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ABSTRACT 

Modern surgical training requires radical change with the advent of increasingly complex 

procedures, restricted working hours, and reduced ‘hands-on’ training in the operating 

theatre. Moreover, an increased focus on patient safety means there is a greater need to 

objectively measure proficiency in trainee surgeons. Indeed, the existing evidence 

suggests that surgical sensorimotor skill training is not adequate for modern surgery. This 

calls for new training methodologies which can increase the acquisition rate of 

sensorimotor skill. Haptic interventions offer one exciting possible avenue for enhancing 

surgical skills in a safe environment. Nevertheless, the best approach for implementing 

novel training methodologies involving haptic intervention within existing clinical 

training curricula has yet to be determined. This thesis set out to address this issue. In 

Chapter 2, the development of two novel tools which enable the implementation of 

bespoke visuohaptic environments within robust experimental protocols is described. 

Chapters 3 and 4 report the effects of intensive, long-term training on the acquisition of a 

compliance discrimination skill. The results indicate that active behaviour is intrinsically 

linked to compliance perception, and that long-term training can help to improve the 

ability of detecting compliance differences. Chapter 5 explores the effects of error 

augmentation and parameter space exploration on the learning of a complex novel task. 

The results indicate that error augmentation can help improve learning rate, and that 

physical workspace exploration may be a driver for motor learning. This research is a first 

step towards the design of objective haptic intervention strategies to help support the rapid 

acquisition of sensorimotor skill. The work has applications in clinical settings such as 

surgical training, dentistry and physical rehabilitation, as well as other areas such as sport. 
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INTRODUCTION 

 Overview 

Human sensorimotor learning is a continuous process that allows us to adapt to new or 

changing environments, acquire new movement skills and perceptive abilities, and 

recover from debilitating conditions (Tresilian, 2012). Motor control (involuntary and 

volitional) affects every moment of an individual’s existence, but the skills many of us 

take for granted (picking up a cup, walking through a doorway) have taken years for each 

individual to develop fully. Whilst the need for motor control to interact with the 

environment might seem obvious, there are some situations in the modern world that 

require an exceptionally high degree of skilled motor action that go beyond the ‘generic’ 

skills learnt during childhood. As a consequence these skills require a substantial amount 

of additional time to learn. Medical practice (and surgery in particular) is one such 

discipline. The acquisition of sensorimotor skills is important across various clinical 

settings (Drucker, Prieto, & Kao, 2012; Hamdorf & Hall, 2000), including, but not limited 

to, minimally invasive surgery and dentistry. In these contexts, the sensorimotor system 

of the practitioner must be trained to generate appropriate motor commands in response 

to a perceptual input: effective movements need to be accurate, precise and time-efficient.  
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Surgical training was traditionally in the form of the ‘see one, do one, teach one’ 

apprenticeship-style program (Barnes, 1987, p. 19). Trainees would observe an 

experienced surgeon performing a specific procedure on a patient before attempting it 

themselves, and their skills were then gradually developed over time through practice on 

live patients. In the interest of patient safety, regulations were gradually put in place to 

decrease the amount of training performed on live patients, especially during the early 

stages of training (Parsons, Blencowe, Hollowood, & Grant, 2011). In addition, the 

European working time directive (EWTD) has recently stipulated the need to regulate 

working hours, to ensure that no doctor can work more than 48 hours per week in Europe. 

The consequences of this legislation have been profound, most notably, decreasing the 

time available to train in the operating theatre (Ahmed et al., 2014). Furthermore, the 

1970’s heralded a revolution in surgery with the introduction of minimally invasive 

surgery (MIS), which has since become the preferred method for a number of surgical 

procedures. Its popularity has been driven by the fact that this form of surgery leads to 

reduced access trauma, less pain, better cosmesis and faster patient recovery while 

maintaining equivalent clinical outcomes to open surgery (Larsen et al., 2009). However, 

the advent of MIS brought with it further challenges for surgical training due to the 

increased complexity of the operating environment, such as viewing the operation site via 

a remote 2D screen (limiting field of view and depth information) and using long levers 

that reverse the direction of motion of the tool tip, and limit haptic feedback (Derossis, 

Bothwell, Sigman, & Fried, 1998). All combined, these changes have resulted in trainees 

effectively receiving less training to perform increasingly complex procedures. 

Unfortunately, there is evidence suggesting that this has led to insufficient training, 

resulting in a negative impact on patient care (Grantcharov & Reznick, 2008).  

The issues outlined above have resulted in a critical need for surgical training analogues 

that allow trainees to learn the necessary sensorimotor skills for performing operative 

techniques. Sensorimotor learning inherently requires ‘hands-on’ practice (as discussed 

in Section 1.4), which has led to the use of simulations of the surgical environment.  The 

ambition of programmes to address this shortage in trainee practice hours has been to 

maximise the efficiency of available training time to result in the greatest educational 

(and consequentially, performance) benefit. Simulation has been the primary focus of 

these types of interventions as it allows prolonged practice, thus encouraging the 

automation of motor skill acquisition as a result of extensive practice in a controlled 
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environment that, crucially, has no direct consequence on patient safety. Virtual reality 

(VR) simulation systems provide a virtual model of the surgical environment, allowing 

the trainee to interact with three dimensional computerised images to facilitate 

sensorimotor interaction and learning through the provision of visual and haptic (force) 

feedback. Indeed, VR training systems are becoming increasingly popular in surgical 

training (and in other clinical areas such as dentistry), and there is evidence indicating 

that motor skills acquired on VR systems can transfer to real surgery (Sturm et al., 2008). 

However, it is important to investigate new ways in which surgical training can be further 

optimised. 

One intriguing possibility of increasing the rate of surgical skill acquisition that leverages 

the inherent properties of modern VR training systems is ‘haptic intervention’ (Sigrist, 

Rauter, Riener, & Wolf, 2012). This involves applying forces to the limb during the 

learning process with the aim of increasing the rate of sensorimotor learning 

(Reinkensmeyer & Patton, 2009). However, whether or not such methods are effective 

has been a matter of debate in recent years. Not least, a consolidated theoretical account 

for such interventions is yet to be established. This highlights the need for new, systematic 

and empirical investigations into the effects of haptic intervention strategies on the 

acquisition rate of sensorimotor skill. 

 Modern surgery 

The sensorimotor skills needed in laparoscopic surgery (LS) are complex in comparison 

to traditional open surgery (see Figure 1.1). The surgeon sees a two-dimensional 

representation (on a visual display) of the three-dimensional abdominal cavity and has to 

manipulate tissue skilfully without many of the visual depth cues that are present under 

direct observation (binocular vision is lost), whilst using instruments that significantly 

impair dexterity and tactile sensation (Culmer et al., 2012). Indicating the potential impact 

of this increased level of difficulty, there was an increase in the rate of complications 

following the initial introduction of LS (Kirk, 2002). The UK’s National Patient Safety 

Agency (Catchpole et al., 2009) highlights technical problems (i.e. surgeon factors) as the 

most important element for patient harm in LS. Research indicates an average of four 

potentially consequential errors per operation (Tang, Hanna, Joice, & Cuschieri, 2004). 
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In addition to this, there is a relatively long learning curve associated with LS (Wattiez et 

al., 2002).  

 

Figure 1.1. (a) Traditional open surgery whereby a large incision is made, retracted 

and the site is viewed directly. (b) Laparoscopic surgery (LS) uses multiple 

small incisions with inserted ports whereby various long-handled tools can be 

inserted. The lower port site shows the laparoscopic camera that provides an 

image of the site that is displayed on a remote screen. 

Within a LS procedure, common tasks will include tissue manipulation, assessing tissue 

health, cutting and suturing. As outlined earlier, successful execution of these tasks relies 

on highly developed sensorimotor skills which can take years to develop (Larsen et al., 

2009). One way in which the challenges associated with LS have been addressed is 

through robot-assisted MIS, whereby the surgeon doesn’t directly control the movement 

of the tool, rather the movements are sensed and then a robotic arm performs the required 

movement. Such a system allows the relationship between the surgeon’s movement and 

the movement of the tool to be altered, for example to make a large hand movement 

translate to a small movement of the tool if very fine adjustments were needed. The da 

Vinci® System (Intuitive Surgical, Inc.), for example, supports precise control and highly 

dexterous movements of surgical tools via an intuitive hand-controlled interface, and it 

also provides additional depth information via stereo vision (rather than a standard flat 

2D screen; (Gomes, 2011). Unfortunately, high costs, long setup times and absence of 

haptic feedback are all factors associated with the use of robot-assisted MIS systems 
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relative to traditional MIS, which has meant that they are generally reserved for 

procedures requiring a high level of precision and dexterity, such as brain and prostate 

surgery (Turchetti, Palla, Pierotti, & Cuschieri, 2011). These factors have meant that 

traditional MIS is still the default approach to certain classes of surgical procedures. 

The perceptual and motoric difficulties intrinsic to MIS are likely to require longer 

periods of training, however there is in parallel a pressure to reduce working hours and 

surgical costs as outlined in the next section.  

 The current state of surgical training 

Surgery has traditionally been a craft in which skills and techniques were handed down 

from the ‘master’ to their apprentice in an informal apprenticeship-style program, often 

referred to as the ‘see one, do one, teach one’ style of teaching. Since then, training has 

changed by becoming more formalised and with a greater emphasis on patient safety 

(Aggarwal, Hance, & Darzi, 2004). In 1997, a structured training curriculum, named the 

intercollegiate surgical curriculum (ICSP) was introduced which laid out the skills that 

surgeons were required to learn. This was effective to a certain degree as it monitored 

progress and reformed the structure of training (JCST, 2012). However, modern surgical 

trainees have less time to learn about their craft than their peers did. In fact the Royal 

College of Surgeons calculates the time spent training has reduced from 30,000 hours to 

just 8,000 in recent years (Philips, 2003).  

Several factors have contributed to these issues, including restrictions on working hours, 

the growing number of techniques and specialties that surgeons are required to learn (e.g. 

a move from open surgery to MIS techniques), moral and ethical restrictions resulting in 

a reduced hands-on experience with real patients (especially during initial years of 

training), as well as a reduced availability of suitable training analogues (e.g. cadavers). 

Indeed, one study found that only 34% of surgical trainees believed they were given 

adequate training (Bann, Datta, Khan, Ridgway, & Darzi, 2005). This is unsurprising 

given the fact that the number of operations available for training is 38% less than the 

recommended amount (Crofts, Griffiths, Sharma, Wygrala, & Aitken, 1997). This has 

highlighted the need to transform the way surgery is taught, with focus shifting from 

quantity to the quality of training that trainees receive.  
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In the UK, the training syllabus is divided into four core areas: specialty-based 

knowledge, clinical judgement, technical and operative skills and professional skills and 

behaviour (ISCP, 2013). Of these, technical and operative skills are considered by many 

the most difficult to master (Grantcharov, Bardram, Funch-Jensen, & Rosenberg, 2002). 

Indeed, it can take years for a surgeon to progress from the early (explicit ‘cognitive’) 

stages of learning to executing precise and efficient movements with minimal cognitive 

effort (‘automation’). This highlights the need to investigate how such skills can be 

learned more efficiently. First, however, it is important to clearly define what is meant by 

‘skill’, and to outline the current methods used in sensorimotor skill assessment. 

 Assessment of surgical skill 

Skill assessment is vital in surgical training. From the early foundation years through to 

consultant level, skills in each area are assessed at different stages of the syllabus. 

Traditionally, assessing performance of surgeons involved assessing their theoretical 

knowledge, through structured questions whilst neglecting to measure technical 

proficiency (Moorthy, Munz, Sarker, & Darzi, 2003). Additionally, direct outcome 

measures were often employed: for example, a surgeon’s abilities would be correlated 

with operative mortality, and for those using slightly more sophisticated metrics - length 

of stay in hospital. Although such measures have a degree of face validity, they are 

confounded by patient variables (e.g. the patient may be obese and therefore be a more 

difficult case). More experienced surgeons tend to take on more difficult cases which 

naturally have more chance of complications. In more recent times, video assessments of 

technical ability have been used. Here, an operation is videotaped and later rated by expert 

reviewers. Whilst this approach has shown significant benefits over previous methods, 

one issue with this technique is that it is largely subjective from the assessors’ viewpoints. 

Furthermore, although video assessments are able to distinguish large differences in 

performance, evidence suggests that subtle differences may not be detected and so may 

not accurately assess surgical proficiency (van Hove, Tuijthof, Verdaasdonk, Stassen, & 

Dankelman, 2010).  

Today, the most widely used measure of surgical proficiency is the ‘objective structured 

assessment of technical skill’ (OSATS; (Martin et al., 1997)). The OSATS involves 

trainees performing several different techniques, such as tissue handling, on various 

bench models. Although this provides a general measure of skill, the assessment of 
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surgical proficiency is still based on the subjective opinion of the observer. Therefore, the 

assessments lack an objective appraisal of ability (Paisley, Baldwin, & Paterson-Brown, 

2001) and are costly in terms of manpower (Martin et al., 1997). Motion tracking systems 

have also been developed to try to assess surgical skill: the ‘advanced Dundee endoscopic 

psychomotor trainer’ (ADEPT), a motion tracking system which records duration and 

accuracy of movement (Kitagawa, Dokko, Okamura, & Yuh, 2005), and the Imperial 

College Surgical Assessment Device (ICSAD), a measure of hand motion efficiency are 

two examples. Although it uses validated measures, ADEPT has been criticised for 

having limited difficulty so it does not effectively capture performance of more 

experienced trainees (Grantcharov et al., 2002) and ICSAD for requiring a standardised 

technique which means it is not robust to stylistic differences in technique (Darzi & 

Mackay, 2002). Nevertheless, objective assessment of skill has become an important 

aspect of surgical training, since it is an important component of producing useful 

feedback for correcting errors (Kopta, 1971). Objective measurement of motor control 

skills are starting to appear within the screening tests used as entry requirements for 

surgical training. These tests assess the potential candidates’ visuospatial capabilities to 

ensure they are capable of learning the complex skills involved in LS. This is typically 

done by assessing the ability to manipulate objects in abstract tasks such as stacking sugar 

cubes using laparoscopic probes (Seymour et al., 2002). The current trend in LS skill 

assessment techniques is the use of measurement systems designed to obtain objective 

metrics of performance as skill progresses. Indeed, it is common for surgical trainees to 

develop surgical skills of ‘baseline surgical dexterity’ on models (simulators designed to 

replicate the surgical environment or tasks as well as measure performance) rather than 

on living patients (McCaskie, Kenny, & Deshmukh, 2011).  

 Surgical simulation 

The drive to reduce patient risk has resulted in the use of simulators whereby trainees can 

safely practise their skills without endangering the health and wellbeing of patients. For 

context, it is useful to review the general process used during a surgical procedure and 

the types of competencies that are required. Consider a laparoscopic cholecystectomy 

(gall bladder removal). After preparing the operating theatre and surgical tools and 

positioning the anaesthetised patient, four incision locations are marked on the outside of 

the abdomen. Incisions are made using a scalpel and the laparoscope (camera) and 

laparoscopic instruments are inserted (this involves breaking through several layers of 
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tissue). Upon internally identifying the region of interest (ROI) visually, tissue structures 

(fat, organs and/or muscles) are grasped and manipulated using laparoscopic graspers 

whilst simultaneously using laparoscopic scissors to gradually expose, isolate and excise 

the ROI from surrounding tissues. The remaining open internal structures are then sealed 

by cauterisation (if there is bleeding) and/or suturing (this involves manipulating a curved 

needle using a laparoscopic grasper), the tools are removed and the external incisions are 

sutured. Within these steps, there are a number of elements which can be classified into 

procedural (i.e. knowledge-based and/or decision making) skills, and motor skills. For 

instance, knowledge of the human anatomy is critical for identifying the ROI and 

knowing what structures can be manipulated and/or cut (these tasks are predominantly 

procedural), whilst navigating the environment, manipulating tissue structures, cutting 

and suturing primarily require complex technical (motor) skills.  

Simulators are designed to train some or all of the major skills that are needed to perform 

a procedure, such as the ones outlined above (Tsuda, Scott, Doyle, & Jones, 2009). There 

have been a number of different simulators in use, each of which presents different 

benefits and limitations. Table 1.1 provides an overview of the types of simulations that 

are currently available, outlining their advantages, disadvantages and the situations in 

which they have been most effective.  
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Table 1.1. Overview of simulation methods used in surgical training (adapted from 

(Reznick & MacRae, 2006). 

Simulation Advantages Disadvantages Best use 

Cadavers High fidelity, true 

anatomy, can practice 

entire operations 

Cost, availability, 

single use, tissue 

compliance, infection 

risk 

Advanced 

procedural 

knowledge, 

dissection, 

continuing medical 

education 

 

Bench 

models 

Low cost, portable, 

reusable, minimal 

risks 

Low fidelity, basic 

tasks, down time 

Basic skills for 

novice learners, 

discrete skills 

 

Virtual 

reality 

simulators 

Reusable, data 

capture, minimal 

setup time 

Cost, maintenance, 

downtime 

Basic laparoscopic 

skills, endoscopic 

and transcutaneous 

procedural skills 

 

Cadavers present a close alternative to the anatomy of live human patients (i.e. they are 

‘high fidelity’), whilst bench models (e.g. an orange) are low fidelity because they do not 

accurately represent the visual and haptic feedback associated with the surgical 

environment. This makes cadavers a preferable choice for training. However, the cost and 

ethical issues involved generally means that cadavers are only used in later years of 

training to teach advanced skills. Simulations that are more commonly involved in the 

development of motor skills are bench models and VR simulators. Whilst bench models 

(e.g. a box with sugar cubes inside – a common setup used for practicing LS manipulation 

tasks) offer a low cost, portable and reusable solution, again they don’t match the fidelity 

that is now possible with VR systems. This is the main factor that has made VR systems 

so popular in modern clinical training (Yiannakopoulou, Nikiteas, Perrea, & Tsigris, 

2015). 

 Virtual reality surgical training 

The 1980s saw VR researchers highlighting the prospect of the user being able to 

experience a desired environment, such as the use of flight simulators (Otaduy & Lin, 

2006). Later, in the 1990s, researchers developed the idea of using virtual reality headsets 

in order to rehearse surgery (McCloy & Stone, 2001). Initially, as the simulators 

developed, VR technology was only used for the simulation of basic LS skills which used 
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abstract graphics, i.e. low-fidelity simulations (Grantcharov, 2008). More recent 

developments have enabled trainee surgeons to practise whole procedures, including the 

simulation of a range of pathological states and anatomical variations. This was the start 

of ‘high-fidelity’ VR systems. 

Modern VR surgical training systems are designed to simulate the ‘look and feel’ of 

surgery as accurately as possible, with the aim to provide trainees with the procedural and 

sensorimotor skills needed to operate safely on real patients. These are often equipped 

with a 2D or 3D display, mechanical interfaces (e.g. laparoscopic or dental probes) which 

are used to navigate the virtual environment, and provide haptic feedback to the user to 

simulate interactions with tissue or other objects. The benefit of VR trainers in contrast 

to performing actual surgical procedures is the significantly reduced patient risk and the 

ability to give trainees the opportunity to train on the same procedure repeatedly at a 

convenient time and location away from the constraints of attending a particular 

procedure in an operating room (Yiannakopoulou et al., 2015). 

Some examples of commercially available VR training systems are shown in Figure 1.2. 

The LapMentor (Simbionix) is perhaps the most commonly used LS training system. It 

gives surgical trainees the ability to undergo Basic Skills Training and Procedural 

Training (von Websky et al., 2012). Basic Skills Training includes abstractions of general 

tasks that are required in most full LS procedures. These skills focus on manipulating the 

camera, practicing hand-eye coordination, clip application, bimanual manoeuvring and 

displacement of objects. Procedural Training simulates an entire specific LS procedure 

(e.g. a cholecystectomy). Trainees have the opportunity to choose from a range of patient 

anatomies to vary the task environment. Immediate feedback from a virtual teacher is 

available and the trainee’s progress can be monitored over time due to the LapMentor’s 

ability to plot learning curves. VR training systems generally aim to provide a platform 

for prescribing basic LS skills training and procedural context, and to objectively assess 

performance. Other examples of VR training systems are the LapVR (CAE Healthcare), 

ProMIS (CAE Healthcare), LapSIM (Surgical Science), MIST-VR (Mentice), and SEP 

(SimSurgery) – see Figure 1.2 for details. Due to their reproducibility, ease of set up, 

scalability, and relatively high simulation fidelity compared to other modelling 

techniques such as box trainers (visual and haptic feedback are reported to be more 

representative of reality), these methods are considered a valuable tool for surgical 

training (R. Hart & Karthigasu, 2007). 
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Figure 1.2. Examples of four commercially available VR LS training systems: a) the 

LapMentor (Simbionix), b) LapVR (CAE Healthcare), c) LapSim Haptic and 

d) LapSim Non-Haptic Systems (Surgical Science). VR training systems often 

come with a display monitor, laparoscopic tool interface and auxiliary inputs 

such as a touchscreen, computer mouse and/or keyboard for configuring the 

training environment and procedures. Higher quality VR training systems 

come with built-in haptic feedback to allow the trainee to experience the force 

feedback associated with interactions with biological tissue and other objects. 
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In parallel to developments in LS training, there have been other clinical areas that have 

similarly benefited from the use of VR systems. Two such examples are dentistry and 

physical rehabilitation (see Figure 1.3). Whilst there has been some degree of success in 

physical rehabilitation systems for the training of basic sensorimotor skills (such is the 

case for neurologically injured patients; (Selzer, Clarke, Cohen, Duncan, & Gage, 2006)), 

this has not been the case for areas requiring more complex skills like dentistry and LS. 

 

Figure 1.3. (a) The Simodont Dental Trainer (MOOG) provides dental simulation 

and procedural training with built-in courseware and assessment tools. (b) The 

InMotion ARM (Interactive Motion Technologies) is designed to deliver 

sensorimotor therapy to neurologic patients via forces which adapt and 

challenge the patient’s ability. 
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The focus so far for LS VR training systems has been on maximising their fidelity to 

replicate the look and feel of surgery as closely as possible. Whilst this has been shown 

to be beneficial for obtaining task-relevant contextual and procedural information 

(Otaduy & Lin, 2006), one question that remains is whether VR systems could be used 

more effectively for training sensorimotor skills. A system which provides this capability 

could have a significant impact in any area requiring an individual to learn complex motor 

patterns - not just LS, but dental training, physical rehabilitation, as well as sports such 

as tennis or golf or even learning musical instruments (McCaskie et al., 2011). To 

investigate potential techniques that could be employed to improve motor learning, it is 

useful to review the theories that underpin sensorimotor learning and control. 

 Principles of sensorimotor control and learning 

According to the classic Fitts and Posner theory of sensorimotor skill acquisition (Fitts & 

Posner, 1979), learning can be divided into three main stages: the cognitive stage, the 

integrative stage and the autonomous stage. Learning to drive a car is a skilled motor task 

that most adults learn in their late teenage years and is a useful example of sensorimotor 

skill acquisition. The initial cognitive stage is characterised by erratic performance as the 

trainee is required to learn the mechanics of the task (e.g. learning the position of the 

gears, which pedal is the clutch and which is the brake, and how far to push the clutch 

when changing gears). At this stage, performing the task requires significant cognitive 

effort. With prolonged practice, the trainee progresses into the integrative stage, at which 

point performance becomes more refined as the learner is able to apply their knowledge 

(e.g. the gears are selected smoothly, and the driver concentrates on the road ahead, 

checking mirrors and indicating before braking). When performance reaches a plateau, 

the autonomous stage has been reached; the task is no longer overly demanding and it can 

be carried out with virtually no cognitive effort. This qualitative description of the 

learning structure can be considered with respect to devising optimal surgical training 

regimes: trainees would ideally (from a patient’s safety perspective) learn outside the 

operating room until the autonomous stage is reached. Nevertheless, such qualitative 

descriptions provide little useful information about the frameworks that underlie 

sensorimotor learning.  
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A more formal approach is needed to explore novel methodologies of optimising practice 

conditions. Fortunately, there have been significant advances in our understanding of the 

mechanisms involved in sensorimotor control and learning. Before reviewing these, it is 

worth considering the complexity involved with effectively interacting with the 

environment. The sensorimotor system is able to overcome many issues to allow skilful 

interactions with the environment (David W. Franklin & Wolpert, 2011). To perform an 

action, the system is required to quickly make a selection out of hundreds of muscles and 

joints and an infinite number of possible trajectories and speed profiles that can be used 

to perform an action. Having many ways to achieve the same goal is the issue of 

redundancy. The system must also be able to deal with noise which adds variability in 

estimating both the internal states of the body (e.g. hand position) and external states of 

the environment (e.g. the location of an object in space). Noise is present at all stages of 

the sensorimotor process, including sensory processing, planning, and in efferent motor 

commands. Delays must also be dealt with to compensate for the time taken in receiving 

afferent sensory information and the delay in muscles responding to afferent motor 

commands. Uncertainty is also present in the system due to incomplete knowledge about 

the environment or task (not knowing the weight of an object, for example). The 

nonstationarity of the system is another challenge which arises due to constant internal 

changes (e.g. muscle fatigue). Finally, the whole sensorimotor system is highly nonlinear, 

meaning that there are complex mappings between task goals and the afferent motor 

commands that are needed to achieve a required action. Rather remarkably, the system is 

able to skilfully overcome these issues, allowing humans to adapt to new environments 

and learn to carry out highly sophisticated actions to manipulate the world around them. 

 Sensory processing, planning and decision making 

Humans have a remarkable ability to obtain relevant information from the world and 

implement actions to efficiently meet an objective. To do this, the CNS (central nervous 

system) is able to efficiently sample information from the environment using various 

sensory streams and filter out task-irrelevant information. To reduce the effects of 

inherent sensory noise and thus increase certainty, multiple sources of sensory 

information are often combined in a near-optimal statistical (Bayesian) fashion (Wolpert, 

Diedrichsen, & Flanagan, 2011). The human system is then able to define an objective to 

achieve a high-level goal based on the incoming sensory information, and choose an 
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effective action for achieving that objective from an infinite number of possibilities 

(Andersen & Cui, 2009). 

 Implementing action 

Virtually any movement can be defined as a number of sub-actions which can then be 

divided further. At the lowest level, the human system can be thought of as having at its 

disposal a repertoire of elementary action units, or ‘motor primitives’ (Mussa-Ivaldi, 

Giszter, & Bizzi, 1994). Conceptually, motor primitives can be combined to create 

‘control modules’ which can be recruited to define more complex movements (Tresilian, 

2012). This hierarchical structure can be used to generate patterns that range from very 

basic movements (e.g. actuating one muscle in one degree of freedom), to highly complex 

behaviours such as controlling a number of muscles and joints with specific 

spatiotemporal characteristics (throwing a ball, for example).  

There is evidence suggesting that control modules can be recruited during both voluntary 

(planned) and involuntary (reflexive) actions (C. B. Hart & Giszter, 2010). By virtue of 

the fact that reflexive actions are processed as an automatic response to a stimulus (i.e. 

without conscious processing, or any processing at all, via the brain; Courtine et al., 

2009), it is likely that these control modules are, at least at some level, stored in the spinal 

cord and peripheral nervous system. During voluntary action, high-level commands are 

generated centrally (in the brain) and further processed at different stages of the nervous 

system to generate the commanded action (Tresilian, 2012). To identify a command that 

suitably meets a goal however, the actor must first possess a framework that defines the 

input/output relationship of the motoric architecture, with context of the outside world in 

which the action will take place. Such a framework has been referred to as an internal 

model or models which can be used to predict the motor commands needed to achieve a 

desired state. This topic is discussed later. Integral to this process, there are distinct 

control strategies that the human system is thought to use for implementing movement 

under a number of different internal (the body) and external (the environment) conditions 

and situations.  

 Control strategies 

Three control mechanisms (impedance, feedback and predictive control) are thought to 

be interrelated and recruited in parallel to balance reward (e.g. accuracy) and effort (e.g. 
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energy expenditure) – this is commonly referred to as the ‘accuracy/effort trade-off’ 

(Emken, Benitez, Sideris, Bobrow, & Reinkensmeyer, 2007).  

Impedance control  

This control strategy describes the modulation of limb joint impedance to increase 

accuracy by reducing the effects of external disturbances to the human system (Selen, 

Franklin, & Wolpert, 2009). This is primarily achieved through muscular co-contraction 

around a joint, resulting in a ‘stiffer’ joint. Another strategy which can be categorised 

under impedance control is the tonic stretch reflex, whereby a muscle length threshold 

can be set centrally and monitored via low-level (peripheral) feedback to control muscle 

actuation (Tresilian, 2012). At a cost of increased energy expenditure, impedance control 

is effective when the limb is exposed to novel environments to help maintain stability, a 

situation that is often encountered during the early stages of skill acquisition. Indeed, as 

motor skill level improves, limb impedance has been shown to decrease, at which point 

other control mechanisms may become more dominant (Milner & Franklin, 2005).  

Feedback control 

Feedback control uses an error signal (the difference between the desired and actual 

outcome) to make corrections during the execution of a movement (Wolpert, Miall, & 

Kawato, 1998). Because feedback control needs to determine the actual outcome using a 

combination of sensory signals such as vision and kinaesthesia, there are inevitable delays 

in the transmission of signals through the neurophysiological system. Use of just feedback 

control tends to result in either slow movements, or fast and jerky movements. Some 

responses to stimuli can occur relatively quickly (some reflex mechanisms occur at a 

timescale of 10-40 ms) whilst centrally processed responses  accrue significantly longer 

time delays (i.e. in the order of hundreds of milliseconds, or more; (Wolpert & Flanagan, 

2010). To carry out fast, smooth movements that are not subject to such time delays 

requires the use of predictive models of control. 

Predictive control 

Predictive or feedforward control makes use of an inverse model, an internal 

representation of the motor system and the environment, to estimate the motor commands 

required to produce an action (Shadmehr, Smith, & Krakauer, 2010; Wolpert, 1997). The 

critical advantage of a feedforward mechanism is that actions can be generated rapidly 

without the constraint of feedback error.  
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Movement typically involves a composite model involving feedforward and feedback 

mechanisms: any errors that arise due to incorrect predictions from the inverse model can 

be compensated with feedback control, and also to inform future predictive actions. This 

process is reviewed in more detail next in context of internal mechanisms that help drive 

learning and adaptation. 

 Internal models of sensorimotor control 

Motor commands are generally described as being generated via the use of two distinct 

and interacting conceptual mechanisms: inverse and forward models (Wolpert et al., 

1998). As discussed above, inverse models (see Figure 1.4) define the motor commands 

that are needed to achieve a state (e.g. a position and velocity of the arm), whilst forward 

models predict the consequences (feedback sensory information) of such motor 

commands using the current state (e.g. of the arm) and a copy of the efferent signal. Such 

sensory predictions can be used to make fast corrections using the pre-existing controller 

(inverse model) before sensory feedback is available (this has been modelled using the 

‘Smith predictor’ control scheme; (Desmurget & Grafton, 2000), and integrated with 

actual sensory feedback to optimise state estimates and enhance perception (Miall & 

Wolpert, 1996; Shadmehr et al., 2010).  

 

Figure 1.4. The feedback-error-learning model (reproduced from Wolpert et al., 

1998). Feedforward and feedback motor commands are used to generate an 

action. Errors are compensated using a feedback controller. This error-

corrective process acts to gradually tune the inverse model, leading to 

smoother, more accurate and faster movements. This is because movements 

become controlled by the predictive component of the model and require less 

corrective action which is slow in comparison. 
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The process of tuning internal models during interactions with the environment forms the 

basis of sensorimotor learning. To better understand how to optimise the training of 

skilled actions (such as MIS) it is important to consider further how this tuning takes place 

- this is considered further in the next section. 

 Learning from action 

In error-corrective learning, discrepancies between the desired and actual sensory 

information drive changes of the inverse model, and thus, future motor commands. In this 

way, perception is intrinsically linked to action. The intimate relationship between 

feedback and feedforward control mechanisms can be observed during the acquisition of 

a novel task, such as when learning to ride a bicycle: movements are initially jerky and 

inaccurate (due to the influence of feedback mechanisms making large, slow corrections). 

As the inverse model becomes tuned to perform the action, smaller errors occur during 

predictive control and the need for large feedback corrections decreases. As a result 

actions become faster, smoother, and more accurate as skill level increases. Linking back 

to the theme of surgical training, such progressions are often exhibited during the learning 

of laparoscopic surgery, with experienced practitioners exhibiting faster, smoother and 

more accurate (i.e. small amplitude deviations from a desired trajectory) movements than 

novices (Oropesa et al., 2011).  

Learning a new skill (such as efficiently interacting with the surgical environment using 

laparoscopic instruments) is thought to involve two fundamentally distinct and interacting 

conceptual processes, model-based (MBL) and model-free (MFL) learning (Haith & 

Krakauer, 2013). MBL is a relatively fast adaptation process involving sampling the 

dynamics of the environment and adapting internal models to solve the new task (Huang, 

Haith, Mazzoni, & Krakauer, 2011). MFL is a slower process involving trial and error to 

sample the environment and directly identifying successful policies to perform an action 

effectively (i.e. tuning of an inverse model).  

