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“Do not believe anything merely on the authority of your teachers and elders. Do

not believe in traditions because they have been handed down for many generations.

But after observation and analysis, when you find that anything agrees with reason

and is conducive to the good and benefit of one and all, then accept it and live up to

it.”

Gautama Buddha

Kalama Sutta, c. 500 BC.
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Abstract

Terahertz quantum cascade lasers (THz QCLs) have many potential applications,

including detection of skin tumours, and of illicit drugs and explosives. To date,

all THz QCLs use III–V compound semiconductors, but silicon (Si)-based devices

could offer significant benefits. The high thermal conductivity of Si may allow higher

operating temperatures, removing the need for large and costly cryogenic coolers,

and the non-polar nature of Si may allow a wider range of emission frequencies. The

mature Si processing technology may reduce fabrication costs and ultimately allow

integration of THz QCLs with mainstream semiconductor electronics.

This work investigates the suitability of a range of Si-based material configu-

rations for THz QCL design. An effective mass/envelope function model of the

electronic bandstructure is developed, taking into account the effects of strain and

crystal orientation. Scattering models for Coulombic interactions, structural imper-

fections and interactions with phonons (lattice vibrations) are developed and used

to predict the electron distribution, current density and gain in a range of device

designs. The effect of nonabrupt interface geometries is investigated and the effect

of intervalley mixing upon the emission spectrum is considered. It is shown that

germanium/germanium–silicon heterostructures offer much better prospects for THz

QCL development than silicon/silicon–germanium systems and can yield sufficient

optical gain to overcome the threshold for copper–copper waveguides.
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• * A. Valavanis, Z. Ikonić, and R. W. Kelsall, “Growth variation effects in

SiGe-based quantum cascade lasers,” J. Opt. A, vol. 11, no. 5, p. 054012, 2009
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Û Valley splitting potential

Vv Energy splitting between conduction band valleys

Vb Conduction band offset

Vcrystal Potential due to crystal

VF Potential due to internal/external electric fields

Vrange Usable range of energies in quantum well

Scattering parameters

A Cross-sectional area

∆,Λ Interface roughness height, correlation length

∆Vad Alloy disorder potential

Fij , Bif Interface roughness scattering matrix element

q = (q, θq) Scattering vector (magnitude, angle)

τ Lifetime

V̂ , Vij Perturbation potential, matrix element

Wij , Wij→fg Scattering rate

Ω Volume containing single lattice site



xix

Coulombic scattering

Aij→fg Electron-electron scattering matrix element

Iif Coulombic scattering matrix element

Jif Ionised impurity scattering matrix element

kF Fermi wavevector

Πii Polarisation factor

qTF Thomas-Fermi screening vector

Phonon scattering

∆ac Acoustic phonon deformation potential

D0, D1 Optical phonon deformation potential

Fif , Gif , Hif Phonon scattering matrix elements

fMB, Nq Maxwell-Boltzmann occupation factor

ndest Number of destination valleys

ωq Phonon angular frequency



xx

Gain and current density

αm, αw Mirror/waveguide loss

fij Oscillator strength

γij Half-width at half maximum (linewidth)

g Gain coefficient

G Gain

Gth Threshold gain

Γ Modal overlap factor

J Current density

λ Wavelength

Lij Lineshape (Lorentzian)

µg Gain figure of merit

n Refractive index

R Facet reflectivity

σ Optical cross-section



Contents

Acknowledgements v

List of publications ix

List of abbreviations xiii

List of symbols xv

Contents xxi

1 Introduction 1

1.1 Interband semiconductor lasers . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum cascade lasers . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Terahertz radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Silicon lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Silicon–germanium band structure 13

2.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Bloch wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Brillouin zone for diamond structure crystals . . . . . . . . . 16

2.3 Bulk Si and Ge bandstructure . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The valence band . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 The conduction band . . . . . . . . . . . . . . . . . . . . . . 19

xxi



xxii CONTENTS

2.4 Strain effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Bandstructure effects . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Usable energy range . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 (001) orientation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 (111) orientation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Heterostructures 33

3.1 Time-independent Schrödinger equation . . . . . . . . . . . . . . . . 33

3.1.1 Effective mass approximation . . . . . . . . . . . . . . . . . . 34

3.1.2 Two-dimensional approximation . . . . . . . . . . . . . . . . 37

3.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Finite difference solution . . . . . . . . . . . . . . . . . . . . . 42

3.2 Electric field effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Charge distribution . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Self-consistent solution . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Doping profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Valley splitting 53

4.1 Review of previous investigations . . . . . . . . . . . . . . . . . . . . 54

4.2 Double valley effective mass approximation . . . . . . . . . . . . . . 55

4.2.1 Empirical pseudopotential calculation . . . . . . . . . . . . . 56

4.3 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Finite square well . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Influence of in-plane wavevector . . . . . . . . . . . . . . . . 59

4.3.3 Graded barrier potential . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Double quantum well . . . . . . . . . . . . . . . . . . . . . . 62

4.3.5 Electric field effects . . . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS xxiii

4.3.6 Intersubband optical transitions . . . . . . . . . . . . . . . . 65

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Scattering mechanisms 69

5.1 Coherent and incoherent transport . . . . . . . . . . . . . . . . . . . 69

5.2 Fermi’s golden rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Static scattering potentials . . . . . . . . . . . . . . . . . . . 72

5.2.2 Time-varying scattering potentials . . . . . . . . . . . . . . . 74

5.2.3 Average scattering rate . . . . . . . . . . . . . . . . . . . . . 74

5.3 Coulombic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Ionised impurity scattering . . . . . . . . . . . . . . . . . . . 76

5.3.2 Electron–electron scattering . . . . . . . . . . . . . . . . . . . 81

5.4 Scattering from structural imperfections . . . . . . . . . . . . . . . . 86

5.4.1 Alloy disorder scattering . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Interface roughness scattering . . . . . . . . . . . . . . . . . . 90

5.5 Electron–phonon scattering . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Intravalley acoustic phonon scattering . . . . . . . . . . . . . 97

5.5.2 Optical and intervalley phonon scattering . . . . . . . . . . . 100

5.6 Total scattering rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.1 (001) Si/SiGe quantum wells . . . . . . . . . . . . . . . . . . 109

5.6.2 (111) Si/SiGe quantum wells . . . . . . . . . . . . . . . . . . 110

5.6.3 (001) Ge/GeSi quantum wells . . . . . . . . . . . . . . . . . . 111

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Crystal growth related issues 117

6.1 Strain balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Status of growth technology . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Virtual substrates . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Diffuse interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 Diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . 122



xxiv CONTENTS

6.3.2 Single quantum wells . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.3 Barrier degradation . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Transport and gain 137

7.1 Subband populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.1 Three-level approximation . . . . . . . . . . . . . . . . . . . . 139

7.2 Electron temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Current density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.1 Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.2 Gain coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.3 Threshold current density . . . . . . . . . . . . . . . . . . . . 148

7.4.4 Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 Example simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.1 Electron temperature . . . . . . . . . . . . . . . . . . . . . . 155

7.5.2 Current density . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.5.3 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 QCL design examples 165

8.1 Design schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 (001) Si/SiGe QCLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3 (111) Si/SiGe QCLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4 (001) Ge/GeSi QCLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.5 Electron temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9 Conclusion 187

9.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



Chapter 1

Introduction

This work discusses the theory and design of n-type silicon-based quantum cascade

lasers (QCLs) emitting terahertz (THz) frequency radiation. Numerous texts have

been written, describing all aspects of QCLs from the most fundamental underlying

quantum theory to their applications in commercial products. This introduction

provides an overview of the most relevant material, including the basic concepts

behind QCLs and the possible applications for THz radiation sources. This chap-

ter also explains the motivation behind the use of silicon-based materials. As a

prerequisite, it is assumed that the reader has some familiarity with semiconductor

electronics.

1.1 Interband semiconductor lasers

Light interacts strongly with electrons if the incident photon energy ~ω is close to

the separation between a pair of electron energy levels E21 = E2 − E1 as shown in

fig. 1.1. Either of the following processes can occur depending on the initial state

of the electron. If the electron is initially in the upper energy level [fig. 1.1(a)] then

stimulated emission occurs: the electron drops to the lower energy level and a new

photon is emitted with the same frequency, phase and direction of propagation as the

incident photon. Alternatively, if the electron is initially in the lower energy state

1



2 1.1. Interband semiconductor lasers

Figure 1.1: (a) Stimulated emission occurs when a photon interacts with an excited

electron. The electron drops to a lower energy level and a second photon is emitted in

phase coherence with the incident photon. (b) An electron can be excited to a higher

energy level by absorbing a photon of the appropriate energy.

[fig. 1.1(b)], it may absorb the incident photon and become excited to the upper

energy level. A system in thermal equilibrium has a larger number of electrons in

lower energy states than in higher energy states and absorption of photons occurs

more readily than emission. Light is, therefore, absorbed as it propagates through

the system.

A laser, however, is a non-equilibrium system in which electrons are pumped

(using an external light source or electrical current source) into higher energy states

to create a population inversion, where more electrons exist in the upper laser level

than in the lower laser level. As a result, stimulated emission occurs more readily

than absorption and light amplification (or optical gain) occurs as photons pass

through the device.

In conventional laser diodes [fig. 1.2(a)], the optical transition occurs across the

energy bandgap which separates the conduction and valence band states. This is

known as an interband transition and the emission energy of the device is approxi-

mately equal to the bandgap of the semiconductor.

Figure 1.2(b) shows a quantum well (QW) device structure, which offers signifi-

cant advantages over conventional bulk interband lasers. In QW lasers, a very thin

layer of semiconductor is “sandwiched” between two layers of a different semicon-
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Eg
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Ec1

Ec2

Ev2

Ev1

ℏ⍵ ℏ⍵
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Eg
ℏ⍵ ℏ⍵

Lw

Figure 1.2: (a) In a conventional interband laser, optical transitions occur between

the conduction and valence band edge and the emission energy is approximately equal

to the bandgap. (b) In a quantum well laser, the optical transition occurs between

conduction and valence subbands and the emission energy is greater than the bandgap

of the well material.

ductor which trap electrons inside a potential well in the central layer. The QW is so

thin that electrons are subject to quantum confinement effects and may only occupy

a set of discrete energy subbands. If the confining potential is deep, the permitted

conduction band energies are approximately given by

Ec,n ≈ Ec +
~

2π2n2

2m∗
cLw

, (1.1)

and the valence band energies by

Ev,n ≈ Ev −
~

2π2n2

2m∗
vLw

, (1.2)

where m∗
c and m∗

v are the effective masses of electrons in the conduction and valence

band respectively, Lw is the width of the central layer of the QW, Ec and Ev are

the conduction and valence band edges. Ec,n and Ev,n are the quantised sets of

conduction and valence subband minima. The emission energy between the first

conduction subband and the first valence subband is now given by

~ω ≈ Eg +
~

2π2

2Lw

(

1

m∗
c

+
1

m∗
v

)

. (1.3)



4 1.2. Quantum cascade lasers

Figure 1.3: Schematic representation of optical amplification in a biased superlattice.

The thick black line represents the conduction band edge in a periodic heterostructure.

The electron undergoes an optical transition in each quantum well and tunnels through

to the next well.

Thus, the emission energy may be increased by reducing the thickness of the QW.

The bandgap is of fundamental importance in determining the emission fre-

quency of interband devices. Although shorter wavelengths can be achieved by

reducing the well width of QW lasers, the low frequency limit is always determined

by the bandgap. This presents a problem, as the most commonly used optoelec-

tronic semiconductors (GaAs and InP based materials) cannot emit below near-

infrared frequencies. Mid-infrared frequencies are accessible using more exotic lead

salt compounds[22], but these materials may be expensive, difficult to process and

poorly understood[23].

1.2 Quantum cascade lasers

The low energy limit may be overcome by designing structures which exploit tran-

sitions between pairs of conduction subbands rather than transitions across the

bandgap. These intersubband transitions allow much lower emission frequencies

than those achievable in interband lasers. In 1971, Kazarinov and Suris[24] pro-

posed that a population inversion, and hence light amplification, could be achieved
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Figure 1.4: Generalised schematic of a quantum cascade laser. All energy levels in

the figure lie within the conduction band.

from a long chain of coupled QWs (a superlattice) placed in an electric field as il-

lustrated in fig. 1.3. The principle behind such a device is that electrons transition

from a state in one QW to a state in the next, cascading “downstream” with the

electric field and emitting a photon at each stage. However, lasing was not achieved

experimentally due to formation of non-uniform electric fields and the inability to

establish a stable current through the device. Optical emission was also hindered

by the emission of LO-phonons (lattice vibrations)[25].

Despite these early setbacks, optical amplification from a biased superlattice has

become the operating principle for quantum cascade lasers (QCLs), illustrated in

fig. 1.4. QCLs build upon the biased superlattice concept by using several coupled

QWs of varying width in each period of the structure, rather than a single quantum

well. Each period is split into an active region and an injector/extractor region. The

optical transition occurs between a pair of energy levels in the active region. The

purpose of the injector/extractor region is to efficiently extract electrons from the

lower laser level in one period and inject electrons into the upper laser level of the

next period downstream.

In 1994, a group at Bell Labs demonstrated the first QCL[26], using a

GaInAs/AlInAs heterostructure on an InP substrate. The injector/extractor region

was designed to efficiently draw electrons from the lower laser level by exploiting

rapid LO-phonon scattering—the same effect which proved detrimental in biased

superlattices. Within a year of their invention, continuous wave emission[27] had
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been demonstrated. Soon afterwards, in 1996, Faist et al reported the first room

temperature operation of a mid-infrared QCL[28].

An alternative “bound–to–continuum” QCL design was first demonstrated in

1997, which uses a superlattice as its injector/extractor region[29]. Here, the rapid

scattering within a superlattice is used to establish a population inversion. This

type of device was found to be well suited to long emission wavelengths and has the

ability to handle larger operating currents. In 1998, the first GaAs/AlGaAs based

QCL was developed[30], showing that QCLs may be constructed in more than one

material system. Indeed, the longest wavelength mid-infrared emission from a QCL

(λ = 15µm) was obtained from a GaAs/AlGaAs device[31]. However, InP-based

devices have several advantages over GaAs-based devices at mid-infrared frequen-

cies. The larger conduction band offset reduces leakage currents in short wavelength

devices, allowing emission at wavelengths as short as 3µm[32]. The higher ther-

mal conductivity of InP allows heat to be removed effectively from the active region

and mid-infrared high-intensity (204 mW), continuous-wave optical output is achiev-

able at room temperature[33]. By contrast, the best room-temperature GaAs-based

mid-infrared QCLs only yield around 50 mW pulsed-mode emission[34]. The shortest

emission wavelengths have been achieved by using InAs/AlSb heterostructures upon

InP substrates. The large conduction band offset (∼ 2.1 eV) has allowed emission

wavelengths as short as 2.75µm to be realised[35].

1.3 Terahertz radiation

The terahertz frequency range usually refers to the part of the electromagnetic spec-

trum with frequencies between 300 GHz and 10 THz. Terahertz radiation interacts

strongly with a number of physical systems including small molecules such as wa-

ter, and electronic transitions in semiconductors, making it useful in a variety of

applications[36]. Terahertz features in the spectra of thermal emissions from stellar

dust clouds have proved useful in the search for extrasolar planets[37]. Terahertz
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spectroscopy is also developing rapidly with applications such as electron mobility

measurements in semiconductors and dielectrics[38] and carrier lifetime measure-

ments in heterostructures[39]. Terahertz imaging has been used to investigate early

detection of skin tumours[40] and systems have been developed to test the manu-

facturing quality of pill coatings and to detect concealed weapons[41].

In order to realise the full potential of these applications, a compact, coherent,

continuous-wave radiation source is required. However, a so-called “terahertz gap”

exists in the technology. Electronic sources, such as Gunn oscillators and Schottky

diode multipliers work well at radio or microwave frequencies but their power output

rolls off at higher frequencies due to the nonzero carrier transit times and the capac-

itance of the devices[42, 43]. On the other hand, conventional semiconductor lasers

are restricted to high frequency emission by the material bandgap, as described in

the preceding sections.

Early methods of bridging the terahertz gap included broadband sources such

as photoconductive antennas[44]. Subpicosecond laser pulses are used to excite

electron–hole pairs within the photoconductor, which are excited by an applied elec-

tric field. The resulting transient currents give rise to broadband radiation around

the terahertz region. An alternative nonlinear optics approach, using optical rec-

tifiers (also driven by ultrafast laser pulses) gives relatively low output powers but

very high bandwidths[45]. High-powered, tunable narrowband sources are extremely

important for spectroscopy[46]. A common approach to narrowband emission in-

volves frequency upconversion of microwave sources using chains of Schottky diode

multipliers[47]. High-powered coherent narrowband emission can be achieved with

methanol or hydrogen cyanide lasers, however these are large devices, requiring

kilowatt power supplies[46]. Even higher emission powers are achievable using free-

electron lasers with energy-recovering linear accelerators. Electrons are accelerated

to a high velocity, before passing through a strong, spatially undulating magnetic

field. Light is emitted by the oscillating charge and confined by mirrors, resulting

in optical amplification and laser action[48].
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Compact, coherent terahertz emitters first became viable in 2002 with the first

demonstration of a THz QCL[49]. Although the performance of THz QCLs is not

yet at the same level as mid-infrared devices, significant advances have been made

in recent years. Devices are now capable of operating in ambient temperatures of

up to 186 K[50]. Output powers up to 248 mW (pulsed mode) and 138 mW (contin-

uous wave) are achievable[51], and devices have been demonstrated with emission

frequencies ranging from 1.2 THz[52] (or 950 GHz in a strong magnetic field[53]) up

to 4.9 THz[54]. Unlike mid-infrared devices, almost all THz QCLs have been based

upon GaAs, although an InP-based device has been demonstrated which operated

up to 45 K[55].

Despite the remarkable success with GaAs and InP based terahertz QCLs, there

are several serious limitations. Firstly, the maximum operating temperature re-

mains so low that large and expensive cryogenic cooling systems are required. This

severely limits the practicality of THz QCLs for any application requiring portability.

Secondly, light with a frequency close to the natural vibration frequencies (optical

phonon frequencies) of the crystal lattice is absorbed strongly by III–V materials

due to the polar nature of the chemical bonds. This leads to a forbidden Reststrahlen

band of optical energies, which lies between the mid-infrared and terahertz regions.

1.4 Silicon lasers

Silicon is the dominant material in the semiconductor industry. It has convenient

properties, such as the ability to form an electrically insulating SiO2 layer and the

enormous investment in Si technology has resulted in very large scale integration and

much lower device costs compared with other semiconductors[56]. Unfortunately,

Si is a poor material for constructing interband lasers due to its indirect bandgap

(fig. 1.5). This means that the electrons in Si must gain sufficient energy to populate

the higher energy Γ valley which lies directly above the valence band maximum

before light is emitted, which makes interband lasing almost impossible to achieve.
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Figure 1.5: Schematic illustration of direct and indirect bandgap materials. The

vertical axis represents the energy of the electron, while the horizontal axis represents

the wavevector. (a) In direct bandgap materials, the conduction band minimum and the

valence band maximum lie at the same wavevector and low energy electrons can undergo

optical transitions directly across the bandgap. (b) In indirect bandgap materials, the

conduction band minimum and valence band maximum lie at different wavevectors.

Electrons must gain enough energy to populate the much higher energy Γ valley, which

lies directly above the valence band maximum before undergoing a radiative transition.

Despite the challenges, Si-based lasers are extremely desirable[57]. A Si laser

could potentially be integrated with mainstream CMOS electronics to obtain a pho-

tonic integrated circuit [58, 59] allowing optical signals to be generated and controlled

on a single chip. Si has a higher thermal conductivity than compound semiconduc-

tors (1.3 W cm−1 K−1 in Si c.f. 0.55 W cm−1 K−1 in GaAs and 0.68 W cm−1 K−1

in InP[60]), which could allow heat to be dissipated more effectively from devices,

allowing higher temperature operation. Additionally, Si is a non-polar material,

meaning that there is no forbidden Reststrahlen band and potentially opening up a

wider range of emission energies. The absence of polar LO-phonon interactions in

silicon may also improve the population inversion achievable at high temperatures.

Several notable approaches have been taken towards a silicon laser. Phonon

assisted optical emission has been used to overcome the indirect bandgap limitia-

tion. In this process, the change in electron wavevector as it crosses the bandgap

is balanced by the emission of one or two phonons. Such interactions are normally
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weak, but structures have been demonstrated which enhance light–matter inter-

actions around the appropriate wavelength. Free-carrier absorption of photons is

minimised in such structures by using a very low doping density, and undesirable

nonradiative recombination processes are avoided by using exceptionally high quality

materials. Efficient Si-based LEDs have been developed using this principle[61].

An alternative approach involves the use of erbium doping in Si diodes. This

introduces extra energy levels in the depletion region, which allow a direct recombi-

nation with a wavelength of 1.54µm [62], making them suitable for fibre communi-

cations technology. LEDs[63] and optical amplifiers[64] have been developed based

on this principle.

Most other approaches rely on confining electrons in one or more dimensions

in order to change the energy band structure and thus relax the momentum con-

servation issues. Porous Si crystals have been used [65] to create quantum wires

and dots. Si nanocrystals may also be embedded in a layer of SiO2[66], and light

amplification has been demonstrated in such systems[67]. An alternative approach

uses small dislocations to confine carriers[68, 69].

A breakthrough in Si optoelectronics came in 2004 with the demonstration of

the first Si laser by Intel[70], which uses stimulated Raman scattering. Continuous

wave operation followed in 2005[71]. Recent research (also by Intel) has used a

ring resonator to increase the output power to 30 mW[72]. However, this approach

requires optical pumping from an external laser and to date, no electrically driven Si-

based lasers have been demonstrated. Additionally, all the devices described above

emit light around near-infrared wavelengths, and therefore leave the useful terahertz

region (described in the previous section) unexplored.

As the QCL does not employ interband transitions, the indirect bandgap of

silicon is not an issue for optical emissions. Indeed, research into Si-based QCLs has

already yielded very promising results. All experimental work to date has involved

intersubband transitions within the valence band of SiGe/Si heterostructures. Mid-

infrared electroluminescence from a p-type SiGe/Si quantum cascade structure was
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first observed in 2000[73], and terahertz emitting devices were first demonstrated

in 2002[74]. Investigations into the electronic behaviour of these structures have

been conducted,[75, 76], giving a greater understanding of the material systems.

However, the complexity of the valence band structure makes the design of p-type

SiGe/Si QCLs a complicated process and lasing has never been observed.

Initially, research into n-type QCL structures was dismissed as the large effective

mass of the Si conduction band requires the layers of semiconductor in the QCL to be

extremely thin and would be detrimental to the optical gain of the device. However,

the conduction band edge in silicon has an almost parabolic dispersion relation,

meaning that transition energies are almost independent of electron wavevector.

This could potentially give a lower spectral linewidth than p-type structures, and

hence greater peak gain. In fact, in recent years, attention has switched noticeably

toward n-type structures. A number of theoretical investigations have proposed

methods to overcome the issue of the large conduction band effective mass. An

approach developed by the author of the present work makes use of (111) oriented

Si/SiGe structures[3, 4], in which the conduction band effective mass is comparable

to the effective hole mass in p-SiGe/Si structures. Recently, structures using germa-

nium quantum wells with SiGe barriers upon Si substrates have gained attention.

The effective mass is roughly half that of holes in p-SiGe/Si structures and QCL

designs have been proposed for electrons either close to the Ge conduction band

edge[77–79] or in the higher energy Γ valley[80]. These theoretical investigations,

along with the advances in crystal growth technology (described in chapter 6), lay

the foundations for the development of the first silicon-based quantum cascade laser.

1.5 Thesis structure

The primary aim of this work is to investigate the suitability of SiGe-based het-

erostructures for THz QCLs. A secondary aim is to use the results of this inves-

tigation to develop promising preliminary device designs. Chapter 2 describes the



12 1.5. Thesis structure

energy bandstructure of SiGe thin films, taking into account the effects of strain

and crystal orientation and investigates whether sufficiently deep quantum wells are

achievable for THz QCL designs. Chapter 3 then describes the effective masses of

electrons in these alloy films and shows how energy subbands (and wavefunctions)

can be found in a heterostructure, taking the effect of a nonuniform space-charge

distribution into account. The effect of intervalley mixing (due to the complicated

structure of the conduction band in Si or Ge) upon the energy bandstructure is

considered in chapter 4.

In chapter 5, Fermi’s Golden Rule is used to model each of the significant scat-

tering mechanisms in SiGe-based heterostructures and scattering rates are deter-

mined for simple quantum well structures using a variety of material configurations.

Chapter 6 then describes practical issues concerning the growth of heterostructures,

including strain-balancing to ensure mechanical stability, and the effect of diffuse

interfaces upon the bandstructure and scattering rates. Chapter 7 shows how the

scattering rate equations may be used to find the energy distribution of electrons

and describes how gain and current density may be calculated for THz QCLs. In

chapter 8, a range of THz QCL designs are presented and simulated. The per-

formance of the devices is analysed, and related to the properties of the different

material configurations. Chapter 9 summarises the results of previous chapters and

presents proposals for further work.



Chapter 2

Silicon–germanium band

structure

Quantum wells (QW)s are very narrow regions of low potential surrounded by regions

of higher potential. QWs are the building blocks of quantum cascade lasers and in

this chapter it is shown that sufficiently deep QWs can be constructed from silicon–

germanium (SiGe) alloys.

Electrons in crystalline solids may only occupy states within certain bands of

energy. The lowest conduction band is the focus of the present investigation. The

conduction band energy varies with respect to wavevector, and most of the electron

population lies in a small number of “valleys” at the bottom of the band. The de-

pendence of the valley energies upon the amount of Ge in a SiGe alloy is investigated

in this chapter.

QWs may be constructed by sandwiching two different SiGe alloys together. The

difference in atomic spacing between Si and Ge crystals causes strain in the QW and

this shifts the energy of the valleys. Strain also leads to certain sets of valleys being

split in energy.

The usable range of energies within QWs is limited by two factors: the depth of

the QW itself, and the energy separation between sets of conduction band valleys.

13
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Figure 2.1: Diamond lattice structure. The lattice constant is marked as a in the

figure[81].

It is shown that the best energy range is obtained by using either (111) oriented Si

or (001) Ge as the well material.

2.1 General properties

Si and Ge atoms form a diamond lattice structure (fig. 2.1). This is a face-centred

cubic (FCC) structure with a diatomic basis and a single lattice constant a describes

its dimensions. Additional atoms are located at displacements of
(

a
4 ,

a
4 ,

a
4

)

from each

FCC atom, meaning that each unit lattice cell contains four atomic monolayers.

The model solid approximation[82] treats crystals of SiGe alloys as if they were
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Constant Si Ge Unit

a 0.54311 0.56331 nm

∆so 442 2963 meV

C11 165.7734 128.5284 GPa

C12 63.9244 48.2604 GPa

C44 79.6194 66.7994 GPa

(Ξd + 1
3Ξu − av)

∆ 1.725 1.315 eV

(Ξd + 1
3Ξu − av)

L -3.125 -2.785 eV

Ξ∆
u 9.165 9.425 eV

ΞL
u 16.145 15.135 eV

Table 2.1: Material parameters for Si and Ge.

made uniformly of virtual atoms with characteristics which can be interpolated

between those of Si and Ge, and the diamond lattice structure is therefore preserved.

Important material parameters for Si and Ge are given in table 2.1.

A lattice mismatch of around 4% exists between Si and Ge and the lattice con-

stants of relaxed Si1−xGex alloys are given by

a(x) = aSi(1 − x) + aGex− bbowx(1 − x). (2.1)

A bowing constant of bbow = 0.2733 pm[83] is included to account for

nonlinearity[88].

1Reference [83].
2Reference [84].
3Reference [85].
4Reference [86].
5Reference [87].
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2.2 Bloch wave model

The electric potential in a crystal is periodic in real space and Bloch’s theorem states

that the wavefunction for electrons is of the form

ψk′(R) = uk′(R)eik
′·R, (2.2)

where k′ is the Bloch wavevector. In other words, it is a plane wave modulated by a

Bloch function, uk′(R) which shares the same periodicity as the crystal lattice[89].

If the structure has a lattice vector a, then a reciprocal lattice vector Gn may

be defined such that Gn · a = 2πn. Any Bloch wavevector may then be written as

k′ = k + Gn, where k < π
a and n is an integer. The first Brillouin zone may be

defined as a primitive cell of the reciprocal lattice, and all unique solutions to the

Schrödinger equation may be mapped to bands of energies within this region.

The Bloch model is not strictly applicable to systems in an external electric field

as this breaks the periodicity of the crystal potential. In QCLs however, the electric

field introduces only a small shift in potential across a crystalline monolayer and it

is reasonable to assume that the Bloch model approximates the system well.

2.2.1 Brillouin zone for diamond structure crystals

The Brillouin zone for a diamond lattice is a truncated octahedron. A number

of important symmetry points and directions in the Brillouin zone are illustrated

in fig. 2.2. The most important symmetry points are labelled as Γ = (0, 0, 0),

X = 2π
a {1,0,0} and L = π

a{1,1,1}[90]. The X points are connected to Γ along the

∆ directions, while the L points are connected to Γ along the Λ directions.

2.3 Bulk Si and Ge bandstructure

The energy of electrons within a bulk semiconductor crystal may be calculated

as a function of wavevector using atomistic methods such as the pseudopotential
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Figure 2.2: Brillouin zone with symmetry points and directions shown.

model[92]. The energy of electrons is plotted along various directions in reciprocal

space in fig. 2.3.

The energy bands below the bandgap are referred to as valence bands. They are

derived from bonding configurations and are completely filled with electrons at a

temperature of 0 K. The bands above the bandgap, referred to as conduction bands,

are derived from anti-bonding configurations and are completely empty at 0 K.

In this section, the general structure of the valence and conduction bands is

discussed, and a “model solid” (or “virtual crystal”) approximation is used to give

a simple yet accurate description of the lowest conduction band energies.

2.3.1 The valence band

Under normal conditions (e.g. in doped semiconductors at finite temperatures) the

valence bands are highly occupied by electrons. Charge transport is therefore better

modelled by considering the relatively small number of unoccupied states or “holes”.

