears in a solution will most commonly occur when two dutiesoverlap. In this situation the duties can be manually edited so that only one driver is assignedto any piece of work, with any excess being put on standby. It is also possible that larger



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 59amounts of overcover are produced, but in these cases it often highlights an ine�ciency causedby a condition in the labour agreement. If set partitioning were to be used on these problemsit would be much more di�cult to determine the reason for achieving either no solution or avery expensive solution.The TRACS II system is based upon an elastic set partitioning model [74] where both slack andsurplus variables are assigned to each constraint so that the model is e�ectively set covering.Constraint (4.6) can therefore be written as follows:PNj=1Aijxj + ui � oi = 1 for i = 1; ::;M: (4.8)Manington [75] used equality constraints to cut down the problem size when forming an initialsolution, and the inclusion of such constraints has remained in the model as a requirementby the constraint branching strategy within the branch and bound algorithm, as described insection 5.4.3.In order to incorporate some equality constraints into the model it is important to note in whichsituations it is particularly preferable not to allow overcover. The number of drivers needed tocover the morning peak is governed by the number of buses in service at that time plus anydrivers required to cover problematic pieces of work. Hence, by allowing overcover on the �rstfew pieces of work for any bus, this will introduce an extra driver signing on before the risein the number of vehicles in service. Similarly, it is not advisable to allow overcover on thelast pieces of work for a bus as it necessarily implies ine�ciency later in the schedule. Manualschedulers tend to form earliest-starting and latest-�nishing duties �rst because they restrictthe way that the other duties are formed, and hence they are unlikely to produce overcover onthese corresponding pieces of work.The algorithm incorporated into TRACS II automatically identi�es the workpieces which shallbe formulated as equality constraints, chosen in such a way that no early duty covers morethan one of the early equality constraints, and no late duty covers more than one of the lateequality constraints.Hence, constraint (4.8) can now be split into the following:



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 60PNj=1Aijxj + ui = 1 for i = 1; ::; LPNj=1Aijxj + ui � oi = 1 for i = L+ 1; ::;M (4.9)where L denotes the number of workpieces which can be identi�ed as equality constraints.4.2.3 Side ConstraintsIt was mentioned earlier that a bus company can specify six duty types EARLY, LATE, MID-DLE, SPLIT, DAY, OVERTIME. The user can then impose certain constraints on any ofthese duties to ensure that the �nal schedule does not contain too many or too few of anyparticular type. Constraints of this form can also be used to limit the number of three-partduties occurring, limit the total number of duties in the �nal schedule, and also eliminate under-cover. The constraints can be imposed either initially or when reoptimising an existing solution.The constraints can be expressed as follows:PNj=1 �kjxj � Uk (4.10)where Uk is an upper limit on the number of duties of type k, andPNj=1 �kjxj � Lk (4.11)where Lk is a lower limit on the number of duties of type k.The �kj are de�ned as :



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 61�kj = 8<: 1 if xj is to be in the side constraint0 otherwise (4.12)Given then that each xj is classi�ed as exactly one duty type at the generation stage, for anyside constraint on this duty type the corresponding value of �j will be one. Similarly, duties canbe classed as two or three-part duties so that a side constraint limiting the number of three-partduties will require that the �j value for such duties is one. If there is a side constraint limitingthe total number of duties in the schedule then all �j constants will have the value one.4.2.4 Model - SummaryMinimise PNj=1CjXj +PMi=1Diui +PMi=1EioiSubject to PNj=1Aijxj + ui = 1 for i = 1; ::; LPNj=1Aijxj + ui � oi = 1 for i = L+ 1; ::;MPlus any user-de�ned side constraintsxj = 0 or 1; for j = 1; ::; Nui � 0oi � 04.3 Running TRACS IIIn order to create a driver schedule which covers an existing bus schedule it is necessary to gothrough a number of di�erent stages. Each stage corresponds to running a Fortran program



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 62and the details of each of these can be found in the user manual [18] and are explained brie
yin the following sections.4.3.1 BUSGRAPHA program is available to print the bus schedule in graphical form, i.e. a line graph displayingthe times that each bus is in service and at which times relief points occur. Although it isnot necessary, it is wise to use this facility early on in order to analyse the driver requirementand relief opportunities. It may also be bene�cial to print the busgraph after certain reliefopportunities have been discarded.4.3.2 DIVSometimes a problem would be classed as `too large' to be solved based upon the frequencywith which buses pass relief points, the range of acceptable duty lengths, the number of dutieshaving been generated etc. For this reason restrictions on problem size have been coded withinTRACS II, which are currently a maximumof 22000 duties and 1000 pieces of work. In practiceTRACS II has solved a problem with 429 constraints and 10775 duties in around 15 minutes. Ascomputer technology improves, the limits de�ning `too large' can be increased, but the abilityto split the bus schedule into smaller components may still be useful. The program works byanalysing the bus schedule and placing individual bus workings into groups to form separatesubproblems. Each grouping should contain work with complementary characteristics so thatthey will be covered by the same set of duties, thus minimising the number of extra dutiescreated through certain buses no longer being combined. In the process of splitting the datathe program produces an estimate of the likely numbers of duties needed in the �nal schedule,and identi�es any relief times which may be critical in the formation of a good schedule.4.3.3 STIMESAccording to Smith [16], in order for the model to be useful both the number of variables andconstraints must be restricted. As mentioned in the previous section, each piece of work willcorrespond to a constraint in the mathematical programming model. The STIMES programconsiders each relief time for the bus schedule entered with the purpose of selecting or rejectingit, based mainly on the allowed stretch lengths of duties. A whole bus schedule or a subprob-lem can be studied. Note that rejected relief points at this stage can be reinstated by the user



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 63if required. Any duties generated will only be formed using the relief opportunities selectedduring this process, and hence the total number of duties entering the model will be reduced.4.3.4 GENThis is the program which generates valid duties for the bus schedule in question. As well asusing the duty generation parameter �le (see section 4.4.2) which contains some of the labouragreement rules, three specially written Fortran subroutines, often speci�c to the bus company,are also used to ensure the validity of the duty, incorporate any penalty costs, and calculatewage costs.Although the task of the duty generation process is to form valid duties, because of the limi-tations on problem size required to enter the mathematical programming model, a few simplerules are used to limit the formation of less sensible duties. For instance, very short dutiesmay be valid but are relatively costly and unlikely to be found in schedules with the minimumnumber of duties. Also, for every �rst stretch of duty that is formed, the potential number ofrelief times for which the second stretch can start is limited to avoid forming duties with longermealbreaks. The number of potential three-part duties is very large and so restrictions basedupon knowledge of where they may best be utilised in a schedule are used.Although the duty generation has to be limited, and intelligent heuristics are used to do this,it cannot be guaranteed that a duty vital to the overall optimal solution will be generated.Along with further reductions of the duty size this possibly restricts the quality of the overallschedule, whereas a method which allowed all valid duties to be considered would guaranteeoptimality.4.3.5 COMPAREIn order to reduce the number of duties generated, and thus the time it will take to produce adriver schedule, heuristics are needed to eliminate any duties which are unlikely to be useful.COMPARE incorporates one such heuristic, which is that any duty which is contained whollywithin another duty will not be chosen as it does not cover as many pieces of work. If the �nalschedule contains overcover then by editing a duty it may be that the shorter and probably



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 64cheaper duty is ultimately included in the �nal schedule, even though it was banned at thisstage.4.3.6 EVENEVEN uses an heuristic to reduce the duty set still further by limiting any repetitious coveringof pieces of work. An upper limit called the Coverage Value can be entered by the user, e.g.50 so that if all the pieces of work covered by a duty are also covered by 50 other duties, thenit is not signi�cantly contributing to the choices available and can be dropped. The generatedduties are ranked in terms of their e�ciency and the EVEN process removes duties in increasingorder of e�ciency. This e�ciency is determined by expression (5.3).4.3.7 ZIPAlthough this program will be discussed in more detail in the following chapter, a brief descrip-tion will be given as to its purpose. Once the �nal duty set has been produced ZIP selects fromit a driver schedule using the mathematical programming model described in section 4.2. Thestrategy �rstly involves �nding an intermediate solution which need not necessarily be integer,but provides a lower bound on the number of duties required for the �nal solution. A branchand bound process is then used to ensure that an integer solution is formed, i.e. the dutycombinations are feasible.4.3.8 SPRINTThis program performs some heuristic improvements to the schedule formed by ZIP and thenprints a duty schedule in the form of a duty list followed by the busgraph with duties markedon it.4.3.9 OVERIn the solution to any problem which has been divided, whilst there will be many duties whichare acceptable there may be some which are considered ine�cient in some way. This programallows the user to identify these latter duties, to carry the bus work contained in these dutiesover to the next subproblem, and to save satisfactory duties. The program will, if desired, carryover bad duties automatically.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 654.3.10 COMBINEThis program is used to combine the resulting schedules for a divided problem into one driverschedule.4.3.11 INSPECTIt may sometimes be helpful to examine some of the duties formed. A scheduler may wish tooutline characteristics of a duty and INSPECT will display any duties in the set possessingthese characteristics. For instance, the scheduler can request to see all two-part duties startingat a particular relief time, or see if a complete duty was formed at the duty generation stage.4.3.12 Improvement routinesImprovement techniques are available for re�ning a schedule produced by ZIP. It is possible thatan integer solution, i.e. feasible schedule, is not optimal and so an improvement routine may�nd a cheaper solution. Also, since all duties cannot be considered in the set covering model,further investigations may indicate any improvement which could be gained from introducing aduty previously removed from the set. Finally, certain preferences and criteria may not easilybe incorporated into the set covering model, such as drivers signing on and o� in the sameorder to balance the workload, and an improvement routine is available to rearrange duties.4.4 Data FilesInformation about the existing vehicle schedule and also the rules governing the formation ofduties are required in order to generate the set of duties from which the schedule will be cho-sen. This information is provided by the bus company and translated into standard formats asshown in the following two �les:4.4.1 Bus Schedule Data FileIn order to provide information about the current bus schedule under consideration, a data �leis constructed. Information contained within this �le will include times and locations at whichdrivers may be relieved, and travel times to these locations. Example 1 depicts a typical busschedule data �le.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 66� The �rst line has a heading of up to 50 characters which will be printed on all output.� The second line indicates the number of relief points available as potential driver changeoverlocations.� The next group of lines relate to the relief points. There is one line for each point, andthe number of points must correspond to that speci�ed on the second line of the �le. The�rst point must be the garage. The �rst character is a code for the relief point to be usedin graphical output. This is followed by the name of the point to be used in the dutylisting.� The following lines give, for the work of each bus, the bus running number and then foreach relief opportunity, the time and the relief point number. In order to distinguishbetween the arrival and departure at a relief point, when it is not necessary to allocatea driver to the period in between, this may be indicated by putting zero for the reliefpoint following the departure time. (See bus 5 time 1038 in example 1). A bus leavingthe depot for the second time can be identi�ed by altering the bus running number. (Bus1008 is the second time out of the depot for bus 8).� The next block of data shows for every pair of relief points, the minimum mealbreakwhich must be allowed if the break starts at one point and �nishes at the other.� The next block of data shows for every pair of relief points, the portion of the mealbreakwhich is paid (in mins).� The next block gives the minimum joinup time required between each pair of relief points(in mins).� Finally, the last set of data shows the signing on and signing o� allowances at each reliefpoint (in mins).Greater Manchester Buses 10/10/19882G Harling Garageh Harling1 0522 1 0625 2 0852 2 0955 2 1222 2 1325 21552 2 1655 2 1922 12 0555 1 0822 2 0925 2 1152 2 1255 2 1522 21625 2 1852 2 2012 2 2215 2 2312 13 0655 1 0922 2 1025 2 1252 2 1355 2 1622 2



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 671725 2 2015 2 2112 2 2315 2 2412 14 0725 1 0952 2 1055 2 1322 2 1425 2 1652 21755 2 1918 15 0652 1 0755 2 1022 2 1038 0 1125 2 1352 21455 2 1722 2 1825 2 1948 16 0537 1 0722 2 0825 2 1052 2 1155 2 1422 21525 2 1752 2 1912 2 2115 2 2312 2 2415 17 0516 1 0752 2 0855 2 1122 2 1225 2 1452 21555 2 1822 2 1925 18 0624 1 1000 11008 1515 1 1900 19 0640 1 0737 2 0840 2 0937 2 1040 2 1137 21240 2 1337 2 1440 2 1537 2 1640 2 1737 21840 2 2045 2 2345 110 0607 1 0807 2 0910 2 1007 2 1110 2 1207 21310 2 1407 2 1510 2 1607 2 1710 2 1807 21910 1MINIMUM MEALBREAK40 3535 30PAID MEALBREAK40 3535 30MINIMUM JOINUP15 1015 5SIGNON AND OFF15 1015 10EXAMPLE 1 : A Bus Schedule Data File4.4.2 Duty Generation Parameter FileA data �le is created which controls the formation of valid duties from which the schedulewill be selected. Some forms of labour agreement rules, such as maximum stretch lengths,



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 68are common to all bus companies and can be parameterised in this �le. Other data, such asmaximum length of mealbreak, is used to restrict the total number of valid duties that areformed by discouraging the construction of duties which are unlikely to be useful in the overallduty schedule. Example 2 represents a typical duty generation parameter �le where all timesare shown in hours and minutes, e.g. 245 is 2 hours and 45 minutes, unless speci�ed otherwise.Some headings have been identi�ed by the letters (a) - (y) which are not found in the �les, butappear here to clarify the descriptions as follows:� The �rst parameter indicates whether a �le of selected relief times has been set up or not.If `NO' is speci�ed, all relief times from the bus schedule are available to be used for thedriver scheduling. If a relief time selection process has been used to identify relief timeswhich are unlikely to be useful then the response would be `YES'.� The next three parameters are :1) The maximumbreak in a split duty (which minimises unproductive time in long duties).2) The maximum length of a joinup (in minutes) between relief points.3) The minimum joinup (in minutes). Even if a driver changes buses at the same reliefpoint, this limit allows for late running of the �rst bus.� The minimumlength of spell (in mins) is not a legal requirement and as such is determinedat the discretion of the scheduler to avoid the use of three-part duties and wasteful shortlengths of time on any vehicle.� `LIMIT' is the minimum length of a spell at the start or end of a running board (inmins). Since the driver is taking the vehicle from or to the garage, it may be necessaryto di�erentiate between this value and that speci�ed above.� The minimum long break on a split duty can be left at 0 in which case the minimumbreak will be governed by by the minimummealbreak values from the bus schedule data�le. Some companies, however, specify a much longer time for split duties because of theincreased total duty time compared to straight duties.� The minimum spreadover for a split duty is usually either speci�cally stated in the labouragreement, or implied by the fact that split duties must have longer spreadovers thanother duty types.The next section gives parameters relating to the �ve duty types:EARLY LATE MIDDLE SPLIT DAY



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 69� (a) The minimum length of the �rst stretch speci�es the minimum time from the start ofthe duty to the start of a mealbreak.� (b) The minimum length of the second stretch similarly de�nes the time from the end ofthe mealbreak to the end of the duty.� (c) Maximummealbreak limits the length of a mealbreak to what could realistically occur.The maximum mealbreak for split duties given here only applies to labour agreementswhich allow 3-bus split duties to have two mealbreaks, in which case this refers to theshorter.The following four sections can be used to restrict the generation of nonsensical duties.� (d) Earliest start of mealbreak� (e) Latest start of mealbreak.� (f) Earliest �nish of mealbreak.� (g) Latest �nish of mealbreak.� (h) The minimum acceptable cost discourages the system from creating a lot of shortduties.� (i) Minimum cost for three-part duties. Since three-part duties are often very long andnot very productive, it may be possible to specify a higher minimum cost than for two-part duties. If three-part duties for a particular type are not to be formed, one may entera minimum cost value greater than the maximum cost for that duty type.� (j) Maximum cost is often governed by the labour agreement. In order to di�erentiatebetween duty types, a set of timings regarding the work content for each is de�ned. Thefollowing seven lines are self-explanatory.� (k) Earliest signing-on time.� (l) Earliest time on bus.� (m) Latest starting time.� (n) Earliest �nishing time.� (o) Latest �nishing time.� (p) Latest signing o� time.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 70� (q) Maximum length of stretch without a mealbreak.� (r) Maximum platform time limits the total time spent on the bus.� (s) Maximum spreadover limits the total duty span from signing on to signing o�. Thisparameter could be used to prevent certain duty types from being formed if set at zero.� (t) A minimumdaily payment may be speci�ed in an agreement to guarantee a minimumwage irrespective of the amount of time worked.� (u) It is possible for the user to specify particular duties which should be included in theschedule. It is important to note that these duties will not be checked for validity. Thisis a feature which is lacking in the commercial system.� (v) Maximumnumber of mealbreaks. Since three-part duties are considered, it is possiblethat rather than a short joinup between buses, the scheduler requires that 2 mealbreakscan be taken in this situation.� (w) Overtime pieces to be formed. This is where the user can allow one-piece duties tobe formed. Stretches of work will be cut from running boards and the remainder is left tobe scheduled among the other duty types. However, since these duties vary considerablybetween companies a separate routine must be written if the response to this header is`YES'.� (x) Up to six periods of time can be speci�ed here as times when joinups cannot start.This information limits the number of three-bus duties which are formed.� (y) Number of second stretches requires an entry for each duty type. When the duties arebeing generated the �rst stretch is formed and then a number of possible second stretchesafter a mealbreak must be considered in order of time. The values placed here indicate themaximum number of second stretches which can be linked with the �rst stretch to formduties. This heuristic prevents too many duties from being formed with long breaks. Itdoes, however, eliminate valid duties from being formed in which the penalty for a longermealbreak does not outweigh the relative cost bene�t of the duty in a schedule.SELECTYESMAX-SPLIT-DUTY-BREAK MAX-JOINUP MIN-JOINUP600 40 5MIN. LENGTH OF SPELL



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 7140LIMIT40MIN. LONG BREAK IN SPLIT DUTY210MIN. SPREADOVER IN SPLIT DUTY807(a) MIN LENGTH OF 1ST STRETCH230 230 230 230 230(b) MIN LENGTH OF 2ND STRETCH230 230 230 230 230(c) MAX MEALBREAK130 130 130 600 130(d) EARLIEST START OF MEALBREAK0000 1430 0930 0000 0000(e) LATEST START MEALBREAK1315 2130 1830 1125 1315(f) EARLIST FINISH MEALBREAK0000 1500 1000 1335 0000(g) LATEST FINISH OF MEALBREAK1345 2200 1900 1700 1345(h) MIN COST600 600 600 600 600(i) MIN COST (3-BUS DUTIES)600 600 600 600 600(j) MAX COST806 806 806 1100 806(k) EARLIST SIGNING ON TIME0000 0000 0000 0600 0000(l) EARLIST START ON BUS0000 0000 0000 0559 0000(m) LATEST START ON BUS0800 1800 1500 0900 0900(n) EARLIST FINISH OFF BUS0000 2130 1600 1700 0000



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 72(o) LATEST FINISH OFF BUS1559 3200 2129 1929 1559(p) LATEST SIGNING OFF TIME1559 3200 2129 1929 1559(q) MAXIMUM STRETCH LENGTH530 530 530 530 530(r) MAXIMUM PLATFORM TIME806 806 806 1100 806(s) MAXIMUM SPREADOVER806 806 806 1230 806(t) MINIMUM PAID DAY000 000 000 000 000(u) PRESPECIFIED DUTIES0(v) MAXIMUM NUMBER OF MEALBREAK1(w) OVERTIME PIECES TO BE FORMED?NO(x) PERIODS WHEN JOINUPS CANNOT START0(y) NO. OF SECOND STRETCHES10 10 10 10 10EXAMPLE 2 : A Duty Generation File4.4.3 ZIP �leA further �le is constructed to contain information regarding the running of the ZIP process.Example 3 represents a ZIP �le as it has been used in the version developed at the Universityof Leeds, but this �le has since been updated to incorporate di�erent features and solutionstrategies throughout the current research.� The START parameter dictates the way in which the model solver will be executed,depending on whether the user wishes to reoptimise a current solution and on the re-quirement to continue to �nd an integer solution.