MBL and MFL are thought to occur simultaneously during the learning process (Dayan 

& Daw, 2008). MFL processes are thought to be predominant at the later stages of 

learning, once MBL has configured the human system in such a way that it performs in 

the ‘ball-park’ of what is needed. However, to achieve MBL, it is not sufficient for the 

human system to possess previous ‘models’ that are in some way related to the novel task. 

Rather, a mapping of the relationship between the behaviours needed for the two tasks is 
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needed. This mapping can be related to what has been referred to in the literature as the 

‘meta-parameter’ in structural learning (Braun, Mehring, & Wolpert, 2010).  

 Structural learning and the parameter space 

Structural learning has been accredited with the remarkable ability of humans to quickly 

adapt to new environments, for example, learning to ride a motorcycle with minor 

difficulty having previously learned to ride a bicycle. Performing any given task requires 

a certain combination of parameters that define the actions needed to perform the task. 

We will refer to this as the ‘parameter space’. Relative to riding a skateboard, for example, 

it would seem that riding a bicycle would require a similar parameter combination to 

riding a motorcycle. This is because the physics involved with performing one task are 

highly relevant to the other, and vice-versa. In support of this, there is evidence showing 

that motor task variation (i.e. moving from one task to another similar one or, in other 

words, deliberately changing the parameter space) induces structural learning, which 

facilitates generalisation to new, yet similar, tasks (Daniel A. Braun, Aertsen, Wolpert, & 

Mehring, 2009).  

To further analyse the concept of parameter space, consider a simplified analogy using 

two parameters (Figure 1.5): an archer firing an arrow at a target (ignoring horizontal 

angle and the effect of wind). To hit the target, the archer must find a combination of 

force and tilt angle which generates the required trajectory. A novice archer will begin by 

trying different combinations of force and tilt angle and iteratively adjusting the two 

parameters based on the trajectory of the arrow. Gradually they will approach a suitable 

combination which will result in the arrow hitting the target.  For any given target, a range 

of solutions may exist for a particular target position. For a different target position, a 

different combination of parameters will be needed. Again, the archer must explore the 

parameter space until a suitable combination of parameters is found. 
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Figure 1.5. Illustration of the parameter space for an analogous and simplified two-

dimensional task, showing: a) an illustration of the tilt angle (θ) and applied 

force (F) parameters when firing an arrow using a bow, excluding horizontal 

angle; b) a range of solutions made up of different combinations of force and 

tilt angle are possible for any target position. If the target position is changed, 

the parameter relationship shifts. To hit a new target (target 2), the learner 

must find a suitable new combination of θ and F. 

Once the archer has experienced the effects of varying the two parameters involved in the 

task, they are able to build a structure that represents the relationship between the two 

parameters in terms of the goal (hitting a target at any given distance). By simply 

modifying a meta-parameter, the learner is able to quickly adapt to a new task (see Figure 

1.6).  

 

Figure 1.6. Parametric learning requires exploration across the full (multi-

dimensional) parameter space to reach a suitable solution, whilst structural 

learning uses past experiences to infer the relationship between the variables 

(the meta-parameter), essentially reducing the problem to one dimension, thus 

greatly simplifying the learning process (reproduced from Braun et al., 2009). 
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It is important to note that, for simplicity, this is an abstract example. Complex human 

action, which often requires the synchronised control of tens or hundreds of muscles, 

conceivably involves operating in a parameter space comprised of hundreds or thousands 

of dimensions (Braun et al., 2010). This highlights the complexity that the sensorimotor 

system must contend with in order to quickly learn what actions are best suited to new 

tasks. 

 Learning optimal behaviour   

To maximise performance efficiency, the motor control system must minimise task 

complexity and cope with uncertainty by allowing variability in redundant (task-

irrelevant) dimensions while minimising variability in the dimensions that have a 

significant impact on performing the task (Todorov & Jordan, 2002). Thus, a key 

component to motor learning is finding which errors detract from the goal and what 

strategy can be used to minimise the effects of such errors. Whilst error-corrective 

learning is relatively fast and capable of producing a near-zero average error (i.e. it is 

accurate), the variability that results from this strategy alone can be large (i.e. it is not 

precise). This is because, whilst the human system has found a solution to the problem, it 

is not necessarily the optimum solution (i.e. the solution with the lowest combined 

variable and constant error - to be both precise and accurate). 

With reference to the parameter space example (Figure 1.5), an error-corrective learning 

process provides an efficient way to derive a combination of parameters that suitably meet 

the task demands. Let’s assume that the solution found through structural learning was 

the one requiring the largest force and lowest vertical tilt solutions shown in Figure 1.5. 

Whilst the solution appears to achieve the goal (hitting the target) there may be better 

solutions. A larger tilt angle and a lower power output could also result in hitting the 

target but with lower overall energy expenditure. Thus, it is not the optimal solution (in 

terms of power output). But once the human system has arrived at a local minima (i.e. the 

best solution in that region of the parameter space) it may be difficult for the motor system 

to move away to find the optimal solution since learning a more effective strategy will 

require further exploration of the parameter space that could result initially in increased 

errors. One solution would be to provide additional guidance to impose external 

constraints on the human system to move it around the parameter space towards the most 

effective strategy. 
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‘Reinforcement learning’ has been described as a learning process which, in the context 

of our parameter space example, involves exploring alternative parameter combinations 

to find alternative (and potentially more effective) solutions to a problem (Dayan & Daw, 

2008). However, external stimuli are often required to induce such changes: one way in 

which reinforcement learning has been achieved is through the provision of knowledge 

of results (KR) to inform the learner of the effectiveness of a strategy on achieving the 

overall goal. Such feedback can therefore be used as guidance for future attempts, thus 

improving response to a stimulus in a relatively long-lasting way (Salmoni, Schmidt, & 

Walter, 1984). Another process which may possibly occur in parallel with reinforcement 

and error-corrective learning processes is ‘use-dependent learning’, a mechanism that is 

driven through repetition of an action without the need for any clearly defined goal or 

objective. The presence of this process has been shown empirically during reaching tasks  

(Diedrichsen, White, Newman, & Lally, 2010). With practice, consequent movements 

become biased towards previous movement patterns and less variable (Verstynen & 

Sabes, 2011).  

It seems likely that teaching an optimal strategy to achieve a goal will involve a 

combination of error-corrective, reinforcement and use-dependent learning. In clinical 

training, the growing emphasis on VR surgical training systems should be seen as an 

opportunity to investigate new methods of doing this which may have not been previously 

available. One method that has been a matter of discussion over the past decade is the 

notion of applying forces to a learner’s limb with the aim of accelerating learning. This 

topic is the focus of this research.  

 Haptic enhancement of sensorimotor learning 

The advent of robotic technology has stimulated a range of research investigations to 

determine the best way to support the human sensorimotor learning processes through the 

provision of haptic feedback. Haptic feedback technology encompasses systems that 

deliver forces to the body to simulate or augment the forces associated with interaction 

with objects (Salisbury, Conti, & Barbagli, 2004). Early applications of haptic technology 

were seen in virtual environments starting with flight simulators and master-slave 

teleoperated robotic devices (Salisbury et al., 2004). The early 1990’s saw a new wave  

of haptic technology, that exploited the propensity of the human CNS to integrate visual 
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and motor information, using a combination of haptics synchronised with graphical 

interfaces (Brooks,Jr., Ouh-Young, Batter, & Jerome Kilpatrick, 1990). In these 

environments virtual objects dynamically changed their geometry as a result of the 

applied forces. Haptic feedback is often complemented by visual feedback in this way 

due to the way in which vision complements touch and is generally more effective for 

extracting spatial and contextual information (Ernst & Banks, 2002). 

The control architecture of haptic devices is generally split into two types: impedance and 

admittance controlled. Impedance haptic devices simulate mechanical impedance by 

measuring linear or angular position and generating a force or torque; admittance haptic 

devices simulate mechanical admittance by measuring force or torque and generating a 

linear or angular position (Otaduy & Lin, 2006; Salisbury et al., 2004). Impedance haptic 

devices such as the PHANTOM range (SensAble) are most common because they are 

generally simpler and cheaper to produce than admittance devices, such as the 

HapticMASTER (MOOG FCS), which are better suited to applications requiring high 

forces and a large workspace (van der Linde, Lammertse, Frederiksen, & Ruiter, 2002). 

 Implementation of haptic feedback 

Modern haptic systems have been used to simulate complex environments such as the 

forces associated with performing a surgical procedure (Botden & Jakimowicz, 2009). 

Haptic feedback can be implemented in many ways. Often, a mechanical analogue like a 

mass-spring-damper system is used (Culmer, 2007; Hogan, 1984), as described by the 

mass-spring-damper equation (1.1), where F is the output force, k is a spring stiffness, c 

is a damping coefficient, m is a simulated mass, P is the current position and t is time. An 

approach like this one allows for the implementation of virtual objects with position and 

time dependent properties (see Figure 1.7).  

 𝑭(𝑡) = 𝑘(𝑃2(𝑡) − 𝑃1(𝑡)) + 𝑐(𝑃̇2(𝑡)) +  𝑚(𝑃̈2(𝑡)) (1.1) 

The simplicity of this method allows computationally efficient rendering of haptic 

environments.   
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Figure 1.7: Illustrations of a one-dimensional haptic model using the mass-spring-

damper method to create a) position-stabilising (error reduction) and b) 

destabilising (error augmentation) forces. 

Simple damping and inertial properties have been used in this way to implement force 

field effects, such as the ‘curl’ force field which has previously been used to study the 

sensorimotor learning process (F. Huang, Patton, & Mussa-Ivaldi, 2007). For more 

complex implementations of haptic environments, other methods are available. Within 

the field of surgical simulation, more complex viscoelastic models are needed to mimic 

the mechanical properties of biological tissue with relatively high fidelity (Brouwer, 

Mora, & Laroche, 2007). Alternatively, real-time finite element computations have been 

effective for implementing virtual surfaces of irregular geometry and complex 

spatiotemporal characteristics though this is at the expense of complex modelling and 

significantly higher computational power (Cotin & Delingette, 1998; Sedef, Samur, & 

Basdogan, 2006). 
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 Current use of haptic feedback technology in sensorimotor 

learning 

High fidelity simulation plays a critical role in providing trainees with representative 

feedback related to the simulated environment. The underlying assumption is that they 

allow the learner to form internal models which can be easily translated to the real world 

with minimal adaptation and/or further learning. However, whilst simulation has almost 

certainly played an important role in developing the sensorimotor skills of trainees (van 

der Meijden & Schijven, 2009), there has been little progress in leveraging the full 

potential of haptic feedback technology to increase the rate of skill acquisition. 

Theoretically, there are a number of approaches that could be taken with the aim of 

optimally exploiting the sensorimotor system and increasing learning rates. Options 

include guiding the arm towards optimal movement strategies (i.e. reinforcement 

learning), or allowing the user to repetitively sample information from a novel 

environment to build robust internal models for navigating said environment (use-

dependent learning). One example of a training procedure which may induce 

reinforcement and use-dependent learning is one reported in a study where trainees were 

required to continuously compare tissue samples of similar compliances (stiffness; 

Teodorescu, Bouchigny, & Korman, 2013). This task is a critical skill in a variety of 

clinical settings such as surgery and dentistry. Over several sessions (with knowledge of 

results) feedback was provided informing participants whether their selection at each 

comparison was correct or incorrect (Teodorescu, Bouchigny, & Korman, 2013). 

Improvements over time (as quantified by the perceptibility of smaller compliance 

differences) were attributed by the authors to ‘haptic perceptual learning’. However, they 

fail to differentiate whether these changes were due to systematic adjustments to the 

probing actions (kinematic behaviour has previously been identified as an important 

factor which informs the perception of compliance; (Karadogan, Williams, Howell, & 

Conatser, 2010), to an increased sensory ability (e.g. sensitisation of the haptic senses; 

(Tresilian, 2012), or a combination of both of these factors. Further research is needed to 

investigate the role of reinforcement and use-dependent learning for informing actions 

over time in clinical settings such as this one. This issue is addresses in Chapters 3 and 4 

of this thesis. 

Most research in the area of haptic feedback technology for sensorimotor learning has so 

far focussed on error-corrective learning strategies ((Cesqui, Aliboni, et al., 2008; Chen 
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& Agrawal, 2012, 2013; Conditt, Gandolfo, & Mussa-Ivaldi, 1997; F. Huang et al., 2007; 

Melendez-Calderon, Masia, Gassert, Sandini, & Burdet, 2011; Patton & Mussa-Ivaldi, 

2004; Patton, Mussa-Ivaldi, & Rymer, 2001; Patton, Stoykov, Kovic, & Mussa-Ivaldi, 

2006; Reinkensmeyer & Patton, 2009; Takahashi, Scheidt, & Reinkensmeyer, 2001). 

This is perhaps due to haptic devices lending themselves to well-defined strategies of 

adjusting execution error (augmenting or reducing execution error of a task using a haptic 

feedback device). These interventions can be broadly classified into two categories (see 

Figure 1.7): error reduction and error augmentation. Examples of the most pertinent work 

in this area are reviewed next. 

 Error reduction  

Error reduction strategies act to provide assistance, supporting the learner to perform a 

task. A haptic device attached to the learner’s limb provides forces which can assist the 

movement, with the level of possible assistance varying from very small forces providing 

subtle ‘nudges’ to behaviour through to full guidance whereby the participant’s limb 

(typically the arm) is essentially passive.  

Lüttgen and Heuer carried out an experiment where subjects practised drawing circles 

with the velocity profile of ellipses (fast on sections of low curvature, slow on sections of 

high curvature) whilst receiving assistance from a robotic device (Lüttgen & Heuer, 

2012b). Whilst the robotic device provided some assistive forces in the direction of the 

moving target, some level of active control was needed from the subject. The assisted 

group performed better than the control group during practice on three spatiotemporal 

metrics. After practice, all of the improvements disappeared with the exception of timing 

modulation. These findings were confirmed in a similar study by the same authors  

(Lüttgen & Heuer, 2012a) and also in another study which showed that assistance helped 

to improve temporal aspects, yet not directional errors of cursive handwriting and putting 

tasks (Basteris & Sanguineti, 2011). Despite these findings that support haptic guidance 

for sensorimotor learning, the mechanisms and effects of haptic assistance are not fully 

understood. It has been proposed, however, that assistance is only useful during the initial 

stages of learning (i.e. to learn basic aspects of the tasks such as a temporal control 

strategy), but ineffective once these basic characteristics have been learned (Sigrist et al., 

2012).  
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 Error augmentation 

In contrast to error reduction strategies, error augmentation has been suggested to be most 

effective at more advanced stages of skill acquisition (Cesqui, Aliboni, et al., 2008). The 

function behind this technique is to artificially increase errors that arise during the 

execution of a movement, and thereby intensify the learning process. There have been a 

number of studies investigating error augmentation strategies. Some of these are outlined 

below. 

In one study (Patton et al., 2001), subjects were required to reach a target whilst moving 

their arm through a novel viscous force field applied via a robotic device (see Figure 1.8). 

The initial errors were large but were followed by rapid adaptation, as evidenced by a 

sharp decrease in execution error (the mean distance of the device from the target path). 

Upon removing the force field, there was a pronounced after-effect whereby movement 

errors were opposite in sign to those exhibited before initial adaptation, indicating the 

presence of error-corrective learning. Similar results involving implicit learning (i.e. the 

subjects learned movements with minimal instructions) are reported in (Patton & Mussa-

Ivaldi, 2004) and (Patton et al., 2006), the latter of which showed that there were no 

differences in after-effects between healthy and brain injured (hemiparesis due to stroke) 

subjects. A major disadvantage of implicitly training movements using this technique, 

however, is that after-effects are not long-lived because de-adaptation occurs once the 

force field is removed, thus rendering this technique ineffective for the development of 

long-term skill. 
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Figure 1.8. Experimental setup used in error augmentation studies testing the effects 

of novel force fields on learning a sensorimotor task, showing the robotic device 

and workspace (Patton et al., 2006). 

Huang et al. (2007) compared the performance (deviations from a visual path) during a 

circle tracing task under stable and unstable task dynamics (unstable dynamics were 

induced using negative damping). The unstable group were able to improve more (they 

exhibited less trajectory error after training) than the stable group. The authors concluded 

that the increased performance improvements could be due to increased parameter space 

exploration induced by unstable dynamics: the unstable damping caused larger velocities 

and accelerations, thus potentially forcing greater interaction with the inertial 

characteristics of the task. Complementing these findings, (Patton, Wei, Bajaj, & Scheidt, 

2013) tested the effects of different levels of augmented error feedback on adaptation to 

a 30° visuomotor rotation with healthy adults. Augmentation performed better than a 

control, but findings suggest that too much augmentation can be detrimental.  
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 The roles of assistance and disturbance forces 

It seems that there are some differences in the efficacy of assistance (error reduction) and 

disturbance (error augmentation) for promoting the learning of skilled movements. In an 

attempt to investigate these differences, several studies have served to contrast the effects 

of the two techniques. Milot, Marchal-Crespo, Green, Cramer, & Reinkensmeyer (2010) 

compared haptic disturbance and assistance in a timing task, a computerised pinball-like 

game, and increased or reduced errors by applying forces to the wrist to retard or 

accelerate movement. Both the error reduction and error augmentation groups showed 

improvements, but more skilled subjects showed greater benefits from error 

augmentation. In a similar study, (Heuer & Rapp, 2011) compared target assistance (an 

attractive force that pulled the subject towards the target), path assistance (they were 

pulled towards the path that the target moved along), no assistance and path repellence 

(forces pushed the hand away from the path) during a visuo-motor rotation adaptation 

task. After training, direction errors were greater for the assistance conditions than no 

assistance. The lowest error was shown for the path repellence (error augmentation) 

group. Similar conclusions were reached in another study (Chen & Agrawal, 2012) which 

compared ‘assist-as-needed’ trajectory to repelling (disturbance) forces during a joystick-

controlled wheelchair driving task. The assist-as-needed condition provided more 

assistance when errors were high, and less assistance when they were low.  

Despite some evidence supporting the effectiveness of error adjustment forces in 

accelerating motor learning, there is still debate over whether this is the optimal method 

and what is the mechanism of action (Reinkensmeyer & Patton, 2009; Sigrist et al., 2012). 

It has previously been suggested that error augmentation leads to corrective actions which 

are generally larger and are required more often (Patton & Mussa-Ivaldi, 2004; 

Reinkensmeyer & Patton, 2009). However, it is unclear why larger and more frequent 

error corrections could aid learning. One possibility is that larger corrections induce faster 

learning through greater exploration of the parameter space (F. Huang et al., 2007). 

Conversely, faster learning effects have previously been attributed to increased ‘attention’ 

during these tasks (Sigrist et al., 2012). Further work will be needed to investigate and 

dissociate these factors. This is considered in the final experiment presented in Chapter 5 

of this thesis. 

One major criticism of error adjustment strategies is that they effectively alter task 

dynamics, resulting in the learning of a different task (Winstein, Pohl, & Lewthwaite, 
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1994). However, some of the findings discussed above suggest otherwise. Whether or not 

the nervous system is able to filter the superimposed error adjustment forces to obtain 

information about the underlying task, and to what extent, is a question that merits further 

investigation. This topic is also addressed in Chapter 5. 

In summary, current evidence indicates that haptic guidance supporting error reduction 

may help during initial stages of learning, and in particular for improving timing aspects 

of tasks, whilst error augmentation may intensify learning via enhanced error-correction 

mechanisms and/or induce greater exploration of the parameter space. These findings 

suggest that, whilst error adjustment may be effective under some circumstances, the 

optimal method of haptic guidance is likely to depend on the difficulty of the task as well 

as the proficiency of the participant. However, there is currently no consensus on the best 

way of determining the most effective method. Thus, further investigations are needed to 

define the optimal way of using error adjustment techniques (such as the ones described 

above) to accelerate motor learning. 

 Discussion 

Interacting with the environment is a two-way process involving obtaining information 

and implementing suitable behaviours to manipulate said environment. In laparoscopic 

surgery, information about the environment may be obtained via a combination of visual, 

haptic and auditory signals. For instance, the force response of a tissue (as measured 

through a handheld laparoscopic probe along with visual cues) can give an indication of 

changes in the tissue’s structures, and/or indicate the presence of anomalies such as 

tumours. It seems likely then, that the quality and quantity of information available will 

depend on the suitability of the action(s) generated for improving the quality and quantity 

of information available to the CNS. This topic is addressed in Chapters 3 and 4. 

Furthermore, Accurately and efficiently controlling a laparoscopic probe is critical to 

safely interact with tissues: the surgeon is required to operate in a complex environment 

in which movements are mirrored, attenuated and/or amplified (due to the trocar effect). 

In addition, the operating environment is constantly changing, i.e. due to differences in 

patient physiology. The need for trainee surgeons to learn increasingly complex 

procedures, coupled with constraints on available training time, highlights the need to 

investigate how the learning of skilled behaviour can be accelerated. In moving from 
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traditional open surgery to laparoscopic surgery there has been a significant increase in 

the complexity of the sensorimotor skillset needed to perform successful operations. This 

fact, coupled with restrictions on working hours, has meant that trainees now effectively 

need to learn more within a shorter time period. This topic is addressed in Chapter 5. 

The growing trend of using VR systems in clinical training is an opportunity to explore 

novel ways of increasing the rate of sensorimotor skill acquisition of trainees. The current 

focus of these systems so far has been to replicate the surgical environment as closely as 

possible. However, there is no system in place that intervenes with the trainee’s actions 

or training procedure with the aim of increasing the learning rate. Applying precisely 

controlled forces to a limb during task execution may provide the best opportunity for 

rapidly enhancing the sensorimotor learning process. A useful framework for 

conceptualising this process may be to consider the learner’s exposure to the parameter 

space with the aim to optimally challenge them during practice. Achieving a framework 

which outlines the implementation of such intervention strategies could play a critical 

role in future clinical training systems. 

The advent of haptic feedback devices has greatly facilitated research investigating the 

role of haptic feedback technology in motor learning, as they provide an ideal platform 

to integrate computing with the application of forces to a subject’s limb during the 

execution of movements (Klein, Spencer, & Reinkensmeyer, 2012; Patton et al., 2001). 

So far, there has been some evidence supporting error adjustment forces as a functional 

means of accelerating motor learning via enhanced error-corrective processes (Milot et 

al., 2010; Patton & Mussa-Ivaldi, 2004; Reinkensmeyer & Patton, 2009; Squeri, Basteris, 

& Sanguineti, 2011). However, this matter is still open to debate. There is a need for more 

new approaches that investigate the underlying learning mechanisms involved to fully 

exploit the potential of such interventions.  

To this end, there is a clear research need to develop novel, flexible control systems that 

enable the development of tailored visuohaptic environments, allowing researchers to test 

the effects of different control paradigms under varying task conditions. To achieve this 

requires a multidisciplinary approach bridging medicine, neuroscience and engineering. 

This research has the potential to better establish the fundamental principles of 

sensorimotor control and learning, and thus obtain better understanding of the approach 

required in developing accelerated motor learning environments. 
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This thesis addresses the above points across two themes. The first theme (covered in 

chapters 3 and 4) investigates novel ways of inducing reinforcement and use-dependent 

learning via two studies that test compliance discrimination skills within an active-

perceptive framework. The second theme (chapter 5) examines the effects of inducing 

error-corrective processes in haptic interventions on the development of novel 

sensorimotor skills. Chapter 2 addresses the need for novel tools to investigate the role of 

haptic intervention techniques on motor learning. The general tools and methodologies 

used throughout the experiments in the thesis are described. Also detailed is the 

development of two novel tools for implementing visuohaptic tasks and objectively 

capturing performance within robust experimental frameworks: the compliance 

simulation interface (CSI, used in Chapters 3 and 4) and the haptic assessment toolkit 

(HAT, used in Chapter 5). Chapter 3 examines the effects of long-term, repetitive training 

with knowledge of results (performance feedback) on a compliance discrimination task 

using a handheld tool. Chapter 4 investigates the effects of training of this critical skill on 

a simulated real-world task. Across three experiments, Chapter 5 investigates the role of 

error augmentation strategies in sensorimotor learning within a framework of parameter 

space exploration. 
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GENERAL EXPERIMENTAL METHODS 

ABSTRACT This chapter describes the general methodologies used throughout the 

studies reported in this thesis. Chapter 1 outlined the urgent need for experimental tools 

to investigate novel clinical training methodologies for sensorimotor learning. The aim 

was to develop novel tools to enable the implementation of visuohaptic environments 

within a robust experimental framework. To meet the objectives of the research, two 

novel software toolkits were developed. First was the compliance simulation interface 

(CSI), which enables the implementation of virtual surfaces with a specified compliance 

distribution. Second was the haptic assessment toolkit (HAT), a configurable 

development platform that allows non-programmers to implement full experimental 

procedures involving complex visuohaptic environments. An overview of the apparatus, 

general operating principles and standard experimental setup are given for both systems.  
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 Introduction 

Virtual reality (VR) training systems are fast becoming the option of choice for the 

development of critical sensorimotor skills in areas such as dental and laparoscopic 

surgery, and in physical rehabilitation (Bakr, Massey, & Alexander, 2013; K, S, S, Je, & 

M, 2012; Seymour, 2008). The use of VR systems reduces the need for practicing on 

cadavers and live subjects during the early stages of skill acquisition, thus placing an 

intermediary safeguard between the patient and inexperienced trainee surgeons. Recent 

technological and commercial advances in this area have meant that VR systems are 

quickly becoming superior to mechanical systems (such as trainer boxes, which include 

a set of accessories to simulate surgical environments) due to their superior robustness, 

repeatability, accuracy and precision.  

VR training systems generally include visual and haptic feedback that is congruent with 

the environment that they simulate. Indeed, the focus of these has so far been to replicate 

real-world conditions. In the case of dental and laparoscopic surgery, trainees complete 

simulated tasks and procedures that are relevant to their discipline. In physical 

rehabilitation, robotic systems are used in place of the actions of the physical therapist, 

namely, manipulating the learner's limb to achieve an action by providing guiding or 

resistive forces (Jackson et al., 2007).  

It is clear that the role of visuohaptic feedback is an essential part of the experience 

provided to the learner, allowing them to obtain rich information about their environment 

as well as learning to navigate through it effectively. The relatively slow rate of 

acquisition of these skills has been of recent concern in clinical areas. Fortunately 

however, there is some evidence suggesting that visuohaptic systems could play an 

important role for increasing the acquisition rate of sensorimotor skills (Reinkensmeyer 

& Patton, 2009). However, the effectiveness of such methodologies is still open to debate, 

and our understanding of the mechanisms that underpin the learning processes involved 

is limited (Sigrist et al., 2012). This highlights the need for further investigations in this 

area. To achieve this, there is a need for robust tools that are capable of generating 

congruent visual and haptic feedback as well as capturing objective performance data 

within well-defined experimental protocols. 
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The experiments discussed in this thesis can be divided into two distinct themes: the first 

theme (covered in chapters 3 and 4) studies the human ability of compliance assessment 

using a handheld tool, a critical skill in a multitude of clinical settings. This required a 

software-controlled interface for the simulation of object surfaces of varying compliance 

through a haptic device with a built-in handheld tool, as well as capturing of kinematic 

(movement) data. The focus of this work was on fine (finger and wrist) movements and 

so relatively low forces and a small workspace were suitable. The second theme 

(discussed in chapters 5 and 6) is on the use of haptic forces that either enhance or reduce 

error during gross arm movements. Such movements are analogous to those needed in 

laparoscopic surgery and physical rehabilitation. In contrast to the previous theme, this 

work required a relatively large force and workspace, capable of manipulating the mass 

and movement range of the arm. A flexible software interface was needed to quickly 

configure and implement complex visuohaptic environments with software-defined force 

functions, without the need of low-level programming. 

To address the requirements of the two themes discussed above, two novel tools were 

developed for the research in this PhD and are detailed in this chapter. First is the 

compliance simulation interface (CSI), an interface that allows the simulation of one- and 

two-dimensional compliant surfaces for tool-based interactions, as well as automatically 

capturing essential kinematic information about the active behaviours employed to 

interact with the virtual surfaces. Second is the haptic assessment toolkit (HAT), designed 

for the study of the effects of force intervention on motor learning. It is a high-level 

development platform that enables an experimenter to configure, run and analyse 

experiments with visuohaptic feedback. 

 The compliance simulation interface (CSI) 

The work in chapters 3 and 4 required a way of generating haptic feedback to simulate 

the force response of soft, human-like tissues when using a handheld probe. More 

specifically, the experiment described in Chapter 3 required a method of successively 

comparing two virtual objects of different compliances. The compliance difference 

needed to be controlled programmatically within a defined experimental protocol. 

Logging of position data in the vertical axis was required to carry out kinematic analyses 

of the probing movements. The experiment described in Chapter 4 required the simulation 



36 

of three-dimensional tissue volumes with or without embedded tumours. In contrast to 

the requirements of Chapter 3, the stiffness distribution along the surface of the simulated 

tissue was not homogeneous (i.e. the tumour was represented by a region of significantly 

greater stiffness than the surrounding tissue). This section describes the general work 

carried out to implement these requirements. First, a breakdown of the aims and 

objectives is given, followed by detailed technical specification for the CSI, and finally a 

description of the system. 

Most of the basic technical developments for the CSI were carried out during a team 

Master’s project investigating the effect of haptic augmentation on the perception of 

simulated tumours (see Appendix 1). Within this, the role of the author was modelling 

and rendering of the haptic environment. The main changes made during this PhD were 

scaling the functionality of the dynamic link library (dll) from containing a selection of 

pre-defined surface/tumour combinations to directly specifying Gaussian parameters (see 

Section 2.2.4). Hence, the flexibility of the system was significantly increased, allowing 

for the implementation of any tissue/tumour combination for which modelling data are 

available. 

 Aim and objectives 

The overall aim was to develop a framework to enable the implementation of virtual 

compliant volumes of either homogeneous or, for the case of surfaces with embedded 

tumours, variable compliance across the surface plane. A handheld tool was to be used to 

interact with the virtual environment whilst movement kinematic data were captured for 

further analyses. To achieve this aim, a number of key objectives were outlined: 

 Identify and procure a haptic device with an attached tool, allowing free rotation 

of the wrist and fingers, and capable of generating an upward force in the vertical 

(Normal) axis. The force output range should enable simulation of the force 

responses of soft human tissue. The size of the workspace should allow hand and 

finger movements.  
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 Achieve two-way communication between the haptic device and a computer and 

bespoke control program (i.e. to set force parameters of the device, and read 

position), allowing integration into a full experimental environment. The system 

bandwidth should allow the stable generation of forces to simulate the compliant 

tissue-like surfaces. 

 Programmatically define functions to generate stiffness in the vertical (Normal to 

the surface) axis. This should allow the simulation of spherical inclusions of 

differing stiffness and size to be embedded within soft tissue. 

 Develop software routines to allow programmatic control over the behaviour of 

the haptic device (i.e. to initialise, operate and shut down the device). 

 Technical specifications 

The aims and objectives were used to create the main technical specifications for the CSI, 

as detailed below. 

 Haptic device 

Range of movement  

To achieve the required range of movement (rotation of the wrist and finger movements), 

the device should enable movement in 5 degrees of freedom (up/down, left/right, in/out, 

side to side rotation, and forwards/backwards rotation). 

Force output  

The Young’s modulus of human liver has been reported to be approximately 1 kPa, whilst 

that of tumours is approximately 75 kPa (Mueller & Sandrin, 2010). For a simulated probe 

size of 10 mm (this is typical of laparoscopic tools) and an indentation of 15 mm directly 

above a simulated tumour, a maximum force output of 1.8 N in the Normal axis was 

required (see Appendix 1 for the calculations). 

Workspace size  

The experiments required hand and finger movements of 20 mm in the Y axis, and a 

square area of 100x100 mm in the X and Z axes. Thus, this is the minimum required 

workspace size for the device. 

 Control software 
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The control software should allow communication with the haptic device and all other 

peripheral components of the system (monitor, mouse and keyboard). 

 System bandwidth 

Haptic feedback  

In order to generate smooth and realistic forces, a minimum update rate of 500 Hz is 

required (Salisbury et al., 2004). 

Visual feedback  

The visual scene should be updated at a minimum rate of 30 Hz to achieve smooth and 

realistic visualisations. 

 Physical setup 

The system should allow for participants to sit at a desk with the monitor in front of them, 

and the haptic device where it could be reached comfortably by the right hand. 

 The haptic device 

The PHANTOM OMNI® (SensAble Technologies, Geomagic), shown in Figure 2.1, is 

a low cost device that is part of the PHANTOM range of haptic devices. Designed for 

interactions with soft virtual objects via a handheld tool, it is a 6 degrees-of-freedom 

(DoF, 3 active and 3 passive) device with a built-in handheld tool and a workspace of 160 

x 70 x 120 mm in the frontal (X, left-right), longitudinal (Y, up-down) and sagittal (Z, in-

out) axes, respectively. It is capable of a maximum output force of 3.3 N in any axis, and 

a maximum stiffness of 1.26, 2.31 and 1.02 N/mm in the X, Y and Z axes, respectively 

(“Dental Lab Home,” n.d.). From these specifications, it is clear that this device meets all 

of the minimum technical specifications for the CSI system’s haptic device (refer to 

Section 2.2.2). 
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Figure 2.1: The PHANTOM OMNI® (SensAble) is a commercially available haptic 

device with a built-in handheld gimbal (tool). Three internal motors are used 

to adjust the force at the tooltip to simulate the feel of soft virtual objects. 

