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Abstract           

Basaltic degassing is driven by the release of CO2, H2O, and SO2. Hitherto, the measurement 

of SO2 has been commonplace due to the lack of significant ambient atmospheric content. 

UV camera technology is currently among the best of techniques to measure this SO2 release 

from volcanoes given its high spatial and temporal resolutions. Given that an elevated CO2 

flux can be an indication of magma movement at depth, a reliable method of measuring this 

species at similarly high temporal resolutions would be valuable. A technique making this 

possible is described here. This technique combines measurements of SO2 flux at Mt. Etna, 

using a UV camera, with CO2/SO2 gas ratios, which when multiplied together allow the 

creation of a contemporaneous CO2 flux datasets at a time resolution of ≈ 1 Hz. This also 

allowed the comparison of degassing with infrasonic and seismic datasets. This comparison 

was facilitated by the development of a new analysis technique to investigate correlative 

trends between noisy environmental datasets. The technique works by combining the 

continuous wavelet transform of two separate signals, with correlation of their respective 

coefficients at matching timescales using Spearman’s rank to produce a visually intuitive 

graphical plot. This revealed intriguing links between CO2 degassing and seismicity.  

Stromboli is renowned for its regular explosive activity. Through a permanent network of UV 

cameras at the summit area, a large number of explosive (120) and puffing events (80) were 

characterised in terms of their explosive and coda masses, termed the total strombolian event 

mass. Through this analysis, it was discovered that a large proportion of gas for each 

strombolian event is contained within the coda, ≈ 53 to 75% and for hornito events ≈ 70 to 84 

%. The events were also characterised into six separate groups according to gas release 

pattern following the main eruptive burst. Through computational fluid dynamical 

simulations, for a range of appropriate strombolian eruption gas masses, the results 

demonstrated that there is potential for the release of daughter bubbles from the base of rising 

slugs. These daughter bubbles act to reduce the mass of slugs and can make slug flow 

unsustainable. Models were initiated over a suitable range of event masses, which 

demonstrated that ≈ 43 to 69% of the initial slug masses was released into the daughter 

bubble train. By applying the average mass loss rate, of ≈ 13.2 kg s
-1

, with total event masses, 

slugs are unlikely to be self-sustainable below depths of ≈ 740 m. A non-linear relationship 

between the dimensionless inverse viscosity term, 𝑁𝑓, and mass loss rate was also discovered.  
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Also noted for its explosive activity is Mt. Etna. This activity includes hard to measure 

strombolian activity. During a rare period of activity at the Bocca Nuova summit crater ≈ 27 

minutes of frequent but mild strombolian behaviour was captured using a UV camera. Given 

the unorthodox use of a rock background for the reflectance of light, calibration was tested 

and performed successfully on a basaltic background at the summit. Results show an SO2 

mass range of ≈ 0.1 – 14 kg and a total gas mass range, on combination with measured Multi-

GAS ratios, of ≈ 0.2 – 74 kg. Compared to events at Stromboli the activity was more frequent 

with an ≈ 4 s modal repose and with much lower overall masses. On investigating temporal 

trends between events it was observed that the largest mass events were followed by longer 

repose periods before another event occurred, smaller events occurring more frequently, a 

feature which is termed repose gap behaviour. Given the rapidity and mass of events it is 

reasonable that this activity was driven by gas slugs and that they were travelling in close 

proximity to each other. Using existing fluid dynamical models for the wake interaction 

length, an area behind a slug where a trailing slug can begin to interact with a leading one, it 

is possible that slugs are close enough to interact and coalesce. Indeed, this would provide a 

plausible mechanism for the repose gap.  

Building on the observations in the field at Mt. Etna a series of analogue laboratory 

experiments and computational fluid dynamics models were devised to investigate rapid 

strombolian activity, that driven by slugs. Behaviour of slugs acting independently of one 

another in a single-slug volcanic regime have been investigated thoroughly, however, the 

behaviour of slugs in a multi-slug volcanic regime have been neglected, largely a result of its 

comparative complexity. Laboratory experiments allowed the investigation of a series of 

average gas flow rates and hence slug lengths (i.e. overall gas volume fractions). The rates of 

expansion were also varied to simulate slug flow at depth and nearer to the magma surface. In 

particular, the process of coalescence was investigated. By comparing slug length at burst 

with repose time the repose gap feature was also identified. Given that values for rise speed, 

liquid, and conduit dimensions are known, this enabled the definition of the minimum period 

of repose as the wake length plus the length of the slug all divided by the rise speed of the 

base of the slug. This relation is validated successfully on the laboratory data and also on the 

collected Etna data. Additionally the laboratory analysis identified a previously unidentified 

feature whereby coalescence can occur between rising slugs, even when the trailing slug base 

is rising at a slower speed than the leading. This is likely related to the expansions of gas 

slugs. Computational fluid dynamics identified similar processes whereby the gap between 
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identically massed slugs was maintained by slug expansion which acted to increase the speed 

of slugs above them. It is only when slugs are initiated within the wake length that 

coalescence occurs. Further relationships were discovered between slug rise speed and gas 

volume fraction, whereby the average rise speed of a slug increases with regime volume 

fraction, and burst slug length and volume fraction.  