The valence band is split into light-hole (LH) and heavy-hole (HH) bands, which

are degenerate at Γ. A third, lower energy (SO) band is separated from the LH and
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Figure 2.3: Electronic band structure for bulk Si. Energies are shown as a function of

wavevector, along each of the significant directions in reciprocal space. Adapted from

ref. [91] after local pseudopotential data from ref. [92].
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HH bands at Γ by an energy ∆VSO due to spin-orbit splitting. It follows that the

valence band maximum is given by

Ebulk
v = Ev +

1

3
∆SO, (2.3)

where Ev is the average of the LH, HH and SO maxima.

Van de Walle showed that the difference between Ev in a pair of SiGe alloys is

almost independent of strain and crystal orientation, whereas the conduction band

minima are highly sensitive to these effects[87]. This quantity is therefore a useful

reference for investigating the locations of conduction band minima.

Rieger and Vogl determined an interpolation scheme for the average valence band

offset between a film of Si1−xGex and a substrate material[93],

∆Ev = (0.47 − 0.06xs)(x− xs), (2.4)

where xs is the Ge fraction in the substrate.

2.3.2 The conduction band

SiGe alloys are indirect band gap materials as the lowest conduction band minima

are located at different wavevectors from the valence band maximum. The range of

energies around a conduction band minimum is referred to as a valley and the loca-

tion of the lowest valleys depends upon the composition of the Si1−xGex alloy. For

Ge compositions below 85%, the lowest valleys exist in each of the six ∆-directions,

about 85% of the way toward the X-points[93]. For Ge compositions above 85%, the

lowest valleys are at the eight L-points. Each L-valley lies at the boundary between

neighbouring Brillouin zones, so only half of each valley can be attributed to each

zone.

The conduction band edge in an unstrained alloy is located by adding the indirect

bandgap of the material Eg to the valence band edge,

Ebulk
c = Ebulk

v + Eg. (2.5)
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To a good approximation, the bandgaps for the ∆ and L valleys in an unstrained

alloy are given (in eV) by[94]

E∆
g = 1.155 − 0.43x+ 0.0206x2 (2.6)

EL
g = 2.010 − 1.270x.

The model solid approximation has thus been used to calculate the energies of

the conduction band minima in an unstrained alloy relative to the average valence

band in a substrate material.

2.4 Strain effects

As shown in table 2.1, the lattice constant of Ge is around 4.2% greater than that

of Si. When a thin film of Si1−xGex is grown upon a thick Si1−xsGexs substrate,

the film deforms to match the lattice constant of the substrate along the interface.

If x < xs, the film exhibits in-plane tensile strain, whereas if x > xs the strain is

compressive.

This section details the calculation of strain in (001) and (111) orientated films.

It is shown that strain has a large effect upon the electronic behaviour of the het-

erostructure.

2.4.1 Strain tensors

The elements of a strain tensor ε give the expansion (or contraction) of the layer

in a given direction relative to its original size in another direction. The indices of

the tensor elements refer to orthogonal directions in the interface coordinate system

R = (x, y, z), where the z-direction is perpendicular to the interface.

As crystal growth is assumed to be isotropic over the xy plane, the in-plane

strain is given by[95]

ε11 = ε22 = ε‖ =
as − a

a
, (2.7)
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where a is the lattice constant of the unstrained layer and as is that of the substrate.

It is also assumed that stress on the film does not cause shearing or “kinks” either

in-plane or vertically, so all off-diagonal strain tensor elements are zero[96].

Hooke’s law relates stresses σ to strains via a rank four elastic constant tensor

c, where

σij =
3
∑

f,g=1

cijfgεfg. (2.8)

External stress exists only across the plane of the interface, so σ33 = 0 can be

substituted into equation 2.8 to obtain the strain perpendicular to the interface

ε33 = −c3311 + c3322
c3333

ε‖. (2.9)

The elastic constants in R are therefore required in this expression.

This introduces a problem, as the experimental values for lattice constants (ta-

ble 2.1) were obtained in a crystallographic coordinate system R′ = (x′, y′, z′), in

which the principal crystallographic axes are used. The shorthand Voigt notation

is used here, in which the first and second pairs of subscripts in c′ijfg are rewrit-

ten as single subscripts in a rank two tensor C such that {11, 22, 33, 23, 31, 12} →
{1, 2, 3, 4, 5, 6}[97].

It can be shown[97] that symmetry in cubic crystals greatly simplifies the C

matrix, such that only three independent elements exist

C =





























C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





























. (2.10)

In this work, SiGe heterostructures are considered in both the (001) and (111)

orientations. For the (111) orientation, the crystal lattice is misaligned with the

interface and hence R 6= R′. A transformation matrix U : R → R′ is therefore
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required[96, 98] to transform between the coordinate systems, such that

U =











cosα cosβ − sinα cosα sinβ

sinα cosβ cosα sinα sinβ

− sinβ 0 cosβ











, (2.11)

where the Euler angles (α, β) are defined as rotations clockwise around the z-axis

and the new y-axis respectively. For the (111) orientation, the Euler angles are

(α, β) = (45◦, 54.74◦). Substituting these values into the transformation matrix

gives

U
(111) =











1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

−
√

2
3 0 1√

3











. (2.12)

For completeness, it should be noted that U(001) = I3, (the third order identity

matrix). Due to the trivial nature of this transformation however, it is omitted in

the following derivation.

The elastic constants in the interface coordinate system may now be obtained

using the relation[96]

cαβγδ =
∑

ijkl

UiαUjβUkγUlδc
′
ijkl. (2.13)

Substituting these values into equation 2.9 yields the strain perpendicular to the

interface

ε
(001)
33 = −2C12

C11
ε‖ (2.14)

ε
(111)
33 = −2C11 + 4C12 − 4C44

C11 + 2C12 + 4C44
ε‖.

As with the elastic constants, experimental data for the electronic behaviour of

strained SiGe are known only in the crystallographic coordinate system. For (111)

oriented systems, it is therefore necessary to transform the strain tensor using the

relation[96]

ε′αβ =
∑

ij

UαiUβjεij . (2.15)
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The (001) strain tensor is unchanged, as both coordinate systems are identical.

However, the (111) strain tensor is transformed to

ε(111)
′

=











4C44 Cα Cα

Cα 4C44 Cα

Cα Cα 4C44











ε‖
Cβ

, (2.16)

where Cα = −(C11 + 2C12) and Cβ = C11 + 2C12 + 4C44.

2.4.2 Bandstructure effects

Having determined the strain tensors for thin films, it is now possible to return to the

model solid approximation, and calculate the effect on bandstructure. The shift in

energy for a given conduction band minimum k is related to strain by a deformation

potential tensor Ξ[96] such that

∆Ek
c =

∑

ij

Ξk
ijεij . (2.17)

In the ∆ and L valleys of cubic crystals, only two deformation potential tensor

elements are independent: Ξd, which relates to pure dilations and Ξu, which relates

to pure shears. It can be shown[96] that the total shift in band energy for a valley

aligned with the unit vector a is given by

∆Ek
c = Ξk

d Tr ε+ Ξk
ua

Tεa. (2.18)

This expression can be separated into two terms, one of which is common to all

valleys and represents the effect of hydrostatic strain[96]

∆Ek,Hyd
c =

(

Ξk
d +

1

3
Ξk

u

)

Tr ε, (2.19)

where the deformation potentials may be grouped into a single “hydrostatic defor-

mation potential” ak
c = Ξk

d + 1
3Ξk

u[99]. It is important to note that this deforma-

tion potential relates the strained conduction band potential to its unstrained value

rather than to the well-known valence band potential discussed previously. By using
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this expression directly, the relative potentials of the L and ∆ valleys are therefore

left unknown.

A better method therefore requires knowledge of the change in bandgap. This is

given by the difference between the shift in conduction and valence band potentials

∆Ek,Hyd
g = ∆Ek,Hyd

c −∆EHyd
v . Using a similar approach to that for the conduction

band, the valence band shift is given by

∆EHyd
v = av Tr ε, (2.20)

and hence the deformation potential for the bandgap is Ξk
d + 1

3Ξk
u − av. Theoretical

and experimental values for this deformation potential are given in table 2.1.

The second strain dependent term is specific to each valley and represents the

uniaxial strain effects. Due to symmetry, uniaxial strain effects are absent in the ∆

valleys in (111) oriented crystals and in L valleys in (001) oriented crystals. They

are significant, however, in ∆ valleys in the (001) orientation and result in the energy

shifts

∆E∆4,Uni
c =

1

3
Ξ∆

u (ε11 − ε33) (2.21)

∆E∆2,Uni
c =

2

3
Ξ∆

u (ε33 − ε11),

for the valleys with their major axes in the xy-plane and the z-direction respectively.

For L valleys in (111) oriented crystals, the energy shifts are given by

∆EL1,Uni
c = 2ΞL

uε12 (2.22)

∆EL3,Uni
c = −2

3
ΞL

uε12,

for the valley oriented in the (111) direction and the other three L valleys respec-

tively. The result of the uniaxial strain is therefore that the degeneracy of the valleys

is lifted (unless symmetry rules forbid this).

Having found the conduction band minima in a bulk alloy, and the strain depen-

dent energy shift, it is now possible to express the energy of the conduction band

minima in a strained film as

Ec = Ebulk
c + ∆EHyd

g + ∆EUni
c . (2.23)
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Figure 2.4: Schematic for calculation of conduction band offset in SiGe heterostruc-

tures. Adapted from image first published in ref. [3].

Fig. 2.4 summarises this calculation. First, the average valence band energy is

determined relative to that of the substrate as a reference. The highest valence band

is located one-third of the spin-orbit splitting above this energy in an unstrained

alloy. The bandgap is added to this to find the conduction band minima in the

bulk material. The hydrostatic strain effect on the bandgap is added to shift all

conduction band valleys identically. Finally, uniaxial strain effects are added (if

applicable) to lift the degeneracy between valleys.

2.5 Usable energy range

The previous section showed how the conduction band offset between a pair of alloys

may be determined and our attention may now turn to quantum wells constructed

from a “sandwich” of two different alloys. In this section, Si/Ge/Si and Ge/Si/Ge

QWs in the (001) and (111) orientations are investigated as possible components for

QCL design.

For this investigation, a “usable energy range” for QCL design is defined as
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Figure 2.5: Schematic representation of the usable range of energies in a (001) oriented

Si/SiGe QW (not to scale). The depth of the well is denoted Vb, while the separation

between conduction band valleys is denoted Vv.

the lowest range of energies containing bound states from a single set of conduction

band valleys. This definition of “usable” contains two criteria which are illustrated

in fig. 2.5 and may be explained as follows.

Firstly, bound states exist only within the range of energies Vb inside quantum

wells. This is given by the conduction band offset (for a given valley set) between the

barrier and the well materials. The lowest valley set contains most of the conduction

band electron density and is therefore considered the best candidate for QCL design

in the present work.

Secondly, optical emission is an intravalley process. To reduce competition from

nonradiative intervalley scattering processes (see chapter 5), the lowest conduction

band valley set must be separated by a large energy Vv from the second lowest set.

The usable range of energies is therefore determined by the more restrictive of

the two constraints

Vrange = min(Vb, Vv). (2.24)

However, the emission of photons and injection and extraction of electrons must all

take place within this range of energies in QCLs. Experiments have shown that this

limits the maximum photon energy ~ωmax to around half the confining potential[100],
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Figure 2.6: Energies of conduction band valleys in a (001) Si film as a function of

substrate Ge fraction.

giving ~ωmax ≈ min(Vb, Vv)/2.

2.5.1 (001) orientation

The conduction band minima for (001) oriented Si and Ge films upon substrates of

varying composition are shown in fig. 2.6 and fig. 2.7 respectively.

In Ge/Si/Ge QWs, electrons are confined within the central Si film. Fig. 2.6

shows that the ∆2 valleys are the lowest energy set in Si films. The confining

potential is given by the difference in ∆2 potential in the Ge and Si films

Vb = E∆2
Ge − E∆2

Si ≈ 0.66 − 0.07xs. (2.25)

The ∆4 valleys are second lowest in energy in the Si film, and their separation from

the ∆2 valleys is given by

Vv = E∆4
Si − E∆2

Si ≈ 0.6xs. (2.26)

The separation between the valleys is the dominant constraint for (001) oriented
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Figure 2.7: Energies of conduction band valleys in a (001) Ge film as a function of

substrate Ge fraction. Legend is identical to that in fig. 2.6

Ge/Si/Ge QWs when the substrate Ge fraction is lower than 50%. In chapter 6,

this is shown to be a realistic range for mechanically stable QCLs with Si well regions.

In the Ge films within (001) oriented Si/Ge/Si QWs, the L valleys are lowest

in energy if the substrate Ge fraction is greater than 50%. Again, this is a realistic

range for mechanically stable QCLs with Ge well regions. The confining potential

is given by the difference in L valley potential between the Si and Ge layers

Vb = EL
Si − EL

Ge ≈ 0.593 + 0.042xs. (2.27)

The ∆4 valleys are second lowest in energy in the Ge film, and their separation from

the L valleys is

Vv = E∆4
Ge − EL

Ge ≈ 0.379xs − 0.189. (2.28)

For realistic substrate alloys (xs > 50%) the valley separation provides the dominant

constraint.
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Figure 2.8: Energies of conduction band valleys in a (111) Si film as a function of

substrate Ge fraction.
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Figure 2.9: Energies of conduction band valleys in a (111) Ge film as a function of

substrate Ge fraction
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2.5.2 (111) orientation

The conduction band minima for (111) oriented Si and Ge films are shown in fig. 2.8

and fig. 2.9 respectively.

In (111) oriented Ge/Si/Ge QWs, the ∆ valleys remain degenerate and are lowest

in energy in the Si film. The confining potential is given by

Vb = E∆
Ge − E∆

Si ≈ 0.25 − 0.17xs. (2.29)

The L1 valley is second lowest in energy in the Si film and its separation from the

∆ valleys is

Vv = EL1
Si − E∆

Si ≈ 0.85 − 0.85xs. (2.30)

The confining potential provides the dominant constraint in this case.

Finally, in (111) oriented Si/Ge/Si wells, the L3 valleys are lowest in energy and

the band offset is given by

Vb = EL3
Si − EL3

Ge ≈ 0.72 + 0.068xs. (2.31)

The L1 valley is second lowest in energy in the Ge film (for realistic substrate

compositions of xs > 75%) and its separation from the L3 valleys is

Vv = EL1
Ge − EL3

Si ≈ 0.66 − 0.66xs. (2.32)

The dominant constraint is therefore due to the splitting between L valleys.

2.6 Conclusion

The energies of the conduction band valleys have been found in Si and Ge films,

accounting for strain and crystal orientation effects. The bottom of the conduction

band lies in the ∆ valleys in Si films, and in the L valleys in Ge. To avoid intervalley

scattering, the usable energies in a QW are limited to those between the lowest two

sets of conduction band valleys.
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Configuration Usable energy range [eV]

(001) Ge/Si/Ge 0.6xs

(001) Si/Ge/Si 0.379xs − 0.189

(111) Ge/Si/Ge 0.25 − 0.17xs

(111) Si/Ge/Si 0.66 − 0.66xs

Table 2.2: Maximum usable energy range within Si and Ge QWs in the (001) and

(111) orientations.

The range of usable energies for QCL design in each of the QW configurations

considered in this chapter is summarised in table 2.2. In each case, the usable energy

range depends upon the substrate Ge fraction, due to the effect of strain upon the

bandstructure.

In structures with a Si well region, a low substrate Ge fraction (xs ∼ 10%) is

required for mechanical stability (see chapter 6). For (001) oriented structures, a 10%

Ge substrate gives an energy range of only 60 meV and a maximum emission energy

of ~ωmax=30 meV. The usable energy range is much larger in the (111) orientation

and ~ωmax=117 meV.

In structures with a Ge well region, a high substrate Ge fraction (xs ∼ 90%) is

required. For (001) oriented structures, a 90% Ge fraction gives an energy range

of 152 meV and ~ωmax=75 meV. The energy range is much smaller in the (111)

orientation, where ~ωmax=33 meV.

It is important to note that these results give the maximum achievable band

offset, which correspond to Si wells with Ge barriers or vice versa. The growth

of such structures is likely to prove challenging as discussed in chapter 6, and in

practice a SiGe/Si/SiGe or GeSi/Ge/GeSi configuration is preferable. The conduc-

tion band offset in such structures will be reduced correspondingly. In summary,

the most promising results were predicted for (111) Si wells, with ~ωmax=117 meV

(29 THz, 10µm) or for (100) Ge wells, with ~ωmax=75 meV (19 THz, 16.5µm). This
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indicates that light emission throughout the mid-infrared and terahertz frequency

range should be possible with SiGe based QCLs.



Chapter 3

Heterostructures

The spatially varying potential in a QCL leads to quantum confinement of electrons,

meaning that they may only occupy certain permitted states. The electrons are

(nearly) free to move parallel to the interfaces in QCLs and it is shown in this

chapter that the permitted states are grouped into sets of energy subbands.

The total energy of the system is given by the Hamiltonian, which contains the

potential energy of the crystal, the kinetic energy of the electron and the effect

of electric fields. The internal electric fields due to uneven charge distribution are

included via a self–consistent solution of the Poisson and Schrödinger equations.

3.1 Time-independent Schrödinger equation

The time-independent Schrödinger equation may be written:

Ĥψn(R) = En,kψn(R) (3.1)

where ψn(R) is the wavefunction in three dimensions and En,k is the total energy

of the nth quantised state at a given wavevector. Ĥ is the Hamiltonian operator ,

which gives the total energy of the system and takes the form,

Ĥ = T̂ + Vcrystal + VF . (3.2)

33
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T̂ is the kinetic energy of an electron, Vcrystal is the potential due to the crystal

lattice and VF describes the effect of external and internal electric fields. The terms

in the Hamiltonian are discussed in more detail in the following sections.

The Hamiltonian above describes all the major effects upon the electron. Subtler

effects, such as interactions with charged particles, phonons and structural imper-

fections have a much weaker effect on the electron than the other terms[101]. They

are therefore omitted from solutions of Schrödinger’s equation and are treated as

scattering mechanisms in chapter 5 instead.

3.1.1 Effective mass approximation

The kinetic energy of a nonrelativistic particle in free space is given by

Ek(k) =
~

2k2

2m
, (3.3)

where k is its wavevector and m is its rest mass. This gives a parabolic dispersion

relation between wavevector and energy.

The dispersion in the Si or Ge conduction band is quite complex, with multiple

minima around the ∆ and L valleys, whose relative energies are strongly affected

by strain. However, atomistic simulations have shown that the dispersion is approx-

imately parabolic near to each conduction band minimum[97]. An effective mass

may be introduced into eqn. 3.3 to describe the dispersion in a particular direction

m∗
i = ~

2

[

∂2Ek(ki)

∂k2
i

]−1

, (3.4)

where ki is the component of the wavevector in the direction r̂i relative to the valley

minimum.

Due to its even symmetry, the polynomial expansion of the kinetic energy con-

tains only even terms, yielding

Ek(ki) ≈ a2k
2
i + a4k

4
i + a6k

6
i . . . , (3.5)

where am are constant coefficients. For small wavevectors, only the first term is

significant and the dispersion relation is analogous to that of a free electron. The
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Figure 3.1: Constant energy surfaces (not to scale) for conduction band valleys within

Brillouin zone. ∆ valleys are shown in green, L in red and Γ in blue. The surfaces are

plotted on axes within the crystallographic coordinate system. The purple disc is aligned

with the (001) plane in figure (a) and with the (111) plane in figure (b).

energy is

Ek(ki) ≈
~

2k2
i

2mi
. (3.6)

Thus, a different effective mass describes the dispersion in each direction.

In describing the three-dimensional dispersion relations for Si and Ge conduction

band valleys, it is helpful to define a valley coordinate system P = (xp, yp, zp), in

which xp is aligned with the major axis of the valley[102]. Equipotential surfaces of

the ∆ and L valleys are prolate spheroids[103] described as

Ek =
~

2

2

[

(kp
x)2

ml
+

(kp
y)2 + (kp

z)2

mt

]

, (3.7)

where ml and mt are the longitudinal and transverse effective masses respectively

and wavevectors are expressed relative to the valley minima. The equipotential

surfaces for each valley are shown in fig. 3.1.

The effective masses in Si and Ge have been found using experimental tech-

niques such as cyclotron resonance[103] and theoretical methods such as empirical

pseudopotential modelling[93]. Their values are stated in table 3.1.

Using a similar method to that described in section 2.4.1, Rahman et al [102]

showed that the effective mass may be translated to the interface coordinate system,

giving mx and my for dispersion parallel to the interfaces and mz perpendicular to
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Material Valley ml mt

Si ∆ 0.911 0.192

L 1.73 0.123

Ge ∆ 0.953 0.23

L 1.644 0.082

Table 3.1: Effective masses for conduction band valleys in Si and Ge, expressed as a

multiple of the rest mass of a free electron.

Material system Valley mq md

(001) Si ∆4 mt=0.19
√
mlmt=0.42

∆2 ml=0.916 mt = 0.19

(111) Si ∆ 3mlmt

2ml+mt
=0.26

√

mt(2ml+mt)
3 =0.36

(001) Ge L 3mlmt

2ml+mt
=0.12

√

mt(2ml+mt)
3 =0.30

(111) Ge L1 ml=1.64 mt=0.08

L3
9mlmt

8ml+mt
=0.089

√
mt(8ml+mt)

3 =0.34

Table 3.2: Quantisation and two-dimensional density-of-states effective masses of

conduction band valleys in (001) and (111) Si and Ge, using expressions derived from

Ref [102]. Masses are expressed relative to the rest mass of a free electron.

the interfaces.

The next section describes how the solution to the Schrödinger equation may

be split into two problems: the quantisation of electrons in the z direction, and

the nearly-free dispersion in the x, y plane. It is therefore apparent that different

effective masses are required for the two problems: the quantisation effective mass

1Reference. [104]
2Reference. [103]
3Reference. [93]
4Reference. [105]
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mq = mz for the former and the density-of-states effective mass md for the latter.

The density-of-states effective mass is a directional average of the in-plane masses,

md =
√
mxmy[102, 106, 107]. The values for these parameters are summarised in

table 3.2.

3.1.2 Two-dimensional approximation

The potential in a heterostructure varies significantly in the direction perpendicular

to the interfaces, due to the the bias potential and the conduction band offset be-

tween materials. Ideally, the interfaces in a QCL are perfectly flat, giving a constant

potential over the x–y plane.1 The electrons are therefore effectively free in two

dimensions.

As such, the wavefunction may be decoupled into a plane-wave component par-

allel to the interfaces and a bound component ψ(z) perpendicular to the interfaces.

This yields the expression

ψ(R) =
1√
A

eik·rψ(z)uk(R), (3.8)

where k is the in-plane wavevector, r is the in-plane position, uk(R) is a Bloch

function and A is the cross-sectional area of the system.

The Bloch function varies on an atomic scale whereas the bound component

varies much more slowly, on the scale of the heterolayers. The Bloch function may

be omitted from the wavefunction, leaving a slowly varying envelope function,

ψ(R) =
1√
A

eik·rψ(z). (3.9)

It can be shown that this gives an accurate mesoscopic description of structures

with slowly modulated conduction band potentials[108]. In QCLs, there are abrupt

changes in conduction band potential at each heterojunction, which reduces the

accuracy of the approximation. However, good agreement exists with atomistic

1In reality, small fluctuations in the interface location exist and these are shown to cause scat-

tering of electrons in chapter 5.
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Figure 3.2: Schematic representation of energy of states in a two-dimensional system

as a function of wavevector parallel to interfaces. The relative spacing between subband

minima depends upon the geometry of the system, and is not shown to scale.

simulations of subband energies in superlattices with layer thicknesses comparable to

those in QCLs[97]. Additionally, the effective mass/envelope function approximation

is much more computationally efficient than atomistic methods, making it more

suitable as a design tool for QCLs.

Substituting eqn. 3.9 into eqn. 3.1 allows the plane-wave components to be elim-

inated, leaving

Ĥψ(z) = Enψ(z), (3.10)

where the total energy of a state is given by

En,k = En +
~

2

2md

(

k2
x + k2

y

)

. (3.11)

The total energy of a state (fig. 3.2) is therefore the sum of a discrete compo-

nent En, due to quantum confinement in the growth direction, and a continuum of

energies due to momentum parallel to the interfaces, ~
2k2

2md
. The conduction band

in such a system is therefore discretised into a set of subbands and electrons may

occupy any subband whose minimum lies below the total electron energy. The
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one-dimensional kinetic energy operator in the Hamiltonian for the one-dimensional

Schrödinger equation (eqn. 3.10) may be expressed as

T̂ = − ~
2

2mq

d2

dz2
(3.12)

3.1.3 Boundary conditions

The present work is concerned with finding bound states in QCLs, rather than

arbitrary conduction band potentials. The following discussion therefore focuses on

the boundary conditions required for solving this specific set of problems.

Strictly, there are no truly bound states in a QCL when an electric field is applied,

as electrons at any energy can ultimately tunnel out of the structure. However, only

a finite number of discrete quasi-bound states have high probability densities within

the QCL. In the range of realistic electric fields for a QCL (F < 100 kV/cm), the

rate at which quasi-bound electrons tunnel out of the device is assumed to be very

low, and in this work, they are treated as being fully bound.

To solve Schrödinger’s equation, it is necessary to find a suitable pair of boundary

conditions. However, this is a non-trivial task due to the complicated geometry of the

system. Internal and external electric fields break the periodicity of the potential,

making periodic boundary conditions unrealistic. “Hard-wall” conditions at the

edges of a period are also unrealistic as a significant proportion of the wavefunction

may extend beyond a single period.

A superior, although more computationally expensive solution requires three

periods of the structure, with box boundary conditions at the edges.

ψi(0) = ψi(3Lp) = 0, (3.13)

where Lp is the length of a period of the structure. This is still not adequate, as

the solutions should be invariant through a translation to a neighbouring period.

The three period solution does not provide this translational invariance as the box

boundary conditions affect an electron in the outer periods more than one in the

central period.
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Figure 3.3: ∆-valley subbands determined for a (111) oriented structure with 5 nm Si

wells and 1.2 nm Ge barriers on a 15% Ge substrate, using box boundary conditions over

three periods. An external electric field of 10 kV/cm was applied. The central states

(solid lines) appear slightly different from those in the outer periods (dotted lines).
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This is illustrated in Fig. 3.3, which shows ∆ valley states in a sample (111)

oriented structure. The states in the outer periods appear slightly different from the

central states due to the boundary conditions.

The central solutions are assumed to be most accurate as the hard boundary

conditions are “padded” by the outer periods of the structure, allowing the wave-

function amplitude to decay in a more realistic manner. Translational invariance

may be achieved via a three step process:

1. solve Schrödinger’s equation for three periods of the structure;

2. reject any solutions which are not localised in the central period;

3. translate the remaining (central) solutions to the outer periods using the rela-

tions ψi+n(z) = ψi(z − Lp) and Ei+n = Ei − LpF .

Several methods of identifying central states were tested in this work. Firstly,

the median point zm of a wavefunction can be determined as

∫ zm

0
|ψ1(z)|2 dz =

1

2
, (3.14)

which represents the point at which an electron has identical probability of being

found on either side. If this point lies within the central period, the state is assumed

to be centrally localised.

Secondly, the modal period pm is defined as the period which contains the largest

part of the electron probability density, i.e.

pm =
2

max
i=0

[

∫ (i+1)Lp

iLp

|ψ1(z)|2 dz

]

, (3.15)

where zi is the centre point of period p.

Finally, an overlap method may be used. This method begins by calculating the

subbands in a single period of the QCL with box boundary conditions. It is then

assumed that each state φi in the single period corresponds to a similar state ψm

in the centre of a three period structure. The overlap σim between these states is
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therefore larger than that between state φi and any other state from the three period

structure ψj such that

σim = max
j

[∫ Lp

0
φi(z)ψj(z − zL) dz

]

. (3.16)

While none of the methods is infallible, the overlap method has proved most suc-

cessful for weakly biased symmetric structures, and the average coordinate methods

are more suited to heavily biased asymmetric structures.

3.1.4 Finite difference solution

Equation 3.10 may be rewritten as

− ~
2

2mq

d2ψ(z)

dz2
+ V (z)ψ(z) = Eψ(z), (3.17)

where V (z) is the total potential at each point. To solve the problem numerically,

a set of N regularly spaced sampling points, z0, z1, . . . , zN−1 may be defined for the

system. The spacing between each point is δz = zi+1 − zi and the value of the

wavefunction at each point may be expressed in the shorthand notation ψi = ψ(zi).

The finite difference approximation for a second derivative is

ψ′′
i ≈ ψi+1 − 2ψi + ψi−1

δz2
, (3.18)

and Schrödinger’s equation may be rewritten in the discretised form

− ~
2

2mq

[

ψi+1 − 2ψi + ψi−1

δz2

]

+ Viψi = Eψi. (3.19)

This can be expressed as a first-order difference equation of the form

aψi−1 + biψi + aψi+1 = Eψi, (3.20)

where the coefficients are defined as

a = − ~
2

2mqδz2
(3.21)

bi =
~

2

mqδz2
+ Vi.
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Box boundary conditions may be imposed by stating that ψ−1 = ψN = 0, where z−1

and zN are the points just beyond the start and end of the QCL respectively. This

gives boundary conditions of

b0ψ0 + aψ1 = Eψ0 (3.22)

aψN−2 + bN−1ψN−1 = EψN−1.

The difference equation can be written for each sampling point in the system

and packed into a matrix,























b0 a 0 · · · 0
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0
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H ψ = E ψ

(3.23)

The Hamiltonian matrix operator, H in equation 3.23 is symmetric and tridiago-

nal, which allows efficient linear algebra routines to be used2. The eigenvalues, En of

H give the energies of the subband minima and the corresponding eigenvectors ψn(z)

give the components of the wavefunction in the growth direction for each subband.