Position encoders are used to sense the position of the tooltip as the user 

navigates through a virtual 3D environment using wrist and finger movements.  

The PHANTOM OMNI uses an impedance-control paradigm (see Figure 2.2). 

Impedance-controlled devices are highly stable and suitable for the implementation of 

very small forces. However, the haptic fidelity of impedance-controlled devices is 

somewhat limited due to their mechanical characteristics. The mass and friction of the 

device can be felt by the user, which means that they are generally lightly built and are 

highly backdriveable to maintain a realistic haptic environment (van der Linde et al., 

2002). Thus, their mechanical design tends to limit impedance-controlled devices to 

applications requiring relatively low forces and small workspaces. 

 

Figure 2.2. The impedance control paradigm is to output force (F) as a function of 

the device position. Position sensors are used to measure the position of the 

device’s manipulator as the subject applies forces to move it. An internal model 

is used to calculate the force vector that would result from interactions with 

the virtual environment. A controller then adjusts the force vector applied by 

the device. 
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The force and stiffness range and workspace size of the PHANTOM OMNI makes it ideal 

for use in this application, as outlined previously in the technical specifications. 

Communication with the device is achieved using the OpenHaptics Toolkit (SensAble 

Technologies), an application program interface (API) designed to work with all 

PHANTOM devices. It is open source and available for download from 

http://www.dentsable.com. The toolkit includes the PHANTOM device drivers and 

Haptic Device API (HDAPI). The OpenHaptics Toolkit enables the implementation of 

haptic effects (such as forces, springs and dampers) using C++ commands. With reference 

to our description of the impedance-control paradigm, the HDAPI toolkit acts as the 

Controller, taking a desired force vector and sending electronic signals to the device 

actuators to implement the haptic environment. 

 Generation of haptic stimuli 

A schematic description of the CSI is shown in Figure 2.3. A custom dynamic link library 

(DLL) was developed to enable two way communications with the OpenHaptics HDAPI 

library to read position from, and write a stiffness value to, the haptic device. With 

reference to our diagram of the impedance control paradigm (Figure 2.2), hapsurf.dll acts 

as the ‘virtual model’ which calculates a force vector as a function of position based on 

pre-defined functions to simulate a compliant object’s surface.  

 

Figure 2.3. The CSI is comprised of a series of LabVIEW functions that 

communicate with a bespoke dynamic link library (hapsurf.dll) to access the 

OpenHaptics HDAPI functions. This achieves programmatic behaviour of the 

device. LabVIEW communicates with hapsurf.dll to write the Normal (i.e. 

acting in the Y axis) force parameters (AY, BY and σY) of a surface and read 

the 3D position vector (PXYZ) of the device. hapsurf.dll uses the surface model 

parameters to calculate the force vector at the device tool tip as a function of 

the device’s position. The OpenHaptics HDAPI generates the required force 

vector (FXYZ) specified in hapsurf.dll by sending electronic control signals 

(IXYZ) to the device actuators and receiving position feedback (OXYZ) at a rate 

of 1 kHz. 
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In line with Objective 4, the requirements for the virtual model were to allow the 

implementation of either a homogenous or variable stiffness along the plane of a virtual 

object’s surface. The latter is required to represent the force response of an object with an 

embedded inclusion (specifically, representing a section of tissue with an embedded 

tumour). Previous work carried out during a fourth year engineering undergraduate 

Master’s team project investigated the force response of an elastic object’s surface with 

embedded inclusions. Computational finite element analysis (FEA) was used to 

parametrically calculate the force response of the surface to indentations with a spherical 

probe at various locations (details on the modelling process are available in Appendix 1). 

Surface stiffness, tumour stiffness, tumour size, and tumour depth were parametrically 

varied and a response force surface was produced for each. A Gaussian function, 

described in equation (2.1), was then fitted to each surface to calculate force, F, as a 

function of peak force, A, relative to an offset (baseline) force, B, the distance between 

the end-effector and inclusion centre, xr, and the function’s width, σ. This was deemed an 

effective method for modelling volumes of tissue with embedded tumours during the 

preliminary work described in Appendix 1 (see Figure 2.4). 

 
𝐹 = 𝐴𝑒

−
𝑥𝑟

2

2𝜎2 + 𝐵 (2.1) 

The baseline term (B) represents the force of a volume of tissue (i.e. a flat force response), 

whilst the peak force and exponential terms act to superimpose the response of an 

embedded inclusion.  

 

Figure 2.4. Gaussian approximation to FEA force data for a 12 mm diameter 

embedded tumour with 10 mm indentations. RMSE = 0.0036 N (Reproduced 

from (Chandler, J., Dickson, M., Jamieson, E., Mueller, T., Reid, T., 

Unpublished). 
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The response force profiles of various surface/inclusion combinations are shown in 

Figure 2.5. A linear spring model (f = kx, where f is the output force, k is the stiffness 

coefficient and x is indentation depth) is then used to scale the force as a function of 

indentation depth. This method provides a simple means of specifying a surface with 

homogeneous stiffness (i.e. by using an A value of 0) and a positive value for B, whilst a 

positive value of A will result in the simulation of an inclusion. Variable xr is calculated 

by accessing the OpenHaptics Toolkit, allowing the smooth update of forces and realistic 

haptic rendering. Implementation of different surfaces is achieved by sending parameters 

A, B and σ (defined above) to hapsurf.dll (see Figure 2.3). 

 

Figure 2.5. Response force profile of an object with a Young’s Modulus of 1 kPa 

(similar to that of human liver), indented by 3 mm with a 10 mm diameter 

spherical probe of infinite Young’s Modulus. Where included, a spherical 

inclusion of 12 mm diameter with a Young’s Modulus of 75 kPa (similar to 

tumours typically found in human liver) is embedded at various depths 

beneath the surface. Depths quoted are from the object’s surface to the centre 

of the inclusion, i.e. at a depth of 6mm the inclusion is flush with the surface.  

LabVIEW (National Instruments, USA) is a graphical development platform with 

integrated functionality to interface with DLLs, generate visual and other (e.g. auditory) 

feedback, and process data. This made LabVIEW a suitable candidate for implementing 

the experimental protocols described in Chapters 3 and 4. To enable control of the haptic 

device from LabVIEW and thus complete the architecture needed to implement surfaces 

of defined compliances, a series of custom discrete LabVIEW functions were developed 

to read position, write (Gaussian) forcing parameters, and safely shut down the device.   
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 Experimental setup 

To promote consistency across the experiments presented in Chapters 3 and 4, a general 

experimental setup (shown in Figure 2.6) was defined.  Participants sat in a chair in front 

of a 740 mm tall table. Visual stimuli (generated using LabVIEW software) were 

presented on a computer monitor located on the table, directly in front of the participant 

and approximately 600 mm from the table edge. The haptic device (PHANTOM OMNI®) 

was located to the right of the monitor, approximately 500 mm from the table edge (this 

distance was varied slightly depending on the participant’s arm length and was moved for 

their comfort). Participants were instructed to hold the device tool in their right hand using 

a standard pencil grip. An arm support was placed under the right arm so that it rested 65 

mm above the table. A wrist support was located on top of the arm support which 

heightened the wrist by an additional 20 mm to limit movements to wrist and finger 

actions. 

 

Figure 2.6. Diagram of the experimental setup used for all compliance 

discrimination tasks (Chapters 3 and 4), showing i) the arm and wrist supports, 

ii) the haptic feedback device, and iii) the position of the computer monitor and 

graphical display. 

Validation of the haptic fidelity of this method was carried out in previous work (see 

Appendix 1). In accordance with the objectives, this architecture makes it possible to 

reliably simulate the compliance of soft surfaces with or without embedded inclusions. 

The force update rate (1 kHz) allowed for the implementation of smooth and realistic 

forces, whilst the maximum output stiffness (2.31 N.m-1) met and exceeded the 

specifications required to simulate the force response of a liver.  
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 The haptic assessment toolkit (HAT) 

Previous research has suggested that haptic forces that act to manipulate the error signal 

could play an important role in increasing the rate of motor learning (Reinkensmeyer & 

Patton, 2009). However, the effectiveness and underlying mechanisms involved in this 

process are widely debated topics in the literature (Sigrist et al., 2012).  

Chapter 5 investigated the role of haptic intervention on the rate of motor learning. The 

requirements of this work were to establish a reliable method of controlling different 

force-based intervention strategies that act to apply a force to the subject’s arm during the 

execution of a task, whilst providing congruent visual feedback, within a robust and 

configurable experimental protocol.  

D-Flow (Motek Medical) is one successful example of a high-level software interface that 

allows researchers to integrate different input and output hardware components to build 

an interactive, virtual environment where a human is part of a real-time feedback loop 

(Geijtenbeek, Steenbrink, Otten, & Even-Zohar, 2011). The system supports the 

integration of haptic devices and allows an operator to configure a visuohaptic 

environment, as well as to store kinematic data. However, D-Flow is limited to virtual 

models of objects (using planes, spheres, etc.) and effects (such as springs and dampers) 

to build an interactive haptic environment (van der Linde et al., 2002). These 

environments are dynamically fixed which significantly limits the form of haptic 

feedback algorithms that can be implemented. Another potential limitation of D-Flow is 

that it does not automatically generate objective measures of motor performance.  

One novel solution which generates objective measures of motor performance is the 

Kinematic Assessment Tool (KAT) (Culmer, Levesley, Mon-Williams, & Williams, 

2009). KAT is capable of measuring human movement in configurable visual-spatial 

tasks and automatically outputting performance measures. The system was designed 

specifically for the assessment of motor skills and has been used extensively within this 

domain, e.g. to objectively quantify handwriting performance (Flatters et al., 2014). 

Unfortunately however, KAT does not support the integration of haptic feedback. A 

solution is required, therefore, that combines D-Flow and KAT, in order to enable the 

construction of bespoke experimental procedures with haptic force fields, as well as 
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obtaining objective measures of human performance. As outlined above, the requirements 

for this system vary significantly from that of the CSI, and so a separate system is needed.  

This section describes the development of the HAT.  The toolkit integrates haptic and 

visual feedback, data acquisition, real-time processing and data management within a 

flexible software platform. It is designed to allow the experimenter to quickly and easily 

create novel visuohaptic environments for use within experimental procedures.  

 Aim and objectives 

The overall aim was to develop a system that can be used by researchers to configure, run 

and analyse experiments using configurable haptic force fields and congruent 

visualisations. This gave rise to a number of key objectives, as outlined below. 

 Identify and procure a haptic feedback system with a suitably-sized workspace to 

allow gross arm movements and a force output that is capable of accurately 

moving the mass of a resting (passive) human arm. 

 Develop a software interface to control the behaviour of the haptic device. 

 Simulate the behaviour of a mechanical dynamic (mass-spring-damper) system.  

 Provide smooth visual feedback that is congruent with the task environment. 

 Enable the integration of bespoke haptic feedback algorithms. 

 Allow non-specialists (non-programmers and non-engineers) to configure novel 

visuohaptic environments via a robust user interface. 

 Automatically store kinematic data, and generate objective performance 

measures. 

 Define a method of implementing force fields which act to distort the force 

distribution along the device’s physical workspace (this would serve to induce 

task novelty). 

 Define a method of generating error adjustment forces, i.e. forces that push or pull 

the subject away from (error augmentation) or towards to (error reduction) a target 

position where the force changes as a function of the distance between the device 

and target positions. 
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 Develop software routines to allow programmatic control over the behaviour of 

the haptic device (i.e. to initialise, operate and shut down the device). 

 Technical specifications 

A set of specifications were outlined for the HAT system based on the objectives outlined 

above. 

 Haptic device 

Range of movement – the range of movement required for this system is relatively simple: 

it should allow for gross arm movements in three axes. Thus, the device should have three 

degrees-of-freedom to account for this. 

Workspace size – The system is required to allow for gross arm movements. For this, an 

estimated minimum workspace size of 250 x 250 x 250 mm was required. 

Force output – the force output of the device should enable moving of a passive arm 

around the workspace. Accounting for the instantaneous forces required to accelerate a 

passive arm (estimated to have a mass of approximately 50 N) at a maximum rate of 2 

m/s2, an estimated minimum output force of 100 N is needed (F = ma), excluding the 

force required to move the device end-effector. 

 Control software 

The control software should allow communication with the haptic device and all other 

peripheral components of the system (monitor, mouse and keyboard). 

 System bandwidth 

Haptic feedback – In order to generate smooth and realistic forces, a minimum update 

rate of 500 Hz is required (Salisbury et al., 2004). 

Visual feedback - The visual scene should be updated at a minimum rate of 30 Hz to 

achieve smooth and realistic visualisations. 

 Development platform 

The system should ideally provide the experimenter with a simple method of developing 

visuohaptic environments with bespoke haptic interventions to 1) systematically adjust 

execution error, and 2) implement force fields. 

 Physical setup 
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The physical apparatus should be setup so that the haptic device is located directly in front 

of a standing or seated participant, with visual stimuli shown clearly in front of them, 

preferably above the haptic device. 

 The haptic device 

Previous researchers in this area have often developed bespoke haptic devices (Patton et 

al., 2006; Reinkensmeyer & Patton, 2009). However, this was outside the scope of this 

project and so a commercial device was needed. Based on the technical specification for 

the HAT, the HapticMASTER was selected (see Figure 2.7). It is a commercially 

available haptic feedback device specifically designed for haptic interactions with virtual 

environments involving gross arm movements, with a workspace of 0.36 m x 1 rad x 0.4 

m in the X, Y and Z axes, respectively. It has three active degrees-of-freedom (DoF) and 

a position resolution of < 4 μm, force sensitivity of < 0.01 N and maximum output force 

of 250 N (van der Linde et al., 2002). This device meets and exceeds the minimum 

technical specifications outlined in Section 2.3.2. 

 

Figure 2.7. The HapticMASTER robotic arm and workspace (reproduced from “VR 

Laboratory - University of Twente,” n.d.) 

The HapticMASTER is an admittance-controlled haptic device, which works to measure 

force and output position (see Figure 2.8). In contrast to impedance control, this makes 

the HapticMASTER suitable for the implementation of large forces, as well as for 

compensation of friction and gravity. However, finite force sensing accuracy and 

resolution limits the implementation of small forces (van der Linde et al., 2002).  
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Figure 2.8. The admittance control paradigm is to measure force and output 

position. A force sensor measures force applied to the manipulator of the 

device. An internal model is used to calculate the force, velocity and 

acceleration (kinematics) that would result from the applied force to the virtual 

environment. A controller adjusts the device’s position as a function of error 

(the difference between the device’s actual and desired kinematics).  

The HapticMASTER’s force range and workspace makes it suitable for moving a fully 

passive (relaxed) arm, or counteracting forces applied by an active arm. This makes it 

suitable for this application, as outlined in the aim and objectives. 

The device includes an API (the HapticAPI), and a DLL (hapticAPI2.dll) which enables 

access to the HapticAPI functions. This allows the creation of haptic effects (bias forces, 

springs and dampers) and objects (spheres, cubes, cylinders and toruses), as well as 

setting the global damping, inertial and frictional properties of the device. More 

information on the HapticAPI can be found in (MOOG, 2011). 

 The haptic device interface 

A software interface was developed in LabVIEW to achieve two-way communication 

with the HapticMASTER device, allowing the creation of effects such as forces, springs 

and dampers, as well as the measurement of three-dimensional position in real-time. 

HapticAPI2.dll was used to access the built-in functions available with HapticAPI from 

LabVIEW. A schematic overview of the interface is shown in Figure 2.9. 
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Figure 2.9. The LabVIEW-HapticMASTER interface is a series of LabVIEW 

functions which communicates with hapticAPI2.dll to write object or effect 

parameters to HapticAPI, and to read a 3D position vector (PXYZ). Actuation 

signals (AXYZ) are sent to the device motors, and sensory signals (SXYZ) are 

received back to compute a force vector (FXYZ). The HapticMASTER’s 

integrated real-time controller runs at a rate of 2 kHz to achieve high-fidelity 

haptic feedback for any objects or effects that are specified from LabVIEW.  

Bespoke functions were created to give access to the high-level functions of the device. 

This allows the generation of haptic effects and objects, as well as initialising and safely 

shutting down the device. The LabVIEW-HapticMASTER interface was used as the basis 

for creating haptic feedback in HAT. 

 Description of the HAT system 

The HAT system is designed around the delivery of interactive visual-spatial 

experimental trials in which visual and/or haptic stimuli are coordinated with the 

movements of the haptic device. An illustrative example of the functionality of HAT 

within an experimental procedure is given in Figure 2.10. 
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Figure 2.10. High-level illustration of the role of HAT within an experimental 

process. The experimenter (top left) inputs information into HAT to configure 

an experiment. HAT communicates with a haptic device via a software 

interface to send and receive haptic information (position/force) to provide 

haptic feedback to the subject. Visual information is also generated within 

HAT and presented to the subject. Raw kinematic data are recorded during 

the experiment and a post-processing utility is used to output data in a pre-

specified format for further analyses. 

HAT is designed to operate on any Windows operating system (Microsoft, v7 or later). It 

was developed and tested on a desktop computer (Intel quad-core i5-2400, 3.1 GHz, 4 

GB RAM, Intel HD Graphics Family). Refer to Section 2.3.6 for a validation of the 

system’s performance under this configuration. 

 Trial structure and design 

The configuration of an experiment is built up as a hierarchical structure comprised of 

any number of movements along pre-specified spatial trajectories (defined as a set of 

Cartesian points within the workspace) with bespoke haptic force functions. Experiments 

are defined in five tiers, as illustrated in Figure 2.10: at the lowest level, a ‘node’ defines 

a point within the workspace, identified by Cartesian coordinates. Next, a ‘component’ 

defines the nodes of an individual movement. An example of a component and its 

constituent nodes can be seen in Figure 2.11 . It is defined as a single trajectory with target 

start and end locations, and any number of positions (nodes) in between. Table 2.1 
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describes the configurable parameters of each component relating to the haptic 

environment. 

Table 2.1. List and description of haptic component parameters 

Parameter Description 

Node coordinates Array of Cartesian coordinates for nodes  

Movement speed Movement speed of the target cursor 

Mass/spring/damper 

settings 

Coefficients of mass, stiffness and damping 

Force field algorithm Reference to a force field algorithm sub-routine 

Maximum force Absolute operating force envelope of the force field 

Workspace distortion Type (sine/square/triangle/sawtooth wave), period (mm), 

phase offset (rad), amplitude (N), offset (N) and angle 

(rad). 

 

Once the end node of the component is reached, the next component is loaded 

automatically. A ‘trial’ is a full cycle of a trajectory, as specified by individual 

components. A ‘section’ is made up of any number of trials. An ‘experiment’ is comprised 

of any number of sections (see Figure 2.11). 

This hierarchical structure makes it easy to re-use whole or parts of other experimental 

sections to construct a complete experimental procedure using the built-in configuration 

utility (see Section 2.3.5.3). Nevertheless, the operator is able to configure parameters 

down to the level of individual components. Message prompts and images can also be 

displayed at any stage of the experiment to, for example, provide instructions to the 

subject.  

 Software architecture 

The toolkit was developed using LabVIEW (version 2013, National Instruments). All 

computations relating to the visuohaptic environment are carried out within the software. 

Figure 2.11 shows a high-level illustration of the structure of a full experiment, as well as 

the processes involved in running an experiment. 
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Figure 2.11. Illustration of the main processes carried out to implement a component 

movement. An experiment is configured as a five tier structure comprised of i) 

nodes (denoted ‘NX’), ii) components (‘CX’), iii) trials (TX), and iv) sections (SX). 

The trial engine uses the hierarchical experiment configuration to generate and 

send component parameters to the haptic loop (1). The haptic loop interfaces 

with the haptic device, generates forces and acquires position data at 1 kHz. 

Raw kinematic data are then sent to the data processor to transfer 

computational load away from the haptic loop (2). Task data (vectors of 

current position, velocity and applied force) are sent to the trial engine (3). 

Visual data are sent to the display module (4), which performs OpenGL 

rendering (5) and displays visualisations related to task information. Raw and 

processed data for each component are sent to the data storage module (6), 

where they are compiled and saved to file. 

Upon initialisation, the trial engine loads stored configuration data containing the 

parameters for each component of the experiment. This defines the behaviour of the 

system throughout the experiment. After carrying out initialisation procedures (e.g. 

device initialisation, display instructions to subject, etc.), the parameters of the first 
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component movement are sent to the haptic loop to initiate the task. Upon reaching the 

end node of each component (to within a pre-specified tolerance), the trial engine loads 

and sends the parameters for the next component. 

 

Figure 2.12. Simplified flowchart of the process used to implement the haptic 

feedback of a Section of an experiment, showing interactions between the trial 

engine, haptic loop and data processor. The Trial Engine loads new component 

parameters and sends them to the Haptic Loop. The Haptic Loop constantly 

calculates the force vector for the current component and sends it to the device 

until new component parameters are received, or a shutdown command is 

received. Current position data is sent from the Haptic Loop to the Data 

Processor, which monitors the current position against the end location of the 

current component. Upon the device reaching the end location of the 

component, an event is registered and sent to the Trial Engine. If more trials 

are present, the next component is loaded. Otherwise, the Section is ended by 

stopping the Haptic Loop. 

There is an option to use an adaptive controller to dynamically adjust component 

parameters based on measured performance data (see the ‘Data processing’ section for 

more information). This process is repeated until all components have been completed. 

Any shut down procedures (e.g. subject debrief, device shutdown, etc.) are then 

performed and the experiment ends. 
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 Experiment configuration utility 

A configuration utility was implemented to allow the configuration of the haptic 

environment quickly and easily and without the need to access low-level code. The Test 

Configuration Utility allows the experimenter to create and save experiment 

configuration files, which can then be loaded by the system to set all parameters for an 

experiment. Figure 2.13 shows the user interface that is used to configure an experiment. 

The main functionality and user interface of the configuration utility was developed by 

Jack Brookes, an engineering undergraduate student, under the author’s supervision. 

 

Figure 2.13. User interface of the configuration utility front panel, showing A) an 

option to load a help file explaining how to use the program, B) an option to 

enter the advanced editor (allows editing of the commands line by line), C) 

Preview of all experiment sessions and controls used to create, edit, remove, 

move and clear experimental sections, D) options for loading, saving and 

naming experiment configuration files.  
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Figure 2.14 shows a screenshot of the user interface that is used to create a section of an 

experiment (this is loaded upon pressing the ‘Create section’ button in the main front 

panel).  

 

Figure 2.14. User interface of the section creator. A) options to select pre-defined 

error adjustment force algorithm sub-routine, and trajectory (path), B) option 

to show a preview of the noise signal as a function of the workspace (as shown 

in Figure 2.15) with an option of including or excluding the workspace 

distortion force field, C) a preview of the trajectory in the visual display, D) 

options to set the target movement speed as well as the stiffness and damping 

coefficients and maximum force applied by the haptic device (a safety feature), 

E) options for setting workspace distortion force field parameters (refer to 

Table 2.1), F) an option to show a preview of the workspace distortion force 

field with a selectable colour map, G) Option to load previously saved Sections 

for editing, as well as saving any new Section. 
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The Configuration Utility contains an option to display a 2D visual representation of the 

forces present in any trial (see Figure 2.15). This allows the operator to visually inspect 

the haptic environment at the experiment configuration stage, before implementing them 

on the device. 

 

Figure 2.15. Example of a 2D visualisation of the haptic environment relating to a 

task with ‘assistive’ (i), ‘workspace distortion’ (ii), and ‘disruptive’ (iii) forces. 

Arrows indicate the direction and proportional magnitude of the force vector 

at discrete locations within the workspace. Relative magnitude is also 

represented using a colour map, where white = no force and dark red = high 

force. In this instance, forces are displayed for the first time point (the start 

location) of the first component of a pentagram path. 

 Haptic rendering 

Achieving the minimum required force update rate of 500 Hz (refer to Specification in 

Section 2.3.2) with a minimum amount of jitter typically involves the use of a real-time 

controller which acts to implement pre-defined functions (i.e. the virtual model) that 

define the haptic environment. However, an important design objective was to develop a 

flexible method of controlling the behaviour of the device by enabling the implementation 

of bespoke force functions. Unfortunately, the HapticAPI functions are limited in terms 

of the flexibility of the haptic environments that can be achieved. Thus, there was a need 

for the ‘virtual model’ of the haptic environment to be specified outside of the device’s 

built-in real-time computer. 

In terms of haptic feedback, the experimental requirements of HAT were to generate 

forces as a function of workspace and device position (objectives 5 and 8-10). To achieve 

this functionality, it was necessary to update the force specified in hapticAPI2.dll from 

an external application using bespoke mathematical functions, whilst a minimum update 

rate of 500 Hz and minimum jitter (low enough to avoid any perceived ‘jerky’ behaviour) 
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were needed for high haptic fidelity. One way of reliably achieving this would be to use 

a real-time operating system to overcome the disadvantages of non-deterministic 

operating systems. However, this would require additional equipment and the use of new 

programming environments.  

For the reasons outlined above, haptic feedback is generated directly from the HAT 

system. This uses the LabVIEW-HapticMASTER interface to read position and velocity 

data and write a single force vector per iteration of the haptic loop. A virtual model which 

defines the force commands sent to the haptic device is generated within the haptic loop 

(see Figure 2.11). The parameters of each component movement are loaded in parallel to 

the main haptic loop. Within the haptic loop, the virtual model defines 1) the dynamic 

properties of the device (such as inertial and global damping settings), 2) force fields 

which act to generate distortive forces as a function of position within the workspace (e.g. 

a sinewave which produces force in the Y axis as a function of position in the X axis), 

and 3) ‘haptic noise’ functions, forces which act to augment or reduce execution error 

(for instance, assisting or repelling forces can be generated as a function of positional 

deviation relative to the current component trajectory). Implementing the virtual model 

within the HAT enables operators to implement haptic environments of practically any 

level of complexity. However, due to the non-determinism of the Windows operating 

system, there is a potential risk that the required update rate is not achieved. The toolkit 

architecture has been specifically designed to address this issue by appropriately 

managing resources within the LabVIEW software and allocating sufficient 

computational power to the haptic rendering module. The performance of the haptic loop 

was tested and is reported in Section 2.3.6. 

 Visual rendering 

Visual information was defined based on the requirements of the experiments discussed 

in Chapter 5. This included options to display a) instructional text and images, b) a target 

cursor and/or the current position of the device, c) the current component path, and d) a 

dotted line joining the two cursors to represent the current error vector.  

A screenshot of the visual display is shown in Figure 2.16. It is rendered in OpenGL, 

which uses hardware acceleration to make use of the graphical processing unit (GPU) 

thus freeing up the PC central processing unit (CPU) for task logic, haptic feedback 

computations and device interaction in the haptic loop.  
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Figure 2.16. Screenshot of the visual display and example stimuli. The filled blue 

circle represents the position of the device end-effector within the workspace 

whilst the hollow red circle represents the target position. A configurable 

option allows the display of the current component. An optional dotted line is 

used in this case to visually show the magnitude of the error (a dashed line 

between the actual and target positions).  

 Data processing 

To produce objective measures of performance within HAT, five kinematic metrics are 

calculated within the data processing module upon completion of each component. Four 

metrics are automatically generated to measure spatial and frequency indices of motor 

behaviour. These metrics have previously been used and validated successfully within the 

KAT system (Culmer et al., 2009) as objective measures of motor performance, making 

them suitable for this application.  

Movement time  

Skilled movements are commonly associated with an ability to move quickly and 

accurately (Schaverien, 2010). Movement time (TM) is the total time taken to complete a 

movement. It is computed as the difference between the start and end times of a 

component. 
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Path length 

Total distance travelled, or path length (LP) is a measure of spatial accuracy, a simple 

measure of how well a demand trajectory is replicated. This can be defined using the 

pseudocode: 

Input Data: Movement(Time, X, Y) 

Output Data: Path_Length 

For each sample in Movement - 1 

Length(sample) = Abs_Error(Movement(Sample,X,Y), Movement(Sample+1,X,Y) 

Path_Length = sum(Length) 

Tracking error and standard deviation of the tracking error  

Another measure of accuracy is tracking error (ET). This is defined as the mean distance 

between the device and target cursors and provides information about how well a moving 

target is tracked along a spatiotemporal domain. The standard deviation of tracking error 

(SDET) provides information about how ET varies over time (i.e. of how constant the error 

was): 

Input Data: Reference(Time, X, Y), Movement(Time, X, Y) 

Output Data: RMS Tracking Error, STD Tracking Error 

For each sample in Movement 

Tracking Error(sample) = Abs_Error(Reference(Sample, X, Y), Movement(Sample, X, 

Y)) 

RMS Tracking Error = RMS(Tracking Error(sample)) 

STD Tracking Error = STD(Tracking Error(sample)) 

Path error 

Path error (EP) is the mean nearest distance between the device cursor and the trajectory 

path: 

Input data = Reference(Time,Y,Z), Movement(Time,Y,Z) 

Output data = Path_Error 

For each sample in Movement 

Movement Error(sample) = Search for minimum distance from Movement(sample) to 

Reference 

Cumulative_Movement_Error =Sum of Movement Error 

Path_Error= Cumulative Movement Error/Number of Movement Samples 

Normalised jerk 

Motor learning generally leads to the generation of increasingly smoother movements. A 

measurement of ‘smoothness’ which has previously been used in the literature is 

Normalised jerk (JN). This is the derivative of acceleration in time, and is defined by 
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equation (2.2), where T is movement time (TM), L is path length (LP), and j(t) is the triple 

derivative of position with respect to time. 

 𝐽𝑁 =  √
𝑇5

2𝐿2
∫ 𝑗

𝑇

0

(𝑡)2𝑑𝑡 (2.2) 

This metric is normalised with respect to time and distance which allows the trajectories 

of different durations and lengths to be compared. The measure is consequently unitless. 

Hybrid measures of performance can be obtained by combining two or more of the output 

metrics. For instance, it is often more useful to consider a combination of speed and 

accuracy for the measurement of performance, as skilled movements tend to be faster and 

more accurate. This is often termed the speed/accuracy trade-off and can be obtained here 

by combining the outputs TM and EP and/or ET. Nevertheless, it is important to note that 

the assessment of human performance is non-trivial and can be highly specific to task 

and/or environmental conditions (Fitts & Posner, 1979). HAT is an open and scalable 

architecture which allows for future integration of additional performance measures to 

meet the specific needs of other tasks. 

 Post-processing utility 

Kinematic data files are processed using custom software to produce data in a usable 

format (see Figure 2.10). The post-processing utility allows the selection of what output 

metrics are required, and at what level or levels within the hierarchical structure of each 

session these should be saved (i.e. at a Trial, Section or Session level). Processed data are 

then saved in an open delimited text format which can be opened in a spreadsheet for 

further analysis. 

 System validation 

The performance of the HAT system for generating haptic feedback was validated. The 

aim was to objectively assess the fidelity of the haptic feedback rendered by HAT through 

the HapticMASTER. This is particularly important considering the non-deterministic 

nature of the system, as discussed in Section 2.3.5.4. An experiment was carried out to 1) 

assess whether the servo loop updated at the minimum required rate of 500 Hz (see 

Specification in Section 2.3.2) to generate smooth and realistic forces under 

representative experimental conditions, and 2) to assess the fidelity of the system’s 
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response to a step position input over time. This was achieved by comparing the desired 

and actual step response of a mass-spring-damper simulation.  

 Methods 

A mass (m = 3 kg) - spring (k = 100 N/m) - damper (c = 2.5, 5, 10 and 20 Ns/m) algorithm, 

as described in equation (2.3) where X is the 2D position vector, was implemented using 

the HAT. These values were used as they are representative of those used in the 

experiments of Chapter 5.   

 𝐹 = 𝑚𝑋̈ + 𝑐𝑋̇ + 𝑘𝑋 (2.3) 

The response of the full system was then tested using a step input of 0.1 m in the vertical 

axis. Additionally, to investigate temporal performance, the iteration period of the haptic 

loop was recorded over ten thousand iterations during the implementation of the condition 

c = 10 Ns/m. 

 Results 

A histogram illustrating the temporal performance characteristics of the haptic loop is 

shown in Figure 2.17.  

 

 

Figure 2.17. Haptic loop period (M = 1.11 ms, SD = 0.4 ms) and frequency of 

occurrence measured whilst rendering a mass-spring-damper system with 

settings m = 3 kg, k = 100 N/m, c = 10 Ns/m, over ten thousand iterations of the 

HAT servo loop. The largest recorded value was 4.5 ms. 
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Whilst the servo rate was not constantly below the recommended 500 Hz (2 ms period, 

as outlined in the Specification), the majority of iterations were. The servo rate was 

consistently above 200 Hz for all 10000 iterations. Considering the small percentage of 

deviations from the recommended loop rate (jitter; defined as the standard deviation of 

the mean loop rate), it is unlikely that the user would notice the effects of such small 

discrepancies in the haptic update rate. This suggests that the non-determinism of the 

operating system does not have a significant detrimental effect on the software’s ability 

to communicate with the haptic device at an appropriate speed. 

