
Adaptive Stable Finite Element Methods for theCompressible Navier-Stokes EquationsbyPhilip John CaponSubmitted in accordance with the requirementsfor the degree of Doctor of PhilosophyThe University of LeedsSchool of Computer StudiesDecember 1995The candidate con�rms that the work submitted is his own and that appropriatecredit has been given where reference has been made to the work of others.

iiAbstractMany problems involving uid ow can now be simulated numerically, providinga useful predictive tool for a wide range of engineering applications. Of particu-lar interest in this thesis are computational methods for solving the problem ofcompressible uid ow around aerodynamic con�gurations.A �nite element method is presented for solving the compressible Navier-Stokesequations in two dimensions on unstructured meshes. The method is stabilizedby the addition of a least-squares operator (an inexpensive simpli�cation of theGalerkin least-squares method), leading to solutions free of spurious oscillations.Convergence to steady state is reached via a backward Euler time-stepping scheme,and the use of local time-steps allows convergence to be accelerated. The choice ofboth the nonlinear solver, which is employed to solve the algebraic system arising ateach time-step, and the iterative method used within this solver, is fully discussed,along with an inexpensive technique for approximating the Jacobian matrix.In order to obtain accurate solutions more e�ciently, the idea of adapting themesh is investigated, and two distinct methods of mesh re�nement are described indetail. These are the addition of nodes to the mesh in regions determined by anerror indicator (h-re�nement) and the local repositioning of existing nodes using thevalue of this error indicator across neighbouring elements (r-re�nement). As well asconsidering these adaptive techniques separately, we introduce an original algorithmwhich combines the two ideas, with results indicating that this combination is ane�ective approach. The example problems used consist mainly of steady transonicow at low to moderate Reynolds numbers.Transient ow problems are also considered, and we examine the di�cultieswhich occur when the method of lines is used as a solution technique and h-re�nement (including dere�nement of elements) is carried out.

iiiAcknowledgementsI would like to thank my supervisor Dr. Peter Jimack for his guidance andencouragement throughout the course of this research. I would also like to thankPhil Woods of British Aerospace Sowerby Research Centre, Dr. Shaun Forth andDr. Martin Berzins for their helpful advice and discussions during this time.Thanks are also due to my o�ce colleagues Paul Pratt, Gary Stead, DavidHodgson and Jeremy Littler for their support and friendship.This research was supported by EPSRC and British Aerospace plc through aEPSRC CASE award.

iv
Contents1 Introduction 11.1 Numerical Simulation of Compressible Flow : : : : : : : : : : : : : 21.1.1 Problem Speci�cation : 21.1.2 Grid Generation : 41.1.3 Flow Solution : 51.1.4 Post-processing : 81.2 Contents of Thesis : 81.3 Implementation Details : 92 A Stable Finite Element Method for the Steady Navier-StokesEquations 102.1 Introduction : 102.2 The Navier-Stokes Equations for Compressible Flow : : : : : : : : : 112.2.1 Primitive formulation : 122.2.2 Alternative formulations : 142.3 The Galerkin Finite Element Method : : : : : : : : : : : : : : : : : 182.3.1 Inadequacy of the Galerkin method : : : : : : : : : : : : : : 212.4 Use of bubble functions : 222.5 Stable Schemes : 242.5.1 A Stable Method for the Navier-Stokes Equations : : : : : : 272.6 Time-stepping : 282.6.1 Global and Local Time-Stepping : : : : : : : : : : : : : : : 302.7 Summary : 313 Solution of a Nonlinear System of Algebraic Equations 333.1 Introduction : 33

v3.2 Newton's Method : 343.2.1 The Algorithm : 343.2.2 Obtaining global convergence : : : : : : : : : : : : : : : : : 353.2.3 Inexact Methods : 373.2.4 NKSOL : 373.2.5 Evaluation of Jacobian : 383.3 Solution of Linear System : 413.3.1 Iterative versus Direct Solvers : : : : : : : : : : : : : : : : : 423.3.2 GMRES : 443.3.3 Preconditioning : 463.3.4 ILU Factorization : 473.3.5 SLAP : 493.3.6 Storage of Sparse Matrices : : : : : : : : : : : : : : : : : : : 493.4 Summary : 524 Results on Fixed Meshes 534.1 Introduction : 534.2 Unstructured Meshes : 544.3 Algorithm for Solution : 544.4 Flow Evaluation : 564.5 A System of Burgers' Equations : 584.6 Comparison of Test Cases : 614.6.1 Case A1 : 624.6.2 Case A2 : 644.6.3 Case A3 : 714.6.4 Case A6 : 734.6.5 Flow Over a Flat Plate : 754.7 Summary : 785 Adaptivity I: h-Re�nement 805.1 Introduction : 805.2 Error Indicators : 825.3 A Local Spatial Re�nement Algorithm : : : : : : : : : : : : : : : : 845.4 Results : 87

vi5.4.1 A System of Burgers' Equations : : : : : : : : : : : : : : : : 875.4.2 A2 : 905.4.3 A3 : 935.4.4 A6 : 955.4.5 Flow over a Flat Plate : 975.5 Summary : 1016 Adaptivity II: r-Re�nement 1036.1 Introduction : 1036.2 Techniques of r-Re�nement : 1046.3 A Local Node Movement Algorithm : : : : : : : : : : : : : : : : : : 1066.4 r-Re�nement Only : 1086.4.1 Numerical Examples : 1096.5 hr-Re�nement : 1166.6 Results using hr-Re�nement : 1186.6.1 Burgers' Equations : 1196.6.2 GAMM Test Cases : 1226.7 Summary : 1337 Time-Dependent Problems 1367.1 Introduction : 1367.2 Time Accurate Finite Element Methods : : : : : : : : : : : : : : : 1377.2.1 Space-time Finite Elements : : : : : : : : : : : : : : : : : : 1387.2.2 Taylor-Galerkin Methods : 1397.2.3 Method of Lines : 1407.3 Temporal Discretization : 1407.3.1 Solution of O.D.E.'s : 1407.3.2 SPRINT : 1427.4 The Method of Lines for Unsteady Flow : : : : : : : : : : : : : : : 1437.5 Interpolation on Re�ned Meshes : 1507.5.1 A One Dimensional Convection-Di�usion Problem : : : : : : 1507.5.2 Interpolation on Two Dimensional Meshes : : : : : : : : : : 1647.5.3 Connection between Residual and Time-Step : : : : : : : : : 1687.5.4 Time-Dependent Navier-Stokes Equations : : : : : : : : : : 170

vii7.6 Summary : 1718 Future Areas of Research 1738.1 Introduction : 1738.2 Turbulence Modelling : 1738.2.1 The Reynolds Averaged Navier-Stokes Equations : : : : : : 1748.2.2 Types of Turbulence Models : : : : : : : : : : : : : : : : : : 1778.2.3 Implementation Issues : 1818.3 r-Re�nement for Time-Dependent Problems : : : : : : : : : : : : : 1828.3.1 r-Re�nement Only : 1828.3.2 hr-Re�nement : 1838.4 Solution of 3-D Flow : 1849 Summary 186

viii
List of Figures2.1 Typical domain and boundaries for external ow around a body : : 134.1 A structured mesh around a NACA0012 Aerofoil (4096 elements). : 544.2 An unstructured mesh around a NACA0012 Aerofoil (1617 elements). 554.3 Values used in calculation of Cd and Cl. : : : : : : : : : : : : : : : : 584.4 u values of exact solution of Burgers' System (� = 0:01). : : : : : : 594.5 Mesh 3 (2310 elts). : 604.6 Case � = 0:001 on mesh 3. u component of solution using (a) Galerkinand (b) GLS. : 614.7 Mesh 2 (5436 elements). : 624.8 Test case A1: Density contours around aerofoil using Galerkin method(a) without and (b) with bubble functions on mesh 1. : : : : : : : : 634.9 Pressure coe�cients for case A1 using bubble functions and GLS onmesh 2. : 634.10 Friction coe�cients for case A1 using bubble functions and GLS onmesh 2. : 644.11 Test case A2: Density contours around aerofoil using (a) Galerkinwith bubble functions and (b) Galerkin least-squares on mesh 1. : : 654.12 Pressure coe�cients around the aerofoil for primitive and conserva-tive formulations (case A2). : 654.13 Friction coe�cients around the aerofoil for primitive and conservativeformulations (case A2). : 664.14 Comparison of number of nonlinear iterations taken to converge usinglocal and global time-stepping. : 674.15 Linear iterations to solve a nonlinear problem using GMRES withand without a preconditioner. : 694.16 Test case A3: Density contours around aerofoil. : : : : : : : : : : : 72

ix4.17 Pressure coe�cients for case A3 on mesh 2. : : : : : : : : : : : : : : 724.18 Friction coe�cients for case A3 on mesh 2. : : : : : : : : : : : : : : 724.19 Test case A6: Mach number contours around aerofoil. : : : : : : : : 734.20 Pressure coe�cients for case A6 on mesh 2. : : : : : : : : : : : : : : 744.21 Friction coe�cients for case A6 on mesh 2. : : : : : : : : : : : : : : 744.22 Test case A6: Mach contours around aerofoil on �ner structured mesh. 744.23 Middle mesh (h = 0:05) used for at plate ow problem. : : : : : : 754.24 Pressure contours of solution on �nest mesh (h = 0:0125). : : : : : : 764.25 Mach contours of solution on �nest mesh (h = 0:0125). : : : : : : : 774.26 Pressure coe�cients for at plate ow problem. : : : : : : : : : : : 774.27 Friction coe�cients for at plate ow problem. : : : : : : : : : : : : 775.1 Re�nement of triangles into two or four sub-triangles. : : : : : : : : 855.2 Tree structure for triangles shown in �gure 5.1. : : : : : : : : : : : 865.3 Initial coarse mesh (40 elements). : : : : : : : : : : : : : : : : : : : 885.4 Contour plot of u and �nal mesh (1575 elements) when using �gK andMAXLEV=4. : 895.5 Initial coarse mesh around NACA0012 aerofoil (547 elements). : : : 905.6 Density contours for case A2 using residual indicator. : : : : : : : : 915.7 Pressure coe�cients using di�erent error indicators for case A2. : : 925.8 Friction coe�cients using di�erent error indicators for case A2. : : : 925.9 Mesh sections using (a) density gradient (�gK) and (b) vorticity (�vK). 935.10 Mesh sections for case A3 using (a) density gradient (�gK) and (b)residual (�rK). : 945.11 Density contours for case A3 using (a) density gradient (�gK) and (b)residual (�rK). : 955.12 Mesh sections of �nal mesh for case A6. : : : : : : : : : : : : : : : : 965.13 Mach contours for case A6 using residual error indicator. : : : : : : 965.14 Initial mesh used for at plate ow problem. : : : : : : : : : : : : : 975.15 Pressure coe�cients for at plate ow problem. : : : : : : : : : : : 985.16 Friction coe�cients for at plate ow problem. : : : : : : : : : : : : 985.17 Flat plate ow: contours of pressure on �nal mesh. : : : : : : : : : 985.18 Flat plate ow: contours of Mach number on �nal mesh. : : : : : : 995.19 Flat plate ow: �nal mesh using �rK indicator. : : : : : : : : : : : : 99

x5.20 Flat plate ow: �nal mesh using �gK indicator. : : : : : : : : : : : : 1006.1 Local node movement, showing weighting functions for each element. 1066.2 Example of mesh tangling occurring. : : : : : : : : : : : : : : : : : 1086.3 Solution error norm for di�erent values of UPS and NU . : : : : : : : 1106.4 Final meshes obtained when using r-re�nement only for Burgers'system (a) No movement (b) �rK (c) �eK (d) �gK : : : : : : : : : : : : 1116.5 Contour plot of u using r-re�nement only with �rK. : : : : : : : : : 1116.6 Convergence to steady state with no r-re�nement, UPS=1 and UPS=5.1136.7 Pressure coe�cients for case A2 using r-re�nement. : : : : : : : : : 1146.8 Friction coe�cients for case A2 using r-re�nement. : : : : : : : : : 1146.9 Final re�ned mesh using �rK. : 1146.10 Final re�ned mesh using �gK. : 1156.11 Final re�ned mesh and density contours for case A3. : : : : : : : : 1166.12 Flowchart of hr-re�nement algorithm. : : : : : : : : : : : : : : : : : 1186.13 Contour plot of u and �nal mesh obtained when using hr-re�nementfor Burgers' system with �rK indicator. : : : : : : : : : : : : : : : : 1216.14 Subsection [0:4; 0:6]� [0:4; 0:6] of �nal meshes using (a) �rK and (b) �gK.1226.15 Final mesh and density contours obtained when using hr-re�nementfor case A2 with �rK indicator. : 1236.16 Pressure coe�cients for case A2 using hr-re�nement for di�erent er-ror indicators. : 1246.17 Friction coe�cients for case A2 using hr-re�nement for di�erent in-dicators. : 1246.18 Final meshes for case A2 with (a) �dK and (b) �gK. : : : : : : : : : : 1256.19 Final meshes for case A3 with (a) �rK and (b) �gK. : : : : : : : : : : 1266.20 Density contours for case A3 with �rK. : : : : : : : : : : : : : : : : : 1276.21 A6: Mach contours of solution on hr-re�ned mesh. : : : : : : : : : : 1286.22 A6: Final mesh using hr-re�nement. : : : : : : : : : : : : : : : : : 1286.23 Pressure coe�cients for case A2. : 1296.24 Friction coe�cients for case A2. : 1296.25 Pressure coe�cients for case A3. : 1296.26 Friction coe�cients for case A3. : 1306.27 Pressure coe�cients for case A6. : 130

xi6.28 Friction coe�cients for case A6. : 1306.29 Flat plate ow: �nal mesh using �rK indicator. : : : : : : : : : : : : 1326.30 Flat plate ow: �nal mesh using �gK indicator. : : : : : : : : : : : : 1326.31 Pressure coe�cients for at plate ow problem. : : : : : : : : : : : 1336.32 Friction coe�cients for at plate ow problem. : : : : : : : : : : : : 1337.1 Unsteady ow: meshes at t=1, t=3, t=5, t=7. : : : : : : : : : : : : 1457.2 Unsteady ow: meshes at t=9, t=10.5, t=12, t=13.5. : : : : : : : : 1467.3 Unsteady ow: Mach contours of solution at t=1, t=3, t=5, t=7. : 1477.4 Unsteady ow: Mach contours of solution at t=9, t=10.5, t=12,t=13.5. : 1487.5 Plot of time against time-steps. : 1498.1 h-re�nement{node movement{dere�nement leading to a deformedtriangle. : 183

xii
List of Tables4.1 Test cases considered from [18]. : 584.2 Comparison of errors using Galerkin and GLS. : : : : : : : : : : : : 604.3 Results for case A1, A2, A3, A6 on mesh 2. : : : : : : : : : : : : : : 644.4 Timings for di�erent preconditioners. : : : : : : : : : : : : : : : : : 684.5 Convergence comparison using di�erent sizes of Krylov dimension. : 694.6 Convergence times using di�erent methods to evaluate the Jacobian. 714.7 Time taken to solve at plate ow problem on each mesh : : : : : : 765.1 Results on adapted meshes for Burgers' equations. : : : : : : : : : : 895.2 Results on adapted meshes for test case A2. : : : : : : : : : : : : : 915.3 Case A2: E�ect of di�erent MAXLEV. : : : : : : : : : : : : : : : : 935.4 Results on adapted meshes for test case A3. : : : : : : : : : : : : : 945.5 Results on meshes for test case A6. : : : : : : : : : : : : : : : : : : 955.6 Results on adapted meshes for at plate ow. : : : : : : : : : : : : 1006.1 Results on r-re�ned meshes for Burgers' equations. : : : : : : : : : 1106.2 Results on r-re�ned meshes for Navier-Stokes equations (case A2). : 1136.3 hr-re�nement with predeterminedNU for system of Burgers' Equations.1196.4 hr-re�nement with varying UPS for system of Burgers' Equations. : 1206.5 Results on hr-re�ned meshes for system of Burgers' Equations. : : : 1206.6 Results on re�ned meshes for Burgers' Equations. : : : : : : : : : : 1216.7 Results on hr-re�ned meshes for case A2. : : : : : : : : : : : : : : : 1236.8 Test case A3: results on hr-re�ned meshes. : : : : : : : : : : : : : : 1256.9 Results on re�ned meshes for test cases A2, A3 and A6. : : : : : : : 1316.10 Results on hr-re�ned meshes for at plate ow. : : : : : : : : : : : 1317.1 E�ect of interpolants on re�ning a) during transient stage and b)near steady state : 160

xiii7.2 E�ect on the time-step size using linear and Hermite Interpolation. 167

1
Chapter 1IntroductionMany physical processes may be modelled by a set of partial di�erential equations(p.d.e.'s) and the solution of these equations allows us to make predictions about thebehaviour of such processes. In general, the p.d.e.'s cannot be solved analytically,and so a numerical method is required to obtain solutions. The rapid growth in thepower and availability of computers in recent years has led to the development ofmany algorithms for solving these problems successfully, and as a result numericalsimulation is beginning to complement or even replace experimental measurement.One area which has bene�ted from this development is that of uid dynamics,allowing many types of uid ows to be modelled accurately. For example, in theaerospace industry, it may soon be possible to use computational uid dynamics(c.f.d.) as a cost-e�ective alternative to building physical models in the design stageof aircraft production.A common problem in aerodynamics is simulation of compressible ow arounda body (such as an aerofoil in two dimensions or a wing in three dimensions). Inthis thesis we describe a numerical method for solving this type of problem. Thecompressible Navier-Stokes equations in two dimensions are solved using a stabilized�nite elementmethod on unstructured meshes. Solutions are obtained implicitly viaNewton's method and a GMRES iterative solver, allowing convergence to steadystate in a small number of time-steps. The algorithm is made more e�cient byadapting the mesh as solution progresses. The two distinct techniques used tomodify the mesh are the addition of extra grid points and the relocation of existingpoints to those regions where the error is estimated to be large. We focus mainlyon steady problems, but also consider transient ow.

2In the next section, we present a brief overview of techniques for solving com-pressible ow problems, mentioning some of the methods in common use and iden-tifying which issues are addressed by this thesis. The contents of each chapter inthe thesis are outlined in x1.2, and in x1.3 we discuss some important aspects ofthe software implementations performed during this work.1.1 Numerical Simulation of Compressible FlowThe process by which the numerical solution of any system of p.d.e.'s may beobtained can be divided into four distinct stages. First a precise formulation ofthe problem in terms of equations, boundary conditions and solution domain isneeded. Next, the domain is usually divided up into elements or cells to form adiscrete grid on which the numerical scheme operates. The third stage is the actualsolution procedure, and in the �nal step, any post-processing, such as visualizingthe results, is carried out. We consider each of the four stages separately for thecase of compressible ow problems around aerodynamic con�gurations.1.1.1 Problem Speci�cationThe Euler equations (de�ned in [101] for example) are the fundamental equationsfor describing the motion of an inviscid ideal gas. This hyperbolic system of p.d.e.'sis often used to obtain ow solutions around aerodynamic bodies, based on the as-sumption that air is both ideal and inviscid. For many ows, this inviscid approachleads to solutions which adequately predict properties such as the lift on the bodyand the ow �eld away from the body.However viscosity does have an e�ect close to the surface of the body, wherefrictional forces contribute to the drag, and in some circumstances the boundarylayer which is formed can become separated from the surface leading to the cre-ation of a wake. Hence there may be a need to account for viscous e�ects in theequations which are modelling the ow, and addition of the viscous terms to theEuler equations leads to the Navier-Stokes equations (see [101] or chapter 2 of thisthesis).When a ow is considered to be viscous, the question arises of whether thereis turbulence present in the ow. Laminar (i.e. non-turbulent) ow is smooth and

3usually occurs when the Reynolds number is below a problem-dependent criticalvalue. Above this value the ow becomes turbulent and is characterized by irregular,apparently chaotic motion of the uid. For most practical aerodynamic problems,turbulence is present and leads to signi�cantly di�erent behaviour from laminarow near the body surface, so it is important that the phenomenon is correctlymodelled. For most problems, the computational mesh (see x1.1.2) is not �neenough to correctly resolve turbulent e�ects, so the Navier-Stokes equations areaveraged and extra algebraic or di�erential equations are used to approximate theterms introduced by the presence of turbulence.Although the e�ects of the compressibility of air at low speeds (i.e. when theMach number,M , (the ratio of ow velocity to speed of sound) is less than approx-imately 0.3) may be ignored, at higher speeds these e�ects need to be taken intoaccount and so the full equations for compressible ow are used. Compressible owmay be placed in one of several ow regimes, depending on the Mach number, andthese range from subsonic (where M < 1 everywhere) to hypersonic (M >> 1).The properties of the ow in these di�erent regimes vary signi�cantly (see [1] forfurther details) and will a�ect the choice of ow solver used.In many cases there exists a steady state solution to the equations, but it maybe necessary for some applications to seek time-dependent solutions, in which casea numerical method is needed which is accurate in time as well as space (and willbe more expensive as a consequence).Having speci�ed the equations which are to be used, the solution domain needsto be de�ned. This includes the geometry of the aerodynamic con�guration whichcould be as simple as a two-dimensional aerofoil or as complex as a complete three-dimensional aircraft. It is only recently that the level of computing power to dealwith three-dimensional ow has been easily available, and previously simulationshave been limited to two-dimensions. The solution domain is enclosed by a bound-ary, which is far enough away from the body that the ow here is that of thefreestream. Correct boundary conditions along both the freestream and surfaceneed to be speci�ed so that the p.d.e.'s being solved are well-posed.In this thesis, the equations which we wish to solve are the Navier-Stokes equa-tions, at low to moderate Reynolds numbers, so that the ow is laminar and, inmost cases, steady. Example ows considered lie in either the subsonic, transonic orsupersonic ow regimes, with the solution geometry consisting of a domain around

4two-dimensional aerofoils.1.1.2 Grid GenerationMost numerical schemes for solving p.d.e.'s require the solution domain to be par-titioned into a large number of cells, where the nodes or cells of the resulting gridare used to form an approximate solution. Except for very simple domains, thegeneration of such a grid is not straightforward and for complex three dimensionaldomains can be more expensive than the actual solution of the ow. Weatherill[125] gives a general overview of mesh generation, but here we briey describe thetwo classes (structured and unstructured) that grids fall into.On a structured grid, points are stored in an ordered fashion so that the neigh-bours of each node may be easily referenced, and each non-boundary node has thesame number of neighbours. Usually the shape of the cells are quadrilateral and thegrid has a regular appearance (see �gure 4.1 for example). Flow solvers based uponstructured grids lead to e�cient algorithms, because neighbouring node values canbe accessed quickly, but the generation of grids is expensive. The usual approachtaken is to set up a mapping which transforms the complex physical domain into asimpler computational domain. For more complicated geometries this may not bepossible so the domain is divided into blocks, each of which is transformed sepa-rately.Unstructured meshes di�er from structured meshes in the data structure usedto store the mesh. There is no longer any correspondence between the physicalpositions of the node points and the order in which they are stored, so that the datastructure requires details of the connectivity of the mesh, i.e. knowledge of whichnodes surround each element. The appearance of unstructured meshes is usuallyirregular, and nodes may have a variable number of neighbours. The usual shapeof elements is either quadrilateral or more commonly triangular, and an exampleof a such a mesh is shown in �gure 4.2. Two common methods for generatingthis type of mesh are the advancing front technique, where nodes and connectivityare both de�ned as the mesh is being generated across the domain, and Delaunaytriangulation, where the node positions are determined �rst, and their connectivityis de�ned subsequently.Because the neighbours of each node are no longer directly accessible, use of

5these meshes is computationally more expensive than the use of structured grids,but there are a number of advantages when solving on unstructured grids. Themajor advantage is the ability to generate them for complex domains more quicklythan structured meshes. In addition, this approach means that there can be largevariations in the mesh density throughout the mesh, allowing regions where thesolution is nearly constant to have far fewer nodes than the regions of greatestactivity. Although the location of these regions may not be known in advance, itis possible to dynamically modify the mesh according to the ow as the solutionprogresses.We do not address the issue of grid generation in this thesis, but use unstructuredtriangular meshes generated elsewhere. The technique of modifying the mesh duringthe solution is discussed in some depth, and two methods of doing this are presented.1.1.3 Flow SolutionIn order to obtain a good solution to the p.d.e.'s representing the ow, two impor-tant properties that the ow solver should possess are accuracy and stability. Anaccurate scheme should reproduce the analytical solution as the size of the meshelements tends to zero, and if it is stable then the numerical solution will be befree of non-physical oscillations. The issue of stability is particularly signi�cant forinviscid ows or ows at high Reynolds numbers, and numerical methods which aresuccessful for other types of p.d.e.'s often need to be modi�ed for these hyperbolicor convection-dominated problems.In general, the solver transforms the di�erential operators in the p.d.e.'s intodiscrete operators. Often the spatial and temporal terms are dealt with separately(semi-discretization), and we now discuss the most popular methods used for thediscretization process.Finite Di�erence MethodsThis class of methods was the �rst to be used in uid ow problems, and manyvariations have since been developed to deal with di�erent types of problem. Anintroduction to �nite di�erences is given by Smith in [109], but the basic idea isto replace the partial derivatives by expressions written in terms of the unknowns,using Taylor expansions. Only regular structured meshes are suitable for use with

6these methods.In order to deal with �rst order convection terms, which lead to instabilities whenthe usual central di�erence operator is applied to each point, upwinding (where abias towards the neighbouring upstream node is applied to the operator) has beenused. By itself, this is less accurate (as the mesh size tends to zero) than usingcentral di�erences, which has led to improved methods such as ux limiter schemes,Godunov's scheme [49], involving the solution of a Riemann problem at each cell,and approximate Riemann solvers (e.g. [103]).Finite Volume MethodsPossibly the most widely used methods in ow simulation, one of the �rst suchschemes being that of Jameson et al. [74]. Methods are either cell-centred, usingthe element as a control volume over which to be integrated or cell-vertex, where theregion surrounding each node is the control volume. The equations to be discretizedare written in a conservative form, and integrated over each control volume. Thesurface integrals containing the advective and di�usive uxes are rewritten as lineintegrals using the divergence theorem so that the uxes may be evaluated alongthe volume faces. This calculation of the numerical uxes often uses �nite di�erence(or �nite element) techniques. Peyret and Taylor [102] give a description of �nitevolume methods applied to uid problems.Historically, �nite volume schemes have been used mainly on structured meshes,but manymethods have been developed for unstructured triangular meshes in recentyears (see [123] for example).Finite Element MethodsThe �nite element method is a relative latecomer to c.f.d., its main applicationhaving traditionally been in solid mechanics. For a detailed introduction to themethod see, for example, [77], [115] or [98]. First, the original p.d.e.'s are mul-tiplied by a test function and integrated over the domain, resulting in the weakformulation of the problem. The in�nite dimensional subspace which contains theunknown function is then replaced by a subspace of �nite dimension, chosen sothat the approximate solution consists of a piecewise polynomial function. Suitablechoice of the test function leads to a system of algebraic equations to be solved.

7Usually integration is carried out on each element of the mesh (which may well beunstructured) and the global equations are assembled from the local element ones.In the same way as �nite di�erence and �nite volume methods, modi�cationsare needed so that stability is maintained for convection-dominated ows. Thishas been done using arti�cial viscosity, which is simple to implement but not veryaccurate, or streamline upwind Petrov Galerkin methods (e.g. Hughes [65], Johnson[78]). One advantage of using �nite elements is that there exists a solid theoreticalfoundation to the methods, allowing analysis of convergence, stability and errorestimation (e.g. [115], [42]).Use of the above methods, combined with an accurate ordinary di�erential equationsolver (or suitable alternative) if transient solutions are being sought, leads to anexplicit scheme, if the algebraic equations depend on the known values at the previ-ous time-step, or an implicit scheme, where the equations depend on the unknowncurrent solution values. In the former case, which is very quick since only updatesare being performed at each time-step, convergence to a steady state is slow sincethe time-steps are limited by stability constraints. Implicit solution requires solvinga nonlinear set of equations, which is more expensive, but very large time-steps maybe taken. The nonlinear system may be solved using Newton's method, for exam-ple, and the resulting linear systems solved by either direct methods or iterativetechniques.Alternatively the technique of multigrid (see [16]) may be used. This makes useof the fact that di�erent components of the error in a solution are most e�ectivelyreduced by meshes of di�ering length-scale. Several meshes, ranging from a verycoarse to very �ne, are used in the solution process. Since the solution needs tobe interpolated between di�erent meshes, the algorithm is more naturally suitedto structured grids, and has been used to solve compressible ows around aerofoils(e.g. Jameson and Mavriplis [73]), but an unstructured equivalent has also beendeveloped by Mavriplis [92].Here, we use �nite elements for the spatial discretization, utilizing a variation ofthe Galerkin least-squares method of Hughes to add stability. A steady state solu-tion is obtained by time-stepping with an implicit backward Euler scheme until thesteady solution is reached. The resulting nonlinear system is solved with Newton'smethod, with preconditioned GMRES as the linear iterative solver.

81.1.4 Post-processingOnce a numerical solution for the ow of interest has been obtained, it is clear thatsome means of presenting this solution is required. At the simplest level this maybe a plot of the pressure coe�cients over an aerofoil, but the ability to view theentire ow-�eld is needed in order to identify the location of features such as shocksand separated ows. The visualization of two-dimensional ows includes the use ofcontour and shaded plots, and vector arrows. In three dimensions, visualizing thedata becomes more di�cult and properties such as colour and opacity are used torepresent ow variables.It is important that the numerical method being used is validated by comparingresults against both experiment (e.g. wind tunnel) and other numerical codes;usually for some well-de�ned test problems. As well as simple visual comparisonsof solutions, values such as the lift and drag on the body may be used as checks ofaccuracy.We are not concerned with such issues as visualization in this thesis, and usea software package \Viz" [112] to display solutions graphically. Results featuredhere include values such as lift and drag coe�cients for comparison with previousresults.The four stages outlined above encompass the complete process for �nding numer-ical solutions to a compressible ow problem. At each stage we have pointed outwhich issues are addressed in this thesis, and in the following section list the orderin which these issues appear.1.2 Contents of ThesisWe now outline the contents of each chapter in this thesis. In chapter 2, we state thecompressible Navier-Stokes equations, and their formulation for di�erent variables.The stabilized �nite element method used throughout the remainder of the thesisis then described. This method leads to a system of nonlinear algebraic equations,and chapter 3 contains a discussion of the nonlinear and linear schemes which areused to solve this system.Some results for a number of well known test cases solved on �xed unstructured

9meshes are presented in chapter 4. The next two chapters both address the issue ofadaptivity, where the mesh is altered in some way in order to improve the e�ciencyand/or accuracy of the solution process. In chapter 5 we consider the additionof extra points to the mesh (h-re�nement), and give results for comparison withthose obtained in chapter 4. Chapter 6 contains a description of a node movementalgorithm (r-re�nement) and we present results of using r-re�nement alone and acombination of the two techniques (hr-re�nement).Prior to chapter 7, only steady ow problems are considered, but in this chapter,we discuss some methods, and associated di�culties, for accurately solving tran-sient ows. In chapter 8, three separate issues are discussed as areas for futurework. These include turbulence modelling, implementation of the node movementalgorithm of chapter 6 for unsteady problems and extension of the work to threedimensions. A brief summary is given in chapter 9.1.3 Implementation DetailsThis section contains some comments concerning the practical implementation ofthe methods presented in the remainder of the thesis. The code has been writ-ten entirely in Fortran-77, rather than a more recent computer language such asC or Fortran-90. Most established numerical software packages have been writ-ten in Fortran-77, including the ones used in later chapters (NKSOL, SLAP andSPRINT), so using (and modifying) these packages in conjunction with our code isstraightforward.However, Fortran-77 does not contain features found in more modern languages,including dynamicmemory allocation. Because problems are solved on unstructuredmeshes and the number of unknowns vary (due to mesh re�nement), the lack of thisproperty means that the storage space is not always used e�ciently. In addition, itcauses some of the algorithms to be more complicated than the equivalent C code(for example, construction and storage of the sparse matrix structure used to storethe Jacobian matrix in x3.3.6).All the code has been written to be run on a serial machine, and no considerationhas been given the implementation of these methods on parallel machines. Thetimings for results presented in later chapters have been obtained on a single MIPSR4400 processor of a Silicon Graphics Challenge/XL eight-processor machine.

10
Chapter 2A Stable Finite Element Methodfor the Steady Navier-StokesEquations2.1 IntroductionThe purpose of this chapter is to present a �nite element method for the solutionof the compressible Navier-Stokes equations in two dimensions. The type of owwhich we consider in this chapter is both steady and laminar: time-dependentand turbulent solutions are discussed in subsequent chapters. We begin by statingthe equations in x2.2, a system of four (in two dimensions) p.d.e.'s, and since themajor application of this work is in aerodynamics, suitable boundary conditions forexternal ows are de�ned. Alternative formulations of the equations are also given,which use di�erent physical properties as the dependent variables.The Galerkin �nite element method is discussed in x2.3, along with details ofhow the method is applied to the Navier-Stokes equations. The problems arisingfrom using the Galerkin method on its own are also considered here. In x2.4 andx2.5, some improvements to the standard Galerkin method are presented, includinga modi�ed version of the Galerkin least-squares method of Hughes [66], which isused in later chapters.Although we are concerned with steady solutions of the equations, solving thesteady equations directly can be computationally very expensive, so it is usuallynecessary to obtain such solutions via some form of time-stepping where the time

11derivative is included in the equations. This is discussed in x2.6 where the techniqueof local time-stepping is also described.2.2 The Navier-Stokes Equations for Compress-ible FlowIn this section, we state the compressible Navier-Stokes equations and describea number of alternative variable formulations. The form of the equations usingprimitive variables is discussed �rst, with associated boundary conditions. Otherformulations are presented, including a generalized formulation for an arbitrary setof variables.The �ve primary variables involved in the study of the compressible ow of agas are velocity (u), density (�), pressure (p), internal energy (e) and temperature(T). In two dimensions, u consists of two components (u and v) so six governingequations are required. We make the following assumptions about the gas: it isideal, so that p = �RT; (2.1)where R is the speci�c gas constant; it is calorically perfect, which means that thespeci�c heats at constant volume and pressure cv and cp are constant, so thate = cvT: (2.2)These assumptions are reasonable in the case of air provided the temperature ismoderate and the ow is not hypersonic. The relations also mean that only afurther four equations are required, and these are derived from the principles ofconservation of mass, momentum and energy:@�@t +r:(�u) = 0 (2.3)@�u@t +r:(u�u) + @p@x = @�11@x + @�21@y (2.4)@�v@t +r:(v�u) + @p@y = @�12@x + @�22@y (2.5)@@t(e+ juj2=2) +r:((e+ juj2=2)�u) +r:(pu) =r:(krT) + @@x(�11u+ �12v) + @@y (�21u+ �22v) ; (2.6)

12where � is the coe�cient of thermal conductivity and �ij is the viscous-stress tensorgiven by 264 �(ux + vy) + 2�ux �(uy + vx)�(vx + uy) �(ux + vy) + 2�vy 375 : (2.7)For the viscosity coe�cients � and �, we assume Stoke's hypothesis (� = �2=3�).For further details of how the above equations are obtained, see for example Batch-elor [12], O'Neill and Chorlton [101] or Anderson [1].The four p.d.e.'s (2.3){(2.6) form the Navier-Stokes equations, which can berewritten in a number of ways, depending on the choice of unknown variables. We�rst consider a primitive variable formulation.2.2.1 Primitive formulationFollowing the approach of Bristeau et al. [17], the equations can be non-dimensionalizedand written so that the primitive variables of � (density), u (velocity) and T (tem-perature) are the primary unknowns:@�@t + u:r�+ �r:u = 0; (2.8)�@u@t + �(u:r)u+ (� 1)(Tr�+ �rT) = 1Re [�u+ 13r(r:u)]; (2.9)�@T@t + �u:rT + (� 1)�Tr:u = 1Re(Pr�T + F (ru)): (2.10)Note that �, u and T refer to non-dimensionalized quantities here, rather thanthe physical variables denoted in (2.3){(2.6). The non-dimensionalization intro-duces two dimensionless parameters Re and Pr. The Reynolds numberRe = �1u1l1� ; (2.11)where �1, u1 and l1 are the freestream density, freestream speed and a suitablelength scale respectively, represents physically the ratio of inertia forces to viscousforces, while the Prandtl number Pr = �cp� (2.12)measures the ratio of energy dissipated by friction to the energy transported by ther-mal conduction. The ratio of speci�c heats (cp=cv) is denoted by , and throughoutthis work we assume Pr = 0:72 and = 1:4. The Reynolds number (with the

13Mach number de�ned below) governs the type of ow|the amount of viscosity inthe ow decreases with increasing Re and the ow becomes inviscid in the limit asRe tends to in�nity.For two dimensional ows, F (ru) has the formF (ru) = 43 "(@u@x)2 + (@v@y)2 � @u@x @v@y#+ @v@x + @u@y!2 : (2.13)The equations are to be solved in a region
 � R2, with a boundary �. In thecase of an external ow around a solid body such as an aerofoil, we de�ne �1 tobe the far�eld boundary, which is split up into the inow boundary,��1 = fx : x 2 �1;u1:n < 0g; (2.14)and outow boundary �+1 = �1n��1; (2.15)where n is the unit vector of the outward normal to the far�eld boundary. Theinternal wall boundary is denoted by �B, as shown in �gure 2.1.
+

8

Γ
+

8

n
Γ

u

Ω

ΓB

Γ 8

Γ 8

-

-

8Figure 2.1: Typical domain and boundaries for external ow around a bodyFor a given angle of attack �,u1 = 0B@ cos�sin� 1CA (2.16)

14is the normalized freestream velocity. As boundary conditions, on the inow bound-ary ��1, we have u = u1 (2.17)� = 1 (2.18)T = T1 = 1(� 1)M21 (2.19)where the parameter M1 is the freestream Mach number, the ratio of ow speedto the speed of sound. On the outow boundary, �+1,@u@n = 0 (2.20)@T@n = 0: (2.21)If M1 < 1 then we also specify � = 1. On the internal boundary, �B, the no-slipcondition of u = 0 (2.22)and T = TB = T1[1 + (� 1)M21=2] (2.23)are enforced. We specify these boundary conditions the same way as Bristeau et al.[17].Here we are interested in steady solutions of the Navier-Stokes equations, and inx2.3 we consider the time-independent set of equations. However in practice steadysolutions are often obtained using time-stepping (see x2.6) and in this case initialconditions are also required: �(x; 0) = �0(x) (2.24)u(x; 0) = u0(x) (2.25)T (x; 0) = T0(x): (2.26)2.2.2 Alternative formulationsWe demonstrate in this section that the Navier-Stokes equations can be written in ageneral form for any appropriate set of variables as the unknowns in the equations.If the conservative variables of density, momentum and energy are used then theNavier-Stokes equations may be expressed asU;t + Fadvi;i = Fdi�i;i + F (2.27)

