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Abstract 

The global pollution of aquatic environments with microplastics and their interaction 

with wildlife is of concern. Ingestion of plastic has been reported for a wide range of 

species but little is known about the potential effects of such ingestion. The aim of this 

thesis was to assess the biological effects that are induced by the ingestion of 

microplastic in the three-spined stickleback (Gasterosteus aculeatus). Novel data for the 

ingestion, retention, egestion and induced effects of microplastic in multiple ontogenetic 

life stages are presented. Microplastics of different types and sizes were found to be 

ingested from the water and diet. Additionally, trophic transfer of microplastic was 

found as a further route for ingestion. Whereas ingestion of relatively small plastic was 

not found to induce blockages or obstructions of the gastrointestinal tract, ingestion of 

relatively large plastic had the potential to result in prolonging effects on food digestion. 

However, all used microplastics were found to be egested successfully. Effects on 

length, weight and condition index K were found but varied between exposure types 

and data suggests that observed short term effects were induced by plastic associated 

chemicals. Whereas molecular analysis of cytochrome P450 1A confirmed exposure to 

xenobiotics, relative expression of vitellogenin indicated no exposure to oestrogenic, 

plastic derived chemicals. Degraded polymer structures showed to have a higher 

biological activity due to enhanced leaching of endocrine disrupting, plastic derived 

chemicals and showed a potential to disturb energy metabolism. In addition, plastic was 

found to act as vectors for absorbed bisphenol A from the water column via trophic 

transfer to stickleback larvae where desorption of accumulated chemicals had the 

potential to induce toxic effects. The data presented in this thesis indicate that 

microplastics can be ingested and can induce negative effects in multiple ontogenetic 

life stages of sticklebacks. 
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1.1 Overview 

Plastic products are an essential part of modern life with applications ranging from 

clothes, electronics and furniture to highly specified products like prosthetics and 

engineered nanoplastics for drug delivery. However, since mass production of plastic 

products started in the 1950s to 1960s, reports have emerged documenting the 

contamination of the marine environment with synthetic plastics (Hays and Cormons, 

1974, Colton et al., 1974, Carpenter et al., 1972, Carpenter and Smith, 1972, Kartar et 

al., 1973). The plastic industry has grown to a global production of 299 million tonnes 

of plastic in 2013 (PlasticsEurope, 14/15) and it is estimated that nowadays plastic 

accounts for 60 - 80% of all marine debris (Derraik, 2002, Gregory and Ryan, 1997, 

Barnes et al., 2009). Further there is evidence for the contamination of both marine and 

fresh water environments with plastic litter on a global scale (Derraik, 2002, Eriksen et 

al., 2013a, Moore et al., 2011, Galgani et al., 2015, Cózar et al., 2014, Ivar do Sul and 

Costa, 2014, Lusher, 2015). Deleterious effects following the entanglement in larger 

plastic items (Sazima et al., 2002, Gudger and Hoffmann, 1931, Schwartz, 1984, 

Barreiros and Raykov, 2014, Carr, 1987, Laist, 1997, Kühn et al., 2015) have been 

reported. However, the presence of small plastic fragments, so called microplastics (< 5 

mm) and their reported ingestion (consumption of a substance through the mouth into 

the gastrointestinal tract) by a wide range of aquatic species (Kühn et al., 2015, Setälä et 

al., 2014, Cole et al., 2013, Browne et al., 2008, Mazurais et al., 2014, Besseling et al., 

2013) is of concern. Even though numerous reports are present that document the 

ingestion of plastic, the knowledge about the effects of such ingestion remain unclear 

for many species (Zarfl et al., 2011). 

The aim of this thesis was to assess the effects of ingested microplastic in fish using the 

three-spined stickleback (Gasterosteus aculeatus) as a model organism. Contributing to 

a first report that nanoplastics can be transferred through the food chain from 

zooplankton to fish (Cedervall et al., 2012), Chapter 3 assessed the potential for the 

trophic transfer of microplastic from zooplankton to fish and determined retention, 

egestion (discharge of undigested material from the gastrointestinal tract via the anus as 

faeces) and biological effects following the exposure in the adult fish. First evidence 

that ingestion of plastic by fish larvae can have negative effects on development 

(Mazurais et al., 2014) was further investigated in Chapter 4 which assessed the 

biological effects following the accidental ingestion of microplastic particles from a 
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contaminated water column by young stickleback larvae. Furthermore, there is a 

considerable lack of knowledge concerning the effects of ingested, commonly used 

consumer plastic items. Chapter 5 measured the effects arising from a dietary exposure 

in adult sticklebacks to fragments of degraded and non-degraded plastic carrier bags. 

Finally, adding to first evidence that ingested plastic can act as a vector for absorbed 

chemicals (Teuten et al., 2009) and induce biological effects in fish (Rochman et al., 

2013b, Rochman et al., 2014) Chapter 6 assessed the plastic mediated trophic transfer 

of absorbed chemicals by microplastic and the arising effects in exposed young 

stickleback larvae. 

1.2 Plastic in aquatic environments 

The pollution of the oceans and fresh water ecosystems with plastic litter is of concern 

since the durable characteristics of synthetic polymers in aquatic environment leads to 

accumulation and therefore higher levels of plastic over time (Barnes et al., 2009). The 

various pathways through which plastic enter aquatic environments, the global scale of 

this introduction and the wide distribution of plastic litter from lakes (Eriksen et al., 

2013a, Imhof et al., 2013) and rivers (Moore et al., 2011, Lechner et al., 2014) to 

coastal areas (Sadri and Thompson, 2014, Browne et al., 2010), the open ocean (Cózar 

et al., 2014, Moore et al., 2001), the sea floor (Schlining et al., 2013, Woodall et al., 

2014), remote islands (Hirai et al., 2011, Heskett et al., 2012) and the Arctic (Obbard et 

al., 2014, Bergmann and Klages, 2012) make accurate predictions about the total plastic 

burden of aquatic environments difficult. In addition, the presence of unknown levels of 

microplastics (see section 1.2.3), adds to these uncertainties. However, a growing 

number of reports document the presence of plastic litter in aquatic environments and 

highlight the potential extent of the pollution. Based on these more recent investigations 

plastic has been reported to be the dominant type of debris in the marine environment 

(Coe and Rogers, 1997). 

1.2.1 Plastic introduction and presence in the marine environment 

It is estimated that around 80% of marine debris originates from land based sources 

(GESAMP, 1991). Especially rivers have been shown to be heavily contaminated with 

plastic litter (Moore et al., 2011, Lechner et al., 2014, Morritt et al., 2014) and have the 

potential to carry this plastic burden into the oceans. The plastic litter introduction of the 
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Danube into the Black Sea has been estimated to be 4.2 tons of plastic debris day
-1

 and 

plastic debris at 12,932 pieces of plastic m
-3 

with a total weight of 30.4 tons of two 

rivers draining the densely populated Los Angeles Basin was found to be carried 

towards coastal waters over a 72h sampling (Lechner et al., 2014, Moore et al., 2011). 

Focussing on the effects of urban areas on the input of plastic in the oceans Jambeck et 

al. (2015) presented a framework to calculate the input of 192 costal countries into the 

oceans (Figure 1.1). Their results suggest that an estimate of 4.8 to 12.7 million metric 

tonnes of plastics entered the oceans in 2010 as a result of mismanaged plastic waste. 

The same study also hypothesised that quantities of plastic waste entering the oceans are 

expected to rise by one order of magnitude from 2010 to 2025 due to population growth 

and increased plastic production (Jambeck et al., 2015). The remaining 20% of plastic 

litter entering the oceans are thought to derive from ocean based sources like cruise 

ships, commercial fishing vessels and recreational boaters which dump their debris 

directly in the ocean (Horsman, 1982, UNESCO, 1994). 
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Many studies worldwide have investigated the plastic pollution of coastal regions, 

mainly beaches. In 2002 a review by Derraik (2002) listed 37 studies that evaluated the 

composition of marine debris for plastic content, 24 of them on beaches. Plastic 

contamination of beaches has been found to be correlated with their proximity to urban 

areas (Leite et al., 2014) but shorelines are also a sink for plastic litter carried over the 

oceans and then deposited in downwind sites as a result of tidal movements (Browne et 

al., 2010, Eriksson et al., 2013, Williams and Tudor, 2001). It is reported that plastic 

litter can account for 51 - 90% of shoreline debris (Derraik, 2002) and can accumulate 

with rates as high as 484 pieces day
-1

 (Cooper and Corcoran, 2010). As a result, beach 

sediments have been found to be contaminated with plastic fragments at concentrations 

of up to 80,000 items m
-2

 (Khordagui and Abu- Hilal, 1994) or 300,000 items m
-3

 

(Costa et al., 2010). 

Estuaries are very special environments forming transition areas from land based fresh 

water drainage and fully marine conditions and are seen as one of the most biologically 

productive aquatic environments (Kennish, 2002). However, their often close proximity 

to urban areas and waste water treatment outflows make them particularly vulnerable 

for anthropogenic pollutants contaminating estuaries in high concentrations, including 

plastic (Kennish, 2002, Williams and Simmons, 1997, Browne et al., 2010, Holmes et 

al., 2014, Bakir et al., 2014b, Smith and Edgar, 2014). Additionally, plastic input from 

the ocean poses a potential introduction route (Browne et al., 2010). As a consequence, 

sediment and water samples have been found to be polluted with plastic litter; Thirty 

sediment samples from the Tamar Estuary, UK were found with a total of 952 plastic 

items of which 65% were microplastics compared to macroplastic litter items (Browne 

et al., 2010). Water samples have been found with high plastic densities of up to 4137.3 

± 2461.5 plastic pieces m
-3

 which were found in trawls from the Yangtze Estuary, China 

(Zhao et al., 2014). 

In the open ocean plastic debris are suspected to accumulate in 5 major gyres (IPRC, 

2008, Lebreton et al., 2012, Law et al., 2010, Martinez et al., 2009, Barnes et al., 2009, 

Ryan et al., 2009, Cózar et al., 2014) (Figure 1.2) at high levels (Table 1.1). However, 

the data that is available to date is produced from the investigation of just small surface 

areas of these accumulation zones and makes the calculation of accurate numbers for 

the total plastic burden of the oceans difficult. Estimated quantities are reported with a 

total of 5.25 trillion plastic particles and a combined weight of 268,940 tons to litter the 
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oceans globally (Eriksen et al., 2014). However, these numbers are likely to be an 

underestimation of the real extent of the plastic pollution due to the constant pollution 

of the marine environment with vast amounts of plastic debris (Jambeck et al., 2015) 

and sampling techniques that exclude small plastic fragments (Norén, 2007). An 

extensive list of studies investigating the presence of plastic in the world’s oceans can 

be found in Lusher (2015). 

  

Table 1.1: Levels of plastic accumulation in the 5 major gyres. A list 

of selected studies to display the high levels of plastic debris within the 

five accumulation zones. 
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1.2.2 Plastic introduction and presence in freshwater environments 

Contamination from landfill sites or recreational litter has been proposed (Barnes et al., 

2009, Jayasiri et al., 2013, Thornton and Jackson, 1998) but also small plastic fragments 

and fibres released by consumer products and clothes (Browne et al., 2011, Fendall and 

Sewell, 2009) contribute to the pollution of freshwater environments. Even though 

recycling schemes are developed further in Europe, many countries still choose to 

landfill most of their plastic waste over recycling or energy recovery (PlasticsEurope, 

14/15). With about 70% of its plastic waste being landfilled, the UK was part of the 

bottom 7 (out of EU-27+CH/NO) countries in Europe regarding recycling and energy 

recovery for plastic waste in 2012 (PlasticsEurope, 14/15). With a plastic demand in the 

UK of approximately 4 million tonnes annually (PlasticsEurope, 14/15), large amounts 

of landfilled plastic waste have the potential to enter the environment. 

It became prominent over the past years that many personal care products like 

toothpaste, body scrubs, cosmetics and soaps contain small plastic fragments as 

substitutes for natural ingredients like crushed nut shells, almonds, oatmeal and salts 

(Hintersteiner et al., 2015, Fendall and Sewell, 2009, Risk, 2012, Zitko and Hanlon, 

1991) (Figure 1.3). Added synthetic polymers in personal care products can account for 

10.6% of the product in weight, meaning that a 100 ml cream can contain up to 10.6 g 

of microplastics (Risk, 2012). 
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These designed microplastics, made of polyethylene (PE), polypropylene (PP), 

polyethylenterephthalat (PET) and polymethylmethacrylate (PMMA) as well as Nylon 

are too small to be filtered by waste water treatment plants (typically coarse > 6 mm, 

and fine screens 1.5 - 6 mm) (Vesilend, 2003) and have the potential to end up in the 

environment (Gregory, 1996, Habib et al., 1998, Browne et al., 2011). Furthermore, the 

washing of synthetic clothes might add to the contamination of the environment with 

plastic; Browne et al. (2011) reported a strong resemblance of fibres found in coastal 

samples compared to ones found in areas that receive sewage discharges and sewage 

effluents. The study linked the found fibres to washed clothes and reported that a single 

wash of synthetic clothing can result in the release of over 1900 fibres into the 

environment (Browne et al., 2011). Additionally, the accidental release of plastic resin 

pellets or powder used for airblasting or as pre-production materials is suspected to 

contribute to the pollution of freshwater and marine environments (Gregory, 1978, 

Gregory, 1996). 

Figure 1.3: Microplastic particles can be found in 

consumer products as substitutes for natural ingredients 

like crushed nut shells. These microplastics can be as 

small as 10 µm which is too small to be filtered out by 

waste water treatment plants. Accordingly theses small 

plastic particles have the potential to end up in the 

environment. http://time.com/74956/states-are-cracking-

down-on-face-wash/. 
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These multiple input sources have led to the contamination of fresh water environments 

with plastic, especially close to urban areas (Moore et al., 2011, Eriksen et al., 2013a). 

In general the contamination of fresh water environments with plastic waste has 

received less attention by the scientific community, compared to the marine 

environment (Thompson et al., 2009, Wagner et al., 2014, Eerkes-Medrano et al., 

2015). However, rivers, lakes and affiliated beaches have already been reported to be 

polluted with plastic debris; Eriksen et al. (2013a) found numbers of plastic particles as 

high as 466,000 particles km
-2

 downstream of urban areas with an average of 43,000 

particles km
-2

 in the Laurentian Great Lakes in the USA (Eriksen et al., 2013a). A study 

conducted by Moore et al. (2011) revealed high numbers of plastic particles in two 

urban rivers and reported a total of 2.3 billion plastic particles with a maximum density 

of 12,932 items m
-3

 of varying sizes collected during a 72h sampling (Moore et al., 

2011). The amount of plastic pollution found in the Austrian part of the Danube river, 

over a two year study using driftnets reported that the mass of drifting plastic debris (4.8 

± 24.2 g per 1000 m
-3

) was higher than those of fish larvae (3.2 ± 8.6 g 1000 m
-3

) 

(Lechner et al., 2014). Not just water bodies but also sediment samples from shorelines 

of the Great Lakes in North America were found to be contaminated with plastic and 

samples were found to contain 1576 pieces of plastic, most of them plastic fragments or 

pellets (Zbyszewski et al., 2014). In sediment samples taken from a beach affiliated to 

the subalpine Lake Garda contamination with plastic was found to be as high as 483 ± 

236 macroplastic particles m
-2

 and 1,108 ± 983 microplastic particles m
-2

 (Imhof et al., 

2013). 

1.2.3 Microplastics in aquatic environments 

Whereas larger plastic items are easily counted and sampled, smaller fragments have the 

potential to get overseen and are considered a less well studied component of marine 

debris (Doyle et al., 2011). These partly microscopic plastic fragments are separately 

classified to distinguish them from bigger plastic debris like meso (5 - 25 mm) and 

macro debris (> 25 mm) (Lee et al., 2013b) since their high abundance in the 

environment makes them a pollutant in their own right (Ryan et al., 2009, Thompson et 

al., 2004). However, microplastic has not yet been uniformly defined on the basis of its 

size (Thompson, 2015). An upper size limit of 5 mm has been widely accepted (Arthur 

et al., 2009, Galgani et al., 2010). A lower size limit for microplastics of 333 µm has 

been proposed simply due to the lower mesh size limit of neuston nets (Arthur et al., 
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2009). However, this lower classification limit of microplastic excludes particles in the 

small micrometre range. Sampling of surface waters with 80 µm mesh sizes found 

concentrations of collected plastic to be 1000 times higher compared to the proposed 

333 µm mesh sizes and 100,000 times higher compared to 450 µm nets, highlighting the 

amount of microscopic particles that are missed with larger mesh sized sampling 

techniques (Norén, 2007). 

In this thesis the term microplastics will be used to describe plastic fragments of < 

5 mm. 

This classification which includes plastic particles in the low micrometre range to pieces 

of 5 mm as microplastic is the to date most widely used classification (Thompson, 

2015) and has been applied previously for studies investigating the effects of ingested 

plastic particles (Browne et al., 2008, von Moos et al., 2012, Cole et al., 2013, Farrell 

and Nelson, 2013, Setälä et al., 2014, Mazurais et al., 2014). 

In general microplastics in aquatic environments can be divided in two categories: 

1. Primary microplastics 

Primary microplastics are manufactured specifically in the size range of a few 

micrometres for personal care products like toothpaste (10 µm) (Hintersteiner et al., 

2015) up to the maximum size range of the here used definition of microplastics (< 5 

mm) for plastic resin pellets (typically 2 - 5 mm). These primary microplastics are used 

for a wide range of applications including personal care products (Hintersteiner et al., 

2015, Fendall and Sewell, 2009, Risk, 2012, Zitko and Hanlon, 1991), airblasting 

(Gregory, 1996) and as precursor for final plastic products and medical applications like 

drug delivery (Brem and Gabikian, 2001). The release into the environment as part of 

their application process or due to accidental release during transport and handling has 

been reported (Gregory, 1996, Habib et al., 1998, Browne et al., 2011, Hays and 

Cormons, 1974, Harper and Fowler, 1987). 

 

 



 

28 

 

2. Secondary microplastics 

During its lifetime in aquatic environments plastic is exposed to environmental factors 

causing stress to the material, resulting in an accelerated aging and embrittlement of the 

material in a process called degradation; Andrady (2011) defined the process of 

degradation of synthetic polymers as “a chemical change that drastically reduces the 

average molecular weight of the polymer” and that “the mechanical integrity of plastics 

invariably depends on their high average molecular-weight, any significant extent of 

degradation inevitably weakens the material” (Andrady, 2011). Accordingly, 

degradation of the polymer structure can cause the loss of useful properties and 

mechanical integrity (Gregory and Andrady, 2003, Andrady et al., 1998). The process 

of degradation affects large plastic items as well as microscopic ones, resulting in ever 

smaller fragments, possibly leading to nano-sized particles. The final outcome of the 

process of degradation of plastic would be the complete mineralisation of the polymer 

which is the conversion of all the plastics organic carbon into carbon dioxide (Andrady, 

2011, Andrady, 1994, Eubeler et al., 2009). However, depending on plastic 

characteristics and environmental conditions this process may take up to 500 years 

before a plastic item is completely decomposed (Gorman, 1993, UNESCO, 1994). 

  

Figure 1.4: Environmental chemical factors of plastic degradation identified by 

Andrady (2011). Individual contribution of the single factors is to the degradation of a 

plastic item in the environment, representative for land based degradation. Larger size 

illustrates a higher contribution of the factor to the degradation process. 
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Four environmental, chemical degrading factors were identified by Andrady (2011) ) as 

(1) Photodegradation, (2) Thermo-oxidative degradation, (3) Biodegradation and (4) 

Hydrolysis (Figure 1.4) In addition to these chemical processes mentioned by Andrady 

(2011) the breakdown of polymer structures due to physical forces like abrasion, wave 

action, collisions, saltation and traction also occurs (Cooper and Corcoran, 2010). 

Photodegradation and thermo-oxidative degradation are the primary causes for the 

accelerated polymer aging in aquatic environments whereas biodegradation and 

hydrolysis play just a minor role (Andrady, 2011, Gregory and Andrady, 2003). One 

reason for the higher plastic degradation by photo-thermal-oxidative processes is that 

nearly all plastics are produced using extrusion, injection moulding or extrusion 

blowing. These techniques of polymer processing include heat and high shear to form 

the raw material into end products which causes impurities and reaction products that 

make them susceptible to UV radiation, heat and oxidative degradation (Andrady et al., 

1998). The degradation of plastics via photodegradation and thermo-oxidative 

degradation is a combination of different chemical processes, strongly influenced by the 

level of UV exposure and temperature. Therefore, plastic present in different 

environments break down at different speeds. Due to exposure to higher UV radiation 

and temperatures of plastic litter on land, like stranded items on beaches, undergo a 

more accelerated degradation compared to plastics floating in the water body (Pegram 

and Andrady, 1989). The degradation of the plastic material also strongly depends on 

the composition of added fillers of the plastic itself (Andrady et al., 2003). Plastic´s 

resistance against photo-oxidative degradation can be changed to create a more resistant 

or less resistant product. The use of certain additives like metal oxides as catalysts to 

enhance photodegradation or oxidation processes accelerates the degradation (Sivan, 

2011, Scott, 2000). On the opposite, the use of photostabilisers, achromatic pigments, 

extenders and thermal stabilizers enhances the resistance to degradation processes 

driven by UV light, radicals and heat and therefore the plastics lifetime (Saron et al., 

2008, Feldman, 2002). As described, plastic items are exposed to multiple 

environmental factors that lead to an embrittlement of the polymer structure, resulting in 

the falling apart of the plastic into smaller fragments (Andrady, 2011). Hence larger 

plastic items can be seen as the origin of a considerable amount of microplastic 

(Andrady et al., 2003, Andrady, 2011). This process can theoretically continue until 

these fragments have reached nano sized diameters, however, the smallest plastic 

fragments found in the environment to date is 1.6 µm (Galgani et al., 2010). 
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Primary and secondary microplastics have been found to litter aquatic environments 

globally (Browne et al., 2011, Claessens et al., 2011, Desforges et al., 2014, Eriksen et 

al., 2013a, Free et al., 2014, Fendall and Sewell, 2009, Barnes et al., 2009, Gregory, 

1996, Costa et al., 2010, Doyle et al., 2011, Ashton et al., 2010, Eriksen et al., 2014). 

Surface water samples from the plastic gyres are not only contaminated with larger 

(meso and macro) plastic items but also microplastics, which can make up a substantial 

amount of the total collected plastic; In the North Pacific gyre microplastic accounted 

for over 92% of the total abundance of 334,270 pieces km
-2

 (Moore et al., 2001). In the 

South Pacific subtropical gyre microplastic accounted for 55% of the total particle count 

and 72% of total weight of plastic sampled with a 333 µm mesh (average abundance of 

26,898 particles km
-2

 with an average weight of 70.96 g km
-2

 and a maximum 

concentration of 396,342 particles km
-2

) (Eriksen et al., 2013b). In the North Atlantic 

gyre, a study using a 22 year old data set from ship surveys, found microplastic levels to 

be as high as 20,328 particles km
-2

 of which 88% were sized below 10 mm (Law et al., 

2010). Even though this study highlighted that 88% of found plastic pieces were below 

10 mm no further classifications were made and therefore no statement for microplastic 

pollution for the here used classification. However, data from a study collecting neuston 

net samples (200 - 500 µm mesh size) from the plastic gyres suggested that 80% of 

present microdebris collected was below 5 mm (measured range was 0.2 - 1000 mm) 

(Cózar et al., 2014). It is therefore likely that the plastic particles classified as < 10 mm 

by Law et al. (2010) consisted mostly of microplastic (< 5 mm). Similar to 

investigations of the single subtropical gyres, 680 net tows with a 333 µm mesh size in 

all five subtropical gyres reported that microplastic accounts for 92.4% of the global 

particle count (Eriksen et al., 2014). Additionally, water samples from coastal regions 

found microplastic contaminations to range from 0.022 items m
-3

 near the Californian 

coast (Gilfillan et al., 2009) to 102,550 items m
-3

 (mainly white spheres (102,400 items 

m
-3

)) for a heavily polluted industrial harbour with an associated polyethylene 

production (Norén, 2007). Recent investigations into abundance and distribution of 

microplastics in the oceans have revealed a constant increase of those small plastic 

fragments over the past decades (Claessens et al., 2011, Thompson et al., 2004, 

Goldstein et al., 2012) while the average size of plastic debris has been reported to 

decrease (Barnes et al., 2009). 

Also beaches have been found to be contaminated with micro-sized plastic debris. Out 

of 22 reviewed studies to report plastic contamination of beach sediments with plastic, 
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microplastic abundance was found to range from 0.21 items m
-2

 to 77,000 items m
-2

 on 

a global scale (Hidalgo-Ruz et al., 2012). In terms of volume, microplastic 

concentration of sediments was found at 185 to 80,000 items m
-3

 (Browne et al., 2010, 

Martins and Sobral, 2011) and has been observed with a maximum concentration of 

300,000 items m
-3

 (Costa et al., 2010). An extensive list of reports to document 

microplastic abundance in the marine environment can be found in (Lusher, 2015). 

1.3 Plastics and incorporated chemicals 

Plastic products contain a substantial amount of fillers that are incorporated into the 

plastic matrix to alter the plastics properties in order to increase its benefits and lifetime 

(Lithner et al., 2011). 

Plasticisers can account for 67 to 80% of the weight of the finished product, depending 

on the plastic type (Giam et al., 1984, Buchta et al., 2005). Plasticisers are incorporated 

into the plastics matrix to reduce the chemical affinity between molecules of the 

polymer chain to enhance the materials flexibility (Oehlmann et al., 2009). There are 

over 300 different types of plasticisers of which approximately 50 are in commercial 

use (ECPI, 2015). Around 6 million tonnes of plasticisers are used annually on a global 

scale and phthalates which account for 85% of this consumption are the most commonly 

used plasticisers (ECPI, 2015). Plasticisers are especially important in polyvinylchloride 

(PVC) materials and nearly 90% of the annual production is used for PVC products 

(Cadogan and Howick, 2000). Phthalate based plasticisers are not considered a 

persistent pollutant (Stales et al., 1997) but can still be found in the environment on a 

broad scale which indicates a slow biodegradation (Fatoki and Vernon, 1990, Fromme 

et al., 2002, Heemken et al., 2001). Phthalate plasticisers as well as bisphenol A (BPA) 

are known to bioaccumulate in organisms and bioconcentration factors (BCFs) have 

been reported for fish to be between 42 and 842 but are bound in much higher BCFs in 

invertebrates (up to 5380 for copepods) (EU, 2003). 

A wide range of additives, additional to plasticisers, are commonly incorporated into the 

plastics matrix for many plastic products (OECD, 2004). The British Plastic Federation 

(BPF) listed 18 different groups of additives, including numerous chemical compounds. 

These additives range from fragrances and dyes over various stabilisers and 

antimicrobials to flame retardants (BPF, 2015). Like plasticisers, these additives can 
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account for a substantial part of the plastics total weight; Flame retardants for example 

can account for up to 30% of a plastic product´s weight (EHC162, 1994). 

1.3.1 Leaching of incorporated additives 

Both, plasticisers and other additives are known to leach from the plastic, resulting in 

the release of potentially harmful chemicals (Berens, 1997, Loyo-Rosales et al., 2004, 

Sajiki and Yonekubo, 2003, Koelmans et al., 2014, Guart et al., 2011) (Figure 1.5). 

Additives used for plastic production can be found in the environment; Flame retardants 

for example have been found in the environment (air water and soil samples) as well as 

in aquatic vertebrates, aquatic mammals and birds at concentrations of up to 1700 µg 

kg
-1

, 650 µg kg
-1

 and 1800 µg kg
-1

, respectively (EHC162, 1994) with increasing 

concentrations (Alaee and Wenning, 2002). Also humans are affected through the 

ingestion of contaminated fish and shellfish (van Leeuwen and de Boer, 2008). Groups 

of additives of special concern are alkylphenols and BPA since they have been reported 

to have endocrine disrupting properties (Anupama-Niar and Sujatha, 2012). 

Accordingly, concerns have been raised that ingested plastics might leach incorporated 

chemicals from plastic to aquatic organisms (Teuten et al., 2009, Oehlmann et al., 2009, 

Browne et al., 2013). Even though the release of additives is a constant process during 

the plastics lifetime in the environment, the rate at which these chemicals leach from the 

plastic depends on environmental parameters, the structure of the plastic matrix in 

combination with the incorporated chemical, the processes used to incorporate the 

additive into the plastic and properties of the additive itself (Teuten et al., 2009, Bauer 

et al., 1998, Andrady et al., 2003, Sjödin et al., 2001). Temperature is generally 

positively correlated to additive leaching (Teuten et al., 2009) and indicates a stronger 

leaching of additives in homoeothermic animals like marine mammals. Also differences 

in pH in the gastrointestinal system can promote or hinder the leaching of chemical 

compounds from the plastic matrix. Acidic media with high ionic strength have been 

found to have poor extraction effects on incorporated hydrophobic plasticisers and 

additives, whereas neutral media show higher leaching rates (Teuten et al., 2009). 

Accordingly, acidic and neutral conditions of gastrointestinal surfactants can be 

important factors when evaluating the leaching of plastic associated chemicals during 

the digestion process. An additional factor that can promote the release of plastic 

incorporated chemicals is the degradation of the synthetic polymer in the environment. 

Since plastic materials might be present for extended periods of time in the environment 
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(Derraik, 2002) degradation processes, causing cracks in the polymer structure can 

increase the surface area and induce the release of additives from the inner part of the 

matrix (Ejlertsson et al., 2003), resulting in an increased release of potentially harmful 

chemical compounds. 
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1.4 Effects of plastic litter on aquatic life  

As a consequence of the high levels of plastic waste accumulating in global 

environments, marine debris has been identified as a potential factor that may contribute 

to the loss of biodiversity in the oceans (Gall and Thompson, 2015). Even though no 

evidence is present to date, plastic may also have the potential to affect human health 

and activities (Derraik, 2002, Thompson et al., 2009). Additionally, plastic debris has 

been classified as a top environmental problem (UNEP, 2005). Accordingly, it is 

important to investigate and understand the interactions and arising effects of wildlife 

with this anthropogenic debris. 

1.4.1 Effects of macro plastic in the aquatic environment 

One of the major impacts of macro plastic items in the oceans is the reported 

entanglement of numerous species (Figure 1.6). The number of species worldwide to be 

affected by plastic debris (entanglement and/or ingestion) has risen from 267, in 1984 

reported by Laist (1997) to 557 in 2014 reported by Kühn et al. (2015). Reports for the 

entanglement in larger plastic items ranges from marine mammals (Laist, 1997, 

Clapham et al., 1999, Eriksson and Burton, 2003) over birds (Moser and Lee, 1992, 

Cadée, 2002) to turtles (Bjorndal et al., 1994, Bugoni et al., 2001, Tomás et al., 2002) 

and many more (Kühn et al., 2015). The entanglement of marine wildlife in lost or 

discarded fishing gear (Page et al., 2004, Votier et al., 2011, Sazima et al., 2002, 

Bugoni et al., 2004, NOAA, 2015) in a process called `ghost fishing´ (Bullimore et al., 

2001, Carr and Harris, 1997) has been reported, which can lead to deleterious effects 

(Sazima et al., 2002, Gudger and Hoffmann, 1931, Schwartz, 1984, Barreiros and 

Raykov, 2014, Carr, 1987). Entanglement in plastic can lead to suffocation (Gregory, 

2009) and severe and lethal wounds (Gregory, 1991). Data presented by Wallace (1984) 

suggested that annually 50,000 - 90,000 marine mammals die as a cause of plastic 

ingestion or entanglement in the North Pacific Ocean alone (Wallace, 1984). However, 

not just lost or discarded fishing gear has been found to entangle marine life. Plastic 

packing loops like detachable lid parts from plastic bottles or six pack holders, 

monofilament lines and even automobile tires have been recorded to entangle animals, 

causing severe abrasions and deformations (Sazima et al., 2002, Gudger and Hoffmann, 

1931, Schwartz, 1984), lethal lesions, amputation and affect survival (Barreiros and 

Raykov, 2014, Carr, 1987). 
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1.4.2 Plastic ingestion 

Due to its omnipresence in the marine environment and a wide variety of shapes, 

colours and sizes plastic debris has been found to be ingested by a wide range of marine 

biota (Kühn et al., 2015, Laist, 1997, Derraik, 2002) (Figures 1.7, 1.8 and 1.9). Even 

though the size of a plastic item limits the ingestion to a group of animals that can 

physically ingest it, colours and shape seem to play an important role as well and can 

promote selective feeding (Shaw and Day, 1994, Gramentz, 1988, Carpenter et al., 

1972). The ingestion of plastic litter ranging from 16 m
2
 found in sperm whales 

(Jacobsen et al., 2010) to just 1.7 µm for zooplankton (Cole et al., 2013) has indicated 

that the largest as well as the smallest animals in the marine environment may ingest 

plastics. However, an increasing number of reports adds to a growing list of species 

with ingestion records and it becomes clear that biota from every trophic level have the 

potential to ingest plastic debris (Kühn et al., 2015). 

http://nereida.org/ http://thecleanoceansproject.com 

http://dance4oceans.blogspot.co.uk http://us.whales.org 

Figure 1.6: Marine organisms entangled in plastic macro debris. A total of 557 

marine organisms are reported to be affected by plastic debris. A common 

threat of macroplastics is the entanglement in discarded fishing gear, packing 

loops like detachable lid parts from plastic bottles or six pack holders, 

monofilament lines and even automobile tires which can cause severe abrasions 

and deformations, lethal lesions, amputation and ultimatively affect survival. 
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First evidence for plastic ingestion by seabirds was given by Harper and Fowler (1987) 

who reported that ingestion of plastic pellets already occurred in the 1960s (Harper and 

Fowler, 1987). Since then, multiple field work investigations, have extended the 

knowledge about plastic ingestion by marine birds and highlighted that ingestion is not 

limited to an individual but can be found on a species level; It was reported that out of 

144 examined seabird species, 82 were found to have small plastic debris in their 

stomachs with some species showing contaminated stomachs of over 80% of 

individuals (Ryan, 1990). Additionally, a study by Moser and Lee (1992) found that out 

of 1033 birds collected off the coast of North Carolina, USA individuals from 55% of 

the recorded species had plastic in their gastrointestinal tracts (Moser and Lee, 1992). 

Furthermore, multiple field work studies investigating marine birds have provided 

evidence that feeding techniques might be of importance for the incidence of plastic 

ingestion and planktivores species are more likely to ingest plastic particles compared to 

piscivores (Laist, 1987, Laist, 1997, Moser and Lee, 1992, Azzarello and Van Vleet, 

1987). 

Figure 1.7: Dead marine bird with ingested plastic litter. Many marine bird 

species have been reported to ingest plastic which has the potential to 

accumulate in the stomach, leading to the blockage of the gastrointestinal 

tract and reduced food ingestion through reduced appetite. As a result the 

organism is starving with a full stomach which has the potential to lead to the 

death of the animal. Imaged sourced from http://plasticfreetuesday.com.



 

37 

 

An increasing number of reports also documents the ingestion of plastic by marine 

turtles (Schuyler et al., 2014) and it is estimated that 86% of all turtles species are 

affected by plastic debris through entanglement and/or ingestion (Laist, 1997). A more 

recent comparison of ingestion records even reported that 100% of investigated turtles 

ingested plastic (Kühn et al., 2015). Ingestion records highlighted the importance of the 

shape of plastic items for the species specific ingestion. Turtles were found to be 

especially threatened by the ingestion of floating plastic bags since they can be confused 

for jelly fish (medusoids), their natural food source (Gregory, 2009, Bjorndal et al., 

1994, Balazs, 1985, Bugoni et al., 2001). 

Figure 1.8: Plastic ingestion by a turtle and a whale. a): Plastic debris found in the 

stomach of a whale (a) flower pot, (b) hosepipe, (c) greenhouse cover material, (d) 

plastic burlap, (e) rope, and (f) plastic mulch of greenhouse cover material, (d) plastic 

burlap, (e) rope, and (f) plastic mulch of greenhouse cover material, (d) plastic burlap, 

(e) rope, and (f) plastic mulch of greenhouse. Image modified from de Stephanis et al. 
(2013). b): Plastic ingestion by a turtle. Recovered plastic fragments from the stomach, 

small intestine, large intestine and rectum (from left to right). Imaged modified from 

https://lifescienceexplore.wordpress.com. 
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Representing some of the oceans largest animals, 50.4% of all investigated marine 

mammals are reported to be affected by plastic ingestion (Kühn et al., 2015). A total of 

26 cetacean species have been documented to ingest plastic litter (Baird and Hooker, 

2000, Jacobsen et al., 2010, de Stephanis et al., 2013). Also manatees (Laist, 1987, 

Beck and Barros, 1991), seals (Bravo Rebolledo et al., 2013, Eriksson and Burton, 

2003) and dolphins (Denuncio et al., 2011) have been recorded to have ingested plastic 

debris. 

Unlike most ingestion records of plastic for birds, turtles and marine mammals, data for 

fish does not solely rely on field studies of dead and decomposing organisms but 

includes laboratory studies as well. Together, field samples and laboratory experiments 

have provided evidence for plastic ingestion by many species of teleost fish of varying 

sizes, development stages and feeding techniques. 

First field studies reported that 8 out of 14 collected species of fish larvae ingested 

plastic particles (Carpenter et al., 1972) and a list of early studies provided evidence for 

the plastic ingestion by larval and juvenile fish (Table 1.2) (Hoss and Settle, 1990). 

More recent field work has provided evidence for the ingestion of plastic by fish for 

many species globally. Foekema et al. (2013) reported that out of 1203 sampled fish 

from seven species in the North Sea a total of 3.2% were found to have ingested plastic 

with the highest frequency (> 33%) found in the English Channel (Foekema et al., 

2013). Another study focussing on the English Channel by Lusher et al. (2013) also 

found high and similar plastic ingestion rate of 36.5% in 504 assessed fish from 10 

species (Lusher et al., 2013). Plastic ingestion of 141 mesopelagic fish from 27 species 

from the North Pacific Gyre was found to be at 9.2% and the authors estimated the 

ingestion rate of microplastic by mesopelagic fish from the North Pacific Gyre to be as 

high as 12,000 to 24,000 tonnes year
-1

 (Davison and Asch, 2011). Also investigating the 

incidence of plastic ingestion by fish from the central North Pacific, Choy and Drazen 

(2013) showed that among 595 individuals of 7 large predatory fish species, 19 % of 

individuals had ingested plastic. Species were found with a maximum of 58% of 

individuals to have ingested plastic (Choy and Drazen, 2013). Focusing on the ingestion 

of plastic particles by planktivores fish in the North Pacific Gyre, Boerger et al. (2010) 

reported that a total of 35% of caught fish had plastic in their gastrointestinal tracts 

(Boerger et al., 2010). Lusher et al. (2015) presented a review of field studies to report 

the ingestion of microplastics by fish and found that 55 species of fish from 13 Orders 
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were reported to ingest plastic. Information for fresh water fish is rare but Sanchez et al. 

(2014) found that 12% of collected fish (gudgeons (Gobio gobio)) from a French river 

had ingested plastic (Sanchez et al., 2014).Early laboratory studies found that larval 

Atlantic herring (Clupea harengus) (Hjelmeland et al., 1988) do ingest polystyrene 

spheres and Hoss and Settle (1990) found that 5 out of 6 tested fish species ingested 

plastic spheres (Hoss and Settle, 1990). More recent laboratory based studies confirmed 

findings from field studies and early laboratory experiments and provided further 

evidence for the ingestion of plastic particles by fish; Up to 33% of all ontogenetic 

stages (larvae, juvenile and adults) of 66 investigated marine catfish were found to 

ingest plastic during a laboratory experiment (Possatto et al., 2011), proposing that all 

developmental stages of fish can be affected by plastic ingestion. A laboratory study by 

Oliveira et al. 2013 provided evidence for the ingestion of 1 - 5 µm sized polystyrene 

spheres by juveniles of the common goby (Pomatoschistus microps) (Oliveira et al., 

2013). The ingestion of 3 mm polyethylene pellets was reported for Japanese medaka 

(Oryzias latipes) (Rochman et al., 2014, Rochman et al., 2013b). Additional evidence 

for the ingestion of plastic particles by fish has been provided by (Santos and Jobling, 

1992, Mazurais et al., 2014). Considering the findings of early and more recent field 

and laboratory reports, strong evidence is provided that fish from many different 

species, varying developmental stages and feeding guilds do ingest plastic. 