The performance of the mass-spring-damper simulation was next analysed. Figure 2.18 

shows the response of the simulation to a step input of 0.1 m. The system was able to 

produce an output that was characteristic of the desired response (i.e. with a relatively 

small mean error of 2.1 %), indicating that the HAT is capable of haptically rendering a 

mass-spring-damper system with relatively high fidelity.  

 

Figure 2.18. Desired versus actual responses of a mass-spring-damper simulation 

with settings m = 3 kg, k = 100 N/m, c = 10 Ns/m. Mean RMS error = 2.1 mm. 

The observed errors in the simulation were due to two effects: 1) a phase lag and 2) greater 

attenuation of the actual response relative to the desired response (this is most pronounced 

from the third oscillation onwards). One contributing factor to these effects may be the 

interaction between the limitations of the virtual model (implemented from HAT) and 

servo rate (refer to Figure 2.17): consider the force response on the first iteration of the 

servo loop. This is the largest force present in the simulation, and it is next updated on 

the second iteration of the servo loop. However, the time between the start of the first 
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iteration and the start of the second will have errors due to the discretised response of the 

virtual model. The same effect will be in place between the second and third iterations, 

and all subsequent iterations. Thus, relative to an analogue (continuous) mass-spring-

damper response, the discretised force response of the virtual model will result in an 

additive displacement error effect across a simulation. One way of addressing this issue 

could be to incorporate Proportional, Integral, Derivative (PID) control to account for the 

time response of the system. However, this is likely to require additional computational 

power, thus potentially decreasing the ‘smoothness’ of the response. This was not 

investigated further as it was deemed to fall outside of the scope of this work.  

Another likely contributing factor to the observed errors is the inherent signal noise 

present at the force sensor of the HapticMASTER (a common disadvantage of admittance 

control as discussed in Section 2.3.3), whereby small errors in the measured force input 

to the system would interact with the system and therefore affect the response fidelity. 

Consider the system’s natural frequency, ω0, the square root of ratio of the stiffness, k, 

and mass, m: 

 𝜔0 = √
𝑘

𝑚
 (2.4) 

The phase lag may be due to an effectively smaller ω0, i.e. due to an error in the 

implementation of k and m. Next, consider the damping ratio of the system, ζ, the ratio 

of the damping factor, c, and twice the square root of the product of k and m: 

 ζ =
𝑐

2√𝑘𝑚
 (2.5) 

This relationship defines the oscillatory response of the system, which may contribute to 

the attenuation effects observed in Figure 2.18. Thus, it is likely that both observed error 

effects could be due to an error in one or more of the variables k, c and m. This raises the 

question what is the effect of changing system parameters on response fidelity? Figure 

2.19 shows the error of the mass-spring-damper simulation for various damping values, 

showing that RMS error is inversely proportional to the damping value. 
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Figure 2.19. Mean RMS error between the desired and actual responses obtained 

for different damping (c) settings (m = 3 kg and k = 100 N/m for all cases). 

Error bars represent one standard deviation of the mean. 

The overall performance of the system is a function of both the HAT software and the 

haptic device. Whilst the simulation of a dynamic system does not perfectly match the 

ideal response, it is capable of providing smooth and realistic forces. For the purposes of 

this PhD (as outlined in the objectives), the haptic environment will be required to 

intervene with the subject’s movements by pushing or pulling their hand in a specific 

direction. Thus, high dynamic fidelity is not necessary, indicating that the performance 

of the HAT system is adequate for this application. However, these limitations should be 

considered in relation to the specific task requirements for which HAT may be used in 

the future. 

 Experimental setup 

With the aim of promoting consistency across experiments, a standard experimental setup 

was specified for HAT (see Figure 2.20). Subjects were stood in front of the 

HapticMASTER within a marked safe zone located 5 cm outside of the operating 

workspace of the device. Participants held the end-effector (i.e. manipulator) with their 

right hand. They were not given any explicit instructions on how to hold the device. 

Visual stimuli were presented on a computer monitor located approximately 1.4 m above 

the floor (this was in line with the maximum displacement of the device in the vertical 

axis to avoid obstruction of the display by the device), and directly behind the 

HapticMASTER, approximately 2 m from the participant. 
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Figure 2.20. Plan view of the standard HAT experimental setup, showing the relative 

positions of the participant, HapticMASTER and monitor (see Figure 2.16 for 

a screenshot of representative visual stimuli). The marked green and red areas 

represent the assigned standing area of the subject and the operating region of 

the HapticMASTER, respectively. For safety, the red region should not be 

entered during operation of the HapticMASTER other than by the arm of the 

subject. This is to avoid any potentially dangerous collisions with the device. 

 Discussion 

This chapter describes two novel tools that can be used to create bespoke visuohaptic 

environments, CSI and HAT. This enables the acquisition of experimental data via robust 

and semi-automated methodologies. These tools are the benchmark for all experimental 

protocols used throughout this thesis.  

CSI enables the simulation of virtual compliant objects and the acquisition of kinematic 

data. CSI is designed for the implementation of simple virtual elastic models to represent 

the surface response force of compliant objects when they are interacted with using a 

handheld tool. One limitation of this is approach is that it does not consider time-

dependent characteristics of objects which are common in human tissue (i.e. 

viscoelasticity). However, the focus of the experiments in this PhD was on human action 

and perception, and thus (considering the higher modelling complexity associated with 

alternative options) an approximate simulation of characteristic tissue properties has been 

deemed sufficient. CSI is compatible with any device in the PHANTOM range of haptic 

devices, which makes it possible to use it for a range of hand-device interfaces 

(manipulators), workspace sizes and output forces. However, the impedance control 

paradigm which these devices (and therefore CSI) use limits them to small forces and 

relatively small workspaces. CSI requires the development of LabVIEW functions to 
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control the behaviour of the device within an experimental protocol (the ones used for 

this PhD are described in Chapters 3 and 4).  

The HAT system is a configurable, high-level platform that allows inexperienced users 

to configure visuohaptic environments to implement force-based intervention strategies 

during the execution of motor behaviour. Force feedback functions of virtually any degree 

of complexity are implemented through a high-level user interface. The HapticMASTER 

is best suited to arm movements and large force output (i.e. gross movements), allowing 

the device to manipulate the position of a resting arm, or counteract forces applied to the 

manipulator. HAT automatically outputs objective performance metrics that can be used 

to assess human performance, and a post-processing utility allows for the tabulation of 

experimental data into a useful format which can be used for later analyses. The HAT 

platform is open access and scalable, allowing for future adjustments of the software’s 

functionality.
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COMPLIANCE DISCRIMINATION WITH A 

HANDHELD TOOL BEFORE AND AFTER 

TRAINING 

ABSTRACT The effect of training on tool-based compliance discrimination ability and 

the kinematic variables associated with discrimination performance are investigated in 

this chapter. Within the context of an action-perception framework described in Chapter 

1 it is well established that performance feedback is needed to make strategic adjustments 

to improve human perceptual abilities. However, to the author’s knowledge there has 

been no work that specifically examines what movement strategies are most effective for 

assessing compliance with a handheld tool (a critical skill in areas such as laparoscopic 

surgery and dentistry), and indeed the effects of training on such strategies. The abilities 

of naïve participants to detect compliance differences with and without knowledge of 

results (KR), as well as the abilities of participants who had undergone repetitive training 

over several days, were investigated. Kinematic analyses were carried out to objectively 

measure the probing action. Untrained participants had poor detection thresholds, and no 

short-term effects of KR on performance were found. Intensive training substantially 

improved group performance. Probing action (in particular, slower movement execution) 

was associated with better detection thresholds, but training did not lead to systematic 

changes in probing behaviour. 

  



68 

 Introduction 

Humans perform skilful interactions with objects using a combination of visual and haptic 

information (Mon-Williams, Wann, Jenkinson, & Rushton, 1997). There are few domains 

where successful and skilful interactions of this type are as crucial as surgery and 

dentistry. During open surgery, vision and haptics can be used together to perform 

palpation (examination of tissue) and retrieve information that can confirm the location 

and extent of physiological anomalies such as lumps or tumours. This type of manual 

probing is highly sophisticated since a number of finger movements can be performed in 

sequence to provide multiple estimates of tissue compliance across a wide area. 

Unfortunately, there are many surgical situations where such manual probing is not 

possible. For example, laparoscopic (keyhole) surgery is increasingly being used because 

of the significant patient benefits (e.g. reduced recovery time and trauma; (Cuschieri, 

1995) but one of the main difficulties with such techniques is the loss of high quality 

visual and haptic information (Culmer et al., 2012). Thus, palpation during laparoscopic 

surgery is fairly limited due to the weak haptic signals available from laparoscopic 

graspers and the necessity to carry out sequential probing. In contrast, dentists routinely 

use a handheld probe to explore the properties of the periodontium (the supporting tissues 

of the tooth) and tooth structure. Amongst other methods, it is common for dentists to use 

instruments such as a blunt dental probe to confirm the health of a tooth, as extensive 

tooth decay (dental caries) alters the compliance of the tooth’s structure (Selwitz, Ismail, 

& Pitts, 2007). Likewise, the periodontal probe allows a dentist to determine the health 

of the periodontium, in part through detection of changes in the structure’s compliance. 

Whilst the use of probing techniques to obtain information about dental health is common, 

it is also reported as being difficult to teach students and can take a long time to master 

(Drucker et al., 2012). To the author’s knowledge, only one study (Teodorescu et al., 

2013) has shown that repetitive training can lead to better compliance discrimination 

performance. This effect was attributed to haptic perceptual learning through short- and 

long-term gains. However, there was no investigation into whether these improvements 

were due to systematic changes in probing strategy, to an increased perception of 

compliance cues, or to a combination of the two. The present study was motivated by the 

fact that there is little information on the effects of training on perceptual thresholds for 

compliance discrimination with a handheld probe, nor the actions underpinning this 

process.  
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To determine how humans perceive properties of the world (such as compliance) it is 

useful to consider the role of active behaviour in perception. From an evolutionary 

perspective, the primary purpose of perception is to support the performance of skilled 

actions (such as avoiding predators or picking up food) rather than perception for its own 

sake (J. J. Gibson, 1986). A consideration of the nature of compliance perception using a 

handheld probe appears to indicate that this task fits perfectly within this ‘active 

perception’ framework. Tissue compliance can only be determined through interactions 

between the probe and the tissue, and the natural way to elicit this interaction is by 

performing a probing action that will itself shape the quality and quantity of information 

supplied to the central nervous system (Kaim & Drewing, 2011; Lederman & Klatzky, 

1987). It seems that compliance perception requires the monitoring of force and 

displacement information during interactions with an object (Choi, Walker, Tan, 

Crittenden, & Reifenberger, 2005; Kaim & Drewing, 2011; Tan, Durlach, Beauregard, & 

Srinivasan, 1995; Tan, Durlach, Shao, & Wei, 1993). This is achieved by using a 

combination of cues from haptic receptors, as well as vision (Kuschel, Di Luca, Buss, & 

Klatzky, 2010; Sigrist et al., 2012; Srinivasan, Beauregard, & Brock, 1996; Tiest & 

Kappers, 2009; W. C. Wu, Basdogan, & Srinivasan, 1999). Thus, it is important to 

consider various visual-motor factors in the overall perception of compliance. To this end, 

empirical investigations have studied human compliance discrimination abilities under 

various conditions, including: active and passive interactions, with rigid and non-rigid 

surface objects, during direct (e.g. finger) and indirect (tool) interactions, and with 

constrained and unconstrained movements. Some of these are summarised next. 

(Tiest & Kappers, 2008) showed that during finger interactions with deformable surface 

objects, active discrimination trials resulted in a just noticeable difference (JND) of 12%. 

Under passive conditions (when the compliant sample was brought into contact with the 

stationary finger) the compliance JND increased to 14%. This effect has been attributed 

to the contribution of kinaesthetic information towards the perception of compliance 

(thought to be small compared to that of cutaneous information), which agrees with 

findings from other studies (Friedman, Hester, Green, & LaMotte, 2008; Kuschel et al., 

2010; Lederman & Klatzky, 2004). Further, the inclusion of congruent visual (Kuschel et 

al., 2010; W. C. Wu et al., 1999), and even auditory (LaMotte, 2000) information seems 

to improve compliance discrimination ability, indicating that the CNS integrates 

information from multiple sources to generate the final perception of compliance (Ernst 
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& Banks, 2002; Sigrist et al., 2012). (Tiest & Kappers, 2008) also showed that cutaneous 

information about geometrical changes of an object’s surface obtained at the finger pad 

is an important cue for perceiving compliance: worse performance (the mean JND nearly 

doubled to 23%) was observed during active finger indentations of compliant objects with 

rigid surfaces (i.e. when no surface deformation occurred). This is in line with findings 

by (Srinivasan & LaMotte, 1995), who showed that tactile information alone is 

insufficient to encode the compliance of rigid surface objects. This was attributed to the 

fact that for a given net force, skin deformation is dependent on the compliance of 

deformable surface objects, but not of rigid surface objects. Thus, for the latter case, the 

CNS appears to rely mostly on kinaesthetic information to encode compliance. This might 

also be the case for tool interactions, in which there is no direct contact with the object 

and so cutaneous information is only available about the object’s response in the form of 

Normal (for one finger interactions) or shear (for two fingers in a precision grip) forces 

(Friedman et al., 2008). One difference between tool and direct finger rigid surface 

interactions might be cues about the rate of change of force produced upon impact with 

the sample at higher movement speeds, i.e. tapping versus pressing (LaMotte, 2000). This 

raises two important questions: (i) what is the relationship between probing strategy and 

performance; and (ii) are there optimum movement patterns which can be used to 

maximise the information available to the CNS? 

Previous work has found that haptic performance in compliance perception depends on 

the executed exploratory movements. (Kaim & Drewing, 2009) showed that maximum 

finger force and velocity are strategically adjusted to the expected compliance. In a later 

study (Kaim & Drewing, 2011), the same authors found that the application of higher 

forces resulted in lower JNDs (better performance). These results seem to indicate that 

optimal probing strategies might exist, dependant on the compliance of objects. 

Unfortunately, most of this work has so far focused on direct finger interactions, which 

cannot be generalised to tool-based interactions due to the active and perceptual 

differences between these tasks, as highlighted earlier. Whether this effect is also true for 

tool-based interactions, and indeed whether ‘optimal’ exploration settings are reached 

over short or long term periods is also yet to be established.  

Finally, another factor in terms of exploration strategy is that of consistency across the 

probing actions used to assess the compliance of specimens. (Tan, Pang, & Durlach, 

1992) measured JNDs for fixed and variable displacements during active pinching of a 
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rigid surface using an electromechanical device. For each sample, when the required 

displacement was reached, the force was switched off. Variable displacements between 

trials resulted in significantly reduced performances (JND = 5-15% with fixed 

displacements versus 22% for variable displacement). This suggests that constant 

pairwise indentation depth may lead to better discrimination performance, but further 

investigation is required to establish whether this is the case during ‘normal’ operating 

conditions (i.e. when displacement is controlled by the subject instead of by the 

experimental apparatus). Further, Srinivasan & LaMotte (1995) found that performance 

deteriorated for passive interactions with rigid surface objects when indentation speed 

and terminal force (the response force of an object at maximum indentation depth) were 

inconsistent between the two probing actions. This was not the case during active 

interactions. However, performance was measured using samples of discrete 

compliances, and thus small effects of this phenomenon may not have been captured in 

the active case. It was hypothesised that the task would be greatly simplified by generating 

identical movements between the compliant samples being compared, because perceptual 

information would then be directly comparable and differences could be detected without 

the need to have stored knowledge of absolute compliance values (e.g. a ‘lookup table’).  

CSI (described in Chapter 2) was used to facilitate the measurement of the JND of 

compliance differences in adults across three groups, along with the kinematics of their 

movements. Group 1 consisted of untrained participants with no explicit feedback 

(knowledge of results, KR) provided after each trial (this mimics normal conditions where 

trainees must become attuned to intrinsic visual-motor feedback in the absence of 

performance feedback). Group 2 were given KR after each trial (a feature possible within 

VR training systems). Group 3 received intensive training over a week (whilst providing 

KR) to determine whether compliance discrimination can be improved through training 

with performance feedback. The relationship between probing strategy and performance 

was also examined, and whether there were systematic changes in probing behaviour 

during training. 
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 Methods 

 Materials 

The compliance simulation interface (CSI, described in Chapter 2) was used to develop 

custom software to enable the generation of forces through the haptic device. Visual 

stimuli was generated in LabVIEW and displayed on a computer monitor. The standard 

CSI experimental setup (detailed in Chapter 2) was used. Participants were positioned 

directly in front of the monitor and the haptic device was placed to the right of the monitor 

(as illustrated in Figure 3.1) where it could be reached comfortably with their right hand. 

All participants were right handed. Participants were instructed to rest their right arm and 

wrist on supports during the whole of the experiment. This was done to limit the probing 

strategy to only wrist and finger movements, thus promoting consistent behaviour across 

participants. 

 

Figure 3.1. (a) Diagram of the experimental setup, showing the physical 

arrangement of i) the arm and wrist supports, ii) the haptic feedback device, 

and iii) the computer monitor showing a graphical display. (b) A close-up of 

the graphical display, where the instruction panel informs the participant to 

‘Indent’ the sample, ‘Await Instruction’, or to ‘Move to [the] start position’; 

‘Sample number’ denotes which sample (1 or 2) is being displayed. The 

position of the stylus tip (the shaded square with a rounded bottom edge) is 

updated at a rate of 30 Hz and is shown relative to the virtual object’s surface, 

the start position and the target. 
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 Experimental design 

Three groups were tested: novice – no knowledge of results (KR) (N), novice – with KR 

(NKR), and trained - with KR (TKR). First, between-subjects tests were carried out to 

assess the effects of KR on the performance of novices. A repeated measures design was 

then used to test the learning effect of the NKR group as they progressed through the 

twelve training sessions. 

 Task configuration 

Participants actively probed two virtual samples, one after the other, and then judged 

which was the least compliant (stiffest). An adaptive staircase algorithm, the PEST 

(Parameter Estimation by Sequential Testing) was employed to generate the stimuli on a 

trial by trial basis. A correct or incorrect judgement in the previous trial was used to adjust 

the stimulus properties in the next, so that the staircase size and direction adapted on the 

basis of past trial performance (Lieberman & Pentland, 1982). This procedure converges 

on an individual’s threshold more quickly and with greater precision than standard 

staircase methods (Leek, 2001). The threshold obtained at the end of each set of 100 trials 

was identified as the JND value. This number of trials was selected based on pilot trials 

to allow successful convergence on a JND value, whilst providing the same number of 

training trials to all participants. A constant baseline stiffness of 0.075 N/mm was used 

for one sample in each trial (stiffness is the inverse of compliance). The other sample had 

a stiffness value ranging from 0 to 0.1 N/mm above the baseline. This stiffness baseline 

and range were selected to fall within the force output capabilities of the haptic device, 

and are similar to the conditions encountered during palpation of soft human tissue such 

as liver (Mueller & Sandrin, 2010). The order of appearance (first or second) of the 

‘baseline’ sample was randomised. The first trial of each session contained a ‘baseline + 

offset’ sample located in the middle of the offset range at 0.125 N/mm. 

 Participants 

Nineteen participants (10 male, 9 female, aged: 21 to 28 years, M = 23.4, SD = 2.56) were 

recruited and randomly allocated to one of the three groups: Group N performed one 

compliance discrimination session. Group NKR also performed one session but with 

knowledge of results (KR): a green ‘tick’ was displayed for a correct response and a red 

‘cross’ for an incorrect response. The procedure for Group TKR was identical to that of 

NKR (KR was provided), except that each participant completed twelve sessions over 
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four days (three sessions per day - morning, noon and late afternoon). All participants 

were Psychology or Engineering undergraduate or PhD students. The research was 

approved and conducted under the guidelines established by the School of Psychology, 

The University of Leeds Research Ethics Committee. 

 Procedure 

On each trial, participants used the haptic device to indent each sample of simulated tissue 

before identifying which of the two was perceived as the stiffest. For each sample, 

participants were required to move the stylus downwards from a “start” position past the 

“surface” until the “target” indentation was reached, as indicated in Figure 3.2 (b). An 

auditory tone indicated when participants could start their movements. A higher pitched 

tone then indicated when they had reached the target. Forces were generated as a function 

of indentation depth to simulate a stiffness value once the surface had been passed, and a 

cursor on the monitor indicated the position of the stylus relative to the three reference 

positions (start, surface and target). Participants were required to vocally identify the 

stiffest sample (‘one’ for the first sample or ‘two’ for the second sample). The 

experimenter electronically recorded their response and then the next trial was presented. 

No explicit instructions were given to participants regarding what movement 

characteristics were expected (e.g. speed or acceleration were unconstrained). However 

all participants were required to hold the stylus of the robotic device in a precision grip 

(i.e. held between the tips of the thumb, index and middle finger) and they were informed 

of the essential vertical probing movements that would be required for the task. 

Movement was unconstrained in all dimensions. For each sample, the stimulus and 

response given for each pair of samples were recorded. All participants received a practice 

run of 25 trials prior to the start of the experiment to ensure that they understood, were 

familiar and were comfortable with the task. Each session consisted of 100 trials and 

lasted approximately 15 minutes.  

 Kinematic analysis 

The movement kinematics of the probing actions over time were explored in order to 

determine whether there was a relationship between probing strategy and performance. 

Figure 3.2 illustrates the virtual probe and its relative position to the surface during the 

probing action.  
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Figure 3.2. Illustration of the virtual probe at different stages of indentation, 

showing i) the probe at approximately 2 mm prior to contacting the virtual 

surface, (p1 ≈ -2 mm), ii) the instant at which the probe comes into contact with 

the surface (p2 ≈ 0 mm), and iii) the deepest indentation (p3) during the probing 

action, when FT is calculated. The variables tX and pX denote the time and 

relative position of the probe to the surface at each probing stage, respectively. 

For each sample, time and position in the vertical axis were recorded at a frequency of 

100 Hz. To objectively assess probing strategy, two kinematic metrics were determined 

for each sample: strike velocity (VS) and terminal force (FT). These variables are 

described in equations (3.1) and (3.2). 

 𝑉𝑆 =  
𝑝2 − 𝑝1

𝑡2 − 𝑡1
 (3.1) 

 𝐹𝑇 = 𝑘. 𝑝3 (3.2) 

VS is calculated as the average velocity of the probe as it travels from position p1 to 

position p2. It is not influenced by interactions with the sample, making it useful for 

assessing movement behaviour independent of sample compliance (which varied from 

sample to sample). FT is calculated as the product of the sample’s stiffness coefficient, k, 

and the position at maximum indentation, p3. Due to the finite resolution of the kinematic 

data (samples were acquired at approximately 10 millisecond intervals), the exact values 

of p2 and p3 were taken as those points that were closest to and above their respective 

specified locations of 0 mm and the overall maximum indentation depth, respectively. 

The variable p1 was then selected as the closest position to p2 that met the condition p1 - 

p2 ≥ 2 mm. The time points (tX) were specified as the time elapsed from the start of the 

trial until each corresponding pX location was reached. Time measurements were accurate 

to within 0.5 milliseconds. With the aim to assess the effects of consistency of probing 

kinematics on performance, the absolute difference in VS (ΔVS) and FT (ΔFT) between 
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the first and second indentations were calculated. Note that due to the relationship 

between k and p3, described in equation (3.2), the magnitude of JND (effectively a 

measure of the compliance difference between the two samples) would affect ΔFT if p3 

was, to any extent, a controlled variable by the subject (i.e. ΔFT would be proportional to 

JND). Thus, ΔFT should only be assessed for trials where identical pairwise sample 

compliances are presented. 

 Results 

The compliance JND values and mean kinematic metrics for all trials obtained for groups 

novice – no KR (N), novice - KR (NKR) and Session 1 of trained - KR (TKR) are shown 

in Table 3.1. The JND obtained for one participant in group N did not fall below 100% 

and so they were excluded due to failure to perform the task.  

  



77 

Table 3.1: Compliance JND and mean VS, ΔVS, and FT across all trials for groups N, 

NKR and session 1 of TKR.  

Participant Group 
JND 

(%) 

VS 

(mm/s) 

ΔVS 

(mm/s) 

FT 

(N) 

1 N 18.9 58.2 21.0 1.03 

2 N 45.7 152.5 51.4 1.23 

3 N 25.0 30.1 13.2 0.92 

4 N 33.0 84.1 26.6 1.26 

5 N 27.4 45.3 13.3 1.11 

6 N 43.7 90.5 33.5 1.54 

7 NKR 39.8 52.0 18.6 1.05 

8 NKR 21.7 36.7 12.0 1.00 

9 NKR 39.8 132.7 34.8 1.45 

10 NKR 63.3 33.8 14.1 1.22 

11 NKR 15.7 47.8 22.9 0.83 

12 NKR 28.7 60.4 20.9 0.96 

13 TKR (1) 23.8 46.5 17.8 0.91 

14 TKR (1) 23.8 45.1 11.8 0.91 

15 TKR (1) 36.2 36.4 20.3 0.95 

16 TKR (1) 28.7 62.2 24.6 1.05 

17 TKR (1) 22.8 175.9 48.0 1.76 

18 TKR (1) 23.8 46.8 13.3 1.07 

 

An independent-samples t-test revealed no significant difference between the JNDs of 

group N and NKR (t(10) = 1.145, p = .279, r = .34), suggesting that KR had no significant 

effect on performance. There were also no reliable differences between NKR and Session 

1 of TKR (t(10) = -.31, p = .76, r = .098). 

To assess longer term training on JND performance, changes across each session for TKR 

were examined. The group’s mean JND values and mean kinematic metrics of all trials 

obtained for each training session are shown in Table 3.2. Figure 3.3 shows the mean JND 

obtained at each training session for TKR. A repeated-measures ANOVA showed a 

significant main effect of Session on JND (F(11,55) = 3.15, p = .002 , ηP
2 = .39), with 
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participants gradually improving compliance sensitivity over time from 26.6% to a best 

value of 12.1% in session 7 (though values then drifted to 16%, possibly reflecting 

exploration of different probing strategies). 

Table 3.2. Kinematic metrics obtained for all participants in the TKR group across 

the four days of training.   

Session 

no. 
Day 

Mean 

JND 

(%) 

SEM 

JND 

(%) 

VS 

(mm/s) 

ΔVS 

(mm/s) 

FT  

(N) 

1 

1 

26.5 2.1 68.8 22.6 1.10 

2 25.7 3.2 76.6 25.7 1.16 

3 20.7 4.1 82.0 26.7 1.09 

4 

2 

21.7 3.6 63.1 22.0 1.05 

5 17.3 1.8 48.9 16.5 0.98 

6 15.3 1.8 42.3 14.6 0.94 

7 

3 

12.1 2.3 41.2 15.7 0.92 

8 15.6 2.4 43.5 17.8 0.93 

9 16.9 2.3 50.1 19.6 0.99 

10 

4 

14.9 3.8 51.4 20.3 0.99 

11 17.1 4.3 51.4 20.0 0.96 

12 15.9 2.3 51.4 19.6 0.96 

 

 

Figure 3.3. Mean JND obtained at each training session for TKR, showing a gradual 

improvement in performance over the four days of training. Error bars 

represent ± one standard error of the mean.  
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To determine whether changes in probing strategy could explain the improvements in 

compliance sensitivity, the kinematic metrics of TKR were examined. Plots of VS, ΔVS 

and FT versus JND for each participant are shown in Figure 3.4, respectively. There was 

a significant positive correlation between VS and JND whereby improved sensitivity to 

compliance differences was associated with slower probing velocity (r = .476, 95% BCa 

CI [.254, .674], p<.001). A similar relationship was also found between ΔVS and JND (r 

= .526, 95% BCa CI [.309, .711], p<.001), and between FT and JND, (r = .484, 95% BCa 

CI [.256, .695], p<.001). Two participants (P17 and P18) employed particularly fast 

probing actions, but if they were excluded from the correlations the pattern of results did 

not change. Also observed was a strong relationship between VS and FT, (r = .909, 95% 

BCa CI [.807, .953]), and VS and ΔVS, (r = .865, 95% BCa CI [.744, .931]) (ps < .001), 

consistent with slower movements leading to lower terminal forces and greater 

consistency of probing. To determine whether probing behaviour altered across sessions, 

a repeated-measures ANOVA was performed on each kinematic measure. These analyses 

revealed no significant main effect of Session on VS (F(11,55) = 0.97, p = .49, ηP
2 = .16), 

ΔVS (F(11,55) = 1.38, p = .21, ηP
2 = .22) or FT (F(11,55) = 1.59, p = .13, ηP

2 = .24). 

Repeated-measures ANOVAs were carried out on the consistency measures, which failed 

to demonstrate a significant main effect of Session on ΔVS (F(11,55) = 0.76, p = .68, ηP
2 

= .13), or ΔFT (F(11,55) = .78, p = .66, ηP
2 = .13). These results suggest that the group’s 

JND improvements over the training period were not due to changes in probing strategy 

captured by VS and FT, nor by increased consistency in probing actions (as measured by 

ΔVS and ΔFT). It seems therefore that JND improvements may have instead been achieved 

by tuning into the appropriate perceptual information (Tresilian, 2012). 
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Figure 3.4. Plots of the mean (a) VS, (b) ΔVS and (c) FT against JND, for all 

participants and all training sessions of TKR.  

Finally, the extent to which individual differences explained the relationship between 

probing behaviours and JND performance was assessed. Figure 3.5 shows the correlation 

coefficient between VS, ΔVS and FT and JND. Three individuals match the group level 

analysis – a clear relationship between all three kinematic metrics and JND performance. 

However there were also three individuals who displayed a weaker relationship between 

probing kinematics and JND and these individuals were those that exhibited the highest 

mean VS, ΔVS and FT across all sessions. 
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Figure 3.5. Correlation coefficients for each participant obtained for the mean VS, 

ΔVS and FT against JND obtained during all training sessions. The horizontal 

lines indicate the significance threshold (r = .497), above which the correlation 

becomes significant at the p = .05 level. 

With a group size of six it is difficult to draw firm conclusions about these differences, 

but it seems that there is a non-linear relationship between probing kinematics and 

performance, and that different probing strategies may have been adopted across 

individuals. For instance, the magnitude of VS had a strong positive relationship with JND 

for P14, whereas for P18, there was a negative relationship suggesting that they may have 

tuned into information related to FT (or another unmeasured variable). 

 Discussion 

This chapter considered compliance detection within the theoretical framework of 

‘active-perception’ where perception’s primary goal is to support action and where 

humans obtain perceptual information through active interactions with the world. This 

framework would suggest that perceptual thresholds are a function of movement strategy 

so that a complete understanding of compliance detection requires an investigation into 

probing kinematics as well as perceptual sensitivities. To this end, the effects of long-

term training on discrimination performance were investigated. Probing strategy was 

objectively measured to assess the relationship between exploratory strategy and 

discrimination abilities. The results suggest that novice participants are generally quite 

poor at discriminating compliance differences using a handheld tool. High values of JND 

can be generally associated with the execution of fast movement speeds, large interaction 

forces, and poor consistency in pairwise trial kinematics. The variables VS, ΔVS and FT 

were all strongly correlated, which might indicate that fast movement speeds lead to 
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larger indentations (and therefore higher interaction forces), and a lesser ability to 

implement consistent movements. These findings would seem to disagree with those by 

(Koçak, Palmerius, Forsell, Ynnerman, & Cooper, 2011): active tapping (assumingly, 

tapping is a significantly faster movement than those employed in this study) of two 

virtual boxes by untrained participants resulted in a mean JND of 12.9%. However, in 

contrast to this study, participants were able to indent each sample as many times as they 

desired. Arguably this could enable them to capture more information about the objects 

under scrutiny, resulting in better performances than the ones observed here. 

A comparison of the results from groups N and NKR suggests that KR does not have an 

immediate effect on compliance sensitivity, but the results from group TKR suggest that 

intensive training over several sessions with KR does. These results agree with a similar 

study by (Teodorescu et al., 2013). Both sets of findings imply that with training, humans 

can improve their ability to detect compliance differences using a handheld tool. The 

critical question is how do such improvements in perceptual abilities take place? One 

possibility is that when humans learn to perform a skilled action they become attuned to 

the available information (Wilson, Collins, & Bingham, 2005). Another is that they alter 

the behaviour that supplies such information (Wilkie et al., 2008), or some combination 

of the two. Findings from this study indicate that behaviour is indeed an important 

component in compliance detection (in this case via adopting an effective probing 

strategy). However, training did not lead to changes in probing strategy. This suggests 

that participants were able to improve their perceptual abilities (perhaps through 

sensitisation of the haptic senses; (Tresilian, 2012). Further, through visual inspection of 

Figure 3.5 it seems that weaker relationships between probing kinematics and JND are 

associated with individuals who employed a higher VS, ΔVS and FT (with reference to 

Figure 3.4). This effect hints towards the presence of a non-linear relationship between 

probing strategy and JND: past a certain point in the magnitude of these variables, their 

influence on performance becomes weaker. It also seems that some of these variables 

may have different effects across individuals. This effect could explain some of the 

inconsistencies between individuals of groups N and NKR. However, further work is 

required to fully investigate the effects of individual differences in probing behaviours.  