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 73� The ADD-PENALTIES parameter speci�es whether the penalty costs should be includedin the duty cost initially or at a later stage.� The following line of data is used by the program to control screen output and the solutionstrategy. Some of these properties will be described in more detail in the following chapter.The ZIP data �le includes the constant coe�cients used in the objective function (seesection 4.2.1) where :{ COST-OF-DUTY de�nes the large constant added to the wage cost{ COST-OF-OVER-COVER de�nes the constant to be multiplied by the duration ofthe overcovered piece of work{ COST-OF-UNCOVERED-PIECE de�nes the constant to be added to the durationof an uncovered piece of work.� Finally, the user can add any extra side constraints to this �le.START ADD-PENALTIES4 0(IPRINT NGOOD ZLIM REDUC NITER)1 10 0.005 TRUE 99999COST-OF-DUTY COST-OF-OVER-COVER COST-OF-UNCOVERED-PIECE MIN-OVERTIME2000 3.000 8000.000 1.000EXTRA CONSTRAINTSEXAMPLE 3 : A ZIP Parameter File4.4.4 Info �leThe scheduling system produces a data �le at the end of the duty generation phase which holdsinformation identifying the relief points that refer to the start of each vehicle. Also, for each



CHAPTER 4. THE TRACS II SCHEDULING SYSTEM 74relief opportunity, it calculates the number of generated duties which use it as the start or endof a spell.4.4.5 Duty �leOnce the duties have been generated they are each coded into a �le. Each row of this �lecorresponds to a valid duty with each column representing a particular feature of the duty, e.g.2 1 3 22 24 0 0 475 1 5 4753 155 157 114 115 28 29 441 3 15 1731The �rst value refers to the number of spells of work contained within the duty. The next sixvalues pair o� to form the code of the start and end relief point for each of the three potentialspells of work. Since there are only two spells in the �rst example, the third pair of numbersare both zero. The next number is the wage cost of duty which was calculated by a speci�cuser routine mentioned in section 4.3.4. The following number is a code representing the dutytype. In this case a 1 indicates that it is an early duty and the 3 indicates a middle duty. Thenext column gives an indication of the e�ciency of the duty. This �gure will be explained inmore detail in section 5.2. Finally, the last column gives the total cost of the duty includingany penalties for undesirable features. In the �rst example no extra cost is incurred, whichwould have discouraged it from being in the �nal solution. However the second example has apenalty cost added to discourage too many three-part duties from appearing in a schedule.4.5 OverviewThe TRACS II driver scheduling system uses a set covering formulation to produce a schedulefrom a set of previously generated valid duties. Not all duties are available to the mathematicalprogramming component as heuristics are required �rstly to reduce the problem size. Thefollowing chapter details the mathematical programming component of TRACS II.



Chapter 5Solving the TRACS II ILP Model5.1 IntroductionThis chapter contains a brief description of how the mathematical programming part of TRACSII works to select a subset of valid duties in order to cover bus work and minimise costs. Basedon experience of this method, alterations and improvements which were made to the originalmodel and method of solution, leading up to the implementation of a column generation tech-nique, will be explained.5.2 Solution StrategyAt this stage in the solution process a set of potential duties has been de�ned, along withany user-de�ned side constraints and constants re
ecting the coe�cients of the variables in theobjective function. It is possible to execute the model solver in a number of di�erent ways,such as starting or stopping at di�erent points in the solution strategy; however, the methodwill be described in full as if there were no user intervention in the process.For the purpose of simplicity side constraints will not be included in any of the models outlinedin this chapter because they are not a�ected by the developments described. Thus the originalmodel is represented as follows: 75



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 76Minimise PNj=1 Cjxj +PMi=1Diui +PMi=1EioiSubject to PNj=1Aijxj + ui = 1 for i = 1; ::; LPNj=1Aijxj + ui � oi = 1 for i = L+ 1; ::;Mxj = 0 or 1; for j = 1; ::; Nui � 0oi � 0: (5.1)The model and the terms used have been presented in section 4.2.The penalty costs are not normally added into the objective function initially, because dutiesdisplaying several undesirable features incur a very high cost, and although it is hoped thatthese duties do not appear in a schedule it is actually preferable to include some of them ratherthan to exceed the minimum number of duties.For this reason the solution strategy has historically been to devise two pre-emptively orderedobjectives which are solved in two stages. The �rst is to minimise a function combining thecosts of the individual duties with a �xed cost per duty, so as to give a signi�cant bias towardsminimising the number of duties; the second is to minimise a cost function, incorporatingpenalty costs, with the added constraint that the total number of duties does not exceed theminimum already ascertained at the end of the �rst stage. These objectives can be formulatedas follows:



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 771) Minimise PNj=1 C1jxj +PMi=1Diui +PMi=1Eioi2) Minimise PNj=1(C1j + C2j)xj +PMi=1Diui +PMi=1Eioi (5.2)whereC1j includes wage costs and the large constant duty cost andC2j is the appropriate penalty cost.The solution stages which follow correspond to those necessary to solve the formulation ofmodel (5.2).Stage P1Duties are ranked in order of `desirability' during the generation phase. This rank has alreadybeen used in the EVEN program described in section 4.3.6 to remove ine�cient duties whilstensuring that each piece of work is covered by a speci�ed number of duties. The value is aninteger calculated by expression (5.3). If the value of the expression is less than one then it isrounded up to the value one.bMaximum duty content � Actual duty content12 c: (5.3)This is a simple model which will assess the e�ciency of any particular duty based upon theamount of unproductive time spent during that duty. It should be noted that since this modeldoes not take into account certain features, e.g. the type of duty or times of day over whichthe duty operates, the �gure calculated here will only provide a rough guide to the e�ciencyof the duty.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 78In the �rst stage of the solution all three-part duties and duties with a rank above four aretemporarily excluded from the duty set. The integrality constraints on the duties are relaxedso that a piece of work may be covered by fractions of several di�erent duties. The model isthen solved using customised Mathematical Programming software with the remaining duties.Stage P2The previously excluded duties are restored and the LP relaxation is reoptimised with the com-plete set of duties.Stage P3Having found a solution with the minimum number of duties, the penalty costs are added tothe costs of all appropriate duties. To ensure that this action does not a�ect the solution withregard to the two main priorities of the bus company as stated in section 4.2.1, the followingtwo side constraints are now added : PMi=1 ui � 0PNj=1 xj � T: (5.4)The �rst ensures that there can be no uncovered work in the solution, which was the most im-portant consideration. The second constraint uses a target number of duties to ensure that theminimisation of the number of duties in the solution is still addressed. If the minimumnumberof duties is integral then T will take this value. However, it is more likely that the minimumnumber of duties is fractional and since an integer solution will be the �nal requirement T willtake this number rounded up to the next integer. Any further solutions therefore need at mostT duties. This new model is solved with the integrality constraints still relaxed.Stage P4If the total number of duties in the current solution is non-integral and of the form I:f , theside constraint



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 79PNj=1 xj � I + 1 (5.5)is added. This is because the current solution is minimal for a relaxed LP model, and so anyinteger solution must require at least the next highest integer number of duties. The reasonfor adding this constraint is to act alongside the constraint added in Stage P3, so that theresulting number of duties must be integral. This tight bound helps limit the search in the�nal stage of the solution and reduces execution times. The current solution however will benecessarily infeasible for this new constraint and the new model must be re-solved.If the total number of duties in the current solution is already integral then no side constraintis added and no reoptimisation performed.Stage P5This stage will only be necessary for an optimal schedule which contains fractional duties.In this case a branch and bound method is used to determine which duties will appear in the�nal schedule. The customised branch and bound process is described in detail in section 5.4.3.5.3 An Alternative Solution StrategySherali [76] noted that there are several disadvantages in using a sequential approach to �nd asolution which satis�es two objectives. Apart from the fact that two separate linear programshave to be solved which are essentially doing the same task but with a di�erent cost coe�cient,a high degree of degeneracy is likely to occur with typically large numbers of iterations. Alsothe introduction of side constraints to maintain the subjective ordering of the objectives resultsin a more complex model needing to be solved which may increase execution times over a simplemodel for which e�cient solution codes exist.An alternative approach to solving the driver scheduling model has been explored by Willerset al. [77] and Willers [14]. The approach used is that of merging the two objectives using



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 80equivalent weights to create a single objective, simultaneously re
ecting the importance of eachoriginal objective. This would certainly be a more e�cient way of solving the LP relaxation,provided that the processing time of the new model does not outweigh the bene�ts of reducingthe number of solution stages.In order to simplify the two objectives it was noted by Willers [14] that a side constraint isadded to the model to prohibit any undercover. He deemed it unnecessary for the ui variablesto appear in the objective function. Willers [14] also states that overcover variables havingnon-zero objective function coe�cients may cause the minimisation of wage costs not to beachieved. Overcover is unproductive and is discouraged by the minimisation of wage costs as itwould suggest that more than one driver is being paid to cover an identical piece of work andso zero costs are therefore attached to the oi variables.It was also proposed by Willers [14] that since the main objective is to ensure that the numberof duties in the solution is minimised, the cost coe�cient can be removed until stage P3. Atthis point both a wage cost and any penalty costs will be attached to each duty variable and thenew problem will be reoptimised. The large constant used to prioritise the duty minimisationprocess is no longer required.The two objective functions are now:1) Minimise PNj=1 xj2) Minimise PNj=1Cjxj (5.6)whereCj combines wage and penalty costs for duty j.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 815.3.1 Sherali Strategy for a Single Objective ModelMethods have been proposed by Sherali [76] to convert certain multi-objective models into sin-gle objective models. The situation created by TRACS II where the model has two objectiveswith integral objective function coe�cients was addressed by Willers [14]. The method involvesweighting the objectives and combining them. For the TRACS II problem with two objectivefunctions, the single objective formulation is as follows:Minimise W1PNj=1 xj +W2PNj=1Cjxj: (5.7)W1 and W2 must have appropriate values to ensure that the objectives are correctly ordered.Sherali proposed two methods of calculating these values, of which the second method wasrecommended as it generally produces lower weights. Willers [14] has experimented furtherwith the values assigned to the two weights but the Sherali method described has remainedthroughout the column generation implementation which is described in this thesis. This pro-duces: W1 = 1 + UB[PNj=1Cjxj]� LB[PNj=1 Cjxj]W2 = 1 (5.8)where UB[PNj=1 Cjxj] is an upper bound value on the duty costs.LB[PNj=1Cjxj] is a lower bound value on the duty costs. (5.9)As the model only takes values between 0 and 1 at the LP relaxation stage, a lower bound cansimply be evaluated as 0 and an upper bound can be calculated by setting all duty values to 1.This upper bound however corresponds to summing all duty costs for the N duties generated,which would produce a very large weight. A smaller weight can be calculated by adapting theupper bound so that :



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 82W1 = 1 + sum of X largest Cj values (5.10)where X must be an upper bound on the number of duties in the schedule. Willers [14] hasshown that, for the TRACS II model, an appropriate weight can be ascertained by de�ning Xto be the number of duties in the initial solution since the sum of the highest X cost values inthis case must be an upper bound to any further schedule costs calculated.Given that there are no longer two objectives to optimise, stage P3 in the original strategy,which added the penalty costs, is not needed.5.3.2 The New ModelBy de�ning : Dj = W1 +Cj (5.11)as the new cost coe�cient for every duty variable, the new model can be de�ned as follows :Minimise PNj=1DjxjSubject to PNj=1Aijxj = 1 for i = 1; ::; LPNj=1Aijxj � 1 for i = L+ 1; ::;Mxj = 0 or 1; for j = 1; ::; N: (5.12)



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 835.3.3 New Solution StrategyThe stages necessary to solve the Sherali model are as follows :Stage S1Ban ine�cient duties by using the same method as with the original model, and solve the LPrelaxation of the new model.Stage S2Restore the banned variables and solve the LP relaxation of the new model over the whole dutyset.Stage S3If the sum of the duty variables is integral at the Branch and Bound phase then a tighter boundis introduced and the execution times reduced. Hence it will often be necessary to introduce aside constraint which increases the current optimal duty total to the next integer.PNj=1 xj � I + 1 (5.13)where the current optimal number of duties is I:f . The LP relaxation is then resolved with theadded constraint.Stage S4Find an integer solution using the branch and bound technique contained in the original model.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 845.4 Running ZIPThe optimisation process is based on the ZIP package [34] which consists of a suite of Fortransubroutines incorporating the necessary major processes involved in the solution of set coveringand set partitioning problems. There are core routines which contain the basic structure ofthe standard algorithms, and these call a set of Harwell Library subroutines [78] which havebeen developed to handle sparse linear programming bases. There is also a set of user routineswhich control the route through the program in order to re
ect the characteristics of the driverscheduling problem. The package has been customised for use within the TRACS II system,and Willers [14] has adapted it to solve the Sherali model.Firstly the relaxed model is solved using the Revised Simplex Method, where the minimumcost schedule is built up from many duties but each duty's contribution may be fractional. Aninteger solution is then formed, based on the relaxed solution, by means of a branch and boundapproach which chooses whether a particular duty should contribute wholly to the schedule ornot at all.The Revised Simplex Method improves any current basic feasible solution by attaching a priceto the rows of a matrix. A column then has a reduced cost based on these prices, and anycolumn which has a negative price will potentially improve the objective value. In order toinitialise this procedure it is necessary to create a basic feasible solution to the problem.5.4.1 The Initial SolutionIt would be possible to create an initial solution by selecting the slack variable correspondingto every workpiece constraint. This equates to having every piece of work uncovered, whichis feasible unless there are side constraints preventing this. However, since the quality of anyinitial solution a�ects the number of subsequent iterations, it is important to use intelligentheuristics in order to produce a reasonable solution whilst not compromising the overall pro-cess time. The heuristic originally implemented in TRACS II considers each piece of currentlyuncovered work in ascending order of the number of duties available to cover it, and selects aduty to be included in the initial solution which minimises the nominal cost function (5.14)without causing any workpiece constraint or upper-limit side constraint to be violated.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 85Min ( CjNU j ) + OCj (5.14)where Cj = Duty cost of duty xjNU j = number of currently uncovered workpieces covered by xjOCj = increase in overcover costs caused by selecting xj:In order to take into account the overcover variables no longer being costed and the duty costsnow incorporating Sherali weights, a new function can be de�ned as :Min DjNUj (5.15)where Dj = Sherali cost of duty xjNU j = number of currently uncovered workpieces covered by xj:This procedure continues choosing uncovered workpieces in increasing order of the number ofavailable duties covering them until all have been considered. For an initial solution in whichany duty is wholly contained within a number of other duties, this duty is removed to create acheaper solution. The remaining duty variables form part of the starting basis.For some side constraints, e.g. an upper limit on a particular duty type or duty total, the fea-sibility of a solution can be checked during the procedure. However, lower limits on duty typesmay be di�cult to satisfy in an initial solution and if it is the case that the initial solution is in-feasible, the corresponding constraints will be temporarily removed and applied at a later stage.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 86It is likely that a reasonable lower limit on the total number of duties will automatically besatis�ed due to the ine�ciency of any starting solution, but to satisfy a realistic upper limitit is possible that some workpieces will remain uncovered. For this reason the `no uncoveredwork' constraint is not applied initially.To complete the basis, for all workpiece constraints that are uncovered the corresponding un-dercover variable is set to one, and for all workpieces which are overcovered the correspondingovercover variable is assigned the appropriate value. For each side constraint the correspondingslack or surplus variable is assigned the appropriate value so that the constraint is satis�ed.There is also a process for determining zero-level basic variables.5.4.2 Solution of Relaxed LPAt any stage in the solution procedure the Primal Simplex Algorithm is used to improve anybasic feasible solution, and the Dual Simplex Algorithm is initiated by a primal infeasible basicsolution.The Primal Simplex AlgorithmZIP uses the Primal Simplex Algorithm to exchange a non-basic variable with a favourablereduced cost for a duty already in the basis. The resulting solution will be basic and feasibleand possibly with an improved objective cost.The standard method of selection attempts to perform the greatest improvement in objectivecost for a unit change in the entering variable. This is equivalent to choosing the enteringvariable with the most negative reduced cost. In terms of the convex polytope however thisonly considers the edges in the space of the current non-basic variables, whereas Harris [79] sug-gested that it would be more bene�cial to establish the steepest edge over all variables. Smith[15] incorporated a method developed by Goldfarb and Reid [80] into ZIP which calculates theedge gradients using recurrence relations. Due to the number of columns in a typical driverscheduling model, calculating the gradient of every non-basic variable for each steepest edgeiteration takes much longer to perform than in a standard Primal Simplex iteration. However,results have shown that the total number of iterations required was reduced to the extent that