Figure 1.9: Plastic ingestion by fish. Plastic particles and plankton 

recovered from a fish´s stomach. Similarities in colour and shape might 

lead to the confusion of plastic with natural prey. Modified from: 

http://axisoflogic.com. 
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Table 1.2: List of early reports to document plastic ingestion by fish. Hoss 

and Settle (1990). ´Ingestion of plastic by teleost fishes´. Proceedings of the 

Second International Conference on Marine Debris 2-7 April 1989, 

Honolulu, Hawaii, volume 1. NOAA Technical Memorandum, NMFS-

SWFSC(154). US Department of Commerce, NOAA: Panama City XIII, 774 

pp..
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At the base of the food chain and reliant on small food particles, zooplankton are 

especially susceptible to the ingestion of small microplastic as many of them are 

indiscriminate filter feeders with limited ability to differentiate between plastic particles 

and food (Moore, 2008). Studies by Cole et al. (2013 and 2015, Figure 1.10) provided 

evidence that 13 out of 27 investigated zooplankton taxa ingested 1.7 - 30.6 μm 

polystyrene beads (Cole et al., 2013) and that the copepod Calanus helgolandicus 

ingested 20 µm polystyrene spheres from the water column (Cole et al., 2015). In 

addition, the ingestion of 10 μm polystyrene spheres was reported for mysid shrimps, 

copepods, cladocerans, rotifers, polychaete larvae and ciliates (Setälä et al., 2014). 

Additional evidence for the ingestion of plastic particles by zooplankton has been 

provided by (Desforges et al., 2015, Cedervall et al., 2012). The ingestion of plastic 

particles by zooplankton is of concern since larval, juvenile and adult stages of many 

marine organisms rely on it as a food source. 

  

Figure 1.10: Plastic ingestion by zooplankton. Zooplankton that were exposed 

to a water column contaminated with fluorescent polystyrene plastic spheres 

(0.4–30.6 μm) were found to actively filter and ingest the plastic from the water. 

Plastic particles in the gastrointestinal tract of the zooplankton was confirmed 

using Coherent Anti-Stokes Raman Scattering (CARS) Microscopy. From: Cole 

et al. (2013). 
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Evidence for plastic ingestion is also available for a wide range of other marine 

organisms from many trophic levels. Sea urchin embryos Paracentrotus lividus (Della 

Torre et al., 2014) and larva (Kaposi et al., 2013), sea cucumber Echinodermata, 

Holothuroidea (Graham and Thompson, 2009), corals (Hall et al., 2015), mussels 

(Browne et al., 2008, von Moos et al., 2012, Wegner et al., 2012), crabs (Watts et al., 

2014), isopods (Hämer et al., 2014), worms (Browne et al., 2013, Wright et al., 2013), 

penguins (Brandão et al., 2011) and sharks (Cliff et al., 2002) have all been found to 

ingest plastic. Additionally, uptake of polystyrene nano particles has been reported for 

green algae (Cedervall et al., 2012, Bhattacharya et al., 2010, Long et al., 2014). 

Evidence for the ingestion of plastics by fresh water organisms was reported for a wide 

range of invertebrates from different habitats and feeding guilds (Imhof et al., 2013, 

Rosenkranz et al., 2009). 

1.4.3 Trophic transfer of plastic particles 

The term trophic transfer describes the dietary transfer of compounds along the food 

chain. During this transfer, biomagnification of consumed dietary components like 

environmental pollutants is possible (Figure 1.11). Hereby the term biomagnification is 

defined as “the process in which the chemical concentration in an organism achieves a 

level that exceeds that in the organism's diet, due to dietary accumulation” (Gobas and 

Morrison, 2000) and is considered a major mechanism for the accumulation of 

contaminants in organisms of higher trophic levels (Borgå et al., 2004). Since species of 

many trophic levels but especially zooplanktonic organisms at the bottom of the food 

chain have been reported to ingest plastic particles (see section 1.4.2), the accumulation 

of plastic along the food chain is of concern (Cedervall et al., 2012, Farrell and Nelson, 

2013, Setälä et al., 2014, Murray and Cowie, 2011, Watts et al., 2014, Eriksson and 

Burton, 2003). To date just a very limited amount of data from few species is available 

to provide evidence for the trophic transfer of ingested plastic. However, some field 

work and laboratory based studies suggests that indirect ingestion of plastic via trophic 

transfer occurs. 
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Figure 1.11: Trophic transfer and biomagnification of pollutants in a simplified 

marine food chain. Through the process of biomagnification low concentrations of 

environmental pollutants in organisms of a lower trophic level have the potential to 

reach bioactive concentrations in organisms of a higher trophic level, accumulated via 

the diet. Modified from: Brooks/Cole, Thomson Learning. 
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Field work using the Great skuas (Stercorarius skua) which are known to predate on 

small sea bird species examined regurgitated indigestible matter and showed a link with 

the amount of ingested plastic and their main prey species (Bourne and Imber, 1982, 

Ryan and Fraser, 1988). Further evidence for the trophic transfer of plastic in birds was 

reported for goose fish (Lophius americanus) which had ingested a little auk (Alle alle) 

which in turn had ingested nylon fishing line (Perry et al., 2013). Evidence for trophic 

transfer of plastic to marine mammals was presented by Eriksson and Burton (2003) 

who measured plastic content in faeces samples of fur seals on Macquarie Island and 

linked the presence of plastic to the ingestion of contaminated myctophid fishes 

(Eriksson and Burton, 2003). 

Laboratory based studies reported the transfer of plastic particles over trophic levels via 

ingestion of contaminated prey. Using zooplankton as lower trophic level organisms, 

Setälä et al. (2013) reported the transfer of 10 µm polystyrene spheres from copepods 

(Eurytemora affinis) to pelagic mysid shrimps (Neomysis integer). Contaminated 

zooplankton was found in the gastrointestinal tract of shrimps as soon as 3h after start of 

the exposure (Setälä et al., 2014). Additional evidence for the trophic transfer of 0.5 µm 

and 10 µm polystyrene spheres was provided from the blue mussel (Mytilus edulis) to 

crabs (Carcinus maenas); Two studies exposed Carcinus maenas to previously 

contaminated, cut open Mytilus edulis and found plastic particles in stomach, 

hepatopancreas, ovary and gills (Farrell and Nelson, 2013) and foregut (Watts et al., 

2014). Using the crustacean (Nephrops norvegicus) as a top consumer, the transfer of 

plastics from dead fish (Merlangius merlangus and Micromesistius poutassou) was 

observed (Murray and Cowie, 2011). However, since already dead fish were hand-

contaminated with 5 mm strands of polypropylene rope, the relation to an actual trophic 

transfer is questionable. Using a more complex approach, a trophic transfer study 

conducted by Cedervall et al. (2012) reported the transfer of 28 nm polystyrene 

nanoparticles from algae (Scenedesmus sp.) over zooplankton (Daphnia magna) to fish 

(Carassius carassius) and provided first evidence for the trophic transfer over three 

trophic levels to be an additional ingestion route to the direct ingestion of plastic in fish 

(Cedervall et al., 2012). 
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1.4.4 Effects of ingested plastic 

Although there are numerous reports that aquatic organisms ingest plastics, very little is 

known about the effects that might be induced by ingested plastic and it still has to be 

established whether the ingestion of virgin plastics has any significant negative health 

effects on biota (Zarfl et al., 2011). Since the carbon backbone of plastic itself is 

considered biochemically inert (Teuten et al., 2009, Roy et al., 2011, Lithner et al., 

2011), induced effects might be limited to its physical properties like size or shape but 

also levels of ingested plastic. Characteristics of the plastic could determine how severe 

the effects will be and on which level of the biological organisation effects might be 

induced. A list of to date experimental exposures of marine organisms to microplastics 

and related effects can be found in Lusher et al. (2015). 

1.4.4.1 The importance of relative size 

Plastic debris is present in many different sizes in aquatic environments, from plastics in 

the micrometre and millimetre range to objects measuring multiple m
2
 and ingestion has 

been reported for all of these size classes. The relative size of the ingested plastic can be 

of importance since larger plastic objects might lead to the blockage of the 

gastrointestinal tract (GI) (Gregory, 2009, Balazs, 1985, Tourinho et al., 2010) which 

can cause further accumulation, leading to acute effects. In marine birds, blockage of 

the GI has been reported to reduce food ingestion, cause blockage of gastric enzyme 

secretion, induce internal injuries and reproductive failure and lead to death (Azzarello 

and Van Vleet, 1987, Rothstein, 1973, Ryan, 1988, Harper and Fowler, 1987, Carpenter 

et al., 1972). Similar effects have been reported for turtles where the blockage of the 

oesophagus (Gregory, 2009, Balazs, 1985) affected feeding behaviour and 

gastrointestinal function (Bjorndal et al., 1994) and hindered survival, especially for 

young sea turtles (Carr, 1987). Furthermore, ingestion of large plastic items is thought 

to have fatal consequences on marine mammals; Jacobsen et al. (2010) concluded that 

the death of two sperm whales (Physeter macrocephalus) was due to the ingestion of 

plastic which caused a ruptured stomach for one individual and the emaciated state of 

the second one (Jacobsen et al., 2010). A ruptured stomach, filled with ingested plastic 

in a dead, stranded sperm whale was also observed by de Stephanis et al. (2013). 

Similar effects can be seen for other marine mammals like manatees where plastic 

content in the stomach has been linked to the death of four individuals through 
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blockages of the gastrointestinal tract (Beck and Barros, 1991). Even though numerous 

reports are present for fish to ingest plastic, data for the effects of ingested large plastic 

items are rare (Hoss and Settle, 1990). However, similar to observations from birds and 

turtles, it was proposed that plastic poses a potential threat to block GIs of fish 

(Carpenter et al., 1972) and larger plastic particles are retained in the gastrointestinal 

tractfor prolonged times compared to smaller particles (dos Santos and Jobling, 1991). 

Even though smaller fragments have the potential to block the GI if orientated in the 

wrong way (Bjorndal et al., 1994) they generally pose a lower risk to cause acute effects 

like internal injuries or blockage of the GI, leading to severe effects in the short term. 

However, smaller particles might lead to obstructions of the GI which can result in 

prolonged food processing times (Pierce et al., 2004) and pseudo-satiation resulting in 

lower food consumption, suppressed appetite and reduced growth (Derraik, 2002, 

Thompson, 2006, Ryan, 1988). Since plastics do not contain any nutritional value, 

filling effects and lower food consumption can lead to a starving organism with a full 

stomach (Dickerman and Goelet, 1987), possibly resulting in its death (Pierce et al., 

2004). Hence, small plastic particles may induce long term effects due to the induction 

of sub lethal effects like minor injuries or slow energy depletion due to poor nutrition. 

Invertebrate studies provided evidence for the need to consider more subtle effects when 

investigating the effects of ingested, smaller plastic fragments; As for birds, also 

ingestion of plastic particles by zooplankton was linked to the reduced consumption of 

available food and it was suggested that zooplankton might suffer from energetic 

depletion due to a decrease of ingested carbon biomass in the long term (Cole et al., 

2015). Five day old larvae of the sea urchin Tripneustes gratilla, which were exposed 

for 5 days to 1, 10, 100, and 300 spheres ml
–1

 of 10 - 45 µm polyethylene microspheres, 

were found to ingest plastic particles in a dose dependent manner and were able to egest 

all ingested particles within 420 min (Kaposi et al., 2013). The exposure had just 

limited effects on growth (body width and length) and no effect on survival for larvae 

after 5 days of exposure. However, even though not statistically different, a trend for 

lower survival in the 300 spheres ml
–1 

treatment and smaller body widths for all plastic 

treatments except the 1 spheres ml
–1 

treatment was observed when compared to the 

control, indicating that a longer exposure might lead to effects on survival and growth. 

Using the copepod (Tigriopus japonicas), Lee et al. (2013c) supported findings that 

microplastics may induce long term effects in zooplankton by exposing copepods to 
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concentrations of 0, 6, 13, 31, 63, 187, 250 and 313 μg ml
-1

 of 0.05, 0.5 and 6 μm 

polystyrene beads for 96 hours. Ingestion of all particle sizes was observed but no effect 

on survival was found for this acute toxicity test. However, exposure of a F0 and F1 

generation in a chronic exposure to the same bead sizes at lower concentrations (0, 

0.125, 1.25, 12.5, and 25 μg ml
-1

) induced significant effects on survival, development 

and fecundity compared to the control and highlighted the importance of exposure time 

and plastic size; The 0.05 μm polystyrene beads decreased survival at concentrations > 

12.5 μg ml
-1 

in the F0 generation and > 1.25 μg ml
-1 

in both the nauplii and copepodites 

of the F1 generation. In the 0.5 μm polystyrene bead treatment no effect on the F0 

generation was found but the highest concentration (25 μg ml
-1

) induced a significant 

decrease in the survival of the F1 generation. The 6 μm polystyrene beads did not affect 

the survival over two generations. The duration of the nauplius phase was significantly 

longer with 1.25 μg ml
-1

 of 0.05 μm polystyrene beads and in the 0.5 μm polystyrene 

bead treatment, the concentration of 25 μg ml
-1

 caused a significant developmental 

delay in the F1 generation, possibly indicating plastic induced delays. No effects were 

found for the 6 μm polystyrene beads over two generations. However, 0.5 and 6 μm 

polystyrene beads caused significant decreases in fecundity at all concentrations 

measured with the number auf nauplius produced per female (Lee et al., 2013c). A 

study conducted by Cole et al. (2015) using zooplanktonic organisms which were 

exposed for 9 days to 20 µm polystyrene microplastic found no effect on survival of 

exposed organisms but fecundity, measured with the reduction in hatching success was 

negatively affected. 

Similar to results of studies using invertebrates, evidence that the ingestion of 

uncontaminated plastic as part of the diet might cause energy depletion is also given for 

fish; When exposing Japanese medaka (Oryzias latipes) for two months to 8 ng ml
-1

 of 

virgin low density polyethylene (LDPE) pellets as part of their diet, plastic exposed fish 

showed glycogen depletion in the liver compared to the control group (Rochman et al., 

2013b). Glycogen has been reported to be one of the main energy reserves to be 

mobilised during periods of starvation (Rios et al., 2006) and thus the observed 

glycogen depletion in the liver indicates a potential change in energy reserves of plastic 

exposed fish. Whereas short term utilisation of energy reserves is a normal adaptation to 

cope with food deprivation (Rios et al., 2006), long-term starvation can lead to the 

consumption of structural biomass (Kooijman, 2000). In line with this it was reported 

that the partial blockage of food passage through the GI may cause slow deterioration of 
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body condition of fish (Hoss and Settle, 1990). Evidence that plastic ingestion can lead 

to a reduced condition was provided by Foekema et al. (2013) who assessed the 

condition of 1203 wild caught fish (herring, gray gurnard, whiting, horse mackerel, 

haddock, atlantic mackerel, and cod) from the North Sea related to plastic presence in 

GI. One out of the five assessed species was found with a decreased condition index. 

However, the authors argued that the small size of plastic pieces found in the GI of fish 

did not cause blockages and were unlikely to cause a satiation effect which is why they 

concluded that the plastic was unlikely to have significant effects on the condition. The 

authors, however, proposed that the found plastic might have a more serious impact on 

larval stages of fish (Foekema et al., 2013). 

Additional evidence for a plastic related decrease in condition in vertebrates was 

provided by Ryan et al. (1988) who fed chicken (Gallus domesticus) with polyethylene 

pellets and concluded that the observed reduced food ingestion was due to filling effects 

of the plastic and may result in a limited ability of seabirds to accumulate energy 

reserves and thus reduce fitness. Evidence for long term effects of ingested plastic for 

marine birds was presented by Auman et al. (1997) reported that plastic induced partial 

blockage and minor damage of the GI of Laysan albatross (Phoebastria immutabilis) 

chicks did not have a direct effect on mortality, but may contribute to poor nutrition or 

dehydration (Auman et al., 1997). 

Also turtles might be susceptible to energy depletion due to ingested plastic since a 

reduced volume of the stomach due to ingested plastics caused lower nutrient and 

energy intake (McCauley and Bjorndal, 1999, Lutz, 1990). 

An additional concern is that due to their small size, micro and nano-sized particles 

could translocate from the gastrointestinal lumen into other tissues like the circulatory 

system, the liver and the brain of marine organisms (Browne et al., 2008, von Moos et 

al., 2012, Kashiwada, 2006, Oberdörster, 2004) (Figure 1.12). Before such translocation 

was investigated for marine biota, rodents and humans provided the first evidence for 

the translocation of small spheres (Jani et al., 1989, Jani et al., 1992, Volkheimer, 1975, 

Hussain et al., 2001). These findings are applied in modern medicine and are now used 

for micro- and nanoparticles to act as systems for drug and vaccine delivery (O'Hagan, 

1996). Browne et al. (2008) and von Moos et al. (2012) provided evidence for the 

translocation of plastic particles in marine invertebrates using Mytilus edulis (Browne et 
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al., 2008, von Moos et al., 2012). Browne et al. (2008) reported that a 3h exposure to 3 

and 9.6 µm polystyrene microplastics lead to the translocation of particles into the 

circulatory system (haemolymph) after 3 days. Smaller particles were found to 

translocate in greater numbers (up to 60% more) compared to larger particles. 

Translocated particles could still be found in the haemolymph and faeces samples after 

48 days. No adverse health effects (measured with cell viability assays for neutral red 

uptake by haemocytes and phagocytosis capability) were observed to follow the 

exposure (Browne et al., 2008). In line with findings from Browne et al. (2008), von 

Moos et al. (2012) found that high density polyethylene (HDPE) microplastic ranging 

from 0 - 80 µm could be found in the haemolymph as soon as 3h after initiating the 

exposure, indicating a rapid translocation after ingestion. Additionally, prolonged 

exposure was found to increase levels of translocated plastics in the haemolymph which 

nearly doubled when assessed at 96h (end of exposure) compared to the first 

measurement after 3h. Particles that translocated to the haemolymph induced a reduced 

lysosomal membrane stability from 6h of exposure but endpoints lipofuscin 

accumulation (for oxyradical damage), neutral lipid content (disturbance of lipid 

metabolism) and condition index were not affected over the duration of the exposure. 

This difference in observed effects between the two studies of Borwne et al. (2008) and 

von Moos et al. (2012) could be explained by the different particle sizes used but also 

the longer exposure period of 96h by von Moos et al. (2012) compared to 3h by Browne 

et al. (2008). Additionally to the translocation of ingested particles, microplastics were 

also found to be taken up into gill tissue, indicating that translocation of particles can 

occur over other exposed tissues beside of the GI; Plastic particles in gill tissues caused 

effects on a cellular level measured with lysosomal membrane stability and formation of 

granulocytomas as part of an inflammatory response (von Moos et al., 2012). According 

to this study, translocation of micrometre sized plastic particles can have adverse effects 

on a tissue level and further investigations are needed to investigate if such evidence can 

be found for other species. However, even smaller particles in the nanometre range are 

believed to be able to permeate into the lipid membranes of cells and as a result alter the 

membrane structure, membrane protein activity, and therefore cellular function (Rossi et 

al., 2013). 

Investigating the effects of translocated plastic nano particles in fish, Cedervall et al. 

(2012) reported a reduced food ingestion and suspected differences in weight loss and 

lipid metabolism in Crucian carp (Carassius carassius) to be caused by the exposure to 
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a contaminated diet (Daphnia magna contaminated with 28 nm polystyrene spheres). 

During the 39 days starvation study, fish exposed to plastic contaminated diets were 

found to take twice as long to consume 95% of the presented food. However, whereas 

the control treatment continuously lost weight over the exposure period, weight loss 

slowed down for plastic exposed treatments from day 15 of the study. On day 39 plastic 

exposed fish were even found to have gained weight over the past 12 day period 

whereas the control treatment continued to lose weight. Differences in 

triglycerides:cholesterol ratio in blood serum, and the distribution of cholesterol 

between muscle and liver of sampled fish from the control and exposure groups 

suggested a disturbance in lipid metabolism (Cedervall et al., 2012). In a separate 

experiment using fish blood serum from Crucian carp (Carassius carassius), Bleak 

(Alburnus alburnus), Rudd (Scardinius erythrophthalmus), Tench (Tinca tinca), Pike 

(Esox esox), and Atlantic salmon (Salmo salar) mixed with 200 nm polystyrene 

particles the same study found that the used nanoplastics can bind to apolipoprotein A-I 

in fish serum in vitro and concluded that the observed difference in weight loss could be 

explained by the translocation of nanoparticles which hindered the utilisation of fat 

reserves (Cedervall et al., 2012). Also using nanoparticles, a study by Kashiwada 

(2006) exposed adult Japanese medaka (Oryzias latipes) to 10 mg L
-1

 of 39.4 nm 

polystyrene nanoplastics in the water column. Blood samples were found to be 

contaminated with plastic at concentrations of 16.5 ± 0.7 ng mg
-1

 blood protein in male 

and 10.5 ± 2.2 ng mg
-1

 blood protein in female fish. Dissected tissue samples of gills 

and intestines showed the highest accumulations of plastics but testis, liver and brain 

were also found to be contaminated with nanoplastics. The author identified the gills 

and the intestines as the main uptake routes for nanoplastics that are dispersed in the 

water column. The presence of plastic particles in the brain suggests that nanoplastics 

might be able to cross the blood-brain barrier (Kashiwada, 2006). Data from these 

studies highlight the risk for plastic particles to be translocated from the GI to 

surrounding tissues and highly sensitive organs like the brain, having the potential to 

cause adverse effects in aquatic organisms. Even though the translocation of plastic 

particles in the nanometre range, followed by adverse effects has been reported for fish 

and evidence is given that micrometre sized particles can translocate from the 

gastrointestinal tract to the haemolymph of mussels, it remains unclear if particles in the 

micrometre range pose a threat for translocation in fish. 
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Figure 1.12: Translocation of nanoparticles to the blood from the intestine via M-

cells and the lymphatic system from which transport into other tissues can occur. 

Modified from: Galloway (2015): Micro- and Nano- Particles and Human Health. 

In: Marine Anthropogenic Litter. Melanie Bergmann, Lars Gutow, Michael Klages 

(eds.). Springer, 343-366. 
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1.4.4.2 Concentration related effects 

There are few reports concerning concentration related effects of ingested plastic on 

biota. As previously mentioned, dose dependent effects of a plastic exposure were 

found for Tigriopus japonicas during a chronic exposure by Lee et al. (2013c). 

Copepods showed a dose dependent effect when exposed to 0.05 and 0.5 µm 

polystyrene spheres; Survival was negatively affected at higher concentrations of the 

plastic beads for both particles sizes, and the highest concentration (25 µg ml
-1

) caused a 

significant developmental delay in the F1 generation for the 0.5 µm spheres, compared 

to the control and lower plastic concentrations (Lee et al., 2013c). Tripneustes gratilla 

larvae that were exposed to water columns that had previously been contaminated with 

polyethylene spheres (1, 10, 100, or 300 spheres ml
-1

) provided evidence for a dose 

dependent ingestion of microplastic spheres and a trend for reduced survival and growth 

for the highest concentration (Kaposi et al., 2013). However, a study by Hämer et al. 

(2014) in which isopods (Idotea emarginata) were fed on a diet contaminated with low 

(12 mg
-1

 of food) and high (120 mg
-1

 of food) plastic concentrations of polystyrene 

spheres (1 - 100 µm) did not find any differences concerning ingestion, presence in the 

GI and egestion (Hämer et al., 2014). No dose dependent effects were obtained for fish 

when Oliveira et al. (2013) exposed the common goby (Pomatoschistus microps) to 

18.4 µg L
-1

 or 184 µg L
-1 

polyethylene spheres (1 - 5 µm) which did not reveal any 

significant differences for assessed biomarkers (acetylcholinesterase (AChE), isocitrate 

dehydrogenase (IDH), glutathione S-transferase (GST) and lipid peroxidation (LPO)) 

(Oliveira et al., 2013). 

1.4.4.3 Effects of shape 

Nearly all of the above mentioned laboratory based studies investigating the effects of 

ingested plastic used spherule or round plastic pieces. Even though those types of 

plastics occur in aquatic environments, differently shaped materials are present as well. 

Accordingly, the shape and type of polymer may be of importance when evaluating the 

effects of ingested plastics. Hard materials with sharp or pointy edges have the potential 

to cause internal wounds and bleedings (Gregory, 2009). An examination of dead 

albatross chicks (Laysan Albatrosses Diomedea (Phoebastria) immutabilis) sampled in 

1994 and 1995 from the Midway Atoll in the North Pacific Ocean found that some of 

the chicks that had ingested plastic, had punctures or tears in the lining of their 
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proventriculus (Auman et al., 1997). In contrast, plastic fibres and lining, which are less 

likely to puncture through tissue, may still have the potential to clump together and 

form larger accumulations that could lead to the blockage of the GI (Murray and Cowie, 

2011). Fragments with high surface areas like plastic films can adhere to the stomach or 

intestine lining and hinder enzyme secretion (Azzarello and Van Vleet, 1987) and could 

possibly also hinder nutrient absorption (uptake of a substance by the volume of another 

substance). A study by Hämer et al. (2014) investigating the effects of 3 different types 

of plastics (polystyrene spheres, polyethylene fragments and polyacrylic fibres) did not 

find any significant differences in ingestion, presence of up taken plastics in the GI or 

egestion between the plastic shapes (Hämer et al., 2014). However, not only the plastic 

shape but also the used sizes (spheres and fragments 1 - 100 µm and fibres 20 - 2500 

µm) differed, which is why the results cannot be limited just to the plastic´s shape. 

According to the findings presented in 1.4.4, acute effects seem to be limited to the 

ingestion of larger plastic items and more attention should be given to the chronic and 

sub lethal effects when assessing the ingestion of smaller plastic particles. Sub lethal 

effects like energy depletion could be of importance since wildlife is continuously 

exposed to plastic litter. According to findings from birds and invertebrates a 

continuous ingestion of plastic and the related mobilisation of energy reserves due to the 

reduced energy assimilation can have limiting effects on growth, especially for fish 

larvae and a reduction in the condition of the fish as well. However, just little 

information is available to date. Easy and reliable endpoints to assess such plastic 

induced starvation can be the measurement of weight and length to evaluate growth and 

applying a length-weight related condition index to assess utilisation of energy reserves. 

Additionally, to assess if translocation of ingested micrometre sized plastic particles can 

occur, histological assessment of sectioned tissue samples and analysis of blood 

samples can be applied. 

1.4.5 Effects of plastic derived chemicals 

Due to incorporated chemicals like plasticisers and additives, virgin plastic has the 

potential to leach bioactive compounds (Berens, 1997, Loyo-Rosales et al., 2004, Sajiki 

and Yonekubo, 2003, Koelmans et al., 2014, Ahmad and Bajahlan, 2007). As 

previously described in section 1.3, a substantial part of the finished plastic product can 

comprise of plasticisers and additives. However, such incorporated chemicals have the 
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potential to be released during production and use but also after disposal of the item and 

are suspected to have harmful effects on biota (Oehlmann et al., 2009, Teuten et al., 

2009, Lithner et al., 2011, Halden, 2010). Due to the extent of additives used to 

manufacture plastic products > 50% of produced plastic is currently classified as 

hazardous due to their composition of monomers, additives and by products (Lithner et 

al., 2011). 

1.4.5.1 Plasticisers and bisphenol A 

There is evidence for many phthalate plasticisers but also BPA to affect reproduction in 

invertebrates (Brennan et al., 2006), fish (Santos et al., 2007) and amphibians (Ohtani et 

al., 2000), impair development in crustaceans (Wollenberger et al., 2005) and 

amphibians (Lee et al., 2005) and induce genetic aberrations (Dixon et al., 1999) as 

well as death in acute toxicity tests (Lee et al., 2005). Additionally, numerous studies 

are listed in Latini et al. (2004) that present evidence for histological damage of livers 

and kidneys, testicular toxicity, negative effects on fertility and altered gene expression 

in the liver following an exposure to Di-(2-ethylhexyl)-phthalate (DEHP), the most 

widely used plasticiser for PVC (Latini et al., 2004). 

1.4.5.2 Other additives 

Stabilisers such as organotin which are used to prolong the lifetime of the polymer are 

of concern since endocrine disruption as well as negative effects on the human immune 

function have been observed (Batt, 2006). Additionally, flame retardants which consist 

of bromine, phosphorus, nitrogen, chlorine or inorganic compounds are of concern. 

Brominated flame retardants (BFRs) which are the most widely used (ACC, 2015, 

Birnbaum and Staskal, 2004) additives from this additive class have been reported to 

induce negative effects on neuro-behavioural development and in higher concentrations 

also on thyroid hormone levels in rats and mice as well as foetal toxicity/teratogenicity 

in rats and rabbits and thyroid, liver and kidney morphology (Darnerud, 2003). These 

types of additives can become bioavailable for biota upon the ingestion of the plastic; 

PBDEs, a type of flame retardant incorporated into the plastic matrix, was found to 

accumulate in lipids of crickets (Acheta domesticus) fed with polyurethane foam for 28 

days at concentrations of up to 80.6 mg kg
−1

 (Gaylor et al., 2012). Furthermore, there is 

evidence that additives like UV-stabilizers and nonylphenol induce endocrine disrupting 
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effects through an estrogenic and/or antiandrogenic mode of action (Harris et al., 1997, 

Fent et al., 2014). However, just limited effects were observed in Japanese medaka 

(Oryzias latipes) that were exposed to < 0.5 mm virgin polyethylene pellets as part of 

their diet for two months. Fish did not show any effects for tested biomarkers 

(choriogenin, vitellogenin (VTG) and oestrogen receptor ERα and gonad phenotype) 

which indicates that the virgin plastics did not leach substantial amounts of incorporated 

chemicals (Rochman et al., 2014). 

1.4.5.3 Monomer building blocks 

Even though the polycarbonate matrix of a plastic product, which is formed out of long 

chains of monomers, is believed to be biochemically inert due to its molecular size 

(Teuten et al., 2009, Lithner et al., 2011), unreacted monomers from the polymerisation 

process or free monomers as a result of degradation processes have been found to have 

harmful effects (Xu et al., 2004, Halden, 2010, Lithner et al., 2011). Leached monomers 

like BPA, a building block of polycarbonate, can have endocrine disrupting effects 

(Iguchi et al., 2006, Vandenberg et al., 2009, Oehlmann et al., 2009, Halden, 2010). 

Styrene used for the synthesis of polystyrene can be carcinogenic and/or mutagenic (Xu 

et al., 2004, Lithner et al., 2011). Accordingly, effects of plastic exposure might be 

linked to polymer type. 

1.5 Accumulation of environmental pollutants on plastic, desorption and 

effects upon ingestion 

Plastic items can accumulate a broad range of chemicals from aquatic environments on 

their surface (Gouin et al., 2011), including metals (Ashton et al., 2010) and persistent 

bioaccumulative and toxic compounds (PBTs) like polycyclic aromatic hydrocarbons 

(PAHs) and persistent organic pollutants (POPs) (Mato et al., 2000, Rios et al., 2007, 

Ogata et al., 2009) (Figure 1.13). POPs are defined by the European Commission as 

“chemical substances that persist in the environment, bioaccumulate through the food 

web, and pose a risk of causing adverse effects to human health and the environment” 

(EU, 2015). This class of pollutants consist of a broad range of chemicals including 

pesticides, industrial chemicals and unintentional by products of industrial processes 

(EU, 2015). Typical POPs are polychlorinated biphenyl (PCBs), polybrominated 
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diphenyl ethers (PBDEs), PAHs and different organochlorine pesticides (e.g. DDT and 

phenols) (Jones and de Voogt, 1999). 

POPs are in general lipophilic compounds that tend to accumulate on hydrophobic 

surfaces which is why they partition strongly to solids and mainly organic matter in 

sediments but can also accumulate in lipids of organisms (Jones and de Voogt, 1999). 

Plastics as an additional contaminant in aquatic environments have been found to 

accumulate POPs on their surface from the surrounding water (Ogata et al., 2009, Endo 

et al., 2005, Pascall et al., 2005, Lee et al., 2013a, Rios et al., 2007, Heskett et al., 2012, 

Teuten et al., 2007, Rochman et al., 2013a) at concentrations up to six orders of 

magnitude greater than ambient sea water (Ogata et al., 2009). Even higher differences 

can be expected for floating plastic since the sea-surface microlayer has been found 

with concentrations of organic contaminants up to 500x greater than in the underlying 

waters (Wurl and Obbard, 2004). Hence, floating plastic debris can accumulate 

relatively high concentrations of chemical pollutants (Mato et al., 2000). However, 

concentrations of accumulated chemicals on plastic do not just exceed concentration of 

pollutants found in the water column but also compared to other solids; Concentrations 

of chemical contaminants have been reported to accumulate on plastic at concentrations 

up to two orders of magnitude higher than sediment or other suspended particles (Mato 

et al., 2000, Teuten et al., 2007). 

Different plastic types and their physical and chemical properties like surface area 

(Teuten et al., 2007), diffusivity (Rusina et al., 2007) and crystallinity (Mato et al., 

2000) affect the adsorption (accumulation of a substance on the surface of another 

substance) of the POPs to the plastic. Hydrophobic compounds are adsorbed more 

easily than less hydrophobic ones (Smedes et al., 2009, Rochman et al., 2013a). A study 

by Rochman et al. (2013a) exposed five types of plastic pellets (PET, HDPE/LDPE, 

PVC and PP) for a maximum of 12 months to the environment in the San Diego Bay 

and found that HDPE, LDPE and PP had the highest concentration of absorbed 

chemicals with PCB concentration of 25, 34 and 27 ng g
-1

 of pellet respectively 

(Rochman et al., 2013a). The same study showed that concentrations of PAHs were 

even greater with 797, 722 and 122 ng g
-1

 of pellet for HDPE, LDPE and PP 

respectively, suggesting that polyethylene polymers accumulate more POPs than other 

commonly used polymer types. However, since plastic waste can be present in the 

environment for decades, concentrations of absorbed POPs on plastics measured on a 
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global scale have been found to range from 1 to 10,000 ng g
-1

 of pellet (Hirai et al., 

2011, Ogata et al., 2009, Rios et al., 2007), highlighting the high adsorption capacities 

of plastic for POPs (Lee et al., 2013a, Velzeboer et al., 2014) (Figure 1.14). 

  

Figure 1.13: Adsorption of Persistent Organic Pollutants (POPs) from the 

surrounding sea water by plastic. As a result, plastic particles can 

accumulate substantial amounts of potentially harmful environmental 

pollutants on their surface. http://www.pelletwatch.org. 



 

58 

 

  

F
ig

u
re

 1
.1

4
: 

P
C

B
s 

o
n

 p
la

st
ic

 p
el

le
ts

 f
ro

m
 b

ea
ch

es
 a

ro
u

n
d

 t
h

e 
w

o
rl

d
. 

M
ed

ia
n

 c
o

n
ce

n
tr

a
ti

o
n

s 
o
f 
∑

1
3

 

P
C

B
s 

(n
g

/g
-p

el
le

t)
 i

n
 b

ea
ch

ed
 p

la
st

ic
 p

el
le

ts
. 
∑

1
3
 P

C
B

s 
=

 s
u

m
 o

f 
co

n
ce

n
tr

a
ti

o
n

s 
o
f 

C
B

#
 6

6
, 

1
0

1
, 

1
1
0

, 

1
4

9
, 

1
1

8
, 

1
0

5
, 

1
5

3
, 

1
3
8
, 

1
2
8
, 

1
8
7
, 

1
8
0
, 

1
7
0
, 

2
0
6
. 

O
g
a
ta

 e
t 

a
l.

 (
2
0
0
9
):

´I
n

te
rn

a
ti

o
n

a
l 

P
el

le
t 

W
a
tc

h
: 

G
lo

b
a

l 

m
o

n
it

o
ri

n
g

 o
f 

p
er

si
st

en
t 

o
rg

a
n

ic
 p

o
ll

u
ta

n
ts

 (
P

O
P

s)
 i

n
 c

o
a
st

a
l 

w
a
te

rs
. 

1
. 

In
it

ia
l 

p
h

a
se

 d
a

ta
 o

n
 P

C
B

s,
 

D
D

T
s,

 a
n

d
 H

C
H

s`
, 
M

a
ri

n
e 

P
o
ll

u
ti

o
n

 B
u

ll
et

in
, 

5
8
, 

1
0
, 

1
4
3
7

-1
4
4
6
. 

 



 

59 

 

Concerns have been raised since the United States Environmental Protection Agency 

(USEPA) and the EU list many of the pollutants detected to be absorbed to plastics as 

priority pollutants because they are persistent, bioacummulative and/or toxic (USEPA, 

2013, EuropeanComission, 2014). POPs are known to have endocrine disrupting effects 

(Daston et al., 1997, Kelce et al., 1995) in humans and wildlife and are also suspected 

to have carcinogenic effects (Jones and de Voogt, 1999) and might even damage the 

immune system of top predators (Safe, 1994, Ross et al., 1995). Evidence suggests that 

plastic absorbed chemicals can be transferred to organisms (Teuten et al., 2009, 

Besseling et al., 2013, Chua et al., 2014, Mato et al., 2000) (Figure 1.15) and have been 

found to become bioavailable to a wide variety of species upon ingestion (Fossi et al., 

2012, Fossi et al., 2014, Teuten et al., 2009, Tanaka et al., 2013, Lavers et al., 2014, 

Chua et al., 2014, Gaylor et al., 2012, Besseling et al., 2013, Browne et al., 2013, 

Rochman et al., 2013b). In line with these findings, desorption rates of accumulated 

absorbed pollutants from the polymer surface have been reported to be 30 times greater 

under physiological conditions when compared to conditions in sea water (Bakir et al., 

2014a). Therefore, plastics might act as a transport vector for POPs to organisms 

(Teuten et al., 2009, Besseling et al., 2013, Chua et al., 2014, Mato et al., 2000). Due to 

their low metabolism rates, environmental chemicals can lead to the accumulation in 

biota and along food chains (Campfens and Mackay, 1997, Jones and de Voogt, 1999). 

As a result, POPs can accumulate in organisms of higher trophic levels like marine birds 

(Helgason et al., 2008), fish (Weber and Goerke, 2003) and marine mammals (Tanabe, 

2002). 

Indeed, the presence of PCBs in tissues of short-tailed shearwaters (Puffinus 

tenuirostris) was linked to the presence of plastic particles in the stomach by Tanaka et 

al. (2013) who argued that detected PCB congeners were not present in their natural diet 

and might therefore have derived from the ingested plastic (Tanaka et al., 2013). A 

study by Yamashita et al. (2011) also using sampled short-tailed shearwaters reported 

that accumulation of PCB concentrations in tissues and found mass of ingested plastics 

were related (Yamashita et al., 2011). These findings are supported by similar results 

from Ryan et al. (1988) who found that the mass of ingested plastics was positively 

correlated with PCB levels in great shearwaters (Puffinus gravis) (Ryan et al., 1988). 

Laboratory based studies investigating the effects of the ingestion of contaminated 

plastic support field based data that plastics can act as carriers for POPs to organisms; 

Besseling et al. (2013) used the lugworm (Arenicola marina (L.)) and sediments that 
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were contaminated with 18 different PCBs. The addition of different concentrations of 

polystyrene spheres (0, 1, 10, and 100 g PS L
-1

 sediment) was found to enhance the 

bioaccumulation (accumulation of environmental chemicals in an organism) of PCBs in 

worms. The lowest plastic concentration was observed to cause the greatest increase in 

bioaccumulation with a factor of 1.1 - 1.5 compared to non-plastic sediment whereas 

higher plastic concentrations did not result in higher accumulation factors (Besseling et 

al., 2013). Also for fish, the transfer of absorbed environmental pollutants on plastic 

was demonstrated (Rochman et al., 2014, Rochman et al., 2013b). 

  

Figure 1.15: Desorption of accumulated POPs upon ingestion. Plastic particles 

accumulate high burdens of environmental pollutants during their lifetime in the 

environment at higher concentrations than the ambient sea water. After ingestion these 

particles can leach these absorbed chemicals at enhanced rates under physiological 

conditions which then accumulate in lipids and body tissues of the organism up to 

possibly bioactive concentrations which have the potential to induce endocrine 

disruption and other negative effects. 
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Rochman et al. (2013) exposed Japanese medaka (Oryzias latipes) for 2 months to a 

diet mixed with virgin or contaminated LDPE plastic pellets (previously exposed to an 

urban bay for 3 months to absorb POPs from the environment). After 2 months of 

exposure fish were found with significantly higher PBDE concentration and a trend for 

higher PAH and PCB accumulation in fish tissues compared to the negative control and 

virgin plastics (Rochman et al., 2013b). Measured effects on liver toxicity and 

pathology as tested with glycogen depletion, fatty vacuolation and single cell necrosis 

was observed for virgin and contaminated plastics whereas fish exposed to 

contaminated plastics were found with the most severe effects (Rochman et al., 2013b). 

