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Abstract 

Background 

The early identification of disease can benefit patients clinically and provide a 

powerful research tool. This thesis aims to identify subclinical cardiac change using 

cardiovascular magnetic resonance (CMR) in both disease and health and evaluate 

its diagnostic and prognostic uses.  

Methods  

We have prospectively recruited and conducted multi-parametric CMR in 50 

patients with hypertrophic cardiomyopathy (HCM), 40 endurance athletes and 100 

asymptomatic patients with type 2 diabetes mellitus.  

Results  

Study 1 and 2 evaluated CMR in the early diagnosis of HCM. Study 1 demonstrated 

the diagnostic accuracy of extracellular volume (ECV) mapping is superior to 

volumetric methods of differentiating HCM from athletic left ventricular (LV) 

hypertrophy. Study 2 demonstrated that ECV expansion could be detected prior to 

overt hypertrophy or impairment of contractile function in patients with HCM. 

Study 3 demonstrated that LV torsion is lower in endurance athletes than controls 

and is predominantly influenced by lactate threshold and intensity of training. 

Study 4 and 5 investigated the role of CMR in identifying patients with type 2 

diabetes at risk of heart failure and silent myocardial infarction. Study 4 found that 

the increased risk of heart failure in patients with type 2 diabetes was mediated by 

ECV expansion and diffuse fibrosis. There was a high rate of silent myocardial 

infarction (17 %) which was unrelated to heart failure risk. In study 5 we developed 

a simple screening tool, using measures that can be carried out in a cardiology 

clinic, for the detection of silent myocardial infarction in type 2 diabetes.  
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Conclusions 

CMR is able to detect subclinical change in both tissue characteristics and function 

of the heart. This can aid the early and appropriate diagnosis of disease and 

identify those at the highest risk of adverse outcomes.   
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1.  Introduction 

Cardiovascular disease is the now the largest cause of death worldwide (Mortality 

and Causes of Death, 2015). Advancements in blood pressure control and smoking 

cessation are leading to improving primary prevention globally. However even if all 

international targets are met it is estimated that 5.7 million preventable 

cardiovascular deaths will occur each year (Roth et al., 2015).   

Advances in primary prevention are imperative to reduce the burden of 

cardiovascular disease and will continue to be a fundamental method for reducing 

mortality. Screening for subclinical disease offers an additional method to identify 

those at the highest risk of mortality and offer targeted interventions (Berger et al., 

2010).  In order to justify focussing resources on screening for those at the highest 

risk the disease has to be important, have a latent period and have a suitable 

diagnostic test (Wilson and Jungner, 1968). Furthermore the disease has to be 

treatable in the early phases so disease progression or the risk of mortality can be 

reduced, Figure 1.1.  

 

 

Figure 1.1 Schematic depicting the progression of cardiovascular disease from 

predisposition to death. For detection of subclinical disease in the asymptomatic 

prodrome to be beneficial it has to be possible to alter the risk of disease 

progression or mortality.  

 

Cardiovascular magnetic resonance (CMR) has potential to be an important tool for 

the identification of subclinical cardiac disease. It is able to make accurate and 

reproducible assessment of ventricular morphology, tissue composition and 

function on both a global and regional level. There are many disease processes that 
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lead to alteration in the morphology, tissue characteristics and function of the 

heart. Identifying these changes early can ensure prompt diagnosis and timely 

intervention. The focus of this thesis is three important areas of cardiovascular 

medicine in which there are known to be morphological cardiac changes but 

identification of the diagnosis, particularly in the subclinical stage can be 

challenging.   These are hypertrophic cardiomyopathy (HCM) and in particular how 

CMR can be used to diagnose it appropriately early in the disease progression; 

athletic remodelling of the heart which can be difficult to differentiate from HCM 

or dilated cardiomyopathy (DCM); and subclinical asymptomatic cardiac disease 

secondary to type 2 diabetes mellitus.  The basic principles of CMR assessment of 

cardiac structure, function and tissue characterisation are discussed in detail 

before an appraisal of how each of these techniques can be applied to the areas 

investigated in this thesis.  

 

1.1 CMR techniques used in the detection of subclinical change 

A typical CMR study takes between 30 and 60 minutes and typically includes T1 

weighted black blood images for assessment of anatomy, cine images in multiple 

planes for assessment of left ventricular (LV) and right ventricular (RV) volumes as 

well as late gadolinium enhancement (LGE) for delineation of scar and fibrosis 

(Figure 1.2). This basic protocol can be complemented with stress perfusion for 

ischaemia detection, T2-weighted imaging to detect myocardial oedema or T2* 

imaging for assessment of cardiac iron loading. Tissue tagging can be used for an 

assessment of regional or global strain and T1 mapping techniques can be used for 

assessment of the extracellular volume (ECV) fraction.     



- 22 - 
 

 
 

Survey

T1 weighted 
black blood

LGE imaging

LV & RV 
volume stacks

Cine imaging 
in multiple 
planesTi

m
e 

(m
in

s)
0

10

20

30

0.1-
0.2mml/kg 
gadolinium 
based 
contrast 
agent 

 

Figure 1.2 Typical flow chart of CMR protocol for the investigation of 

cardiomyopathy 

1.1.1 Volumetric Analysis 

Assessment of LV chamber volumes and ejection fraction (EF) forms the 

cornerstone of assessment of cardiac structure by CMR. Echocardiography is the 

most widely available and utilised non-invasive imaging modality for the 

assessment ventricular volumes. When suboptimal imaging quality does not allow 

for assessment of EF or more accurate assessment of EF is required, both American 
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(Yancy et al., 2013) and European (McMurray et al., 2012) guidelines recommend 

the use of CMR.  

EF is usually measured by CMR with the acquisition of a two dimensional 

continuous stack of short axis gradient-echo cine images covering the length of the 

left ventricle (LV). The number of slices, and consequently the number of breath-

holds, depends on the length of the ventricle and the chosen imaging parameters, 

in particular slice thickness and slice gap. In patients with poor breath-hold 

capacity, the acquisition can be shortened close to “real-time” with acceleration 

techniques (such as sensitivity encoding [SENSE], simultaneous acquisition of 

spatial harmonics [SMASH] and generalized autocalibrating partially parallel 

acquisitions [GRAPPA]), usually at the expense of signal-to-noise ratio, spatial or 

temporal resolution (Larkman and Nunes, 2007). The EF is typically calculated from 

these images by the “summation of discs” method (Utz et al., 1987). On each cine 

image within the stack, endocardial contours are drawn at end-systole and end-

diastole. As the slice thickness is known, the volume of each disc can be calculated 

and by adding the volumes of each slice end-diastolic volume (EDV), end-systolic 

volume (ESV) and consequently EF can be calculated. This technique has been 

shown to be highly reproducible with interstudy reproducibility that is significantly 

better than two-dimensional echocardiography (Grothues et al., 2002). It has been 

estimated that to detect a 3% change in EF by echocardiography 87 patients are 

needed whereas only 11 patients are needed by CMR.  

Measurement of EF by CMR can be used both to guide diagnosis and prognosis. It 

is well known that the degree of LV impairment is associated with adverse 

outcomes and increased mortality (Gradman et al., 1989; Unverferth et al., 1984). 

In the Candesartan in Heart Failure: Assessment of Reduction in Mortality and 

Morbidity (CHARM) study, each 10% decrease in EF below 45% was associated with 

a 39% increase in all-cause mortality (Solomon et al., 2005). For a more 

comprehensive assessment of prognosis, EF can also be incorporated as one of 

several factors in a risk score (Aaronson et al., 1997; Ketchum and Levy, 2011).  

RV volumes and RV EF can also be calculated by CMR using the summation of discs 

method described above. Impaired RV function is associated with adverse 

outcomes in conditions that primarily affect the RV such as pulmonary arterial 
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hypertension and arrhythmogenic right ventricular cardiomyopathy (ARVC) 

(Valsangiacomo Buechel and Mertens, 2012) but also adds prognostic information 

in patients with heart failure. When assessed by CMR in patients with previous 

myocardial infarction (MI), RV EF <40% was associated with adverse outcomes 

independently of other factors including LV EF (Larose et al., 2007). 

Atrial dimensions can be reproducibly measured by CMR using the summation of 

discs technique or from long axis cines (Maceira et al., 2010). Increased left atrial 

volume assessed by CMR has been shown to be a strong predictor of mortality in 

patients with heart failure (Gulati et al., 2013). 

From the same continuous short axis LV stack used to measured EF LV mass can 

also be measured. Contours are drawn on the endocardial and epicardial borders 

at one point in the cardiac cycle, usually end diastole and the LV mass calculated 

using the summation of discs principle. It is possible in include or exclude papillary 

muscles with both techniques providing similar interobserver reproducibility (Han 

et al., 2009). Assessment of LV mass by this method has excellent interstudy 

reproducibility. It is estimated to detect a 10g change in LV mass using 

echocardiography 132 subjects would be needed compared with only 13 by CMR 

(Grothues et al., 2002).  

Several cardiac diseases cause concentric remodelling of the LV which can be 

assessed by dividing LV mass by LV EDV. Concentric remodelling has been reported 

in diabetes and is associated with adverse outcomes (Heckbert et al., 2006; de 

Simone et al., 2008). This ratio has also been proposed as a method to differentiate 

athletic remodelling of the LV from HCM (Luijkx et al., 2013).  

1.1.2 Tissue characterisation 

The currently used gadolinium based CMR contrast agents are exclusively 

extracellular and can only passively enter damaged cells with a leaky cell 

membrane. These contrast agents therefore accumulate in areas with damaged 

cells and avascular extracellular regions. This phenomenon is exploited in LGE CMR 

imaging. LGE imaging involves administration of typically 0.1-0.2mmol/kg of a 

gadolinium based contrast agent. After a delay of 5-20 minutes the contrast agent 

is retained to a greater extent in areas of scar or fibrosis than in normal 
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myocardium. An inversion recovery sequence with an inversion time specified to 

null “normal” myocardium then displays scarred myocardium as bright when 

compared to the reference. The pattern of enhancement on LGE can aid in the 

diagnosis of the aetiology of asymptomatic disease with characteristic appearances 

of LGE in many conditions (Mahrholdt et al., 2005). For example, subendocardial or 

transmural LGE is seen in ischemic cardiomyopathy, mid wall LGE in dilated and 

hypertrophic cardiomyopathies, epicardial LGE in myocarditis and global 

subendocardial LGE in amyloidosis (see examples in Figure 1.3). The presence of 

enhancement on LGE imaging is shown to correspond well with discrete fibrosis on 

histology and confers an adverse prognosis in many cardiomyopathies (Ismail et al., 

2012).  
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Figure 1.3 Typical distribution of LGE in various aetiologies of cardiomyopathy. 

Ischaemic cardiomyopathy (top left) near transmural infarction of the septum and 

apex and subendocardial infarction of the lateral wall (arrow), note the artefact 

secondary to sternomy wires. Dilated cardiomyopathy (top right) dilated ventricular 

chambers with midwall fibrosis (arrow). Myocarditis (bottom left) with 

subepicardial LGE of the lateral wall (arrow). Hypertrophic cardiomyopathy (bottom 

right) asymmetric septal hypertrophy with patchy midwall LGE within the 

hypertrophied septum (arrow).  

 

Extracellular fibrosis is a common pathological finding in many aetiologies of heart 

failure. As described in the preceding section, CMR to assess LGE is a well-

established method by which to assess and quantify the size and transmurality of 

discrete areas of fibrosis. However this process relies on nulling the healthy 

myocardium and on comparing the enhancement of healthy and diseased 
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myocardium qualitatively. When the myocardium is diffusely diseased, techniques 

that characterize the myocardium quantitatively provide additional insights into 

myocardial disease. 

There has been renewed recent interest in methods that quantify the intrinsic T1 

(Messroghli et al., 2004) and T2 (Verhaert et al., 2011) signal of the myocardium 

and create a map of their values. Native tissue maps alone can be used for tissue 

characterization or can be combined with post contrast acquisitions. Gadolinium-

based contrast agents shorten in particular the T1 relaxation time and tissues with 

an expanded extracellular space due to fibrosis, infiltration or scar have a larger 

distribution volume for the extracellular contrast agent. In these tissues, the 

reduction in T1 relaxation time is therefore more pronounced than in normal tissue 

and is correlated with the extent of the extracellular space. Post-contrast 

myocardial T1 has been shown to significantly correlate with histological areas of 

fibrosis (Iles et al., 2008).  

Post contrast T1 mapping makes assumptions about the kinetics of gadolinium 

contrast agents and the results can be influenced by renal function, haematocrit 

and body composition. These assumptions can be overcome by combining pre and 

post contrast T1 mapping of both myocardium and blood and correcting for the 

blood volume of distribution (1-haematocrit). From these data, maps of the ECV 

fraction can be calculated which show significant correlation with histological 

degree of fibrosis and volume of collagen in the myocardium (Flett et al., 2010). 

ECV is calculated using the formula: 

 

𝐸𝐶𝑉 = (1 − 𝐻𝑐𝑡)
𝑅1(𝑚𝑦𝑜 𝑝𝑟𝑒)−𝑅1(𝑚𝑦𝑜 𝑝𝑜𝑠𝑡)

𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒)−𝑅1(𝑏𝑙𝑜𝑜𝑑 𝑝𝑜𝑠𝑡)
      where R1=1/T1 

 

Lengthened pre-contrast T1 times, shortened post-contrast T1 times and increased 

ECV have been reported in several cardiomyopathies including amyloidosis, DCM 

and HCM (Dass et al., 2012; Puntmann et al., 2013; Sado et al., 2012).  

In the largest CMR study of ECV to date, T1 mapping was carried out in 793 

patients at the time of CMR being done for clinical purposes (36% were for known 

or suspected cardiomyopathy, 35% for known or suspected IHD and 26% to 
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identify a substrate for arrhythmia) (Wong et al., 2012). Patients with HCM or 

amyloidosis were excluded. Over median follow up 0.8 years ECV related to all-

cause mortality (hazard ratio 1.55 for every 3% increase in ECV). In multivariable 

regression analysis of this heterogeneous population only ECV, EF, age and extent 

of LGE (if there was previous infarction) were able to significantly predict mortality.  

By using a combination of LGE and T1 mapping it is possible to map out the entire 

left ventricle delineating both areas of extracellular matrix expansion and areas of 

scarring, infarction and replacement fibrosis. Both of these techniques can detect 

pathological changes in asymptomatic subjects and have the potential to be used 

as screening tools for the detection of subclinical disease.  

1.1.3 Strain analysis 

Ejection fraction is the most widely used and best validated measure of left 

ventricular function. It is also possible to measure contraction of myocardium by 

measurement of either regional or global strain. In cardiac terms strain is defined 

as the amount of myocardial fibre shortening in a given time divided by the 

precontraction length. The measurements of length are usually made at end-

systole and end-diastole. By convention this number is negative if the fibre has 

shortened and positive if it has lengthened.   

It is possible to measure strain by CMR using tissue tagging techniques where a 

selective radiofrequency saturation pulse prior to the acquisition is used to 

generate a tag line or grid in the myocardium that can be tracked throughout the 

cardiac cycle (Ibrahim el, 2011). Using either long or short axis tagged cines it is 

possible to measure myocardial strain in radial, circumferential or longitudinal 

directions. Tagged cines can also be used to measure twist and torsion of the left 

ventricle. The heart has a complex twisting motion where the base rotates 

clockwise in early systole and the apex rotates anticlockwise in later systole. These 

opposing directions of rotation at the apex and base generate maximal torsional 

force at end systole (Burns et al., 2008). LV twist is defined as apical minus basal 

rotation. Torsion takes into account the length and diameter of the ventricle 

allowing comparison of torsional forces between ventricles of different sizes 

(Young and Cowan, 2012). Both strain and torsion measured by CMR tagging 
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techniques have good interstudy reproducibility allowing measurement of serial 

global and regional function (Swoboda et al., 2013). 

Feature tracking is a new post processing technique which allows for tracking of 

myocardial features from cine imaging throughout the cardiac cycle. This technique 

is analogous and provides similar results to speckle tracking, which is a well 

validated echocardiography measure of strain (Onishi et al., 2015). Feature tracking 

allows for quantification of strain without the need for the acquisition of tagged 

cine imaging. Results from reproducibility studies of feature tracking have proved 

very promising and it is reported to have similar reproducibility to strain measured 

by CMR tissue tagging (Moody et al., 2015).    

Strain and torsion measured by CMR both provide important diagnostic and 

prognostic information and have been used to detect subclinical impairment of 

both regional and global cardiac function in a wide variety of conditions including 

HCM (Kramer et al., 1994), type 2 diabetes (Giannetta et al., 2012; Larghat et al., 

2014), ischaemic, valvular and congenital heart disease (Ibrahim el, 2011). 

 

1.2 CMR assessment of hypertrophic cardiomyopathy  

HCM is commonly defined as a disease of hypertrophy of the left ventricle in the 

absence of another cardiac or systemic cause (Gersh et al., 2011).  It is typically 

caused by autosomal dominant mutations of genes encoding sarcomeric proteins 

and myofilament elements (Bos et al., 2009). These mutations lead to micro- and 

macroscopic changes within the heart including cellular disarray, hypertrophy and 

interstitial fibrosis. When myocyte disarray is widespread it is a sensitive and 

specific marker for HCM (Hughes, 2004). These changes lead to hypertrophy that 

can affect the heart in a variety of patterns, and may affect any segment  of the left 

ventricle (Klues et al., 1995). Although hypertrophy can be widespread, phenotypic 

expression within the same heart can be variable and less than half of the ventricle 

may be hypertrophied in as many as 50% of patients (Maron et al., 2009b).  

At present the diagnosis of HCM is primarily made by the identification of one or 

more hypertrophied segments by a cardiac imaging modality (Gersh et al., 2011; 

Elliott et al., 2014).  In the majority of cases this involves identification of a 
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segment ≥15mm by echocardiography. Increasingly CMR is used to confirm or 

make diagnosis of HCM when echocardiography is restricted by limited acoustic 

windows or the inability to assess all segments of the left ventricle. In addition to 

accurate measurement of segment thickness CMR is also able to make an 

assessment of the cellular composition and function of segments that are 

borderline in terms of being diagnostic for HCM. Furthermore CMR imaging is able 

to evaluate and exclude the possibility of alternative causes of hypertrophy such as 

aortic stenosis, amyloidosis, Fabry’s disease or systemic hypertension. 

 

1.2.1 Morphologic assessment  

CMR cine imaging is able to make an accurate and reproducible assessment of the 

extent and location of hypertrophy when considering a diagnosis of HCM. It is 

reported that CMR detects hypertrophy in around 12% of patients with HCM that 

was not detected by echocardiography (Maron et al., 2009b). The areas where 

hypertrophy is most commonly detected by CMR but not echocardiography include 

the anterolateral wall, the inferior septum and the apex. Imaging the apex of the 

left ventricle can be notoriously difficult by echocardiography and it is quite 

possible for severe hypertrophy to be missed by this technique but detected by 

CMR (Moon et al., 2004b).  

It is possible for echocardiography to overestimate the wall thickness in HCM 

because of difficulty planning the acquisitions exactly perpendicular to the long 

axis of the left ventricle, resulting in an oblique cut. The improved spatial 

resolution of CMR also allows for accurate delineation of endocardial borders and 

exclusion of structures such as the moderator band or false tendons from 

measurements. It is reported that these differences can lead to measurements of 

segment thickness being approximately 20% less when measured by CMR 

compared to echocardiography (Valente et al., 2013).  

In addition to accurate and reproducible measurements of wall thickness CMR can 

also assess LV mass (usually by the summation of discs techniques outlined in 

1.1.1). However LV mass has been shown to only correlate weakly to maximum 
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segment thickness which is a more powerful prognostic predictor (Olivotto et al., 

2008).  

CMR imaging can also detect diagnostic features of HCM that may be missed on 

echocardiography including apical aneurysm formation (Maron et al., 2008), 

thrombus formation, papillary muscle abnormalities and myocardial crypts 

(Germans et al., 2006). Myocardial Crypts are typically identified in the basal or mid 

inferior or inferoseptal walls of the LV and are thought to represent an early 

phenotypic manifestation of HCM. They are reported to be present in 70% of 

patients who have a HCM causing mutation without over hypertrophy but only 

12% of genotype negative controls (Brouwer et al., 2012). Myocardial crypts can be 

difficult to detect using conventional echocardiography and offer a good example 

of how CMR is able to detect subclinical disease in otherwise asymptomatic 

carriers of a significant genetic mutation (Germans et al., 2006).  

The left atrium is often dilated in HCM due to a combination of elevated filling 

pressures and mitral regurgitation due to systolic anterior motion of the anterior 

mitral valve leaflet. It is possible to measure left atrial volumes accurately and 

reproducibly by CMR (Maceira et al., 2010). However the mechanisms leading to LA 

dilatation occur late in the disease progression of HCM and left atrial dilatation 

although a powerful prognostic marker is a feature of advanced disease and less 

useful for the detection of subclinical disease (Nistri et al., 2006).  

1.2.2 CMR tissue characterisation 

Using CMR tissue characterisation techniques it is possible to detect and quantify 

myocyte disarray and replacement fibrosis, the histological hallmarks of HCM. 

Histological studies of patients who have died and undergone post mortem have 

revealed that myocyte disarray is an early feature of HCM and likely a direct 

consequence of dysfunction mutations of sarcomeric proteins. Replacement 

fibrosis and small vessel disease appear to occur later in the disease process and 

are attributed to factors unrelated to disarray including wall thickness, gender and 

even local autocrine factors (Varnava et al., 2000).   

The presence of LGE is suggestive of replacement fibrosis and on necropsy there is 

a strong linear correlation between the extent of LGE within a particular segment 
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and the amount of collagen measured histologically (Moon et al., 2004c). Small 

intramural coronary arteriole dysplasia has been suggested to cause replacement 

fibrosis by local ischaemia (Maron et al., 1986). The degree of small intramural 

coronary arteriole dysplasia on histological specimens after surgical myomectomy 

has been demonstrated to correlate with the extent of LGE on pre-operative CMR 

(Kwon et al., 2009).  

CMR studies have also shown a correlation between the extent of LGE and the 

degree of hypertrophy, with some studies suggesting that hypertrophy occurs prior 

to the development of fibrosis (Choudhury et al., 2002; Moon et al., 2005). Studies 

using serial CMR have shown that replacement fibrosis is an ongoing dynamic 

characteristic of the disease process in HCM. Once replacement fibrosis detected 

by the presence of LGE it is associated with both progressive development of 

further replacement fibrosis and LV dilatation and adverse remodelling (Todiere et 

al., 2012; Moon et al., 2003).  

Mechanistically it seems very plausible that replacement fibrosis detected by CMR 

could act as a substrate for malignant tachyarrhythmia. However studies that have 

investigated the prognostic potential of LGE in predicted sudden cardiac death or 

appropriate implantable cardioverter-defibrillator (ICD) therapy have given mixed 

results. This has largely been because of the low event rates and high prevalence of 

LGE. However all studies have shown that the presence of LGE is a marker with 

more advanced disease and is therefore associated with increased mortality and 

heart failure (Green et al., 2012). In the largest study to date, 1293 patients with 

HCM were followed up for 3.3 years. The presence of LGE was associated with 

malignant arrhythmia (Chan et al., 2014). However the event rate of malignant 

arrhythmia was low (around 1% per year) and the presence of LGE was more 

strongly associated with heart failure outcomes than arrhythmic outcomes.  

With T1 and ECV mapping it is now possible to detect phenotypic expression of 

HCM prior to the onset of overt hypertrophy or replacement fibrosis. Cellular 

disarray and extracellular matrix expansion occur early in the disease process and 

can be detected by using quantitative T1 and ECV mapping techniques. Results 

demonstrate good correlation with histological fibrosis quantification from 

specimens taken at the time of surgical myomectomy (Flett et al., 2010). One study 
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has attempted to validate post contrast T1 mapping in HCM hearts explanted at 

the time of transplant and did report a correlation between the degree of fibrosis 

histologically and post contrast T1 time (Iles et al., 2015). Unfortunately in this 

study ECV (which is better validated than post-contrast T1 time) was not 

calculated, the sample size was small (4 HCM necropsy specimens) and there was a 

long interval between the CMR and surgical explant (median 546 days).  

Myocyte disarray and collagen deposition are early features of HCM and can be 

detected histologically or biochemically in genotype positive subjects prior to the 

onset of hypertrophy (Varnava et al., 2001; Ho et al., 2010). It has been reported 

that ECV expansion can also be detected in the same cohort, adding further 

support to the hypothesis that ECV mapping is able to detect early phenotypic 

expression of HCM (Ho et al., 2013). 

1.2.3 CMR assessment of regional function 

Studies, predominantly using echocardiography speckle tracking to measure 

regional and global strain have demonstrated that impaired contractility is related 

to the extent of hypertrophy and the presence of replacement fibrosis detected by 

LGE (Urbano-Moral et al., 2014; Popovic et al., 2008). Current guidelines therefore 

recommend that strain imaging could be used to investigate unexplained left 

ventricular hypertrophy that is not diagnostic of HCM (Gersh et al., 2011; Elliott et 

al., 2014).  

CMR tissue tagging is an alternative method to echocardiography for the 

assessment of regional strain and is highly reproducible in this setting (Shehata et 

al., 2009; Swoboda et al., 2013). Using CMR tissue tagging it is reported that 

significant heterogeneity in contractile function can be detected in different 

regions of the heart depending upon the extent of phenotypic expression in that 

region (Kramer et al., 1994). It was subsequently confirmed that the presence of 

LGE strongly correlated with impaired strain detected by tissue tagging (Kim et al., 

2008).  

One recent study has used CMR feature tracking to investigate regional strain in 

subjects under the age of 20 with HCM. They report that regional strain is most 

impaired in areas of hypertrophy or replacement fibrosis detected as LGE (Smith et 
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al., 2014). These findings are in keeping with previous echocardiography and CMR 

tagging studies.   