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 87the solution times were improved.The Dual Simplex AlgorithmGiven an infeasible solution to a linear programming problem in which all reduced costs arepositive, a feasible solution can be obtained by exchanging basic variables for non-basic vari-ables in such a way that the solution remains basic and the reduced costs remain positive. Themethod used is the Dual Simplex Algorithm and is incorporated into the ZIP package in orderto solve solutions which are currently infeasible, such as when a lower bound is placed on thetarget number of duties in stage S3.5.4.3 Branch and BoundAssuming that, by relaxing the integrality conditions, the resulting LP solution produced aschedule with fractional numbers of duties, an integer solution must be found.
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CHAPTER 5. SOLVING THE TRACS II ILP MODEL 88current problem will not necessarily equate to the optimal schedule, and users can seldom spec-ify what they mean by optimality, the emphasis is on �nding a good integer solution quickly.The integer solution is found by developing a branch and bound tree, where the lower boundon the objective cost is given by the optimal continuous solution. At this stage the Sheraliweights could be removed, but their inclusion in the branch and bound tree should have noadverse e�ect on the execution times and so they remain part of the cost coe�cient of the dutyin the objective function.Once an integer solution has been found the nodes of the tree are fathomed if their cost is greaterthan or equal to a scheduler speci�ed percentage of the current best integer cost. Willers [14]explored the possibility of increasing the percentage to take into account the higher costs withSherali weights added but the implemented percentage of 99.5 has been retained throughoutthe current research. In most cases the �rst integer solution found fathoms all of the remainingactive nodes and hence the branch and bound process normally terminates with a possiblynon-optimal integer solution.Smith [15] developed a technique to reduce the size of the duty set entering the branch andbound phase, which assumes that an acceptable integer solution can be found by restricting thechoice of relief opportunities to the subset used in the LP optimum. In this way any duty whichdoes not use any of these times can be excluded from the search. The REDUCE procedureuses the principle that the LP optimum gives a good indication of how the bus work wouldbe covered in an integer solution, and extensive practical application has adequately producedan integer solution in a much reduced time for the majority of data sets. It is possible thatthe constraint limiting the search to �nd a schedule with an exact number of duties may notbe satis�ed with the limited set of relief opportunities. However, in general there are manydi�erent integer solutions, some of which should be contained within the duty set available.The other possibility is that the reduced duty set produces a worse integer solution than onewith the whole set, but since the process terminates with the �rst good solution its quality ismerely dependent on the choice of path through the tree, not on the number of duties whichare considered.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 89Branching strategyVarious di�erent branching strategies were considered during the development of TRACS II.Initially a constraint branching strategy developed by Ryan and Foster [34, 81] was imple-mented but was superseded by a relief time branching strategy.The method considers the optimal LP solution containing fractions of duty variables coveringpieces of work. For each relief time its changeover is de�ned as the sum of the duty variableswhich �nish (or start) a spell at that time. For example, in Figure 5.1 the changeover for relieftime 1316 is 0.35. Since a feasible solution requires that the changeover for each relief timeshould have the value 0 or 1 (except where there is overcover), branching on a selected relieftime forces the changeover to take one of these values. For the zero branch, all duties whichstart or end a spell at that relief time must be banned and for the one branch, all duties workingthrough that relief opportunity must be banned.The relief times are sorted into chronological order and preference is given to branching onrelief points alternately from the beginning and end of the day. At any point the next nodeto be selected is based upon the evaluation of a function. The calculation involves an estimateof the objective value which would result if the node were solved and the sum of the integerinfeasibilities at the parent node. For this reason the �rst branch to be evaluated is always thatwhich forces the fractional changeover to whichever is the nearer of 0 and 1.It is possible that a schedule is still fractional with all changeover values integral and in thiscase TRACS II initiates a constraint branching strategy of the type originally implemented anddeveloped by Ryan and Foster [34, 81]. This considers pairs of pieces of work, where one branchforces both pieces of work to be covered by a single duty and the other branch forces di�erentduties to cover them. For relief times which have overcover on either piece of work adjacent toit, the relief point is not used to form a branch. If no constraint branch can be found then atraditional variable branching strategy is used.SolutionsAt each node in the tree a certain amount of information must be held about the current so-lution including the basis matrix. For this reason a limit was placed on the size of the tree.



CHAPTER 5. SOLVING THE TRACS II ILP MODEL 90With improved technology the current maximum number of nodes which can be created hasbeen increased to 500.It is generally the case that if a solution cannot be found within a much smaller number ofnodes then for some reason an integer solution is being prohibited. If the branch and boundphase fails to �nd an integer solution within the node limit then this may indicate that althoughan integer solution exists, its objective cost is much higher than that of the relaxed LP solutionand hence the branching strategy used has di�culty in locating it. Another failure to �nd aninteger solution is when all the nodes of the tree have been fathomed through infeasibility. Inthis case a solution cannot be found satisfying the speci�ed number of duties with the duty setavailable and either the target number of duties may have to be increased by one, or a largerset of duties entered into the branch and bound to allow more choice.5.5 OverviewThe TRACS II driver scheduling system �rstly relaxes a set covering model to �nd the optimalcontinuous solution, and then uses this to specify a target number of duties to search for inan integer schedule which uses a branch and bound search. TRACS II solves two objectivefunctions in order to prioritise the requirements of a driver scheduling system, but it has beenreported that time savings can be made by incorporating only one objective function with aSherali weight to retain preference. Optimality is still limited to the quality of the previouslygenerated duty set and the following chapter considers a column generation approach whichwill allow more duties to be considered.



Chapter 6A Column Generation Model6.1 IntroductionThe major disadvantage of using most computerised scheduling systems, including TRACSII as described in the previous chapters, is that the search for optimality is limited to anheuristically reduced duty set and so for some problems the ILP fails to �nd a feasible solution.Large problems can be decomposed but this is usually deemed undesirable by users. Heuristicsoften limit the formation of duties to include only e�cient duties, but since it may be the casethat some ine�cient duties may be required to link with them to produce the optimal solution,ideally we would wish to consider allowing all possible valid duties which could be formed toenter the set covering model. This chapter aims to introduce an alternative method whichallows more duties to be available whilst using a much smaller set to solve the model.6.2 Related ProblemsScheduling problems are a subset of problems which contain many variables. Section 2.6 de-scribes some of the situations in which column generation has been successfully applied toproblems that would otherwise have to be reduced or decomposed before being solved using aset covering or set partitioning formulation.HASTUS [19, 20, 21, 22, 24] also contains a software module Crew-Opt [59, 60] which usescolumn generation techniques and has been shown to be successful in producing optimal ornear-optimal driver schedules for small transit operations. Hamer and S�eguin [24] report that91



CHAPTER 6. A COLUMN GENERATION MODEL 92Crew-Opt can produce quasi-optimal solutions to problems with less than 50 drivers, and isuseful for bus driver scheduling in which drivers are allocated route-by-route.6.3 Column GenerationThe constraints of a linear programming problem can be written as a set of m simultaneouslinear equations in n unknowns, Ax = b (6.1)whereA represents an m x n matrix,x represents the variables x1; ::; xn,b represents the m constraint values.Column generation is an approach used to solve mathematical programming problems whichcontain many columns; i.e. n is very large. The method uses the Revised Simplex Methodto solve the problem over a subset of the columns. The process then repeatedly adds furthercolumns to the subset which will potentially improve the solution and re-solves over the newset until optimality has been reached.6.3.1 Theory of the Simplex MethodFrom Proll [82], given a set of constraints Ax = bx � 0 (6.2)the variables can be split into those which are included in a basic feasible solution and thosewhich are not. Given that A is an mxn matrix we can denote



CHAPTER 6. A COLUMN GENERATION MODEL 93xBi for i = 1; ::;mxNi for i = m + 1; ::; n (6.3)as the basic and non-basic variables respectively.An mxm matrix B can be formed from m linearly independent columns of A such that equa-tions (6.2) can be rewritten as : BxB +NxN = bxB � 0xN � 0: (6.4)The matrix B is called the basis matrix.Rewriting the �rst constraint of (6.4) in terms of xB gives :xB +B�1NxN = B�1b:or xB = B�1b�B�1NxN (6.5)The Revised Simplex Method uses equation (6.5) to generate any item in the simplex tableau.For any simplex tableau which is non-optimal it is necessary to �nd currently non-basic vari-ables which, when swapped with current basic variables, will improve the objective value.The objective function can be written in the form :



CHAPTER 6. A COLUMN GENERATION MODEL 94z = cTxwherecT contains unit costs for each xi variable,so that z = cBTxB + cNTxN: (6.6)Since all non-basic variables will have the value zero, the objective function can be rewrittenin terms of only the xB variables. Substituting (6.5) into (6.6) gives :z = cBTB�1b� cBTB�1NxN + cNTxNor z + (cBTB�1N � cNT)xN = cBTB�1b: (6.7)By now de�ning : � = cBTB�1 (6.8)where � is known as the simplex multiplier or pricing vector, the objective function can becalculated as : z + (�N� cNT)xN = �:b: (6.9)



CHAPTER 6. A COLUMN GENERATION MODEL 95The inclusion of a non basic variable will alter the objective cost based upon the expression :�N � cNT (6.10)So, for any non-basic variable k its reduced cost can be calculated as�kT � ck (6.11)i.e. � * original data column for variable - coe�cient of variable in objective function.Since we wish to know the alteration in the objective value z that would take place if anycurrently non-basic variable should be entered into the basis, then if the problem is one ofmaximisation, the reduced cost of a variable should be negative for z to increase. Similarly forminimisation problems the reduced cost should be positive for any objective value improvement.The variable with the most negative (or positive) reduced cost is normally the one chosen to bethe entrant variable since this will give the best objective cost improvement for a unit changein any one non-basic variable. Other methods are available, e.g. Harris [79] which also considerthe changes in the basic variables for a unit change in a non-basic variable. The leaving variableis chosen by means of a ratio test.6.3.2 Method of SolutionAssuming that all columns are available in the matrix of constraints A, the Revised SimplexMethod begins with an initial solution and improves the objective value by swapping basicvariables for non-basic variables with favourable reduced costs until no further improvementcan be made.In the case of column generation only a subset of the columns is available at the outset. TheRevised Simplex Method is used to �nd the solution which is optimal over the subset andthen generates or searches through columns not previously considered. If there are any newcolumns which have favourable reduced costs then some, or all, of them are added to the subset



CHAPTER 6. A COLUMN GENERATION MODEL 96as non-basic variables so that the current solution is no longer optimal. Using the currentbasic solution, the Revised Simplex Method continues to swap columns where necessary toreoptimise over the current larger subset. For any LP relaxation which is optimal over itsavailable subset the overall optimal solution is attained when no more columns which wouldimprove the objective value can be added to the set.6.4 Application of Column Generation to Driver Schedul-ingSince TRACS II uses heuristics to reduce the number of duties in order to enable conventionalmathematical program solvers to produce a solution, and column generation has been shownto be a method which can be used to solve driver scheduling problems which often have tobe decomposed, further investigation has taken place into incorporating column generationtechniques within TRACS II in an attempt to overcome some of the di�culties which arise incertain situations, and also to improve upon the solution and/or speed of the process.6.4.1 Method of SolutionA column generation approach to solving the driver scheduling problem requires strategies forresolving the following three issues :� How to choose an initial duty set.� How to generate further duties.� How to produce an integer solution from the LP solution.The driver scheduling problem is one of cost minimisation and so by de�ning the reduced costsfor non-basic variables as in (6.12), improvements in the objective value can only be made ifthere are any non-basic variables with negative reduced costs.The reduced cost of duty k is : ck �Pmi=1 �iaik (6.12)



CHAPTER 6. A COLUMN GENERATION MODEL 97whereck = cost of duty k�i = simplex multiplier for row iaik = coe�cient of duty k in constraint i.6.4.2 The HASTUS Crew-Opt MethodMethod of SolutionPapers have been published [59, 60, 83, 84] which describe a column generation approach todriver scheduling, the modelling of the subproblem, and the branching rule used to �nd theinteger solution.Crew-opt �rst generates an initial subset of known feasible duties, and the linear programmingrelaxation of the resulting set covering problem is solved, using the simplex algorithm to pricethe variables. Once optimality has been achieved within the duty subset a subproblem is solvedeither to ascertain that the solution is optimal for the complete problem, or else to introducemore duties into the subset so as to improve the solution further.The subproblem which is solved in Crew-Opt is a constrained shortest path problem, so thatfurther duties are generated at each stage of the column generation process by constructingduties as paths through a network. Resource constraints are de�ned on the network to ensurethat only valid duties will be considered. The feasibility de�nitions are :� The maximum duration of a spell of work.� Minimum and maximum lengths of a break.� The maximum number of pieces of work allowed in a duty.� The maximum spreadover of a duty.The �rst two of these duration constraints are included in the graph de�nition constraints, thusensuring that arcs can only be formed if they are respected. Paths through the network willthen represent duties which are built from feasible spells and breaks. The �nal two de�nitionsare path feasibility constraints which a�ect the �nal duty. The quantities accumulate along thepath to ensure that the �nal duty satis�es constraints on the time and work content included



CHAPTER 6. A COLUMN GENERATION MODEL 98in it. More complicated constraints can also be modelled to handle a broader range of labouragreements rules and conditions such as limits on, the duration of half day duties, the numberof workday types in a schedule, and overtime and spread bonuses. Crew-Opt has also beenmodi�ed to deal with an increased number of breaks. For some constraints the network isamended by adjusting the cost of the arcs in order to correctly identify the shortest path asthe duty with the most negative reduced cost.Figure 6.1 shows how a feasible two-part duty would be represented by �ve arcs from the sourcenode to the sink node, with each arc representing a speci�c task and the intermediate nodesrepresenting relief points.
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CHAPTER 6. A COLUMN GENERATION MODEL 99Assuming that the cost of the duty is calculated as :sign on cost + sign o� cost + (spreadover � hourly wage)then it is possible to calculate the reduced cost of a duty progressively. The reduced cost of aduty or part duty is the sum of the contributions to the reduced costs of its individual tasks,which include signing on and o�, covering particular pieces of work, and having breaks. Sincethe simplex multipliers are only associated with the pieces of work contained within a duty,the contribution to the reduced costs of signing on and o� and having breaks are merely theircontribution to the duty cost. Hence :� The contribution to the reduced cost of signing on and o� will be given in the labouragreement.� The contribution to the reduced cost of a break, if paid, will be (the duration of the break* hourly wage).� The contribution to the reduced cost of an individual piece of work is((the duration of the piece * hourly wage) - simplex multiplier associated with that pieceof work).These costs can be attached to any arcs on the network, and the shortest path through thenetwork corresponds to the duty with the smallest reduced cost. If this cost is positive then thecurrent solution is optimal, otherwise this duty should be added to the subset and the problemreoptimised. The shortest path problem is solved using a dynamic programming algorithm andthe solution of the subproblem is a constrained shortest path tree representing several duties,many of which have a negative reduced cost. Results con�rmed that adding all other dutieswith a negative cost produced by the dynamic programming algorithm accelerated the conver-gence of the column generation method.The column generation process must start with a feasible solution to the problem, and Crew-Opt does this by generating an initial set of short duties which cover all the pieces of work.This solution will be costly and may violate particular given constraints, but these constraints



CHAPTER 6. A COLUMN GENERATION MODEL 100can be introduced later by means of penalties on the network. The solution is then optimisedover the duty subset and the column generation method utilised repeatedly until the optimalLP relaxation has been found.The integer solution is found by means of a column generation method within a branch andbound scheme. The branching strategy adopted is based upon that developed by Ryan andFoster [34, 81], and used within the ZIP programs in TRACS II [81], which considers pairs ofpieces of work where one piece of work is executed immediately after the other. One branchconsiders the case where no duty can consecutively cover the two pieces of work and the otherbranch forces duties to cover both consecutively. At any node the column generation methodis solved using the dynamic programming algorithm, but the network is restricted to form onlythe subset of duties which is relevant to the current node.ResultsDesrochers et al. published papers in 1988 [59, 84] describing the results achieved with twodata sets. At this time TRACS II could solve problems with up to 600 pieces of work andproduce schedules with up to 80 duties.A) The �rst is an American city problem involving 25 buses and 167 pieces of work and thereis a rule forbidding the formation of three-part duties. The time taken to attain the optimal LPsolution was around 22 minutes, of which approximately half was spent generating 1712 newduties from 100 subproblems. The branch and bound phase then took a further 44 minutes, ofwhich 27 minutes involved solving 207 subproblems to produce a further 1214 new duties. Thebranching process was altered to consider �ve independent pairs of variables at each level andthe �nal schedule uses 45 duties.B) The second problem is British and introduces the concept of half days. This problem has20 buses and 235 pieces of work. The initial solution used was the �nal schedule produced byHASTUS on the same problem, and the time taken to �nd the optimal LP solution was 2.5hours, solving 418 subproblems to produce 12495 new duties. The time taken to �nd the �rstinteger solution was just under 3 hours and introduced 5778 more duties from 653 subproblems.The branching process considered ten pairs of tasks at each level. The �nal schedule uses 51duties and is an improvement over the HASTUS solution due to its more e�cient matching ofhalf days and inclusion of more three-part duties.