Since the Hamiltonian matrix is Hermitian, all of its eigenvalues (subband en-

ergies) are real and the eigenvectors (wavefunctions) form an orthonormal set such

that

ψT
i · ψj = δij , (3.24)

where δij is the Kronecker delta function. This is equivalent to the numerical solution

of the overlap integral of a pair of normalised wavefunctions, which is given by

∫

ψi(z)ψj(z)dz = δij . (3.25)

2The LAPACK3 library for FORTRAN 77 and the GNU Scientific Library for C/C++ were

used in this work
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3.2 Electric field effects

When driven by a constant voltage source, a potential VF exists across a period

of the QCL in addition to the conduction band potential. As well as experiencing

a net change in potential across the period, electrons are attracted toward highly

doped regions and repelled from regions of high electron density. This causes internal

variations in the electric field and Poisson’s equation must be used to find the true

form of VF . Poisson’s equation in one dimension is given by

d

dz

[

ε(z)
dVF (z)

dz

]

= −ρ(z), (3.26)

where ρ is the charge density. If the potential at the start of a period is chosen as a

reference, the boundary conditions may be specified as

VF (0) = 0 (3.27)

VF (Lp) = −FLp,

where F is interpreted as an average electric field.

Substituting D(z) = −ε(z) d
dzVF (z) and integrating both sides of equation 3.26

gives

D(z) = Q(z) +D(0), (3.28)

where the total charge density from the start of the structure up to z is given by

Q(z) =

∫ z

0
ρ(z′)dz′. (3.29)

It follows that

VF (z) = −
∫ z

0

dz′

ε(z′)

[

Q(z′) +D(0)
]

, (3.30)

where the boundary condition VF (0) = 0 has been applied.

Substituting in the second boundary condition gives

D(0) = −
FLp +

∫ Lp

0
dz′Q(z′)

ε(z′)
∫ Lp

0
dz′

ε(z′)

, (3.31)

which can then be used in equation 3.30 to find the potential profile across the

device.
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3.2.1 Charge distribution

If the bound states in the system and their populations are known, the spatial charge

distribution may be found.3 In a system under thermal equilibrium, the probability

of a state being filled is given by Fermi-Dirac statistics

fFD(E, T ) =
1

exp
[

E−EF (T )
kBT

]

+ 1
, (3.32)

where EF (T ) is the Fermi energy for an electron with temperature T and kB is

Boltzmann’s constant. At the Fermi energy there is a 50% chance of a state being

occupied and the state occupation decreases as energy increases.

In a QCL there is a potential difference across the structure and electrons flow

between its contacts. The Fermi energy therefore varies along the device. It is shown

in chapter 5 that intrasubband scattering rates are much greater than intersubband

scattering rates. It may therefore be assumed that electrons quickly settle to a quasi-

equilibrium within each subband. A modified form of the Fermi-Dirac distribution

now describes the occupation probability of states within a single subband i

fFD,i(Ek, Te,i) =
1

exp
[

Ek−EF,i(Te,i)
kBTe,i

]

+ 1
. (3.33)

The Fermi energy has been replaced here by a set of quasi-Fermi energies, which

sets the total population for each subband. An effective electron temperature Te

describes the spread of electrons within each subband. Although this electron

temperature may be different in each subband, good agreement with experimen-

tal data is achieved for III-V terahertz and mid-infrared QCLs if it is treated as a

constant[109, 110]. Finally, for simplicity all energy levels are expressed relative to

the subband minimum in this work.

The density of states in a two-dimensional system is given by[97]

ρ2D =
md

π~2
, (3.34)

3A method for finding the populations is described in chapters 5 and 7.
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and the total number of electrons in subband i is therefore

ni =
md

π~2

∫ ∞

0

dEk

exp
[

Ek−EF,i(Te)
kBTe

]

+ 1
. (3.35)

Solution of this integral gives

ni =
mdkBTe

π~2

{

EF,i(Te)

kBTe
+ ln

[

1 + e
EF,i(Te)

kBTe

]}

. (3.36)

For a given subband population and electron temperature, the quasi-Fermi energy

may be determined by numerical solution of this expression.

The density of electrons in a given subband at a particular spatial point is

ρe,i(z) = ni|ψi(z)|2. (3.37)

Assuming that the entire electron population is contained in a single valley set, the

total density of electrons at a given point is found by summing this expression over

all subbands:

ρe(z) = nval

∑

i

ρe,i(z), (3.38)

where nval is the number of equivalent valleys.

For a modulation doped system with a doping profile d(z), the total number of

donor atoms in a period of the system is

N2D =

∫ Lp

0
d(z)dz. (3.39)

Assuming that all donor atoms are ionised, charge neutrality requires that the num-

ber of donor ions equals the total number of electrons in all subbands

∫ Lp

0
ρe(z)dz = N2D. (3.40)

At a given point, the charge density ρ(z) is given by

ρ(z) = e [d(z) − ρe(z)] , (3.41)

where e is the fundamental charge constant.
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Figure 3.4: Flowchart for solution of the coupled Poisson and Schrödinger equations.

“n = 1” denotes the first iteration of the self-consistent Poisson–Schrödinger calculation.
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3.3 Self-consistent solution

It has been shown that Poisson’s equation may be used to find the effect of a spatial

charge distribution upon the potential profile in a QCL. Also, Schrödinger’s equation

can be used to find the permitted states for a given potential profile, and the charge

distribution can then be determined using a rate equations approach (chapter 7).

The Poisson and Schrödinger equations are therefore coupled, and neither can

be solved using information that is available ab initio. The nonlinear nature of

the problem also prevents a simple solution through linear algebra. Instead, a set

of initial conditions must be provided and an iterative process used to obtain a

self-consistent solution to the two equations.

As a first approximation, it is assumed here that electrons are evenly distributed

through the device such that ρe(z) ≈ N2D/Lp, giving a charge distribution of

ρ(z) = e[d(z) −N2D/Lp]. (3.42)

An estimate of the field effect upon the Hamiltonian may be found by substi-

tuting this into Poisson’s equation. The resulting potential may then be used in

Schrödinger’s equation to determine the electronic bandstructure.

In turn, the scattering rates may be found (chapter 5) and rate equations may

be solved (chapter 7) to find a better estimate of the charge distribution across the

period. The process may be repeated until the subband populations converge. This

approach is in good agreement with previous self-consistent models[111, 112] and is

illustrated in fig. 3.4.

3.4 Doping profiles

A non-uniform charge distribution across a device has been shown to yield a spa-

tially varying internal electric field. It follows that the doping profile within a QCL

strongly affects its electronic behaviour. QCLs have been demonstrated with sheet

doping densities as high as N2D = 1.0× 1012 cm−2[113], and with a variety of differ-
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Figure 3.5: Total confining potential in a (001) oriented 10 nm Ge quantum well with

5 nm Ge0.7Si0.3 barriers. The dotted line corresponds to an uncharged system. The

other lines represent a sheet doping density of 1×1012 cm−2 per period. Results are

shown for δ doping (i.e. all dopants in a thin layer) in the middle of the well or barrier,

and for dopants spread evenly over the entire well region, the entire barriers or the

entire structure.

ent doping profiles. Useful insight into doping effects may be gained by investigating

the internal electric fields in a quantum well.

The system modelled for this investigation was a 10 nm layer of Ge sandwiched

between a pair of 2.5 nm, 70% Ge barriers in the (001) orientation. A substrate Ge

fraction of 89% was found to provide mechanical stability. At low temperatures in

an equilibrium system, it is assumed here that all carriers lie in the lowest L-valley

subband. Fig. 3.5 shows the total confining potential for a sheet doping density of

1×1012 cm−2 per period using a variety of doping profiles.

In the absence of space-charge effects, the energy spacing between the lowest

pair of subbands was found to be 60.3 meV. Fig. 3.6 shows however that this value

varies significantly with doping. In the figures, δ-doping refers to the confinement

of all donor ions to a very thin layer. This approach has been used both within the
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Figure 3.6: Energy separation between lowest pair of subbands as a function of sheet

doping density for the quantum well in fig. 3.5. Each line corresponds to a different

doping profile, as described in the caption of fig. 3.5.

barriers[114] and wells[115] of a QCL. Fig. 3.5 shows that attraction of electrons

toward a 1 nm thick, highly doped region (i.e. δ doping) in the centre of the well

causes a significant localised dip in the confining potential. When δ doping is applied

to the centre of the barrier region, this causes a significant decrease (up to 4.8 meV)

in subband separation, while in the well there is a smaller increase of up to 2.5 meV.

The weaker effect in the well is due to the peak of the electron probability density

coinciding with the δ-doped region.

QCLs have also been demonstrated with dopants spread evenly through a single

layer[49, 116] or through several layers [27, 30]. Fig. 3.5 shows that in all cases this

reduces the effect of doping upon the subband separation. The effect of spreading

the dopants across the full width of the barrier is shown to be little different from

that of δ-doping within the barrier. This occurs because the bulk of the effect upon

subband energies is due to the large build-up of negative charge in the centre of the

well. Conversely, fig. 3.6 shows that doping the well region leads to a greatly reduced
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effect upon subband energies. This is due to the areas of positive and negative charge

coinciding.

3.5 Conclusion

In this chapter, an effective mass/envelope function description of a SiGe-based

heterostructure was developed. It was shown that the effective masses are anisotropic

and vary significantly between each of the valleys. The states within quantum

confined systems were shown to be approximately two-dimensional in nature, and

to lie within a discrete set of continuous subbands.

Electric fields due to an external voltage source and the spatial variation of charge

density was shown to significantly alter the confining potential, and a self-consistent

solution of the Poisson and Schrödinger equations was developed. Finally, it has

been shown that the choice of doping profiles within the structure is important. In

particular, δ doping leads to noticeable local extrema in the confining potential and

has a strong effect on the separation between pairs of subbands, while spreading

dopants over a larger area (particularly in the wells) reduces this effect.

The conclusion regarding doping profiles should be taken with some caution.

Although it is tempting to reduce the effect on subband separation by doping the

well regions, it is important to note that ionised impurity scattering (discussed in

chapter 5) will be maximised for states localised in these wells. For this reason, QCLs

tend to avoid doping in the active region, where nonradiative scattering effects are

undesirable.





Chapter 4

Valley splitting

In the preceding chapters, the electron energy dispersion relation for wavevectors

perpendicular to the growth plane was assumed to be a single parabola. This allows

an effective mass to be defined, and a simple set of solutions to Schrödinger’s equa-

tion followed. It has been shown, however, that multiple valleys exist in the SiGe

conduction band and in (001) oriented Si, this leads to there being two parabolic

valleys in the dispersion relation at k‖ = 0.

The single valley EMA therefore cannot provide a completely adequate descrip-

tion of the quantised states in (001) Si QWs. The single valley solutions can, how-

ever, be used as a basis for determining the double valley result. In this chapter,

it is shown that each single-valley solution is split into a doublet when two valleys

exist. This phenomenon is known as valley splitting.

In this chapter, two approaches are used to investigate the effect. A double-

valley effective mass approximation (DVEMA) allows a quick and efficient solution

for symmetric systems, while an empirical pseudopotential method (EPM) provides

a more general atomistic description of systems. A reasonably good agreement be-

tween the two methods is found, with the former being much faster computationally.

Although the DVEMA is defined for symmetric potentials, it is shown to remain ap-

proximately correct for slightly asymmetric structures such as a double quantum

well, allowing qualitative conclusions to be drawn about valley splitting in QCLs.

53
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The splitting is shown to be an oscillatory function of well width, almost in-

dependent of in-plane wave vector, and an increasing function of the magnitude

of interface gradient. Intersubband optical transitions are investigated under both

approximations and it is shown that in most cases valley splitting causes linewidth

broadening, although under extreme conditions, transition line doublets may result.

4.1 Review of previous investigations

Valley splitting has been observed experimentally in Shubnikov-de Haas oscillation

measurements in high magnetic fields[117–124] with energy splitting up to a few

meV. Boykin et al presented a tight-binding model of the ground state splitting in

a biased square quantum well with both hard-wall and cyclic boundary conditions

[125–127]. The ground state splitting in an unbiased square well was found to be

approximately

∆E1 ≈ 16π2u

(S + 2)3
sin

(

φmin

2

) ∣

∣

∣

∣

sin

[

(S + 2)
φmin

2

]∣

∣

∣

∣

, (4.1)

where φmin = k0a, and k0 denotes the position of the valley minimum in the Brillouin

zone, a is the lattice constant, S is the number of atomic monolayers in the quantum

well and u is a fitting constant. The model shows that the ground state splitting

oscillates with well width; the frequency being dependent on the location of the

valley minima. Similar results have been obtained for the two lowest subbands in an

unbiased well by Chiang [128] in an anti-bonding orbital model, and by Nestoklon

[129] in a slightly different tight-binding model.

Valley splitting in an electric field has been considered by modelling a triangular

QW. Although an effective mass model by Sham [130] proposed that the splitting

is simply proportional to the applied field, Boykin et al [131] and Grosso et al [132]

show that the splitting is a non-linear function of both the well width and the electric

field.
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4.2 Double valley effective mass approximation

Modifications to the EMA have allowed valley splitting to be described in an infinite

square well [133–135] and a finite square well with impurity states [136]. Ting and

Chang’s Double Valley Effective Mass Approximation (DVEMA) [137] provides an

elegant self-contained description of valley splitting in symmetric systems. A valley

splitting potential Û(z) is added to the Hamiltonian, giving

Ĥ(z) = − ~
2

2mq

d2

dz2
+ V̂ (z) ± Û(z). (4.2)

There are two equivalent ∆2-valleys at k‖ = 0, centred around the wavevectors

k⊥±k0 in (001) Si. The wavefunction must therefore be composed of basis functions

of the form

|k〉 = a+ |k + k0〉 + a− |k − k0〉 . (4.3)

where |a+| = |a−| = 1/
√

2[138]. In a symmetric potential, the basis functions must

be either even or odd symmetric combinations of the single valley states, giving[137]

|k±〉 =
1√
2

(|k + k0〉 ± |k − k0〉) . (4.4)

The complete wavefunction is obtained by summing over all basis states:

|ψ±〉 =
∑

k

φ±(k) |k±〉 . (4.5)

The matrix elements of the envelope potential operator in the Hamiltonian are

written in the basis defined by Eq. (4.4) as

Vnm = 〈kn|V̂ |km〉 =
1

2
(〈kn + k0| ± 〈kn − k0|) V̂ (|km + k0〉 ± |km − k0〉) . (4.6)

Rearranging this expression yields

Vnm =
1

2
(〈kn + k0|V |km + k0〉 + 〈kn − k0|V |km − k0〉)

± 1

2
(〈kn + k0|V |km − k0〉 + 〈kn − k0|V |km + k0〉) .

(4.7)



56 4.2. Double valley effective mass approximation

Table 4.1: Pseudopotential parameters[139].

Parameter a1 a2 a3 a4 a5 a6

Si 212.1372 2.2278 0.6060 -1.9720 5.0 0.3

Ge 108.9024 2.3592 0.7400 -0.3800 5.0 0.3

Using the discrete to continuous approximation, Vnm = Ṽ (km − kn), the intervalley

envelope term can be written as

Ṽ±(k) = Ṽ (k) ± 1

2

[

Ṽ (k − 2k0) + Ṽ (k + 2k0)
]

, (4.8)

where Ṽ (k) is the Fourier transform of the conduction band-edge envelope potential.

The real-space form of the intervalley envelope function is found by taking the inverse

Fourier transform of this result and the splitting potential is therefore extracted as

Û(z) =
1

2
F−1

{

Ṽ (k − 2k0) + Ṽ (k + 2k0)
}

= V (z) cos(2k0z),

(4.9)

where F−1 denotes the inverse Fourier transform.

4.2.1 Empirical pseudopotential calculation

An empirical pseudopotential method (EPM) is used here to calculate electronic

states in Si/SiGe based QWs, and provide a comparison with the DVEMA. As

the EPM (in common with tight-binding) is an atomistic method, valley splitting

is automatically included, and no special modifications are required. The supercell

implementation of the EPM was used, with a continuous atomic formfunction, V (g).

The “modified Falicov” formfunction described by Friedel et al [139] was selected:

V (g) =
a1

(

g2 − a2

)

1 + e[a3(g2−a4)]
· 1

2

[

tanh

(

a5 − g2

a6

)

+ 1

]

. (4.10)

Fischetti and Laux[140] and Ikonić[141] have shown that this formfunction gives

reasonable agreement with experimental data for both bulk Si and Ge band structure
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and for band discontinuities at the interface. A cut-off energy of 4.5 Ry was used,

which gives an acceptable number of plane waves for accurate and rapid computation

with all the structures considered. The parameters for Si and Ge are given in

Table 4.1, and the virtual crystal approximation was used for the alloy.

The EPM can be used for structures with either abrupt interfaces or graded

compositions. In the latter case, the interface grading is piecewise constant (i.e.

with a minimum length equal to that of a single diatomic unit cell). Individual

layers are given the required alloy compositions. In contrast, the DVEMA uses a

continuous potential profile, though features smaller than the width of a unit cell

have little practical meaning.

It is important to note that effective mass based calculations (like the DVEMA)

can never fully reproduce the results of microscopic EPM modelling. This is because

the DVEMA only handles four bulk states explicitly, while the EPM implicitly in-

cludes many evanescent states, stemming from remote bulk bands. Furthermore,

the location of indirect valleys may vary between the bulk materials used in the well

and barrier—a situation which is difficult to handle with effective mass methods.

Given that remote bands are usually less important than the bands from which the

quantised states are derived, one can expect reasonable accuracy from the DVEMA.

This may be validated by comparison against the EPM calculation.

4.3 Numerical results and discussion

DVEMA and EPM calculations were performed for a range of Si/SiGe QWs. The Ge

fraction in the substrate was fixed at 20%. In the EPM calculations the total length

of the structure (i.e. the supercell period) which includes the well and barrier layers,

was set to a fixed value of 35 diatomic unit cells (henceforth denoted as 35 ML). This

maintained a constant number of plane-waves in the pseudopotential basis set, and

avoided fluctuations in the results caused by variable size of basis. This is important

since valley splitting is relatively small on the energy scale covered by EPM [104].
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Figure 4.1: Valley splitting, ∆E in the lowest two subbands of an 8 ML quantum well

as a function of barrier composition.

4.3.1 Finite square well

The first set of calculations was for a simple square QW with abrupt interfaces.

Fig. 4.1 shows the influence of barrier composition (potential height) on the splitting

of the lowest two subbands, obtained by both the DVEMA and EPM calculations,

for a fixed, 8 ML wide Si QW. The confining potential increases almost linearly with

the Ge content in the barriers [93]. The results show that valley splitting increases

with confining potential. Both models are broadly in agreement, with the most

obvious discrepancy being the discontinuities in the DVEMA plot.

The effect of well width upon valley splitting was investigated next, for a struc-

ture with a fixed barrier composition of 50% Ge. The well width was varied between

1 ML and 25 ML in a supercell of total length 35 ML. This leaves a minimum 10 ML

barrier region, which ensures that neighbouring QWs are decoupled under periodic

boundary conditions. It also represents a realistic range of well widths for QCLs.

Figure 4.2 shows the EPM and DVEMA results. As predicted by equation 4.1, the

valley splitting is a decaying oscillatory function of well width, originating from in-

terference of the basis components reflecting at the QW interfaces. The DVEMA
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Figure 4.2: Valley splitting in a Si/Si0.5Ge0.5 QW as a function of well width

shows good agreement with the EPM results for the envelope of the splitting, while

the oscillatory component is approximately correct. For very small well widths how-

ever, the results for higher subbands deviate from the theory, as the upper subband

is unbound.

Boykin’s[125] tight-binding model considers wide QWs, with a low-energy ground

state and effectively infinite barriers. The decaying oscillatory form is, however, the

same as that obtained from DVEMA calculations. Equation 4.1, extracted from

the tight-binding model, predicts a period of around 6 ML as observed in fig. 4.2.

Setting u ≈ 3 yields a match in the amplitude between the three models. This

figure is somewhat higher than the value given in the reference above, although the

DVEMA results apply to loosely bound states in a finite square well as opposed to

being derived from bulk dispersion characteristics.

4.3.2 Influence of in-plane wavevector

As the in-plane wavevector increases, states draw an increasing amount of their char-

acter from higher conduction bands, giving rise to nonparabolicity in the dispersion

relation. The nonparabolicity results in k‖ dependent valley splitting. The EPM
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Figure 4.3: Valley splitting in lowest two subbands as a function of well width in a

QW with 3-step linear graded interfaces. The inset shows the general structure of a

linear graded QW.

calculation automatically accounts for this, but the assumption has been made in

the EMA that the conduction band edge is parabolic.

In the EPM calculation for a 10 ML QW, the splitting in the first and second

subbands increased approximately linearly by 17% and 8% respectively, when k‖

changed from zero to 10% of the Brillouin zone edge (i.e. in the range with non-

negligible electron occupancy at any reasonable temperature). This implies that

k‖-dependent corrections in the DVEMA are not mandatory.

4.3.3 Graded barrier potential

In real Si/SiGe QWs, surface segregation effects are well documented [142]. This

refers to the “preference” of Ge atoms to exist on the surface of the material rather

than in the bulk during molecular beam epitaxial (MBE) growth, leading to a de-

crease in the magnitude of the Ge composition gradient at the nominal interfaces.

It is therefore unrealistic to model a Si/SiGe QW as having abrupt interfaces. The

effect of graded interfaces on subband splitting is therefore considered. The linear-
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Figure 4.4: Valley splitting in lowest two subbands as a function of well width in a

quantum well with 4-step linear graded interfaces.

graded structure shown in the inset of Fig. 4.3 is modelled first.

Within the EPM calculation, the linear-graded interfaces on either side of the

QW are modelled as 3-step piecewise-linear, i.e. the interfaces spread across

three ML, with Ge content of 17%, 33% and 50% sequentially. The results are shown

in figure 4.3. The well width is defined as the full-width at half-maximum (FWHM)

of the envelope potential. The results of the DVEMA and EPM are in good agree-

ment for larger well widths—those which allow for more than a single bound state.

The plots show that the oscillatory component of the valley splitting is unchanged,

although the envelope decreases in magnitude. This is because graded interfaces

have reduced large-wave-vector Fourier components in the envelope potential, which

mix the two ∆⊥ valleys and hence the splitting is generally smaller.

As the width of the graded interfaces increases, the splitting is further reduced,

as shown in Fig. 4.4 for a 4-step graded interface with Ge content of 13%, 25%,

38% and 50%, sequentially. Again, there is a very good agreement between the two

models.

A linear graded interface is a somewhat idealised model as experimental evidence
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Figure 4.5: Valley splitting of the lowest two subbands as a function of well width in

a quantum well with 3-step non-linear graded interfaces.

shows that the interface profile is closer to an error function. A 3-step grading with

Ge concentrations of 13%, 38% and 50% is therefore used as an approximation to

a typical interface composition. The results of EPM and DVEMA calculation are

shown in Fig. 4.5.

The magnitude of the splitting is somewhat larger than for the case of linear

grading, apparently because the potential gradient at the interface is now larger

over a wide range of energies, thus corresponding to a steeper linear-grading at the

energies of the first and second subband minima. The DVEMA results are again in

close agreement with the EPM results.

4.3.4 Double quantum well

Next, the valley splitting in a double QW structure is considered. This relatively

simple structure may provide sufficient design freedom for an optically pumped in-

tersubband laser. It also allows the DVEMA to be tested for asymmetric structures

where the simple cosine modulated splitting potential is no longer strictly applica-

ble. The simulated structure, shown in the inset of Fig. 4.6, has a fixed 1 ML well
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Figure 4.6: Valley splitting in lowest subband as a function of second well width in

the double QW structure (inset). The results are shown for EPM and DVEMA. In

the case of the DVEMA, results are shown for two different origins for the symmetric

approximation.
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separated from the second well by a 1 ML, 50% Ge barrier. All other parameters

are unchanged.

The results for the EPM and DVEMA calculations are shown in Fig. 4.6. In

this case, the structure is assumed to deviate only slightly from the square well, and

therefore the periodic structure may be considered approximately symmetric about

the z = 0 position (i.e. the left-hand side of the structure shown in the inset of

Fig. 4.6). The axis of symmetry, zs is therefore set at this point. As the structure

only contains a relatively small perturbation from a symmetric quantum well, the

DVEMA and EPM results are still in good agreement. The splitting energy is again

lower than the simple square well case, since the left hand side (with a thin well and

a thin barrier) can be viewed as a “soft”, nonabrupt interface. Fig. 4.6 also shows

the DVEMA results when the axis of symmetry is shifted to zs = π
4k0

such that the

splitting potential becomes sine-modulated as opposed to cosine-modulated. This

represents worst-case selection of the axis of symmetry, if zs = 0 is assumed to be

the best. The oscillatory component of the valley splitting now appears out of phase

with the EPM results, although the envelope of the oscillations is approximately

correct. The symmetric approximation is therefore dependent on the origin of the

coordinate system. However, a good estimate of the magnitude of the valley splitting

is possible, even with a poor choice of origin.

4.3.5 Electric field effects

In the previous section, it was shown that qualitatively correct information may be

drawn for slightly asymmetric structures. In a QCL, however, the applied electric

field makes it impossible to define an axis of pseudo-symmetry. The EPM may still

be used however, to examine how the valley splitting varies under these conditions.

Fig 4.7 shows that in general the splitting increases with electric field. At high

fields, the confinement is weakened on one side of the QW. Splitting becomes a

linear function of the electric field and is only weakly dependent on well width, in

agreement with Sham[130]. At low electric fields, the well width has a significant
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Figure 4.7: Valley splitting in the lowest subband of 8, 9 and 11 ML wide QWs as a

function of electric field.

effect as predicted by Friesen.[138]

4.3.6 Intersubband optical transitions

Dipole matrix elements, D21 = 〈2|z|1〉 were calculated for intersubband transitions

in the square well (section 4.3.1). The results from the EPM and DVEMA simu-

lations are shown in figure 4.8 along with the separation of the transition energies.

The difference between the dipole matrix elements is small and approaches zero as

the transition energies converge. This implies a similar magnitude of spectral contri-

bution from each pair of valley-split states. The two methods are in close agreement

for lower well widths, with the DVEMA predicting larger matrix elements at higher

widths. In most cases, when considering valley splitting of states, the permitted

optical transitions are from the upper “excited state” to the upper “ground state”

and between the two lower states. However, when close to the splitting minima

(at well widths of 17 ML and 23 ML), the converse situation sometimes applies with

the EPM (fig. 4.9). The DVEMA always finds transitions to be of upper→upper
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Figure 4.8: Dipole matrix elements as a function of well width for the permitted

transitions between the first and second subbands in the finite square QW considered

in section 4.3.1. The difference between the two permitted transition energies is also

displayed.

Figure 4.9: Permitted optical transitions in a square QW are usually between the two

upper or lower valley-split states (left). When close to splitting minima however, this

situation is sometimes reversed in EPM simulation (right).
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and lower→lower character. Transitions exhibit linewidth broadening by interface

roughness and carrier scattering, typically of the order 5–10 meV. In the majority of

cases, valley splitting is relatively small and will only cause an increase in linewidth

broadening by the amount shown in figure 4.8. However, when the valley splitting is

large (for example at around 8 ML well width), a transition line doublet may become

apparent.

4.4 Conclusion

The DVEMA method presented by Ting and Chang [137] has been extended to

model intervalley-mixing in any symmetric structure. DVEMA and EPM methods

have been used to calculate ∆-valley subband splitting in a range of symmetric and

asymmetric Si/SiGe heterostructures, with both abrupt and graded interfaces.

The results of the two methods are in good agreement with each other and

with published tight-binding results for symmetric structures, with the DVEMA

demanding less than 0.5% of the computational run-time of EPM. Valley splitting

of up to around 10 meV was predicted for abrupt-interface square QWs in the range

of well widths of interest for Si intersubband devices [73, 143–147]. The valley

splitting was shown to be a decaying, oscillatory function of well width at small

electric fields. In large fields, the valley splitting was shown to be linearly related to

the field and only weakly dependent on well width.

Unfortunately, the EPM is too cumbersome a tool for QCL simulation due to

the great length of the structure, and the DVEMA cannot accurately model QCLs

due to their asymmetry. Qualitative predictions of the effect of valley splitting upon

QCLs are possible however.

It has been shown that valley splitting is likely to cause spectral linewidth broad-

ening, although transition line doublets may form for small well widths, with both

valley-split states contributing equally to the spectrum. The effect of surface segre-

gation was modelled by considering both linear and non-linear composition grading
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at the interfaces. This was found to reduce the valley splitting, as it is dependent

upon the potential gradient at the interfaces.



Chapter 5

Scattering mechanisms

In order to calculate the population of each state in a QCL, it is necessary to con-

sider the transfer of electrons between states. Electrons may scatter by interacting

with phonons, other electrons, or structural irregularities in the QCL. This chapter

describes a general method for calculating scattering rates and applies it to each of

the specific mechanisms.

5.1 Coherent and incoherent transport

Charge transport processes may be described as either coherent or incoherent. In-

coherent processes transport electrons, one at a time, by independent scattering

events. The time between scattering events is much longer than the time taken for

the events themselves, i.e. the events may be considered effectively instantaneous.

Coherent effects such as quantum tunnelling through a barrier occur when a

population of electrons is in phase coherence. In such processes, wave packets evolve

smoothly over time between their initial and final states. The wave packet oscil-

lates back and forth across the barrier at the Rabi frequency and the oscillations

are damped by dephasing processes[148], leading to a steady state solution after a

dephasing time.

Fermi’s golden rule (described in the next section) allows a computationally

69
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efficient calculation of incoherent scattering rates but more detailed quantum the-

oretical methods are required to describe coherent effects. Nonequilibrium Green’s

function (NEGF)[149] approaches have shown promising results but the computa-

tional burden is too large for NEGF to be incorporated into a QCL design tool. As

a result, a compromise must be found between the computational runtime and the

comprehensiveness of the transport model.

Density matrix calculations offer a slightly less computationally expensive ap-

proach to coherent transport phenomena, but complete density matrix models are

still far too cumbersome for use as a QCL design tool on standard computer hard-

ware. Density matrix calculations, therefore, typically only consider charge trans-

port across the injection barrier of a QCL and model the remainder of the device

using either a thermal charge distribution[53] or a heavily simplified incoherent trans-

port model[148].

In the present work, coherent transport is neglected entirely, allowing much

quicker simulation times. This is justified by noting that reasonably good agree-

ment has been achieved between experimental results and Boltzmann or rate equa-

tion based models of THz QCLs in III–V systems[49, 150]. The advantage of this

approach is that incoherent transport can be considered more completely than in

any of the partially-coherent calculations, accounting for all significant scattering

mechanisms and charge carrier heating.