1.2.4 Diastolic dysfunction and LV outflow tract obstruction 

In addition to the CMR techniques that have been discussed other diagnostic 

features of HCM can be detected during a routine CMR examination. HCM is 

associated with impaired relaxation of the left ventricle which can be detected as 

diastolic dysfunction on Doppler echocardiography. Whilst it is possible to make an 

assessment of LV filling pattern and longitudinal function by CMR using cine 

imaging, phase velocity flow mapping, tissue tagging and feature tracking none of 

these techniques have been validated to the same extent as echocardiographic 

assessment of diastolic dysfunction. In addition the temporal resolution is higher 

when assessed by echocardiography, which is an important consideration when 

measuring diastolic function.  

LV outflow tract (LVOT) obstruction is another diagnostic feature of HCM that is 

present in approximately one third of patients. Conventionally this assessment has 

been carried out by Doppler echocardiography. It is possible to make an 

assessment of flow obstruction using phase velocity flow mapping during a routine 

CMR examination. However alignment of the imaging plane can be difficult, 

intravoxel dephasing and signal loss due to phase offset errors can lead to errors in 

quantification and it can only be measured at rest. A significant proportion of 

patients with HCM only have LVOT obstruction during exercise, termed dynamic 

outflow tract obstruction. Technically it is much easier to make an assessment of 

dynamic outflow tract obstruction during echocardiography than CMR.   

It is possible to make an assessment of both LV diastolic function and LV outflow 

tract obstruction during a routine CMR examination. However results from 

echocardiography appear to be more reproducible, easier to acquire and are better 

validated. Furthermore they both tend to be a consequence of significant 

hypertrophy or replacement fibrosis and therefore occur later in the disease 

process. For these reasons these techniques are not routinely used for the 

assessment of subclinical disease in HCM.  
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From one CMR examination it is now possible to make an accurate assessment of 

the expression of HCM phenotype by measuring myocardial hypertrophy, myocyte 

disarray and collagen deposition (with ECV mapping) and replacement fibrosis 

(LGE). During the same examination the functional consequences of these changes 

in tissues characteristic can be assessed (using either tissue tagging or feature 

tracking). Additional techniques to assess diastolic function or LVOT obstruction 

can also be added if required. Using these techniques it is possible to detect 

subclinical features of HCM in an otherwise asymptomatic subject.  

1.3 Subclinical cardiac changes in endurance athletes 

1.3.1 Change in cardiac morphology in trained athletes 

It is well recognised that athletic training leads to ventricular remodelling, 

specifically increases in LV EDV and RV EDV and LV mass (Maron and Pelliccia, 

2006). These structural changes are most frequently seen in athletes who undergo 

prolonged periods of endurance training (Utomi et al., 2013) and are typically 

subclinical with no associated symptoms. The increase in LV mass occurs as early as 

6 months after commencement of endurance training (Arbab-Zadeh et al., 2014) 

and may be accompanied by an increase in LV EDV resulting in a typical phenotype 

of eccentric remodelling referred to as “athlete’s heart” (Maron, 2003; Utomi et 

al., 2013).  

CMR volumetric assessment of LV EDV and mass is established to be accurate and 

reproducible (Grothues et al., 2002) and is therefore an ideal tool for the 

quantification of the cardiac structural changes that can be detected in athletes.  

Although athlete’s heart has a fairly well established phenotype in certain cases the 

extent of LV hypertrophy can overlap into the pathological range. In these cases it 

is important to exclude a diagnosis of HCM. Although rare (Basavarajaiah et al., 

2008), HCM is the leading cause of sudden cardiac death in young athletes (Maron 

et al., 2009a). Current guidelines advise that patients with HCM should avoid 

competitive sport and it is therefore imperative that HCM and physiological 

remodelling are correctly distinguished in an athlete with LV hypertrophy (Gersh et 

al., 2011; Elliott et al., 2014). 
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Several imaging parameters have been previously proposed to distinguish between 

physiological LVH and HCM including: EDV/LV mass (Luijkx et al., 2013), left atrial 

remodelling (Pelliccia et al., 2005), changes in strain pattern (Vinereanu et al., 

2001), maximal oxygen consumption during cardiopulmonary exercise testing 

(Sharma et al., 2000) or composite assessments of multiple imaging findings 

(Caselli et al., 2014).  

In subjects with very localised and asymmetric hypertrophy, the differentiation 

between the two entities can be straight-forward. However, when myocardial 

thickness is borderline or more widespread, it can be challenging to exclude a 

diagnosis of HCM in athletes (Basavarajaiah et al., 2008; Rawlins et al., 2010). 

Establishing the correct diagnosis may then require the athlete to undergo a period 

of detraining, which is challenging in elite athletes (Pelliccia et al., 2002).  

Some endurance athletes display a cardiac phenotype of dilated left ventricle and 

low normal ejection fraction which can be difficult to differentiate clinically from 

early dilated cardiomyopathy (Abergel et al., 2004). This is usually less challenging 

than excluding HCM however in certain circumstances detraining can be 

necessitated too.  

In certain situations it can be difficult to differentiate physiological athletic RV 

dilatation from pathological arrhythmogenic right ventricular cardiomyopathy. It 

has been postulated that imaging during exercise may be able to differentiate the 

two pathologies better than other methods; RV function improves if there is 

physiological RV dilatation whereas it does not in patients with pathological 

dilatation associated with cardiomyopathy (La Gerche et al., 2015).  

1.3.2 Change in strain in trained athletes 

Although less well established than changes in volumetric parameters, there is also 

evidence for changes in functional parameters in the hearts of trained athletes. 

Endurance athletes have reduced ejection fraction, circumferential and 

longitudinal strain of both the left and right ventricles compared to healthy 

controls (Caselli et al., 2015; Nottin et al., 2008). It has also been reported that 

athletes have decreased LV twist and torsion when compared to sedentary 

controls (Nottin et al., 2008).   Several echocardiography studies using techniques 
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including tissue Doppler imaging and speckle tracking have been used to 

investigate left ventricular torsion in athletes. Contrasting findings have been 

reported including decreased apical rotation and LV torsion in athletes with high 

levels of aerobic fitness (Stohr et al., 2012) no effect of high intensity exercise on 

LV torsion (Stewart et al., 2015), or even an increase in LV torsion (Weiner et al., 

2010). The inconsistent results that have been reported may in part reflect 

different sport and training techniques, research methodology used and also the 

difficulty in positioning the apical and basal slices in echocardiography studies, 

which is based upon anatomical landmarks with a degree of subjectivity. 

Conflicting findings have been reported when echocardiographic assessment of 

diastolic function has been used with some studies reporting augmented relaxation 

of both ventricles in endurance athletes (Caselli et al., 2015; Baggish et al., 2008) 

and others reporting no difference from controls (Pluim et al., 2000).      

1.3.3 Tissue characterisation in trained athletes 

In addition to the physiological subclinical changes that can be detected by CMR in 

athletes it is also possible to detect subclinical pathological change. One study 

reported the presence of LGE in 6 lifelong athletes over the age of 50 (N=12). 4/6 

had non-specific LGE, 1/6 had a previous myocarditis pattern and 1/6 had a 

subendocardial pattern suggestive of previous MI (Wilson et al., 2011). Another 

study reported a prevalence of non-ischaemic pattern LGE in 2/95 asymptomatic 

athletes (Mangold et al., 2013). One recent case series has attempted to establish 

the prognostic significance of non-ischaemic LGE detected on routine screening in 

asymptomatic athletes (Schnell et al., 2015). On following up 7 athletes with sub-

epicardial lateral LGE suggestive of previous myocarditis over three years 5/7 had 

symptomatic ventricular arrhythmias and 1/7 had progressive LV dysfunction. This 

study was small and the nature of the ventricular arrhythmia variable, ranging from 

exercise induced couplets to ventricular tachycardia requiring ICD implantation, 

however it does suggest that non-ischaemic LGE in athletes may be a 

prognostically significant pathological finding. 
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1.4 Detection of subclinical heart failure in diabetes 

The mechanisms that lead from chronic hyperglycaemia to heart failure are 

complex and are thought to involve altered substrate metabolism, impaired 

calcium handling, increased reactive oxygen species and microvascular advanced 

glycation end product deposition (Boudina and Abel, 2007; Seferovic and Paulus, 

2015). It is possible to detect the consequences of many of these pathways using 

cardiac imaging in the subclinical phase of disease. Changes in cardiac morphology, 

function and microscopic structure can all be detected in type 2 diabetes before 

the onset of heart failure symptoms. Many of these features have been associated 

with adverse outcomes.  

1.4.1 Changes in cardiac morphology 

Several studies have demonstrated that type 2 diabetes is associated with 

increased LV mass and concentric remodelling of the left ventricle independently 

of blood pressure. Original studies were carried out using echocardiography and 

demonstrated that diabetes was associated with increased LV wall thickness and 

LV mass (Galderisi et al., 1991; Devereux et al., 2000). Echocardiographic 

assessment of LV mass is dependent on image quality and echocardiographic 

windows. CMR assessment of LV dimensions is not hampered by these issues and 

consequently the assessment of LV mass by this technique is significantly more 

reproducible (Grothues et al., 2002).  

CMR data of 4869 patients from the large observational MESA (Multiethnic study 

of atherosclerosis) study (Heckbert et al., 2006) demonstrated that diabetes is 

associated with an increase in LV mass. After regression analysis for multiple risk 

factors including BMI and systolic blood pressure diabetes was associated with a 

3.5g greater LV mass (95% confidence interval 1.2-5.8g).  

In large population studies not specifically restricted to patients with type 2 

diabetes increased LV mass predicted the onset of heart failure after correction for 

other risk factors such as blood pressure and coronary disease (de Simone et al., 

2008; Bluemke et al., 2008). However no studies to date have been carried out 

investigating the association between LV mass and heart failure in low risk patients 

with diabetes.  
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1.4.2 Changes in cardiac function 

As many as 75% of asymptomatic patients with type 2 diabetes have abnormal 

parameters of diastolic function measured by conventional Doppler and tissue 

Doppler (TDI) echocardiography (Poirier et al., 2001; Boyer et al., 2004). In addition 

impaired peak longitudinal systolic velocity measured by TDI (Kosmala et al., 2004) 

and by speckle tracking (Ng et al., 2009) has also been reported in patients with 

type 2 diabetes. It is possible to measure strain in three dimensions using CMR 

tissue tagging. Using this technique both circumferential strain and longitudinal 

strain are reported to be impaired in type 2 diabetes (Fonseca et al., 2004).  

TDI echocardiography provides prognostic information in patients with type 2 

diabetes. E/E’ ratio measured by TDI is a relatively simple measurement and is a 

well validated non-invasive measure of left ventricular filling pressure (Ommen et 

al., 2000). A retrospective study of 1760 patient with diabetes by From et al 

identified 23% of patients with elevated E/E’ and therefore diastolic dysfunction 

(From et al., 2010).  Over 5 years follow up the cumulative proportion of those who 

developed heart failure was 36.9% in those with elevated E/E’ compared to 16.8% 

in those with normal E/E’. Age, hypertension, coronary artery disease and ejection 

fraction were stronger predictors of heart failure development than diastolic 

dysfunction but even after adjusting for these factors E/E’ was a strong predictor of 

the development of heart failure.  These findings were not replicated in a recent 

prospectively recruited study of 305 patients with type 2 diabetes without history 

of coronary artery disease (Poulsen et al., 2013) who all underwent single-photon 

emission computed tomography (SPECT) and TDI echocardiography. They found 

that age, hypertension, E/E’ and left atrial volume but not ischaemia on SPECT 

were predictors of a composite of cardiovascular events or mortality. However on 

multivariable regression analysis left atrial volume and ejection fraction were the 

only independent predictors of cardiovascular events or mortality. Measuring E’ by 

TDI during exercise can provide incremental evidence about diastolic function 

which appears to have prognostic information. E’, representing passive filling of the 

left ventricle, normally increases during exercise. It is reported that that this 
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response can be impaired in diabetes and has been associated with increased 

mortality and heart failure admissions on follow up (Kim et al., 2011). 

The prognostic significance of systolic strain parameters in type 2 diabetes has also 

been studied. Impaired global longitudinal strain measured by speckle tracking 

echocardiography was associated with increased mortality and hospitalisation 

(Holland et al., 2015). Although not specifically studied in diabetes impaired global 

circumferential strain measured by CMR tagging has been shown to be associated 

with subsequent development of heart failure (Choi et al., 2013).  

Measurement of diastolic dysfunction by echocardiography is a comparatively 

cheap screening tool that does not involve exposure to ionising radiation. There is 

some conflicting data that suggests diastolic dysfunction may predict the onset of 

heart failure in type 2 diabetes. However diastolic dysfunction is a prevalent finding 

and has significant interactions with other risk factors such as age, blood pressure 

and presence of coronary disease. Furthermore randomised studies of 

interventions have failed to demonstrate an improvement in E/E’ with intervention 

(van der Meer et al., 2009; Ofstad et al., 2014).  

Left ventricular torsion is a measure of the wringing motion of the heart calculated 

from the basal clockwise rotation and apical anticlockwise rotation. It can be 

measured by speckle tracking echocardiography or tagged CMR images. A 

paradoxical increase in left ventricular torsion has been reported in diabetes 

(Chung et al., 2006) and is thought to be due to small vessel ischaemia, 

subendocardial myofibre dysfunction and compensatory increased subepicardial 

myofibre contraction (Larghat et al., 2014). It was demonstrated in a randomised 

study of sildenafil, a phosphodiesterase type 5 inhibitor, in patients with diabetes 

that these changes could be overcome and torsion normalised (Giannetta et al., 

2012). However it remains to be established whether torsion is associated with 

increased heart failure or mortality on long term follow up.  

1.4.3 Changes in myocardial tissue characteristics  

ECV fraction has been demonstrated to be increased in asymptomatic patients 

with type 2 diabetes and also associated with impaired diastolic strain detected by 

TDI echocardiography (Jellis et al., 2011; Ng et al., 2012).  A recent study by Wong 
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et al followed up 231 patients with type 2 diabetes who had clinically indicated 

CMR for a median duration of 1.3 years (Wong et al., 2013). They found those with 

a higher ECV were at higher risk of heart failure admission or death (hazard ratio 

1.52 per 3% increase in ECV). However it should be noted that in the study of Wong 

et al the patients were recruited from clinical scans they were not asymptomatic 

and in fact had a high rate of prior coronary revascularisation (33%) and prior 

myocardial infarction (11%).   

ECV holds real promise as a potential screening tool for identifying those at highest 

risk of heart failure. However the prognostic value of ECV in asymptomatic patients 

and whether ECV can be altered by any intervention remains to be established.  

Magnetic resonance spectroscopy is able to measure the concentration of 

metabolites within the heart non-invasively without the use of ionising radiation. 

Studies have shown that patients with type 2 diabetes have increased cardiac 

triglyceride content, termed steatosis (McGavock et al., 2007). Furthermore cardiac 

steatosis in type 2 diabetes is associated with impaired function measured by both 

systolic and diastolic strain measured by TDI and speckle tracking 

echocardiography (Rijzewijk et al., 2008; Ng et al., 2010). However it remains to be 

established whether this process can be reversed and whether it is independently 

associated with adverse prognosis.  

1.4.4 Changes in microvascular function 

Silent ischaemia due to epicardial coronary artery stenosis can be detected by 

several techniques including nuclear imaging, stress echocardiography and first 

pass perfusion CMR (see 1.5.4). SPECT measures relative blood flow and is 

therefore not able to detect abnormalities in the microvasculature. Conversely, 

positron emission tomography (PET) allows the non-invasive quantification of 

absolute myocardial blood flow at rest and during pharmacological vasodilator 

stress. Comparing the blood flow at rest and stress allows the calculation of 

coronary flow reserve (CFR). In the absence of coronary disease impairment of CFR 

reflects microvascular dysfunction.  

Impaired CFR detected by PET is has been reported in asymptomatic patients with 

type 2 diabetes without known coronary disease (Nahser et al., 1995) and is shown 
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to correspond with degree of hyperglycaemia measured by Hba1c rather than 

insulin resistance (Yokoyama et al., 1998). Patients with impaired CFR measured by 

PET are reported to also have increased ECV measured by CMR (Rao et al., 2013). 

Studies have shown that abnormalities in myocardial blood flow detected by PET 

can also be reversed by interventions including pioglitazone (Naoumova et al., 

2007) and spironolactone (Garg et al., 2015). There is also evidence that CFR 

impairment in type 2 diabetes is associated with excess cardiovascular risk. Murthy 

et followed up 1172 patients with diabetes after a clinically indicated PET scan for a 

median duration of 1.4 years (Murthy et al., 2012). Those with CFR below the 

median had an adjusted hazard ratio of 3.2 for cardiac death compared to those 

with CFR above the median. Diabetic patients without coronary artery disease but 

impaired CFR had a comparable event rate to diabetic patients with coronary 

artery disease. However these patients were not asymptomatic with 47.2% having 

the test because of chest pain and had a high rate of prior revascularisation (45.6%) 

and prior myocardial infarction (36.1%).   

Coronary blood flow during stress is impaired in patients with type 2 diabetes 

independent of epicardial coronary artery disease. These changes can be reversed 

by medical therapy and appear to be associated with adverse outcomes (Murthy et 

al., 2012; Garg et al., 2015). Cardiac PET however is not widely available and 

involves exposure to ionising radiation. It is possible to measure CFR with other 

techniques including stress first pass perfusion CMR (Ibrahim et al., 2002) and 

stress echocardiography (Cortigiani et al., 2007). However these techniques can be 

challenging and do not have as broad an evidence base as CFR measured by PET.  

 

1.5 Asymptomatic ischaemic heart disease in diabetes 

1.5.1 Myocardial infarction 

MI is the single largest cause of mortality in type 2 diabetes. Electrocardiogram 

(ECG) remains the most important diagnostic test in acute MI and is used to 

prioritise which patients should receive urgent reperfusion therapy. In patients 

with chest pain but ECG changes non-diagnostic of acute MI imaging modalities can 
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be used to detect acute changes in structure and function that may help confirm or 

rule out a diagnosis of MI. The presence of acute myocardial infarction can be 

confirmed by urgent echocardiography demonstrating wall motion abnormality. 

The diagnostic and prognostic accuracy can be improved further by the addition of 

strain imaging, intravenous contrast, physiological or pharmacological stress (Shah 

et al., 2013). The presence of a perfusion defect on resting SPECT is an alternative 

method to confirm the diagnosis (Udelson et al., 2002). CMR can detect the 

presence of acute MI by wall motion abnormality or perfusion defect and is also 

able to detect the presence of oedema using T2 weighted imaging or scar imaging 

by LGE (Cury et al., 2008). Finally using CT coronary imaging it is possible to exclude 

acute coronary stenosis with high negative predictive value (Hulten et al., 2013).  

After the acute phase of MI chronic changes such as scarring, fibrosis, associated 

wall motion abnormalities and perfusion defects can be detected. Therefore the 

techniques most commonly used to detect chronic MI include ECG, 

echocardiography, nuclear techniques and CMR.  

 

Chronic MI can be diagnosed by 12 lead ECG according to the presence of Q waves. 

Although a good screening test, the sensitivity to detect chronic MI is reported to 

be only 33% (Jaarsma et al., 2013). The prevalence of silent MI by the presence of 

Q waves in patients with newly diagnosed type 2 diabetes in UKPDS was reported 

to be 17% (Davis et al., 2013).   The adjusted hazard ratio for all cause mortality of 

diabetic patients with silent MI by Q waves compared to those without over 17 

years follow up was 1.31. The mortality of diabetic patients with silent MI detected 

by Q waves is reported to be similar to patients with recognised MI (Davis et al., 

2004).  

Silent MI can also be assessed by SPECT by intravenous injection of a gamma 

emitting radioisotope during rest and stress (either exercise induced or 

pharmacological). An area of myocardium that has decreased tracer uptake at both 

rest and stress is deemed non-reversible and has been shown to correspond to 

areas of prior myocardial infarction (Zellweger et al., 2002). The prevalence of 

silent MI assessed using this technique was reported to be 28.5% in patients with 

type 2 diabetes undergoing SPECT for clinical purposes (Arenja et al., 2013).  
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Currently the best validated method for the presence and extent of silent MI is the 

LGE technique measured by CMR. Kwong et al first reported a prevalence of 28% of 

silent MI using LGE imaging in symptomatic patients without prior MI type 2 

diabetes undergoing CMR (Kwong et al., 2006). Schelbert et al reported a 

prevalence of 21% of silent MI of diabetic patients enrolled in the ICELAND MI 

study who underwent CMR between 2004 and 2007 (Schelbert et al., 2012). 

However patients in both studies were not necessarily asymptomatic and in 

ICELAND MI 28% of those with silent MI had prior coronary revascularisation. In 

both of these studies the presence of silent MI in diabetes was associated with 

significant morbidity and mortality. Kwong et al reported that over 17 months 

follow up the presence of silent MI in patients with diabetes was associated with 

increased mortality (hazard ratio 3.72, P<0.001) and major adverse cardiovascular 

events (MACE) (HR3.61, P=0.007)(Kwong et al., 2006). Schelbert et al reported that 

that over 6.4 years follow up the mortality of all patients with silent MI was similar 

to those with recognised MI (28% vs 33%, P=0.40) (Schelbert et al., 2012).   

Asymptomatic patients with type 2 diabetes have increased risk of silent 

myocardial infarction compared to normoglycaemic patients. The exact prevalence 

of silent MI In type 2 diabetes varies according to imaging modality and the extent 

of symptoms patients had within the study. However whichever imaging modality 

is used it is clear that those with silent MI are at increased risk or mortality and 

morbidity. At present the LGE technique is favoured for the detection of silent MI 

given its improved sensitivity compared to ECG, echocardiography and SPECT 

(Ibrahim et al., 2007) without the need for ionising radiation. 

1.5.2 Plaque Imaging  

Most imaging methods can only detect MI, silent or recognised, after the event. 

Although the risk of future MI is highest in those with previous MI, it may also be 

possible to predict the likelihood of future MI directly with imaging. Molecular 

imaging techniques with radiolabelled molecules have been used to detect the 

pathological components of unstable coronary plaques. 18F-fluorodeoxyglucose 

(18F-FDG) PET can to identify high risk plaques in large arteries (Langer et al., 

2008). However this technique is unable to identify unstable plaque in the 
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coronary vessels as it is hampered by myocardial activity (Dweck et al., 2012).  18F-

sodium fluoride (18F-NaF) is able to overcome this issue and identify localised 

ruptured and unstable plaque particularly when combined with anatomical CT 

imaging (Joshi et al., 2014).  

Cross sectional imaging techniques are also reported to be able to identify high risk 

plaque according to its anatomical features. Plaques with positive remodelling and 

low attenuation identified by CT coronary angiography are at significantly higher 

risk of myocardial infarction over 3.9 years follow up (Motoyama et al., 2015). Non 

contrast CMR coronary imaging is able to identify plaques with increased T1 

weighted signal, a marker of increased tissue water content and potentially plaque 

instability (Hoshi et al., 2015). After a year treatment with high dose statin therapy 

there was a significant decrease in the intensity of the coronary signal suggesting 

plaque stabilisation (Noguchi et al., 2015).  

The prognostic utility of imaging techniques to identify unstable coronary plaque in 

low risk and asymptomatic patients (particularly those with diabetes) has not yet 

been established and requires significant expertise for acquisition and post 

processing. It is likely however that in the near future these techniques will be 

important to identify patients with diabetes at the highest risk of acute coronary 

events for inclusion in clinical trials.  

  

1.5.4 Stable Coronary Artery Disease 

It is possible to detect stable coronary artery disease either by detecting the 

stenosis itself by anatomical imaging of the coronary tree (usually by CT, CMR or 

invasive angiography) or by detecting the inducible ischaemia that occurs as a 

consequence of the stenosis. Testing for ischaemia typically involves the 

administration of pharmacological or physiological stress and then imaging to 

detect either decreased uptake of contrast (SPECT, PET or CMR first pass perfusion) 

or wall motion abnormality as a consequence of ischaemia (stress 

echocardiography).  

Patients with diabetes and significant inducible ischaemia have increased 

mortality. It is reported that in patients with diabetes undergoing SPECT for clinical 
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purposes that mortality and non-fatal MI increase from 1-2% for those with normal 

MPS to 7% for those with moderate to severe inducible ischaemia (Kang et al., 

1999). Furthermore the high event rate associated with significant inducible 

cardiac ischaemia appears to be independent of the presence or absence of 

symptoms (Zellweger et al., 2004).  

However randomising asymptomatic diabetic patients to screening with SPECT in 

Detection of Silent Myocardial Ischemia in Asymptomatic Diabetics (DIAD) study 

did not alter their mortality (Young et al., 2009). 1123 patients with type 2 diabetes 

were randomised to investigation by SPECT screening or not. 113/522 patients 

(22%) in the SPECT arm had silent ischemia (Wackers et al., 2004). Although the 

prevalence of ischaemia was high the reported cardiovascular event rate was very 

low (0.6% per year) leading the authors to suggest that routine SPECT could not be 

recommended in patients with type 2 diabetes (Young et al., 2009). These 

recommendations have been repeated in European guidelines (Perrone-Filardi et 

al., 2011).  

Similarly to DIAD the utility of screening asymptomatic diabetic patients for 

coronary artery disease using CT coronary angiography has been tested in the 

FACTOR 64 trial (Muhlestein et al., 2014). 900 patients were randomised to either 

CT or standard care. 76/336 patients who underwent CT coronary angiography had 

moderate or severe coronary stenosis which resulted in 25 coronary 

revascularisation procedures. However despite the intervention there was no 

difference in the primary outcome a composite of all-cause mortality, nonfatal MI, 

or unstable angina requiring hospitalization over 3 to 5 years follow up between CT 

guided or standard care (6.2% vs 7.6%, P=0.38).  

Despite the high prevalence of stable coronary artery disease detected in 

asymptomatic patients with type 2 diabetes by SPECT or CT the associated 

mortality appears to be low. Two high quality landmark trials (DIAD and FACTOR 

64) using different imaging modalities have both shown that intervening upon 

silent stable coronary artery disease in this population does not appear to alter 

long term outcomes. Although it is possible to detect silent stable coronary artery 

disease in asymptomatic patients with type 2 diabetes, it is associated with only 

modest increase in mortality which does not appear to be altered by intervention.  
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Therefore screening for subclinical stable coronary artery disease cannot be 

recommended.  