Investigating the relationship between action and perception in this way seems a logical 

way of deciphering the role of different sensory cues and their importance in generating 

the human perception of compliance, and indeed, for perceiving other phenomena. The 
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relationship between movement characteristics and compliance discrimination 

performance under natural operating conditions, i.e. manipulating a handheld probe 

within an unconstrained 3D space was assessed. Training over an extended period could 

be an effective method of improving performance in tasks requiring the discrimination of 

small compliance differences using a handheld tool. Nonetheless, beyond achieving 

increased perceptive abilities to changes in compliance, further research is needed to 

identify how to ensure that probing is performed within a temporal ‘sweet spot’ that 

avoids the disadvantages of acting either too fast or too slow. It must be the case that very 

slow movements impair sensitivity because slow movements are generally more difficult 

to execute smoothly, which may have implications for sensory performance (Nagasaki, 

1989). In contrast, very fast movements must limit the perceptual information available 

from the probing action. Also understanding what training programmes could be 

effectively implemented to guide the subject towards these movement strategies will be 

critical for future applications. Finally, it is important to validate these training programs 

by assessing the transfer of augmented skills to more realistic and meaningful tasks, such 

as dental and laparoscopic procedures.
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THE ROLE OF ACTION-PERCEPTION IN A 

VIRTUAL TUMOUR DETECTION TASK 

ABSTRACT The previous chapter investigated the role of active and perceptive 

mechanisms in the detection of compliance whilst using a handheld tool. One issue that 

remains is whether there are particular methods for training compliance perception that 

are more effective than others. Continuing on the theme of compliance discrimination 

abilities in surgery and dentistry discussed in Chapter 1, this chapter investigates the role 

of haptic versus kinematic training (Training) on a virtual palpation task (Test). There 

were three independent groups: haptic training (HT), kinematic training (KT), and a 

control (CT). Training was in the form of six sessions (of 15 minutes duration) over three 

days (two sessions per day). Test was a virtual palpation task that was representative of 

some components of a real-world medical procedure. During Training, HT and KT used 

the same haptic device as that used at Test, whereas CT completed a number of tracing 

tasks using a tablet PC and a stylus. Results showed a significant improvement from the 

first Test (pre-Training) to the second Test (post-Training) in palpation performance. 

However, the types of training employed did not influence the rate of improvement. It 

seems, therefore that all groups improved their palpation performance irrespective of 

training, and there was no clear advantage of a particular training regime. There were, 

however, initial differences between groups during Test 1 (pre-training, with Group CT 

being worse performers) that may have interacted with the training regimes.   



85 

 Introduction 

Compliance discrimination with a tool is an important skill in a multitude of surgical and 

other settings. However, this skill can take years to refine and master (Drucker et al., 

2012), which raises the critical question: how can the rate of acquisition of this skill be 

increased?  

The individual roles of action and perception in our detection of compliance are not fully 

understood. The previous chapter showed that the strategy employed to interact with an 

object affects our overall perception of the object’s compliance, and that humans are able 

to improve their detection of small compliance differences over time. There are also 

individual differences in probing strategy, and slower speeds generally result in the best 

performance. However, training did not seem to lead to systematic changes in probing 

strategy. These findings indicate that humans are able to improve their ability to 

discriminate compliance differences by increasing sensitivity to compliance cues, but it 

is unlikely that individuals will spontaneously modify their active probing behaviours, 

even though such changes may have been highly beneficial in terms of increasing the 

available perceptual information. This chapter examines whether novel training regimes 

can be used to guide participants to use more effective particular probing patterns with 

the aim of improving the quality and quantity of information available to the CNS.  

From a theoretical standpoint, a number of factors should be considered in the design of 

an environment that acts to guide optimal probing movements. As discussed in Chapter 

1, motor learning is often described as an iterative process that leads to the construction 

and refinement of internal models. Within this framework, prior knowledge of the state 

of the environment and motor architecture (e.g. the inertia of a tool or end-effector) is 

used to objectively plan an action to achieve a desired goal (e.g. to indent an object at a 

specific speed; Wolpert, 1997). Thus, optimal motor learning conditions are highly task-

dependent and so it is important that the training environment accurately represents the 

components of the task to be learned (e.g. the inertial and other physical properties of the 

tool used for training should be the same as that used in the real environment).  

Two components that could be involved in our ability to assess compliance are haptic 

sensitivity and kinematic performance. It seems that increased haptic sensitivity can be 

achieved through repetitive training whereby objects with similar compliances are 
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repetitively assessed (see Chapter 3). The second component, kinematic performance, 

requires guidance towards a probing strategy or strategies that may result in improving 

the quality and quantity of available information relating to an object’s compliance. It 

would seem, therefore, that increased compliance discrimination performance could 

potentially be achieved through training regimes that act to 1) increase perceptual 

sensitivity and 2) improve kinematic performance.  

This study investigates the effects of two training interventions on the ability to 

discriminate compliance differences. The haptic training (HT) group were prescribed the 

just noticeable difference (JND) task described in the previous chapter. The kinematic 

training (KT) group were required to follow a target moving within a speed range that 

was designed to optimise compliance information, and so would be expected to promote 

good compliance discrimination performance. To independently assess the effects of 

kinematic training (i.e. in isolation to haptic sensitisation), force feedback was not 

provided to the KT group. To objectively assess the effects of these two training 

conditions on a meaningful, real-world procedure, a virtual palpation task was used to 

measure performance before (Test 1) and after (Test 2) Training. This task was designed 

to simulate the palpation of tissue with a handheld probe, a procedure that is used in a 

number of medical procedures. A control training (CT) group was also tested to provide 

a comparison when examining the relative performances of the HT and KT groups from 

Test 1 to Test 2. 

 Methods 

This section describes the general methodology employed for the experiment, as well as 

a detailed description of each of the experimental conditions (Test, haptic training, 

kinematic training and control training). 

 Materials 

A Phantom Omni haptic device was positioned in the same way as that discussed in 

General Methods (Chapter 2), but this time placed inside a 43x31x52 cm box, with an 

opening (16x31cm) for the participant to place their hand inside to hold the device gimbal. 

There was no physical contact between the box and the device or participants during the 

task. This was done to mimic more closely the environment in which a surgeon operates, 

whereby the ends of the laparoscopic probes are only visible on a 2D screen. This 



87 

eliminated the possibility that perceptual cues were obtained from the movement of the 

device during interactions with virtual objects. For the control task, the Clinical 

Kinematic Assessment Tool (CKAT) was used (Culmer et al., 2009). It consists of a tablet 

PC and a hand-held stylus on which 2D visuomotor tasks can be programmed. In this 

case, four tracing tasks which have been previously used to assess motoric abilities were 

employed (Flatters et al., 2014). An HP EliteBook 2760p tablet PC with an 11.42x8.35 

inch screen, 1280x800 resolution, 125 dpi, 64-bit colour, 60 HZ refresh rate was used. 

 Experimental design 

Three groups were tested: Haptic training (HT), kinematic training (KT) and control 

training (CT), all of which received separate training interventions. All groups completed 

the same virtual palpation task before (Test 1) and after (Test 2) Training. A within-

subjects design was used to assess the effects of Training over time for the HT and KT 

conditions, and a mixed design was used to measure any relative changes between groups 

from Test 1 to Test 2. 

 Participants 

Thirty unpaid participants aged 20 – 29 years (M = 23, SD = 2.26) were recruited for the 

study and randomly allocated to one of the three groups. All participants reported that 

they had normal or corrected vision, and that they were right-handed. No participants had 

received any surgical training and had never used the haptic device. The study was 

approved by The University of Leeds ethics committee and was performed in accordance 

with British Psychological Society (BPS) ethical guidelines. All participants provided 

their informed consent prior to the commencement of the study. 

 General procedure 

Participants first read an instruction sheet detailing the requirements of the study and 

signed a consent form. They were asked to complete eight sessions over five consecutive 

days (see Figure 4.1). The first session (Test 1) was a virtual tumour palpation task, which 

required the exploration of a region of simulated tissue to detect differences in 

compliance. Test lasted approximately twenty minutes. Over the next three days, 

participants were required to complete six Training sessions: two per day with a minimum 

of 2.5 hours between any two consecutive sessions. The HT group completed a JND 

compliance discrimination task which was identical to that described in Chapter 3 for the 
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JND task with knowledge of results. The KT group completed a pursuit task which 

required actively aligning a cursor representing the position of the gimbal end (the ‘device 

cursor’) with a target cursor. HT and KT used the haptic device during Training by 

holding the device gimbal in a standard pencil grip. The CT group required participants 

to complete various tracing tasks using a tablet and stylus. The duration of each Training 

task was approximately 15 minutes. The second and final Test session (Test 2, which was 

completed by all groups) was identical to Test 1, excluding practice trials, and was carried 

out on day 5. Each task is described in more detail below. 

 

Figure 4.1. The study was conducted over five days. On day 1, a virtual palpation 

task was completed by all groups. This was Test 1. On days 2-4, participants 

were given Training (two sessions per day) as per their allocated group (haptic 

training - HT, kinematic training – KT, or control training - CT). Test 2 (which 

was identical to Test 1) was completed on day 5 by all groups. 

 Virtual palpation task (Test) 

The virtual palpation task was completed by all participants before (Test 1) and after (Test 

2) Training. 

 Task configuration 

A visuohaptic environment was generated using the compliance simulation interface 

(CSI, described in Chapter 2). Within this system, a sample with embedded tumours was 

modelled using a Gaussian approximation, as described in Equation (4.1), where FG is the 

output force in Newtons, A is the peak force value relative to the baseline, B, σ is the 

function width variable and xr is the radial distance from the end-effector to the inclusion 

centre. A description of the modelling process can be found in Appendix 1.  
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𝐹𝐺 = 𝐴𝑒

−
𝑥𝑟

2

2𝜎2 + 𝐵 (4.1) 

Tissue deformation was designed to approximate the physical visual response of human 

tissue. For this, a simple elastic model was used. Previously acquired experimental data 

were used to determine the modelling coefficients of different inclusions (see Appendix 

1). Three different samples were implemented to simulate tumours with a 12 mm diameter 

at depths of 6 mm (‘S1’), 9.25 mm (‘S2’) and 12.5 mm (‘S3’). These combinations of 

parameters were selected after a preliminary study during a Master’s project which the 

author was involved with, which tested the ability of untrained participants to find 

tumours of different sizes and at different depths (see Appendix 1). Most participants 

were able to detect the inclusion at a depth of 6 mm, whilst most were unable to detect it 

at 12.5 mm. These were selected with the aim of avoiding floor and ceiling effects. 

 Procedure 

Participants were seated and asked to rest their right arm and wrist on supports (as per the 

general experimental setup described in Chapter 2). They were asked to hold the haptic 

device stylus as a pen and use it to probe the virtual sample displayed on the monitor 

using a vertical motion to find a hidden tumour. A screenshot of the virtual environment 

is shown in Figure 4.2. 
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Figure 4.2. Screenshot of the visual stimuli given in the virtual environment, showing 

i) the probing area (the inside of the green square which measured 100 x 100 

mm; ii) the virtual probe, consisting of a rod and spherical end; iii) the blue 

embedded tumour (shown visually only during the first practice trial); and iv) 

an indicator of the time remaining for the current trial. The deformation of the 

tissue to an indentation is also shown. 

Participants were required to navigate the 3D space by controlling the stylus and vertically 

indenting the virtual tissue. Once indented, a maximum horizontal movement of 10 mm 

was allowed to more closely replicate the probing strategy adopted during internal tissue 

palpation (i.e. during an operation), whereby horizontal movements are small in order to 

avoid damage to tissue (Culmer et al., 2012). Any horizontal movements which exceeded 

the permitted threshold resulted in a loud auditory signal (a ‘beep’), and a freezing of the 

visual scene until the probe had moved above the surface of the sample. The basic probing 

technique was demonstrated by the experimenter before practice trials began. 

Upon detecting a tumour, participants were asked to place the probe as closely as possible 

to the centre of the tumour and press the dark grey button on the stylus of the device. 

Once a selection was made, a confirmation message was given and the next trial was 

presented. With the aim of minimising outliers due to random positive selections when a 

tumour had not successfully been detected, participants were given the option of selecting 

that no tumour was present. To make a ‘no tumour present’ selection, participants were 
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required to press the light grey button. After making a selection, participants were asked 

to vocally confirm their selection with the experimenter, who then confirmed or cancelled 

the selection using a keyboard input. This allowed participants to return to the trial if an 

accidental selection was made (e.g. if a button had been mistakenly pressed). The 

selection was recorded and the next sample was automatically loaded. Each trial had a 

maximum duration of 2.5 minutes, after which the trial would automatically end and a 

‘timeout’ would be logged. A time bar at the top of the screen indicated the time 

remaining during each trial.  

Participants were required to complete four practice trials (two sets of two trials with a 5 

second rest in between), followed by nine experimental trials (5 trials followed by 4 trials 

with a 30 second rest in between). The force response of the samples in the practice trials 

was augmented to make them easier to detect. Additionally, in the first practice trial, the 

tumour was visually displayed as a blue sphere to allow participants to familiarise 

themselves with the haptic feedback associated with the inclusion.  
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Figure 4.3. Diagrammatic overview of the Test sessions, which consisted of two 

practice trials (only for Test 1) and nine experimental ones. S1, S2 and S3 refer 

to the 12 mm tumour at 6, 9.25 and 12.5 mm from the sample’s surface, 

respectively. The first practice trial was with S1, but with a 2.0x haptic gain to 

augment the difference between the baseline and peak forces. The tumour was 

visually displayed as a blue sphere. Followed by a 5 second rest, the second 

practice trial was again with S1 but with a 1.5x gain, and it was not visually 

displayed. After approximately 1 minute, the experimental trials were loaded. 

The order of tumours (S1, S2 or S3) was randomised across all trials so that 

each tumour would appear three times. The Cartesian positions of all tumours 

were pre-randomised (i.e. tumours were in the same location for each trial). 

Practice was only given in Test 1. To avoid order effects, the order of appearance of each 

sample in the experimental trials was randomised. For both the practice and experimental 

trials, the position of the inclusions for the experimental trials was pre-randomised, 

whereby their locations within the 2D Cartesian space were pre-specified using a random 

number generator. The order was the same for both Test sessions.  

 Data capture 

For each sample, the program recorded kinematic data in the form of x, y and z position 

with a time stamp (in ms, accurate to +/- 0.5 ms). These data were used to calculate the 

mean probing velocity (VP) for each trial. The standard deviation of the probing velocity 

(SDVP) at each trial was also calculated. Actual and selected positions of each tumour 
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were recorded when a positive selection was made. Also recorded was whether there was 

a timeout or ‘no tumour present’ (negative) selection. 

With the aim of objectively assessing performance, outcome metrics were derived from 

the raw kinematic data. These were radial error (the distance from the location of the 

probe to the centre of the tumour), correct or incorrect selection (a correct selection was 

defined as one where the probe overlapped with the tumour i.e. when the centre of the 

end-effector was within 11 mm of the tumour centre, whilst an error above this value was 

defined as an incorrect selection), and movement time (the time taken to make a decision 

from the start of the trial when a positive selection was made). For each participant, the 

mean of each outcome metric at each sample (S1, S2 and S3) was calculated and used for 

the main analysis reported here. The metrics were: selection error (ES, the mean radial 

error for all positive selections made) number of correct selections (SC), selection time 

(TS, the mean amount of time taken to make a positive selection), and a hybrid measure, 

selection error x selection time (ETS). A speed-accuracy composite metric is commonly 

used to assess surgical motoric skill because it captures the two main task demands: 

namely performing quickly and accurately (Judkins, Oleynikov, & Stergiou, 2008).  

Outliers were identified as those participants who were much more inaccurate than the 

rest of their group when a positive selection was made. First, the Z-score was calculated 

for each sample across all groups for the metric ES at Test 1. The same was done for Test 

2, but this time individually for each group. This was because any systematic differences 

between groups (after Training) could have resulted in the incorrect definition of an 

outlier in one group who may have performed better or worse than the other groups. 

Outliers were identified as those with a Z-score above 2.58 (i.e. a ES value that was larger 

than 99% of the sample’s distribution) and were classified as individuals who failed to 

perform the task at that specific stage in the experiment (possibly due to a momentary 

lapse in concentration, for instance). Using this method, there were three, two and six 

participants who were identified as outliers for S1, S2 and S3, respectively. Their data 

were consequently excluded from the analysis for that particular sample and Test session, 

but were included in the rest of the analyses where they did not exceed the critical Z-score 

value.  
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 Haptic training (HT) condition 

The compliance JND task was identical to the JND task described in Chapter 3. Each 

Training session consisted of 50 trials of the JND task with knowledge of results (an 

indication of whether a correct or incorrect selection was made). Outliers were again 

defined as those with a Z-score of 2.58 or above at each of the Training sessions. One 

participant was removed in this way. 

 Kinematic training (KT) condition 

Haptic feedback was not provided in this task. Participants were required to follow a 

target cursor as accurately as possible for a number of trials at variable speeds by 

controlling the haptic device.  

 Task configuration 

CSI was used to read the position of the device, and the visual stimuli were generated 

using LabVIEW. A screenshot of the visual display is shown in Figure 4.4.  

 

Figure 4.4. Screenshot of the visual stimuli window for the KT task, showing an 

instruction (‘follow target’ or ‘move to start’), sample number (‘1’ or ‘2’), the 

target (red) and device  (blue, representing the position of the tip of the device 

gimbal in the vertical axis) cursors, and an LED which served to highlight the 

start position upon completion of each sample. The length of the vertical slider 

was 20 mm. 

The target cursor moved at various speeds between 10 and 50 mm/s along the vertical 

slider. This range was chosen based on findings from the previous chapter, which showed 
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that these speeds were representative of those that resulted in good performance. Target 

position was computed using a sinusoidal wave, as described by Equation (4.2), Where P 

is the position of the cursor along the vertical plane in mm and f is the frequency in Hz. 

To generate the required movement speed of 10-50  mm/s along the 20 mm slider, 

movement frequency, f, varied between 0.25 and 1.25 Hz. The length of the slider was 

the same as that used in the HT task. 

 𝑃 = 20 cos(𝑓) (4.2) 

 Procedure 

To start the session, participants were required to move to the ‘Start Position’. The target 

cursor then began to move and they were required to control the gimbal to align the device 

cursor with the target cursor as accurately as possible. For each sample there was one 

cycle (up, down, up movement). To maintain consistency with the HT task, two samples 

were presented per trial. The speed of each pair of samples was constant. For the first 

Training session there were 10 practice trials followed by 50 experimental trials. In all 

subsequent Training sessions, only the experimental trials were given. 

 Data capture 

Radial error, the distance between the target and device cursors, was calculated at each 

time step and for each sample. The mean Tracking Error (ET, the mean distance between 

the target and device cursors at each session) was used as a measure of performance. 

There were no outliers in the data (outliers were again defined as those individuals with 

a Z-score of 2.58 or above at each of the Training sessions for the metric ET). 

 Results 

The results can be split into the Test component and the Training component. First, 

performance at Tests 1 and 2 were examined, followed by an analysis of probing 

kinematics. Training performance over the six sessions was then examined to see if there 

were improvements. This was done to demonstrate whether participants were engaged 

with the tasks and actually learning during training. 

 Virtual palpation Test 
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To determine whether there was an effect of Training on Test performance, an analysis 

of performance at Tests 1 (pre-Training) and 2 (post-training) was carried out. Each 

sample (S1 = 12 mm tumour flush with the surface, S2 = 12 mm tumour 3 mm below the 

surface, S3 = 12 mm tumour 6 mm below the surface) was analysed independently to 

control for difficulty. The four performance metrics (SC, ES, TS and ETS) were used to 

objectively assess performance. 

 Palpation performance 

Figure 4.5 shows each outcome metric and Surface, showing group performances at each 

Test session. 
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Figure 4.5. Plots of performance metrics for Tests 1 and 2 (virtual palpation task). 

From top to bottom: Number of Correct Selections (CS), Mean Selection Error 

(ES), Mean Selection Time (TS) and Mean Selection Error × Mean Selection 

Time (ETS), for samples S1 (12 mm tumour, flush with the surface) S2 (12 mm 

tumour, 3 mm below surface) and S3 (12 mm tumour, 6 mm below surface). 

Error bars indicate ± one standard error of the mean. 

To investigate differences in performance between Test 1 and Test 2 (i.e. before and after 

Training), repeated-measures ANOVAs were conducted on each of the kinematic metrics 

(CS, ES, TS and ETS). There was a significant effect of Test for ETS at S1 (S1_ ETS), 

S2_ES, S2_CS, S2_ ETS, S3_ES and S3_CS (all ps <.05). All other effects of Test were 

non-significant. There were no Test×Group interactions. These results suggest that, whilst 



98 

there may have been some improvements in performance from Test 1 to Test 2, there 

were no differences in the rate of this improvement between groups. 

One-way ANOVAs for each metric revealed that there were several unexpected near-

significant differences between groups at the first palpation session, in particular for CS 

and ES at S1. These are visualised in Figure 4.5. At S3, the difference was significant for 

CS (F(2, 19) = 6.474, p = .008, ηP
2 = .432). Further analysis revealed that there were 

significant between-group differences in the mean number of ‘no tumour present’ 

selections made at session 1 (F(2,86) = 11.139, p <.001, ηP
2 =.21). Pairwise Bonferroni 

comparisons revealed a significant difference between the haptic training (HT) group (M 

= 0.074, SD = 0.267) and the control (CT) group (M = 0.633, SD = 0.928) (mean 

difference = -0.599, SE = 0.15, p = .001), and between the kinematic training (KT) group  

(M = 0.000, SD = 0.000) and  CT (mean difference = -.0.633, SE = 0.146, p <.001). 

Another ANOVA revealed a significant between-group difference in number of timeouts 

(F(2,84) = 3.781, p = .027, ηP
2 =.083). Pairwise comparisons revealed a significant 

difference between HT (M = 0.481, SD = 0.849) and CT (M = 0.033, SD = 0.183) (Mean 

difference = 0.448, SE = 0.176, p = .038). These findings indicate the likely presence of 

systematic differences between groups during the first palpation session, whereby 

participants in groups HT and KT were less likely to make a ‘no tumour present’ selection 

than those in group CT. This bias was mirrored in the number of timeouts, i.e. groups HT 

and KT were more likely to timeout than group CT. Effectively, this was due to groups 

HT and KT more often searching the environment during the whole of the available time 

for each trial, whilst group CT were more likely to end trials early by making a ‘no tumour 

present’ selection. 

 Palpation probing strategy 

Plots of palpation velocity (VP) and within-participant variability in probing velocity 

(SDVP) are shown in Figure 4.6. 
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Figure 4.6. Plots of mean Velocity (VP, left panel) and the Standard Deviation of the 

mean Velocity (SDVP, right panel) for the haptic training (HT), kinematic 

training (KT) and control training (CT) groups, at Test 1 and Test 2. Error 

bars indicate the standard error of the mean. 

There was a significant effect of Test on VP (F(1,26) = 6.789, p = .015, ηP
2 = .207), with 

VP increasing from 7.9 mm/s in Test 1 to 10.3 mm/s in Test 2. There was no Time×Group 

interaction (F(2,26) = 1.106, p = .346, ηP
2 = .078). The same pattern was observed for 

SDVP with increased variability from Time 1 to Time 2 (F(1,26) = 17.413, p < .001, ηP
2 

= .401). There was no significant Time×Group interaction (F(2,26) = 1.38, p = .269, ηP
2 

= .096). These results suggest that probing strategy changed from Test 1 to Test 2 (VP 

increased and it became more variable).  

 Haptic Training (HT) group 

A plot of JND at each Training session for the HT group is shown in Figure 4.7. 
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Figure 4.7. Plot of JND as a percentage of the difference between the two compared 

samples for the Haptic training (HT) group at each Training session. Error 

bars indicate the standard error of the mean. 

Repeated-measures analysis of variance (ANOVA) revealed that there was a significant 

effect of Session on JND (F(5,40) = 2.957, p =.023, ηP
2 = .27). Further investigation of 

within-subject contrasts revealed a significant improvement from session 1 (M = 51.52 

%, SD = 36.42 %) to session 4 (M = 22.96 %, SD = 18.67 %), (F(1,8) = 8.154, p = .021, 

ηP
2 = .505) and from session 1 to session 5 (M = 22.08, SD = 13.01), (F(1,8) = 7.635, p 

= .025, ηP
2 = .488). This suggests that subjects had significantly improved from session 

4. The unexpected increase in JND at session 6 could be due to effects of fatigue or other 

unknown phenomena. 

 Kinematic Training (KT) 

A plot of the mean tracking error (ET) for each Training session is shown in Figure 4.8. 
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Figure 4.8. Plot of mean tracking error (Error in mm, ET) at each Training session 

for the kinematic training (KT) group. Error bars indicate the standard error 

of the mean. 

A repeated-measures ANOVA was carried out on all Sessions for the Kinematic Training 

group. Mauchly’s Test of Sphericity indicated that the assumption of sphericity had been 

violated (χ2 (14) = 77.178, p = <.001), so Huynh-Feldt corrected values are reported. 

There was a near-significant effect of Session on performance (F(5,45) = 3.173, p = .096, 

ηP
2 = .261), with a mean error of 1.51 mm in session 1 and 0.97 mm in session 6. Pairwise 

comparisons revealed no significant differences between sessions. These results suggest 

that subjects were not able improve their performance over the training period.  

 Discussion 

The aim of this study was to investigate how the CNS acquires essential compliance 

information about an object during tool-based interactions, and what intervention 

strategies may lead to improvements in our ability to detect small compliance differences. 

A three-dimensional virtual task that is analogous to a real world medical procedure was 

used to objectively test the effectiveness of two different training interventions. The 

Training sessions were designed with the aim of exploiting the potential effect of 

becoming attuned to compliance cues (for the HT task) and the effect of using appropriate 

probing strategies (for the KT task), thereby also indicating the way in which humans 

acquire and use information during execution of this task. 

The HT condition required participants to repeatedly assess compliance differences that 

were close to their JND of this variable. In the previous chapter, this method was shown 

to successfully improve compliance discrimination over time. This effect was attributed 
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to an increased perceptual sensitivity, and not to systematic changes in probing strategy. 

However, findings in Chapter 3 also suggest that probing strategy plays an important role 

in our perception of compliance. With the aim of providing a practice environment that 

guides the subject towards movement patterns that maximise their perception of 

compliance, the KT condition required participants to repeatedly follow a moving cursor 

at a speed range that was representative of those that previously resulted in maximal 

compliance discrimination performance. The CT condition was not expected to promote 

learning and so should have allowed for a between-group comparison of the relative 

contributions of HT and KT towards improving compliance perception.  

Results indicate that the HT group was able to improve during Training, and that all three 

groups were able to improve from Test 1 (pre-Training) to Test 2 (post-Training). Some 

improvement due to practice during Test 1 was expected across all groups. However, 

there was no difference in the rate of this improvement between groups. This nullifies our 

a-priori hypothesis that the HT and KT conditions would result in greater improvements 

than the CT group due to a) haptic sensitisation for HT and b) the use of effective probing 

strategies for KT. An analysis of the probing kinematics for the palpation task revealed 

that probing velocity (VP) increased from Test 1 to Test 2 for all participants in all three 

groups. The within-participant variability also increased, which could simply be 

attributed to faster movement speeds resulting in more variable movements, a well-

documented effect in the motor control literature (Latash, Scholz, & Schöner, 2002). An 

alternative explanation for this effect could be that more experienced subjects used more 

exploratory probing strategies, i.e. whereby more information about the environment 

could be gained through the use of a variable VP. Thus, it seems that subjects were able 

to improve at Test 2 when a larger VP was used. Further, findings from Chapter 3 (that 

probing strategy remains constant with time) are contradicted here, as evidenced by the 

increase in VP for the HT and KT conditions. To examine what factors could give rise to 

this effect, it is useful to consider the differences from the HT and KT tasks to the virtual 

palpation task, which can be considered to be more complex in a number of ways. 

First, the virtual palpation task is three-dimensional rather than one-dimensional, thus 

requiring additional movements in the lateral and longitudinal directions to enable a full 

exploration of the virtual sample. It seems possible that there was an influence of 

movement speed on the vertical probing action from movements in the other axes, i.e. 

that there was a correlation between the speed adopted in the lateral and longitudinal axes 
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to that in the probing direction. Thus, an increase in VP in the vertical axis could be 

attributed to an increase in speed in the other axes. Second, it is possible to experience 

progressive changes in the compliance of the sample when moving from the outside edges 

of an inclusion towards its centre. Once the edge is detected, an effective strategy might 

be to adopt faster movement speeds to more quickly identify the centre of the tumour by 

confirming the direction in which the compliance increases. Such a strategy may become 

refined with practice. Third, the deformation of the sample’s surface in response to 

indentation force could provide rich visual information relating to compliance. 

Hypothetically, the usefulness of such visual cues may vary as a function of indentation 

speed, giving rise to systematic adjustments in probing strategy to optimise the 

information that is available to the CNS. Finally, there is a finite time constraint to make 

a selection. This could result in faster movements due to a trade-off between exploring as 

much of the sample’s surface as possible (to increase the possibility of a positive 

detection) and obtaining reliable information via an appropriate probing strategy. Indeed, 

if our ability to perceive compliance improves with time, an increase in probing speed by 

skilled subjects would seem a useful strategy for obtaining a similar level of information 

at each indentation as unskilled ones. The overall amount of information obtained at each 

trial is then increased through achieving more interactions within the available time. 

These factors lay outside the focus of this study but they should be considered in any 

future experiments that make use of these tasks. 

Similarly to the probing strategy findings, performance increased from Test 1 to Test 2 

for all groups, and there were no between-group differences in improvement rates. This 

initially suggests that none of the training interventions were more effective at improving 

this skill. However, there are issues with the experimental data, including between-group 

differences at Test 1, an effect that seems due to an increased number of ‘no tumour 

present’ selections for the CT group compared to the number of trial timeouts for HT and 

KT.   

Upon reflection, it is possible that the KT task was not adequate for teaching an effective 

movement strategy for this particular task: the absence of haptic feedback did not allow 

for the generation of an internal representation of what movement strategy results in good 

discrimination performance. If this is true, it would be difficult for participants in the KT 

group to relate the probing strategies used during training to the virtual palpation task. 

Future investigations should include a Training condition that combines the HT and KT 
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tasks by providing congruent haptic feedback during training with a range of movement 

speeds. However, another aspect to consider is that of increasing the learning rate of 

appropriate probing strategy, which has obvious advantages in clinical settings (e.g. 

reduced training times). Furthermore, the virtual palpation task is an extremely simplified 

version of a real medical procedure, and whilst it may serve for initial validation of 

training interventions such as this one, care should be taken to systematically verify any 

findings during a real medical procedure before any conclusions can be made on the 

effectiveness of such interventions 

Active behaviour involves sensory, cognitive and motoric mechanisms, all of which are 

coupled within the internal models that allow humans to fine tune their actions (i.e. to 

extract as much information as possible from the environment, for example(Wolpert et 

al., 2011). This learning process is thought to be driven by execution error, whereby error 

(e.g. the difference between a probe’s desired and actual positions) is used to correct 

future movements. Applying forces to the hand to guide probing (or any other skilled 

action) may seem a sensible method of illustrating an effective strategy to the subject. 

However, according to the theory, these ‘error reduction’ forces would act to limit the 

amount of information available to the CNS to make future corrections. This gives rise to 

the following question: can execution error be adjusted to aid motor learning? This topic 

will be investigated in the following chapter.
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INFLUENCE OF SUPERIMPOSED ERROR 

ADJUSTMENT FORCES ON SENSORIMOTOR 

LEARNING 

ABSTRACT This chapter addresses the notion of increasing the rate at which complex 

motor skills are learned. As outlined in Chapter 1, this work is critical for addressing the 

increasing complexity of surgical skills, and the limited training time that is available for 

learning said skills. Motor performance might be enhanced through haptic guidance but 

recent learning theories have led to the counter-intuitive hypothesis that disruption 

benefits motor learning. This chapter presents three experiments that investigate motor 

learning in workspaces with complex novel force fields in the presence of haptic 

assistance and disturbance. Experiment 1 showed that haptic guidance hindered learning. 

Experiment 2 explored generalisation across the workspace with three groups who 

experienced: (1) haptic assistance (error reduction); (2) no guidance; or (3) a constant 

disruptive force (error augmentation). Haptic assistance showed the worst learning whilst 

those exposed to disruptive forces evidenced the most training errors, but steepest training 

curves and best generalised learning. Experiment 3 revealed that a random combination 

of assistive and disruptive forces enhanced learning, but learning was impaired when 

workspace exploration was reduced. Taken together, these results demonstrate that 

humans can: (i) detect and rapidly adapt to a simple externally imposed force; and (ii) 

benefit from the presence of task-irrelevant disturbance due to increased workspace 

exploration.  