CHAPTER 6. A COLUMN GENERATION MODEL 101Rousseau [61] describes the results obtained with Crew-Opt on four problems:C) Crew-Opt was tested on two small French data sets which are operated on a line-by-linebasis. It was not expected to improve upon the current solution and Crew-Opt produced thesame number of duties satisfying all the constraints, with each line taking between 15 minutesand 3 hours of execution time on a 386 PC.D) A Barcelona problem also builds schedules line-by-line and Crew-Opt reduces the numberof drivers and the cost over a solution produced by HASTUS. On the given subset of lines thepercentage of straight duties was reduced slightly so that the upper limit constraint was notsatis�ed, but this was not a problem since the percentage was su�ciently high on the remaininglines.E) A number of lines of a Vienna problem were tested using Crew-Opt and a duty saving wasobserved. Some more complicated constraints on this problem meant that a large number ofthree and possibly four-part duties had to be formed.F)The East Japan Railway problem requires one-day duties and also overnight duties to operateon over 700 suburban and inter-city trains. Break and mealbreak constraints mean that someduties are composed of up to six spells of work. HASTUS has been tested on the problem butproduced some short duties which were unacceptable. In solving the problems using Crew-Optan heuristic was used to obtain an integer solution from the LP solution. At any node thebranching strategy �xed a variable to the value 1 before reoptimising with column generation.Two problems were considered. The �rst consisted of 77 duties with a manual solution whichwas improved to 65 duties using Crew-Opt. The second problem manually required 162 dutieswhich had to be decomposed into three subsets by Crew-Opt. Once each subset was optimisedthe less e�cient duties were reoptimised globally. The resulting schedule required 156 dutiesin total. The time taken to achieve these results was around 24 hours on a Sun Sparc10/31although it is noted that an older version of Crew-Opt was used.AnalysisDesrochers and Soumis [84] suggest a way of speeding up the optimisation process by incorpo-rating a mixed enumeration/column generation approach which enumerates a number of good



CHAPTER 6. A COLUMN GENERATION MODEL 102duties used to initialise the algorithm.Desrochers et al. [60] claim that Crew-Opt has two main advantages over existing methodsof computerised solution. Firstly heuristics are not used to reduce the duty set, and secondlythe LP solution produces a very good lower bound on the solution cost so that the branch andbound algorithm can be terminated at a good solution if the expected improvement does notjustify the additional computation cost. The integer solution may therefore not be optimal.The method has been used successfully on smaller problems with the claim that smaller prob-lems have fewer good alternative feasible schedules and heuristic algorithms tend to stop atworse solutions. It is expected that, with computer development, Crew-Opt will also be ableto solve larger problems.6.4.3 Proposed Column Generation Implementation within ZIPAs mentioned at the beginning of this section, in order to implement a column generationmethod into the TRACS II system there must be a strategy for choosing the initial duty set, astrategy for generating further duties and a strategy for producing an integer solution.Duty GenerationIncorporating column generation techniques into the solution strategy of the set covering modelpotentially allows all valid duties to be considered. However, to guarantee the overall continuousoptimum one of the following two methods would have to be used:1) All valid duties would have to be formed initially and their reducedcosts calculated during the column generation process to ensureoptimality.2) A subproblem must be available to generate any remaining duties withnegative reduced costs once optimality has been found over a dutysubset.Crew-Opt uses the second method, with a subproblem de�ning a constrained shortest pathtechnique to generate further duties as paths through a network. In the current TRACS IIsystem the duty costing not only depends upon the duration of the duty, but may also include



CHAPTER 6. A COLUMN GENERATION MODEL 103a subjective weighting to deter some duties from being included in a schedule. This is ap-proximate because many organisations seek to minimise unpopular or administratively di�cultduties. The penalty costs are currently de�ned in a subroutine speci�c to each organisationand typical requirements include:� penalties added to three-part duties� penalties added to duties whose stretch lengths di�er greatly� penalties added to early duties which start after the earliest time for split duties.Although these penalties can be added accumulatively as a duty is being constructed, they arenot added as resource constraints and cannot be built into the network. If the shortest paththrough the network corresponds to a duty with undesirable features its reduced cost may notbe the most negative once the penalty cost has been added to the duty cost.Also, although Crew-Opt hopes to be able to handle larger problems, published work claimsthat it is restricted. Indeed, larger problems will require large networks and for each set oflabour agreement rules there will be a certain amount of time required to convert them intonetwork constraints. In order to speed up the process of column generation it is usual formethods to add more than one column at each iteration, and for larger problems it will becomecomplex and time consuming to traverse a network to generate such duties. Decomposing alarger problem will compromise optimality.For the reasons given above, and for further reasons explained in the next section, the techniquewhich will be explored is that of removing the heuristics which reduced the size of the generatedduty set in TRACS II, hence allowing more duties to be considered by the set covering model.A network formulation will not be used, and so duties from this larger set will be selected toenter a working subset by means of a less sophisticated enumeration method. An improvementin continuous LP optimum may be achieved over one using a smaller duty set and so for eachbus company both a larger duty set and an heuristically reduced duty set will be produced.The current version of TRACS II limits the number of duties which it can accept to 22,000; inorder to compare results with a column generation technique on larger duty sets this value has



CHAPTER 6. A COLUMN GENERATION MODEL 104been increased to 100,000. Assuming that the current system produces an LP solution thenthe column generation method on the same data set will not improve the cost as both will beoptimal. However, the column generation method may prove to be faster and the larger dataset may produce a lower LP cost than the smaller data set.Integer SolutionIf the overall continuous optimum solution has been found then in order to guarantee an opti-mal integer solution it would be inadequate to terminate the branch and bound phase as soonas a good solution had been found. Crew-Opt uses a column generation technique within abranch and bound structure in order to ensure that the integer solution is not limited to theduties formed in �nding the optimal LP solution. Continuing through the tree in this waywould guarantee an overall optimal integer schedule, although in practice Crew-Opt pauses atthe �rst integer solution and uses the continuous optimum to analyse whether the expectedimprovement in integer solution cost justi�es the extra computational cost of further searching.At each node the column generation method used in the branch and bound phase limits theduties which are formed to those relevant. Results given for Crew-Opt showed that a largenumber of new columns are added overall in the branch and bound phase even though only onepath through the tree will provide the integer schedule.In TRACS II, since the duty costs include subjective weightings, many integer solutions may beequally or possibly more preferable to the optimal schedule with respect to duty content, andso spending time searching for the optimal schedule may be wasted. Whilst the solution timeof computerised systems is acceptable compared to previous manual methods, bus companieswould tend to give execution time reduction a higher priority than improving a good integersolution. Faster solutions would allow a user more opportunity to analyse the e�ect of relaxingcertain conditions or altering parameters.Since the issue of optimality over all possible duties at the LP stage cannot be guaranteed usingthe proposed method, in order to achieve preliminary results the branch and bound phase willnot be altered.



CHAPTER 6. A COLUMN GENERATION MODEL 105Initial duty setCrew-Opt uses an initial set consisting of short duties in order to provide a feasible solutionquickly. As discussed above, it is intended in the current research that a large set of potentialduties be generated initially and a subset of these be used in such a way as to provide an initialsubset of good duties, and hence a good feasible initial solution.Solution MethodThere are many possible ways of implementing a column generation strategy, but the methodof solution which will be adopted is outlined as follows:� Step 0 Generate a duty superset.� Step 1 Create an initial solution and form an initial duty subset.� Step 2 Solve the LP over the current set.� Step 3 Add a new set of duties which will improve the solution.� Step 4 If no duties are added then the LP solution is optimal, otherwise go to Step 2.� Step 5 Find an integer solution using branch and bound.The following chapter will discuss the implementation of this column generation strategy withinthe ZIP programs in TRACS II, leading to a comparison of results on a number of sampleproblems between an improved version of TRACS II and a column generation method.



Chapter 7Implementation of ColumnGeneration Within ZIP7.1 IntroductionThis chapter describes and analyses various strategies which have been tested in order to in-corporate a column generation technique within the mathematical programming component ofTRACS II. The aims of the column generation system are to derive better driver schedules,by allowing more duties to be available for any data set, and to produce results more quicklythan TRACS II on the same problem. Results are given for seven problem instances, all ofwhich have two sizes of duty set in order to determine whether any improvement occurred ina schedule which was built from a larger duty set. The smaller duty set is that which wouldtypically be run through TRACS II. The larger set has been formed by omitting the processeswhich heuristically reduce the size of the generated duty set, and it contains all of the dutieswhich are in the smaller duty set.The �rst part of this chapter describes how the mathematical programming component ofTRACS II has been altered in order to provide a realistic comparison with a column gener-ation system. Throughout the development of each column generation strategy, its strengthsand weaknesses were analysed through tests made on one of the small data sets. This will bedescribed in the second part of this chapter. The results of a column generation system arisingfrom apparently successful strategies are then given for all available data sets.106



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 1077.2 A Standard Model/Sherali TRACS IIIn order to analyse the timings and results produced by a column generation model it is neces-sary to de�ne a comparative model which will be known as the `Sherali TRACS II' model. Inorder for the comparison to be realistic this model should implement identical routines when-ever possible and appropriate. The following sections describe alterations in the ZIP routines,as described in Chapter 5, which have been made to derive a standard model.Sherali Objective FunctionIn order to implement a column generation strategy within the ZIP process it is necessaryto solve the relaxed mathematical model many times; this would be very time consuming ifboth pre-emptive objectives inherent in the TRACS II system needed to be optimised. Also,Willers [14] reported that by using a Sherali weighted objective function a signi�cant reductionin execution times was observed over those produced by the multi-objective system. For thesereasons the Sherali weighted objective function as described in section 5.3 is used as a basisfor both the standard model and the column generation model.No exclusion of dutiesThe Sherali strategy proposed in section 5.3.1 de�nes the �rst stage to be the exclusion ofthree part duties and duties with a rank greater than four, and the model is solved over theremaining duties. These duties are restored in the second stage and the model reoptimised.Since the purpose of a column generation strategy is to build up duties onto a relatively smallsubset, the elimination stage may prove trivial if used initially. Alternatively the eliminationstage could be carried out on the complete duty set before a subset is chosen, but since manymore duties are available to the model the process will take more time, and the larger resultingduty set will take longer to optimise. The elimination stage was omitted by Willers [14] inexperimentation to the set covering system and so is removed from the standard model and notintroduced in the column generation model.Addition of Penalty CostsCurrently the version of TRACS II without the Sherali weighted objective function solves twoobjective functions, as described in section 5.2. The second objective function requires penaltycosts to be added to all duties, and this is done by repeatedly calling a routine which calculatesthe penalty cost for a particular duty. In a Sherali version of ZIP the penalty costs are already



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 108included in the objective costs and so only need to be calculated at the beginning of the process.Since the column generation technique proposed generates all duties �rst, the penalty costs canbe calculated initially rather than each time a new duty is added to the duty subset. The data�le therefore includes a separate column which is the duty cost incorporating any penalty costs.This also has the advantage that both the standard method and the column generation methodneed no interaction with problem speci�c code once the bus and duty information has beenread in.Storage of Duty InformationIt is necessary to access duty information for many reasons at the start of the ZIP process.Currently three separate subroutines read the bus and duty information, analyse the duties todecide which constraints should be equalities, and construct the initial solution by searchingthrough the whole duty set for every piece of work which needs to be covered. Since a columngeneration system will consider many more duties it is important to make the storage andaccess of duties as e�cient as possible. In order to improve the earlier processes, as the dutiesare now read in and stored they are analysed to determine which constraints will be equalityconstraints. The three data accessing subroutines are replaced with two and this speeds up themethod by around 6%.7.2.1 Sherali TRACS II Method� Step 1 Read in the ZIP parameter �le which includes information as to how the processshould be run and any user-de�ned side constraints.� Step 2 Read in and store the bus information �le, which includes details of the numberof generated duties which start or end at each relief opportunity. In this way redundantconstraints can be eliminated. These correspond to pieces of work which are never usedto change drivers.� Step 3 Read in and store the duties whilst setting up the equality constraints by lookingfor buses whose �rst pieces are only covered by duties of which they are the �rst piece,and buses whose last pieces are only covered by duties of which they are the last piece.� Step 4 Create an initial schedule by looking through the pieces of work in increasingorder of the number of duties covering them. For a piece of work that is not yet covered,all duties which do cover it are considered. The duty which does not violate a constraintand minimises the nominal cost function (5.15) is chosen to be included in the initial



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 109solution. It is possible that such a duty cannot be found and so uncovered work is allowedin the initial solution. Uncovered work is then banned before optimisation over the dutyset so that further solutions will not contain pieces of work which are uncovered.� Step 5 Initialise x to be the number of duties in the initial solution. For every pieceof work which remains uncovered in the initial solution, increase the value of x by one.Calculate the Sherali weight by summing the costs of the x most expensive duties, andadd this weight to the cost of all duties.� Step 6 Solve the LP relaxation of the Sherali model over the whole duty set.� Step 7 If the LP solution is integral then the process stops, otherwise reduce the duty setto contain only those which use relief points appearing in the continuous solution, usingthe REDUCE process described in section 5.4.3.� Step 8 If the optimal duty total is currently fractional, add a side constraint which roundsup the duty total to provide a target number of duties in the integer solution.� Step 9 Find an integer solution by branch and bound using the strategies described insection 5.4.3.7.2.2 Experimental Data SetsThere are seven data sets available to be tested throughout the period of the research, and eachhas two sizes of problem. The smaller duty set is the one which has been heuristically reducedso that it can be run through the original TRACS II system, and the larger duty set is notreduced and contains the smaller set so as to ensure that any improvement in the solution isnot just caused by a di�erent set of duties being available.The duty sets arise from real life problems and have been acquired because they cause par-ticular di�culties in obtaining solutions. Although a selection of these problems have beentested throughout the development of a column generation technique, the results of only oneare reported as indicative of the behaviour of them all.Results of GMB(S) Data using the Sherali TRACS II ModelThe GMB(S) data set is the smallest available problem and can be solved easily using theoriginal TRACS II system. Since results can be obtained more quickly it is best used during the



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 110development of the column generation method to ensure that results produced are comparableboth in terms of solution quality and execution time. For the purpose of such a comparisonthe results of using a Sherali TRACS II system on the GMB(S) data set is presented here.No. duties 4199No. of pieces of work 127No. of equality constraints 24No side constraintsINITIAL SOLUTION 40 dutiesSherali Weight 94989Initial Duty Cost (with penalties) 26991LP SOLUTION 33.50 duties (3 overcovered pieces)Iterations 377Time Taken 38.9sNo. of duties after reduction 721INTEGER SOLUTION 34 duties (4 overcovered pieces)Nodes Created 2Integer Duty Cost (with penalties) 27488Total Time Taken 52.9s7.3 Column Generation Solution Procedure7.3.1 Implementation ConsiderationsIt is necessary to alter certain aspects of the version of ZIP used within the TRACS II systembefore the column generation principles can be applied.



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 111Linked List Data StructureAfter each iteration of the column generation method more duties which will improve the ob-jective cost are added to a duty subset. Since it would be very time consuming to calculate thereduced costs of all the remaining duties in the complete set, only duties covering a particularpieces of work are considered at any one time. For this reason it is preferable to store dutyidenti�ers in linked lists according to the pieces of work that they cover. A similar methodhas already been coded in the C programming language as part of the program to exhaustivelysearch for an optimal schedule (see section 3.3), and has been incorporated into the columngeneration system. Duty information held within the duty �le is also read into memory as inSherali TRACS II so that information regarding a new duty entering the subset can easily beaccessed. The linked list structure would also be bene�cial to the current method of �nding aninitial solution as it avoids the need for searching through all duties when choosing a duty tocover a particular piece of work; it is not implemented in the Sherali TRACS II system as itslack of other bene�ts makes it time- and memory-consuming.Matrix InversionThe matrix manipulation routines [34] which perform the necessary calculations for the RevisedSimplex Method include one to invert the basis matrix. Three of the uses of this include theinitial matrix formation, an inversion whenever required according to an inverting frequency,and when the relaxed model has been optimised. Since the column generation system will op-timise the relaxed model on more than one occasion, the initial inversion and setting up is notnecessary for subsequent duty set increases, and calls to these subroutines are removed. Simi-lar alterations have also been made relating to unnecessary intermediate calculations. At thispoint it is worth mentioning that the ZIP routines used to solve the Revised Simplex Methodmay not be the most appropriate in a column generation model and more recent advancedimplementations of simplex methods, as reported by Nemhauser [85], are now available. Thecurrent routines have been retained because, both the Sherali TRACS II method and a col-umn generation method would need to undergo major alterations in order to incorporate anychanges or upgrades in optimisation software.