15where \;i" denotes partial di�erentiation by xi and the summation convention isbeing used. U, Fadvi and Fdi�i are de�ned as followsU = 0BBBBBBB@ ��u1�u2�(e+ juj2=2) 1CCCCCCCA (2.28)Fadvi = �ui0BBBBBBB@ 1u1u2(e+ juj2=2) 1CCCCCCCA+ 0BBBBBBB@ 0p�1ip�2ipui 1CCCCCCCA ; Fdi�i = 0BBBBBBB@ 0�1i�2i�ijuj + (�T);i 1CCCCCCCA ;(2.29)F is the source vector containing body forces present and heat supplied. Note thatthe Euler equations are obtained from (2.27) simply by removing the terms Fdi�i;iand F .It is possible to rewrite (2.27) in quasi-linear form asU;t +AiU;i = (KijU;j);i + F (2.30)with Ai = Fi;U (i.e. the Jacobian matrix @Fadvi =@U) and the Kij 's satisfyingKijU;j = Fdi�i . These matrices have the following form:A1 = 0BBBBBBB@ 0 1 0 0(� 1)juj2=2 � u2 (3 �)u (1 �)v (� 1)�uv v u 0�u(e+ juj2(2 � 1)) e� (� 1)u2 + juj22 (1 �)uv u 1CCCCCCCA(2.31)A2 = 0BBBBBBB@ 0 0 1 0�uv v u 0(� 1)juj2=2 � v2 (1�)u (3 �)v (� 1)�v(e+ juj2(2 � 1)) (1 �)uv e� (� 1)v2 + juj22 v 1CCCCCCCA(2.32)K11 = �� 0BBBBBBB@ 0 0 0 0�43u 43 0 0�v 0 1 0�(43u2 + v2 + Pr (e� juj22)) u(43 � Pr) v(1� Pr) Pr 1CCCCCCCA (2.33)

16K12 = �� 0BBBBBBB@ 0 0 0 023v 0 �23 0�u 1 0 0�uv3 v �23u 0 1CCCCCCCA ;K21 = �� 0BBBBBBB@ 0 0 0 0�v 0 1 023u �23 0 0�uv3 �23v u 0 1CCCCCCCA (2.34)K22 = �� 0BBBBBBB@ 0 0 0 0�u 1 0 0�43v 0 43 0�(43v2 + u2 + Pr (e� juj22)) u(1 � Pr) v(43 � Pr) Pr 1CCCCCCCA (2.35)More generally, Hauke and Hughes [61] note that any independent set of vari-ables Y can be used to obtain the equations in quasi-linear form:A0Y;t +AiY;i = (KijY;j);i + F ; (2.36)where A0 = U;Y, Ai = F advi;Y and KijY;j = Fdi�i .So the primitive variables of velocity, density and temperature, used in x2.2.1,may be used, when the matrices are expressed as follows:A0 = 0BBBBBBB@ 1 0 0 00 � 0 00 0 � 00 0 0 � 1CCCCCCCA (2.37)A1 = 0BBBBBBB@ u � 0 0(� 1)T �u 0 (� 1)�0 0 �u 00 f�(� 1)T � 22ux�vy3Re g f�vx+uyRe g �u 1CCCCCCCA (2.38)A2 = 0BBBBBBB@ v 0 � 00 �v 0 0(� 1)T 0 �v �(� 1)0 f�vx+uyRe g f�(� 1)T � 22vy�ux3Re g �v 1CCCCCCCA (2.39)K11 = 0BBBBBBB@ 0 0 0 00 43Re 0 00 0 1Re 00 0 0 RePr 1CCCCCCCA ;K12 = 0BBBBBBB@ 0 0 0 00 0 13Re 00 0 0 00 0 0 0 1CCCCCCCA (2.40)

17K21 = 0BBBBBBB@ 0 0 0 00 0 0 00 13Re 0 00 0 0 0 1CCCCCCCA ;K22 = 0BBBBBBB@ 0 0 0 00 1Re 0 00 0 43Re 00 0 0 RePr 1CCCCCCCA (2.41)F = 0 (2.42)The above set of matrices are nonsymmetric, as are those de�ned for the conserva-tive variables. However there does exist a set of variables for which the advectiveAi and di�usive Kij matrices are symmetric. This is called the set of entropy vari-ables, and such variables have been investigated by Harten [59], Hughes et al. [67]and Johnson et al. [81]. Shakib and Hughes give the derivation and form of theadvective and di�usive matrices in [108]. This symmetric property of entropy vari-ables is useful for mathematical analysis and is exploited by Shakib and Hughes[108] when developing the Galerkin/least-squares �nite element method (see x2.5).The disadvantage of using entropy variables is their complexity compared to othervariables, especially in dealing with boundary conditions, since these are speci�edin terms of physical variables and the equations relating the two sets of variablesare highly nonlinear.Another formulation which may be used consists of the primitive variables ofvelocity, pressure and temperature. In this form the equations are well-posed in theincompressible limit and so this o�ers the possibility of solving both compressibleand incompressible ow problems within the same code. Both this and the previ-ous primitive form mentioned have the advantage that the advective and di�usivematrices are relatively sparse, hence computationally more e�cient than using con-servative or entropy variables (this can be seen by comparing equations (2.31){(2.35)with (2.38){(2.41)).The �nite element methods described in x2.3 and x2.5 are to be applied tothe general quasi-linear form (2.36), thus allowing any of the above mentionedformulations to be used, provided the advective and di�usive matrices have beende�ned and correct boundary conditions implemented. We will use mainly theprimitive variables of velocity, density and temperature, as well as the conservativevariables (2.28) for comparison.Since we are interested in steady ow, we ignore the time dependent term A0Y;tin (2.36) in the next three sections and only consider spatial discretizations of the

18steady equations. The use of time-stepping in the transient equations to reachsteady state is discussed in x2.6.2.3 The Galerkin Finite Element MethodIn this section a �nite element method for solving the time-independent version ofthe system (2.36) of p.d.e.'s is described. For the particular example of primitivevariables, for which boundary conditions were stated in x2.2.1, precise details ofhow the method has been implemented are given. The problems with using thestandard Galerkin method for convection-dominated ows are discussed in x2.3.1.We wish to solve the nonlinear system of p.d.e.'sAiU;i = (KijU;j);i + F ; i = 1; 2 (2.43)over the domain
 (�gure 2.1 for example) with suitable boundary conditions de-�ned on the boundary �. The vector U consists of four unknowns, and the 4 � 4matrices Ai and Kij are dependent upon the choice of physical variables in U. We�rst de�ne the function spaces U and V:U = fU : ui 2 H1(
); i = 1; ::; 4;U 2 S�g: (2.44)The boundary conditions S� will depend upon the choice of variables, but in thecase of the primitive formulation (x2.2.1), where U = (�; u; v; T),S� = fU : U = (1; cos�; sin�; T1)Ton ��1; u2; u3 = 0; u4 = TB on �Bg (2.45)(u1 = 1 on �+1 is also required when M1 < 1). We de�ne V asV = fV : vi 2 H1(
); i = 1; ::; 4;V 2 T�g (2.46)where (in the case of primitive variables)T� = fV : V = 0 on ��1; v2; v3; v4 = 0 on �Bg (2.47)(also v1 = 0 on �+1 if M1 < 1). A weak formulation for (2.43) can now be de�nedby multiplying by a test function V 2 V and integrating over
: �nd U 2 U , suchthat for all V 2 V, the following is satis�edZ
(AiU;i:V+V;i:KijU;j �F :V)d
� Z�V:(KijU;j)nid� = 0: (2.48)

19Some discrete �nite element subspaces can now be de�ned. The domain
is partitioned into nel non-overlapping triangles
e, so that
 = [e
e, and eachtriangle has an associated mesh size parameter h. The solution U is approximatedby Uh, a vector of functions which are linear over each element and continuousalong element edges. A basis for the space of each of these functions is the set ofpiecewise linear \hat" functions �i, i = 1; ::; nnod, where nnod is the total number ofnodes. These have the value �i = �ij at node j.Hence the discrete trial space may be de�ned asUh = fUh : Uh 2 (C0(
))4;Uhj
e 2 (P1)4;Uh 2 S�g; (2.49)where P1 is the space of linear polynomials, and the corresponding discrete testspace is Vh = fVh : Vh 2 (C0(
))4;Vhj
e 2 (P1)4;Vh 2 T�g: (2.50)An equivalent discrete problem to (2.48) can now be stated: �nd Uh 2 Uh, suchthat for all Vh 2 Vh, the following is satis�edZ
AiUh;i:Vh +Vh;i:KijUh;j �F :Vh)d
 � Z�Vh:(KijUh;j)nid� = 0: (2.51)Thus the problem is reduced to one of �nite dimension, and requires a nonlinearalgebraic equation solver such as Newton's method (see chapter 3). We now considerthe speci�c example of using primitive variables, and give the equations that arisefrom this choice.If the total number of nodes in the mesh is nnod, thennnod = nint + nout + nwall + nin (2.52)where nint, nwall, nin, and nout are the number of nodes away from the boundaries, onthe wall boundary (�B), on the inow boundary (��1) and on the outow boundary(�+1) respectively. These are ordered as they appear in (2.52) so that nodes 1 : : : nintdenote the internal nodes, nodes nint+1 : : : nout denote the outow nodes etc. Now

20de�ne the piecewise linear approximation Uh of U = (�; u; v; T)T asUh = 0BBBBBBBBBBBBBBBB@ nintXi=1�i�i + nint+noutXi=nint+1�i + nnod�ninXi=nint+nout+1�i�nout�i + nnodXi=nnod�nin+1�inint+noutXi=1 ui�i + nnodXi=nnod�nin+1 cos��inint+noutXi=1 vi�i + nnodXi=nnod�nin+1 sin��inint+noutXi=1 Ti�i + nnod�ninXi=nint+nout+1TB�i + nnodXi=nnod�nin+1T1�i
1CCCCCCCCCCCCCCCCA (2.53)where �i, ui, vi and Ti are the unknown coe�cients to be determined (note thatwe have assumed the case M1 < 1, so � = 1 on �+1). Thus the total number ofunknowns m ism = nint + nwall + nint + nout + nint + nout + nint + nout (2.54)= 4nint + 3nout + nwall; (2.55)and we requirem equations, obtained by settingVh to the following vectors in turn:(�i; 0; 0; 0)T ; i = 1; : : : ; nint; nint + nout + 1; : : : ; nint + nout + nwall(0; �i; 0; 0)T ; i = 1 : : : nint + nout(0; 0; �i; 0)T ; i = 1 : : : nint + nout(0; 0; 0; �i)T ; i = 1 : : : nint + noutin the variational form (2.51). This leads to the following equations being obtained(where we de�ne Uh = (�h; uh; vh; T h)T and uh = (uh; vh) for convenience):Z
(uh:r�h + �hr:uh)�id
 = 0;i = 1; ::; nint; nint + nout + 1; ::nint + nout + nwall (2.56)Z
[(�h(uh:r)uh + (� 1)(T h @�h@x + �@T h@x))�i + 1Re(ruh:r�i + 13(r:uh)@�i@x)]d
� 13Re Z�+1(r:uh)�in1d� = 0; i = 1; ::; nint + nout (2.57)Z
[(�h(uh:r)vh + (� 1)(T h @�h@y + �@T h@y))�i + 1Re(rvh:r�i + 13(r:uh)@�i@y)]d
� 13Re Z�+1(r:uh)�in2d� = 0; i = 1; ::; nint + nout (2.58)Z
[(�h(uh:rT h) + (� 1)�hth(r:uh))�i + 1Re(PrrT h:r�i

21� F (ruh)�i)]d
 = 0; i = 1; ::; nint + nout: (2.59)These equations may be written in the formG(W) = 0 (2.60)where W is the vector of all the unknown coe�cients �i, ui, vi and Ti, and G isthe nonlinear function representing (2.56){(2.59). Chapter 3 describes how such asystem may be solved.Any method used to solve (2.60) will require evaluation of G given W. Thisis calculated element-wise, and assembled to form the global vector. Details ofsuch an assembly process are given in [77], for single equations, and for systemsthe procedure is similar. The major complication is that nodes have a variablenumber of unknowns associated with them, i.e. most have four, but nodes on thewall boundary have one, and nodes on the outow boundary may have three. Thisrequires an extra data structure to keep track of the node with which each unknownis associated.The numerical integration which is required over each element is carried outusing a three point Gaussian quadrature rule from the list of rules given by Cowper[32]. Results indicate that this appears to be su�cient for the problems consideredhere.2.3.1 Inadequacy of the Galerkin methodThe method outlined above, in conjunction with a suitable nonlinear solver, providesa means of �nding solutions to the Navier-Stokes equations. However this approachdoes not typically work very well in practice, even for problems where the Reynoldsnumber is small (Re = O(1)). Results, given in x4.6 and also by Bristeau et al.[17], contain spurious oscillations in the values of the density, and other variablesat higher Reynolds numbers (e.g. Re = 73).The reason for these non-physical oscillations appears to be the presence of theconvection terms in the Navier-Stokes equations. This is the dominant term in thecontinuity equation, and the other equations at higher Reynolds numbers. Whenthe standard Galerkin method (or equivalently second order di�erencing) is appliedto the convection terms, the resulting set of equations may be decoupled between

22adjacent nodes, leading to node-by-node oscillations. This e�ect is studied in detailfor a simple one dimensional problem in [52].Another consequence of using the standard Galerkin method on its own forconvection dominated ows is that convergence of the linear solver (GMRES forexample) is very slow, even with preconditioners such as ILU or Jacobi (x3.3.3).This is due to the e�ect of the convection terms on the Jacobian matrix whichcauses it to be non-diagonally dominant, i.e. the Jacobian has very small values inthe diagonal compared to other values along a row. Hence preconditioners in whichthe matrix diagonal plays an important role fail to improve convergence.In the following sections, some modi�cations of the Galerkin method whichovercome these di�culties are discussed.2.4 Use of bubble functionsFor low Reynolds numbers, it is possible to use the Galerkin method successfully,provided a suitable higher order approximation for the velocity �elds is chosen.Such an approach has been used for incompressible ow, and in this section wediscuss the use of bubble functions, used by Bristeau et al. [17], and how they canbe used to obtain a stable Galerkin scheme for compressible ow.Numerical simulations of the incompressible Navier-Stokes equations su�er fromundesirable oscillations arising from two sources. One, outlined in x2.3.1, is due tothe presence of a convection term in the equations. The other is due to the incom-pressibility constraint of the equations (r:u = 0), and requires that only certaincombinations of approximations should be used for the velocity and pressure �elds.Permissible combinations are those that satisfy the Babuska-Brezzi condition [4],such as quadratic approximation of velocity and linear approximation of pressure,whereas linear approximations for both variables fail to meet the condition. Fur-ther details concerning the use of �nite elements in incompressible ow are givenby Gunzburger [53].The Babuska-Brezzi condition is also satis�ed by using certain bubble functions.For example, the space of cubic bubbles for a triangle K is de�ned asBK = f�B : �BjK 2 P3; �B = 0 on @Kg (2.61)where P3 is the set of cubic polynomials. The spaces used to approximate the

23velocity and pressure �elds are de�ned asVh = fv : v 2 (C0(
))2;vjK 2 (P1 �BK)2g (2.62)Ph = fp : p 2 (C0(
)); pjK 2 P1g: (2.63)In [17], Bristeau et al. use this approach for the primitive formulation of the com-pressible Navier-Stokes equations. By choosing (2.62) as the approximation spacefor velocity and (2.63) for the other variables of density and temperature, the spu-rious oscillations which occur using piecewise linear basis functions everywhere areeliminated.In this work, we have attempted to use bubble functions in the same way. Onebene�t of using bubble functions rather than other higher order polynomials isthat static condensation, in which the extra unknowns introduced by the bubblefunctions can be eliminated from the linear system, can be used.Static condensation uses the fact that the bubble functions are zero on eachtriangle boundary, so have no e�ect on neighbouring triangles. This means thatthe extra unknowns introduced by using this extra function can be eliminated fromthe linear system and recovered afterwards. To see this consider a simple example,which, using piecewise linear basis functions, leads to a linear, symmetric system:Ax = b (2.64)where A is a matrix (the sti�ness matrix for example), x consists of the unknownsat each node and b is a vector. If bubble functions are now incorporated into theapproximation, the system becomes264 A a�(a�)T � 375264 xx� 375 = 264 bb� 375 (2.65)where x� are the extra unknowns situated at the centroid of each triangle, b� isanother vector, a� is a matrix containing only three nonzero elements per row (sinceeach bubble function will a�ect the value of the three vertices of that triangle only),and � is a diagonal matrix . Since � is diagonal, it is straightforward to calculatex� from x� = b� � ��1(a�)Tx (2.66)once x has been found by solving the system(A� a���1(a�)T)x = b� a�b�: (2.67)

24This idea can be extended to the more complicated Navier-Stokes system, andmeans that the linear (or nonlinear) system being solved is no larger than if onlypiecewise linear approximations were being used.In numerical experiments, results indicate that the use of bubble functions doesindeed remove non-physical oscillations at fairly low Reynolds numbers (Re = 73),as well as improving convergence, but as the Reynolds number is increased (Re =500) oscillations begin to re-appear. See x4.6 for details.The reason why the Galerkin method with bubble functions leads to stablesolutions at fairly low Reynolds numbers is discussed in detail by Brezzi et al.in [15]. For the linearized compressible Navier-Stokes equations, they show thatthis technique is equivalent, in the di�usive limit, to streamline-upwind/Petrov-Galerkin methods (see next section). This equivalence is established in a moreabstract framework by Baiocchi et al. [8].In addition to the use of bubble functions, Bristeau et al. [17] also considerusing di�erent grids for the velocity and other variables. In particular, they usea �ne grid for velocity, where this grid has been obtained from a coarse one bydividing each triangle into four, and the coarse grid for density and temperature.All the approximations are still linear but there are about twice as many velocityunknowns as density and temperature unknowns. Results in [17] indicate that, asone might expect, this approach also leads to oscillation-free solutions, at least atfairly low Reynolds numbers.The approach outlined in this section of using the standard Galerkin methodwith di�erent approximations for di�erent variables is adequate at fairly low Reynoldsnumbers but becomes less useful when the Reynolds number is increased, as spu-rious oscillations begin to reappear. In the next section, we consider a modi�edGalerkin method by which accurate solutions can be obtained using piecewise lin-ear approximations for all the variables.2.5 Stable SchemesThe problem with using the Galerkin method for convection-dominated problemscan be overcome by using a stabilized �nite elementmethod. This consists of addingextra mesh-dependent terms to the standard Galerkin method. It is designed toensure that consistency is maintained, so that the solution of the original p.d.e.'s

25is a still a solution to the discrete equations obtained via the modi�ed method.We describe this approach in this section, �rst demonstrating it for a linear scalarproblem, and then using it for the full Navier-Stokes equations.Consider the following problem in two dimensions:a:ru� ��u = f (2.68)in the domain
 2 R2, with Dirichlet boundary conditionsu = g (2.69)given on @
. The coe�cient a = (a1; a2)T is smoothly varying, and � is a smallconstant. Even when the source term f and boundary data g are smooth, in generalthe solution u will vary rapidly in a layer of width O(�) at the outow boundary. Forsimplicity, we assume that g = 0, and �rst formulate the usual Galerkin method.Given a triangulation of the domain
, and a suitable function space Vh, consistingof piecewise polynomial functions, �nd u 2 Vh0 such that(a:ru; v) + �(ru;rv) = (f; v) 8v 2 Vh0 (2.70)where Vh0 = fv 2 Vh : v = 0 on @
g and(u; v) = Z
 uvd
: (2.71)As noted in x2.3.1, when � is small and the exact solution is not smooth, then theresulting numerical solution from this method contains spurious oscillations. A verysimple way to overcome this is to use arti�cial di�usion, so the weak form (when� < h) becomes: �nd u 2 Vh0 such that(a:ru; v) + h(ru;rv) = (f; v) 8v 2 Vh0 (2.72)where h is the mesh size parameter. The extra di�usion adds stability (whicheliminates the oscillations) but modi�es the problem actually being solved so themethod is �rst order accurate at most.A better approach is to only add extra di�usion in the direction of the stream-lines, thus avoiding excess crosswind di�usion. This technique, introduced byHughes and Brookes [65], modi�es the weak form as follows: �nd u 2 Vh0 suchthat (a:ru; v) + �(ru;rv) + h(a:ru;a:rv) = (f; v) 8v 2 Vh0 : (2.73)

26Although this method introduces less crosswind di�usion than (2.72) it is still aninconsistent modi�cation of the original problem, hence an alternative way of intro-ducing the term h(a:ru;a:rv) into the weak form is needed. This may be done byaltering the test function v to v+ �a:rv so that the weak form is now: �nd u 2 Vh0such that (a:ru; v) + �(ru;rv)+ � (a:ru;a:rv) + �� (�u;a:rv)= (f; v + �a:rv) 8v 2 Vh0 : (2.74)We need to de�ne (�u;a:rv) = nelXe=1 Z
e �ua:rv (2.75)where nel is the number of elements. There are several ways of de�ning � , but forconvection-dominated ows, it should have the property that� = O hjaj! : (2.76)This method is both consistent (i.e. the exact solution u of the original problem is asolution of the weak form (2.74)) and stable, so that the spurious oscillations of theGalerkin method are avoided. Hughes and Brookes [65],[19] introduced the method,and refer to it as Streamline Upwind/Petrov-Galerkin (SUPG). Proofs concerningstability and error estimates for the problem above are given by Johnson et al.[78],[79] where the method is referred to as streamline di�usion.In [66], Hughes et al. developed a successor to SUPG, known as Galerkin least-squares, where the test function is modi�ed further to (v + � (a:rv ��v � f)). Inthe cases where � = 0 or piecewise linear approximations are being used, this isidentical to the SUPG method, but leads to a formulation which is more amenableto mathematical analysis.These methods have been extended to systems of equations, see [68], and [70], aswell as nonlinear problems [81]. The use of these methods has also been consideredfor problems such as the Euler equations [56], the incompressible Navier-Stokesequations [58] and the compressible Navier-Stokes equations [108]. In x2.5.1, wedescribe how we have used the Galerkin least-squares method for compressible owin this thesis.For problems involving sharp boundary layers and shocks, use of the meth-ods outlined above still lead to overshooting and undershooting in these regions,

27and so an extra term, in addition to the streamline di�usion term, is used. Thisdiscontinuity-capturing term acts in the direction of the solution gradient, ratherthan the streamline and reduces the oscillations that appear in sharp layers. It isdescribed in detail in [67] and [71].2.5.1 A Stable Method for the Navier-Stokes EquationsAs discussed above, the Galerkin least-squares method for the compressible Navier-Stokes equations is given in [108] and is based upon the use of entropy variables.Hauke and Hughes [61] state that this method may also be used for other sets ofvariables, and in this section we describe a modi�ed Galerkin least-squares methodfor the steady equations using primitive and conservative variables. The maindi�erences from the method of Shakib et al. [108] are that no temporal discretizationis carried out, a simpler choice of the parameter � is used and the discontinuitycapturing term is omitted. Further discussion of time-dependent problems, whichrequire accurate time discretization, is given in chapter 7.The Galerkin method (2.51) is modi�ed by the addition of one term, the least-squares operator, and so the new variational form is: �nd Uh 2 Uh, such that forall Vh 2 Vh, the following is satis�edZ
AiUh;i:Vh +Vh;i:KijUh;j �F :Vh)d
 + nelXe=1 Z
e(L�Vh:�L�Uh)d
� Z�Vh:(KijUh;j)nid� = 0: (2.77)The choice of � , which is not to be confused with the viscous stress tensor �ij in(2.7), is calculated over each element and is discussed below. The steady-statecompressible Navier-Stokes operator L� is de�ned as:L� = Ai@=@xi � (@=@xi)(Kij@=@xj)�F : (2.78)The additional least-squares term follows from generalizing the method for a sin-gle equation given in x2.5. In Shakib et al. [108], two de�nitions for the 4 � 4matrix � are derived, which involve the solution of eigenvalue problems, and soare computationally expensive. Hauke and Hughes [61] show how this � may betransformed into a form suitable for other formulations, and an algebraic form of �suitable for conservative variables is given by Soulaimani and Fortin [111]. In this

28work however, we simply de�ne� = 266666664 h2 0 0 00 h2 0 00 0 h2 00 0 0 h2 377777775 (2.79)where h is a mesh size parameter for each element. This has the advantage of beingvery cheap to evaluate in comparison to the more complicated de�nitions of � . Thedisadvantage of this simple choice of � is that it does not provide the optimal valuerequired for each component of the system, however numerical results (see x4.6)suggest that for the types of ow under consideration here, the solutions obtainedare not adversely a�ected by the use of (2.79). In addition, the term may needmodi�cation if used on meshes containing highly distorted elements.2.6 Time-steppingThe previous sections (x2.3, x2.4 and x2.5) contained details of discretizations ofthe time-independent Navier-Stokes equations. The resulting nonlinear system ofalgebraic equations can then be solved by using techniques discussed in Chapter 3.However, this approach is only practical for very simple problems on coarse meshes.In most cases, the nonlinear solver will not be able to converge to a solution. Thismay be due to the initial solution estimate being too far away from the steadysolution for the Newton solver to converge, or, if the linear solver being used isGMRES, having insu�cient memory to store a large enough basis for the Krylovsubspace.An alternative to solving the steady-state problem directly is to solve the time-dependent equations, by approximating @U=@t in some way and marching forwardin time, until a steady solution has been reached. Time-accuracy is not important,and this approach may be viewed as a form of numerical continuation. Problemsinvolving transient solutions, where accuracy in time is required are considered inchapter 7.Hence we now return to the full Navier-Stokes equations in quasi-linear form(2.36), which we wish to solve until time T , by which time the solution will havebecome steady. We divide the time interval [0; T] into N sub-intervals In =

29[tn; tn+1]; n = 0 : : : (N � 1) with 0 = t0 < t1 < : : : < tN = T . At each tn, thesolution of (2.36) is required, with the time-derivative @U=@t being approximatedin some way, using a backward Euler scheme for exampleUt � Un �Un�1�t (2.80)where Un and Un�1 are the estimated discrete solutions at the current and previoustime-steps, tn and tn�1 respectively and �t is the time-step size.Using (2.80), a discrete variational equation for (2.36) can now be stated: ateach tn; n = 1; : : : ; N �nd Uhn 2 Uh, such that for all Vh 2 Vh, the following issatis�ed Z
 "(A0Uhn �Uhn�1�t +AiUhn;i):Vh +Vh;i:KijUhn;j �F :Vh# d
 (2.81)+ nelXe=1Z
eLVh:�LUhnd
� Z�Vh:(KijUhn;j)nid� = 0;where suitable choices for �t are discussed below in x2.6.1. The compressibleNavier-Stokes operator L is de�ned as A0@=@t + L�. Rather than �x the �naltime value T in advance, it is sensible to detect when the solution has converged tosteady-state, either by evaluating the steady-state residual (given by (2.56)-(2.59))or monitoring Uht , both of which should be zero at steady-state.A simpler way to approximate @Uh=@t than the backward Euler scheme is touse of an explicit method, so thatUht = Uhn+1 �Uhn�t ; (2.82)which means that a very simple linear system, involving the mass matrix, is solvedat each time-step. However the method is only conditionally stable, so that thetime-step size �t needs to be very small, and thus many steps are required toreach steady solution. This approach is commonly used, as some time-accuracy ismaintained due to the small time-steps. However when only convergence to steadystate is of importance then it is desirable to be able to take large time-steps.The implicit backward Euler approach (2.80) is unconditionally stable, so thereis no restriction imposed by stability requirements on the size of �t and far fewer,larger steps are allowed. At each step, a nonlinear system needs to be solved, butthis system is far more manageable than the one formed from the steady stateequations directly. This is because the solution at the last time-step, which is used

30as an initial guess at the current time-step, is close to the current solution and soconvergence of the nonlinear system is easier to achieve (e.g. a smaller basis for theKrylov subspace is needed if GMRES is used). Although not implemented here,the calculation of a predicted initial guess based on an explicit Euler step wouldalso help convergence.For this reason, we have used backward Euler time-stepping to reach steadysolutions of the Navier-Stokes equations. In the next section, we consider how tode�ne the time-step, which can either be �xed in value throughout the domain orallowed to vary from element to element.2.6.1 Global and Local Time-SteppingFor the time-stepping approach described above, the size of the time-step �t needsto be chosen. A straightforward approach is to globally specify the same valueeverywhere in the domain. Since we wish to reach steady state as quickly as possible,this should be as large as the constraints on the nonlinear solver allow. Usually thismeans starting with an initial value, when the features of the ow are developingmost quickly and increasing this as the solution begins to reach a steady-state.A more e�cient strategy when solving for steady-state solutions is to allow thevalue of �t to vary over the domain. In problems which have large variations inmesh size, convective speed and di�usive properties, the use of a �xed time-stepmeans that information about the ow propagates at di�erent rates in di�erentparts of the domain. As a result, convergence is slowed down because the rate maynot be optimal on all parts of the domain.If we determine �t locally and in a suitable way, the ow information willpropagate at nearly optimal rate throughout the domain. Shakib et al. [108] takethe following approach for choosing �t.The algorithmic Courant number C� is de�ned asC� = 2(�t=h2)�̂max + 2(�t=h2)��max; (2.83)where h is the spatial mesh size parameter, and �̂ and �� are the upper boundson the eigenvalues of two eigenvalue problems, involving the advective and di�usivematrices for the entropy formulation of the Navier-Stokes equations, stated in [108].This de�nition is motivated by analysis of a one-dimensional linear convection-

31di�usion problem discussed in [106]. Solution of the eigenvalue problems leads toC� = 2(�t=h2)max(2�=�; �=cv�) + (�t=h)u� : (2.84)where � is the viscosity coe�cient, � is the density, � is the coe�cient of thermalconductivity, cv is the speci�c heat at constant volume andu� = (u2 + 32c2 + cp16u2 + c2) 12 ; (2.85)with u and c being the particle and acoustic speeds. Since = cp=cv = 1:4,Pr = �cp=� = 0:72, and Re = 1=��cv = �Pr < 2� (2.86)and so max(2�=�; �=cv�) = 2�Re: (2.87)The local time-step size can now be chosen for each element so that C� is equalto a predetermined value set by the user. Rewriting (2.84),�t = C�� 2h2�Re�+ �u�h � (2.88)The choice for C� is discussed in [108], and values of between 20 and 100 appearto be suitable. As with global time-stepping, it is useful to allow C� (and hence �t)to increase as steady-state is approached. Note that this method loses all accuracyin time, as it is meaningless to associate a solution Uhn with a particular time, asdi�erent elements have di�erent values of �t, whereas global time-stepping stillretains some consistency in time. However this doesn't matter when seeking steadysolutions as the steady solution of both problems (local and global) is the same.The implementation of this local time-stepping technique is simple due to the usean element-by-element approach when evaluating the residual. For each element,the local time-step size is computed and used in the element integral, from whichthe global residual vector is assembled. Local time-stepping is signi�cantly quickerthan global time-stepping to converge to a steady solution, as results in x4.6.2 show.2.7 SummaryWe have presented a �nite element method for the solution of the compressibleNavier-Stokes equations in two-dimensions, which leads to one or more �nite sys-

32tems of algebraic equations. These can then be solved using the algorithms discussedin the next chapter.There are several ways of expressing the Navier-Stokes equations, each withadvantages and disadvantages, but they can all be written in a general form towhich a �nite element method can be applied.Use of the Galerkin �nite element method on its own leads to unwanted os-cillations appearing in the ow solution, so further techniques to overcome thisare required. The addition of higher order approximations, such as bubble func-tions, for a subset of the variables eliminates the oscillations for ows at fairly lowReynolds numbers, but is insu�cient when the ow is more convection-dominated.Stabilized methods such as SUPG, streamline di�usion and Galerkin least-squaresare superior to bubble functions, as they work at higher Reynolds numbers andimprove convergence, and this is demonstrated in chapter 4. We have implementeda variant of Galerkin least-squares.In practice, the steady problem cannot be solved directly despite the globalconvergence techniques described in the next chapter, so time-stepping is used, andif the time-step size is chosen locally, convergence to steady-state can be rapid.Results and comparisons using the methods outlined above for a number ofstandard test cases appear in chapter 4.

33
Chapter 3Solution of a Nonlinear System ofAlgebraic Equations3.1 IntroductionIn the previous chapter, a �nite element method was applied to the Navier-Stokesequations, leading to a system of nonlinear algebraic equations. Two approachesto obtaining steady-state solutions were discussed|solving the time-independentNavier-Stokes equations directly, or using an implicit time-stepping scheme to reacha steady solution. In the former case, a single nonlinear system of equations needsto be solved, while the latter case involves solution of a nonlinear system at eachtime-step. The solution technique for the nonlinear problem arising in either caseis the same, and is the subject of this chapter.We use Newton's method, which is described in x3.2, to solve each nonlinearproblem. Some improvements to the basic method are outlined, and the use of thesoftware package NKSOL discussed. Newton's method requires solution of a linearsystem at each iteration of the process, and a number of algorithms for solvingthis linear system are discussed in x3.3. The solver chosen for use in this workis the iterative solver GMRES which is described in detail, along with a suitablepreconditioning matrix to improve convergence of GMRES. We also discuss someof the practical implementation issues.

343.2 Newton's MethodThe algorithm for Newton's method is detailed in x3.2.1 below. Brown and Saadhave developed NKSOL [21], a software package in which Newton's method is im-plemented, along with some enhancements to the basic method to improve its per-formance, and these are outlined in x3.2.2 and x3.2.3. A description of NKSOL iscontained in the subsequent section, followed by some practical details of how theJacobian matrix, which is required at each iteration of Newton's method, may beevaluated (given in x3.2.5).3.2.1 The AlgorithmThis section contains a description of the standard Newton algorithm which we useto solve the nonlinear system of equations arising from discretization of the Navier-Stokes equations (with or without time-stepping). The problem under considerationmay be stated as: �nd u� 2 Rn such thatG(u�) = 0; (3.1)where G : Rn ! Rn is a nonlinear operator. Newton's method for solving (3.1) isas follows:� Choose u0, an initial estimate of the solution,� For i=0,1,. . . until convergence1. Solve J(ui)�u = �G(ui): (3.2)2. Update ui+1 = ui + �u: (3.3)The n � n matrix J(u) is the Jacobian of G(u),[J(u)]ij = @Gi(u)@uj : (3.4)Provided that the initial guess u0 is close enough to the exact solution u�, thenNewton's method will converge to u�, and furthermore, the rate of convergencewill generally be quadratic. For proofs of these results, see for example Dennis andSchnabel [37, chapter 5].

35At each Newton step, the linear system of equations (3.2) needs to be solved,and many methods exist to do this. These can be divided into two classes|directmethods based on the use of Gaussian elimination, and iterative methods where thecurrent approximation is updated at each iteration. These techniques are discussedin x3.3.Newton's method is a very e�ective algorithm for solving a problem such as(3.1), and the quadratic rate of convergence allows solutions to be obtained quickly.However, as mentioned above, convergence will only occur when the initial estimateu0 is close enough to u�, so ideally some sort of modi�cation is required to allowconvergence when u0 is outside the local region around u�. In the next section, onesuch modi�cation is outlined.3.2.2 Obtaining global convergenceIn this section, a modi�ed Newton's method, which allows more global convergencethan the standard method but retains its fast convergence rate near u�, is consid-ered. This modi�cation, known as linesearch backtracking, is described in detail byDennis and Schnabel [37].The basic idea of the algorithm is to perform Newton iteration as before, butrather than perform the update (3.3), a scalar � is chosen so that the updatebecomes ui+1 = ui + ��u (3.5)instead. By choosing � according to certain conditions given below, results exist[37] that show this modi�cation can allow the method to obtain global convergence.To see how this might work, the problem (3.1) is reformulated as a minimizationproblem: if g(u) = 12GT (u)G(u); (3.6)then seek u� such that g(u�) = minu2Rn g(u): (3.7)A vector p is de�ned as a search direction ifrg(u)Tp < 0; (3.8)where rg(u) = @g@u1 ; @g@u2 ; ::; @g@un!T : (3.9)

36If this holds, then it is guaranteed that for su�ciently small �,g(u + �p) < g(u): (3.10)It is clear that a search direction p may be useful in the solution of (3.7) (and hencethe original problem (3.1)), provided � can be determined. The update vector �uis shown to be such a search direction in the following way: at step i of the Newtonprocess, p is a search direction ifG(ui)TJ(ui)p < 0; (3.11)because rg(u) = J(u)TG(u). Since �u = �J(ui)�1G(ui),G(ui)TJ(ui)�u = �G(ui)TJ(ui)J(ui)�1G(ui) (3.12)= �G(ui)TG(ui) (3.13)< 0:Hence �u is a search direction. Now the scalar � needs to be chosen such thatg(u+ ��u) < g(u): (3.14)However, this won't always be a su�cient condition for global convergence (seeexamples in x6.3 of [37]), and further conditions, developed by Goldstein [50] arerequired: g(u+ ��u) � g(u) + ��rg(u)T �u (3.15)g(u+ ��u) � g(u) + ��rg(u)T�u (3.16)for 0 < � < � < 1. These ensure that the relative size of � compared to the rate ofdecrease of g is neither too large nor too small.If at each Newton step, a value for � is chosen in this way, then proofs givenin [37] show that this method will ensure global convergence. Moreover, near theexact solution u�, if � = 1, then the method reverts to standard Newton and therate of convergence becomes quadratic. A practical implementation of linesearchbacktracking, including an algorithm to choose a � to satisfy (3.15) and (3.16) isgiven by Brown and Saad in [21]. An alternative technique is also given, using amodel trust region strategy.Thus the modi�ed Newton method described above overcomes one of the mainproblems associated with using Newton's method alone by no longer requiring u0to be in the neighbourhood of u� (although the rate of convergence will only bequadratic once ui is close enough to u�).