106 

 Introduction 

Neonates must determine the complex relationship between perceptual input and motor 

output in order to learn how to move their arms effectively. This process is repeated 

throughout life as humans acquire new skills or recover from injury. Technological 

advances have enabled robotic systems designed to accelerate such motor learning, for 

example in laparoscopic surgical training and stroke rehabilitation. Nevertheless, it is 

unclear how these devices might be optimised for enhanced learning. Engineering 

effective solutions requires an understanding of human motor learning – a process that 

can be conceptualised as involving two broadly interacting but distinct mechanisms; 

model free (MFL) and model-based (MBL) learning. These mechanisms represent 

qualitatively different computational approaches to learning and refining a skill (Sutton 

& Barto, 1998). MFL involves the refinement of movements based on the success or 

failure of prior interactions with the environment; a reinforcement driven trial-and-error 

process (Bush & Mosteller, 1953; Rescorla & Wagner, 1972; Thorndike, 1901). In 

contrast, MBL describes the creation of neural model(s) of task dynamics capable of 

computing optimal strategies in novel environments. These ‘forward models’ predict the 

consequences of actions given the state of the system (Miall & Wolpert, 1996). Whilst 

motor learning studies and theories have largely focused on MBL (Shadmehr & Krakauer, 

2008), these processes appear to work co-operatively in the acquisition and refinement of 

skilled behavior, with MFL being a necessary precursor to MBL (Daw, Niv, & Dayan, 

2005; Dayan, 2009; Fermin, Yoshida, Ito, Yoshimoto, & Doya, 2010; Gläscher, Daw, 

Dayan, & O’Doherty, 2010; V. S. Huang, Haith, Mazzoni, & Krakauer, 2011).  

MFL and MBL both rest upon the ability of the system to identify task relevant error. 

This ability is compromised by the existence of task-irrelevant noise. A simple model of 

MFL shows that motor output on trial n is determined by the difference between the 

internal (Z) and external state (the environment, U). The error on this trial (Yn) is the result 

of this difference plus the inherent noise (E): 

 𝑌𝑛 = (𝑈𝑛 −  𝑍𝑛) +  𝐸𝑛 
(5.1) 
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Motor learning requires the system to change the internal state of subsequent movements 

(Zn+1) in response to the discrepancy between the internal state and the desired movement 

(Un - Zn), where L is the learning rate: 

 𝑍𝑛+1 =  𝑍𝑛 + 𝐿(𝑈𝑛 −  𝑍𝑛) (5.2) 

Combining equations (5.1) and (5.2) gives: 

 𝑍𝑛+1 =  𝑍𝑛 + 𝐿(𝑌𝑛 −  𝐸𝑛) (5.3) 

Equation (5.3) shows that MFL requires task relevant error to be distinguished from noise. 

In this context, noise is an unavoidable and undesirable factor within motor learning. On 

this basis, haptic training devices have often applied assistive forces (Hesse, Schmidt, 

Werner, & Bardeleben, 2003; Krebs et al., 2008; Prasad et al., 2003). Nevertheless, there 

is evidence to suggest that learning can be accelerated through the application of 

disruptive forces (Cesqui, Aliboni, et al., 2008; Emken & Reinkensmeyer, 2005; Huang 

& Shadmehr, 2007; Lee & Choi, 2010; Reinkensmeyer & Patton, 2009; Schmidt & Bjork, 

1992). In the account of MFL described above, it appears counterintuitive to apply a 

disruptive force - as this constitutes additional noise with which the system must contend. 

It is possible that this paradox can be reconciled if disruption benefits motor learning via 

its effect on MBL as predicted by recent theories of motor learning. 

MBL requires the system to extract the invariant rules that govern a range of input–output 

mappings. The difficulty faced by the system relates to the large number of internal 

parameters that connect the sensory input to the motor output (the larger the number of 

parameters, the greater the ‘dimensionality’ of the parameter space). Structural learning 

theory (Braun, Mehring, & Wolpert, 2010) suggests that the motor system reduces the 

dimensionality of the parameter space by predicting the topology of the input–output 

mappings of tasks sharing a similar structure. This allows the system to restrict and 

control a subsection of the whole parameter space through adjustment of ‘meta-

parameters’. Braun et al. (2009) formalised such structural learning within a Bayesian 

framework. In this conceptualisation, a hidden variable (μS) can decrease the 

dimensionality of the parameter space associated with a novel environment. The task 

facing the nervous system is to extract μS so that the joint probability distribution can be 

computed across the workspace. This process requires the system to infer the structure 

between the hidden variable and the directly measurable processes (the observables) via 
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two steps: (i) computing the posterior probability P(S|X) of the structure (S) given the 

data (X), and (ii) computing the posterior probability P(μS|S, X) of the parameter μS 

(given S and X). It can be seen that providing more data (i.e. increasing X samples) will 

improve the posterior probability estimates and thereby potentially accelerate the 

structural learning process. It is proposed that low dimensional force disruption (i.e. 

where a meta-parameter can capture the change in an externally applied force field 

through a relatively simple adjustment) increases data sampling. Notably, structural 

learning predicts rapid compensation to a disturbance of the input–output topology if the 

disruption is at a low dimension of the parameter space. It follows that a low dimensional 

disruption has the potential to improve motor learning. 

In line with this notion, Wu, Miyamoto, Gonzalez Castro, Ölveczky, & Smith (2014) 

demonstrated that the intrinsic movement variability associated with motor commands 

(from Zn to Zn+1 to Zn+2 …) predicts individual rates of motor learning. Relatedly, (van 

Beers, 2009) has shown that the random effects of planning noise accumulate; in contrast 

to task-relevant errors which show close to zero accumulation (explained by effective 

trial-by-trial corrections). On these grounds, it has been argued that intrinsic movement 

variability leads to motor exploration, which sub-serves motor learning and performance 

optimisation. Indeed, the idea that action exploration can drive learning has long been 

mooted in theories of operant behaviour (Sutton & Barto, 1998) and human development 

(Bruner, 1973; E. Gibson, 1988; Thelen, 1989). These findings suggest that providing 

guidance may impair learning through error reduction but raise the intriguing possibility 

that haptic devices could help learning by adding disruption to the training process. These 

ideas were tested in three experiments.  

 Experiment 1: Active versus passive learning 

The aim of experiment 1 was to test the hypothesis that error is necessary for learning. 

Subjects were asked to move their arms to follow a target in a force field inherent within 

a haptic robotic device (i.e. the inherent environment that the operator interacts with when 

controlling the device). One group was provided with no haptic assistance (the Active-

Control group) whereas another group was guided through the requisite movements, with 

little need to deviate from the desired path (Guidance group). A third group, a control, 
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observed the device as it moved autonomously but did not physically interact with it 

(Vision group). 

 Methods 

 Materials 

The haptic assessment toolkit (HAT, described in Chapter 2) was used to build the virtual 

visuohaptic environment and experimental framework used for the task. The 

HapticMASTER was used to deliver forces and record the position and velocity of the 

device’s end-effector at a rate of approximately 1 kHz. The standard experimental setup 

described in Chapter 2 was used. 

 Participants 

Twenty four right handed participants (6 female, aged 20 – 28, M = 24.9, SD = 3.9) were 

recruited and randomly allocated to one of three training groups. Each participant was 

required to attend one session of approximately 45 minutes. All participants were 

Engineering or Psychology postgraduate students at The University of Leeds and were 

not compensated for participation. The research was approved by, and conducted under 

the guidelines established by the School of Psychology Research Ethics Committee at 

The University of Leeds. 

 Experimental design 

The experiment consisted of one session in which Pre-test, Training and Post-test blocks 

were completed. There were three groups: the Active-Control group were required to 

actively move the device end-effector along pre-specified trajectories by following a 

guide circle as accurately as possible. The Guidance group rested their hand on the end-

effector whilst it guided them around the same paths. They were instructed to completely 

relax their arm. The Vision group visually observed the end-effector as it moved around 

the same paths, without touching the end-effector and with both arms resting by their 

sides. A within-groups design was used to analyse the performance of the Active-Control 

group as they progressed through training. A mixed design was used to assess 

performance at baseline (Pre-test), whilst a between-groups design was used to calculate 

improvements from Pre-test to Post-test for all groups. 

 Stimuli 
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Error adjustment forces were implemented using the mass-spring-damper model 

described in equation (5.4). A constant simulated end-effector mass of 3 kg was used for 

all conditions. For the Active-Control condition, stiffness and damping coefficients of 0 

N/m and 1 Ns/m were used to simulate the feeling of moving a free object through a 

viscous fluid (e.g. air) in a null-gravity environment. The damping value was used to 

maintaining system stability. The Guidance and Vision conditions were created using 

stiffness and damping coefficients of 25 kN/m and 110 Ns/m (again, to maintain system 

stability) so that the end-effector would follow the target cursor with negligible deviations 

to the desired trajectory, regardless of any forces applied to the end-effector. Visual 

stimuli consisted of solid black paths on a white background and cursors (circles) to 

indicate the device and target positions of the end-effector. The current position of the 

end-effector was represented by a filled red circle (the ‘device cursor’), while the target 

position was represented by a filled green circle (the ‘target cursor’) which moved along 

the path at a pre-defined speed. During trials when the device moved autonomously i.e. 

those requiring no input from the participant, only the target cursor was displayed because 

the actual and target positions were the same. 

 𝐹 = 𝑚𝑋̈ + 𝑐𝑋̇ + 𝑘𝑋 (5.4) 

The paths used at each stage of the experiment are shown in Figure 5.1. The practice stage 

consisted of two trials (cycles) of simple paths. The paths were generated by a PhD 

student and collaborator on the project, Aaron Fath. The first path, P1, was an equilateral 

triangle. P2 was a square. The length of all sides of P1 and P2 was 0.3 m. Both started in 

the lower left corner. The triangle proceeded in a clockwise direction and the square 

proceeded counter-clockwise, both at a constant speed of 0.3 m/s. The purpose of the 

practice trials was to familiarise participants with the novel interface, but precautions 

were taken to prevent learning or priming from occurring during the practice trials. The 

starting location was chosen to be in the lower left because it was the farthest corner from 

the starting location of the experimental trials. The practice trials were run in opposite 

directions so that participants were not primed to expect a specific direction of motion 

during the experiment. The Pre-test, Training and Post-test paths consisted of sinusoids 

that were transformed such that they oscillated around an invisible guide circle. The start 

location for all experimental trials was at angle θ = 0; they proceeded in a counter-

clockwise direction until arriving back at the start location. Each path changed every 
𝜋

3
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radians. This resulted in each path consisting of six regions, specified by the equation ρ 

= r + A∙sin(νθ), where r was the radius of the guide circle, A was the amplitude of the 

sinusoid, and ν was the sinusoid’s spatial frequency. P3 varied amplitude at each 

landmark, P4 varied spatial frequency, and P5 varied both amplitude and spatial 

frequency.  

 

Figure 5.1. Illustration of the paths used in the experiment from left to right: square 

(P1), triangle (P2), amplitude-variable (P3), frequency-variable (P4), and 

amplitude- and frequency-variable (P5) paths. The 0.15 m scale is with 

reference to the HapticMASTER workspace, not the visual scene. P1 and P2 

were used for practice paths. P5 was used in Pre-test and Post-test. The 

experimental trials sequentially alternated between paths P3 and P4. 

The circle that the sinusoids oscillated around had a radius of 0.130 m for all paths. P3 

held the spatial frequency constant at 18 cycles per polar cycle, but varied amplitude. In 

order, the six regions had amplitudes of 0.005, 0.010, 0.015, 0.020, 0.025, and 0.030 m. 

P4 held the amplitude constant at 0.020 m, but varied spatial frequency. In order, the six 

regions had spatial frequencies of 6, 12, 18, 24, 30, and 36 cycles per polar cycle. P5 

varied amplitude and spatial frequency, using the same ranges of values as the other two 

paths. The frequency/amplitude pairs were matched such that the highest spatial 

frequency was paired with the smallest amplitude, the second highest spatial frequency 

with the second smallest amplitude, and so on. The six frequency/amplitude pairs were, 

in order, 6/0.030, 24/0.015, 12/0.025, 30/0.010, 18/0.020, and 36/0.005. 

During active control, the guide speed was chosen to challenge participants to keep pace 

with it whilst staying on the path. There was considerable inertia (3 kg) to be accounted 

for during changes in direction, thus the speed of the guide was varied as a function of 

curvature in order to emulate realistic movement strategies. Angular speed varied 

between the six sections of each path, but each section had its own constant angular speed. 

The constancy of angular speed over the course of a cycle is what resulted in the guide 

slowing down for the turns. At a crest or trough, the path is perpendicular to the radius 
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and as such, a unit of angle corresponds to less path distance than it does elsewhere on 

the path. The angular speeds for each section were chosen such that all sections of all 

paths had a common mean path speed of 0.145 m/s. The sections of P3 had the following 

constant angular speeds, in order, 0.32π, 0.17π, 0.26π, 0.14π, 0.21π, and 0.12π rad/s. P4’s 

angular speeds were 0.30π, 0.13π, 0.22π, 0.11π, 0.17π, and 0.09π rad/s. P5’s angular 

speeds were 0.26π, 0.17π, 0.19π, 0.19π, 0.17π, and 0.26π rad/s. The differences in the 

angular speeds between paths were the result of differences in path lengths. Paths could 

not be given the same lengths while varying amplitude and frequency unless the radii of 

the paths’ guide circles were changed appropriately. However, maintaining a constant 

radius across paths was deemed a more important constraint than maintaining a constant 

path length, as this may affect the dynamics of the task (i.e. a smaller radius would 

decrease the size of the operating workspace, and have a greater contribution towards the 

spatial curvature differential along the path). The path lengths for Paths 3-5 were 1.59, 

1.96, and 1.45 m, respectively. Whilst movement was evaluated in the up-down and side 

to side planes, it was unconstrained in the forwards-backwards plane.  

 Task and procedure 

Participants read an information sheet describing the experiment and were then given 

specific written instructions about how to complete the task, with an opportunity to ask 

the experimenter questions related to task requirements. All trials were performed with 

the right (dominant) hand. Participants were free to take a break and sit down after the 

completion of any trial, as needed. The Training trials took approximately 30 minutes to 

complete and the entire experiment took approximately 45 minutes. The Pre-test and 

Post-test blocks were identical for all three groups, and consisted of 3 trials of path 3 (P3) 

under active conditions. For all of the groups, the Training trials consisted of two 

trajectories, one for each of the other two paths. The order of presentation of the paths 

was counterbalanced, alternating between P4 and P5 at each trial pair. This allowed the 

examination of participant’s ability to generalise their learning by requiring them to tackle 

simultaneous changes to frequency and amplitude (this was only required with P5), a 

feature that they did not encounter during Training. There were 30 Training trials in total 

(15 of each path). Once the experiment started, the device was initialised and the visual 

environment (see Figure 5.2) was displayed on the monitor. 
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Figure 5.2. Screenshot of the visual environment, showing: i) the visual scene; ii) 

path P5 and target (green) and device (red) cursors; iii) the instructions panel; 

iv) a semaphore display, indicating whether participants should release the 

device (red), be ready to start the next trial by (with exception of the Vision 

condition) holding the device (yellow), or that the trial had begun (green).  

During all trials that required holding the device (that is, all trials except those in the 

Vision Training condition), participants were instructed to ‘hold the device when ready’ 

in preparation for the next trial. Once the device was held, the path was displayed on the 

visual scene. After 1 second, the device moved in position control (along with the 

participant’s hand) from the origin to the start (‘home’) location of the path for that trial. 

The home location was a hollow black circle that fitted around the device cursor. Then, a 

3 second countdown was displayed in the instructions panel. When the countdown ended, 

the green light lit up and the device either became compliant (for all Pre-test and Post-

test blocks and the Active-Control Training condition), or moved autonomously along the 

path (for the Guidance and Vision Training conditions). Participants in the Active-Control 

group were required to align the device cursor with the target cursor as accurately as 

possible. Participants in the Guidance group were instructed to leave their arm ‘slack’ 

while it guided them around the path. Participants in the Vision group were required to 

rest both arms by their sides whilst watching the visual scene to observe the relative 
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movements of the device and target cursors. To minimise fatigue, participants were given 

the option to rest and sit for an unlimited time between trials. The end of the trial was 

registered when both the target and device cursors returned to the ‘home’ location. The 

red light then lit up and participants were instructed to ‘release the device’. Upon releasing 

the device, the yellow light lit up and participants were again instructed to ‘hold the device 

when ready’. This process was repeated until all trials were complete. When all trials 

were complete, an ‘experiment complete’ message was displayed. 

 Data analyses 

The HAT post-processing utility was used to generate the standard kinematic output 

metrics discussed in Chapter 2 from the raw experimental data. For each trial, extreme 

values were categorised as ones that were above 99% of the distribution (i.e. those with 

an absolute Z-score greater than 2.58) were removed for every metric (less than 2% of 

data). A mean average of Pre-test trials was subtracted from the mean average of Post-

test trials to provide a measure of the learning rate (where lower scores indicate greater 

learning). Two participants failed to adequately follow task instructions and data from 

these subjects were also statistical outliers (z-scores > 2.58) and therefore removed before 

inferential statistics were conducted.  

 Results 

To select a kinematic metric or metrics that objectively captured performance data that 

were specific to this task, it was important to consider the level of congruency between 

the objectives of the task and the available kinematic metrics. The instruction given to 

participants was to ‘align the device cursor with the target cursor as accurately as 

possible’. Out of the available metrics (movement time, TM, trajectory error, ET, standard 

deviation of the trajectory error, SDET, path error, EP, and normalised jerk, JN), a measure 

of alignment accuracy between the two cursors is directly given by ET, i.e. the mean radial 

distance between the device and target cursors at each trial (refer to Chapter 2). Thus, ET 

was initially chosen as a suitable metric for objectively assessing performance on this 

task. 

First it was important to determine whether common baseline performance was exhibited 

between groups at Pre-test. A mixed ANOVA was used. Mauchly’s test indicated that the 

assumption of sphericity had been violated, χ2(2) = 23.317, p <.001, and therefore 

Greenhouse-Geisser corrected tests are reported (ε = .658). The results showed a main 
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effect of Time on ET (F(1.414, 28.287) = 5.673, p = .015, ηp
2 = .221), no Time*Group 

interaction (F(2.829, 28.287) = .422, p = .696, ηp
2 = .045), and no between-subject 

differences (F(1, 19) = .724, p = .498, ηp
2 = .071). These results indicate that all groups 

performed at the same level and that they were able to improve during the Pre-test trials. 

One subject in the Active-Control group obtained a Z-score greater than 2.58 and thus 

they were consequently removed from the analysis due to a failure to perform the task.  

A plot of each group’s error reduction in ET from Pre-test to Post-test (the ‘normalised 

ET’) is shown in Figure 5.3. A One-Way ANOVA revealed that there were no significant 

differences between groups (F(2,20) = .565, p = .577, ηp
2 = .053). 

 

Figure 5.3. Plot of improvement in ET from Pre-test to Post-test for all groups. Error 

bars indicate ± one standard error of the mean. 

Further investigation of the data revealed large variations between individuals in 

movement strategies adopted. This suggests that some participants did not execute 

movements as expected: further analysis showed that some lagged the target, whilst 

others led ahead of it. However, participants tended to stay on the path taken by the target 

cursor. This was evidenced by a significantly lower variability in the Path Error (EP) 

metric (the distance between the device cursor and the nearest location along the path). 

Whilst EP does not directly assess performance data that is congruent with the task 

instructions, it is robust to the aforementioned caveats of ET on this task. Thus, EP was 

chosen as a more adequate performance measure. The previously removed outlier (from 

the Active-Control group) was added back into the analysis. One subject in the Guidance 

group obtained a Z-score greater than 2.58 for their EP score and thus they were 

consequently removed from the analysis due to a failure to perform the task. 
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As with the ET metric, a mixed ANOVA was used to assess baseline performance at Pre-

test. Mauchly’s test indicated that the assumption of sphericity had been violated, (χ2(2) 

= 10.157, p = .006), and therefore Greenhouse-Geisser corrected tests are reported (ε = 

.707). The results showed that there was a main effect of Time on EP (F(1.414, 28.287) = 

5.673, p = .015, ηp
2 = .221), a Time*Group interaction (F(2.829, 28.287) = .422, p = .696, 

ηp
2 = .045), and no between-subject differences (F(2,20) = .899, p = .423, ηp

2 = .083), 

indicating that whilst all groups were able to improve during the Pre-test trials, there were 

no between-groups differences in performance. 

Next, the Active-Control group’s Training data were examined. Figure 5.4 shows 

performance in EP obtained by the Active-Control and Guidance groups at each Training 

trial pair (the average of paths 1 and 2). Note that like the Guidance group, the Vision 

group had zero error (the device autonomously followed the target) but is not plotted 

because there was no physical interaction between the participant and the device during 

the task. 

 

Figure 5.4. Absolute EP obtained for the Active-control group at each Training trial 

for trajectories 1 and 2, indicating that the Active-Control group were able to 

gradually improve their performance during Training. The ‘Pre/Post’ values 

indicate the scores obtained for the final pre-test and first post-test sessions. 

Error bars indicate ± one standard error of the mean. 

A repeated-measures ANOVA revealed a significant effect of time for Path 1 (F(14, 98) 

= 4.425, p < .001, ηp
2 = .387) and Path 2 (F(14,98) = 2.289, p = .009, ηp

2 = .246), 
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suggesting that participants were able to improve their performance during the Training 

trials.  

In line with the a-priori hypothesis that error feedback is critical for learning, EP data for 

Pre-test and Post-test were examined. A plot of each group’s error reduction in EP from 

Pre-test to Post-test (the ‘normalised EP’) is shown in Figure 5.5. A one-way ANOVA 

revealed a significant between-groups difference on the normalised EP (F(2,20) = 5.237, 

p = .015, ηp
2 = .344). Pairwise Bonferroni comparisons revealed a significant difference 

between Guidance (M = 0.34, SD = 0.50) and Active-control (M = 1.16, SD = 0.78) (mean 

difference = 0.817, SE = .307, p = .038) and between Vision (M = 0.30, SD = 0.42) and 

Active-control (mean difference = 0.858, SE = .296, p = .023). There was no significant 

difference between Guidance and Vision (mean difference = 0.041, SE = .307, p = .99).   

 

Figure 5.5. Plot of the mean difference between Post-test and Pre-test (normalised 

EP) for each group. Error bars indicate ± one standard error of the mean. 

These findings suggest that the Active-control group improved their performance with 

Training whilst the Guidance and Vision Training interventions had no effect on 

performance. 

 Discussion 

In line with existing literature (Sigrist et al., 2012), completely passive movements do not 

provide error feedback and thus do not allow for the tuning of internal models of motor 

control (Wolpert et al., 2011). The fact that ET captures spatial and temporal performance 

characteristics and that there were no group differences in this metric from pre-test to 

post-test disagrees with previous findings reported in the literature that haptic guidance 

can help to teach the temporal, yet not the spatial, aspects of a task (Lüttgen & Heuer, 
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2012a). It was predicted that to drive learning the motor system must be able to experience 

error and correct it. The results confirmed this hypothesis. Indeed, a comparison of the 

Guidance and Vision groups relative to the Active-control group indicated that moving a 

passive limb around a path is no more effective for learning than simply watching the 

device end-effector autonomously move around the path.  

The notion that error correction aids motor learning has led researchers to consider forces 

that augment execution error as a possible means of increasing the rate of motor learning 

(Cesqui, Macri, Dario, & Micera, 2008; F. Huang et al., 2007; Reinkensmeyer & Patton, 

2009; Sigrist et al., 2012). This is on the premise that such interventions may lead to a 

“richer experience” of task dynamics (F. Huang et al., 2007) and thus a faster internal 

construction of the task’s structure (i.e. the parameter space). Such interventions appear 

to fit well within the framework of increased learning rate via increased parameter space 

exploration using ‘structured noise’ (i.e. an error augmenting force) presented here. 

However, a theoretical account of the mechanisms that underpin parameter space 

exploration, and how this leads to motor skill acquisition, is yet to be established.  

Within the framework outlined above, optimal parameter space exploration is likely to 

lead to a maximum rate of motor learning. One way of increasing parameter space 

exploration could be forcing the learner to experience properties of the task that they 

would not necessarily experience under normal conditions. Conceptually, destabilising 

the environment through the use of error augmentation forces could be one way of 

achieving this. Experiment 2 investigates this concept by testing the effects of 

superimposed error augmentation (‘noise’) forces over a complex visuohaptic task. Based 

on the above and in concert with existing literature on error augmentation (Cesqui, Macri, 

et al., 2008; Reinkensmeyer & Patton, 2009; Sigrist et al., 2012), it is predicted that error 

augmentation will lead to greater workspace exploration (which acts as a proxy to 

parameter space exploration). Based on the model-based (MBL) and model-free (MFL) 

mechanisms discussed previously, error augmentation will largely modulate MBL 

processes, but confer no benefit on MFL. 
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 Experiment 2: Assistance versus disturbance forces 

Experiment 1 showed that error correction is integral to motor learning - a finding 

consistent with existing literature. These data raise the possibility that exploiting the 

system’s innate error corrective process can be a way of increasing the rate of motor skill 

formation.  

Experiment 2 tests the prediction that learning rate can be accelerated through the 

provision of disruptive forces. Training with partially assistive (Assistance group), 

disruptive (Disruption group) or no guidance (Active-Control group) forces was 

examined. All subjects completed movements in an artificial environment with a complex 

force field, designed to produce sufficient novelty to prevent rapid learning via a low 

dimensional change to an existing forward model. The force field was a heterogeneous 

force bias distribution that varied along the device’s workspace in two dimensions (see 

Figure 5.6). The end result was an environment that is not readily amenable to adaptation 

learning. It was conjectured that participants would need to develop a relatively novel 

model over time (via MFL processes) in order to perform the task well.  
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Figure 5.6. Force distribution of the novel force field, also showing the relative 

location of the path: feather plot of the workspace distortion force field for a 

section of the workspace measuring 0.16 x 0.16 m. Arrows indicate the 

direction and proportional magnitude of the force vector at discrete locations 

within the workspace. Relative magnitude is also represented using a colour 

map, where white = no force and dark red = high force.  

The force field was implemented using a sine wave, which acted along the x and y axes 

of the workspace, defining a two-dimensional force vector, Fx,y, as described by equation 

(5.5).  

 𝐹𝑥,𝑦 = 𝐴𝑠𝑖𝑛 (
1

𝑃𝑥

(𝑥) + 𝜃𝑥) + 𝐴𝑠𝑖𝑛 (
1

𝑃𝑦

(𝑦) + 𝜃𝑦) (5.5) 

Amplitude (A) of 1 N, period (P) of 0.1 m, and phase offset (θ) of 0 along both axes (X 

and Y) were the parameters used to implement the force field. 

In the training period, the Assistive and Disruption groups were presented with an 

additional force vector, FN, which acted to pull the device toward (Assistance) or push it 

away from (Disruption) the target position. The latter required participants to generate a 

compensatory force vector acting in the opposite direction to the positional error vector. 

This was the opposite of the Assistance condition.  
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Conceptually, error adjustment forces can be considered ‘noise’ if they are irrelevant to 

the underlying task (in our case, moving through the complex force field). For structural 

learning, it is critical that the CNS is able to dissociate such noise. Humans constantly 

operate with the presence of noise, and there is convincing evidence that humans are able 

to dissociate task-irrelevant noise from the environment (Todorov, 2004). The 

computations needed to solve this rule are relatively low dimensional and it was predicted 

that participants would be able to learn the compensatory force required to offset the bias 

relatively quickly, via MBL mechanisms. 

 Methods 

 Materials 

The haptic assessment toolkit (HAT, described in Chapter 2) was used to build the virtual 

visuohaptic environment and experimental framework used for the task. The 

HapticMASTER was used to deliver forces and record the position and velocity of the 

device’s end-effector at a rate of approximately 1 kHz. The standard experimental setup 

described in Chapter 2 was used. 

 Participants 

Thirty seven participants (11 female, aged: 19 to 61 years, M = 25.1, SD = 8.7) were 

randomly allocated to one of the three groups. All participants reported that they had 

normal or corrected vision and were right-handed. All participants received £15 as 

compensation for taking part in the study. No participants had previous experience of 

using the haptic device. The study was approved by The University of Leeds ethics 

committee and was performed in accordance with BPS ethical guidelines. All participants 

provided their informed consent prior to the start of the study.  

 Experimental design 

The experiment was made up of three session types: Pre-test (always performed on a 

Monday), Training (always performed on a Tuesday, Wednesday and Thursday) and 

Post-test (Friday). Pre-test and Post-test were identical, allowing for the assessment of 

performance before and after training. A mixed design was used to measure any relative 

changes from Pre-test to Post-test, whilst a within-subjects design was used to assess the 

effects of Training over time. 
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Participants were required to attend one session per weekday for two consecutive weeks 

(i.e. they completed the Pre-test-Training-Post-test procedure twice). There were three 

groups: at training, the Assistance group were given error reduction forces that assisted 

them as they followed a moving target (but some active movement was still required). 

The Active-Control group did not receive any intervention forces. This condition used 

the same algorithm as that used in the Active-Control condition in Experiment 1. The 

Disruption group were given forces that acted to augment execution error, by pushing the 

hand away from the target.  

 Stimuli 

Error adjustment forces 

The Active-Control training condition was the same as the Active-Control condition in 

Experiment 1 and was generated using a stiffness, k, of 0 N/m and damping, c, of 1 Ns/m. 

Assistance was implemented using k = 100 N/m and c = 10 Ns/m. This acted to pull the 

device towards the target position for any non-zero error. Disruption was an error 

augmentation force generated using k = -100 N/m and c = 10 Ns/m. This acted to push 

the device away from the target position in the direction of the error (as error increased, 

so did the force magnitude). 

Visual stimuli 

Visual stimuli were set up in a similar way to those described in Experiment 1. The main 

difference was that paths were not displayed on-screen. This was done with the intention 

of increasing the participants’ attention to the target cursor instead of trying to stay on the 

path as accurately as they could. The target cursor was a hollow red circle, and the current 

position cursor was a filled blue circle. A dotted black line was used to indicate the 

magnitude of the error between the current position and target cursors. With the aim of 

highlighting error, a dashed line was used to join the target and device cursors. This 

trajectory was based on 2D aiming tasks that have previously been used in the assessment 

of manual dexterity (Flatters et al., 2014). 
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Figure 5.7. Visual display, showing the target (red) and device (blue) cursors. The 

dashed black line between the two cursors was designed with the aim of 

highlighting execution error. 

An illustration of the paths used in the experiment (P1 and P2) is provided in Figure 5.8. 

 

Figure 5.8. Illustration of the paths used for Pre-test and Post-test trials (left, path 

1, ‘P1’), and Training trials (right, path 2, ‘P2’). The dotted lines indicate that 

the trajectories were not displayed (only the cursors indicated target and 

actual positions within the workspace). The crosses and arrows show the start 

locations and movement directions for each path.  

Each component (straight line) measured 285 mm. A constant movement speed of 100 

mm/s was used. In contrast to Experiment 1 (where movement speed was varied as a 

function of Path curvature), velocity was constant across the whole component 

movement. This was done with the aim of exacerbating the effects of the noise forces (i.e. 

the difference between the target and device cursors needed to be corrected at each change 
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of direction when moving from one component to another), and thus promote exploration 

of the parameter space. 

 Task and procedure 

Participants were required to attend one session per week day for two weeks. Each session 

consisted of a number of ‘blocks’, where each block was a set of ten trials. Pre-test and 

Post-test consisted of three blocks (thirty trials) of Path 1 and had no error adjustment 

forces (i.e. the NG condition was used). Pre-test and Post-test were identical for all 

groups. Each Training session consisted of four blocks (forty trials) of Path 2.   

Participants read an information sheet describing the experiment and were given general 

written instructions about how to complete the task. They were then able to ask the 

researcher any questions relating to the task. More specific instructions were displayed 

on-screen, showing the appearance of the target and device cursors, as well as visually 

indicating the requirements of the task. This was done to give more contextual 

information about the task. All participants performed the task with their dominant (right) 

hand.  

After the on-screen instructions, participants were given an on-screen message to hold 

the end-effector of the device. Upon HAT detecting that the device was held, a message 

then appeared prompting them to move to the start position when ready and the target 

cursor appeared on-screen. After reaching the start position, the target cursor started 

moving immediately along the first component movement for that Path at a constant speed 

of 0.1 m/s. Once at the end of the component movement, the target cursor waited until 

the end of the component was reached by the device cursor before starting the next 

component. This process was repeated for each block of trials. To minimise fatigue, a 

compulsory 30-second rest was given after each block at which point participants were 

given the opportunity to sit down. The rest period could be extended indefinitely if desired 

by the participant. Each session lasted approximately fifteen minutes. The same process 

was repeated until all blocks for that session were complete. 

A summary describing each stage of the experiment is shown in Table 5.1. Day 1 (a 

Monday) was Pre-test, which consisted of three blocks of ten trials of Path 1, under the 

Active-Control condition. Days 2-4 were Training, which consisted of four blocks of ten 

trials of Path 2, under the Assistance, Active-Control, or Disruption error adjustment 
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forces. Post-test was carried out on day 5 and was identical to Pre-test. Days 6-10 were 

identical to days 1-5. 

Table 5.1. Summary of the protocol used for Experiment 2.  