Another study by Rochman et al. (2014b) also using Japanese medaka (Oryzias latipes) 

and the same experimental design as Rochman et al. (2013b) provided evidence for 

endocrine disruption in fish exposed to contaminated plastic diets; Female fish were 

found with a significant reduction in hepatic VTG and choriogenin expression after one 

month of exposure whereas after 2 months VTG and oestrogen receptor ERα expression 

was significantly reduced. Whereas no effects were observed for male fish after 1 month 

of exposure, expression of choriogenin was significantly reduced in males after 2 

months, indicating exposure to anti-oestrogenic compounds (Rochman et al., 2014). 

Beside the presented evidence that ingested plastic, contaminated with POPs, can 

transfer harmful levels of biological active compounds to organisms and induce adverse 

effects, controvert suggestions from other studies should be mentioned as well. Teuten 

et al. (2007) reported that plastics have the potential to reduce bioaccumulation of 

POPs; This effect was suggested by the reduced bioavailability of phenanthrene in 

sediments spiked with polyethylene (Teuten et al., 2007). In this study Teuten et al. 

(2007) argued that the addition of polyethylene to sediment can result in a reduction of 

phenanthrene tissue concentrations of 13% in Arenicola marina. Koelmans et al. (2013) 

who presented a model to predict the transport of POPs to marine organisms by plastics 

concluded that the ingestion of clean plastics has the potential to lead to a depuration of 

POPs from the organism and that the extend of bioaccumulation of POPs driven by 

plastics is not relevant from a risk assessment perspective (Koelmans et al., 2013). In 

addition, the leaching of nonylphenol (NP) and BPA, both plastic additives, from 

polyethylene plastics to Arenicola marina and North Sea cod (Gadus morhua) were 

found to be negligible for fish and just occasionally relevant for worms (Koelmans et 

al., 2014). However, for these proposed clearing properties by Teuten et al. (2007) and 

Koelmans et al. (2013), virgin plastics or plastics with low contamination levels are 
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needed. The previously mentioned high partition of chemicals to plastic and the long 

lifetime of plastics in the environment might therefore limit these findings to virgin and 

newly introduced plastics. 

More research is needed to understand the full extent of the effects of ingested plastics 

with associated chemicals. Negligible effects found for adult organisms might have 

adverse effects for larval stages or juveniles of the same species and as it was discussed, 

plastic types do have a strong influence on the sorption and desorption mechanisms of 

chemicals in the environment. 

1.5.1 Biomagnification of environmental pollutants through trophic transfer of 

plastic 

Trophic transfer of environmental pollutants and their biomagnification over the food 

chain up to concentrations of 1 million times higher when compared to the surrounding 

water (Mason et al., 1996), can lead to deleterious effects and even death in top 

consumers (MIBS, 1997). The trophic transfer and biomagnification of POPs in the 

marine food web for zooplanktonic species, benthic invertebrates and fish up to sea 

birds and seals was suggested using stable nitrogen isotopes (δ
15

N) (Fisk et al., 2001). 

As previously mentioned, POPs can be found at concentrations of up to 10,000 ng g
-1 

(Ogata et al., 2009) on plastic pellets. Since plastics are subject to trophic transfer from 

primary to top consumers (see section 1.4.3) ingestion of contaminated plastic via the 

diet is possible. With findings of Bakir et al. (2014a) who reported enhanced desorption 

of POPs from plastic under physiological conditions, a plastic mediated dietary 

accumulation of environmental pollutants is possible. 

However, to my knowledge no data is available to document the plastic mediated 

trophic transfer of environmental pollutants and the possible biomagnification due to 

desorption processes under physiological conditions. Furthermore, no reports are 

present to document effects that arise from the ingestion of contaminated plastic via 

trophic transfer. 
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1.6 Biomarkers 

Fish, like other aquatic biota are exposed to a variety of environmental and 

anthropogenic contaminants. To determine effects that are induced by the exposure to 

such contaminants, a vast array of biomarkers on different levels of biological 

organisation have been established (Viarengo et al., 2007). Ribeiro et al. (2013) stated 

that biomarkers may be derived from morphological, biochemical and physiological 

alterations in organisms following the exposure to xenobiotics, integrating biological 

responses to contamination and may thereby indicate sub lethal exposure (Ribeiro et al., 

2013). Fish are particularly sensitive to the environmental contamination of water and, 

therefore, pollutants may significantly interfere with several of their biochemical 

processes. Additionally, the importance of somatic indices to explain the effects of 

pollutants on growth, longevity and reproductive ability of organisms has been 

described (Alberto et al., 2005, Ribeiro et al., 2005, Tejeda-Vera et al., 2007). As a 

result, morphological endpoints on an organism level like growth in fish is a commonly 

analysed endpoint (Chovanec et al., 2003). 

The ability to maintain normal somatic growth (length and weight) is an important 

indicator of an organisms fitness which in turn is related to its ability to acquire and 

assimilate energy, maintain homeostasis and regulate metabolism (Beckman, 2011). 

The importance of growth in length during larval stages (Bailey and Houde, 1989) of 

fish shifts towards growth in weight for adults (Nellen, 1986, Mommsen, 2001). The 

respective growth is of great importance for predator avoidance in larval (Bailey and 

Houde, 1989) and reproductive success (Munro, 1990) in adult fish. Therefore, effects 

on length, weight and condition of exposed fish can not only have negative effects on 

performance and survival for the individual but might also result in effects on the 

population level (Smolders et al., 2005). Important factors for growth in teleost fish are 

food availability and nutritional status (Pedroso et al., 2006), water temperature 

(Handeland et al., 2008) and photoperiod (Barimani et al., 2013). These factors are 

thought to be related to levels of growth hormone (GH) expression in fish (Björnsson, 

1997, Gabillard et al., 2003) which in turn leads to elevated levels of insulin like growth 

factors (Funkenstein et al., 1989). 

The condition index K calculated after Fulton (Ricker, 1975) provides a useful tool to 

evaluate the well-being of fish and is one of the most widely used measurement for fish 
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condition (Jones et al., 1999). Fulton´s condition index has been shown to be a good 

indicator for lipid reserves in fish, including sticklebacks (Herbinger and Friars, 1991, 

Chellappa et al., 1995). Even though not a direct measurement for fitness, lipid reserves 

can be seen as fitness indicators of an animal (Pietrobelli et al., 1996); It is commonly 

assumed that the fitness of an animal is positively correlated with its lipid reserves due 

to their utilisation during starvation und during time of higher energetic requirements 

but also help the organism to deal with harsh abiotic factors and may even protect from 

injury (Wilder et al., 2015). Therefore, a reduced condition index as a measurement for 

reduced lipid reserves is an important endpoint to assess the changes in the fish´s 

wellbeing which might result in changes in fitness in the longer term. 

Therefore, the choice of growth and condition to test for plastic induced effects in this 

thesis is in line with multiple studies that have previously applied growth measurements 

and energy reserves as biological endpoints for plastic exposure (Kaposi et al., 2013, 

Besseling et al., 2014, Hämer et al., 2014, Besseling et al., 2013, Cedervall et al., 2012, 

Wright et al., 2013, Donnelly-Greenan et al., 2014, Foekema et al., 2013). 

In addition to the endpoints on an organism level, molecular endpoints can be included 

to test for effects on gene expression. The cytochrome system is a large superfamily of 

heme proteins comprising of 221 genes divided into 36 subfamilies that are involved in 

the oxidative metabolism of numerous lipophilic xenobiotics like aromatic 

hydrocarbons and pesticides which has been demonstrated and validated for field and 

laboratory studies (Goksoyr, 1995, Boon et al., 2002, Livingstone, 1998, Bucheli and 

Fent, 1995, Stegeman and Hahn, 1994). Chemicals induce CYP1A through the binding 

to aryl hydrocarbon receptor (AhR) (Goksoyr, 1995), thereby initiating the induction 

process leading to increased amounts of CYP1A mRNA, protein and catalytic activity 

(Goksoyr, 1995). Additionally, cytochrome P450 is involved in the hydroxylation of 

alkanes (Blasig et al., 1984). As a result, CYP1A has been found to increase in the 

presence of xenobiotic chemicals (Egaas et al., 1998) and polycyclic aromatic 

hydrocarbons in flatfish (Myers et al., 2008). Certain subfamilies are particular 

responsive to xenobiotic compounds, prominent examples being the induction of 

CYP1A subfamily by planar aromatic hydrocarbons and chlorinated hydrocarbons 

(Nebert et al., 1989, Stegeman and Hahn, 1994). The induction of CYP1A in fish has 

been evaluated as a sensitive, convenient, “early warning” signal of organic xenobiotics 
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in the aquatic environment (Bucheli and Fent, 1995, Goksoyr, 1995, Stegeman and 

Hahn, 1994). 

The yolk precursor VTG is normally produced in parenchymal liver cells of females and 

is then transported to the ovary, incorporated into the growing oocytes and then 

processed into the two main yolk proteins, lipovitellin and phosvitin and other 

components in a process called vitellogenesis (Byrne et al., 1989, Hiramatsu et al., 

2002, Wahli et al., 1981). VTG is normally undetectable in the plasma of immature 

females and male animals because they lack circulating oestrogen, however, VTG 

expression can be induced by oestrogen exposure (Heppell et al., 1995, Sumpter and 

Jobling, 1995). Not just the natural oestrogen 17β-estradiol, which is the primary 

hormone responsible for vitellogenesis (Specker and Sullivan, 1994) but also endocrine 

disrupting chemicals with oestrogenic mode of action (Sumpter and Jobling, 1995, 

Thorpe et al., 2001) have been found to induce VTG expression in exposed fish. 

Accordingly, VTG is an established molecular biomarker to assess the exposure to 

oestrogenic compounds in fish (Tyler et al., 1996). Since alkylphenols and styrene 

which can leach from plastic polymers have been found to display oestrogenic 

properties (Bang et al., 2012), VTG was used to test for oestrogenic plastic derived and 

absorbed chemicals. 

Both, expression of CYP1A and VTG has been previously used to investigate the 

exposure of desorbed chemicals by plastic to fish (Rochman et al., 2013b, Rochman et 

al., 2014). 
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1.7 Study Aims 

As described, the contamination of aquatic environments globally with plastic litter is of 

great concern. The accumulation of this anthropogenic debris over the past decades has 

led to an omnipresent pollutant that, due to its characteristics, poses a threat to the wild 

life. Of special concern is the ingestion of small plastic particles. Even though ingestion 

records are numerous for a broad range of species from different feeding guilds and life 

stages, just very little is known about the effects that can follow such ingestion. First 

evidence for various adverse effects has been reported, however, many questions still 

remain unanswered and the wide range of study organisms used leaves an incomplete 

picture on a phylum and species level. A range of knowledge gaps concerning 

microplastic in the marine environment have been identified in a recent review about 

current trends and future perspectives of microplastics in the marine environment by 

Barboza and Gimenez (2015) (Figure 1.16). 

This thesis addresses some of these identified gaps by contributing to the current lack of 

knowledge concerning the impact of microplastic ingestion on marine organisms and 

the food chain. 
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Figure 1.16: Research aspects of interest in the future with regard to 

marine environment microplastics as identified by Barboza and Gimenez 

(2015). The chapters presented in this thesis contribute to the knowledge 

gap in the red framed area. Figure sourced from (Barboza and Gimenez, 

2015): Microplastics in the marine environment: Current trends and 

future perspectives. Marine Pollution Bulletin, In Press, corrected proof. 
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The overriding aim of this thesis was to assess the biological effects of ingested plastic 

particles in a small predatory teleost, the three-spined stickleback. An ecotoxicological 

approach with laboratory based experiments has been chosen to address the following 

aims: 

1. To assess ingestion, accumulation and elimination of microplastic ingested via 

trophic transfer by a small aquatic vertebrate and to determine biological effects 

following the exposure. Chapter 3 exposed adult (10 months old) sticklebacks 

for 7 days on contaminated live diets of Artemia sp., followed by a further 14 

day depuration period where just non-contaminated Artemia sp. were fed. 

Faeces samples, sampling data (length, weight, condition index K), blood 

samples and molecular endpoints were assessed to test for biological effects. 

The hypothesis of this chapter was that exposure to a plastic contaminated live 

Artemia sp. diet will result in the ingestion and egestion of plastic particles and 

will lead to biological effects on weight and condition index K, will lead to the 

translocation of microplastic from the gastrointestinal tract to the circulatory 

system and result in a response in the measured detoxification biomarker 

CYP1A in adult three spined stickleback. 

2. To investigate the effects of ingested microplastic from a plastic contaminated 

water column on larval three-spined stickleback. Chapter 4 addressed this 

research question using larval (7 days post hatch (dph)) sticklebacks which were 

exposed to a water column spiked with ascending concentrations of fluorescent 

polystyrene plastic spheres over a duration of 7 days. Ingestion and induced 

effects on growth (length and weight), condition index and molecular endpoints 

were assessed. The hypothesis for this chapter was that exposure to a water 

contaminated water column will result in a dose dependent ingestion and 

egestion of microplastic and induce negative effects on length and condition 

index K and induce a response in the measured detoxification biomarker CYP1A 

as well as the oestrogen biomarker VTG B in larval three spined sticklebacks. 

3. To assess the effects of exposure to ‘real’ plastics (fragments of conventional 

plastic bags) on an adult aquatic vertebrate the three-spined stickleback and 

determine whether degradation of the plastics through weathering influences 

their potential to induce biological effects. Chapter 5 exposed adult (14 months 
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old) sticklebacks to a plastic contaminated diet for a total of 28 days. Faeces 

samples, dissection of GI tracts and sampling data (length, weight, liver weight, 

condition index K) were used to test for biological effects. Additionally, plastic 

fragments were analysed for their potential to leach incorporated chemicals 

under simulated stomach pH conditions via GC-MS. The hypothesis of this 

chapter was that ingestion of a food source contaminated with microplastic sized 

plastic bag fragments results in the ingestion of microplastic, effects on food 

digestion through ingested plastic and effects on weight and condition index K 

of adult three spined sticklebacks. Aditionally, it is hypothesised that degraded 

plastic bag fragments have a higher potency to induce biological effects through 

the leaching of incorporated chemicals. 

4. To determine whether a live diet of Artemia sp. with ingested plastic particles 

that had previously been contaminated with bisphenol A have a higher potential 

to induce biological effects compared to Artemia sp. with ingested non-

contamianted plastic and Artemia sp. that had been exposed to bisphenol A 

without ingested plastic.. In Chapter 6 larval (10 dph) sticklebacks were exposed 

to live Artemia sp. that had been previously cultured in BPA solutions with or 

without the addition of polystyrene plastic spheres. Faeces samples, dissections 

of the GI, sampling data (length, weight and condition index K), mortality and 

molecular work were used to test for biological effects. The hypothesis of this 

chapter was that ingestion of Artemia sp. that had ingested the bisphenol A 

contaminated microplastic spheres by three spined stickleback larvae will result 

in biological effects on length, condition index K and induce a response in the 

measured detoxification biomarker CYP1A as well as the oestrogen biomarker 

VTG B in larval three spined sticklebacks. 
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2.1 Study organisms 

2.1.1 Three-spined stickleback (Gasterosteus aculeatus) 

With over 27,700 different species, fish are one of the largest and most diverse groups 

of animals and are of immense ecological and economic importance (Nelson, 2006). 

Fish are widely used as sensitive model organisms (Powers, 1989) and bioindicators for 

the pollution of aquatic environments (van der Oost et al., 2003) and are used for 

observational as well as experimental assessment of chemical pollution (Slooff and De 

Zwart, 1983). Since fish are not only widely used as bioindicators for chemicals but are 

also known to ingest plastic (see Chapter 1, section 1.4.2), they provide a useful tool to 

assess the effects of an environment polluted with virgin and contaminated plastic. 

The three-spined stickleback (Gasterosteus aculeatus (Linnaeus 1758)) is a small 

teleost fish species (Figure 2.1) of the Gasterosteidae family and can be found in 

habitats in Atlantic, Pacific and Arctic coastal waters as well as in inland waters in 

Europe, North America and Asia (Östlund-Nilsson et al., 2007). This distribution along 

habitats of the northern hemisphere with salinities ranging from brackish water to fully 

freshwater conditions and its good attributes as a lab held organism has led to the 

stickleback being one of the best studied species of fish (Östlund-Nilsson et al., 2007). 

Although sticklebacks have largely been used as model organisms for behavioural and 

evolutionary aspects, they have been proven to be useful model species to study the 

effects of endocrine disrupting chemical compounds (Katsiadaki et al., 2007, Östlund-

Nilsson et al., 2007). Today, the three-spined stickleback is a well-established 

ecotoxicological model species (Katsiadaki, 2006) and has been used to investigate 

endocrine disrupting effects (Hahlbeck et al., 2004b, Hahlbeck et al., 2004a, Katsiadaki 

et al., 2010), metal contamination (Sanchez et al., 2005), host-parasite interactions 

(Barber and Scharsack, 2009), behaviour (Iersel, 1953) and evolutionary biology (Bell 

and Foster, 1994). Since the pollution of aquatic environments with plastic waste is of 

global concern and freshwater as well as brackish and marine habitats are affected, 

sticklebacks pose an ideal model species to compare observed effects on a global scale. 

Biomarkers for the exposure to a food source contaminated with POPs (Holm et al., 

1993) and water bodies contaminated with oestrogens and androgens (Katsiadaki et al., 

2002) have been previously applied. Since many plasticisers and additives that leach 

from plastics show endocrine disrupting effects and POPs are known to accumulate on 
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the surface of plastic, sticklebacks are a good candidate to study chemical related effects 

of plastic exposure. Additionally, sticklebacks possess a well-developed gastrointestinal 

tract. Following the mouth, the oesophagus leads into a functional stomach which can 

be separated into three regions. Following the oesophagus a cardiac region exists which 

is a non-secretory region and mainly used to store food, which is commonly found in 

fish that feed to satiation like the three-spined stickleback (Gill and Hart, 1998). The 

other two regions (fundic and pyloric) have secretory properties in which digestive 

enzymes and acidic stomach pH digest the food. The posterior part of the stomach is 

separated from the anterior part of the intestine by a pyloric sphincter which allows 

controlled release of food matter from the stomach to the intestine. The intestines lead 

to a rectum over which processed food is egested as faeces (Wootton, 1984, Ostrander, 

2000, Hale, 1965). This developed gastrointestinal tract allows for the detailed analysis 

of the presence of ingested plastic and might also lead to higher accumulation of 

ingested plastic in the stomach of sticklebacks due to satiation feeding and storage of 

food in the cardiac region of the stomach. 

  

Figure 2.1: Three-spined Stickleback (Gasterosteus 

aculeatus). a: Female fish, b: Male fish with sex 

specific characteristics during reproductive season. 

http://www.crsmsodry.cz 
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2.1.1.1 Production of the F1 and F2 generation 

As previously described in Chapter 1, section 1.2, plastic particles are present in high 

levels in aquatic environments. Laboratory hatched F1 and F2 generations were used for 

experiments (Table 2.1) to avoid the possibility of a pollution history of wild caught 

fish. Additionally, reverse osmosis (RO) water (Select Fusion, Purite) was used for the 

preparation of all stock and experimental related media (artificial fresh water (AFW) 

and artificial sea water (ASW)) and test solutions. ASW (3.0 ppt) and AFW (0.5 ppt) 

used for stock maintenance and exposures were created by the addition of synthetic 

marine salts (Tropical Marine Centre, UK) to RO water. 

To produce these uncontaminated generations of fish a laboratory stock was established. 

A total of 280 three-spined sticklebacks were caught from brackish conditions (Salinity 

of 3.0 ppt) at Farlington Marshes (Figure 2.2) and transported to the Institute of Marine 

Sciences of the University of Portsmouth during March 2012. Farlington Marshes is a 

125,000 hectares large coastal grazing marsh and lagoon which has several pools, both 

freshwater and brackish and is managed by the Hampshire & Isle of Wight Wildlife 

Trust (HIWWT, 2015). 

 

The fish were acclimatised from environmental (salinity: 3.0 ppt, temperature: 10°C and 

photoperiod: 13h light and 11h dark) to laboratory holding conditions (salinity: 3.0 ppt, 

temperature: 18°C and photoperiod: 16h light and 8h dark) over a period of 3 months by 

Figure 2.2: Sampling site for F0 generation from Farlington Marshes in March 2012 

which was used to produce an F1 generation used for the microplastic exposures. Images 

sourced from Google Earth. 
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gradually increasing the temperature and photoperiod. Fish were then maintained under 

these conditions until reproductively mature. During the acclimatisation period, fish 

were fed defrosted brine shrimp (Tropical Marine Centre; 3x day
-1

 week days and 1x 

day
-1

 on weekends). Mortality during the 3 months acclimatisation period was recorded 

to be less than 10%. Over the acclimatisation process fish were held in four 80 L aerated 

glass tanks (working volume 65 L) with semi static water conditions and attached 

recirculation units in an air-conditioned room. Two to three water changes were 

performed per tank per week, depending on the water quality. 

Once wild caught fish were acclimatised and mature, salinity was gradually decreased 

in 0.2 ppt steps every second day to slowly mimic migration into fresh water conditions. 

This imitated migratory process to fresh water conditions was necessary, since the here 

used sticklebacks derived from a brackish population that displays anadromous 

behaviour to breed in fresh water. Once AFW conditions were reached (holding 

conditions salinity: 0.5 ppt, temperature: 18°C and photoperiod: 16h light and 8h dark), 

15 males were chosen to be transferred to spawning tanks which contained 2 cm of sand 

at the bottom and were supplied with cotton fibres and left to build a nest. Fifteen 

individual female fish were presented to males with finished nests. After spawning and 

fertilisation nest were removed from the tanks, any eggs removed and placed in fresh 

AFW and left to water-harden for 30 min. After water-hardening, eggs were separated 

under a dissecting microscope using stainless steel, straight teasing needles and 

tweezers and placed individually in wells of a 96-well plate containing 200 µl AFW 

using a plastic Pasteur pipette and stored under spawning conditions. Eggs were kept in 

separated chambers of 96-well plates to avoid cross infection from unhealthy eggs. 

AFW of the wells was replaced daily with new AFW and the development of larvae 

assessed daily. Any unhealthy eggs were removed. Upon hatching of the first larvae, 

unhatched healthy eggs and larvae were transferred to a holding tank containing 5 L 

AFW under stock conditions. Larvae were fed with suspended frozen rotifers from 3 

dph (since yolk reserves are completely depleted at 4 dph in stickleback larvae (Swarup, 

1958)) before live, freshly hatched Artemia sp. (Ocean Nutrition, Aquatics online, UK) 

gradually replaced the rotifers. Larvae were kept on a live Artemia sp. diet until they 

were found to accept defrosted blood worms as a food source which replaced the live 

Artemia sp. diet from then on. After 3 weeks, larvae were transferred to mildly aerated 

30 L tanks (working volume 20 L) with static water conditions before being transferred 
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to the final 80 L aerated glass tanks (working volume 65 L) with semi static water 

conditions and attached recirculation units. 

F2 generation fish were produced using the same techniques as outlined above for the 

production of the F1 generation with the exception that just 3 or 4 breeding pairs were 

used due to the limited number of larvae needed for the experiments for Chapter 4 and 

6, respectively. Upon hatching of the first larvae, unhatched healthy eggs and larvae 

were transferred to 1 L glass beakers containing 200 ml AFW. 

  

Table 2.1: Generation and age of sticklebacks used for 

the experiments. 
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2.1.1.2 Laboratory stock conditions 

The F1 stock fish used for the production of the F2 generation and experiments 

performed in Chapter 3 and 5 were maintained in aerated, semi static holding tanks (90 

L, 70 L working volume) with attached recirculation units. Prior to the experiments 

using fish from the produced F1 generation, salinity was gradually raised from hatching 

conditions (Salinity: 0.5 ppt, temperature: 18°C and photoperiod: 16h light and 8h dark) 

in 0.2 ppt steps every second day to transfer the fish to brackish conditions. Holding 

conditions at brackish salinity was: Salinity: 3.0 ppt, temperature 18°C and a 16:8h 

light-dark photoperiod. Experiments were conducted at brackish conditions to test for 

effects of plastic exposure under normal environmental and not breeding conditions. 

Fish were acclimatised to these brackish conditions prior to the start of the experiments. 

Prior to being transferred to the experimental setup, F1 sticklebacks were fed frozen 

blood worms (Tropical Marine Centre; 3x day
-1

 week days and 1x day
-1

 on weekends). 

Larval F2 fish were maintained in 1 L beakers containing 200 ml (Chapter 4) or 500 ml 

(Chapter 6) AFW (Salinity: 0.5 ppt, temperature: 18°C and a 16:8h light-dark 

photoperiod). Prior to experiments, larvae were kept under these conditions to test for 

effects of plastic in their natural environment after hatch. Larvae were fed 3 drops of 

defrosted rotifers (Tropical Marine Centre, UK) two times daily from 2 days post hatch 

(Chapter 4 and 5). For Chapter 5, freshly hatched Artemia nauplii were added from 4 

days post hatch. The amount of Artemia sp. per feed was then gradually increased from 

0.5 to 2 ml per feed as the amount of suspended rotifers decreased from 3 drops to 0 

drops per feed. 

2.1.1.3 Experimental conditions 

All experiments were conducted in an air conditioned aquarium room with an 

automated light:dark cycle of 16:8. Exposure vessels were placed on elevated shelves 

(Figure 2.3). For all experiments, the test organisms were randomly distributed to the 

exposure vessels. 

For adult experiments, fish were transferred to 10 L aerated glass aquaria (working 

volume 6 L) containing ASW (3.0 ppt). A static renewal system was used with 80% of 

the water in each tank being removed and replaced every second day. Temperature was 

checked daily with a spirit thermometer (Sigma), whereas pH and dissolved oxygen 
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(DO) were checked twice weekly using HI-98130 and HI-9146N probes (Hanna 

Instruments Ltd), respectively. See individual chapters for parameter ranges. Over the 

experimental procedure sticklebacks were fed according to experimental procedures as 

detailed in each chapter. 

Larval exposures were conducted using 1 L non-aerated glass beakers (working volume 

200 ml for Chapter 4 and 500 ml for Chapter 6) containing AFW (0.5 ppt) as exposure 

vessels. A static renewal system was used with 80% of the water in each beaker being 

removed and replaced every second day. Temperature was checked daily with a spirit 

thermometer (Sigma), whereas pH and DO were checked twice weekly using HI-98130 

and HI-9146N probes (Hanna Instruments Ltd), respectively. See individual chapters 

for parameter ranges. Over the experimental procedure stickleback larvae were fed 

according to experimental procedures as detailed in each chapter. 

  

Figure 2.3: Layout of exposure vessel arrangement. a= 10 L exposure tanks for adult 

exposures (Chapter 3 and 5). b= 1 L beakers for larval exposures (Chapter 4 and 6). 
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2.1.1.4 Ethical Review 

All procedures involving the three-spined stickleback (Gasterosteus aculeatus), were 

performed in line with UK 2013 Home Office Licence regulations under the Home 

Office Licence No. PPL70/7467 and the individual experiments were approved by the 

ethical commission of the University of Portsmouth. 

2.1.2 Brine shrimp (Artemia sp.) 

Artemia sp. are small filter feeding crustaceans that can be found in water bodies in 

Africa, Australia, New Zealand and North America (Triantaphyllidis et al., 1998). Due 

to their highly efficient osmoregulation the habitat of Artemia sp. are hypersaline 

aquatic environments with salinities 10 times higher (340  g  L
−1

) than normal marine 

conditions (Gajardo and Beardmore, 2012). Females are capable of switching between 

two reproductive modes; During unstable environmental conditions females produce 

cysts (oviparity) which are able to survive even under critical environmental conditions 

like severe dehydration, whereas under good environmental conditions free swimming 

nauplii (ovoviviparity) are produced (Gajardo and Beardmore, 2012). The production of 

cysts which can be dried and easily shipped have led to the use of Artemia sp. on a 

commercial scale as a live fish food in aquaculture (Sorgeloos et al., 2001, Nash, 1973) 

and provide not only basic nutritional requirements but also enzymes and other valuable 

dietary elements as well as forming an attractive prey for predatory fish (Gajardo and 

Beardmore, 2012). Additionally, Artemia sp. are a well-recognised model organism for 

ecotoxicological studies to test water quality (Persoone and Wells, 1987, Kalčíková et 

al., 2012). Furthermore, Artemia sp. have been previously used as live food in 

laboratory studies investigating the effects and the biomagnification of POPs on fish 

(Lyche et al., 2011, Lyche et al., 2013) and plastic ingestion in teleost fishes (Hoss and 

Settle, 1990). Hence, Artemia sp. poses a good model organism for zooplanktonic 

organisms of the lower trophic levels. In addition, their indiscriminate filter feeding 

foraging technique to ingest small food particles (algal cells, bacteria and detritus of 1-

50 µm) (Dhont and Van Stappen, 2003) indicates their potential to ingest small 

microplastics. Even though Artemia sp. are not part of the diet of the three-spined 

stickleback in the wild, their size compares to the small crustaceans the can be found in 

a stickleback´s natural diet (Hynes, 1950, Allen and Wootton, 1984). Artemia sp. was 
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also chosen as a live diet for laboratory held sticklebacks due to the ease of culturing 

daily batches of freshly hatched nauplii. 

Artemia sp. cysts (1 g L
-1

) were freshly hatched for each experiment in aerated artificial 

sea water (ASW; 20 ppt) at a temperature of 25°C and a photoperiod of 24h light. After 

24h, the freshly hatched Artemia nauplii (< 24h old) (Figure 2.4) were harvested by 

using a light source to separate the live nauplii from the unhatched cysts. Harvested 

Artemia sp. were transferred to a clean culture vessel and used as live food for larval 

stock fish or matured for a further 24h under culture conditions. Matured Artemia sp. 

were then transferred to the exposure vessels to be contaminated prior to being used as 

live food for the experiments in Chapter 3 and 6 (Figure 2.5). 

  

Figure 2.4: Artemia sp. development stages. a: freshly hatched nauplii 

(Instar I). Instar I nauplii were separated from the culture medium 

and used as live food for larval stock fish or matured for a further 

24h under culture conditions to be contaminated according to 

experimental procedures. b: 72h old nauplii (Instar V). The 72h old 

nauplii represent the developmental stage of Artemia sp. after the 

contamination for the experiments (24h maturing + 24h exposure to 

the respective experimental contamination set up. 

http://www.akvaryumblog.com. 
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2.2 Microplastic spheres 

Fluro-Max
TM

 green fluorescent polystyrene microspheres (1.0 (Chapter 3 and 4) and 9.9 

µm (Chapter 3, 4 and 6); lot no’s 40831 and 41359, respectively) were purchased from 

Thermo Scientific (Fremont, CA, USA). The particle count for the 1 and 9.9 µm spheres 

per millilitre was 1.81x10
10

 and 1.81x10
7
, respectively. Firefli

TM
 green fluorescent 

polystyrene microspheres (0.5 µm (Chapter 6)) were purchased from Duke Scientific 

Corporation (Palo Alto, CA, USA). The particle count for the 0.5 µm polystyrene 

spheres per millilitre was 1.4x10
14

. All fluorescent microspheres were in aqueous 

solution (1% solids), had a specific particle density of 1.05 g cm
-3

 and had their 

maximum refraction at 589 nm. Fluorescent spheres were stored away from light at 7°C 

in a fridge until needed. 

The here used fluorescent plastic spheres were chosen due to the previous successful 

application in numerous studies; Similar sized fluorescent polystyrene (Browne et al., 

2008, Cole et al., 2015, Cole et al., 2013, Besseling et al., 2013, Farrell and Nelson, 

2013, Hjelmeland et al., 1988) and polyethylene (Mazurais et al., 2014, von Moos et 

al., 2012, Kaposi et al., 2013) spheres have been previously shown to be a good model 

plastic to investigate ingestion and related effects on multiple aquatic species. 

Polystyrene plastic spheres were used since field data reported their abundance in 

coastal waters (Carpenter et al., 1972) and reports from the five subtropical gyres 

reported polystyrene macroplastic as the most abundant plastic type (Eriksen et al., 

2014). The here used sphere sizes were chosen due to their suitable size range to be 

ingested by Artemia sp. which naturally feed on small phytoplankton like Dunaliella sp. 

which measure 3 to 13 µm in width (Hosseini Tafreshi and Shariati, 2009) but also algal 

cells, bacteria and detritus of 1-50 µm (Dhont and Van Stappen, 2003). However, the 

here chosen sizes of plastic spheres were too small to be directly ingested by the adult 

and larval fish; The lower size limit for directly ingested food particles by first feeding 

cod larva has been reported to be 30 - 40 µm which is in accordance with the minimum 

size of particles that fish larvae theoretically manage to catch by visual feeding (Olsen 

et al., 2007). Effects of plastic ingestion presented in Chapter 3, 4 and 6 therefore refer 

to small spherical plastics that are too small to be directly ingested. 
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2.3 Sampling and analysis 

2.3.1 Sampling 

Fish were sacrificed in a lethal dose (500 mg L
-1

) of MS222 (3-aminobenzoic acid ethyl 

ester, methanesulfonate salt, Sigma, UK) buffered with sodium bicarbonate (Sigma, 

UK) to pH 7.4. Total lengths were recorded to the nearest 1 mm and wet body weight to 

the nearest 0.01 mg. Condition index K was calculated after Fulton (Ricker, 1975): 

K = 100(W/L³) 

Where W = wet weight (mg), L = standard length (mm) and 100 as a factor to bring the 

value of K near unity. Body parts for analysis of relative expression of target genes were 

fixed in RNAlater (Sigma Aldrich, UK) and stored at -80°C (Table 2.2). Tissue samples 

for other analysis were fixed in Bouin’s solution for 24h or 10% buffered formalin for 2 

days before being transferred to 70% ethanol for storage prior to further processing 

(Table 2.2). See Chapter 2, section 2.3.3 for general histological procedures. Chapter 

specific methods are described within the related Chapters. 

Table 2.2: Target tissues and fixation methods for endpoint analysis. Tissues 

fixed in RNAlater were used for subsequent analysis for relative expression of 

target genes. Tissues fixed in Bouin´s solution or 10% buffered formalin were 

used for histological analysis. 
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2.3.2 Fluorescent determinations 

Fluorescent determinations were carried out using a Zeiss LUMAR.V12 stereo 

microscope with an AxioCam MRm camera and AxioVision software (ZEISS, 

Germany) and a Green Fluorescent Protein (GFP) filter (excitation 485 nm; emission 

520 nm) at magnifications detailed in Table 2.3. 

Artemia sp.: To test for the presence of ingested fluorescent plastic spheres in the 

gastrointestinal tract (GI) of Artemia sp., sub sampled Artemia sp. were immobilised in 

a final concentration of 50% ethanol in clear, flat bottom 96-well plates to avoid 

egestion of the ingested spheres (Chapter 3 and 6). 

Faeces: Presence of plastic spheres in faecal samples was confirmed using faeces pellets 

collected from the exposure vessels, which were then stored in clear, flat bottom 96-

well plates (Chapter 3 and 6). 

For analysis, Artemia sp. and faeces samples were kept in the 96-well plates in which 

they were stored. 

Fluorescent determinations specific to exposures are detailed in the respective chapter. 
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Table 2.3: Fluorescent determinations of samples from data chapters to 

provide evidence for the presence of fluorescent plastic spheres (Chapter 3, 4 

and 6) or nile red stained plastic bag fragments (Chapter 5). 
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2.3.3 Histological analysis 

Tissue that had been previously fixed in Bouin´s solution or 10% buffered formalin (see 

Table 2.2) and then stored in 70% ethanol was used for histological analysis. Whole 

bodies of adult fish from Chapter 3 were transversely sectioned into 5 mm pieces using 

a microtome blade whereas gonads (Chapter 5) were used as whole for the following 

procedure: Tissue was washed by dipping into distilled water, then dehydrated in 

ascending ethanol concentrations (80, 90 and 100%) and cleared with Histoclear before 

being infiltrated with molten paraffin wax in two steps using an automated embedding 

system (Citadel). Each step (dehydration, clearing and infiltration) had a duration of 2h. 

After paraffin embedding and positioning in a wax block, samples were sectioned (7 µm 

section thickness) using a manual heavy duty microtome (Leica Jung Biocut 2035) with 

disposable steel blades (Thermo Scientific MB35 Premier). Produced sections were 

transferred to a hot water bath (between 35 and 37°C) before being floated onto glass 

microscope slides and transferred to a hot plate (57°C) for 20min to fix the section onto 

the slide. For both, whole body and gonads, one slide for each fish was stained with 

hematoxylin and eosin (H&E) stain (Figure 2.6) and examined with a light microscope 

to determine the gender of the fish. For Chapter 3, a second slide was left unstained and 

examined with a fluorescent microscope (Zeiss LUMAR.V12 with an AxioCam MRm 

camera and AxioVision software using a GFP filter (excitation 485 nm; emission 520 

nm)) at x80 magnification, as previous work had shown that this method could be used 

to identify fluorescent polystyrene plastic spheres in paraffin embedded samples 

(Sussarellu et al., 2014, Browne et al., 2008). H&E stained sections of gonads from 

Chapter 5 were assessed using a stereomicroscope (Zoom 2000, Leica) at 30x 

magnification. 
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Figure 2.6: H&E staining protocol for histological tissue 

sections of Chapter 3 and 5. 
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2.3.4 Molecular analysis 

Molecular analysis were performed for Chapter 3, 4 and 6. Methods for the molecular 

analysis for Chapter 3, 4 and 6 (experiment 1) which were performed by Dr Karen L. 

Thorpe can be found in Appendix I. Below, the methods for the molecular analysis of 

Chapter 6 (experiment 2) which were carried out by myself are described. 

RNA isolation 

Total RNA was isolated from the anterior part of the larvae including head and liver 

using a Macherey-Nagel NucleoSpin® RNA extraction kit. Tissue samples were 

transferred from RNAlater to new 2 ml Eppendorf tubes containing 600 µl of buffer 

solution before tissue disruption and homogenisation with a bead mill (TissueLyser II, 

Quaigen) (2x 2 min at 20 Hz in a 4°C room) and prepared for RNA isolation (following 

the supplementary protocol: NucleoSpin® RNA – disruption and homogenization of 

RNAlater® stabilized tissue, Macherey-Nagel). The lysate (700 µl) was then further 

processed following the standard protocol at room temperature. Total RNA 

concentration was estimated from absorbance at 260 nm (A260nm; Nanodrop 8000; 

Thermo Scientific) and RNA quality verified by A260 nm/A280 nm ratios > 2.0. Samples 

were kept at -80°C until cDNA synthesis. 

cDNA synthesis 

The cDNA was synthesised from 0.5 µg total RNA using an equal mix of Oligo(dT)15 

and random primers following the manufacturers protocol (GoScript™ Reverse 

Transcription System, Promega). Prior to cDNA synthesis, tests were undertaken to 

determine the optimal MgCl2 concentration for the used reverse transcriptase 

(GoScript™ Reverse Transcriptase). No differences in levels of synthesised cDNA were 

found (verified by PCR and gel electrophoresis), at MgCl2 concentrations of 2, 4 and 6 

mM (suppliers recommended range 1.5 to 5 mM). Due to these findings 5 mM of 

MgCl2 was chosen for the cDNA synthesis since a high MgCl2 concentration for short 

cDNA products (product size of target gene (CYP1A) 196 bp and housekeeping gene 

18S ribosomal RNA (rRNA) 100 bp) is recommended by the supplier. A no reverse 

transcriptase (-RT) control was included for every sample to test for genomic DNA 

contamination of synthesised cDNA. Quality of cDNA was tested for each reaction with 

polymerase chain reaction (PCR) and gel electrophoresis. 



 

88 

 

Quality control of cDNA 

PCR was performed using a GoTaq® G2 Flexi DNA Polymerase kit (M7801, Promega) 

and the primers for the chosen housekeeping gene (18S rRNA) (Table 2.4). A master 

mix was prepared and dispersed in aliquots of 22.5 µl before 2.5 µl of cDNA (diluted 1 

in 2 in nuclease free water) was added. The PCR was performed using a MyCycler PCR 

machine (BioRad) with heated lid at 110°C. An initial 2 min denaturation step at 94°C, 

followed by 35 cycles of: 94°C for 30 sec denaturation, 49°C for 30 sec annealing and 

72°C for 25 sec extension was performed. Following the last cycle the reactions 

underwent a final extension at 72°C for 5 min. Samples were kept at 14°C in the PCR 

machine until further analysis. 