Naturally, there are some limitations to this fully incoherent model. In particular,

the injection barrier thickness only affects the current density weakly and large

current spikes occur, corresponding to the appearance of spatially-extended states.

These effects are avoided in coherent injection models[148] and are discussed in more

detail in chapter 7. An investigation into coherent transport in Si-based QCLs is

proposed as further work in 9.
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5.2 Fermi’s golden rule

Each scattering event in QCLs may be explained in terms of an interaction between

an electron and an electric potential. These potentials are much smaller than the

conduction band offset and may arise from random processes. It is therefore rea-

sonable to treat these potentials as small perturbations to the Schrödinger solution

described in previous chapters[90]. The complete Hamiltonian for a system thus

contains a large, time-invariant component Ĥ0 describing the unperturbed system

and a small scattering potential V̂ (t). The time-dependent Schrödinger equation is

then
[

Ĥ0 + V̂ (t)
]

|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 . (5.1)

If the eigenstates of the unperturbed system are denoted |j〉, then the corre-

sponding eigenvalues Ej represent the possible outcomes of a measurement of elec-

tron energy. The full time-dependent envelope functional form of the wavefunction

is given by

|j(t)〉 = |j〉 exp

(

− iEjt

~

)

=
1√
A
ψj(z)e

ik·re−
iEjt

~ . (5.2)

When subjected to perturbations, the state “blurs” over time and is a time-

varying, weighted sum of the unperturbed states

|ψ(t)〉 =
∑

j

aj(t)|j〉e−
iEjt

~ , (5.3)

where aj(t) are time-dependent weightings. Eqn. 5.1 becomes:

∑

j

aj(t)Ĥ0|j(t)〉 +
∑

j

aj(t)V̂ (t)|j(t)〉 = i~
∑

j

[

aj(t)
∂

∂t
|j(t)〉 +

daj(t)

dt
|j(t)〉

]

(5.4)

The first terms on either side of the expression form the time-dependent

Schrödinger equation for the unperturbed system and therefore can be cancelled out.

For a transition to a final state |f〉, the transition energy is given by Efj = Ef −Ej

and the Schrödinger equation may be rewritten as

∑

j

aj(t)〈f |V̂ (t)|j〉e
iEfjt

~ = i~
∑

j

daj(t)

dt
〈f |j〉. (5.5)
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By noting the orthonormality of states, and defining 〈f |V̂ (t)|j〉 = Vjf (t), this

yields
daf (t)

dt
=

1

i~

∑

j

aj(t)Vjf (t)e
iEfjt

~ . (5.6)

If the scattering rates are low, then electrons are likely to remain in their initial

state |i〉 between two measurements. The approximation may therefore be made

that aj(t) ≈ δij and the (much smaller) probability of final state occupation is

|af (t)|2 =
1

~2

∣

∣

∣

∣

∫ t

0
Vif (t′)e

iEfit′

~ dt′
∣

∣

∣

∣

2

(5.7)

5.2.1 Static scattering potentials

For time-independent scattering potentials, i.e. Vif (t) = Vif , Eqn. 5.7 simplifies to

|af (t)|2 =
|Vif |2t2

~2
sinc2

(

Efit

2~

)

. (5.8)

After initial transients have died away, it can be shown[90] that this reduces to

lim
t→∞

|af (t)|2 =
2π|Vif |2t

~
δ(Efi). (5.9)

The final state is therefore only occupied if the scattering is elastic. Differentiating

this probability yields the scattering rate, Wif between an initial and a final state

Wif =
2π

~
|Vif |2 δ(Efi). (5.10)

This is known as Fermi’s golden rule for static scattering potentials.

In two-dimensional systems, it is important to note that the energy eigenvalues

lie within subbands and actually take the form

Ej(k) = Ej +
~

2k2

2md
, (5.11)

where Ej is the minimum of subband j. It is therefore useful to consider an expanded

form of Fermi’s golden rule,

Wif (ki, kf ) =
2π

~
|Vif |2 δ

[

Efi +
~

2

2

(

k2
f

md,f
− k2

i

md,i

)]

Θ(k2
f ). (5.12)
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The Θ here represents the Heaviside step function, which ensures that the final state

lies within the final subband.

Assuming an identical density-of-states effective mass in the initial and final

subbands allows the δ function to be rewritten in terms of in-plane wave vector,

Wif (ki, kf ) =
2πmd

~3kα
|Vif |2 δ(kf ± kα)Θ(k2

f ), (5.13)

where kα =
√

k2
i − 2mdEfi/~2 is the final wavevector required for energy conserva-

tion.

The total scattering rate from a particular state in the initial subband to all

states in the final subband may be obtained by summing over all final wavevectors,

Wif (ki) =
2πmd

~3kα

∑

kf

|Vif |2 δ(kf ± kα)Θ(k2
f ) (5.14)

Due to the continuity of the final states, the sum may be transformed to an

integral, giving

Wif (ki) =
Amd

2π~3kα

∫∫

kfdkfdθδ(kf − kα)Θ(k2
f ) |Vif |2 , (5.15)

=
Amd

2π~3
Θ(k2

α)

∫

dθ|Vif (kα)|2,

where A is the area of the 2D system.

A final improvement to this model may be made by noting that scattering cannot

occur if the final state is occupied, due to Pauli exclusion. Scattering rates are

therefore overestimated slightly, and can be corrected by multiplying the “raw” rate

by the probability of the final state being vacant. If the intrasubband scattering rates

are much faster than intersubband rates, then electrons in the final subband can be

assumed to have settled to a thermal quasi-equilibrium and Fermi-Dirac statistics

apply. Hence, the reduced scattering rate is given by

Wif (ki) =
Amd

2π~3
[1 − Pf (kα)]Θ(k2

α)

∫

dθ|Vif (kα)|2, (5.16)

where Pf (kα) = fFD(kα, EF,f , Te) is the final state occupation probability.
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5.2.2 Time-varying scattering potentials

Sinusoidal perturbations include electron–phonon interactions and the scattering

potential takes the form

Vif (t) = Vif

(

ejω0t + e−jω0t
)

, (5.17)

where ω0 is the angular frequency of the oscillating potential. The solution of eqn. 5.7

becomes

|af (t)|2 =
|Vif |2t2

~2

[

sinc2 (Efi − ~ω0)t

2~
+ sinc2 (Efi + ~ω0)t

2~
(5.18)

+ 2 cosω0t sinc
(Efi − ~ω0)t

2~
sinc

(Efi + ~ω0)t

2~

]

.

Taking the steady-state limit (t → ∞), the steady-state scattering rate is given

by

Wif =
2π

~
|Vif |2 [δ(Efi − ~ω0) + δ(Efi + ~ω0)] . (5.19)

Scattering is therefore non-zero only for two final energy states. In each case, the

electron has either gained or lost ~ω0 in energy, which corresponds to the absorption

or emission of a particle (e.g. a phonon) respectively.

Rewriting this in terms of wave vector and summing over the final subband gives

a total scattering rate of

Wif (ki) =
2π

~
|Vif |2

[

Θ(k2
α+) + Θ(k2

α−)
]

, (5.20)

where the final in-plane wave vectors for absorption (+ sign) and emission (- sign)

interactions are

k2
α± =

2m(−Efi ± ~ω0)

~2
+ k2

i . (5.21)

5.2.3 Average scattering rate

Although the scattering rate has been derived for a given initial wavevector, it is

also useful to find its average value. Assuming Fermi-Dirac statistics as before, this
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average is[97]

Wif =

∫ k+

k− kidkiPi(ki)Wif (ki)

πni
(5.22)

Strictly, the integral is performed over the range ki = (0,∞). However, an

analytical solution is usually impossible to achieve and an upper limit for numerical

integration is required. The Fermi–Dirac distribution is given by

fFD(Ek, Te) =
1

exp
(

Ek−EF

kBTe

)

+ 1
. (5.23)

If the Fermi energy is located well below the subband minimum, (which is the case for

subbands with low populations at temperatures above a few Kelvin), this simplifies

to the Maxwell–Boltzman distribution

fMB(Ek, Te) = exp

(−Ek

kBTe

)

. (5.24)

It can now be shown that

∫ 4.6kBTe

0
dEfMB(Ek, Te) = 0.99

∫ ∞

0
dEfMB(Ek, Te), (5.25)

meaning that around 99% of the subband population is contained in an energy range

of 4.6 kBTe above the subband minimum, making Ek,max = 4.6kBTe a suitable cut-

off energy for calculations. The corresponding wave vector is k+ =
√

9.2mdkBTe/~.

At low temperatures, the quasi-Fermi energy may lie above the subband minimum

and in this case, the cut-off energy may be set as Ek,max = 4.6kBTe + EF .

The lower limit may be increased above zero by noting that Wif (ki) is nonzero

only when k2
α > 0, giving the result

k− =











0, Efi ≤ 0

√

2mdEfi/~, Efi > 0.

(5.26)

5.3 Coulombic scattering

The overall effect of the charge distribution in a QCL upon its bandstructure was

included in the Hamiltonian in previous chapters. This represents the cumulative
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effect of all the charged particles in an average system. On a microscopic scale

however, an electron interacts strongly with nearby charged particles via Coulombic

forces. In the following sections, expressions are derived for the scattering rates due

to donor ions and other electrons. Computing these expressions can be somewhat

demanding and methods for optimising the numerical solution are presented.

5.3.1 Ionised impurity scattering

The Coulombic electrostatic potential for an electron in the vicinity of a single

positive ion is[151]

V̂ (r − r0, z − z0) = − e2

4πǫ
√

|r − r0|2 + (z − z0)2
, (5.27)

where (z, r) and (z0, r0) are the electron and ion positions respectively. The time-

independent envelope wavefunctions were defined in chapter 3 as

|j〉 =
1√
A

eikj ·rψj(z) (5.28)

The scattering matrix element is given by

Vif = 〈f |V̂ |i〉 =
1

A

∫

ψ∗
f (z)ψi(z) dz

∫∫

ei(ki − kf)·r d2r. (5.29)

Making the substitutions u = r − r0 and q = kf − ki, the scattering potential

matrix element for a single impurity may be rewritten as

Vif (q, r0, z0) =
1

A
e−iq·r0

∫

ψ∗
f (z)ψi(z) dz

∫∫

e−iq·uV̂ (u, z, z0) d2u. (5.30)

The double integral is a two-dimensional Fourier transform, with an analytical solu-

tion. This can be solved to give the square of the single-impurity scattering matrix

element[152],

|Vif (q, z0)|2 =

(

e2

2ǫAq

)2

|Iif (q, z0)|2, (5.31)

where Iif (q, z0) =
∫

ψ∗
f (z)e−q|z−z0|ψi(z) dz.

A QCL has multiple impurities spread through its volume, with concentration

varying over z0. The total matrix element is found by multiplying the single impurity
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result by the number of impurities in a thin slice through the system and integrating.

The number of impurities in a slice of width dz0 is d(z0)Adz0, where d(z0) is the

dopant concentration, giving a total matrix element of[153]

|Vif (q)|2 =
e4

4ǫ2Aq2

∫

d(z0)|Iif (q, z0)|2 dz0. (5.32)

Substituting into Eqn. 5.16 gives

Wif (ki) =
mde

4

4π~3ǫ2
[1 − Pf (kα)]Θ(k2

α)

∫ π

0
dθ
Jif (qα)

q2α
, (5.33)

where q2α = k2
i + k2

α − 2kikα cos θ and Jif (qα) =
∫

d(z0)|Iif (qα, z0)|2 dz0. The limits

of the integration over θ have been halved due to the even, periodic nature of qα.

An improvement to this model may be introduced by including the effect of

screening by a two-dimensional electron gas. Local electrons are strongly attracted

towards a positive donor ion, making its charge appear weaker to remote electrons.

Davies shows that this may be included by incorporating the Thomas-Fermi screen-

ing wavevector, qTF in Eqn. 5.33 to obtain[90]

Wif (ki) =
mde

4

4π~3ǫ2
[1 − Pf (kα)]Θ(k2

α)

∫ π

0

Jif (qα)dθ

(qα + qTF)2
, (5.34)

where

qTF =
mde

2

2πǫ~2
. (5.35)

Ionised impurity scattering presents a computational challenge as solving the

three nested integrals using the trapezium rule requires a vast number of itera-

tions. The scattering vector qα depends on the scattering angle θ and the initial

wavevector ki and recalculating Jif on-the-fly for each (θ, ki) combination would be

extremely inefficient. Instead, a table of Jif (qα) against qα may be calculated before

commencing integration. The required values are then obtained by interpolation.

Further optimisation is possible by noting that each value of Jif requires an

integration over a function of Iif . A small decrease in the computation time for

Iif therefore leads to a much greater decrease in the computation time for Jif . An
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elegant solution involves splitting the integrand into a pair of functions with semi-

infinite domains i.e.

e−qα|z−z0| =











eqα(z0−z), z ≥ z0

eqα(z−z0), z < z0.

(5.36)

This reduces the computation time significantly by removing the need to evaluate

the modulus function.

It follows that the matrix element may be rewritten in the form

Iif (qα, z0) =
1

eqαz0
C−

if (qα, z0) + eqαz0C+
if (qα, z0), (5.37)

where

C−
if (qα, z0) =

∫ z0

−∞
ψ∗

f (z)eqαzψi(z) dz (5.38)

C+
if (qα, z0) =

∫ ∞

z0

ψ∗
f (z)

1

eqαz
ψi(z) dz.

C±
if (qα, z0) may be tabulated against z0 before calculating Iif . Pre-calculating

the exponential terms and the product of the wavefunctions increases the computa-

tional efficiency even further.

The ionised impurity scattering rate in a (001) Ge quantum well with Si barriers

is shown as a function of well width in fig. 5.1. Dopants were spread evenly through

the well region. Scattering rates were calculated from the second to first subband as

a function of subband separation, assuming an electron temperature of 100 K. As the

well width increases, the subband separations decrease and the scattering vectors

required for energy conservation are therefore quite small. The denominator in the

integral over θ shrinks and the scattering rate increases slightly. An approximately

linear scaling is seen with respect to doping density.

Figure 5.2 shows that ionised impurity scattering depends heavily upon the dop-

ing profile. The highest rates occur when dopants are spread evenly through the

well region (as in fig. 5.1) due to the high overlap between the wavefunctions in the

doped region. Moving the dopants to the barrier reduces the scattering rates by
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Figure 5.1: Average ionised impurity scattering rate from the second to first sub-

band as a function of well width for a (001) Ge QW with 10 nm thick Si barriers.

Dopants are spread evenly through the well region at concentrations in the range

1×1010–5×1011 cm−2. An electron temperature of 100 K was assumed. The subband

populations were assumed to be equal prior to scattering and the separation between

the subbands is plotted on the same axes.
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Figure 5.2: Average ionised impurity scattering rate from the second to first subband

as a function of well width for a (001) Ge QW with 10 nm thick Si barriers for various

doping profiles. All parameters were set identical to those in fig. 5.1, except for the

doping concentration, which was fixed at 1×1011 cm−2. Results are shown for dopants

spread throughout the full well or barrier region and for dopants confined to a 1 nm

thick region in the well or barrier (δ doping).
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a factor of around 50 and δ doping at the edges of the barrier region reduces the

scattering rate even further. It is interesting to note that δ doping in the centre of

the well also gives very low scattering rates. This is due to the dopants lying around

a node (i.e. zero probability density) in the upper wavefunction. In an asymmetric

system such as a QCL, it is likely that this effect would be less significant.

5.3.2 Electron–electron scattering

As with the case of ionised impurity scattering, the interaction between a pair of

electrons is governed by the Coulomb potential,

V̂ (r − r′, z − z′) =
e2

4πε
√

|r − r′|2 + (z − z′)2
, (5.39)

where (z, r) and (z′, r′) are the locations of the first and second electrons respec-

tively. The state of the two-electron system is given by

|ij〉 =
1

A
ψi(z)ψj(z

′)ei(ki·r+kj ·r′) (5.40)

|fg〉 =
1

A
ψf (z)ψg(z

′)ei(kf ·r+kg·r′),

where the subscript pairs i, j and f, g denote the inital and final states respectively.

Momentum conservation was ignored in the calculation of ionised impurity scatter-

ing, due to the enormous difference between the electron mass and that of the ion

bonded into the crystal lattice. In the case of electron–electron scattering however,

it must be included. As such,

ki + kj = kf + kg (5.41)

and the scattering vector is given by q = kf − ki = kj − kg.

The scattering matrix element is now written as

Vij→fg(q) =
e2

4πεA2

∫

dzψ∗
f (z)ψi(z)

∫

dz′ψ∗
g(z

′)ψj(z
′) (5.42)

×
∫∫

d2r′

∫∫

d2u
eiq·u

√

u2 + (z − z′)2
δ(ki + kj − kf − kg),
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where the substitution u = r − r′ has been made. Solving the Fourier transform

and the integral over r′ gives

Vij→fg(q) =
e2

2εAq
Aij→fg(q) × δ(ki + kj − kf − kg), (5.43)

where

Aij→fg(q) =

∫

dzψ∗
f (z)ψi(z)

∫

dz′ψ∗
g(z

′)ψj(z
′)e−q|z−z′|. (5.44)

Following the method of Smet[154], which is very similar in form to that for

ionised impurities (albeit considerably lengthier), the scattering rate is given by1

Wij→fg(ki) =
e4md

(4π~)3ε2

∫ ∞

0
kjdkjPj (kj) (5.45)

× Θ
(

k2
ij

)

∫

dα

∫

dθ
|Aij→fg(qα)|2

q2α
Θ
(

q2α
)

,

where α is the angle between the initial wavevectors and θ is the angle between a

pair of relative wavevectors kij = kj−ki and kfg = kg−kf . qα is the magnitude of

the scattering vector which yields energy and momentum conservation and is given

by

(2qα)2 = 2k2
ij + ∆k2

0 − 2kij

√

k2
ij + ∆k2

0 cos θ, (5.46)

where

∆k2
0 =

4md

~2
(Ei + Ej − Ef − Eg) (5.47)

k2
ij = k2

i + k2
j − 2kikj cosα. (5.48)

The scattering rate equation above assumes that the final states are always va-

cant, which is a very good approximation for low electron temperatures, and reduces

the computational demand significantly. The Thomas-Fermi screening approach de-

scribed for ionised impurity scattering has been shown to overestimate the screening

significantly for electron–electron scattering and a better approach considers screen-

ing due to electrons within the initial subband[154]. The relative permittivity is

1Smet’s expression has been modified slightly to make the requirement for real wavevectors

explicit
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replaced by

εsc(q, Te) = 1 +
2πe2

4πǫq
Πii(q, Te)Aij→fg(q). (5.49)

At low-temperatures, the polarisation factor is given by[155]

Πii(q, 0) =
md

π~2



1 − Θ(q − 2kF )

√

1 −
(

2kF

q

)2


 , (5.50)

where the Fermi wavevector is kF =
√

2πni.

Substituting the screening permittivity into eqn. 5.45 gives

Wij→fg(ki) =
e4md

(4π~)3ε20

∫

kjdkjΘ
(

k2
j

)

Pj (kj) (5.51)

× Θ
(

k2
ij

)

∫

dα

∫

dθFijfg(qα),

where

Fij→fg(qα) =

[ |Aij→fg(qα)|
qαεsc(qα)

]2

Θ
(

q2α
)

. (5.52)

The computational implementation of electron–electron scattering is more de-

manding even than that of ionised impurity scattering as there are now five nested

integrals. A set of optimisation methods developed in the course of the present work

dramatically improves the situation however. Firstly, Fij→fg(qα) depends only on

the magnitude of the scattering vector and has no direct dependence on scattering

angles or initial wavevectors. As such, it may be tabulated before performing the

integrals rather than recalculating them on-the-fly. In addition to this, qεsc depends

only on the initial subband index and therefore need only be recalculated once for

each initial subband.

The calculation time of Aij→fg may be improved substantially by rewriting it as

Aij→fg(q) =

∫

dzψif (z)Ijg(q, z), (5.53)

where the double-subscripted wavefunctions denote a product and the Ijg matrix

element is identical to that used for ionised impurity scattering. The optimised

calculation of Ijg described in the previous section gives a factor of over 100 im-

provement in the calculation speed. Nevertheless, if electron–electron scattering
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Figure 5.3: Squared electron-electron scattering matrix elements as a function of

scattering vector × well width for each of the possible interactions in a 10 nm wide

infinite QW.

calculations are included in a QCL simulation, they account for around 90% of the

total simulation runtime.

For a system with N subbands, there are N4 possible scattering interactions.

However, not all of these have a significant effect on charge transport. The inter-

actions may be categorised into three sets. Firstly, there is a set of intrasubband

scattering mechanisms, which may take the form Wii→ii or Wij→ij . Here, both

electrons stay in their original subbands (which may be different from each other).

These interactions are always permitted regardless of the scattering vector, due to

the continuity of final states within the subband and are therefore much more rapid

than other interactions. Fig. 5.3 shows that the scattering matrix element is much

larger for intrasubband interactions than for other interactions. This adds weight to

the earlier assumption that intrasubband scattering rapidly causes carriers to settle

to quasi-thermalised distributions between intersubband scattering events.

The next set of interactions are purely intersubband, where both electrons change
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Figure 5.4: Average, electron–electron scattering rate from the second to first subband

in a (001) Ge QW identical to that described in the previous section. The effective one-

electron scattering rate is shown for total carrier densities in the range 1 × 1010 –

5 × 1011 cm−2.

subband. These may take the form Wij→fg or Wij→ji. The former leads to a

change in the subband populations, whereas the latter does not. When the subband

separation is large (100 meV in fig. 5.3), a large scattering vector is required unless

the electron has very large kinetic energy within the initial subband. The scattering

matrix element is therefore very low at small scattering vectors. Finally, Auger

transitions exist in which only one electron changes subband. These take the form

Wii→ij or Wij→jj . Smet[154] shows that these processes are forbidden in symmetric

systems and are likely to be small otherwise.

In order to calculate the effect of these two-electron interactions on subband

populations, an effective one-electron scattering rate may be defined by summing

over all the second electron subbands

Wif = Wii→ff +
∑

j,g

Wij→fg. (5.54)

The additional Wii→ff term accounts for the fact that two electrons are transferred
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between subbands by such processes. Fig. 5.4 shows that the effective one-electron

scattering rate decreases as a function of well width. As the Auger processes are

negligible, the rate is dominated by the W22→11 and W21→12 transitions. As the well

width decreases, the subband separation and hence the scattering vectors increase

and the qα term in the denominator of Fij→fg leads to a decrease in scattering rate.

Both ionised impurity and electron–electron scattering rates scale approximately

linearly with respect to dopant concentration. There is a fundamental difference,

however, in that ionised impurity scattering depends directly upon the spatial dis-

tribution of dopants whereas electron–electron scattering does not. The variations

of ionised impurity (fig. 5.1) and electron–electron (fig. 5.4) scattering rates with

respect to well width have similar functional forms when dopants are spread evenly

throughout the well, although the ionised impurity scattering rates are around 100

times larger. It can be deduced from fig. 5.2, however, that electron–electron scat-

tering may exceed ionised impurity scattering for δ-doping profiles.

5.4 Scattering from structural imperfections

The calculations in chapter 2 assumed that the conduction band potential was con-

stant throughout each layer of a QCL and that the interfaces were perfectly formed.

In reality, the conduction band potential is derived from overlapping atomic poten-

tials and the position of interfaces may vary significantly across the growth plane.

These deviations from the ideal system both act as perturbations to the Schrödinger

solution and the resulting scattering rates are derived in the following sections.

5.4.1 Alloy disorder scattering

Si and Ge atoms are distributed randomly through an alloy and the crystal po-

tential varies stochastically on an atomic scale, Bloch waves do not form and it is

impractical to solve Schrödinger’s equation. This difficulty was avoided in the model

solid approximation by replacing the Si and Ge atoms with a uniform array of vir-
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tual SiGe atoms. Although the virtual crystal model matches the average potential,

a discrepancy exists on the atomic scale. These microscopic fluctuations act as a

perturbation to the system, and induce scattering.

If potentials due to individual Si and Ge atoms are VSi(R) and VGe(R) respec-

tively then the total potential at a point in the crystal is given by summing the

contributions due to the individual atoms. The complete set of lattice sites in the

system, RA is given by RA = RSi ∪ RGe, where RSi and RGe are sites occupied by

Si and Ge atoms respectively. This yields a total potential at point R of

V (R) =
∑

Ri∈RGe

VGe(R−Ri) +
∑

Ri∈RSi

VSi(R−Ri). (5.55)

The potential of a virtual atom is taken to be

Vva(R) = x(z)VGe(R) + [1 − x(z)]VSi(R), (5.56)

where x(z) is the probability of a lattice site at a given position being occupied by

a Ge atom. The virtual crystal potential is therefore

Vvc(R) =
∑

Ri∈RA

{x(z)VGe(R) + [1 − x(z)]VSi(R)}. (5.57)

The difference between the actual, and virtual crystal potentials gives the perturba-

tion potential,

Vp(R) =
∑

Ri∈RGe

[1 − x(z)] ∆V (R−Ri) −
∑

Ri∈RSi

x(z)∆V (R−Ri), (5.58)

where ∆V (R) = VGe(R) − VSi(R) is the difference between the Si and Ge atomic

potentials.

By assuming that an atom’s contribution to the total potential is only distin-

guishable over a small radius, it can be shown that

∆V (R) ≈ Ω∆Vadδ(R), (5.59)
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where Ω = a3/8 is the volume containing a single lattice site and ∆Vad is a constant

alloy scattering potential[156]. The matrix element for scattering is therefore

Vif =
a3∆Vad

8A

∫∫∫

d3Rψ∗
f (z)ψi(z)e

iq·r (5.60)

×







∑

Ri∈RGe

[1 − x(z)] δ(R−Ri) −
∑

Ri∈RSi

x(z)δ(R−Ri)







=
a3∆Vad

8A

∑

Ri∈RGe

[1 − x(zi)]ψ
∗
f (zi)ψi(zi)e

iq·ri

− a3∆Vad

8A

∑

Ri∈RSi

x(zi)ψ
∗
f (zi)ψi(zi)e

iq·ri.

The mean square matrix element is then given by

〈|Vif |2〉 =
a3∆V 2

ad

8A

∫

dz|ψf (z)|2x(z)[1 − x(z)]|ψi(z)|2. (5.61)

Substituting this into Fermi’s golden rule gives

Wif (ki) =
mda

3

8~3
[1 − Pf (kα)]Θ(k2

α)∆V 2
ad

∫

dz|ψf (z)|2x(z)[1 − x(z)]|ψi(z)|2. (5.62)

As a first estimate, the alloy disorder potential ∆Vad may be taken as the Si–Ge

band offset but the calculated rates may differ somewhat from those observed exper-

imentally. There is, however, no consensus in the literature on a more appropriate

value.

Apart from the requirement for real and unoccupied final states, alloy disorder

scattering is constant with respect to wavevector. For electrons scattering to lower

subbands, all final wavevectors are real and the scattering rate is therefore approx-

imately constant over the entire range of initial wavevectors. Instead, the rate is

determined primarily by the overlap of the wavefunctions within regions of high

alloy disorder. The term x(z)[1 − x(x)] in the matrix element is maximised when

x = 0.5 (i.e. an equal mixture of Si and Ge) and drops to zero in pure Si and Ge.

Figure 5.5 shows the L-valley scattering rates in a QW with pure Si barriers

and wells composed of a material with variable Ge fraction xw. In such a structure,
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Figure 5.5: Average alloy disorder scattering rate from the second to first L-valley

subband in a 10 nm wide QW of variable composition with pure Si barriers

alloy scattering only occurs in the well region. The figure shows that the scattering

rate drops to zero when xw = 0 or 1 as expected but the maximum occurs at xw =

0.55 rather than 0.5. This shift may be understood by considering the probability

density of electrons within the alloy region. As xw increases, the quantum well

becomes deeper and electrons are better confined within the well. In other words,

the |ψf (z)|2|ψi(z)|2 term in the scattering matrix element becomes larger within the

alloy region, which shifts the peak scattering rate to a larger value of xw.

These results show that nonradiative alloy disorder scattering in a QCL, is min-

imised when either pure Si or Ge is used as the well material, rather than an alloy.

In principle, it could be eliminated entirely by using Si or Ge as the barrier material

too. However, as discussed in chapter 6, growth of alternating Si and Ge epilayers is

challenging, especially in the (111) orientation. Consequently, a Si/SiGe or Ge/GeSi

configuration is more realistic for QCLs.

Figure 5.6 shows the alloy disorder scattering rate when pure Ge wells are sur-

rounded by Gexb
Si1−xb

barriers with variable xb. Here, the maximum scattering rate



90 5.4. Scattering from structural imperfections

0 0.2 0.4 0.6 0.8
Ge fraction

0.0

5.0×10
9

1.0×10
10

1.5×10
10

2.0×10
10

2.5×10
10

A
ve

ra
ge

 s
ca

tte
rin

g 
ra

te
 [1

/s
]

Figure 5.6: Average alloy disorder scattering rate from the second to first L-valley

subband in a 10 nm wide Ge QW with variable barrier composition

occurs when xb > 0.932. This large shift away from xb = 0.5 may again be explained

by considering the effect on the conduction band offset. As the barrier Ge fraction

increases, the quantum well becomes shallower and electrons are able to leak much

further into the alloy region in the barriers.

5.4.2 Interface roughness scattering

Real heterojunctions are not perfectly flat and random fluctuations in the interface

location cause small shifts in the conduction band potential as shown in fig. 5.7.

This leads to the Schrödinger solution varying slightly depending upon the in-plane

location of the electron[157, 158].

The fluctuations are usually assumed to have a Gaussian Fourier transform ∆z(r)

with height ∆ and correlation length Λ[76, 155, 159] such that

〈∆z(r)∆z(r
′)〉 = ∆2 exp

(

−|r − r′|
Λ2

)

. (5.63)

2The graph is plotted over the range where at least two subbands exist within the well. For

xb > 0.93, only a single subband exists.
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Figure 5.7: Schematic representation of interface roughness at a diffuse heterojunction.