Finally, building on the repose gap observations and developed relation, the observed 

relationships between slug length and gas rise speed with gas volume fraction are used to 

develop two separate models categorising the styles of volcanic activity which will be 

prevalent. The first, slug length model, is based upon repose time and slug lengths, with the 

second based upon overall volume fraction and repose time. The slug length model splits 

activity into: passive, puffing, strombolian explosive and strombolian rapid. This model 

performs well when applied to strombolian events, successfully differentiating between 

explosive and passive events. The volume fraction model applies fluid dynamical 

relationships for transitions to churn and annular flow, in addition to the already defined 

strombolian relationships, assumed here to play some part in defining the transition to 

hawaiian lava fountaining activity. This allows the definition of critical volume fractions 

above which large gas slugs or pockets can burst with increasing frequency until full lava 

fountaining behaviour is realised. Both models allow eruption parameters to be estimated via 

the delay time between events or vice versa. On comparison of known correlative 

relationships between gas emissions and seismicity a log relationship is discovered when all 

events are normalised to comparable parameters, suggesting that seismicity could also be 

incorporated into such a model in the future. In particular, the latter volume fraction model is 

the first step in developing a unifying theory of basaltic degassing based on a varying delay 

between events and could be particularly useful when used in tandem with real time gas 

emission data for eruption forecasting and understanding the fluid dynamical flow processes 

occurring in the sub-surface.  
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by the author.            p.39 

Fig. 3.2: Here, an example sequence of UV camera SO2 absorption images during a hornito degassing event is 

presented (a) along with associated parameters used for the calculation of flux (b); including SO2 ICA (c), 

plume speed determined using optical flow algorithms, the resultant SO2 flux (b), and VLP displacement (d). 

Data and graph provided by Giancarlo Tamburello (Palermo University).     p.41 

Fig. 3.3: Here every single measured strombolian and hornito event is displayed, after subtraction of the 

minimum value and dividing by the maximum. From (a) through to (e) the typically degassing regimes observed 

have been split and categorised together. In each subplot the event in bold denotes a typical event style, although 

this is by no means a hard and fast rule, while the black bar at the top of each subplot represents the maximum 

observed event time during the observation period, where an event is deemed to cease on return of flux to 

background levels. For a full description of how the events have been characterised, see Table 3.1 and the text.

            p.42 

Fig. 3.4: Three examples (a, b, and c) of determined explosion and coda mass by integrating underneath the 

initial flux peak to determine the explosion mass and integrating beneath the rest of the flux peak until flux has 

returned to background levels seen period to the explosion (black line).      p.44 

Fig. 3.5: The distribution of total gas masses contained in hornito (a) and strombolian events (b). The black lines 

show the minimum, median and maximum coda masses respectively.      p.45 

Fig. 3.6: The relationship between explosion mass and a) coda mass, b) explosion plus coda mass (i.e. event 

mass), and c) coda to explosion mass ratio. No clear relationship is apparent in a), as explosion mass increases 

so does explosion plus coda mass in b), while in c) hornito events demonstrate a decreasing portion of gas 

within the coda as explosion mass increases. This relationship is clouded with strombolian events.   p.46 

Fig. 3.7: Figure showing the performance of Ansys Fluent® against theoretical values. For details on error bars 

see section 3.3 and fro details on calculation of theoretical film thicknesses and rise speed see equations 3.1 to 

3.4 in section 3.3.           p.51 
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Fig. 3.8: In a) a snapshot of slugs from a series of validation model runs showing the production and non-

production of daughter bubbles. All models images were captured at 12 s after model initiation. In b) an 

example slug from the Stromboli specific model runs with mesh density displayed.   p.52 

Fig. 3.9: This plot shows the relationship between Nf and mass lost per second for both validation and Stromboli 

specific model runs. The non-circular coloured points refer to different gradients, which are illustrated and 

annotated in Fig. 3.10.           p.53 

Fig. 3.10: These plots show the mass of a slug as a function of time for all Stromboli specific model runs. The 

trend lines with determined mass loss rates are also displayed. For runs S1 – S3 the change in magma surface 

height, and positions of the slug nose and slug base are also displayed. In S4 bubble length is displayed 

alongside mass. Increased variability is evident in S1 and S2 compared to S3, largely associated with the larger 

mass of the rising slug. In S4 images of a slug which eventually transitions to a cap bubble are displayed along 

with their associated times.          p.55 

Fig. 3.11: Example artificial geophysical signals generated during Stromboli specific model run S1. In a) a 

proxy seismic signal showing general pressure increase and peak  at burst, with inset differentiated pressure 

pulse. In b) a proxy infrasonic signal with inset differentiated pressure trace showing the characteristic N-wave 

of a volcanic infrasonic pulse.          p.55 

Fig. 3.12: A graphic summarising the hypothesis presented for stable slug flow based on the daughter bubble 

model presented in this chapter. The ranges of distance needed to generate strombolian and hornito coda is 

indicated along with approximate the VLP source depth.       p.60  

Fig. 4.1: A diagram of the important features of a rising gas slug. Of particular relevance for this chapter are the 

wake interaction length and trailing wake length. Point 1 illustrates the basic concept of the rise-speed 

dependent model (Wilson, 1980; Parfitt and Wilson, 1995), point 2 the foam collapse model  (Jaupart and 

Vergniolle, 1988; Vergniolle and Brandeis, 1994), and point 3 the eventual transition to slug morphology.  