The PCR products were mixed with the supplied loading dye and gel electrophoresis 

was performed using a 1.2% agarose gel with SYBRE® safe DNA gel stain (Invitrogen) 

at 110 V for 45 min. Gels were analysed using a U:Genius (Syngene). 

Primers 

Previously successfully applied primers for molecular analysis performed for Chapter 3, 

4 and 6 (see Appendix I) were used for molecular analysis in Chapter 6 (Table 2.4). 

Desalted primers were synthesised by Invitrogen (Life Technologies, UK) and 

reconstituted with nuclease free water to a stock concentration of 100 µmole and stored 

at -20°C. Working solutions of primers were created by diluting the stock solution with 

nuclease free water to a concentration of 5 µmole for quality control of synthesised 

cDNA and 7 µmole for real time-quantitative PCR (RT-qPCR) analysis and were stored 

at 4°C. Primers were tested under PCR and RT-qPCR conditions for linear 

amplification and were found to be suitable for analysis. Additionally, melt curves 

during the RT-qPCR showed specific amplification of used primers (Figure 2.7). 

RT-qPCR 

Real time-quantitative PCR was performed using a Fast SYBRE® Green Master Mix 

(Life Technologies) and a StepOnePlus™ Real Time PCR system (Applied Biosystems) 

using the StepOne software v.2.2.2. Two microliters of individual, undiluted cDNA 

samples were analysed in triplicates for the reference gene (18S rRNA) and the target 

gene (Cytochrome P450A) with an initial incubation at 95°C for 20 sec, followed by 40 
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cycles of 95°C for 3 sec and 60°C for 40 sec. Following the final cycle the reactions 

underwent a 15 sec 95°C denaturation step followed by a 1 min, 60°C hybridisation step 

before PCR product melt curves were determined during a last temperature increase to 

95°C for 15 sec. The relative expression of the CYP1A gene was determined by 

averaging the triplicate data for 18S rRNA and CYP1A genes which were then used to 

calculate the δCt for each sample before the mean δCt of each treatment group was 

computed. Mean δCt values for treatments were then used to calculate the δδCt relative 

to the reference samples. Finally, the fold change was calculated using the formula 2
-

δδCt
. 

 

  

Table 2.4: Nucleotide sequences for real time PCR primers. 
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Figure 2.7: Melt curves of amplification products following a 40 cycle qPCR to test for 

specific binding of used primers. 
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2.3.5 Statistical analysis 

All data were analysed using the SPSS
©

 Statistic package version 22 (IBM
©

). All data 

were tested to meet the assumptions for parametric tests, normality (Kolmogorov-

Smirnov test) and equal variances (Levene´s test). Data that did not meet the 

assumptions were transformed using either log or Johnson´s transformation. Data were 

then tested using One-Way ANOVAs with Tukey HSD and 2-Sided Dunnett´s Post Hoc 

tests to test for differences between treatment groups and relative to the control, 

respectively. Data that did not meet the assumptions for parametric tests after 

transformation were tested with a non-parametric Kruskal-Wallis test. Pearson´s 

correlations were performed to test for correlations between measured endpoints. 

Outlier testing was performed using the outlier labelling method (Hoaglin et al., 1986) 

with g = 2.2 as proposed by (Hoaglin and Iglewicz, 1987). For all statistical analysis 

statistical significance was set to p ≤ 0.05 to allow for 95% confidence limit. See data 

chapters for specific statistical test methods of data. All data are expressed as the mean 

± standard error of the mean (SEM). 
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3 Chapter 3: Trophic transfer of microplastic spheres from zooplankton (Artemia sp.) to adult three-spined stickleback (Gasterosteus aculeatus) 

Chapter 3 

Trophic transfer of microplastic spheres from 

zooplankton (Artemia sp.) to adult three-spined 

stickleback (Gasterosteus aculeatus) 

 

The molecular work presented in this chapter was performed by Dr Karen L. Thorpe. 
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3.1  Abstract 

The trophic transfer of plastic particles along the food chain is of concern since 

ingestion of contaminated diets could lead to an accumulation of plastic in organisms of 

higher trophic levels. Even though some reports are present to document this trophic 

transfer between two or three trophic levels, there is just very limited knowledge about 

the effects of the ingestion of a contaminated live diet. In this investigation adult three-

spined sticklebacks were fed for 7 days on a controlled diet of live Artemia sp. 

previously exposed to 1 or 9.9 µm fluorescent plastic spheres and the potential health 

effects associated with ingested microplastics assessed. Artemia sp. rapidly accumulated 

the microplastics in their gastrointestinal tract but survival and growth were not 

impacted over the 72h exposure period. Examination of stickleback faecal pellets 

confirmed that they were ingesting the microplastic contaminated Artemia sp., but that 

up to 75% of microplastics were egested within 48h of ceasing exposure. There was no 

evidence that ingestion of the microplastics affected stickleback survival, length (p > 

0.05, except sampling day 7 where the 1 µm low treatment showed to be different from 

the control (p = 0.041)), weight (p > 0.05) and body condition (p > 0.05) for all 

sampling days. There was also no evidence for altered expression of the gene encoding 

the detoxification enzyme cytochrome P450 1A (CYP1A) (p = 0.711) for fish sampled 

at the end of the 7 day exposure period to the contaminated diets, suggesting that the 

plastics were not retained in the gastrointestinal tract for sufficient time to leach 

biologically active concentrations of organic contaminants. There was also no evidence 

for translocation of the plastics from the gastrointestinal tract to the circulatory system. 

Collectively these results indicate that short-term dietary exposure to uncontaminated 

polystyrene microspheres, at the sized used in this study, are unlikely to pose an acute 

risk for the health of aquatic invertebrates or fish. 
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3.2 Introduction 

Due to their high abundance in aquatic ecosystems and their wide range of colours, 

shapes and sizes concerns have been raised that plastics may be confused by wildlife as 

a food source and become accidentally or directly ingested (Boerger et al., 2010); 

Indeed there are reports of plastics being found in the intestinal tracts of a broad range 

of species (Derraik, 2002) including worms (Besseling et al., 2013), fish (Boerger et al., 

2010, Davison and Asch, 2011, Foekema et al., 2013, Lusher et al., 2013, Carson, 2013, 

Sanchez et al., 2014), birds (Verlis et al., 2013), sea turtles (Bjorndal et al., 1994) and 

marine mammals (Eriksson and Burton, 2003). Indirect ingestion of microplastics via 

trophic transfer may also play a role in the ingestion and accumulation of plastic 

particles; First evidence for a trophic transfer of plastic was reported for regurgitations 

of terns (Sterna hirundo) that were collected on Long Island, New York, in 1971 which 

contained polystyrene pellets (Hays and Cormons, 1974). Microplastics were also 

recorded from the scats of fur seals (Arctocephalus spp.) which were believed to 

originate from lantern fish (Electrona subaspera) (Eriksson and Burton, 2003). More 

recently, laboratory studies have demonstrated the trophic transfer of microplastics from 

algae (Scenedesmus sp.) to zooplankton (Daphnia magna) to fish (Carassius carassius) 

(Cedervall et al., 2012), from zooplankton to mysid shrimps (Setälä et al., 2014) and 

from mussels (Mytilus edulis) to crabs (Carcinus maenas) (Farrell and Nelson, 2013). 

The transfer of plastic particles between trophic levels is of concern since it has the 

potential to lead to the accumulation along the food chain, resulting in the ingestion of 

highly contaminated prey by top predators. 

Feeding on contaminated prey could also lead to the ingestion of relatively small 

microplastics which result in different effects compared to larger items; Ingestion of 

relatively large plastic items that may be directly ingested from the water column has 

the potential to cause negative effects through blockage of the gastrointestinal tract (GI) 

and reduced food ingestion resulting in starvation and potentially death of the animal 

(Gregory, 2009, Carpenter et al., 1972, Bjorndal et al., 1994, Rothstein, 1973, Zitko and 

Hanlon, 1991). However, relatively small plastic items that get ingested via trophic 

transfer might lead to different effects; Concerns have been raised regarding the 

potential for ingested microplastics to translocate from the gastrointestinal tract into the 

circulatory system or other tissues. Evidence for translocation has been provided for rats 

(Hussain et al., 2001, Jani et al., 1992, Jani et al., 1989, Carr et al., 1996) and aquatic 
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organisms (Browne et al., 2008, Farrell and Nelson, 2013, von Moos et al., 2012, 

Brennecke et al., 2015). These translocated particles could potentially negatively impact 

cell membrane properties by disturbing the activity of membrane proteins (Rossi et al., 

2013) and even accumulate in tissues, as the lack of enzymatic pathways to digest 

plastics classifies it as bio-inert (Andrady, 2011). To date translocation of ingested 

plastics in marine organisms has been reported in the blue mussel Mytilus edulis 

(Browne et al., 2008, von Moos et al., 2012) and the crabs Carcinus maenas and Uca 

rapax (Farrell and Nelson, 2013, Brennecke et al., 2015). It was reported that smaller 

particles translocate in greater numbers (up to 60% more) compared to larger particles 

(Browne et al., 2008), highlighting that trophic transfer as a vector for small particles is 

of concern. Plastic particles were found in the circulatory system (haemolymph) of 

mussels as soon as 3h after start of the exposure (Browne et al., 2008, von Moos et al., 

2012). Whereas no negative effects of these translocated particles on cell viability 

assays for neutral red uptake by haemocytes and phagocytosis capability were reported 

by Browne et al. (2008), the study by von Moos et al. (2012) reported a reduced 

lysosomal membrane stability from 6h of exposure but also no effects on endpoints 

lipofuscin accumulation (for oxyradical damage), neutral lipid content (disturbance of 

lipid metabolism) and condition index. However, the feeding techniques of Mytilus 

edulis and Carcinus maenas are different to those of sticklebacks; Mytilus edulis is a 

filter feeding invertebrate which’s diet consists of small suspended food particles from 

the water column (Bayne et al., 1988). Hence, the gastrointestinal system is specialised 

on particular food and shows intracellular digestion of small food particles (McVeigh et 

al., 2006) which might promote microplastic translocation. Carcinus maenas on the 

other hand does not swallow its prey in whole but ingests caught prey in small pieces, 

previously processed by its chelae and mouth parts (Crothers, 1968). Due to this feeding 

technique, the ripped open parts of the gastrointestinal tract of the prey can release 

plastic particles very early during the digestion process, prolonging the possible length 

of interaction of plastic with the gastrointestinal tract during food digestion but also 

releases plastics into the water column, opening up further exposure routes like the gills 

(Farrell and Nelson, 2013). Hence, sticklebacks that swallow their prey in whole might 

show different results concerning the translocation of plastic particles from the 

gastrointestinal tract, compared with animals that chew or dismantle their food prior to 

ingestion. 
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The potential trophic transfer of small microplastics and the resulting effects including 

possible translocation to the circulatory system are of concern. Therefore, the aim of 

this study was to assess the potential health effects resulting from ingestion of a 

microplastic contaminated diet through an aquatic filter-feeding invertebrate (Artemia 

sp.) on a predatory fish species (three-spined stickleback; Gasterosteus aculeatus). 

Artemia sp. were exposed to graded densities of fluorescent polystyrene microspheres 

for up to 72h to assess ingestion of the microplastics from the water column and effects 

on survival. Adult sticklebacks were fed for 7 days on live diets of Artemia sp. that had 

been cultured in the presence or absence of the fluorescent microplastic spheres. After 7 

days of exposure, the sticklebacks were transferred to clean aquaria and maintained for 

a further 14 days on a diet of non-plastic contaminated Artemia sp.. Faeces samples 

were collected daily from the aquaria as a non-invasive method to monitor egestion of 

the plastic spheres. Body lengths and weights of the sticklebacks were measured during 

both the exposure and depuration periods, to determine the effects of plastic ingestion 

on body condition. Blood samples, were examined under a fluorescent microscope to 

assess evidence for translocation of the plastics to the circulatory system. In addition, 

hepatic expression of the gene encoding the detoxification enzyme CYP1A was 

measured to inform on whether toxic additives were leaching from the plastic. 

3.3 Material and methods 

3.3.1 Test organisms 

Artemia sp. and Gasterosteus aculeatus were maintained as described in Chapter 2, 

section 2.1. 

3.3.2 Water supply and test apparatus 

The water supply apparatus was set up as described in Chapter 2, section 2.1.1.2 

Additionally, fish were transferred to clean exposure tanks containing fresh artificial sea 

water (ASW) after day 7 of the exposure when the depuration period started. Water 

temperatures were monitored daily throughout the experiment and ranged between 16.7 

and 19°C, while pH levels were checked twice weekly and ranged between 7.26 and 

7.95. Dissolved oxygen concentrations were checked twice weekly and remained over 

70% of the air saturation value for the experiment. 
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3.3.3 Microplastic spheres 

See Chapter 2, section 2.2. 

3.3.4 Preliminary investigations 

Initial investigations were conducted to confirm that Artemia sp. would take up the 

plastic spheres from the water column. One millilitre of Artemia nauplii suspension 

(approx. 150 nauplii ml
-1

) was added to beakers containing 60 ml of aerated ASW (20 

ppt). One beaker was maintained as a control (no microplastics). The remainder was 

spiked with 6 µl of 1 µm or 9.9 µm microplastics (final density of 0.106 mg 

microplastic ml
-1

). After 8, 24, 48 and 72 hours of exposure, triplicate sub samples (200 

µl) of Artemia sp. were removed from each beaker and transferred to a clear 96-well 

plate and examined as described in Chapter 2, section 2.3.2. 

3.3.5 Trophic transfer experiment 

Adult three-spined sticklebacks were randomly allocated to 40 aerated glass aquaria 

containing 6 L of 3.0 ppt ASW (n = 4 fish per aquarium). The fish were acclimated to 

the test conditions for 3 days and during this period fed three times daily with non-

contaminated Artemia sp. (approximately 2800 Artemia sp. per feed). At the onset of 

the exposure, the aquaria were randomly assigned to each of five treatments (8 aquaria 

were assigned to each treatment with 4 fish each; 32 fish per treatment). The five 

treatment groups were defined as a control (fed non-contaminated Artemia sp.), 1 µm 

high or 9.9 µm high (fed on a diet of 100% Artemia sp. that had been exposed for 24 

hours to either 1 µm or 9.9 µm sized microplastics, respectively) and 1 µm low or 9.9 

µm low (fed 10% of the respective contaminated Artemia sp. and 90% non-

contaminated Artemia sp.). The daily batches of non-contaminated or plastic-

contaminated Artemia sp. were prepared by culturing Artemia nauplii for 24 hours (at a 

density of 30 fry ml
-1

) in either fresh ASW or ASW spiked with 1 µm or 9.9 µm micro 

spheres (0.106 mg spheres ml
-1

). After 24h of exposure, triplicate sub samples (100 µl) 

of Artemia sp. were removed to confirm ingestion of the spheres via fluorescent 

microscopy. A further 200 ml of each Artemia sp. culture was removed, sieved and 

rinsed to remove excess salt and plastic spheres and transferred to a solvent cleaned 

beaker with 100 ml of 3.0 ppt ASW. This procedure was repeated for each feed. 
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After the 7 day exposure period (Figure 3.1), all fish were transferred to clean aquaria 

and maintained for a further 14 day period on a diet of non-contaminated Artemia sp. to 

assess clearance of the spheres from the gastrointestinal tract. Throughout both the 

exposure and depuration period faecal samples were removed from each aquarium 

every morning using plastic Pasteur pipettes and transferred to clear, flat bottom 96-well 

plates to assess evidence for the presence of fluorescent plastic spheres in the faeces. 

3.3.6 Fish sampling and analysis 

On days 4, 7, 14 and 21 of the experiment, one fish per aquaria was removed and 

sacrificed as described in Chapter 2, section 2.3.1. Additionally to sampling procedures 

described in Chapter 2, section 2.3.1, blood samples were removed from the caudal 

peduncle of the adult fish using heparinised micro haematocrit tubes (Heparinised 

Microcapillary, Brand GmbH&Co KG) to assess evidence for translocation of the 

spheres into the circulatory system and an immune response towards possibly 

Figure 3.1: Graphical illustration of the trophic transfer experiment. Artemia sp. (48 

hours post hatch (hph)) were exposed for 24h to a water column spiked with 0.106 mg 

spheres ml
-1

 of either 1 µm or 9.9 µm polystyrene spheres. Contaminated Artemia sp. 

were then cleaned before they were used as live diet for adult sticklebacks. 

Sticklebacks were exposed for a total of 7 days to the contaminated diet before they 

were transferred to a diet consisting of just uncontaminated Artemia sp.. Faeces 

samples were taken daily as an indirect measurement for ingestion of contaminated 

Artemia sp. and to assess plastic elimination over the 14 day clearing time (day 7 - 21). 

Subsamples of sticklebacks were taken after 4, 7, 14 and 21 days to assess biological 

effects and possible translocation of ingested plastic spheres. 
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translocated plastic. Blood smears were prepared for subsequent analysis under a 

fluorescent microscope. Whereas one blood smear was stained with a Wright-Gimsa 

stain (Sigma Aldrich) to be used for a differential blood cell count (immune response) 

using a light microscope and 100x magnification, another one was kept unstained for 

the analysis of translocated plastic spheres as described in section 3.3.7. 

3.3.7 Fluorescent determinations 

To assess the presence of the fluorescent plastic spheres in the subsampled Artemia sp. 

(confirmation of the contamination of the diet for sticklebacks) and daily faeces samples 

(confirmation for the ingestion of the contaminated diet and quantification of 

elimination of ingested particles) fluorescent determinations were carried out as 

described in Chapter 2, section 2.3.2. Additionally, faeces was analysed with a 

microplate reader (POLARstar OPTIMA) to compare fluorescence intensity of faeces to 

assess elimination of the ingested plastic spheres. For these analysis faeces samples 

were kept in the 96-well plates in which they were stored. Blood smears and 

histological sections (to assess ingestion, retention and a possible translocation of 

ingested particles to the circulatory system) were assessed using a Zeiss LUMAR.V12 

stereo microscope with an AxioCam MRm camera and AxioVision software (ZEISS, 

Germany) and a Green Fluorescent Protein (GFP) filter (excitation 485 nm; emission 

520 nm) at 80x magnification. 

3.3.8 Histology 

Histological analysis were performed as outlined in Chapter 2, section 2.3.3. 

3.3.9 Gene expression 

The molecular work was performed by Dr. Karen Thorpe. Material and Methods for this 

work can be found in Appendix I. I was provided with raw data from this molecular 

work for subsequent statistical analysis. 

3.3.10 Statistical analysis 

Statistical analysis were carried out as detailed in Chapter 2, section 2.3.5. Additionally, 

Two-way ANOVAs, with time and treatment as factors to test for effects of exposure 
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time and treatment type on wet weight, length and condition index K were performed. 

One-way ANOVAs followed by Tukey’s comparison revealed non sex specific 

responses which is why data for both sexes were pooled for analysis. 

3.4 Results 

3.4.1 Ingestion of fluorescent plastic spheres by Artemia sp. 

The preliminary exposures with Artemia sp. confirmed the suitability of this organism 

as a vector for trophic transfer of both the 1 and 9.9 µm fluorescing spheres. There was 

no evidence for ingestion of the spheres in Artemia sp. (instar I) sampled 8h post 

exposure. However, after 24, 48 and 72h of exposure, fluorescent spheres could be 

observed within the gastrointestinal tract (Figure 3.2). The initial particle count in the 

contamination medium was 1.09x10
8
 and 1.09x10

5
 spheres for the 1 and 9.9 µm 

spheres, respectively. Mean number of plastic spheres were as high as 126 spheres 

Artemia sp.
-1

 (n = 10) for the 9.9 µm treatments at 72h post hatch; the 1 µm spheres 

were too small to be counted. Artemia sp. sub samples which were removed from both 

the control and microplastic treatments at each time-point were motile and the 

developmental stage of Artemia sp. (instar V after 72h) was comparable between all 

treatments. 
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Figure 3.2: Ingestion of plastic spheres by Artemia sp. during the preliminary time 

trial. Artemia sp. (0 hours post hatch (hph)) were exposed for 24h to clean artificial sea 

water (ASW) (control), or ASW contaminated with 1 µm or 9.9 µm polystyrene plastic 

spheres (0.106 mg spheres ml
-1

). Subsamples were taken after 8, 24, 48 and 72h to 

assess plastic ingestion by the Artemia sp.. No sign for plastic ingestion was observed 

after 8h of exposure (8 hph) but first evidence for ingested spheres was found at 24h of 

exposure (24 hph). Plastic particles accumulated in the gastrointestinal tract of the 

Artemia sp. (indicated by fluorescence) and greater number of spheres could be found 

with increasing exposure time. No contamination of the control treatment was found 

and detected fluorescence derived from the auto fluorescence of the Artemia sp.. 
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3.4.2 Ingestion and egestion of the plastic spheres in the three-spined stickleback 

Faecal samples were removed daily from each aquarium to determine whether the fish 

were egesting (and therefore ingesting) the contaminated Artemia sp. diet. Due to the 

natural auto-fluorescence of Artemia sp., fluorescence was detectable in the faeces 

removed from the control fish (11.4 ± 0.36 Arbitrary units (AU), n = 125) throughout 

the study. After one day of exposure, levels of fluorescence were consistently higher in 

faecal samples removed from each of the microplastic treatment groups relative to the 

controls; Compared to control fluorescence treatments showed 2.1 and 2.6-fold higher 

fluorescence in fish fed 10% contaminated Artemia sp. (low) and 5.8 and 12.8-fold 

higher fluorescence for fish fed 100% (high) contaminated Artemia sp. for 1 and 9.9 µm 

spheres, respectively during the first week of the experiment (Figure 3.3). Within 24h of 

ceasing exposure to the microplastic contaminated diet the fluorescence measured in 

faeces collected from the low treatments (fish fed 10% contaminated Artemia sp.) was 

comparable to the background levels of fluorescence measured in the faeces of the 

control fish (Figure 3.3). The fluorescence measured in the faeces of fish fed with 100% 

microplastic contaminated Artemia sp. was still high, relative to the controls, at both 

24h (18.9 and 55.8-fold higher for the 1 and 9.9 µm particle treatments, respectively) 

and 48h (3.3 and 18.0-fold higher for the 1 and 9.9 µm particle treatments, respectively) 

after ceasing exposure. However, relative fluorescence values for faeces samples were 

observed to drop 4.0 and 2.7-fold and 3.5 and 1.3-fold within 48h after ceasing the 

exposure for 1 and 9.9 µm spheres of high and low treatments, respectively. After 14 

days of being maintained on a non-contaminated diet, fluorescence measured in the 

faeces was comparable across the treatment groups and the control. However, visual 

examination of the faecal samples revealed that the fish were still egesting small 

numbers of fluorescent microplastics with mean particle numbers of 12 ± 6.7 (n = 8) 

and 6 ± 3.4 (n = 8) in the 21 day faecal samples removed from the 1 and 9.9 µm low 

treatments respectively and 11 ± 7.1 (n = 8) and 9 ± 5.1 (n = 8) for the 1 and 9.9 µm 

high treatments, respectively (Figure 3.4). 
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Figure 3.3: Fluorescence, relative to controls, in faecal samples collected from adult 

three-spined stickleback fed for 7 days on a a = 10% (low) or b = 100% (high) diet of 

plastic-contaminated Artemia sp. (exposed for 24h (between 48 and 72 hours post hatch 

(hph)) to 1.0 µm or 9.9 µm green fluorescing microplastic spheres). The control and low 

exposure groups were fed 100% and 90%, respectively, non-exposed Artemia sp. (<72h 

hph). This was followed by a 14 days clearing time during which just uncontaminated 

Artemia sp. were fed. Results are expressed as means ± standard error of the mean. 
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Figure 3.4: Fluorescence in faeces samples collected on day 7 and 21 of the 

experiment from fish exposed to 100% contaminated Artemia sp. (high) that 

had been previously exposed for 24h to 1 µm or 9.9 µm polystyrene plastic 

spheres. Great numbers of both particle sizes were found on day 7, 

indicating the ingestion of the contaminated diet and the egestion of 

ingested plastic particles. After the 14 day clearing period during which 

uncontaminated Artemia sp. were fed, just few plastic spheres were found 

(day 21), indicating that even though spheres were retained in the 

gastrointestinal tract (GI) their number was very low. No contamination of 

control samples was found. Plastic contamination is indicated with red 

arrows. Round structures in faeces pellets represent unhatched Artemia sp. 

cysts. 
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3.4.3 Histological analysis 

As expected, no plastic spheres were found in sections of fish from the control treatment 

for all sampling days (n = 32, using a total of 320 sections (10 sections per fish)). 

However, no additional evidence for the ingestion of the contaminated Artemia sp. and 

accumulation of plastic spheres in the gastrointestinal tract of fish from the plastic 

treatments could be provided by the used paraffin based histological analysis. None of 

the analysed sections (n = 128 fish with a total of n = 1280 sections (10 sections per 

fish), which were taken across the length of the stomach and intestine) were found to 

contain plastic spheres. 

3.4.4 Biological effects 

Ingestion of the microplastics did not affect survival. No difference in weight and 

condition index K was found over the duration of the exposure period (Table 3.1). 

Subsamples of fish on day 7 revealed a difference in length between treatment groups 

and the control (F4,35 = 2.797, p = 0.041). A Dunnett´s test revealed that sampled fish 

from the 1 µm low treatment had a longer standard length compared to the control 

treatment (p = 0.045). Additionally, a Tukey HSD Post-Hoc test showed that the 

standard length of the 1 µm low treatments was also longer than the one of the 9.9 µm 

low treatment (p = 0.037). For all other sampling points no effects on total and standard 

length were found for the adult fish over all treatments (Table 3.1). Also a Two-way 

ANOVA with day and treatment as fixed factors did not show any interaction of 

exposure time and treatment over all sampling days for weight (F12,140 = 0.961, p = 

0.489), total length (F12,140 = 0.949, p = 0.500), standard length (F12,140 = 1.101, p = 

0.364) and condition index K (F12,140 = 1.101, p = 0.364). 

There was no evidence for the translocation of plastic spheres to the circulatory system; 

No plastic spheres could be found in blood smears for all treatments over the duration of 

the experiment, except two smears from day 4 and 14, one from a 1 µm high and one 

from a 9.9 µm high treatment, which showed a single fluorescent plastic sphere. 

However, these single spheres were suspected to be accidental contamination of the 

smear during sample preparation. Subsamples of stained blood smears used for 

differential blood cell count did not provide evidence for an increased leucocyte count 
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(Figure 3.5). On basis of this finding it was decided to cancel the examination of the 

remaining blood smears. 
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Figure 3.5: Results of the differential blood cell count from Wright-Giemsa 

stained blood smears using 100x magnification. Each subsample day (Day 4, 7, 14 

and 21) blood samples were taken from the caudal peduncle of the adult fish using 

heparinised micro haematocrit tubes and blood smears prepared for analysis. For 

each treatment 2 blood smears were chosen and a differential blood cell count 

performed for 3 representative areas (Count No.) of each blood smear. Red = 

Total number of haematocytes. White = Total number of Leucocytes. Numbers 

are total numbers of counted blood cells. 
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There was also no evidence that ingestion of the plastic spheres via the diet modified 

hepatic expression of CYP1A (F4,34 = 0.535, p = 0.711; Figure 3.6), relative to the 

controls. 

 

3.5 Discussion 

The results from this investigation imply that, while filter feeding zooplankton may act 

as vectors for transferring micro sized plastic particles through the aquatic food chain, 

the biological consequences of such trophic transfer may be negligible. Artemia sp. 

rapidly accumulated large quantities of micro spheres within their gastrointestinal tract 

with no measurable impact on their survival or development in the short-term. The fish 

actively preyed upon the contaminated Artemia sp. and accumulated large quantities of 

fluorescent particles within their gastrointestinal tract but these were rapidly egested and 

there was no evidence for negative impacts on the fish either during or post exposure. 

Consistent with previous reports for zooplankton species (Collignon et al., 2014, Cole et 

al., 2013, Frias et al., 2014), Artemia sp. nauplii (72h post hatch) accumulated high 

Figure 3.6: Relative expression of the gene encoding cytochrome P450 1A 

(CYP1A) from adult three-spined stickleback fed for 7 days on a 10% (low) 

or 100% (high) diet of plastic-contaminated Artemia sp. (exposed for 24h 

(between 48 and 72 hours post hatch (hph)) to 1 µm or 9.9 µm green 

fluorescing microplastic spheres). The control and low exposure groups were 

fed 100% and 90%, respectively, non-exposed Artemia sp. (< 72h hph). 
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quantities of the 1 and 9.9 µm microplastic spheres within their gastrointestinal tract. No 

ingestion of the plastic particles was observed in earlier life stages of Artemia sp. (instar 

I; (< 24h post hatch) as Artemia sp. do not develop an open gastrointestinal tract until 

the second larval moult (instar II) (Sorgeloos et al., 2001). There was no evidence that 

accumulation of the plastic spheres in the intestinal tract negatively impacted Artemia 

sp. survival which is consistent with earlier studies in which ingestion of micro spheres 

in the same size range did not negatively impact the survival of planktonic organisms in 

the short-term (up to 96h) (Lee et al., 2013c). These results suggest that ingested virgin 

1 and 9.9 µm plastic spheres do not pose an acute risk to zooplanktonic organisms. 

Accordingly, organisms with ingested plastic particles stay alive and can be eaten by 

biota of higher trophic levels which can lead to the transfer of plastic particles along the 

food chain (Cedervall et al., 2012). 

In this study, faeces samples were removed daily as a non-invasive, indirect assessment 

for the ingestion of micro spheres by the fish. Higher contamination levels of faeces 

samples during the exposure time to contaminated diets provided evidence for the 

trophic transfer of plastic spheres from Artemia sp. to sticklebacks (Figure 3.3). The 

level of contamination was proportional to treatment level over the course of the first 7 

days, demonstrating a dose dependent ingestion of spheres from the contaminated diets. 

The observed rapid egestion of the plastic particles (25 to 75%, mean egestion 58% 

within 48h) could indicate that plastics were not released from the food source. 

However, since Artemia sp. are widely used as live food for aquaculture and laboratory 

stocks (Léger et al., 1986), small crustaceans are part of a sticklebacks natural diet 

(Hynes, 1950, Allen and Wootton, 1984) and no undigested remains were found in 

faeces samples, it is assumed that Artemia sp. were successfully digested. Therefore, 

plastic spheres were released from the ingested diet and had the potential to interact 

with the GI. The low levels of plastic contamination which could still be found up to 14 

days after feeding on non-contaminated Artemia sp. indicated that a small proportion of 

the ingested particles can be retained for extended periods in the gastrointestinal tract. 

Contamination of the faecal samples from egested plastic spheres from previous days by 

Artemia sp. and sticklebacks was minimised by the daily removal of faeces and detritus 

from the bottom of the tank and regular water changes. In addition, fish for the 14 day 

clearing period were transferred to new aquaria with clean ASW and fed with just 

uncontaminated Artemia sp.. The rapid egestion of ingested small plastic spheres 

reduces the likelihood of plastics to induce effects through the interaction with the 
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gastrointestinal lining and also limit the risk of biomagnification through tropic transfer 

to an organism of a higher trophic level. Additionally, the rapid egestion indicates that 

there was no risk for the blockage or obstruction of the GI of adult sticklebacks by the 

ingested spheres. However, since high numbers of plastic spheres were found to be 

incorporated in faecal pellets, the ingestion by detritus feeders is likely. Detritus feeders 

are organisms of a lower trophic level than sticklebacks, like the lugworm Arenicola 

marina and are known to ingest plastic particles from sediments (Besseling et al., 2013, 

Wright et al., 2013). A reverse trophic transfer from an organism of a higher trophic 

level to an organism of a lower trophic level through contaminated faeces pellets could 

pose an additional exposure route to detritus feeders. 

Histological samples to assess the presence of ingested spheres in the GI and 

translocation of those particles into epithelial cells of the intestine could not provide 

supporting information to the faeces samples and blood smears. Even though previous 

studies (Sussarellu et al., 2014, Browne et al., 2008) successfully applied paraffin based 

techniques to create histological samples containing fluorescent polystyrene plastic 

spheres, the embedding process either dissolved or washed away the plastic spheres 

from the samples. Accordingly, conventional histological techniques with paraffin 

embedding are an unsuitable approach. 

The translocation of micro and nanoplastic particles is of concern since it can lead to the 

accumulation of plastic in tissues and has the potential to lead to additional biological 

effects like a negative impact on the lipid metabolism and inflammatory responses 

(Cedervall et al., 2012, von Moos et al., 2012). However, translocation of microplastic 

for marine organisms has so far only been shown for invertebrates; A study conducted 

by von Moos et al. (2012) showed transport of plastic particles to the lysosomal system 

of Mytilus edulis (L.) as soon as 3h after initiating exposure. The used polarized light 

microscopy technique could not provide data for the size of translocated particles 

ranging from > 0 - 80 µm. Browne et al. (2008) reported the translocation of 3 and 9.6 

µm sized plastic spheres to the haemolymph of Mytilus edulis (L.) as soon as 3 days 

after initiating exposure and found that the smaller sized particles were more frequently 

translocated. Evidence for the importance of particle size for translocation was provided 

for terrestrial vertebrates; Studies on rats found a strong decrease in the percentage of 

translocated particles compared to the exposure volume with increasing size of the 

particles (Jani et al., 1996, Jani et al., 1990) showing, that particles ranging from 0.05 – 
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0.5 µm were translocated from the gastrointestinal tract into tissues but 1 and 3 µm 

particles were just very poorly or not at all translocated. This indicates that a faster 

translocation of smaller particles is applicable and suggests that larger particles take 

longer to be translocated, up to the point where they are too big to be physically taken 

up. In this study no evidence for translocation of the plastic spheres to the circulatory 

system was found as shown by the examination of blood smears. Using a longer 

exposure window to the plastic spheres as Browne et al. (2008), whilst using similar 

sized plastic spheres, the particle size seemed to be the limiting factor for translocation 

in this study. This might be due to the different physiology of the gastrointestinal tract; 

The filter feeding blue mussel Mytilus edulis as it was used by Browne et al. (2008) and 

Moos et al. (2012), is able to digest food particles via an intracellular digestion that 

exists beside the enzymatic digestion (McVeigh et al., 2006). During this digestive 

process whole food particles are taken up by phagocytosis into epithelium cells of the 

gastrointestinal tract and processed before nutrients are passed on to the hemolymph 

(where plastic particles were reported by Browne et al. (2008)) and waste particles are 

excreted back into the lumen of the gastrointestinal tract. Involved in this process is the 

lysosomal system (McVeigh et al., 2006) (where plastic particles were reported to be 

found from von Moos et al. (2012)). Even though intracellular digestion is important in 

fish larvae (Watanabe, 1982), adult teleosts with a fully developed gastrointestinal tract 

digest food extracellular via enzymatic digestion in the stomach and absorb amino 

acids, lipids and carbohydrates (Bakke-McKellep et al., 2000). Additionally, water-

borne exposures like they were used by Browne et al. (2008) and von Moos et al. 

(2012) allow multiple exposure routes via exposed tissues like gills as well as ingestion, 

whereas a dietary exposure just targets ingested plastics. The single plastic spheres 

which were found in some of the blood smears in the presented study are believed to be 

a contamination during the sample preparation and other studies have previously shown 

the likelihood of cross contaminations when working with microscopic plastic particles 

(Foekema et al., 2013). However, the translocation of low numbers of small plastic 

spheres might have been missed due to the here used magnifications and the fluorescent 

microscopy which might have been too insensitive to pick up very low numbers of 

translocated particles. 

It is suspected that plastics can leach incorporated chemicals like additives and 

plasticisers that might induce biological responses (Teuten et al., 2009, Oehlmann et al., 

2009). Uncontaminated polystyrene pellets have been reported to contain high levels of 
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parental polycyclic aromatic hydrocarbons (PPAHs) at concentrations of 79 - 97 ng g
-1

 

pellet and have been shown to leach some of these chemicals in sea water (Rochman et 

al., 2013c). Additionally, polystyrene is known to leach styrene monomers (Ahmad and 

Bajahlan, 2007, Miller et al., 1994, Withey, 1976). Other polymers like polyethylene 

were reported with lower quantities of such PPAHs (3 - 6 ng g
-1

 on HDPE and not 

detectable to 13 ng g
-1

 in LDPE), highlighting the higher potential for polystyrene to 

induce adverse effects through the leaching of plastic derived chemicals. The liver has 

been identified as a good target organ for the detection of upregulated CYP1A in fish 

(Billiard et al., 2004) and it has been previously shown that cytochrome P450 is 

involved in the hydroxylation of alkanes (Blasig et al., 1984) and might be therefore 

also used as a biomarker for the exposure to plastic particles. PAHs have been reported 

to induce elevated expression of CYP1A in the liver of adult zebrafish (Danio rerio) at 

an exposure concentration of 162 µg L
-1

 benzo-a-pyrene after a 48h water borne 

exposure (Gerger and Weber, 2015). However, CYP1A expression which was used as a 

biomarker for upregulated detoxification processes was not affected. The findings of a 

non-upregulated, relative expression of CYP1A could suggest that the residence time of 

the virgin plastic spheres was too short (up to 75% egested within 48h) to cause the 

leaching of biologically active amounts of plastic derived chemicals. Differences in the 

relative expression of CYP1A between treatment groups might also have been missed 

due to the applied sampling regime. Differences in the levels of relative expression of 

CYP1A (up to 60-fold increase) in Fundulus heteroclitus were detected right after a 6h 

exposure period to 5 mg L
-1

 benzo-a-pyrene, whereas relative expression levels were 

comparable to controls at the other sampling points (6, 18, 24 and 30h post exposure) 

(Wang et al., 2010). These findings highlight the importance of sampling time for the 

relative expression levels of CYP1A and indicate that PAH induced upregulation of 

CYP1A expression might have been missed due to the here used sampling regime.No 

effects on growth (length and weight) and condition index were observed for fish 

sampled during and after the exposure. The absence of effects measured with these 

biomarkers may be due to the rapid egestion of the plastic spheres. The here used 

spheres size which did not cause blockages or obstructions of the GI allowed normal 

ingestion and digestion of food as shown by the active predation on Artemia sp. and 

daily egested faeces. According to the here used molecular biomarker no energy had to 

be invested into upregulated detoxification processes. 
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In conclusion, the ingestion of uncontaminated polystyrene micro spheres via a trophic 

transfer from zooplankton to fish is considered to not pose a risk in the short term, 

measured with the here used biomarkers for adult sticklebacks. However, biological 

effects, previously shown for other species (von Moos et al., 2012, Wright et al., 2013) 

or suggested following translocation (Cedervall et al., 2012) might be observed with 

different particle sizes. It might therefore be that the size of the ingested particles via 

trophic transfer plays an essential role to induce biological effects. Small particles that 

are subject to translocation induce negative effects on cellular and molecular levels 

(Cedervall et al., 2012, von Moos et al., 2012) whereas big plastic particles could lead 

to deleterious short term effects like blockages of the GI (Carpenter et al., 1972, 

Rothstein, 1973). Uncontaminated ingested particles that are too small to cause internal 

blockages and too big to be translocated, pose a minor threat to the organism since they 

are mainly rapidly egested. For future experiments not only a prolonged exposure 

period to the contaminated food source but also the assessment of particle 

characteristics like size, shape and degradation state may be used to investigate the 

effects of microplastics on fish. Additionally, more sensitive endpoints and molecular 

biomarkers should be applied to test for changes in energy reserves and for effects that 

might have been missed in this study. 
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4 Chapter 4: Effects of exposure to microplastics in young larvae (7 dph) of the three-spined stickleback (Gasterosteus aculeatus) 

Chapter 4 

Effects of exposure to microplastics in young larvae (7 

dph) of the three-spined stickleback (Gasterosteus 

aculeatus) 

 

The preliminary exposure and first experiment were conducted by an undergraduate 

project student at the University of Portsmouth (Chris Payne) under the supervision of 

Dr. Karen L. Thorpe. I assisted with these exposures. The molecular work for 

experiment 1 was conducted by Dr. Karen L. Thorpe. I conducted all of the 

experimental work described for experiment 2. 

The analysis and interpretation of the data from all experimental procedures outlined in 

this chapter is my own. 
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4.1 Abstract 

Young larval stages of fish are especially vulnerable to pollutants due to limited energy 

reserves and the transition from utilising yolk sac energy reserves to exogenous feeding. 