373.2.3 Inexact MethodsThe linear system (3.2) can be solved in a number of ways. In particular, aniterative method, where the current solution is made more and more accurate ateach iteration, may be used. In this case, another modi�cation, which reduces thetime taken by Newton's method to reach a solution, can be made and is describedin this section.The inexact Newton method of Dembo et al. [34] only requires the iterativesolver to �nd an approximate solution to (3.2), rather than solving the linear systemto a high degree of accuracy. This will reduce the time spent solving the linearsystem, and, if the level of approximation is chosen carefully, won't a�ect the rateof convergence of the Newton iteration.De�ne the residual ri at the ith Newton step asri = J(ui)�u+G(ui); (3.17)and a sequence of scalars f�ig. The equations to be solved at each Newton stepbecome: J(ui)�u = �G(ui) + ri; with jjrijjjjG(ui)jj � �i; (3.18)where jj � jj denotes an arbitrary norm in Rn. This may be seen as iteratively solving(3.2) until jjrijj � �ijjG(ui)jj. In [34] it is shown that for a sequence f�ig � 1convergence is guaranteed, when u0 is su�ciently close to u�. However, the rate ofconvergence will depend on the choice of the sequence f�ig, and it can be shown(see [34]) that to obtain quadratic convergence,�i = O(jjG(ui)jj); as i!1: (3.19)Hence in practice, the sequence f�ig ! 0 in order to preserve a quadratic rate ofconvergence and as ui approaches u�, �i will be very small, so the method wille�ectively revert to exact Newton.This technique is used in NKSOL (see next section) and signi�cantly reducesthe amount of time spent solving the linear systems, especially in the early stagesof the algorithm.3.2.4 NKSOLThe software package NKSOL (Nonlinear Krylov SOLver) has been developed byBrown and Saad [21] to implement some of the ideas described above. It uses an

38inexact Newton method combined with the iterative solvers GMRES (x3.3.2) orArnoldi's method ([2]) as the linear solver. In addition, the software o�ers a choiceof either the linesearch backtracking algorithm (x3.2.2) or a strategy based on modeltrust region techniques to improve the otherwise local convergence of Newton ([21]).As this is an inexact Newton method, the sequence �i used in (3.18) needs tobe de�ned: �i = 12i : (3.20)Results indicate that quadratic convergence is usually achieved using (3.20).In x3.3.3, the importance of preconditioners for iterative solvers (such as GM-RES) are discussed. However NKSOL does not contain any preconditioning rou-tines, so we use another set of subroutines (SLAP|see x3.3.5) to provide a precon-ditioned GMRES routine.NKSOL only requires the user to write subroutines to evaluate the residualG(u), and (optionally) provide the Jacobian matrix. This solver (in combinationwith SLAP) has been used to obtain all of the results shown in this thesis.3.2.5 Evaluation of JacobianThis section contains details of how the Jacobian matrix J(ui), which is used inthe solution of the linear system (3.2) arising at each Newton step, is evaluated. Anumber of methods are shown, most of which form the sparse matrix J explicitly,requiring storage space (x3.3.6 gives details of sparse matrix storage). The �nalmethod assumes that J will only be referred to as part of a matrix-vector multi-plication, and so the matrix is not calculated or stored. This method can only beused with an iterative type of linear solver, as direct solvers require the full matrixto be available.(i) Exact JacobianIn this approach the Jacobian is evaluated by analytically �nding the derivatives ofG(u) in advance and coding them as a Fortran subroutine. For example, a typicalterm in the residual obtained from (2.56){(2.59) in x2.3 might look like

39Gi = : : :+ Z
�h 0@nint+noutXk=1 uk�k + nnodXk=nnod�nin+1 cos��k1A0@nint+noutXk=1 uk�k;x + nnodXk=nnod�nin+1 cos��k;x1A �id
 + : : : (3.21)In this case the entry in J would be@Gi@uj = : : :+ Z
�h�j 0@nint+noutXk=1 uk�k;x + nnodXk=nnod�nin+1 cos��k;x1A�id
+Z
�h 0@nint+noutXk=1 uk�k + nnodXk=nnod�nin+1 cos��k1A �j;x�id
: (3.22)The matrix J is formed by assembling the contributions from each local elementmatrix. For details on assembling global matrices in this way see Johnson [77].This matrix is sparse, and although nonsymmetric, has a symmetric structure. Thesparsity of the Jacobian allows it to be stored in a relatively compact format (seex3.3.6), but it still uses up a large amount of memory (approximately 20{30 � thenumber of unknowns).One di�culty associated with calculating the Jacobian in this way is that itis prone to errors from incorrect coding of derivatives. Using an approach suchas Galerkin least-squares (see x2.5), where extra terms are incorporated into thevariational formulation, the algebra becomes very involved, increasing the likelihoodof mistakes. This can be seen in (3.21)|if the test function �i is replaced by�i+� (: : :) then the dependency of the term on uj may become highly nonlinear andalgebraically complicated. Furthermore if � is calculated using the current solutionin some way, then obtaining this dependence analytically may be impossible.This evaluation di�culty can be overcome (at least when � is independent of u)by using one of the computer algebra packages now available, such as Maple [44] orMathematica [127]. They will symbolically evaluate the Jacobian, given a residualfunction, and generate source code which can be directly inserted into a Fortransubroutine. Even this is not a straightforward task however, when the problembeing solved consists of a system of p.d.e.'s, with several di�erent sets of unknowns(density, velocity and temperature for example).

40(ii) Global Finite Di�erence ApproximationAn alternative to the above is to approximate the derivatives in some way, and givena routine to calculate G(u), the following approximation can be used to evaluatethe product J(u)v: J(u)v � G(u + �v)�G(u)� ; (3.23)where � is a small scalar, the choice of which is discussed at the end of this section.This approximation (3.23) can also be used to form the full Jacobian matrix ([37]):the jth column of J(ui) is given byJ(ui)ej � G(ui + �ej)�G(ui)� ; (3.24)where ej is the vector length of length n with 1 in the jth position, and 0 everywhereelse. However this involves n+1 evaluations of the residualG each time the Jacobianis recalculated, and so is too expensive to be practical.(iii) Element Finite Di�erence ApproximationA more useful idea is to use (3.24) to compute element Jacobian matrices by �nitedi�erences and then assemble these to form an approximate global Jacobian. Forthe Navier-Stokes equations on a triangular mesh, each element matrix is of size 12� 12 (there are four unknowns on each of the three vertices), and so 13 evaluations ofthe element residual are required for each element. This is far quicker than method(ii) and also turns out to be about 30% quicker than using method (i) (see resultsin x4.6.2). This method also overcomes the problems associated with method (i)of coding the analytic derivatives exactly. We are unaware of this approach havingbeen used before, although it seems to be a natural progression from the methods(i) and (ii).(iv) Matrix-Free MethodsIf an iterative linear solver is being used in (3.2), then usually the only time thatthe Jacobian is needed is for a matrix-vector multiply operation, hence avoidingthe need for it to be formed explicitly. The approximation (3.23) is all that isrequired, and no matrix needs to be stored. However, certain preconditioners, suchas incomplete LU decomposition (see x3.3.3), work by factorizing the matrix insome way. If a matrix-free method is implemented, then the matrix entries are not

41available. In this case such preconditioners may not be used, and an alternative,such as domain decomposition preconditioning [29] is required.For all of the approximate methods using (3.23), � needs to be chosen so thatthe approximation is accurate and the fast convergence of Newton is not lost. In[37] the choice of � is discussed and it is shown that the quadratic convergencerate of Newton is preserved for small enough �. In [20], Brown shows that fora suitable choice of �, use of (3.23) retains local convergence for inexact Newtonmethods which use Krylov-subspace iterative solvers. In our numerical experiments,it appears to be su�cient, in the case of the Navier-Stokes equations, to choose �simply to be pmacheps where macheps is a machine speci�c value de�ned as thesmallest positive number � such that 1 + � > 1 on that machine.Four methods for evaluating the Jacobian matrix have been outlined, and ofthese, methods (iii) and (iv) seem to be the most useful. If an iterative solvercombined with a preconditioner which doesn't require the Jacobian matrix is beingused, then a matrix-free method will be suitable as no matrix storage is required,otherwise method (iii) is possibly the best choice. In this work we use an itera-tive solver (GMRES), but the preconditioner is an incomplete factorization of theJacobian, so method (iii) has been selected.3.3 Solution of Linear SystemNewton's method for solving a nonlinear set of equations, described in x3.2, leadsto a linear system (3.2) at each Newton step, and in this section, methods forsolving such systems are discussed. Various methods are compared in x3.3.1 and inx3.3.2 GMRES, an iterative solver, is described in further detail. Preconditioning alinear system in order to improve the convergence rate of an iterative solver is oftennecessary, and some common types are given in x3.3.3, along with a more detailedexplanation of incomplete LU factorization in x3.3.4. The use of SLAP, a set ofsubroutines containing a preconditioned GMRES algorithm, is discussed in x3.3.5.One example of a data structure used to store a sparse matrix is given in x3.3.6.The general form of the problem under consideration may be written asAx = b; (3.25)where A is a non-singular n � n sparse matrix, b is a known vector and x is the

42unknown vector. We denote the exact solution to (3.25) as x�. The Newton step(3.2) is one example of such a system, and in this case the matrix is nonsymmetricand inde�nite.3.3.1 Iterative versus Direct SolversMethods of solution to (3.25) can be classed in two distinct groups.Direct MethodsDirect methods use Gaussian elimination (see [22] for example) to obtain a fac-torization of the matrix A in terms of lower(L) and upper(U) triangular matrices,so that A = LU . This can then easily be solved by performing forward and backsubstitutions, Lv = b; Ux = v: (3.26)When n is large, it is impractical to store the entire matrix in memory and carryout the elimination in this way. To overcome this problem, the frontal method [72]may be used, where the assembly of A from the element matrices is carried out atthe same time as the elimination process is performed. Only that part of the matrixcurrently being worked on is stored in fast memory, the remainder of A is stored insecondary memory.Another technique for reducing the amount of memory required is to reorderthe unknowns, so that the structure of the matrix is altered. If done in the rightway, this has the e�ect of reducing the number of nonzero entries needed during theelimination. One e�ective type of reordering is nested dissection, described in [47].Iterative MethodsIn iterative methods, the current approximation xi to the solution of (3.25) is up-dated at each step to obtain a better approximate solution xi+1. A number ofiterative algorithms are discussed below, but for a general overview of such meth-ods and details of practical implementation, see Barret et al. [11].The simplest types of these methods (see [121]), such as Jacobi or Gauss-Seidel,are inadequate for most practical problems because the rate of convergence is veryslow, so a more complex class of nonstationary methods which use Krylov subspaces

43is considered. A Krylov subspace Kk is de�ned asKk = spanfr0; Ar0; : : : ; Ak�1r0g (3.27)where r0 = b � Ax0. At each iteration k, if the current solution of (3.25) is xk,a Krylov method will try to �nd an update vector zk = xk+1 � xk from Kk, bygenerating an orthogonal set of basis vectors for Kk.For positive de�nite symmetric matrices the conjugate gradient method, devel-oped by Hestenes and Stiefel [62], is widely used. Updates zk 2 Kk are generatedin such a way that for the updated solution xk+1 = xk + zk,(xk+1 � x�)TA(xk+1 � x�) = minz2Kk(xk + z� x�)TA(xk + z� x�): (3.28)One major feature of the conjugate gradient method is that the orthogonal basisfor the Krylov subspace Kk can be constructed with only three-term recurrences, sovery little storage is required. In the algorithm this is implemented with two two-term recurrences|one to update the residual using the current search direction (thelatest orthogonal basis vector) and another to update the search direction using thenewly computed residual.For matrices which are not symmetric, such as the Jacobian in (3.2), the basisfor Kk can no longer be built up from a short-term recurrence in such a straight-forward way. One approach to overcome this is used in the Biconjugate gradientmethod (BiCG) [88], and involves generating two mutually orthogonal sequences ofresiduals. The short-term recurrences are retained but the minimization propertyof conjugate gradient is lost. As a result, convergence is irregular and breakdownsin the algorithm are liable to occur. Several variants and improvements of BiCGhave been developed, including Bi-CGSTAB [119], CGS [110] and Quasi-MinimalResidual (QMR) [45].Another approach is to construct an orthogonal basis for Kk by storing all thepreviously computed vectors, and using them in the recurrence relation. Saad andSchultz have introduced GMRES (Generalized Minimal Residual) [104], which doesthis, and hence there is a similar minimization property to that of the conjugategradient method. The drawback is that the storage costs are much higher for GM-RES than for other nonsymmetric solvers. This algorithm is described in moredetail in the next section.

44Although direct methods provide a reliable means of reaching a solution, forlarge problems their storage requirements are very high. Iterative methods useless memory, and may be more suitable for use in Newton's method, where thelinear system doesn't always have to be solved to high accuracy (see x3.2.3), thusreducing the number of iterations. Shakib et al. [107] have carried out a comparisonbetween a direct solver and GMRES in the case of compressible viscous ow, andshow that the iterative solver o�ers both faster solution time and reduced memoryrequirements.3.3.2 GMRESThis section describes the algorithm for GMRES, an iterative method for solving(3.25) when A is nonsymmetric. The algorithm (as given in [104]) for GMRES isconcerned with obtaining an update vector at each iteration until the solution issu�ciently accurate so that the iteration process ends and the new solution x canbe formed. It can be stated as follows:1. Choose x0 and calculate r0 = b�Ax0, � = jjr0jj2, and v1 = r0=�.2. For j=1,2,..,until jjrjjj2 < �,hij = (Avj;vi); i = 1; 2; ::; j;v̂j+1 = Avj � jXi=1 hijvi; (3.29)hj+1;j = jjv̂j+1jj2;vj+1 = v̂j+1=hj+1;j :3. Form the approximate solution, with k = j,xk = x0 + Vkyk; (3.30)where yk minimizes jj�e1 � �Hkyjj2: (3.31)Here, rj = b�Axj, � is the speci�ed tolerance, �Hk is a (k+1)�k upper Hessenbergmatrix whose elements are given by hij , Vk = [v1;v2; : : :vm], an orthonormal basisfor the Krylov subspace Kk, and e1 = (1; 0; 0; : : : ; 0)T . We now show that yk ischosen such that the residual norm jjrkjj2 is minimized over y 2 Kk.

45Hk is k � k upper Hessenberg matrix whose elements are given by hij andAVk = [Av1; : : : ; Avk]= [v̂2 + 1Xi=1 hi1vi; : : : ; v̂k+1 + kXi=1 hikvi] (from (3:29))= [2Xi=1 hi1vi; : : : ; k+1Xi=1 hikvi]= [2Xi=1 hi1vi; : : : ; kXi=1 hikvi] + v̂k+1eTk= [kXi=1 hi1vi; : : : ; kXi=1 hikvi] + hk+1;kvk+1eTk= VkHk + hk+1;kvk+1eTk= Vk+1 �Hk; (3.32)where ek is the vector which has the value 1 in the k'th component, and 0 elsewhere.Minimizing (3.31) is equivalent to minimizing jjrkjj2 becausejj �Hkyk � �e1jj2 = jjVk+1(�Hkyk � �e1)jj2 (Vk+1 is orthonormal)= jjVk+1 �Hkyk � �v1)jj2= jjAVkyk � r0jj2 (using (3:32))= jjA(xk � x0)� (b�Ax0)jj2 (using (3:30))= jjAxk � bjj2= jjrkjj2: (3.33)Hence minimization of (3.31) also minimizes the current residual. This minimizationproblem is solved using a QR factorization of �Hk and more details are given in [104].The factorization of �Hk is updated as each column is computed, which allows theresidual norm jjrkjj2 of the approximate solution to be obtained without actuallyforming xk. Only when jjrkjj2 < � will the solution vector xk be calculated. Whenused as part of an inexact Newton method, the tolerance � will be determined bythe sequence �i discussed in x3.2.3.If the iteration in step 2 above is allowed to continue long enough, then the exactsolution will always be found in at most n steps, in the absence of rounding errors.However since the dimension of Vk is increased at each step, memory restrictionsprevent k becoming large (each iteration requires storage of an additional vector oflength n). There is also a drop in speed as k increases since the formation of Vk

46and the QR factorization take longer at each step. To overcome this problem, itis common to restart the whole algorithm after m steps with the current solutionxm used as x0 in the new process. This means that no more than n � m storagelocations are required but, for large problems, this may not always be successful(because the solution may not converge), so it is desirable to set m to as large avalue as the storage facilities allow (see x3.3.5 for more details).In spite of the large memory overheads, GMRES, in combination with a suit-able preconditioner, has been shown to be an e�ective solver to use in the case ofcompressible ow. For example Bristeau et al. [17], Venkatakrishnan and Mavriplis[122], Shakib et al. [107] and Soulaimani and Fortin [111] have all successfullyobtained results using GMRES.3.3.3 PreconditioningIn many practical applications, the matrix A in (3.25) is badly conditioned, andas a consequence the convergence of an iterative solver will either be very slow, orthe method will fail to converge altogether. In addition, when the storage costsof a solver depend upon the number of iterations (as with GMRES for example),then it is important to reduce the number of steps taken by increasing the rate ofconvergence.In this section the concept of preconditioning, which helps to overcome this slowconvergence by transforming the linear system, is discussed. A preconditioningmatrix M is applied to the problem (3.25), which leads to a matrix with a smallercondition number than that of the original. This preconditioning of the system isdone either by multiplying through by M�1,M�1Ax =M�1b (left preconditioning); (3.34)or rewriting it as AM�1Mx = b (right preconditioning): (3.35)Alternatively, both left and right preconditioning can be combined. The additionalcosts in using a preconditioner are twofold|the initial construction of M and thesolution of My = z at each step. M should ideally be chosen such that these costsare minimized, and that the convergence of (3.25) is signi�cantly improved (whichcan be done by ensuring M � A).

47Jacobi preconditioning yields one of the simplest forms that M may take,M = diagfAg: (3.36)This preconditioner is trivial to implement, and in a case where A is diagonallydominant works well, otherwise the gains in rate of convergence are relatively smallcompared to more sophisticated choices of M .A very common such class of preconditioners are those consisting of incompleteLU factorizations of A, which involve forming M as a product of upper and lowertriangular matrices based upon an approximate decomposition of A, so that cer-tain entries are ignored. This idea was introduced initially for symmetric matricesby Meijerink and van der Vorst [94] and subsequently extended to nonsymmetricsystems [118]. A more detailed description of ILU factorization may be found inx3.3.4.Alternatives to the this type of preconditioner include the element-by-element(EBE) approach, where the element matrix is preconditioned in some way, beforeassembly of the global matrix (if the assembly stage is done at all). Hughes etal. [69] introduced the concept of EBE factorizations in a structural mechanicscontext, and in [124] Wathen considered EBE preconditioners for the conjugategradient method. Other work in this area includes that of Gustafsson and Lindskog[55] and van Gijzen [120]. For two-dimensional problems, global preconditioners areusually preferable, but the situation may be di�erent in three dimensions [124].Another preconditioning technique is that of domain decomposition. Particu-larly e�ective for parallel computers, the approach here is to partition the domaininto subdomains which can be handled separately. The two alternative methodsare Schwarz methods, where the domains are overlapping, and Schur complementmethods where the domains are separated by interfaces. For further details andreferences concerning domain decomposition methods see [29].3.3.4 ILU FactorizationAs mentioned above, one important class of preconditioner consists of using approx-imate, or incomplete, factorizations of A, as described in this section. To obtainan incomplete factorization, a set S containing a subset of elements of A is chosen,so that during the factorization process, any elements lying outside S will be dis-carded. A convenient choice for S when A is sparse is the set of nonzero entries

48in A, so that the sparsity pattern is preserved and the same data structure can beused to store the factorization. These elements have �ll level zero, where a nonzeroentry in the factorization is said to have a �ll-level of k + 1 if it is caused by anentry of �ll-level k. Hence this is referred to as the ILU(0) preconditioner, whereasILU(1) will contain more nonzero entries than the original matrix A. As the levelof �ll increases, the preconditioner becomes more e�ective as well as needing morememory to store the factorization.The incomplete decomposition can be written asfor each k = 1; ::; n; i; j > k; aij 8><>: aij � aika�1kk akj if(i; j) 2 Saij otherwise: (3.37)In some cases, where structured meshes are being used (and so the matrix has aregular structure), it is possible to show that the ILU(0) preconditioner will have thesame o�-diagonal elements as the original matrix [95] but for unstructured meshesthis will not be so. Having computed the approximate factorization, LUy = z canbe solved at each iteration as Lv = z; Uy = v: (3.38)A variation of this incomplete factorization is the modi�ed incomplete LU pre-conditioner (MILU), where rather than discard any nonzero elements lying outsideS, they are subtracted from the diagonal. In this way, the preconditioner has thesame rowsum as the original matrix. Although there is a risk of breakdown dur-ing the factorization, it has been shown for certain cases (by Gustafsson [54] forexample) that the behaviour of the condition number of the preconditioned systemimproves.The type of ILU factorization described so far refers to treating each unknownseparately, but another approach is to group together sets of unknowns and per-form blockwise (rather than pointwise) factorization. There are a number waysof grouping together sets of unknowns, including by node (giving four unknownsin each block for the 2-d compressible Navier-Stokes equations) or by processor ifthe algorithm is to be run in parallel. The decomposition is then based on blocks,which means that the blocks will have to be inverted. If the block size is small,then inversion will not be too slow, however some type of approximate inverse maybe needed for larger sized blocks. Further details on such block preconditioners arefound in Axelsson [3] and Concus et al. [31]

49Dutto [40] has looked at the importance of how the unknowns are ordered in thecase of block ILU preconditioning for the Navier-Stokes equations and has shownthat certain ordering algorithms, such as reverse Cuthill-Mcgee, will improve thepreconditioner and accelerate convergence of GMRES. Ordering of unknowns hasalso been investigated by Venkatakrishnan and Mavriplis [122], with similar results.They also compared a number of preconditioners for both inviscid and viscouscompressible ow, with results showing that block ILU was the most successful.We have used a pointwise ILU(0) preconditioner, as this has been implementedin SLAP (see next section). Results in chapter 4 seem to indicate that this isa successful approach, although the use of block ILU, node reordering or ILU(1)would possibly lead to a further acceleration in the convergence rate.3.3.5 SLAPGMRES (along with a predecessor of GMRES, Arnoldi [2]) is implemented inNKSOL, but without a preconditioner. SLAP (Sparse Linear Algebra Package)written by Seager and Greenbaum [105], is a set of routines for solving sparse linearsystems and includes several iterative solvers including GMRES. It also containssome preconditioners such as diagonal scaling and pointwise ILU(0). We have usedthe ILU and GMRES routines so that they are called by NKSOL, at each Newtonstep, to approximately solve the linear system.One parameter required by the SLAP routine is m, the maximum dimensionof the Krylov subspace. If this is too small, then the GMRES solver will fail toconverge, but since the storage required by the solver is proportional to m � n,m is restricted by the amount of memory available. In x4.6.2 the choice of m isinvestigated for the Navier-Stokes equations, along with the question of whetherrestarting the GMRES process is worthwhile.3.3.6 Storage of Sparse MatricesThe n � n Jacobian matrix J arising in (3.2) is sparse, the structure of which isdetermined by the current mesh on which the problem is being solved. Typicallyless than 1% of the matrix elements will be nonzero, so clearly a more e�cient typeof matrix data storage is needed than simply storing all of the matrix entries. Onepossibility is to use a matrix-free method (see x3.2.5), but in this section a variation

50of the Harwell-Boeing sparse matrix format [39] is described. It is the format usedby SLAP (see x3.3.5) and throughout this work.The matrix J is speci�ed by three arrays. Nonzero elements are stored in VAL,in columnwise order, with the diagonal on each column being stored before theremaining elements of that column. ROW stores the row index of the correspondingelement in VAL. The values in COL point to elements in VAL and ROW which representthe diagonals of each column.So a diagonal entry Ji;i is stored in VAL[COL[i]], and the other elements incolumn i are stored in VAL[COL[i]+1]...VAL[COL[i+1]-1], and their row indices inROW[COL[i]+1]...ROW[COL[i+1]-1]. In addition, if nzelt is the number of nonzero ele-ments in J , the assignment COL[n+1]=nzelt+ 1 is made. For example ifJ = 2666666666664 4 0 2 0 0�1 2 0 0 10 1 5 0 03 0 2 2 00 2 �1 0 2 3777777777775then the arrays VAL,ROW and COL become:VAL = 4 -1 3 2 1 2 5 2 2 -1 2 2 1ROW = 1 2 4 2 3 5 3 1 4 5 4 5 2COL = 1 4 7 11 12 14This format uses a minimum amount of memory in that no nonzero elements arestored, but is ine�cient since procedures such as matrix vector multiplications in-volve an indirect addressing step for every scalar operation. It di�ers from theHarwell-Boeing format in that the diagonal elements (which will always be nonzeroin this case) are always listed as the �rst element in the column. The advantageof this modi�cation, which is used by SLAP, is that the diagonals can be obtainedmore quickly than if they appear further down the list of column entries (useful, forexample, if Jacobi preconditioning is being used).The creation of the arrays VAL, ROW and COL is achieved using information aboutthe unstructured mesh. In fact, it is e�cient to separate the construction of ROWand COL (the structure of J) which need only be done once per new mesh, from thecalculation of VAL which is done every time the Jacobian is re-evaluated, at everyNewton step.

51It is a nontrivial task to construct ROW and COL because the length of each columnis not known in advance. The stages for doing this can be summarised as follows.� Initially assume that each column will have no more than MAXNZ elementsin it, and create a two dimensional n� MAXNZ array.� Loop through all the mesh triangles. On each triangle, all 12 (4 variables foreach vertex) unknowns have a global number (between 1 and n) associatedwith them, g1::g12. The entries [J]gi;gj will all be nonzero elements and hencetheir row indices should be stored in the appropriate column, if they havenot already been stored. This is complicated by the fact that on boundaries,one or two of the vertices will have a reduced number of unknowns, due toDirichlet boundary conditions.� The two dimensional array still contains many unused entries (since only veryfew of the columns will have MAXNZ elements) and so the data is rewrittenas a continuous one dimensional array ROW with elements in the correct order.COL can be formed as this process is carried out.The temporary two dimensional array which is initially created is much largerthan the �nal array ROW but this extra space can be used elsewhere (in the GMRESlinear solver, for example). If a language other than Fortran is used (such as C orFortran-90), then dynamic memory allocation can be used, and the above processis unnecessary.Once COL and ROW have been created, the array VAL can be updated each time theJacobian is recalculated. This is obtained from the assembly of the mesh elementJacobians, by adding values to the entries of J . Addition of a value x to row i,column j of J is as follows.� Address of diagonal of column j is COL[j]� If i = j then VAL[COL[j]]=VAL[COL[j]]+x� Otherwise k = 1; 2; : : : until ROW[COL[j]+k]=i� VAL[COL[j]+k]=VAL[COL[j]+k]+xThis involves a short search along a column looking for the relevant row number|another result of using a storage format which is e�cient in memory terms but notin time.

52Other routines needed for handling sparse matrix formats include a matrix-vector multiply algorithm and possibly an incomplete factorization routine if thatis the preconditioner being used. Details of how these may be implemented can befound in Barret et al. [11].3.4 SummaryIn this chapter, the problem of solving systems of nonlinear equations has beenaddressed. Newton's method (x3.2) has been described, along with two techniquesfor improving its performance (global convergence and inexact solution of eachlinear problem). The software package NKSOL gives a practical implementation ofNewton's method and is used in this work.The solution of the linear system obtained at each Newton step has also beenconsidered (x3.3), and of the iterative and direct solvers discussed, GMRES waschosen as the solver to use in this work. This has been implemented in SLAP, alongwith an ILU preconditioner.This combination of NKSOL and SLAP provides a satisfactory means of solvingthe set of equations arising from the �nite element discretization of the Navier-Stokes equations and is used to obtain the results shown in subsequent chapters.

53
Chapter 4Results on Fixed Meshes4.1 IntroductionThe previous two chapters addressed the issues of spatial discretization and thesolution of nonlinear equations respectively. We are now in a position to solve thesteady compressible Navier-Stokes equations and this chapter presents some resultsfor several examples of transonic and supersonic ow. There are two reasons fordoing this; �rstly to demonstrate why certain methods or algorithms have been usedin place of others (for example the use of local rather than global time-stepping, orneed for a stable �nite element scheme) and secondly to compare with well knownstandard test cases for which many previous results exist in the literature.It is important to emphasise that this chapter only contains results on �xedmeshes|the idea of adapting the mesh as solution proceeds is introduced and dis-cussed in chapters 5 and 6. We begin in x4.2 with a short description of the type ofmesh being used. The solution algorithm is briey discussed in x4.3, and techniquesfor evaluating ow properties are outlined in x4.4. Before considering the Navier-Stokes equations fully we �rst present some results for a simpler system, consistingof Burgers' equations, in x4.5. The exact solution is known in this case, enablingthe accuracy of solutions to be checked. In x4.6 we show the e�ect of using di�erentalgorithms and parameters within the code, using known test cases, so that resultscan be compared with existing results.

544.2 Unstructured MeshesIn chapter 1, we briey discussed the generation of suitable grids on which to carryout the spatial discretization (which is the �nite element method in this case).Most of the examples presented here concern ow around a NACA0012 aerofoiland typical meshes for such a domain are given in �gures 4.1 (a structured mesh ofquadrilaterals) and 4.2 (an unstructured mesh of triangles).

Figure 4.1: A structured mesh around a NACA0012 Aerofoil (4096 elements).In all of the following results, we use unstructured meshes such as �gure 4.2. Allthe meshes used have been generated at the British Aerospace Sowerby Researchcentre, with the BAe Release 2.2 FLITE surface mesh generator from SwanseaUniversity [26].4.3 Algorithm for SolutionHere we summarize how the methods seen in the previous chapters are combinedso that a converged steady-state solution to the Navier-Stokes equations may bereached. The method of solution may be briey stated as follows.1. Initialization. This includes reading in data �les containing details of the meshand setting up the structure of the Jacobian matrix (which is dependent upon

55
Figure 4.2: An unstructured mesh around a NACA0012 Aerofoil (1617 elements).the mesh). The initial conditions are also speci�ed, which are usually set tobe equal to the freestream values, and as a consequence there is initially avery high gradient within the elements adjacent to the wall boundary.2. Nonlinear problem at each time-step. With either local or global timestep-ping implemented, use of a suitable �nite element method (such as Galerkinleast-squares) applied to a particular variable formulation leads to a systemof nonlinear equations, solved using Newton iteration (which has been im-plemented in NKSOL, see x3.2.4). A maximum of six Newton iterations areperformed per time-step, and a linear solver used to solve the linear systemat each iteration. The iterative solver used is the preconditioned GMRESalgorithm (see x3.3.2).3. Stopping test. If the L2 norm of the current solution residual of the steadystate problem is small enough (< 10�8) then steady state has been reached.Unless otherwise stated, results in this chapter have been obtained using the fol-lowing parameters:� The primitive variable formulation given by (2.8){(2.10), along with associ-ated boundary conditions.

56� The �nite element method used is the modi�ed form of Galerkin least-squaresdiscussed in x2.5.1, with the parameter � = hI=2 (where h is the mesh sizeparameter, de�ned here as length of the longest element edge) and where ashock capturing term has been omitted.� The local timestepping procedure, described in x2.6.1, is used with an algo-rithmic Courant number of 50.� The stopping tolerance for the nonlinear solver is 10�5.� The Jacobian matrix is evaluated using approach (iii) described in x3.2.5.� The preconditioning used with the GMRES solver is incomplete LU factor-ization with no �ll-in. The maximum dimension of the Krylov subspace is25, and no restarts are performed (so that a maximum of 25 linear iterationsare performed per Newton step). The linear system is not solved exactly (seex3.2.3), and the stopping tolerance at the ith Newton iteration is set to bejjG(ui)jj22i ; (4.1)where G(u) is the residual of the nonlinear problem at the current time-stepand ui is the solution to this problem at the ith Newton step.� The numerical integration over each element is carried out using a three pointGaussian quadrature rule, given in [32].4.4 Flow EvaluationIn order to evaluate the quality of a ow solution, a number of comparisons andchecks may be made against previous numerical and experimental results. In addi-tion to the visualization of the solution variables, numerical parameters may existand can be compared.In the case of ow around aerofoils, there are many ways of comparing results.When viewing the solution over all or part of the domain, there are several variableswhich may be compared, including velocity vectors, Mach number, density, tem-perature and pressure. In order to visualize these values, we use the package \Viz",version 2.11 [112], developed for internal use by the Sowerby Research Centre at

57British Aerospace, which has been speci�cally designed for viewing aerodynamicssimulations. This program allows visualization of solutions on both structured andunstructured meshes, for two (and three) dimensional problems. A numerical solu-tion may be input in a simple format, and the choice of output includes contoursand shaded plots for any ow variable, velocity vectors and the mesh itself.Of particular interest in ow around aerofoils is the evaluation of forces exertedon the aerofoil surface. These forces originate from two sources|pressure which actsnormally to the surface, and stress, which acts tangentially|and are usually plottedas non-dimensionalized quantities cp (coe�cient of pressure) and cf (coe�cient offriction) against the distance along the aerofoil chord. We de�necp = p � p112�1u21 ; cf = �w12�1u21 ; (4.2)where p1, �1 and u1 are the respective values of pressure, density and speed inthe freestream, and p and �w are the wall pressure and shear stress. The value of�w is calculated on each element adjacent to the aerofoil wall as�w = � 1Re @V@n (4.3)where V is the velocity tangential to the aerofoil surface, and n is the outward nor-mal to the surface. From the values cf and cp calculated on each element adjoiningthe aerofoil, the coe�cients of lift and drag, Cl and Cd, may be derived:N = Xnc cps cos � +Xnc cfs sin � (4.4)A = �Xnc cps sin � +Xnc cfs cos � (4.5)Cl = N cos��A sin� (4.6)Cd = N sin��A cos� (4.7)where nc is the number of elements adjacent to the aerofoil, � is the angle of attack,s is the length of each aerofoil segment and � is the angle of the segment with thehorizontal (see �gure 4.3).The test cases which are considered in this and subsequent chapters mainlyoriginate from a GAMM workshop set up to consider the numerical solution of thecompressible Navier-Stokes equations [18]. These cases concern steady transonicow around a NACA0012 aerofoil at low to moderate Reynolds numbers. Table 4.1shows the list of cases for which we present results in this chapter. An additional

58
α

s
θFigure 4.3: Values used in calculation of Cd and Cl.example that we look at is the problem of supersonic ow over a at plate [25],for which many previous results have been obtained. All timings given refer to thetotal CPU time in seconds for the code to converge on a single Silicon GraphicsMIPS R4400 processor. Case Re M �A1 73 0.8 10�A2 500 0.8 10�A3 106 2.0 10�A6 2000 0.85 0�Table 4.1: Test cases considered from [18].4.5 A System of Burgers' EquationsBefore giving results for the full system of Navier-Stokes equations, in this sectionsome results showing the numerical solution of a simpler system are given. Thissystem of Burgers' equations consists of two coupled nonlinear convection-di�usionequations, and hence contains some of the features of the Navier-Stokes equations,but also has a known solution, so we can reliably measure the accuracy of a numer-ical scheme. Consider the following system of equations:u@u@x + v@u@y � �(@2u@x2 + @2u@y2) = f (4.8)u@v@x + v@v@y � �(@2v@x2 + @2v@y2) = g; (4.9)where � is a small constant, and the source terms f and g are given byf = �g = exp((�4x+ 4y)=(32�))128�(1 + exp((�4x+ 4y)=(32�)))2 (4.10)This system has the exact solutionu = 34 � 14 11 + exp((�4x+ 4y)=(32�)) (4.11)

59v = 34 + 14 11 + exp((�4x+ 4y)=(32�)) (4.12)which represents a wave front at y = x.
0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

0.55

0.6

0.65

0.7

Figure 4.4: u values of exact solution of Burgers' System (� = 0:01).This problem is to be solved on a square domain [0; 1] � [0; 1], with the exactsolution being prescribed as Dirichlet conditions along the boundary. The smallerthe value of �, the sharper the front along y = x, and the more di�cult the problembecomes to solve using standard Galerkin �nite elements. The �rst component ofthe exact solution with � = 0:01 is shown in �gure 4.4, and we solve the problem forvalues of � ranging from 0.1 to 0.001 on a series of unstructured meshes, using bothstandard Galerkin methods and the stabilized �nite element methods described inchapter 2. The three meshes consist of 146, 568 and 2310 elements respectively,and the third of these is shown in �gure 4.5.Given the numerical solution, we de�ne the error norm E asE = 1n nXi=1q(ui � uei)2 + (vi � vei)2 (4.13)where n is the number of nodes in the mesh, (ui; vi) is the exact solution at nodei and (uei ; vei) is the numerical solution at node i. Table 4.2 lists the error normsobtained using both the standard Galerkin method (x2.3) and the Galerkin least-squares modi�cation (x2.5) for nine problems (�= 0.1, 0.01 and 0.001 solved onthree meshes).

60
Figure 4.5: Mesh 3 (2310 elts).For the problem when � = 0:001 on mesh 3, �gures 4.6(a) and 4.6(b) show thecontours of the �rst component of the numerical solution obtained using Galerkinonly and Galerkin least-squares respectively. These clearly show that spurious os-cillations, introduced by the Galerkin method for convection-dominated problems,can be eliminated to a large extent by the introduction of the extra stabilizing terminto the variational form.Mesh � Gal. GLS1 0.1 8.00e-6 2.01e-52 0.1 2.33e-6 1.39e-53 0.1 6.83e-7 8.16e-61 0.01 2.47e-3 1.41e-32 0.01 5.47e-4 2.92e-43 0.01 1.33e-4 9.10e-51 0.001 1.55e-1 1.18e-22 0.001 3.64e-2 8.27e-33 0.001 7.91e-3 2.98e-3Table 4.2: Comparison of errors using Galerkin and GLS.It can be seen from table 4.2 that for di�usive problems, when � is large inrelation to the mesh size, the Galerkin method is more accurate than the Galerkinleast-squares technique used here (which indicates that a more sophisticated choice

61of the parameter � should depend on the amount of di�usion already present). How-ever as � is decreased, and the non-physical oscillations introduced by the Galerkinmethod begin to dominate the solution, the Galerkin least-squares method is morestable (and hence there is less error in the solution). The solutions obtained onthe meshes used here are not as accurate as we would like, which demonstrates theneed for adaptivity, considered in later chapters. We mention here that stabilityon coarse meshes provides a basis for a mesh re�nement strategy, since oscillatorysolutions fail to provide accurate information about where to re�ne.
Min: 0.42 ; Max: 0.81 Min: 0.47 ; Max: 0.77

Figure 4.6: Case � = 0:001 on mesh 3. u component of solution using (a) Galerkinand (b) GLS.4.6 Comparison of Test CasesResults given above for the system of Burgers' equations indicate that improvedsolutions may be obtained using a stabilized �nite element method such as Galerkinleast-squares. We now return to the steady compressible Navier-Stokes equationsin this section and show results on �xed meshes for the test cases given in table 4.1,as well as ow over a at plate [25]. The e�ect of certain parameters and methodson the accuracy and e�ciency of the solution algorithm outlined in x4.3 is alsoconsidered. Two meshes are used in the examples of ow around aerofoils|mesh1 consists of just 1617 elements, a subsection of which is shown in �gure 4.2, andmesh 2, consisting of 5436 elements, in which the mesh spacing near the aerofoil is

62approximately half that of mesh 1 (see �gure 4.7).
Figure 4.7: Mesh 2 (5436 elements).4.6.1 Case A1This problem consists of transonic ow at a fairly low Reynolds number, Re=73, andwe �rst attempt to obtain a solution using the standard Galerkin method only, asdescribed in x2.3.1. As expected, this leads to spurious oscillations being producedin the solution, and these can be seen in �gure 4.8(a), which shows a contour plotof the density variable from the converged solution. The mesh used here is mesh 1,consisting of 1617 elements, and even at this Reynolds number, the entire solutionis corrupted by the presence of these non-physical oscillations.In x2.4, we discussed how higher order approximations for the velocity variablesmay be employed to avoid the oscillations, and �gure 4.8(b) shows the improvementin the quality of the solution when bubble functions are used in addition to piecewiselinear approximations. We also consider the solution obtained from using Galerkinleast-squares (see x2.5).Figures 4.9 and 4.10 show plots of the pressure and friction coe�cients for thesolutions obtained using bubble functions and Galerkin least-squares on the �nermesh 2. In comparison to the results obtained in the GAMM workshop [18], theseappear to be within the range of values given. The lift and drag coe�cients are

63
Min: -0.30 ; Max: 1.78 Min: 0.57 ; Max: 1.63

Figure 4.8: Test case A1: Density contours around aerofoil using Galerkin method(a) without and (b) with bubble functions on mesh 1.shown in table 4.3, which also gives results for the other test cases consideredbelow. It should be noted that in all the examples both the size of the Krylovdimension used in GMRES and the algorithmic Courant number are �xed (at 25and 50 respectively), and hence the CPU times quoted could be improved upon ineach case by tuning these two parameters (e.g. increasing the Krylov dimensionwould accelerate convergence at the cost of additional memory required).
-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bubble fns.
GLS

Figure 4.9: Pressure coe�cients for case A1 using bubble functions and GLS onmesh 2.We now consider the e�ect on these methods of increasing the Reynolds numberby looking at test case A2.