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 1127.3.2 Implementation Strategies and ResultsAs described earlier, there are three considerations when implementing a column generationmodel to solve mathematical programming problems; these are the formation of the initial setof variables from which to derive an initial solution, the method of generating new variables,and the strategy used to produce an integer solution. The branch and bound strategy remainsunchanged throughout the implementation that is described in this chapter and so the issueof the integer solution is not addressed here. Since the other two methods interact in order tooptimise the relaxed model, and di�erent approaches have been tested at various times, it isinappropriate to describe the implementations in chronological order. Instead, the developmentof the initial solutions are described �rst, and then analysis of di�erent duty addition techniquesis reported with an indication of which initial solution method is adopted.All analysis focuses on the results of execution on the GMB(S) data set which are indicativeof the behaviour of the method on other data sets. A Sherali TRACS II comparison can befound for GMB(S) in section 7.2.2. Earlier experiments were performed on a SUN sparc 1 andthen further testing was carred out on a Silicon graphics (Iris Indigo Workstation with 33MHzR3000 MIPS Processor) which also provided the results for the Sherali TRACS II model. Grad-ual time savings were also made throughout the successive experiments by incorporating theimprovements described earlier in this section, and for these reasons the timings provided aremerely representative during this section.Initial Solution and Initial Duty SetStrategy IS1The simplest method of selecting an initial subset of duties is to use a parameter which de�nesa subset size p such that only the �rst p duties contained within the duty superset are con-sidered. The initial solution can then be constrained to be found within these duties. In thiscase it is necessary to calculate a value or expression for p which will enable an initial solutionto be constructed from it. The data set would have to be ordered in some way so that thesubset contains a satisfactory spread of duties from which a feasible solution can be found. Theexperimentation took place by �rst ordering the duties by their rank (expression (5.3)) withthe assumption that an initial solution containing only duties with ranks of less than a certainvalue would be more e�cient. The parameter p could then be set to be the number of duties



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 113with a rank of less than some speci�ed value.It is possible that a basic feasible solution cannot be found from a subset of the complete setof duties. Certainly the number of feasible solutions will be fewer than from the duty superset.For this reason the method of selecting the initial solution was altered so that, rather than �nd-ing the most e�cient duty to cover any piece of work, the �rst duty from the duty list whichcovers it is chosen. In forming the initial solution the pieces of work are chosen in increasingorder of the number of duties which cover them, as in the Sherali TRACS II system.There is a potential drawback in selecting a duty subset based upon including only those dutieswhich have a rank of less than a certain value, in that the duty subsets will have varied sizesdepending on the problem and it may be di�cult to form an initial solution from a smallerinitial duty subset. Implementing the strategy that a subset of the GMB(S) data can only in-clude duties with a rank of less than 11 produces a subset containing 40% of the total duty set,whereas applying the same criterion to a di�erent data set produces an initial subset containingonly 4% of the total duty set.Observation of schedules indicates that duties with higher ranks are often used in order toachieve optimality, and so this method of selecting a subset may be very ine�cient.Strategy IS2Since all duties have already been generated it is possible to use information about them at theoutset. For instance,� The Sherali TRACS II model uses information about the complete duty set in order toeliminate relief points which never appear as a start or end point in any duty. If moreduties were to be generated at a later stage it would no longer be possible to use thisinformation and all relief points would have to remain as possible changeover points.� Coverage information from the complete duty set is useful. The current method usesthe information regarding the number of duties covering each piece of work in �nding aninitial solution and is also of use to the column generation process which only adds duties



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 114which cover particular pieces of work.� Equality constraints are based upon information from the complete duty set so that anal-ysis based only upon a duty subset may be inappropriate once new duties are added tothe subset.� The Sherali weight is based upon summing the duty costs of most expensive duties. Byincluding very expensive duties after the weight has been calculated the worst case iswhere the weight no longer represents an upper bound on the objective cost, and it wouldtherefore have to be recalculated after each increase in duty set size.Combining the duty storage and equality constraint routines has reduced the time that it takesto set up the ZIP system in order to use all the information from a generated duty set. As eachduty is read in it also has to be stored into a linked list structure. This method avoids the needto constantly access an external �le but may be restricted in the size of duty set that it can store.Strategy IS2 �nds an initial solution from the complete duty set. The process for �nding aninitial solution still terminates once the �rst available duty has been found to cover a piece ofwork, rather than searching the complete duty set for the best duty. Since data sets used in acolumn generation method will be much larger than those currently used, it is quicker to usethis method of �nding an initial solution. However, this may be compromised by the fact thatthe initial solution will probably be worse than that used in the Sherali TRACS II system andtherefore may require more column generation iterations or more duties to be added to reachoptimality.The initial duty subset then comprises only those duties which appear in the initial solution.This is a very small initial set, but it is more likely that a good feasible solution will be foundwithin the complete set as opposed to within a ranked subset, and so fewer column generationiterations may be required to optimise the relaxed model.Strategy IS3Since the duties are stored in linked lists according to the pieces of work that they cover, it



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 115is feasible to search through all of them to �nd the best duty to cover a piece of work whenforming the initial solution. For this reason, the selection of the initial solution uses the samemethod as is used in the Sherali TRACS II model. This ensures that comparisons of the col-umn generation method and the current TRACS II will be made simpler, both having the sameinitial solution and Sherali cost addition.The initial duty set still comprises of only those duties which are found in the initial solution.Strategy IS4An initial duty set containing only the duties in the initial solution will probably require manyiterations and duty additions to reach an optimal continuous solution. Also, if the size of theduty set is too small at the branch and bound stage, it is possible that an integer solutioncannot be found because a crucial duty or duties may have been omitted which would be vitalin forming a valid schedule which covers all pieces of work. By de�ning a coverage value r,such that in the initial duty set there must be at least r duties covering each piece of work,the initial duty set and initial solution can be built up simultaneously. As duties are beingconsidered to �nd the most e�cient one to cover a piece of work, they are added to the initialsubset unless there are more than r duties already covering that piece of work. All duties whichappear in the initial solution are also added to the initial set regardless of the coverage values.It is possible that some pieces of work will be covered by fewer than r duties, either becausethere are fewer than r available to cover them or because they never get considered in formingthe initial solution. In the latter case, however, the piece of work which gets covered by a dutyin the initial solution may also get covered by r duties covering adjoining pieces of work.For the purpose of the results a coverage value of 10 has been implemented, although furtherexperimentation on this value will be reported in section 8.3.Adding further dutiesOnce the optimal solution has been found over a subset of duties, all pieces of work have asimplex multiplier �i attached to them. Since the greatest rate of improvement in currentobjective value will correspond to introducing the duty with the most negative reduced costinto the basis, from (6.13) it will be necessary to �nd



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 116MIN (ck �Pmi=1 �iaik): (7.1)whereck = cost of duty k�i = simplex multiplier for row iaik = coe�cient of duty k in constraint i.The solution to (7.1) will occur for a duty with a low cost which covers a relatively high numberof pieces of work with high simplex multipliers. Assuming the duty cost depends only on thework contained in it, the lower costs will relate to those duties which cover less work, but thisis balanced out by the fact that there will be fewer simplex multiplier values to subtract fromit. Therefore, since the minimum reduced cost calculation depends upon a combination of fac-tors, the duty with the overall minimum reduced cost cannot be found without evaluating thereduced costs of all remaining duties, and so an heuristic is needed to limit the search space ateach iteration. Since the simplex multipliers can vary quite signi�cantly, especially compared tothe duty costs which all have the added Sherali weight, they can be used as a simple heuristicfor choosing which reduced costs to evaluate. It seems sensible that duties which cover thepiece of work with the highest simplex multiplier will have relatively low reduced costs as alarge value is being subtracted from the duty cost. The column generation method arranges thesimplex multipliers in decreasing order after each continuous solution has been found. Duringeach column generation iteration only duties which cover the piece of work with the highestsimplex multiplier are considered. Within this set or part of this set any duties whose reducedcosts price out negatively are added to the current duty subset.Strategy CG1The �rst implementation of column generation considers ONLY one simplex multiplier for eachduty set increase. If there are no duties which price out negatively covering the piece of workcorresponding to the highest simplex multiplier then the simplex multipliers are considered inorder until there are some duties which can be added to the set. Once all the duties whichprice out negatively for a particular piece of work are added, the problem is re-solved over the



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 117larger subset. Method IS1 and CG1Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP1687 duties 44 duties 21 1994 duties 1933 secondsTable 7.1: GMB(S): ranked subset and one simplex multiplier consideredFrom Table 7.1, combining this strategy with an initial subset containing only duties with alow value rank produces a �nal duty set which contains 47% of the available duty set. Thisis quite a large proportion but takes into account the large initial subset size. This method ofchoosing the initial solution provides a wide variety of initial subset sizes depending upon theproblem considered and is considered too simplistic.Method IS2 and CG1Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP49 duties 49 duties 58 1037 duties 2887 secondsTable 7.2: GMB(S): subset of initial solution and one simplex multiplier consideredTable 7.2 shows the results of implementing the method of choosing an initial solution fromthe duty superset, but without choosing the best duty to cover a particular piece of work. Thishas produced a poor initial solution. From this, allowing only the initial solution to form theinitial subset has provided a smaller �nal duty set, but at the expense of a larger number ofduty additions.Strategy CG2Choosing only one simplex multiplier on which to base a duty addition process will be verytime-consuming, especially considering that the later iterations will only be adding one or twoduties at a time, repeating much of the search that has gone before. Experimentation has takenplace with an increase in the number of duties added at each column generation iteration. Aminimum value is de�ned so that at each column generation iteration the simplex multipliersare considered in decreasing order and duties added until at least a speci�ed number of du-ties are added to the subset or there are no pieces of work left to consider. As in the �rststrategy all remaining duties are priced out for each simplex multiplier. For experimentation



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 118the method implemented uses a minimumaddition of 15 duties per column generation iteration.Method IS2 and CG2Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP49 duties 49 duties 24 1179 duties 1929 secondsTable 7.3: GMB(S): subset of initial solution and minimum duties addedFrom Table 7.3, compared to the previous duty addition strategy more duties are added tothe duty subset overall, but this re
ects the fact that more duties are added per column gen-eration iteration. Fewer duty additions are also required. The initial solution is considered poor.Method IS3 and CG2Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP40 duties 40 duties 31 1369 duties 838 secondsTable 7.4: GMB(S): subset of better initial solution and minimum duties addedTable 7.4 shows how a better initial solution can be found using the Sherali TRACS II method,by choosing the best duty to cover a piece of work rather than the �rst. The time taken toascertain an initial solution will increase but an improvement in objective value has reducedthe time required to optimise the initial subset. The execution time has reduced dramaticallywith no other improvements implemented and so the increase in the number of duty additionsand the size of the �nal duty set is not signi�cant.Strategy CG3The Sherali TRACS II model uses a steepest edge algorithm [80] to determine the reduced costwhich will actually enter the basis. It is reported by Smith [15] that, since there are manythousands of non-basic variables to consider, the steepest edge method takes much longer tocalculate per iteration than using pure reduced costs, but the number of iterations is decreasedsigni�cantly which reduces the overall execution times. With a column generation approachthe weights have to be calculated for every new duty added to the subset. A column generationapproach optimises the relaxed model on more than one occasion, and the choice of duties tobe added to the duty set is based upon pure reduced costs rather than weighted reduced costsso that a steepest edge algorithm may no longer be as appropriate. Table 7.5 gives the result



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 119of using pure reduced costs to determine the duties which enter the basis.Method IS3 and CG3Initial Subset Initial Solution No. Subset Addition Final Subset Time to LP40 duties 40 duties 32 1479 duties 3562 secondsTable 7.5: GMB(S): subset of better initial solution and pure reduced costs calculatedIt is possible that a di�erent optimal continuous solution will be determined by using di�er-ent algorithms to select the basis entrant variable, either by virtue of the fact that there aremultiple optimal solutions or simply due to inaccuracies in �nite precision arithmetic. For thisreason the simplex multipliers may di�er at the column generation stage which is why one extracolumn generation iteration is required and a larger duty subset is ultimately produced. Thetime taken to produce an optimal continuous solution has increased signi�cantly because thecolumn generation process chooses di�erent duties for each subset increase, and so the steepestedge algorithm will remain in a column generation system. However, in order to reduce someof the execution time by avoiding the need to include weights in the calculations of the reducedcosts of potential entrant duties, the duty with the most negative pure reduced cost per columngeneration iteration is chosen to be the �rst entrant variable.Strategy CG4There is a large amount of repeated calculation of duty reduced costs of potential entrantvariables from the duty superset, some of which may never enter the subset. This strategy im-plements a very simple heuristic which detects duties from the duty superset which will neverimprove the objective cost and does not allow them to be considered. Banning duties whichmay improve the objective compromises optimality and so the heuristic provides a very weakupper bound on a duty's reduced cost. The following heuristic assumes that, at most, thehighest simplex multiplier available is attached to all the pieces of work that a duty covers, andif this value is less than the cost of the duty then it cannot improve the objective cost duringthis column generation iteration. Results are given in Table 7.6.If ((No. pieces duty covers * highest simplex multiplier)� Duty Cost) then ban duty.(7.2)



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 120Method IS3 and CG4Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP40 duties 40 duties 30 1265 duties 1721 secondsTable 7.6: GMB(S): subset of better initial solution and eliminating certain dutiesThis strategy has also been tested on a selection of other data sets and it is apparent that theextra computational time spent in calculating the upper bound on the reduced cost outweighsthe time saved in searching through fewer duties. This bound could be tightened by, for exam-ple, summing the x highest simplex multipliers, where x is the number of pieces of work a dutycovers, but this requires further computational e�ort to eliminate a relatively small number ofextra duties when the duties are not banned until the later stages of the process.Strategy CG5For some simplex multipliers there are a large number of duties added to the subset whichhave negative reduced costs. The disadvantage in this is that the majority of the new dutiesadded will never be used to improve the objective value and also that the lower limit on thenumber of additions means that fewer pieces of work will be considered for one column gener-ation iteration. This potentially requires more iterations to consider other simplex multipliersand also reduces the amount of variety in duties added to the set each time. This strategylimits the number of duties added per simplex multiplier and speci�es a minimum value bywhich the duty set should increase (where possible) so that more than one simplex multiplierwill be considered during any one column generation iteration. The possible drawback withthis method is that by limiting the search for duties with a negative reduced cost per simplexmultiplier, many more iterations may be required if a duty at the end of the list is to be usedin the optimal solution. Method IS3 and CG5Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP40 duties 40 duties 22 746 duties 1338 secondsTable 7.7: GMB(S): subset of better initial solution and addition of more varied dutiesThe addition of duties per simplex multiplier in Table 7.7 is restricted to 10, and the minimumtotal duty addition is 30. There are still a relatively large number of subset size increases but



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 121the initial duty subset is limited to those contained in the initial solution. This also resultsin a relatively small duty subset entering the branch and bound stage as fewer duties are nowbeing added for every column generation iteration. There may be problems in constructing aninteger schedule from a smaller available duty set.Method IS4 and CG5Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP617 duties 40 duties 8 883 duties 1077 secondsTable 7.8: GMB(S): minimum coverage in initial subset and addition of more varied dutiesA limiting parameter is introduced in Table 7.8 which ensures that the initial duty subset con-tains a minimum number of duties covering each piece of work (where possible). Incorporatinga limiting parameter of 10 increased the initial subset size to contain 15% of the total dutyset and hence increased the �nal duty subset to contain 21%. The number of duty additionsrequired has reduced signi�cantly.Experimentation then took place with a minimum value of duties per iteration of 50 duties andthe results are given in Table 7.9:Method IS4 and CG5Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP617 duties 40 duties 9 885 duties 1084 secondsTable 7.9: GMB(S): minimum coverage in initial subset and addition of more varied dutiesIncreasing the duty additions per column generation iteration has not altered the results sig-ni�cantly, only increasing the column generation addition by 1 to add two extra duties overall.The execution time has increased slightly.Strategy CG6Strategy CG5 does not take into account the size of the problem being considered and so aconstant duty addition limit is inappropriate. A simple calculation of a proportional limit isintroduced which does not take into account the actual number of duties remaining which coverpieces of work, but it ensures that in the earlier stages more duties can be added to the subsetto reduce the duty total quickly and in the later stages fewer duties need to be introduced to



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 122optimise the objective cost. In order to automate the process of having a minimum number ofduties per iteration M and a minimum number of duties per simplex multiplier I, parametersare de�ned respectively as follows :M = MAX f50; X% total duties remainingg (7.3)I = MAX f5; Y% (total duties remaining/No. pieces of work). g (7.4)It is also noted that the simplex multipliers are considered in decreasing order, based upon theassumption that those with larger values are more likely to produce further duties with neg-ative reduced costs. This suggests that since it is time consuming to consider all the simplexmultipliers for each column generation iteration, a limit should be placed on the number ofsimplex multipliers which add further duties to the subset. This is de�ned as :P% (total number of pieces of work where additions are made). (7.5)Experimentation was carried out with values of 20 for X, Y, and P.Method IS4 and CG6Initial Subset Initial Solution No. Subset Additions Final Subset Time to LP617 duties 40 duties 6 920 31.4 secondsTable 7.10: GMB(S): minimum coverage in initial subset and parameters governing additionsThis implementation is reported in Table 7.10 and has drastically reduced the execution time.The number of column generation iterations has also decreased whilst still retaining 22% of thetotal duty set to enter the branch and bound stage. The limit on the pieces of work consideredis tighter than the total duty addition limit. Experimentation with the limiting parameters willbe described in section 8.3.