The actual conduction band potential deviates from the nominal value depending upon

in-plane location, due to random variations in the interface location.
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Most previous models have been limited to perfectly abrupt interface

geometries[160], and good agreement with experimental results has been

achieved[39]. A more general approach has been developed as part of the present

work, which allows interface roughness scattering rates to be calculated for any

interface geometry.

The perturbing potential around an interface I is given by

V̂I(R) = rect

(

z − zI
zU,I − zL,I

)

V [z − ∆z(r)] − V (R) (5.64)

≈ −∆z(r)
dV (z)

dz
rect

(

z − zI
zU,I − zL,I

)

,

where the interface is defined as a shift in conduction band over the range (zL,I , zU,I),

centred about a nominal location zI .

The scattering matrix element is therefore

Vif,I = −Fif,I

A

∫∫

d2reiq·r∆z(r), (5.65)

where

Fif,I =

∫ zU,I

zL,I

dzψ∗
f (z)

dV (z)

dz
ψi(z). (5.66)

The mean-square of the scattering matrix element is now given by

〈

|Vif (zI)|2
〉

=

∣

∣

∣

∣

Fif (zI)

A

∣

∣

∣

∣

2 ∫∫

d2r

∫∫

d2r′∆z(r)∆z(r
′)eiq·u (5.67)

=
|Fif,I∆Λ|2 π

A
e−q2Λ2/4

where u = r − r′.

Substituting this into Fermi’s golden rule gives the scattering rate due to the

perturbation at a single interface,

Wif,I(ki) =
|Fif,I∆Λ|2md

~3
Θ(k2

α)[1 − Pf (kα)]

∫ π

0
dθe−q2

αΛ2/4. (5.68)

The integral may be solved quasi-analytically using result 3.339 of Gradshteyn and

Ryzhik[161],
∫ π

0
ea cos θ dθ = πI0(a) (5.69)
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where I0(a) is the regular modified cylindrical Bessel function of zeroth order. The

scattering rate at a given interface is now

Wif,I(ki) =
πmd(∆Λ)2

~3
β(ki) |Fif,I |2 , (5.70)

where

β(ki) = e−(k2
i +k2

α)Λ2/4I0

(

kikαΛ2

2

)

Θ(k2
α)[1 − Pf (kα)] (5.71)

The total scattering rate, assuming that the roughness of separate interfaces is com-

pletely uncorrelated, is obtained by the summation

Wif (ki) =
πmd(∆Λ)2

~3
β(ki)

∑

I

|Fif,I |2 , (5.72)

The general result derived above may be checked against previous models which

assume that interfaces are perfectly abrupt[7]. Here, the potential at an interface is

a Heaviside step function V (z) = V0Θ(z − zI), where V0 is the step in conduction

band potential at the interface. The perturbation is now given by

V̂I(R) = V0 rect

{

1

∆z(r)

[

z −
(

zI +
∆z(r)

2

)]}

. (5.73)

For a small perturbation, ∆z(r) → 0, and the perturbing potential becomes

V̂I(R) = V0∆z(r)δ(z − zI), (5.74)

i.e. the perturbation acts only at the interface. The scattering matrix element is

therefore

Vif,I =
V0

A
ψ∗

f (zI)ψi(zI)

∫∫

d2reiq·r∆z(r), (5.75)

which is the expression seen in previous works[155]. This can be used to specify an

approximate version of the matrix element in eqn. 5.66

Fif,I ≈ V0ψ
∗
f (zI)ψi(zI), (5.76)

which is valid in the limit of abrupt interfaces.

Figure 5.8 shows that the scattering rate increases with roughness height and is

maximised at correlation lengths around Λ = 30 Å. The parameters have been fitted
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Figure 5.8: Interface roughness scattering rates from second to first subband in a

10 nm wide (001) Ge QW with 10 nm wide Si0.8Ge0.2 barriers as a function of the

roughness height and correlation length.
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Figure 5.9: Interface roughness scattering matrix element Bif as a function of Eif

for an arbitrary (001) oriented Ge/GeSi heterostructure with Λ=50 Å. Positive subband

separations indicate that the initial subband minimum exceeds that of the final subband.

to experimental data in several publications, with ∆ typically in the range 1 to 5 Å

and Λ between 50 and 300 Å[158, 162, 163].

In a recent study, Califano showed that a choice of ∆=1.2–1.5 Å and Λ=40–60 Å

matches experimental data for asymmetric p-type Si/SiGe heterostructures[39]. The

combination ∆,Λ = (1.4, 50) Å (yielding the median scattering rate from Califano’s

parameter space) was chosen as an estimate for the n-type systems considered in

the present work.

To analyse the scattering behaviour it is helpful to rewrite the average rate

(eqn. 5.22) in the form

Wif =
md(∆Λ)2

ni~
3

Bif

∑

I

|Fif,I |2 , (5.77)

where

Bif =

∫ k+

k−

kidkiPi(ki)β(ki). (5.78)

The Bif function (fig. 5.9) depends upon the transition energy and is independent

of the heterostructure geometry. Its peak value occurs when both initial and final
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Figure 5.10: Average interface roughness scattering rate in a 10 nm wide Ge QW

with Λ=50 Å as a function of barrier Ge fraction at electron temperatures of 4,100 and

200 K.

subbands are at the same energy and the scattering rates decrease approximately

exponentially as the subband separation grows. The function drops much more

sharply when the initial subband lies below the final subband. This is because

elastic scattering is forbidden for initial states near the subband minimum, which

contain most of the carrier population.

The complete effect of structure geometry upon the average scattering rate can

be broken down into two factors. Firstly, the Bif factor is maximised when subband

separations are small, as discussed above. Secondly, the Fif,I terms are maximised

when wavefunctions overlap strongly with interfaces. The wavefunction overlap is

greatest when barriers are thin, when the conduction band offset is small or when

the subband minimum lies close in energy to the barrier potential. Fig. 5.10 shows

that there is little change in the scattering rate as the barrier Ge increases from 0 to

around 70% as the decrease in conduction band offset is balanced by an increase in

wavefunction overlap. For xb & 70%, the scattering rate decreases as the conduction



5.5. Electron–phonon scattering 97

band offset drops toward zero.

5.5 Electron–phonon scattering

Vibrations in the crystal lattice may be represented by a quasi-particle called the

phonon. These vibrations cause periodic variations in strain, which in turn perturbs

the conduction band potential and induces scattering.

5.5.1 Intravalley acoustic phonon scattering

For quantum wells made of pure Si or Ge, it is possible to model the crystal lattice

as a mass-spring system. For longitudinally oscillating atoms, the displacement of

atom j is related to that of neighbouring atoms by[90]

m
d2uj

dt2
= K[(uj−1 − uj) − (uj − uj+1)], (5.79)

where m is the mass of each atom, and K is the elastic constant of the bonds between

the atoms. This is referred to as a longitudinal acoustic (LA) phonon.

Bloch’s theorem states that uj+1 = uje
iqa, where q is the wavevector of the

phonon and a is the bond length. Assuming that solutions take the plane-wave form

uj = U0 exp[i(qaj − ωqt)], the dispersion relation becomes

ωq = 2

√

K

m

∣

∣

∣sin
qa

2

∣

∣

∣ . (5.80)

For small wavevectors, this dispersion relation is approximately linear i.e. ωq = vsq,

where vs = a
√

K/m is the speed of sound in the material. For wavevectors close to

the Brillouin zone edge however, the phonon frequency becomes fixed at ωq = ω0 =

2
√

K/m.

As the atoms are undergoing simple harmonic motion, their average kinetic and

potential energies are both mU2
0ω

2
q/4. For a system of volume Ω with mass-density

ρ, the number of atoms is given by N = Ωρ/m and the total energy is given by
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ΩρU2
0ω

2
q/2. Equating this to the energy of the quantised system gives the amplitude

U0 =

√

2~

Ωρωq
. (5.81)

For long wavelengths, there is almost a continuous distribution of atoms and

u(z) ≈ U0e
i(qz−ωqt). (5.82)

The strain may be written as a derivative

ε(z) =
∂u

∂z
= iU0qe

i(qz−ωqt). (5.83)

In chapter 2, it was shown that strain leads to a shift in the conduction band

potential. In a zeroeth order model, the potential is assumed to vary proportionally

to the strain, such that

V̂ (z) = Dacε(z) = iDacU0qe
i(qz−ωqt), (5.84)

where Dac is a deformation potential. These oscillations in the conduction band

potential act as a perturbation to the Hamiltonian and hence lead to scattering.

In addition to the longitudinal acoustic (LA) phonon described so far, there

are transverse acoustic (TA) phonons which represent vibrations perpendicular to

the direction of wave propagation. At small wavevectors, these acoustic phonons

are approximately identical, and a single deformation potential accurately describes

their effect on the Hamiltonian.

Price[164] shows that in general, a two-dimensional electron system interacting

with a three-dimensional phonon has a scattering rate of the form

Wif =

∫

C2(q)|Gif (qz)|2dqz, (5.85)

where C(q) is a coupling constant and Gif (qz) is an overlap integral given by

Gif (qz) =

∫

dzψ∗
f (z)ψi(z)e

iqzz. (5.86)
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For wavevector independent interactions, C(q) may be taken outside the integral,

giving

Wif = C2

∫

|Gif (qz)|2dqz. (5.87)

To a good approximation, the substitution
∫

|Gif (qz)|2dqz ≈ 2πFif can be

made[165], where

Fif =

∫

dzψ2
f (z)ψ2

i (z). (5.88)

The resulting scattering rate takes the form Wif = 2πC2Fif . Although the coupling

constant C is uniquely defined for each type of electron–phonon interaction, it is

proportional to the phonon population in all cases. The number of phonons is given

by the Bose-Einstein distribution

Nq(ωq) =

[

exp

(

~ωq

kBT

)

− 1

]−1

, (5.89)

where T is the temperature of the crystal lattice.

For acoustic phonon interactions, the phonon wavevector is small and the

equipartition approximation, ~ωq ≪ kBT , can be applied. The Bose-Einstein distri-

bution simplifies to

Nq(ωq) =
kBT

~ωq
. (5.90)

It was noted above that the acoustic phonon frequency is approximately ωq = vsq

at small wavevectors, which gives the final expression

Nq(ωq) =
kBT

~vsq
. (5.91)

The combined absorption and emission rate for low-wavevector acoustic phonons

is[165]

Wif (ki) = Θ(k2
α)
mdD

2
ackBT

~3ρv2
s

Fif [1 − Pf (kα)] . (5.92)

Deformation potentials of 1.2 eV for Si and 2.5 eV for Ge have been found to give

good agreement with experimental results[166]. The other parameters are given for

Si (Ge) as ρ=2.33 (5.32) gcm−3 and vs=5870 (3810) ms−1[166].
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Figure 5.11: Average acoustic phonon scattering rate as a function of lattice temper-

ature in a Ge QW identical to that in the previous section.

Fig. 5.11 shows the expected linear increase in scattering rate with respect to

lattice temperature. The rate is independent of subband separation for downward

transitions as the final wavevector will always be real.

5.5.2 Optical and intervalley phonon scattering

The acoustic phonon model considered so far is only valid for acoustic phonons with

low wavevectors. For optical phonons and any phonons with wavevectors near the

Brillouin zone edge, the linear approximation ωq = qvs breaks down. Instead, the

gradient of the phonon dispersion curve is small and it is better to approximate the

phonon frequency as a constant value ω0. Due to the symmetry of the system, optical

phonon processes are forbidden in ∆ valleys but are significant in L valleys[167].

The same general form of the scattering rate expression exists as for acoustic

phonons, but the coupling coefficient is derived from an optical phonon deformation

potential D0. This deformation potential differs from Dac in that it describes the

shift in conduction band potential as a function of atomic displacement rather than
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strain, such that V = D0 · u. The optical phonon energy may be quite large in

comparison with kBT and the equipartition approximation no longer applies. The

phonon population is therefore included explicitly in the scattering rate expression.

The scattering rate now becomes[165]

W∓
if (ki) = Θ(k2

α±)
ndestmdD

2
0

2~2ρωq

[

Nq(T ) +
1

2
∓ 1

2

]

Fif [1 − Pf (kα±)] , (5.93)

where ndest is the number of destination valleys for the process. The upper sign of

the ± and ∓ symbols refer to the absorption of a phonon while the lower sign refers

to an emission.

Intervalley scattering may occur between pairs of subbands in two different valley

sets. For the low-lying ∆ and L valleys considered in this work, the ∆ ↔ ∆, ∆ ↔ L

and L ↔ L interactions may all affect the subband populations. When uniaxial

strain induced degeneracy splitting is taken into account, this leads to an enormous

number of possible interactions. In the present work, the problem is simplified

considerably by only including intervalley scattering within a degenerate valley set.

This approximation is justified by noting that separations of at least 60 meV exist

between non-degenerate valleys in SiGe based QCLs (chapter 2), which significantly

reduces the respective scattering rates.

Intervalley scattering in Ge

The distance between any pair of L valleys in reciprocal space is identical and

therefore only one intervalley phonon wavevector need be considered. The number of

destination valleys for L→ L scattering is ndest = 3. To the author’s best knowledge

no attempt has been made to fit the contributions of individual phonon branches to

experimental data. Instead, a phenomenological approach has been taken, in which

the combined contributions of all phonon branches have been treated as a single

zeroeth order interaction with energy ~ωq = 27.56 meV and a deformation potential

of D0 = 3.0 × 108 eVcm−1[168].

Figure 5.12 shows the L → L scattering rates in a Ge QW as a function of well
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Figure 5.12: Average intervalley scattering rates from second to first subband in a Ge

QW with Si barriers as a function of subband separation. Results are shown for lattice

temperatures of 4, 77 and 300 K, assuming that the electron temperature is given by

Te = T+4 K. The fine dotted line shows that a “kink” in the scattering rate curve occurs

when the subband separation equals the intervalley phonon energy of ~ωq = 27.56 meV.
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Figure 5.13: Average intervalley scattering rate from second to first subband in a Ge

QW with Si barriers as a function of lattice temperature. Results are shown for well

widths of 10 nm (E21 > ~ωq) and 25 nm (E21 < ~ωq).

width. A “kink” in the curve occurs when the subband separation equals the phonon

energy (when Lw = 17.5 nm). This is because phonon emission is only permitted

when the final state is real. For subband separations below the phonon energy,

electrons with low initial wavevector may not take part in phonon emission and the

total scattering rate drops rapidly.

Figure 5.13 shows that the phonon scattering rates increase with temperature.

At low temperature, lim
T→0

[Nq(T )] ≈ 0, meaning that absorption rates are extremely

low and only phonon emission is permitted. As the lattice temperature increases,

the phonon absorption becomes much more significant.

Intravalley scattering in Ge

Due to symmetry, intravalley optical phonon scattering is permitted in Ge L valleys,

but not in the Si ∆ valleys[167]. For intravalley processes, ndest=1. A deformation

potential of D0 = 3.5 × 108 eVcm−1 and a phonon energy of ~ωq = 37.04 meV has
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Figure 5.14: Average intravalley optical phonon scattering rate from second to first

subband in a Ge QW as a function of well width.

been shown to give a good match to experimental data[166]. Figure 5.14 shows

that the scattering rates take the same form as for intervalley processes, but with

a smaller magnitude. The kink in the curve is also shifted due to the change in

phonon energy.

Intervalley scattering in Si

The difference in wavevector between a pair of Si ∆ valleys may be denoted g or f

depending on their relative locations in reciprocal space, as illustrated in fig. 5.15. g-

transitions transfer electrons to the opposite valley along the same crystallographic

axis whereas f -transitions transfer electrons to the nearest valley along a {110}
direction. For g-transitions ndest = 1 while for f -transitions ndest = 4.

Symmetry selection rules state that only high-energy phonons are permitted

within this zero order model, and that all other interactions are forbidden. The

permitted intervalley phonon interactions are g-LO (~ωq = 63.2 meV), f -LA (~ωq =

46.3 meV) and f -TO (~ωq = 59.1 meV) and a single deformation potential of D0 =

3.4 × 108 eVcm−1 has been shown to give good agreement with experimental data
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Figure 5.15: Schematic illustration of f - and g-type intervalley scattering processes

between ∆ valleys.

for all three processes[169].

Ferry[170] noted that the “forbidden” low-energy interactions can be included by

expanding the deformation potential model to include first order terms in phonon

wavevector. The first order optical deformation potential D1 relates the shift in con-

duction band potential to the first derivative of atomic displacement (i.e. strain) and

is therefore analogous to the Dac deformation potential. The first order scattering

rate expression is given by[171]

W∓
if (ki) = Θ(k2

α±)
ndestmd,fD

2
1

~2ρωq

[

Nq(T ) +
1

2
∓ 1

2

]

(5.94)

×
[

e

~2
(Ek,imd,i + Ek,fmd,f )Fif − Hif

2

]

[1 − Pf (kα±)],

where

Hif =

∫

dzψif (z)
d2ψif (z)

dz2
(5.95)

The first-order phonon interactions in Si are g-TA (~ωq = 11.4 meV), g-LA (~ωq =

18.8 meV) and f -TA (~ωq = 21.9 meV), all with a deformation potential of D1 =

3.0 eV[169].
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Figure 5.16: Average ∆2 → ∆2 scattering rates from second to first subband in

(001) Si. Dotted lines show that “kinks” in the scattering rate coincide with a subband

separation equal to each of the g-phonon energies.

In (001) oriented Si, the ∆2 valleys are lowest in energy and it is assumed that

only ∆2 → ∆2 intervalley interactions are significant in this work. As such, only g-

transitions are considered. Figure 5.16 shows the total scattering rate as a function

of well width in a Ge/Si/Ge well. A kink in the plot occurs at Lw = 3.9 nm, which

corresponds to E21 = 63.2 meV (the g-LO phonon energy). The first order g-TA and

g-LA processes are much slower than g-LO, and only give rise to very small features

in the scattering plot.

In the (111) orientation, all six ∆ valleys are degenerate and therefore both g

and f processes are important. Figure 5.17 shows the total intervalley scattering

rate in a (111) oriented well as a function of the well width. Again, features can

be seen in the plot corresponding to each of the zeroeth-order processes, while the

first-order processes have a much weaker effect.
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Figure 5.17: Average ∆ → ∆ scattering rates from second to first subband in a (111)

oriented Ge/Si/Ge well. Dotted lines show that “kinks” in the scattering rate coincide

with a subband separation equal to each of the g-phonon energies.

5.6 Total scattering rates

It is possible to calculate the total intersubband scattering rate by summing over all

possible processes, giving

1

τif
=
∑

p

W p
if , (5.96)

where p denotes a particular scattering process. In a QCL, the wavefunctions overlap

multiple QWs and numerous parameters are required to determine the scattering

rates between two subbands. It is therefore impractical to present a full analysis

in the present work. Instead, some basic properties of the total scattering rate are

determined for simple QW structures in this chapter. The observable effects of

scattering in a QCL (i.e. gain and current density) are then discussed in chapters 7

and 8.
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Figure 5.18: Scattering rates as a function of well width in a (001) oriented Si-

based QW with 50% Ge barriers. The lattice temperature was fixed at T = 4 K and

the electron temperature at Te = 24 K. Dopants were spread evenly through the well

region at a concentration of n2D = 1 × 1011 cm−3. The abbreviations in the legend

are as follows: “ion”=ionised impurity, “ado”=alloy disorder, “e-e”=electron–electron,

“ifr”=interface roughness, “inter”=intervalley phonon.
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Figure 5.19: Scattering rates as a function of lattice temperature in a 9.2 nm wide

(001) oriented Si QW with 50% Ge barriers at Te = T+20 K. Dopants are spread evenly

through the well region at a concentration of n2D = 1011 cm−2. The abbreviation “acp”

refers to acoustic phonon scattering.

5.6.1 (001) Si/SiGe quantum wells

Scattering was simulated in a Si well with 10 nm wide Si0.5Ge0.5 barriers and dopants

spread throughout the well region at a concentration of n2D = 1011 cm−2. The width

of the well was varied and the resulting scattering rates are plotted in fig. 5.18.

Ionised impurity scattering dominates for wide wells due to the large region

of overlap between the wavefunctions and the dopants. The converse is true for

interface roughness scattering, which becomes the dominant mechanism for well

widths below 7.5 nm. Intervalley phonon scattering is also significant in narrow

wells as the large energy separation permits all initial states to take part in phonon

emission interactions. A local minimum in the total scattering rate occurs at well

widths around 9.2 nm. This corresponds to a subband separation of E21 = 13.5 meV

or 3.3 THz.

Figure 5.19 shows the effect of lattice temperature upon the total scattering rate
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Figure 5.20: Scattering rate as a function of well width in a (111) oriented Si-based

QW with 50% Ge barriers and dopants spread evenly through the well region at a

concentration of n2D = 1 × 1011 cm−3. A lattice temperature of 4 K and an electron

temperature of 24 K were used. The abbreviation “ado” refers to alloy disorder scat-

tering. All other line styles are as defined in fig. 5.18

for a 9.2 nm well. It can be seen that phonon scattering interactions increase with

lattice temperature and represent a significant proportion of the total scattering

rate for T & 100 K. The other scattering rates decrease slightly due to final state

blocking.

5.6.2 (111) Si/SiGe quantum wells

Figure 5.20 shows the scattering rates as a function of well width in a (111)

Si0.5Ge0.5/Si/Si0.5Ge0.5 QW with 10 nm thick barriers at a lattice temperature of

4 K. Rapid f -LA phonon interactions give rise to large scattering rates in wells nar-

rower than 7 nm. The reduction in barrier potential reduces the interface roughness

scattering rate compared with the (001) oriented system. The minimum scatter-

ing rate lies between well widths of 7 and 15 nm, which corresponds to a subband



5.6. Total scattering rates 111

50 100 150 200 250
Lattice temperature [K]

10
9

10
10

10
11

A
ve

ra
ge

 s
ca

tte
rin

g 
ra

te
 [1

/s
]

ion
ifr
ado
acp
inter
TOTAL

Figure 5.21: Scattering rates as a function of lattice temperature in a 10 nm wide

(111) oriented Si QW with 50% Ge barriers. Dopants were spread evenly through the

well region at a concentration of n2D = 1011 cm−2.

separation of 13–40 meV or an emission energy of 3.1–9.7THz. Ionised impurity

scattering causes a rise in the total scattering rate in wider wells.

Figure 5.21 shows the scattering rates in a 17 nm (111) oriented

Si0.5Ge0.5/Si/Si0.5Ge0.5 well as a function of lattice temperature, assuming Te =

T + 20 K. Intervalley phonon scattering overtakes ionised impurity scattering as the

dominant process for T > 70 K.

5.6.3 (001) Ge/GeSi quantum wells

Figure 5.22 shows the scattering rates in a Si0.5Ge0.5/Ge/Si0.5Ge0.5 QW as a function

of well width at T=4 K and Te=24 K. Optical and intervalley phonon scattering

dominates at well widths below 17 nm, while ionised impurity scattering is fastest at

higher well widths. A local minimum in scattering rate occurs at well widths around

20 nm, which corresponds to a subband separation of 19.3 meV or 4.7 THz.

Figure 5.23 shows the scattering rates in a 20 nm well. It can be seen that
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Figure 5.22: Scattering rates as a function of well width in a (001) oriented

Si0.5Ge0.5/Ge/Si0.5Ge0.5 QW with dopants spread evenly through the well region at

a concentration of 1× 1011 cm−3. A lattice temperature of 4 K and an electron temper-

ature of 24 K were used.

intervalley phonon scattering overtakes ionised impurity scattering as the dominant

mechanism for T > 45 K.

5.7 Conclusion

Fermi’s golden rule has been used to derive semi-classical expressions for scattering

rates in SiGe based heterostructures. The mechanisms considered were categorised

as either Coulombic interactions, structural imperfection interactions or electron–

phonon interactions.

The computational challenges associated with Coulombic interactions were ad-

dressed, and substantial improvements in computational efficiency were developed

without any loss of precision. It was shown that Coulombic interactions are fastest

between energetically similar subbands in highly doped structures. Both electron–

electron and ionised impurity scattering rates scale linearly with respect to sheet
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Figure 5.23: Scattering rates as a function of lattice temperature in a 20 nm wide

(001) oriented Si0.5Ge0.5/Ge/Si0.5Ge0.5 QW. An electron temperature of Te = T +20 K

was used. Dopants were spread evenly through the well region at a concentration of

n2D = 1011 cm−2
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doping concentration, but ionised impurity scattering is also heavily dependent upon

the distribution of dopants. As a result, ionised impurity scattering is slower than

electron–electron scattering in δ-doped structures, while the converse applies for

evenly doped structures.

Alloy disorder scattering only occurs in SiGe alloys and it was shown that the

scattering rates can be reduced significantly by using either pure Si or Ge in the

well regions of a QCL. The situation was found to more complicated with respect to

the barrier material. However, selecting a barrier alloy that is substantially different

from the well material results in a large confining potential and the wavefunctions

are less able to penetrate into the alloy region. This approach was shown to reduce

the alloy disorder scattering.

A generalised interface roughness scattering model was developed, which allows

scattering rates to be calculated for structures with arbitrary interface geometries.

The rates were found to be fastest between energetically similar subbands in struc-

tures with high, thin barriers. Higher rates may exist in QCLs than in a single QW,

as the wavefunctions may cross multiple interfaces.

Intravalley acoustic phonon scattering was shown to increase linearly with re-

spect to the lattice temperature and to be approximately independent of the subband

separation. Intervalley phonon scattering was considered in Si by fitting deforma-

tion potentials to branches of the phonon dispersion curves and was shown to be

highly dependent upon subband separation. The rates were shown to drop rapidly

if the subband separation decreases below the phonon energy, as transitions from

low-wavevector initial states are forbidden due to the requirement for energy conser-

vation. f -processes, which transfer electrons to perpendicular valleys in reciprocal

space were shown to give rise to rapid scattering in (111) oriented Si ∆ valleys.

However, these processes were assumed to be negligible in (001) Si due to the large

uniaxial strain splitting between the ∆2 and ∆4 valleys. In Ge, a phenomenological

approach to intervalley and optical phonon scattering was taken, in which a single

phonon energy and deformation potential were used to explain each process.
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It was shown that ionised impurity scattering dominates in wide, evenly doped

wells. In narrow wells, intervalley electron–phonon interactions dominate due to

the large subband separation. A local minimum in the scattering rate was shown

to exist for each material system. In (001) Si and Ge, the local minima are quite

well defined at around Lw=9.2 nm (f21=3.3THz) and 20 nm (4.7 THz) respectively,

whereas in (111) Si, the minimum extends between Lw=13 and 40 meV (f21=3.1–

9.7 THz). This implies that optimal QCL performance may be achieved around

these frequencies as reduced non-radiative scattering rates may improve population

inversion and hence increase the gain as discussed in chapter 7.





Chapter 6

Crystal growth related issues

In the work presented so far, a model has been developed to describe the band struc-

ture and charge transport characteristics of a QCL. It is now necessary to describe

how this model applies to a realisable system. Despite the constant advancement of

growth technology, there are fundamental and practical limitations on the thickness

of layers and the step in alloy fraction across an interface.

Strain is unavoidable in SiGe heterostructures, and its effect upon band structure

was shown to be a crucial factor in establishing a usable conduction band offset in

chapter 2. However, strained systems are also susceptible to mechanical instability

through the formation of dislocations. In this chapter, it is shown that this issue may

be resolved by careful selection of the substrate material and the relevant technology

for developing virtual substrates is reviewed.

Finally, experiments have shown that real interfaces between SiGe layers may

not be perfectly abrupt. This has profound implications in terms of the band struc-

ture and scattering rates. A set of figures of merit are defined in this chapter to

describe the tolerance of a system to diffuse interface geometries. The results are

then compared for equivalent coupled QW systems in each material configuration.

117
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Figure 6.1: Critical thickness of layers with varying Ge fraction, when grown upon Si

(001), Si (111) or Ge (001) substrates

6.1 Strain balancing

As shown in chapter 2, mechanical stresses due to the lattice mismatch between

Si and Ge lead to unavoidable strain in SiGe heterostructures. In reality however,

strained layers may only be grown up to a critical thickness hc, beyond which the

lattice relaxes via the formation of defects. This may have undesirable effects upon

the electronic and optical properties of the structure and it is therefore necessary to

limit layer widths to below their critical thicknesses [88].

A basic model of the critical thickness, derived by Van der Merwe [172] assumes

that dislocations form in a periodic array. Here,

hc ≈
19

16π2

(

1 + ν

1 − ν

)(

b

ε‖

)

, (6.1)

where b = a/
√

2 and ν is the Poisson ratio[88]:

ν =
ε⊥

ε⊥ − 2ε‖
. (6.2)
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ε⊥ and ε‖ are defined as the strain tensor elements perpendicular and parallel to the

interface respectively. Fig. 6.1 shows the critical thickness of varying alloy materials

upon a range of substrates. All three curves show that an infinitely thick layer may

be grown if the material is identical to that of the substrate. The worst case scenario

occurs for Si grown upon Ge or vice versa, where the lattice mismatch is maximised

and a limit of around 1 nm layer width is imposed.

A similar restriction occurs with multilayer structures. This may be illustrated

by approximating the multilayer system as a single, thick layer containing the

weighted mean of the layer Ge fractions:

x =

∑

i lixi
∑

i li
, (6.3)

where li and xi are the width and Ge fraction of each layer i respectively. A mismatch

between this mean Ge fraction and that of the substrate leads to mechanical stress

parallel to the interface, and a critical thickness exists for the entire stack in addition

to the individual layers[97]. For a QCL, this limits the number of periods of the

structure which may be grown.

A solution to this problem is to calculate an optimal Ge fraction for the substrate,

which minimises the in-plane stress. The minimum strain energy corresponds to a

substrate lattice constant

as =

∑

iAili/ai
∑

iAili/a2
i

, (6.4)

where the elastic constants have been grouped together in a single property A [97].