Day Session ID Group 

  ASS ACC DIS 

1,6 Pre-test 3x10xP1,NG 

2,7 Training 1 
4x10xP2, 

ASS 

4x10xP2, 

ACC 

4x10xP2, 

DIS 
3,8 Training 2 

4,9 Training 3 

5,10 Post-test 3x10xP1,NG 

 

 Data capture and analyses 

Mean path error (EP) was calculated for each component movement. Path error is defined 

as the absolute distance between the current position cursor and the closest point on the 

path (see Chapter 2). With the aim of smoothing the kinematic data, for each component, 

EP scores that lied outside of 99% of the sample (i.e. those with a Z-score of 2.58) were 

removed from the analysis. 

 Results 

A mixed ANOVA performed on the three pre-test Blocks revealed no significant effect 

of Time on EP (F(2,62) = .037, p = .963, ηp
2 = .001), no Time*Group interaction (F(4,62) 

= .103, p = .981, ηp
2 = .007), and no significant between-group differences (F(2,31) = 

1.677, p = .203, ηp
2 = .098). These findings indicate that all groups performed at the same 

level at baseline. 

A plot of the normalised EP (EP at Post-test minus EP at Pre-test) for each group is shown 

in Figure 5.9. A one-way ANOVA revealed a significant between-groups difference in 

normalised EP scores (F(2,27) = 6.565 , p = .005 , ηp
2 = .327 ). Pairwise Tukey 

comparisons then revealed a significant difference between Assistance (M = -0.253, SD 

= 0.738) and Disruption (M = -1.515, SD = 0.789) (mean difference = 1. 263, SE = 0.364, 

p = .005) and between Active-Control (M = -0.526, SD = 1.063) and Disruption (mean 

difference = 0.989, SE = 0.396, p = .048), but no difference between Assistance and 

Active-Control (mean difference = 0.273, SE = 0.396, p = .771).  



126 

 

Figure 5.9. The Disruptive training group were able to generalise their learning 

better than those with Assistive and Active-Control. Error bars represent ± 

one standard error of the mean. 

These results indicate that the group that received superimposed disruption forces showed 

the greatest improvement from Pre-test to Post-test after one week, and that assistive 

forces were no more or less effective than no error adjustment forces at all. 

Next, the Training data were examined. A plot of EP at each Training block is shown in 

Figure 5.10, also showing absolute mean performances at each pre- and post-test sessions. 

For the analysis, Training sessions were aggregated into blocks of four (four blocks were 

completed per session) to examine the effects of Training on learning. A Condition (3) x 

Time (6 blocks) ANOVA revealed a significant interaction (F (10, 130) = 4.829, p < .001, 

ηp
2 = .271).  Decomposing the interaction revealed significant effects of block for 

Assistance (F(5,45) = 10.318, p < .001 ηp
2 = .508) and Active-Control (F(5,35) = 13.304, 

p = .004, ηp
2 = .571) and, importantly, the largest effect was found for the Disruption 

condition (F(5,45) = 22.665, p < .001, ηp
2 =.716) indicating a bigger difference in 

performance over time. These data indicate that, whilst all groups were able to improve 

during Training, that the Disruption group improved the most. These analyses were 

validated by inspection of the resulting learning curves, which confirmed faster learning 

rate for the Disruptive condition. This is in line with the prediction that error augmentation 

(noise) forces would quickly be adapted to, via a MBL process.  
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Figure 5.10. Plot of path error (EP) during Training. The rapid initial adaptation 

(from Block 1 to Block 2) observed for the Disruptive group relative to the 

other groups is attributed to learning the Disturbance forces via 

predominantly MBL mechanisms. The vertical dashed line indicates the final 

block of the first week of testing (after which there was a two day break). The 

‘Pre/Post’ values indicate the scores obtained for the final pre-test and first 

post-test sessions.  Error bars represent ± one standard error of the mean. 

The performance decrement after a two day break (from the last session of week 1 to the 

first session of week 2) was examined (see Figure 5.11). There was a significant effect (F 

(2, 27) = 7.84, p = .0021). The break resulted in only marginal differences for the 

Assistance and Active-Control conditions, but the Disruption group performed 

significantly worse relative to both (p’s < .03).  

 

Figure 5.11. Difference in performance error before and after two day break. A 

lower score indicates better retention. Error bars represent ± one standard 

error of the mean. 
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To examine if these data were consistent with our a-priori prediction (that improved 

learning is driven by increased exploration of the parameter space), the amount of 

workspace exploration (as a proxy measure for parameter space exploration) was 

computed through analysis of path length (the total distance travelled in each condition – 

refer to Chapter 2; see Figure 5.12). ANOVA revealed a significant between-groups 

difference (F(2,26) = 16.294, p <.001, ηp
2 = .556). Pairwise Tukey comparisons then 

revealed significant differences between Assistance (M = 18.09, SD = 0.756) and 

Disturbance (M = 20.05, SD = 0.758) (mean difference = 1.959, SE = 0.343, p <.001), 

between Active-Control (M = 19.00, SD = 0.859) and Disturbance (mean difference = 

1.042, SE = 0.373, p = .025) and difference between Assistance and Active-Control (mean 

difference = 0.917, SE = 0.365, p = 047). These findings indicate that disruptive forces 

may lead to greater workspace exploration. 

 

Figure 5.12. The average path length during training for each condition provides a 

measure of workspace exploration during the Training trials. Error bars 

represent ± one standard error of the mean. 

 Discussion 

Experiment 2 tested the proposition that error augmentation forces can lead to faster 

motor learning. Subjects were required to learn task parameters in a complex novel force 

field (i.e. one where MBL solutions are constrained) with constant source of disruptive 

noise (error augmentation), no noise and assistive noise (error reduction). In line with our 

hypothesis, the Disruption training group performed better than the Assistance and 

Active-Control groups.  

The two day break between week 1 and week 2 resulted in only marginal decrements for 

the Assistance and Active-Control conditions, but the Disruption group performed 
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significantly worse relative to both. An analysis of path length then revealed a pattern 

consistent with the a-priori hypothesis that there were significantly more movements 

around the workspace in the Disruption group relative to Assistance as well as Active-

Control groups.  

The results suggest that the system is able to distinguish error adjustment (noise) forces 

from the underlying task, likely via MBL mechanisms. An MFL strategy seems to be used 

to learn how to navigate the novel environment in absence of useful prior models. It seems 

also that the CNS is able to distinguish between noise and the underlying task. The data 

suggest that disruptive noise helps to increase the rate of sensorimotor learning, consistent 

with a number of previous studies (Cesqui, Aliboni, et al., 2008; F. Huang et al., 2007; 

Patton et al., 2013). However, it is unclear whether it is the error corrective process that 

directly drives learning. 

One possibility that could explain this effect is that an increased amount of workspace 

exploration elicited by error augmentation forces could lead to more exploration of the 

parameter space and thus, better learning. The Disruption group exhibited the most 

amount of workspace exploration, suggesting that workspace exploration might help to 

increase learning. Whilst this experiment does not directly answer this question, there is 

a case to be made for learning via workspace exploration. Workspace exploration could 

act as a proxy to parameter space exploration, whereby moving within an unstable 

environment exposes the learner to task parameters which would not usually be 

experienced. In other words, increasing the dynamic instability of a task through 

provision of disruptive forces may improve learning by providing the system with more 

information about the underlying structure of the task (i.e. the parameter space). It is 

speculated that this process is likely to occur predominantly via model-free learning. To 

dissociate these two hypotheses and investigate which mechanism might offer the best 

learning rate, another experiment is required where the effect of workspace exploration 

is compared against a training algorithm that controls the amount of disruption given. 
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 Experiment 3: Why does error augmentation facilitate 

sensorimotor learning? 

The results from Experiment 2 show that disruption results in faster learning in a manner 

consistent with the hypothesis generated earlier from theories of structural learning and 

workspace exploration. Nonetheless, an alternative post-hoc account is that participants 

showed enhanced learning because the disruption created more errors and this improved 

the individual’s ability to detect and correct deviations from planned trajectories. This 

account is less satisfactory because: (i) errors needed to be detected and corrected in all 

three conditions; (ii) it is not clear why feedback mechanisms would show better training 

with larger magnitude errors; (iii) it fails to explain how the system distinguishes the task-

relevant errors related to the underlying complex force field from the task-irrelevant low 

dimensional noise (in contrast to an account based on structural learning theory).  

Experiment 3 was constructed to test the idea that it is workspace exploration rather than 

error correction per se that is critical for motor learning. The experiment was also 

designed to pit three different algorithms against each other to determine the optimal 

manner of providing disruptive forces in haptic feedback devices. Exploring the impact 

of randomly applied assistive and disruptive forces was of particular interest as this seems 

to best mirror the intrinsic motor variability that predicts motor learning rates (H. G. Wu 

et al., 2014). The three algorithms were as follows. Adaptive Algorithm (AA) where the 

additional force varied as a function of task performance (i.e. increased disturbance when 

performance improved and increased assistance when performance declined). Adaptive 

Disruptive (AD) where a baseline level of performance was established before 

participants were exposed to ever increasing error augmentation as performance 

improved. Random (RAN) where an unpredictable force was provided (varying between 

high disturbance and high assistance) across trials. 

 Methods 

 Participants 

Thirty-eight participants (24 female, aged 19 to 61 years, M = 25.1, SD = 8.7) were 

recruited and randomly allocated to one of three training groups. One participant 

withdrew voluntarily from the experiment. As with Experiment 1, all participants 

reported that they had normal or corrected vision, and that they were right-handed. All 
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participants received £15 as compensation for taking part in the study. No participants 

had experience of using the haptic device. The study was approved by The University of 

Leeds ethics committee and was performed in accordance with BPS ethical guidelines. 

All participants provided their informed consent prior to the commencement of the study. 

 Experimental design 

Participants were required to attend one session per weekday (i.e. they completed the Pre-

test, Training, Post-test procedure described for Experiment 2 once). The experiment 

consisted of one week of testing (Experiment 2 consisted of two weeks of testing). There 

were three groups: the Random (RAN) group were given error augmentation (‘noise’) 

forces that varied randomly between high assistance and high disturbance from one trial 

to the next. The Adaptive Algorithm (AA) group were given forces that varied as a 

function of performance: if they performed badly in trial n, more assistance was provided 

on trial n+1. Conversely, if they performed well, the next trial contained higher 

disturbance forces. The Adaptive-Disruptive (AD) group was identical to the Adaptive 

condition except that the bias force from one trial to the next could only either stay 

constant or become more disruptive (i.e. it never became more assistive, irrespective of 

performance). 

 Stimuli 

Error adjustment (‘noise’) forces 

Error adjustment forces varied between error reduction, with a maximum stiffness setting 

of 100 N/m (Assistance in Experiment 2), and error augmentation, with a minimum 

stiffness setting of -100 N/m (Disruption in Experiment 2). The noise force was updated 

at each trial. In the RAN condition, a random stiffness value within the operating envelope 

was assigned to each trial. In the AA condition, the force field magnitude changed as a 

function of performance in previous trials. The first trial of all conditions was always set 

to no guidance (0 N/m) in order to obtain a common benchmark measure of performance 

at the start of each session. For the AA group, the magnitude of the bias force at each trial 

was adjusted as a function of performance in previous trials, as described in equation 

(5.6). This algorithm has been used previously as a computational model of motor 

adaptation to predict the force required to minimise adaptation time to a viscous 

environment during treadmill walking tasks (Emken & Reinkensmeyer, 2005). In this 

case, the model was used to adjust the magnitude of a force field in the current trial as a 
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function of performance in previous trials. For the AD group the forces only became more 

disruptive (i.e. drops in performance were ignored). 

 𝑘𝑖+1 =  𝑓. 𝑘𝑖 –  𝑔(𝑥𝑖 − 𝑥𝑑) (5.6) 

The stiffness, k, of the force field for the next trial is a function of the stiffness in the 

current trial, i, multiplied by a ‘forgetting factor’, f, and the difference between the 

demand error and actual error (xd and xn, respectively), multiplied by a gain value, g. The 

values of f and g dictate the relative sensitivity of the algorithm to previous performance 

(captured by ki) and error. The sensitivity of the controller to performances obtained in 

previous trials is controlled by adjusting f: a larger forgetting factor will weight previous 

trials more heavily, whereas a smaller forgetting factor will result in more influence by 

the current trial’s force magnitude. A value of 0.5 was used for both f and g, meaning that 

half of the weight was made of previous performance and the other half was made up of 

the current stiffness setting. This acted to give an equal balance between performance in 

previous trials, and that in the current trial.  

For the purposes of this experiment, it was important to choose an error metric which was 

congruent with the instructions given to participants (i.e. to ‘follow the target cursor as 

closely as possible’). Thus, the ET metric was chosen as the set point variable that defined 

the magnitudes of x and xd at each trial. To define an appropriate set point value of the 

error metric, some indication of the expected performance after adaptation was needed. 

Thus, group average performance data from experiment 2 were used. The average 

trajectory error (ET) for all groups at the end of week 1 Post-test of Training was 9.1 mm. 

Thus, this value was used for the variable xd. This meant that, in the AA condition, for a 

mean ET greater than the set point for the current trial, the controller automatically 

decreased the stiffness coefficient of the error adjustment force to move closer towards 

the assistance realm in the next trial. Conversely, if the error was less than the set point, 

the force field automatically moved towards the Disturbance realm. For the AD condition, 

only the latter was true. 

 Task and procedure 

A summary describing each stage of the experiment is shown in Table 5.2. Day 1 (a 

Monday) was Pre-test, which consisted of three blocks of ten trials of Path 1, under the 

Active-Control condition. Days 2-4 were Training, which consisted of four blocks of ten 
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trials of Path 2, under the AA, AD and RAN error adjustment forces. Post-test was carried 

out on day 5 and was identical to Pre-test. Days 6-10 were identical to days 1-5.  

Table 5.2. Summary of the protocol used for Experiment 2. 

Day Session ID Group 

  AA AD RAN 

1 Pre1 3x10xP1,NG 

2 Tra1 
4x10xP2, 

AA 

4x10xP2, 

AD 

4x10xP2, 

RAN 
3 Tra2 

4 Tra3 

5 Pos1 3x10xP1,NG 

 

 Results 

Figure 5.13 shows a representative plot of the degree of assistance or disruption received 

by participants in all groups, along with a visual illustration of workspace exploration. 

For the AA and AD groups, the magnitude of the error adjustment forces varied as a 

function of trial-by-trial performance, whilst the Random group received a random 

magnitude (within the operating envelope). Importantly, the AD condition exposed the 

participants to more average disruption but less workspace exploration relative to the 

RAN condition. 
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Figure 5.13. Top: The stiffness coefficient K (N/m) demonstrates the degree of 

assistance (positive values) and disruption (negative values) on a movement-

by-movement basis for example subjects in the Adaptive Algorithm (AA), 

Adaptive Disruptive (AD) and Random (RAN) conditions. Bottom: Heat maps 

of movements during all training sessions for a single participant in each 

training group.  

Next, the Training data were examined. Figure 5.14 shows the rate of error reduction for 

the three conditions during training. For statistical analysis, the 12 sessions were parsed 

into three blocks (mean average of four trials per block) and a 3 (Block) x 3 (Condition) 

ANOVA was conducted to examine the effects of performance over time. There was a 

marginally significant Block x Condition interaction (F(4, 68) = 2.687, p = .054, ηp
2 = 

.136). Decomposing the interaction for condition, revealed no difference in performance 

over time for AA (F(2, 28) = .679, p = .515, ηp
2 = .046) - this pattern was expected as task 

difficulty was intrinsically linked to task performance. There was a significant 

improvement in performance for the AA group (F(2, 22) = 5.64, p = .011, ηp
2 = .339) and 

the random group showed the best improvement over time (F (2, 18) = 19.70, p < .001, 

ηp
2 = .686).  
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Figure 5.14. Rate of error reduction across training for all groups. The ‘Pre/Post’ 

values indicate the scores obtained for the final pre-test and first post-test 

sessions. Error bars represent ± one standard error of the mean. 

Figure 5.15 shows the normalised path error (EP) scores obtained for all groups. A one-

way ANOVA revealed that there was a significant difference in error reduction between 

groups (F(2, 34) = 3.87, p = .03, ηp
2 = .186). Posthoc Tukey’s comparisons showed 

learning in the Random condition was significantly better than AD (p = .043) and 

marginally better than AA (p = .054). There was no difference between AA and AD (p = 

.97).  

 

Figure 5.15. Random forces demonstrated better learning, as indexed by the amount 

of error reduction post-test relative to pre-test. Error bars represent ± one 

standard error of the mean. 
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 Discussion 

Experiment 3 investigated whether directly manipulating exposure to the physical 

workspace would result in faster learning, on the assumption that workspace exploration 

acts as a proxy to exploration of the parameter space. The Random group was exposed to 

superimposed noise forces that randomly varied between a continuum of assistance and 

disturbance, whilst the Adaptive Algorithm group received forces that varied as a function 

of their performance (on the same continuum). The Adaptive Disruptive condition was 

different to the AA condition in that the forces only became more disruptive.  

It was found that training participants on Random forces led to better learning than 

algorithms that tweaked the error adjustment forces according to performance. On the 

assumption that workspace exploration is a proxy for parameter space exploration, it 

appears that actively experiencing more of the dynamics of the underlying environment 

(i.e. the one with the ‘novel’ force field) seems to allow the learner to more quickly build 

an internal model to skilfully navigate the novel environment, regardless of the amount 

of disruption provided.  

 General discussion 

The results from the three experiments reported in this chapter support the hypothesis that 

the imposition of a low dimensional force can accelerate motor learning via increased 

physical workspace exploration. In Experiment 1, error reduction impaired MFL and thus 

hindered learning. In Experiment 2, the provision of disruptive forces improved learning. 

In Experiment 3, it was possible to accelerate MBL by increasing exposure to the 

workspace through delivery of a random selection of assistive and disruptive forces. 

These results are predicted by ‘structural learning’ theories that suggest that increased 

sampling can improve the posterior probability estimates required to learn the underlying 

structure of novel tasks (in this case, moving though a complex novel force field). 

These findings are consistent with a number of previous results suggesting that disruptive 

forces might be beneficial for motor learning (Cesqui, Aliboni, et al., 2008; Emken & 

Reinkensmeyer, 2005; Huang & Shadmehr, 2007; Lee & Choi, 2010). The current work 

advances these reports by providing and testing a theoretical account of why disruption 

might accelerate learning. Moreover, evidence that disruption allows for generalisation 

beyond transient movement after-effects, rather than simple performance facilitation, is 
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provided (Reinkensmeyer & Patton, 2009; Reisman, Wityk, Silver, & Bastian, 2007). 

This work thus complements but advances previous observations about the potential 

benefits of disruption. For example, a previous study showed that performance on a 

tracking task could be improved through delivery of haptic disturbance (Lee, 2010). This 

finding could be explained, however, by an enhanced ability to deploy feedback control 

and, indeed, the authors of the study explained their results in terms of a general 

improvement in the ‘attentional’ capabilities of their participants. These mechanisms 

cannot explain the present experimental results where factors related to cognitive function 

(such as task switching; Mushtaq, Bland, & Schaefer, 2011) were controlled across the 

Adaptive Disruptive and Random conditions in Experiment 3. Our results also 

complement work showing that increased intrinsic variability predicts motor learning 

rates (H. G. Wu et al., 2014). The current findings demonstrate that extrinsic variability 

delivered through haptic disturbance can also augment learning (by accelerating the 

acquisition of MBL). Importantly, the system was able to adapt to the imposition of the 

‘low dimensional’ disruptive force so that the net long-term learning outcome was 

beneficial – providing support for the notion that MBL mechanisms can identify and 

rapidly compensate to such perturbations (as predicted by structural learning theories). 

The general notion that increased workspace exploration can lead to faster learning is well 

explained by theories of structural learning and has good support from a range of 

empirical studies (Braun, Mehring, & Wolpert, 2010), including investigations of 

laparoscopic surgical training (White et al. 2014). 

These findings raise the issue of the neural substrates underpinning the learning process. 

Previous work has indicated that the cerebellum is most likely to be responsible for the 

maintenance of models about task parameters (Haruno, Wolpert, & Kawato, 2001; Miall, 

Weir, Wolpert, & Stein, 1993; Paulin, 1993; Wolpert et al., 1998), with damage to this 

structure resulting in impairments in adaptation across a number of tasks (Bastian, 2011; 

Taylor, Klemfuss, & Ivry, 2010). One putative mechanism for MFL processing is likely 

to reside in the motor cortex, with systems responsible for dopaminergic neural firing in 

the primary motor cortex regulating trial and error learning (Hosp, Pekanovic, Rioult-

Pedotti, & Luft, 2011; Huntley, Morrison, Prikhozhan, & Sealfon, 1992; Luft & Schwarz, 

2009; Ziemann, Tergau, Bruns, Baudewig, & Paulus, 1997). Nevertheless, the neural 

processes that implement the computational algorithms exploited by the human nervous 
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system remain to be discovered (Franklin & Wolpert, 2011). Likewise, the underlying 

control mechanisms supporting skilled arm movements are poorly understood.  

As discussed in Chapter 1, there are three simultaneous and interacting control 

mechanisms which could be present during motoric behaviour: feedback, impedance and 

predictive control. Perceived errors that arise during execution of a task are used to make 

adjustments (feedback control). By stiffening the limb, the destabilising (i.e. 

unpredictable) effects of a complex environment can be attenuated using impedance 

control. Lastly, once an inverse model is generated and ‘fine-tuned’, predictive control 

may become more dominant, resulting in a lesser reliance on feedback and impedance 

control and therefore improving accuracy and/or reducing effort. In these experiments it 

is not possible to determine how the individuals have learned to compensate for the 

complex force field, although the learning is likely to involve processes related to all three 

control mechanisms (Franklin & Wolpert, 2011). Speculatively, the high complexity of 

the tasks in experiments 2 and 3 are likely to require feedback and impedance control as 

the main contributors to the overall control strategy during the initial learning stages (i.e. 

before a suitable inverse model has been generated to implement predictive commands).  

It is important to note that this research used neurologically intact adults as participants 

and whilst the force field in Experiments 2 and 3 allowed examining novel skill learning, 

the difficulty was tuned to a level such that all subjects could complete the task (moving 

between the points). It is speculated that disrupting the training of individuals with 

neurological deficits (e.g. cerebral palsy) might not be beneficial, and indeed that 

constraining errors in these populations could speed up the development of ‘low-level 

controllers’ through trial and error. Consistent with this, work with stroke survivors has 

shown that error amplification is useful in rehabilitation for mild impairment but error 

guidance is necessary for patients with more severe damage (Cesqui, Macri, et al., 2008). 

Likewise, haptic guidance has been found to be beneficial for people with relatively low 

skill levels, but error enhancement may be better for highly skilled individuals (Milot et 

al., 2010). The current work builds on these observations and provides a theoretical 

framework and empirical support for the development of optimised robotic training 

devices in sensorimotor skill training and rehabilitation.
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DISCUSSION AND CONCLUSIONS 

 Introduction 

Humans display a remarkable ability to learn from and adapt to their environment. 

Typically developed adults have a substantial repertoire of experiences that can be utilised 

to make very fast predictions about the consequences of their actions when faced with 

subsequent similar challenges (Wolpert et al., 2011). Skilled behaviour is crucial in 

various clinical disciplines such as surgery and dentistry (Hamdorf & Hall, 2000). 

However, time restrictions and other limiting factors have recently created pressures 

within clinical training, and created interest in the types of training interventions that can 

be used to develop the sensorimotor skills of trainees within a short time period (Parsons 

et al., 2011). This has highlighted the need to develop novel training methodologies that 

can help to improve the acquisition rate of clinical sensorimotor skills. 

Virtual reality (VR) training systems are becoming increasingly popular in medical 

training as they lever recent technological advances to produce realistic computer 

generated environments. However, the focus so far has been on developing ‘high-fidelity’ 

simulations of the environment which look convincing but don’t necessarily provide the 

same perceptual cues that guide action in real world learning environments. For example, 

laparoscopic surgery simulators have focused on replicating the look and feel that the 

surgeon encounters but have paid little attention to the sensorimotor system that must 

interact with the simulator. Building on previous research that has investigated the role 
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of haptic feedback in sensorimotor learning (Patton et al., 2013; Reinkensmeyer & Patton, 

2009), this thesis examines novel training paradigms that could act to improve the 

perceptive and active abilities of trainees through paradigms that complement existing 

clinical VR training systems. Chapter 2 presented two novel experimental tools that were 

used to carry out the experiments reported in this thesis (and which can support other 

researchers investigating similar questions). The experimental work was split into two 

general themes: the first theme (covered in chapters 3 and 4) was an investigation of 

compliance discrimination skills within an active-perceptive framework. The second 

theme (chapter 5) investigated the role of active behaviour, error augmentation forces and 

parameter space exploration on motor skill acquisition rate.  

 Review of experimental investigations 

Detailed discussions have been given in each chapter. Below is an outline of the main 

findings. 

Chapter 2 outlined the general tools developed and methodologies used throughout the 

experiments described in the thesis. The compliance simulation interface (CSI) was 

developed specifically to address the need for a method of objectively investigating (and 

training) the human ability to assess the compliance of virtual objects of homogeneous 

and heterogeneous force response distributions across their surface. This allowed for the 

implementation of robust experimental protocols in Chapters 3 and 4 that allowed the 

high-fidelity haptic simulation of compliant objects and the acquisition of kinematic data. 

The haptic assessment toolkit (HAT) provides a development framework which greatly 

simplifies the process of implementing bespoke visuohaptic environments and novel 

force fields. Although the current functionality of HAT is restricted to the specific 

requirements of the experiments discussed in Chapter 5, it is an open architecture which 

allows further development and scalability for increased functionality. Integration with 

other haptic devices and the incorporation of additional visual and haptic stimuli could 

help lever the full potential of HAT as a novel research tool that could prove useful to the 

research community as a common platform for extending this research.  

In Chapter 3 the ability to assess compliance differences (the just noticeable difference, 

JND) with a handheld tool, and the effect of training on this skill, was assessed. This was 

done within the theoretical framework of ‘action-perception’, where perception’s primary 
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goal is to support action and where humans obtain perceptual information through active 

interactions with the world. The perception of compliance did, indeed, seem strongly 

dependent on the probing strategy employed. However, despite significant improvements 

in sensitivity to compliance cues, intensive training did not result in a systematic 

adjustment to probing strategy (over the investigated time frame). A potential application 

of this work could be to use a similar task to provide intensive training to trainee dentists, 

with the aim of increasing their compliance sensitivity thresholds when assessing tooth 

structures. 

The aim of Chapter 4 was to investigate training strategies that can help to improve the 

rate of compliance discrimination skills on a simulated real world task: the detection of 

embedded tumours in human tissue using a handheld probe. Two different training 

conditions were designed to 1) increase sensitivity to compliance (this was the same as 

the JND training condition in the previous chapter), and 2) inform an effective probing 

strategy for compliance discrimination. Upon comparing to a control, the effectiveness of 

each training strategy was unclear due to unexpected between-group differences at 

baseline. In retrospect, the experiment could have been improved by adding a group 

which combined point (1) and (2), thus acting to train both the active and perceptive 

elements of the task: this way, participants would perhaps earn the benefits of both 

increased sensitivity to compliance, and an increase to the quality and quantity of 

information available to the CNS via the use of an effective probing strategy. Whilst the 

results from this study were inconclusive, further work on this topic could prove useful 

for informing novel environments for training the critical skill of compliance 

discrimination in a variety of medical applications. 

Chapter 5 consisted of three experiments investigating the role of active behaviour, error 

augmentation forces, and physical workspace exploration. The broad framework of two 

distinct learning mechanisms was reviewed to inform the research: model-based (MBL) 

and model-free (MFL) learning. MBL is a fast process which adapts internal models into 

a ‘ball-park’ configuration of a new task. MFL is a slower process involving trial and 

error to sample the environment and gradually refine action. In line with the existing 

literature, Experiment 1 showed that the error corrective process is critical for any 

learning to take place. Indeed, being fully guided around a path by a device seems no 

more effective than simply visually observing the device as it autonomously follows the 

path. Experiment 2 used a novel force field to induce task novelty, allowing for an 
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observation of MBL and MFL processes in action when different error adjustment forces 

were superimposed (assistive, no intervention, and disruptive forces). It seems that 

humans are able to quickly (via an MBL process) dissociate noise from an underlying 

task, at which point MFL processes allow for gradual improvements of the underlying 

(novel) task. These findings have potential implications in areas such as laparoscopic 

surgery for increasing the learning rate of trainee laparoscopic surgeons, for example, 

where forces are applied about the virtual tool tip during manipulation of the laparoscopic 

instruments. 

 Overall discussion 

Experienced surgeons and dentists possess a comprehensive set of knowledge-based, 

procedural, and sensorimotor (technical) abilities to accurately and efficiently interact 

with the environments that they operate in. Of these, technical skills often take the longest 

to learn, an issue which has presented significant challenges in modern surgical training. 

This thesis set out to investigate novel, virtual reality and haptics-based training 

methodologies for accelerating the learning rate of sensorimotor skills that are needed in 

clinical settings, with a particular focus on surgery and dentistry. The overall aim was to 

further the current understanding of the underpinning mechanisms involved in 

sensorimotor learning, and of how these can be exploited to maximise sensorimotor skill 

acquisition. 

Sensorimotor skills involve perceptive (sensory) and active (motoric) abilities. These two 

modalities are intimately related during the execution of a task. Some sensorimotor skills 

that are pertinent to surgery and dentistry include using a handheld probe to proficiently 

navigate an environment to indent, manipulate, cut and suture human tissues. One 

example is the assessment of tissue health to detect physiological anomalies such as 

tumours or cavities.  

The findings of this thesis indicate that active behaviour has a significant impact on 

perceptual abilities, whereby an effective behavioural strategy can inform the quality and 

quantity of information available to the CNS (e.g. moving at a suitable speed increases 

the ability to detect compliance differences – see Chapters 3 and 4). Within this dualistic 

framework, information obtained from the environment can also be used to inform future 

actions (i.e. which area of tissue to probe next, and at what speed). Optimising the 
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learner’s exposure to the environmental parameters could be one way of maximising 

learning, whereby the learner is able to sample information to inform an effective control 

strategy. One way of achieving this could be to control exposure to the physical 

workspace (see Chapter 5). 

This work opens up number up a number of exciting new research themes. One obvious 

example could be to further investigate the effectiveness of the techniques discussed here 

on modern virtual reality training systems. Another theme could be the assessment of the 

relative contributions of different control strategies during learning of a novel skill, which 

could further indicate the suitability of different training techniques for different 

applications. These are discussed in more detail below. 

 Future work  

There are a number of limitations in this thesis that could be addressed in future work. 

These are described briefly below. 

1. The tasks employed in Chapters 3 and 4 were relatively time consuming, whereby 

participants were required to attend more than one session per day. This limited 

the sample numbers that were possible for this work. Larger sample numbers 

would help validate the findings reported in Chapter 3, and also clarify the 

findings of Chapter 4. As discussed in the related chapter, an additional group that 

receives both haptic and kinematic training could provide valuable further insight 

into what training interventions are most effective for the provision of compliance 

discrimination skills.  

2. The simulated compliance ranges employed in Chapters 3 and 4 were 

representative of the compliance of human liver. However, further validation is 

needed to qualify the effectiveness of different training methodologies for other 

environments. For instance, compliance discrimination on tooth structures would 

require larger forces and thus a haptic device capable of a larger force output 

would be needed. Fortunately, the compliance simulation interface (CSI, 

described in Chapter 2) is compatible with all PHANTOM devices, which makes 

it easy to use other haptic devices (i.e. with a larger workspace and/or force output, 

for instance) without the need to make any changes to the experimental protocols 

discussed here. 
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3. One limitation of the work discussed in Chapter 5 in Experiments 2 and 3 was that 

power output of participants was not measured as they actively controlled the 

haptic device to, effectively, move under a variety of force conditions which acted 

to disturb their movements. An analysis of arm impedance, for instance, could 

provide a powerful insight into the way that humans attenuate the effects of 

disturbing forces at various stages of training (Burdet et al., 2000).  

4. Further development of the HAT could potentially create a powerful research tool 

which is common across research themes in this research area. This would allow 

researchers to configure, run and analyse experiments involving visuohaptic 

environments and haptic intervention strategies.  

5. All of the studies presented here involved single arm movements. However, most 

clinical procedures involve bimanual actions, which may have implications on the 

control mechanisms adopted by the nervous system (Diedrichsen, 2007, p. -). 

Thus, further work will be needed to assess the best way of using the 

methodologies presented here to train bimanual sensorimotor skills. 

6. A factor that was not investigated in any of the studies presented here is that of 

long-term skill retention (Schaverien, 2010). Whilst this was deemed to be outside 

the scope of this work, in moving forward it will be important to consider the 

impact of training interventions such as the ones discussed here on the retention 

of sensorimotor skills. This is critical for informing the best way of delivering 

haptic enhanced interventions: in the case that long-term skill retention is not 

possible, then ‘warm-up’ training (i.e. training immediately prior to performing a 

procedure) may be more effective (Ajemian, D’Ausilio, Moorman, & Bizzi, 

2010). 

7. The techniques discussed in this thesis were carried out under controlled 

laboratory conditions. Moving forward, it will be critical to further assess the 

effectiveness of such techniques in real applications. 