 

1.6 Aims of thesis  

Using CMR imaging it is possible to detect subclinical cardiac change in both 

disease and health. This has several potential applications in both clinical 

cardiology and research. Detection of subclinical change in asymptomatic subjects 

allows for the identification of disease prior to the onset of symptoms. For patients 

this facilitates early diagnosis and treatment, which has the potential to improve 

outcomes.  Certain imaging parameters that can be detected in asymptomatic 

patients have been independently associated with increased mortality. By 

specifically recruiting patients to studies who display subclinical pathology on 

imaging it may be possible to increase the event rate and even decrease the 

required sample size. Depending upon the parameter chosen it may also be 

possible to monitor the progression of subclinical disease. This could potentially be 

used clinically or as a surrogate end point in research.  

 

The subsequent chapters each have a specific aim with individual introduction, 

methods, results and discussion: 

Study 1: To establish whether T1 and ECV mapping can distinguish athletic cardiac 

remodelling from HCM 

Study 2: To investigate whether regional strain impairment in HCM is an early or 

late feature of HCM 

Study 3: To study the three dimensional changes in strain parameters in highly 

trained endurance athletes and their relationship with aerobic capacity 

Study 4: To identify whether increased risk of heart failure in patients with type 2 

diabetes is mediated by focal or diffuse cardiac fibrosis 

Study 5: To establish which parameters might be useful in screening for silent 

myocardial infarction in patients with type 2 diabetes  
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2  . Study 1- CMR to differentiate hypertrophic 

cardiomyopathy from athlete’s heart  

2.1 Abstract 

Background 

Athletes who train regularly can develop left ventricular (LV) hypertrophy, which 

can be difficult to differentiate from hypertrophic cardiomyopathy (HCM), the 

leading cause of sudden cardiac death in young athletes. Cardiovascular magnetic 

resonance (CMR) T1 and extracellular volume (ECV) mapping provide quantitative 

assessment of myocardial composition. We hypothesised that ECV could 

differentiate athletic from pathological hypertrophy, in particular in subjects with 

indeterminate segment thickness. 

Methods  

50 HCM patients, 40 athletes and 35 volunteers underwent 3.0T CMR including 

5b(3s)3b Modified Look-Locker Inversion (MOLLI) T1 maps before and 15 minutes 

after administration of 0.15mmol/kg intravenous gadobutrol. Native T1 and ECV 

were measured for each segment of each subject.  

Results  

Native T1 and ECV of the thickest segment were significantly lower in athletes than 

HCM (1175.5±37.3ms vs 1261.1±52.3ms and 22.2±3.5% vs 32.8 ±9.0%, P<0.001 for 

both). On receiver operator curve analysis the area under the curve (AUC) to 

differentiate HCM from athlete for native T1 was 0.91 and ECV 0.95 (P<0.001). The 

maximal segment thickness overlapped between HCM and athletes in 26 

individuals (13 athletes and 13 HCM).  The AUC of ECV, native T1 and EDV/LV mass 

to differentiate between athletes and HCM in these indeterminate subjects were 

0.99, 0.95, and 0.82 respectively, P<0.001 for all. The optimal cut-off to diagnose 

HCM was ECV>22.5% (sensitivity 100%, specificity 92%), native T1>1190.4 

(sensitivity 100%, specificity 77%). In these subjects diagnostic accuracy of ECV was 
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significantly better than EDV/LV mass or the presence of LGE, P=0.03 and P<0.001, 

respectively. 

Conclusions 

T1 mapping and ECV measurement by CMR can be used to distinguish HCM and 

athletic remodelling with high diagnostic accuracy and has a potential role in the 

exclusion of HCM in athletes presenting with intermediate left ventricular wall 

thickness. 
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2.2 Introduction  

Athletes who train and compete regularly develop changes in cardiac morphology 

and function, most notably an increase in LV mass (Maron and Pelliccia, 2006). This 

increase in LV mass occurs as early as 6 months after commencement of 

endurance training (Arbab-Zadeh et al., 2014) and may be accompanied by an 

increase in LV end-diastolic volume (LVEDV) resulting in a typical phenotype of 

eccentric remodelling referred to as “athlete’s heart” (Maron, 2003; Utomi et al., 

2013). An important differential diagnosis of athlete’s heart is HCM. Although rare 

(Basavarajaiah et al., 2008), HCM is the leading cause of sudden cardiac death in 

young athletes (Maron et al., 2009a). Current guidelines advise that patients with 

HCM should avoid competitive sport and it is therefore imperative that HCM and 

physiological remodelling are correctly distinguished in an athlete with LV 

hypertrophy (Gersh et al., 2011; Elliott et al., 2014). Several imaging parameters 

have been reported to differentiate athletic from pathological hypertrophic 

remodelling (Pelliccia et al., 1991; Pelliccia et al., 2012; Luijkx et al., 2013). In 

subjects with very localised and asymmetric hypertrophy, the differentiation 

between the two entities can be straight-forward. However, when myocardial 

thickness is borderline or more widespread, it can be challenging to exclude a 

diagnosis of HCM in athletes (Basavarajaiah et al., 2008; Rawlins et al., 2010). 

Establishing the correct diagnosis may then require the athlete to undergo a period 

of detraining, which is challenging in elite athletes (Pelliccia et al., 2002).  

CMR is increasingly used to aid in the differential diagnosis of LV hypertrophy 

because it provides more accurate measurements of LV thickness than 

echocardiography (Valente et al., 2013) and permits detection of focal scar 

according to the presence of LGE (Maron et al., 2009b). While LGE imaging appears 

to have merits in risk stratification, it is a qualitative technique, and detection of 

pathology requires a contrast between normal and abnormal tissue, limiting 

application in diffuse myocardial change. In contrast, T1 mapping provides 

quantitative assessment of myocardial composition and diffuse fibrotic change, by 

measuring either the native T1 alone or myocardial ECV from both native and post 

contrast T1 mapping (Flett et al., 2010). ECV in HCM has been shown to be 
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increased even in segments that do not have scar on LGE (Kellman et al., 2012). 

This elevation in ECV is thought to be related to myocardial disarray, the 

pathological hallmark of HCM (Sheppard, 2012). We hypothesised that athlete’s 

heart, conversely, is characterised by myocyte hypertrophy without ECV expansion 

and therefore, that T1and ECV mapping can differentiate between HCM and 

athlete’s heart. We specifically investigated the ability of the CMR methods to 

differentiate between the entities in those subjects with borderline myocardial 

thickness. 

 

2.3 Methods 

2.3.1 Enrolment Criteria 

40 athletes, 50 patients with HCM and 35 volunteers were enrolled in the study. 

Patients under the age of 65 with HCM were recruited from the Inherited 

Cardiovascular Conditions Service at Leeds General Infirmary, Leeds, UK. The 

diagnosis of HCM was made independently by clinicians in keeping with current 

guidelines and based upon imaging, ECG, exercise testing, family history and 

genetic testing if possible (Elliott et al., 2014; Gersh et al., 2011). We specifically 

identified patients with definite HCM but maximum segment thickness <15mm. 

Exclusion criteria were previous surgical myomectomy, previous septal ablation, 

atrial fibrillation, previous myocardial infarction, uncontrolled hypertension, 

permanent pacemaker, defibrillator or other contraindication to CMR. Of the 40 

athletes, 11 were runners, 13 were triathletes and 16 were cyclists. These sports 

were chosen as they are reported to lead to cardiac remodelling to differing 

extents (Maron and Pelliccia, 2006; Utomi et al., 2013). All athletes trained more 

than 6 hours a week, competed at local or national level and were under the age of 

45. Athletes underwent cardio-pulmonary exercise testing to ensure high fitness 

levels. They had a mean VO2max of 58.3 ± 9.0 ml/min/kg, a similar level to that 

associated with athletic cardiac remodelling previously (Arbab-Zadeh et al., 2014; 

Sharma et al., 2000). The 35 healthy volunteers exercised less than three hours per 

week. No athletes or controls had any other medical conditions or took any regular 
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medication. The study was conducted in accordance with the declaration of 

Helsinki and was approved by the local ethics committee (14/YH/0126). All subjects 

gave informed written consent.  

2.3.2 CMR protocol 

All subjects underwent identical CMR protocol performed on a 3.0 Tesla Philips 

Achieva TX system (Philips, Best, The Netherlands) equipped with a 32 channel 

cardiac phased array receiver coil. A full blood count, including haematocrit was 

measured at the time of intravenous cannulation. The cardiac long and short axes 

were determined using standard scout views. Basal, mid and apical pre-contrast 

(native) T1 maps were generated using a validated MOLLI protocol (Kellman et al., 

2013) (ECG triggered 5b(3s)3b MOLLI scheme with voxel size of 1.98 x 1.98 mm2, 

slice thickness 10mm) and were planned using the 3 of 5 method (Messroghli et al., 

2005). Left ventricular volumes were obtained from cine imaging covering the 

entire LV in the short axis: balanced SSFP, voxel size 1.2 x 1.2mm2, slice thickness 

10mm with no gap, 50 cardiac phases. Left atrial (LA) volumes were obtained from 

cine imaging covering the entire heart in the transverse axis: balanced SSFP, voxel 

size 1.2 x 1.2mm2, slice thickness 6mm with no gap, 50 cardiac phases. 

0.15mmol/Kg Gadovist (Bayer Schering) was delivered by power injector (Medrad 

Inc, Warrendale, Pennsylvania, USA) as a single bolus via a cannula placed in the 

ante-cubital fossa followed by 20ml saline flush. Two-dimensional LGE imaging 

with whole heart coverage was performed seven to ten minutes following contrast 

administration and a Look Locker TI scout. Post contrast T1 maps were performed 

using the same MOLLI scheme fifteen minutes after contrast administration. 

2.3.3 CMR interpretation 

Analysis was carried out using standard software (cvi42, Circle CVI, Canada) by two 

physicians blinded to clinical and exercise data (BE & AKM). LV mass, end diastolic 

volumes (EDV), end systolic volume (ESV) and LV ejection fraction (EF) were 

measured from short axis cine images. LA volume was measured from the 

transverse image in atrial end diastole.  Native and post contrast T1 relaxation time 

of myocardium and blood pool were measured from the scanner generated T1 
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maps by contouring a region of interest in each segment of the American Heart 

Association (AHA) model (Cerqueira et al., 2002). ECV was calculated from native 

and post contrast T1 times of myocardium and blood pool and haematocrit as 

previously reported (Flett et al., 2010). Segment thickness was measured from 

diastolic SSFP cine images with corresponding slice location to the T1 maps. The 

thickest maximal thickness athlete segment was 13.8mm the thinnest maximal 

thickness HCM segment was 10.6mm.  Segments that fell in this overlapping range 

were therefore defined as indeterminate in this cohort (Valente et al., 2013). The 

presence of LGE in each AHA segment was reported by 2 physicians experienced in 

CMR interpretation.  

2.3.4 Statistical analysis 

Continuous variables were expressed as means ± SD. Categorical variables were 

expressed as N (%). Shapiro-Wilk test was used to test normality and depending on 

the result analysis of variance (ANOVA) and Kruskal Wallis test were used to 

compare means of athletes, HCMs and controls.  Mann Whitney U test was used to 

compare athletes and HCMs. Pearson’s correlation coefficient and Spearman’s rank 

correlation were used for linear correlations as appropriate. 

Receiver operating characteristic (ROC) analysis was used to determine the 

diagnostic accuracy of native T1, ECV, LV mass and EDV/LV mass on a per subject 

and per segment analysis. The diagnostic accuracy is expressed as area under the 

ROC curves (AUC) and 95% confidence interval. Nested models were used to assess 

the additive value when combining native T1, ECV and EDV/LV mass. AUCs were 

compared by using validated methods described by DeLong et al (DeLong et al., 

1988). Optimal sensitivity and specificity were calculated using Youden index. 

Reclassification tables were constructed using decile cut-offs  from which net 

reclassification index (NRI) was calculated to assess the incremental value of native 

T1 and ECV over EDV/LV mass (Pencina et al., 2008). ROC and NRI analysis was 

repeated in subjects who were defined as indeterminate. P<0.05 was considered 

statistically significant.  
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Figure 2.1 CMR images comparing a healthy athlete (left) and patient with HCM 

(right). On SSFP cine imaging both the athlete (A) and HCM patient (B) had a 

maximal end diastolic septal thickness of 13mm and EDV/LV mass of 1.6. On LGE 

imaging neither the athlete (C) or HCM (D) had any focal scarring or fibrosis. On 

ECV mapping the septal ECV of the athlete (E) was 22% and HCM (F) was 30%. 

Using the cut-off of 22.5% only ECV identified both subjects correctly.  
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2.4 Results 

Baseline characteristics are shown in Table 2.1. Weight and BMI were lower in 

athletes than controls and HCMs (P=0.02 and P<0.01 respectively). CMR findings of 

LV EDV, ESV, EF, LV mass, EDV/LV mass, maximal segment thickness, LVOT 

obstruction, native T1 and ECV in the three groups are shown in Figures 2.1 & 2.2 

and Table 2.2. The range of maximum segment thicknesses was 6.4-10.8mm, 7.0-

13.8mm and 10.6-28.0mm in control, athlete and HCM respectively.     

 

 

Table 2.1 Subject characteristics. FH, family history; HCM, hypertrophic 

cardiomyopathy 

 Athlete Control HCM P value 

N 40 35 50 NA 

Male gender, n (%) 32 (80) 27 (77) 37 (74) 0.80 

Age, years 31.3 ± 6.9 36.2 ± 11.7 46.9 ± 11.7 <0.001 

Height, cm 178.5±8.2 174.6±13.0 171.2 ± 9.0 <0.01 

Weight, kg 72.3±9.8 80.2±12.6 81.7±14.6 <0.001 

Body mass index, kg/m2 22.6±2.2 26.6±5.6 27.7±3.7 <0.001 

Systolic blood pressure, 

mmHg 

119.3±8.2 117.8±12.5 125.5±17.6 0.05 

Diastolic blood pressure, 

mmHg 

69.0±9.3 65.4±11.9 74.5±12.5 <0.01 

Heart rate 54.9±6.8 61.9±8.0 60.6±10.2 <0.001 

FH of HCM, n (%) 0 0 19 (38) <0.001 

Hours training per week 11.7±4.7   NA 

Number of years training at 

>6 hours per week 

8.7±5.9   NA 
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45/50 HCM patients had maximal segment thickness measured by 

echocardiography prior to CMR (5 had apical HCM where segment thickness could 

not be assessed accurately by echocardiography). Maximum segment thickness by 

echocardiography was on average 2.2mm thicker than by CMR (19.8±4.9mm vs 

17.6±3.9mm, P=0.001).  

 

Figure 2.2 Box and whisker plots showing maximum segment thickness, native T1, 

ECV and EDV/LVM for athletes, controls and HCMs showing median (line), mean 

(small square), interquartile range (box) and outliers (whiskers).  

 

Native T1 and ECV of the thickest segment were both significantly lower in athletes 

than HCMs (1175.5.8 ±37.3ms vs 1261.1±52.3ms and 22.2±3.5% vs 32.8 ±9.0%, 

P<0.001 for both). LV mass and LVMI were not significantly different between 

athlete and HCM (P=0.46 and P=0.97 respectively). LV EDV and LV EDVI were 

higher in athletes (219.4±34.3ml vs 155.0±32.2ml and 115.1±14.3ml/m2 vs 

78.7±13.13ml/m2, P<0.001 for both) and EF lower (56.0 ± 4.5% vs 62.3 ± 5.9%, 

P<0.001). EDV/LV mass was higher in athletes than HCMs (1.7±0.2ml/g vs 
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1.2±0.3ml/g, P<0.001). Two (5.8%) athletes had subepicardial lateral LGE in a 

myocarditis pattern, no controls had LGE and 35 (70%) HCMs had LGE.  

Native T1 and ECV of the thickest segment were both significantly lower in athletes 

than controls (1175.5±37.3 vs 1195.9±42.7ms, P=0.049 and 22.2±3.5% vs 

24.4±2.8%, P=0.004). 

 

Figure 2.3 Scatter plot showing maximal segmental thickness and corresponding 

ECV of the same segment. HCMs are hollow diamonds with solid trend line and 

athletes are filled circles with a dashed line. They grey area highlights the 

indeterminate zone between the thinnest maximal thickness HCM segment 

(10.6mm) and thickest maximal thickness athlete segment (13.8mm). 
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 Athlete  Control  HCM  P value 

LV EDV, ml 219.4±34.3 183.5±32.3 155.0±32.2 <0.001 

LV EDV indexed to BSA, 

ml/m2 

115.1±14.3 92.6±14.3 78.7±13.1 <0.001 

LV ESV, ml 96.6±19.0 79.2±18.3 59.1±17.7 <0.001 

LV Ejection Fraction, % 56.0±4.5 57.1±4.4 62.3±5.9 <0.001 

LV Mass, g 130.7±25.3 99.1±22.0 143.2 ± 50.1 <0.001 

LV Mass indexed to BSA, 

g/m2 

68.7±10.6 50.0±9.6 72.8 ± 26.3 <0.001 

LV EDV/ LV mass, ml/g 1.7±0.2 1.9±0.3 1.2±0.3 <0.001 

Left atrial volume, ml 100.0±17.2 88.1±19.2 116.6±28.9 <0.001 

LAV indexed to BSA, 

ml/m2 

53.1±8.1 44.4±7.8 59.3±13.5 <0.001 

Maximal segment 

thickness, mm 

9.9±1.5 8.9±1.2 17.1±4.0 <0.001 

LGE, n (%) 1 (2.9) 0 (0) 35 (70) <0.001 

LVOT obstruction, n (%) 0 0 11 (22) <0.001 

LVOT gradient, mmHg 0 0 68.5 ± 40.0 NA 

Thickest segment native 

T1, ms 

1175.5±37.3 1195.9±2.7 1261.1±2.3 <0.001 

Thickest segment ECV, % 22.2±3.5 24.4±2.8 32.8±9.0 <0.001 

 

Table 2.2 CMR findings. BSA, body surface area; ECV, extracellular volume; EDV, 

end diastolic volume; ESV, end systolic volume; LAV, left atrial volume; LGE, late 

gadolinium enhancement; LV, left ventricle; LVOT, left ventricular outflow tract 
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In athletes there were significant negative correlations between ECV and maximum 

segment thickness(r=-0.54, P<0.001), LV mass (r=-0.48, P<0.01) and LVMI (-0.42, 

P<0.01), see Figure 2.3. In controls there were significant negative correlations 

between ECV and maximum segment thickness(r=-0.45, P<0.01), LV mass (r=-0.42, 

P=0.01) and LVMI (-0.34, P=0.046). In HCMs there was a significant positive 

correlations between ECV and maximum segment thickness (rs=0.51, P<0.001) but 

no correlation with LV mass (P=0.42) or LVMI (P=0.34). For athletes, controls and 

HCM there were no significant correlations between native T1 and maximum 

segment thickness, LV mass or LVMI.  

2.4.1 Diagnostic performance 

To detect the 50 HCMs from the 40 athletes the diagnostic accuracy (AUC) of 

maximal segment thickness, native T1, ECV and EDV/LV mass were 0.962 [0.899-

0.991], 0.914 [0.836-0.963], 0.945 [0.876-0.982] and 0.944 [0.875-0.982] 

respectively, P<0.001 for all. There was no significant difference between AUCs, 

Figure 2.4.  In this cohort the optimal cut-offs to diagnose HCM were maximal 

segment thickness>12.4mm (sensitivity 84%, specificity 98%), ECV >24.1% 

(sensitivity 98%, specificity 78%), native T1 >1207.8ms (sensitivity 90%, specificity 

83%) and EDV/LV mass ≤1.36ml/g (sensitivity 78%, specificity 100%).  

We identified 26 indeterminate subjects (13 athlete and 13 HCMs) whose 

maximum segment thickness fell in the overlapping range of 10.6-13.8mm, Table 

2.3.  AUCs for native T1, ECV, and EDV/LV mass were 0.953 [0.790-1.000], 0.994 

[0.857-1.000], and 0.793 [0.590-0.925] respectively P<0.001 for all, Figure 2.5. AUC 

for maximal segment thickness was not significant 0.553 (0.124-0.747) P=0.46. The 

diagnostic accuracy of ECV was significantly better than EDV/LV mass (P=0.03). 

Native T1 was not significantly better than EDV/LV mass (P=0.08). The difference 

between ECV and native T1 was not significant (P=0.29). Native T1 and ECV were 

better than segment thickness (P<0.001 for both). EDV/LV mass was not 

significantly better than segment thickness (P=0.1). In patients with indeterminate 

maximal segment thickness the optimal cut-offs to diagnose HCM were ECV>22.5% 
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(sensitivity 100%, specificity 92%), native T1>1190.4 (sensitivity 100%, specificity 

77%). 

We also identified 15 subjects with maximum segment thickness of 12-15mm 

(Elliott et al., 2014; Gersh et al., 2011) (4 athletes and 11 HCMs). AUCs were; native 

T1 0.977[0.909-1.000] P=0.006 and ECV 1.000[1.000-1.000] P=0.006. AUCs for 

EDV/LV mass 0.818 [0.599-1.000] P=0.07 and segment thickness 0.761 [0.488-1.00] 

P=0.13 were not significant. Differences between AUCs were not significant.   

 

 

Table 2.3 Characteristics of 26 subjects in the indeterminate range of maximal 

segment thickness 10.6-13.8mm. BSA, body surface area; ECV, extracellular 

volume; EDV, end diastolic volume; ESV, end systolic volume; LAV, left atrial 

volume; LGE, late gadolinium enhancement; LV, left ventricle; LVOT, left ventricular 

outflow tract 

 

 Athlete HCM P value 

N 13 13 NA 

Male gender; n (%) 13 (100) 8 (74) 0.80 

Age, years 35.3±5.7 44.0±12.2 0.03 

LV EDV indexed to BSA, ml/m2 117.7±17.3  81.4±12.9 <0.001 

LV Mass indexed to BSA, g/m2 73.6±11.7 62.2±24.1 0.03 

LV EDV/ LV mass, ml/g 1.6±0.2 1.4±0.3 0.01 

LAV indexed to BSA, ml/m2 55.9±8.7 48.5±7.8 0.03 

LGE (%) 1 (8) 6 (46) 0.03 

LVOT obstruction (%) 0 0 NA 

Thickest segment native T1, ms 1166.1±35.7 1249.8±42.6 <0.001 

Thickest segment ECV, % 20.3±2.1 28.4  ±4.6 <0.001 

FH of HCM; N (%) 0 5 (38) 0.04 
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2.4.2 Combinations of Native T1, ECV and EDV/LV mass 

When the results of native T1 and ECV were combined with EDV/LV mass there 

were further improvements in the diagnostic accuracy. AUCs for the nested models 

were EDV/LV mass + native T1 0.979 [0.954-1.000] and EDV/LV mass + ECV 0.996 

[0.989-1.000] (P<0.001 vs EDV/LV mass for both). In indeterminate subjects AUCs 

for nested models were EDV/LV mass + native T1 0.911 [0.798-1.000] and EDV/LV 

mass + ECV 0.994 [0.975-1000] (P<0.001 vs EDV/LV mass for both).  

2.4.3 Net Reclassification Index 

When native T1 was added to EDV/LV mass 14 HCMs (28%) were re-classified 

correctly and 2 (4%) re-classified incorrectly. 19 (47.5%) athletes were reclassified 

correctly and 5 (12.5%) incorrectly (NRI=0.59, P<0.001). When ECV was added to 

EDV/LV mass 16 HCMs (32%) were re-classified correctly and 2 (4%) re-classified 

incorrectly. 21 (52.5%) athletes were reclassified correctly and 3 (7.5%) incorrectly 

(NRI=0.73, P<0.001). 

In indeterminate subjects when native T1 was added to EDV/LV mass 6 HCMs 

(46%) were re-classified correctly and 1 (7.7%) re-classified incorrectly. 7 (54%) 

athletes were reclassified correctly and 1 (8%) incorrectly (NRI=0.85, P=0.005). 

When ECV was added to EDV/LV mass 7 HCMs (54%) were re-classified correctly 

and 2 (15%) re-classified incorrectly. 9 (69.2%) athletes were reclassified correctly 

and 0 (0%) incorrectly (NRI=1.08, P=0.001). 
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Figure 2.4 Receiver operator characteristic curves for maximal segment thickness, 

native T1, ECV and EDV/LV mass for the detection of HCM against athletes. AUCs 

were 0.96, 0.91, 0.95 and 0.94 respectively P<0.001 for all. There was no significant 

difference between each of the measures. 

2.4.4 Segmental Analysis 

For segmental analysis, 640 athlete segments and 800 HCM segments were 

available. Of these, there were 23 athlete segments and 128 HCM segments in the 

indeterminate wall thickness range of 10.6-13.8mm. There were 123 HCM 

segments and no athlete segments >13.8mm. Native T1 and ECV were analysable 

for 149/151 of all indeterminate segments. The AUCs for ECV, native T1 and 

segment thickness to detect HCM segments against athlete segments in the 

indeterminate wall thickness diagnostic range were 0.90, 0.86, and 0.74 

respectively (P<0.001 for all, Figure 3.5). The diagnostic accuracy of ECV was 

superior to segment thickness (P= 0.03). The differences between native T1 and 

segment thickness, and native T1 and ECV were non-significant (P=0.06 and P=0.32 

respectively). 
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2.4.5 Late Gadolinium Enhancement 

2/40 athletes and 35/50 HCMs had LGE. Therefore the sensitivity and specificity of 

LGE on a per patient basis to diagnose HCM were 70% and 95% respectively. The 

AUC of LGE to diagnose HCM correctly was 0.825[0.731-0.897] P<0.001. The AUC 

of segment ECV was significantly better than LGE (P=0.002) although the difference 

between native T1 and LGE was non-significant (P=0.08). Of the 26 subjects with 

indeterminate maximal segment thickness 1/13 (8%) athletes and 6/13 (46%) 

HCMs had LGE. The AUC of LGE to diagnose HCM in these subjects was 

0.692[0.482-0.857] P=0.02 and was significantly worse than the AUC of native T1 

and ECV (P<0.001 for both).     