During this transition larval fish have special dietary requirements and are under 

pressure to accumulate energy for early allometric growth of body parts involved in 

predator avoidance and feeding. Deviation from these requirements has the potential to 

impact growth and condition of the fish. Ingestion of plastic by fish larvae has been 

previously reported but little is known about the effects of such ingested plastic. In this 

chapter, experiments were conducted to determine whether three-spined stickleback 

(Gasterosteus aculeatus) larvae would accidentally ingest microplastic spheres from the 

water column and to assess the effects of any ingestion. Larvae (7 dph) were exposed to 

graded densities (10.6, 106 and 1060 mg L
-1

) of 1 µm spheres for a preliminary study 

and (5.3, 53 and 530 mg L
-1

) of 1 µm or 9.9 µm sized fluorescent polystyrene 

microspheres, via the water column, for exposures 1 and 2, respectively. The 7 day 

exposures indicated that larvae ingested plastics in a dose dependent manner (p = 

0.005). In the preliminary study, ingestion of 1 µm microplastic positively affected 

growth (length (p < 0.001) and wet weight (p = 0.001)) but had a negative effect on 

condition factor K (p = 0.024). Exposure of larvae to the lower concentrations showed a 

positive effect on total length (p < 0.001) and negative effect on condition index K (p < 

0.001) but no effects on wet weight (p = 0.118) for the 1 µm spheres and a negative 

effect on condition index K (p = 0.001) but not length (p = 0.292) and weight (p = 

0.720) for the 9.9 µm spheres. An increase in relative expression of cytochrome P450 

1A (CYP1A) for fish from experiment 1 (1 µm spheres) was observed (p = 0.029) but 

exposure did not affect relative expression of vitellogenin B (VTG B) (p = 0.185). 

These results suggest that ingested polystyrene microspheres have the potential to 

negatively affect young life stages of fish in the short-term through a reduction in 

condition and upregulated detoxification processes. 
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4.2 Introduction 

As the smallest self-supporting vertebrates (Wieser, 1995), young fish larvae are an 

especially vulnerable life stage that has to cope with high predatory pressure and early 

autonomous feeding. To escape predators and to improve predation on food (Bailey and 

Houde, 1989) larvae can show rapid growth; Dry body mass has been observed to 

increase 100-fold within 3 weeks in newly hatched larvae of turbot, mackerel, anchovy, 

herring and cod (Nellen, 1986). Such early growth is mainly due to allometric 

development of the tail and parts of the head involved in predator avoidance and feeding 

(Osse et al., 1997, Fuiman, 1983). Whereas the yolk sac provides young fish larvae with 

substrates for energy production over the first few days, exogenous feeding soon 

becomes their only mean of energy accumulation (Heming and Buddingtion, 1988). The 

time of complete yolk sac absorption and the change to exogenous feeding is one of the 

most critical steps in larval development where over 90% of larval mortality can occur 

(Houde, 2008). Due to little to no energy reserves after yolk sac absorption, these young 

life stages are especially susceptible to energy depletion (Huebert and Peck, 2014). 

Lower food availability has been linked to reduced growth in larval striped bass, 

(Morone saxatalis) (Wright and Martin, 1985) and short time starvation can lead to a so 

called “point of no return” after which malnutritioned larvae are unable to recover, even 

if suitable prey becomes available (Rana, 1985, Blaxter and Hempel, 1963). 

Additionally, stress can negatively affect larval growth through a reduction of appetite 

and food intake, food assimilation and a reduced metabolic rate (Wendelaar Bonga, 

1997). 

High levels of plastics in important nursery environments like rivers and estuaries (see 

Chapter 1, section 1.2) pose a potential threat to these young life stages since the wide 

range of different sizes, shapes and colours of plastic particles (Shaw and Day, 1994), 

combined with their broad vertical distribution in the water column ranging from 

surface floating plastics (Cózar et al., 2014) to the sea floor (Bergmann and Klages, 

2012) makes them available for ingestion by a wide range of species. Plastic is 

suspected to be confused as prey and become attacked and ingested by marine 

organisms (Shaw and Day, 1994, Carson, 2013). Due to their reliance on small food 

particles and planktonic organisms, large (Fossi et al., 2014) and small (Cole et al., 

2013) filter feeding organisms but also young life stages of non-filter feeding species 

(Hjelmeland et al., 1988) are susceptible to the ingestion of microplastics. Young fish 
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larvae that change their feeding strategy from utilising their yolk sac energy reserves to 

exogenous feeding rely on small organisms or food particles that are relatively 

immobile and therefore easy to catch and ingest (Huebert and Peck, 2014). Hence, 

floating microplastics are an easy prey and can become ingested (Hoss and Settle, 1990, 

Possatto et al., 2011, Mazurais et al., 2014, Hjelmeland et al., 1988). However, even 

plastic fragments that are below the visual detection limits of fish larvae (30 - 40µm) 

(Olsen et al., 2007) may become accidentally ingested. Many fish, including 

sticklebacks feed on their prey through a suction method where  rapid opening of the 

mouth, followed by a slower closure, creates a suction effect through which the prey are 

ingested from the water column (Wootton, 1984). This feeding technique allows for 

small plastic particles that normally would not be ingested to mix with the larval diet, 

causing them to be drawn into the mouth of the larvae and subsequently ingested. 

Ingestion of plastic can lead to the blockage of the gastrointestinal tract (GI), resulting 

in a lower food ingestion and energy depletion in the long term and even death 

(Gregory, 1991). Wright et al. (2013) observed a reduction in energy reserves of up to 

50% in deposit feeding marine worms following an exposure to 130 µm un-plasticised 

polyvinylchloride particles for 28 days, which was thought to be due to prolonged 

gastrointestinal residence times of food and reduced feeding activity, caused by the 

ingested plastic (Wright et al., 2013). Another study, also exposing Arenicola marina 

(this time to sediment contaminated with 400 - 1300 μm polystyrene spheres for 28 

days) found a negative effect on feeding activity and a loss in weight (Besseling et al., 

2013). After depleting yolk energy reserves and switching to exogenous feeding, young 

fish larvae are susceptible to starve due to low energy reserves (Huebert and Peck, 

2014). Hence, reduced energy assimilation due to plastic ingestion is likely to impact on 

larval growth rate, as exogenous feeding/energy accumulation has been suggested to 

have a possible interaction with larval size (Augustine et al., 2011). Just very limited 

data is available regarding the effects of microplastics on growth development of teleost 

fish. However, exposure of 8 dph seabass larvae (Dicentrarchus labrax) to a diet 

contaminated with 0, 103, 104 or 105 fluorescent microbeads g
-1

 of food (mix of 10 - 45 

μm) for 18 days found a 25% decreased growth rate following the exposure (Mazurais 

et al., 2014). Additionally, exposure of larvae of the sea urchin Tripneustes gratilla to 0, 

1, 10, 100 and 300 spheres ml
-1

 of 10 - 45 μm polyethylene plastic spheres indicated 

that plastic particles were ingested in a dose dependent manner and resulted in a small 

non dose dependent effect on larval growth (Kaposi et al., 2013). Also ingestion of 
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plastic particles in birds has been observed to affect food intake and thus energy 

accumulation (Ryan, 1990) and to cause hepatic stress in exposed fish (Rochman et al., 

2013b). 

The presence of high levels of microplastic sized plastic fragments in aquatic nursery 

environments and their potential to become ingested is of concern since larval stages are 

especially vulnerable to environmental and anthropogenic stress due to low energy 

reserves. Therefore, the aim of this chapter was to investigate the potential of different 

sized polystyrene plastic spheres at different concentrations to induce biological effects 

in young fish larvae. Ingestion of plastic spheres was confirmed using fluorescent 

microscopy of larvae and levels of ingestion evaluated using relative fluorescent 

intensity. To evaluate if exposure had any effects on biological endpoints the length, 

wet weight and condition index K were compared to a control group. Additionally, 

relative expression of the detoxification enzyme CYP1A was investigated to test for 

detoxification processes to alkanes on a molecular level. To test for exposure to 

oestrogenic, plastic derived chemicals the relative expression of VTG B was assessed. 

4.3 Material and methods 

An initial range finding experiment (preliminary experiment) was conducted to 

determine the concentrations of plastic particles to be used for the main experiments. 

For this, 10.6, 106 and 1060 mg L
-1

 of 1 µm fluorescent polystyrene microspheres were 

used. This was followed by two experiments to assess the biological effects of the 

ingested plastics in larvae exposed to graded densities (5.3, 53 and 530 mg L
-1

) of 1 µm 

(experiment 1) and 9.9 µm (experiment 2) polystyrene spheres. Length weight and 

condition index K were evaluated for all experiments as measurements for biological 

effects as described in Chapter 2, section 2.3.1. Additionally, relative expression of 

CYP1A (biomarker for exposure to organic pollutants) and the egg yolk protein VTG B 

(biomarker for exposure to oestrogenic pollutants) were measured for experiment 1. 

Details for the material and methods for the molecular work can be found in Appendix 

I. 
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4.4 Test organisms 

F2 generation stickleback eggs were obtained from the spawning of three separate 

breeding pairs in aquaria at the Institute of Marine Sciences, University of Portsmouth 

and maintained prior to the exposure as described in Chapter 2, section 2.1.1.1. Shortly 

before hatching, eggs were randomly transferred between 12, one litre beakers, with 40 

ml (preliminary experiment) or 200 ml (main experiments) of AFW. Beakers were 

maintained under the same conditions as the 96-well plates. Live and dead eggs were 

recorded daily, with any dead eggs removed. Pre exposure the larvae were fed defrosted 

rotifers (Tropical Marine Centre, UK) twice daily from 2 days post hatch until the 

initiation of the experiment. 

4.4.1 Microplastic spheres 

For the preliminary experiment and experiment 1, 1 µm sized fluorescent polystyrene 

spheres were used. For experiment 2, 9.9 µm sized fluorescent polystyrene spheres were 

used. For details of the used spheres see Chapter 2, section 2.2. 

4.4.2 Water supply apparatus 

See Chapter 2, section 2.1 for details of the water supply apparatus. Water temperatures 

were monitored daily throughout the experiments and ranged between 17.9 and 19°C 

(preliminary experiment and experiment 1) and 17.5 and 18.5°C (experiment 2), while 

pH levels were checked twice weekly and ranged between 7.26 and 7.95 (preliminary 

experiment and experiment 1) and 7.05 and 7.52 (experiment 2). Dissolved oxygen 

concentrations were checked twice weekly and remained over 70% of the air saturation 

value for the duration of all experiments. 

4.4.3 Fish exposure 

All exposures (preliminary, experiment 1 and experiment 2) began as the stickleback 

larvae reached an age of 7 dph. The designated hatching day was the day the majority of 

larvae had hatched, which was day 1 for this test. 

Larvae for the preliminary exposure were maintained in 40 ml of AFW and exposed for 

a total of 7 days. One treatment was maintained as a control free of any plastic spheres. 
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The other 3 treatments were exposed to 1 µm microplastic beads with a logarithmic 

ascending dosage. A Low treatment was exposed to 10.6 mg L
-1

, a Medium treatment to 

106 mg L
-1

 and a High treatment to 1060 mg L
-1

 plastic spheres. A total of 12 beakers 

were used with 7 fish beaker
-1

 and 3 replicates treatment
-1

. 

Larvae for experiment 1 were maintained in 200 ml of AFW and exposed for a total of 7 

days. One treatment was maintained as a control free of any plastic spheres. The other 3 

treatments were exposed to 1 µm microplastic beads with a logarithmic ascending 

dosage. A Low dose treatment was exposed to 5.3 mg L
-1

, a Medium dose treatment 

was exposed to 53 mg L
-1

 and a High dose treatment was exposed to 530 mg L
-1

 of 

polystyrene plastic spheres. A total of 12 beakers were used with 12 fish beaker
-1

 and 3 

replicates treatment
-1

. 

Larvae for experiment 2 were maintained in 200 ml of AFW and exposed for a total of 7 

days. One treatment was maintained as a control free of any plastic spheres. The other 3 

treatments were exposed to 9.9 µm microplastic beads with a logarithmic ascending 

dosage. A Low dose treatment was exposed to 5.3 mg L
-1

, a Medium dose treatment 

was exposed to 53 mg L
-1

 and a High dose treatment was exposed to 530 mg L
-1

 of 

polystyrene plastic spheres. A total of 12 beakers were used with 8 fish beaker
-1

 and 3 

replicates treatment
-1

. 

4.4.4 Sampling 

On day 7 of the experiment (larval age 14 dph), larvae were sacrificed as described in 

Material and Methods (Chapter 2) section 2.3. Three fish per beaker were fixed in 

RNAlater (Sigma Aldrich, UK) and stored at -80°C for subsequent isolation of RNA 

(experiment 1). The remaining fish were fixed in 10% buffered formalin for fluorescent 

microscopy to evaluate presence of ingested microspheres in the GI (preliminary and 

experiments 1 and 2). 

4.4.5 Fluorescent determinations 

To provide evidence for the ingestion of plastic from the water column and investigate 

dose dependent effects on the ingestion of plastic from the water column, presence of 

fluorescent plastic beads within the larva was determined. For each sample, presence or 

absence of fluorescent microbeads was recorded by placing individual larvae on a 
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microscope slide and examine it with a Zeiss LUMAR.V12 stereo microscope with an 

AxioCam MRm camera and AxioVision software (ZEISS, Germany) and a Green 

Fluorescent Protein (GFP) filter (excitation 485 nm; emission 520 nm) at 20x 

magnification. To compare fluorescence of larvae between treatments, larvae were 

placed in clear, flat bottom 96-well plates (one larvae per well) and read with a 

POLARstar OPTIMA microplate reader. The fluorescence comparison using the 

microplate reader was just carried out for experiment 1. Additionally, to monitor 

egestion of the ingested plastic spheres, detritus samples were collected and analysed 

with a Zeiss LUMAR.V12 stereo microscope with an AxioCam MRm camera and 

AxioVision software (ZEISS, Germany) and a Green Fluorescent Protein (GFP) filter 

(excitation 485 nm; emission 520 nm) at 80x magnification. Analysis of detritus 

samples was just carried out for experiment 2. 

4.4.6 Gene expression 

Molecular analysis was carried out by Dr Karen L. Thorpe for larvae from experiment 

1. Material and methods for this molecular work can be found in Appendix I. 

4.4.7 Statistical analysis 

All statistical analysis was carried out as detailed in Chapter 2, section 2.3.5. 

4.5 Results  

4.5.1 Effects on mortality 

The mortality of one exposed larvae was observed during the preliminary study (98.8% 

survival). No mortality was observed for exposed larvae from experiment 1 (100% 

survival), whereas 9 larvae died during experiment 2 (89.7% survival). Of these dead 

fish in experiment 2, four were found in the Control treatment and five in the Medium 

treatment. Not more than one dead larva was found per treatment per day and mortality 

occurred across replicates of the affected treatments. 
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4.5.2 Ingestion of plastic spheres from the water column 

Consistent with expectations, no plastic particles were found in larvae of the Control 

group of the preliminary and the two main experiments. Examination of sampled larvae 

from the preliminary experiment with a fluorescent microscope suggested that all fish 

from plastic treatments had ingested the fluorescent plastic spheres and that the quantity 

ingested appeared to be related to dose (Figure 4.1). The same effect on plastic ingestion 

was suggested for both main experiments (Figure 4.2). Further evidence, to this visual 

examination for a dose dependent ingestion of the spheres, was provided by fluorescent 

plate reader results (Figure 4.3). Fluorescence of Low treatments were 1.04 ± 0.17 fold 

higher, Medium treatments were 1.17 ± 0.27 folds higher and High treatments groups 

were 1.30 ± 0.42 folds higher when compared to the Control group and showed to be 

different between exposure groups (H(3, N = 69) = 27.629, p<0.001). However, 

pairwise comparison of treatments with the Control and between plastic treatments 

revealed that the Low treatment did not have a higher fluorescence when compared to 

the Control (H(1, N = 35) = 0.393, p = 0.531). The Medium (H(1, N = 35) = 11.557, p = 

0.001) and the High (H(1, N = 35) = 10.893, p = 0.001) treatments, however, showed to 

have a higher larval fluorescence when compared to the Control. Larvae from the Low 

treatment group were found to have a lower fluorescence when compared to the 

Medium (H(1, N = 36) = 6.247, p = 0.012) and High (H(1, N = 36) = 8.289, p = 0.004) 

treatments. No difference in fluorescence was found between the Medium and the High 

treatments (H(1, N = 36) = 2.027, p = 0.155). Whereas these pairwise comparisons did 

not support a clear treatment related ingestion of plastic spheres, a Pearson´s correlation 

confirmed that higher treatment exposure levels were correlated to higher fluorescent 

levels of examined larvae (r = 0 .554, p < 0.001, n = 71) (Figure 4.4). 
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Figure 4.2: Pictures of larvae taken with a fluorescent microscope after 7 days of 

exposure to a plastic contaminated water column. Fluorescence in the gastrointestinal 

tract (GI) of larvae indicates a dose dependent ingestion of the plastic spheres from the 

water column. a = Control (0 mg L
-1

), b = Low (5.3 mg L
-1

), c = Medium (53 mg L
-1

)
 
and 

d = High (530 mg L
-1

)
 
treatment. Fluorescence of Control fish derived from the auto 

fluorescence of the GI. 
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Figure 4.3: Mean (± SEM) fluorescent intensity, relative to the Controls, 

measured in larvae from each treatment after a 7 day exposure to a 

logarithmic ascending dosage of fluorescent plastic spheres (1 µm) 

measured with a fluorescent plate reader Low (5.3 mg L
-1

), Medium (53 

mg L
-1

)
 
and High (530 mg L

-1
). Larvae for this analysis derived from 

experiment 1. ***=p < 0.001. 
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Figure 4.4: Pearson´s correlation between larval fluorescence and 

exposure concentration of larvae sampled after a 7 day exposure to 0, 5.3, 

53 and 530 mg L
-1

 fluorescent plastic spheres. Fluorescence of larvae was 

determined using a fluorescent plate reader and values (y-axis) correlated 

with treatment groups (x-axis). A Person´s correlation revealed a dose 

dependent intensity of fluorescence (r = 0 .554, p < 0.001, n = 71). 
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In line with the full body examinations of sampled larvae with a fluorescent microscope 

and the measurements of the fluorescent plate reader that indicated a dose dependent 

ingestion of plastic spheres, visual examination of detritus samples indicated a dose 

dependent egestion of plastic spheres (Figure 4.5). 

 

  

Figure 4.5: Pictures of detritus samples, taken with a Zeiss LUMAR.V12 stereo 

microscope with an AxioCam MRm camera and AxioVision software (ZEISS, 

Germany) and a Green Fluorescent Protein (GFP) filter (excitation 485 nm; 

emission 520 nm) at x80 magnification. a = Control (0 mg L
-1

), b = Low (5.3 mg 

L
-1

), c = Medium (53 mg L
-1

)
 
and d = High (530 mg L

-1
). Detritus samples 

mostly comprised out of faeces. Fluorescence indicated a dose dependent 

egestion of plastic particles. Detritus samples derived from experiment 2. 
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4.5.3 Biological effects 

4.5.3.1 Effects on total length 

Results from the preliminary experiment revealed that the 7 day exposure to the 1 µm 

plastic spheres induced a higher total length (H(3, N = 83) = 20.834, p < 0.001) (Figure 

4.9a). Pairwise comparison of treatment groups with the Control revealed that a higher 

total length could be found for fish exposed to the Low (H(1, N = 24) = 6.607, p = 

0.010), Medium (H(1, N = 41) = 10.032, p = 0.002) and High (H(1, N = 42) = 18.024, p 

< 0.001) concentration of plastic spheres. The observed increase in length seemed to be 

positively correlated to the level of microplastics (r = 0.339, p = 0.002, n = 83) (Figure 

4.6a). 

Similar to these results also the exposure to 1 µm plastic spheres in experiment 1 

induced an increased total length (H(3, N = 144) = 30.607, p < 0.001) (Figure 4.10a). 

Pairwise comparison between treatment groups, however, revealed no differences 

between the Control and the Low treatment (H(1, N = 72 = 1.978, p = 0.160) but 

between the Control and the Medium (H(1, N = 72) = 25.451, p = 0.004) and High 

(H(1, N = 72) = 25.451, p < 0.001) treatments. Like for the preliminary study also the 

lower concentrations seemed to affect an increase in length in a positively, dose 

dependent manner (r = 0.419, p < 0.001, n = 144) (Figure 4.6b). Additionally, a 

Pearson´s correlation revealed that the dose dependent increase of fluorescence of fish 

larvae measured with the fluorescent plate reader was correlated with increased length 

(r = 0.984, p < 0.001, n = 12). 

Unlike for the exposures to the 1 µm spheres, no effect on total length could be 

observed when larvae were exposed to the 9.9 µm spheres in experiment 2 (H(3, N = 

87) = 3.728, p = 0.292) (Figure 4.10a). However, even though no differences were 

found, relative to the control, a positive dose dependent effect on total length was still 

observed for experiment 2 (r = 0.339, p = 0.002, n = 83) (Figure 4.6c). 

Overall, the highest concentration induced the most pronounced effects on total length 

when compared to experiment 1 and 2. Comparing the two particles sizes revealed that 

the 1 µm sized plastic spheres had the potency to induce stronger effects when 

compared to the 9.9 µm spheres. 
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Figure 4.6: Correlations of total length with exposure 

concentration of larvae sampled after 7 days of exposure to a 

plastic contaminated water column with a = 1 µm spheres at 0, 

10.6, 106 and 1060 mg L
-1

; b = 1 µm spheres at 0, 5.3, 53 and 530 

mg L
-1

; c = 9.9 µm spheres at 0, 5.3, 53 and 530 mg L
-1

. 
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4.5.3.2 Effects on wet weight 

Exposure to 1 µm spheres in the preliminary experiment had an effect on wet weight of 

exposed fish (F3,79 = 6.474, p = 0.001) (Figure 4.9b). A Dunnett´s Post-Hoc test 

revealed that higher wet weights could be found for the Medium (p = 0.001) and High 

(p = 0.004) treatments when compared to the Control. There was a weak correlation for 

a dose dependent, positive increase in weight (r = 0.243, p = 0.27, n = 83) (Figure 4.7a). 

Unlike the found similarities in total length, exposure to 1 µm plastic spheres in 

experiment 1 had no effect on measured wet weights (F3,140 = 0.992, p = 0.399) (Figure 

4.10b). Additionally, no correlation was found between exposure dosages and measured 

wet weight for experiment 1 (r = -0.099, p = 0.238, n = 144) (Figure 4.7b). 

Similar to results from experiment 1, no effects on wet weight of sampled larvae (F3,83 = 

0.447, p = 0.720) was found for larvae exposed to the 9.9 µm spheres in experiment 2 

(Figure 4.10b). However, there was a weak but significant, positive correlation between 

exposure concentration and measured wet weight for experiment 2 (r = 0.233, p = 

0.035, n = 83) (Figure 4.7c). 
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Figure 4.7: Correlations of wet weight with exposure 

concentration of larvae sampled after 7 days of exposure to a 

plastic contaminated water column with a = 1 µm spheres at 0, 

10.6, 106 and 1060 mg L
-1

; b = 1 µm spheres at 0, 5.3, 53 and 530 

mg L
-1

; c = 9.9 µm spheres at 0, 5.3, 53 and 530 mg L
-1

. 
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4.5.3.3 Effects on condition index K 

The condition index K showed significant differences for the preliminary exposure to 

the 1 µm plastic spheres (H(3, N = 83 )= 9.422, p = 0.024) (Figure 4.9c). Pairwise 

comparison of the plastic treatments with the Control revealed that larvae from the Low 

(H(1, N = 42) = 5.242, p = 0.022) and High (H(1, N = 42) = 7.942, p = 0.005) but not 

the Medium (F1,39 = 3.414, p=0.072) treatment had reduced condition indices. A weak 

but significant negative correlation was found between exposure levels and condition 

index K (r = -0.231, p = 0.037, n = 83) (Figure 4.8a). 

Similar results for a reduced condition of exposed fish were found for experiment 1 

(F3,140 = 13.372, p < 0.001) (Figure 4.10c). A Dunnett´s post hoc test revealed decreased 

condition indices between the Control and the Low (p = 0.02), Medium (p = 0.01) and 

High (p < 0.001) treatments. A negative correlation was found between exposure 

concentration and condition index K (r = -0.381, p < 0.001, n = 143) (Figure 4.8b). 

Like the preliminary exposure and experiment 1, also the 9.9 µm sized spheres used in 

experiment 2 showed to have an effect on larval condition (H(3, N = 87) = 16.007, p = 

0.001) (Figure 4.10c). Pairwise comparison of treatments with the Control revealed that 

there was no difference between the Low treatment and the Control group (H(1, N = 44) 

= 0.333, p = 0.564) but a reduced condition index for the Medium (H(1, N = 39) = 

6.976, p = 0.008) and High (H(1, N = 44) = 6.242, p = 0.012) treatments. A Pearson´s 

correlation revealed a weak but significant, negative correlation between increasing 

exposure levels and condition index K (r = -0.241, p = 0.028, n = 83) (Figure 4.8c). 

All exposures indicated that ingestion of the plastic spheres had a negative effect on the 

condition index K. 
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Figure 4.8: Correlations of condition index K with exposure 

concentration of larvae sampled after 7 days of exposure to a plastic 

contaminated water column with a = 1 µm spheres at 0, 10.6, 106 and 

1060 mg L
-1

; b = 1 µm spheres at 0, 5.3, 53 and 530 mg L
-1

; c = 9.9 µm 

spheres at 0, 5.3, 53 and 530 mg L
-1

. 
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Figure 4.9: Biological endpoints of the preliminary study measured with a = total 

length, b = wet weight and c = condition factor K of sampled larvae after a 7 day 

exposure to a logarithmic ascending dosage of 1 µm plastic spheres (Control = 0 mg L
-

1
, Low = 10.6 mg L

-1
, Medium = 106 mg L

-1
 and High = 1060 mg L

-1
) from the 

preliminary experiment (exposed to 1 µm spheres). An increase in length was 

observed for the Medium (p = 0.002) and High (p < 0.001) treatments, an increased 

wet weight for the Medium (p = 0.001) and High (p = 0.004) and a reduction in 

condition index K for the Low (p = 0.022) and High (p = 0.005) treatments when 

compared to the Control group. Each column represents the mean ± SEM. 
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Figure 4.10: Biological endpoints of the two main experiments measured with a = total 

length, b = wet weight and c = condition factor K of sampled larvae after a 7 day 

exposure to a logarithmic ascending dosage of 1 µm (experiment 1) or 9.9 µm 

(experiment 2) plastic spheres (Control = 0 mg L
-1

, Low = 5.3 mg L
-1

, Medium = 53 mg 

L
-1

 and High = 530 mg L
-1

). An increase in length was observed for the Medium (p = 

0.004) and High (p < 0.001) treatments of experiment 1 and a reduction in condition 

index K for Medium (p = 0.008) and High (p = 0.012) treatments of experiment 2 and 

Low (p = 0.02), Medium (p = 0.01) and High (p < 0.001) plastic treatments of experiment 

1. Each column represents the mean ± SEM. 
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4.5.4 Gene expression 

Real time qPCR analysis of relative expression of the gene encoding CYP1A was found 

to be differently expressed between treatments (F3,20 = 3.698, p = 0.029) (Figure 4.11a). 

A Dunnett´s Post-Hoc test revealed that there was no difference between the Low 

treatment and the Control (p = 0.177, n = 12) but for the Medium (p = 0.025, n = 12) 

and the High (p = 0.023, n = 12) treatments when compared to the Control. 

Additionally, a correlation between plastic exposure levels and relative expression of 

CYP1A was found (r = 0.461, p = 0.023, n = 24). There was no evidence that exposure 

induced an increase of relative expression for VTG B (H(3, N = 24) = 4.820, p = 0.185) 

(Figure 4.11b) in larval fish following the 7 day exposure. 

Figure 4.11: Relative expression of cytochrome P450 1A (CYP1A (a)) 

and vitellogenin B (VTG B (b))following a 7 day exposure to a 

logarithmic ascending dosage (Control = 0 mg L
-1

, Low = 5.3 mg L
-1

, 

Medium = 53 mg L
-1

 and High = 530 mg L
-1

) of 1 µm polystyrene 

plastic spheres. Upregulated relative expression of CYP1A was found 

for the medium (p = 0.025) and high treatments (p = 0.023) whereas no 

differences were found for the expression of VTG B. Fish used for this 

analysis derived from experiment 1. Each column represents the mean 

± SEM. 
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4.6 Discussion 

This study raises concern that exposure to a plastic contaminated water column can 

have negative effects on the condition of young fish larvae. Ingestion of plastic particles 

was observed in all experiments for all exposure concentrations of both sphere sizes, 

indicating that plastic ingestion will increase as pollution levels rise. The higher 

concentrations of the 1 µm plastic spheres used in the preliminary study had a positive 

impact on length (p < 0.001) and wet weight (p = 0.001) but had a negative effect on 

condition factor K (p = 0.024). Findings from experiment 1, using lower concentrations 

of the 1 µm plastic spheres confirmed the findings for a positive effect on length (p < 

0.001) and negative effect on condition index K (p < 0.001). However, no effect on wet 

weight was observed (p = 0.118). Experiment 2 using the larger 9.9 µm sized plastic 

spheres found similar results for a reduced condition index K (p = 0.001) but did not 

show an effect on length (p = 0.292) and weight (p = 0.720), indicating that the smaller 

spheres had a higher potency to induce effects for these measured biomarkers. For all 

experiments, a negative, dose dependent effect for the condition index K could be 

observed. Additionally, up regulation of expression of CYP1A in larvae from 

experiment 1 indicated an induction of elevated detoxification processes in the Medium 

(p = 0.025) and High (p = 0.023) treatments when compared to the Control. No effects 

for the relative expression of VTG B were found (p = 0.185), suggesting that no 

biologically active concentrations of oestrogenic chemicals leached from the plastic 

spheres. 

The survival of larvae from both experiments using the 1 µm plastic spheres was not 

affected by the exposure over the duration of 7 days which is consistent with findings 

from other studies (Kaposi et al., 2013, Besseling et al., 2013, Mazurais et al., 2014). 

The mortality of the larvae observed in experiment 2 is thought to be due to stress after 

water changes since just single mortalities across replicates occurred. 

Larvae from all exposures showed a dose dependent ingestion of the plastic spheres 

which is consistent with findings for other marine larvae (Kaposi et al., 2013) and 

suggests that increasing pollution levels can lead to elevated ingestion rates in fish 

larvae. Additionally, detritus samples from experiment 2 indicated a dose dependent 

egestion of plastic spheres. However, since faeces pellets of such young fish are very 

small, samples consisted of faeces and detritus from the bottom of the exposure vessels. 
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Since static water conditions were used, the density of water at 18°C is 0.9986 g cm
-3

 

(ASCE-library) and the density of the used plastic spheres is 1.05 g cm
-3 

(see Chapter 2, 

section 2.2), spheres were expected to slowly sink to the bottom of the exposure vessels. 

Therefore, the observed dose dependent fluorescence in detritus samples may not only 

be due to a dose dependent egestion but also due to the actual exposure concentrations. 

The observed dose dependent increase in total length, which was observed for the 

preliminary experiment and experiment 1 but not for experiment 2, stands in contrast to 

expectations and results from other studies; Ingestion of plastic particles that do not 

contain any nutritional value and which are considered biochemically inert (Teuten et 

al., 2009, Lithner et al., 2011, Roy et al., 2011) can induce a false sense of satiation due 

to the accumulation of indigestible plastic in gastrointestinal tract. A likely consequence 

of this is a reduced feeding rate and thus energy accumulation (Ryan, 1990). Since 

young fish larvae invest the majority of their energy in growth, this reduction in energy 

accumulation is likely to result in reduced growth. Accordingly, Mazurais et al. (2014) 

who exposed 8 dph seabass larvae (Dicentrarchus labrax) to a diet contaminated with 0, 

103, 104 or 105 fluorescent microbeads g
-1

 of food (mix of 10 - 45 μm) for 18 days 

found a 25% decreased growth rate following the exposure. Also Kaposi et al. (2013) 

found a decrease in post-oral arm length in Tripneustes gratilla larvae that had been 

exposed to the highest concentration (0, 1, 10, 100 and 300 spheres ml
-1

) of 10 - 45 μm 

polyethylene plastic. One possible explanation for the observed dose dependent increase 

in length could be the leaching of biologically active concentrations of plastic derived 

chemicals. Polystyrene has been reported to leach bioactive compounds like 

alkylphenols (Soto et al., 1991) and styrene (Ahmad and Bajahlan, 2007). Styrene 

exposure has been linked to increased levels of the human growth hormone (HGH) 

through neuroendocrine disrupting effects (Mutti et al., 1984), an effect that cannot be 

observed for other plastics like polyethylene which was used for Kaposi et al. (2013) 

and Mazurais et al. (2014). Alkylphenols and styrene have been found to display 

oestrogenic properties (Bang et al., 2012) and oestrogens are known to be involved in 

regulation of fish growth and exposure to oestrogens has been shown to have a growth-

promoting effect in larval sticklebacks (Hahlbeck et al., 2004a). It has been previously 

reported that cytochrome P450 is involved in the hydroxylation of alkanes (Blasig et al., 

1984) and is thought to be one of the main enzymes involved in the biotransformation 

of xenobiotics in fish (Boon et al., 2002). Hence, the increased relative expression of 

CYP1A in the Medium and High treatment groups of experiment 1 could indicate an 
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exposure to plastic derived chemicals. Even though no differences in the relative 

expression of VTG B was found, plastic treatments showed a trend for elevated 

expression levels, which indicates that fish were exposed to low concentrations of 

weakly estrogenic chemicals. The found relationship between plastic exposure levels 

and relative expression of the CYP1A may indicate a dose related leaching of plastic 

derived chemicals. However, the low fold changes in the relative expression of CYP1A 

observed in this study suggest that just low concentrations leached from the ingested 

spheres. In comparison, a 12 day exposure of Chinese rare minnow (Gobiocypris rarus) 

to as little as 4 µg L
-1

 of benzo-a-pyrene resulted in a 10-fold change in the relative 

expression levels of CYP1A. The exposure to 100 µg L
-1

 benzo-a-pyrene resulted in a 

38-fold increase in the relative expression of CYP1A when compared to controls (Yuan 

et al., 2013). Objections that the sampling regime might have missed higher relative 

expression levels of CYP1A (Wang et al., 2010; see Chapter 3, section 3.5) have to be 

considered as well. However, continuous exposure of larvae of red sea bream (Pagarus 

major) to benzo-a-pyrene showed a continuous increase in the levels of CYP1A 

expression from 24h to 120h post hatch at all exposure concentrations (0.1, 0.5 and 1 µg 

L
-1

) (Wang et al., 2009). This indicates that continuous exposure of young fish larvae 

has the potential to lead to greater relative expression levels of CYP1A over time. Even 

though the underling processes remain unclear, plastic promoted growth combined with 

lower energy accumulation levels due to ingested plastic, combined with the elevated 

energetic costs of upregulated, CYP1A mediated, detoxification processes may lead to 

the rapid exhaustion of the larvae´s limited energy reserves. 

Indeed, signs for the depletion of energy reserves were observed for all experiments, 

indicated by a dose dependent reduction in condition index K. The condition index K (K 

= 100*(W/L
b
)) (see Chapter 2, section 2.3.1) as calculated after Fulton (Ricker, 1975) 

provides a useful and one of the most widely used tools to evaluate a weight-length ratio 

based condition in fish (Jones et al., 1999). However, when calculating the condition 

index K, caution has to be taken since the assumption of isometric growth of the 

organism is of importance because length is raised to the 3rd power (b = 3) (Stevenson 

and Woods, 2006). Since fish and especially larvae and juveniles, show allometric 

growth (Osse et al., 1997), calculated condition indices after Fulton should be assessed 

with care; If b, deviates from this assumption (b ≠ 3) results for K might not be reliable. 

For this study, a length-weight regression found that exposed larvae showed a positive 

allometric growth (b > 3). For values of b > 3, there is a significant positive relationship 
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between K and fish length, indicating that K will increase with increasing length 

(Anderson and Gutreuter, 1983) (b < 3 results in a decrease in K with increasing length 

(Cone, 1989)). The calculated reduced condition index K might therefore underestimate 

the actual loss in condition of exposed larvae. However, the decline in condition which 

could be observed at concentrations of 5.3 µg L
-1

 (1 μm spheres) and 53 µg L
-1

 (9.9 µm 

spheres) is consistent with other studies that found a negative effect on condition or 

energy reserves due to plastic exposure (Wright et al., 2013, Ryan, 1988, Spear et al., 

1995, Besseling et al., 2013, Oliveira et al., 2013).  

Whereas the preliminary study showed an increase in wet weight for the Medium and 

High treatments, both main experiments did not affect the wet weight of exposed larvae. 

The increased weight found in the preliminary study is thought to be caused by the 

presence of high numbers of ingested plastic particles. This is supported by the dose 

dependent ingestion of plastic spheres from the water column which then resulted in a 

dose dependent increase in weight for larvae from the preliminary experiment. The 

lower concentrations used in the main experiments are believed to have resulted in an 

overall lower number of ingested plastic spheres which did not result in weight affecting 

numbers of ingested plastic spheres in the gastrointestinal tract. 

For the measured biomarkers length and condition index K, the smaller sized plastic 

spheres (1 µm) showed to have a higher potency to cause more severe effects compared 

to the larger plastic spheres (9.9 µm). This effect might be explained by the leaching of 

plastic derived chemicals which has been demonstrated to take place over the plastic´s 

surface and is known to slow down once chemical compounds have to migrate from the 

inner polymer structure to the surface (Teuten et al., 2009). Since the same volume of 

plastic spheres was used to create treatments for both experiments, fish from experiment 

1 were exposed to higher numbers of smaller spheres compared to experiment 2. Hence, 

the higher combined surface area/volume ratio of the smaller particles may have 

promoted the leaching of elevated levels of chemicals from the polymer structure 

compared to larger particles. This hypothesis could be tested by a leaching experiment 

where an equal mass of the 1 µm or 9.9 µm spheres are exposed to physiological 

conditions in the GI of fish. Extracts from the leachates could be then analysed via GC-

MS to quantify the amount of leached chemicals. 
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In conclusion, these data indicate that exposure of young fish larvae to a water column 

contaminated with small plastic particles has the potential to induce growth in length 

through unknown chemical processes. Further experiments are needed to provide 

insight into the underlying processes of this growth induction. Analysis of insulin like 

growth factors could provide valuable information for GH related growth processes 

induced by plastic exposure. Additionally, different plastic types could be used to 

determine if the effects on growth were related to plastic derived chemicals specific to 

polystyrene. However, simultaneous to the induced growth, plastic ingestion was found 

to lead to a reduced condition index, suggesting reduced energy reserves. Such effects 

on energy reserves are critical for fish larvae since they could lead to energy depletion 

in the relative short term due to low energy reserves of this young life stage. Depleted 

energy reserves could fail to support the here detected, CYP1A mediated, elevated 

detoxification processes, leading to toxic effects of plastic derived and environmental 

xenobiotics. 
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5 Chapter 5: Comparison of the biological activity of artificially weathered and non-weathered plastic bag fragments in three-spined stickleback (Gasterosteus 

aculeatus) exposed via their diet 

Chapter 5 

Comparison of the biological activity of artificially 

weathered and non-weathered plastic bag fragments in 

three-spined stickleback (Gasterosteus aculeatus) 

exposed via their diet 

 

The artificial weathering of the plastic bags used for this study was done by Dr Zhongyi 

Zhang (School of Engineering, University of Portsmouth). 
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5.1 Abstract 

In Europe, more than 98 billion single-use plastic bags are used annually from which an 

estimated 4.5 billion end up in the environment. During their lifetime in the 

environment plastic bags degrade through chemical and mechanical factors like 

photodegradation and abrasion, leading to micro sized fragments which become 

available for ingestion by organisms of many trophic levels. Even though, the ingestion 

of plastic by marine biota is widely reported, the biological activity of ingested 

degraded and non-degraded plastics remains widely unclear. In this study male three-

spined sticklebacks were exposed for 28 days, via their diet, to degraded or non-

degraded micro sized fragments of two types of plastic bags. The contaminated diet was 

created by spiking blood worms with 0.5% of weathered or non-weathered fragments of 

the respective plastic bag type. Nile red staining and fluorescent microscopy of faeces 

samples confirmed the daily egestion (and therefore ingestion) of the plastics for all 

plastic treatments. No plastics were observed in the faeces of fish fed blood worms that 

had not been spiked with plastics (controls). Analysis of presence of digesting food in 

the gastrointestinal tract during gastrointestinal dissections provided evidence for a 

prolonged gastric evacuation time of plastic treatments due to higher retention of 

digesting food matter, when compared to control fish. Fish from one degraded plastic 

treatment were found with an elevated liver weight (p = 0.032) and fish from both 

degraded treatments were found with higher wet (p = 0.021) and gutted weights (p = 

0.022) when compared to the control. No mortalities were observed over the duration of 

the experiment and no effects on length (p = 0.153) and condition index K (p = 0.09) 

were found, indicating limited effects of exposure in the short-term. Additionally, the 

release of plastic derived chemicals under simulated stomach pH conditions was 

detected via GC-MS. These analysis indicated that a total of 28 chemicals leached from 

the plastic bag fragments, whereas four of these chemicals might have been endocrine 

disrupting xenoestrogens. Collectively, these results provide evidence that ingested, 

weathered plastic fragments have a higher potency to induce biological effects and 

results suggest that these effects might be due to the leaching of plastic derived 

chemicals, possibly affecting energy metabolism and lead to increased liver weight. 
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5.2 Introduction 

Packaging (i.e. plastic bags) is the largest sector for plastic appliances in Europe 

(PlasticsEurope, 14/15), accounting for nearly 40% of the total annual plastic demand in 

Europe (46.3 million tonnes in 2013). Numbers of consumed single-use plastic bags 

made from high density polyethylene (HDPE) was close to 88 billion bags in 2010 

(BIOIntelligenceService, 2011). Due to their light weight and low price single use 

plastic bags are disposed of carelessly or can get blown away from dumping sites and it 

was estimated that 4.5 billion single-use plastic bags ended up in the environment as 

litter in 2010 (BIOIntelligenceService, 2011). As a result, plastic bags were amongst the 

three most abundant debris classes found on beaches worldwide in 2010 

(BIOIntelligenceService, 2011). 