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 1237.4 Results and TimingsThe column generation method using strategy IS4 and CG6 successfully �nds the optimal con-tinuous schedule for GMB(S) 19% faster than that of the Sherali TRACS II system given insection 7.2.2. At this point the method was tested on all the available data sets to compare thetimings and ensure that the continuous solutions produced by both methods were equal. TheSTK(L) data set was run on a Sun Sparc 1 due to quota requirements, but all other data setswere run on a Silicon Graphics (Iris Indigo Workstation with 33MHz R3000 MIPS Processor)and all ran on the local hard drive at over 95% e�ciency. All timings are reported in seconds.7.4.1 Continuous Solution TimingsTable 7.11 gives an indication of the size of each data set tested and a comparison of the run-ning times of the relaxed model on both the Sherali TRACS II system and the implementedcolumn generation system. It is noted that the continuous solution is identical for both methods.Data Duties Constraints Sherali TRACS II Column Generation ImprovementAUC(S) 10529 413 770.2s 961.7s -24%AUC(L) 43798 480 5695.0s 1615.5s 72%CTJ(S) 10775 429 597.7s 378.4s 37%CTJ(L) 18307 439 1095.2s 536.4s 51%CTR(S) 10690 443 809.7s 883.3s -9%CTR(L) 13792 451 1010.5s 1131.5s -12%GMB(S) 4199 127 38.9s 31.4s 19%GMB(L) 6956 138 76.4s 49.4s 35%RI2(S) 5176 167 53.5s 39.9s 25%RI2(L) 7997 180 103.5s 58.8s 43%STK(S) 10678 250 310.0s 232.9s 25%STK(L) 90234 418 15039.7s 1242.3s 92%SYD(S) 8866 302 326.2s 225.1s 31%SYD(L) 43150 396 5019.9s 914.5s 82%Table 7.11: Comparison of Timings to Continuous SolutionThe timings were improved by using the column generation system in 11 out of the 14 data



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 124sets. The greatest time improvements were for the largest data sets (AUC(L),STK(L),SYD(L))which would not normally be run through the original TRACS II with its limit of 22,000 duties.7.4.2 Overall TimingsTable 7.12 displays the timings of the branch and bound process and the overall process timeon all data sets. With the column generation system there are fewer duties available at thebranch and bound stage and further reduction of the data set using REDUCE (as describedin section 5.4.3) may make it more di�cult to �nd an integer solution. All data sets havebeen run through Sherali TRACS II and the column generation system to �nd integer solutionsthrough the branch and bound phase. Results are shown for the column generation systemboth with and without using the REDUCE process.Data Branch and Bound time Total TimeSherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCEAUC(S) 1361.7s 1212.3s 1942.4s 2131.9s 2174.0s 2904.1sAUC(L)* 48311.3s 14460.0s 136414.7s 54006.3s 16075.5s 138030.2sCTJ(S) 383.9s 204.3s 567.5s 981.6s 582.7s 945.9sCTJ(L) 1672.3s 1118.9s 1356.5s 2767.5s 1655.3s 1892.9sCTR(S)* 81665.0s 51411.8s ERROR 82474.7s 52295.1s ERRORCTR(L)* ERROR ERROR 97543.6s ERROR ERROR 98675.1sGMB(S) 14.0s 6.9s 14.7s 52.9s 38.3s 46.1sGMB(L) 49.4s 10.2s 33.4s 125.8s 59.6s 82.8sRI2(S) 79.8s 24.7s 25.9s 133.3s 64.6s 65.8sRI2(L) 67.2s 9.2s 8.0s 170.7s 68.0s 66.8sSTK(S) 634.8s 96.7s 752.0s 944.8s 329.6s 984.9sSTK(L)* 14813.7s 573.7s 52177.4s 29853.4s 1816.0s 53419.7sSYD(S) 21.6s 104.5s 108.3s 347.8s 329.6s 333.4sSYD(L) 654.3s 159.3s 837.70s 5674.2s 1073.8s 1752.2sTable 7.12: Comparison of Branch and Bound Timings and Total Timings* represents data sets where no integer solution is foundERROR occurs in branch and bound



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 125It should be noted that since the branch and bound method stops when a good solution is foundand all three systems take a di�erent path through the search tree, it is di�cult to compare thequality and timings of results produced by the branch and bound phase. However, it is neces-sary to ensure that the duty total in the integer solution is the same in all three methods andpossibly even better than that produced by the smaller duty set. Also, since the execution timesare improved in the continuous LP phase, it is preferable that the total execution times alsoimprove over those of Sherali TRACS II for the same problem. The minimisation of executiontime is a major consideration for most users and since larger data sets are available it is impor-tant that execution times of a column generation system, whilst preferable to another methodon the same data set, are reasonable compared to those achieved from other scheduling systems.Without reducing the data set in the column generation system there are more duties enteringthe branch and bound phase, and, as expected, most branch and bound execution times areslower than the column generation version which does reduce its duty set. In 8 out of the 12data sets which execute without errors, the column generation system without REDUCE takeslonger than the Sherali TRACS II system, which does use the duty reduction procedure.Four of the data sets fail to �nd integer solutions using any of the methods described, either byfailing to �nd a solution with the remaining duties or by exhausting the node limit of 500. Thissuggests that reducing the problem in a column generation system does not hinder the branchand bound by its limited remaining duty subset. In fact, in only 1 out of the 14 data setsdoes the non-reduced method execute faster, and in this case it is by a negligible margin. Thecolumn generation method using REDUCE runs slower than Sherali TRACS II in the branchand bound phase for data set SYD(S) but the total timing is actually faster. For the totaltimings the reduced column generation method runs slower on AUC(S) which also took longerto �nd the continuous solution For those data sets which did �nd an integer solution, all ofthem found solutions within 28 minutes. This compares to the slowest Sherali TRACS II runon a small data set which �nds a solution in 36 minutes, and so even with larger data sets theexecution time is acceptable.7.4.3 Detailed Analysis of ResultsThe following tables give a more detailed analysis of the comparison of the results producedby the Sherali TRACS II system and the column generation system. The schedule cost incor-



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 126porates the wage and penalty costs of the duties in the �nal solution and does not include theSherali weighting.AUC dataThe AUC(S) data has to cover 413 pieces of work, and the AUC(L) data has to cover 480.AUC(S) AUC(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 10529 10529 10529 43798 43798 43798Initial subset - 2067 2067 - 2308 2308Initial soln 115 115 115 120 120 120No. iterations 2570 - - 5362 - -Subset additions - 8 8 - 7 7Final subset - 3740 3740 - 6112 6112LP solution 86.41 86.41 86.41 85.33 85.33 85.33Time to LP 770.2 961.7 961.7 5695.0 1615.5 1615.5No. duties 2405 1352 3740 4346 1779 6112nodes created 22 25 25 500(*) 500(*) 500(*)Final Solution 87 87 87 NONE NONE NONEOvercover 1 1 2 - - -Final Cost 139288 142897 140309 - - -total time 2131.9 2174.0 2904.1 54006.3 16075.5 138030.2Table 7.13: AUC Data : Comparison of Results* represents data sets where node limit is reachedFor the smaller data set the column generation process starts with 20% of the total data setavailable and increases this to 36% after 8 additions to the duty set. The time taken to producethe optimal continuous solution is longer than for the Sherali TRACS II system. The dutyreduction technique provides the branch and bound with 13% of the total duties available inthe column generation method compared to 23% of the duties using Sherali TRACS II butcreates 3 more nodes in �nding a comparable integer solution. Where the reduction technique



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 127is not used, the total execution time of the smaller problem is only 2% slower than for theSherali TRACS II due to a faster execution of the branch and bound process.The larger data set requires fewer duty additions and produces a continuous solution which isover a duty less than with the smaller data set. There is also a signi�cant time reduction inusing a column generation approach to the LP stage. All three methods fail to �nd an integersolution within 500 nodes and this will be investigated further in section 8.2.CTJ dataThe CTJ(S) data has to cover 429 pieces of work, and the CTJ(L) data has to cover 439.CTJ(S) CTJ(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 10775 10775 10775 18307 18307 18307Initial subset - 1607 1607 - 1734 1734Initial soln 112 112 112 112 112 112No. iterations 1988 - - 2175 - -Subset additions - 5 5 - 7 7Final subset - 2586 2586 - 3494 3494LP solution 87.50 87.50 87.50 86.42 86.42 86.42Time to LP 597.7 378.4 378.4 1095.2 536.4 536.4No. duties 2459 1087 2586 4050 1404 3494nodes created 19 12 29 13 80 30Final Solution 88 88 88 87 87 87Overcover 27 25 36 21 23 28Final Cost 95205 96013 96508 106895 102986 104600total time 981.6 582.7 945.9 2767.5 1655.3 1892.9Table 7.14: CTJ Data : Comparison of ResultsThe smaller data set is solved more quickly using a column generation system and signi�cantlyso if the duty set is reduced after the continuous optimum has been ascertained where only 10%of the available duties are used to �nd the integer solution in 7 fewer nodes. The non-reduced



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 128version of the column generation approach uses a slightly larger duty set to enter the branchand bound phase than for the Sherali TRACS II method and takes less time overall since mosttime is saved in requiring only 5 additions to the duty set to �nd an LP optimum from 24%of the total duty set. Both column generation systems produce a schedule with a greater costthan that of Sherali TRACS II.The larger data set produces an integer solution with one duty fewer than that found from thesmaller data set although the overall cost is higher. The reduced column generation versiondoes use many more nodes than both other methods but still �nds the integer solution in 40%of the time taken by Sherali TRACS II.CTR dataThe CTR(S) data has to cover 443 pieces of work, and the CTR(L) data has to cover 451.CTR(S) CTR(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 10690 10690 10690 13792 13792 13792Initial subset - 1993 1993 - 2070 2070Initial soln 124 124 124 123 123 123No. iterations 2599 - - 2657 - -Subset additions - 7 7 - 10 10Final subset - 3603 3603 - 4112 4112LP solution 86.62 86.62 86.62 86.54 86.54 86.54Time to LP 809.7 883.3 883.3 1010.5 1131.5 1131.5No. duties 4943 2003 3603 6379 2342 4112nodes created 500(*) 500(*) ERROR ERROR ERROR 500(*)Final Solution NONE NONE . . . NONEOvercover - - . . . -Final Cost - - . . . -total time 82474.7 52295.1 - - - 98675.1Table 7.15: CTR Data : Comparison of Results* represents data sets where node limit is reached



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 129Both the smaller and larger data sets generate an LP solution with under 87 duties but failto �nd an integer solution with 87 duties either within the 500 node limit or because of errorscaused within the branch and bound search. The time taken by the column generation systemto �nd the continuous solution is slower for both sizes of problems.The non-reduced column generation system fails during the branch and bound on the smallerdata set after 200 nodes have been searched. Both the Sherali TRACS II system and the re-duced column generation system fail during the branch and bound on the larger data set andso the error does not only occur with a �nal duty set provided by a column generation system.The errors occur in the process which has not been altered throughout this research. Attemptsto �nd an integer solution for CTR will be reported in the section 8.2.GMB dataThe GMB(S) data has to cover 127 pieces of work, and the GMB(L) data has to cover 138.GMB(S) GMB(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 4199 4199 4199 6956 6956 6956Initial subset - 617 617 - 719 719Initial soln 40 40 40 42 42 42No. iterations 377 - - 463 - -Subset additions - 6 6 - 6 6Final subset - 920 920 - 1126 1126LP solution 33.50 33.50 33.50 32.85 32.85 32.85Time to LP 38.9 31.4 31.4 76.4 49.4 49.4No. duties 721 346 920 2039 521 1126nodes created 2 3 6 2 7 6Final Solution 34 34 34 33 33 33Overcover 4 4 3 2 1 2Final Cost 27488 27488 28075 34600 36552 35941total time 52.9 38.3 46.1 125.8 59.6 82.8Table 7.16: GMB Data : Comparison of Results



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 130The GMB data set is the smallest problem provided but the larger duty set allows a scheduleto be produced with one fewer duty than previously found using Sherali TRACS II. Both thecontinuous phase and the branch and bound phase execute more quickly using the column gen-eration system, even though the non-reduced version on the smaller duty set enters the branchand bound phase with more duties than Sherali TRACS II. With the reduced column generationmethod only 8% of the duty set enters the branch and bound process with the smaller set and7% with the larger set, suggesting that the REDUCE technique is not detrimental in �ndingan integer solution from a smaller subset although it is possible that the quality is a�ected byremoving certain duties at this stage.RI2 dataThe RI2(S) data has to cover 167 pieces of work, and the RI2(L) data has to cover 180.RI2(S) RI2(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 5176 5176 5176 7997 7997 7997Initial subset - 853 853 - 932 932Initial soln 54 54 54 54 54 54No. iterations 431 - - 556 - -Subset additions - 5 5 - 5 5Final subset - 1160 1160 - 1461 1461LP solution 44.19 44.19 44.19 43.79 43.79 43.79Time to LP 53.5 39.9 39.9 103.5 58.8 58.8No. duties 1136 539 1160 1010 700 1461nodes created 6 5 3 2 2 2Final Solution 45 45 45 44 44 44Overcover 10 9 9 8 8 8Final Cost 40379 41380 40729 41221 41221 41221total time 133.3 64.6 65.8 170.7 68.0 66.8Table 7.17: RI2 Data : Comparison of ResultsFor this problem the larger duty set enables a schedule to be produced with one duty fewer



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 131than with the smaller duty set. There is little di�erence in total execution times between thereduced and non-reduced versions of the column generation system, which in any case runs over50% faster than the Sherali TRACS II version on both duty sets. All three methods producethe identical cost solutions from the larger duty set.STK dataThe STK(S) data has to cover 250 pieces of work, and the STK(L) data has to cover 418.STK(S) STK(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 10678 10678 10678 90234 90234 90234Initial subset - 1355 1355 - 1844 1844Initial soln 76 76 76 80 80 80No. iterations 1222 - - 8995 - -Subset additions - 7 7 - 7 7Final subset - 2421 2421 - 8297 8297LP solution 60.55 60.55 60.55 57.83 57.83 57.83Time to LP 310.0 232.9 232.9 15039.7 1242.3 1242.3No. duties 1931 846 2421 5553 1670 8297nodes created 35 6 40 139 14 500(*)Final Solution 61 61 61 NONE NONE NONEOvercover 1 2 1 - - -Final Cost 83302 81841 84423 - - -total time 944.8 329.6 984.9 29853.4 1816.0 53419.7Table 7.18: STK Data : Comparison of Results* represents data sets where node limit is reachedThe smaller duty set provides an integer schedule with 61 duties. The column generation sys-tem using the REDUCE technique sends signi�cantly fewer duties into the branch and boundphase and creates only 6 nodes to �nd an integer schedule which is cheapest even though it hasan extra overcovered piece of work.



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 132The larger duty set is actually the largest available duty set and execution time to the continu-ous LP stage is 92% faster than that of Sherali TRACS II which would normally be limited to22000 duties. However, none of the three methods succeed in �nding an integer solution with58 duties. Both TRACS II and the reduced column generation system terminate before thenode limit is reached to indicate that an integer solution cannot be found with the duty setavailable at the branch and bound stage. The non-reduced column generation system cannot�nd an integer solution within 500 nodes. Attempts to �nd an integer solution will be reportedin the section 8.2.SYD dataThe SYD(S) data has to cover 302 pieces of work, and the SYD(L) data has to cover 396.SYD(S) SYD(L)Feature Sherali Col. Gen. Col. Gen. Sherali Col. Gen. Col. Gen.TRACS II REDUCE No REDUCE TRACS II REDUCE No REDUCETotal no. duties 8866 8866 8866 43150 43150 43150Initial subset - 1058 1058 - 1411 1411Initial soln 67 67 67 68 68 68No. iterations 1187 - - 3420 - -Subset additions - 7 7 - 7 7Final subset - 1978 1978 - 4853 4853LP solution 56.00 56.00 56.00 56.00 56.00 56.00Time to LP 326.2 225.1 225.1 5019.9 914.5 914.5No. duties 2895 944 1978 6966 1483 4853nodes created 10 7 11 32 27 20Final Solution 56 56 56 56 56 56Overcover 50 50 39 52 60 67Final Cost 35137 36371 35011 32860 33720 32537total time 347.8 329.6 333.4 5674.2 1073.8 1752.2Table 7.19: SYD Data : Comparison of ResultsThe �rst thing that should be noted for the large data set is that there is an uncovered piece ofwork in the initial solution. The Sherali weighting therefore sums the 69 most expensive duties



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 133to ensure that this value will provide an upper bound on the optimal schedule cost.The larger data set produces a comparable solution to the smaller data set but with lower costs.It does however require over three times longer to �nd a solution to the larger set. There isa signi�cant time reduction using the column generation system on the larger data set overthe Sherali TRACS II system but most of the time is taken by the latter to �nd the samecontinuous solution as is produced by the smaller data set.7.4.4 OverviewIt is impossible to compare directly the timings or results of the column generation methodpresented and that of the Hastus Crew-Opt method as their structures di�er, and two di�erenttechniques are used, but it is noted that problem A (reviewed in section 6.4.2) is similar insize and structure to the RI2(S) problem. It is not known how many duties were generated toinitialise the column generation procedure or if any duties were removed from the duty set atany stage, but Crew-Opt required 307 shortest path calculations and generated 2926 new dutiesin total. From a generated set of 5176 duties the column generation system reported in section7.4 produced the optimal LP solution (optimal given the generated duty set) from a total of1160 duties after 40 seconds. The duty set was then reduced to 539 duties and the integerschedule was found after a further 82 seconds. Problem F (reviewed in section 6.4.2) containsa large schedule which had to be decomposed using Crew-Opt. The �nal solution required 156duties and to date the largest problem tested using the customised column generation systemand reported in section 7.4 produces a schedule with 88 duties.The aim of the column generation system is to provide better schedules by allowing more du-ties to be available and also to provide results at least as fast as the Sherali TRACS II system.Results have shown that in all cases the reduced column generation system executes faster thanthe non-reduced system and on all data sets tested the limited duty set entering the branch andbound phase was not a disadvantage in forming an integer solution. It is still noted howeverthat it is possible that the duty reduction on some data sets may prove to be too extreme tobe able to produce an integer schedule but results using the non-reduced version of the columngeneration system will no longer be reported.In 12 out of the 14 data sets the column generation system produced an integer solution faster



CHAPTER 7. IMPLEMENTATION OF COLUMN GENERATION 134than the Sherali TRACS II system on the same duty set, and 3 out of the 7 problem formeda �nal schedule with fewer duties by using a larger generated duty set. One of the other datasets produced a schedule with the same number of duties with a lower cost from a larger dutyset, but the other 3 problems failed to �nd an integer solution from a larger set. For the SYDproblem the larger data sets produced a schedule with the same number of duties but the costwas lower. For the remaining data sets which improved upon the number of duties in the �nalschedule, the �nal cost was higher than that produced by the smaller duty set. It is certainlypossible that the minimisation of duties as the main objective may introduce more undesirablefeatures into duties, and penalty costs added for these problems are relatively high. As anexample, for a three part duty the penalty cost can be as much as 1000, which implies that thedi�erence in cost may equate to replacing a small number of two part duties with three partduties.