24/151 indeterminate HCM segments had LGE and 1/23 indeterminate athlete 

segments had LGE.  T1 maps were degraded by artefact in 2 HCM segments from 

the same patient and could not be analysed. When ROC analysis was performed on 

the 147 remaining LGE -ve segments of indeterminate wall thickness AUCs of ECV, 

native T1 and segment thickness remained significant  (0.89, 0.86, 0.74 

respectively, P<0.001 for all).  
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Figure 2.5 Receiver operator characteristic curves for native T1, ECV and EDV/LV 

mass for the detection of HCM against athletes of the 26 subject (13 HCM and 13 

HCM) in with indeterminate maximal segment thickness. AUCs were 0.95, 0.99 and 

0.82 respectively P<0.0001 for all. AUC for maximal segment thickness was 0.553 

P=0.46. The diagnostic accuracy of ECV was significantly better than EDV/LV mass 

(P=0.03). EDV/LV mass was not significantly better than segment thickness (P=0.1). 

2.5 Discussion 

In this study we have demonstrated that ECV measured by CMR T1 mapping is 

lower in athletes than in patients with HCM and this difference can be utilised to 

distinguish athlete’s heart from HCM, in particular in subjects with indeterminate 

maximal wall thickness, where the differential diagnosis between the two entities 

is most challenging. In these intermediate subjects, ECV was 20.3±2.1% in athletes 

and 28.4±4.6% in HCMs, permitting accurate distinction. Furthermore we have 

demonstrated that ECV is lower in athletes than healthy controls and that in both 

athletes and controls there is a strong negative correlation between ECV and LV 

mass suggesting that the increase in LV mass in healthy myocardium is mediated 
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by cellular hypertrophy rather than extracellular expansion. ECV was a better 

discriminator between athlete’s heart and HCM than EDV/LV mass or the presence 

of LGE.  

HCM is characterised by macroscopic and microscopic cardiac changes. 

Macroscopic changes are typified by differing patterns of LV hypertrophy, including 

asymmetric septal, concentric or apical hypertrophy and mitral valve 

abnormalities. Microscopic change is characterised by expansion of the 

extracellular space secondary to fibrosis and myocyte disarray (Varnava et al., 

2001), with the development of replacement fibrosis as the disease progresses. 

Current non-invasive imaging techniques rely upon the identification of gross 

cardiac abnormalities to confirm the diagnosis of HCM but do not interrogate 

microscopic change and change in tissue composition.  

A CMR protocol including assessment of cardiac morphology, scar with LGE 

imaging and myocardial tissue composition using T1 mapping and ECV calculation 

can provide a comprehensive assessment of both macroscopic and microscopic 

change associated with HCM. Several imaging parameters have been previously 

proposed to distinguish between physiological LVH and HCM including: left atrial 

remodelling (Pelliccia et al., 2005), changes in strain pattern (Vinereanu et al., 

2001), maximal oxygen consumption during cardiopulmonary exercise testing 

(Sharma et al., 2000) or composite assessments of multiple imaging findings 

(Caselli et al., 2014). Of these EDV/LV mass has been reported to be one of the best 

CMR discriminatory methods (Luijkx et al., 2013). In this study, to differentiate 

HCM from athletic remodelling native T1 and ECV performed as well as EDV/LV 

mass and maximum segment thickness in all patients and significantly better when 

segment thickness fell in the indeterminate zone. Therefore both native T1 and 

ECV have incremental value over established parameters. Furthermore we have 

demonstrated that in patients with indeterminate maximal segment thickness, a 

cut-off of 1190ms for native T1 or 22.5% for ECV was able to identify all patients 

with HCM correctly.    

We have also demonstrated that segmental wall thickness correlates with ECV in 

HCM with an inverse correlation seen in athletic adaptation. It is widely recognised 

that in HCM that ECV correlates with histological (Flett et al., 2010; Iles et al., 2015) 
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and cellular markers of fibrosis (Fang et al., 2013). The divergent finding that with 

increasing hypertrophy ECV decreases in athletes but increases in HCM provides a 

mechanistic explanation as to why ECV has high diagnostic accuracy and performs 

better than maximum segment thickness or EDV/LV mass in subjects with 

indeterminate hypertrophy.  

Myocyte disarray and fibrosis are the earliest pathological changes seen in HCM. 

Therefore changes in ECV can be detected before the development of hypertrophy. 

Left atrial dilatation, LVOT obstruction and replacement fibrosis (detectable as LGE) 

occur much later in the disease process and these parameters are therefore less 

useful in subjects with indeterminate maximal segment thickness.  

On analysis of indeterminate subjects and segments ECV performed better than 

native T1 for the diagnosis of HCM.  However measurement of native T1 still has 

merits that would support its use in this clinical application. Its measurement does 

not require intravenous cannulation, administration of contrast, or a blood sample 

to measure haematocrit. The major shortcoming of native T1 is that it varies 

significantly between field strengths, scanner vendor and technique used to 

measure it (Raman et al., 2013). Use of native T1 maps in clinical practice requires 

validation for the specific pulse sequence and field strength used (Moon et al., 

2013) . ECV on the other hand is less dependent on imaging platforms and field 

strengths (Raman et al., 2013) but does require the administration of a gadolinium 

based contrast agent. 

In our study 70% of HCM patients had abnormal LGE consistent with the reported 

prevalence of 40 to 80% (Chan et al., 2014; Rudolph et al., 2009). The high 

specificity (97.5%) of LGE in diagnosing HCM indicates that it is useful for 

confirming the diagnosis. In our study ECV still had a high diagnostic accuracy even 

in segments without focal scar on LGE. Therefore ECV is useful in differentiating 

athlete’s heart from the significant proportion of HCM that does not have LGE. 

2.6 Limitations 

All athletes were white and it remains to be established if our findings are 

applicable to other racial groups. The athletes in this study trained predominantly 

in endurance sports and had a high aerobic capacity (mean VO2max 58.3 ± 9.0 
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ml/kg/min) and whether our findings are applicable to non-endurance athletes is 

not known. However there is conflicting evidence about whether non-endurance 

training leads to cardiac remodelling (Utomi et al., 2013; Maron and Pelliccia, 

2006). 

The indeterminate zone from our population was 10.6-13.8mm which is less than 

the 12-15mm termed indeterminate in current guidelines (Gersh et al., 2011; Elliott 

et al., 2014). However we have measured segment thickness only from the same 

slice as the T1 maps to ensure they are from identical tissue. In our cohort 

maximum thickness measured by echocardiography was 2.2mm greater and it is 

likely that our indeterminate zone corresponds to 12-15mm measured from 

anywhere in the LV.  

There are still controversies about which is the most robust pulse sequence for 

measurement of myocardial T1 relaxation time. The dose of contrast, the number 

and timings of acquisitions also need to be considered. ECV was marginally lower in 

our healthy controls than in other published work which may reflect differences in 

vendor, field strength, pulse sequence, contrast regime and number of T1 

measurements after contrast administration (Kellman et al., 2012; Dabir et al., 

2014). At present it is therefore recommended that each site establish normal 

values considering these variables (Moon et al., 2013) prior to the clinical use of 

ECV in the athlete with unexplained LV hypertrophy.    

2.7 Conclusions 

 As LV hypertrophy increases ECV decreases in athletes but increases in HCM.  

Based on this divergent finding ECV can be used distinguish HCM and athletic 

remodelling with high diagnostic accuracy, in particular in subjects with 

indeterminate maximal segmental wall thickness. CMR using T1 mapping thus has 

a potential role in the exclusion of HCM in athletes presenting with left ventricular 

hypertrophy, but requires further validation in larger and more varied patient 

populations.  
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3. Study 2- Regional contractile dysfunction in 

hypertrophic cardiomyopathy is associated with 

extent of hypertrophy rather than diffuse fibrosis 

3.1 Abstract 

Introduction 

At present the diagnosis of hypertrophic cardiomyopathy (HCM) is made when one 

or more segment measure ≥15mm using cardiac imaging. International guidelines 

recommend the use of strain imaging in borderline cases. Using cardiovascular 

magnetic resonance (CMR) extracellular volume (ECV) mapping techniques it is 

possible to detect early phenotypic manifestation of HCM, such as extracellular 

matrix expansion, which can occur before overt hypertrophy. It is unknown 

whether strain impairment occurs early in the disease process when there is ECV 

expansion with overt hypertrophy.   

Methods  

50 patients with HCM underwent CMR studies at 3.0T including cine imaging in 

multiple planes, T1 mapping for calculation of ECV and late gadolinium 

enhancement (LGE) imaging. For each segment of the American Heart Association 

(AHA) model of each subject segment thickness, the presence of LGE and strain by 

feature tracking were measured.  

Results  

Circumferential strain by feature tracking (Ecc-FT) was lower in segments with ECV 

expansion (-17.0±10.3 vs -19.9±8.4%, N=783 P<0.001).  However in segments 

<15mm Ecc-FT was not significantly different between those with and without ECV 

expansion (19.7±9.2 vs -20.6±7.9%, N=684, P=0.43). In segments <15mm Ecc-FT 

was significantly lower in those with LGE (-12.9±8.2 vs -20.9±8.1%, N=684, P<0.001) 

There were significant correlations between Ecc-FT and both segment thickness 

and ECV (Rs=0.616 and 0.176 P<0.001 for both). However on multivariable linear 
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regression only segment thickness had a significant association with Ecc-FT (beta=-

0.54, p<0.001).  

Conclusion 

Regional strain impairment is predominantly associated with the degree of 

hypertrophy and replacement fibrosis assessed by the presence of LGE. In non-

hypertrophied segments strain is not significantly impaired by the presence of 

interstitial fibrosis detected by ECV expansion on T1 mapping. Therefore the 

presence of interstitial fibrosis may be a more useful method than impairment of 

strain of identifying HCM in subjects with borderline LV hypertrophy.  
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3.1 Introduction  

HCM is commonly defined as a disease of hypertrophy of the LV in the absence of 

another cardiac or systemic cause (Gersh et al., 2011).  It is typically caused by 

autosomal dominant mutations of genes encoding sarcomeric proteins and 

myofilament elements (Bos et al., 2009). These mutations lead to micro- and 

macroscopic changes within the heart including cellular disarray, hypertrophy and 

interstitial fibrosis. When myocyte disarray is widespread it is a sensitive and 

specific marker for HCM (Hughes, 2004). These changes lead to hypertrophy that 

can affect the heart in a variety of patterns, and may affect any segment  of the LV 

(Klues et al., 1995). Although hypertrophy can be widespread, phenotypic 

expression within the same heart can be variable and less than half of the ventricle 

may be hypertrophied in as many as 50% of patients (Maron et al., 2009b).  

At present the diagnosis of HCM is primarily made by the identification of one or 

more hypertrophied segments by a cardiac imaging modality (Gersh et al., 2011; 

Elliott et al., 2014).  In the majority of cases this involves identification of a 

segment ≥15mm by echocardiography. Increasingly CMR is used to confirm or 

make diagnosis of HCM when echocardiography is restricted by limited acoustic 

windows or the inability to assess all segments of the left ventricle.  

In addition to accurate volumetric measurement, CMR may also make an 

assessment of microscopic expression of the HCM phenotype. Cellular disarray and 

extracellular matrix expansion occur early in the disease process and can be 

detected by using quantitative T1 and ECV mapping; techniques which 

demonstrate good correlation with histology specifically in HCM (Flett et al., 2010; 

White et al., 2013). ECV expansion can be detected in genotype positive patients 

prior to the onset of overt hypertrophy (Ho et al., 2013). Replacement fibrosis 

occurs later in the disease process and is detected as the presence of LGE. 

Replacement fibrosis is progressive over the course of the disease (Todiere et al., 

2012) and its presence is associated with an adverse prognosis (Chan et al., 2014).  

 

Studies, predominantly using echocardiography speckle tracking to measure 

regional and global strain have demonstrated that impaired contractility is related 
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to the extent of hypertrophy and the presence of replacement fibrosis detected by 

LGE (Urbano-Moral et al., 2014; Popovic et al., 2008). Current guidelines therefore 

recommend that strain imaging could be used to investigate unexplained left 

ventricular hypertrophy that is not diagnostic of HCM (Gersh et al., 2011; Elliott et 

al., 2014). An alternative method to echocardiography for the assessment of 

regional strain is CMR tagging which is highly reproducible in this setting (Shehata 

et al., 2009; Swoboda et al., 2013). More recently, post processing feature tracking 

of cine CMR images allows quantification of strain without the need for acquisition 

of tagged images. Strain measured by feature tracking and tissue tagging are 

reported to show good agreement (Moody et al., 2015).   

Current evidence suggests that regional function assessed by strain imaging may be 

impaired later in the disease process of HCM when there is overt hypertrophy and 

replacement fibrosis. It is unknown whether impairment of contractile function 

occurs earlier in the disease process when there is myocyte disarray and 

extracellular matrix expansion in the absence of overt hypertrophy.  

We hypothesised that ECV expansion occurs prior to impairment of contractile 

function in the pathogenic process. We therefore assessed contractile function in 

segments with early (non-hypertrophied with ECV expansion) and late 

(hypertrophied with replacement fibrosis) phenotypic expression to  establish 

whether impairment of systolic function is an early or late feature of HCM.  

 

3.2 Methods 

3.2.1 Enrolment Criteria 

 50 patients with HCM under the age of 65 with HCM were prospectively recruited 

from the Inherited Cardiovascular Conditions Service at Leeds General Infirmary, 

Leeds, UK. The diagnosis of HCM was made independently by clinicians in keeping 

with current guidelines and based upon imaging including CMR, ECG, exercise 

testing, family history and genetic testing if possible (Elliott et al., 2014; Gersh et 

al., 2011). Exclusion criteria were previous surgical myomectomy, previous septal 

ablation, atrial fibrillation, previous myocardial infarction, uncontrolled 
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hypertension, permanent pacemaker, defibrillator or other contraindication to 

CMR. 35 healthy controls who had no existing medical conditions were also 

recruited to establish the normal range of ECV using the CMR protocol. The study 

was conducted in accordance with the declaration of Helsinki and was approved by 

the local ethics committee (14/YH/0126). All subjects gave informed written 

consent.  

3.2.2 CMR protocol 

All subjects underwent an identical CMR protocol performed on a 3.0 Tesla Philips 

Achieva TX system (Philips, Best, The Netherlands) equipped with a 32 channel 

cardiac phased array receiver coil. A full blood count, including haematocrit was 

measured at the time of intravenous cannulation. The cardiac long and short axes 

were determined using standard scout views. Basal, mid and apical pre-contrast 

(native) short axis T1 maps were generated using a validated MOLLI protocol 

(Kellman et al., 2013) (ECG triggered 5b(3s)3b MOLLI scheme with voxel size of 

1.98 x 1.98 mm2, slice thickness 10mm) and were planned using the 3 of 5 method 

(Messroghli et al., 2005). Tissue tagging using a spatial modulation of 

magnetization (SPAMM) pulse sequence (spatial resolution 1.51x1.57x10mm3, tag 

separation 7 mm, ≥18 phases, typical TR/TE 5.8/3.5 ms, flip angle 10o, typical 

temporal resolution 55ms) was acquired in the same three short axis slices in 

34/50 patients.  Left ventricular volumes were obtained from cine imaging covering 

the entire LV in the short axis: balanced SSFP, voxel size 1.2 x 1.2mm2, slice 

thickness 10mm with no gap, 50 cardiac phases. Left atrial (LA) volumes were 

obtained from cine imaging covering the entire heart in the transverse axis: 

balanced SSFP, voxel size 1.2 x 1.2mm2, slice thickness 6mm with no gap, 50 

cardiac phases. 0.15mmol/Kg Gadovist (Bayer Schering) was delivered by power 

injector (Medrad Inc, Warrendale, Pennsylvania, USA) as a single bolus via a 

cannula placed in the ante-cubital fossa followed by 20ml saline flush. Typical 

parameters were TR/TE 3.5/2.0 ms, flip angle 25o, acquired spatial resolution 

1.54x1.76x10mm3 and performed in 10-12 short axis slices with ≥3 long axis 

orientations and phase-swapped acquisitions if indicated. Post contrast T1 
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mapping was carried out in the same three slices exactly 15 minutes following last 

contrast injection (as above). 

3.2.3 CMR interpretation 

Analysis was carried out using CVI42 (Circle Cardiovascular Imaging Inc. Calgary, 

Canada) and inTag (v1.0, CREATIS lab, Lyon, France) by two physicians blinded to 

clinical data. LV mass, EDV, ESV and LV EF were measured from short axis cine 

images. Native and post contrast T1 relaxation time of myocardium and blood pool 

were measured from the scanner generated T1 maps by contouring a region of 

interest in each segment of the American Heart Association (AHA) model 

(Cerqueira et al., 2002). ECV was calculated from native and post contrast T1 times 

of myocardium and blood pool and haematocrit as previously reported (Flett et al., 

2010). Segment thickness was measured for each AHA segment from end-diastolic 

SSFP cine images corresponding to the T1 maps. Feature tracking analysis was 

carried out on the same images by drawing endocardial and epicardial contours 

and circumferential (Ecc-FT) and radial (Err-FT) strain calculated for each AHA 

segment.  

For tagging analysis endocardial and epicardial contours were drawn on the short 

axis SPAMM sequences. Peak circumferential strain was measured for each 

segment of the AHA model. Strain was measured in the mid-myocardial layer 

which has previously been reported to be the most reproducible (Swoboda et al., 

2013).  

Segments were defined as hypertrophied if the maximal thickness was ≥15mm in 

keeping with current guidelines (Gersh et al., 2011; Elliott et al., 2014). The normal 

range for ECV derived from healthy volunteers was 24.4±2.8%. Therefore segments 

that were >30% (+2SD from the normal range) were defined as having extracellular 

expansion. Replacement fibrosis was defined as the presence of LGE reported by 2 

physicians experienced in CMR interpretation for each segment for a 

corresponding slice to T1 maps. All analyses were carried out blinded to the results 

of strain analysis.  
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3.2.3 Statistical analysis 

Continuous variables were expressed as means ± SD. Categorical variables were 

expressed as N (%). Shapiro-Wilk test was used to test normality then unpaired T 

test or Mann Whitney U test used as appropriate.  Spearman’s rank correlation was 

used for linear correlations. Univariable analyses were performed to identify 

predictors of strain. Variables with a probability value <0.1 in the univariable 

analysis were included in a multivariable linear regression analysis. P<0.05 was 

considered statistically significant. 

 

Figure 3.1 CMR images from a patient with asymmetric septal HCM.  A- SSFP 

imaging of the basal septum showing gross hypertrophy (>15mm) in anteroseptum 

and inferoseptum. All other segments are less than 15mm. B- Radial strain map 

derived from feature tracking of the same slice, shown in systole. Colour scale 

ranges from akinetic (red) to >20% strain (blue). C- Late gadolinium enhancement 

imaging showing a discrete area of replacement fibrosis in inferoseptum (white 
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arrow). D- ECV map ranging from 0 (blue) to 100% (red). The transition point of 

30% above which is defined as extracellular expansion is cyan. Note the 

replacement fibrosis seen on LGE imaging (black arrow) and the non-hypertrophied 

anterior and anterolateral walls have marked ECV expansion (35-45%) yet have 

normal radial strain on FT imaging. 

3.3 Results 

Patient characteristics are shown in Table 3.1. The distribution of hypertrophy was 

asymmetrical septal 36 (72%), concentric 5 (10%), mid cavity 4 (8%), apical 3 (6%) 

and isolated lateral 2 (4%). An example of cine imaging, strain, LGE and ECV 

mapping from an identical slice of one patient is shown in Figure 3.1. Maximum 

segment thickness, ECV, the presence of LGE and circumferential and radial strain 

findings are shown in Table 3.2. Segment thickness, LGE and tissue tagging could 

be analysed in all available segments. ECV could not be analysed in 43/800 

segments because of artefact. Ecc-FT could not be analysed in 17/800 and Err-FT in 

12/800 because of either artefact or poor tracking of myocardial features.  

There were 99 hypertrophied segments (>15mm) and 701 non-hypertrophied 

segments. Ecc-FT (-8.5±8.6 vs -20.3±8.3%, N=783, P<0.001), Err-FT (15.2±12.8 vs 

45.0±27.2%, N=788, P<0.001) and Ecc-SPAMM (-11.1±4.8 vs -20.4±8.1%, N=544, 

P<0.001) were all lower in hypertrophied segments than non-hypertrophied 

segments. 

There were 296 segments with extracellular expansion (ECV>30%) and 504 without 

extracellular expansion. Ecc-FT (-17.0±10.3 vs -19.9±8.4%, N=783, P<0.001), Err-FT 

(38.0±29.4 vs 43.2±26.4%, N=788, P=0.001) and Ecc-SPAMM (-17.3±8.7 vs -

20.7±7.9%, N=544, P<0.001) were all lower in those with extracellular expansion 

than those without.  

There were 107 segments with replacement fibrosis (LGE +ve) and 693 without 

replacement fibrosis. Ecc-FT (-10.6±8.5 vs -20.1±8.7%, N=783, P<0.001), Err-FT 

(18.7±15.5 vs 44.8±27.5%, N=788, P<0.001) and Ecc-SPAMM (-11.1±4.7 vs -

20.5±8.1%, N=544, P<0.001) were all lower in those with replacement fibrosis than 

in those without.  
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N 50 FH of HCM, n (%)  19 (38) 

Male gender, n (%) 37 (74) CMR findings  

Age, years 46.9±11.7 LV EDV, ml/m2 78.7 ± 13.1 

Height, cm 171.2±9.0 LV EF, % 62.3 ± 5.9 

Weight, kg 81.7±14.6 LV Mass, g/m2 72.8 ± 26.3 

Body mass index, kg/m2 27.7±3.7 LAV, ml/m2 59.3 ± 13.5 

Systolic blood pressure, 

mmHg 

125.5±17.6 LGE, n (%) 35 (70) 

Diastolic blood pressure, 

mmHg 

74.5±12.5 Medications  

Heart rate 60.6±10.2 Beta blocker, n (%) 24 (48) 

Echocardiography  CC blocker, n (%) 8 (16) 

LVOT obstruction, n (%) 11 (22) Disopyramide, n (%) 4 (8) 

LVOT gradient, mmHg 68.5 ± 40.0 Diuretic, n (%) 2 (4) 

 

Table 3.1 Patient characteristics and CMR findings. CC, calcium channel; EDV, end 

diastolic volume indexed to body surface area; EF, ejection fraction; FH, family 

history; LAV, left atrial volume indexed to body surface area; LGE, late gadolinium 

enhancement; LV, left ventricle; LVOT, left ventricular outflow tract 

3.3.1 Linear correlation and regression 

There were significant correlations between segment thickness and Ecc-FT, Err-FT 

and Ecc-SPAMM (Rs=0.616, -0.617 and 0.458 respectively, P<0.001 for all). There 

were significant but weaker correlations between ECV and Ecc-FT, Err-FT and Ecc-

SPAMM (Rs=0.176, -0.165 and 0.195 respectively P<0.001 for all). There was also a 

significant correlation between segment thickness and ECV (Rs= 0.244, P<0.001) 

which is shown with radial strain in Figure 3.2.  
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On univariable linear regression analysis segment thickness, ECV and the presence 

of LGE all had significant associations with Ecc-FT, Err-FT and Ecc-SPAMM and were 

all included in multivariable analysis (Table 3.3). Only segment thickness had a 

significant multi-variate association with Ecc-FT and Err-FT (beta=-0.540 and 0.584 

respectively, P<0.001 for both). Both segment thickness (beta=0.437, P<0.001) and 

LGE (beta=0.136, P=0.002) had significant associations with Ecc-SPAMM.  

Figure 3.2 Scatter plot showing segment thickness (mm) and extracellular volume 

fraction (%) and radial strain (%) of each segment. Radial strain is represented as a 

colour scale ranging from akinetic (red) to hyperdynamic (blue). The upper left 

quadrant shows patients with phenotypic expression of HCM manifested as ECV 

expansion without hypertrophy. A significant proportion of segments in this 

quadrant have normal strain. 
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3.3.2 Analysis according to cellular composition of each segment 

We examined strain in segments without overt hypertrophy according to the 

presence of early disease extracellular matrix expansion (ECV>30%) or later disease 

demonstrated by replacement fibrosis (LGE +ve). 

Of the 701 segments of <15mm thickness, 474 had ECV<30% and 227 had ECV 

>30%. Ecc-FT (-19.7±9.2 vs -20.6±7.9%, N=684, P=0.43) and Err-FT (45.0±29.2 vs 

44.9±26.1%, N=689, P=0.81) in non-hypertrophied segments were not significantly 

different in segments with ECV >30% compared to those with ECV<30% (Figure 

3.3). Ecc-SPAMM however was significantly lower in non-hypertrophied segments 

with ECV>30% (-18.8±8.7 vs -21.1±7.8%, N=496, P=0.003).  

Of the 701 segments of <15mm thickness 651 were LGE-ve and 50 LGE +ve. Ecc-FT 

(-12.9±8.2 vs-20.9±8.1%, N=684, P<0.001), Err-FT (23.3±16.0 vs 46.7±27.2, N=689, 

P<0.001) and Ecc-SPAMM (-11.9±4.9 vs -20.9±8.0, N=496, P<0.001) were all lower 

in non-hypertrophied segments with LGE compared to those without (Figure 3.3). 

Of the 681 segments without replacement fibrosis (LGE -ve) 42 segments were 

>15mm, 192 were <15mm with ECV>30% and 459 were <15mm with ECV<30%. 

Comparing the non-hypertrophied segments (<15mm) there was no significant 

difference according to whether ECV was more or less than 30% Ecc-FT (-21.2±8.5 

vs -20.8±7.9%, N=634, P=0.43), Err-FT (49.3±29.0 vs 45.5±26.3%, N=639, P=0.81) 

and Ecc-SPAMM (-19.7±8.8 vs -21.4 ±7.6, N=467, P=0.053). 
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Figure 3.3 Circumferential and radial strain in hypertrophied segments and non-

hypertrophied segments split into those with extracellular expansion (ECV>30%) 

and replacement fibrosis (LGE +ve) displayed as mean ± 95% confidence intervals. 