64
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bubble fns.
GLS

Figure 4.10: Friction coe�cients for case A1 using bubble functions and GLS onmesh 2.Case Method Cl Cd CPU time (s)A1 Bubble functions 0.51 0.61 6802GLS 0.55 0.62 775Range of values in [18] 0.52-0.66 0.58-0.70A2 GLS (Prim. vars.) 0.52 0.28 780GLS (Cons. vars.) 0.54 0.29 917GLS (New form of �) 0.52 0.29 3810Range in [18] 0.41-0.52 0.24-0.29A3 GLS (Prim. vars.) 0.32 0.46 1190Range in [18] 0.31-0.40 0.41-0.49A6 GLS (Prim. vars.) 0.003 0.12 685Range in [18] 0 0.10-0.14Table 4.3: Results for case A1, A2, A3, A6 on mesh 2.4.6.2 Case A2The only change from the previous case A1 is that the Reynolds number is increasedto 500, and we again use the approach involving piecewise linear approximationswith higher order approximations (bubble functions) for the velocity unknowns. Thedensity contours from the solution (obtained on mesh 1) are plotted in �gure 4.11(a),and it can be seen that the use of bubble functions is insu�cient, as oscillationsbegin to reappear. This suggests that an improved method for generating solutionsfree of unnecessary oscillations is required, such as the schemes discussed in x2.5.If the modi�ed Galerkin least-squares method is used to solve case A2, then animproved solution is obtained, as shown in �gure 4.11(b).The use of an alternative variable formulation to the primitive variables of den-

65
Min: 0.56 ; Max: 1.42 Min: 0.50 ; Max: 1.36

Figure 4.11: Test case A2: Density contours around aerofoil using (a) Galerkin withbubble functions and (b) Galerkin least-squares on mesh 1.sity, velocity and temperature leads to similar results. Figures 4.12 and 4.13 showthe pressure and friction coe�cients for both the primitive and the conservativevariables given in x2.2.2. Mesh 2, consisting of 5436 elements, is used in this case,and the lift and drag coe�cients are given in table 4.3.
-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Primitive
Conservative

Alternative tau

Figure 4.12: Pressure coe�cients around the aerofoil for primitive and conservativeformulations (case A2).The form of the matrix � used in the extra terms of the modi�ed Galerkin least-squares formulation is hI=2 where h is the mesh size parameter and I is the identitymatrix. More sophisticated forms of this matrix are implemented by both Shakib

66
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Primitive
Conservative

Alternative tau

Figure 4.13: Friction coe�cients around the aerofoil for primitive and conservativeformulations (case A2).et al. [108] and Hansbo and Johnson [57]. For example, in [57],� = h2 (I + 2Xi=1A2i)� 12 (4.14)where the Ai's are the convection matrices in (2.36). In the case of primitivevariables, the convection matrices are not positive de�nite and so we use the con-servative formulation to implement (4.14). The pressure and friction coe�cientswith this alternative form of � are also shown in �gures 4.12 and 4.13, and thecoe�cients Cl and Cd are given in table 4.3.For this particular test case, the results above show the need for a stable �niteelement method, such as Galerkin least-squares, in order to avoid solutions con-taining spurious oscillations. There does not appear to be much di�erence betweenusing primitive and conservative variables at these moderate Reynolds numbers,and choosing a diagonal form for � appears to give satisfactory results. The Cl andCd values are largely within the range of values obtained at the GAMM workshop,although more accuracy would be expected on �ner grids.We discuss below a number of issues concerning the e�ciency of the algorithmand see how convergence is a�ected by some of the parameters chosen.Time-steppingIn x2.6, two approaches to marching towards a steady-state solution were considered|global time-stepping where a constant time-step is used throughout the domain, andlocal time-stepping, so that the time-step is allowed to vary spatially. Figure 4.14

67shows a comparison between the two approaches for the test case A2, solved onmesh 1. For global timestepping, the time-step size �t is set to be 1.0, and for localtime-stepping the algorithmic Courant number de�ned in x2.6.1 is 50.0. The graphshows the 2-norm of the residual vector and the cumulative number of nonlineariterations, which is directly proportional to the CPU time taken. There is clearly asubstantial gain in e�ciency when using local time-steps to reach steady solutions.The optimal choice of the algorithmic Courant number (and �t) largely dependson two factors|the size of the mesh and the Krylov subspace dimension used inthe GMRES iterative solver (see below). Although a larger Courant number leadsto even faster convergence for the mesh used here, a value of 50.0 appears to besuitable for a wide range of mesh sizes.
1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400

R
es

id
ua

l N
or

m

Nonlinear Iterations

Local Time-stepping
Global Time-Stepping

Figure 4.14: Comparison of number of nonlinear iterations taken to converge usinglocal and global time-stepping.Further acceleration in convergence may be obtained by allowing the Courantnumber to increase as the time-stepping nears steady-state. We have implementedthis by increasing the Courant number by a factor of ten when only one nonlineariteration is required per time-step. This leads to a large saving in time since theow solution is changing very slowly by this point and the GMRES solver can copewith the increased time-step size without needing to increase the size of the Krylovdimension.

68GMRESThe linear system generated at each Newton step needs to be solved, and theGMRES iterative solver which solves this system was described in x3.3.2. In thissection we show the need to incorporate a preconditioner in the solver and discusshow much memory is required by the algorithm. This memory is needed since theupdate vector computed by GMRES at each iteration lies in a Krylov subspace,and the basis vectors of this subspace need to be stored by the algorithm.We �rst consider solving case A2 on mesh 1 without using time-stepping i.e. asone nonlinear problem, using GMRES with and without a preconditioner. Usinga value of 200 as the dimension of the Krylov subspace and restarting four times(so that up to 1000 iterations are performed per Newton step), three approaches tosolving the linear problem at each nonlinear iteration are tried:� GMRES with no preconditioning,� GMRES with Jacobi preconditioning, and� GMRES with incomplete LU decomposition (with no �ll-in) as a precondi-tioner.Figure 4.15 shows the residual norm of the nonlinear problem against the totalnumber of linear iterations for these three approaches. Clearly, the use of a pre-conditioner improves the rate of convergence signi�cantly, and for large meshes isessential, as the Krylov dimension is restricted by the amount of memory (for ex-ample a mesh of 4000 nodes and a Krylov dimension of 200 requires approximately25 megabytes of storage). Only by using an e�ective preconditioner (such as ILU)can the Krylov subspace be substantially reduced, although some extra storagespace is needed for the decomposition process. This also adds to the CPU time,though overall time taken is still considerably reduced: the total time in secondsfor convergence (on mesh 1) to steady state is shown in table 4.4.CPU time (s)No precon. 1736Jacobi 593ILU(0) 88Table 4.4: Timings for di�erent preconditioners.

69
0.1

1e-05

1e-10
10 100 1000 10000

R
es

id
ua

l N
or

m

Linear Iterations

No preconditioning
Jacobi preconditioning

ILU preconditioning

Figure 4.15: Linear iterations to solve a nonlinear problem using GMRES with andwithout a preconditioner.Only two types of preconditioning have been implemented here. Further in-vestigations could be carried out on other algorithms such as element by elementtechniques or a more advanced incomplete LU factorization involving higher levelsof �ll-in. Re-ordering the unknowns may also lead to convergence acceleration (seeDutto [40] for details).We now see how the size of Krylov dimension a�ects the rate of convergencewhen using GMRES with ILU(0) preconditioning. Table 4.5 shows the CPU timesfor convergence of case A2 on mesh 2 (with a �xed algorithmic Courant number of50 used in the local timestepping) for di�erent sizes of the Krylov dimension. Alsoshown is the e�ect of allowing two restarts within the GMRES algorithm.Kry. Dim. Restart? Nonlinear itrns Linear itrns CPU time (s)5 n 89 444 14245 y 57 736 105310 n 59 574 104510 y 54 813 104125 n 55 806 105625 y 54 899 108950 n 54 855 108650 y 54 879 1089Table 4.5: Convergence comparison using di�erent sizes of Krylov dimension.

70The time taken to reach a converged solution is only signi�cantly a�ected whenthe Krylov dimension is as small as 5, and no restarts are carried out. Above this,the size of Krylov dimension makes very little di�erence to the rate of convergence,for this mesh, consisting of 5436 elements. For larger meshes, a larger maximumdimension may be required, although the use of restarting the GMRES algorithmmay o�er some improvement in convergence.The two parameters of Krylov dimension size and algorithmic Courant numberboth depend the size of the mesh, and on each other, so that as the Krylov dimensionsize is reduced, the Courant number may need to be decreased. Further study mightprovide a better indication of how these three values are inter-related, so that thecode could assign nearly optimal values to the Courant number at run time in orderto converge more quickly.It should be noted that for many test cases at moderate Reynolds numbers,time-stepping is not required when solving on coarse meshes, and the steady Navier-Stokes equations can be solved directly as one nonlinear problem. As the mesh sizeincreases however, a larger Krylov dimension is required and the gains in solutiontime are outweighed by the extra memory requirements. Test case A2 can be solveddirectly on both meshes 1 and 2, with dimension of the Krylov subspace equal to25.Evaluation of Jacobian MatrixThe Newton solver used to solve the nonlinear problem arising at each time-steprequires knowledge of the Jacobian matrix, and in x3.2.5 several possible approachesfor calculating this matrix were outlined. These include� (i) computing the element Jacobian matrix from the analytical derivativesand assembling,� (ii) forming the global Jacobian from �nite di�erence approximations usingthe residual function,� (iii) forming the element Jacobian matrix from �nite di�erence approxima-tions and then assembling, and� (iv) not computing the matrix explicitly, but �nding the matrix-vector prod-uct when needed.

71To see how these methods compare, case A2 is solved on mesh 1, without anypreconditioning of GMRES (since Jacobi or ILU require access to the matrix andso cannot be used with method (iv)), using methods (i), (iii) and (iv) (method(ii) is substantially slower as each Jacobian evaluation requires the residual to beevaluated as many times as there are unknowns). The CPU times are shown intable 4.6, and indicate that forming the Jacobian explicitly appears to be muchfaster than the matrix-free method (iv). In addition, there is a small gain in timeby using the approximate element Jacobian matrix rather than the exact form,because calculating the element residual twelve times is faster than computing theelement Jacobian exactly. This suggests that method (iii) is the best approach touse, since it does not require any derivatives to be computed analytically.Type of Jacobian evaluation CPU time (s)(i) 4684(iii) 4166(iv) 13955Table 4.6: Convergence times using di�erent methods to evaluate the Jacobian.4.6.3 Case A3This case involving supersonic ow around an aerofoil contains a detached bowshock. In order to solve this problem, we again cannot use the Galerkin methodcombined with bubble functions without seeing unwanted oscillations appear again,so use the modi�ed Galerkin least-squares method as for case A2. The parametersused are as stated previously and are based on the results presented in the previoussection (concerning the use of local time-stepping, the GMRES algorithm etc.).Primitive variables are employed in the formulation of the problem, which issolved on mesh 2, consisting of 5436 elements. We show the density contours of thesolution near the aerofoil in �gure 4.16 and the pressure and friction coe�cientsin �gures 4.17 and 4.18. The coe�cients of lift and drag, and the time taken toconverge are given in table 4.3.Although the shock has been clearly resolved near the aerofoil where the meshis �ne, in regions where the mesh is coarser the shock is not well de�ned at all. Thisindicates the need for either a �ner mesh everywhere, or some means of re�ning themesh where it is required (this topic is discussed further in chapter 5).

72
Min: 0.32 ; Max: 3.16

Figure 4.16: Test case A3: Density contours around aerofoil.
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 4.17: Pressure coe�cients for case A3 on mesh 2.
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 4.18: Friction coe�cients for case A3 on mesh 2.

734.6.4 Case A6The test case A6 concerns transonic ow at the higher Reynolds number of 2000,with no angle of attack, and as a consequence there is a well-de�ned wake behind theaerofoil. Again, we use primitive variables, and values of the numerical parametersare as given in x4.3. The solution obtained on mesh 2 is shown in �gure 4.19 asa plot of the Mach number contours, and due to the coarseness of the mesh awayfrom the aerofoil, the wake is not resolved at all. We use the Mach number ratherthan density contours in this test case in order to more clearly show the wake whenit appears in the results in later chapters. Figures 4.20 and 4.21 show the pressureand friction coe�cients around the aerofoil. Details of the lift and drag coe�cientsare given in table 4.3.
Min: 0.00 ; Max: 1.08

Figure 4.19: Test case A6: Mach number contours around aerofoil.In order to detect the wake fully, a �ner mesh may be used, and we use atriangulated version of the structured mesh shown in �gure 4.1, which consists of8192 elements. Figure 4.22 shows the Mach contours of the solution obtained onthis mesh, where the elements are more evenly spread over the entire domain thanthe unstructured meshes used here. The wake is clearly de�ned even far from theaerofoil trailing edge. This again demonstrates the need to have a mesh which is�ne enough to detect all the features of the ow, either by using a mesh which is�ne everywhere or only re�ning the mesh where necessary.

74
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 4.20: Pressure coe�cients for case A6 on mesh 2.
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 4.21: Friction coe�cients for case A6 on mesh 2.
Min: 0.00 ; Max: 1.09

Figure 4.22: Test case A6: Mach contours around aerofoil on �ner structured mesh.

754.6.5 Flow Over a Flat PlateThis problem �rst considered by Carter [25] consists of supersonic ow (a Machnumber of 3) passing over an in�nitely thin plate causing a shock and a boundarylayer to develop from the leading edge of the plate. The computational domain isthe region �0:2 � x � 1:2, 0 � y � 0:8, and the plate is positioned along y = 0,0 � x � 1:2. The Reynolds number used is 1000, and the angle of attack is zero.The following boundary conditions apply. The inow boundary is de�ned as theline x = �0:2, where u = 1, v = 0, � = 1 and T = T1 = ((� 1)M21)�1. Alongthe plate, u = v = 0 and T = T1[1 + (� 1)M21=2]. Neumann conditions apply toremaining nodes on the boundaries.We solve the problem on �ve di�erent meshes, from a coarse mesh consisting of8 � 8 nodes (98 elements) to the �nest mesh of 25088 elements. These correspondto mesh spacings of h = 0:2, h = 0:1, h = 0:05, h = 0:025 and h = 0:0125respectively. One of the intermediate meshes (29 � 29 nodes) is shown in �gure4.23. The formulation we use is that of primitive variables, and the usual defaultvalues for the parameters concerning local time-stepping and the GMRES solverare applied. The CPU time taken to solve the problem on each mesh is given intable 4.7.
Figure 4.23: Middle mesh (h = 0:05) used for at plate ow problem.In �gures 4.24 and 4.25, the contours of pressure and the Mach number areshown for the solution obtained on the �nest mesh, and these demonstrate thepresence of both the shock and the boundary layer. We also plot the pressure and

76Mesh 1 2 3 4 5Elts. 98 392 1568 6272 25088Time (s) 4 15 81 443 2462Table 4.7: Time taken to solve at plate ow problem on each mesh
Min: 0.07 ; Max: 0.37

Figure 4.24: Pressure contours of solution on �nest mesh (h = 0:0125).friction coe�cients in �gure 4.26 and 4.27.This problem has been used many times as a test case in previous work (seeShakib et al. [107] and Demkowicz et al. [35] for example), and so we may comparesolutions obtained here with these other results. On inspection of the contourplots, the location of the shock appears to be correct, and the boundary layerseems to be approximately the right width. However the plots of pressure andskin friction coe�cients do not agree very well with other results|values near theleading edge are too low. Possible reasons for these inaccuracies may be the incorrectspeci�cation of the boundary conditions, particularly in front of the at plate, orthe simpli�ed form of the Galerkin least-squares parameter � (although the moresophisticated choice of (4.14) was tried and no improvement observed). In thiscase we would expect that more accurate solutions may be obtained on �ner grids,and in chapters 5 and 6 results on re�ned meshes do show greater accuracy. Thestability of the method even on coarse meshes will allow the mesh to be re�ned inthe correct regions.

77
Min: 0.00 ; Max: 3.00

Figure 4.25: Mach contours of solution on �nest mesh (h = 0:0125).
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2

h=0.2
h=0.1

h=0.05
h=0.025

h=0.0125

Figure 4.26: Pressure coe�cients for at plate ow problem.
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1 1.2

h=0.2
h=0.1

h=0.05
h=0.025

h=0.0125

Figure 4.27: Friction coe�cients for at plate ow problem.

784.7 SummaryIn this chapter, we have presented a number of solutions to standard test casesfor the Navier-Stokes equations. We have also introduced a smaller problem, thecoupled system of Burgers' equations, which contains similar features to the fullNavier-Stokes equations but has a known exact solution. Results given for thisproblem show that the use of a stabilized �nite element method such as Galerkinleast-squares enables solutions which are free of oscillations to be obtained forconvection-dominated ows on a coarse mesh. For meshes which are su�ciently�ne, the standard Galerkin method is, as expected, stable and accurate.For the compressible Navier-Stokes equations, the Galerkin method is insuf-�cient, even when higher order functions (such as bubble functions) are used toapproximate the velocity variable, see [17]. Our simpli�ed version of the Galerkinleast-squares method, where the shock capturing term has been omitted and a sim-ple, inexpensive choice of the parameter � is used, appears to eliminate the spuriousoscillations which appear with standard Galerkin. Results of the four test cases se-lected from the GAMM workshop on compressible ow [18] appear to be within therange of solutions obtained there, thus verifying the general accuracy of the scheme,even on coarse meshes, for these types of ow. However the solutions obtained forCarter's at plate ow problem are clearly inaccurate, and it is possible that themethod with the current choice of � is inadequate for this problem, which involvessupersonic ow.The use of local time-stepping o�ers a signi�cant acceleration in the time toconverge to steady-state solutions. The optimal value of the algorithmic Courantnumber depends largely on the mesh size and the size of the Krylov dimension(used by the GMRES solver), but it is not yet clear how this value might be chosen.Further gains in e�ciency are also possible by allowing the Courant number tovary dynamically, so that after the initial few time-steps it could be increased soas to reach steady state more quickly. This is already done in a limited way as thesolution approaches convergence.The preconditioner used in the GMRES linear solver is incomplete LU decom-position with no �ll-in, and allows a large improvement in the rate of convergenceof GMRES over Jacobi (or no) preconditioning. More sophisticated preconditioners(e.g. ILU with some �ll-in) may allow even faster convergence at the cost of extra

79memory used to store the decomposition.The GMRES solver requires a large amount of memory to store the Krylovsubspace basis vectors, so it is desirable to reduce the dimension of the subspace asmuch as possible. Results show that a value of 5 (with restarting) may be su�cientto allow convergence, provided the number of unknowns and/or the algorithmicCourant number are not too large.The results obtained for the last two test cases (A3 and A6), in which the shockand the wake fail to be completely resolved on the unstructured mesh used, indicatethat �ner meshes are needed. Two possible approaches are to� use a very �ne mesh everywhere so that no ow features are missed, or� re�ne the mesh only in regions where the numerical solution is inaccurate.This latter approach is discussed in detail in the next two chapters.

80
Chapter 5Adaptivity I: h-Re�nement5.1 IntroductionIn the previous chapter, some solutions of the steady compressible Navier-Stokesequations were presented. These results were generated on �xed unstructuredmeshes, so that accurate solutions were only obtained in regions where the meshwas �ne enough. For example, in x4.6.4, the wake behind the aerofoil was onlyresolved when the mesh density behind the aerofoil was high enough.One possible solution to this problem is to use a single �xed mesh which willbe dense enough to accurately reproduce the correct solution. However the exactlocation of the ow features such as shocks and wakes is not always known, whichmeans the mesh has to be �ne everywhere. This is expensive and ine�cient as manymore unknowns may be solved for than are actually needed.An alternative idea is to adapt the mesh in some way in order to improve thequality of the solution (or reduce the solution error). Initially the problem might besolved on a coarse mesh, which is subsequently modi�ed according to the �rst ap-proximate solution. It is particularly important that a stabilized numerical methodis used to obtain solutions on coarse meshes, as solutions containing spurious oscil-lations will lead to re�nement of the mesh in regions where it is unnecessary. Thesolve-adapt iteration may be repeated until a solution of the desired accuracy hasbeen reached. We discuss such an approach in this chapter, and describe methodsfor obtaining steady solutions on adapted meshes. The use of adaptivity for tran-sient problems involves some additional di�culties, and these are considered furtherin chapter 7.

81There has been a great deal of interest in adaptive �nite element methods, bothfor strongly elliptic problems (e.g. Babuska [6] and Eriksson and Johnson [42]) andcompressible ow (e.g. Lohner [89], Oden et al. [100] and Hassan et al. [60]).This adaptive approach requires a number of issues to be addressed. Firstly theconcept of adaptivity implies that we can measure the error of a given numericalsolution, which in general we cannot know exactly. Instead, some means of estimat-ing where the error is large is required|and there exist a wide range of techniqueswhich have been used to do this, from simply using physical properties of the so-lution to sophisticated a posteriori error estimates. Some of these are discussed inx5.2.Once the error indicator has been used to determine where the solution error islargest, there are several ways of modifying the mesh to reduce this error.� Addition of points (h-re�nement). Here the mesh is re�ned by adding morenodes to the mesh in regions where the error is large, thus reducing the meshsize parameter h for elements in these regions. Conversely removal of nodeswhere the error is small is also possible.� Movement of points (r-re�nement). No new points are added, but existingnodes are redistributed in order to ensure that the mesh density is high wherethe error is large.� Order enrichment (p-re�nement). The mesh remains the same, but the localorder of approximation is increased, i.e. in elements where the error is large,higher order polynomial basis functions are used.It is also possible to combine these methods as well as use them individually. In thischapter we discuss the use of h-re�nement and consider a form of r-re�nement (andthe hr combination) in the following chapter. We do not consider p-re�nement here,but see [35] and [36] for examples of hp-re�nement in compressible ow problems.When carrying out h-re�nement, it is important to have a suitable data structureto store the details of the mesh, so that addition and removal of points may be donee�ciently. This is discussed in x5.3 where an algorithm for spatial mesh re�nementis outlined. In x5.4, results of using h-re�nement with a number of error indicatorsare presented for some of the test cases given in chapter 4. These demonstrate theadvantages of using adaptive meshes rather than �xed meshes.

825.2 Error IndicatorsThe two main issues to be considered when taking an adaptive approach, such ash-re�nement, are the re�nement algorithm used (including a suitable mesh datastructure) and how to determine which regions of the mesh are to be re�ned. The�rst of these is discussed in x5.3, and in this section we describe some choices oferror indicator (which should reect which regions need to be re�ned).The re�nement algorithm outlined in the next section works by dividing speci�edtriangles of the mesh into four sub-triangles, and so we require an error indicatorwhich will return a value for each element (rather than each node or edge). Givena tolerance TOL, an element will be re�ned if�K > TOL� �MAXK ; (5.1)where �K is the value returned by the error indicator for element K and �MAXK isthe maximum value of �K over all the elements in the mesh. This re�nement rule isgiven by Oden et al. in [100] and makes the choice of the value TOL less dependenton the exact form of �K than the �xed criterion of �K > TOL.There exist many possible choices for this indicator, and one common idea is touse the physical properties of the current numerical solution. Very often these willbe changing most rapidly in parts of the mesh where the error will be large such asshocks or boundary layers. For example, in [100], Oden et al. use the gradient ofthe density to de�ne the following:�gK = pAK�K supi=1;2 ����� @�@xi ����� ; (5.2)where AK denotes the element area and �K is the average value of the density onthe element. In [17], the local mach number is used in the following way by Bristeauet al. �mK = uK �rMKjuKj ; (5.3)where MK is the local mach number obtained from the average element velocity uK(MK = M1juKj). Another similar indicator is the ow vorticity�vK = jr� uKj: (5.4)A more sophisticated approach than relying on the change in solution variablesis to develop a posteriori error estimates, where the error of a numerical solution U

83is estimated by some function E of U and h (the mesh size parameter):jju� U jj � E(U; h): (5.5)Here u is the exact solution and E will depend on the p.d.e. being solved. Suchestimates have been developed for a wide range of p.d.e.'s (e.g. by Babuska [5],Strouboulis and Oden [116] and Johnson et al. [42]). For convection-dominatedproblems where the streamline di�usion method is being used, Eriksson and Johnson[41] prove an a posteriori error estimate for a scalar linear convection-di�usionequation, and show how this estimate for the solution error may be used as thebasis of an adaptive algorithm which aims to construct a mesh such that E(U; h)equals a user de�ned tolerance. Error estimates have also been proved by Hugheset al. [68] for linear symmetric advective-di�usive systems.However the theoretical justi�cation for the extension of results from linear tononlinear problems is still being investigated (see for example the work of Johnsonand co-workers, [80] and [43]). Instead, attempts have been made to generalizeestimates for linear problems and numerically demonstrate their e�ectiveness. In[57] Hansbo and Johnson give results of an adaptive method for the compressibleEuler equations based on extending the work done in [41].The error indicator in [57] is based on R(U), the residual obtained by insertingthe �nite element solution into the original equation, and we consider here a simi-lar but generalized type of indicator, so that formulations other than conservativevariables may be used. Since we are interested in an element-based indicator, wewish to calculate this residual over each element. For the Navier-Stokes equations,we de�ne for each element R(U) = L�U (5.6)where L� is de�ned in (2.78) as the steady-state compressible Navier-Stokes oper-ator. However since U is approximated with piecewise linear functions, the secondderivatives vanish inside the elements andR(U) = A1 @U@x1 +A2 @U@x2 �F ; (5.7)where the Ai's are the convection matrices and F is a source term. The errorindicator �K has the form �rK = �ZK jR(U)j2dx�12 (5.8)

84where, if R(U) = (r1; ::; r4)T , jR(U)j2 = 4Xi=1 r2i : (5.9)In order to include the di�usive e�ects, which are likely to be important nearboundaries for example, we de�ne the following term for the scalar variable u,de�ned in [41], D2hujK = 0@12 X�2@K(j[ru]�j=h�)21A 12 (5.10)where @K represents the three element edges, [:]� denotes the jump across edge �and h� is the length of edge �. This measures the jump across element boundariesin the gradient of u, and may be included within a modi�ed form of (5.8),�dK = (1� �)�ZK jR(U)j2dx�12 + � ZK 1Re 4Xi=1D2huijKdx! 12 ; (5.11)where � > 0 is a speci�ed parameter. In x5.4 results using several of the elementerror indicators discussed above are shown.5.3 A Local Spatial Re�nement AlgorithmHaving discussed suitable choices of error indicator, we now briey describe a re�ne-ment algorithm which may be used to obtain a converged solution on an adaptedmesh. The original version of the code used to carry out the mesh re�nement herewas written by Jimack and is described in detail in [76]. The algorithm and associ-ated data structures have been designed to handle both re�nement and dere�nementof the mesh, but for steady problems, we only utilize the re�nement routines (inchapter 7, we consider the use of dere�nement in unsteady problems). The algo-rithm has been developed for use on meshes which are unstructured and containtriangular elements.The approach taken, which is similar to that of Lohner [89], involves re�ningelements selected by the error indicator by subdividing them into four smaller ele-ments as shown in �gure 5.1. In order to keep the mesh conforming, any trianglewhich then contains a node on any of its edge midpoints is divided into two (seeFigure 5.1). If one of these bisected triangles needs to be subsequently re�ned thenthe parent triangle is divided into four, to avoid the occurrence of very thin trian-gles. A tree-like data structure, consisting of parent and child elements is used to

85store the layout of the mesh. An initial mesh, which may be very coarse, forms thetop level, and the current mesh used for the �nite element discretization is givenby the leaves of the tree structure. Figure 5.2 shows the tree for the mesh sectionin �gure 5.1.
2

7

8

9

10

11
12

13

14

4

5

1

Figure 5.1: Re�nement of triangles into two or four sub-triangles.The new nodes added upon re�nement appear at the midpoints of element edgesand linear interpolation of the solution values at the two nodes connected by theedge is used to generate solution values at the new point. The positions of additionalpoints along the domain boundary are calculated directly from the polynomial (orother function) used to de�ne the shape of the boundary.At each re�nement step, only one level of re�nement is carried out, and no initialcoarse element is allowed to be re�ned more than a predetermined number of times.This is used in conjunction with the error indicator tolerance TOL to specify thedesired accuracy of the solution (by limiting the size of the smallest element).In order to reach a solution on a re�ned mesh, the above spatial re�nementalgorithm is combined with the �nite element solver which was discussed in previouschapters. The problem is �rst solved on the initial mesh, and then a re�nementstep based on the current converged solution is performed. A converged solutionis then found on the new mesh, and another re�nement step carried out. Thissolve-re�ne process is continued until no more re�nement is done on the mesh (i.e.when for each element either the error is su�ciently small or the maximum level of

86
21

5

6

9 10 11 12 13 14

7 84

3

Figure 5.2: Tree structure for triangles shown in �gure 5.1.re�nement has been reached).It is only on the �nal mesh that a fully converged solution is required and sosolving to convergence on all the intermediate meshes is unnecessary. Instead itis possible to only partially solve the problem on each mesh before re�ning, thusproviding a more e�cient way of reaching the steady solution. The solution schemewe use here is based on this idea, so that local time-stepping is carried out for anumber of steps on a given mesh, followed by a re�nement step, after which thetime-stepping procedure continues.The solution procedure is similar to the algorithm given in x4.3 except thata re�nement step is performed each time the solution on the current mesh hasconverged to within a given tolerance (which is larger than the tolerance used todetermine convergence on the �nal mesh). This is measured by the L2 norm ofcurrent solution residual (i.e. the residual of the nonlinear system generated fromdiscretizing the steady Navier-Stokes equations). In practice usually only one time-step is needed to reduce the residual norm to below the required tolerance, andso, after a few initial steps reaching a partially converged solution on the startingmesh, re�nement is carried out almost every step.By starting with a coarse mesh, and applying the above method of solve andre�ne, we may obtain a converged solution on a mesh which allows all the featuresof a particular ow to be resolved. In the following section results demonstratingthis are given.

875.4 ResultsWe have so far discussed how spatial re�nement may be carried out on a mesh,given an indicator to measure where the error is large. We now show the e�ect onthe numerical solution of re�ning meshes using similar examples to those introducedin chapter 4.The system of Burgers' equations given in x4.5, for which an exact solution isknown, is �rst considered, followed by the test cases A2, A3 and A6 (see table 4.1)from the GAMM workshop [18]. We don't consider case A1 here, as it is a similarbut less di�cult problem than A2. Finally, results from the problem of ow over aat plate are shown.The values of the numerical parameters (including the algorithmic Courant num-ber, GMRES Krylov dimension and solver tolerances) in the code are exactly aswere stated in x4.3 along with the modi�ed Galerkin least-squares method of x2.5.1using primitive variables. The following additional parameters are needed in there�nement routines.� On each mesh, local time-stepping continues until the L2 norm of the currentsolution residual is below 10�4.� The tolerance TOL for the error indicator varies for di�erent problems but isin the range 0.1{0.4, so that an element is re�ned if �K > TOL � �MAXK .� Similarly, the maximum level of re�nement allowed (MAXLEV) for any initialelement di�ers between problems (but is no more than 5).� For the error indicator �dK de�ned in (5.11), the value of the parameter � isalways 0.5.5.4.1 A System of Burgers' EquationsThis set of two coupled Burgers' equations appear as (4.8){(4.9) in x4.5, and have aknown exact solution so that the accuracy of a numerical solution can be measuredprecisely. In order to see the e�ect of mesh re�nement, the value of the di�usionconstant � is �xed as 0:001 and the problem is solved on several adapted meshes,starting with a coarse mesh consisting of 40 elements (see �gure 5.3). Three di�erent

88
Figure 5.3: Initial coarse mesh (40 elements).error indicators are used, and the problem is also solved on two �xed meshes of 2310and 9350 elements for comparison.� Since the exact solution is known, precise values of the error on each elementmay be calculated and so we use the indicator�eK = q(u� ue)2 + (v � ve)2 (5.12)where u, v are the average values of the numerical solution over the elementand ue, ve are the exact known values at the centroid of the element.� The indicator equivalent to (5.8) is also used:�rK = ZK(u@u@x + v@u@y � f)2 + (u@v@x + v@v@y � g)2dx! 12 : (5.13)� Thirdly, we use a simple indicator based on the divergence of the velocity,�gK = �����@u@x + @v@y ����� : (5.14)The error norm used to calculate the error on the �nal mesh isE = XK2
AKq(u� ue)2 + (v � ve)2 (5.15)where AK is the element area, u, v are the average values of the numerical solutionover the element and ue, ve are the exact values of the solution at the centroid.

89Err. Ind. MAXLEV Err. Norm CPU time Final eltsFixed mesh 1 4.13e-3 43 2310�eK 3 3.38e-3 17 948�rK 3 3.43e-3 20 897�gK 3 3.43e-3 18 778Fixed mesh 2 1.03e-3 199 9350�eK 4 8.56e-4 60 2399�rK 4 8.62e-4 51 1975�gK 4 8.77e-4 34 1575Table 5.1: Results on adapted meshes for Burgers' equations.For each of the indicators, two values of MAXLEV, the maximum re�nementlevel (3 and 4) are used, so that the �nest mesh spacing allowed in each case iscomparable to the spacing on the two �xed meshes, and the value of TOL is 0.1.Table 5.1 gives the results obtained using both �xed and adapted meshes, show-ing the error E of the �nal solution, the number of elements in the mesh and theCPU time (on a MIPS R4400 processor) to reach convergence.
Min: 0.49 ; Max: 0.76

Figure 5.4: Contour plot of u and �nal mesh (1575 elements) when using �gK andMAXLEV=4.It may be seen from the table that introducing re�nement has a signi�cant e�ecton the rate of convergence. For all three error indicators tried, a solution of slightlybetter accuracy to the �xed mesh solution is obtained between two and six timesmore quickly when starting with a coarse mesh and re�ning only where necessary.Figure 5.4 shows the �nal solution and the mesh generated when MAXLEV=4 and

90�gK is the error indicator used. For this particular problem, when MAXLEV=3, thethree error indicators all perform similarly, but with MAXLEV=4, �gK, based on thegradient of the solution, is the most e�cient since it only re�nes along the front aty = x, whereas the other indicators will additionally re�ne either side of the front.This example demonstrates quantitatively that adaptive methods can be ane�cient way to solve p.d.e.'s. We now return to the Navier-Stokes equations, whereprecise comparisons of accuracy are less easily available, and show results for thetest cases �rst discussed in x4.6.5.4.2 A2In all the cases concerning ow around the NACA0012 aerofoil, we use the meshshown in �gure 5.5 as the initial mesh. It contains only 547 elements and themesh spacing along the wall boundary is approximately twice that of mesh 1 (1617elements) used in x4.6.
Figure 5.5: Initial coarse mesh around NACA0012 aerofoil (547 elements).We �rst use the test case A2 to compare the error indicators described in x5.2.The same parameters (TOL=0.1, MAXLEV=3) are used in all cases (with theexception of the density gradient measure �gK where TOL=0.4), and table 5.2 showsthe coe�cientsCl and Cd, total time taken and the �nal mesh size for each indicator.Also shown are the results from the �xed mesh 2 (see x4.6).

91Err. Ind. Cl Cd CPU time Final eltsFixed 0.52 0.28 780 5436�gK 0.48 0.27 3426 10274�mK 0.64 0.27 842 4008�vK 0.60 0.31 1463 6558�rK 0.47 0.27 1212 6468�dK 0.47 0.27 1208 8370Values in [18] 0.41-0.52 0.24-0.29Table 5.2: Results on adapted meshes for test case A2.Figure 5.6 shows the density contours obtained when using the residual indicator�rK. Plots of the pressure and friction coe�cients are shown in �gures 5.7 and 5.8,which may be compared with plots for a �xed mesh shown in �gures 4.12 and 4.13.
Min: 0.54 ; Max: 1.37

Figure 5.6: Density contours for case A2 using residual indicator.Figure 5.9 shows a subsection of the �nal mesh obtained when using the densitygradient (�gK) and vorticity (�vK) indicators. It is clear from the Cl values in table5.2 that when starting from a coarse mesh the indicators �vK and �mK fail to resolvethe ow adequately. The density gradient indicator �gK performs better but at acost of using many more elements than the other indicators (this could be reducedby using an even larger value of TOL). The residual indicator �rK appears to give asolution with a lower (and more accurate, compared with the results in [18]) value ofthe lift coe�cient without using an excessive number of elements. Like �gK, there issome re�nement behind the aerofoil so the wake is partially resolved. The addition

92
-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2

g
m
v
r
d

Figure 5.7: Pressure coe�cients using di�erent error indicators for case A2.
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2

g
m
v
r
d

Figure 5.8: Friction coe�cients using di�erent error indicators for case A2.of di�usive terms (�dK) seems to make very little di�erence for this example, apartfrom adding extra elements near the leading edge of the aerofoil.Overall, �rK and �dK are the most satisfactory of the indicators tried, as well asbeing the only ones with any theoretical basis. The indicator �gK also works well,but at a greater cost.We now look at the e�ect of changing the parameter MAXLEV when usingthe residual indicator. Table 5.3 shows how the values of Cl and Cd become moreaccurate as elements are allowed to be re�ned by extra levels, and demonstratesthat the solution is converging in some sense as the mesh spacing h ! 0. Weobserve that the two �xed meshes used in x4.6 have a mesh spacing at the aerofoilof one half and one quarter of the initial coarse mesh used in this chapter. Hencethey are approximately equivalent to adapted meshes obtained with MAXLEV = 1and 2 respectively. In fact the �nal mesh generated for MAXLEV=2 has a slightly

93
Figure 5.9: Mesh sections using (a) density gradient (�gK) and (b) vorticity (�vK).more accurate value of Cl than the �xed mesh value and takes less than half thetime to converge.MAXLEV TOL Cl Cd CPU time (s) Final eltsFixed 0.52 0.28 780 54360 0.77 0.29 43 5471 0.1 0.57 0.28 92 14672 0.1 0.50 0.28 320 32303 0.1 0.47 0.27 1212 64684 0.2 0.45 0.27 1632 9586Table 5.3: Case A2: E�ect of di�erent MAXLEV.It should be emphasised that the choice of parameters (in particular TOL andMAXLEV) has not been optimized and faster or more accurate solutions may beobtained for other values of these quantities. The values chosen here do howeverappear to show that the use of h-re�nement o�ers a more e�cient way of solvingthe problem than a �xed mesh approach.5.4.3 A3The ow in this case is supersonic and involves a bow shock forming near the leadingedge. In chapter 4, when a �xed mesh which is very coarse away from the aerofoilis used, this feature is not completely resolved. We would like to use an adaptedmesh to correctly re�ne near the shock, and so use the gradient and residual error

94indicators �gK and �rK in the re�nement algorithm. The two indicators based on thevelocity gradients (�vK and �mK) are not able to resolve the shock, and the modi�edresidual indicator �dK gives very similar results to �rK.The value of MAXLEVEL for this example is 4, so that large triangles away fromthe aerofoil may be re�ned to a small enough size. The value TOL is correspondinglyincreased to 0.4 so that the number of elements used is not too large. Table 5.4lists the results obtained. The pressure and friction coe�cients look very similar tothe �xed mesh results in x4.6 and the �nal meshes are shown in �gure 5.10. Thedensity contours for both indicators are given in �gure 5.11.Err. Ind. Cl Cd CPU time Final eltsFixed 0.32 0.46 1266 5436�gK 0.33 0.44 1368 8360�rK 0.33 0.45 1661 8819Values in [18] 0.31-0.40 0.41-0.49Table 5.4: Results on adapted meshes for test case A3.
Figure 5.10: Mesh sections for case A3 using (a) density gradient (�gK) and (b)residual (�rK).Both error indicators appear to resolve the shock further away from the aerofoilto a greater extent than the �xed mesh used in x4.6, although the convergence timeis increased. The residual indicator adds many more nodes along the shock andat the leading edge of the aerofoil whereas the density gradient indicator put extraunnecessary nodes in regions above the aerofoil where the ow is smooth.