During its life in the environment plastic bags, like other plastic waste, break down into 

smaller fragments by degradation, leading to micro and nano sized particles (Andrady, 

2011). The process of degradation can be driven by many factors (Singh and Sharma, 

2008) varying strongly between the location and their environmental factors such as 

heat, UV exposure and mechanical stress (Andrady, 1990). In the marine environment, 

degradation of plastic debris on beaches is believed to show the most accelerated 

weathering (Pegram and Andrady, 1989) due to the exposure to high temperatures 

(Shaw and Day, 1994) and high UV radiation (Andrady, 2011). Even though this 

process can take centuries for some types of plastics to be completely decomposed 

(Derraik, 2002), plastic bags can take as little as 10 to 30 years to be broken down 

significantly in the water column (BIOIntelligenceService, 2011), indicating their rapid 

degradation in the environment. The resulting, small fragments have the potential to 

interact with aquatic life; Ingestion of small plastic items has been reported for a wide 

range of species including zooplankton (Cole et al., 2013), mussels (Browne et al., 

2008), worms (Besseling et al., 2013), fish (Foekema et al., 2013, Lusher et al., 2013) 

and birds (Verlis et al., 2013). However, ingestion of degraded plastic fragments is of 

concern since cracks in the polymer structure as outcome of the degradation process do 

not only result in embrittlement and smaller fragments but has also the potential to lead 

to additional leaching of additives due to a higher surface area (Teuten et al., 2007). 

Whereas the leaching of incorporated chemicals from the centre of the polymer slows 

down over time as the material reaches its glass transition state (Ejlertsson et al., 2003), 
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damaged polymer structures do not only have an increased surface area over which 

chemicals can be leached but also enable chemicals from the centre of the polymer to 

leach from the matrix over newly exposed surfaces (Teuten et al., 2009). Accordingly, 

an exposure to degraded plastic may cause different/additional effects, compared to its 

non-degraded state. Many plastic polymers are known to have high concentrations of 

bioactive monomer additives incorporated into the plastics matrix to change its 

characteristics (Moore, 2008). The composition and quantities of these additives like 

plasticisers, UV stabiliser, phthalates to soften polymer structures and also flame 

retardants and colorants depends on the purpose of the final product. It is estimated that 

plastic fillers, reinforcements and additives can account for 50% to 67% of the plastic 

product by weight, depending on the plastic type (Colton et al., 1974, Giam et al., 

1984). Even though data for aquatic environments is rare, the potential of degrading 

plastics to leach plasticisers and additives has been described for landfill models (Bauer 

and Herrmann, 1997, Teuten et al., 2009), indicating the risk of such chemicals to enter 

the environment. Incorporated, hydrophobic chemical compounds are less likely to 

leach from the polymer structure, whereas more hydrophilic compounds like phenols 

can be more easily released to aquatic environments (Teuten et al., 2009). Bisphenol A 

for example has been found to leach from plastics to water in quantities of up to 139 μg 

g
-1

 plastic (Yamamoto and Yasuhara, 1999). The leaching of plastic derived chemicals 

is of concern since they can have adverse effects and many phenolic and alkylphenolic 

compounds like bisphenol A and nonylphenol on aquatic life are described as 

xenoestrogenic due to their potential to act as endocrine disruptors in aquatic organisms 

(Kwak et al., 2001, Oehlmann et al., 2009). 

The aim of this chapter was to investigate the potential health effects arising from 

ingested microplastic sized fragments of weathered and non-weathered, conventional 

HDPE single use plastic bags from two major UK food retailers. Adult three-spined 

sticklebacks were exposed to plastic contaminated diets for 28 days during which faeces 

samples were taken to monitor egestion and therefore ingestion of plastics. To evaluate 

the effects of ingested artificially weathered and non-weathered plastic bag fragments 

the biological endpoints length, wet weight and gutted weight, liver weight, condition 

index K and hepatosomatic index were compared. Additionally, gastrointestinal tracts 

(Oesophagus, stomach, intestine; GI) were dissected to assess plastic ingestion as well 

as size and number of up taken particles and determine the potential risk for 

accumulation or blockage of the GI by plastic particles. Finally, an extraction of 
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chemicals from plastic fragments was performed, followed by GC-MS analysis to 

identify leached chemicals from the plastic bags under artificial stomach pH conditions. 

Results were used to determine possible exposure to plastic derived chemicals. 

5.3 Material and methods 

Since the weathering of plastic items under the influence of UV exposure leads to the 

degradation and embrittlement of synthetic polymers (Decker, 1984, Andrady et al., 

1998) (see Chapter 1, section 1.2.3), weathered plastic used for the experiment will be 

referred to as degraded from hereon. 

5.3.1 Test organisms 

The three-spined sticklebacks used in this study were approximately 14 months old at 

the start of the experiment and maintained as described in Chapter 2, section 2.1.1.2. 

Fish were selected for male fish which was confirmed histologically (see sections 

5.3.6.4 and 5.4.1). The initial live wet weight for fish from each replicate was 

determined at day -4 of the study (Control = 691 ± 43 mg (n = 12), AnD = 642 ± 45 mg 

(n = 12), AD= 637 ± 42 mg (n = 12), BD= 670 ± 3 mg (n = 12) and BnD= 668 ± 8 mg 

(n = 12)). For the definition of treatment abbreviations see section 5.3.3.1. No 

differences were found for the day -4 live wet weight between any exposure tank (F9,51 

= 0.422, p = 0.788). 

5.3.2 Water supply and test apparatus 

See Chapter 2, section 2.1.1.3 for details of the water supply and test apparatus. 

Additionally, to the material and methods described in Chapter 2, section 2.1.1.3, fish 

were transferred to new exposure tanks with clean artificial sea water (ASW) on day 13 

of the experiment as part of a water change. Water temperatures were monitored daily 

throughout the experiment and ranged between 16.8 and 19.2°C, while pH levels were 

checked twice weekly and ranged between 8.07 and 8.72. Dissolved oxygen 

concentrations were checked twice weekly and remained over 70% of the air saturation 

value for the experiment. 
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5.3.3 Preparation of the contaminated diets 

5.3.3.1 Preparation of plastic fragments 

Four different plastic treatments originating from two plastic bag types of two major 

UK food retailers were prepared prior to the experiment. Plastic bag origin will be 

referred to type A for one retailer and type B for the other: Degraded (D) plastic bags 

that had been exposed to 500 hours of UV light in an accelerated weathering station and 

non-degraded (nD) plastic bags (no UV exposure) were finely chopped up using a 

microtome blade to approximately 2 mm
 
long and 1 mm wide fragments. Mean 

measurements for the fragments were AD = 1.6 ± 0.3 mm (n = 30), BD = 1.6 ± 0.3 mm 

(n = 30), AnD = 2.1 ± 0.2 mm (n = 30), BnD = 2.6 ± 0.5 mm (n = 30). The degraded 

plastics were found to be more brittle than the non-degraded plastics resulting in smaller 

fragments and examination via microscopy, revealed the presence of very small plastic 

particles (< 0.1 mm) that derived from the chopping process. 

5.3.3.2 Preparation of the fish´s diet 

Since larger (> 0.1 mm) and smaller (< 0.1 mm) plastic pieces could not be separated, 

the chopped up plastics including the small fragments were mixed with 50% blended 

and 50% non-blended, defrosted and drained blood worms (Tropical Marine Centre, 

UK) at a concentration of 5 mg of plastic per 1 g of food in a ceramic dish to create a 

paste. The resulting blood worm plastic paste was then filled into plastic straws using a 

2 ml syringe without needle, re-frozen at -20°C and kept under these conditions until 

they were used as food (Figure 5.1). 
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One millimetre of the contaminated frozen fish food from each treatment was taken as a 

subsample to test for presence of plastic fragments. The samples were placed on 

microscope slides and thawed before they were stained with a nile red (9-diethylamino- 

5H-benzo [ a] phenoxazine-5–one), Arcos Organics) solution and analysed for plastic 

content under a fluorescent microscope at 20x magnification. Nile red staining was 

performed using a 0.01 g ml
-1

 working solution of nile red, dissolved in 100% ethanol. 

Food samples were stained by adding 200 µl of working solution on the defrosted 

sample before it was squashed with a cover slip. After 5 min the slide was examined 

with a Zeiss LUMAR.V12 stereo microscope with an AxioCam MRm camera and 

AxioVision software (ZEISS, Germany) and a Green Fluorescent Protein (GFP) filter 

(excitation 485 nm; emission 520 nm) at 20x magnification. Nile red has been 

previously applied to visualise small plastic particles with the help of microscopes 

(Andrady, 2011). 

  

Figure 5.1: Preparation of the contaminated food for the dietary exposure using 

degraded (D) and non-degraded (nD) fragments of two plastic bag types (A and B). 

Fifty percent of blood worms were blended and 50% were kept non-blended to create 

a paste before the chopped up plastic bag were added at a ratio of 1 g of defrosted 

blood worms per 5 mg plastic and mixed well. The resulting plastic/blood worm past 

was then filled in colour coded plastic straws, frozen and kept at -20°C until needed. 
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5.3.4 Fish exposure 

Adult male sticklebacks were randomly assigned to 10 aerated glass aquaria (n = 6 fish 

tank
-1

). Exposure tanks contained 6 L of 3.0 ppt ASW and sticklebacks were acclimated 

to test conditions for 3 days and fed frozen blood worms three times daily during this 

period. The five treatment groups were set up in duplicates and were defined as; One 

control (C) treatment which was fed uncontaminated, frozen bloodworm pellets. Two 

degraded (D) treatments which were fed frozen blood worm pellets, contaminated with 

degraded states of plastic bag types A or B, referred to as AD and BD from hereon. Two 

non-degraded (nD) treatments which were fed frozen bloodworm pellets, contaminated 

with non-degraded states of plastic bag types A and B, referred to as AnD and BnD 

from heron. Fish were fed three times daily with 0.22 g (frozen weight) 

(approximatively 5% of body mass) of the artificial diet per feed (0.66 g per day) for a 

total of 28 days. Throughout the exposure period daily faeces samples were removed 

from the exposure tanks to assess evidence for the presence and evaluate numbers of 

egested plastic particles. 

5.3.5 GC-MS analysis 

GC-MS analysis of plastic samples was conducted to identify types of leaching 

chemicals from the chopped up degraded (D) and non-degraded (nD) plastic bags. Prior 

to the analysis all glassware was solvent cleaned by rinsing it first with methanol 

(Fisher Scientific) for three times and then n-hexane (Fisher Scientific) for three times. 

The pH conditions in the fish’s stomach (pH conditions in the stomach can range from 

2.5 to 5 in the three-spined stickleback (Hale, 1965)) were recreated via an acidic 

medium which was prepared by gradually adding hydrochloric acid (Fisher Scientific) 

to reverse osmosis water. This approach was set up to simulate stomach pH during the 

digestion process of the diet. Chopped up degraded or non-degraded plastic (100 mg) 

was then added to 200 ml of this artificial medium (pH 2.6), in a 300 ml Erlenmeyer 

flask (Fisher brand) and sealed with aluminium foil. One flask was used per treatment 

(C, AD, AnD, BD, BnD). Flasks were then placed on a shaker and shook at 110 rpm for 

48h in the dark at 18°C. After 48h chemicals were extracted from the media by adding 5 

ml of n-hexane, shaking and pipetting out the separating hexane phase in to a clean 25 

ml glass vials, using glass pipettes, sealed with aluminium foil and closed with a screw 

cap. Three millilitres of the recovered hexane were evaporated to near dryness under a 
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nitrogen flow and reconstituted in n-hexane (1 ml) before being transferred to amber 

GC-MS glass vials. An Agilent GC-MS (6890N GC) equipped with split/splitless 

injector, fitted with a HP-5MS UI capillary column (30 m long, 0.25 mm i.d. x 0.25 μm 

film thickness) and connected to a mass selective detector (Agilent 5975) was used in 

scan mode to scan the extract. Samples were injected (2 μl) in the splitless mode at an 

injection temperature of 290°C. The column oven was initially held at 50°C for 3.2 min, 

before increasing the temperature in a series of steps (150°C at 30°C min
-1

; 238°C at 

2°C min
-1

; 272°C at 3
 
C min

-1
; to 300°C at 70°C min

-1 
to 300°C where it was held for 

2.73 min). Helium was used as a carrier gas at a constant flow rate of 1 ml min
-1

. 

Identification and analysis of leached chemicals was carried out by individual retention 

times of the chemical compounds which were compared with the internal library and 

mass spectra acquired using electron ionization (EI) at 70 eV. 

5.3.6 Fish sampling and analysis 

After 4 weeks fish were sacrificed as described in Chapter 2, section 2.3. Liver, 

gastrointestinal tract and gonads were sampled from each fish. Whereas the liver was 

stored in RNAlater, the gastrointestinal tract and the gonads were fixed in 10% buffered 

formalin. Wet and gutted weight, liver weight and weight of the gastrointestinal tract 

were weighed to the nearest 0.01 mg and total and standard length measured to the 

nearest 1 mm. 

5.3.6.1 Gastrointestinal (GI) examinations 

To assess if the ingestion of the contaminated diets had any effects on food digestion, 

pictures were taken using a stereo microscope (Leica S6D) with attached camera (JVC 

KY-F1030U) using imaging software (KY link) to record the appearance of the GI 

sample and to assess accumulation of processed food prior to the dissection of the GI 

tracts. Accumulation of processed food was differentiated, depending on the location of 

food matter present within the GI which was divided into oesophagus, stomach and 

intestine. A scoring system was applied where presence of processed food in a 

compartment was scored with 1, whereas absence of food was scored with 0. 

Accordingly, a maximum score of 3 could be achieved if processed food was present in 

each compartment of the GI (Oesophagus, stomach and intestine). The values from the 

scoring system were used for statistical analysis. 
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5.3.6.2 Gastrointestinal dissections 

Dissections were performed to assess presence, quantities and size of ingested plastic 

fragments in the GI (Figure 5.2). After fixing in 10% buffered formalin, GI tracts were 

transferred to 70% ethanol (Fisher Scientific, analytical grade) 24h prior to examination. 

GI tracts were removed from the glass vials and placed in glass petri dishes for further 

procedures. Sample length (Oesophagus + stomach + intestine) and separated stomach 

length were determined to the nearest mm. Oesophagus, stomach and intestine were 

separated using a microtome blade (Thermo Scientific MB35 Premier) and examined 

separately. Microtome blades were used to carefully open up the compartments of the 

GI tract and the content examined for plastic; Plastic found was cleared from processed 

food if necessary, counted and measured to the nearest 0.1 mm under a dissecting 

microscope (Leica Zoom 2000) at 10.5x magnification before being weighed to the 

nearest 0.01 mg using a fine balance (Fisherbrand PS-100). Additionally, the stomach 

walls were carefully scraped using a small spatula to analyse it for microscopic plastic 

particles. The scraped off matter was transferred to a microscope slide (Thermo 

Scientific), stained with nile red (Arcos Organics), covered with a 22x50 cover glass 

(Thermo Scientific) and stored in the dark until examination with a Zeiss LUMAR.V12 

stereo microscope with an AxioCam MRm camera and AxioVision software at 80x 

magnification. 
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Figure 5.2: Dissection of gastrointestinal tracts (GI) of sampled fish after 28 days of 

exposure to a plastic contaminated diet. The figure displays an example of a step by step 

procedure of the GI dissection and content analysis. All procedures were performed 

under a dissecting microscope at 10.5x magnification, using graph paper to determine 

the size of plastic particles to the nearest 0.1 mm. After the initial measurements (1 and 

2) the GI was separated into the single compartments (Oesophagus, stomach and 

intestine) which were opened and assessed for plastic content separately. Additionally, 

stomach scrapes were performed to assess presence of microscopic plastic particles. 
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5.3.6.3 Analysis of faecal matter 

Daily taken faeces samples were pooled per tank, since their origin could not be 

determined to a specific fish. Faeces pellets were examined for the presence of egested 

plastics, and the number and size of egested plastics determined. Faeces samples were 

stored in clear, flat bottom 96-well plates (Costar) before they were transferred on to 

microscope slides (Thermo Scientific) and stained with 200 µl of nile red solution. 

Stained faeces samples were kept in the dark for less than 24h until further examination 

using a Zeiss LUMAR.V12 stereo microscope with an AxioCam MRm camera and 

AxioVision software using a Green Fluorescent Protein (GFP) filter (excitation 485 nm; 

emission 520 nm) at x20 magnification (Figure 5.3). All plastic particles were counted 

and divided into two categories (big > 1 mm or small < 1 mm). 

Figure 5.3: Example pictures of nile red stained faeces samples that were 

collected from a = Type A degraded, b = Type B degraded, c = Type A 

non-degraded and d = Type B non-degraded treatment exposure tank 

during the 28 day exposure. Faeces pellets were stained with a nile red 

solution (0.01 g ml
-1

) prior to analysis under a Zeiss LUMAR.V12 stereo 

microscope with attached AxioCam MRm camera and AxioVision 

software using a Green Fluorescent Protein (GFP) filter (excitation 485 

nm; emission 520 nm) and x50 magnification. Dark matter represents 

unstained faeces composed of digested blood worms. The red arrows 

show the green fluorescing plastic fragments. 
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5.3.6.4 Gonadal sex determination 

For histological methods of the gonadal sex determination see Chapter 2, section 2.3.3. 

Just male fish were used for further analysis of endpoints to measure a sex specific 

response towards the exposure, since plastic can leach additives that can induce 

oestrogenic effects (Soto et al., 1991, Sonnenschein and Soto, 1998) but also 

plasticisers which can reduce testosterone levels (Foster, 2006). Accordingly, exposure 

to plastic fragments might induce sex specific responses due to endocrine disruption of 

sexual hormone levels. 

5.3.7 Statistical analysis 

All statistical analysis were carried out as detailed in Chapter 2, section 2.3.5. 

5.4 Results 

5.4.1 Mortality, behaviour and sex determination 

There was no evidence that ingestion of the plastic contaminated food negatively 

impacted the health of the fish; survival was 100% and fish from all treatments fed 

actively throughout the experiment and did not display any obvious signs of stress 

(body colour and general activity levels were comparable to the control fish). 

Histological analysis revealed that 12 of the 60 fish were female; data from these 

females were excluded from further analysis, leaving final sample sizes of 8, 12, 9, 10 

and 9 fish group
-1

 for the C, AnD, AD, BnD and BD treatments, respectively. 

5.4.2 Presence of plastic particles in the GI 

Consistent with expectation no plastic was found in the GI tract of fish from the control 

treatment (n = 8). There were also no plastics found in the oesophagus of fish from any 

of the plastic treatment groups (n = 40). However, plastics were observed in the 

remainder of the GI tract for all fish fed the AnD and BD contaminated diets and for 

89% of fish fed the AD contaminated diets and 70% of fish fed the BnD contaminated 

diets. For those fish found to have plastics in their GI tracts, further analysis revealed 

that the plastics were only present in the stomach compartment of the GI tract for 58%, 
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50%, 43% and 78% of the fish fed the AnD, AD, BnD and BD contaminated food, 

respectively. Plastics could be found in both the stomach and intestine of the GI tract for 

25%, 38%, 57% and 22% of the fish fed the AnD, AD, BnD and BD contaminated food, 

respectively. In 17% of the fish fed the AnD contaminated food and 12% of those fed 

the AD contaminated food plastics were only found in the intestine. 

It was observed that the fish fed the non-degraded plastics (AnD and BnD) had lower 

numbers (46.8 ± 9.9 and 15.2 ± 6.1 pieces of plastic, respectively) of plastic fragments 

within their GI tract than those fed the weathered plastics (AD and BD; 72.7 ± 18.4 and 

79.2 ± 22.1 pieces, respectively; H(3, N = 34) = 8.886, p = 0.031). However, the 

fragments of non-weathered plastics (AnD and BnD) were observed to be larger (2.2 ± 

0.18 mm and 2.8 ± 0.17 mm, respectively) when compared to those that had been 

weathered (AD and BD; 0.8 ± 0.2 mm and 1.1 ± 0.0 mm, respectively; H(1, N = 1935) 

= 4886.719, p < 0.001; Figure 5.4). When the mean total surface area of the plastics 

recovered from the GI tracts was compared there was no evidence for differences 

between the non-degraded (F1,17 = 0.220, p = 0.645) and degraded (F1,15 = 0.550, p = 

0.470) plastics of Type A and B, indicating that they were exposed to comparable 

quantities of plastic (Table 5.1). Similarly, there were no differences in weight between 

the recovered non-weathered and weathered plastics for the Type A (H(1, N = 19) = 

1.542, p = 0.214) and Type B (F1,15 = 0.222, p = 0.645) bags (Table 5.1). 

For most fish, the plastics found in the GI tracts were embedded in the processed food, 

but in 17, 30 and 22% of the fish exposed to the AnD, BnD and BD contaminated diets 

plastics could be found in the GI tract in the absence of processed food. Higher numbers 

of plastic fragments could be found when processed food was present (AnD = 33.7 ± 

7.9, AD = 62.2 ± 19.7, BnD = 11.9 ± 5.2 and BD = 70.3 ± 21.0 items fish
-1

 (n = 33)), 

whereas fish that had already egested processed food from the GI were found with low 

numbers of plastic particles (2.7 ± 1.1 items fish
-1

 (n = 7)). 

When comparing the average size of plastic fragments used for the preparation of the 

contaminated diets (AD = 1.6 ± 0.3 mm (n = 30), BD = 1.6 ± 0.3 mm (n = 30), AnD = 

2.1 ± 0.2 mm (n = 30), BnD = 2.6 ± 0.5 mm (n = 30)) with those of plastic fragments 

found during the GI dissections (AD: 0.8 ± 0.0 mm (n = 658), BD: 1.1 ± 0.0 mm (n = 

712), AnD: 2.1 ± 0.1 mm (n = 461), BnD: 2.8 ± 0.2 mm (n = 105)) it was observed that 

the mean particle size of degraded fragments had reduced more than those of non-
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degraded treatments. This observation was significant for the AD treatment (H(1, N = 

688) = 12.758, p < 0.001). This suggest that the degraded plastic bag fragments had 

broken up into smaller fragments either during food preparation or digestion and 

provide evidence for degraded polymer structures of artificially weathered plastic 

fragments. 

  

Figure 5.4: Size distribution of plastic particles found in the 

gastrointestinal (GI) tracts of fish that had been fed diets contaminated 

with fragments of degraded (D) and non-degraded (nD) HDPE bag 

types (A and B) for 28 days. All plastic particles were separated, 

counted and measured to the nearest 0.1 mm and divided into size 

classes. For each treatment, the pie chart shows the percentage of 

plastics found for each size class relative to the total number of 

fragments found in the GI tract. 
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5.4.3 Presence of plastic particles in faecal samples 

There was no evidence of plastic contamination within the faeces samples collected 

from the control treatment over the duration of the experiment. However, 24h after 

initiating the exposure plastics could be found in the faeces collected from fish fed the 

degraded plastic contaminated diets. First presence of plastic in faeces samples of non-

degraded treatments was found 48h after initiating the exposure (Figure 5.5). After this, 

presence of plastic in faeces samples was constant for the duration of the experiment for 

the AnD, AD and BD treatments. Faeces samples from the BnD treatment from day 4 

and 5, however, were found with no plastic. It was observed that fish from the degraded 

plastic treatments (AD and BD) egested higher numbers of smaller (< 1 mm) plastic 

fragments (169.6 ± 15.2 items sample
-1

 and 108.1 ± 12.4 items sample
-1

, respectively) 

compared to non-degraded plastic treatments (AnD and BnD) which egested lower 

numbers of larger (> 1 mm) plastic fragments (14.4 ± 1.7 items sample
-1 

and 13.8 ± 1.3 

items sample
-1

, respectively; H(1, N = 232) = 107.485, p < 0.001). These findings are 

consistent with observations from the GI dissections and preparations of the 

contaminated diets where degraded plastics were found in higher numbers and smaller 

sizes compared to the non-degraded plastics. Further investigation into the numbers of 

egested particles showed that there were no differences between replicates of the same 

treatment for AnD (F1,52 = 0.100, p = 0.922), AD (F1,56 = 0.118, p = 0.733) and BD 

(H(1, N = 58) = 1.007, p = 0.316), except for the BnD treatment which showed a 

difference in the number of egested particles between replicates (H(1, N = 58) = 8.000, 

p = 0.005). Comparison between degraded or non-degraded treatments revealed that fish 

from the BD treatment egested higher numbers of plastic compared to the AD treatment 

(H(1, N = 116) = 11.274, p = 0.001), whereas numbers of egested particles was not 

different between the AnD and BnD treatments (H(1, N = 116) = 0.032, p = 0.857). 

Plastic egestion from fish was not uniform over the duration of the experiment and 

spikes and drops in numbers of egested plastic particles could be observed (Figure 5.5). 
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Figure 5.5: Number of plastic fragments present in daily faeces samples collected 

from the degraded (D) and non-degraded (nD) treatment groups of two carrier bag 

types A and B. Faeces were also collected daily from the control groups but were 

confirmed to be free from plastic contamination. Faeces samples were stained with 

nile red, squashed on a microscope slide and examined under a fluorescent 

microscope at x50 magnification, using a green fluorescence protein (GFP) filter. 

Total numbers of plastic pieces was recorded per replicate and the mean calculated. 

Displayed values are the mean ± SEM. Y-Axis labelling differs between graphs due 

to the higher numbers of egested plastic particles that were found in faeces of 

degraded treatments compared to faeces of non-degraded treatments.  
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5.4.4 Biological effects 

No evidence for differences in standard length (F4,43 = 1.768, p = 0.153) of the sampled 

fish was found between all treatment groups (Figure 5.6a). Significant differences in 

wet weight (F4,43 = 3.248, p = 0.021) were observed. A Dunnett`s Post Hoc tests 

revealed that the degraded treatments (AD and BD) had higher wet weights (p = 0.039 

and p = 0.017, respectively) when compared to the control (Figure 5.6b). No differences 

in wet weight were found for AD or BD when compared to non-degraded treatments 

(AnD and BnD) with a Tukey Post Hoc test (p = 0.994 and p = 0.369 or p = 0.933 and p 

= 0.203, respectively). However, a difference in measured GI weight (F4,43 = 2.822, p = 

0.036) between treatment groups was found, which was due to large accumulations of 

processed food (see section 5.4.5). Even though a Dunnett´s Post Hoc test revealed that 

just the AnD treatment had an elevated GI weight (p = 0.012) when compared to the 

control but not the other treatments (AD: p = 0.108, BnD: p = 0.703 and BD: p = 0.189; 

Figure 5.8a), the wet weight was not assumed to be a reliable indicator for the fish´s 

weight. Instead, the gutted weight in combination with the standard length was used to 

calculate the condition index K and liver weight in combination with gutted weight was 

used to calculate the hepatosomatic index (HIS; see section 5.4.6). A difference in 

gutted weight was found between all treatments (F4,43 = 3.169, p = 0.023). A Dunnett´s 

Post Hoc test revealed differences for the AD and BD treatments (p = 0.04 and p = 

0.017, respectively) when compared to the control (Figure 5.6c). No differences 

between AD or BD and non-degraded (AnD and BnD) treatments were found (p = 

0.982 and p = 0.885 or p = 0.371 and p = 0.200, respectively) using a Tukey Post Hoc 

test. Analysis of the calculated condition index K using gutted weight and standard 

length revealed that there was no difference between all treatment groups (F4,43 = 2.157, 

p = 0.090) (Figure 5.6d). 
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Figure 5.6: Biological effects, measured with standard length (a), wet weight (b), gutted 

weight (c) and condition index K (d) following a 28 day exposure to diets contaminated 

with degraded (D) or non-degraded (nD) fragments of two plastic bag types (A and B). 

The sample size for each treatment for all analysed endpoints was n = 12. No effects 

were found for standard length and condition index K. Elevated wet weights and 

gutted weights were observed for the degraded treatments BD (p = 0.017 and p = 0.017, 

respectively) and AD (p = 0.039 and p = 0.04, respectively). Displayed values are the 

mean ± SEM. 
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5.4.5 Retention of processed food 

Examination of pictures taken from the GIs before dissection showed that 50% of 

control fish had processed food still present in the GI. Of these fish 0% had food matter 

present in the stomach. Evaluating pictures from the non-degraded (AnD and BnD) and 

degraded (AD and BD) plastic treatments showed that all groups exposed to the 

contaminated diets had higher amounts of retained processed food (83% and 70%, 89% 

and 89%, respectively) still present in the GI. Even though an overall difference in 

retained food in the GI was found between plastic treatments and the control (H(4, N = 

48) = 12.324, p = 0.015), pairwise comparisons of treatments showed that not the BnD 

treatment (H(1, N = 18) = 2.889, p = 0.089) but the other plastic treatments (AnD (H(1, 

N = 20) = 8.274, p = 0.012), AD (H(1, N = 17) = 7.774, p = 0.011) and BD (H(1, N = 

17) = 9.067, p = 0.003); Figure 5.8b) had a higher amount of retained food present in 

the GI. Of fish that were found with retained processed food in the GI, 100% and 71% 

of the non-degraded treatments (AnD and BnD) and 88% and 100% of the degraded 

treatments (AD and BD) were found with retained food present in the stomach. This 

higher retention of processed food in the stomach of plastic exposed fish was found to 

be significant for all plastic treatments when compared to the control (AnD (H(1, N = 

14) = 13.000, p < 0.001), AD (H(1, N = 11) = 10.000, p = 0.002), BnD (H(1, N = 9) = 

8.000, p = 0.005) and BD (H(1, N = 12) = 11.000, p = 0.001). There was no difference 

in the amount of retained processed food between plastic treatments (H(3, N = 40) = 

1.845, p = 0.605). Since GI dissections revealed that most of plastic in the GI was 

associated with processed food a Pearson´s correlation was performed which showed a 

positive correlation between the amount of retained food and the total surface area of 

plastic in the GI (r = 0.623 n = 35, p < 0.001; Figure 5.7). 
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Figure 5.7: Graph for Pearson´s correlation to test for a correlation between 

total plastic surface area and the amount of retained food in the 

gastrointestinal tract (GI) of fish that had been exposed for 28 days to a diet 

that was contaminated with degraded or non-degraded fragments of plastic 

carrier bags. The values for the faeces accumulation (x-axis) derived from the 

applied scoring system which rated presence of processed food in a 

compartment of the GI with 1 point, whereas absence was rated with 0 points. 

Since no ingested food was found in the oesophagus a maximum score of 2 was 

achieved (processed food present in stomach and intestine). These values were 

then correlated with the total surface area of the plastic that was found during 

GI dissections (y-axis). 



 

165 

 

  

Figure 5.8: Presence of plastic in compartments of the gastrointestinal tract (GI) and 

effects on food retention and stomach weight in fish samples after 28 days of exposure 

to a plastic contaminated diet with degraded (D) or non-degraded (nD) fragments of 

two plastic bag types A and B. a = gastrointestinal weights of sampled fish. The AnD 

treatment showed an elevated gastrointestinal weight compared to the control 

treatment (p = 0.012). b = % of retained food found in the compartments of the GI 

(stomach only, intestine only or in both compartments combined) of sampled fish 

from each treatment. The non-plastic control fish were the only ones to be found 

without food matter present in the stomach whereas all plastic treatments were found 

with food present in the stomach and stomach and intestine combined. c = Number of 

plastic pieces found in the compartments of the gastrointestinal tract (stomach and 

intestine) during the dissections. No plastic was found in gastrointestinal tracts of the 

control treatment and degraded treatments showed a higher number of retained 

particles compared to non-degraded treatments. Values presented in a and c are the 

mean ± SEM. 



 

166 

 

5.4.6 Effects on liver weight  

The analysis of measured liver weight revealed a difference between all treatments 

(F4,43 = 2.637, p = 0.047; Figure 5.9a). However, no differences were found for the 

hepatosomatic index (HSI) (F4,43 = 2.283, p = 0.076; Figure 5.9b). Further analysis with 

a Dunnett´s comparison showed that just the BD treatment had a higher liver weight 

when compared to the control group (p = 0.032). Additionally, Pearson`s correlations 

were computed to assess the relationship between liver weight and gutted weight and 

liver weight and weight of the GI between all treatments. A positive correlation was 

observed for all treatments between liver weight and gutted weight (r = 0.711, n = 48, p 

< 0.001; Figure 5.10a). 

 

  

Figure 5.9: Liver weight and hepatosomatic index (HSI) of sampled fish after 28 days 

of exposure to a diet contaminated with degraded (D) and non-degraded (nD) 

fragments of two plastic bag types A and B. Sample size for both measured enpoints 

was n = 12 per treatment. a = Liver weight. Fish exposed to the BD fragments showed 

elevated liver weights (p = 0.032) when compared to fish fed with uncontaminated diet 

(control (C)). b = HSI calculated using liver weight and gutted weight ((liver weight 

(mg)/gutted weight (mg))*100). No differences were found for the HSI between plastic 

exposed fish and the control treatment. All displayed values are the mean ± SEM. 
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5.4.7 GC-MS analysis 

The GC-MS analysis detected a total of 28 different chemical compounds (Table 5.2). 

The number of chemical compounds leached from the different treatments were AnD = 

11, AD = 4, BnD = 12, BD = 10. Since no standards were used to verify potentially 

detected substances, the presented results give a best fit of analysed molecules with the 

GC-MS library. Even though peak qualities were high for most of the listed compounds, 

the presented detected chemicals have to be seen as an indicator for potentially leached 

chemicals. Nineteen of the 28 compounds were classified by the GC-MS library as 

hydrocarbons with varying chain lengths. From the remaining 8 compounds, four are 

suspected to belonged to different chemical groups (4-Hydroxymandelic acid,ethyl 

ester,di-TMS, Dihydrocoumarin,4,4,5,7,8-pentamethyl, Thiemo[3,2-c]pyridine,3-bromo 

and Butylated Hydroxytoluene) and 4 suspected to be phenolic compounds. The 

suspected phenolic compounds, were Phenol,2,4-bis(1,1-dimethylethyl), Phenol,2-

bromo-4-(1,1-dimethylethyl), Phenol,m-tert-butyl and Phenol,p-tert-butyl and belong to 

the family of alkylphenols. All of these potentially leached alkylphenols are known to 

exhibit endocrine disrupting effects (Olsen et al., 2002, Routledge and Sumpter, 1997, 

EU, 2008, Tollefsen et al., 2008). The two degraded treatments were found to have 

potentially leached up to three of these alkylphenolic compounds (AD = 3, BD = 2) 

whereas the non-degraded plastic bag fragments had potentially released one or two of 

the detected alkylphenolic compounds (AnD = 1 and BnD = 2). For both plastic bag 

types the non-degraded treatments are suspected to have leached more alkanes 

compared to the degraded treatments. However, due to the fact that no standards were 

used for the GC-MS analysis, no evaluation of the quantities of leached chemicals can 

be made. 
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Table 5.2: Candidate chemicals (based on GC-MS library matches) detected via 

gas chromatography using the acidified water approach. Fragments of plastic 

bags from each treatment were treated for 48h with acidified water (pH 2.6) to 

mimic acidic conditions in the stomach of fish. After 48 hours the acidified 

medium was treated with n-hexane to extract chemicals from the water which 

was then analysed for leached chemicals via gas chromatography. Numbers in 

brackets are the match values (peak quality) in percent for the detected 

chemicals. 
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5.5 Discussion 

The findings from this investigation indicate a potential health hazard for small aquatic 

vertebrates through the ingestion of plastic bag fragments. Even though mortality and 

behaviour of fish were not affected, fish from plastic treatments were found with 

prolonged GI residence times of digesting food (p = 0.015), likely caused by 

accumulations of high numbers of ingested plastic particles. Such a prolonged GI 

residence time of food has the potential to lead to reduced food ingestion, resulting in a 

lower energy accumulation and therefore energy depletion in the long term. 

Additionally, the 28 day exposure resulted in elevated gutted weights (p = 0.040, and p 

= 0.017) for fish that had been exposed to diets contaminated with degraded fragments 

of both carrier bag types (A and B, respectively). Exposure also led to an elevated liver 

weight of one of the degraded treatments (BD; p = 0.032). GC-MS analysis identified 

the potential leaching of three oestrogenic and one antiandorgenic alkylphenols under 

simulated stomach pH conditions. 

As expected, no effect on mortality of the exposed fish was found which indicated that 

the exposure did not affect survival in the short term. This is consistent with previous 

studies exposing fish to a plastic contaminated diet (Rochman et al., 2013b, Rochman et 

al., 2014) and highlights that even high numbers of ingested plastic particles that do not 

block the GI, do not pose an acute risk to induce mortality in fish. 

No differences in behaviour were observed between treatment groups. All fish were 

found to feed actively throughout the experiment and did not avoid ingesting the plastic 

contaminated diet, as indicated by the presence of plastic in faecal samples and GIs 

which further supports reports that fish can ingest plastic particles (Choy and Drazen, 

2013, Lusher et al., 2013, Foekema et al., 2013). This indicates that no filing effects 

were induced by the ingested plastic over the here observed time frame which could 

have led to a reduced food ingestion and thus have potential effects on energy 

assimilation (Ryan, 1988). 

Gastrointestinal transit times of food contaminated with the smaller degraded fragments 

were lower than that compared to food contaminated with the larger non-degraded 

plastic fragments which is consistent with findings that smaller, indigestible food 

particles are more rapidly processed than larger ones (dos Santos and Jobling, 1991). 

Ingestion of plastic was found to induce prolonged GI residence times (indicated by 
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higher amounts of retained food in the GI) and gastric evacuation times (indicated by 

higher presence of retained food in the stomach compartment) of processed food in the 

GI of all plastic treatments. Sticklebacks were fed the last time 24h prior to sampling 

and were expected to have completed gastric emptying and egested most of the up taken 

food at the time of sampling; Rajasilta (1980) observed a digestion rate between 7.4 ± 

2.5 and 15.2 ± 2.8 % h
-1

, depending on the composition of the diet at 18°C in 

sticklebacks (Rajasilta, 1980) and a gastric evacuation study by Vinagre et al. (2007) 

presented data that suggested total gastric emptying after 16h after a meal in Solea solea 

and Solea senegalensis (both predatory fish) at 20°C (Vinagre et al., 2007). Complete 

gastric emptying was found for control fish after 24h whereas prolonged gastric 

emptying times of plastic treatments could be observed as indicated by elevated levels 

of retained processed food in the stomach for 75% of fish of all plastic treatments. A 

positive correlation between the amount of retained food and the total surface area of 

plastic in the GI indicated that the presence of ingested plastic lead to the observed 

prolonged residence times of processed food. This observed retention could be 

explained by obstructions caused by plastic (Pierce et al., 2004) but also a more solid 

composition of the digesting food (Read and Houghton, 1989) due to the hindered 

excretion of gastric enzymes (Day, 1980) and the plastic itself. Signs for obstructions 

were seen during the faecal analysis; Faeces samples indicated a possible temporary 

blockage or obstruction of the GI, indicated by a non-uniform egestion of plastic pieces. 