The value of this property is

A(001) = 2

(

C11 + C12 − 2
C2

12

C2
11

)

(6.5)

A(111) =
12C44(4C11C44 + 8C12C44 + C2

α)

c2β
(6.6)

for the (001) and (111) orientations respectively, where Cα = −(C11 + 2C12) and

Cβ = C11 + 2C12 + 4C44 as defined in chapter 2.
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6.2 Status of growth technology

Two techniques for growing SiGe heterostructures are in common use: molecular

beam epitaxy (MBE) and chemical vapour deposition (CVD)[88]. In MBE growth,

Si and Ge are heated in effusion chambers and beams of the atoms are selectively

allowed to pass through shutters onto the growth medium. The growth rate is

primarily determined by the flux of the source. The first demonstration of elec-

troluminescence from Si/SiGe quantum cascade structures used a 12-period device

grown using MBE. Absolute errors in layer thickness around ±2 Å were achieved[73].

Multiple QW stacks with 70–85% Ge wells and Si barriers have been grown upon

Si0.5Ge0.5 virtual substrates using MBE. Total stack heights around 0.5µm and in-

terface roughness heights around 3–3.6 Å are achievable[173].

In CVD, a precursor such as silane or germane is heated to around 1000◦C, which

leads to Si or Ge being deposited on the growth medium by pyrolysis. The growth

rate is a function of the gas flow rate, pressure and temperature. This means that

calibration of CVD equipment is more complicated, and MBE is more flexible in a

research environment. However, CVD tends to be favoured in industry due to the

maturity of the technology and the lower achievable particulate densities.[88] The

CVD growth rate on (111) oriented Si structures has been shown to be lower than

on (001), although the ratio between Ge and Si deposition rates is greater.[174]

Doping in Si/SiGe heterostructures may present a challenge. Surface segregation

occurs due to it being energetically favourable for dopants to rise to the surface

during growth. The effect is quite weak in Ge[175], but has been shown to be sizeable

for low temperature CVD[176] and gas-source MBE[177] growth of Si-rich structures.

Segregation allows dopants to spread over large distances within devices, which

makes modulation doping challenging. Zhang shows that the effect may be reduced,

however, by removing the surface dopants with atomic hydrogen etching.[177]



6.2. Status of growth technology 121

6.2.1 Virtual substrates

Although it is impractical to obtain arbitrary Ge fractions in wafers, a “virtual

substrate” (or pseudo-substrate) may be grown upon a standard Si wafer by de-

positing SiGe epitaxially, with gradually increasing Ge content[88]. This technique

has been used with conventional CVD techniques to achieve a 24% Ge virtual sub-

strate on Si[178] with a 5% Ge/µm composition gradient and 0.88µm capping layer.

In the same study, it was shown that the composition gradient could be increased

to as much as 52% Ge/µm. However, the low temperature mobility dropped from

2.58×105 to 1.37×105 cm2V−1s−1 due to the increased number of dislocations.

Using a low composition gradient and a thick capping layer gives a good quality

surface, but SiGe alloys have a significantly lower thermal conductivity than pure

Si.[179] In addition to this, a thick virtual substrate increases the dimensions of the

QCL significantly. The optical mode of the device overlaps with the substrate to

some extent, where it is unable to stimulate further emission. It is therefore desirable

to develop thinner virtual substrates.

A thin film of the desired substrate material may be grown directly on top of a

silicon-on-insulator (SOI) wafer. As long as the critical thickness of the SiGe film is

greater than that of the Si on the wafer, the wafer can be annealed and dislocations

thread down into the SiO2 layer. The SiGe film therefore relaxes and may be used as

a virtual substrate. Ge fractions up to 15% have been grown using this method.[180]

A similar approach involves growing a thin Si layer with many defects at low

temperature. These defects act as nucleation sites for the dislocations when a sub-

strate is annealed. Again, Ge fractions up to 15% have been grown, with threading

dislocation density as low as 104 cm−2.[181] Defects below the surface can also be

obtained by helium implantation, and 200 nm thick 30% Ge substrates have been

developed.[182]

Virtual substrates have so far been difficult to obtain in (111) oriented systems

using graded buffer regions, with threading dislocation density around ten times

that in (001)[174]. In this orientation, significant relaxation of strain occurs by
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the formation of planar defects, and much gentler grading of buffer regions may be

required[174].

Ge-rich virtual substrates may be obtained by using a graded SiGe buffer. How-

ever, great care must be taken to reduce threading dislocations and surface rough-

ness. Samavedam showed that by using a miscut Si wafer and introducing a pol-

ishing step part way through the growth process, a threading dislocation density of

2.1×106 cm−2 was achievable.[183] More recent work has reduced this to 1×105 cm−2

in a 1µm Ge layer upon a 10µm graded buffer.[184]

An alternative approach avoids the need for such a thick buffer by growing

a 25 nm thick amorphous Ge seed layer directly upon Si using high tempera-

ture CVD. A crystalline Ge layer (up to 1.6µm thick) is then grown upon the

seed layer at a lower temperature.[185] The dislocation density may be reduced to

around 2.3×107 cm−2 in such structures after annealing or 2.3×106 cm−2 in limited

areas[186].

6.3 Diffuse interfaces

Although the model has so far assumed that interfaces are perfectly abrupt, diffuse

Ge profiles may result from processes such as surface segregation during growth,[177]

or by annealing.[187] In this section, it is shown that this leads to significant changes

in the subband spacing and scattering rates in a QW[7]. The issue of barrier degra-

dation is then addressed by considering a single barrier separating a pair of QWs.

A set of figures of merit for tolerance to Ge interdiffusion is defined and results are

compared for each material configuration.

6.3.1 Diffusion model

Surface segregation yields asymmetric Ge interdiffusion profiles, as Ge preferentially

rises to the surface during epitaxial growth.[177] In contrast, annealing leads to

symmetric interdiffusion, as it depends only upon the concentration difference at
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interfaces.[187] Both processes change the electronic behaviour of a system by nar-

rowing the QWs, degrading the barriers and reducing the purity of material within

the QWs. Due to this intrinsic similarity between the processes, it is reasonable

to approximate their combined effect as resulting from a single annealing-like pro-

cess characterised by an effective diffusion length Ld.[187] Diffusion lengths around

Ld ≈ 1–2 nm have been observed experimentally.[188]

Annealing of an abrupt structure, with the Ge fraction xI in layer I provides

a simple model of a diffuse system. The abrupt-interface structure is embedded

between infinitely thick barriers with composition x0. The composition profile after

annealing is[187]

x(z) =
1

2

N
∑

I=1

xI

[

erf

(

z − zI−1

Ld

)

− erf

(

z − zI
Ld

)]

+
x0

2

[

erf

(

z − zN
Ld

)

− erf

(

z − z0
Ld

)]

, (6.7)

where the I-th layer boundaries are zI−1 and zI . For annealing at a constant tem-

perature, the diffusion length is given by

Ld = 2(Dt)1/2, (6.8)

where D is a temperature dependent diffusion constant and t is the annealing

time[187, 189].

6.3.2 Single quantum wells

A single QW with a pair of 5 nm Si0.5Ge0.5 barriers was modelled in (001) Ge and

in (001) and (111) Si. In each case, the width of the well was adjusted to give a

separation of approximately 20 meV between the lowest pair of subbands. A virtual

substrate was used in each case to minimise strain in the QW. For the (001) Si/SiGe

QW, a 7.2 nm well width and 27% Ge virtual substrate composition were required.

In the (111) Si/SiGe QW, the well width and virtual substrate Ge fraction were

adjusted to 11.5 nm and 22% respectively. In the (001) Ge/GeSi QW, a 20 nm well

width and 81% Ge virtual substrate were used.
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Figure 6.2: Interdiffusion in a single QW at diffusion lengths of 0, 1 and 2 nm.

The effect of interdiffusion upon the Ge profile in a QW is illustrated in fig. 6.2.

As Ld increases, the bottom of the well narrows and the top widens. Subbands

which are nominally near the bottom of the well are therefore pushed up in energy

as interdiffusion increases, while those at the top drop in energy. Conversely, the

effect is very small in subbands near the middle of the QW depth.

Fig 6.3 shows the effect of interdiffusion upon subband separation. The effect is

quite complex, as it depends upon the depth of the QW and the nominal energies of

the subbands. In the case of the (001) oriented structures, both subbands nominally

lie well below the middle of the QW energy range and the well appears to shrink

with increasing interdiffusion. The subband separation therefore increases. In the

(111) Si system, the well is somewhat shallower and the upper subband lies near the

middle of the energy range. The lower subband therefore increases in energy while

the upper subband stays approximately unchanged, leading to a small reduction in

subband separation.

In general, however, narrower layers are required to obtain a given subband sep-

aration in systems with larger effective mass. Small changes in layer width therefore
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Figure 6.3: Separation between lowest pairs of subbands as a function of interdiffusion

length in single QWs

have a greater effect and it can be seen in fig 6.3 that subband separation varies

much more rapidly in (001) Si than in the other systems, due to its much greater

effective mass.

The effect on scattering rates is also quite complex. The single QW systems

described above were modelled with doping spread throughout the well layer at a

sheet doping density of 1011 cm−2 with T =4 K and Te=24 K. Figure 6.4 shows the

scattering rates as a function of interdiffusion in a single (001) oriented Si QW.

Most of the rates only vary gently as the overlap between subbands changes. The

interface roughness rate initially grows as the wavefunctions are allowed to penetrate

deeper through the interfaces. At larger interdiffusion lengths, the degradation of

the conduction band offset reduces the interface roughness scattering. The greatest

change is observed in alloy disorder scattering, which grows by several orders of

magnitude and becomes the fastest scattering mechanism at Ld = 2.8 nm. This is

due to the combined effect of the decreasing purity of the Si in the well region and
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Figure 6.4: Average scattering rates from second to first subband in a (001) Si QW

with 50% Ge barriers as a function of interdiffusion length.

the increasing leakage of the wavefunction into the barriers.

The total scattering rate in (001) Si rises appreciably for 0.4 < Ld < 3 nm as the

interface roughness and alloy disorder scattering both become faster. For Ld & 3 nm,

the increase in alloy disorder scattering is approximately balanced by the decrease

in interface roughness scattering and the total scattering stabilises 4.2 times faster

than in the nominal structure.

Figure 6.5 shows that the situation is somewhat less dramatic in (111) oriented

Si due to the greater well width. The Ge fraction in the centre of the well is

therefore lower than in diffuse (001) oriented systems and the alloy disorder scat-

tering increases more gently and only becomes the dominant mechanism around

Ld > 5 nm. The total scattering rate therefore remains fairly constant for smaller

diffusion lengths.

Figure 6.6 shows the effect of interdiffusion upon scattering in Ge QWs. Al-

though the previous observations about alloy disorder scattering rates remain quali-

tatively correct, the intervalley phonon scattering plays a much more important role.



6.3. Diffuse interfaces 127

0 1 2 3 4 5
Diffusion length [nm]

10
9

10
10

10
11

A
ve

ra
ge

 s
ca

tte
rin

g 
ra

te
 [1

/s
]

ion
ifr
ado
acp
inter
TOTAL

Figure 6.5: Average scattering rates from second to first subband in a (111) Si QW

with 50% Ge barriers as a function of interdiffusion length.
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Figure 6.6: Average scattering rates from second to first subband in a (001) Ge QW

with 50% Ge barriers as a function of interdiffusion length
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Figure 6.7: Conduction band potential and lowest two subband minima shown

schematically (solid lines) for varying degrees of interdiffusion. The nominal values

are shown as dotted lines in each plot. (a) shows the “uncoupled” regime, correspond-

ing to low interdiffusion. (b) shows the weak coupling regime, in which interdiffusion

degrades the barrier between wells. (c) shows the “single well” regime, in which large

interdiffusion merges the wells.

In the nominal structure, the subband spacing is 20 meV, which is below the inter-

valley phonon energy. As interdiffusion increases, the subband separation grows and

it can be seen in fig. 6.3 to exceed ~ωq = 24 meV for Ld > 1.9 nm. The scattering

rate therefore rises rapidly as interdiffusion increases, until the phonon scattering

saturates at Ld > 1.9 nm.

6.3.3 Barrier degradation

To estimate the effect of interdiffusion upon barrier degradation, pairs of coupled

QWs separated by a thin barrier were considered. Initially, a (001) oriented Si-rich

structure with well widths of 4.5 and 2.6 nm separated by a 1 nm barrier was mod-

elled. A 28% Ge virtual substrate was used to minimise strain in the heterostructure.

The resulting energy separation between the lowest pair of subbands is 20 meV. The

lower energy electrons are strongly confined in the wider well, and the higher energy

electrons in the narrower well as shown schematically in fig. 6.7(a).

Specific results for each material configuration are discussed shortly, but some

general characteristics of diffuse double quantum well systems may be identified.
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Figure. 6.7 shows the results for the (001) oriented n-type Si rich system described

above. Three distinct regimes can be identified, as interdiffusion increases. For low

interdiffusion [fig. 6.7(a)] the interfaces are almost abrupt, and the barrier is well

defined. This effectively uncouples the wells, resulting in very small overlap between

the lowest pair of subbands.

As interdiffusion increases, the barrier degrades [fig. 6.7(b)] and the wells become

weakly coupled, leading to an increased overlap between subbands. The bottoms

of the wells narrow, leading to an increased subband spacing. At very large inter-

diffusion lengths, [fig. 6.7(c)] the barrier potential is substantially reduced, and the

system resembles a single quantum well with the nominal “barrier” region acting as

a perturbation. The region of overlap between subbands now extends across the en-

tire system, and the energy spacing between subbands is determined approximately

by the width of the wide, single well and is hence lower than the nominal value.

Figures of merit

To provide a useful comparison between the material configurations, three figures of

merit were defined for the tolerance to interdiffusion.

Figure 6.8 gives a schematic representation of the effect on subband spacing. A

pair of figures of merit characterise such an effect. Lpk is the interdiffusion length

which results in a peak shift in subband separation ∆Epk. Lpk is therefore an

indicator of the point at which the system moves into the “single well” regime. As

this represents a large change in electronic behaviour, it is desirable to maximise

the value of Lpk. Shifts in subband spacing are undesirable in a practical device,

and a low value of ∆Epk is preferable. A normalised value ε =
∆Epk

E0
gives the peak

subband spacing relative to the nominal value.

As stated previously, the overlap between subband states increases as the barrier

degrades and this causes an increase in scattering rates. A final figure of merit Lw

is defined as the interdiffusion length which yields a “catastrophic” 50% increase in

intersubband scattering rate. An ideal system would maximise this value.
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Figure 6.8: Schematic representation of subband spacing as a function of interdiffusion

length. In the “weak coupling” regime (Ld < Lpk), the subband spacing increases to a

peak shift of ∆Epk. At greater interdiffusion lengths, the subband spacing decreases.

(001) oriented Si-rich structures

Figure 6.9 shows the calculated intersubband scattering rates and subband separa-

tion for a (001) oriented Si-rich double QW. A large increase in subband spacing

is visible even at small diffusion lengths, leading to a peak shift of ε = 99.5% at

Lpk = 1.34 nm.

At low interdiffusion lengths, interface roughness scattering dominates strongly.

Increases in interdiffusion result in a greater overlap between wavefunctions, which

causes all scattering rates to rise sharply. A 50% increase in total scattering rate

is seen at Lw = 0.87 nm. In the “single well” regime, the large Ge fraction in the

wells leads to the alloy disorder scattering becoming dominant. Simultaneously, the

interface roughness scattering decreases as the central barrier decays and the total

scattering rate becomes approximately constant.
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Figure 6.9: Average scattering rates and subband separation from second to first

subband in a (001) Si double QW with 50% Ge barriers as a function of interdiffusion

length.
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Figure 6.10: Average scattering rates and subband separation from second to first

subband in a (111) Si double QW with 50% Ge barriers as a function of interdiffusion

length.
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(111) oriented Si-rich structures

In the (111) crystal orientation, the layer thicknesses were adjusted to 9, 3 and

2 nm for the two wells and the barrier respectively to preserve the nominal 20 meV

subband separation. A 23% Ge virtual substrate was required to minimise strain.

Figure 6.10 shows that the effect of interdiffusion on subband separation is relatively

small due to the low effective mass. The lower subband energy only shifts downward

by 6 meV, giving ε = −26.0% at Lpk = 2.42 nm.

As before, interdiffusion leads to a switch in dominance between interface rough-

ness and alloy disorder scattering, although the large layer widths weaken the effects.

The low conduction band offset allows some coupling between the wells, even in the

absence of interdiffusion. The sudden appearance of electron–phonon and ionised

impurity interactions seen in the (001) oriented system is therefore avoided. This

fairly constant background level of scattering, combined with the smooth transition

between ionised impurity and alloy disorder scattering gives a stable total scattering

rate with respect to interdiffusion. The corresponding figure of merit Lw > 5 nm is

far superior to that of the (001) orientation.

(001) oriented Ge-rich structures

The final set of results is shown in fig. 6.11, for a (001) oriented Ge rich system. Due

to the low quantisation effective mass, the layer widths are increased to 12.5, 7.4 and

2.8 nm for the wells and the barrier respectively. A 78% Ge virtual substrate was

used. The amount of interdiffusion required for single well behaviour is large, giving

Lpk = 3.81 nm. Although the weak coupling regime persists over a large range of

interdiffusion lengths, the subband separation is shown to rise more than in (111)

oriented Si-rich systems, giving ε = 167%. This occurs because the conduction band

offset is larger than that of (111) oriented Si and the upper subband lies below the

midpoint of the well and barrier potentials. The upper subband is therefore affected

strongly by the narrowing of the bottom of the well.

As before, a transition between interface roughness and alloy disorder scattering
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Figure 6.11: Average scattering rates and subband separation from second to first

subband in a (001) Ge double QW with 50% Ge barriers as a function of interdiffusion

length.

dominance is seen, although the rate of change of scattering rates is reduced due

to the large layer widths. The effect of the gradual reduction in interface potential

is exceeded by the increase in overlap between the subbands. This results in a

slight increase in interface roughness scattering and the “balancing” of the interface

roughness and alloy disorder scattering rates is not achieved.

Additionally, intervalley electron–phonon interactions are significant. The scat-

tering rate increases for small amounts of interdiffusion, as the subband spacing ap-

proaches the phonon energy of 24 meV. For subband separations around this value,

the electron–phonon interactions become the dominant scattering process. As the

subband spacing increases above the phonon energy, the overlap between subbands

leads to a further, gradual increase in electron–phonon scattering, although alloy

disorder scattering regains dominance in the single well regime.

The combination of these effects leads to a faster increase in the total scattering

than that seen in the (111) oriented Si-rich system. Consequently, the level of

interdiffusion required for a 50% increase in scattering Lw = 2.36 nm, is slightly
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lower.

6.4 Conclusion

By taking mechanical stability into account, an upper limit has been placed on the

thickness of individual layers within a QCL. It has been shown, however, that strain

balance may be achieved over the length of a period by selecting an appropriate

substrate material. This implies that as long as all individual layers are kept below

their critical thickness, an effectively infinite number of periods of the structure may

be grown.

Epitaxial growth of SiGe heterostructures is an active area of research, but it

has been shown that good quality growth of multi-layer (001) Si/SiGe structures

is already achievable. Each of the material configurations considered in this work

presents its own challenges, however. Modulation doping in (001) Si may be difficult

due to surface segregation effects, although this is less of an issue in Ge. (111) Si has

proved difficult to grow, due to the formation of planar dislocations, but a reduced

composition gradient in the virtual substrate may reduce this problem. Finally,

virtual substrate growth in (001) Ge may be challenging due to the large lattice

mismatch between the Si wafer and the Ge-rich substrate material. Good progress

is being made in each of these areas, however.

The effect of interdiffusion has been investigated in each of the material config-

urations. It was shown that as the diffusion length increases, the bottoms of QWs

narrow and subband separations are affected. Alloy disorder scattering increases by

several orders of magnitude as the alloy material diffuses into the nominally pure

Si (or Ge) well region. (001) Si was found to be most strongly affected as its large

quantisation effective mass led to the requirement for narrow wells. In Ge, a sud-

den jump in intervalley scattering was predicted as the subband separation switches

from being below to above the relatively low phonon energy.

A set of figures of merit were defined to describe the tolerance of each material
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System Lpk [nm] ε Lw [nm]

(001) Si 1.34 99.5% 0.87

(111) Si 2.42 -26.0% > 5.0

(001) Ge 3.81 167% 2.36

Table 6.1: Comparison between interdiffusion figures of merit for each material con-

figuration.

configuration to barrier degradation by interdiffusion, with respect to subband sep-

aration and total scattering rate. The calculated values for these figures of merit

are compared in table 6.1.

In general, it has been shown that, for all material configurations, interface

roughness makes a greater contribution than alloy disorder to the total scattering

rate in systems with abrupt interfaces. The converse is true for diffuse systems. As

interdiffusion increases, the total scattering rate becomes larger due to increased

overlap between subbands.

The subband spacing varies in a more complicated manner. Small levels of

interdiffusion lead to a “weak coupling” regime, in which the bottoms of the wells

become narrower and subband separation increases. Larger levels of interdiffusion

cause the system to behave more like a single QW, and the subband separation

decreases.

It has been shown that the tolerance of QCLs to interdiffusion may be improved

by moving to the (111) orientation or by using Ge QWs. The low effective mass

of these systems allows thicker layers to be used and the effect of interdiffusion on

their geometry is less severe. The conduction band offset in (111) oriented systems is

lower than that in Ge-rich systems and this leads to (111) oriented systems showing

almost no variation in their subband spacing for small amounts of interdiffusion. An

improvement in the stability of scattering processes is also achievable.

Ge-rich systems show a moderate improvement in the stability of subband spac-
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ing at low interdiffusion lengths. However, a significant barrier potential exists up to

very large interdiffusion lengths. Care must be taken when designing Ge-rich QCLs

due to the rapid electron–phonon interactions for subbands separated by more than

24 meV. By avoiding transitions just below the phonon energy in QC laser designs,

much better stability of scattering rates may be achieved.

The results of this chapter are supported qualitatively by recent investigations

of III-V heterostructures. A threefold increases in emission linewidth (and hence

total scattering rate) has been observed experimentally in GaAs/AlAs QCLs as the

diffusion length increases from 0 to 2.5 nm[190]. A blue shift of 5.6 meV in the

interminiband emission frequency for GaAs/AlAs superlattices was also observed as

the interdiffusion length increased from 0 to 2.7 nm[191]. Both sets of results lie

within the same range of values as those predicted for SiGe-based heterostructures

in this chapter.

Finally, it is important to revisit the key assumptions that were made in the pre-

vious chapter to handle the somewhat blurred distinction between interface rough-

ness and alloy disorder scattering in diffuse systems. The ambiguity is due to the

nonzero interface length and the continuous spatial variation of alloy composition.

Spatial limits were introduced for each interface region and it was assumed that the

interface roughness parameters are independent of interdiffusion. In reality, how-

ever, annealing-like diffusion processes may reduce the interface roughness height.

Although the theoretical results agree qualitatively with III-V experimental data,

TEM imaging of diffuse interfaces and FTIR spectroscopy of SiGe-based heterostruc-

tures would be extremely valuable in testing the validity of assumptions and tuning

the roughness parameters.



Chapter 7

Transport and gain

In the work so far, the bandstructure and scattering rates have been determined

for SiGe-based QCLs. This chapter describes methods for determining the current

through a device and its optical gain.

At steady state, the rate of electrons entering each subband equals the rate of

those leaving and the subband populations are found by solving a system of rate

equations. Similarly, a steady state electron temperature may be found, for which

the energy of electrons entering each subband balances that of the electrons leaving

the subband.

Successful laser operation relies upon there being a net gain, or increase in the

number of coherent photons as light passes through a QCL. The maximum operating

temperature and threshold current are found by investigating the point at which the

gain for SiGe QCLs equals the estimated threshold gain for SiGe waveguides.

7.1 Subband populations

Expressions for the intersubband scattering rates were found in chapter 5. The

rate of change of subband population is given by the difference between the rate of

electrons entering the subband and those leaving. It was shown in chapter 2 that the

lowest conduction band potentials in SiGe alloys lie in multiple equivalent valleys in

137
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reciprocal space. The intersubband scattering processes described in chapter 5 are

identical in equivalent valleys and the subband populations are also identical. It is

therefore possible to gather the populations of subbands in equivalent valleys into a

single term ni
valni, where ni is the number of electrons in subband i and ni

val is the

number of equivalent valleys.

Charge neutrality requires that the total population of all subbands in all valleys

must equal the number of donor ions, giving

N2D =
∑

i

ni
valni. (7.1)

In (001) oriented systems, the possible values of nval are 2 (for subbands in ∆2 val-

leys) or 4 (for subbands in ∆4 or L valleys). If valley splitting effects are included,

the split ∆2 and L valley subbands must be considered independently and the num-

ber of equivalent valleys are halved. In (111) systems, nval may be 6 (∆ valleys), 3

(L3 valleys), or 1 (L1 valley).

In this work, however, the calculations are greatly simplified by assuming that

only the lowest valley set is populated. This is a reasonable approximation provided

that subbands in only one valley set lie within the range of energy used in a QCL.

In chapter 4, it was also shown that valley splitting becomes small (∼1 meV) in

relatively long structures with imperfect interfaces. It is assumed here, therefore,

that the individual transitions due to valley splitting will be so close in energy that

they simply appear as a linewidth broadening in the gain spectrum. The simplified

expression for charge neutrality is given by

nval

∑

i

ni = N2D. (7.2)

Periodicity requires that nj = nj+pN , where p is the index of the period and

N is the number of subbands in a period. The rate of change of population is

therefore[150]

dni

dt
=

1
∑

p=−1

N
∑

j=1

[

njW(j+pN)i − niWi(j+pN)

]

. (7.3)
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Figure 7.1: Schematic representation of subband energies and lifetimes in an idealised

three-level QCL system. Current is injected only into the upper laser level and extracted

from the extraction level.

At steady-state, dni

dt = 0 for all subbands and a set of rate equations may be solved

to find the populations.

7.1.1 Three-level approximation

A real QCL may contain many subbands in each period, but an idealised three-level

model is useful for developing an understanding of its behaviour. Figure 7.1 shows a

schematic representation of such a model. Current I is injected into the upper laser

level (n=3). Optical emission occurs between the upper laser level and lower laser

level (n=2). Ultimately, electrons scatter to the depopulation level (n=1) and are

extracted by an identical current.
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The rate equations for the system are

0 = −n1(W12 +W13) + n2W21 + n3W31 (7.4)

0 = n1W12 − n2(W21 +W23) + n3W32

0 = n1W13 + n2W23 − n3(W31 +W32)

These equations form an underdetermined set as the third equation is a linear

combination of the first two. A fully determined set of equations may be ob-

tained by replacing the third equation with the condition for charge neutrality,

N2D = nval(n1 + n2 + n3).

Rewriting this as a matrix equation gives











−(W12 +W13) W21 W31

W12 −(W21 +W23) W32

1 1 1





















n1

n2

n3











=











0

0

N2D/nval











W n = N .

(7.5)

In the general case of N populated bands, the W matrix elements are

Wii|i6=N = Wii −
∑

j

Wij , (7.6)

Wij |i6=j 6=N = Wji,

WNj = 1.

The populations of the subbands are given by

n = W
−1N . (7.7)

For lasing, population inversion is required, meaning that more electrons exist in

the upper laser level (ULL) than the lower laser level (LLL). Some insight into the

effect of scattering rates upon populations may be gained from the three level model

at low temperatures. Here, few carriers have sufficient kinetic energy to scatter to a

higher subband and W12 = W13 = W23 = 0. At steady state, the carriers scattering
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Figure 7.2: Schematic representation of elastic intersubband scattering. (a) In cold

electron distributions, electrons may only scatter to higher kinetic energy states in lower

subbands. (b) In hot electron distributions, electrons may also scatter to lower kinetic

energy states in higher subbands.

from |3〉 to |2〉 replace the carriers scattering from |2〉 to |1〉. Thus, the rate equations

reduce to
n3

n2
=
W21

W32
. (7.8)

A population inversion is therefore achieved between |3〉 and |2〉 if W21 > W32.

7.2 Electron temperature

In chapter 5, electrons were assumed to take a quasi-thermal distribution within

subbands due to the rapid intrasubband scattering, characterised by an electron

temperature. In general, intersubband scattering changes the kinetic energy of car-

riers. The kinetic energy of carriers increases when they scatter elastically to a lower

subband and decreases for scattering to higher subbands.

Figure 7.2(a) shows that at low electron temperatures, carriers may only scatter

elastically to lower subbands. This leads to a net increase in kinetic energy in the

destination subband. At high electron temperatures, electrons can scatter elastically

into higher subbands [fig. 7.2 (b)]. For very high electron temperatures, this can

cause a net decrease in kinetic energy.
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It follows that a steady-state solution exists, for which the energy loss due to

scattering to higher subbands equals the energy gain due to scattering to lower

subbands[150]. The initial and final kinetic energies are related by

Ek,f = Eif + Ek,i (7.9)

for elastic processes. An additional ~ωq may be added to the right-hand side for

phonon absorption processes or subtracted for emissions.

The net kinetic energy transfer rate in the final subband is

dEk,f

dt
=
∑

i

(

niw
+
if − nfw

−
fi

)

, (7.10)

where w+
if is the average kinetic energy gained by subband f when an electron

scatters from subband i and w−
fi is the average kinetic energy lost by subband f

when an electron scatters to subband i. The kinetic energy gain in the final subband

at a given initial wavevector is

w+
if (ki) = Ek,fWif (ki) (7.11)

and the average value with respect to initial wavevector is

w+
if =

∫

kidkiEk,fWif (ki, Te)Pi(ki, Te)

πni
. (7.12)

Eif + Ek,i = Ek,f for elastic processes and the average energy gain in the final

subband may be rewritten as

w+
if = EifW if +

∫

kidkiEk,iWif (ki, Te)Pi(ki, Te)

πni
, (7.13)

for elastic proceses. By deriving a similar expression for w−
if , it can be shown that

w+
if = w−

if + EifW if . (7.14)

For inelastic processes, Eif → Eif ± ~ωq as before.

Substituting these results into eqn. 7.10 gives

dEk,f

dt
=
∑

i

niw
−
if +

∑

i

niEifW if − nf

∑

i

w−
fi. (7.15)
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Summing over all final subbands gives the net energy transfer rate:

dEk

dt
=
∑

f

∑

i

(

niw
−
if − nfw

−
fi

)

+
∑

f

∑

i

niEifW if . (7.16)

The first double summation equates to zero, leaving

dEk

dt
=
∑

f

∑

i

niEifW if . (7.17)

A steady state condition may be located by calculating the energy transfer rate

across a range of different electron temperatures and interpolating the results to find

the temperature at which dEk

dt = 0.