95
Min: 0.25 ; Max: 2.91 Min: 0.26 ; Max: 3.29

Figure 5.11: Density contours for case A3 using (a) density gradient (�gK) and (b)residual (�rK).5.4.4 A6In x4.6 this test case was solved on an unstructured mesh, when the wake behindthe aerofoil was not resolved properly, and on a more dense structured mesh, whenthis wake could be clearly seen. We now see how re�nement can be used on anunstructured mesh to detect this wake.The error indicator chosen here is the residual based �rK, since the density gradi-ent indicator appears to completely fail to detect the wake when starting on such acoarse mesh. The value of TOL is 0.3 and MAXLEV is set as 5, and table 5.5 showsthe results for this problem, along with the results obtained on �xed (structuredand unstructured) meshes in x4.6. A section of the �nal adapted mesh containing8928 elements is shown in �gure 5.12, and the contours of the Mach number areshown in �gure 5.13.Err. Ind. Cl Cd CPU time Final eltsFixed (unstr.) 0.003 0.12 685 5436Fixed (struct.) 0.0 0.11 4237 8192�rK 0.002 0.12 2211 8928Values in [18] 0 0.10-0.14Table 5.5: Results on meshes for test case A6.The wake formed behind the aerofoil is clearly detected using the residual error

96

Figure 5.12: Mesh sections of �nal mesh for case A6.
Min: 0.00 ; Max: 1.07

Figure 5.13: Mach contours for case A6 using residual error indicator.

97indicator �rK, although it is not resolved as well as the structured mesh solutionin �gure 4.22. The structured grid elements are highly distorted and aligned hor-izontally so that they capture the wake more accurately. An unstructured meshautomatically re�ned by adding extra nodes will never be able to match the solu-tion on a structured mesh in this case, where the wake is aligned with the structureof the mesh. Only by increasing MAXLEV substantially would there be enoughelements to fully capture the wake, but in practice this would exceed the amount ofavailable memory. In the next chapter, we consider the possibility of allowing theelements to change shape, which could potentially overcome this problem.5.4.5 Flow over a Flat PlateThis problem, known as Carter's problem [25], was considered for �xed meshesin x4.6.5. We now try to obtain solutions of greater accuracy using the adaptiveapproach of this chapter. The initial starting mesh, shown in �gure 5.14, consistsof 98 elements, and the boundary conditions are those de�ned in x4.6.5. The twoerror indicators used are �gK and �rK (the indicator �dK gave very similar results to�rK), with MAXLEV=5 and either TOL=0.05 for �rK or TOL=0.5 for �gK. Table 5.6shows the �nal mesh sizes and CPU times obtained in these two cases, along withthe equivalent values for the �nest �xed mesh tried in x4.6.5.
Figure 5.14: Initial mesh used for at plate ow problem.The pressure and friction coe�cients are shown in �gures 5.15 and 5.16. Thecontours of pressure and Mach numbers using the residual indicator are plotted in�gures 5.17 and 5.18 and the �nal meshes for both indicators are shown in �gures5.19 and 5.20.

98
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2

r
g

Figure 5.15: Pressure coe�cients for at plate ow problem.
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 0.2 0.4 0.6 0.8 1 1.2

r
g

Figure 5.16: Friction coe�cients for at plate ow problem.
Min: 0.08 ; Max: 0.41

Figure 5.17: Flat plate ow: contours of pressure on �nal mesh.

99
Min: 0.00 ; Max: 3.00

Figure 5.18: Flat plate ow: contours of Mach number on �nal mesh.

Figure 5.19: Flat plate ow: �nal mesh using �rK indicator.

100Err. Ind. CPU time Final eltsFixed 2462 25088�rK 146 2087�gK 251 2389Table 5.6: Results on adapted meshes for at plate ow.
Figure 5.20: Flat plate ow: �nal mesh using �gK indicator.The value of MAXLEV used here (=5) allows the mesh to be re�ned so that the�nest elements have half the spacing of the �nest mesh used in x4.6.5. Hence wemight expect more accurate solutions in those regions where the most re�nementhas taken place. Comparison of the coe�cients of pressure and friction between�xed (�gures 4.26 and 4.27) and h-re�ned (�gures 5.15 and 5.16) meshes indicatesthat the solution on the adapted mesh is indeed slightly di�erent. In particularthe values of the pressure coe�cients are higher near the leading edge of the plate,and this compares more favourably with results obtained elsewhere (e.g. [107],[35]).More signi�cantly the time taken to fully converge on the re�ned meshes is reducedby at least a factor of ten. The two indicators tried behave very similarly, althoughthe gradient indicator puts more nodes in the region of the boundary layer. Thisexample further demonstrates the importance of stability on the coarse mesh, sothat re�nement, which is essential for accuracy, may be carried out e�ciently.

1015.5 SummaryIn this chapter we have discussed a method for adaptively re�ning a mesh in orderto obtain a numerical solution in an e�cient way. The two most important aspectsof any adaptive approach are the method for indicating where to re�ne and theexact way in which the mesh is re�ned. Here we considered several error indicatorsbased on the current numerical solution (x5.2) and outlined an algorithm for addingextra nodes (h-re�nement) to an unstructured mesh (see x5.3).Results presented here have been compared with the solutions obtained on �xedmeshes in chapter 4. For example, �nding an adaptive solution for a system ofBurgers' equations was shown to be several times quicker than obtaining a solutionof equivalent accuracy on a �xed mesh.For the Navier-Stokes equations, most results given here contained more ele-ments than the �xed meshes used in the previous chapter, and hence the timetaken to reach a solution was greater. However the accuracy of solutions was shownto be improved, so that the values of the lift and drag coe�cients were more in linewith results obtained elsewhere, and ow features away from the aerofoil were ableto be detected.This suggests that an adaptive approach can either be used to provide an equallygood solution as a �xed mesh but with fewer elements, or used to obtain moreaccurate solutions in an e�cient way|by using a coarse initial mesh and a gooderror indicator, no prior knowledge about the location of ow features is required.Of the indicators used, perhaps the most suitable for using when the mesh isinitially very coarse is the residual error indicator �rK. The others based on gradientsin the solution failed either to detect shocks or wakes, and at least at moderateReynolds numbers, the indicator incorporating di�usive e�ects appeared to havelittle additional e�ect.There are some aspects of the approach taken here which need to be addressedfurther. The optimal values for the two parameters which control the amount ofre�nement, MAXLEV and TOL, vary for di�erent problems and it is not clear howbest to choose them in each case. When starting on coarse meshes, the maximumlevel of re�nement, MAXLEV, needs to be large enough to allow large triangles tobe re�ned so that they resolve ow features accurately. The re�nement toleranceTOL is used in conjunction with MAXLEV to specify the required accuracy of a

102solution.One drawback of using an initial mesh which is coarse is that the �nal meshreects the shape of the elements used in the starting mesh, since the the shapeof each child element is determined by the shape of its parent. As a result, themesh looks non-smooth and irregular, and stretched elements (which may improveconvergence of a solution along boundary layers for example) cannot occur, unlesspresent on the original mesh. This issue is considered in chapter 6, where we describean approach for allowing nodes to move locally around the mesh.

103
Chapter 6Adaptivity II: r-Re�nement6.1 IntroductionA method for adding extra nodes to a mesh (h-re�nement) was described in theprevious chapter, and this approach was shown to be more e�cient than using a�xed mesh throughout the solution process. However there are some problems withh-re�nement which we would like to overcome. These concern the quality of themesh and shape of the elements, which are determined by the initial mesh|thegeometry of �nal mesh is very dependent on this mesh, and there is no scope forallowing elements to change their shape and align themselves with ow features inthe solution.Another strategy for mesh re�nement is to allow nodes on the existing mesh tobe relocated (r-re�nement). Some popular techniques for doing this, such as themethod of moving �nite elements [97] and node equidistribution [33] are outlinedin x6.2. The remainder of this chapter is concerned with an alternative approach(similar to that described by Hubbard in [64]), where nodes are repositioned accord-ing to a local weighting formula between time-steps. Because it is a local process,it is inexpensive, and has no e�ect on the mesh connectivity, but allows elementsto change shape and hence resolve features of the solution more accurately than a�xed mesh.In x6.3, the algorithm for local node movement is fully described. Further detailsof using the method and some results which show that improved solutions may beobtained appear in x6.4. However for the examples we have tried there appear tobe some limitations with this method, for example convergence is slow during node

104movement and there is no way of controlling the error in the solution.A novel idea is to combine the two types of re�nement, h and r, to give analgorithm which both adds extra nodes to the mesh in the regions where theyare required and moves nodes in order to allow the mesh to resolve the solutionmore e�ciently. In practice the method involves a modi�cation of the h-re�nementalgorithm given in x5.3, and it is discussed in x6.5. In x6.6, for the examplesconsidered in previous chapters (Burgers' system, transonic ow around NACA0012aerofoil and supersonic at plate ow), some results are presented and comparedwith results obtained using h and r-re�nement separately.This technique overcomes some of the problems arising from using either of themethods separately. The ability to add extra nodes allows the error in the solutionto be controlled in some way, and the node movement means that the �nal mesh isno longer coupled to the initial mesh, and elements may become aligned with owfeatures.6.2 Techniques of r-Re�nementThere are a number of methods which use the idea of moving nodes around amesh rather than adding extra nodes, and we briey describe some of them in thissection. One of the most common approaches is that of moving �nite elements(MFE), which was introduced by Miller and Miller [97]. This method is suitablefor any time-dependent p.d.e., and although considered for 1-d problems in [97], ithas subsequently been extended to higher dimensions. A full description of MFEand its development, along with properties of the method, is given by Baines in [7].The di�erence between MFE and standard �nite elements is that the positionsof the nodes are no longer �xed but become additional unknowns which need to bedetermined along with the nodal coe�cient values. In 1-d, this means that there are2N unknowns (if N is the number of internal nodes) so an extra N equations arerequired in addition to the N equations obtained from the usual Galerkin method.The 2N equations form a system of ordinary di�erential equations (o.d.e's) whichare then solved using an o.d.e. solver (usually implicitly).This approach allows the nodes to be automatically moved to regions of thesolution where high resolution is required, e.g. near shocks, without the need ofany further re�nement procedures. However, for certain values of the solution,

105the extra equations introduced can cause the mass matrix in the o.d.e. system tobe singular. In [97] this is overcome by the addition of a penalty function in theformulation, involving a numerical parameter.The extension of the method to general systems in 1-d is given by Gelinas etal. in [46], where several example problems are considered and the developmentof the method for two dimensional problems is summarized by Miller in [96]. In2-d, elements may become highly distorted, leading to mesh tangling, so a furtherparameter can be added to the penalty function to avoid this (and the choice ofthese parameters may be problem dependent). The number of equations to besolved at each step is now 3N , signi�cantly more expensive than the �xed �niteelement approach.Many results for a variety of problems in one and two dimensions, solved usingMFE, are presented by Zegeling [129]. Further examples are given in [83] whereJohnson et al. avoid the use of a penalty function and use explicit time-stepping,which limits the time-step size to prevent mesh-tangling.Node equidistribution is an alternative way of generating a new mesh at eachtime-step to MFE. This is described by Coyle et al. in [33] and involves positioningthe nodes so that a weighting function (such as the gradient or curvature of thenumerical solution) is evenly distributed over the entire mesh. The new positionsof the nodes are obtained from the solution of either an algebraic or di�erential setof equations at each step, so that the �nite element equations may be solved on thenew mesh.A similar approach is used by Lohner et al. [90] for the compressible Eulerequations by considering element sides as springs of prescribed sti�ness and movingthe nodes until the spring system is in equilibrium. Another way of moving nodesfor hyperbolic conservation laws is outlined by Lucier in [91], where nodes are movedaccording to the method of characteristics.In [64], Hubbard outlines a local method for moving nodes, so that each nodeis repositioned according to the neighbouring patch of elements surrounding it.We adopt a similar approach in this chapter as it appears to overcome some ofthe problems of associated with a method such as MFE. It does not require theexpensive solution of extra equations, singularities in the matrix system will notoccur and mesh tangling can be avoided more easily.

1066.3 A Local Node Movement AlgorithmAs noted in the previous section, one simple idea, described in [64], for adaptingthe mesh is to reposition each node by a displacement based upon information fromonly the neighbouring nodes and elements. In this section we discuss the algorithmfor 2-d unstructured meshes in detail|the simpler 1-d version is described in [64].Like the equidistribution methods (e.g. [33]) mentioned in x6.2, this methodseeks to position the nodes so that some function of the solution is more evenlydistributed across the mesh. However, rather than compute the new mesh globally,it moves nodes locally, which is a much less expensive approach.The formula used to compute the new position snew of a node issnew = 1Pmi=1 wi mXi=1wisi (6.1)where m is the number of surrounding elements, s1; ::; sm are the centroids of theseelements and w1; ::; wm are the weighting functions de�ned below. The result of thisprocedure carried out for each node is to place the node at the weighted average ofthe centroids of the surrounding triangles as shown in �gure 6.1. In practice, all thenew node positions are computed prior to being updated (a Jacobi-type process),rather than in a Gauss-Seidel fashion which is dependent on the order in which thenodes are updated.
1

1

1 2

4

2Figure 6.1: Local node movement, showing weighting functions for each element.The weighting functions wi are values de�ned on each element, and in [64],quantities such as the arc length or the curvature of the local solution are used. Inx5.2, we considered a selection of error indicators used in h-re�nement to specifywhich elements are to be re�ned, and it seems natural to use one of these element

107based quantities as our choice for wi. For example, if the residual based indicator�rK is being used, wK = �ZK jR(U)j2dx� 12 (6.2)where R(U) is the residual resulting from inserting the current numerical solutioninto the original p.d.e.'s, and for the Navier-Stokes equations is de�ned by theexpression (5.7). The e�ect of using an error indicator is to allow nodes to move toregions where the error is largest, so that the mesh should be able to more accuratelyresolve ow features.The implementation of this node movement algorithm within a solution proce-dure is straightforward|one or more iterations of the routine are performed afterselected time-steps (see x6.4 and x6.5 for further details). Once the node positionshave been updated, no interpolation of the solution values is carried out, and thenext time-step continues immediately. Because the node connectivity is unchangedand the algorithm is a local process, the additional computational cost is small andresults suggest that this is outweighed by the bene�ts of having a more suitablemesh.If the weighted average formula (6.1) is used as shown, then the situation knownas mesh tangling may occur in some circumstances. These arise when the trianglecentroids surrounding a node no longer form a convex polygon around the node. Inthis case it is possible for nodes to be moved such that triangles lose their positiveorientation and elements become tangled (see �gure 6.2). This can be avoided byrestricting the amount that a node may move in one node movement iteration and,as in [64], we ensure that a node never moves more than�smax = mini Aimaxj=1;2;3 lij (6.3)where i denotes all the triangles neighbouring the node, Ai is the triangle area, andlij are the lengths of the triangle sides. This ensures that a node will never move adistance more than half the length of the shortest height of any of the surroundingelements. The new weighting formula becomessnew = � 1Pmi=1 wi mXi=1wisi + (1 � �)sold (6.4)where � = min(�smax;�s)�s (6.5)

108
Mesh tangledFigure 6.2: Example of mesh tangling occurring.and �s is the node displacement calculated using (6.1).Boundary nodes are treated in the following way. On straight boundaries a newnode position is calculated as above, and then projected back onto the boundary.However for curved boundaries (e.g. aerofoils) we �x the nodes, rather than try torelocate them along the wall surface, since our initial attempts to allow them to movecaused tangling to occur in highly curved regions. We believe that this problemcan be solved, but becomes more di�cult to do so if the geometry is especiallycomplicated (e.g. multi-element aerofoils). By ensuring there are su�cient nodesalong the boundary, either using h-re�nement to add the extra nodes, or using agrid which is initially �ne near the boundary, it appears to be satisfactory to keepthese nodes �xed.In the following section, we show some results of using this r-re�nement algo-rithm on a mesh with a �xed number of nodes, and in x6.5 discuss a method whichcombines the node movement introduced here with the h-re�nement techniquesintroduced in the previous chapter.6.4 r-Re�nement OnlyThe node movement algorithm introduced in x6.3 may be used within the time-stepping solution strategy described in chapter 2, and here we state details of howthis is done in practice and show some results for the system of Burgers' equations(where we know the exact solution) and the full Navier-Stokes equations.No node movement is carried out initially and the solution is left to convergeon the initial mesh until the L2 norm of the steady-state residual has been reduced

109to below 10�4. After this point, the node movement algorithm is called after everytime-step until a �xed number (NU) of movement updates have been performed.Each time the node movement algorithm is called, one or more updates (updatesper step or UPS) are carried out. In x6.4.1, the e�ect of di�erent values of theseparameters is observed.Since the solution only converges very slowly whilst movement updates are beingcarried out it is necessary to continue time-stepping after NU updates have beenmade (after which no further node movement is carried out), until the solution hasfully converged.For some problems, the shape of the triangles becomes highly distorted and sowhen the minimum height of any element has gone below 10�3, the surroundingnodes are no longer moved.6.4.1 Numerical ExamplesWe present here some results of using the solution scheme outlined above. Asin chapters 4 and 5, the �nite element method used is that of modi�ed Galerkinleast-squares, local time-stepping is used (with a Courant number of 50), and theGMRES linear solver has Krylov dimension of 25 (these values are not necessarilyoptimal, but are robust).Burgers' SystemThe coupled system of Burgers' equations introduced in x4.5 has an exact knownsolution and so it may be used to quantitatively measure the accuracy of a method.The mesh on which the problem (in which the di�usion constant �=0.001) is solvedcontains 568 elements and is shown in �gure 6.4(a). The three error indicators givenin x5.4.1 are each tried as the weighting function in the node movement formula(6.4). These are the residual based �rK, the exact error �eK and the solution gradient�gK.Numerical experiments indicate that it is more e�cient to carry out more thanone update in between each time-step, but doing too many updates causes the errorto increase (as the mesh becomes too distorted). This is shown in �gure 6.3, wherethe error norm of the converged solution (de�ned by the formula in x5.4.1) is plottedagainst the total number of updates carried out. Several values of UPS (updates

110per time-step) ranging from 1 to 10 are shown, and the error indicator used here isthe residual based �rK.
0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0 5 10 15 20 25 30 35 40

E
rr

or
 n

or
m

 o
f s

ol
ut

io
n

Total number of updates

UPS=1
UPS=3
UPS=5

UPS=10

Figure 6.3: Solution error norm for di�erent values of UPS and NU .On the basis of these results, we choose UPS to be �ve (as this will requirefewer time-steps than if UPS is one), and carry out a total number of 25 updates,as further updates only reduce the error by very small amounts (in the case of thegradient indicator, only 10 updates are done as the error increases after this point).Hence node movement is performed for �ve (or two) time-steps, and then the meshis �xed, to allow rapid convergence. Boundary nodes are allowed to move verticallyor horizontally along the boundaries.Table 6.1 shows the error norm of the �nal solution on the meshes generatedusing each of the error indicators, along with the error obtained on a stationarymesh. The �nal mesh in each case is shown in �gure 6.4(b){(d), and �gure 6.5shows the solution obtained using �rK (mesh (b)).Err. Ind. UPS NU Err. Norm CPU time (s)No mode movement 1.12e-2 10�rK 5 25 1.65e-3 33�eK 5 25 1.75e-3 36�gK 5 10 4.80e-3 20Table 6.1: Results on r-re�ned meshes for Burgers' equations.It is apparent that the node movement has a signi�cant e�ect on the shape ofthe mesh, as elements shift towards the y = x line along which the sharp front

111

Figure 6.4: Final meshes obtained when using r-re�nement only for Burgers' system(a) No movement (b) �rK (c) �eK (d) �gK
Min: 0.50 ; Max: 0.76

Figure 6.5: Contour plot of u using r-re�nement only with �rK.

112lies. They also become distorted and begin to align themselves with this front,which allows better resolution of the front. This may be seen in the drop in theerror norm, when compared to the stationary mesh, although this extra accuracyinvolves a much larger cost, as convergence during the mesh movement stage isvery slow. The solutions are most accurate away from the boundaries due to therestricted movement of the boundary nodes.The exact error indicator and the residual based indicator both behave similarly,whereas the gradient based error indicator �gK gives the largest error as nodes arepulled in too closely to the front and elements become too highly distorted. Acomparison with results obtained in previous chapters is given in x6.6.1.Navier-Stokes EquationsWe return to the full Navier-Stokes equations and attempt to use the node move-ment algorithm in same way as for the system of Burgers' equations. The �rstexample we choose to use is the test case A2 from [18] which we have previously con-sidered in both chapters 4 and 5. It consists of transonic ow around a NACA0012aerofoil with Reynolds number of 500, a Mach number of 0.8 and an angle of attackof 10�.The initial mesh used, containing 5436 elements, is the �xed mesh used in chap-ter 4 (and shown in �gure 4.7). We use the primitive variable formulation of theNavier-Stokes equations here, and compare the three error indicators �rK (the con-vective residual), �dK (residual with di�usive terms) and �gK (the density gradient).In practice, the solutions obtained using �dK are very similar to those using �rK andwe do not show them here.Based on the experiments carried out for the system of Burgers' equations above,we set the node movement parameters UPS=5 and NU=25. Increasing the numberof updates NU distorts the elements further, but with very little change in thesolution. If the number of updates per step UPS is reduced to 1 (but keepingNU=25) then node movement will be carried out prior to 25 rather than 5 time-steps. The �nal meshes and solutions obtained in both case are nearly identical,but the latter example takes almost twice as long to converge. Figure 6.6 showsthe residual norm plotted against the total nonlinear iterations for three cases|no movement, node movement with UPS=5 and node movement with UPS=1.

113This shows the initial convergence on the starting mesh, followed by very slowconvergence during the r-re�nement stage, and the �nal solution being reachedrapidly. The error indicator used in this case is �rK.
1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60 70 80 90

L2
 R

es
id

ua
l n

or
m

Nonlinear iterations

r-ref (UPS=5)
r-ref (UPS=1)

No r-ref

Figure 6.6: Convergence to steady state with no r-re�nement, UPS=1 and UPS=5.For the three error indicators mentioned, along with the stationary mesh, table6.2 shows the times to fully converge and the lift and drag coe�cients. Pressureand skin friction coe�cients are shown in �gure 6.7 and 6.8.Err. Ind. Cl Cd CPU time (s)No mode movement 0.52 0.28 780�rK 0.49 0.28 1133�gK 0.55 0.29 1124�dK 0.49 0.28 1084Table 6.2: Results on r-re�ned meshes for Navier-Stokes equations (case A2).The re�ned mesh obtained using �rK is shown in �gure 6.9. In this case, thenodes are moved towards a region surrounding the aerofoil so that a clearly de�nedboundary appears between the very coarse outer elements and the dense mesh closeto the aerofoil. Along this interface, the elements are very thin, although there isno obvious ow feature in this region that causes the interface to develop at thispoint. One possible reason the mesh has this appearance is that on the initial meshnodes are already concentrated around the aerofoil, so that there is a wide variationbetween �ne elements near the aerofoil and very coarse ones away from it. A moresuitable starting mesh might be one where nodes are more evenly distributed. There

114
-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

residual indicator
gradient indicator

no node movement

Figure 6.7: Pressure coe�cients for case A2 using r-re�nement.
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

residual indicator
gradient indicator

no node movement

Figure 6.8: Friction coe�cients for case A2 using r-re�nement.
Figure 6.9: Final re�ned mesh using �rK.

115is a small decrease (towards a more accurate value) in the lift coe�cient but at thecost of a large increase in CPU time.Figure 6.10 shows the mesh re�ned using �gK, and it can be seen that the elementshave not become so highly distorted. However along the aerofoil wall, nodes appearto be pulled away from the boundary, and this is reected in the rather high valuefor the lift coe�cient.
Figure 6.10: Final re�ned mesh using �gK.The second example considered here is the test case A3 involving a bow shock(Re=106, M=2, � = 10�). The error indicator used as the weighting function isthe residual based measure, �rK, which gives better results than �gK in the case A2above. A similar initial mesh as before is used, and both the �nal mesh and thecontours of the density are shown in �gure 6.11. There is a marked improvement inthe solution compared to the �xed mesh (see �gure 4.16), since the nodes are movedinto the shock location so that elements become aligned with the shock, which isclearly resolved. The time taken to reach convergence is 1485 seconds, comparedwith 1266 seconds for the �xed mesh.In the examples considered above, there are a number of problems with usingthe node movement algorithm of x6.3 as the sole re�nement technique. In all thecases, there was a considerable increase in the time taken to reach a �nal solution,due to a sharp drop in the rate of convergence when the mesh is being moved (see

116
Min: 0.31 ; Max: 3.18

Figure 6.11: Final re�ned mesh and density contours for case A3.�gure 6.6). Also, it is not clear, for the Navier-Stokes equations, how many nodeupdates should be carried out, and we base the selected values of NU upon theresults obtained for the system of Burgers' equations. However it does appear thatperforming several updates per step is more e�cient than taking only one. In thecase of ow around the NACA0012 aerofoil, a more even distribution of nodes inthe original mesh may prevent the highly distorted elements occurring in smoothregions, for example in case A2. The �nal example, case A3, demonstrates thatnode movement can be used to re�ne meshes e�ectively, by altering the shape ofelements so that they are more aligned with a particular ow feature.We conclude that as a general re�nement technique, node relocation by itselfdoesn't appear to be entirely successful. In the next section we discuss the possibilityof combining two di�erent re�nement strategies|the node movement described inthis chapter and the addition of extra nodes to the mesh (h-re�nement) as outlinedin chapter 5.6.5 hr-Re�nementWe have now introduced two separate approaches for mesh re�nement. In h-re�nement, extra nodes are added to the mesh in positions determined by someform of error indicator. As more nodes are placed in this region then it is hopedthat the total error in the numerical solution will be reduced. One problem with the

117type of re�nement we have used here is that elements cannot change their shape,which is determined by the shape of the elements in the initial mesh. As a conse-quence, a mesh contains more nodes than are necessary in regions such as shocksor boundary layers|if elements could be reshaped so that they align themselvesaccording to the ow, then the number of nodes needed could be reduced. In themethod of r-re�nement, no new nodes are added, but nodes are moved towardsregions where the error indicator is large. The node repositioning is carried out ona local basis, and hence is relatively cheap. This approach also allows elements tochange shape, but lacks the error control obtained by using h-re�nement, i.e. thereis no way of reducing the error below a certain point.It would appear sensible to attempt to combine these two techniques in order toretain a level of error control without putting in too many additional unnecessarynodes. We describe in this section how such a combination can be implemented inpractice.The procedure is based upon the h-re�nement algorithm presented in chapter5. The algorithm is modi�ed by repositioning the nodes prior to each re�nementstep. This provides a natural stopping point for the mesh movement algorithm,so that when extra nodes are no longer being added to the mesh, no further meshmovement is applied. This overcomes the problem of when to stop moving the meshin the r-re�nement algorithm (see x6.4).A very simple owchart of the complete algorithm is given in �gure 6.12. Asfor the individual h and r re�nement methods, no re�nement is carried out until apartially converged solution on the initial mesh (which is usually coarse) has beenobtained. Here, partial convergence means that the L2 norm of the residual vectorof the nonlinear system (generated from the �nite element discretization of thesteady p.d.e.'s) is below 10�4. The tolerance for full convergence is as in chapters4 and 5 (10�8).Once this initial stage is over, the algorithm enters a solve/move/re�ne iterationuntil no more elements are to be re�ned, and this is determined by the error indi-cator, the tolerance TOL and maximum level of re�nement MAXLEV (see x5.3).Each time the node movement algorithm is called, one or more updates are carriedout and the error indicator, already calculated to determine which elements are tobe re�ned, is used as the weighting function to determine the new node positions.No interpolation is performed on the relocated nodes, as there is no noticeable

118
Initialize

Solve time-step

Approximate Error

Refine?

Update node positions

Refine mesh one level

Output solution

no
Partially Converged?

Fully converged?
yes

no

yes

yes

no

Figure 6.12: Flowchart of hr-re�nement algorithm.improvement in convergence if solution values are interpolated to take account ofthe adjusted node positions. Immediately after the node update, the mesh is re�nedby one level, and solution at the next time-step follows.6.6 Results using hr-Re�nementIn order to present results of using the algorithm outlined above we adopt a similarapproach to the previous two chapters. Firstly we consider the system of Burgers'equations where the analytical solution is known. We then show solutions for someof the GAMM test cases [18], and �nally give results for the problem of ow over aat plate.

1196.6.1 Burgers' EquationsOnce again, before presenting results for the Navier-Stokes equations, we �rst showsome solutions of the system of Burgers' equations introduced in x4.5, obtainedusing the combination of h and r re�nement outlined in x6.5. The value of thedi�usive constant � is 0.001 and, as in x5.4.1, we use a coarse initial mesh of 40elements, shown in �gure 5.3. The three error indicators tried (which also serve asweighting functions for node movement) are the residual based �rK, the exact error�eK and the gradient indicator �gK.Because we can quantitatively measure the accuracy of a given numerical solu-tion for this problem, we may precisely monitor the e�ect of varying the algorithmand parameters. We �rst �x the h-re�nement parameters TOL and MAXLEV to0.5 and 3 respectively, and take a similar approach to the r-re�nement algorithmconsidered in x6.4, i.e. we specify in advance how many updates are performed.The h-re�nement is implemented exactly as shown in chapter 5. Table 6.3 showsthe error norm (de�ned by equation (5.15)), the time taken to fully converge andthe number of elements on the �nal mesh, when UPS and NU are �xed in this way,and the indicator used is �rK. This shows �rstly that the node movement reducesthe error norm, and secondly that doing too many updates of the node positionscan increase the error, as too many nodes are pulled towards the front along y = xand the elements a short distance from this line begin to be aligned in the wrongdirection. UPS NU Error Norm CPU (s) Elts1 20 1.21e-3 64 6845 25 1.40e-3 35 8925 5 1.02e-3 34 8281 5 8.64e-4 21 6840 0 3.97e-3 18 548Table 6.3: hr-re�nement with predetermined NU for system of Burgers' Equations.The number of updates which appear to give the lowest error in table 6.3 ap-proximately corresponds to the number of re�nement steps which occur, hence wecarry out the node updating prior to each re�nement step. There is no advantagein only relocating nodes at alternate time-steps or less frequently, which serves onlyto increase the solution time since more time-steps are required. In addition, per-

120forming more than one update per step does not reduce the solution error, as table6.4 shows. UPS Error Norm CPU (s) Elts1 7.82e-4 23 6842 9.24e-4 27 7993 1.21e-3 27 7495 1.65e-3 34 59710 1.98e-3 53 844Table 6.4: hr-re�nement with varying UPS for system of Burgers' Equations.The �nal set of results demonstrates the e�ect of varying the di�erent values ofthe h-re�nement parameters MAXLEV and TOL, and using other error indicators.In this case, one update prior to each re�nement step is performed, and table 6.5shows the total number of updates performed (NU), the error norm, the solutiontime and the number of elements on the �nal mesh. The solution and mesh from thethird case given in the table are shown in �gure 6.13. Figure 6.14 shows subsectionsof the meshes obtained using (a) the residual and (b) the gradient indicators.Err Ind MAXLEV TOL NU Err Nrm CPU (s) Elts�rK 3 0.1 4 6.77e-4 24 909�rK 3 0.3 6 7.76e-4 31 727�rK 3 0.5 6 7.82e-4 23 684�rK 4 0.1 8 2.97e-4 111 2861�rK 4 0.5 9 3.93e-4 71 2051�eK 3 0.1 7 6.51e-4 45 988�eK 3 0.5 7 8.47e-4 30 688�gK 3 0.1 8 1.29e-3 38 912�gK 3 0.3 16 2.35e-3 73 958�gK 3 0.5 25 4.56e-3 161 965Table 6.5: Results on hr-re�ned meshes for system of Burgers' Equations.As would be expected, in all the cases not only are nodes moved towards thefront y = x but extra nodes are also added in this region too. The exact error andresidual based indicators perform similarly, but the indicator which measures thesolution gradient is substantially slower and less accurate, perhaps because as �gure6.14(b) shows there is a sharp contrast in the shape of the triangles between thoselying precisely on the front and the remainder. If the number of node updates pertime-step (UPS) is increased, then again the error norm also increases, for similar

121
Min: 0.50 ; Max: 0.75

Figure 6.13: Contour plot of u and �nal mesh obtained when using hr-re�nementfor Burgers' system with �rK indicator.reasons to those just mentioned. By increasing the maximum level of re�nement,a more accurate solution can be obtained, but reducing the tolerance has only asmall e�ect on the accuracy (and solution time). Overall, the best approach is touse �rK as the error indicator, with one node update step prior to each re�nementof the mesh.These results compare favourably with those obtained using the re�nement tech-niques individually, and this is demonstrated by table 6.6 which shows the norm ofthe exact error and solution times of examples from the four methods discussed|�xed mesh, h-re�nement, r-re�nement and hr-re�nement. (Note that in any of thecases involving a choice of parameters, it is possible that these could be optimizedto allow minor improvements in the solution time.)Ref Type Err Ind MAXLEV TOL UPS Err Nrm CPU (s) EltsNone 1.03e-3 199 9350h �gK 4 0.1 8.77e-4 34 1575r �rK 5 1.82e-3 37 568hr �rK 3 0.5 1 7.82e-4 23 684Table 6.6: Results on re�ned meshes for Burgers' Equations.Clearly all three adaptive approaches are an improvement over a �xed mesh, asthey use far fewer elements (and hence less time) to obtain solutions of similar (orbetter) accuracy. However it appears that the combined strategy of both moving

122
Figure 6.14: Subsection [0:4; 0:6]� [0:4; 0:6] of �nal meshes using (a) �rK and (b) �gK.and adding nodes works best, giving both the lowest error norm and fastest solutiontime. It also appears that in general, �rK is the best choice of error indicator.Of course this is a relatively simple problem compared to the full Navier-Stokesequations, with only a single stationary ow feature on a small part of the domain,but it serves to demonstrate the potential improvements which a combined hrapproach might o�er.6.6.2 GAMM Test CasesThe cases we consider here are A2, A3 and A6. For the �rst of these, we seethe e�ect of changing some of the numerical parameters, but in general we usethe results from Burgers' system above to derive suitable starting values for theseparameters. The initial starting mesh in all cases is the coarse mesh of 547 elementsshown in �gure 5.5.Case A2As explained in x6.5, we carry out the node movement prior to each re�nementstep, and initially set UPS=1, MAXLEV=3 and TOL=0.4, with the residual basederror indicator �rK being used. The �nal mesh and density contours obtained in thiscase are shown in �gure 6.15. The most obvious e�ect of the node movement here isthat the wake has been detected and elements have begun to align themselves alongthis ow feature. In table 6.7, the e�ect of increasing UPS, so that more than one

123updating of the nodes is performed before re�ning, is shown. In fact the pressureand friction coe�cients for these cases are very similar and so there appears to belittle bene�t in choosing UPS to be more than one.
Min: 0.56 ; Max: 1.37Figure 6.15: Final mesh and density contours obtained when using hr-re�nementfor case A2 with �rK indicator.Err Ind MAXLEV TOL UPS Cl Cd CPU (s) Elts�rK 3 0.4 1 0.46 0.27 658 3693�rK 3 0.4 2 0.45 0.27 843 4492�rK 3 0.4 5 0.45 0.27 2116 5117�rK 3 0.2 1 0.44 0.26 1877 7655�rK 3 0.3 1 0.45 0.27 1239 4991�dK 3 0.2 1 0.46 0.27 740 4043�gK 3 0.7 1 0.53 0.28 2635 5235Table 6.7: Results on hr-re�ned meshes for case A2.For the system of Burgers' equations above, the value of TOL, the re�nementtolerance, makes only small di�erence to solutions (see table 6.5), but as table 6.7shows, changing TOL in this case has a large e�ect on the size of the �nal meshand the solution time. However the pressure and friction coe�cients for the threevalues of TOL shown are again very similar.The two other error indicators also considered are �dK (which includes di�usiveterms) and �gK (based on the density gradient). Di�erent values of TOL are used toobtain meshes of similar size, and the pressure and friction coe�cients are plotted

124in �gures 6.16 and 6.17. The �nal meshes around the aerofoil in each case is shownin �gure 6.18.
-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resid. Ind.
Diff. Ind.

Grad. Ind.

Figure 6.16: Pressure coe�cients for case A2 using hr-re�nement for di�erent errorindicators.
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resid. Ind.
Diff. Ind.

Grad. Ind.