In non-hypertrophied segments strain was impaired in those with replacement 

fibrosis but not those with ECV expansion. 
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   Thickness (mm) ECV (%) LGE (N) Ecc-FT (%) Err-FT (%) Ecc-SPAMM (%) 

Base Anterior 8.9±3.3, 50 29.1±7.6, 49 4, 50 -21.7±7.4, 50 48.6±28.3, 50 -21.1±7.4, 34 

 Anteroseptum 14.9±3.8, 50 32.9±9.9, 50 20, 50 -10.7±7.9, 50 18.3±12.5, 50 -13.3±4.3, 34 

 Inferoseptum 14.6±4.8, 50 30.3±5.3, 50 16, 50 -6.8±8.9, 48 11.3±12.2,48 -14.3±4.7, 34 

 Inferior 8.1±2.7, 50 26.5±3.7, 48 1, 50 -16.0±10.1, 49 34.4±22.4, 50 -19.8±6.1, 34  

 Inferolateral 7.0±2.2, 50 27.0±4.6, 46 1, 50 -25.0±6.1, 48 58.5±25.9, 48 -27.1±7.8, 34 

 Anterolateral 7.4±2.6, 50 25.5±3.5, 45 1, 50 -26.2±6.7, 48 69.2±35.0, 49 -27.6±6.8, 34 

Mid LV Anterior 8.4±3.2, 50 32.1±9.4, 43 5, 50 -20.1±10.5, 50 46.3±27.4, 50 -21.9±8.9, 34 

 Anteroseptum 11.9±3.9, 50 33.0±9.1, 50 11, 50 -18.0±5.4, 50 33.5±15.7, 50 -14.1±5.5, 34 

 Inferoseptum 12.9±4.2, 50 31.1±6.2, 49 16, 50 -13.0±8.6, 49 23.3±18.3, 49 -14.1±5.5, 34 

 Inferior 8.3±2.9, 50 26.5±5.1, 48 3, 50 -17.4±6.2, 49 32.9±19.2, 49 -17.4±4.9, 34 

 Inferolateral 7.1±2.7, 50 26.4±4.9, 48 1, 50 -23.5±5.6, 48 50.8±20.4, 50 -26.9±7.4,34 

 Anterolateral 8.1±2.6, 50 27.0±4.9, 45 1, 50 -22.3±8.7, 47 52.7±27.2, 50 -22.0±5.5, 34 

Apex Anterior 8.6±4.5, 50 34.0±10.2, 46 7, 50 -20.1±7.7, 49 44.9±27.9, 49 -19.7±9.6, 34 

 Septum 9.2±4.0, 50 31.4±7.0, 47 9, 50 -20.7±6.4, 48 44.2±22.3, 48 -15.2±7.5, 34 

 Inferior 7.3±3.3, 50 28.7±7.2, 47 7, 50 -19.8±8.9, 50 44.4±27.1, 50 -16.9±8.8, 34 

 Lateral 8.3±3.5, 50 28.6±5.8, 47 4, 50 -20.3±8.5, 50 45.8±26.5, 50 -21.7±8.0, 34 

 
Table 3.2 Mean ± SD followed by number of segments analysed segment thickness, extracellular volume (ECV), circumferential strain 

measured by feature tracking (Ecc-FT), radial strain measured by feature tracking (Err-FT) and circumferential strain measured by tissue 

tagging (Ecc-SPAMM) for each segment of the American Heart Association model. The number of segments that display replacement 

fibrosis on late gadolinium enhancement (LGE) is reported followed by the number of segments analysed. 
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Table 3.3 Univariable and multivariable linear regression to evaluate which out of 

segment thickness, ECV and LGE have a significant association with impairment of 

segmental strain 

3.4 Discussion 

We have demonstrated that the main predictors of impairment of regional strain in 

HCM are degree of LV hypertrophy and presence of replacement fibrosis, which 

are both later features of HCM. Myocyte disarray and extracellular matrix 

expansion which can be detected by CMR as increased ECV earlier in the disease 

process do not appear to cause significant impairment of regional strain.  

Myocyte disarray and collagen deposition are early features in the phenotypic 

expression of HCM and can be detected histologically or biochemically in subjects 

without overt hypertrophy (Varnava et al., 2001; Ho et al., 2010). Using CMR ECV 

mapping we have identified 296/800 segments with clear extracellular matrix 

expansion in the absence of overt hypertrophy. This is in keeping with pathological 

studies that have demonstrated that the extent of myocyte disarray has no 

correlation with segment thickness (Maron et al., 1992) and CMR studies that have 

shown ECV expansion in genotype positive patients without overt expression of a 

hypertrophied phenotype (Ho et al., 2013).    

   Segment 

thickness 

Extracellular 

volume 

LGE 

Ecc-FT Univariable Beta 0.608 0.205 0.352 

P value <0.001 <0.001 .001 

Multivariable Beta 0.584 -0.008 0.58 

P value <0.001 0.80 0.10 

Err-FT Univariable Beta -0.554 -0.165 -0.323 

P value <0.001 <0.001 <0.001 

Multivariable Beta -0.540 0.038 -0.065 

P value <0.001 0.27 0.08 

Ecc-

SPAMM 

Univariable Beta 0.471 0.163 0.335 

P value <0.001 <0.001 <0.001 

Multivariable Beta 0.437 0.014 0.136 

P value <0.001 0.72 0.002 
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Our novel finding that contraction in non-hypertrophied segments is not 

significantly influenced by the presence of extracellular matrix expansion suggests 

that contractile dysfunction is a later process in the phenotypic expression of HCM. 

We have also reported that segmental strain is predominantly associated with 

segment thickness and the presence of replacement fibrosis assessed by the 

presence of LGE. These findings corroborate previous studies that have shown a 

relationship between degree of hypertrophy and presence of LGE and strain 

measured by speckle tracking echocardiography (Urbano-Moral et al., 2014; 

Popovic et al., 2008) and feature tracking by CMR (Smith et al., 2014). Dhillon et al 

measured longitudinal strain by feature tracking echocardiography in subjects with 

HCM undergoing surgical myomectomy, also reporting histological findings and in 

vitro contractility of the surgically excised myocardium. They found that the degree 

of histological fibrosis correlated with both strain measured by echocardiography 

and in vitro (Dhillon et al., 2014). However strain was measured in segments with 

severe hypertrophy causing LVOT obstruction and more than half of the specimens 

studied displayed small intramural coronary arteriole dysplasia which is known to 

correspond strongly with focal LGE detected by CMR (Kwon et al., 2009). Therefore 

the subjects studied were at the severe end of the hypertrophic spectrum and not 

directly comparable with our subjects and segments with a wide range of 

phenotypic presentations.  

Current international guidelines advocate the use of strain imaging to investigate 

patients with unexplained LV hypertrophy but without a clear diagnosis of HCM 

(Gersh et al., 2011; Elliott et al., 2014). Our novel finding that CMR strain 

measurements are not able to identify those non-hypertrophied segments with 

interstitial fibrosis suggests that it is of limited use early in the disease process 

before the onset of overt hypertrophy and replacement fibrosis. Given that it is 

able to identify disease before impairment of strain we would advocate that it 

should be used more widely and preferentially over measurement of strain in the 

investigation of possible HCM.  
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3.5 Limitations 

Our definition of 30% for ECV expansion was derived from 2SD above an age and 

sex matched normal range. ECV does not appear to be influenced by aging in 

healthy controls (Dabir et al., 2014) but may increase in patients with cardiac 

disease as they age (Ugander et al., 2012). ECV is influenced by pulse sequence, 

dose of contrast, number and timings of acquisitions. At present if ECV expansion is 

to be used to detect early HCM it is recommended that each centre derive their 

own normal range considering these variables and potentially a range of healthy 

controls of different ages (Moon et al., 2013).  

We have only measured strain from short axis measurements specifically because 

the strength of the segmental analysis that we have carried out is based on the fact 

that T1 maps, SSFP cines and LGE acquisitions can all be carried out in the identical 

short axis plane. Comparing strain from long axis cines to ECV from short axis maps 

would add an unacceptable degree of error.   

3.6 Conclusions 

Regional strain impairment measured by feature tracking and SPAMM is 

predominantly associated with the degree of hypertrophy and replacement fibrosis 

assessed by the presence of LGE. In non-hypertrophied segments strain is not 

significantly impaired by the presence of interstitial fibrosis. Therefore the 

presence of interstitial fibrosis (defined as ECV>30% in this cohort) may be a more 

useful method than impairment of strain for identification of HCM in subjects with 

borderline LV hypertrophy.  
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4. Study 3- Changes in cardiac strain parameters in 

highly trained athletes 

4.1 Abstract 

Background 

Athletic training leads to remodelling of both left and right ventricles with 

increased myocardial mass and cavity dilatation. Changes in cardiac strain 

parameters are less well established. In this study we investigated the relationship 

in trained athletes between cardiovascular magnetic resonance (CMR) derived 

strain parameters of cardiac function and aerobic capacity that has not previously 

been investigated.   

Methods  

35 endurance athletes and 35 age and sex matched sedentary controls underwent 

CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial 

modulation of magnetization (SPAMM). CMR data were analysed quantitatively 

reporting circumferential strain and torsion from tagged images and left and right 

ventricular longitudinal strain from feature tracking of cine images. Athletes 

underwent a standard ramp-incremental step-exercise protocol to estimate lactate 

threshold (LT) aerobic capacity (VO2max).    

Results  

LV circumferential strain at all levels, LV twist and torsion, LV late diastolic 

longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic 

longitudinal strain rate were all lower in athletes than controls. On multivariable 

linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association 
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with LT. Only age (beta=-0.36, P=0.01), sex (beta=0.38, P=0.04) and RV longitudinal 

late diastolic strain rate (beta=-0.39, P=0.02) had a significant association with 

VO2max. 

Conclusions  

The cohort of endurance athletes in this study had lower LV circumferential strain, 

LV torsion and biventricular diastolic strain rates than sedentary controls. The 

linear association between LT and LV torsion has potential applications in clinical 

cardiology and sports science including differentiation of athletic remodelling from 

early dilated cardiomyopathy. 

  



- 86 - 
 

 
 

4.2 Introduction 

It is well recognised that athletic training leads to ventricular remodelling, 

specifically increases in left and right ventricular end diastolic volume (LVEDV & 

RVEDV) and left ventricular mass (LVM) (Maron and Pelliccia, 2006; Arbab-Zadeh et 

al., 2014). These structural changes are most frequently seen in athletes who 

undergo prolonged periods of endurance training (Utomi et al., 2013).   

Although less well established, there is also evidence for changes in functional 

parameters in the hearts of trained athletes. Endurance athletes have reduced 

ejection fraction, circumferential and longitudinal strain of both the left and right 

ventricles compared to healthy controls (Caselli et al., 2015; Nottin et al., 2008). 

The heart has a complex twisting motion where the base rotates clockwise in early 

systole and the apex rotates anticlockwise in later systole. These opposing 

directions of rotation at the apex and base generate maximal torsional force at end 

systole (Burns et al., 2008). It has been reported that athletes have decreased LV 

twist and torsion when compared to sedentary controls (Nottin et al., 2008).     

Both strain and torsion parameters can be measured using CMR tagging techniques 

(Ibrahim el, 2011). CMR tagging is considered to be the gold standard for 

measurement of myocardial strain and torsion (Shehata et al., 2009; Young and 

Cowan, 2012). More recently, post processing feature tracking to track the features 

of cine sequences through the cardiac cycle has been proposed for quantification 

of strain without the need for acquisition of tagged cines (Moody et al., 2015). 

Previous studies have shown good agreement between strain parameters derived 

from feature tracking and tissue tagging (Moody et al., 2015).  

Cardiopulmonary exercise testing (CPX) allows analysis of gas exchange responses 

at rest and during exercise and provides a non-invasive estimate of lactate 

threshold (LT) and measure of maximal aerobic capacity (VO2max) (Balady et al., 

2010). This information gives an accurate and reproducible measure of integrated 

cardiac, respiratory and skeletal muscle function and is frequently used to 

quantitatively measure performance of endurance athletes (Bentley et al., 2007). 

Previous studies have demonstrated a clear correlation between LV remodelling 

and VO2max in endurance athletes (Milliken et al., 1988; Scharhag et al., 2002). In 
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this study we have investigated the relationship between strain-derived 

parameters of cardiac function and CPX-derived performance parameters that has 

not previously been investigated.  We hypothesised that strain parameters 

measured at rest would be lower in athletes than in sedentary controls and lowest 

in athletes with the best aerobic fitness.  
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4.3 Methods 

4.3.1 Enrolment Recruitment 

35 endurance athletes were recruited from local sporting clubs. They all trained 

more than 6 hours a week and competed regularly at local, national or 

international level. Exclusion criteria were any medical illness or contraindication 

to CMR. 35 sedentary controls who exercised less than 3 hours a week were also 

recruited and prospectively matched to the athletes for age and gender. No 

athletes or controls had any medical condition or took any regular medication. The 

study was conducted in accordance with the Declaration of Helsinki and was 

approved by the local ethics committee (14/YH/0126). All subjects gave informed 

written consent. 

4.3.2 Cardiac Magnetic Resonance Protocol 

CMR was performed on a dedicated cardiovascular 3 Tesla Philips Achieva system 

equipped with a 32 channel coil and MultiTransmit® technology. Data was acquired 

during breath-holding at end expiration. From scout CMR images, the left 

ventricular long and short axes were determined. 

Cine images covering the entire heart in the LV short axis plane and orthogonal 

long-axis planes were acquired (balanced SSFP, spatial resolution 1.2x1.2x10mm³, 

30 cardiac phases TR/TE 2.6/1.3ms, flip angle 40o, field of view 300-420mm, typical 

temporal resolution 39ms).  Then axial cine images planned to cover the right 

ventricle were acquired (balanced SSFP, spatial resolution 1.2x1.2x6mm³, 30 

cardiac phases TR/TE 2.6/1.3ms, flip angle 40o, field of view 300-420mm).   

Tissue tagging by SPAMM (spatial resolution 1.51x1.57x10mm3, tag separation 7 

mm, ≥18 phases, typical TR/TE 5.8/3.5 ms, flip angle 10o, typical temporal 

resolution 55ms) was acquired in the three short axis slices acquired at the apex, 

mid-ventricle, and base. Slices were positioned using the highly reproducible “3 of 

5 technique” (Messroghli et al., 2005).  
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Myocardial perfusion CMR was planned in the same three short axis slices using a 

spoiled fast gradient-echo sequence (TR/TE 1.28/ 2.8 ms, flip angle 15°, acquired 

spatial resolution 2.42x2.42×10 mm, field of view 300–420mm, sensitivity encoding 

factor 2.4, 0.65 partial Fourier acquisition and a saturation pre-pulse delay of 

80ms). During the breath held acquisition 0.075 mmol/kg of gadobutrol (Gadovist®, 

Bayer Schering Pharma, Berlin, Germany) was administered at a rate of 4.0ml/s 

followed by a 20ml saline flush (Medrad Spectris Solaris power injector, Pittsburgh, 

Pennsylvania). 

4.3.3 Image Analysis 

CMR data were analysed quantitatively using commercially available software 

(CVI42, Circle Cardiovascular Imaging Inc. Calgary, Canada and inTag v1.0, CREATIS 

lab, Lyon, France). Epicardial and endocardial borders were traced on the LV and 

RV cine stack at end-diastole and end-systole to calculate end diastolic volume 

(LVEDV), end systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and 

LV mass. Volumes were indexed to body surface area (BSA) calculated using the 

Mosteller equation. 

For tagging analysis endocardial and epicardial contours were drawn on the short 

axis SPAMM sequences using a semi-automated process. Peak circumferential LV 

strain was measured for the three slices at apex, mid-ventricle, and base. Peak 

systolic and both early and late diastolic LV strain rates were measured from the 

mid-ventricular slice. Strain was measured in the mid-myocardial layer which has 

previously been reported to be the most reproducible (Swoboda et al., 2013). LV 

twist was calculated by subtracting the basal from apical rotation.  Basal and apical 

radius was calculated from cine images in diastole at the same slice location as the 

tagged images. The equation used to determine torsion was (Young and Cowan, 

2012):  

𝑇𝑜𝑟𝑠𝑖𝑜𝑛 =  
𝑃𝑒𝑎𝑘 𝑇𝑤𝑖𝑠𝑡 × (𝐴𝑝𝑖𝑐𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐵𝑎𝑠𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠)

2 × 𝐴𝑝𝑒𝑥 𝑡𝑜 𝐵𝑎𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

For feature tracking analysis endocardial and epicardial contours were drawn on a 

long axis 4 chamber cine using a semi-automated process. Peak longitudinal strain, 

systolic strain rate, early and late diastolic strain rates were measured for both the 
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LV & RV. Late diastolic strain rates were defined as peak rate during active atrial 

contraction.  

Contours were traced on mid-slice perfusion CMR images to define the endo- and 

epicardial surfaces of the left-ventricular myocardium and a region within the left-

ventricular blood pool. The myocardium was segmented into four regions 

circumferentially (anterior, lateral, posterior and septal), each of which were split 

into endo- and epicardial layers of equal thickness. Rigid motion correction was 

applied manually for respiratory motion where required. Signal intensity-time 

courses were extracted from the intra-ventricular blood pool (to provide an arterial 

input function, AIF) and the eight myocardial regions and further analysis on these 

data was completed using in-house software developed in MATLAB (Mathworks, 

Mattick, MA, USA). 

The timing of the arrival of contrast agent in the blood pool and the end of the 

first-pass were identified visually from the AIF for each subject. Mean pre-contrast 

signal intensity was subtracted from each dataset and estimates of myocardial 

blood flow (MBF) were derived by performing Fermi constrained deconvolution on 

the resulting signal enhancement-time courses (Jerosch-Herold M et al., 1998). 

Endo-to-epicardial perfusion ratio (EER) was calculated for each circumferential 

segment by dividing the MBF estimate from the endocardial layer by that from the 

corresponding epicardial layer. 

4.3.4 Exercise Protocol 

Participants were instructed to abstain from alcohol and strenuous exercise in the 

preceding 24 hours and caffeine for the preceding 3 hours. To non-invasively 

estimate the lactate threshold (LT) and determine the maximal oxygen uptake 

(VO2max) participants undertook a ramp-incremental (RI) step-exercise (SE)(Rossiter 

et al., 2006) test on an electronically-braked cycle ergometer (Excalibur Sport, Lode 

BV, Groningen, the Netherlands). RISE test allows for determination of VO2max 

(rather than peak VO2) in a single test(Rossiter et al., 2006). Participants wore a 

nose-clip and breathed through a low-dead space, low-resistance mouthpiece 

which was connected to a bi-directional pitot tube flow sensor and gas sample line 

assembly, allowing for breath-by-breath measurement of gas volumes and 
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concentrations (O2, Galvanic; CO2 infrared), and subsequent calculation of 

ventilatory and pulmonary gas exchange variables (Cardio2, Medical Graphics 

Corporation, St Paul, MN, USA). Prior to each test the pitot tube flow sensor was 

calibrated over a range of flow rates using a 3 l syringe, while the gas analysers 

were calibrated using precision gases that spanned the inspired and expired 

physiological range. The RISE test was preceded by rest period (~ 2 minutes) and 

unloaded cycling (20W) (~ 4 minutes), with these phases continued until a steady 

state was attained, after which work rate increased as a linear function of time at a 

rate of 20-30W/min (depending upon reported training history), with the intention 

of bringing participants to the limit of tolerance in ~10-12 min (Buchfuhrer et al., 

1983). The RI was then followed by 5 min of active recovery (20W) after which a SE 

was performed at 95% of the RI work rate peak, with this SE also continued to the 

limit of tolerance. In both RI and SE parts of the test the limit of tolerance was 

defined as the point at which cycling cadence fell below 50 rpm despite strong 

verbal encouragement.  

Breath-by-breath data were edited using the VO2 response to eliminate erroneous 

breaths (occurring outside the local mean 99% prediction limits), that were 

considered unphysiological (Lamarra et al., 1987). LT was then estimated using the 

V-slope method(Beaver et al., 1986), and supporting ventilatory and pulmonary gas 

exchange criteria (i.e. the fractional end-tidal concentrations of O2 and CO2, and 

the ventilatory equivalents for O2 and CO2 (Whipp et al., 1986)). VO2peak was 

identified in both RI and SE phases as the highest 12-breath rolling average (highest 

mean VO2 over ~15-20 s), with this representing an appropriate sampling duration 

to balance identifying VO2peak in the presence of breath-by-breath noise, and 

including data from the transient phase of the response leading to VO2peak(Rossiter 

et al., 2006).  Within participants, the highest 12-breath rolling average from RI and 

SE phases were then compared using unpaired t-tests, with no difference (p> 0.05) 

between RI and SE VO2peak, and thus the attainment of  VO2max confirmed in each 

test (Bowen et al., 2012). 



- 92 - 
 

 
 

4.3.5 Statistical Analysis 

Statistical analysis was performed using IBM SPSS® Statistics 20.0 (IBM Corp., 

Armonk, NY). Continuous variables were expressed as means ± SD. Categorical 

variables were expressed as N (%). Shapiro-Wilk test was used to test normality 

and unpaired t tests and Mann Whitney U test used to compare athletes and 

controls. Pearson’s coefficient was used to measure correlation between exercise 

and CMR parameters. Univariable analyses were performed to identify predictors 

of LT and VO2max. Variables with a probability value <0.1 in the univariable analysis 

were included in a multivariable linear regression analysis. P<0.05 was considered 

statistically significant. 

4.4 Results 

4.4.1 Study Participant Demographics and Characteristics  

Of 35 athletes 7 were runners, 15 cyclists and 13 triathletes. The athletes trained 

11.5 ± 3.7 hours per week and had all trained >6 hours per week for 8.4 ± 6.0 years. 

All athletes completed both the RI and SE phases of the RISE protocol to the limit of 

tolerance. Mean ramp duration was 772 ± 93s reaching a peak work rate of 370 ± 

64W. HR rose from 55 ± 7 at rest to 182 ± 10 at peak exercise. Mean LT was 2.60 ± 

0.57 l/min, 36.5 ± 6.7ml/min/kg (normalised to body weight) or 62.1 ± 8.0% of 

VO2max. Mean VO2max was 4.2 ± 0.80l/min or 58.9 ± 8.2 ml/min/kg.  

Athletes and controls were prospectively matched for age and gender (Table 4.1). 

BMI and resting heart rate were lower in athletes than controls (P=0.001 and 

P<0.001 respectively).  



- 93 - 
 

 
 

 

Table 4.1  Subject characteristics BMI, body mass index; SBP, systolic blood 

pressure; DBP, diastolic blood pressure 

 

 

Figure 4.1 Apical rotation (red), basal (blue) rotation and twist (green) of the left 

ventricle of 35 endurance athletes (A). Each point represents mean rotation/twist 

and time in the cardiac cycle corrected to end-systole, error bars represent standard 

error of mean rotation/twist. Tagged images of anticlockwise apical (A) systolic 

rotation (yellow and red) and clockwise basal (C) rotation (green and blue). 

 Athlete Control P value 

Age 31.3±7.6 30.6 8.5 0.72 

Male, % 27 (77) 27 (77) 1.0 

Height, cm 178.7±8.7 176.5±8.2 0.29 

Weight, kg 71.4±9.9 77.0±14.8 0.07 

BMI, kg/m2 22.3±1.9 24.5±3.3 0.001 

HR 55.0±6.5 65.1±8.7 <0.001 

SBP, mmHg 118.8±8.7 114.7±10.6 0.16 

DBP, mmHg 71.0±9.2 59.2±10.6 <0.001 
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4.4.2 CMR Findings 

LV volumes for athletes and controls are shown in Table 4.2.  LVEDV, LV mass and 

RVEDV indexed to BSA were greater in athletes than controls. LVEF was lower in 

athletes than controls (P=0.04) but there was no difference in RVEF (P=0.27). Strain 

parameters are shown in Table 4.3. LV circumferential strain at all levels, LV twist 

and torsion (Figure 1), LV late diastolic longitudinal strain rate (Figure 2), RV peak 

longitudinal strain and RV early and late diastolic longitudinal strain rate were all 

lower in athletes than controls.  

 Athlete Control P value 

Left ventricle    

 EDV, ml 217.1±34.8 176.5±34.8 <0.001 

 EDV indexed to BSA, ml/m2 115.4±14.2 90.8±12.9 <0.001 

 ESV, ml 96.1±18.7 74.7±18.7 <0.001 

 EF, % 55.7±4.5 57.9±4.1 0.04 

 LV mass, g 127.9±24.6 100.5±23.4 <0.001 

 LV mass indexed to BSA, g/m2 67.8±9.9 51.5±9.1 <0.001 

Right ventricle    

 EDV, ml 219.7±37.2 204.8±50.1 0.16 

 EDV indexed to BSA, ml/m2 116.8±15.8 105.1±19.7 0.01 

 ESV, ml 104.2±22.7 99.5±27.5 0.44 

 EF, % 52.8±4.7 51.6±3.7 0.27 

 

Table 4.2 CMR measured volumetric parameters.  EDV, end diastolic volume; EF, 

ejection fraction; ESV, end systolic volume; LV, left ventricle 
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 Athlete Control P value 

LV Circumferential Strain    

 Apex, % 18.4±5.2 23.4±4.9 <0.001 

 Mid LV, % 19.6±3.9 21.5±2.5 0.02 

 Base, % 17.0±4.0 20.5±2.5 <0.001 

 Systolic SR, %/s 115.3±12.8 116.6±10.0 0.66 

 Early diastolic SR,%/s 50.8±16.4 51.0±16.0 0.95 

 Late diastolic SR, %/s 140.1±40.7 151.4±40.3 0.27 

Torsion    

 LV twist, o 9.7±3.6 13.3±3.8 <0.001 

 LV torsion, o 8.8±3.0 11.9±3.1 <0.001 

 LV twist rate, o/s 63.2±18.9 72.4±27.8 0.048 

 LV untwist rate, o/s 88.1±25.5 101.8±34.5 0.07 

LV Longitudinal Strain    

 Peak, %  17.1±2.8 17.7±2.3 0.30 

 Systolic SR, %/s 101.6±29.6 103.2±19.8 0.29 

 Early diastolic SR, %/s 90.6±32.4 102.4±31.7 0.13 

 Late diastolic SR, %/s 41.7±15.6 57.3±19.6 <0.001 

RV Longitudinal Strain    

 Peak, %  19.8±3.7 22.6±3.4 0.002 

 Systolic SR, %/s 137.7±49.9 138.4±37.0 0.50 

 Early diastolic SR, %/s 108.6±32.1 124.6±32.9 0.03 

 Late diastolic SR, %/s 69.2±40.2 89.5±42.4 0.02 

 

Table 4.3 CMR measured strain parameters LV, left ventricle; SR, strain rate 
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Figure 4.2 LV longitudinal strain rate of 35 endurance athletes(A).  Each point 

represents mean longitudinal strain rate at each point in the cardiac cycle corrected 

to end-systole, error bars represent 95% confidence interval of mean strain. Peak 

systolic strain rate (SSR), early diastolic strain rate (EDSR) and late diastolic strain 

rate (LDSR). SSFP cine image at end diastole showing manually drawn endocardial 

and epicardial contours (B). Feature tracked end systolic image (C).    