7.3 Current density

When an electric field is applied, the potential drop across a period of the QCL

leads to a preferential direction of charge transport. The rate at which charge flows

between two subbands is given by eniWif and the contribution to the current density

is given by[192]

Jif = pifeniWif , (7.18)

where pif is the number of structural periods separating the final and initial subband.

In a simple model, electrons are treated as scattering over an integer number of

periods, where pif = 1 for left-to-right transitions or −1 for right-to-left transitions.

Intraperiod scattering is neglected. A better model allows non-integer values of pif

by considering the difference in expectation positions 〈z〉 between the initial and

final subbands, where

〈z〉i =

∫

ψ∗
i (z)zψi(z)dz. (7.19)

The number of periods is then given by

pif =
〈z〉f − 〈z〉i

Lp
(7.20)
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and the total current density, assuming that only one valley set is populated, is given

by summing over all intersubband interactions[3],

J =
enval

Lp

∑

i

ni

∑

f

(〈z〉f − 〈z〉i)Wif . (7.21)

It is useful to note that the scattering processes are identical for each valley in

an equivalent set. The expression above, therefore, simply multiplies each initial

subband’s contribution to the current by the number of equivalent valleys.1

An approximate expression for the current may be obtained by returning to the

three-level example in section 7.1.1. If current only enters the active region via the

ULL and leaves via the LLL, and absorption to higher subbands is ignored then the

steady state rate equations become

0 = − J

enval
+ n2W21 + n3W31 (7.22)

0 = n3W32 − n2W21

0 =
J

enval
− n3(W31 +W32).

It follows that J
e = nvaln3(W31 +W32) and therefore

J =
nvaln3e

τ3
, (7.23)

where the lifetime of the ULL is given by

1

τ3
= W32 +W31. (7.24)

This simple approximation shows that the current density through the device de-

pends largly upon the nonradiative depopulation rate of the ULL.

7.4 Gain

In order for lasing to occur, the number of coherent photons in a QCL must increase

as light passes through the device. Photons may be absorbed as they interact with

1It is not necessary to include the number of destination valleys in the expression, as this was

already accounted for in the scattering rate equations of chapter 5.
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the structure, or they may stimulate the emission of other photons. The net gain

is the number of additional photons introduced as an incident photon travels over a

unit distance. A positive gain indicates that stimulated emission exceeds absorption,

while the converse applies for negative gain.

The optical gain per unit length within a heterostructure is[90]

G(ω) =
σ(ω)

ε0cnr
, (7.25)

where nr is the real part of the refractive index of the active region stack and σ is

the real part of the optical conductivity. This is given by

σ(ω) =
πe2

2(mqm2
d)

1
3Lp

∑

i,j

fjinin
i
val sgn(Eij)Lij(ω), (7.26)

where fji is the oscillator strength and Lij is a lineshape function, representing the

spread of emission energy. The signum function determines whether the transition

is an absorption or emission, and is defined by

sgn(x) =



























−1; x < 1

0; x = 0

1; x > 1.

(7.27)

It is important to note that optical transitions do not change the wavevector of

electrons, and the subbands i and j must therefore be located in the same valley in

the expression above. The optical conductivity is identical for each equivalent valley

in a set, and the total value is found by simply multiplying the single valley result

by nval.

The oscillator strength is

fji =
2(mqm

2
d)

1
3

~
ωij |Dij |2, (7.28)

where Dij = 〈j|z|i〉 is the optical matrix element. Substituting this into the expres-

sion for gain gives[150]

G(ω) =
e2ωπ

~cnrε0Lp

∑

ij

nin
i
val|Dij |2 sgn(Eij)Lij(ω). (7.29)
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7.4.1 Lineshape

The lineshape may be treated as a Lorentzian distribution,

Lij(ω) =
γij

π
[

(~ω − |Eij |)2 + γ2
ij

] , (7.30)

where γij is the half-width at half-maximum of the energy distribution.

The non-zero linewidth has two main causes. Firstly, a QCL consists of many

structural periods, and small variations in layer thickness and electric field lead to

a slightly different optical emission energy from each period. This inhomogeneous

broadening causes the spectrum to appear “smeared” in energy.

An additional homogeneous broadening effect is due to the finite lifetimes of the

states involved in the transition. The corresponding broadening in energy may be

derived from density matrix calculations of light-matter interactions as[193]

γij &
~

2

(

1

τi
+

1

τj

)

. (7.31)

The homogeneous broadening can be calculated by using the total scattering

rates as described in chapter 5. This method has recently been shown to give good

agreement with experimental data for III–V systems[194]. However, the inhomoge-

neous broadening is dependent upon the quality of construction of the device. A

total linewidth of around 2γ ≈ 2 meV is typical for the lasing transition in GaAs

based THz QCLs[52, 195], and the inhomogeneous broadening is adjusted to give

comparable low-temperature values in this work.

7.4.2 Gain coefficient

If a QCL is designed to emit light of energy ~ω = |Eij |, where i and j are the ULL

and LLL respectively, the peak value of the lineshape function for the emission is

Lij(ωij) =
1

πγij
, (7.32)
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and the peak contribution of the ULL→LLL transition to the gain is

Gij =
e2ωijnval

~cnrε0Lpγij
(ni − nj)|Dij |2 (7.33)

=
2πe2nval

nrε0Lpγijλij
(ni − nj)|Dij |2.

By making the rather crude assumption that no other intersubband transitions

contribute gain or loss at this frequency, an approximate expression for gain may

be obtained from the three-level model of section 7.1.1. The population inversion

between the ULL and the LLL is

n3 − n2 = n3

(

1 − W32

W21

)

(7.34)

=
Jτ3
nvale

(

1 − τ2
τ32

)

.

It follows that the peak gain is given by G32 = g32J , where the gain coefficient g32

is defined as

g32 =
2πeτ3|D32|2
nrε0Lpγ32λ32

(

1 − τ2
τ32

)

. (7.35)

The peak active region gain is therefore approximately proportional to the cur-

rent density. However, there are very significant shortcomings in this approximation.

Firstly, the current density is determined by the electric field, which also affects the

subband separations, lifetimes and the optical matrix elements significantly. This

breaks the linearity of the relationship.

Secondly, real QCLs may have many more than three subbands per period. Ab-

sorption of light may occur between any pair of subbands, yielding several absorption

peaks at various energies across the gain spectrum. The nonzero linewidth of these

absorptions means that they may significantly reduce the magnitude of the active

region gain. A somewhat better approximation is therefore

G32 = g32J − ai, (7.36)

where ai represents the effect of intersubband absorption. Thirdly, the linear ap-

proximation suggests that an arbitrarily large gain may be achieved in virtually any
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device by simply driving it with a large enough current density. In reality, the max-

imum current density is finite, and in a poor design, it may be impossible to achieve

a large enough gain to overcome losses.

7.4.3 Threshold current density

In the previous section, it was shown that the peak active region gain is a nonlinear

function of current density. In this section, a threshold gain (i.e. the minimum

required for lasing) is defined, which may be used to find the threshold (minimum)

current density required to operate a QCL.

Stimulated emission is only achieved if a large photon flux is maintained within

the optically active heterostructure. This is achieved by enclosing the QCL het-

erostructure within a waveguide. The modal overlap Γ is defined as the fraction of

photons located within the active region of the QCL, and in an ideal waveguide Γ

should be close to unity. Absorption of light within the waveguide is described by a

waveguide loss αw which ideally should be close to zero.

A second loss mechanism occurs due to the emission of light from the facets of

the device. These mirror losses may be distributed over a round-trip through the

waveguide and represented by an effective mirror loss

αm =
1

2Lw
ln

(

1

R1R2

)

, (7.37)

where R1 and R2 are the reflectivites of the front and back facets of the laser re-

spectively. In simple dielectric waveguide structures, the reflectivity is given by the

Fresnel reflection coefficient

R1 = R2 =

(

n− 1

n+ 1

)2

, (7.38)

where n is the refractive index of the cavity material[196]. The refractive index is

different for each layer of the QCL heterostructure and is given by n ≈ 3.42+0.37x+

0.22x2, where x is the Ge molar fraction in the layer[197]. However, the individual

layers are much smaller than the optical wavelength and it is possible to approximate
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the entire structure as a bulk material with the average Ge fraction of the layers. The

resulting mirror losses are 5.1 cm−1 for a 1 mm long Ge ridge waveguide structure

and 6.0 cm−1 for Si. Although this approximation holds reasonably well for the semi-

insulating surface plasmon waveguides described in the next section, it overestimates

the mirror losses in a double–metal waveguide. The losses in such structures are

dependent on the emission wavelength and the geometry of the waveguide and have

values around αm ≈ 1 cm−1 in GaAs[198].

The modal gain is defined as

GM = GijΓ ≈ gijΓJ. (7.39)

Net gain, and hence lasing, is only achievable when the modal gain exceeds the losses

(i.e. GM > αw +αm). A threshold gain Gth may be defined as the minimum active

region gain required for lasing. It follows that

Gth =
αw + αm

Γ
. (7.40)

Similarly, the threshold current density Jth is defined as the minimum current density

required for lasing.

7.4.4 Waveguides

The active region of the waveguide2 may consist of hundreds of periods of the QCL

heterostructure and may be over 10µm thick[195, 199]. In the case of THz QCLs,

this thickness is substantially below the wavelength of the emitted light and standing-

waves cannot form in a simple, dielectric-clad device. Alternative approaches to

waveguiding are therefore required.

In recent collaborations with the present author[3, 18], Evans calculated the

threshold gain for a 5 THz (111) Si-rich QCL using various waveguide configurations.

The propagation constant for the electric field component of light perpendicular to

the interfaces was calculated using a transfer matrix approach[200] and the bulk

2Not to be confused with the active region within a QCL period



150 7.4. Gain

Figure 7.3: Optical mode profile in a single-metal Si waveguide upon a Si substrate.

The active region is represented by the small rectangle at the top of the figure. Adapted

from joint publication with C. A. Evans[18].

Drude model was used to estimate the permittivity of materials. Evans modelled

the active region as bulk Si0.9Ge0.1, to match the virtual substrate in a (111) Si-rich

QCL[3]. A doping concentration of 5 × 1016 cm−3 was used in the active region.

Surface plasmons (vibrations in electron gases near the electrical contacts in

QCLs) have successfully been used to pin optical modes[201]. In a semi-insulating

surface plasmon waveguide[49], the electrical contact at the top of the active region

stack consists of a thin layer of highly doped semiconductor capped with metal. The

bottom contact consists of a second highly doped layer between the substrate and

the active region.

Figure 7.3 shows that the optical mode in such a structure spreads significantly

into the substrate. Evans fixed the highly-doped top contact thickness to 20 nm, but

used a much thicker bottom contact. Figure 7.4 shows that the mode is confined

more effectively by increasing the thickness of the bottom contact. However, the

waveguide also becomes more lossy, leading to a higher threshold gain.

Optimal bottom contact doping was found to be 2×1019 cm−3, as shown in

fig. 7.5. This corresponds to a modal overlap of only 17% and losses of 10.2 cm−1.

A fairly large threshold gain of 68 cm−1 is required to overcome the poor overlap.
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Figure 7.4: Modal overlap, waveguide loss and threshold gain as a function of bottom

contact thickness in a Si waveguide. Doping was fixed at 2×1019 cm−3 in the bottom

contact. Adapted from joint publication with C. A. Evans[18].
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Figure 7.5: Modal overlap, waveguide loss and threshold gain as a function of bottom

contact doping in a Si waveguide. The contact thickness was fixed at 0.5µm. Adapted

from joint publication with C. A. Evans[18].

Figure 7.6: Optical mode profile in a double-metal Si waveguide. The substrate has

been replaced by a second metallic contact at the bottom of the figure. Adapted from

joint publication with C. A. Evans[18].
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The poor modal overlap may be avoided by using a double-metal waveguide,

which has proved successful in GaAs THz QCLs[202]. Here, the bottom contact is

formed by etching away the substrate and depositing a second metallic layer. The

mode is now unable to escape the active region (Γ = 99%) as shown in fig. 7.6. An

initial design using gold contacts and a 10µm thick active region gave a waveguide

loss of αw = 50.7 cm−1. The threshold gain required to overcome these losses was

Gth = 51.7 cm−1.

High operating temperatures for GaAs-based THz QCLs have been achieved

recently by using copper instead of gold in a double-metal waveguide[50, 203].

Evans showed that with a Cu-Cu Si waveguide, threshold gain could be reduced

to 36.9 cm−1 for a 10µm active region[3] or 31.0 cm−1 for 15µm[18]. Evans’s values

for threshold gain were assumed to be invariant with respect to temperature and to

remain approximately correct for Ge-rich structures.

The results of Evans for single-metal waveguides show that increasing the doping

density improves the reflectivity of the bottom contact, but also leads to greater

free carrier losses. A third option for waveguide design overcomes this problem by

using a buried layer of a metal silicide as a reflector[204]. Buried tungsten[204] and

cobalt[205] silicides have been grown successfully in SOI wafers. Although the losses

have not been calculated for n-type buried silicide waveguides, the results for p-type

structures show that for an 8µm thick p-type SiGe active region emitting at 62µm,

Γ ≈ 90% and Gth = 31 cm−1. This represents a threshold gain around double that

of a double-metal waveguide. Therefore, the best results are expected from double–

metal and semi-insulating surface plasmon structures in n-type devices and these

will be used in the remainder of this work.

7.5 Example simulation

It is useful to illustrate the theoretical methods discussed in this chapter by analysing

a sample system from the literature. Driscoll and Paiella recently proposed a
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Figure 7.7: Conduction band profile and electron probability densities for Driscoll’s

42µm Ge QCL design[77]. The ULL, LLL and a pair of extraction levels are shown

in bold and the nominal laser transition is denoted by the arrow. The layer widths

were specified as 1.8/4.3/1.7/7.6/1.1/7.4/1.1/6.9/3.0/5.4/2.0/5.4/1.8/5.3/1.7/4.9/

1.8 nm, where bold denotes 78% Ge barriers, and normal text denotes Ge wells. Dopants

were spread evenly throughout the device at a concentration of n2D = 5 × 1010 cm−2.
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Ge/GeSi QCL emitting near 42µm[77], which is illustrated in fig. 7.7. Electrons

are injected into the ULL from an injector level, which is just below the ULL in en-

ergy. The injector wavefunction extends slightly into the active region and electrons

scatter into the ULL. The LLL overlaps strongly with the pair of extraction levels,

which in turn overlap with the miniband states outside the active region, allowing

rapid depopulation of the LLL.

The emission wavelength between the nominal laser subbands (arrow in fig. 7.7)

was calculated as 40.4µm, for an electric field of 11 kV cm−1, corresponding to a

subband separation of 30.7 meV or 7.4 THz. This is slightly different from the value

of 42µm predicted by Driscoll as the original paper did not ensure strain balancing

and used an 88% Ge substrate. Using the method of chapter 6, it can be shown

that this limits the structure to a maximum thickness of 38 nm. In this chapter, a

substrate composition of 94% Ge is used, which ensures mechanical stabililty, but

changes the wavefunctions and subband energies slightly.

7.5.1 Electron temperature

Figures 7.8 and 7.9 show that the electron temperature is a function of both lattice

temperature and electric field. Increasing the lattice temperature increases the rate

of phonon absorption, while increasing the electric field increases the energy separa-

tion between subbands. Both processes increase the number of electrons scattering

into high energy states and hence increase the electron temperature.

Figure 7.8 shows that when T > 50 K, the electron temperature rises linearly

with respect to lattice temperature, with the functional form Te = T + T0(E). T0

increases from 25 to 87 K as the electric field increases from 5 to 15 kV/cm. Below

50 K, the inelastic scattering rate becomes very small, as shown in chapter 5, and

the linear relationship breaks down.

Figure 7.9 shows that the relationship between electron temperature and electric

field is quite complicated due to multiple subbands moving in and out of resonance.

However, as the electric field increases, electrons are injected into higher kinetic
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Figure 7.8: Variation of electron temperature with respect to lattice temperature in

Driscoll’s 42µm design. Results are shown for electric fields linearly varying between

5 and 13 kV cm−1 (arrow denotes increasing electric field). The bold line denotes the

design field of 11 kV cm−1.
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Figure 7.9: Variation of electron temperature with respect to electric field in Driscoll’s

42µm design.
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Figure 7.10: Current density as a function of electric field for Driscoll’s 42µm design

at 4 K lattice temperature. The solid line shows the direct output of the simulation,

including sharp spikes due to unrealistic parasitic current channels. The dashed line

shows the results of the filtering algorithm, which removes the parasitic spikes.

energy states and the electron temperature generally rises. As the electric field

shrinks toward zero, the device approaches thermal equilibrium and the electron

temperature approaches the lattice temperature.

7.5.2 Current density

The current density is plotted against the electric field for Driscoll’s design in

fig. 7.10. Before commenting on the device-specific behaviour, it is important to

note that the plot illustrates a fundamental limitation of the semi-classical approach

used in the present work. At certain electric fields, pairs of miniband states move

into close alignment, leading to hybridisation of wavefunctions which were previously

localised on opposite sides of a barrier. The spatial extent of the wavefunctions be-

comes very large and electrons can apparently be transported instantaneously from

one side of the barrier to the other once they enter the pair of hybridised states.
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In reality, wavepackets oscillate coherently across barriers and decay via dephasing

processes before such extended states can form.

A full treatment of this mechanism is only possible by moving to more detailed

quantum mechanical approaches[148]. However, the following data analysis algo-

rithm may be used to identify and remove the effects of the unrealistic parasitic

current channels. Firstly, for each wavefunction ψi, the spatial extent is defined as

the length Li = z+ − z− containing 98% of the electron probablility density such

that
∫ z−

−∞
ψ2

i dz =

∫ ∞

z+

ψ2
i dz = 0.01. (7.41)

Wavefunctions with spatial extent greater than a structural period Li > Lp are iden-

tified as sources of parasitic current and interminiband scattering originating from

these states is disregarded. This completely eliminates the large current density

spikes, but leaves small discontinuities (1–10 A cm−2) at the points where wavefunc-

tions become long enough to meet the filtering criterion. Finally, these discontinu-

ities are removed by applying a 3-sample moving average filter. The resulting line in

fig. 7.10 shows that the parasitic spikes have been removed entirely without changing

the overall shape of the plot. A 5–10% overall reduction in current density occurs

away from the current spikes, indicating that interminiband scattering is normally

only a minor contributor to the total current density.

Having removed the unrealistic features of the current density plot, it is now

possible to observe several aspects of the behaviour of the QCL. Firstly, when there

is no electric field, there is no preferential direction for charge transport and the

current drops to zero. As the electric field increases, there is a drop in potential

across each period of the structure and a current therefore flows. The predicted

current densities are in the same range as those measured for bound-to-continuum

THz QCLs[52, 206]. At the design field of 11 kV/cm, the injector level lies below

the ULL. A local maximum in the current density occurs around an electric field of

14.2 kV/cm. This corresponds to the point at which the ULL and injector levels are

in resonance. At higher electric fields, the injector and ULL move out of resonance
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Figure 7.11: Current density as a function of electric field for Driscoll’s 42µm design

as a function of lattice temperature.

and electrons are injected more slowly.

Finally, fig. 7.11 shows that current density increases as a function of lattice

temperature, as observed experimentally in GaAs-based THz QCLs[36, 206]. This

is due to the corresponding increases in electron temperature and phonon scattering.

The relationship is approximately linear, with the form J = 287 + 0.354T where J

is in units of A cm−2 and T is in units of K.

7.5.3 Gain

The spectrum near the design field of 11 kV/cm is plotted in fig. 7.12. Figure 7.13

shows that the peak gain occurs at 7.26 THz at a field of 10.5 kV/cm rather than the

intended value. The difference in value is due to the change in substrate composition,

as explained previously. The gain never exceeds the estimated threshold for the

waveguide structures discussed in this chapter, and the device is therefore incapable

of lasing. As the electric field increases, the energy separation between the subbands

increases and the emission frequency can be seen to increase. This is known as the
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Figure 7.12: Active region gain spectrum for Driscoll’s 42µm design at electric fields

near to the design field of 11 kV/cm. Results are shown at a lattice temperature of 4 K.
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Figure 7.13: Peak gain as a function of electric field for Driscoll’s 42µm design at

4 K.
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Figure 7.14: Peak gain as a function of current density for Driscoll’s 42µm design at

4 K.

quantum-confined Stark effect, and it allows the development of electrically-tunable

QCLs[207]. Figure 7.14 shows that the relationship between gain and current density

is highly nonlinear. The gain coefficient model is shown to be a poor approximation

for the behaviour of THz QCLs as discussed previously.

Figure 7.15 shows that the peak gain rolls off for lattice temperatures above

105 K due to the LLL being repopulated by phonon absorption, which reduces the

population inversion. Increasing the temperature from 4 to 105 K appears to improve

to a maximum value of 14.7 cm−1. This is due to enhanced injection of electrons

into the ULL. The latter conclusion must be greeted with some caution, however, as

experimental data for III-V devices suggests that the optical power output decreases

monotonically with respect to lattice temperature[49, 195].
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Figure 7.15: Active region gain as a function of temperature for Driscoll’s 42µm

design in 10.5 kVcm−1 electric field as a function of lattice temperature.

7.6 Conclusion

A method has been described for calculating the gain and current density in a

QCL, thus completing the QCL model. A flowchart for the full simulation is shown

in fig. 7.16. The simulation now provides a fully self-consistent calculation of the

Schrödinger, Poisson and energy-balance equations, using a semi-classical descrip-

tion of charge transport.

It has been shown that the population inversion required for lasing may be

achieved by rapid depopulation of the LLL or rapid filling of the ULL such that

W21 > W32. The distribution of electrons within subbands was described with an

effective electron temperature and a steady state value was found using an energy-

balance approach. This affects the scattering rates significantly and hence the sub-

band populations and current density within a QCL. Electron temperatures were

shown to increase with respect to lattice temperature and electric field.

Current density was shown to vary in a complicated manner with respect to
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Figure 7.16: Complete flowchart for QCL simulation. “n = 1” denotes the first

iteration of the self-consistent Poisson–Schrödinger calculation.



164 7.6. Conclusion

electric field. As the design field is approached, the injector level of a QCL comes

into resonance with the ULL and a sharp increase in current density is seen. A

negative differential resistance exists at higher fields, as the injector level exceeds

the energy of the ULL.

It was shown that single-metal waveguides provide low losses and poor modal

overlap giving an optimal threshold gain of 51.7 cm−1 for a 10µm active region. The

overlap was increased to almost 100% in double-metal waveguides at the expense

of higher losses. The threshold gain was reduced to 36.9 cm−1. Buried silicide

waveguides provide high overlap and moderate losses, giving a threshold gain of

around 70 cm−1.

Finally, the full simulation was demonstrated by modelling the Ge QCL design

of Driscoll. It was shown that unfortunately the design yields insufficient active

region gain to overcome the waveguide losses. There are several reasons for this.

Firstly, the emission energy exceeds the L → L phonon energy, meaning that the

ULL population is reduced by rapid phonon emission. Secondly, the miniband is

wide, meaning that strong optical absorption occurs near to the ULL→LLL fre-

quency. Finally, the relatively large electric field yields high electron temperatures

and electrons are able to backfill into the LLL, weakening the population inversion.

In the next chapter, it is shown that each of these issues can be addressed and a

large net gain is possible from Ge/GeSi QCLs.



Chapter 8

QCL design examples

The simulation tools presented in earlier chapters will now be used to investigate

a set of sample QCL designs. An exhaustive exploration of the design space for

THz QCLs is not feasible, due to the large set of possible material configurations,

design schemes and doping profiles. Neither is it possible to give a true “like–for–

like” comparison between QCL designs in different material configurations. This

is because a design based on a given scheme must be altered significantly to tailor

its performance to a particular material system. Therefore, rather than presenting

a comparison of suboptimal designs in each material configuration, this chapter

presents a set of distinct, optimised designs following the approximate chronological

order in which they were investigated.

8.1 Design schemes

A superlattice is an infinitely long series of QWs (i.e. a periodic potential). Bloch’s

theorem shows that the electronic subbands are continuously distributed in energy

within “minibands” separated by “minigaps”. The superlattice serves as the basis

for all QCL designs, however, when an external electric field is applied, the mini-

bands are broken into discrete subbands. In a recent review paper[36], Williams

noted that successful THz QCL designs have modified the biased superlattice

165
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Figure 8.1: Wavefunctions in a chirped superlattice 4.4 THz GaAs/AlGaAs QCL

design[49]. The optical transition occurs between the solid and dashed black lines at

the edges of a pair of minibands. Image courtesy of Craig Evans, University of Leeds

structure to achieve population inversion according to two general design schemes.

The earliest approach to THz QCLs involves creating a chirped superlattice

(CSL) structure[49] as shown in fig. 8.1. Here, QWs are made successively narrower

across each period of the device, so that sets of subbands lie in narrow energy ranges

when an electric field is applied. This effectively restores the miniband/minigap char-

acter of the unbiased superlattice. Due to the large overlap between subbands within

a miniband, the intraminiband scattering is faster than scattering across a minigap,

which leads to a population inversion between a pair of minibands. Nevertheless, a

significant amount of nonradiative scattering still occurs across the minigap, limiting

the population inversion.

According to Williams, the CSL design scheme has been effectively superseded

by “bound-to-continuum” (BTC) devices, illustrated in fig. 8.2, in which a state

bound in a narrow QW next to an injection barrier forms the upper laser level. The

spatial extent of the upper laser level is reduced and hence the nonradiative scat-

tering matrix element between the minibands is also reduced. Selective injection of
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Figure 8.2: Wavefunctions in a bound–to–continuum mid-infrared GaAs/AlGaAs

QCL[208]. The upper laser state is trapped in a narrow well next to the injection

barrier. Image courtesy of Craig Evans, University of Leeds

electrons into the upper laser level is achieved by resonant tunneling through a thick

injection barrier. GaAs-based QCLs in both the mid-infrared[208] and THz[209]

regions have been successfully demonstrated. In principle, the BTC design scheme

should not require any special modifications for SiGe designs. Indeed, a number

of designs have been proposed for Ge/GeSi[77, 78, 210] and (111) Si/SiGe[3] BTC

QCLs.

The second commonly used design scheme in III–V devices is the resonant-

phonon (RP) QCL, illustrated in fig. 8.3. Rather than using intraminiband scat-

tering to depopulate the lower laser level, these devices rely upon rapid inelastic

scattering due to electron–phonon interactions. In III–V materials, the polarity of

the chemical bonds in the material leads to rapid polar-LO phonon scattering be-

tween subbands separated by the phonon energy (~ωLO = 36 meV in GaAs). The

wavefunctions are engineered so that the lower laser level is in resonance with the

second excited state of a quantum well, which in turn has a ground state ∼ ~ωLO

lower in energy[211]. The highest operating temperatures in III–V systems have

been achieved using this approach[50].

In SiGe-based systems, there is no polar-LO phonon interaction, as no ionic
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Figure 8.3: Wavefunctions in a resonant–phonon 3.4 THz GaAs/AlGaAs QCL[202].

The orange depopulation levels are separated by the LO-phonon energy. Image courtesy

of Craig Evans, University of Leeds

bonds exist in the crystal. Instead, intervalley phonon interactions exist due to

the presence of multiple equivalent valleys. The intervalley phonon scattering was

shown in chapter 5 to saturate above the phonon energy, rather than to peak. This

means that the overlap between the LLL and the depopulation state must be much

greater than that between the ULL and the depopulation state to ensure selective

depopulation of the LLL. Phonon depopulated designs are impractical in (001) ori-

ented Si/SiGe, due to the very large g-LO phonon energy (~ω = 63 meV), although

the lower energy f -LA and L → L phonon processes are usable in (111) Si/SiGe

and (001) Ge/GeSi respectively. Hybrid BTC/RP (or “interlaced”) devices have

also been developed[212], which are fairly similar in design to a conventional BTC

structure. They differ by having a depopulation miniband which is split in two by

a minigap tuned to the phonon energy in order to exploit both depopulation mech-

anisms. The only phonon depopulated n-Si/SiGe QCL design published to date[4]

employs such a design scheme.

During the course of the present work, four QCL designs were developed and
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simulated. The designs were based upon the well-established III–V design schemes

described above, with the typical layer widths rescaled to account for the difference

in quantisation effective mass via the transformation

L′ = L

√

mq

m′
q

, (8.1)

where L is the layer width, and the prime notation indicates the values for the

modified system. The barrier material composition was selected to allow all the QCL

subbands to lie within the bottom half of the confining potential and the electric field

was scaled to account for the reduced period length. This approach avoids the need

for tall, thin barriers which are likely to be challenging to grow. Preliminary designs

were generated using this approach, and subsequently optimised by adjusting barrier

composition, electric field and individual layer widths to maximise the gain. The

following sections describe the devices which were investigated and their predicted

performance.

8.2 (001) Si/SiGe QCLs

In chapter 5, the maximum intersubband transition lifetime for (001) oriented Si

was shown to occur around 13.5meV (3.3 THz), which implies that a QCL with

a transition energy around this value will achieve maximal population inversion.

Barbieri successfully demonstrated a 2.9 THz BTC GaAs/AlGaAs QCL operating

up to 95 K with a threshold current density of 105 A/cm2[206]. The sheet doping

for Barbieri’s design was 3.7 × 1010 cm−2, the period length was 128.6 nm and the

electric field was 2.1 kV/cm.

Figure 8.4 shows a plot of the electron densities and potential profile in a (001)

Si/SiGe BTC QCL design based upon that of Barbieri. The population inversion

was improved by trapping the ULL in the well adjacent to the injection barrier,

and increasing the injection barrier thickness. Figure 8.5 shows that optimum gain

occurs at an electric field of 5.2 kV/cm, with a frequency of 2.7 THz (11 meV). Strong

intraminiband absorption occurs below 1.5 THz.
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Figure 8.4: Potential profile and electron probability densities for a 2.7 THz

(001) Si/SiGe BTC QCL. Layer widths of 2.2/2.6/0.6/3.8/0.8/3.7/1.1/3.4/

1.2/3.2/1.2/3.0/1.4/2.8/1.5/2.7/1.6/2.6 nm were used, where bold text denotes

Si0.8Ge0.2 barriers, normal text denotes Si wells and underlined text denotes n-doped

layers at a concentration of 6.4×1016 cm−3. Results are shown at an electric field of

5.2 kVcm−1.
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Figure 8.5: Peak gain as a function of electric field for a (001) Si/SiGe BTC QCL at

a lattice temperature of 4 K. (Inset) gain spectrum at an electric field of 5.2 kV/cm.
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Figure 8.6: Current density as a function of applied electric field for a (001) Si/SiGe

BTC QCL at a lattice temperature of 4 K.