 Concluding remarks 

The work presented in this thesis supports the notion that haptic feedback delivered 

through robotic systems can benefit sensorimotor skills training. Crucially, the techniques 

discussed here are highly amenable to state-of-the-art clinical VR training technologies 
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(i.e. many modern systems come with integrated visual and haptic feedback). For 

instance, the compliance just noticeable difference (JND) task employed in chapters 3 

and 4 could be implemented on the Simodont (MOOG) dental trainer for trainees to 

undertake intensive training with the aim of increasing their ability to detect decaying 

teeth. The disturbance (error augmentation) algorithms used in Chapter 5 could be 

integrated into existing LapMentor (Simbionix) procedures to help train complex 

movements. However, in order to successfully transfer this research into applied clinical 

settings, it will be necessary to further assess the content validity of the training 

interventions discussed. This should be addressed in future work. 

Whilst the main theme presented in this thesis has been clinical training with an emphasis 

on laparoscopic surgery, the research questions that have been explored are generally 

relevant within a number of applications. This thesis lays the groundwork for a number 

of potential further research themes. Physical rehabilitation, for example, has been widely 

discussed in the literature as one area which could benefit from haptic interventions for 

the re-learning of skills after neurological injury. Another potentially fruitful, but less 

explored area is sports training, where skilful movements are critical for success.  
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COMPUTATIONAL MODELS AND HAPTIC TOOLS FOR NEXT 

GENERATION SURGERY 
 

 James H. Chandler, Matthew J. Dickson, Earle S. Jamieson, Thomas Mueller, Thomas Reid 

ABSTRACT 
Recent years have seen a transfer of surgical procedures from traditional open surgery to Minimally Invasive 

Surgery (MIS), and more recently, to Robot-Assisted Laparoscopic Surgery (RALS). These have shown 

significant benefits over open surgery, but have resulted in the reduction or complete loss of haptic (force and 

touch) feedback. This has decreased the perception of applied force and ability to discriminate tissue features. 

Despite previous attempts to resolve this issue using haptic technology, a clinically available solution has not been 

realised. This study presents an approach for the detection of tumours in human liver through haptic palpation. 

Human liver with embedded tumours has been modelled for Finite Element Analysis and physical experiments. 

The produced results form the basis of a virtual haptic surgical system that allows palpation with integrated visual 

feedback. Results of a human factors study on the effects of size and depth of inclusions have shown statistical 

significance in the mean accuracy and search time using the haptic system (p<0.05). An inverse method that 

allows the characterisation of tumour parameters using input experimental data has also been implemented. The 

system has shown potential for effective tumour detection and sets a framework for future development. 

Keywords — Haptics, Surgical Robotics, Palpation, Biomechanical modelling. 
 

1 INTRODUCTION 

In the UK, more than one in three people will develop 

some form of cancer in their lifetime [1] and one in 

four of all deaths in the UK are caused by cancer [2]. 

Cancer commonly manifests itself as hard abnormal 

masses (tumours) embedded within softer tissue 

(organs) [3].  Tumours emerge as a result of neoplasia 

(irregular tissue growth) and invade and destroy 

surrounding tissue. In the case of malignant tumours, 

early detection and removal decreases the chances of 

the disease spreading, hence increasing the patient’s 

likelihood of survival [4].Currently, the most effective 

method for curing cancer is surgery, however, efforts 

to improve the current techniques are low in relation to 

other cancer-related research activities [5].  

This paper focuses on surgical systems used in 

Minimally Invasive Surgery (MIS) for tumour 

resection (removal of tissue), specifically the lack of 

haptic (force and touch) feedback they provide to 

surgeons during non-open surgery. In an effort to 

improve surgical equipment, work has been carried out 

using various techniques to model a diseased human 

liver and initial findings show promising results. 

1.1. Overview of Current Surgical Techniques 

MIS is currently the preferred method of surgery for 

many procedures. It consists of inserting specialised  

instruments through small incisions, or natural orifices, 

to perform surgery. In relation to open surgery, MIS 

reduces blood loss, tissue trauma, pain experienced by 

the patient, recovery time and the risk of post-

operative infection [6, 7].  

Conventional laparoscopic surgery 

(laparoscopy) is a particular form of MIS whereby the 

surgical tools are inserted into the patient’s abdominal 

cavity through small ports (trocars). This method, 

however, has inherent limitations: the point at which 

the laparoscopic tool is inserted into the abdomen acts 

as a pivot, which requires the surgeon to cope with the 

reversal of hand movements at the instrument tip. This 

results in loss of intuitiveness which consequently 

leads to incorrect movements, fatigue and premature 

tremor for the surgeon [6]. In comparison to open 

surgery, further disadvantages of this approach 

include: reduced depth perception, dexterity and hand-

eye coordination [7]. Tactile and kinaesthetic feedback 

received by the surgeon are reduced or eliminated. 

This is primarily due to the lack of direct contact 

between finger mechanoreceptors and the tissue, and is 

exacerbated with issues such as friction between the 

shaft and the trocar, and force scaling created around 

the tool pivot [6]. 

In order to solve the motion constraint 

problems experienced in MIS, Robot-Assisted 

Laparoscopic Surgery (RALS) systems such as the 

ZEUS and da Vinci (Intuitive Surgical, Sunnyvale, 

CA, USA) have been developed. These master/slave 

devices allow the surgeon to remotely control the 

movement and actions of instrumented tools using a 
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console with flexible graphical user interfaces and, in 

the case of the da Vinci system, three-dimensional 

visualisations. RALS allows the surgeon to perform a 

variety of minimally invasive operations more 

effectively than laparoscopy. This is primarily due to 

increased dexterity, motion scaling and the reduction 

of physiological tremor [8]. A major limitation of 

RALS, however, is the incapability of providing force 

feedback to the surgeon, causing them to rely on visual 

feedback alone [9]. This makes the diagnostic 

technique of palpation (assessment of tissue properties 

through physical manipulation) unachievable and  can 

lead to excessive tissue trauma during manipulations 

[6] [7].  

1.2. Potential Benefits of Palpation in MIS 

Vision alone is not enough for the effective detection 

of tumours [10]. In contrast to using palpation, as 

practiced in open surgery, surgeons are forced to 

estimate the location of tumours by comparing pre-

operative imaging scans to the observable operative 

region [11]. Errors in such estimations can result in 

involved resections (edge of extraction containing 

tumour tissue), putting the patient at risk of increased 

local tumour recurrence [12]. More accurate definition 

of the tumour position using palpation during MIS 

could potentially aid the surgeon in defining the 

location of embedded tumours more accurately. In 

order to achieve effective palpation during MIS, force 

feedback must be achieved to translate measured 

reaction forces through to the surgeon’s kinaesthetic 

senses. This would additionally allow the surgeon to 

perceive the tension or hardness of tissue and be able 

to measure the variation in their properties, all of 

which are possible through the sense of touch.  

Coupling the qualities of bi-directional human 

haptic perception with a next generation surgical 

device could potentially increase the ability for the 

surgeon to make improved operative assessments 

through remote palpation. For assessing the feasibility 

of such a system, the human liver is an appropriate 

case study as the literature contains relevant 

information, such as Young’s Modulii [13], for both 

the liver and the tumours it may contain [14]. 

Additionally, its relatively large size and regular shape 

are beneficial for modelling its structure [15].  

1.3. Overview of Haptics 

The term haptic is used to describe interactions 

relating to or based on the sense of touch. The haptic 

sensory system employs cutaneous and kinaesthetic 

receptors to interact with objects during active 

(dynamic) procedures. Haptic feedback has been used 

in virtual environments for over five decades, starting 

with flight simulators and master-slave teleoperated 

robotic devices [16]. Since then, the range and quality 

of haptic applications has improved tremendously 

within both kinaesthetic and tactile feedback. A range 

of commercial devices have been developed, hence 

increasing the accessibility of haptics to industrial and 

research developers [17]. With the aim of exploiting 

the benefits of haptics in other industries, the surgical 

field has seen the development of applications for 

training and teleoperation becoming more frequent, 

and is currently an area of active research.  

1.3.1. Current State of Haptics in Surgery 

To date, haptic technologies have been implemented 

within many virtual environments specifically aimed at 

surgical training applications [18-20]. In efforts to 

expand the benefits of haptics into real surgery, 

extensive research has been carried out with the aim to 

augment surgeons’ abilities in the operating theatre  

[21]. Due to the need for a master/slave device for the 

implementation of haptics, however, it is only possible 

to integrate haptic feedback into RALS. Currently, the 

only commercial surgical device with integrated 

haptics is the neuroArm (Calgary University, Canada), 

in which various systems have been integrated to 

recreate the sight, audio and feel of brain surgery. 

NeuroArm has proven to be a less invasive, more 

accurate method than  previous procedures, partly due 

to the employment of haptics [22]. Although this 

system is only applicable to neurosurgery, it shows 

potential for the commercialisation of haptics in the 

operating theatre. 

1.3.2. System Requirements for Palpation in MIS 

Mahvash et al  [23] found, during a palpation exercise 

on a physical tissue model, that using direct force 

feedback resulted in the highest percentage of correct 

inclusion locations by their test participants over other 

feedback methods including: Graphical force 

feedback, both direct and graphical force feedback, 

and no force feedback at all. Furthermore, the use of 

virtual haptic interfaces in combination with visual 

feedback has shown significant advantages within 

research and surgical training environments [19] [24]. 

Jungsik et al. [21] present a framework for a 

non-invasive, real-time haptic palpation system (Fig. 

1). The surface force response of a physical tissue 

model was measured through telemanipulation using a 
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slave manipulator and force sensor, and transmitted to 

the user via a haptic device. The study does not, 

however, justify the characteristics of the physical 

model as representative mechanical properties of 

biological tissue. Furthermore, it does not assess 

human perceptibility of measured forces and the 

effects of varying tissue and inclusion parameters. 

 
Fig. 1.  Schematic of real-time haptic palpation system [21] 

 Previous studies [19] [25] have shown that 

size, depth and dissimilarity in stiffness between 

healthy and diseased tissues are factors that affect the 

ability to detect tumours during palpation. This 

indicates that these are important considerations for 

the validation of a haptic system.  

This paper discusses the application of Finite 

Element Analysis (FEA) and experimental data in the 

development and validation of a novel haptic 

simulation tool for the detection of tumours in artificial 

human liver through virtual palpation. The results of 

human trials for the assessment of detection rates of 

embedded tumours with different parameters are also 

discussed. 

 

2 MODELLING & EXPERIMENTATION  

In order to allow the user to “feel” the representative 

stiffness of a human liver with an embedded tumour, 

representative Response Force Surfaces (RFS) were 

imported into a bespoke haptic system. These were 

generated using an FEA model and compared with 

results from physical experiments. A human factors 

study enabled both quantitative and qualitative 

assessment of human performance for the detection of 

tumours. An inverse method allows for the 

determination of tissue and tumour parameters with 

given input data from physical or computational 

models. 

2.1. Research Overview 

A set of parameters common to all work areas of the 

project were produced. This allowed the exchange of 

data between the different modelling methods, as 

illustrated in Fig. 2. 

 
Fig. 2.  Overview of modelling functions: (1) FEA data for 

physical modelling parameters estimation; (2) Physical modelling 
data for inverse methods; (3) Use of FEA data for implementation 
of haptic feedback; (4) Virtual haptic system presented to user.  

The mean length of the male human liver is 

105 mm [15], and liver tumour sizes range from a few 

millimetres up to 20 cm [19]. Furthermore, a study 

[25] found notable differences in human and force 

sensor abilities to detect inclusions of 6.5, 9.5 and 12.5 

mm diameter. Based on information from the literature 

and available resources, the common parameters 

across the FEA, physical and haptic models were 

defined as:  

• Liver size – 100 x 100 x 25 mm 

• Inclusion sizes – 6, 9 and 12 mm diameter  

• Embedded inclusion depth – One inclusion flush 

with top surface, another flush with bottom surface, 

and three evenly spaced in between. 

• Indenter – Cylindrical, with a 10mm diameter semi-

spherical contacting end. 

• Indentation depths - 5, 10 and 15 mm into the 

tissue, measured from the surface.  

 

The RFSs generated using FEA and imported 

into the haptic system used Young’s Moduli of 1 and 

75 kPa for the liver and tumour components, 

respectively. These are representative properties of 

real human tissue. The RFSs generated through 

experimental methods, however, were obtained using 

silicone models and steel ball bearings. The Young’s 

Moduli of these are approximately 6.5 kPa and 200 

GPa, respectively. The parameters of the FEA model 

were adjusted to match the physical experiments to 

allow a direct comparison, and hence assess the 

validity of the computational and physical results. 

 A common testing protocol has been adopted 

for all testing methods to define the size and depth of 

inclusions within the tissue. Table 1 shows the testing 

protocol for each test permutation, ��� (where S and D 

1.

User

Haptic ModelPhysical Model

F.E.A. Model

Liver  with 

Tumour

2.

3.

4.
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are the inclusion size and depth indices, respectively), 

and indicates which experiments were used in each 

method. 

Table 1.  Test protocol. All tests were run in F.E.A., black dots 
indicate tests run in physical experiments, red dots indicate tests 
run in haptic models 
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2.2. Physical Testing  

Models of liver with embedded inclusions were 

created; an automated testing system was developed to 

measure their RFSs using a sensory probe.  

2.2.1. Physical Models 

A physical model of a section of human liver was 

created using a 2-part (A and B) silicone formula 

(Platsil Gel 10). A ratio of 1:1:3 of A and B 

components and Deadener (a stiffness reduction 

additive) respectively, was used in the mixing process. 

This produced a physical tissue model with a measured 

Young’s Modulus of approximately 6.5kPa; which is 

in the upper stiffness region of a healthy liver [13]. 

Steel ball bearings (Young’s Modulus ≈ 200 GPa) 

were used to represent embedded tumours. Although 

these are much stiffer than real tumours, they were 

chosen as a proof-of-concept method for assessing 

sensing capabilities. The inclusion stiffness is seven 

orders of magnitude greater than the silicone, and 

hence a large force response difference was expected 

between them. Two inclusions (each at a different 

depth) were integrated into each model to decrease 

testing time. Data from an FEA model was used to 

determine the minimum required separation between 

the inclusions to avoid influence between them and 

hence treat them as decoupled entities. 

2.2.2. Physical Testing System 

During palpation, forces do not usually exceed 5N 

[26]. A Force Sensing Resistor (FSR) (FlexiForce 

A201), capable of measuring this force range, was 

chosen for measuring RFSs of the physical tissue 

models. An amplifier circuit is used to produce a 

voltage proportional to the sensor’s change in 

resistance under varied load. The sensor was 

incorporated into a mechanical housing to form a 

sensory probe for unidirectional indentation normal to 

the tissue surface. Sensitivity of low forces was 

increased by compressively pre-loading the sensor, 

and hence bypassing an inherent low response region. 

The sensory probe was calibrated by applying known, 

incremental loads through its full sensing range and 

recording the output voltage at each load increment. A 

fifth-order polynomial fit was implemented to 

characterise its non-linear force-voltage relationship, 

enabling the measurement of forces in Newtons. The 

effects of friction between the indenter and its 

enclosure have been neglected. 

A testing system was developed to enable the 

measurement of RFSs of physical tissue models using 

the sensory probe. It consists of three linear actuators 

with position feedback, mounted in the x, y and z axes. 

This allows automated tri-axial movement of the 

sensory probe relative to the physical tissue model. 

Control of the actuator movements is made possible 

using data acquisition hardware (compact DAQ, NI) 

and software (LabVIEW, NI). Response force 

measurements were taken and logged at pre-defined 

indentation depths and positions at a specified in-plane 

resolution. Each test was repeated to observe the 

reproducibility of the RFS.  Fig. 3 shows the system 

and components.  

 
Fig. 3.  Physical testing system: (a) physical tissue model, (b) 

sensory probe with integrated FSR and (c) linear actuators. 

To quantitatively determine if the embedded 

inclusions were detected using the physical testing 

system, statistical analysis was conducted. For each 

RFS the mean and standard deviation (σ) were 

calculated and used to determine a Gaussian 

probability density distribution. Response forces were 

considered highly likely (p < 0.03) or almost certainly 

(p < 6x10
-7

) caused by the presence of an inclusion if 

(A)

(C)

(B)

Sensor

Indenter

Housing
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they were between 3σ and 5σ, or greater than 5σ, 

respectively, from the corresponding RFS mean. 

2.3. Finite Element Analysis 

FEA was employed to model samples of liver with 

embedded inclusions to enable the prediction of their 

behaviour under various loading regimes. The data 

obtained was used to predict RFSs and had its main 

application in prescribing the haptic force response.  

2.3.1. Finite Element Analysis Tissue Model 

The model representing the liver sample was created 

using a FEA software package (COMSOL 

Multiphysics 3.5). The inclusion is defined as a 

function of position within the domain’s material 

properties. Respective Young’s Moduli are applied for 

the liver and inclusion regions. To mimic palpation, a 

surface deformation in the shape of the generic 

spherical probe geometry was applied, acting in one 

discrete location. The integration of the deformed 

surface yields the force required to prescribe the 

surface deformation. 

The FEA model computes one instance only. 

In order to iterate the computation of the response 

force, the model was exported into a programming 

environment (MATLAB, The MathWorks). This 

allows the generation of two- and three-dimensional 

response force profiles that depict the variation of 

response force for a range of positions of variable 

resolution. Following the establishment of mesh 

independence for the model, response force profiles 

were determined for each scenario laid out in the test 

series. 

2.3.2. Inverse Method 

The inverse method enables the determination of 

variables in the model that had previously been pre-

defined inputs. The method was tested by determining 

the in-plane surface coordinates of the inclusions. For 

this, results from the physical testing system and an 

arithmetic function were used as input data. The 

arithmetic function replaced the FEA model to reduce 

computational expense in the process of establishing 

proof of concept.  

A Root Mean Square Error (RMSE) between 

the two datasets evaluates their agreement. The inverse 

method minimises for this error by varying the X and 

Y position of the inclusion in the computational 

dataset. This is done using the fmincon function from 

MATLAB’s optimisation toolbox. The solution that 

the function converges to represents the suspected 

location of the inclusion in the experimental data set. 

The accuracy of the method is assessed by measuring 

the radial error.  

2.4. Haptic System 

A custom Dynamic Link Library (DLL) has been 

developed to enable communication between a 6 

degree-of-freedom haptic device (PHANToM Omni, 

SensAble Technologies) and a bespoke User Interface 

(UI) developed in a graphical development 

environment (LabVIEW, NI). This was implemented 

using a 3 GHz single core Pentium processor. The 

DLL enables data transfer between the UI and the 

OpenHaptics Haptic Device Application Programming 

Interface (HDAPI), allowing low-level control over 

the device. The UI applies three-dimensional (3D) 

position and orientation data to a virtual end-effector 

within a simulated visual surgical scene and allows for 

high-level control of the haptic system. A schematic of 

the full system is shown in Fig. 4.  

  
Fig. 4.  Overview of haptic system illustrating data flow and 

loop rates 

The parallel architecture enables real-time, high 

fidelity force rendering and visualisations, whilst 

providing a flexibile platform with potential of future 

scalability with other SensAble haptic devices. 

In order to implement high-fidelity force 

rendering and effective visualisations, update rates of 

approximately 1 kHz [16] and 30 Hz  [17], 

respectively, are recommended. Whilst the visual 

update rate is heavily dependent on the complexity of 

the visual scene, the HDAPI enables consistent force 

rendering at 1 kHz. 

2.4.1. Real-time Force Rendering  

Discrete FEA RFS data is approximated using a 

Gaussian function (described in Equation 1) and 

implemented in the haptic system.  

 

HAPTIC INTERFACE

OpenHaptics

API 
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Where FG is the output force (N), A is the peak force (N) relative to 
the baseline, B, σ is the function width variable and xr is the radial 
distance to the inclusion centre (m). 

For any input RFS dataset, the σ value of the 

Gaussian function is varied until the overall RMSE is 

minimal. Fig. 5 shows a representative Gaussian fit to 

real FE data, where edge effects have been omitted. 

 
Fig. 5.  Gaussian approximation to FEA force data for T33with 

10 mm indentations. RMSE = 0.0036 N 

This approximation represents an inclusion 

within an infinite domain of healthy tissue. The 

variables for the Gaussian function are imported into 

the haptic interface and a force is computed as a 

function of position at a frequency of 1 kHz. 

 The FEA data shows that the force-indentation 

relationship for indentations from 5 to 20 mm is 

almost linear and hence a linear assumption has been 

made by implementing a spring stiffness model 

according to Hooke’s Law, F=kx. Upon collision of 

the virtual tool with a virtual object, forces are 

generated as a function of indentation depth. 

In order to increase the discrimination between 

inclusions and soft tissue within the kinematic 

constraints of the haptic device, response forces have 

been augmented by a factor of 5. This increases the 

magnitude of the perceived forces without adjusting 

the peak to baseline stiffness ratio. 

2.4.2. Visualisation    

A graphical display has been developed and integrated 

into the UI to provide the user with a simulation of a 

representative visual scene of MIS procedures. 

Following insertion into the virtual abdomen, the user 

is presented with a surgical probe and a deformable 

liver surface. Forward kinematic analysis of the 

Phantom Omni was undertaken to define the available 

workspace and validate the position and orientation 

data obtained from the HDAPI. A variable Gaussian 

function is used to insert a deformation profile into the 

liver surface as a function of the 3D position of the 

indenter. The function parameters have been adjusted 

to match the deformations predicted using the FEA 

model. Fig. 6 shows the complete haptic system during 

operation. 

 

 
Fig. 6.  Complete haptic system during operation showin the 

PHANToM Omni haptic device and the 3D graphics  

2.5. Human Factors Study 

To evaluate the current haptic system, a human factors 

study was conducted using 20 participants with no 

surgical training and little or no previous experience 

with virtual simulations. The aim of the study was to 

(1) assess the user’s ability to discriminate between 

healthy tissue and inclusions, (2) to evaluate the 

effects of tumour size and depth on required search 

time and the accuracy of location, and (3) test the 

haptic system under operational conditions.  

 A test group of 20 participants (16 males and 4 

females) with a mean age ± SD of 22.7 ± 2.7 years 

took part in the study. Approval for the trials was 

gained from the Research Ethics Committee at the 

University of Leeds. Participants were given a full 

introduction to the research area and asked to give 

qualitative feedback regarding the haptic system, in 

addition to the quantitative measurements made. 

2.5.1. Testing Protocol  

Each participant was presented with a total of 14 

virtual surfaces; these contained the FEA test data for 

the three inclusion sizes (6, 9 & 12 mm), each at two 

depth levels (surface and mid-depth) and the control 

surface (no inclusion). Each of these was presented 

twice throughout the trial, with the order and inclusion 

position randomised independently for each 

participant. For each surface, a 3 minute time limit was 

allocated as appropriate palpating time based on 
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feedback from surgeons. Users were tasked with 

palpating the surface and deciding whether one or zero 

inclusions were present. For a positive selection, the 

user was required to mark the location of the estimated 

centre of the inclusion; the radial error between 

selected and actual tumour position was taken as one 

variable for assessment. Negative selections and timed 

out rounds were recorded. The user was asked to give 

their level of confidence for each of their selections. 

Two-way Analysis of variance (ANOVA) was used to 

assess the significance of differences in the mean 

values of radial error and search time for the factors 

tested (tumour size and depth). 

 

3 RESULTS 

3.1. Experimental Validation 

Results from the physical tissue models were obtained 

using the physical testing system, and FEA results 

were obtained from the computational model.  

3.1.1. Physical Experiments 

The sensory probe indented the physical tissue models 

with an in-plane resolution of 5mm, producing a 19 x 

19 array of force measurements for each one. RFSs 

were generated for indentation depths of 5, 10 and 

15mm. Fig. 7 shows a physical tissue model with its 

corresponding RFS at 10 mm indentations. 

 
Fig. 7.  (a) Physical tissue model and (b) RFS for T31/T33 

(marked) obtained using physical testing system. Higher force 
responses are observed at the tumour positions. 

The statistical method used to determine the 

likelihood of inclusions within the T31 physical tissue 

model for 10mm indentations is shown graphically 

within Fig. 8. The histogram illustrates the range of 

response force measurements with the statistically 

significant response forces indicated. For the tested 

physical models (Table 1) RFSs at all indentation 

depths, significant response forces were found in: T31, 

T21, T11, T33 (5mm) and T31, T21, T11, T33, T23, 

T35 (10 and 15 mm). 

 
Fig. 8.  Gaussian probability density distribution and histogram 

for T31 RFS data for 10mm indentations, where (a) indicates 
measured values between 3 and 5σ from the mean, and (b) 
indicates measured values greater than 5σ. These show 
measurements of high statistical significance (p < 0.03 and p < 
6x10-7, respectively). 

3.1.2. Comparison of Physical and FEA results 

A visual comparison of RFSs from FEA and physical 

experimentation is shown in Fig. 9. Inclusions that are 

large or located near the sample surface are visually 

identifiable, whereas inclusions that are small or near 

the bottom of the sample yield no significant response 

force. Although the obtained force values vary 

between the methods, a clear correlation can be 

observed. 

 
Fig. 9.  (a) Experimental vs. (b) FEA data force intensity maps 

showing close agreement 

3.2. Inverse Method (IM) 

The performance of the inverse method was tested 

using the same data sets as for the human trials. The 

results obtained are shown in Table 2 and graphically 

in Fig. 11. 
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Table 2.  Inverse Method radial error for different test series, 
where ‘*’ indicates failure to identify inclusion location 

Test Series T31 T21 T11* T33 T23* T13* 

Radial error [mm] 7.8 16.3 22.7 11.2 32.4 33.0 
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The results show that large inclusions and 

inclusions near the surface can be identified more 

accurately. Deviations from these conditions yield 

greater errors. The IM failed to identify the locations 

of T11, T23 and T13 and inherently identified their 

suspected locations as lying on the domain boundary. 

3.3. Human Factors Study 

Data collected as part of the human factors study are 

presented in Fig. 10. The selected positions for each 

trial are shown along with indication of ‘timed out’ 

and ‘no tumour’ selections. Participants were given 

randomised tumour positions, and hence the selected 

positions have been centralised to allow direct visual 

comparison.  

 
Fig. 10.  Visual representation of human studies results, 

showing an increase in error and “timed out” and “no tumour” 
selections proportional to increase in inclusion size and/or depth. 

Statistical analysis for the measured variables 

of radial error and trial time of each selection is 

described below. The mean and standard error of the 

results for the radial error are shown in Fig. 11. The 

results obtained from the inverse method assessment 

(Table 2) of the physical tissue models are 

superimposed. It should be noted, however, that these 

are not directly comparable to the human factors study 

results as they were obtained using different models. 

They have been included for the sole purpose of 

illustrating similar trends across the different 

techniques. 

 
Fig. 11.  Mean error and standard error of results, showing the 

effects of varying inclusion size and depth. Sample size is shown 
in brackets. The results from the inverse method have been 
superimposed to illustrate similar trends in detection.  

Radial Error - The recorded radial errors were 

assessed only when ‘tumour present’ selections were 

made leading to disproportionate sample sizes. As 

such the standard error has been plotted alongside the 

mean for each of the trials, as shown in Fig. 11. The 

mean radial errors for the trials ranged from 7 mm to 

55 mm. Variation in the mean radial error due to the 

size of the tumour present was found to be statistically 

significant (p = 0.0001). Also, the effect of tumour 

depth showed a significant effect on the mean radial 

error (p < 0.00005) with no significance shown for 

interaction of size and depth (p = 0.7228). 

Trial Time - Time taken for each round was 

recorded. Average trial times ranged from 67 s up to 

149 s, where an upper limit of 180 s resulted in a 

‘timed out’ result. Statistical analysis carried out on 

the data (two-way ANOVA) used the data from every 

trial, giving an equal sample size of n = 40. The factors 

of tumour size and tumour depth both showed 

significant effect on the mean search time (p < 

0.00005). Additionally, the interaction of size and 

depth on the mean time taken to make a decision for 

each trial was found to also be significant (p=0.0028). 

Each of the factors is therefore shown to be dependent 

on the specific value (level) of the other factor. 

 

4 DISCUSSION  

Physical testing and FEA – In the majority of the 10 

mm indentation tests, it was possible to confidently 

identify the inclusions both qualitatively through 

visual inspection, and quantitatively through statistical 

assessment. At a 5mm indentation, inclusions located 

deep within the model could not be detected. 
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Additionally, at a 15mm indentation, inclusions 

located at the surface of the model were dislodged by 

the indenter during palpation and hence were not 

easily identified under visual inspection of the RFS, 

although statistical analysis showed a positive 

detection . Results for indentations of 10 mm were 

comparative to those obtained using the FEA model 

(Fig. 9). This indicates confidence within the 

modelling processes used, although larger 

discrepancies were shown at different depths. These 

have been accredited to some of the limitations of the 

testing environment such as friction between the 

indenter and probe housing and the sensor’s poor low 

range sensitivity. Furthermore, issues of friction, 

calibration error within the linear actuators as well as 

limitations of the motor controllers restrict the abilities 

of the control system. Assuming linear structures and 

neglecting effects of friction in the FEA model may 

have further contributed to the discrepancies. It should 

be noted that the palpation depths used have not been 

verified for use within clinical practice, due to the 

absence of relevant literature. This issue would require 

clarification prior to commissioning of a complete 

system.  

Inverse method - The IM achieved the 

identification of inclusions in clearly defined datasets 

i.e. smooth baselines and large peaks in response 

force. The error in detection increases with increasing 

implantation depth and decreasing inclusion size; a 

trend also observed in the human trials. The sensor’s 

poor low range sensitivity directly affects how well 

response force peaks distinguish against baselines and 

subsequently the IM’s ability to detect inclusions. 

Improved sensing hardware coupled with improved 

algorithms would improve the IM’s performance and 

subsequently pose a potentially powerful tool in aiding 

medical staff to identify inclusions in organs during 

MIS or teleoperated diagnostics. 

Haptic System – The interface allows high-

fidelity haptic rendering with robust performance, and 

enables variation to the stiffness properties of the liver 

and tumour components. The system is limited due to 

the quality of the haptic device, including low force 

output, unwanted mechanical forces generated by joint 

movements and overheating after long operating 

periods. Improved graphics would be achieved using a 

higher specification PC with a dual core processor. 

Human Trials - It is clear to see that the 

inclusions close to the surface are far easier to detect 

than those deeper into the tissue. In addition, the data 

presented in Fig. 10 and Fig. 11, along with 

subsequent statistical analysis, indicate that the 

positional accuracy and precision of selected tumours 

is affected by tumour size and depth. Indeed for a 

successful clinical haptic system, capable of 

effectively determining the location of tumours, it 

should promote both accuracy and precision. For this 

reason, force augmentation would almost certainly be 

required to increase the difference in force between the 

peak and baseline values. This would increase human 

perceptibility to any measurable size-depth 

combinations. The trade-off to this, however, is that 

rendered forces would not be truly representative of 

the tissue characteristics.  

A non-direct comparison between the results 

of the inverse methods and human trials (Fig. 11) 

shows similar trends in the ability to detect embedded 

inclusions. A more direct study would involve using 

the same modelling data, specifically RFS data from 

the same physical tissue models, to observe the 

capabilities of the two techniques. Directly comparing 

the capabilities of the two techniques would yield 

information relating to the feasibility of teleoperational 

palpation and tissue inverse methods 

 

5 CONCLUSIONS 

• Representative response force data of human liver 

tissue with embedded tumours were generated 

through computational FEA models and palpation 

of physical models using a custom, automated 

testing system with integrated sensory probe.   

• The statistical analysis carried out on the physical 

test results agrees with the FEA data and the results 

obtained from the human trials. These show similar 

detection rates for tumours of varied size and depth.   

• Discrete response force surfaces produced using the 

FEA models were approximated using a continuous 

function for efficient implementation into the haptic 

system.  

• The developed haptic virtual simulation system 

allows the user to palpate the surface of a simulated 

liver and feel its stiffness properties. The system is 

capable of high fidelity haptic rendering allowing 

users to detect tumours. 

• A human factors study showed that the accuracy 

and precision of tumour detection depends greatly 

on tumour size and depth. Statistically significant 

variation was found in the mean values of accuracy 

of detection and required search time.  

• An inverse method was successfully implemented 

to predict the location of a tumour within a tissue 



10 

 

sample, showing similar trends in detection 

accuracy to human trials. A potential application in 

MIS is the automatic detection of tumour position. 

• Discrepancies between the FEA and physical 

results suggest the presence of errors in one or both 

of the methods. Potential factors contributing to 

these have been discussed. Identifying the major 

contributing factors would allow for refinement of 

the method(s). 

• Augmentation of measured forces prior to haptic 

rendering could potentially increase accuracy in 

tumour location and decrease variability. 

 

6 FUTURE WORK RECOMMENDATIONS  

Recommendations for further work in this area 

include: 

• Improvements to the force rendering functions 

used within the haptic system, to account for non-

linear stiffness effects. 

• Inclusion of time-dependent properties within the 

computational models to represent human liver 

more closely, e.g. poroelasticity. 

• Improvements to the force sensing accuracy and 

precision to increase the validity of the response 

force surfaces from the physical tissue models.  

• Development of a teleoperational system with 

haptic feedback from remote force sensing, 

allowing clinical feasibility to be assessed. 

• Further human trials, testing the effects of factors 

such as force augmentation and user training 

within haptic tumour detection.  
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