4.4.3 Relationship between CPX and Functional CMR Parameters 

The only significant correlations with LT (as percent of VO2max) were with torsion 

parameters. Peak twist (r=-0.45, P=0.01), peak torsion (r=-0.36, P=0.04) and twist 

rate (r=-0.38, P=0.03) all had a significant correlation with LT. There was no 

significant correlation between LT and any demographic, ventricular volume or 

other strain parameter.  

There was a correlation between VO2max and both LVMI (r=0.59, P<0.001) and 

LVEDVI (r=0.47, P=0.01) consistent with previously reported findings (Osborne et 

al., 1992; Milliken et al., 1988). There was also a trend to correlation between 

RVEDVI and VO2max (r=0.33, P=0.05). Both age (r=-0.35 P=0.04) and sex (r=0.40, 

P=0.02) correlated with VO2max. No LV strain parameters had a significant 

correlation with VO2max. RV longitudinal systolic strain rate (r=-0.33, P=0.05) and RV 

late diastolic strain rate (r=-0.38, P=0.02) both correlated with VO2max. 
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We identified 8 athletes in the highest quartile of LT (72.7±2.0%) and 8 in the 

lowest quartile of LT (51.7±2.9%). Peak twist and torsion were lower in the athletes 

in the highest quartile than those in the lowest quartile (8.5 ± 2.9 vs 12.9 ± 2.6o 

P=0.008 and 8.0 ± 3.4 vs 11.2 ± 1.8o P=0.048, respectively). There were no other 

significant differences between demographics, ventricular volumes or strain 

parameters between the groups. The difference in LV twist and torsion was 

secondary to decreased apical rotation in the athletes with VAT in the highest 

quartile (Figure 4.3) 1.0 ± 3.3 vs 6.0 ± 3.1o P<0.001. Basal rotation was not different 

between the groups 6.5 ± 1.4 vs 6.1 ± 2.6o P=0.75.  

MBF and EER values are shown in Table 4.4. The only significant correlation was 

between EER in the anterior segment and absolute LT (r=0.34, P=0.047) and LT 

corrected for weight (r=0.39, P=0.02).   

 

Figure 4.3 Plots showing the mean ± standard error of rotation/twist of the athletes 

in the lowest quartile of LT (left) and highest quartile of LT (right). Peak twist was 

lower in athletes in the highest quartile of LT (8.5 ± 2.9 vs 12.9 ± 2.6o P=0.008) 

which was secondary to a loss of apical rotation (1.0 ± 3.3 vs 6.0 ± 3.1o P<0.001). 
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Table 4.4 Endocardial and epicardial myocardial blood flow (MBF) and endo-to-

epicardial perfusion Ratio (EER) for athletes in 4 mid ventricular sectors 

4.4.4 Regression Analysis 

On univariable linear regression of the parameters shown in Table 4.5 only LV 

torsion and sex were associated with LT. On multivariable linear regression only LV 

torsion (beta=-0.37, P=0.03) had a significant association with LT. 

On univariable linear regression of the parameters shown in Table 4.6 age, sex, RV 

longitudinal strain, RV systolic strain rate and RV diastolic strain rate were 

associated with VO2max. On multivariable linear regression only age (beta=-0.36, 

P=0.01), sex (beta=0.38, P=0.04) and RV longitudinal late diastolic strain rate 

(beta=-0.39, P=0.02) had a significant association with VO2max.  

 

 

  

 Anterior Lateral Inferior Septum 

Endocardial MBF (ml/g/min) 1.95±1.19 1.78±1.17 1.57±1.43 1.74±1.22 

Epicardial MBF (ml/g/min) 1.74±1.40 1.59±1.52 1.31±1.00 1.54±0.98 

EER 1.18±0.23 1.21±0.31 1.25±0.38 1.12±0.22 
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 Univariable Multivariable 

 Beta P value Beta P value 

Age -0.07 0.70   

Sex 0.29 0.09 0.29 0.08 

LVEF, % -0.43 0.81   

RVEF, % 0.10 0.56   

Apex circumferential strain, % 0.15 0.38   

Mid LV circumferential strain, % -0.11 0.55   

Base circumferential strain, % -0.05 0.77   

LV torsion, o -0.36 0.04 -0.37 0.03 

LV longitudinal strain, % 0.09 0.61   

LV longitudinal systolic SR, %/s 0.15 0.40   

LV longitudinal early diastolic SR, %/s -0.23 0.19   

LV longitudinal late diastolic SR, %/s -0.01 0.95   

RV longitudinal strain, % -0.01 0.97   

RV longitudinal systolic SR, %/s 0.04 0.84   

RV longitudinal early diastolic SR, %/s -0.01 0.97   

RV longitudinal late diastolic SR, %/s -0.22 0.20   

 

Table 4.5 Univariable and multivariable linear regression analysis of factors with a 

significant association with lactate threshold. EF ejection fraction; LV, left ventricle; 

RV, right ventricle; SR, strain rate  
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 Univariable Multivariable 

 Beta P value Beta P value 

Age -0.37 0.04 -0.36 0.01 

Sex 0.40 0.02 0.38 0.04 

LVEF, % -0.12 0.50   

RVEF, % -0.52 0.77   

Apex circumferential strain, % 0.27 0.11   

Mid LV circumferential strain, % 0.18 0.92   

Base circumferential strain, % -0.17 0.33   

LV torsion, o -0.21 0.24   

LV longitudinal strain, % 0.17 0.32   

LV longitudinal systolic SR, %/s 0.04 0.80   

LV longitudinal early diastolic SR, %/s -0.04 0.81   

LV longitudinal late diastolic SR, %/s -0.14 0.41   

RV longitudinal strain, % 0.30 0.08 -0.05 0.78 

RV longitudinal systolic SR, %/s -0.33 0.05 -0.25 0.09 

RV longitudinal early diastolic SR, %/s -0.01 0.96   

RV longitudinal late diastolic SR, %/s -0.38 0.02 -0.39 0.02 

 

Table 4.6 Univariable and multivariable linear regression analysis of factors with a 

significant association with VO2max. EF ejection fraction; LV, left ventricle; RV, 

right ventricle; SR, strain rate  
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4.5 Discussion 

We have carried out comprehensive cardiac functional assessment of 35 

endurance athletes from a broad spectrum of sport, age and athletic ability. This 

diverse, but well characterised group has allowed us to investigate specifically the 

ventricular strain parameters that have a relationship with quantitative measures 

of athletic performance, namely LT and VO2max (Bassett and Howley, 2000).  

The most striking finding was the inverse linear correlation between both LV twist 

and torsion, and LT. On multivariable linear regression no other factors significantly 

influenced LT. To our knowledge this is the first time a significant association 

between a cardiac structural or functional parameter and LT has been reported. 

Furthermore we have found that in athletes with the highest LT the decrease in 

torsion is secondary to decreased apical rotation.   

We have reported with high statistical significance that LV torsion was lower in 

endurance athletes than sedentary controls. Previous CMR tagging studies have 

been small and insufficiently powered and therefore unable to report a difference 

in baseline torsion parameters between endurance athletes and sedentary controls 

(Scott et al., 2010; Esch et al., 2010). Scott et al. reported in 9 highly trained 

endurance athletes that LV ejection fraction, untwist rate, apical rotation rate and 

circumferential strain were all depressed 30 minutes after high intensity interval 

training (Scott et al., 2010). Athletes with the highest LT undertake high intensity 

training (Bentley et al., 2007) and it is therefore likely that our finding of decreased 

torsion in these athletes is due to the cumulative effect of many years of high 

intensity interval training.  

Several echocardiography studies using techniques including tissue Doppler 

imaging and speckle tracking have been used to investigate left ventricular torsion 

in athletes. Previous echocardiographic studies have reported similar findings to 

ours of decreased apical rotation and LV torsion in athletes with high levels of 

aerobic fitness (Stohr et al., 2012) whereas others have reported that high intensity 

exercise either had no effect (Stewart et al., 2015), or even caused an increase 

(Weiner et al., 2010) in LV torsion. The inconsistent results that have been 

reported may in part reflect different sport and training techniques, research 
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methodology used and also the difficulty in positioning the apical and basal slices in 

echocardiography studies, which is based upon anatomical landmarks with a 

degree of subjectivity. In CMR on the other hand, positioning of the slices is carried 

out objectively based upon the length of the ventricle (Messroghli et al., 2005).  

There are several possible mechanisms that explain the association between LT 

and LV torsion. In diffuse myocardial diseases such as aortic stenosis (Stuber et al., 

1999) and type 1 diabetes mellitus (Chung et al., 2006) increased LV torsion is 

attributed to subendocardial microvascular hypoperfusion and contractile 

dysfunction. It is hypothesized that there is a compensatory increase in 

subepicardial fibre contraction giving rise to increased LV torsion yet unchanged 

overall circumferential strain. It is possible that the converse could be true in 

athletes with high LT. It is recognised that interval training leads to increased 

vascularity (Pereira et al., 2013) and improved substrate utilisation (Hafstad et al., 

2011) within the myocardium. It is possible that these changes may improve 

myocyte contractile function in the subendocardium to such an extent that 

subepicardial contraction is not needed at rest and there is a subsequent reduction 

in LV torsion.  

We have demonstrated a correlation between LT and EER in the anterior segment, 

which is in keeping with this hypothesis. Although the correlation is relatively weak 

and only seen in one segment, it does suggest that athletes with the highest LT 

who undergo regular high intensity training may have increased subendocardial 

blood flow and myocardial capillary vascularity which may in part explain the 

decrease in torsion parameters that we have reported. Measuring EER is 

technically challenging because the segments assessed are relatively small and 

therefore vulnerable to dark rim and respiratory artefact. This may explain why the 

relationship was not seen in all segments.  

It has been reported that spherical remodelling of the LV, particularly in disease 

states, leads to impairment of LV twist (van Dalen et al., 2010). Although we did 

not find a significant association between LT and LV remodelling an alternative 

hypothesis is that many years of high intensity training leads to changes in fibre 

orientation and therefore decreased apical rotation and LV torsion.  
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We have also reported lower global LV late diastolic strain rate, RV early and late 

diastolic longitudinal strain rates in athletes versus controls. On multivariable linear 

regression only increasing RV late diastolic strain rate, female gender and older age 

were significantly associated with lower VO2max. To our knowledge this is the first 

time that CMR strain techniques have been used to compare longitudinal 

functional changes in athletes and controls. Conflicting findings have been 

reported when echocardiographic assessment of diastolic function has been used 

with some studies reporting augmented relaxation of both ventricles in endurance 

athletes (Caselli et al., 2015; Baggish et al., 2008) and others reporting no 

difference from controls (Pluim et al., 2000).  Our finding of reduced longitudinal 

late diastolic strain rates of both ventricles of athletes and a negative correlation 

between longitudinal late diastolic strain rate and VO2max can be attributed to 

reduced active atrial contraction late in diastole. In athletes the atrial contribution 

to ventricular filling is not required at rest but of course can be utilised when 

required during exercise.  

The observations from this study, particularly of the relationship between LT and 

LV torsion, have potential uses both in sports science and in clinical medicine. 

Some endurance athletes display a cardiac phenotype of dilated left ventricle, low 

normal ejection fraction and decreased LV torsion. This can be difficult to 

differentiate clinically from early dilated cardiomyopathy (Abergel et al., 2004). We 

have demonstrated that only athletes with high LT had depressed LV torsion. 

Therefore it may be possible to differentiate athletic remodelling from early 

cardiomyopathy by carrying out CPX. If the subject has a normal LT then it should 

not be assumed that their cardiac changes are due to athletic remodelling. LV 

torsion also has the potential to be used as a quick and non-invasive assessment of 

cardiac function in endurance athletes as a quantitative measure of the effect of 

training.   

4.6 Limitations 

Our study was carried out on a cross sectional cohort and it is important in the 

future to demonstrate that these findings can be replicated in a longitudinal study. 

The cohort in the study also has a wide range of age and athletic ability although 
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this was deliberate to allow study of athletes with a range of CPX results. All of the 

cardiac changes reported are during rest. We have used feature tracking rather 

than SPAMM for the analysis of longitudinal strain. However, tissue tagging is 

hampered by a lower temporal resolution than cine imaging and tag fading during 

diastole. As we specifically wanted to examine longitudinal strain rates in diastole 

we therefore chose to use feature tracking for this while using SPAMM tagging for 

assessment of circumferential strain parameters.  

4.7 Conclusions 

This cohort of endurance athletes had lower LV circumferential strain, LV torsion 

and biventricular diastolic strain rates than sedentary controls. There was a linear 

association between LT and LV torsion, which is secondary to decreased apical 

rotation in athletes with high LT. This association could be utilised to differentiate 

athletic remodelling from early dilated cardiomyopathy.  
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5. Study 4- Quantification of extracellular fibrosis in 

patients with type 2 diabetes at high risk of 

developing heart failure 

5.1 Abstract  

Background 

Type 2 diabetes is an independent risk factor for the development of heart failure. 

Patients with elevated urinary albumin creatinine ratio (ACR), high sensitivity 

cardiac troponin T (hs-cTnT) and amino-terminal pro-brain natriuretic peptide (NT-

proBNP) appear to be at the highest risk of heart failure although mechanisms by 

which this occurs are not clear. We hypothesised that increased risk of heart failure 

would be mediated by both diffuse fibrosis and silent MI.   

Methods 

We carried out comprehensive cardivascular magnetic resonance (CMR), 

assessment in 100 asymptomatic patients with type 2 diabetes and 30 controls. 50 

patients had persistent microalbuminuria but were yet to start an ACE inhibitor 

and 50 had never had microalbuminuira. The CMR protocol included T1 mapping 

using  Modified Look-Locker Inversion (MOLLI) to assess for diffuse fibrosis and late 

gadolinium enhancement imaging (LGE) to assess for focal fibrosis or prior 

myocardial infarction (MI).  

Results 

Extracellular volume (ECV), a CMR marker of diffuse fibrosis, was higher in ACR +ve 

than ACR -ve patients 27.2±4.1 vs 25.1±2.9% P=0.004. ECV was also higher in hs-

cTnT +ve than hs-cTnT -ve patients 30.3±4.8 vs 25.6±3.2%, P<0.0001 and NT-

proBNP +ve than NT-proBNP -ve patients 29.3±4.5 vs 25.7±3.4%, P=0.002. The rate 

of silent MI was higher than expected in this low risk asymptomatic cohort (17%) 

but there were no differences in the rate according to biomarker (ACR, hs-cTnT or 

NT-proBNP) status. Patients with 2 or 3 +ve biomarkers had the highest ECV which 
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was significantly higher than those with 1 or 0 +ve risk factors 30.7±4.2 vs 

25.5±3.1%, P<0.0001. 

Conclusions 

The increased risk of heart failure in patients with persistent microalbuminuria, +ve 

hs-cTnT and NT-proBNP appears to be mediated by increased cardiac ECV and 

diffuse fibrosis. The rate of silent MI was high but not related to biomarker status. 
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5.2 Introduction  

Type 2 diabetes mellitus is well established as an independent risk factor for the 

development of heart failure (Kannel and McGee, 1979). The risk of heart failure is 

approximately doubled by the presence of diabetes and appears to be 

independent of conventional risk factors including age, gender, existing coronary 

disease and hypertension (Gottdiener et al., 2000). Once patients with diabetes 

establish heart failure they have higher mortality than normoglycaemic heart 

failure patients (MacDonald et al., 2008; Cubbon et al., 2013). Epidemiological 

evidence suggests that poor control of blood glucose in type 2 diabetes is 

associated with increased rates of heart failure (Iribarren et al., 2001). However 

data from randomised controlled trials demonstrate that intensive control of 

glucose does not reduce the risk of hospitalisation for heart failure (Castagno et al., 

2011). To complicate matters, several pieces of evidence suggest that type of 

hypoglycaemic agents used can modulate the risk of heart failure in patients with 

diabetes (Dormandy et al., 2005; Zinman et al., 2015). 

Patients with type 2 diabetes and nephropathy appear to be at the highest risk of 

heart failure and treatment directed at modulating the renin-angiotensin-

aldosterone system decreases rate of hospitalisation with cardiac decompensation. 

In both the LIFE and RENAAL studies, patients with type 2 diabetes and 

nephropathy were randomised to treatment with losartan versus atenolol (LIFE) or 

Losartan versus placebo (RENAAL) (de Zeeuw et al., 2004). In both studies, the 

albumin creatinine ratio (ACR) at baseline was found to be associated with an 

increased risk of first heart failure admission (hazard ratio 1.3 in LIFE and 1.4 in 

RENAAL over 4-5 years follow up) (Carr et al., 2005). In both studies treatment with 

losartan was associated with decreased rates of hospitalisation for heart failure 

(Carr et al., 2005). Given the poor clinical outcome of patients with diabetes and 

heart failure, studies attempted to identify a reliable biomarker for heart failure 

risk in this population. Elevated high sensitivity cardiac troponin T (hs-cTnT) in 

patients without overt cardiovascular disease has shown an association with 

increased risk of heart failure (hazard ratio 6.37 [confidence interval, 4.27-9.51]) 

over 14 years follow up) (Selvin et al., 2014). Elevated B-type natriuretic peptide 
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(BNP) has been associated with increased risk of both myocardial ischaemia 

detected by exercise tolerance test (Rana et al., 2006) and cardiovascular events 

(Huelsmann et al., 2008).  However, these tests fail to reliably detect all patients 

with early stages heart failure and more robust techniques are needed for the 

timely identification of those at risk.  

CMR allows for further investigation of the relationship between diabetes and 

heart failure in vivo. CMR studies have demonstrated that diabetes is associated 

with increased LV mass (Heckbert et al., 2006) and concentric LV remodelling 

(Velagaleti et al., 2010) independently of other factors such as age, blood pressure, 

tobacco use and alcohol use.  

Furthermore, CMR is able to measure and quantify the presence of focal and 

diffuse fibrosis in patients with diabetes. With LGE CMR focally scarred 

myocardium can be detected and the location and transmural distribution of scar 

provide an indication of the aetiology of heart failure. The scar most commonly 

detected in diabetes is due to previous myocardial infarction (MI), either 

recognised or silent (Schelbert et al., 2012), and is associated with increased 

mortality (Kwong et al., 2006).  CMR is also able to measure diffuse fibrosis using 

T1 and ECV mapping based techniques. Type 2 diabetes is associated with 

increased ECV  when measured by these techniques (Jellis et al., 2011) and those 

with the highest ECV have highest cardiovascular mortality and increased heart 

failure admissions (Wong et al., 2013). 

We hypothesised that CMR offers an accurate tool to characterise cardiac change 

in asymptomatic patients with type 2 diabetes with the ability to stratify those at 

high and low risk of heart failure. We aimed to establish whether the high risk of 

heart failure in certain patients was mediated by diffuse fibrosis or silent MI.  

5.3 Methods 

5.3.1 Enrolment Criteria 

The study was approved by the local ethical committee (13/YH/0098) and 

individuals were enrolled onto the study after informed consent. A total of 100 

patients with type 2 diabetes were recruited from 30 primary care health centres 
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in the local area. 50 consecutive ACR +ve patients were recruited after their annual 

diabetes check before commencement on an angiotensin converting enzyme (ACE) 

inhibitor in line with national guidelines (Sibal and Home, 2009). All ACR +ve 

patients had laboratory albumin: creatinine ratio repeated within 4 months to 

confirm persistent microalbuminuria. Thresholds to diagnose microalbuminuria 

were two or more measurements >2.5mg/mol in males and >3.5mg/mol in females 

(Sibal and Home, 2009). In addition, 50 patients with type 2 diabetes were 

recruited who had never had ACR above the thresholds (ACR -ve). This group was 

prospectively matched for age, gender and clinic blood pressure to ACR +ve 

patients.   Exclusion criteria for ACR +ve and ACR -ve were known cardiac disease, 

kidney disease (eGFR <30), uncontrolled hypertension, treatment with insulin or 

ACE inhibitor/angiotensin receptor blocker (ARB). Patients taking an ACEi or ARB 

were excluded because observational data has suggested that it may influence ECV 

in patients with diabetes (Wong et al., 2013). Finally, 30 age and gender matched 

controls were recruited.  

5.3.3 CMR protocol 

All patients and controls underwent CMR using an identical protocol on a 

dedicated cardiovascular 3 Tesla Philips Achieva TX system equipped with a 32 

channel coil and MultiTransmit® technology (Philips, Best, The Netherlands). Data 

were acquired during breath-holding at end expiration. From scout CMR images, 

the left ventricular long and short axes are determined. Then, precontrast T1 maps 

were acquired at the apex, mid-ventricle, and base positioned with the highly 

reproducible “3 of 5 technique” (Messroghli et al., 2005). T1 mapping used a 

breath-held Modified Look-Locker Inversion recovery (MOLLI) acquisition (ECG 

triggered 5(3s)3 balanced turbo gradient recalled echo (GRE) acquisition, spatial 

resolution 1.98x1.98x10mm³ (reconstructed to 1.25*1.25mm), single-shot, SENSE 

factor 2, prepulse delay 350ms, trigger delay set for end-diastole (adaptive), flip 

angle 35°, acquisition duration per image 170-185ms (dependent on field of view  

(FOV)). 

Tissue tagging by spatial modulation of magnetization (SPAMM) imaging (spatial 

resolution 1.51×1.57×10mm3, tag separation 7 mm, ≥18 phases, typical TR/TE 
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5.8/3.5 ms, flip angle 10°) was then performed in the same three short axis slices as 

T1 maps. 

Next, myocardial perfusion CMR was planned in the same three short axis slices 

using a spoiled turbo gradient-echo sequence (TR/TE 1.28/ 2.8 ms, flip angle 15°, 

acquired spatial resolution 2.42x2.42×10 mm, FOV 300–420, variable matrix 

between 124x124 – 172x172 (dependent on FOV), sensitivity encoding factor 2.4, 

0.65 partial Fourier acquisition and a saturation pre-pulse delay of 80ms). 

Intravenous adenosine was administered at 140mcg/kg/min for 3 minutes under 

continuous ECG monitoring. Adequate haemodynamic response was assessed by 

either a heart rate increase by ≥10% or symptoms attributed to adenosine 

administration. Imaging was undertaken during the last minute of adenosine 

infusion with a weak intravenous bolus of 0.0075mmol/kg followed by a strong 

bolus of 0.075 mmol/kg of gadobutrol (Gadovist®, Bayer Schering Pharma, Berlin, 

Germany). Both were administered at a rate of 4.0ml/s followed by a 20ml saline 

flush (Medrad Spectris Solaris power injector, Pittsburgh, Pennsylvania). 

Cine images covering the entire heart in the LV short axis plane were acquired 

(balanced SSFP, spatial resolution 1.2x1.2x10mm³, 50 cardiac phases TR/TE 

2.6/1.3ms, flip angle 40o, field of view 300-420mm) and in orthogonal long-axis 

planes.  Cine images planned to cover the entire left atrial short axis plane in end 

systole were acquired (balanced SSFP, spatial resolution 1.2x1.2x5mm³, 50 cardiac 

phases TR/TE 2.6/1.3ms, flip angle 40o, field of view 300-420mm) and in orthogonal 

long-axis planes.   

Rest perfusion imaging was acquired a minimum of 15 minutes after stress 

perfusion with a further injections of 0.0075mmol/kg and 0.075mmol/kg of 

gadobutrol in an identical geometry to the stress images. Rest images were 

acquired with the same FOV and acquisition duration as the stress scan. 

LGE was then carried out more than 6 minutes after rest perfusion imaging using 

inversion recovery-prepared T1-weighted echo. The optimal inversion time to null 

signal from normal myocardium was determined using a Look-Locker approach. 

Typical parameters were TR/TE 3.5/2.0 ms, flip angle 25o, acquired spatial 

resolution 1.54x1.76x10mm3 and performed in 10-12 short axis slices with further 

slices acquired in the vertical and horizontal long axis orientations, or phase-
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swapped, if indicated based on LGE imaging obtained, wall-motion or perfusion 

defects. Post contrast T1 mapping was carried out exactly 15 minutes following last 

contrast injection (as above).  

 

 

Figure 5.1 Recruitment flowchart. 

5.3.4 CMR interpretation 

CMR data was assessed quantitatively using commercially available software 

(CVI42, Circle Cardiovascular Imaging Inc. Calgary, Canada). Epicardial and 

endocardial borders were traced offline on the LV cine stack at end-diastole and 

end-systole to calculate end-diastolic (ED), end- systolic (ES) LV volumes, stroke 

volume (SV), ejection fraction (EF) and LV mass. Left atrial (LA) volume was 

calculated by tracing the LA endocardial border at end-systole when the left atrium 

was largest.    

 

Pre and post contrast myocardial T1 values with a 3-parameter exponential fit with 

Look-Locker correction were measured from the mid ventricular short axis slice in 

the septum. ECV was calculated from native and post contrast T1 times of 

258 ACR+ve DM 
invited 

75 ACR+ve 
agreed 

30 healthy 
controls 

25 not scanned: 
19 repeat ACR -ve 

2 claustrophobic 

2 MRI CI 
2 dropped out 

206 ACR-ve DM 
invited 

50 ACR-ve 
patients 

50 ACR+ve 
patients 

3 not scanned: 
1 claustrophobic 

2 MRI CI 

Prospective matching 

53 ACR-ve agreed 

Prospective matching 
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myocardium and blood pool and haematocrit as previously reported (Flett et al., 

2010). Mass of LGE was quantified using the Otsu automated threshold method 

and divided by LV mass calculated from short axis cines to give a percentage of LV 

with LGE.  