However, since faeces samples for fluorescent analysis were pooled per exposure tank, 

it is difficult to conclude that blockages or obstructions occurred in individual fish. 

Prolonged retention of food might lead to satiation effects, resulting in lower food 

consumption (Derraik, 2002, Thompson, 2006, Ryan, 1988), energy assimilation and 

therefore energy depletion in the long term (Cole et al., 2015). However, prolonged 

residence time can also lead to an increased leaching of chemicals, not only due to a 

longer exposure window but also an increased accumulation of ingested plastic 

particles. To test for plastic related effects on enzyme excretion and energy absorption, 

future studies might consider to test the calorific value of produced faeces and compare 

those to control fish (Lutz, 1990).  

There was a positive effect on gutted weight for fish from both degraded plastic 

treatments. These unexpected results stand in contrast to findings of plastic exposures in 

other studies like Besseling et al. (2013) who found a positive correlation between 

weight loss and plastic concentration in Arenicola marina (Besseling et al., 2013). This 
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observed effect might be explained by the leaching of plastic derived chemicals. The 

leaching of plastic derived chemicals takes place over the plastic´s surface and is known 

to slow down once chemical compounds have to migrate from the inner polymer 

structure to the surface (Ejlertsson et al., 2003). Hence, a high surface area/volume ratio 

of particles but also cracked open polymer structures that expose the inner matrix of the 

polymer could promote the leaching of elevated levels of chemicals from the polymer 

structure. The liver as an important site of detoxification processes can indicate the 

exposure to higher pollutant levels through an increase in liver weight (Slooff et al., 

1983). The BD treatment, which had the highest total surface area of degraded 

fragments in the GI, was the only treatment to show significantly elevated liver weights. 

Even though the AnD treatment had the second highest total surface area, the non-

degraded polymer structures seemed to release less chemicals compared to the AD 

treatment which had a higher liver weight but a lower total surface area. Hence, the 

observed effects on weight for the degraded treatments of both plastic bag types are 

thought to be due to the release of bioactive additives. The GC-MS analysis suggested 

that 4 alkylphenolic compounds leached from the plastic fragments. These chemicals 

which were proposed as a best fit by the GC-MS library are all suspected to have 

endocrine disrupting properties; Brominated phenols like the proposed Phenol,2-bromo-

4-(1,1-dimethylethyl) but also the detected Phenol,m-tert-butyl and Phenol,p-tert-butyl 

are suspected to exhibit oestrogen-like activity by binding to the oestrogen receptor 

(ER) with affinities 10,000, 1,000,000 and 1,500,000-fold less, respectively, compared 

to 17β-estradiol (Olsen et al., 2002, Routledge and Sumpter, 1997, EU, 2008). 

However, even though the single compounds are just moderate to weakly oestrogenic, 

mixtures of oestrogenic compounds are thought to have additive effects (Kortenkamp, 

2007, Thorpe, 2001, Thorpe et al., 2001, Thorpe et al., 2003). Accordingly, mixtures of 

bisphenol A (BPA) and nonylphenol (NP) have been shown to have higher oestrogenic 

potency compared to the single components in swordtail fish (Xiphophorus helleri) 

(Kwak et al., 2001). In addition, the potentially leached2,4-di-tert-butylphenol, a 

degradation compound of phenolic antioxidants and a by-product of tris (2,4-di-tert-

butylphenyl) phosphate, used to produce polyethylene (Bach et al., 2013) is suspected 

to act as an androgen antagonist in rainbow trout (Tollefsen et al., 2008). Exposure to 

antiandrogens is known to reduce testosterone levels in fish (Sharpe et al., 2004). 

Oestrogenic phenolic compounds are suspected to have obesogenic properties by 

promoting adipogenesis, adipocyte differentiation and disturbance of the lipid 



 

172 

 

metabolism (Grün and Blumberg, 2009). They also disrupt the homeostasis of energy 

balance, glucose and lipid metabolism, and control of adipogenesis through the 

interaction with oestrogen and androgen receptors leading to sex steroid dysregulations 

or by inducing neuroendocrine effects, leading to the central integration of energy 

balance (Kelishadi et al., 2013). In fish exposure to xenoestrogens (NP, 4-tert-

octylphenol (t-OP) or BPA) has been shown to disturb lipid metabolism through the 

upregulation of peroxisome proliferator activated receptors and fatty acid synthase 

(which are responsible for lipid accumulation) and downregulation of hormone-

sensitive lipase (which plays a pivotal role in fat mobilization), leading to lipid 

accumulation of exposed fish (Maradonna et al., 2015). Like the tested xenoestrogens 

by Maradonna et al. (2015), also the here potentially leached xenoestrogens exhibit 

oestrogenic action through the binding to ER. Therefore, the observed increased gutted 

weight of the two degraded treatments (AD and BD) could indicate the action of 

obesogenic chemicals. Since just male fish were analysed, the mixture of multiple 

oestrogenic and one anti-androgenic chemicals might have disturbed oestrogen-

androgen balance through oestrogenic action by binding to the ER and decrease of 

testosterone levels, respectively. 

No differences for length and condition index K were observed which indicates that 

exposure did not affect these endpoints over the here investigated time frame. Since 

sexually mature fish were used for this experiment and experimental conditions 

(illumination and temperature) were set for summer time, growth in length was 

expected to be marginally affected; Sticklebacks are long-day breeders, in which spring 

and summer conditions (increasing length of the day and increasing water temperature) 

stimulate spawning (Baggerman, 1990). Since fish are known to decrease growth 

significantly during reproductive season due to energy allocation to processes related to 

reproduction (Munro, 1990), fish from this investigation were not expected to display 

significant changes in length. Indeed, the histological gender determination showed that 

exposed females (all females were excluded from the analysis) had developed oocytes 

present in their gonads. Even though differences in weight were found, no change in 

condition was induced by the exposure to the plastic contaminated diets. 

Collectively, results from this investigation suggest that an ingestion of a diet 

contaminated with fragments of plastic bags can have negative effects on food digestion 

and energy metabolism in fish. Both, degraded and non-degraded plastics lead to 
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prolonged gastric evacuation and GI residence times of digesting food, potentially 

resulting in a reduced food ingestion and energy depletion in the long term. Whereas 

one degraded treatment (BD) induced a higher liver weight, both degraded treatments 

induced higher gutted weights, indicating that degraded polymer structures have a 

higher potential to leach potentially biologically active concentrations of endocrine 

disrupting chemicals compared to non-degraded plastics. This increase in weight could 

be the result of the disruption of the energy balance through xenoestrogens with 

obesogenic mode of action. This potential disturbance in energy metabolism has the 

potential to result in a deviation of energy resources away from growth or reproductive 

processes towards energy storage and might therefore reduce growth and reproductive 

success. Further research is needed to assess the effects of the observed effects on food 

digestion and suggested disturbance in energy metabolism in the long term. Additional 

molecular endpoints to test for changes in oestrogen/androgen ratios and/or alterations 

in other processes regulated by these hormones (including growth, bone morphogenesis, 

insulin signalling, neural development, cell division and apoptosis) (Oehlmann et al., 

2009) should be investigated following a plastic exposure. Molecular endpoints to test 

for exposure to oestrogens and antiandrogens should be included to give further 

evidence for the exposure to biologically active concentrations of plastic derived 

chemicals. Additionally, testing for obesity induced by a potential leaching of 

obesogenic chemicals could be assessed using nile red staining (Tingaud-Sequeira et al., 

2011) and tissue lipid content (Bligh and Dyer, 1959). 
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6 Chapter 6: Assessing the potential for microplastic to act as a vector of biologically active concentrations of absorbed xenobiotics via trophic transfer to fish 

larvae 

Chapter 6 

Assessing the potential for microplastic to act as a 

vector of biologically active concentrations of absorbed 

xenobiotics via trophic transfer to fish larvae 

 

Data presented for experiment 1 were produced by an undergraduate project student at 

the University of Portsmouth (Harry Bannister) under the supervision of Dr. Karen L. 

Thorpe. I assisted with the exposure and provided training for the involved analytical 

techniques. The molecular work for experiment 1 was conducted by Dr. Karen L. 

Thorpe. I conducted all of the experimental work described for experiment 2. 

The analysis and interpretation of the data from all experimental procedures outlined in 

this chapter is my own. 
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6.1 Abstract 

Plastics can adsorb and transport high levels of environmental chemical pollutants from 

the water column. Upon ingestion, these adsorbed pollutants can show increased 

desorption under physiological conditions, potentially exposing the organism to harmful 

levels of chemicals. It remains, however, unclear if plastics can act as a vector for 

chemical pollutants, ingested via trophic transfer and can induce effects in predators. To 

investigate if plastic ingested via trophic transfer can act as a vector for chemical 

pollutants to fish, young (10 dph) three-spined stickleback (Gasterosteus aculeatus) 

larvae were exposed in a series of two experiments; Larvae were exposed for 14 days 

(experiment 1) or 17 days (experiment 2) to a zooplankton diet (Artemia sp.) which had 

been cultured in graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 µg 

L
-1

) with or without the addition of 0.1 µl ml
-1

 of 0.5 µm (experiment 1) or 9.9 µm 

(experiment 2) fluorescent plastic spheres for 24h. Exposure to the highest BPA 

concentration (3200 µg L
-1

 BPA) with the addition of microplastic induced mortality in 

26% of exposed larvae of experiment 2. This effect was not found for the highest BPA 

concentration without the addition of plastic or the smaller plastic spheres used in 

experiment 1. No effects on growth, measured with length (p = 0.991 and p = 0.823), 

weight (p = 0.908 and p = 0.821) and condition index K (p = 0.220 and p = 0.407) were 

observed for experiment 1 and 2, respectively. Relative expression of the detoxification 

enzyme cytochrome P450 1A (CYP1A) was found to be upregulated for the highest 

BPA concentration with the addition of microplastics for experiment 1 (p = 0.028) and 

experiment 2 (p = 0.027). These results provide evidence that microplastics 

contaminated with BPA, ingested via trophic transfer, have the potential to lead to toxic 

effects in young fish larvae. 
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6.2 Introduction 

Environmental chemical pollutants have been reported to accumulate on plastics (Mato 

et al., 2000, Rios et al., 2007, Ogata et al., 2009, Rochman et al., 2013a). 

Concentrations of PCBs adsorbed to polyethylene pellets has been reported to be as 

high as 10,000 ng g
-1

 of plastic (Ogata et al., 2009). Commonly adsorbed chemicals to 

plastic are polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons 

(PAHs) (Ogata et al., 2009). These chemical classes contain substances that are 

suspected to have endocrine disrupting effects through oestrogenic action (Fertuck et 

al., 2001, Matthews and Zacharewski, 2000). Non-polar, chemical pollutants like 

polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in 

aquatic environments tend to partition to soils and sediments (Morel and Gschwend, 

1987, Kile et al., 1995) whereas the organic matter in the soil/sediment (SOM) acts as 

partitioning medium and the mineral matter acts as adsorbent (Chiou et al., 1979, Chiou 

et al., 1981, Chiou et al., 1983). However, there is evidence that plastics have higher 

binding rates of non-polar chemicals compared to sediments and adsorb chemicals from 

the water column with linear distribution coefficient Kd up to 280 times higher for 

plastic than sediment (Kd plastic 38,100 ± 5600 compared to Kd sediment 135 ± 16 for 

the sorption of phenanthrene to polyethylene) (Teuten et al., 2007). This might lead to 

potentially heavily contaminated plastic; In laboratory experiments, chemicals (e.g. 

PAHs and metals) can reach equilibrium on plastic in less than 72 h (Teuten et al., 

2007, Holmes et al., 2012). 

Concerns are raised, since over marine 557 species are known to ingest and be affected 

by plastics, including fish larvae (Hoss and Settle, 1990, Kühn et al., 2015, Mazurais et 

al., 2014). Young fish larvae are an especially vulnerable life stage, prone to energy 

depletion due to their low energy reserves after exhaustion of yolk sac energy reserves 

(see Chapter 4, section 4.2). Zooplankton which has been reported to ingest microplastic 

(Cole et al., 2013, Setälä et al., 2014, Frias et al., 2014) is of essential importance for 

the food web, especially for young fish larvae which depend on it as a food source. 

Evidence for a trophic transfer of plastics from zooplankton to fish has been provided 

(see Chapter 3) (Cedervall et al., 2012). As a consequence, there is a potential for fish 

larvae to ingest polluted microplastic via the diet and become exposed to elevated levels 

of pollutants (Teuten et al., 2009). Contaminated plastic that is directly ingested from 

the water column is known to show increased desorption of accumulated pollutants 



 

177 

 

from the plastic under simulated physiological conditions of the gastrointestinal tract 

(GI) (Bakir et al., 2014a). Accordingly, accumulation of persistent bioaccumulative and 

toxic substances (PBTs) has been found in fish tissue after exposure to contaminated 

plastic pellets which can be followed by adverse effects like glycogen depletion, fatty 

vacuolation and single cell necrosis (Rochman et al., 2013b). However, it remains 

unclear if the ingestion of contaminated plastic via trophic transfer can lead to 

desorption of adsorbed chemicals in sufficient concentrations to induce biological 

effects. 

Of the annual bisphenol A (BPA, 4,4'-isopropylidine diphenol, CAS Registry No. 80-

05-7) production of approximately 7 billion pounds (Erler and Novak, 2010) about 1 

billion pounds of BPA are released into the environment annually (Erler and Novak, 

2010) through landfill waste, as well as BPA containing sewage and effluent (Crain et 

al., 2007). Concentrations of BPA were found at 0.18 µg L
–1

 to 4.3 mg L
–1

 in leachates 

from municipal waste disposal sites (Teuten et al., 2009) and in the order of g day
-1

 for 

effluents of waste water treatment plants (Sánchez-Avila et al., 2009). BPA is a 

moderately hydrophobic compound (Octanol-Water Partition Coefficient (Kow) of 

logKow 3.4 (Cousins et al., 2002) and it is estimated that 50% of dissolved BPA will 

bind to sediments and soils (Anupama-Niar and Sujatha, 2012). Accordingly, there is 

also the potential for plastic fragments to be contaminated with BPA. Exposure is of 

concern since BPA is known to exhibit endocrine disrupting effects in vertebrates at 

environmentally relevant concentrations (Crain et al., 2007). Through the direct 

binding to the oestrogen receptor (ER) (Crain et al., 2007, Harris et al., 1997), BPA can 

induce oestrogenic responses in young life stages of fish, leading to alterations in 

growth, endocrine disruption and act as androgen receptor antagonist (Sun et al., 2014). 

The aim of this investigation was to determine if the ingestion of a live, contaminated 

Artemia sp. diet over a 14 or 21 day exposure period (experiment 1 or 2, respectively) 

can induce biological effects in 10 dph stickleback larvae. For this, Artemia sp. were 

cultured in graded concentrations of BPA (0, 32, 320 and 3200 μg L
-1

) in the absence or 

presence of microplastics (0.5 or 9.9 µm at 0.1 mg ml
-1

 experiment 1 or 2, respectively) 

for 24h before being used as live food. Subsamples of Artemia sp. were taken daily to 

confirm plastic ingestion and to test for motility and activity. Faeces samples were 

removed every second day to assess egestion and therefore ingestion of plastic particles 

via trophic transfer by the stickleback larvae. Additionally, fluorescent microscopy was 
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used to assess the presence of ingested spheres in the GI of stickleback larvae and assess 

for effects on food retention. Biological endpoints to measure the effects of exposure 

were survival, growth (length and weight) and condition index K. In addition, to assess 

evidence for the exposure to plastics derived xenobiotics, relative expression of the gene 

encoding the detoxification enzyme CYP1A was measured. 

6.3 Material and Methods 

In this Chapter, two experiments were performed. Both experiments used the same 

general experimental set up for the preparation of the contaminated diets and the fish 

exposure. However, the used sizes of tested plastic spheres, exposure duration and 

number of exposed fish varied between exposures. Exposure duration and sphere size 

for experiment 2 were increased to test for effects of a prolonged exposure and larger 

spheres on fish larvae, compared to the shorter exposure time to smaller spheres of 

experiment 1. Additionally, the sample size for experiment 2 was increased to provide 

more statistical power. 

Larvae in experiment 1 were maintained in 500 ml of AFW and exposed for a total of 

14 days. Two treatments were maintained as controls. One was fed a live Artemia sp. 

diet free of any plastic spheres and BPA (Control) whereas the other was fed a live 

Artemia sp. diet contaminated with plastic spheres but free of BPA (Control+MP). The 

other 6 treatments were exposed to a live Artemia sp. that had been cultured in 

ascending BPA concentrations (32, 320 and 3200 µg L
-1

)
 
in the presence or absence of 

0.5 µm fluorescent polystyrene plastic spheres. 

Larvae in experiment 2 were maintained in 500 ml of AFW and exposed for a total of 

21 days. Two treatments were maintained as controls. One was fed a live Artemia sp. 

diet free of any plastic spheres and BPA (Control) whereas the other was fed a live 

Artemia sp. diet contaminated with plastic spheres but free of BPA (Control+MP). The 

other 7 treatments were exposed to a live Artemia sp. that had been cultured in 

ascending BPA concentrations (32, 320 and 3200 µg L
-1

)
 
in the presence or absence of 

9.9 µm fluorescent polystyrene plastic spheres. 

6.3.1 Test material 

See Chapter 2, section 2.2 for information about the used plastic spheres. 
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Bisphenol A (BPA; lot no. MKAA2480V) was purchased from Sigma-Aldrich (UK). 

All used glass equipment was washed with RO water and rinsed in ethanol prior to test 

solution preparation. The BPA stock solutions for both experiments were prepared by 

dissolving 5.4 mg BPA powder into 1 ml ethanol. Of this stock solution, 0.592 μl was 

then pipetted into a glass bottle and left for the ethanol to evaporate. Then 1 L of 

artificial sea water (ASW) (20 ppt) was added and mixed well to create the 3200 μg L
-1

 

test solution. The other test solutions (320 μg L
-1

 and 32 μg L
-1

) were created by 10-fold 

dilution of the 3200 μg L
-1

 solution in ASW (20 ppt). For the control treatments, 0.592 

µl of ethanol was added to a glass bottle and left to evaporate before 1 L of ASW water 

(20 ppt) was added. All solutions were stored in the dark for the duration of the 

experiment. 

6.3.2 Test organisms 

Artemia sp. cysts were purchased from Ocean Nutrition (Aquatics online, UK) and 

cultured daily at a concentration of 1 g cysts L
-1

 of ASW (20 ppt) at 25˚C with 

continuous illumination and aerated vigorously to keep cysts in suspension. For each 

fresh culture, after 24h, Artemia sp. were harvested into a 2 litre beaker and matured 

under culture conditions for a further 24h since preliminary experiments showed that 

Artemia sp. do not ingest plastic spheres of 9.9 µm before 8 hph (see Chapter 3, section 

3.4.1). 

F2 generation stickleback eggs were obtained from the spawning of three (experiment 1) 

and four (experiment 2) separate breeding pairs in aquaria at the Institute of Marine 

Sciences, University of Portsmouth (see Chapter 2, section 2.1.1.1) and maintained as 

described in Chapter 2, section 2.1.1.2. As the first larvae started to hatch, unhatched, 

healthy eggs and hatched larvae were equally transferred by random between 16 

(experiment 1) or 24 (experiment 2) 1 L beakers containing 500 ml of AFW (0.5 ppt). 

Live and dead eggs were recorded daily, with any dead eggs removed. Pre exposure the 

larvae were maintained as detailed in Chapter 2, section 2.1.1.2. During this time, 

temperature was checked daily whereas pH and dissolved oxygen (DO) were measured 

every second day. 
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6.3.3 Water supply apparatus 

Throughout the experiment fish were held in 1 L non-aerated glass beakers (working 

volume 500 ml) containing AFW (0.5 ppt). A static renewal system was used with 80% 

of the water in each beaker being removed and replaced every second day. Water 

temperatures were monitored daily throughout the experiments and ranged between 

17.9 and 19°C (experiment 1) and 16.2 and 18°C (experiment 2), while pH levels were 

checked twice weekly and ranged between 7.26 and 7.95 (experiment 1) and 8.21 and 

8.90 (experiment 2). DO concentrations were checked twice weekly and remained over 

70% of the air saturation value for both experiments. 

6.3.4 Preparation of contaminated diets 

Contaminated diets for both experiments were prepared by adding 60 ml of the 

respective BPA solution to 100 ml beakers, one per treatment. Plastic treatments had an 

additional 6 µl of plastic spheres added to the beaker. Beakers were maintained for 24h 

in 2 glass tanks, one for microsphere treatments and one for non-microsphere treatments 

to avoid cross contamination. The tanks had RO water added to the bottom and were 

covered with a glass lid to minimise evaporation of the BPA solution. This set up was 

held at 25°C with continuous illumination (Figure 6.1a). After 24h, exposure beakers 

were moved to new glass tanks, 2.5 ml of 24 hph Artemia sp. culture was added to each 

treatment beaker and exposed for 24h. During this 24h exposure the beakers were gently 

aerated (Figure 6.1b). Prior to feeding, sub samples (200 µl) of Artemia sp. were 

removed and assessed for swimming behaviour under a dissecting microscope (Zoom 

2000, Leica) at 12.5x magnification. After immobilisation in ethanol, plastic presence in 

Artemia sp. was assessed under a fluorescent microscope (see Chapter 2, section 2.3.2). 
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Figure 6.1: Setup for the contamination of polystyrene plastic spheres with graded 

solutions of BPA (0, 32, 320 and 3200 μg L
-1

) and subsequent exposure of Artemia sp. 

to graded BPA solutions with or without previously contaminated plastic spheres. a 

= Graded concentrations of BPA solution were incubated with or without the 

addition of polystyrene plastic spheres (MP; 0.1 mg ml
-1

) for 24h before the 

incubation vessels were transferred to set up b. b = 24 hours post hatch old Artemia 

sp. were added to the exposure vessels and incubated for another 24h. During this 

24h incubation period gentle aeration was added to each beaker. After 24h of 

incubation in set up b the Artemia sp. were sieved and washed before being used as 

live diet for the stickleback larvae. 
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6.3.5 Fish exposure 

Exposure to fish began as the stickleback larvae reached an age of 10 dph. The 

designated hatching day was the day the majority (80%) of larvae had hatched, which 

was day 1 for this test. Unequal numbers of larvae per exposure beaker (Control (n = 7), 

32 μg L
-1

 BPA (n = 8), 320 μg L
-1

 BPA (n = 7), 3200 μg L
-1

 BPA (n = 7), Control + 0.1 

μg ml
-1

 microplastic (n = 7), 32 μg L
-1

 BPA + 0.1 μg ml
-1

 microplastic (n = 8), 320 μg 

L
-1

 BPA + 0.1 μg ml
-1

 microplastic (n = 8), 3200 μg L
-1

 BPA + 0.1 μg ml
-1

 microplastic 

(n = 8)) and 2 replicates per treatment were used for experiment 1. An equal number of 

larvae per exposure beaker (n = 9) with 3 replicates per treatment was used for 

experiment 2. From here on, abbreviations for treatments will be used when referring 

the above named treatment groups (e.g. 32 µg L
-1

 BPA will be referred to as 32BPA 

whereas treatments containing microplastic in addition to the BPA solutions will be 

referred to as +MP (e.g. 32BPA+MP)). The total planned exposure time was 14 

(experiment 1) and 21 (experiment 2) days. Fish were fed twice daily with contaminated 

Artemia sp., corresponding to the treatment group. For each feed 30 ml was taken from 

each Artemia sp. treatment beaker and filtered through a 125 μm sieve. Four different 

sieves were used, one for each Control, Control+MP, BPA and BPA+MP to avoid 

contamination. For each treatment, Artemia sp. were washed with tap water to remove 

any excess BPA and microplastics and then rinsed into separate beakers for each 

treatment with 20 ml of AFW (0.5 ppt). Treatment assigned plastic pipettes were then 

used to feed 5 ml of Artemia sp. per replicate. All equipment was then washed 

thoroughly to avoid contamination of treatments. 

6.3.6 Sampling 

Each day before the first feed, Artemia sp. samples were taken from each treatment, 

transferred to a 96-well plate and examined with a stereomicroscope (Leica Zoom 2000) 

at 10.5x magnification to confirm that they were still motile and had comparable 

activity levels across treatments. After these observations, Artemia sp. were 

immobilized and examined as detailed in Chapter 2, section 2.3.2. 

According to plan, fish from experiment 1 were sampled after 14 days of exposure. For 

experiment 2 the originally planned exposure period of 21 days had to be shortened due 

to the larvae in the highest BPA+MP treatment (3200BPA+MP) exhibiting signs of 
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toxicity; All larvae were sampled on day 17 of the exposure. Larvae for both 

experiments were sacrificed as described in Chapter 2, section 2.3.1. The head region 

including the liver of each larva was removed, fixed in RNAlater (Sigma Aldrich, UK) 

and stored at -80°C for subsequent isolation of RNA. The remainder of the fish was 

fixed in 10% buffered formalin for fluorescent microscopy to evaluate presence of 

microspheres in the GI. 

6.3.7 Histological analysis 

Since previous histological analysis using paraffin embedded samples could not provide 

further evidence for the ingestion of fluorescent particles due to complications during 

sample preparation (See Chapter 3), a resin based histological technique was chosen to 

analyse presence of plastic spheres in the GI of fish from experiment 1. Larvae were 

prepared after the following protocol: 

Posterior parts of larvae that had been previously fixed in 10% buffered formalin were 

dehydrated and infiltrated with resin: 

50% ethanol - 15 min 

70% ethanol - 15 min 

90% ethanol - 10 min 

100% ethanol - 10 min 

100% resin - 2 hours 

100% resin - 1 hour 

 

After dehydration and infiltration a polymerisation step was performed. Gelatine 

capsules (size 00) which were filled with London Resin (LR) White (Electron 

Microscopy Sciences, USA) and fish bodies placed inside the resin with a longitudinal 

orientation to the capsules. The capsules were then sealed using the appropriate lids and 

the polymerisation step was performed at 65°C in a curing oven for 48h. During the 
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polymerisation step, glass knives were prepared for subsequent sample sectioning. 

Glass knives were made using a LKB knife maker Type 7801B. Glass strips (400 mm x 

25 mm x 6.4 mm) were clamped into place and scored with a tungsten wheel at 25 mm 

intervals. These were then fractured to produce squares (25 mm x 25 mm). Each square 

was then rotated 90° counter clockwise, clamped into place and then scored and 

fractured to produce 2 glass knives. The knives were then examined for a clean break 

and a good cutting edge. The sharp left edge of the knife was used for the sectioning and 

the less sharp right side was used for trimming of the resin block containing the sample. 

Polymerised, LR White embedded samples were trimmed and sectioned by carefully 

removing the gelatine capsules and trimming of the resin blocks before samples were 

sectioned using a glass knife on an Ultracut E Microtome. Initial trimming was done to 

form a prism shape. This reduced the cutting area for sections to decrease the strain on 

the knife edge and help to produce better quality sections. Fish tissues were cut cross 

sectional with a 2 μm section thickness, transferred to a water bath and then floated onto 

glass slides before being placed on a hot plate to dry. Prepared slides were then 

examined as described in Chapter 2, section 2.3.2 to detect green fluorescence in the 

prepared sections. 

6.3.8 Fluorescent determinations 

Presence of plastic spheres in larval and faeces samples were assessed according to 

Chapter 2 section 2.3.2. 

LR White embedded sections were analysed using a Zeiss LUMAR.V12 stereo 

microscope with an AxioCam MRm camera and AxioVision software (ZEISS, 

Germany) and a Green Fluorescent Protein (GFP) filter (excitation 485 nm; emission 

520 nm) at 80x magnification. However, since also this technique used for samples of 

experiment 1 could not provide evidence for plastic presence in the GI of exposed 

larvae, larvae from experiment 2 were assessed for the presence of microspheres in the 

GI using fluorescent microscopy without previous histological preparations. Larvae 

were prepared by carefully cutting open the body of the fish using disposable steel 

microtome blades (Thermo Scientific MB35 Premier) under a stereo microscope (Leica 

M210F), the GI was removed and cleaned of surrounding tissue. Pictures of the whole 

GI and close ups were taken with an attached camera (DFC310FX) and imaging 

software (Leica application suite V.4.5.0) and Green Fluorescent Protein (GFP) filter 
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(excitation 485 nm; emission 520 nm) at 12.5x and 80x magnification respectively to 

assess microsphere presence in the GI (Figure 7.2 a-e). 
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Figure 6.2: Stepwise flow diagram of an example dissection to separate 

the gastrointestinal tract (GI) for fluorescent analysis with stereo 

microscope (Leica M210F), attached camera (DFC310FX), imaging 

software (Leica application suite V.4.5.0) and Green Fluorescent Protein 

(GFP) filter (excitation 485 nm; emission 520 nm) at 12.5x and 80x 

magnification respectively. a = the remainder of the sampled fish (head 

region including liver was separated and fixed for molecular analysis) to 

be used for the dissection of the GI. b = separation of the ventral site 

containing the GI. c = separation of the intestine from other body tissues 

and examination of the GI for retained faeces. Round structures are 

unhatched Artemia cysts. d = fluorescent analysis of GI content for plastic 

presence. e = close up of a plastic contaminated area of the GI, 

fluorescence indicates presence of ingested plastic spheres. 
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6.3.9 Assessment for retained faeces in the GI 

For experiment 2 pictures taken during the dissection and analysis for presence of 

fluorescent plastic spheres in the GI were also used to determine the amount of retained 

food in the GI. Pictures were evaluated using a scoring system for which processed food 

present in either the stomach or intestine were assigned a score of 1, those with food 

present in both a score of 2 and those with no processed food present were assigned a 

score of 0. Achieved values were then compared to assess presence of processed food in 

stomach and intestine between treatments. 

6.3.10 Gene expression analysis 

For material and methods of the molecular analysis performed by Dr Karen L. Thorpe 

for experiment 1 see Appendix I. 

See Chapter 2, section 2.3.4 for details of the molecular work performed for experiment 

2. 

Molecular work for experiment 1 was performed at the University of Portsmouth and 

molecular work for experiment 2 was performed at the University of York. Due to the 

differences in equipment, different protocols were used. 

6.3.11 Statistical analysis 

All statistical analysis was carried out as detailed in Chapter 2, section 2.3.5. 

6.4 Results 

6.4.1 Contamination of the live diet 

As expected, the examination of daily Artemia sp. sub samples confirmed the ingestion 

of plastic spheres by Artemia sp. for all plastic treatments (n = 72) whereas no plastic 

was found for sub samples of the non-plastic treatments (n = 72) over the duration of 

the experiment (Experiment 1: Figure 6.3 and Experiment 2: Figure 6.4). No effects of 

the BPA and BPA+MP exposure were found for the 24h exposure since the visual 
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examination of Artemia sp. showed that Artemia sp. from all exposure groups of both 

experiments were still motile and were found with comparable activity levels. 

  

Figure 6.3: Pictures of subsampled Artemia sp. that had previously been exposed for 

24h to graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 μg L
-1

) in 

the presence (+MP) or absence (-MP) of 0.5 µm fluorescent plastic spheres (0.1 mg 

ml
-1

). A Zeiss LUMAR.V12 stereo microscope with a Green Fluorescent Protein 

(GFP) filter (excitation 485 nm; emission 520 nm) was used with an AxioCam MRm 

camera and AxioVision software to detect green fluorescence in the Artemia sp. (80x 

magnification). A clear accumulation of the fluorescing plastics could be observed in 

the gastrointestinal tracts of the exposed Artemia sp. after 24 hours of exposure, 

indicated by white arrows. 
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6.4.2 Plastic presence in faeces samples 

Examination of faeces samples from experiment 2 of the plastic treatments (n = 84) 

confirmed that fish were egesting plastic particles and therefore provided evidence for 

the ingestion of the contaminated Artemia sp. diets. No plastic was found in faeces 

samples from the non-plastic treatments (n = 84) (Figure 6.5). 

  

Figure 6.5: Plastic contamination in faeces collected from fish fed Artemia sp. that had 

previously been exposed for 24h to graded concentrations of bisphenol A (BPA) (0, 32, 

320 and 3200 μg L
-1

) in the presence (+MP) or absence (-MP) of 9.9 µm fluorescent 

plastic spheres (0.1 mg ml
-1

). Faeces pellets were examined for plastic presence with a 

fluorescent microscope using a green fluorescence protein (GFP) filter. No plastic 

contamination was found for faeces pellets from the –MP treatments, whereas 

contamination with fluorescent polystyrene spheres could be observed for all +MP 

treatments. Larger round structures represent unhatched Artemia cysts, indicated by 

red arrows. White arrows indicate an example for the presence of plastic spheres. A 

Zeiss LUMAR.V12 stereo microscope with a Green Fluorescent Protein (GFP) filter 

(excitation 485 nm; emission 520 nm) was used with an AxioCam MRm camera and 

AxioVision software to detect green fluorescence in the faeces samples (20x 

magnification). 
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6.4.3 Presence of plastic in fish larvae 

Examination of dissected GIs of stickleback larvae from experiment 2 revealed that all 

larvae exposed to the plastic contaminated Artemia sp. diets (n = 98) had plastic spheres 

present in the GI, whereas no plastic spheres were found in GI from non-plastic 

treatments (n = 105) (Figure 6.6). These results confirm findings from the faeces 

analysis that fish had ingested the plastic contaminated diet. It was observed that beside 

of the ingestion of Artemia sp., fish larvae from all treatments had also ingested 

unhatched cysts, which is consistent with findings from the faeces samples. 
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6.4.4 Effects on food digestion 

Examination of pictures taken from separated GIs (see Figure 6.2c) indicated 

differences in the retention of processed food between and within non-plastic and plastic 

treatments. Evaluation of pictures showed that non-plastic treatments had higher 

amounts of retained food present exclusively in the stomach, compared to plastic 

treatments (H(1, N = 8) = 3.938, p = 0.047; Figure 6.7). No differences were found 

when comparing non-plastic and plastic treatments for the presence of processed food 

present exclusively in the intestine (H(1, N = 8) = 0.333, p = 0.564; Figure 6.7), in the 

stomach and intestine combined (H(1, N = 8) = 0.750, p = 0.386; Figure 6.7) and for 

fish without processed food in the GI (H(1, N = 8) = 2.215, p = 0.137; Figure 6.7). 

However, comparing the overall presence of retained food in all compartments of the GI 

using the scoring system revealed that non-plastic treatments had lower amounts of 

processed food present in the GI when compared to plastic treatments (H(1, N = 204) = 

5.491, p = 0.019; Figure 6.8). However, this observed effect did not seem to apply for 

the two highest treatment groups (3200BPA and 3200BPA+MP) when compared to 

their respective treatment groups (non-plastic and plastic treatments). Pairwise 

comparison revealed that non-plastic treatments (Control, 32BPA and 320BPA) had a 

lower presence of retained food in the GI when compared to the 3200BPA treatment 

(H(1, N = 54) = 7.987, p = 0.005, H(1, N = 51) = 4.592, p = 0.032 and H(1, N = 54) = 

5.161, p = 0.023), respectively). Pairwise comparisons for the plastic treatments 

revealed that the BPA+MP treatments (Control+MP, 32BPA+MP and 320BPA+MP) 

had a higher presence of retained food in the GI when compared to the 3200BPA+MP 

treatment (H(1, N = 46) = 13.010, p < 0.001, H(1, N = 45) = 12.317, p < 0.001 and H(1, 

N = 46) = 8.388, p = 0.004), respectively). When excluding data from the 3200BPA and 

3200BPA+MP treatments due to their contradictive presence of retained food and re-

analysing the level of retained food in the GI between non-plastic (Control, 32BPA and 

320BPA) and plastic treatments (Control+MP, 32BPA+MP and 320BPA+MP) a 

stronger effect for the higher retention of processed food in the GI of plastic treatments 

was found (H(1, N = 158) = 17.801, p < 0.001). 
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Figure 6.7: Presence of processed food in the compartments of the gastrointestinal 

tract of fish that had been exposed for 17 days to a diet of Artemia sp. that had 

previously been exposed for 24h to graded concentrations of bisphenol A (BPA) (0, 

32, 320 and 3200 μg L
-1

) in the presence (+MP) or absence of 9.9 µm fluorescent 

plastic spheres (0.1 mg ml
-1

). The sample sizes were: Control: n = 27, 32BPA: n = 24, 

320BPA: n = 27, 3200BPA: n = 27, Control+MP: n = 27, 32BPA+MP: n = 26, 

320BPA+MP: n = 27, 3200BPA+MP: n = 20. 
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Figure 6.8: Amount of retained food in gastrointestinal tracts of sampled 

fish that were exposed to Artemia sp. that had previously been exposed for 

24h to graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 μg 

L
-1

) in the presence (+MP) or absence of 9.9 µm fluorescent plastic spheres 

(0.1 mg ml
-1

). The percentage of retained faeces was evaluated using 

dissected gastrointestinal tracts (GI) (see Figure 6.2). The sample sizes were: 

Control: n = 27, 32BPA: n = 24, 320BPA: n = 27, 3200BPA: n = 27, 

Control+MP: n = 27, 32BPA+MP: n = 26, 320BPA+MP: n = 27, 

3200BPA+MP: n = 20. The percentage of retained food in GIs of non-plastic 

treatments was generally lower compared to +MP treatments with the 

exception of the 3200 µg L
-1

 treatments where a reversed trend was found. 

Displayed values are the mean ± SEM. 
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6.4.5 Biological effects 

No mortalities were observed for larvae exposed in experiment 1. For experiment 2 one 

mortality was observed in the 32BPA+MP treatment (on day 6) and 3 mortalities for the 

32BPA treatment (1 mortality on day 4, which was a deformed larvae since the start of 

the experiment and 2 mortalities on day 15 which were related to stress after a water 

change). On day 16 of the study, mortality was observed in two of the three replicates of 

the 3200BPA+MP treatment. Replicate A had a mortality of 4 (44%) and replicate B of 

3 (33%) larvae (n = 9 per replicate). Due to this mortality the exposure was terminated 

on day 17 instead of day 21. 

No effects of exposure for experiment 1 and 2 were observed for the measured 

biomarkers length (F7,52 = 0.162, p = 0.991 and F7,197 = 0.515, p = 0.823, respectively; 

Figure 6.9a), weight (F7,52 = 0.383, p = 0.908 and F7,197 = 0.517, p = 0.821, respectively; 

Figure 6.9b) and the condition index K (F7,52 = 1.412, p = 0.220, and F7,197 = 1.036, p = 

0.407, respectively; Figure 6.9c). However, further analysis revealed that fish exposed 

in experiments 1 had a higher condition index compared to fish exposed in experiment 2 

(F1,249 = 465.923, p < 0.001). The comparison of treatments from both experiments, 

using a One-way ANOVA with Tukey HSD post hoc test, revealed a lower condition 

index between multiple treatments (Table 6.1). 



 

197 

 

  

Table 6.1: Comparison of the condition index K between treatments of experiment 1 

and 2 in which larvae were exposed to Artemia sp. that had previously been exposed for 

24h to graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 μg L
-1

) in the 

presence (+MP) or absence of 0.5 µm (experiment 1) or 9.9 µm (experiment 2) 

fluorescent plastic spheres (0.1 mg ml
-1

). Values displayed are p-values derived from a 

One-way ANOVA with a Tukey HSD post hoc test. Red coloured values denote a 

significant difference at the 0.05 level. 
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Figure 6.9: Biological effects measured with a = Total length, b = Wet weight and c = 

Condition index K of sampled larvae exposed to Artemia sp. that had previously been 

exposed for 24h to graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 μg 

L
-1

) in the presence (+MP) or absence of 0.5 µm (experiment 1) or 9.9 µm (experiment 

2) fluorescent plastic spheres (0.1 mg ml
-1

). Larvae were exposed for 14 (experiment 1) 

or 17 days (experiment 2). Sample sizes were: Control: n = 14, 32BPA: n = 16, 320BPA: 

n = 14, 3200BPA: n = 14, Control+MP: n = 14, 32BPA+MP: n = 16, 320BPA+MP: n = 

16, 3200BPA+MP: n = 16 for experiment 1 and Control: n = 27, 32BPA: n = 24, 

320BPA: n = 27, 3200BPA: n = 27, Control+MP: n = 27, 32BPA+MP: n = 26, 

320BPA+MP: n = 27, 3200BPA+MP: n = 20 for experiment 2. Data is expressed as the 

mean ± SEM. 
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6.4.6 Gene expression 

For experiment 1 and 2 the highest relative expression of the gene encoding CYP1A 

was found for the 3200BPA+MP treatment groups (Figure 6.10 and 6.11, respectively). 