80 90 100 110
Current density [A cm

-2
]

-0.2

0

0.2

0.4

0.6

0.8

P
ea

k 
ga

in
 [1

/c
m

]

Figure 8.7: Peak gain as a function of current density for a (001) Si/SiGe BTC QCL

at a lattice temperature of 4 K. A linear regression has been applied to data in the range

J < 110 A cm−2.
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Figure 8.8: Potential profile and electron probability densities for a 4.2 THz

(111) Si/SiGe BTC QCL. Layer widths of 3.6/3.7/1.4/6.4/1.6/5.7/1.8/5.1/

1.9/4.6/2.1/4.2/ 2.2/4.0 nm were used, where bold text denotes Si0.4Ge0.6 barriers,

normal text denotes Si wells and underlined text denotes n-doped layers at a concen-

tration of 5×1016 cm−3. Results are shown at an electric field of 7.1 kVcm−1.

At this electric field, the injector subband resonates with the upper laser level,

giving a peak current density of 113 Acm−2 at a lattice temperature of 4 K as shown

in fig. 8.6. The maximum active region gain was calculated as 0.79 cm−1, which is far

below the threshold of 31 cm−1 estimated in chapter 7 for a 15µm thick double-metal

waveguide. Figure 8.7 shows the peak gain as a function of current density, along

with a linear regression to the data in the range J < 110 A cm−2. The relationship

takes the approximate form G = gJ − α, where g = 15 cm/kA and α = 1.17 cm−1.

The oscillator strength for the optical transition was calculated as 0.09 (c.f. 1.5–2.0

for GaAs[36]).
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Figure 8.9: Peak gain as a function of electric field for 4.2 THz (111) Si/SiGe BTC

QCL at a lattice temperature of 4 K. (Inset) Gain spectrum at a bias of 7.1 kV/cm.
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Figure 8.10: Current density as a function of applied electric field for a 4.2 THz (111)

Si/SiGe BTC QCL at a lattice temperature of 4 K.



174 8.3. (111) Si/SiGe QCLs

330 340 350 360 370
Current density [A cm

-2
]

10

15

20
P

ea
k 

ga
in

 [1
/c

m
]

Figure 8.11: Peak gain as a function of current density for a 4.2 THz (111) Si/SiGe

BTC QCL at a lattice temperature of 4 K. The solid line shows a linear regression to

the data.

8.3 (111) Si/SiGe QCLs

Two (111) oriented Si/SiGe designs were investigated during the course of the

present work. The first design is a BTC design similar to that of the previous section,

but with seven QWs per period rather than nine. In chapter 5, the minimum scat-

tering rate was shown to occur between 3.1 and 9.7THz. The QCL shown in fig. 8.8

is designed to emit at 4.2 THz, thus minimising the nonradiative depopulation of the

ULL. A virtual substrate Ge fraction of 16.1% is required for mechanical stability.

Figure 8.9 shows that the peak gain occurs at an electric field of 7.1 kV/cm and from

fig. 8.10, this field can be seen to give a current density of 367A cm−2. The largest

achievable gain is 21 cm−1, which is superior to both the (001) Si/SiGe design pre-

sented in the previous section and to Driscoll’s Ge/GeSi design, but still insufficient

to overcome the estimated gain threshold for a 15µm thick Cu–Cu waveguide.

A linear regression to the relationship between gain and current density is shown

in fig. 8.11 with the form G = gJ − α, where g = 265 cm/kA and α = −77.5 cm−1.
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Figure 8.12: Potential profile and electron probability density plot for (111) Si/SiGe

hybrid BTC/RP QCL at an electric field of 13 kV/cm. The phonon mediated depopu-

lation is represented by the red arrow. Layer widths of 6.3/1.8/5.0/2.5/4.4/0.9/4.9/

1.8/10.0/1.2 were used, where bold text denotes Si0.2Ge0.8 barriers and normal

weighted text denoted Si wells. A 14% Ge virtual substrate was used, and dopants

were spread evenly through the structure at a density of 2 × 1016 cm−3.

The oscillator strength for this design is calculated as 0.46; a factor of ∼ 5 improve-

ment over the previous design.

The second (111) Si/SiGe QCL design, produced in collaboration with Leon

Lever at the University of Leeds, uses of a hybrid BTC/RP design scheme. Fig-

ure 8.12 shows the bandstructure for the design. The phonon depopulation requires

a larger electric field than the conventional BTC designs considered so far (13 kV/cm

in the present design, 7.1 kV/cm in the previous BTC design) to accommodate the

extra phonon depopulation minigap. A larger confining potential is also required,

and hence a larger step in Ge fraction is used at heterointerfaces (80% in the present

design, 60% in the previous BTC design).

As shown in chapter 5, the intervalley ∆ → ∆ scattering rate in Si saturates

for subband separations above the f -LA phonon energy (46.3 meV), giving optimal
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Figure 8.13: Peak gain as a function of applied electric field for a 3.8 THz (111)

Si/SiGe resonant phonon QCL at a lattice temperature of 4 K.

depopulation of the lower laser level. However, a smaller subband separation of

25 meV was used in this design to limit the operating bias and hence the electron

temperature. The optical emission occurs at a 16 meV (3.8 THz).

A population inversion between the upper and lower laser levels is achieved when

the upper phonon depopulation level and the lower laser level move into resonance at

a bias of 13 kV/cm as shown in fig. 8.13. The peak gain is 26 cm−1, which represents

an improvement over the previous BTC approaches, but is still below the estimated

threshold for a Cu–Cu waveguide. In addition, the gain peak covers only a narrow

range of electric fields (12.7 to 13.2 kV/cm). Figure 8.14 shows that this resonance

corresponds to a peak in current density of 557 A cm−2, and fig. 8.15 shows that the

relationship between gain and current density is approximately given by G = gJ−α,

where g = 225 cm/kA and α = −99.3 cm−1. The oscillator strength for the optical

transition was calculated as 0.39.



8.3. (111) Si/SiGe QCLs 177

5 10 15
Electric field [kV/cm]

0

100

200

300

400

500

600

C
ur

re
nt

 d
en

si
ty

 [A
 c

m-2
]

Figure 8.14: Current density as a function of applied electric field for a 3.8 THz (111)

Si/SiGe resonant phonon QCL at a lattice temperature of 4 K.
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Figure 8.15: Peak gain as a function of current density in a 3.8 THz (111) Si/SiGe

resonant phonon QCL at a lattice temperature of 4 K.
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8.4 (001) Ge/GeSi QCLs

The results of previous chapters suggest that the (001) Ge/GeSi system is extremely

promising for QCL development. The large conduction band offset allows good

quantum confinement to be achieved without requiring large variations in Ge fraction

across heterointerfaces. The small quantisation effective mass allows wider layers

to be used than the other material configurations considered in this chapter, and

enhances the oscillator strength of the device.

Despite the possible advantages of Ge/GeSi above the other Si-based material

configurations, the last chapter showed that Driscoll’s 42µm BTC QCL design is

unlikely to produce a net optical gain. The large emission energy, intraminiband

absorption and high electron temperatures were all identified as likely causes. An

alternative BTC design was developed in collaboration with Leon Lever at the Uni-

versity of Leeds to overcome these issues.

Figure 8.16 shows the bandstructure and electron probability densities in the new

design. The emission energy has been reduced to 16 meV (3.8 THz) and the total

width of the miniband to 14 meV, limiting the effect of intraminiband absorption.

Nonradiative intervalley scattering between the laser levels is also lower than in

Driscoll’s design as the emission energy lies well below the L → L phonon energy

(24 meV). A barrier composition of 85% Ge was selected in order to reduce interface

roughness scattering and also because high quality Ge/Ge0.85Si0.15 multiple quantum

well stacks have been reported[213]. A 97% Ge virtual substrate is required for

mechanical stability. Dopants were spread only through the four QWs before the

injection barrier to reduce the nonradiative ionised impurity scattering between the

laser levels.

The applied electric field is reduced to 3.5 kV/cm in the present design, compared

with 10.5 kV/cm in Driscoll’s design. In the next section, it is shown that this causes

a 45 K reduction in electron temperature in the current design, compared with that

of Driscoll. Carriers are therefore located closer in energy to the subband minima,
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Figure 8.16: Potential profile and electron probability densities for 3.8 THz

Ge/GeSi BTC QCL. Layer widths of 5.8/1.0/14.6/1.4/12.3/1.6/9.9/ 1.9/8.3/2.4/

7.8/2.9/7.6/3.7 were used, where bold text denotes 85% Ge barriers and normal-

weighted text denotes Ge wells. Underlined text denotes regions with a doping concen-

tration of 2×1016 cm−3. Results are shown at an electric field of 3.5 kV/cm.
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Figure 8.17: Peak gain as a function of applied electric field in 3.8 THz Ge/GeSi

BTC QCL design at a lattice temperature of 4 K. The dashed and dotted lines show

the estimated threshold gain for 10µm and 15µm thick Cu–Cu waveuides respectively.

The gain spectrum at a frequency of 3.5 kV/cm is shown inset.

reducing the non-radiative depopulation rate of the upper laser level by intervalley

scattering and reducing the thermal backfilling of the LLL.

Figure 8.17 shows that the optimised BTC design yields net gain at a lattice

temperature of 4 K. For a 10µm thick active region in a Cu–Cu waveguide, gain is

predicted for applied electric fields between 3.19 and 3.60 kV/cm. By increasing the

stack thickness to 15µm, the dynamic range increases to 3.11–3.66 kV/cm. The peak

gain is, however, insufficient to exceed the predicted threshold for a semi-insulating

surface plasmon waveguide. Figure 8.18 shows that the peak gain increases as a func-

tion of the estimated current density to a maximum of 49.7 cm−1 at J=379 A cm−2.

For current densities below this peak, a roughly linear relationship exists, with the

form G = 315J − 70, where G is given in units of cm−1 and J is in kA cm−2. Inter-

polating this linear approximation gives an estimated threshold current density of

339 A cm−2 for a 10µm thick active region. By increasing the active region thickness

to 15µm, the threshold current density is reduced to 319 A cm−2.
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Figure 8.18: Peak gain as a function of current density in 3.8 THz Ge/GeSi BTC QCL

design at a lattice temperature of 4 K. The dashed and dotted lines show the estimated

threshold gain for 10µm and 15µm thick Cu–Cu waveuides respectively. The solid line

shows an extrapolated linear regression to the data at currents below 350 A cm−2.
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Figure 8.19: Peak gain as a function of lattice temperature for Ge/GeSi BTC QCL

design at an electric field of 3.5 kV/cm. The results for Driscoll’s 42µm BTC QCL

design are shown at the design field of 10.5 kV/cm for comparison. Estimated gain

thresholds are shown for 10 and 15µm thick active regions in a Cu–Cu waveguide.
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Figure 8.20: Electron temperature as a function of lattice temperature for each of the

QCL designs considered in the present work. Each line is shown for the operating bias

of the device.

The temperature dependence of the peak gain is shown in fig. 8.19. The gain is

predicted to exceed the threshold for a 10µm thick active region in a Cu–Cu waveg-

uide structure up to a lattice temperature of 110 K. By increasing the active region

thickness to 15µm, the maximum operating temperature is increased to 136 K. By

contrast, it can be seen that Drisoll’s design does not yield sufficient gain to overcome

the threshold even at 15µm active region thickness.

8.5 Electron temperature

Electron temperatures were calculated self-consistently for each of the devices as

described in chapter 7. Figure 8.20 shows that in each case the electron tempera-

ture rises with lattice temperature as expected, but varies considerably between the

devices. The electron temperature has previously been shown to depend upon the

electric field as well as the phonon energy and scattering rates. The (001) Si/SiGe

structure has the highest electron temperature despite its relatively low electric field
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Figure 8.21: Peak gain as a function of electron temperature at T = 4K for each of

the devices simulated in the present work

of 5.2 kV/cm, due to the large g-LO phonon energy of 63.2 meV, given that the spac-

ing between the subbands is much lower than this. This means that only electrons

with very high in-plane kinetic energy can be removed from subbands by inelastic

processes, resulting in a high effective carrier temperature.

In the (111) oriented structures, the electron temperature is lower due to the

additional f -LA scattering with a phonon energy of 46.3 meV. Both (111) designs

show similar electron temperature as the effect of the higher electric field in the

hybrid design is compensated by the enhanced phonon emission rate. The Ge/GeSi

BTC design presented in this chapter exhibits the lowest electron temperature due to

the low intervalley phonon energy of 24 meV. The simulated electron temperature

is 70 K lower than that of Driscoll’s BTC design due to the reduction in applied

electric field and reduced barrier height.

Figure 8.21 gives some insight into the difference between specific device designs

by considering the electron temperature at T = 4K. A power function regression

provides a good match to the data, with the form Gpk = 10245e−0.048Te . High elec-
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tron temperatures are therefore associated with low gain. This is because hot carriers

are able to scatter into higher energy subbands and the resulting thermal backfilling

of the lower laser level reduces the population inversion. Also, nonradiative phonon

scattering competes with the optical transition in hot carrier distributions.

8.6 Conclusion

Four QCLs designed during the course of the present work have been simulated

to illustrate the differences between the possible material configurations and de-

sign schemes. Net gain was predicted for the Ge/GeSi BTC design using a Cu–Cu

waveguide, but none of the other designs were successful. The (001) oriented Si/SiGe

device yielded negligible active region gain, while both (111) oriented devices exhib-

ited active region gain approximately 5–10 cm−1 below the threshold.

The large variation in gain between designs can be explained by considering the

effective masses of the materials and the simple three-level model from chapter 7, in

which

Gij ∝ |Dij |2τi. (8.2)

The dipole matrix element is proportional to the length of the device, and for a

given transition energy, the layer widths are approximately inversely proportional

to the quantisation effective mass. All the scattering rates considered in this work

(chapter 5) are proportional to the density of states effective mass, and the lifetime

of the upper laser level is therefore inversely proportional to md giving

Gij ∝
1

mdm2
q

. (8.3)

The figure of merit, µg = m3
e/mdm

2
q therefore gives an approximate measure of

the influence of the effective mass upon the optical gain. Substituting the effective

mass values from chapter 3 gives µg = 6.27 for the ∆2 valleys in (001) Si/SiGe,

µg = 41.1 for the ∆ valleys in (111) Si/SiGe and µg = 231 for the L valleys in (001)

Ge/GeSi. This suggests that the maximum gain achievable with a (001) Ge/GeSi
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Design Gpk [1/cm] Te [K] F [kV/cm]

(001) Si/SiGe BTC 0.54 200 5.2

(111) Si/SiGe BTC 21.0 132 7.1

(111) Si/SiGe hybrid 26.0 134 13.0

(001) Ge/GeSi BTC 49.7 101 3.5

(001) Ge/GeSi BTC (Driscoll) 12.6 147 10.5

Table 8.1: Device characteristics for each of the QCL designs simulated in this work.

The simulated peak active region gain and electron temperature are given at the stated

electric field, and at a lattice temperature of 4 K.

QCL should be larger than that of a (111) Si/SiGe device, which in turn is larger than

that of a (001) Si/SiGe device. This is in qualitative agreement with the calculated

peak gain presented in table 8.1. It was found that the gain is highest in structures

with low electron temperature due to the reduced thermal backfilling of the lower

laser level. (001) Si/SiGe devices are likely to have high electron temperatures due

to the high g-LO phonon energy, while (111) Si/SiGe and (001) Ge/GeSi structures

have lower phonon energies and hence lower electron temperature.

A substantial improvement in gain was achieved in a Ge/GeSi BTC design,

compared with that of Driscoll, by performing a series of optimisations. Ionised

impurity scattering between the laser levels was reduced by moving donor ions away

from the active region and intervalley phonon scattering was reduced by selecting

an emission energy below the L → L phonon energy. A 45 K reduction in electron

temperature was achieved by reducing the bias from 10.5 kV/cm to 3.5 kV/cm. Fig-

ure 8.22 shows that a current density of 250–350 A cm−2 was calculated for all of

the seven-well bound–to–continuum devices. The hybrid RP/BTC (111) Si/SiGe

device has the largest current density due to the large electric field and rapid inter-

valley phonon scattering, while the (001) Si/SiGe BTC device has the lowest current

density due to inefficient charge injection.

To summarise, the 3.8 THz Ge/GeSi BTC device has been shown to be the most
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Figure 8.22: Comparison between gain–current relation for all QCL designs considered

in the present work. Results are plotted at 4 K.

promising candidate for QCL development from the set of devices considered in the

present work. The low effective mass and low electron temperature lead to high

gain and a predicted maximum operating temperature of 136 K with a 15µm thick

Cu-Cu waveguide. By contrast, the (001) Si/SiGe structure was shown to exhibit

negligible gain. The (111) oriented Si/SiGe structures were both predicted to exhibit

gain just below the threshold for a 15µm thick Cu-Cu waveguide. Although further

optimisation of the (111) designs may possibly lead to a net gain, the discussion

in chapter 6 indicates that high-quality epitaxial growth of (111) structures is not

yet possible. (001) Ge/GeSi devices are also more attractive due to their potential

compatibility with mainstream (001) oriented CMOS technology.



Chapter 9

Conclusion

A range of Si-based material configurations have been investigated for their suit-

ability for THz QCL active regions, in particular, the ability to confine electrons

effectively, to achieve a population inversion, to overcome waveguide losses and to

be practically realisable. Comparisons between individual material properties have

been made at the end of the relevant chapters, and this conclusion provides a cu-

mulative summary of the findings. Proposals for further work are presented at the

end of this chapter.

The conduction band offset in a QCL should be approximately twice the emission

energy to allow for the emission of a photon and depopulation of the lower laser

level within a period of the device. In chapter 2, strain and crystal orientation were

shown to have an important effect upon the conduction band offset in Si/Ge/Si and

Ge/Si/Ge QWs. The energy separation between the conduction band edge and the

higher energy valleys must also be maximised to avoid intervalley scattering. The

valley separation was found to be very small in (001) Ge/Si/Ge and (111) Si/Ge/Si

QWs with realistic substrate compositions, limiting the maximum emission energy

to around 30 meV (7.3 THz) in each system. Much better results were obtained

for (111) Ge/Si/Ge and (001) Si/Ge/Si QWs. In the former, the conduction band

offset provides the dominant constraint, giving a maximum emission energy around

117 meV (29 THz). In the latter system, valley splitting provides the dominant

187
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constraint, resulting in a maximum emission energy around 75 meV (19 THz).

A small quantisation effective mass is desirable at the conduction band edge in

QCLs, as this allows wider heterolayers to be used, simplifying the crystal growth.

A longer length scale may also give a larger dipole matrix element between the laser

levels, and hence larger optical gain. In chapter 3, the quantisation effective mass

at the conduction band edge is shown to be relatively low in (001) GeSi/Ge/GeSi

(mq = 0.12me) and (111) SiGe/Si/SiGe (mq = 0.26me) QWs, but very high in (001)

SiGe/Si/SiGe (mq = 0.92me) and (111) GeSi/Ge/GeSi (mq = 1.64me)
1. The effect

of various doping profiles upon the bandstructure was also investigated in chapter 3.

It was shown that δ-doping results in much smaller changes to the bandstructure

than wider doped regions.

The effect of valley splitting was considered in chapter 4. This occurs when two

conduction band valleys have the same in-plane wavevector. (001) SiGe/Si/SiGe

and (001) GeSi/Ge/GeSi are therefore affected, while (111) oriented structures are

not. Interference between wavefunction components (from both valleys) and their

reflections from interfaces leads to the formation of doublets of bound states. The

single-valley Schrödinger equation solutions are effectively split into pairs, separated

by a small energy (∼1–5 meV), which depends upon the width of the QW. The valley

splitting was found to be smallest in wide structures with non-abrupt interfaces,

meaning that spectral line doublets in QCLs may be too close in energy to be

resolved. Nonetheless, it is likely to cause linewidth broadening of the emission

spectrum.

In order to achieve a population inversion, rapid scattering is required to depop-

ulate the lower laser level, while slow scattering is required within the active region

to maximise the upper laser level lifetime. Expressions for electron scattering rates

were derived in chapter 5 for interface roughness, alloy disorder, ionised impurity

and phonon deformation potential interactions. It was shown that interface rough-

ness scattering is usually the dominant process in Si-based QCLs, and is fastest in

1c.f. mq = 0.067me in GaAs
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structures with narrow wells and high, thin barriers. Phonon scattering becomes

significant when subbands are separated by an energy similar to or greater than the

phonon energy. In (001) Si/SiGe THz QCLs, the phonon scattering rate is usually

very low due to the high energy of the g-LO phonon (63 meV) compared with the

subband separations in the device. The rate is much higher in (111) Si/SiGe and

(001) Ge/GeSi systems due to the lower energy of the f -LA (46 meV) and L → L

(28 meV) phonon interactions, respectively. Ionised impurity scattering was shown

to be significant only in regions with widely-distributed doping.

The review of crystal growth technology in chapter 6 shows that (001) Si/SiGe

and Ge/GeSi multiple-QW structures and virtual substrates have been realised, but

very limited progress has been made with (111) oriented heterostructures. Interdif-

fusion of materials across interfaces (due to annealing or surface segregation) affects

the subband separation and carrier lifetimes significantly. The effects were found

to be most important in (001) Si/SiGe heterostructures due to the requirement

for narrow layers. By contrast, (111) Si/SiGe and (001) Ge/GeSi heterostructures

were predicted to tolerate interdiffusion lengths up to 2.3–5 nm without exhibiting

significant changes in carrier dynamics or subband separation.

Electron temperature has an important effect upon the scattering rates in a QCL

and in chapter 7, it was shown to depend upon the lattice temperature and electric

field. A Ge/GeSi QCL design from the literature was simulated and predicted to

yield insufficient active region gain to overcome the estimated losses in a double

metal waveguide. This was due to depopulation of the upper laser level by phonon

scattering, optical absorption within the wide miniband and thermal backfilling of

the lower laser level.

Chapter 8 presented a range of QCL designs with simulated performance data.

The optical gain of QCLs was shown to decrease as the quantisation effective mass

increases (due to the change in dipole matrix element), and as the density-of-states

effective mass increases (due to the decrease in ULL lifetime). As a result, the

(001) Ge/GeSi and (111) Si/SiGe QCL designs were found to have much greater
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(001) Si/SiGe (111) Si/SiGe (001) Ge/GeSi

Large usable CB offset ✗ X X

Low quantisation mass ✗ (X) X

No valley splitting ✗ X ✗

Epitaxial growth realised X ✗ X

Interdiffusion tolerance ✗ X X

Low electron temperature ✗ X X

Table 9.1: Simplified criteria for a good THz QCL material. A Xsymbol means that a

material configuration satisfies a criterion, a Xin parentheses implies that the material

configuration only just meets the criterion, while a ✗ symbol indicates failure to meet

the criterion.

simulated peak gain than the (001) Si/SiGe design. The gain was also found to decay

exponentially as the electron temperature increases. The highest simulated electron

temperature occurs in the (001) Si/SiGe QCL design due to the large LO-phonon

energy, while the lowest occurs in the Ge/GeSi device presented in this work, due to

the low intervalley phonon energy and low electric field. The new Ge/GeSi device

design was predicted to yield sufficient active region gain to overcome the estimated

threshold for a Cu–Cu waveguide up to an operating temperature of 136 K.

Table 9.1 contains a simplified summary of desirable material properties for THz

QCLs, and a comparison between the material configurations investigated in this

work. (001) Si/SiGe fails all but one of the criteria in the list. Although large

conduction band offsets exist, the small energy separation between conduction band

valleys places a practical limit on the usable well depth. The large quantisation ef-

fective mass reduces the gain and results in the requirement for thin layers, leading

to a poor tolerance to interdiffusion. The large g-LO phonon energy leads to high

electron temperatures, further limiting the gain. Theoretically, (111) Si/SiGe ap-

pears to be far superior due to the lower effective mass and large separation between

conduction band valley sets. Additionally, each of the six ∆ conduction band valleys
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lies at a different in-plane wavevector, which eliminates valley splitting and poten-

tially reduces the spectral linewidth. However, (111) oriented QCLs are far from

realisable with existing crystal growth technologies. The best results are obtained

for (001) Ge/GeSi, where the quantisation effective mass is by far the smallest. Rel-

atively thick layer widths may be used, meaning that a lower electric field is possible

(and hence less carrier heating) than in other material configurations. The small

intervalley phonon energy allows effective cooling of carrier distributions, and hence

a lower electron temperature and higher gain. Although valley splitting exists, the

effect upon the peak gain is predicted to be quite small and may only be manifested

as a slight spectral linewidth broadening.

In summary, a detailed study of n-type Si-based materials has shown that (001)

oriented Ge/GeSi heterostructures offers the best opportunity to date for developing

a Si-based THz QCL. The present theoretical work, combined with recent advances

in crystal growth give rise to the possibility of experimental development of the first

working device within the next few years.

9.1 Further work

A number of new avenues for research into the theory of Si-based QCLs have been

identified. The most important of these, in the opinion of the author, are presented

in this section. Additionally, a number of important areas for experimental investi-

gation are proposed.

As described in chapter 5, coherent effects were assumed to be negligible in the

present work. Although many useful conclusions about the charge transport charac-

teristics have been reached, the fully incoherent model has yielded some unrealistic

effects. The main issues arise from the apparent ability of electrons to tunnel in-

stantaneously through barriers, giving rise to spatially extended wavefunctions and

result in unrealistic parasitic current channels, as described in chapter 7. Previous

investigations into coherent charge transport in III–V QCLs have also shown that
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fully incoherent models underestimate the effect of the injection barrier thickness as

a charge transport bottleneck[148]. Although a full density matrix model of trans-

port in the system would be too computationally expensive for use as a QCL design

tool, investigations in III–V materials systems have obtained useful results by con-

sidering coherent transport between the injector and upper laser subbands on either

side of the QCL injection barrier[53].

Further enhancements to the existing model could be implemented by consider-

ing the following effects. Intervalley mixing effects were considered only for (001)

Si/SiGe QWs in this work. However, similar intervalley mixing effects are known

to occur in (001) Ge/GeSi heterostructures[5, 8, 12]. The pseudopotential model

used in chapter 4 could also be used to investigate valley splitting phenomena in

Ge/GeSi QWs with widths appropriate for QCL designs. An estimate for the split-

ting between optical transitions could be incorporated in the gain spectrum as ei-

ther a linewidth broadening or a spectral line doublet depending on its magnitude.

Secondly, the assumption has been made that only one degenerate valley set is

populated in Si-based QCLs. However, recent theoretical work suggests that inter-

valley phonon scattering may be an important process in GaAs/AlGaAs at high

temperatures[214]. These effects can readily be incorporated into the rate equation

model described in this work and used to predict leakage currents in Si-based QCLs

at high temperatures.

The preliminary investigation of waveguide losses and modal overlap by Craig

Evans (chapter 7) was conducted for (001) oriented structures with Ge fractions

below 85%. Having now established that the best prospects for Si-based QCL de-

velopment lie with (001) Ge/GeSi, it would be prudent to extend Evans’ work to

consider such structures. A more thorough investigation of waveguide losses would

allow a minimum active region thickess to be determined for a given device. Ad-

ditionally, according to the bulk Drude model, the free-carrier losses calculated for

emission at a frequency of 5 THz should increase with the emission wavelength.

Having demonstrated the advantages of Ge/GeSi heterostructures above other
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Si-based material configurations in chapter 8, a more thorough investigation of the

QCL design space may yield higher gain and operating temperature. The non-polar

nature of Si-based materials removes the “forbidden” Reststrahlen band of emission

energies seen in III–V materials. Si-based QCLs could therefore be designed to

emit THz radiation with frequencies above 5 THz. Additionally, superior device

performance can be expected in this frequency range, due to the reduced free-carrier

losses.

Recent theoretical and experimental work has shown that the active region tem-

perature in III–V QCLs may be 20–100 K higher than the heatsink temperature

for low duty-cycle pulsed mode operation[215, 216]. The geometry of the waveg-

uide and the device mountings were found to have a significant effect upon active

region temperature[217]. A potential advantage of Si-based structures is the large

thermal conductivity (1.3 W cm−1 K−1 in Si c.f. 0.55 W cm−1 K−1 in GaAs and

0.68 W cm−1 K−1 in InP[60]), which should allow heat to be efficiently dissipated

away from the active region of the device, possibly allowing higher temperature

operation. Modelling the thermal properties of Si-based QCLs would allow more

accurate predictions of the maximum operating temperature, and improved design

of waveguides and device mountings.

A theoretical model is only as good as its input parameters. Pump-probe spec-

troscopy has been used to determine the interface roughness scattering parameters

in Si/SiGe QWs[7, 39]. However, the quality of material growth may differ some-

what in Ge/GeSi structures. Transmission electron microscopy can be used to mea-

sure the interface roughness height[218] at interfaces in Ge/GeSi double QWs and

pump-probe spectroscopy can be used to find an effective correlation length. By

investigating a number of different samples with varying Si content in the QWs, an

effective alloy disorder potential may also be extracted. Measurements of the inter-

diffusion length as a function of time in samples annealed at various temperatures

would allow a temperature dependent diffusion coefficient to be found. Carrier life-

time measurements in these structures would provide valuable data for experimental
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verification of the predictions in chapter 6.

The growth, fabrication and characterisation of a prototype Ge/GeSi QCL should

now be carried out. The design proposed in chapter 8 makes use of a virtual substrate

and heterostructure with alloy fractions and layer widths that have already been re-

alised with existing CVD growth technology[213]. X-ray diffraction and transmission

electron microscopy data may be used to analyse the accuracy and quality of crys-

tal growth. Buried silicide waveguides have already been demonstrated for Si-based

QCLs[219], but it would be highly advantageous to develop double-metal waveguides

due to the large modal overlap and relatively low losses.
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