5.3.5 Echocardiogram protocol and analysis 

All patients underwent echocardiography (vivid e9, GE Medical Systems, 

Milwaukee, WI) focused on Doppler measurements of mitral inflow and tissue 

Doppler imaging (TDI) of the mitral annulus. E/A ratio, E', A' and S' are measured on 

the machine using inbuilt software. Diastolic dysfunction was graded 0-3 by a 

according to the international guidelines (Nagueh et al., 2009) by an accredited 

echocardiographer blinded to clinical details.  

5.3.6 Ambulatory blood pressure 

All patients underwent 24 hour blood pressure monitoring using a Welch-Allyn 

6100 ambulatory blood pressure monitor (Welch-Allyn, NY, USA) that has been 

validated for clinical use by the British Hypertension Society. The cuff was set to 

inflate every 30 minutes during the day and every 60 minutes during the night. 

Mean 24 hour systolic and diastolic BP were recorded.  

5.3.7 Biomarker assessment 

20mL of blood was drawn from each subject at the time of CMR. Full blood count, 

urea & electrolytes and HbA1c are measured at that time. Serum was stored at -

70C and tested in one batch for hs-cTnT typical CV 4.4% at 13.7ng/L and 3.6% at 

95.3 ng/L, amino-terminal pro-brain natriuretic peptide (NT-proBNP) typical CV 

2.9% at 91 ng/L and 2.1% at 415 ng/L (Cobas 8000, Roche Diagnostics,  Burgess Hill, 

West Sussex) and aldosterone ('in-house' radioimmunoassay) typical between 

batch CV <10% at 282, 402 and 1833 pmol/L 

5.3.8 Statistical analysis 

Statistical analysis was performed using IBM SPSS® Statistics 20.0 (IBM Corp., 

Armonk, NY). Continuous variables were expressed as means ± SD. Categorical 

variables were expressed as N (%) and compared using Fisher exact test. Shapiro-
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Wilk test was used to test normality and depending on the result analysis of 

variance (ANOVA) & and Kruskal Wallis test were used to compare means of ACR 

+ve, ACR -ve and controls.  Unpaired t test and Mann Whitney U test were used to 

calculate significance when there were 2 variables. Correlations were calculated 

using Spearmans correlation coefficient. P<0.05 was considered statistically 

significant.  

A power calculation based on previous studies of ECV in diabetes estimated that 50 

subjects would be needed in the ACR +ve and ACR -ve groups (power 0.9 and type 

1 error 0.05) (Jellis et al., 2011). We estimated that the difference in ECV in those 

with and without microalbuminuria would be similar to those with and without 

diastolic impairment in the previous study. 

5.4 Results 

A total of 464 patients with diabetes were approached of whom 128 patients 

agreed to participate. 50 ACR +ve and 50 ACR -ve completed the full protocol 

(Figure 5.1). 30 age and sex matched controls (N=30) were also recruited. 6/30 

controls chose not to receive adenosine stress after learning of possible symptoms. 

Patient and control characteristics and regular medications are shown in Table 5.1. 

There was no difference between ACR +ve and ACR -ve patients in age, gender, 

BMI, diabetes duration, HbA1c or 24 hour blood pressure. 

Native T1 and ECV were higher in patients with diabetes than in controls 

1242.2±53.9 vs 1209.7±47.4ms, P=0.004 and 26.1±3.4 vs 23.3±3.0% P=0.0002. 

Native T1 and ECV were also higher in ACR +ve than ACR -ve patients 1252.6±66.0 

vs 1231.72±35.8ms, P=0.05 and 27.2±4.1 vs 25.1±2.9%, P=0.004 (Figure 5.2).  

A total of 17/100 patients with diabetes had silent MI compared with 0/30 

controls, P=0.01. There was no difference in the rate of silent MI between ACR +ve 

and ACR-ve patients (9/50 vs 8/50, respectively P=0.79). 2/50 ACR +ve and 2/50 

ACR -ve patients had significant inducible ischaemia on adenosine stress perfusion 

imaging. The location and mass of infarction is shown in Table 5.2. Figure 5.3 shows 

an example of a patient with 2 distinct silent subendocardial myocardial 

infarctions.   
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There were no significant differences in LV EDV, LV mass, EF or left atrial volume 

between ACR +ve, ACR -ve or control (Table 5.2). LV mass/EDV was higher in 

patients with diabetes than in control 0.61±0.11 vs 0.66±0.13 g/ml P=0.008. 

Although a difference was detected in LV mass/EDV comparing ACR +ve with ACR -

ve, this failed to reach statistical significance (0.65±0.14 vs 0.68±0.12 g/ml, P=0.07 

(Figure 5.4). 

 

Figure 5.2 Late gadolinium enhancement (LGE) and extracellular volume (ECV) 

maps of an ACR -ve patient (left) and ACR +ve patient (right). LGE imaging showed 

no focal fibrosis in either patient but ECV mapping demonstrated the ECV to be 

significantly higher in the ACR +ve patient. 

 

Circumferential strain was lower in patients with diabetes compared to control at 

apex, mid LV and base (-0.22, -0.22 & -0.20 vs -0.19, -0.18 & -0.18; P=0.001, 

P<0.0001 & P=0.001 respectively). Circumferential strain was also lower at the mid 

LV level in ACR +ve than ACR-ve patients-0.17±0.03 vs -0.19±0.05, P=0.01.  There 
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was no difference in strain rates, LV twist or LV torsion between patients with 

diabetes or control (Table 5.1).  

There was no difference in any echocardiography measured Doppler parameter 

between ACR +ve and ACR -ve patients (Table 5.3). There were no significant 

differences in hs-cTnT, NT-proBNP and serum aldosterone between ACR +ve and 

ACR -ve. 

  
Control ACR -ve ACR +ve 

P value 
for trend 

P value 
for ACR -
ve vs +ve 

N 30 50 50 
 

 

Age 59.1±11.5 61.1±9.1 60.2±12.7 0.76 0.69 

Male gender, n (%) 21 (70) 42 (84) 40 (80) 0.32 0.60 

Body mass index , 

kg/m
2
 

26.6±3.2 28.6±4.0 29.1±4.6 0.04 0.61 

Duration of diabetes, 
years 

- 4.6 ± 4.4 5.3±4.4 - 0.40* 

HbA1c, mmol/mol 36.2±3.8 60.2±13.7 65.9±23.9 <0.0001 0.47 

Systolic BP, mmHg 130±13 130±13† 133±17† 0.66 0.46 

Diastolic BP, mmHg 70±11 71±8† 74±10† 0.20 0.12 

Total cholesterol - 4.4±1.2 4.4±1.1 - 0.94 

Smoking 0 6 9  0.40 

      

Metformin 0 49 38 <0.0001 0.002 

Sulphonylurea 0 12 21 <0.0001 0.09 

Other OH 0 3 1 0.28 0.62 

Insulin 0 0 0 1.0 1.0 

ACE inhibitor 0 0 0 1.0 1.0 

Beta blocker 0 1 3 0.28 0.62 

Calcium channel 
blocker 

1 6 4 0.40 0.74 

Diuretic 0 2 3 0.40 1.0 

Statin 2 36 33 <0.0001 0.67 

Aspirin 3 4 14 0.01 0.02 

 

Table 5.1 Subject characteristics. *ACR -ve vs ACR +ve only. †24 hour BP; OH, oral 

hypoglycaemic agent   
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  Control ACR -ve ACR +ve P value for trend P value for ACR -ve vs +ve 

LV EDV, ml 162.2±41.4 149.2±32.4 147.2±36.3 0.16 0.40 

LV EDV index, ml/m2 83.5±18.7 74.1±13.9 73.1±14.5 0.03 0.34 

Ejection fraction, % 60.5±6.6 61.2±5.1 60.6±6.9 0.59 0.93 

LV mass, g 95.5±22.6 93.9±17.6 98.5±23.3 0.65 0.35 

LV mass index, g/m2 49.1±9.3 46.8±7.7 48.9±9.4 0.48 0.30 

Mass/EDV, g/ml 0.61± 0.11 0.65±0.14 0.68±0.12 0.02 0.07 

LAV, ml 91.6±26.6 87.5±17.0 89.8±22.5 0.92 0.99 

LAV index, ml/m2 46.9±12.3 43.7±8.2 44.9±9 0.69 0.78 

Native T1, ms 1209.7±47.4 1231.72±35.8 1252.6±66.0 0.002 0.05 

Extracellular volume, % 23.3±3.0 25.1±2.9 27.2±4.1 <0.0001 0.004 

Myocardial Infarction, n (%) 0 (0) 8 (16) 9 (18) 0.01* 0.79 

Mass of Infarction, g - 3.1±2.1 8.7±11.7 - 0.50† 

Mass of infarction, % of LV - 2.9±1.8 8.5±11.2 - 0.50† 

Apex Ecc  -0.22±0.05 -0.19±0.05 -0.18±0.05 0.001α 0.12 

Mid LV Ecc  -0.22±0.02 -0.19±0.05 -0.17±0.03 <0.0001 0.01 

Base Ecc -0.20±0.03 -0.18±0.04 -0.17±0.03 0.001β 0.14 

Mid LV systolic SR -1.11±0.12 -1.06±0.16 -1.02±0.20 0.10 0.27 

Mid LV early diastolic SR 0.53±0.15 0.45±0.20 0.44±0.18 0.02γ 1.0 

Mid LV late diastolic SR 1.37±0.26 1.13±0.30 1.06±0.32 <0.0001δ 0.29 

Peak LV twist 14.6±4.2 15.0±3.0 15.4±4.3 0.67 0.57 

Peak LV torsion 13.4±3.1 14.5±3.6 14.4±3.7 0.45 0.92 

Table 5.2 CMR findings. BSA, body surface area; Ecc, circumferential strain EDV, end diastolic volume; ESV, end systolic volume; LAV, left 

atrium volume; LV, left ventricle; SR, strain rate *DM vs control. †One ACR +ve patient had discrete lateral and antero-apical infarction that 

corresponded to two coronary severe stenoses on subsequent coronary angiography. α DM vs control P=0.001. β DM vs control P=0.001. γ 

DM vs control P=0.01. δ DM vs control <0.0001. 
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Figure 5.3 Adenosine stress perfusion imaging showing severe anteroseptal 

inducible ischaemia (A). Late gadolinium enhancement images showing 2 distinct 

silent myocardial infarctions in one ACR +ve patient. Antero-apical (B) and lateral 

(C) subendocardial infarctions caused by a chronic total occlusion of the left 

anterior descending artery (D) and severe obtuse marginal disease (E)   

5.4.1 High Sensitivity cardiac Troponin T 

Eleven of all 100 patients with diabetes had hs-cTnT ≥14ng/L. CMR findings of 

these patients are shown in Table 5.4. Both native T1 and ECV were higher in 

patients with hs-cTnT ≥14ng/L than those with normal hs-cTnT levels (1293.3±80.2 

vs 1235.8±46.5ms, P=0.0001 and 30.3±4.8 vs 25.6±3.2%, P<0.0001 respectively).  

Hs-cTnT level had a modest correlation with CMR tagging derived late diastolic 

strain rate r=-0.25 P=0.02. Hs-cTnT also had a modest correlation with E wave by 

spectral mitral Doppler -0.211, P=0.04, medial and lateral E’ by TDI r=-0.32 P=0.001 

and r=-0.22, P=0.03 respectively. There was also a significant correlation between 

Hs-cTnT and NT-proBNP r=0.30, P=0.003.    
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5.4.2 NT-ProBNP 

There were 11 patients with NT-proBNP ≥125ng/L. CMR findings of these patients 

are shown in Table 5.4. Patients with NT-proBNP ≥125ng/L had increased LA 

volume indexed to BSA compared with patients with normal NT-proBNP (54.3±16.0 

vs 43.1±7.6 ml/m2, P=0.004), as well as higher native T1 1285.6±79.6 vs 

1236.8±47.8ms, P=0.07 and ECV 29.3±4.5 vs 25.7±3.4%, P=0.002. S’ average by TDI 

was lower in those with NT-proBNP ≥125ng/L -3.2 vs-4.3 cm/s, P=0.02.  

 

Figure 5.4 Box and whisker plots showing ejection fraction, LV mass/EDV, native T1 

and extracellular volume according to ACR status. Brackets above show the P value 

between groups. 

5.4.3 Correlates of ECV 

Of the patient characteristics listed in Table 5.4 only HbA1c (r=0.28, P=0.004) and 

female gender (r=0.38, P<0.0001) were associated with higher ECV. None of the 

medications listed in Table 5.1 were associated with increased ECV. LV mass, EDV 

and ESV all had a significant correlation with ECV (r=-0.24, P=0.02; r=-0.30, P=0.002 

and r=-0.36, P<0.001 respectively). There were no significant correlations between 
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any of the strain parameters measured by CMR shown in Table 5.2 or by 

echocardiography shown in Table 5.3 and ECV.  

5.4.4 Correlates of Native T1 

Of the patient characteristics listed in Table 5.4 only female gender (r=0.22, 

P=0.03) was associated with higher native T1 (r=0.38, P<0.0001). No medication 

was associated with increased native T1. EDV and ESV had a significant correlation 

with native T1 (r=-0.24, P=0.02 and r=-0.29, P=0.003). Of the strain parameters 

measured by CMR shown in Table 5.2 only peak systolic strain rate had a significant 

correlation with native T1 (r=0.25, P=0.01). None of the strain parameters 

measured by echocardiography shown in Table 5.3 had a correlation with native 

T1.  

 

Table 5.3 Echocardiography & biomarker results 

  ACR -ve ACR +ve P value 

E/A ratio 0.87±0.27 0.85±0.34 0.28 

E/E’ medial 8.6±2.6 8.6±2.2 0.89 

E/E’ lateral 6.1±2.4 6.4±2.2 0.32 

E/E’ average 7.0±2.3 7.2±2.0 0.40 

Diastolic dysfunction grade 0.84±0.58 0.98±0.47 0.12 

 0 12 5  

 1 35 42  

 2 2 2  

 3 1 1  

S’ medial, cm/s 9.1±2.4 9.3±2.3 0.87 

S’ lateral, cm/s 10.2±2.5 9.5±2.1 0.11 

S’ average, cm/s 9.7±2.0 9.4±1.8 0.42 

hs-cTnT, ng/L 6.4±4.3 8.4±5.8 0.09 

NT-proBNP, ng/L 54.0±81.9 67.0±129.7 0.34 

Serum Aldosterone, pmol/L 299.0±194.6 322.55±182.5 0.32 
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5.4.5 Combinations of ACR, hs-cTnT and NT proBNP 

Eleven patients had elevated levels of 2 or 3 of the bioamrkers for developing heart 

failure (ACR, hs-cTnT or NT-proBNP, Figure 5). In those with 2 or 3 positive 

biomarkers native T1 and ECV were higher than in those with only one positive 

biomarker (1293.4±76.7 vs 1240.7±54.6ms, P=0.005 and 30.7±4.2 vs 26.2±3.5%, 

P=0.0001 respectively) or none (1293.4±76.7  vs 1229.9±36.6ms, P=0.001 and 

30.7±4.2 vs 24.9±2.7%, P<0.0001). 

 

Figure 5.5 Venn diagram showing overlap between positive ACR, hs-cTnT≥14ng/ml 

and NT-proBNP≥125ng/ml and their relationship with ECV. 
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 hs-cTnT≥14 hs-cTnT<14 P value NT-
proBNP≥125 

NT-
proBNP<125 

P value 

N 11 89  11 89  

ACR +ve, N (%) 9 (82) 41 (46) 0.05 7 (64) 41 (46) 0.53 

hs-cTnT, ng/L 19.5±4.0 5.9±2.7 - 12.7±6.8 6.7±4.5 0.01 

NT-proBNP, ng/L 201.8±227.1 43.0±67.0 0.01 279.5±218.1 33.4±31.8 - 

24 hour SBP, mmHg 125±10 132±15 0.18 125±11 132±15 0.14 

24 hour DBP, mmHg 64±10 74±9 0.001 63±9 74±8 <0.001 

LV EDV, ml 141.0±38.5 149.1±33.8 0.46 143.7±39.9 148.7±33.7 0.65 

LV EDV index, ml/m2 69.7±16.4 74.1±13.9 0.33 72.7±16.2 73.8±14.0 0.81 

Ejection fraction, % 60.6±10.7 61.0±5.3 0.84 60.5±10.6 61.0±5.3 0.80 

LV mass, g 97.2±13.8 96.0±21.4 0.86 90.7±14.9 96.8±21.2 0.36 

LV mass index, g/m2 48.7±9.2 47.8±8.6 0.74 46.0±5.3 48.1±9.0 0.46 

Mass/End diastolic volume, 
g/ml 

0.72±0.14 0.66±0.13 0.15 0.66±0.13 0.67±0.13 0.82 

Left atrial volume, ml 103.0±31.4 86.8±17.4 0.12 106.1±31.7 86.4±17.0 0.07 

Left atrial volume index, ml/m2 51.3±15.0 43.4±8.3 0.12 54.3±16.0 43.1±7.6 0.004 

Native T1, ms 1293.3±80.2 1235.8±46.5 0.0001 1285.6±79.6 1236.8±47.8 0.07 

Extracellular volume, % 30.3±4.8 25.6±3.2 <0.0001 29.3±4.5 25.7±3.4 0.002 

Myocardial Infarction , n (%) 2 (18) 15 (17) 1.0 3 (27) 14 (16) 0.39 

Mass of Infarction, g 19.8±23.8 4.3±4.3 0.53 13.3±20.2 4.6±4.3 0.53 

Mass of infarction, % of LV 19.9±22.0 4.0±4.0 0.49 13.4±19.2 4.2±4.0 0.49 

Table 5.4 CMR and biomarker findings of 100 patients with type 2 diabetes according to whether they had elevated hs-cTnT or NT-proBNP. 

ACR, albumin creatinine ratio; DBP, diastolic blood pressure; SBP, systolic blood pressure; EDV, end diastolic volume 
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5.5 Discussion 

Data from our prospectively recruited cohort of low risk asymptomatic patients 

with diabetes demonstrates that patients who are at a higher risk of heart failure 

have higher ECV and extracellular matrix (ECM) expansion. ACR, hs-cTnT and NT-

proBNP are all known surrogates of heart failure risk and all correlated with an 

increased ECV. There was also a high rate of silent MI in this low risk asymptomatic 

cohort however there was no correlation between silent MI and ACR, hs-cTnT or 

NT-proBNP status.  

There is now considerable data demonstrating that diabetes is associated with 

increased ECV and diffuse cardiac fibrosis (Jellis et al., 2011; Ng et al., 2012; van 

Heerebeek et al., 2008) and that elevated ECV is associated with increased heart 

failure and mortality (Wong et al., 2013). Several biomarkers including urine ACR 

(Carr et al., 2005), hs-cTnT (Selvin et al., 2014) and NT-proBNP (Rana et al., 2006) 

have also been linked with increased heart failure risk in diabetes although the 

mechanisms underlying this risk are not clear. We have shown that elevated levels 

in each of these biomarkers are associated with increased ECV suggesting ECM 

expansion as a mechanism for heart failure in this population.  

Microalbuminuria is typically the earliest clinical manifestations of diabetic kidney 

disease as well as a marker of vascular pathology. The mechanisms that lead from 

hyperglycaemia to renal dysfunction are complex and are thought to involve 

altered pathways of cellular glucose metabolism, increased fatty acid oxidation, 

increased reactive oxygen species secondary to mitochondrial dysfunction and 

ultimately production of advanced glycation end products within vulnerable cells of 

the kidney (Brownlee, 2005; Wendt et al., 2003). These pathways lead to the 

microscopic changes within the kidney including glomerular basement thickening, 

mesangial cell enlargement and increased extracellular matrix secretion which all 

may be detected in patients with microalbuminuria (Tervaert et al., 2010) . 

The cellular processes that lead from hyperglycaemia to cardiac fibrosis and 

dysfunction are similar to those in the kidney and involve altered substrate 

metabolism, impaired calcium handling, increased reactive oxygen species and 

microvascular advanced glycation end product deposition (Boudina and Abel, 2007; 
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Seferovic and Paulus, 2015). These pathways lead to increased cardiac interstitial 

fibrosis (van Heerebeek et al., 2008) that can ultimately be detected by CMR T1 

mapping. It is therefore likely that similar cellular mechanisms lead to both cardiac 

and renal fibrosis and dysfunction in type 2 diabetes. This may explain the 

relationship between microalbuminuria and cardiac extracellular matrix expansion 

that we have reported.  

It is also likely that renal dysfunction in patients with microalbuminuria leads to 

cardiac fibrosis. In diabetes there is increased expression of angiotensin II in the 

leading to volume expansion via salt and water reabsorption in the kidney (Price et 

al., 1999). This increases cardiac afterload and may explain the concentric 

remodelling with increased LV mass/EDV we have reported in patients with 

microalbuminuria. We had also anticipated that serum aldosterone level would be 

elevated in ACR +ve patients, which was not the case. Rao et al have previously 

reported a correlation between urinary aldosterone excretion and ECV which fits 

with the hypothesis that angiotensin II expression is important in cardiac fibrosis.  

Despite deliberate exclusion of ACE inhibitors and low use beta blockers that both 

influence aldosterone levels we did not find an association between ECV and 

serum aldosterone level in our cohort.  It is possible that factors such as fluid status 

and posture prior to blood testing have had a deleterious effect on the measured 

aldosterone levels. 

We have also reported the novel finding of an association between cardiac 

biomarkers and cardiac extracellular matrix expansion in diabetes. This finding is in 

keeping with other disease states that involve expansion of the extracellular matrix 

including cardiac amyloidosis (Barison et al., 2015) and HCM (Kawasaki et al., 2013) 

where diffuse cardiac fibrosis detected by CMR has been shown to correspond with 

both BNP and cardiac troponin.    

Our finding that rates of silent MI did not vary according to ACR status was 

surprising. ACR reflects a microvascular complication of diabetes which is 

recognised to be directly related to glycaemic control (Stratton et al., 2000). 

Elevated ACR however, is also a marker of vascular injury. The relationship 

between risk of MI and glycaemic control is complex. For example, only after 10 

years post study follow up of improved glycaemic control in UKPDS was a decrease 
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in rates of MI apparent (Holman et al., 2008). Our finding that ACR status did not 

influence the chance of silent MI likely reflects this complex relationship.  

Diastolic dysfunction detected by echocardiography was a very common finding in 

our study  in 83/100 patients which is in keeping with previously reported rates 

(Poirier et al., 2001). Previous studies have demonstrated that diastolic dysfunction 

in type 2 diabetes is strongly influenced by age, hypertension and coronary disease 

and have given conflicting results about whether it leads to heart failure and 

increased mortality (From et al., 2010; Poulsen et al., 2013) . We have reported no 

difference in any measure of diastolic dysfunction between ACR +ve and ACR -ve 

and furthermore that there was no correlation between any echocardiographic 

measure of diastolic dysfunction and ECV. Our finding add further weight to the 

argument that diastolic dysfunction is influenced by too many factors to be a useful 

screening tool for subclinical cardiac dysfunction secondary to diffuse fibrosis in 

type 2 diabetes.  

However mid LV circumferential strain measured by CMR tagging was lower in ACR 

+ve than ACR -ve patients, although there was no significant correlation with ECV. 

Previous studies have suggested that impairment of this parameter is associated 

with increased risk of heart failure on follow up (Choi et al., 2013).  This was the 

only functional parameter that was different between ACR +ve and ACR -ve and 

further studies are required to establish whether it may have prognostic value in 

type 2 diabetes.  

It has been postulated that future clinical trials should be directed at patients with 

diabetes and increased ECV to try and prevent the onset of heart failure. ACR, hs-

cTnT, NT-proBNP, or even a combination of all three, have the potential to be 

relatively simple and cost effective screening tools to detect patients with diabetes 

most likely to have elevated ECV. Recruiting those most likely to have elevated ECV 

to clinical trials could increase the event rate and decrease sample size.  

5.6 Limitations 

In this study we have explored the relationships between ECV and three 

biomarkers associated with increased risk of heart failure in diabetes. Our study 

was not powered to compare clinical outcomes or risk of heart failure. We have 
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not carried out invasive coronary angiography because it would not be ethically 

appropriate to put asymptomatic low risk patients through an invasive procedure. 

However we have carried out high resolution stress perfusion imaging to exclude 

significant silent ischaemia and the prevalence of which was the same between 

groups. For the same reasons we did not carry out myocardial biopsy to confirm 

increased ECM histologically. However ECV measured by CMR has been validated 

against histology in other disease processes (Iles et al., 2008) and there is now 

considerable evidence suggesting that the increased ECV in diabetes represents 

ECM expansion and diffuse cardiac fibrosis (Jellis et al., 2011; Ng et al., 2012; Rao 

et al., 2013). 

5.7 Conclusions 

Patients with type 2 diabetes and persistent microalbuminuria, positive hs-cTnT or 

NT-proBNP have cardiac extracellular matrix expansion detected by CMR, 

suggesting that the increased risk of heart failure in these patients is mediated by 

diffuse cardiac fibrosis. There was a high rate of silent MI in this low risk cohort 

that was not related to biomarker status.  
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6. Study 5– Identification of patients with type 2 

diabetes with evidence of silent myocardial 

infarction 

6.1 Abstract  

Aims 

Silent myocardial infarction (SMI) is a prevalent finding in patients with type 2 

diabetes and is associated with significant mortality and morbidity. Late gadolinium 

enhancement (LGE) by cardiovascular magnetic resonance (CMR) is the best 

validated technique for detection of SMI but is time consuming, costly and requires 

administration of intravenous contrast. We therefore planned to develop a 

population screening tool to identify those at highest risk of SMI.   

Methods 

100 asymptomatic patients with type 2 diabetes underwent ECG, 24 hour blood 

pressure, echocardiography, biomarker assessment and CMR at 3.0T including 

assessment of ejection fraction (EF) and LGE. Global longitudinal strain (GLS) 

measured from basic 2 and 4 chamber cines was measured using feature tracking. 

Risk factors, imaging and biomarker findings were compared in those with and 

without SMI.   