Chapter 8Re�nement of the ColumnGeneration Method Within ZIP8.1 IntroductionThis chapter describes further experimentation which has been carried out in order to improvethe column generation method described in Chapter 7. Successful investigations have beenimplemented and the results of re�ned column generation system on the available duty sets arereported in section 8.4.8.2 Failure to Find an Integer SolutionOf the fourteen duty sets tested four failed to produce an integer solution using either SheraliTRACS II or a column generation method with and without duty reduction at the branch andbound stage. All three methods are described in Chapter 7. There are a number of reasonswhy a method may fail to �nd an integer solution:1. The branch and bound tree is being limited to too few nodes, and an integer solutionmay be found after exploring a much larger number of nodes.2. Duties which are necessary in order to form an integer solution which covers all of thepieces of work may not be available to the branch and bound process.135



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 1363. There may be no integer solution available with the speci�ed number of duties.The branch and bound stage terminates without �nding a solution before the node limit isreached with both the Sherali TRACS II and reduced column generation systems on the STK(L)problem. Increasing the node limit in this case would have no e�ect on the solution. Willers[14] recommended that a node limit of 100 is high enough to avoid prematurely abandoning abranch and bound search in a commercial version of TRACS II but for more conclusive resultsand an opportunity to improve on an integer solution a value of 500 is used. Increasing thisvalue would be at the expense of much higher execution times and would be much less accept-able to the users.Duties may not be available to the branch and bound process because REDUCE, as describedin section 5.4.3 removes some from the set. In the case of the column generation method a ver-sion is tested without REDUCE. For this version to fail also, suggests that the duty set selectedin the column generation phase did not include some duties in forming an integer schedule. Inorder to test the robustness of REDUCE it would have to be omitted in the Sherali TRACS IIsystem to allow all duties to enter the branch and bound stage. This would not be carried outin a commercial system, especially with much larger duty sets having been generated, and ithas been shown from the column generation system that the reduction technique speeds up theexecution times in most problems. For the non-reduced column generation system, in order toensure that an omission of vital duties is not the cause of the di�culties in �nding an integersolution, all generated duties would have to be added to the subset once the optimal continuoussolution had been found. Implementing such a strategy would defeat the object of a columngeneration technique which works with a smaller duty set but implicitly considers many moreduties.Generally, a smaller duty set is available to the branch and bound process with a columngeneration system. The reduction technique may then be inappropriate as it may remove toomany further duties to enable an integer solution to be found easily. However, since the re-sults reported in section 7.4 show no disadvantage over the non-reduced version, an alternativetechnique would have to consider a di�erent set of duties at the branch and bound stage. Forproblems for which there is evidence to suggest that a column generation technique cannot�nd a known integer solution (e.g, if TRACS II were tested and found a solution), a di�erent



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 137strategy could be adopted. One such possibility would be to use the REDUCE process on theentire duty set, rather than the �nal subset resulting from the column generation method.For all three methods tested on any problem in chapter 7, each attempts to �nd integer solu-tions from a di�erent duty set. For situations in which none of the systems can �nd an integersolution there is a higher probability that, in fact, none exists than if only one system weretested, even with the limitations mentioned. A potential drawback in allowing many moreduties to be available may be that the continuous solution can be improved greatly but thereis a limit on the improvement of an integer solution.The four data sets which fail to produce integer schedules are CTR(S), CTR(L), AUC(L) andSTK(L). In the case of CTR(S) and CTR(L) no integer solution has been found at all. Bothsizes of duty set produce a continuous solution with under 87 duties and so both search for aninteger solution with 87 duties. For the cases of AUC(L) and STK(L), integer solutions havebeen found with respectively 87 and 61 duties on the smaller data sets but the branch andbound on the larger set attempts to �nd integer solutions with respectively 86 and 58 duties.The AUC(L) data set reaches the node limit of 500 in all three systems but the STK(L) dataset terminates before the node limit is reached on all but the non-reduced column generationsystem.8.2.1 Specifying a Target Number of DutiesSince an integer solution cannot be found for data sets CTR(S),CTR(L), AUC(L) and STK(L),a constraint is added to the model to force, if possible, an integer solution requiring one moreduty than previously attempted. With the AUC(L) data, a known 87 duty schedule can befound from the smaller duty set and with the STK(L) data set, the branch and bound willsearch for a schedule with 59 duties. For the CTR data, no solution has been found with 87duties and so an attempt is made to ascertain if one can be found with 88 duties.The Sherali TRACS II system has the ability to pick up an earlier continuous solution andreoptimise if any conditions have changed. It would therefore be preferable to pick up the con-tinuous solution provided by the �rst execution, add the necessary constraint, and reoptimise.However, the column generation remains a one pass method at present, and so both systemsadd the constraint initially and begin the execution from scratch.



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 138Table 8.1 compares the Sherali TRACS II system with the reduced column generation systemon the above four data sets with an increased duty target.AUC(L) STK(L) CTR(S) CTR(L)Feature Sherali Col Sherali Col Sherali Col Sherali ColTRACS II Gen TRACS II Gen TRACS II Gen TRACS II GenTotal duties 43798 43798 90234 90234 10690 10690 13792 13792Initial subset - 2308 - 1844 - 1993 - 2070Initial soln 120 120 80 80 124 124 123 123No. iterations 7173 - 64027 - 2753 - 3079 -Set additions - 6 - 6 - 8 - 9Final subset - 5417 - 7773 - 3524 - 4073LP solution 87 87 59.00 59.00 88.00 88.00 88.00 88.00Time to LP 8678.4 1246.2 128385.7 1335.7 1024.7 1098.2 1337.8 1266.7No. Duties 3072 1299 2820 1100 3744 1637 4765 2040Nodes Created 61 22 15 26 500(*) 500(*) 500(*) 56Final Solution 87 87 59 59 NONE NONE NONE 88Overcover 0 3 0 3 - - - 10Final Cost 125455 128996 65361 64367 - - - 125414Total Time 9981.3 1416.8 128634.1 1752.7 24214.0 20979.9 40564.7 3130.1Table 8.1: Specifying a Target Number of Duties for Certain ProblemsThe most notable result is that in the case of STK(L) a schedule with the target number of du-ties has been found, and so the solution has two fewer duties and a lower cost than the scheduleformed from the smaller duty set. The addition of a constraint has also produced an integersolution for AUC(L) which has a lower cost than the solution previously produced. The cost ofthe solution is higher than that produced by Sherali TRACS II but this is not signi�cant andcould be caused by the fewer available duties at the branch and bound stage, the cost of theovercover in the solution, or the search for a better solution only within a small tolerance. Nointeger solution still can be found from the small data set for CTR, but the column generationmethod has found a schedule with 88 duties from the large data set, where Sherali TRACS IIterminates at the node limit.The execution time of the relaxed Sherali TRACS II model has increased, particularly in the



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 139case of STK(L) where the timing is over 8 times that of the model without the duty targetconstraint added. The total timings cannot be compared as previously no integer solution couldbe found. The column generation timings remain acceptable compared to that of other datasets whereas the Sherali TRACS II model has more di�culty in producing solutions from largedata sets with an added constraint.8.2.2 SummaryThere is a potential problem in that a column generation model may produce continuous solu-tions which provide too low a duty total from which to form an integer schedule. The additionof a constraint which speci�es a higher duty total may enable an integer schedule to be pro-duced without a large increase in the total execution times and the solution would still be nomore costly in terms of duties over a solution produced by a smaller generated set of duties.8.3 Altering the Initial Subset Size and Duty Increase PerIterationSince the column generation method on the AUC(S) problem provided the worst increase inexecution timing to form the continuous solution it will be used as a basis for further investi-gation into altering the number of duties which are selected for addition to the subset at eachcolumn generation iteration.Many duties will not be used once they have been added to the duty subset, but if fewer dutiesare selected per simplex multipier then it may require more iterations to select a duty vital tothe optimal continuous solution, and also it may prove more di�cult to �nd an integer solutionfrom a smaller total set. Selecting too many more duties per iteration, however, may increasethe execution time per column generation iteration considering that many of these additionalduties will be unusable. This may also cause more duties to be searched within the branch andbound phase, with a resulting increase in its execution time.Some experimentation has taken place with the parameters which limit the addition of dutiesto the subset. The total number of duties added per column generation iteration is limited by



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 140the percentage of pieces of work considered and the percentage of duties remaining. The �rstplaces a limit on the number of pieces of work which can produce further duties to add to thesubset. The second provides a duty addition target which, once it has been met, terminatesthe column addition iteration once all necessary duties covering the current piece of work havebeen added. The percentage of duties per piece of work limit the number of duties which canbe added to the subset for any simplex multiplier under consideration.It is noted that tables 8.2, 8.3 and 8.4 do not exhaustively test all possible combinations ofparameters since they all interact, but value choice is based upon the intention to tighten orrelax the limits which have the most e�ect on the number of duties chosen.Analysis of Initial Coverage ParameterThe initial coverage parameter determines a lower limit (where possible) on the number ofduties in the initial subset which cover each piece of work. As a duty is being considered forinclusion in the initial solution it is added to the subset if there are fewer than the speci�ednumber of duties covering ANY of the pieces of work that the duty covers. This means thatthere may be many more duties covering some pieces of work than the speci�ed limit. It is alsopossible that some pieces of work cannot be covered by the speci�ed number of duties eitherbecause there are fewer duties in total covering them or because a particular piece of work doesnot get explicitly considered in the initial solution.� If the parameter is set too low it may be necessary to perform more duty additions inorder to reach an optimal continuous solution. Further, fewer duties at the branch andbound stage may make it more di�cult to �nd an integer solution.� If the parameter is set too high the initial subset will be relatively large so making calcu-lations more time consuming. There will be a larger proportion of unproductive duties inthe set which defeats the object of using a column generation procedure to include moreuseful duties later.Table 8.2 presents the results of implementing di�erent coverage values, indicated by the �rstcolumn. The smallest value tested is 5. This produces a continuous solution very quickly, even



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 141Initial Initial Pieces of Remaining Duties Per Subset Final Time TotalCover Set work(P%) Duties(X%) Piece (Y%) Additions Subset To LP Time5 1209 20 20 20 10 3233 845.6s No soln5 1209 30 20 20 10 3384 948.8 2413.55 1209 20 20 50 8 3487 821.0 No soln10 2067 20 20 20 8 3740 961.7s 2471.0s10 2067 30 20 20 8 3954 961.2 4231.3s10 2067 20 20 30 9 3686 1102.7 2545.610 2067 30 20 30 8 3912 1040.5 1890.510 2067 20 20 50 7 3935 836.5 3015.110 2067 10 10 60 10 3824 1117.6 4425.620 3361 20 20 20 7 4489 982.7 2285.3s20 3361 30 20 20 6 4624 935.4 No soln20 3361 20 20 30 7 4489 973.4 2256.320 3361 30 20 30 6 4624 987.5 3352.020 3361 20 20 50 6 4530 862.4 3188.520 3361 10 10 60 8 4565 1175.0 2172.630 4502 20 20 20 5 5266 1006.1s 1843.8sTable 8.2: Altering the Initial Coverage Parameterthough many duty additions are required, but fails to �nd an integer solution in two out ofthe three experiments. The experiments attempt to overcome the problem of having too fewduties at the branch and bound stage, but the �nal duty set remains relatively small. Evidencefrom other experiments suggests that any further increase in duty additions by altering theparameters will increase the execution time without the guarantee that su�ciently more dutieswould be added to enable an integer solution to be formed.A coverage value of 30 produces an initial duty subset consisting of more duties than are nec-essary to produce an integer solution. The duties added to the initial subset are selected bythe order of the original duty set and so there is no guarantee of the quality of these duties.This suggests that although the number of duty additions decrease as the coverage parameterincreases, this is outweighed by the increase in computation time of the relaxed model.



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 142Experiments with a coverage value of either 10 or 20 produce the best results in terms ofexecution time and availability of an integer solution. Increasing the coverage parameter tendsto increase the overall execution time even though the number of column generation iterationsdecreases and so a coverage value of 10 will remain as the implemented value.Total duties added per Column Generation IterationWithout limit, the column generation process would search through all the pieces of work indecreasing order of the value of their corresponding simplex multiplier and would add everyduty with a favourable reduced cost to the duty subset. Since it is time consuming to considerall simplex multipliers at every column generation iteration, and they have been ordered sothat the later multipliers are less likely to introduce duties which would improve the objectivevalue, there is an upper limit on the percentage of pieces of work which are allowed to addfurther duties during each column generation iteration. The upper limit is:P% (total number of pieces of work where additions are made). (8.1)There is also a parameter limiting the total number of duties which can be added to the subsetper iteration. This limit is de�ned to be :M = MAX f50; X% total duties remaining:g (8.2)The value of 50 is used if the percentage of duties remaining has a lower value, so that, towardsthe end of the process, the column generation system does not add so few duties to the subsetthat more column generation iterations are required. It is unlikely that this value will be usedsince the column generation system generally deals with a relatively small working subset of amuch larger duty set and so the percentage of remaining duties will still be quite high. Duringany iteration the addition process will terminate as soon as either limiting condition is reached.� If the limits are too low more column generation iterations may be required to add certainvital duties, and there is a lack of variety of duties entering the subset which may causeproblems in trying to form an integer solution.



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 143Initial Initial Pieces of Remaining Duties Per Subset Final Time TotalCover Set work(P%) Duties(X%) Piece (Y%) Additions Subset To LP Time10 2067 10 10 60 10 3824 1117.6 4425.610 2067 20 20 20 8 3740 961.7s 2471.0s10 2067 20 20 30 9 3686 1102.7 2545.610 2067 20 20 40 7 3785 867.7 1597.810 2067 20 20 50 7 3935 836.5 3015.110 2067 20 20 60 7 4014 896.2 2078.310 2067 20 10 60 7 4014 896.2 2078.310 2067 30 20 20 8 3954 961.2 4231.3s10 2067 30 20 30 8 3912 1040.5 1890.5Table 8.3: Altering the Number of Additions Per Iteration� If the limits are too high it is time consuming to search through the later duties, especiallywhen they may already have been covered by duties added earlier and it is consideredthat they are less likely to produce as signi�cant an objective improvementIn all problems tested the percentage of pieces of work considered provides a tighter limit onthe duty addition, and the absolute duty limit is never reached. Since the number of duties inthe superset can, in some problems, be very large, taking a percentage of duties to add to theset may be an unrealistic limit, although it does have the advantage of reducing as the processcontinues.Remaining DutiesSetting the upper limit on the number of duties which could be added to be 20% of the remain-ing duties is too high to restrict the generation of further duties, even when the limit on thepercentage of pieces of work which can be considered is lowered. Lowering the value to 10%also has no e�ect, but will remain implemented in the column generation system for smallerduty sets.Percentage of Pieces of WorkIncreasing the parameter to consider 30% of the pieces of work each time bears no signi�cantdi�erence in execution times over those tested with 20% and so the extra duties added makelittle di�erence to the solution. However the increase in duty numbers at the branch and bound



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 144stage make it more di�cult to �nd an integer solution. A value of 10% was tested, which cre-ates more iterations as fewer duties are added for each iteration, and the execution time to thecontinuous solution increases. A value of 20% will remain implemented in the re�ned columngeneration system.Total duties added Per Piece of WorkFor the simplex multiplier under consideration it would be possible to calculate the reducedcosts of all duties covering its corresponding piece of work. However, some pieces of work willbe covered by many duties and there would be a large amount of repeated calculation. A limitI is placed on the number which can be added. This is de�ned to be :I = MAX f5; Y% total duties remaining/total no. pieces of work:g (8.3)The value of 5 ensures that where the percentage has a very low value, a reasonable number ofduties can still be added, thus avoiding an increase in the number of iterations.� If the value of I is set too low many more iterations may be required to consider vitalduties which appear at the end of the list of duties covering a piece of work.� If the value of I is set too high, unpro�table duties may be added and an unbalancednumber of duties covering certain pieces of work will reduce the variety of duties availableat the branch and bound stage.The estimated value of the remaining duties per piece of work is very crude and could varydrastically between problems depending on the number of duties in the superset. A more so-phisticated limit could be developed based upon knowledge of the number of duties coveringspeci�c pieces of work, but the limit shown should merely provide a limit which will reduceas the subset size increases to re
ect the rate of improvement of the objective function. Thecalculations take into account the number of duties which have already been added in the iter-ation which cover other pieces of work.