Figure 6.17: Friction coe�cients for case A2 using hr-re�nement for di�erent indi-cators.All the error indicators we use detect the wake to some extent and the nodemovement automatically move nodes towards this region. Near the aerofoil, thegradient indicator appears to pull nodes away from the wall boundary, and so isless accurate than the other indicators. The di�usive e�ects incorporated in �dKmake only a small di�erence compared to �rK.When choosing the numerical parameters, the value which is probably mostsigni�cant in determining the accuracy and solution time is MAXLEV, which hereis equal to 3 in order to compare solutions with those previously obtained. A

125
Figure 6.18: Final meshes for case A2 with (a) �dK and (b) �gK.comparison of hr-re�nement with previous results obtained is made at the end ofthis section.Case A3This test case contains a bow shock which we wish to resolve using fewer elementsthan when h-re�nement is used. The two indicators �rK and �gK are employed todetermine where to re�ne and as weighting functions in the node updating. In thiscase, the solution time and mesh quality are particularly sensitive to the choiceof TOL and MAXLEV, and the values chosen (for comparison with the resultsobtained previously) are MAXLEV=3 and TOL=0.6 (with �rK) or TOL=0.5 (with�gK). Table 6.8 shows the solution coe�cients, times and mesh sizes.Err. Ind. Cl Cd CPU time Final elts�rK 0.33 0.45 1018 4660�gK 0.33 0.43 912 4801Table 6.8: Test case A3: results on hr-re�ned meshes.The �nal meshes in each case are shown in �gure 6.19, and the density contoursplotted in �gure 6.20. In both cases nodes are clustered along the shock, even awayfrom the aerofoil, enabling it to be clearly resolved. However the elements in the

126centre of this shock region are not being stretched so that they become alignedwith the ow, perhaps because there are not enough updates being done before there�nement procedure stops.
Figure 6.19: Final meshes for case A3 with (a) �rK and (b) �gK.Case A6For this case, where the Reynolds number is 2000, the error indicator based on theconvective residual (�rK) is used, with MAXLEV=4 and TOL=0.6. The �nal meshobtained with these values consists of 5223 elements and the solution time is 1398seconds. The solution and the �nal mesh are shown in �gures 6.21 and 6.22.The mesh is re�ned in such a way as to clearly resolve the wake, within whichelements are beginning to be stretched so that they become more aligned with thedirection of the wake.Comparison of GAMM Test CasesAny comparison of the solutions obtained using h, r and hr re�nement cannot beprecisely made since we are unable to quantify the error in a solution. However,by looking at the coe�cient values plotted around the aerofoil and by inspection ofthe mesh and solution values, some idea of the relative quality of the solutions maybe obtained. For the three GAMM testcases considered, table 6.9 summarises theCd and Cl values obtained by using the di�erent types of re�nement. Plots of thepressure and friction coe�cients for these examples are shown in �gures 6.23{6.28.

127
Min: 0.30 ; Max: 3.25

Figure 6.20: Density contours for case A3 with �rK.The cases given in table 6.9 have been chosen so that the hr-re�ned mesh con-tains fewer elements (and takes less time as a result of this) than the other meshes,but there does not appear to be a deterioration in the quality of the solution. Allthe coe�cient plots show similar results for the di�erent re�nement techniques, andall are within the range of results obtained in [18]. Where there are di�erences(most obviously in �gure 6.28), it is the �xed mesh solution which seems to be themost inaccurate.The major di�erence betweenmeshes obtained using h-re�nement and hr-re�nementis that ow features such as shocks or wakes are being detected more accuratelywith hr-re�nement. Far from the aerofoil where elements are initially coarse, thereis some element stretching, whereas in the initially �ne regions, elements retaintheir initial shape.Flow over a at plateWe have already considered Carter's problem [25] on �xed meshes and h-re�nedmeshes, and now present some results using the combined hr-re�nement method ofthis chapter. The initial mesh used consists of 98 elements (and is shown in �gure5.14) and the boundary conditions for the problem are de�ned in x4.6.5.When using the indicator �rK with TOL=0.05 and MAXLEV=5, full convergence

128
Min: 0.00 ; Max: 1.06

Figure 6.21: A6: Mach contours of solution on hr-re�ned mesh.

Figure 6.22: A6: Final mesh using hr-re�nement.

129
-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No Refinement
h-ref
r-ref

hr-ref

Figure 6.23: Pressure coe�cients for case A2.
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No Refinement
h-ref
r-ref

hr-ref

Figure 6.24: Friction coe�cients for case A2.
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

No Refinement
h-ref
r-ref

hr-ref

Figure 6.25: Pressure coe�cients for case A3.

130
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

No Refinement
h-ref
r-ref

hr-ref

Figure 6.26: Friction coe�cients for case A3.
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No Refinement
h-ref

hr-ref

Figure 6.27: Pressure coe�cients for case A6.
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No Refinement
h-ref

hr-ref

Figure 6.28: Friction coe�cients for case A6.

131Case Re�nement Cl Cd CPU time (s) ElementsA2 Fixed 0.52 0.28 780 5436h 0.47 0.27 1212 6468r 0.49 0.28 1133 5436hr 0.46 0.27 658 3693Range in [18] 0.41-0.52 0.24-0.29A3 Fixed 0.32 0.46 1266 5436h 0.33 0.45 1368 8360r 0.32 0.47 1485 5436hr 0.33 0.45 1018 4660Range in [18] 0.31-0.40 0.41-0.49A6 Fixed 0.003 0.12 685 5436h 0.002 0.12 2211 8928hr 0.00 0.12 1398 5223Range in [18] 0 0.10-0.14Table 6.9: Results on re�ned meshes for test cases A2, A3 and A6.is reached in 151 seconds, and the �nal mesh of 2278 elements is shown in �gure 6.29.Nodes are moved towards the shock, and to a lesser extent, towards the boundarylayer. Table 6.10 summarizes the results on �xed, h-re�ned and hr-re�ned meshes,with the corresponding plots of pressure and friction coe�cients shown in �gures6.31 and 6.32. We also show the additional result when MAXLEV (the maximumlevel of re�nement) is increased from 5 to 7. Clearly there is a large saving incomputational time when using h or hr-re�nement, although if MAXLEV isn't largeenough, the pressure and friction coe�cients are inaccurate when compared to [107]or [35] for example. However, increasing MAXLEV does improve the accuracy (aswe would expect). CPU time Final eltsFixed 2462 25088h 146 2087hr 151 2278hr/MAXLEV=7 408 3987Table 6.10: Results on hr-re�ned meshes for at plate ow.If the gradient indicator �gK is used instead of �rK, then the mesh becomes quicklydistorted and convergence fails completely. The mesh in this case is shown in �gure6.30.

132

Figure 6.29: Flat plate ow: �nal mesh using �rK indicator.

Figure 6.30: Flat plate ow: �nal mesh using �gK indicator.

133
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

No Refinement
h-ref

hr-ref
hr-ref/MAXLEV=7

Figure 6.31: Pressure coe�cients for at plate ow problem.
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2

No Refinement
h-ref

hr-ref
hr-ref/MAXLEV=7

Figure 6.32: Friction coe�cients for at plate ow problem.6.7 SummaryWe have introduced in this chapter a r-re�nement technique based on the methoddescribed in [64]. By using only the local solution values, each node is repositionedaccording to a weighted average of neighbouring element centroids. This o�erscertain advantages over other mesh movement methods, by being inexpensive tocompute and avoiding mesh tangling.If this technique is used on its own, as described in x6.4, then the mesh is re�nedso that nodes are moved towards regions where the error is large. This improvesthe quality of the solution, at the expense of extra computational cost as the rateof convergence drops while the node relocation is still being carried out.An alternative to using the node movement technique by itself is to combineit with h-re�nement, and this approach is described in x6.5. It involves a simplemodi�cation of the h-re�nement algorithm of the previous chapter, so that a node

134update step is performed prior to each h-re�nement step. The results presentedin x6.6 indicate that solutions can be obtained more e�ciently with this new hr-re�nement method, because fewer nodes are needed. This is shown quantitativelyfor the system of Burgers' equations, but for the Navier-Stokes equations, whereexact solutions are not known, it is less easy to make precise comparisons. Forthe examples we have looked at, the solutions obtained more e�ciently using hr-re�nement appear to be no worse than those generated using h(or r)-re�nement.In addition features such as wakes and shocks away from the aerofoils have beenresolved more accurately, with some stretching of elements, which allows them tobe more aligned with the ow.Another advantage of allowing nodes to move is that the geometry of the �nalmesh is uncoupled from the initial coarse mesh, so that by inspection the mesh is ofbetter quality. The reduction in convergence rate noticed when using r-re�nementonly is not such a signi�cant problem when h-re�nement is also being carried out,since the addition of nodes slows convergence more dramatically than any nodemovement which may be performed.Several error indicators, used as both an h-re�nement criterion and a weightingfunction in the node updating, have been tried, and the most versatile appearsto be the convective residual indicator �rK. There are problems with the gradientindicator when moving nodes towards shocks, leading to highly distorted elements.Incorporation of the di�usive terms of the residual (�dK) makes very little di�erencefor the particular problems considered here.Although this combined approach seems to o�er some potential for improvingthe e�ciency of the solution process, there remain some issues still to be resolved.As in the h-re�nement method, the best choice of parameters (for a desired level ofaccuracy) varies widely for di�erent types of problems, and in some cases it is onlyby experiment that sensible values can be obtained. We mention above that someelement stretching occurs within ow features, but only in regions where the initialmesh is coarse. Further gains in e�ciency might be possible if more elements areallowed to be stretched (so that fewer nodes are needed). This might be achievedby altering the error indicator, or no longer using the indicator as the weightingfunction. Finally, as the Reynolds number is increased, the boundary layer becomesthinner, and further re�nement is needed along the aerofoil. This is another regionwhere element stretching would be bene�cial, but experiments show that the error

135indicators we have considered here do not seem to allow this to happen. Alternativesinclude directional indicators, perhaps based upon an idea discussed by Weatherillin [126] of detecting and tracking streamlines in the ow.

136
Chapter 7Time-Dependent Problems7.1 IntroductionIn preceding chapters we sought steady solutions to ow problems consisting mainlyof transonic ows at moderate Reynolds numbers (Re < 2000). However in otherow regimes, for example where the Reynolds number is larger than this, a steadylaminar solution to the Navier-Stokes equations may not exist. One approach,considered in x8.2, is to work with the time-averaged Navier-Stokes equations andincorporate a turbulence model into the system, so that a form of steady solution forows at high Reynolds number may be found. Alternatively, the full Navier-Stokesequations may be solved directly, and in this case, the solution is unsteady and anumerical method is needed which is accurate in both time and space in order tocapture the transient solution as it evolves. For ows where the Reynolds numberis too high, this method is currently prohibitively expensive, but at lower Reynoldsnumbers, transient problems can be accurately resolved. In this chapter we discusssome techniques which may be suitable for this type of problem.We have already considered the use of time-stepping to march towards steadysolutions in x2.6, where an implicit backward Euler scheme was used to approximatethe time derivative. If global (rather than local) time-steps are used, then it ispossible to obtain a time-dependent solution, but such a method is only �rst orderaccurate in time and o�ers no control over the size of the temporal error (otherthan through the choice of the constant time-step). Hence a more sophisticatedalgorithm is needed, and some possible approaches are described in x7.2. Theseinclude the use of space-time �nite elements, developed by Hughes [66] and Johnson

137[77], Taylor-Galerkin methods [38] and the method of lines.The method of lines is a general method which reduces a system of p.d.e.'s toa system of ordinary di�erential equations (o.d.e.'s), by only discretizing in spacein the �rst instance. The spatial and temporal discretization are thus independent,allowing a variety of spatial discretizations (e.g. �nite elements or �nite volume)to be used with any standard o.d.e. solver. We attempt to follow this approach toobtain transient solutions using the the �nite element methods presented in chapter2. In x7.3, we briey outline some methods for the solution of o.d.e.'s, mentioningin particular the software package SPRINT [13] which includes several algorithmsfor time integration, such as the theta method and the Gear method, and containsbuilt-in temporal error control.We use the method of lines in x7.4 to obtain a solution for an example of transientow around an aerofoil. The use of SPRINT allows adaptivity in time, and wewould also like to incorporate the h-re�nement methods of chapter 5, to allow bothtemporal and spatial error control. One extra complication faced when re�ningmeshes for unsteady problems is the need for dere�nement|the removal of nodesfrom meshes. This requires a more complex data structure than re�nement only,but allows unsteady problems to be solved more e�ciently.When re�nement is carried out between time-steps, the solution on the old meshis interpolated onto the new mesh, and the error introduced by this interpolationa�ects the local error estimate thus signi�cantly reducing the size of the currenttime-step, slowing down the solution process. In x7.5, this is discussed in detail,including a theoretical analysis of a simple one-dimensional problem and numericalresults for a two-dimensional example, which indicate that more accurate interpo-lation will overcome this problem. We then return to the Navier-Stokes equationsand suggest how the interpolation might be improved in this case.7.2 Time Accurate Finite Element MethodsIn this section we outline a number of methods which use �nite elements in space,and approximate time-dependent solutions accurately.

1387.2.1 Space-time Finite ElementsThis approach uses �nite element methods to approximate the unknown variablesboth spatially and temporally. The usual way of doing this is the discontinuousGalerkin method, introduced by Johnson et al. [78], where the variable is discretizedin time by a polynomial which is discontinuous at discrete time levels. Much workon convection-dominated ows has been done using a combination of a stabilized�nite element method (e.g. streamline di�usion or Galerkin least-squares) and thediscontinuous Galerkin method (see for example Johnson et al. [78], Shakib andHughes [106] and Hughes et al. [66]))We now briey discuss the discontinuous method for the compressible Navier-Stokes equations, as described in [108]. For a given time T , the time intervalI = [0; T] over which the equations are to be solved, I may be partitioned into0 = t0 < t1 < : : : < tN = T , so that In = [tn; tn+1] is the nth time interval. If
denotes the spatial domain, and � its spatial boundary then we can de�ne space-time \slabs" Qn =
 � In with boundary Pn = � � In. For each Qn, the spatialdomain is subdivided into (nel)n elements ,
en; e = 1; : : : ; (nel)n, so thatQen =
en � In; e = 1; : : : ; (nel)n: (7.1)The test and trial functions are continuous within each \slab" Qn, but discontinuousacross the interface of between Qn and Qn+1, i.e. at times t1; t2; : : : ; tN�1. Becauseof these discontinuities we de�ne, for a time-dependent vector function V,V(t�n) = lim�!0�V(tn + �): (7.2)The Galerkin least-squares method, described in chapter 2, modi�es the stan-dard Galerkin method by the addition of a least squares operator. As given in[108], this method is extended for a complete space-time discretization so that thevariational formulation becomes: within each Qn, n = 0; : : : ; N � 1 , �nd Uh 2 Uhsuch that for all Vh 2 Vh the following is satis�ed:ZQn(�Vh;t:A0Uh �Vh:AiUh;i +Vh;i:KijUh;j �F :Vh)dQ+Z
(Vh(t�n+1):A0Uh(t�n+1)�Vh(t+n):A0Uh(t+n))d
+(nel)nXe=1 ZQen(LVh:�LUh)dQ� ZPnVh:(KijUh;j)nidP = 0; (7.3)

139for suitably de�ned test and trial functions Vh and Uh, and where L and � arede�ned as in chapter 2. The second integral is the term introduced by the extratime discretization, by which the ow information is propagated from one space-time \slab" to the next. At each time level, a nonlinear system is solved. Ifthe approximation functions are constant or linear in time, then it can be shown[108] that the method is unconditionally stable. In [108] it is advocated that theconstant in time approach is used for steady problems, whereas the additionalaccuracy gained by using linear in time approximations makes the higher ordermethod suitable for transient problems.7.2.2 Taylor-Galerkin MethodsRather than use �nite elements in both time and space, it is possible to use adi�erent technique to approximate in time, whilst retaining the spatial �nite elementapproximation. This can be done either by discretizing in space �rst, and then intime (the method of lines outlined below) or carrying out the time discretizationprior to the spatial discretization.One example of this second approach is the Taylor-Galerkin method, �rst usedby Donea [38], where the time derivative is approximated by a Taylor expansion,and then rewritten in terms of spatial derivatives. The resulting equations canthen be discretized in space by a Galerkin method. The method has been used byDemkowicz et al. to solve both the Euler [36] and the Navier-Stokes equations [35]adaptively and by Tworzydlo et al. [117].For example, if U is a solution vector for a system of equations, then a Taylorseries expansion leads toU(t+�t)���t22 U;tt(t+�t) = U(t)+�tU;t(t)+(1��)�t22 U(t);tt+O(�t3): (7.4)The value � 2 [0; 1] is an implicitness parameter, so that � = 1 corresponds toa fully implicit algorithm, and � = 0 leads to an explicit algorithm. The timederivative in the equations can be rewritten in terms of spatial derivatives, andthen substituted into (7.4) leading to a set of equations containing only spatialterms at each time-step.

1407.2.3 Method of LinesIn this approach, the p.d.e.'s, which consist of several variables, are reduced toa system of o.d.e.'s, of just one independent variable. Because the spatial andtemporal unknowns are approximated separately, the method allows a particularspatial discretization technique to be used with any of the wide range of o.d.e.solvers which have been developed (see x7.3.1). For example, use of the stabilizedGalerkin method given in x2.5 for the Navier-Stokes equations can lead to a systemof o.d.e.'s. The steady problem is a nonlinear system of equations which may bewritten as G(W) = 0 (7.5)where W is the vector of all the unknown coe�cients and G is the nonlinear func-tion representing the variational equations (this is shown in more detail in x2.3 forthe Galerkin method). The unsteady equations introduce a time derivative so thesystem becomes M(W)@W@t +G(W) = (0) (7.6)where the dependence of the matrix M on W is due to the presence of the leastsquares operator. The solution of this system of o.d.e.'s is the subject of the fol-lowing section.7.3 Temporal DiscretizationWhen the method of lines is used, the system of p.d.e.'s is semi-discretized to reduceit to a system of o.d.e.'s such as (7.6). We now consider some methods to solve thisresulting initial value problem. The particular software package used in this workis SPRINT, discussed in x7.3.2.7.3.1 Solution of O.D.E.'sThe theory and implementation of methods for solving systems of o.d.e.'s is welldeveloped and there are a wide range of techniques available (see for example [86]for an overview of the subject). In this section we briey summarize some methodswhich are available within SPRINT, the software package which we are using as theo.d.e. solver.

141Once a system of o.d.e.'s has been obtained from spatial discretization of theoriginal p.d.e.'s, it may be written as follows,@y@t = g(y; t); y(0) = k; (7.7)for some function g and vector k (note that for convenience this is a simpler systemthan that given in (7.6)). The general approach to solving such problems is tocompute estimates of y (y1;y2; ::;yn; ::, say) at discrete time levels, t1; t2; ::; tn; ::,using previous values of y. The simplest method for solving (7.7) is the forwardEuler method, yn = yn�1 + �g(yn�1; tn�1) (7.8)where � is the time-step size. For stability, this method usually requires very smalltime-steps to be taken, but this problem may be overcome by using the implicitbackward Euler method (used in x2.6 to march towards steady state) which is stablefor any size of time-step: yn = yn�1 + �g(yn; tn): (7.9)The sti�ness of an o.d.e. is a property which we do not de�ne here (see [86,chapter 6]) but sti� o.d.e.'s require a suitable o.d.e. solver, and in particular animplicit method is required to avoid very small time-steps. A survey of methods forsolving sti� o.d.e.'s is given by Byrne and Hindmarsh in [23]. One method whichis provided by SPRINT and may be used for sti� problems is the theta method,de�ned as yn = yn�1 + (1� �)�g(yn�1; tn�1) + ��g(yn; tn): (7.10)with 0 � � � 1. When � < 0:5, the method is conditionally stable, otherwise it isstable, and the optimal value of � depends on the particular problem. If � = 0:5,then the method is second order rather than �rst order accurate, but this is notalways the best choice. We use the default value within SPRINT of � = 0:55,although Berzins and Furzeland have developed an adaptive theta method whichautomatically selects the value of � [14].Multistep methods for solving o.d.e.'s use more than one of the previous valuesof y to calculate the current value, and a common technique when dealing with sti�problems is to use the backward di�erentiation formulae (b.d.f.) of Gear. Here thecurrent value yn is calculated usingkXj=0�k�jyn�j = ��kg(yn; tn): (7.11)

142For k = 1; : : : ; 6, the coe�cients �k�j and �k are given in [86]. This is also availablewithin SPRINT, and if k = 1, then the method reverts to backward Euler.Other numerical schemes for the solution of o.d.e.'s include explicit and implicitRunge-Kutta methods, which are single step but have a more complicated structurethan linear multistep methods, and Adams methods, which are multistep methodssuitable for nonsti� problems. Further details are given in [86].For any of the implicit methods mentioned above, a typical approach to com-puting y at the latest time-step involves two stages. First, a predictor step uses anexplicit method to give an approximate value of y cheaply. This is then used as aninitial guess for the corrector step, in which the implicit method is used to obtaina more accurate approximation of y.In order to ensure that the numerical solution is accurate in time, an adaptivestrategy is adopted. This usually means that the local error is estimated in someway, and the size of the time-step and/or the order of the method is allowed tochange accordingly.7.3.2 SPRINTThe software package SPRINT (Software for PRoblems IN Time) has been devel-oped by Berzins and Furzeland [13] for the numerical solution of problems thatinvolve mixed systems of time-dependent algebraic, ordinary and partial di�eren-tial equations. It has been designed in a modular way so that individual modulescan be replaced by the user's own routines.It can solve systems of o.d.e.'s of the following form (which is more general than(7.7) above) A(y; t)@y@t = g(y; t); y(0) = k; (7.12)for a given matrix A (which may be singular, although the matrix M in (7.6) ispositive de�nite), function g and vector k. A number of techniques for integratingin time are included in SPRINT, such as the theta method, b.d.f. and Adamsmethods. SPRINT also has the ability to control the size of the temporal error,by adapting the size of the time-step and the order of the method, as the solutionprogresses, in order to keep the error estimate within a user speci�ed tolerance.In order to solve the nonlinear system of equations arising at each time-step,either functional iteration or Newton's method may be used. Functional iteration is

143computationally cheaper, but may be insu�cient when dealing with sti� problems,in which case Newton's method, which requires access to the Jacobian matrix, ismore suitable. Within the theta method an optional switch has been implemented,allowing the code to change between these two nonlinear solvers according to thedegree of sti�ness. At each iteration of Newton's method, the linear systems aresolved using one of a number of iterative methods provided.We now describe the use of SPRINT with the �nite element method of chapter2 to solve unsteady ow problems.7.4 The Method of Lines for Unsteady FlowIn this section, we consider an example of unsteady ow and show how solutionsmay be obtained using the method of lines, in which the Navier-Stokes equations are�rst semi-discretized using a stabilized �nite element method, leading to a systemof o.d.e.'s which are solved within SPRINT. We also wish to use the spatial h-re�nement techniques of chapter 5, extending them to enable dere�nement as wellas re�nement.The design of SPRINT is such that using it in conjunction with a spatial dis-cretization technique is straightforward. Once initialization has been performed(e.g. setting up of the mesh details), SPRINT requires a user de�ned subroutine tointerface with the spatial discretization. This routine provides the following residualr(y; _y) = A(y; t) _y� g(y; t); (7.13)which is obtained from semi-discretizing the p.d.e.'s. In our case this is done byGalerkin least-squares, the stabilized �nite element method discussed in chapter 2,which leads to the system (7.6).We use the theta method for time integration, with � = 0:55, as recommended in[13], and a tolerance of 10�3 when estimating the local errors in time, which shouldensure that spatial rather than temporal errors dominate the solution. At the endof each time-step, SPRINT allows a monitoring routine to be called, and we usethis to carry out any re�nement of the mesh. In the current example, re�nementis only performed every 0.5 units of time. The approach for re�ning is similar tothat used in steady problems|an error indicator is computed for every element andany elements in which the indicator exceeds the speci�ed tolerance are re�ned. As

144with the steady case, values at the new nodes are obtained by linear interpolation.Following the re�nement step, SPRINT attempts to continue integration using thesame step size and order as before.Since we are considering unsteady ows, ow features are likely to change po-sition, and so dere�nement of the mesh (i.e. removal of nodes) is desirable. Dere-�nement has been implemented in the algorithm, developed by Jimack [76], whichwe use for h-re�nement (see x5.3). Elements to be dere�ned are those for which thevalue of the error indicator is below a dere�nement tolerance. The tree-like datastructure employed to store the mesh simpli�es the extra complexity of the dere-�nement process, which arises because of the need to keep the mesh conforming.Before being dere�ned, an elementmust be checked that it can be dere�ned withoutleaving a nonconforming mesh. The re�nement and dere�nement tolerances usedin the example below are 0.05 and 0.025 respectively, with a maximum level ofre�nement (MAXLEV) of 4. Note that these are absolute tolerances rather thanrelative values dependent on the maximum error which we used for steady problemsin chapter 5. The error indicator is a time-dependent version of �rK (see x5.2), wherethe time derivative is included in the convective residual term.The example we consider is subsonic ow (M1 = 0:55) around the NACA0012aerofoil. The angle of attack � is 8:34�, which ensures that the ow is unsteadywhen the Reynolds number Re is 5000. This case has previously been consideredelsewhere, e.g. [111]. The initial mesh consists of 1617 elements (and is shown in�gure 4.2), and we allow the code to solve 5000 time-steps, which corresponds to a�nal time reached of 13.8 units. Figures 7.1{7.4 show the meshes and Mach numbercontours of the solution as it evolves. The �nal mesh shown contains 5989 elements,and the contour plots clearly show the unsteadiness of the ow.The re�ned meshes su�er from the same problem as meshes obtained using h-re�nement for steady ows, which is a lack of smoothness and a clear dependence onthe original mesh structure. For steady problems, we used r-re�nement to overcomethis poor quality, but the inclusion of dere�nement into the algorithm means thatr-re�nement cannot be used in the same way. This is because dere�ned elementsmay be deformed due to the node movement, a problem which is discussed furtherin x8.3.Figure 7.5 plots the value of the time variable against the number of time-steps. Immediately after the steps in which mesh re�nement occurs, the time-step

145

Figure 7.1: Unsteady ow: meshes at t=1, t=3, t=5, t=7.

146

Figure 7.2: Unsteady ow: meshes at t=9, t=10.5, t=12, t=13.5.

147
Min: 0.00 ; Max: 0.88

Min: 0.00 ; Max: 0.81

Min: 0.00 ; Max: 0.85

Min: 0.00 ; Max: 0.83

Figure 7.3: Unsteady ow: Mach contours of solution at t=1, t=3, t=5, t=7.

148
Min: 0.00 ; Max: 0.82

Min: 0.00 ; Max: 0.79

Min: 0.00 ; Max: 0.80

Min: 0.00 ; Max: 0.78

Figure 7.4: Unsteady ow: Mach contours of solution at t=9, t=10.5, t=12, t=13.5.

149is reduced by a factor of between 100 and 1000, as can be seen from �gure 7.5.This signi�cantly slows down the solution time, which is about 16 hours, and in theremainder of the chapter we attempt to show why this drop in the time-step occursand how it might be avoided.
0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

time-stepsFigure 7.5: Plot of time against time-steps.An immediate gain in the solution time might be found by using a more e�cientlinear solver than the general linear algebra package that SPRINT uses within New-ton's method (for example, the approach we used for steady problems of GMRESwith ILU preconditioning).An indication as to why the time-step reduces so much after spatial re�nementmay be obtained from examination of the norm of the residual vector (calculatedfrom (7.13)) before and after re�nement. This indicates that there is a substantialincrease in its size after interpolation onto the re�ned mesh. It would seem reason-able that this increase in the residual is causing the local error estimate to jumpdramatically, thus leading to the sharp reduction in time-step size. It therefore fol-lows that, if we can re�ne the mesh so that the increase in residual size is restricted,the size of the time-step will not fall so dramatically. We discuss in further detailthis relationship between residual and time-step size in x7.5.3, but �rst consideralternatives to using linear interpolation in order to obtain values at the new nodes,and observe the e�ect of these alternatives on the residual.

1507.5 Interpolation on Re�ned MeshesWe have seen in the previous section that the large drop in the size of the time-stepimmediately after a mesh re�nement step coincides with a sharp increase in sizeof the residual vector, and have suggested why the two may be connected. In thissection we show that when new nodal values are obtained using a better qualityinterpolant than linear, then there is not such a large increase in the norm of theresidual vector (and there is a correspondingly smaller drop in the size of the time-step). This is shown theoretically for a simple one-dimensional example, and thennumerically for a problem in two-dimensions on both structured and unstructuredmeshes. Finally, the relationship between this increase in the residual vector andthe decrease in time-step size is studied more carefully for the simple case of abackward Euler scheme.7.5.1 A One Dimensional Convection-Di�usion ProblemIn order to observe the e�ect upon the o.d.e. residual of interpolating a solutionfrom the old mesh onto the new mesh, we �rst consider a one dimensional linearconvection-di�usion problem on a uniform mesh. This mesh is re�ned and thenew residual vectors obtained using both linear and higher order interpolants arecompared.The equation @u@t + @u@x � �@2u@x2 = 0 (7.14)for 0 � x � 1, u(0; t) = 0, u(1; t) = 1, initial conditions u(x; 0) = x and where � isa constant, has a steady-state solutionu(x; t) = ex� � 1e 1� � 1 : (7.15)The Galerkin �nite element method for obtaining a spatial discretization of thisproblem at each time-step can be stated in the following way. We �rst de�ne a trialfunction space for u,U = fu : u 2 C(H1([0; 1]); [0;1)); u(0; t) = 0; u(1; t) = 1g: (7.16)The weak form of (7.14) is: �nd u 2 U such that(ut; v) + (ux; v) + �(ux; vx) = 0 8v 2 U0; (7.17)

151where U0 = fv : v 2 C(H1([0; 1]); [0;1)); v(0; t) = v(1; t) = 0g and (u; v) =R 10 uvdx.The interval [0,1] is partitioned into n equally spaced sub-intervals, with nodepoints at 0 = x0 < x1 < : : : < xn�1 < xn = 1. The length of each sub-interval is ĥ.If u and ut are approximated in space by piecewise linear functions uh and uht thenthe space of trial functions is given byUh = fuh : uh 2 C(C0(0; 1); [0;1)); uhjI 2 P1; uh(0; t) = 0; uh(1; t) = 1g; (7.18)and the space of test functions isVh = fvh : vh 2 C(C0(0; 1); [0;1)); vhjI 2 P1; vh(0; t) = vh(1; t) = 0g (7.19)where I denotes each sub-interval and P1 is the space of linear polynomials. Thediscrete variational formulation is: �nd uh 2 Uh such that(uht ; vh) + (uhx; vh) + �(uhx; vhx) = 0 8vh 2 Vh: (7.20)De�ne �i (i = 0 : : : n) as the usual piecewise linear basis functions so that�i(xj) = �ij, and write uh and uht asuh = nXi=0 ai(t)�i; uht = nXi=0 bi(t)�i (7.21)where a = (a1; a2; : : : ; an�1)T and b = (b1; b2; : : : ; bn�1)T are the unknown coe�-cients to be found at each time-step and b(t) = _a(t) in the exact temporal solution.As boundary conditions, we de�ne b0 = bn = 0, a0 = 0 and an = 1. The vectorb will be determined by current and previous values of a, depending on the timeintegration scheme being used.A linear system of n� 1 equations is obtained from (7.20) by choosing vh = �ifor i = 1; 2; : : : ; n� 1:0@n�1Xj=1 bj�j ; �i1A + 0@n�1Xj=1 aj�j;x; �i1A + �0@n�1Xj=1 aj�j;x; �i;x1A+ ĉi = 0 (7.22)where ĉi is a component of the boundary vector ĉ determined by the Dirichletboundary conditions. In this caseĉ = (0; 0; : : : ; 0; (�n;x; �n�1) + �(�n;x; �n�1;x))T : (7.23)

152Now de�ne the matrices M̂ , D̂ and K̂, where m̂ij = (�i; �j), d̂ij = (�i; �j;x) andk̂ij = (�i;x; �j;x): M̂ = 0BBBBBBBBBBBBBB@ 2ĥ3 ĥ6 0 : : : 0 0 0ĥ6 2ĥ3 ĥ6 : : : 0 0 00 ĥ6 2ĥ3 : : : 0 0 0...0 0 0 : : : ĥ6 2ĥ3 ĥ60 0 0 : : : 0 ĥ6 2ĥ3 1CCCCCCCCCCCCCCA ; (7.24)
D̂ = 0BBBBBBBBBBBBBB@ 0 12 0 : : : 0 0 0�12 0 12 : : : 0 0 00 �12 0 : : : 0 0 0...0 0 0 : : : �12 0 120 0 0 : : : 0 �12 0 1CCCCCCCCCCCCCCA ; (7.25)
K̂ = 0BBBBBBBBBBBBBB@ 2̂h � 1̂h 0 : : : 0 0 0� 1̂h 2̂h � 1̂h : : : 0 0 00 � 1̂h 2̂h : : : 0 0 0...0 0 0 : : : � 1̂h 2̂h � 1̂h0 0 0 : : : 0 � 1̂h 2̂h 1CCCCCCCCCCCCCCA : (7.26)The linear system can be written asM̂b+ D̂a+ �K̂a+ ĉ = 0 (7.27)which needs to be solved at each time-step until a �nal time has been reached. Thissystem de�nes the residual function R̂:R̂(a;b) = M̂b+ D̂a+ �K̂a+ ĉ: (7.28)The mesh is now re�ned by dividing each sub-interval in two, so that there arenow 2n sub-intervals each of length h (= ĥ=2). Given an interpolation operatorIh : Rn�1 ! R2n�1 which acts upon a n� 1 length vector to generate interpolatedvalues at the new node points, we de�ne the residual vector on the new mesh asR(Ih(a); Ih(b)) = MIh(b) +DIh(a) + �KIh(a) + c (7.29)

153where the (2n�1)�(2n�1) matricesM , D and K are similar to the (n�1)�(n�1)matrices M̂ ,D̂ and K̂, with h replacing ĥ. We now de�ne three types of interpolationoperators.Linear InterpolationDe�ne ILh : Rn�1 ! R2n�1 asILh (y) = 0BBBBBBBBBBBBBBBBBB@ 12(y0 + y1)...yi12(yi + yi+1)yi+1...12(yn�1 + yn)
1CCCCCCCCCCCCCCCCCCA ; (7.30)where y = (y1; : : : ; yn�1)T and y0 and yn are speci�ed Dirichlet boundary conditions.Hermite InterpolationThe interpolant S(x) is constructed using a piecewise cubic polynomial whose �rstderivative is continuous at each node. On each sub-interval [xi; xi+1]S(x) = yiHi(x) + yi+1Hi+1(x) + y0iKi(x) + y0i+1Ki+1(x) (7.31)where the cardinal functions are de�ned in terms of the piecewise linear basis func-tions �i and �i+1 as follows: Hi = �2i (3� 2�i) (7.32)Hi+1 = �2i+1(3 � 2�i+1) (7.33)Ki = �2i (x� xi) (7.34)Ki+1 = �2i+1(x� xi+1): (7.35)These take the following values at xi and xi+1:Hi(xi) = 1 Ki(xi) = 0 Hi+1(xi) = 0 Ki+1(xi) = 0H 0i(xi) = 0 K 0i(xi) = 1 H 0i+1(xi) = 0 K 0i+1(xi) = 0Hi(xi+1) = 0 Ki(xi+1) = 0 Hi+1(xi+1) = 1 Ki+1(xi+1) = 0H 0i(xi+1) = 0 K 0i(xi+1) = 0 H 0i+1(xi+1) = 0 K 0i+1(xi+1) = 1

154and at the midpoint (xi + ĥ2) (i.e. the new node point)Hi(xi + ĥ2) = 12 Ki(xi + ĥ2) = ĥ8 Hi+1(xi + ĥ2) = 12 Ki+1(xi + ĥ2) = � ĥ8 :(7.36)The approximations y0i and y0i+1 to the derivatives are computed using second orderdi�erencing y0i = yi+1 � yi�12ĥ ; i = 1; : : : ; n� 1 (7.37)and at the boundaries,y00 = 4y1 � 3y0 � y22ĥ ; y0n = �4yn�1 + 3yn + yn�22ĥ : (7.38)Hence from (7.31), and (7.36){(7.38)S(xi + ĥ2) = 9yi16 + 9yi+116 � yi�116 � yi+216 ; i = 1; ::; n� 2 (7.39)S(x0 + ĥ2) = 3y08 + 3y14 � y28 (7.40)S(xn�1 + ĥ2) = 3yn�14 + 3yn8 � yn�28 : (7.41)So the interpolant is:IHh (y) = 0BBBBBBBBBBBBBBBBBB@ 18(3y0 + 6y1 � y2)...yi116(9yi + 9yi+1 � yi�1 � yi+2)yi+1...18(6yn�1 + 3yn � yn�2)
1CCCCCCCCCCCCCCCCCCA : (7.42)Cubic Spline InterpolationAgain, a piecewise cubic polynomial is constructed but now both the �rst andsecond derivatives of S(x) are required to be continuous at the nodes. Instead of(7.31) we haveS(x) = yiHi(x) + yi+1Hi+1(x) +miKi(x) +mi+1Ki+1(x); (7.43)

155where the terms m0;m1; : : : ;mn are obtained from the solution of the tridiagonalsystem0BBBBBBBBBBBBBB@ 2 4 0 : : : 0 0 012 2 12 : : : 0 0 00 12 2 : : : 0 0 0...0 0 0 : : : 12 2 120 0 0 : : : 0 4 2 1CCCCCCCCCCCCCCA0BBBB@ m0...mn 1CCCCA = 0BBBBBBBBBBB@ 12ĥ(4y1 � 5y0 + y2)...32ĥ(yi+1 � yi�1)...� 12ĥ(4yn�1 + yn�2 � 5yn) 1CCCCCCCCCCCA : (7.44)See Lancaster and Salkauskas [87, chapter 4] for details on how this system, whichleads to clamped splines, is obtained. Using (7.36), at the new node points,S(xi + ĥ2) = 12(yi + yi+1) + ĥ8 (mi �mi+1); (7.45)and the interpolant ICh : Rn�1 ! R2n�1 is de�ned asICh (y) = 0BBBBBBBBBBBBBBBBBB@ 12(y0 + y1) + ĥ8 (m0 �m1)...yi12(yi + yi+1) + ĥ8 (mi �mi+1)yi+1...12(yn�1 + yn) + ĥ8 (mn�1 �mn)
1CCCCCCCCCCCCCCCCCCA : (7.46)Theoretical Comparison of InterpolantsWe wish to compare the residual given by (7.29) using the three interpolants de�nedabove with the residual vector on the original mesh. In order to make a direct nodalcomparison, we linearly interpolate the old mesh residual R̂(a;b):ILh (R̂(a;b)) = ILh (M̂b) + ILh (D̂a) + ILh (K̂a) + ILh (ĉ): (7.47)For each node (new and old) the four expressions (the nodal component of theinterpolated residual and residual components of the interpolated solution vectorsfor the three interpolants ILh , IHh and ICh) can be compared. In the following analysis,the three matrices M , D and K are considered separately.