Results 

17/100 patients had SMI. Risk factors for SMI included older age but not fasting 

cholesterol, 24hrBP, smoking or hsCRP. Q waves on ECG, Doppler 

echocardiography EA ratio ≤ 0.79, GLS ≥ -18.4% and NT-proBNP > 29ng/L were all 

associated with SMI. We tested a simple risk score derived from these 4 factors 

and age. The combined score had an AUC of 0.836 (0.749-0.902), P<0.0001. A score 

of ≥3/5 had 88% sensitivity and 70% specificity for SMI.  
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Conclusions 

We have developed a simple screening test, using measures that can be derived in 

a cardiology outpatient clinic, for the detection of SMI in type 2 diabetes. 

Identifying those most likely to have SMI would allow appropriate investigation and 

initiation of treatment.  
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6.2 Introduction  

Cardiovascular disease, primarily stroke and myocardial infarction, account for the 

vast majority of mortality associated with type 2 diabetes (Morrish et al., 2001). 

Silent myocardial infarction (SMI) is a relatively common finding in patients with 

type 2 diabetes (Kwong et al., 2006; Schelbert et al., 2012) although the exact 

prevalence in contemporary asymptomatic populations is unknown (Davis et al., 

2013). 

Currently the most extensively validated method to assess for the presence and 

extent of silent MI is the LGE technique measured by CMR. Using this technique it 

is possible to establish the location and distribution of scar tissue. The prevalence 

of SMI according to the presence of LGE in symptomatic patients with type 2 

diabetes is reported to be between 21-28% (Kwong et al., 2006; Schelbert et al., 

2012). In these cohorts the presence of SMI was strongly associated with an 

increase in MACE and mortality.  

There has been a decrease in the rate of acute MI in type 2 diabetes in the past 

two decades (Gregg et al., 2014). This may reflect improvements in glycaemic 

control and modification of other concomitant risk factors such as smoking, 

dyslipidaemia and blood pressure. It is unknown whether these same risk factors 

influence the likelihood of SMI. Comparatively the detection of LGE by CMR is time 

consuming, costly and requires administration of intravenous contrast making it a 

less than ideal population screening tool. 

Several imaging and biomarker tests have been shown to be able to detect the 

presence and determine the extent of MI measured by LGE  including Q waves on 

12 lead electrocardiogram (ECG) (Moon et al., 2004a), ejection fraction 

(Ingkanisorn et al., 2004), strain parameters (Biere et al., 2014), hs-cTnT (Nguyen et 

al., 2015) and NT-proBNP (Garcia-Alvarez et al., 2009). However, the sensitivity and 

specificity of these tests to detect SMI in type 2 diabetes is at present unknown.  

We hypothesised that a risk score derived from routinely acquired clinical 

measurements could accurately predict the presence of SMI.  
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6.3 Methods 

6.3.1 Enrolment Criteria 

100 asymptomatic patients with type 2 diabetes were recruited from 30 primary 

care health centres in the local area. Exclusion criteria were known cardiac disease, 

kidney disease (eGFR <30), uncontrolled hypertension, treatment with insulin or 

ACE inhibitor/angiotensin receptor blocker.  

6.3.2 CMR protocol 

All patients underwent an identical CMR study on a dedicated cardiovascular 3 

Tesla Philips Achieva TX system (Philips, Best, The Netherlands) equipped with a 32 

channel coil and MultiTransmit® technology. Data were acquired during breath-

holding at end expiration.  

From scout CMR images, the left ventricular long and short axes were determined. 

Cine images covering the entire heart in the LV short axis plane and orthogonal 

long-axis planes were then acquired (balanced SSFP, spatial resolution 

1.2x1.2x10mm³, 50 cardiac phases TR/TE 2.6/1.3ms, flip angle 40o, field of view 

300-420mm). Cines planned to cover the entire left atrium (LA) short axis plane in 

end systole were also acquired (as LV stack but slice gap 5mm).  

LGE imaging was carried out more than 6 minutes after contrast injection using 

inversion recovery-prepared T1-weighted echo. The optimal inversion time to null 

signal from normal myocardium was determined using a Look-Locker approach. 

Typical parameters are TR/TE 3.5/2.0 ms, flip angle 25o, acquired spatial resolution 

1.54x1.76x10mm3 and performed in 10-12 short axis slices with further slices 

acquired in the vertical and horizontal long axis orientations, phase-swapped or 

imaged in systole, if indicated based on LGE imaging obtained or wall-motion 

abnormality.  

6.3.3 CMR interpretation 

CMR data were assessed quantitatively using commercially available software 

(CVI42, Circle Cardiovascular Imaging Inc. Calgary, Canada). LV mass, ejection 

fraction (EF) and LA volume were measured from short axis cine images.  
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For feature tracking analysis endocardial and epicardial LV contours were drawn on 

long axis 4 chamber and 2 chamber cines using a semi-automated process. Peak 

global longitudinal strain, systolic strain rate, early and late diastolic strain rates 

were measured. Late diastolic strain rates were defined as peak rate during active 

atrial contraction.  

The presence of SMI was identified by 2 physicians experienced in CMR 

interpretation based upon typical subendocardial distribution of LGE present. The 

mass of LGE was quantified by the Otsu method (Vermes et al., 2013).  

6.3.4 Echocardiography & Electrocardiography 

All patients underwent echocardiography (Vivid e9, GE Medical Systems, 

Milwaukee, WI, USA) focused on Doppler measurements of mitral inflow and tissue 

Doppler imaging (TDI) of the lateral and medial mitral annulus. E/A ratio, E', A' and 

S' are measured on the machine using inbuilt software. Diastolic dysfunction was 

graded 0-3 by an accredited echocardiographer blinded to clinical details according 

to international guidelines (Nagueh et al., 2009). 12 lead electrocardiography 

(MAC500, GE Medical Systems, Milwaukee, WI, USA) was analysed by 2 physicians 

blinded to clinical details for the presence of Q waves according to international 

guidelines (Thygesen et al., 2012).   

6.3.5 Ambulatory blood pressure 

All patients underwent 24 hour ambulatory blood monitor that has been validated 

for clinical use by the British Hypertension Society (6100, Welch-Allyn, NY, USA). 

The cuff was set to inflate every 30 minutes during the day and every 60 minutes 

during the night. Mean 24 hour systolic and diastolic BP were recorded.  

6.3.6 Blood tests 

Blood was drawn from each subject at the time of CMR and tested for HbA1c. 

Serum was stored at -70C and tested in one batch for hs-cTnT typical CV 4.4% at 

13.7ng/L and 3.6% at 95.3 ng/L, NT-proBNP typical CV 2.9% at 91 ng/L and 2.1% at 

415 ng/L (Cobas 8000, Roche Diagnostics,  Burgess Hill, West Sussex) and HS-CRP 
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(Advia, Siemens Healthcare Diagnostics, Marburg, Germany). Fasting cholesterol 

and previous HbA1c were recorded from review of electronic records.  

 

Figure 6.1 Examples of SMI detected by LGE. Horizontal panels are from the same 

patient and white arrows denote the area of MI. A and B show basal and mid 

inferolateral subendocardial MI. C and D show apical and mid septal near 

transmural infarction. E and F show basal inferior subendocardial infarction. 
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6.3.7 Statistical analysis 

Statistical analysis was performed using IBM SPSS® Statistics 20.0 (IBM Corp., 

Armonk, NY). Continuous variables were expressed as means ± SD and compared 

using Mann Whitney U test. Categorical variables were expressed as N (%) and 

compared using Fisher exact test. Spearman rank correlation was used to test for 

correlation.  

Receiver operating characteristic (ROC) analysis was used to determine the 

diagnostic accuracy of parameters that had been significantly different in those 

with SMI. The diagnostic accuracy is expressed as area under the curve (AUC) and 

95% confidence interval. Optimal sensitivity and specificity were calculated using 

Youden index. Nested models were used to assess the additive value variables 

associated with SMI. AUCs were compared by using validated methods described 

by DeLong et al (DeLong et al., 1988).   

Using the cut offs derived from the Youden analysis of the ROC curves each 

variable was given a binary classification. These five categorical variable were 

summed to calculate a SMI risk score (range 0-5). P<0.05 was considered 

statistically significant. 

 

Figure 6.2  American Heart Association bullseye model (right) demonstrating 6 

basal, 6 mid ventricular and 4 apical segments and their typical coronary arterial 

supply (LAD, left anterior descending; LCX, left circumflex; and RCA, right coronary 

artery). The right bullseye plot shows the location of infarcted segments from the 

17 patients with SMI.   
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Table 6.1 Patient characteristics according to the presence or absence of SMI ACE, 

angiotensin-converting enzyme; BP, blood pressure 

6.4 Results 

Seventeen of the 100 patients had evidence of SMI on LGE CMR. Figure 6.1 shows 

examples from 3 patients. Patient characteristics are shown in Table 6.1 according 

to SMI status. There was a significant range in the extent of SMI from 0.4g to 36.6g. 

Mean mass of infarction was 6.1±8.8g or as a percentage of the LV 5.8±8.5%. Mean 

 SMI No SMI P value  

N 17 83 
 

Age 65.4±9.2 59.8±11.0 0.05 

Male gender, n (%) 16 (94) 66 (80) 0.30 

Body mass index , kg/m
2
 27.8±3.1 28.9±4.6 0.32 

Duration of diabetes, years 4.1±4.1 5.2±4.4 0.24 

HbA1c, mmol/mol 57.1±12.5 64.3±20.6 0.23 

Median HbA1c, mmmol/mol 63.3±10.9 64.8±18.2 0.77 

24 hr systolic BP, mmHg 135.3±15.9 130.8±14.7 0.24 

24 hr diastolic BP, mmHg 72.5±10.1 72.7±8.9 0.89 

Total cholesterol 4.3±1.2 4.4±1.1 0.69 

Smoking, n (%) 4 (24) 11 (13) 0.28 

    

Metformin 13 74 0.227 

Sulphonylurea 5 28 1.0 

Other oral hypoglycaemic 0 4 1.0 

Insulin 0 0 - 

ACE inhibitor 0 0 - 

Beta blocker 2 2 0.133 

Calcium channel blocker 4 6 0.064 

Diuretic 1 4 1.0 

Statin 14 56 0.262 

Aspirin 2 16 0.73 
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transmurality of infarction was 60.3±28.0%. Figure 6.2 shows a bullseye plot of the 

areas affected by SMI demonstrating that SMI could occur in any segment.   

There was a trend to patients with SMI being older (65.4±9.2 vs 59.8±11.0, P=0.05) 

but there was no difference in any other patient characteristic or use of 

medication. There was no significant difference in any cardiac risk factors including 

24 hour BP, fasting cholesterol or smoking (P=0.24, 0.69 and 0.28 respectively).  

The mean number of previous HbA1c measurements included in the analysis was 

9.7±5.7 per patient over 4.3±2.7 years. There was no significant difference 

between mean, median or maximum HbA1c between those with and without SMI 

(P=0.69, 0.77 and 0.28 respectively).  

6.4.1 Electrocardiography 

Pathological Q waves on ECG were only present in 4/17 with SMI and 6/83 without 

SMI (sensitivity 24%, specificity 93%). Other ECG abnormalities were present in 

19/100 patients and included left axis deviation 5, right bundle branch block 5, left 

ventricular hypertrophy by voltage criteria 4, left anterior hemiblock 3, T wave 

abnormalities 3 and trifascicular block 1.  

6.4.2 Echocardiography 

Results of echocardiography are shown in Table 6.2. The only significant difference 

between those with and without SMI was a lower E/A ratio (0.75±0.30 vs 

0.89±0.30, P=0.03) in patients with SMI. Grade of diastolic dysfunction was not 

significantly different between those with and without SMI (grade 0, 6 vs 19%; 

grade 1, 88 vs 75%; grade 2, 0 vs 5%; and grade 3, 6 vs 1% P=0.24).  

6.4.3 Cardiovascular Magnetic Resonance 

CMR results are shown in Table 6.2. LV mass index to BSA was higher in those with 

SMI than those without (51.4±6.5 vs 47.2±8.7 g/m2, P=0.01). There was no other 

difference in volumetric parameters. Of the longitudinal strain parameters 

measured by feature tracking, global longitudinal strain (GLS-FT) -15.2±3.7 vs -

17.7±3.1%, P=0.004, peak systolic strain rate (SSR-FT) -93.8±31.8 vs -111.2±42%, 

P= 0.04 and early diastolic strain rate (EDSR-FT) 64.1±16.6 vs 84.0±33.1%, P=0.02 
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were all significantly lower in those with SMI. There was no difference in late 

diastolic strain rate (LDSR-FT) P=0.89.  

Of the patient characteristics shown in Table 6.1 none had a significant association 

with mass of SMI.  Of the investigation findings shown in Table 6.2 the mass of SMI 

only had significant correlations with EF (R=-0.81, P<0.0001), E/E’ (R=-0.58, P0.02) 

and hs-cTnT (R=0.58, P=0.02).  

 

Table 6.2 Investigations according to SMI status. EDSR, early diastolic strain rate; 

EDV, end diastolic volume; FT, feature tracking; GLS, global longitudinal strain; LA, 

left atrium; LDSR, late diastolic strain rate; LV, left ventricle; SSR, systolic strain rate 

  SMI No SMI P value  

CMR     

 LV EDV, ml 140.5±39.1 150.0±32.8 0.30 

 LV EDV index, ml/m2 70.4±17.1 74.5±13.4 0.27 

 Ejection fraction, % 58.0±9.7 61.7±4.9 0.30 

 LV mass, g 102.5±16.3 95.0±21.0 0.34 

 LV mass index, g/m2 51.4±6.5 47.2±8.7 0.01 

 LA volumes, ml 89.0±31.6 88.5±16.8 0.93 

 LA volume index, ml/m2 44.9±15.9 44.2±7.7 0.87 

Feature Tracking     

 GLS-FT -15.2±3.7 -17.7±3.1 0.004 

 SSR-FT -93.8±31.8 -111.2±42 0.04 

 EDSR-FT 64.1±16.6 84.0±33.1 0.02 

 LDSR-FT 87.4±39.9 91.4±41.2 0.89 

Echocardiography     

 E/A ratio 0.75±0.30 0.89±0.30 0.03 

 E/E’ average 7.4±2.4 7.1±2.1 0.96 

 S’ average, cm/s 9.8±2.2 9.5±1.8 0.72 

Electrocardiography     

 Q waves (%) 4 (20) 6(7) 0.06 

Biomarker findings     

 Hs-cTnT, ng/L 7.5±4.1 7.4±5.4 0.42 

 NT-proBNP, ng/L 105.8±132.2 51.9±100.8 0.003 

 HS-CRP, mg/L 3.5±3.5 3.7±5.9 0.57 
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 Figure 6.3 Receiver operator characteristic curves for age, E/A ratio, NT-proBNP 

global longitudinal strain (GLS) measured by feature tracking, the 5 variable nested 

model of age, Q waves, EA ratio , GLS and NT-proBNP (AUC= 0.85, P<0.0001) and 

the SMI risk score using the same 5 variables (AUC=0.84, P<0.0001). 

Age EA ratio 

SMI risk score 5 variable nested model 

NT-proBNP GLS 
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 AUC P value Optimum 

cut-off 

Sensitivity 

at cut-off 

Specificity 

at cut-off 

Age 0.668 

(0.522-0.803) 

0.02 >62 76% 63% 

E/A ratio 0.673  

(0.71-0.763) 

0.005 ≤0.72 71% 59% 

GLS-FT 0.684  

(0.540-0.828) 

0.01 ≥-18.4% 88% 41% 

NT-proBNP 0.730  

(0.604-0.855) 

<0.001 >29ng/L 88% 57% 

5 variable 

nested model 

0.851  

(0.766-0.914) 

<0.0001 - 94% 72% 

 

Table 6.3 Area under the curve (AUC) of continuous parameters for detecting silent 

MI for each of the 5 factors used in the SMI risk score and the 5 variable nested 

model. Optimum cut-off, sensitivity and specificity derived from Youden index are 

also shown.   

6.4.4 Biomarkers 

NT-proBNP was significantly higher in those with SMI (105.8±132.2 vs 

51.9±100.8ng/L, P=0.003). There was no difference in HS-CRP or hs-cTnT (P=0.57 

and 0.42 respectively).   

6.4.5 ROC analysis 

The area under the curve (AUC) for age, Q waves, E/A ratio, GLS-FT, and NT-proBNP 

are shown in Table 6.3 and Figure 6.3. The AUC for the nested model of all 5 

variables was 0.851 (0.766-0.914), P<0.0001 and the maximum possible sensitivity 

was 94% and specificity 72%. The nested model had higher diagnostic accuracy 

than Q waves, GLS, age and E/A ratio alone (P<0.0001, 0.02, 0.02 and 0.006 

respectively). The improvement over NT-proBNP did not reach statistical significant 

(P=0.06).  
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6.4.6 Development of a screening tool 

The number of patients with SMI according to their SMI risk score is shown in 

Figure 6.4. The combined score had an AUC of 0.836 (0.749-0.902), P<0.0001 and 

better diagnostic accuracy than Q waves, age and EA ratio (P<0.001, 0.01 and 0.02 

respectively). The improvement in diagnostic accuracy against GLS-FT and NT-

proBNP did not reach significance (P=0.05 and 0.09 respectively). The sensitives 

and specificities for each possible SMI risk score are shown in Table 6.4.  

 

SMI risk score Sensitivity 95% CI Specificity 95% CI 

0 100.0 - 0.0 - 

1 100.0 - 0.0 - 

2 100.0 80.5 - 100.0 42.17 31.4 - 53.5 

3 88.2 63.6 - 98.5 69.9 58.8 - 79.5 

4 52.9 27.8 - 77.0 88.0 79.0 - 94.1 

5 5.9 0.1 - 28.7 96.39 89.8 - 99.2 

 

Table 6.4 SMI risk score calculated from age  > 62, presence of Q waves on ECG, GLS 

≥ -18.4%, EA ratio ≤ 0.79 and NT-proBNP  >29ng/L. The sensitivity and specificity to 

detect SMI for each possible score is shown. 

6.5 Discussion 

The prevalence of SMI (17%) detected by LGE imaging in this low risk 

asymptomatic cohort was higher than expected. We have found increasing age to 

be the only conventional risk factor associated with SMI. We have identified 

several markers of SMI that can be detected by ECG, echocardiography or blood 

test and have shown that these markers can be added to develop a simple 

screening tool with good diagnostic accuracy.  

We have demonstrated that a simple risk score can predict the presence of SMI in 

patients with type 2 DM as shown by LGE on CMR. The risk score is composed of 
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age, Q waves on ECG, EA ratio ≤ 0.79, GLS ≥ -18.4% and NT-proBNP > 29ng/L. These 

are all parameters that are often measured in a cardiology clinic or could easily be 

measured in community based screening. In the model we derived GLS from 

feature tracking of CMR cines. However if such a model was to be validated and 

used in larger populations GLS could be measured from standard echocardiography 

which has been demonstrated to show good agreement with GLS measured from 

CMR (Obokata et al., 2015). 

 

 

Figure 6.4 Number of patients with SMI (red) and without SMI (blue) according to 

their SMI risk score. 

 

The decision about where to make the cut off to recommend further investigation 

depends on whether sensitivity or specificity is the main clinical priorities (Table 

6.4). If the cut off was set at a score ≥2 (100% sensitivity and 42% specificity) it 

would ensure that the vast majority of SMI was detected with only 2.5 patients 

needing CMR to identify one patient with SMI. Alternatively if the cut off was 
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higher with a score ≥3 (88% sensitivity and 70% specificity) roughly 1 in 9 patients 

with SMI would be missed but only 1.5 patients would need to be screened to 

detect one patient with SMI.  

All of the measured components within the score that is impaired GLS (Holland et 

al., 2015), elevated NT-proBNP (Huelsmann et al., 2008), EA ratio (From et al., 

2010) and Q waves on ECG (Davis et al., 2013) have been associated with adverse 

outcomes in patients with type 2 diabetes without prior history of MI. It is likely 

that a proportion of the mortality reported in these patients is due to SMI. It has 

also been shown that larger infarcts have greater impairment of GLS (Biere et al., 

2014), higher NT-proBNP (Garcia-Alvarez et al., 2009), altered mitral inflow (Nijland 

et al., 1997) and are more likely to develop Q waves (Moon et al., 2004a). 

Therefore all of the measured parameters have biological validity and prognostic 

significant that supports their inclusion in a risk score.  

The imaging parameters associated with mass of SMI were different from those 

included in the SMI risk score and included EF, E/E’ and hs-cTnT. These parameters 

are all recognised to correlate with extent of infarction and prognosis after 

symptomatic MI (Ingkanisorn et al., 2004; Nguyen et al., 2015; Naqvi et al., 2006). 

However, we have demonstrated that they were insensitive for the detection of 

SMI in type 2 diabetes and of limited value in this setting.  

It was an unexpected finding that conventional risk factors including fasting 

cholesterol, 24 hour BP, smoking and even previous glycaemic control had no 

influence on the likelihood of SMI in our cohort. It is unclear whether the 

pathological processes that lead to SMI are identical to acute MI. The lack of 

association with conventional risk factors suggests that further research is needed 

to identify alternative risk factors specifically for SMI.  

To our knowledge this is the first time that the rate of SMI assessed by LGE CMR 

has been assessed in a truly asymptomatic diabetic cohort. Previous studies have 

demonstrated that in patients with diabetes silent MI detected on CMR is 

associated with increased mortality and adverse cardiovascular events (Kwong et 

al., 2006; Schelbert et al., 2012). Kwong et al reported an incidence of silent MI of 

28% in symptomatic patients with diabetes undergoing clinical CMR (Kwong et al., 

2006). Schelbert et al reported a prevalence of 21% of silent MI of diabetic patients 
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enrolled in the ICELAND MI study who underwent CMR between 2004 and 2007 

(Schelbert et al., 2012). However patients in both studies were not necessarily 

asymptomatic and in ICELAND MI and in fact 28% of those with silent MI had prior 

coronary revascularisation. The rate of infarction was the same between our study 

and the work of Schelbert et al despite patients in our study being younger, lower 

risk and asymptomatic.  

SMI in type 2 diabetes is associated with significant mortality and morbidity 

(Kwong et al., 2006; Schelbert et al., 2012). However, it remains to be established if 

this prognosis can be altered by pharmacological or invasive intervention. Before 

recommending that a screening test can be used clinically it is of fundamental 

importance that an intervention exists that can alter the prognosis (Wilson and 

Jungner, 1968). This remains to be established in SMI in type 2 diabetes and should 

be the focus of future work. The SMI screening components that we have 

identified may help in future clinical studies by identifying those most likely to have 

SMI who could be targeted with a lifestyle, pharmacological or interventional 

procedure.  

6.6 Limitations 

The subjects we recruited were specifically low risk, for example those on insulin or 

ACE inhibitors were excluded. The SMI risk model would need to be validated in 

larger more varied populations to broaden its clinical use. We have not performed 

coronary angiography to confirm that SMI was caused by coronary disease. 

However in an asymptomatic cohort an invasive procedure would not be 

appropriate. The cut off points that we have used are based on Youden index 

which assigns equal importance to sensitivity and specificity. Depending on which 

of these is more important in clinical practice the thresholds would need to be 

altered accordingly. We have also assigned an equal score to each of the 

components which may oversimplify the complex nature of the disease process.  

6.7 Conclusions 

The rate of SMI in this low risk asymptomatic cohort of patients with type 2 

diabetes was higher than expected (17%). No conventional risk factors other than 
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age were associated with SMI. Several simple clinical parameters including Q 

waves, EA ratio, GLS and NT-proBNP were associated with SMI. By combining them 

we were able to define a simple screening tool with good diagnostic accuracy for 

the detection of SMI.  
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7. Final Conclusions 

There is increasing evidence that CMR can provide accurate quantification of 

subclinical cardiac change in both health and disease. Detection of subclinical 

change has both diagnostic and prognostic potential that until now primarily been 

used in research but in the coming years will likely be integrated into clinical 

practice.  

In this thesis we have used tissue characterisation by both ECV and LGE to detect 

subclinical change in asymptomatic cohorts. We have also reported changes in 

strain and volumetric parameters that can be detected by CMR.  We have applied 

these techniques to a wide range of subjects including patients with HCM, 

endurance athletes and asymptomatic patients with type 2 diabetes mellitus.  

 

The main findings were: 

7.1 Diagnosing HCM 

i. As LV hypertrophy increases ECV decreases in athletes but increases in 

HCM.   

ii. Based on this divergent finding ECV can be used distinguish HCM and 

athletic remodelling with high diagnostic accuracy, in particular in subjects 

with indeterminate maximal segmental wall thickness.  

iii. CMR using T1 mapping thus has a potential role in the exclusion of HCM in 

athletes presenting with left ventricular hypertrophy, but requires further 

validation in more varied patient populations.  

iv. Regional strain impairment measured by feature tracking and tissue tagging 

is predominantly associated with the degree of hypertrophy and 

replacement fibrosis assessed by the presence of LGE.  

v. In non-hypertrophied segments strain is not significantly impaired by the 

presence of interstitial fibrosis. Therefore the presence of interstitial 

fibrosis (defined as ECV>30% in this cohort) may be a more useful method 

than impairment of strain of identifying HCM in subjects with borderline LV 

hypertrophy.  
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7.2 Cardiac Change in athletes 

i. This cohort of endurance athletes had lower LV circumferential strain, LV 

torsion and biventricular diastolic strain rates than sedentary controls.  

ii. There was a linear association between lactate threshold and LV torsion, 

which is secondary to decreased apical rotation in athletes with high lactate 

threshold.  

iii. This association could be utilised to differentiate athletic remodelling from 

early dilated cardiomyopathy.  

 

7.3 Subclinical Cardiac Change in diabetes  

i. Patients with type 2 diabetes and persistent microalbuminuria, positive hs-

cTnT and NT-proBNP have cardiac extracellular matrix expansion detected 

by CMR 

ii.  Therefore the increased risk of heart failure in these patients may be 

mediated by diffuse cardiac fibrosis.  

iii. The rate of SMI in this low risk asymptomatic cohort of patients with type 2 

diabetes was higher than expected (17%).  

iv. No conventional risk factors other than age were associated with SMI. 

Several basic parameters including Q waves, EA ratio, GLS and NT-proBNP 

were associated with SMI.  

v. By combining them we were able to propose a simple screening tool with 

good diagnostic accuracy for the detection of SMI.  
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