Fish exposed to experimental conditions of experiment 1 revealed an upregulated 

relative expression level when all treatments were compared (H(1, N = 59) = 16.144, p 

= 0.024). Pairwise comparison revealed differences between the 3200BPA+MP 

treatment and the Control, 32BPA, 3200BPA and the 320BPA+MP treatments (H(1, N 

= 15) = 4.835, p = 0.028, H(1, N = 15) = 7.714, p = 0.005, H(1, N = 15) = 9.054, p = 

0.003 and H(1, N = 16) = 4.864, p = 0.027, respectively). No overall difference in the 

levels of the relative expression of CYP1A were found for fish that were exposed to the 

experimental conditions of experiment 2 (F7,34 = 1.985, p = 0.086). However, a Tukey 

Post Hoc test revealed that the 3200BPA+MP treatment had an elevated relative 

expression when compared to the Control (p = 0.027) but not the other treatment groups 

(p > 0.05). No differences in relative expression levels of VTG B were found between 

treatments of experiment 1 (F7,50 = 0.526, p = 0.811; Figure 6.10b). 
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Figure 6.10: Results of the molecular analysis from experiment 1. 

Relative expression of a = cytochrome P450 1A (CYP1A) and b = 

vitellogenin B (VTG B) of larvae that had been exposed for 14 

days to Artemia sp. that had previously been exposed for 24h to 

graded concentrations of bisphenol A (BPA) (0, 32, 320 and 3200 

μg L
-1

) in the presence (+MP) or absence of 0.5 µm fluorescent 

plastic spheres (0.1 mg ml
-1

). Sample sizes were: Control: n = 7, 

32BPA: n = 7, 320BPA: n = 7, 3200BPA: n = 7, Control+MP: n = 

7, 32BPA+MP: n = 8, 320BPA+MP: n = 8, 3200BPA+MP: n = 8 

for the CYP1A analysis and Control: n = 7, 32BPA: n = 7, 

320BPA: n = 6, 3200BPA: n = 7, Control+MP: n = 7, 32BPA+MP: 

n = 8, 320BPA+MP: n = 8, 3200BPA+MP: n = 8 for VTG B 

analysis. Data has been normalised to the housekeeping gene (18S 

rRNA) using the δδCt method and is expressed as the mean ± 

SEM. 
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6.5 Discussion 

The findings from these investigations provide evidence that microplastics can act as 

vectors to transport pollutants into the food chain and that filter feeding zooplankton can 

act as vector for the trophic transfer of BPA contaminated, 0.5 and 9.9 µm sized plastic 

spheres to young fish larvae. Larvae ingested the contaminated Artemia sp. and were 

found to successfully egest plastic spheres after digestive processes indicating no 

blockages of the GI. Exposure to the highest BPA+MP treatment induced toxic effects 

in larvae from experiment 2. The absence of toxic effects in experiment 1 is thought to 

be due to the higher condition of exposed larvae in the 3200BPA+MP treatment, 

indicating higher energy reserves for detoxification processes. The exposure to 

xenobiotics was confirmed for both experiments in the 3200BPA+MP treatments as 

elevated relative expression levels of CYP1A were detected. Ingestion of the 

contaminated diets did not result in differences of length, weight and condition index K 

for both experiments, indicating no measurable effects on these biological endpoints. 

Ingestion of plastic contaminated Artemia sp. was observed to lead to higher retention 

of food in the GI when compared to non-plastic treatments, indicating a potential to 

result in filling effects and reduced food ingestion in the long term. 

In line with previous reports for the ingestion of microplastic by zooplanktonic 

organisms (Cole et al., 2015, Lee et al., 2013c, Setälä et al., 2014, Cole et al., 2013) and 

findings of Chapter 3, the here used Artemia sp. were found to ingest the plastic spheres 

from the water column. As expected, there were no effects observed on motility, activity 

and survival of Artemia sp. exposed to the here used BPA concentrations in the 

presence or absence of plastic spheres over the duration of 24h. This is consistent with 

findings of single exposures (BPA or microplastics) of zooplanktonic organisms; 

Daphnia magna was not negatively affected at a BPA concentration of 3160 µg L
-1

 over 

a 21 day chronic reproduction test (Caspers, 1998) and also ingested plastic spheres 

were reported to not negatively impact the survival of zooplanktonic organisms over the 

here used time frame (Lee et al., 2013c, Cole et al., 2015). To my knowledge, no data 

on the combined effects are available. However, observations of this study suggest that 

there are limited to no effects on motility, activity and survival of 48 hph Artemia sp. 

for the here used experimental conditions. Therefore, Artemia sp. and other 

zooplanktonic organisms may have the potential to act as vectors for contaminated 

plastic particles to organisms of a higher trophic level. 
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Faeces samples collected from experiment 2 showed a constant contamination with 

plastic spheres for plastic treatments. This finding is important, since free plastic 

spheres in faeces pellets do not only suggest an egestion of ingested plastic spheres like 

it has been reported for other larval organisms (Kaposi et al., 2013, Mazurais et al., 

2014) but also indicates the successful digestion of the contaminated Artemia sp. diet, 

resulting in the release of plastic spheres which were then able to interact with the GI of 

fish larvae. Accordingly, the larvae were exposed to BPA contaminated plastic spheres 

which had the potential to desorb their chemical burden under the physiological 

conditions in the GI (Bakir et al., 2014a). Findings for the ingestion and successful 

digestion of ingested Artemia sp. from the analysis of faeces samples were supported by 

GI dissections and analysis with a fluorescent microscope. GI dissections provided 

further evidence for the ingestion of contaminated Artemia sp. through the presence of 

fluorescent plastic spheres in the GI of larvae which were found to be dispersed through 

the processed food. Additionally, examination of intestine content and faeces samples 

showed the ingestion and egestion of unhatched Artemia sp. cysts which have an 

approximate, rehydrated diameter between 243.1 and 285.4 µm (Abatzopoulos et al., 

2006). Hence an internal blockage of the GI is very unlikely to be caused by the plastic 

particles of the here used sizes. However, the presence of the larger, spherical cysts 

indicated that there is a potential for larvae to ingest bigger plastic particles which might 

lead to accumulations and blockages of the GI (Pierce et al., 2004). 

GI dissections of larvae also revealed a trend for an increased presence of processed 

food of fish exposed to the plastic treatments and might therefore indicate a plastic 

induced prolonged digestion of ingested food due to indigestible matter in form of 

plastic spheres (Read and Houghton, 1989). Non-plastic treatments generally showed a 

lower retention of processed food in comparison to plastic treatments. However, the two 

highest BPA treatments (3200BPA and 3200BPA+MP) seemed to show a contradictive 

effect on food retention compared to non-plastic and plastic treatments, respectively. 

The observed higher presence of food in fish from the 3200BPA compared to other non-

plastic treatments might be explained by slower swimming Artemia sp. that were easier 

to capture by the larvae. Exposure to contaminants is suspected to reduce locomotion 

behaviour in Artemia salina (Venkateswara Rao et al., 2007). Even though no effects on 

locomotion were observed for the Artemia sp. subsamples after the 24h contamination 

period, the osmotic stress after being transferred from the culture medium (20 ppt) to 

the fresh water conditions in the exposure vessels (0.5 ppt) following the high levels of 
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BPA exposure might have resulted in reduced locomotion. This impaired locomotion 

would also apply to Artemia sp. of the 3200BPA+MP treatment. However, the observed 

low presence of processed food in the 3200BPA+MP treatment, compared to other 

plastic treatments, might be due to a reduced food ingestion due to toxic effects; Loss of 

appetite may be an example of a negative side effect of the stress response in fish 

(Wendelaar Bonga, 1997). It is suggested that repair mechanisms that are induced by 

physiological changes may result in a reduced ability to process food and consequently 

lead to a loss in appetite and a reduced food ingestion in fish (Heath, 1995). As a result, 

fish can show a substantially reduced food ingestion when exposed to pollutants 

(Wendelaar Bonga, 1997). 

The observed lack of effects on length, weight and condition index K for exposed fish 

indicates no measurable effects of these biomarkers following the ingestion of the BPA 

contaminated plastic spheres via trophic transfer by young fish larvae over the here 

investigated time frame. To my knowledge, no data are available regarding the effects 

of ingested, BPA contaminated plastic particles on length, weight and condition of fish 

larvae. However, data for the exposure to the single compounds (plastic or BPA) are 

available. Exposure to plastic particles has been reported to result in reduced length of 

aquatic invertebrates and vertebrates (Besseling et al., 2014, Mazurais et al., 2014, 

Kaposi et al., 2013) and have negative effects on weight in worms (Besseling et al., 

2013) and birds (Spear et al., 1995). Plastic ingestion has also been linked to decrease 

energy reserves (Wright et al., 2013) and lead to reduced energy accumulation (Ryan, 

1988), indicating negative effects on condition. However, this study differs from the 

above mentioned field and laboratory studies by using a trophic transfer exposure. As 

indicated in Chapter 3, trophic transfer exposures may have a lower or no impact on 

length, weight and condition index compared to water borne or dietary exposures due to 

the fact that the contaminated diet has to be digested previous to the release of 

incorporated plastic. Accordingly, exposure to the ingested plastic might be limited. In 

line with the findings from Chapter 3, this trophic transfer exposure did not result in 

measurable, plastic induced effects on length, weight and condition index. Even though 

effects of exposure to BPA on growth and development of aquatic vertebrates varies in 

the literature (Staples et al., 2002), the lowest concentrations of BPA that have been 

reported to cause chronic effects on growth of fish range from 1280 to 11,000 µg L
-1

 

(Yokota et al., 2000, BayerAG, 1999, Caunter, 1999). A review comparing studies 

investigating the effects of BPA exposure on aquatic life found that exposure to BPA 
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does not reduce growth of vertebrates, invertebrates, and algae at concentrations below 

400 µg L
-1

 (Staples et al., 2002). Consistent with these findings, also exposure to BPA 

contaminated plastic spheres did not affect growth for the studies in this chapter. This 

suggests that just low concentrations of BPA desorbed form the ingested plastic spheres 

during the digestion process, which is supported by the unaltered expression of VTG B. 

However, the upregulated relative expression of CYP1A in the 3200BPA+MP 

treatments of both experiments might indicate the exposure to biologically active 

concentrations of xenobiotics. As the BPA concentrations used to contaminate the 

plastic spheres was the only variable between plastic exposure groups, this higher 

relative expression is likely to be caused by exposure to desorbed BPA from the plastic 

spheres. This finding, however, is contradictory to reports that have documented a 

negative effect of BPA exposure on the expression levels of CYP1A in fish (Arukwe et 

al., 2000, Olsvik et al., 2009). Whereas the underlying processes for this observed BPA 

related induction of CYP1A remain unclear, ingested plastic spheres might have an 

influence on the observe effects. Even though, BPA is suspected to have induced the 

upregulated expression of CYP1A, the exposure concentration of BPA to fish was not 

believed to be high enough to induce short term effects on length, weight and condition 

index. This is in line with Staples et al. 2002 who stated that biochemical biomarkers 

provide insight into mechanisms of action but might not correlate with apical endpoints 

related to survival and growth (Staples et al., 2002). However, since larval fish have just 

very limited energy reserves a decrease in growth would be expected in the long term 

due to upregulated detoxification processes mediated via the expression of CYP1A, 

which has been linked to increased energetic costs in fish (Al-Hameedi, 2009). 

Exposure concentrations of fish to BPA derived from the contaminated plastic spheres 

are not known for this study since no chemical determinations were undertaken to 

quantify the adsorption of BPA to the polystyrene (PS) model plastic and desorption of 

accumulated BPA under physiological conditions in the GI of larvae. However, 

adsorption of chemicals from aqueous phases onto plastic has been reported (Teuten et 

al., 2007, Mato et al., 2000, Rios et al., 2007, Rochman et al., 2013a). Short exposure 

times of 72h have been reported to lead to equilibrium of chemicals (e.g. PAHs and 

metals) on plastic (Teuten et al., 2007, Holmes et al., 2012). However, physical 

properties of the polymer, like surface area (Teuten et al., 2007) as well as diffusivity 

and crystallinity (Mato et al., 2000) influence the amount of adsorbed chemicals. 

Adsorption of PCBs to PE microspheres (10 - 180 μm) was found to be 1 - 2 orders of 
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magnitudes lower compared to PS nanospheres (70 nm). Additionally, PS has been 

reported with higher adsorption rates of PAHs compared to PP (Rochman et al., 2013a, 

Rochman et al., 2013c). Accordingly, polystyrene can accumulate high levels of 

chemical contaminants (Rochman et al., 2013c, Velzeboer et al., 2014). The release of 

absorbed chemicals by plastic and adverse effects of such desorbed chemicals has been 

reported (Teuten et al., 2009, Rochman et al., 2014, Rochman et al., 2013b). 

Additionally, desorption of accumulated chemicals from the plastic has been reported to 

be enhanced under physiological conditions (Bakir et al., 2014a). Future studies are 

needed to determine the quantity of absorbed BPA to the used polystyrene spheres and 

test for desorption rates under physiological conditions in the GI of the model organism 

in order to make predictions about the exposure concentration. 

Previous reports indicated that microplastic ingestion had no effects on survival of 

exposed organisms (Kaposi et al., 2013, Besseling et al., 2013, Mazurais et al., 2014). 

Similar, also multiple BPA exposures from 14 to more than 400 days to BPA 

concentrations ranging from 100 to 3160 µg L
-1 

 indicated no effect on survival (Staples 

et al., 2002). However, combined effects of BPA with particular matter has been 

reported to induce additional effects; Zebrafish embryos (Danio rerio) that were 

exposed to a water column contaminated with BPA (5 mg L
-1

) alone did not show any 

effects on survival at 96h post fertilisation (hpf), exposure to a mixture with titanium 

dioxide nanoparticles (TiO2-NP; 10 mg L
-1

) that had been previously found to 

accumulate BPA from an aqueous solution resulted in a 100% mortality at 84 hpf (Yan 

et al., 2014). No mortality was observed for larvae exposed in experiment 1 which is 

consistent with findings from the single exposures to microplastics or BPA. However, 

mortality was observed for larvae exposed to the 3200BPA+MP treatment of 

experiment 2. Molecular work of both exposures indicated the exposure to biologically 

active concentrations of xenobiotics in the 3200BPA+MP treatments. However, since a 

greater surface area has been described to have a positive effect on adsorption of 

chemicals (Teuten et al., 2007), the 9.9 µm plastic spheres used in experiment 2 were 

expected to have absorbed less chemicals due to their smaller surface area compared to 

the 0.5 µm plastic spheres. The observed effect on mortality is therefore linked to the 

lower condition of larvae exposed in experiment 2. A lower condition index has been 

linked to lower energy reserves in fish (Herbinger and Friars, 1991, Chellappa et al., 

1995) which might have limited the larvae´s capability to support increased energy 

requirements for CYP1A mediated detoxification processes (Al-Hameedi, 2009). 
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In addition to previous studies that suggested that plastic particles can transport and 

release organic pollutants following a direct ingestion (Teuten et al., 2009, Rochman et 

al., 2014, Rochman et al., 2013b, Besseling et al., 2013), the results from this chapter 

indicate that also the indirect ingestion of such contaminated plastic can result in 

adverse effects in fish. Zooplanktonic organisms were found to have the potential to act 

as vectors of high numbers of contaminated plastic particles from the water column to 

organisms of a higher trophic level. During this process, these contaminated particles 

were found to have the potential to retain biologically active concentrations of absorbed 

xenobiotics, indicated by an elevated relative expression of CYP1A for both exposures. 

No acute effects on growth and condition were observed over the here investigated 

timeframe. However, the ingested plastic was found to induce an increased retention of 

food in the GI of exposed fish, possibly leading to energy depletion in the long term. 

Additionally, exposure to contaminated plastic has the potential to induce toxic effects 

in poorly conditioned fish larvae. 
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7.1 Overview 

Due to their distribution and abundance in aquatic environments, microplastic have 

been classified as a pollutant in their own right (Ryan et al., 2009, Thompson et al., 

2004). Ingestion of microplastic and first evidence for negative effects of ingested 

microplastic has been reported for a wide range of species (Lusher, 2015). However, the 

research on the effects of microplastics is still described to be in its infancy (Thompson, 

2015, Lusher, 2015, Kühn et al., 2015) and considered a less well studied part of marine 

debris (Doyle et al., 2011). To contribute to the current lack of knowledge, the primary 

aim of this thesis was to determine whether the ingestion of microplastics has the 

potential to result in negatively health effects in the three-spined stickleback. A series of 

in vivo exposures were conducted using a small predatory teleost, the three-spined 

stickleback (Gasterosteus aculeatus), to compare different routes of dietary ingestion of 

the microplastics, i.e. trophic transfer (Chapter 3 and 6), dietary (Chapter 5) and water 

borne (Chapter 4) and different sizes and types of microplastic. Whereas all chapters 

investigated the ingestion, egestion and biological effects of ingested microplastic, the 

single chapters focussed on different aims: Chapter 3 focussed on the retention and 

possible translocation of small polystyrene spheres (1 or 9.9 µm), ingested via trophic 

transfer in adult fish and Chapter 4 investigated the effects of a water column 

contaminated with polystyrene plastic spheres (1 or 9.9 µm) on larval fish. Chapter 5 

assessed the effects of exposure to environmentally relevant microplastic (HDPE plastic 

bag fragments) on adults and investigated if degradation of the material increases its 

potential to induce biological effects. Finally, Chapter 6 determined whether a trophic 

transfer of polystyrene spheres (0.5 or 9.9 µm) that had previously been exposed to 

BPA have a higher potential to induce biological effects in larval fish, compared to non-

contaminated plastic spheres and might therefore have the potential to act as vectors of 

absorbed organic pollutants to the food chain.. Results from all chapters indicated that 

adult and larval sticklebacks will ingest high numbers of microplastics via all 

investigated exposure routes. In adult sticklebacks the ingestion of 1 and 9.9 µm 

polystyrene spheres via trophic transfer did not lead to measurable biological effects or 

translocation to the circulatory system due to the rapid evacuation of ingested plastic 

spheres via the faeces and the size of used spheres, respectively (Chapter 3). As the size 

of ingested microplastic via trophic transfer is regulated by the size of particles that are 

ingested by the prey, these findings highlight that effects like blockages and 

obstructions of the GI are less likely compared to directly ingested plastic. However, 
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negative effects of microplastic ingestion were observed for larval fish that had 

accidentally ingested 1 µm or 9.9 µm polystyrene spheres from the water column. 

Ingestion lead to a dose dependent increase in length, decrease in condition and increase 

in relative expression of CYP1A for larvae exposed to 1 µm spheres and a dose 

dependent decrease in condition for larvae exposed to the 9.9 µm spheres (Chapter 4). 

This highlights that smaller plastic spheres had a higher potential to induce biological 

effects when compared to the larger spheres. Chapter 5 reported the potential health 

risks that arise from the ingestion of microplastics derived from plastic bags through 

prolonging effects on food digestion. Additionally, it was highlighted that degraded 

polymer structures have an increased potential to induce biological effects, suspected to 

be caused by the leaching of incorporated chemicals which lead to increased liver 

weights and gutted weights. Finally, the potential health risk for the ingestion of 

contaminated microplastic was demonstrated in Chapter 6. Results suggested that 

polystyrene spheres of 0.5 and 9.9 µm may act as vectors for adsorbed pollutants from 

the water column via trophic transfer to fish larvae where they induced upregulated 

detoxification processes (CYP1A) for both particles sizes and induced toxic effects for 

the 9.9 µm spheres. 

7.2 Exposure routes 

Filter feeding zooplankton has been previously reported to ingest small plastic particles 

from the water column (Cole et al., 2013, Cole et al., 2015, Setälä et al., 2014, 

Desforges et al., 2015, Cedervall et al., 2012). As many fish species actively feed on 

zooplankton, the ingestion of contaminated prey could be an important exposure route 

to small plastic particles. Adult and larval sticklebacks were found to ingest plastic from 

a contaminated live diet but no measurable biological effects were found to be induced 

by the virgin microplastics. The absence of effects highlights that even though trophic 

transfer can be an exposure route to microplastics, the relatively small size of ingested 

plastics poses a low risk for physical effects like blockages or obstructions of the GI 

(Chapter 3 and 6). Small plastic spheres still have the potential to cause negative effects 

due to the leaching of additives or desorption of accumulated chemicals (Chapter 6). 

Additionally, the translocation of small plastic particles is of concern. Even though no 

evidence for translocation was found in this thesis, other studies have highlighted the 

potential for small microplastics to translocate from the GI (Browne et al., 2008, von 

Moos et al., 2012). Accordingly, future studies should focus on the effects of plastic 
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derived chemicals and translocated particles when investigating the risks of microplastic 

ingested via trophic transfer. 

Larval stages of fish are the smallest self-supporting vertebrates (Wieser, 1995) and can 

show mortality rates of over 90% when switching to exogenous feeding due to the 

depletion of yolk sac energy reserves (Houde, 2008). Hence, early energy assimilation 

is critical for fish larvae (Rana, 1985, Blaxter and Hempel, 1963). Accordingly, the 

ingestion of indigestible plastic with no nutritional value could pose a threat to larval 

fish. Accidental ingestion by stickleback larvae was found to be related to dose of the 

microplastic contamination in the water column. Hence, the ingestion from the water 

column has to be considered an important exposure route for high numbers of 

microplastics by fish larvae, especially considering the already high pollution levels of 

aquatic nursery environments (Lechner et al., 2014). Direct ingestion of microplastic 

(Chapter 4 and 5) might have a higher significance to induce physical effects as it can 

lead to the ingestion of larger plastics which were found to affect food digestion 

(Chapter 5) and have the potential to block the GI. 

Whereas these data provide evidence for the accidental ingestion of small microplastic 

spheres by multiple ontogenetic life stages of sticklebacks via trophic transfer and the 

water column, no statement about the quantity of ingested particles were made. 

Especially for trophic transfer exposures, the transfer coefficients calculated from 

plastic concentrations in water to zooplankton and then fish could be of interest to make 

predictions about a possible accumulation along the food chain. However, in this thesis, 

exposure to a plastic contaminated water column was found to have a higher potency to 

induce biological effects, compared to an exposure via trophic transfer. This might be 

due to the ingestion of higher numbers of polystyrene spheres, the potentially prolonged 

exposure time to the plastic (since they were not incorporated in a live diet) as well as 

additional exposure routes via the gills and skin. 

7.3 Effects of environmentally relevant plastic 

In the environment, organisms are exposed to plastic that has been exposed to 

environmental factors like UV radiation, heat and mechanical processes that degrade 

their polymer structure (Andrady, 2011, Cooper and Corcoran, 2010). Cracks in the 

polymer structure due to the environmental degradation of the material expose the inner 
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matrix, leading to additional leaching of incorporated chemicals (Ejlertsson et al., 2003) 

and increase the surface area over which the leaching of chemicals takes place. Results 

of Chapter 5 provided evidence that degraded polymer structures might have an 

increased potential to leach biologically active concentrations of incorporated 

chemicals, which was suggested by increased liver weight and gutted weight through a 

potential disturbance of the energy metabolism. Accordingly degraded plastic is of 

greater concern than non-degraded plastic for chemically induced effects and future 

studies should focus on the effects of leached chemicals when investigating the 

potential health risks of degraded plastic. 

Additionally, plastic accumulates environmental pollutants through adsorption which 

can reach high concentrations (Mato et al., 2000, Rios et al., 2007, Ogata et al., 2009). 

Results presented in Chapter 6 proposed that plastic has the potential to act as a vector 

for biologically active concentrations of adsorbed chemicals from the water column to 

fish via trophic transfer which have the potential to lead to toxic effects in the short 

term. These findings highlight that adsorbed chemicals of environmental plastic are of 

concern in the induction of biological short term effects. Additionally, microplastic 

ingested via trophic transfer has to be recognised as an exposure route of concern for the 

exposure to environmental pollutants, especially considering the high surface area of 

small sized plastics. 

7.4 Biological significance of used biomarkers 

Since the investigation of effects of microplastic on aquatic life is a relatively new 

research area, there is a lack of endpoints specific to the effects of plastic. Therefore, the 

majority of the endpoints used in this thesis were holistic endpoints, to inform on the 

health effects of exposure, rather than endpoints focussing on single responsive 

pathways. To assess the sensitivity of the three-spined stickleback to microplastic, a 

combination of several biomarkers were used, revealing their biological significance 

depending on the life stage of the fish, exposure routes and chemical contamination. 

No effects on mortality, length and condition index were observed for adult fish 

exposed to virgin plastic spheres via trophic transfer (Chapter 3) and degraded and non-

degraded plastic bag fragments via the diet (Chapter 5), indicating a low toxicity of 

microplastics. However, since just short exposure periods and low numbers of fish were 
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used, further investigations are needed to confirm these findings. The effect on wet 

weight of fish exposed to degraded fragments of carrier bags was suspected to be the 

result of leached chemicals and indicates potentially negative effects on the health. 

Accordingly, this should be further investigated by single and combined exposures of 

the alkylphenols that were suggested to have leached from the plastic bag fragments by 

the GC-MS. 

Larval fish showed a higher potential to be negatively affected by plastic exposure. A 

negative effect on the condition and a positive effect on length were observed for larvae 

exposed to a microplastic contaminated water column (Chapter 4). Additionally, the 

exposure to BPA contaminated plastic spheres via trophic transfer induced mortality 

(Chapter 6). The finding for an increased length to follow the exposure to plastic 

particles stands against findings from other studies. These differences can be explained 

by the different polymer types used compared to other studies. The used polystyrene 

spheres are expected to have leached different chemicals compared to polyethylene for 

which ingestion has been reported to induce negative effects on growth (Mazurais et al., 

2014, Kaposi et al., 2013). Additionally, the reduced condition index which was found 

for the same experiment highlights that ingested microplastic can negatively affect 

energy reserves. The observed mortality for larval fish in Chapter 6 highlights that even 

though virgin and degraded plastics have a low toxicity, adsorbed chemicals can induce 

toxic effects. 

These findings highlight the need for further research with juvenile and larval fish but 

also show the need for more sensitive biomarkers for future short term exposures. 

Molecular endpoints related to growth should be applied to provide further evidence for 

the observed effects. The GH and its induction of insulin-like growth factors (IGF-1 and 

IGF-2) are growth inducing factors in teleosts (Reinecke et al., 2005, Nordgarden et al., 

2006, Funkenstein et al., 1989) and should be therefore prime target genes. 

Additionally, assessment for lipid (Bligh and Dyer, 1959), carbohydrate (Carroll et al., 

1956) and protein (Gornall et al., 1949) content should be assessed to provide 

supporting evidence for the condition index K. The combination of these biomarkers 

has been applied successfully in a previous study to measure energetic costs towards 

exposure to xenobiotics (Pini, 2014). Additionally, water content analysis of the 

organism should be carried out since multiple studies have linked starvation and weight 
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loss to increased water content in fish (Groves, 1970, Idler and Bitners, 1958, Niimi, 

1972). 

Plastic spheres ingested via trophic transfer (Chapter 6) and plastic bag fragments 

ingested via the diet (Chapter 5) were found to have prolonging effects on food 

digestion in larval and adult fish, respectively. Whereas these observed effects did not 

lead to a measurable reduction on energy reserves using the condition index K in the 

short term, negative effects on energy reserves are expected in the long term. Energy 

depletion as a result of prolonged food digestion has the potential to lead to negative 

effects on growth and condition of the fish, likely leading to a reduced fitness of the 

organism. Accordingly, effects on food digestion can be an important endpoint for 

future studies. However, further investigations are needed to explore the effects of the 

observed effects on food digestion on energy reserves in the long term. To assess if the 

observed effects on food digestion can have an impact on energy reserves, plastic 

related effects on enzyme excretion and energy absorption could be determined by 

measuring the calorific value of produced faeces (Lutz, 1990). Additionally, assessment 

of lipid, carbohydrate and protein content of the organism could be applied to 

investigate the effects of a slower food digestion on energy reserves. 

Relative expression of CYP1A was found to be upregulated as a result of microplastic 

exposure for larval fish exposed via the water column (Chapter 4) and trophic transfer to 

BPA contaminated plastic spheres (Chapter 6). This finding reveals that biologically 

active concentrations of incorporated and adsorbed chemicals can be released by the 

plastic. CYP1A as a biomarker for exposure to xenobiotics provides a useful tool to test 

for such chemicals and should be applied by future studies. However, it has to be noted 

that even though the detected fold changes in the relative expression of CYP1A were 

significant for some chapters, the low fold change suggests exposure to just low 

concentrations of plastic derived chemicals. As this effect is suspected to be due to the 

leaching of PAHs and virgin polystyrene has been reported to contain high levels of 

PAHs (which can induce upregulation of CYP1A expression through the binding to the 

AHR receptor in teleosts (Billiard et al., 2002, Billiard et al., 2004)) compared to other 

plastic types (Rochman et al., 2013c) the already low fold change of relative expression 

of CYP1A might not be observed for other plastic types. No effect on the relative 

expression of VTG was found in Chapter 4, which limits its significance as a biomarker 

to detect the leaching of low levels of weakly oestrogenic chemicals in larval fish. 
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Accordingly, future studies should consider the use of more sensitive oestrogen 

biomarkers like zona radiata protein (Zrp) as Zrp-beta has been reported to be more 

sensitive towards exposure to oestrogens than VTG (Arukwe et al., 1997). 

7.5 Environmental relevance of the used plastic levels 

It should be noted that all presented experiments and the obtained results were not based 

on environmentally relevant concentrations of microplastics. Even though high levels of 

plastic particles can be found in aquatic environments (see Chapter 1, section 1.2.4) the 

here used levels of plastic spheres exceeded those found in the environment. This is in 

line with numerous peer reviewed studies using fluorescent microsphere model plastics 

to investigate ingestion and effects of microplastics on aquatic organisms (von Moos et 

al., 2012, Farrell and Nelson, 2013, Wegner et al., 2012, Oliveira et al., 2013, Setälä et 

al., 2014). Also the study using fragments of plastic bags (Chapter 5) exceeded numbers 

of environmentally relevant concentrations but was still lower compared to a dietary 

exposures by Rochman et al. (2013). Rochman et al. (2013) used 10% LDPE particles 

mixed with the diet, whereas the percentage for the dietary exposure presented in 

Chapter 5 was 0.5% of plastic fragments mixed with the diet. Even though it is unlikely 

that environmental plastic pollution will reach the here used levels, the pollution of 

aquatic environments is constantly increasing; In the US alone about 100 tons of 

microplastic are introduced into the ocean annually (Gouin et al., 2011). Additionally, 

current sampling methods exclude microplastic fragments in the low micrometre range, 

leaving an incomplete picture of the distribution and contamination levels of this type of 

microplastic which can be 1000 to 100,000 times higher than reported values (Norén, 

2007). Results presented in this thesis have to be seen as proof of principle for the 

potential effects of ingested plastic polymers themselves, plastic derived chemicals and 

absorbed and released chemicals by plastic. Studies like this thesis are needed to 

provide a better insight to assess the potential negative biological effects of 

microplastics and reveal which endpoints might be of interested for future studies based 

on environmentally relevant levels of microplastics. 

7.6 Future work 

Due to the limited knowledge of effects of plastic ingestion on aquatic organisms the 

aim of this thesis was to provide evidence for general effects induced by a plastic 
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ingestion in the short term, rather than an in depth investigation into a specific 

responsive pathway towards a single polymer type or a plastic associated chemical. 

Therefore, the majority of analysed endpoints focused primarily on holistic endpoints to 

assess effects on an organism level. Some endpoints on a molecular and cellular level of 

biological organisation were carried out to provide initial evidence for the potential 

pathways that lead to the observed effects on an organism level. As already highlighted 

in this chapter, further experiments are needed to provide additional evidence for the 

here observed effects, not only in fish but also other marine organisms in an effort to 

understand the threat that microplastic pollution poses to wildlife. Since results 

indicated that physical characteristics like shape, size and condition of the polymer 

matrix but also plastic derived and absorbed chemicals can induce negative effects, 

future research should consider investigating the interaction of those factors. Especially 

for chemical compounds additive, potentiated, synergistic or antagonistic interactions 

might lead to yet unobserved effects. Further experiments are needed to determine the 

types and quantities of leached chemicals from uncontaminated plastic and levels of 

accumulated and desorbed chemicals to address the missing link between exposure and 

observed effects for Chapters 4 and 6. The need for long term exposures to provide 

information about the long term effects of plastic induced effects on the used 

biomarkers has been highlighted. Finally, future experiments might consider the use of 

environmentally relevant concentrations of plastic to test if the effects of ingested 

plastic presented in this thesis can be observed under the present pollution levels. 

7.7 Conclusion 

The results in this thesis demonstrate that adult and larval sticklebacks will ingest 

microplastic from the water column, the diet and via trophic transfer. The physical 

properties of ingested microplastic had no effect on survival or health in the short term 

but results suggest that microplastics can leach biologically active concentrations of 

incorporated chemicals and may act as vector to transport organic pollutants into the 

food chain. 

Whereas further investigations are needed to determine types and quantities of leached 

and desorbed chemicals and affected pathways, plastic associated chemicals were 

identified to have the potential to lead to negative effects on survival and health in the 

short term. 
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This study highlights that ingestion of microplastic by aquatic biota is of concern and 

the need for long term studies to investigate the effects of plastic ingestion of the used 

biomarkers and fully evaluate the environmental impacts of plastic ingestion for aquatic 

organisms. 
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Appendix I 

Material and Methods for the molecular work performed by Dr. Karen L. Thorpe for 

Chapters 3, 4 and 6. 
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Total RNA was isolated from larvae (2 larvae were pooled for each preparation) using 

Qiagen RNeasy Mini Kit (including the RNase-free DNase set) as described by the 

manufacturer (Qiagen). Total RNA concentration was estimated from absorbance at 260 

nm (A260 nm; Nanodrop 1000; Thermo Scientific) and RNA quality verified by 

electrophoresis (1.5% agarose gel) and by A260 nm/A280 nm ratios > 2.0. cDNA was 

synthesised from 1 μg total RNA using qScript cDNA synthesis kits (Quanta 

Biosciences) according to manufacturer instructions. Real-time PCR (RT-QPCR) was 

initially conducted using pooled cDNA from each treatment for each of three reference 

genes (18S rRNA, beta-tubulin and ribosomal protein L8, (Katsiadaki et al., 2010)) and 

four target genes (vitellogenin B and vitellogenin C, (Katsiadaki et al., 2010); 

cytochrome P450 1A (CYP1A), (Williams et al., 2009); and insulin growth factor-1 

(IGF-1; designed using Primer 3). Primers (see Table 1) were synthesised by Invitrogen 

(Life Technologies, UK). Specificity of primer sets was confirmed by the observation of 

single amplification products of the expected size and Tm. The pooled cDNA samples 

were diluted 1:10 and RT-QPCR performed using LabTAQ™ Green (Lab Tech 

International Ltd, Uckfield, UK) on an Eco Illumina® (San Diego, CA, USA) real-time 

PCR cycler. The PCR reactions were performed with an initial incubation at 95°C for 2 

min, followed by 40 cycles of 95°C for 5 sec and 60°C for 30 sec. Following the final 

cycle, the reactions underwent a 15 sec 95°C denaturing step followed by a 15 sec, 55°C 

hybridisation step before PCR product melt curves were determined during a further 

temperature increase to 95°C. The control group of animals (not exposed to MPs) were 

used as the reference sample. The relative expression of each gene was calculated using 

the ΔΔCt method. There was no evidence that the microplastics influenced expression 

of any of the reference genes, but as 18S rRNA was most highly expressed this was 

selected as a reference gene for normalisation. Based on these analysis expression of 

vitellogenin C was found to too low to be reliably detected and so was excluded from 

further analysis. The PCR reactions were then repeated for independent samples, using 

the conditions described above (with the number of cycles reduced to 35), to determine 

relative expression of each gene (VTG B, CYP1A and IGF-1). Duplicate data for each 

amplified gene of interest were averaged and relative expression calculated using the 

ΔΔCt method with normalisation against expression of 18S rRNA in each sample. 
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Abbreviations 

Abbreviations, symbols and acronyms used in the text are defined below, excluding 

those in equations, which are defined in situ. 

+MP  With the addition of microplastic 

3200BPA 3200 µg L
-1

 bisphenol A 

320BPA 320 µg L
-1

 bisphenol A 

32BPA 32 µg L
-1

 bisphenol A 

A  Carrier bag type A 

AChE  Acetylcholinesterase 

AD  Carrier bag type A degraded 

AFW  Artificial fresh water  

AnD  Carrier bag type A non-degraded 

ANOVA Analysis of variances 

ASCE  American Society of Civil Engineers 

ASW  Artificial sea water 

AU  Arbitray Units 

B  Carrier bag type B 

BAföG  Bundesausbildungsförderungsgesetz 

BCFs  Bioconcentration factors 

BD  Carrier bag type B degraded 



 

222 

 

BFRs  Brominated flame retardants 

BnD  Carrier bag type B non-degraded 

BPA  Bisphenol A (4,4'-isopropylidine diphenol) 

BPF  The British Plastic Federation 

C  Control 

CA  California 

CAS  Chemical Abstracts Service 

cDNA  Complementary deoxyribonucleic acid 

CH  Switzerland 

CO2   Carbon dioxide 

CYP1A Cytochrome P450 1A 

D  Degraded 

DEHP  Di-(2-ethylhexyl)-phthalate 

DNA  Deoxyribonucleic acid 

DO  Dissolved oxygen 

dph  Days post hatch 

EI  Electron ionization 

ER  Oestrogen receptor 

EU-27+CH/NO European Union member states (27 in 2012 before the accession of 

Croatia on 1 July 2013) plus Switzerland and Norway 
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GC-MS Gas chromatography–mass spectrometry 

GFP  Green Fluorescent Protein 

GH  Growth hormone 

GI  Gastrointestinal tract 

GST  Glutathione S-transferase 

H&E  Hematoxylin and eosin 

HDPE  High density polyethylene 

HGH  Human growth hormone 

HIS  Hepatosomatic index 

hpf  Hours post fertilisation 

hph  Hours post hatch 

HSD  Honestly Significant Difference 

i.e.  That is 

IDH  Isocitrate dehydrogenase 

IGF  Insulin like growth factor 

IMS  Institute of Marine Sciences 

IUCN  International Union for Conservation of Nature 

Kd  Linear distribution coefficient 

Kow  Octanol-Water Partition Coefficient 

LC  Lethal concentration 
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LD  Lethal dose 

LDPE  Low density polyethylene 

LPO  Lipid peroxidation 

LR  London Resin 

max.  Maximum 

M-cells Microfold cells 

min.  Minimum 

MP  Microplastic 

-MP  Without the addition of microplastic 

MS222 3-aminobenzoic acid ethyl ester, methanesulfonate salt 

N/A  Not applicable 

nD  Non-degraded 

nile red 9-diethylamino- 5H-benzo [ a] phenoxazine-5–one 

NO  Norway 

No.  Number 

NP  Nonylphenol 

PAHs  Polycyclic aromatic hydrocarbons 

PBDEs Polybrominated diphenyl ethers 

PBTs  Persistent bioaccumulative and toxic compounds 

PCBs  Polychlorinated biphenyl 
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PCR  Polymerase chain reaction 

PE  Polyethylene 

PET  Polyethylenterephthalat 

pH  Numeric scale used to specify the acidity or alkalinity of an aqueous 

solution 

PMMA Polymethylmethacrylate 

POPs  Persistent organic pollutants 

PP  Polypropylene 

PPAHs Parental polycyclic aromatic hydrocarbons 

ppt  Parts per thousand 

PS  Polystyrene 

PVC  Polyvinylchlorid 

Rel. Exp. Relative expression 

RNA  Ribonucleic acid 

RO  Reverse osmosis 

rt q-PCR Quantitative real time polymerase chain reaction 

SEM  Standard error of the mean 

SOM  Organic matter in the soil/sediment 

Sto  Stomach 

TiO2-NP Titanium dioxide nanoparticles 
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t-OP  4-tert-octylphenol (t-OP) 4-tert-octylphenol 

UK  United Kingdom 

UNESCO United Nations Educational, Scientific and Cultural Organization 

US   United states of America 

USA   United States of America 

USEPA United States Environmental Protection Agency 

UV   Ultra violet 

VTG  Vitellogenin 

VTG B Vitellogenin B 

Zrp  Zona radiate protein 

δδCt  Delta Delta C(T) 
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