156Mass Matrix MGiven the vector b with boundary nodes b0 = bn = 0 we obtain the followingexpressions (the two terms shown in each vector refer to the old node point at xiand the new point at xi+ 12 = xi + h respectively).ILh (M̂b) = 0BBBBBBBB@ ...ĥ6 bi�1 + 2ĥ3 bi + ĥ6 bi+1ĥ12bi�1 + 5ĥ12bi + 5ĥ12bi+1 + ĥ12bi+2... 1CCCCCCCCA ; (7.48)MILh (b) = 0BBBBBBBB@ ...h12bi�1 + 5h6 bi + h12bi+1h2 bi + h2 bi+1... 1CCCCCCCCA ; (7.49)MIHh (b) = 0BBBBBBBB@ ...h12bi�1 + 41h48 bi � h96bi�2 + h12bi+1 � h96bi+213h24 bi + 13h24 bi+1 � h24bi�1 � h24bi+2... 1CCCCCCCCA ; (7.50)MICh (b) = 0BBBBBBBB@ ...h12bi�1 + 5h6 bi + h12bi+1 + h224mi�1 � h224mi+1h12bi�1 + 5h6 bi + h12bi+1 + h224mi�1 � h224mi+1... 1CCCCCCCCA : (7.51)Since ĥ = 2h, and using a Taylor series expansion to approximate terms bi�2,bi�1,bi+1and bi+2 in terms of bi and the approximations b0i, b00i and b000i to the solution deriva-tives (bi+1 = bi+ ĥb0i+ ĥ2b00i =2 + ĥ3b000i =6+O(ĥ4) for example), terms away from theboundaries can be directly compared.At node xi At new node xi + hInterpolated residual 2hbi +O(h3) 2hbi + 2h2b0i +O(h3)Linear interpolation hbi +O(h3) hbi + h2b0i +O(h3)Hermite interpolation hbi +O(h3) hbi + h2b0i +O(h3)Cubic Spline hbi + h2(mi�1�mi+1)24 +O(h3) hbi+h2(b0i+mi�mi+16)+O(h3)

157For linear and Hermite interpolation, the values of the terms in the componentof the new residual are half of the equivalent terms of the interpolated residual(to second order). In the case of cubic splines, an approximate expression forthe terms involving mi can be derived: we make the assumption that, as h ! 0,b00i+ 12 = S 00(xi + h) +O(h2), which can be shown numerically. We then writeb00i+ 12 = bi+2 � bi+1 � bi + bi�18h2 +O(h2) (7.52)and S00(xi + h) = yiH 00i (xi + h) + yi+1H 00i+1(xi + h) +miK 00i (xi + h)+mi+1K 00i+1(xi + h) (7.53)= 12h (�mi +mi+1): (7.54)Hence using the assumption above and from (7.52) and (7.54) we have thatmi �mi+1 = �bi+2 + bi+1 + bi � bi�14h +O(h3) (7.55)= �2(hb00i + h2b000i) + O(h3): (7.56)Replacing the mi � mi+1 by (7.56), the residual of the cubic spline interpolationbecomes hbi +O(h3) at xi and hbi + h2b0i +O(h3) at xi + h. Thus again the termsin each component of the residual of the interpolated solution are half those of theinterpolation of the residual on the original mesh.Convection Matrix DGiven the vector a with boundary nodes a0 = 0 and an = 1, expressions for ILh (D̂a),DILh (a), DIHh (a) and DICh (a) areILh (D̂a) = 0BBBBBBBB@ ...12(�ai�1 + ai+1)14(�ai�1 � ai + ai+1 + ai+2)... 1CCCCCCCCA ; (7.57)DILh (a) = 0BBBBBBBB@ ...14(�ai�1 + ai+1)12(�ai + ai+1)... 1CCCCCCCCA ; (7.58)

158DIHh (a) = 0BBBBBBBB@ ...132(ai�2 � 10ai�1 + 10ai+1 � ai+2)12(�ai + ai+1)... 1CCCCCCCCA ; (7.59)DICh (a) = 0BBBBBBBB@ ...14(�ai�1 + ai+1) + h8 (�mi�1 + 2mi �mi+1)12(�ai + ai+1)... 1CCCCCCCCA : (7.60)Using (7.56), we �rst obtain an expression for �mi�1 + 2mi �mi+1 in terms ofai: �mi�1 + 2mi �mi+1 = �(mi�1 �mi) + (mi �mi+1) (7.61)= 14h(�ai+2 + 2ai+1 � 2ai�1 + ai�2) +O(h3) (7.62)= O(h3): (7.63)The terms for each type of interpolation can now be compared as before.At node xi At new node xi + hInterpolated residual 2ha0i +O(h3) 2ha0i + 2h2a00i +O(h3)Linear interpolation ha0i +O(h3) ha0i + h2a00i +O(h3)Hermite interpolation ha0i +O(h3) ha0i + h2a00i +O(h3)Cubic Spline ha0i +O(h3) ha0i + h2a00i +O(h3)As for the mass matrix, the residual terms are, to second order, half the size ofthe terms in the interpolated residual for all three interpolants.Sti�ness Matrix KFor the vector a, expressions for ILh (K̂a), KILh (a), KIHh (a) and KICh (a) areILh (K̂a) = 0BBBBBBBB@ ...1̂h(�ai�1 + 2ai � ai+1)12ĥ(�ai�1 + ai + ai+1 � ai+2)... 1CCCCCCCCA ; (7.64)

159KILh (a) = 0BBBBBBBB@ ...1h(�ai�1 + 2ai � ai+1)0... 1CCCCCCCCA ; (7.65)KIHh (a) = 0BBBBBBBB@ ...116h(ai�2 � 8ai�1 + 14ai � 8ai+1 + ai+2)18h(�ai�1 + ai + ai+1 � ai+2)... 1CCCCCCCCA ; (7.66)KICh (a) = 0BBBBBBBB@ ...12h(�ai�1 + 2ai � ai+1 � 14(mi�1 �mi+1)12(mi �mi+1)... 1CCCCCCCCA : (7.67)As before we use (7.56) to obtain mi�1 �mi+1 in terms of ai.mi�1 �mi+1 = (mi�1 �mi) + (mi �mi+1) (7.68)= 14h (ai+2 + 2ai � ai�2) +O(h3) (7.69)= �4ha00i +O(h3) (7.70)So for the sti�ness matrix, a comparison of interpolants may also be made.At node xi At new node xi + hInterpolated residual �2ha00i +O(h3) �2(ha00i + h2a000i) +O(h3)Linear interpolation �2ha00i +O(h3) 0Hermite interpolation �ha00i +O(h3) �ha00i � h2a000i +O(h3)Cubic Spline �ha00i +O(h3) �ha00i � h2a000i +O(h3)The Hermite and cubic spline interpolants behave in the same way as for themass and convection matrices. However at old nodes, the component of the residualobtained from linear interpolation is equal (to second order) to the equivalent termin the interpolated residual. At new nodes this component is zero, and so in neithercase does the linear interpolant behave as it has done for the other matrices. It is thisproperty that causes the residual to dramatically increase when linear interpolationis used and the mesh is re�ned. For both Hermite and cubic spline interpolationthe terms from all three matrices are approximately reduced by a factor of two, forsmall enough h, and hence the overall residual is of the same order.

160Numerical ExperimentsThis section describes the numerical solution of (7.14) using SPRINT, in order tosee if the above analysis can be shown to hold in practice. The o.d.e solver selectedin SPRINT is the backward Euler scheme, and the residual routine required bySPRINT is that de�ned by the residual function R̂ in (7.28). The value of � usedis 0.2, which is large enough to allow the standard unstabilized Galerkin method toobtain solutions free of oscillations on the meshes used.The initial mesh consists of 32 elements, and the time-stepping is allowed to con-tinue until t = 1000, by which time the solution has reached steady-state. Withoutany re�nement of the mesh, the time-step size � increases steadily, as would beexpected for a problem with a steady-state solution.We wish to see the e�ect of re�ning the mesh on both the residual norm andthe time-step size, and so after a speci�ed time-step, every element is sub-dividedinto two, solution values at the new nodes are obtained by interpolation from theold nodes and time-stepping is allowed to continue on the re�ned mesh. The twopoints at which re�nement is carried out are during the early transient stage (i.e.as soon as � > 0:1) and near steady state (when � > 10).� Residual L2 norm (Mb)31 (Ka)31 (Da)31Before re�nement 0.113 8.2e-09 -6.64e-5 -0.135 0.135Linear 2.41e-5 190.7 -3.37e-5 -0.135 6.74e-2Hermite 0.089 5.91 -3.39e-5 -6.98e-2 6.73e-2Cubic Spline 0.089 0.441 -3.39e-5 -6.73e-2 6.72e-2Before re�nement 11.7 1.77e-12 -6.19e-9 -0.135 0.135Linear 4.08e-5 191.9 -3.14e-9 -0.135 6.77e-2Hermite 0.349 5.92 -3.16e-9 -7.91e-2 6.76e-2Cubic Spline 0.350 0.440 -3.16e-9 -6.77e-2 6.75e-2Table 7.1: E�ect of interpolants on re�ning a) during transient stage and b) nearsteady stateFor these two cases, table 7.1 shows the value of � immediately before and afterre�nement when the three types of interpolation discussed above are used. Thetable also shows the L2 norm of the residual vector in each example, as well asindividual terms contained in the residual at the 31st node of the re�ned mesh (i.e.one lying near the middle of the interval).In the �rst case, when the mesh is re�ned during the transient stage and linear

161interpolation is used to form the new solution values, there is a huge reduction inthe step size �. There is also a large increase in the residual norm, which is explainedby the relative changes in the separate components which make up the residual. Aspredicted by the analysis above, the terms produced by the mass and convectionmatrices both halve in value following interpolation, but the term from the sti�nessmatrix is unchanged (to 3 d.p.) and it is this behaviour which causes the residualnorm to increase. In x7.5.3 we discuss the question of why a large increase in thesize of the residual leads to a drop in the step size �.If higher order interpolants (Hermite or cubic spline) are used instead of a linearone, then � only drops slightly. The separate components of the residual term atthe 31st node all halve in value (to second order) so the increase in the residualnorm is less than with linear interpolation. There will always be some increase dueto boundary e�ects and the fact that there are twice as many nodes. As mightbe expected, the cubic spline is a better interpolant than the Hermite type, butresulting step size is the same in both cases. These results provide further evidencethat if the residual can be kept relatively small following interpolation, then thetime-step size will not be badly a�ected.Results are similar in the second case, when the mesh is re�ned near to steadystate. When linear interpolation is used, there is the expected sharp fall in �,but when cubic spline or hermite interpolation are used, a less dramatic drop in �occurs. This drop (11:7! 0:35) is more signi�cant than that in the transient stage(0:113 ! 0:089) because the steady state solution on the re�ned mesh is di�erentto the one on the original mesh. The residual terms all behave as predicted by thetheory, as in the �rst case.The analysis of the e�ects of interpolation for the simple one-dimensional prob-lem (7.14) has been veri�ed numerically by the results above, and explains thegrowth in the residual size following mesh re�nement. We now consider more com-plicated problems in one and two dimensions.Use of Galerkin Least-Squares and Nonlinear problemsIf the Galerkin spatial discretization used above is insu�cient (due to the mesh beingtoo coarse for the chosen value of �), then a stabilized scheme such as Galerkin least-squares (see x2.5) may be used to obtain stable solutions. For the linear problem

162(7.14) the variational formulation would become: �nd uh 2 Uh such that for allvh 2 Uh0 (uht ; vh + �vhx) + (uhx; vh + �vhx) + �(uhx; vhx) = 0; (7.71)where (u; v) = R 10 uvdx, and � is suitably chosen. As with the Galerkin method in(7.28), we can write the above in terms of matrices as a residual function R̂:R̂(a;b) = (M̂ + �D̂T)b+ D̂a + (�+ �)K̂a + ĉ; (7.72)(using a similar notation to (7.28)). The only new matrix which appears here is D̂T ,which behaves in exactly the same way as D̂ when applied to an interpolated vector,i.e. the components of DT Ih(b) are half the size of the interpolated vector Ih(D̂Tb).Hence the same conclusions concerning the change in the size of the residual termsapply to Galerkin least-squares as to the standard Galerkin method.These results also follow for a nonlinear convection-di�usion problem. Consider@u@t + u@u@x � �@2u@x2 = f (7.73)for 0 � x � 1, u(0; t) = 0, u(1; t) = 1, initial conditions u(x; 0) = x and where � isa constant, and f is a source term. The nonlinear term in the residual is given byN̂i(a) = Z 10 nXk=0 ak�k;x nXj=0 aj�j�idx; i = 1; : : : n� 1: (7.74)As for the matrices M , D and K, we can show what happens to the size of thisterm when di�erent interpolation operators are applied:ILh (N̂(a)) = 0BBBBBBBB@ ...16(�a2i�1 � ai�1ai + aiai+1 + a2i+1)�a2i�1�ai�1ai�a2i+a2i+1+ai+1ai+2+a2i+212... 1CCCCCCCCA ; (7.75)N(ILh (a)) = 0BBBBBBBB@ ...124(�a2i�1 � 4ai�1ai + 4aiai+1 + a2i+1)14(�a2i + a2i+1)... 1CCCCCCCCA ; (7.76)

163N(IHh (a)) = 0BBBBBBBBBBBBBBBBBBBBB@
...11536(�80a2i�1 � 340ai�1ai + 18ai�2ai�1+34ai�2ai + 340aiai+1 � a2i�2 � 2ai�2ai+1+80a2i+1 � 34aiai+2 � 18ai+1ai+2+2ai�1ai+2 + a2i+2)196(�25a2i + ai�1ai + aiai+2 + 25a2i+1�ai�1ai+1 � ai+1ai+2)...

1CCCCCCCCCCCCCCCCCCCCCA ; (7.77)
N(ICh (a)) = 0BBBBBBBBBBBBBBBBBBBBBBBB@

...196(�4a2i�1 � 4ai�1hmi�1 + 4ai�1hmi�h2m2i�1 + 2h2mi�1mi � 16ai�1ai�8aihmi�1 + 16aihmi + 16aiai+1�8aihmi+1 + 4a2i+1 + 4ai+1hmi�4ai+1hmi+1 � 2h2mimi+1 + h2m2i+1)124(�6a2i � aihmi + aihmi+1 + 6a2i+1+ai+1hmi � ai+1hmi+1)...
1CCCCCCCCCCCCCCCCCCCCCCCCA : (7.78)Using the computer algebra package Maple [44] to perform the complicatedalgebraic manipulation, we make use of (7.56) and rewrite ai�2; ::; ai+2 in terms ofai to obtain a comparison of the interpolants, as previously.At node xi At new node xi + hInterpolated residual 2haia0i +O(h3) 2(haia0i + aih2a00i + h2a0i2) +O(h3)Linear interpolation haia0i +O(h3) haia0i + aih2a00i + h2a0i2 +O(h3)Hermite interpolation haia0i +O(h3) haia0i + aih2a00i + h2a0i2 +O(h3)Cubic Spline haia0i +O(h3) haia0i + aih2a00i + h2a0i2 +O(h3)In the same way as the mass matrix and convection matrix terms were halvedin the linear problem, the interpolants all halve ILh (N̂ (a)) to second order, and sothe behaviour of the interpolation operators for the nonlinear problem follows thatof the linear problem.Conclusions for the One-Dimensional ProblemWe have demonstrated in this section that the choice of interpolant has a large e�ecton the o.d.e. residual when the spatial mesh is re�ned. For the one-dimensional

164example considered, we have shown analytically that use of linear interpolation to�nd the solution values at the new nodes causes the size of the residual to jumpsharply. However, if cubic spline or Hermite interpolants are used instead, then thisincrease is not great.Numerical experiments verify this behaviour, and also show the connection be-tween a large residual and a large reduction in time-step size following re�nement.The reason why a large increase in the residual causes a sharp drop in the step sizeis considered in x7.5.3. Further analysis indicates that the residual will behave inthe same way for nonlinear problems and when the Galerkin least-squares methodis used.Having established that in one-dimension, higher order interpolation o�ers im-proved performance to linear interpolation, we now compare Hermite with linearinterpolation for a two-dimensional example on both structured and unstructuredmeshes.7.5.2 Interpolation on Two Dimensional MeshesIn two dimensions linear interpolation of two nodal values to obtain a solutionvalue at an edge midpoint (which is where new nodes appear in the re�nementstrategy used) is straightforward. We do not consider using cubic spline, due toits complexity in two dimensions, and results in 1-d show little improvement overusing Hermite interpolation. Formation of a cubic Hermite interpolant is morecomplicated than the linear case, as within each element ten degrees of freedom arerequired, which consist of values at the three nodes, the partial derivatives at eachnode, and a value at the triangle centroid. The interpolant S(x; y) on each elementmay be written asS(x; y) = 3Xi=1 uiHi(x; y) + 3Xi=1 @ui@x Ki;1(x; y) + 3Xi=1 @ui@y Ki;2(x; y) + L(x; y)uc (7.79)where ui and uc are the solution values at the nodes and the element centroid, andthe basis functions may be de�ned in terms of the piecewise linear basis functions�i; i = 1; 2; 3 (see [98]):Hi = �i(3�i � 2�2i � 7�j�k) (7.80)Ki;1 = �i((xi � xj)�j(�k � �i) + (xi � xk)�k(�j � �i)) (7.81)

165Ki;2 = �i((yi � yj)�j(�k � �i) + (yi � yk)�k(�j � �i)) (7.82)L = 27�1�2�3 (7.83)where (i; j; k) is any cyclic numbering of (1; 2; 3) and the positions of the three nodesare given by sj = (xj; yj); j = 1; 2; 3. These functions have the following values atthe nodes sj , Hi(sj) = �ij; @Hi@x (sj) = 0; @Hi@y (sj) = 0;Ki;1(sj) = 0; @Ki;1@x (sj) = �ij; @Ki;1@y (sj) = 0;Ki;2(sj) = 0; @Ki;2@x (sj) = 0; @Ki;2@y (sj) = �ij;L(sj) = 0; @L@x (sj) = 0; @L@y (sj) = 0: (7.84)The re�nement process adds new nodes at the edge midpoints, so we require thevalue of the interpolant S(x; y) at these points. Denoting these midpoints by miwhere mi is the midpoint of the edge opposite si, the linear functions �i; i = 1; 2; 3have the values �i(mj) = 8><>: 0 if i = j12 otherwise : (7.85)Substitution of these values into (7.79) leads to the following expression for obtain-ing solution values at edge midpointsS(mi) = 12(uj +uk)+ 18 ((xk � xj)(@uj@x � @uk@x) + (yk � yj)(@uj@y � @uk@y)) ; (7.86)where (i; j; k) is any cyclic numbering of (1; 2; 3). This equation requires approx-imations of the partial derivatives of the solution at the three element nodes. Inthe case of a structured Cartesian mesh, these values may be obtained from secondorder di�erence formulae in the same way as for the one dimensional case (equa-tions (7.37){(7.38)). For an unstructured mesh, there are no equivalent formulae.For this reason, the approach taken here is to make use of the piecewise constantpartial derivatives on the surrounding elements. The formula used isru = 1Pki=1Ai kXi=1Ai(ru)i; (7.87)where Ai and (ru)i denote the area and gradient of the k elements surrounding thenode. This idea is an extension of a similar formula for regular meshes, for whichcertain convergence results exist (details are given by Goodsell and Whiteman in[51]).

166We now use the interpolants outlined above in the re�nement of a two di-mensional mesh when solving an unsteady problem. In x4.5, a coupled systemof Burgers' equations was introduced. We consider a time-dependent version of theequations here, obtained by removing the source terms. The equations become@u@t + u@u@x + v@u@y � �(@2u@x2 + @2u@y2) = 0 (7.88)@v@t + u@v@x + v@v@y � �(@2v@x2 + @2v@y2) = 0; (7.89)where � is a small constant, and the exact solution is given byu = 34 � 14 11 + exp((�4x+ 4y � t)=(32�)) (7.90)v = 34 + 14 11 + exp((�4x+ 4y � t)=(32�)) ; (7.91)which represents a moving front situated at y = x + 0:25t. The spatial domainconsists of the unit square [0; 1]� [0; 1], and the Dirichlet boundary conditions arecontinuously updated as the solution progresses.Using both structured and unstructured meshes, we observe the e�ect that uni-formly re�ning the entire mesh has on the size of the time-step �. The three struc-tured meshes used consist of regular grids of 9� 9, 17 � 17 and 33 � 33 nodes (i.e.128, 512 and 2048 elements respectively). The three unstructured meshes consistof 146, 568 and 2310 elements (the third of these is shown in �gure 4.5).Using two values (0.01 and 0.001) of �, the problem is solved via the method oflines (so that the equations are semi-discretized using �nite elements leading to asystem of o.d.e.'s solved using the backward Euler method in SPRINT) until 0.25units of time have passed. The entire mesh is then re�ned one level and the solutionvalues at the new nodes are formed using either linear or Hermite interpolation. Inthe latter case, the partial derivatives are formed using second order di�erences ifthe mesh is structured or the formula (7.87) if it is unstructured.For both types of mesh, we run twelve cases (as there are three meshes, twovalues of � and two interpolants) and monitor the time-step size immediately beforeand after re�nement. Table 7.2 shows the values of � for all the cases.On the structured meshes, when �=0.01, there is a clear improvement in usingHermite interpolants rather than linear ones, as it causes a smaller reduction in thetime-step size on all three meshes. This improvement becomes more apparent as

167� Mesh �old �new �new RatioLinear Hermite (Her/Lin)Structured meshes (p.d.'s from di�erence formulae)0.01 1 2.66e-2 2.22e-4 1.68e-3 7.570.01 2 1.84e-2 1.80e-4 2.07e-3 11.50.01 3 1.32e-2 1.69e-5 9.29e-3 5500.001 1 1.12e-2 3.96e-4 7.26e-5 0.1830.001 2 5.87e-3 3.30e-5 3.42e-5 1.030.001 3 2.99e-3 1.62e-5 1.93e-5 1.19Unstructured meshes (p.d.'s from weighted average)0.01 1 2.80e-2 1.92e-4 2.96e-4 1.540.01 2 1.78e-2 1.40e-4 1.40e-3 10.00.01 3 1.29e-2 1.30e-4 1.50e-3 11.50.001 1 7.82e-3 5.01e-5 2.89e-5 0.570.001 2 4.75e-3 2.54e-5 2.43e-5 0.960.001 3 3.38e-3 1.47e-5 1.82e-5 1.24Table 7.2: E�ect on the time-step size using linear and Hermite Interpolation.the mesh becomes �ner, as shown by the ratio in the last column of table 7.2, andon mesh 3 (when h = 1=32), there is only a very small drop in �.When � is reduced to 0.001, the superiority of Hermite interpolation is lessobvious, and on the coarsest mesh 1, linear interpolation results in a larger stepsize. However on the �nest mesh, Hermite is slightly better than linear interpolation,suggesting that as h ! 0, it de�nitely leads to better results. In order to see thisimprovement clearly though, a very �ne mesh is needed when � is small.The partial derivatives required for the Hermite interpolant on the structuredmeshes are found by second order di�erence formulae, which allow an accurateinterpolant to be formed. For the cases on unstructured meshes, the formula (7.87)is used, and as a consequence the results for these cases, shown in the second half oftable 7.2, are less conclusive. Improvements, particularly when �=0.01, in the step-size can still be seen for Hermite interpolation, but there is less di�erence betweenthe linear and Hermite interpolants than on structured meshes.If a more accurate method for computing the partial derivatives on unstruc-tured meshes were to be used, particularly near the boundary where (7.87) is veryinaccurate, then it is hoped that the results on unstructured meshes would be verysimilar to those on structured meshes.Overall, these results show that the behaviour of the step-size in two dimensions

168is similar to what happens in one dimension|re�ning with linear interpolationresults in a large o.d.e. residual which causes the time-step size to drop sharply.The residual is smaller when higher order interpolants are used (provided they areaccurate) which leads to less severe reductions in the step size. In the followingsection, we show how the step-size is a�ected by the residual.7.5.3 Connection between Residual and Time-StepIn the previous two sections we have seen, in one and two dimensions, how interpo-lation a�ects the size of the new residual vector, after re�ning a mesh. As a result,the size of the time-step immediately after re�nement can drop signi�cantly, and inthis section we briey discuss why the size of the new residual a�ects the time-step�. We use the backward Euler method as a simple example, but the approach istypical of that used in general o.d.e. software such as SPRINT. Consider the o.d.e.system _y = g(y; t): (7.92)This may be solved using the backward Euler scheme in two stages: an explicit(predictor) step is carried out to calculate an initial guess, ypn for the second stage,ypn = yn�1 + � _yn�1; (7.93)where yn�1 and _yn�1 are vectors saved from the previous time-step and � is thecurrent time-step size. The second (corrector) step is the backward Euler step,requiring solution of a nonlinear equation,ycn = yn�1 + �g(ycn; tn): (7.94)Once this has been solved, a local error estimate is used to decide whether thecurrent step is acceptable. This is de�ned as�n = 12(ycn � ypn) (7.95)= �2(g(ycn; tn)� _yn�1): (7.96)If jj�njj < �, for some error tolerance � and choice of norm, then the integrationcontinues with the next step (possibly increasing the step-size if jj�njj su�cientlysmall), otherwise the step size is reduced and the current step repeated, until jj�njjis su�ciently small.

169When the mesh has not been re�ned,jj _yn�1 � g(yn�1; tn�1))jj = jjrn�1jj << � (7.97)and so �n � �2(g(yn; tn)� g(yn�1; tn�1)) (7.98)and there is usually no need to reduce the step size �.When the mesh is re�ned at the end of the previous time-step, then the size ofthe o.d.e. system is changed and we de�ne new vectors via an interpolation operatorIh, ~yn�1 = Ih(yn�1); ~_yn�1 = Ih(_yn�1): (7.99)The residual vector ~rn�1 is given by~rn�1 = ~_yn�1 � ~g(~yn�1; tn�1) (7.100)and we can no longer assume that jj~rn�1jj is small|exactly how large it is willdepend on the type of interpolant used to de�ne Ih, as seen in the previous section.As before, a predictor is formed,~ypn = ~yn�1 + �~_yn�1; (7.101)and the corrector is obtained via solution of the nonlinear system~ycn = ~yn�1 + �~g(~ycn; tn); (7.102)using ~ypn as the initial guess.The local error estimate ~�n is now~�n = 12(~ycn � ~ypn) (7.103)= �2(~g(~ycn; tn)� ~_yn�1) (7.104)= �2(~g(~ycn; tn)� ~g(~yn�1; tn�1)� ~rn�1): (7.105)Because of the error introduced by the interpolation, jj~rn�1jj is large relative tojj~g(~ycn; tn) � ~g(~yn�1; tn�1)jj, and hence jj~�njj is too large. The step size may haveto be signi�cantly reduced before the local error estimate is below the tolerance �,especially if the residual vector is particularly big (which it is in the case of linear

170interpolation). By using an improved interpolant to lower the size of the residual,a smaller reduction in step size can be made.Although we only consider the simple method of backward Euler here, it shouldbe possible to show a similar result for more sophisticated schemes, such as thoseconsidered in x7.3.1.7.5.4 Time-Dependent Navier-Stokes EquationsHaving discussed the relationship between interpolation and the size of the time-step which follows any re�nement of the mesh for simple problems, we now returnto the Navier-Stokes equations. In x7.4, solutions are shown for an unsteady testcase, but the solution process is slow due to the large reduction in the time-stepsize after each re�nement. On the basis of the results and analysis shown above,we would expect that accurate use of higher order interpolation than linear shouldreduce the size of the residual and hence cause the step size not to fall so sharply.To test this in practice, we now solve the unsteady test case used previously(where Re = 5000, M1 = 0:55 and � = 8:34�) in exactly the same way as in x7.4,except that Hermite interpolation rather than linear interpolation is used when re-�ning the spatial mesh. This involves the use of expression (7.86) which providesthe solution values at element mid-points (i.e. the positions of new nodes). In addi-tion the partial derivatives at each node are required, and these are approximatedusing the formula (7.87) since this example is solved on an unstructured mesh.The results are disappointing, as there is no apparent improvement in the stepsize reduction when compared to the case where linear interpolation was used.Presumably, this is due to the poor approximations of the partial derivatives of thesolution at the nodes. These are least accurate near the boundaries, including theaerofoil surface, where accurate interpolation is especially important since a greatdeal of the re�nement will take place in this region.The averaging formula (7.87) is an attempt to extend to unstructured meshesa result obtained for regular structured meshes [51]. This gradient recovery tech-nique followed from the phenomenon of superconvergence in �nite element methods(where the rate of convergence at certain points within the domain exceed the globalrate) and there has been much work on these subjects for regular meshes (see [85]for a general survey). The corresponding analysis for unstructured meshes is still

171an open problem however, and development of alternatives to (7.87) might providemore accurate derivatives, leading to improved interpolation.In [24], Carey describes a method for obtaining derivatives along the bound-ary for elliptic equations. It uses the boundary integrals, in which the boundaryux appears, computed in the Galerkin �nite element discretization. However ifwe attempt to extend this to the system of Navier-Stokes equations, and use thecomputed boundary derivatives for the Hermite interpolation, then no noticableimprovement is observed in the test case used above.Although we are not able to currently overcome this problem of poor estimatesto the partial derivatives on unstructured meshes, it is hoped that Hermite inter-polation on structured meshes around aerofoils might be more successful, as thesecond order di�erence formula (suitably transformed if necessary) would providemore accurate approximations to the derivatives. This is a possible area for furtherresearch in the short-term, although in the longer term a more reliable method forrecovering derivatives on unstructured meshes should be sought.7.6 SummaryIn this chapter we have considered unsteady problems, where the ability to obtaintime-accurate solutions is more important than being able to march the solutionforward in time quickly so as to reach a converged steady solution. We have outlinedsome methods which allow such time-accuracy in x7.2, including complete space-time �nite element methods and the method of lines. The latter has been usedas the main approach in this chapter, and the software package SPRINT [13] hasprovided the methods for solving the system of o.d.e.'s obtained after the p.d.e.'shave been semi-discretized (using a stabilized �nite element method).Taking this approach, the solutions obtained for the test case in x7.4 appearedto be satisfactory. The unsteadiness in the ow has been clearly shown, and the useof h-re�nement (including dere�nement) has detected the wake successfully, at leastqualitatively. We have not considered the implementation of r-re�nement in thischapter, as using it with dere�nement introduces additional complications, whichare discussed in x8.3.However, solution of this problem was slow, due mainly to the sharp fall in thesize of the time-step immediately after re�nement. Because of the corresponding

172increase in the size of the new residual vector, it appeared that reducing this valuemight prevent such a reduction in the time-step.The analysis of a simple one dimensional problem in x7.5.1 showed that im-proved interpolation reduces the size of the residual, and this has also been shownnumerically for a two dimensional problem. For the simple time integration schemeof backward Euler, the link between a large residual vector and a large reduction inthe time-step has been demonstrated. The next step was to return to the Navier-Stokes equations and attempt to use a higher order of interpolation than linear inorder to prevent the large reduction of the time-step size.Although we have made several attempts to implement Hermite interpolationfor the Navier-Stokes equations on unstructured meshes, we have not been ableto demonstrate any signi�cant gain over using linear interpolation. It would seemthat this is due to insu�ciently accurate approximations of the gradients whichare needed at each node. If improved estimates to the partial derivatives could befound, then we would expect that use of a Hermite interpolant would lower theo.d.e. residual and prevent a sharp drop in the step size, leading to faster solutiontimes.On the basis of these results, and in the absence of a suitable interpolant in2-d, we conclude that this combination of a stabilized �nite element method witha separate o.d.e. solver is currently rather ine�cient and another method such asthe discontinuous Galerkin (which uses �nite elements in both space and time) [77]should be considered as an alternative. One possible reason why this method mightbe better is that a discontinuity in the o.d.e. is introduced when the mesh is re�ned,and since the discontinuous Galerkin method is discontinous in time, no smoothnessis imposed at the point where the mesh is re�ned. It would be of interest to makea comparison between these two techniques.

173
Chapter 8Future Areas of Research8.1 IntroductionThis chapter contains discussions on three possible areas in which the work de-scribed in previous chapters might be extended. We have considered compressibleow at low to moderate Reynolds numbers, usually for problems which have steadysolutions. When simulating high Reynolds number ows, in which turbulence ispresent and has a signi�cant e�ect on the ow features, direct solution of the un-steady Navier-Stokes equations is computationally too expensive. Instead, a turbu-lence model is needed, and in x8.2 we describe the most common models which areused. We also briey consider some aspects of implementing a turbulence modelwithin the �nite element approach we have described in chapter 2.In chapter 7, the use of h-re�nement in methods for time-dependent ows wasdemonstrated and we may wish to also make use of the r-re�nement techniquespresented in chapter 6. In x8.3, this issue is addressed, and some of the possibledi�culties which might arise are discussed.Only two-dimensional ows are considered in this thesis, and in x8.4 we considerwhat changes would be involved if the ideas and algorithms presented here wereextended to three dimensions.8.2 Turbulence ModellingA viscous ow may be classi�ed as one of two types |laminar or turbulent. Below acritical Reynolds number (which usually depends on the particular ow conditions

174and geometry), the ow is laminar and remains smooth and regular. At this criticalvalue, the ow enters a transition region in which instabilities begin to appear.These instabilities cause turbulence as the Reynolds number increases further.It is important to account for the e�ects of turbulence, such as increased frictionon surfaces, and a decreasing likelihood of ow separation from a wall surface (seefor example Hinze [63] for a fuller description of turbulence). In principle, turbulentsolutions may be obtained from the unsteady Navier-Stokes equations, using theapproach of chapter 7 for example. However, with the exception of relatively simpleows this would require a very �ne grid and far more computational power than iscurrently available in practice. Instead, average values for the unknown variablesare sought, by means of the time (or Reynolds) averaged Navier-Stokes equations.These contain additional terms, which are modelled by further equations (whichmay be algebraic or di�erential). The averaged values obtained from these equationsare usually su�cient to show how the ow is a�ected by turbulence.In x8.2.1 we state the averaged Navier-Stokes equations, and some alternativesfor modelling the additional terms in the equations are outlined in x8.2.2. Variousimplementation issues are discussed in x8.2.3.8.2.1 The Reynolds Averaged Navier-Stokes EquationsWe wish to obtain time-averaged values of the unknowns, ignoring the uctuationscaused by turbulent e�ects. Hence we split the unknown variable (e.g. u) into twoparts u = u+ u0 (8.1)where u is either the time averageu(t) = 1T Z t+T2t�T2 u(�)d� (8.2)for a suitable time-scale T , or ensemble averageu(t) = limN!1 1N NXi=1 ui(t) (8.3)which is obtained by repeating the transient process many times, so that ui(t)denotes the measured value of u at time t in the ith experiment. These two averagingoperators may be assumed to be equivalent for most types of turbulent ow. It

175follows that for the uctuating term u0,u0 = 0: (8.4)This type of averaging is adequate when the density, �, is constant (i.e. in-compressible ows), but for variable density ows, the resulting averaged equationscontain some complex terms which may be avoided by using Favre averaging, wherethe unknowns are weighted by the density. In this caseu = ~u+ u00 (8.5)where ~u is the Favre average~u(t) = 1�T Z t+T2t�T2 �(�)u(�)d� (8.6)or in ensemble form, ~u(t) = limN!1 1�N NXi=1 �i(t)ui(t): (8.7)We may also write ~u = �u� (from (8:6)): (8.8)Using the conservative form of the Navier-Stokes equations (given in vectorform by equation (2.27) in x2.2.2), we wish to rewrite the equations in terms ofthe averaged quantities �, ~u1, ~u2, ~e, T and p. This is done by averaging the entireequations, and then simplifying. For example the continuity equation becomes�;t + (�ui);i = 0 (8.9)where \;i" denotes partial di�erentiation by xi and the summation convention isbeing used. Making use of (8.8), this may be rewritten as�;t + (�~ui);i = 0: (8.10)Hence no new terms are introduced in this equation, but this is not the case in theremaining equations due to the presence of nonlinear terms. The Reynolds averagedmomentum equations(�ui);t + (�uiuj + p�ij);j � �Sij(u);j = 0; (8.11)where � is the molecular viscosity and Sij(u) is de�ned asSij(u) = ui;j + uj;i � 23�ijuk;k; (8.12)

176become (�~ui);t + (�~ui~uj + � gu00i u00j + p�ij);j � �Sij(~u);j = 0 (8.13)introducing the Reynolds stress tensor � gu00i u00j which has to be modelled.The instantaneous energy equation is(�etot);t + (�uietot+ pui);i � (�Sij(u)uj + �T;i);i = 0: (8.14)where � is the thermal conductivity andetot = e+ juj22 : (8.15)The Reynolds averaged equation may be written as(�~etot);t + (� ~ui~etot+ � gu00i e00tot+ p ~ui + pu00i);i�(�(Sij(~u)~uj + Sij(~u)u00j + Sij(u00)~uj + Sij(u00)u00j + �T ;i);i = 0 (8.16)which introduces even more extra terms to be modelled. We are now faced withthe well-known closure problem|six equations (the four Navier-Stokes equationsand two expressions relating p and T in terms of �, ui and e) but many moreunknowns to be determined, including the four (in two dimensions) components ofthe Reynolds stress tensor and the turbulent ux terms appearing in (8.16).A common approach is to make the assumption about the Reynolds stress tensorthat it may be described in the same way as molecular viscous e�ects (the eddyviscosity hypothesis, see [27] for example), so that� gu00i u00j = ��TSij(~u) + 23�K�ij; (8.17)where �T is the eddy viscosity and the turbulent kinetic energy K is de�ned byK = 12 gu00i u00i : (8.18)Similarly the eddy di�usivity hypothesis assumes that the turbulent uxes are pro-portional to the gradient of the mean values, so for example� gu00i e00tot = �TPrT ~etot;i (8.19)Hence we can now rewrite the averaged momentum equation as(�~ui);t + (�~ui~uj ++(p+ 23�K)�ij);j � (�+ �T)Sij(~u);j = 0: (8.20)

177After some algebraic manipulation (see Jansen et al [75] for details), the energyequation can also be written in a simpler form,(�~etot);t + (�~ui~etot + (p + 23�K)~ui);i�((�+ �T)~ujSij(~u) + (� + �T)T ;i + (� + �TPrK)K;i);i = 0: (8.21)The turbulent Prandtl number PrT is a constant and the turbulent thermal con-ductivity is de�ned by �T = cv �TPrT : (8.22)This set of averaged equations (8.10), (8.20) and (8.21) now only require ad-ditional modelling of the turbulent kinetic energy K and the eddy viscosity �T .Turbulence models which approximate these values are categorized by the numberof additional di�erential equations of which they consist. The most common typesare zero, one and two equation models, but all models contain several constantswhich need to be empirically determined, by measuring quantities in practical ex-periments involving simple turbulent ows. This highlights the fact that particularmodels are usually better suited to certain ows than others. In the next section webriey outline and give examples of the di�erent types of model, and also mentionsome of the alternative approaches.8.2.2 Types of Turbulence ModelsWe discuss in this section some of the models used to obtain the eddy viscosity�T and turbulent kinetic energy K, which are then used in the Reynolds averagedNavier-Stokes equations, as shown above. Of particular interest is their suitabil-ity for unstructured meshes, as historically most solvers incorporating turbulencemodels have been based on the use of structured meshes in the turbulent regions.Zero-Equation ModelsModels in this category use only algebraic expressions to approximate the turbulentquantities. Typically, the eddy viscosity is modelled so that�T / �ltut (8.23)where lt is the turbulent length scale and ut is the turbulent velocity scale, whichare obtained from the local mean ow quantities. In this case, it appears to be