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 145Initial Initial Pieces of Remaining Duties Per Subset Final Time TotalCover Set work(P%) Duties(X%) Piece (Y%) Additions Subset To LP Time10 2067 20 20 20 8 3740 961.7s 2471.0s10 2067 20 20 30 9 3686 1102.7 2545.610 2067 20 20 40 7 3785 867.7 1597.810 2067 20 20 50 7 3935 836.5 3015.110 2067 20 20 60 7 4014 896.2 2078.310 2067 20 10 60 7 4014 896.2 2078.3Table 8.4: Altering the Number of Duty Additions Per Piece of WorkConsidering 20% of the estimated remaining duties per piece of work resulted in a lower valuethan the minimum limit of 5 in this problem, and so this only proved binding in the earlycolumn generation iterations. As the percentages increased, the execution times decreased,as did the number of duty additions. However, at 60% the number of duties at the branchand bound stage was quite high and the timings started to increase again. Although the totalexecution time is quite high for a 50% addition, the branch and bound timing cannot be usedto in
uence the choice as it depends on the route through the search tree. A value of 50% willbe implemented in the re�ned column generation system.8.3.1 Proposed ParametersThe results suggest that the following equations, which limit the number of duties added to thesubset on each iteration, improve the continuous execution timings on the AUC(S) data set bythe greatest margin without adversely a�ecting the branch and bound timing.The equations respectively limit the duties added per piece of work, the total number of duties,and the number of pieces of work from which further duties can be selected.I = MAX f5; 50% (total duties remaining/No. pieces of work) gM = MAX f50; 10% (total duties remaining)gP = 20% (total number of pieces of work where additions are made) (8.4)



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 1468.4 Implementation and ResultsTable 8.5 shows the results of implementing the proposed parameters on all duty sets, exceptCTR(S) which did not produce a solution. Data sets AUC(L), CTR(L) and STK(L) have aconstraint appended to specify a target number of duties to ensure that an integer solution canbe found. The execution times of both the previous column generation system and the SheraliTRACS II system are also displayed.Subset Additions Time to LP Total TimeData Prev Current Prev Current TRACS II Prev Current TRACS IIAUC(S) 8 7 961.7 836.5 770.2s 2174.0 3015.1 2131.9AUC(L) 6 4 1246.2 1241.8 8678.4 1416.8 5472.3 9981.3CTJ(S) 5 4 378.4 361.9 597.7 582.7 1186.8 981.6CTJ(L) 7 5 536.4 541.4 1095.2 1655.3 1118.0 2767.5CTR(L) 9 7 1098.2 1066.8 1024.7 3130.1 3228.5 -GMB(S) 6 4 31.4 27.4 38.9 38.3 33.5 52.9GMB(L) 6 4 49.4 43.4 76.4 59.6 53.8 125.8RI2(S) 5 5 39.9 45.6 53.5 64.6 71.8 133.3RI2(L) 5 4 58.8 57.6 103.5 68.0 72.2 170.7STK(S) 7 6 232.9 224.9 310.0 329.6 468.9 944.8STK(L) 6 6 1335.7 1230.7 128385.7 1752.7 1454.5 128634.1SYD(S) 7 6 225.1 241.9 326.2 329.6 260.7 347.8SYD(L) 7 5 914.5 897.6 5019.9 1073.8 1051.2 5674.2Table 8.5: Comparison of Timings With Improved Column Generation SystemThere is an improvement in execution times of 5% up to the continuous solution over the pre-vious column generation method in 10 out of 13 data sets, leaving only the AUC(S) data setwhich takes longer than the Sherali TRACS II system to reach the optimal continuous solution.The total timings increased over the previous column generation method for 7 out of the 13data sets. The worst case being AUC(L) which now takes 2.5 times longer to �nd an integersolution. Although there is an overall increase in total execution times by 10%, preference isgiven to the reduction of execution times up to the continuous solution because the branch andbound timings can vary depending on the route through the search tree. Overall solution timesare still better by 41% than the Sherali TRACS II system, with only data sets AUC(S) and



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 147CTJ(S) taking longer to �nd an integer schedule using a column generation method.8.5 Sub-Optimal SolutionIt is possible to enter the branch and bound phase with the current duty subset once the op-timal continuous solution has been found. Terminating the column generation process beforeoptimality over the duty superset has been reached would have the advantage that time wouldbe saved in searching for further duties to add to the set. It is noted that the later additions tothe duty set often add very few duties and the �nal column generation iteration which ensuresoptimality takes a relatively large amount of execution time. For the later duty additions tothe subset the objective value is decreasing slowly, so that the tendency is for the duty totalto change fractionally but the duty combinations are improved to reduce the overall duty cost.Entering the branch and bound phase when the integer part of the duty total cannot decreasefurther will not a�ect the quality of integer solution because the branch and bound process willstill search for a schedule with the next highest duty total. There will, however, be fewer dutiesand if they use di�erent relief points than the superset optimum, the reduction procedure willallow a di�erent set of duties to enter the branch and bound.With the column generation method tested in Chapter 7 the maximum number of duty addi-tions reported is 10, but most problems only require up to 7, and so in many cases the numberof column generation iterations cannot be greatly reduced. With the new column generationsystem shown in table 8.5, the number of duty additions had decreased and it is now less likelythat terminating at a sub-optimal solution will be worthwhile. A very simple heuristic hasbeen tested which terminates the column generation process once a continuous solution hasbeen found in which the integer part of the duty total is unlikely to decrease:De�ne Si to be the subset formed at the end of column generation iteration iDe�ne Ti:fi to be the duty total over Si (0 � fi � 1)Then the column generation process should be terminated immediately after iteration i if thecondition (8.3) holds :



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 148IF Ti = Ti�1 = Ti�2AND fi � 0:2 (8.5)This heuristic will terminate the column generation process if the integer part of the duty totalhas not decreased in two iterations and its fractional part is su�ciently high to assume that itis unlikely to decrease by a full duty. Note that this heuristic will be of little use with a duty setfor which a target number of duties has been speci�ed because the associated side constraintis likely always to be binding.Duty Initial Initial Subset Final LP Time TotalSet subset solution Additions Subset Solution to LP TimeAUC(S) 2067 115 4 3801 86.73 526.7 2472.5CTJ(L) 1734 112 4 4086 86.43 440.2 1177.5Table 8.6: Results of Terminating at a Sub Optimal SolutionTesting this simple heuristic on all problems which produced solutions has no e�ect on all buttwo duty sets, producing the identical solutions to those reported in Table 8.5. Table 8.6 reportsthe e�ect of an early termination on duty sets AUC(S) and CTJ(L).The number of duty additions decreased by 3 on the AUC(S) data and by 2 on the CTJ(L)data, which reduced the execution time of the continuous solution. However, overall executiontime increased with many more nodes explored when reoptimising with the added constraintwhich attempts to �nd a solution at the next highest integer. Given the reduction in numberof column generation iterations provided by the alteration of parameters in section 8.3, it isnot bene�cial at this stage to continue with further research on terminating at a sub-optimalsolution.8.6 ConclusionThe evidence suggests that where integer solution cannot be found, it is not caused by the col-umn generation method. It is therefore preferable and often bene�cial to append a constraintwhich increases the duty total by one, rather than altering the solution strategy where a column



CHAPTER 8. REFINEMENT OF COLUMN GENERATION METHOD 149generation approach may have provided a continuous solution which is too low for an integersolution to be found.The alteration of some of the parameters governing the addition of duties to a subset hasprovided a further overall decrease in execution times of the continuous solution and althoughthe total execution time has tended to increase, in most cases the solutions are still faster thanwith Sherali TRACS II.



Chapter 9Summary and Conclusions9.1 IntroductionThis chapter summarises the implementation within a driver scheduling system of a columngeneration method which produces good driver schedules from a given set of potential duties.Suggested topics for possible further investigation are then introduced, and �nally a suitableimplementation of this system is reported.9.1.1 A Column Generation TechniqueThe driver scheduling problem can be modelled as a set covering problem, where each piece ofwork must be covered by at least one driver. As there are potentially very many valid duties forany problem, most driver scheduling systems limit the number of duties which are generated andhence entered into the set covering model. Column generation models �rst optimise the relaxedmodel over an initial subset of valid duties, and then generate or select further duties to add tothe subset before reoptimisation. Simplex multipliers formed by the simplex method are usedto calculate the reduced costs of new duties, and any number of duties with negative reducedcosts can be added to the subset each time. When no more duties can be added to the sub-set the continuous solution is optimal and a method will be adopted to �nd an integer schedule.It was decided that the specialised technique to be implemented would �rst generate a larger setof potential duties so that the column generation method then selects duties from this superset.The current branch and bound process will be used to form an integer schedule.150



CHAPTER 9. SUMMARY AND CONCLUSIONS 1519.1.2 An Algorithm for the Column Generation Procedure� Step 1 Read in the ZIP parameter �le which includes information as to how the processshould be run and any user-de�ned side constraints.� Step 2 Read in and store the bus information, which includes details of the number ofgenerated duties which start or end at each relief opportunity. In this way redundantconstraints can be eliminated. These correspond to pieces of work which are never usedto change drivers.� Step 3 Read in and store the duties, and for each piece of work form lists of those dutieswhich cover it. As the duties are being read in the equality constraints are determinedby looking for buses whose �rst pieces are only covered by duties of which they are the�rst piece, and buses whose last pieces are only covered by duties of which they are thelast piece.� Step 4 Create an initial solution by looking through the pieces of work in increasingorder of the number of duties covering them. For a piece of work that is not yet covered,all duties which do cover it are considered. A notional cost is calculated using the function:Min DjNUjwhere: Dj = Sherali cost of duty xjNU j = number of currently uncovered workpieces covered by xj:The least cost duty which does not violate a constraint is chosen to be included in theinitial solution. Uncovered work is allowed in the initial solution to ensure that it isfeasible, and then banned before optimisation. An initial duty set is chosen as the initialsolution is being formed, by adding the duty being considered to the subset if it coversa piece of work not already covered by at least a speci�ed number of duties within theduty subset. The suggested lower limit is 10.� Step 5 Initialise x to be the number of duties in the initial solution. For every pieceof work which remains uncovered in the initial solution, increase the value of x by one.Calculate the Sherali weight by summing the costs of the x most expensive duties, and



CHAPTER 9. SUMMARY AND CONCLUSIONS 152add this weight to the cost of all duties.� Step 6 Solve the LP relaxation over the current subset of duties.� Step 7 Consider the values of the simplex multipliers in descending order. Duties whichcover the corresponding piece of work and have a negative reduced cost are added to thesubset up to a limit de�ned by I.I = MAX f5; 50% (total duties remaining/No. pieces of work) gIf the piece of work has been covered by duties added earlier in the same iteration thenthis is taken into account and the limit is lowered accordingly.The addition of duties to the subset in any iteration is bounded by M or P , which respec-tively limit the total number of duties which can be added and the number of simplexmultipliers which are used to select further duties.M = MAX f50; 10% (total duties remaining)gP = 20%(total number of pieces of work where additions are made)If no duties are added the solution is optimal, otherwise go to Step 6.� Step 8 If the LP solution is integral then the process stops, otherwise reduce the dutyset using the REDUCE process which is described in section 5.4.3.� Step 9 If the optimal duty total is currently fractional, add a side constraint which roundsup the duty total to provide a target number of duties in the integer solution.� Step 10 Find an integer solution using the branch and bound method described in section5.4.3.9.2 ConclusionsThe column generation procedure described has been implemented and tested on seven probleminstances, each of which has two generated duty set sizes. The smaller duty set is a subset of



CHAPTER 9. SUMMARY AND CONCLUSIONS 153the larger set and has been heuristically reduced to be run through TRACS II [15, 16, 17, 18]which is a set covering system developed at the University of Leeds. Although the small dutysets in a column generation method would be superseded by the larger duty sets, their size maybe representative of a di�erent problem and so the results are still signi�cant. Results havebeen compared with those produced by a specialised version of TRACS II, called the SheraliTRACS II system. This system incorporates a Sherali weighted objective function and otherfeatures which make it more comparable to the implemented column generation system.The purpose of the research was to investigate whether better solutions could be found by al-lowing more potential duties to be generated. This would justify the use of a column generationsystem which considers many more duties but works with a much smaller subset. Also, thecolumn generation system should produce results in no more time than Sherali TRACS II onthe same duty set, making it feasible for a scheduler to use such a system.For three problems the continuous solution produced by the larger data set has proved to betoo low to produce an integer schedule. However, the addition of a constraint which speci�es aduty total at the next highest integer has enabled a schedule to be found using column genera-tion in all cases, and these schedules are better than those produced from the smaller duty set.For the Sherali TRACS II system with such a constraint only two problems succeed in �ndingan integer schedule and their execution times are much less acceptable than those found usingcolumn generation.Certainly, results obtained from the larger duty sets either produce schedules with fewer dutiesor a schedule with the same number of duties but with a lower overall cost. Results also con�rmthat the column generation system produces an overall decrease in execution times of 41% overthe Sherali TRACS II system on problems which do not require the addition of a target num-ber of duties. This concludes that a column generation solution procedure can produce bettersolutions more quickly than a successful and widely implemented driver scheduling system.9.3 Further WorkThe following sections discuss some of the issues which could be investigated with regard topossible improvements in the column generation system.



CHAPTER 9. SUMMARY AND CONCLUSIONS 1549.3.1 General ImprovementsMore work could be done on improving parameters I,M and P which limit the number of dutiesadded to the subset per simplex multiplier and overall. More testing is also needed to test theinteraction between these parameters to provide a varied subset of duties which is both largeenough to provide a reasonable set at the branch and bound phase but does not contain toomany unproductive duties.Willers [14] suggested various improvements in the execution of the Sherali TRACS II systemwhich may be usefully implemented in a column generation system. Willers tested several ini-tial solution strategies and concluded that a maximum duration strategy provides the highestnumber of faster solutions. This method uses a nominal cost function which selects dutiesto be included in the initial solution based upon maximising the duration of uncovered workrather than the number of uncovered pieces. An improvement in the initial solution may reducethe number of column generation iterations required to reach the optimal continuous solution.Willers also suggested that the branching strategy could be altered, in particular terminatingthe search as soon as an integer solution has been found. This is based upon the observationthat in most cases the branch and bound process produces only one integer solution and yetsearches for better ones within a speci�ed tolerance. This is a potential improvement to anyversion of the TRACS II system, irrespective of whether it incorporates column generationtechniques.It may also be bene�cial to update the optimisation methods. Section 7.3.1 describes howmethods developed more recently are more e�cient and may be more suited to a column gen-eration approach which optimises a model on more than one occasion.9.3.2 Alternative Pricing StrategiesWillers [14] reported that the implemented steepest-edge pricing strategy may no longer bebene�cial as much larger models are now solved compared to those with up to 5000 dutiesreported in [15]. Although the column generation system is intended for use on much largerdata sets, the working subset of duties is relatively small and so the steepest-edge pricing



CHAPTER 9. SUMMARY AND CONCLUSIONS 155strategy may remain the most appropriate. A set of new columns to enter the subset is selectedbased upon negative pure reduced costs and apart from the �rst entrant variable which ischosen to be the duty with the most negative pure reduced cost, the duties are then pricedaccording to the steepest-edge strategy. Indeed Bixby et al. [86] observed that steepest-edgepricing produced much better results than using pure reduced costs, but also proposed analternative pricing strategy lambda price which scales the reduced costs by dividing the dutycost by the sum of the simplex multipliers. Bixby orders the duties with negative reduced costsby this price in order to select only a subset of them. This is not applicable in the columngeneration application described, which limits the selection by parameters rather than dutyquality, but it may be bene�cial in the optimisation strategy. Partial pricing also may proveuseful as it reduces the calculations necessary for each iteration and so may be powerful incolumn generation systems where the model is optimised on more than one occasion.9.3.3 Branch and BoundNo work has been carried out in order to customise the branch and bound strategy to betterapply to a column generation method. The most obvious investigation would be to introduce acolumn generation technique within the search tree so that it no longer relies on the availableduties to �nd an integer solution. A possible method would be to introduce more duties atan infeasible node and to alter the branching strategy to bias the search to those nodes whichconsider smaller duty sets. In this way the solution method does not have to consider the largerproblem if a solution can be found from the original duty set.9.3.4 Column RemovalIt may be bene�cial to introduce a mechanism whereby duties can be removed from the subsetif they are unlikely or certain not to be used in improving the objective cost. This would havethe bene�t of keeping the subset size lower, especially where more column generation iterationswere needed and added many duties, or if column generation were to be used in the branchand bound strategy which will introduce further duties later. The danger of removing dutiesbefore the continuous solution is that there may not be su�cient duties remaining from whichto �nd an integer solution. If a column generation technique were to be introduced into thebranch and bound phase, however, the strategy proposed by Willers [14] of removing dutiesat some nodes in the tree may be useful in ensuring that the duty size at each node remainedmore constant.



CHAPTER 9. SUMMARY AND CONCLUSIONS 1569.4 Possible Application of SystemThe bus duty generation procedure used within TRACS II only considers duties containing upto three spells of work. Where manual schedules have been formed which include duties withmore spells it is often due to di�culties in completing the systematic scheduling approach overa large bus schedule, and computerised systems often produce better schedules without theneed for duties with more than three parts. There is a version of TRACS II which has beendeveloped to schedule train driver duties [48] in which the duty generation procedure has beenaltered to generate four-part duties. Currently it is not necessary to generate duties with �veor more parts but manual train driver schedules may have such duties, particularly overnight,or to allocate other tasks related, e.g. vehicle preparation. Allowing four-part duties createsa much larger potential set of valid duties which have to be reduced using heuristics in orderto use TRACS II. Train driver scheduling therefore may particularly bene�t from a columngeneration approach in which more duties can be considered when forming a �nal schedule.9.5 Summary of AchievementsFor the problem of chaining mealbreaks to produce more e�cient driver schedules, a math-ematical model has been proposed which optimises such chains over a speci�ed time period.This formulation produced an optimal solution for a simple example, although it is noted thatthe complexity of the constraints is dependent upon the labour agreement rules.A guaranteed optimal schedule for a given set of generated valid duties can be found by exhaus-tively searching through all duty combinations which cover the bus work. A search tree methodhas been tested which includes heuristics to limit searching on branches where it is known thatthe optimal solution cannot be found. On a small example this method produces the optimalsolution quickly but it is inadequate for solving real problems. The method does, however,incorporate a technique for storing duty information di�erently, which is usefully implementedwithin the column generation system described.The proposed column generation procedure has led to signi�cantly less (up to 99% less) com-puter time in 10 out of 12 cases. For problems where TRACS II is used on a smaller duty setand the proposed column generation procedure is used on a larger duty set, in 1 case it hasproduced a solution where none were previously obtained and in 4 cases it has given solutionsrequiring fewer duties than previously.



CHAPTER 9. SUMMARY AND CONCLUSIONS 157In addition, it has been shown that column generation allows much larger problems to be solvedin a reasonable amount of computer time. This implies that better solutions can be obtainedin some cases by considering signi�cantly larger sets of potential duties. Larger problems canbe tackled through column generation which previously had to be subdivided.
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