178common to rewrite the Reynolds averaged Navier-Stokes equations so that the term23�K appearing in (8.20) and (8.21) is \absorbed" into the de�nition of pressure andthe di�usive term involving K is no longer present. This avoids the need to obtainK directly.This type of model is really only suited to ows near walls, where di�usive e�ectsdominate, since transport e�ects are ignored. One early model is that of Cebeciand Smith [28], which splits the boundary layer into two regions, and de�nes theeddy viscosity for each region separately. One disadvantage with this model is thenecessity to locate the boundary layer in order to determine the length scale in theouter region. The Baldwin-Lomax model [10] avoids this need, instead using thedistribution of the vorticity to obtain length scales.For more complex ows, results obtained using the model of Johnson and King[82] are superior to both the Cebeci-Smith and Baldwin-Lomax models. This modeltransforms a simpli�ed form of the turbulent kinetic energy transport equation intoa o.d.e. which describes the development of the maximum Reynolds stress in thestreamwise direction.For high Reynolds number ows which remain attached to the wall, these mod-els give good results, but cannot accurately predict highly separated ows andturbulence in wakes. Since they are essentially algebraic models, they are computa-tionally inexpensive, but require turbulent length and velocity scales. This requiresknowledge of the distance of each point from the wall surface (y) which is easilyavailable when using structured meshes, but not when the mesh is unstructured. In[93], Mavriplis introduces a method for using the Baldwin-Lomax model with un-structured meshes. This is accomplished by generating lines normal to the wall andinterpolating solution values from the unstructured mesh points onto the normalmesh lines in order to obtain the necessary length scales.One-Equation ModelsAs for algebraic models, the approximation (8.23) is made, but in this case theturbulent velocity scale is usually de�ned to beut = pK (8.24)where the turbulent kinetic energy K is found from a transport equation. It iscommon to introduce the turbulence dissipation rate � to indirectly represent lt, via

179the following: lt = CK 32� (8.25)for some constant C.The model of Wolfshtein [128] is a simple one-equation model, consisting of ap.d.e. with K as the unknown, with the length scale being determined in terms of y,the distance from the wall. A slightly more advanced model is given by Mitcheltreeet al. [99], where the length scale is determined in di�erent ways for attached andseparated ows. A blending function is used to switch between the two formulations.The Norris-Reynolds model is used by Jansen et al. [75] within the context ofthe Galerkin least-squares �nite element method. The extra equation is combinedwith the Reynolds averaged Navier-Stokes equations and the resulting system istransformed using entropy variables so that the advective and di�usive matricesare symmetric (see x2.2.2).All the models mentioned so far approximate the length scale in terms of y,hence are less suitable for unstructured meshes than structured grids. The Baldwin-Barth model [9] overcomes this problem to a large extent, and consists of an equationmodelling the turbulent Reynolds numberRT , from which the eddy viscosity may befound directly. A length scale is not needed, although there is still some dependenceon y, as it is used by damping functions which simulate the e�ect of solid walls onturbulence. It is recommended in [9] that y need only be stored for the nodes veryclose to the wall, since the damping functions reach their asymptotic value awayfrom the wall.Another model which has only a limited dependence on y is that of Spalart andAlmaras [113], in which a p.d.e. is used to obtain a value for �t directly.In general, one-equation models can cope with a wider range of ows thanalgebraic models, though at extra expense, and some have the ability to be used onunstructured meshes with relative ease.Two-Equation ModelsTwo-equation models eliminate the need to �nd algebraic length and velocity scales,and instead rely on two transport equations to obtain values from which �T maybe found. The most common approach is the K-� model where the two equationsinvolve K and �, the rate of dissipation of turbulent kinetic energy. The eddy

180viscosity is then determined from �T = �CK2� : (8.26)The standard K-� model is generally applicable in regions of fully developedturbulence, but not near wall boundaries. There are two ways of overcoming this.A low Reynolds number model incorporates extra terms into the � equation, andrede�nes the eddy viscosity near walls. This approach requires particularly �ne gridsclose to the wall. The second idea is to either employ a separate simpli�ed modelor impose logarithmic wall laws near the wall (a high Reynolds number model).The model of Jones and Launder [84] is a well known version of the K-� model,and can either be used as a low Reynolds number model, or may be simpli�ed andtreated as a high Reynolds number model. In [30], another low Reynolds numbermodel is presented by Chien, similar to [84] but taking a di�erent approach tomodelling terms near the wall.The advantages of two-equation models such as K-� are that they are applicableto a wide range of ows, and have been in use for over twenty years, so that their usesand limitations are well understood. However they are more di�cult to use thanthe zero and one-equation models discussed above, they often require �ner meshesnear wall boundaries, and numerical di�culties may occur during their solution.Because there is no need for length scales to be determined algebraically from walldistances, this type of model may be used on unstructured grids.Other Turbulence ModelsIf the eddy viscosity hypothesis is no longer assumed to hold, then a Reynoldsstress model may be used. In this type of model, each component of the Reynoldsstress tensor is modelled by a separate transport equation. An example of this typeis given by Gibson and Launder in [48]. Although mathematically and physicallyrigorous, the complexity of the extra equations has led to this approach not usuallybeing used in practice.Another technique used is that of large-eddy simulation. Here, the large scalesof motion are computed accurately, while the smaller scale motions occurring on asubgrid scale are modelled.The most computationally demanding approach is the direct numerical simula-tion involving the unsteady Navier-Stokes equations, so that no turbulence model

181is used. This requires a very �ne grid in order to resolve the turbulent uctuations,and is currently limited to very simple turbulent ows at low Reynolds numbers.8.2.3 Implementation IssuesIn practice, turbulent ows occur at high Reynolds numbers (i.e. Re > 105),and this will require modi�cations to the numerical scheme used to discretize theReynolds averaged Navier-Stokes equations. A discontinuity capturing term (suchas that included in the Galerkin least-squares method of Hughes and Mallet [71])needs to be added so that the solver will converge at these high Reynolds numbers.If we are to incorporate a turbulence model into the method outlined in previouschapters, then it must be one that is suitable for use on unstructured meshes.This excludes the algebraic models (unless the approach of Mavriplis [93] where abackground structured mesh is used), and some of the one-equation models. It isalso important that the mesh is su�ciently �ne, especially near the body surfaceto allow the turbulence model to resolve the eddy viscosity correctly. One-equationmodels such as Baldwin-Barth or Spalart-Almaras generally require fewer elementsnear the wall than many of the K � � models.Whichever model is used, there is choice of whether to couple the averagedNavier-Stokes equations with the model equation(s) or solve them as two separatesets of equations. Jansen et al. [75] take the former approach, which is less likely tocause numerical di�culties during convergence, but is more complicated to imple-ment. In either case the numerical scheme used to solve the turbulence equationsneeds to be chosen with care, so as to avoid negative values of the eddy viscosity.If adaptive methods such as hr-re�nement are to be used, then consideration needsto be given as to whether the error indicator should be changed in any way. Useof the node movement algorithm requires that any wall distances being stored mayneed to be changed accordingly.Turbulence models are notoriously di�cult to implement correctly, and we haveattempted to discuss the most common types that are used and some of the di�-culties from a practical point of view. However the inclusion of turbulence modelswithin compressible ow solvers is essential for simulating realistic ows aroundmany practical aerodynamic con�gurations.

1828.3 r-Re�nement for Time-Dependent ProblemsA method for solving transient problems, where time-accuracy is important, wasdemonstrated in chapter 7. We also implemented h-re�nement for such problems,which used both re�nement and dere�nement of the mesh to add and subtractnodes as the solution changed over time. We consider in this section some possibleissues which might arise if node movement (r-re�nement) were to be used as analternative or addition to h-re�nement.8.3.1 r-Re�nement OnlyThe inclusion of the mesh relocation algorithm into the time-accurate solver (whichin chapter 7 was based upon the software package SPRINT [13]) is straightforwardin principle. The node update routine would be called at the end of each time-step(or after every n steps for some n). One problem with using h-re�nement, discussedin detail in x7.5, is the drop in the size of the time-step which occurs immediatelyafter re�nement. This may also occur when the nodes are relocated, although apossible solution would be to interpolate (perhaps using a better interpolant thanlinear) the solution values at the new node positions.When using r-re�nement only for solving steady problems, a number of di�cul-ties were noted (see x6.4), and these could apply equally to unsteady problems. Forexample the large variation in element size on meshes around aerofoils appeared tocause distorted elements in regions where they were not required.For simplicity, we treated nodes which lie on boundaries as stationary (i.e. theirpositions were not changed by the node updating step) when considering steadyows, but movement along the boundaries would probably have to be introducedin the case of time-dependent ows, in order to follow any non-stationary featuresnear the boundaries.The error indicator which determines where re�nement should take place is usedfor both node movement and node addition/removal, and is based upon the currenttime-dependent solution. Hence the re�ned mesh often lags slightly behind thenewly computed solution, so that for example in a ow where there is a sharp frontmoving across the domain, the most heavily re�ned region of the mesh might bejust behind the front itself. In the case of h-re�nement this is compensated for byensuring that su�cient re�nement is carried out either side of the region where the

183error indicator is highest. This cannot be done in the same way when r-re�nementis being used by itself.The points discussed above suggest that, just as for steady ows, r-re�nementwould possibly not be very suitable as an adaptive technique on its own. We nowconsider whether a combined approach involving both h and r re�nement might betaken.8.3.2 hr-Re�nementAs results in chapter 6 indicate, the use of hr-re�nement for problems involvingsteady ows leads to an e�cient method for obtaining solutions. However there isan additional complication when solving for unsteady ows, because of the needto dere�ne elements. This is demonstrated in �gure 8.1, which shows a typicalsubdivision of an element into four, the subsequent repositioning of the nodes andthen the dere�nement of the parent element. This deformed element is no longertriangular, causing the �nite element solver to fail.
DerefinementNode movementRefinementFigure 8.1: h-re�nement{node movement{dere�nement leading to a deformed tri-angle.Hence we cannot use r-re�nement in the same way as for steady problems,and we need to modify the technique in some way. One idea is to restrict nodemovement to the coarse initial mesh, which will never be dere�ned. Access tothe coarse elements is available via the tree-like data structure being used, so thisapproach is relatively straightforward, but it is not clear how much e�ect this wouldhave on the mesh. A possible complication is that node tangling between originalnodes and new nodes might occur.Another way of allowing dere�nement is to recover the triangular shape of thedere�ned deformed element. This is more complicated to implement than the pre-vious suggestion, but would be more e�ective. At its simplest, a triangle could be

184recovered by forming the three edges between the element nodes, however situationsmight arise where this would lead to overlapping elements.Other aspects to consider even if dere�nement could be dealt with successfullyinclude the question of when to re�ne (for both h and r-re�nement) and how thesize of the time-step would behave following re�nement.If dere�nement could be made to work successfully when node movement isbeing used, then the advantages gained by using hr-re�nement for steady owswould be likely to follow for transient ows, although the reduction in time-stepsize might still be a problem to overcome.8.4 Solution of 3-D FlowIn this section we briey discuss how three-dimensional problems might be solvedusing the approach we have taken in this thesis. Although only two-dimensionalows have been considered, the extension to 3-d should, in principle, follow withoutany major di�culties.The Navier-Stokes equations in 3-d are very similar to the 2-d version, with theaddition of an extra momentum equation. The conservative formulation follows inan obvious way from the 2-d form given by equation (2.27). The primitive formu-lation (equations (2.8){(2.10)) is extended in a similar way, with a modi�cation tothe term F (ru):F (ru) = 43 h(@u@x)2 + (@v@y)2 + (@w@z)2i+ � @v@x + @u@y�2 + �@w@x + @u@z �2+ �@v@z + @w@y �2 � 43 �@u@x @v@y + @u@x @w@z + @v@y @w@z � : (8.27)where u = (u; v; w)T .In 2-d, we used triangles to form the unstructured meshes, so in 3-d, the ele-ments are tetrahedra, consisting of four triangular-shaped faces. The generationof 3-d meshes is clearly more complicated than the 2-d case, especially for com-plex geometries, although unstructured meshes make this task less di�cult than ifstructured grids were used.The modi�ed Galerkin least-squares �nite element method which we have usedas the discretization scheme follows directly from 2-d to 3-d. Integration is per-formed over element volumes rather than areas, but the assembly process works in

185exactly the same way. Discretization leads to a system of nonlinear algebraic equa-tions which can be solved using Newton's method with preconditioned GMRES asfor 2-d problems.So solution of 3-d ows on �xed meshes introduces few extra complications,except that the process is far more expensive, since many more nodes are requiredin 3-d than 2-d for a given resolution. This emphasises the need for some form ofadaptivity so that solution can made more e�cient.Both forms of adaptive re�nement discussed in chapters 5 (h-re�nement) and6 (r-re�nement) may be extended to 3-d. Node addition involves sub-division ofthe tetrahedra into eight smaller elements, with alternative types of sub-divisionused to avoid the appearance of hanging nodes at edge midpoints. In [114], Spearesand Berzins present an algorithm to carry out h-re�nement for 3-d problems usingthis approach. Node movement in 3-d should be very similar to the 2-d technique,though extra care may be needed to ensure that node tangling does not occur.In theory at least, the methods we have used in 2-d generally extend to 3-d, andthe bene�ts of adaptivity and unstructured meshes become more pronounced whensolving problems in three dimensions.

186
Chapter 9SummaryIn this thesis we have presented a set of methods for the e�cient solution of aparticular system of p.d.e.'s; the compressible Navier-Stokes equations. These havebeen combined in a numerical code which solves compressible ow problems at lowto moderate Reynolds numbers, with freestream Mach numbers in the range 0.5{3.The code consists of the following components.At the heart of the approach is a �nite element method which is stable andaccurate for ows which are dominated by convection terms. The scheme is basedupon the Galerkin least-squares method of Hughes [66], but simpli�ed so that itmay be applied to nonsymmetric formulations of the equations (such as a primitiveor conserved variable formulation). The discontinuity capturing term is omittedand a less complex parameter � (which controls the size of the least-squares term)is used. We also decouple the space and time discretizations, so that the temporalderivatives are dealt with separately (the method of lines approach). This allowsthe use of a backward Euler local time-stepping scheme to be used for solving steadyproblems, resulting in rapid convergence to steady state.The nonlinear solver used to solve the resulting algebraic equations is an inexactNewton method so that the linear system at each iteration is not always solvedexactly, but without a�ecting convergence at each time-step. The GMRES iterativesolver is used to solve the linear system, but a preconditioner (an incomplete LUfactorization) is required so that the memory requirements of GMRES are notexcessive and convergence may be accelerated. The formation of the Jacobianmatrix at each Newton step is carried out via assembly of approximate elementJacobians, thus achieving a decrease in CPU time (compared to other techniques)

187and avoiding the need to analytically code the derivatives (although this is alsodone for the purposes of comparison).On �xed, unstructured meshes, the above methods may be used to convergeto steady solutions quickly, for problems involving transonic ow and Reynoldsnumbers in the range 73{2000. Results for the test cases tried appear to lie withinthe range of results previously obtained [18], even when using the simpli�ed formof the least-squares parameter � (there seems to be little di�erence when a morecomplex form is implemented). In addition, provided the mesh is not too �ne, wecan solve the steady problem directly without time-stepping (i.e. in one nonlinearsolve). However to fully resolve ow features, such as shocks and wakes, a �nermesh is needed, which can be unnecessarily expensive if it is of uniform densitythroughout the entire domain.An e�cient means of solution is to use adaptivity. We make use of the stabilityof the Galerkin least-squares method to obtain solutions free of spurious oscillationson a coarse mesh and adapt this mesh accordingly. The mesh is re�ned dynamicallyduring solution so that the �nal mesh reects the particular ow being solved.We combine two types of re�nement, the �rst being addition of extra nodes(h-re�nement). An element error indicator based on the residual obtained frominserting the current solution into the original p.d.e.'s (though other indicators areconsidered) determines where extra nodes are to be added. This gives a form oferror control to the method, but, on its own, leads to meshes over-dependent onthe original coarse mesh structure and shape.The second form of re�nement is movement of existing nodes (r-re�nement).Each node is relocated to a new position based on an average of the neighbouringelements, weighted by the element error indicator. This does not appear to be verysuitable for problems we consider when used as the sole re�nement technique, butcomplements h-re�nement very well, as it removes the dependence of the �nal meshon the initial mesh. It also allows the stretching of elements in ow features suchas wakes, shocks and boundary layers. Currently the e�ect of this stretching islimited, though it may be possible to enhance this.The backward Euler time-stepping scheme which we use for steady problems isnot suitable for transient ows where time-accuracy is needed. Instead we need touse a more accurate o.d.e. solver to solve the semi-discretized system of equations.The adaptive methods also need modifying, as removal of nodes, as well as addition,

188is needed, and this prevents node movement from being carried out in the sameway as before. Investigation of this approach indicates that accurate interpolationis needed when computing nodal values on re�ned meshes, in order to avoid asharp fall the current time-step size, which is determined adaptively. However,an interpolant such as piecewise Hermite cubic approximation requires estimates ofpartial derivatives at nodes, and we are currently unable to �nd an accurate methodto do this on unstructured meshes. In the absence of a cheap, accurate interpolanton unstructured meshes, we conclude that the method of lines might not be thebest approach for this type of problem.We have used the methods outlined above for relatively simple ows (i.e. laminartwo-dimensional ow around aerofoils) to obtain results e�ciently. It is expectedthat these techniques, suitably modi�ed, should be equally applicable to more real-istic problems, such as those involving turbulence or three dimensional geometries.

189
Bibliography[1] J.D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill, 1984.[2] W.E. Arnoldi. The principle of minimized iteration in the solution of thematrix eigenvalue problem. Quart. Appl. Math., 9:17{29, 1951.[3] O. Axelsson. Incomplete block matrix factorization preconditioning methods.The ultimate answer? J. Comput. Appl. Math., 12&13:3{18, 1985.[4] I. Babuska. The �nite element method with Lagrangian multipliers. Numer.Math., 20:179{192, 1973.[5] I. Babuska and W.C. Rheinboldt. A posteriori error estimates for the �nite el-ement method. International Journal for Numerical Methods in Engineering,12:1597{1615, 1978.[6] I. Babuska and W.C. Rheinboldt. Reliable error estimation and mesh adap-tion for the �nite element method. In Computational Methods in NonlinearMechanics, pages 67{108. North-Holland, New York, 1980.[7] M.J. Baines. Moving Finite Elements. Oxford University Press, 1994.[8] C. Baiocchi, F. Brezzi, and L.P. Franca. Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Computer Methods in Applied Mechanicsand Engineering, 105:125{141, 1993.[9] B.S. Baldwin and T.J. Barth. A one-equation turbulence transport model forhigh Reynolds number wall-bounded ows. Technical Report 91-0610, AIAA,1991.[10] B.S. Baldwin and H. Lomax. Thin-layer approximation and algebraic modelfor separated turbulent ows. 78-257, AIAA, 1978.

190[11] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the solutionof linear systems: building blocks for iterative methods. SIAM, 1993.[12] G.K. Batchelor. An Introduction to Fluid Mechanics. Cambridge, 1967.[13] M. Berzins and R.M. Furzeland. A user's manual for SPRINT - A versa-tile software package for solving systems of algebraic, ordinary and partialdi�erential equations: Part 1 - algebraic and ordinary di�erential equations.Technical Report TNER.85.058, Thornton Reserch Centre, Shell ResearchLimited, 1985.[14] M. Berzins and R.M. Furzeland. An adaptive theta method for the solutionof sti� and nonsti� di�erential equations. Applied Numerical Mathematics,9:1{19, 1992.[15] F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, and G. Roge. A relation-ship between stabilized �nite element methods and the Galerkin method withbubble functions. Computer Methods in Applied Mechanics and Engineering,96:117{129, 1992.[16] W.L. Briggs. A Multigrid Tutorial. SIAM, 1987.[17] M.O. Bristeau, R. Glowinski, L. Dutto, J. Periaux, and G. Roge. Compress-ible viscous ow calculations using compatible �nite element approximations.International Journal for Numerical Methods in Fluids, 11:719{749, 1990.[18] M.O. Bristeau, R. Glowinski, J. Periaux, and H. Viviand, editors. NumericalSimulation of Numerical Navier-Stokes Flows, A GAMM Workshop. Freidr.Vieweg and Sohn, Braunschweig/Weisbaden, 1987.[19] A.N. Brookes and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin meth-ods for advection-dominated ows. In Proceedings Third International Con-ference on Finite Element in Fluid Flows, Canada, 1980. Ban�.[20] P.N. Brown. A local convergence theory for combined inexact-Newton/�nitedi�erence projection methods. SIAM Journal of Numerical Analysis, 24:407{434, 1987.

191[21] P.N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systemsof equations. Technical report, Laurence Livermore National Laboratory,November 1987.[22] R.L. Burden and J.D. Faires. Numerical Analysis. Prindle, Weber andSchmidt, Boston, Mass., 4th edition, 1989.[23] G.D. Byrne and A.C. Hindmarsh. Sti� ODE solvers: A review of current andcoming attractions. Journal of Computational Physics, 70:1{62, 1987.[24] G.F. Carey. Derivative calculation from �nite element solutions. ComputerMethods in Applied Mechanics and Engineering, 35:1{14, 1982.[25] J.E. Carter. Numerical solutions of the Navier-Stokes equations for the su-personic laminar ow over a two-dimensional compression corner. TechnicalReport NASA TR R-385, NASA, July 1972.[26] CDR, Innovation Centre, University College Swansea. The Provison of anUnstructured Grid Capability for Modelling High Mach Number Flows. Issue1.0, December 1990.[27] T. Cebeci and P. Bradshaw. Momentum Transfer in Boundary Layers.McGraw-Hill, New York, 1977.[28] T. Cebeci and A.M.O. Smith. A �nite-di�erence method for calculating com-pressible laminar and turbulent boundary layers. Journal of Basic Engineer-ing, 92(3):523{535, 1970.[29] T.F. Chan, R. Glowinski, J. Periaux, and O.B. Widlund, editors. DomainDecomposition Methods. Proceedings of the Second International Symposiumon Domain Decomposition Methods. SIAM, 1989.[30] K.Y. Chien. Predictions of channel and boundary-layer ows with a low-Reynolds-number turbulence model. AIAA Journal, 20:33{38, 1982.[31] P. Concus, G. Golub, and G. Meurant. Block preconditioning for the conju-gate gradient method. SIAM Journal on Scienti�c and Statistical Computing,6:220{252, 1985.

192[32] G.R. Cowper. Gaussian quadrature formulae for triangles. InternationalJournal for Numerical Methods in Fluids, 7:405{408, 1973.[33] J.M. Coyle, J.E. Flaherty, and R. Ludwig. On the stability of mesh equidis-tribution strategies for time-dependent partial di�erential equations. Journalof Computational Physics, 62:26{39, 1986.[34] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods.SIAM Journal of Numerical Analysis, 19(2):400{408, 1982.[35] L. Demkowicz, J.T. Oden, and W. Rachowicz. A new �nite element methodfor solving compressible Navier-Stokes equations based on an operator split-ting method and h-p adaptivity. Computer Methods in Applied Mechanicsand Engineering, 84:275{326, 1990.[36] L. Demkowicz, J.T. Oden, W. Rachowicz, and O. Hardy. An h-p Taylor-Galerkin �nite element method for compressible Euler equations. ComputerMethods in Applied Mechanics and Engineering, 88:363{396, 1991.[37] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Op-timization and Nonlinear Equations. Prentice Hall, Englewood Cli�s, NJ,1983.[38] J. Donea. A Taylor-Galerkin method for convective-transport problems. In-ternational Journal for Numerical Methods in Engineering, 20:101{120, 1984.[39] I. Du�, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans-actions on Mathematical Software, 15:1{14, 1989.[40] L.C. Dutto. The e�ect of ordering on preconditioned GMRES algorithm forsolving the compressible Navier-Stokes equations. International Journal forNumerical Methods in Engineering, 36:457{497, 1993.[41] K. Erikkson and C. Johnson. Adaptive streamline di�usion �nite elementmethods for stationary convection-di�usion problems. Mathematics of com-putation, 60:167{188, 1993.[42] K. Eriksson and C. Johnson. An adaptive �nite element method for linearelliptic problems. Mathematics of Computation, 50:361{383, 1988.

193[43] K. Eriksson and C. Johnson. Adaptive �nite element methods for parabolicproblems. IV. nonlinear problems. SIAM Journal of Numerical Analysis, Toappear, 1995.[44] B. W. Char et al. MAPLE Reference Manual. WATCOM Publications Ltd.,Waterloo, Canada, 5th edition, 1988.[45] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual method fornon-Hermitian linear systems. Numerische Mathematik, 60:315{339, 1991.[46] R.J. Gelinas, S.K. Doss, and K. Miller. The moving �nite element method:applications to general partial di�erential equations with multiple large gra-dients. Journal of Computational Physics, 40(202-249), 1981.[47] A. George. Nested dissection of regular �nite element meshes. SIAM Journalof Numerical Analysis, 11:345{363, 1973.[48] M.M. Gibson and B.E. Launder. Ground e�ects on pressure uctuations inthe atmospheric boundary layer. Journal of Fluid Mechanics, 86:491{511,1978.[49] K. Godunov. Finite-di�erence method for numerical computation of discon-tinuous solutions of the equations of uid dynamics.Mat. Sbornik, 47:271{306,1959. (In Russian).[50] A.A. Goldstein. Constructive Real Analysis. Harper and Row, New York,1967.[51] G. Goodsell and J.R. Whiteman. Superconvergent recovered gradient func-tions. International Journal for Numerical Methods in Engineering, 27:469{481, 1989.[52] P.M. Gresho and R.L. Lee. Don't surpress the wiggles - they're telling yousomething! In T.J.R. Hughes, editor, Finite Element methods for ConvectionDominated Flows, AMD Vol. 34, pages 37{61, New York, 1979. ASME.[53] M.D. Gunzburger. Finite Elements for Viscous Incompressible Flows: a Guideto Theory, Practice and Algorithms. Academic Press, 1989.

194[54] I. Gustafsson. A class of �rst-order factorization methods. BIT, 18:142{156,1978.[55] I. Gustafsson and G. Lindskog. A preconditioning technique based on el-ement matrix factorizations. Computer Methods in Applied Mechanics andEngineering, 55:201{220, 1986.[56] P. Hansbo. Explicit streamline di�usion �nite element methods for the com-pressible Euler equations in conservation variables. Journal of ComputationalPhysics, 109(2):274{288, 1993.[57] P. Hansbo and C. Johnson. Adaptive streamline di�usion methods for com-pressible ow using conservation variables. Computer Methods in AppliedMechanics and Engineering, 87:267{280, 1991.[58] P. Hansbo and A. Szepessy. A velocity-pressure streamline di�usion �niteelement method for the incompressible Navier-Stokes equations. ComputerMethods in Applied Mechanics and Engineering, 84:175{192, 1990.[59] A. Harten. On the symmetric form of systems of conservation laws withentropy. Journal of Computational Physics, 49:151{164, 1983.[60] O. Hassan, K. Morgan, J. Peraire, E.J. Probert, and R.R. Thareja. Adaptiveunstructured mesh methods for steady viscous ow. Technical Report AIAA-91-1538-CP, AIAA, 1991.[61] G. Hauke and T.J.R. Hughes. A uni�ed approach to compressible and incom-pressible ows. Computer Methods in Applied Mechanics and Engineering,113:389{395, 1994.[62] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linearsystems. J. Res. Nat. Bur. Stand., 49:409{436, 1952.[63] J.O. Hinze. Turbulence: an Introduction to its Mechanism and Theory.McGraw-Hill, 1975.[64] M.E. Hubbard. Grid adaptation and multidimensional upwinding. Numericalanalysis report 8/94, Department of Mathematics, University of Reading,1994.

195[65] T.J.R. Hughes and A.N. Brooks. A multidimensional upwind scheme withno crosswind di�usion. In T.J.R. Hughes, editor, Finite Element Methods forConvection Dominated Flows, AMD Vol. 34, pages 19{35. ASME, New York,1979.[66] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new �nite element for-mulation for computational uid dynamics: VIII. The Galerkin/least-squaresmethod for advective di�usive equations. Computer Methods in Applied Me-chanics and Engineering, 73:173{189, 1989.[67] T.J.R. Hughes, L.P. Franca, and M. Mallet. A new �nite element formulationfor computational uid dynamics: I. Symmetric forms of the compressibleEuler and Navier-stokes equations and the second law of thermodynamics.Computer Methods in Applied Mechanics and Engineering, 54:223{234, 1986.[68] T.J.R. Hughes, L.P. Franca, and M. Mallet. A new �nite element formulationfor computational uid dynamics: VI. Convergence analysis of the generalizedSUPG formulation for linear time dependent multi-dimensional advective-di�usive systems. Computer Methods in Applied Mechanics and Engineering,63:97{112, 1987.[69] T.J.R. Hughes, I. Levit, and J. Winget. An element-by element solutionalgorithm for problems of structural and solid mechanics. Computer Methodsin Applied Mechanics and Engineering, 36:241{254, 1983.[70] T.J.R. Hughes and M. Mallet. A new �nite element formulation for compu-tational uid dynamics: III. The generalized streamline operator for multi-dimensional advective-di�usive systems. Computer Methods in Applied Me-chanics and Engineering, 58:305{328, 1986.[71] T.J.R. Hughes and M. Mallet. A new �nite element formulation for computa-tional uid dynamics: IV. A discontinuity-capturing operator for multidimen-sional advective-di�usive systems. Computer Methods in Applied Mechanicsand Engineering, 58:329{336, 1986.[72] B. Irons. A frontal solution program for �nite element analysis. InternationalJournal for Numerical Methods in Engineering, 2(5-32), 1970.

196[73] A. Jameson and D. Mavriplis. Finite volume solution of the two-dimensionalEuler equations on a regular triangular mesh. AIAA Journal, 24(4):611{618,1986.[74] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler equa-tions by �nite volume methods using Runge-Kutta time-stepping schemes.Technical Report 81-1259, AIAA, 1981.[75] K. Jansen, Z. Johan, and T.J.R. Hughes. Implementation of a one-equationturbulence model within a stabilized �nite element formulation of a symmet-ric advective-di�usive system. Computer Methods in Applied Mechanics andEngineering, 105:405{433, 1993.[76] P.K. Jimack. Adaptive error control in the �nite element method for time-dependent problems. Technical Report 92.11, School of Computer Studies,University of Leeds, 1992.[77] C. Johnson. Numerical Solutions of Partial Di�erential Equations by theFinite Element Method. Cambridge University Press, 1987.[78] C. Johnson, U. Navert, and J. Pitkaranta. Finite element methods for linearhyperbolic problems. Computer Methods in Applied Mechanics and Engineer-ing, 45:285{312, 1984.[79] C. Johnson and J. Saranen. Streamline di�usion methods for problems inuid mechanics. Mathematics of Computation, 47:1{18, 1986.[80] C. Johnson and A. Szepessy. Adaptive �nite elementmethods for conservationlaws based on a posteriori error estimates. Communications on Pure andApplied Mathematics, XLVIII(3):199{234, 1995.[81] C. Johnson, A. Szepessy, and P. Hansbo. On the convergence of shock cap-turing streamline di�usion �nite element methods for hyperbolic conservationlaws. Mathematics of Computation, 54:107{129, 1990.[82] D.A. Johnson and J.S. King. A mathematically simple turbulence closuremodel for attached and separated turbulent boundary layers. AIAA Journal,23(11):1684{1692, 1985.

197[83] I.W. Johnson, A.J. Wathan, and M.J. Baines. Moving �nite element meth-ods for evolutionary problems . II. applications. Journal of ComputationalPhysics, 79:270{297, 1988.[84] W.P. Jones and B.E. Launder. The prediction of laminarization with a 2-equation model of turbulence. International Journal of Heat and Mass Trans-fer, 15:301{314, 1972.[85] M. Krizek. Superconvergence phenomena in the �nite element method. Com-puter Methods in Applied Mechanics and Engineering, 116:157{163, 1994.[86] J.D. Lambert. Numerical Methods for Ordinary Di�erential Systems. Wiley,Chichester, 1991.[87] P. Lancaster and K. Salkauskas. Curve and Surface Fitting - An Introduction.Academic Press, 1986.[88] C. Lanczos. Solutions of systems of linear equations by minimized iterations.J. Res. Natl. Bur. Stand., 49:33{53, 1952.[89] R. Lohner. An adaptive �nite element scheme for transient problems in CFD.Computer Methods in Applied Mechanics and Engineering, 61:323{338, 1987.[90] R. Lohner, K. Morgan, and O.C. Zienkiewicz. Adaptive grid re�nement forthe compressible Euler equations. In I. Babuska, editor, Accuracy estimatesand adaptive re�nements in �nite element computations, chapter 15, pages281{297. John Wiley, 1986.[91] B.J. Lucier. A moving mesh numerical method for hyperbolic conservationlaws. Mathematics of Computation, 46(173):59{69, 1986.[92] D.J. Mavriplis. Multigrid solution of the two-dimensional Euler equations onunstructured triangular meshes. AIAA Journal, 26(7):824{831, 1988.[93] D.J. Mavriplis. Turbulent ow calculations using unstructured and adaptivemeshes. International Journal for Numerical Methods in Fluids, 13:1131{1152, 1991.

198[94] J.A. Meijerink and H.A. van der Vorst. An iterative solution method for linearsystems of which the coe�cient matrix is a symmetricM-matrix.Mathematicsof Computation, 31(137):148{162, 1977.[95] J.A. Meijerink and H.A. van der Vorst. Guidelines for the usage of incompletedecompositions in solving sets of linear equations as they occur in practicalproblems. Journal of Computational Physics, 44:134{155, 1981.[96] K. Miller. Recent results on �nite element methods with moving nodes. InI. Babuska, editor, Accuracy estimates and adaptive re�nements in �nite ele-ment computations, chapter 18, pages 325{338. John Wiley, 1986.[97] K. Miller and R.N. Miller. Moving �nite elements. I. SIAM Journal of Nu-merical Analysis, 18(6):1019{1032, 1981.[98] A.R. Mitchell and R. Wait. The Finite Element Method in Partial Di�erentialEquations. Wiley, 1977.[99] R.A. Mitcheltree, M.D. Salas, and H.A. Hassan. One-equation turbulencemodel for transonic airfoil ows. AIAA Journal, 28(9):1625{1632, 1990.[100] J.T. Oden, T. Strouboulis, and P.H. Devloo. Adaptive �nite elements forhigh-speed compressible ow. International Journal for Numerical Methodsin Fluids, 7:1211{1228, 1987.[101] M.E. O'Neill and F. Chorlton. Viscous and Compressible Fluid Mechanics.Ellis Horwood, 1989.[102] R. Peyret and T.D. Taylor. Computational Methods for Fluid Flow. Springer-Verlag, 1983.[103] P.L. Roe. Approximate Riemann solvers, parameter vectors and di�erenceschemes. Journal of Computational Physics, 43:357{372, 1981.[104] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithmfor solving nonsymmetric linear systems. SIAM Journal of Scienti�c andStatistical Computing, 7(3):856{869, 1986.[105] M. Seager. A SLAP for the masses. Technical Report UCRL-100267, LawrenceLivermore National Laboratory, December 1988.

199[106] F. Shakib and T.J.R. Hughes. A new �nite element formulation for compu-tational uid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Computer Methods in Applied Mechanics and Engineer-ing, 87:35{58, 1991.[107] F. Shakib, T.J.R. Hughes, and Z. Johan. A multi-element group precondi-tioned GMRES algorithm for nonsymmetric systems arising in �nite elementanalysis. Computer Methods in Applied Mechanics and Engineering, 75:415{456, 1989.[108] F. Shakib, T.J.R. Hughes, and Z. Johan. A new �nite element formulationfor computational uid dynamics: X. The compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,89:141{219, 1991.[109] G.D. Smith. Numerical Solution of Partial Di�erential Equations: FiniteDi�erence Methods. Oxford, 1985.[110] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear sys-tems. SIAM Journal of Scienti�c and Statistical Computing, 10:36{52, 1989.[111] A. Soulaimani and M. Fortin. Finite element solution of compressible viscousows using conservative variables. Computer Methods in Applied Mechanicsand Engineering, 118:319{350, 1994.[112] Sowerby Research Centre. User Guide for the Scienti�c Visualisation PackageViz, April 1993.[113] P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for aero-dynamic ows. 92-0439, AIAA, 1992.[114] W. Speares and M. Berzins. A 3D unstructured mesh adaptation algorithm fortime dependent shock dominated problems. Technical Report Report 95.33,School of Computer Studies, University of Leeds, 1995.[115] W.G. Strang and G.J. Fix. An Analysis of the Finite Element Method.Prentice-Hall, 1973.

200[116] T. Strouboulis and J.T. Oden. A posteriori error estimates of �nite elementapproximations in uid mechanics. Computer Methods in Applied Mechanicsand Engineering, 78:201{247, 1990.[117] W.W. Tworzydlo, J.T. Oden, and E.A. Thornton. Adaptive implicit/explicit�nite element methods for compressible viscous ows. Computer Methods inMechanics and Engineering, 95:397{440, 1992.[118] H.A. van der Vorst. Iterative solution methods for certain sparse linear sys-tems with a non-symmetric matrix arising from PDE-problems. Journal ofComputational Physics, 44:1{19, 1981.[119] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variantof Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal ofScienti�c and Statistical Computing, 13:631{644, 1992.[120] M.B. van Gijzen. An analysis of element-by-element preconditioners for non-symmetric problems. Computer Methods in Applied Mechanics and Engineer-ing, 105:23{40, 1993.[121] R. Varga. Matrix Iterative Analysis. Prentice-Hall Inc, Englewood Cli�s, NJ,1962.[122] V. Venkatakrishnan and D.J. Mavriplis. Implicit solvers for unstructuredmeshes. Journal of Computational Physics, 105:83{91, 1993.[123] J.M. Ware. The Adaptive Solution of Time-Dependent Partial Di�erentialEquations in Two Space Dimensions. PhD thesis, School of Computer Studies,University of Leeds, 1993.[124] A.J. Wathen. An analysis of some element-by-element techniques. ComputerMethods in Applied Mechanics and Engineering, 74:271{287, 1989.[125] N.P. Weatherill. Grid generation: Structured, unstructured or both? InP.Stow, editor, Computational Methods in Aeronautical Fluid Dynamics. Ox-ford Science Publications, 1990.[126] N.P.Weatherill and M.J. Marchant. A streamline based approach to the adap-tation of unstructured grids for viscous ow simulation. In ICFD Conferenceon Numerical Methods for Fluid Dynamics, 1995.

201[127] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.Addison-Wesley, 2nd edition, 1991.[128] M. Wolfshtein. The velocity and temperature distribution in one-dimensionalow with turbulence augmentation and pressure gradient. International Jour-nal of Heat and Mass Transfer, 12:301{312, 1969.[129] P. Zegeling. Moving Grid methods for time-dependent partial di�erential equa-tions. PhD thesis, University of Amsterdam, 1992.