Reprinted with permission from Elsevier.                      p.64 

Fig. 4.2: Map of the summit of Mt. Etna including location and orientation of the UV camera, Multi-GAS unit, 

the vent, EBCN seismic station and wind direction. For locations of other seismic sites used in this study the 

reader is referred to the google maps file available, see Appendix C. Reprinted with permission from Elsevier.

                         p. 65 

Fig. 4.3: In a) a visible image showing a typical explosion during our period of observations with ejection of 

limited incandescent material. In b) a test calibration performed at the summit of Mt. Etna where SO2 is known 

to be negligible, this test demonstrated that the linear calibration is possible over a rock background regardless 

of where within the SO2 cell the absorption value is derived (black circle and coloured boxes represent the 

outline of the SO2 cell and points used for the calibration line on the right). In c) an example absorption image 

showing the locations of IVAs for determining slug SO2 mass (IVA1) and for background correction (IVA2 and 

IVA3). Also depicted is ICA1 for determining gas flux and ICA2 to calculate background fluctuations. In d) the 

intense strombolian activity prior to our acquisition period, which is indicated between black lines is 

demonstrated. Reprinted with permission from Elsevier.       p.67 

Fig. 4.4: From 1 to 5 at 1 second intervals the explosion and wireframes (a – e) of explosive cloud are 

illustrated. The red arrow illustrate the direction of the explosive cloud, with red x’s showing where the cloud 

first appears from the vent. The red box is the approximate equivalent of IVA1 in Fig. 4.3c which is used for 

determining explosive SO2 gas mass. Reprinted with permission from Elsevier.                 p.68 

Fig. 4.5: a) a histogram showing the spread of total gas masses, b) a histogram of inter-event durations, c) a 

scatter graph showing a general trend between time after a burst and total slug mass, also shaded in grey is the 

repose gap where larger bursts are followed by longer wait times before another can occur, d) a graph of time 

duration before a burst showing no such relationship. Reprinted with permission from Elsevier.               p.70 

Fig. 4.6: An illustration of burst vectors for all 195 bursts during the period of acquisition. For a plot of this data 

see Fig. 4.7.             p.72  

Fig. 4.7: a) The emission vector for all bursts, plotted in degrees from vertical, with the average vector 

illustrated. In b) the relationship between total slug mass and emission speed shows a similar area without bursts 

(shaded) as the repose gap feature seen in Fig. 4.5c suggesting that larger bursts have a higher minimum 

emission speeds.            p.72  
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Fig. 4.8: a) frequency characteristics of the seismic signal at the EBCN stations, b) RMS, and c) the raw 

unprocessed seismic signal. In d) and e) PSDs showing dominant periods present at the EBCN and EBEL 

stations respectively, with oscillations at 50 – 120 s present at EBEL. In f) and g) for EBCN and EBEL the 

dominant oscillations show that wind noise occludes any potential infrasonic signal.    p.73 

Fig. 4.9: Here the Del Bello et al. (2012) static pressure model is used to estimate values for magma viscosity 

and conduit radius, based on the assumption that all bursting slugs must have some form of overpressure, given 

the audible bang accompanying each burst. The percentage of bursts with overpressure is plotted on the y-axis. 

This plot demonstrates that smaller radii and/or higher magma viscosities expedite overpressure.   p.75 

Fig. 4.10: An approximation of possible maximum conduit geometry based on visual images of the vent. Also 

indicated is the position of the small lava flow which had ceased prior to the UV camera acquisition period. p.76   

Fig. 4.11: Example output from the James et al. (2008) slug model (equation 4.6). Here, the results of four of 

the largest sequential bursts and their potential separation distances and burst lengths as a function of time are 

plotted. See the main text for further details on calculation.       p.78 

Fig. 4.12: Here the Reynolds bubble number (equation 5.8) is applied to our measured gas masses to 

approximate bubble morphology during rising from depth. The blue line shows results with water mass of the 

slug included and black without, this is done because of the shallow exsolution depth of H2O.   p.79 

Fig. 4.13: The results of VolatileCalc (Newman and Lowernstern (2002), showing the source depth based on 

matched ratios and a range of water weight percentages. The dashed lines show the saturation depth and hence 

when water will begin to exsolve from the melt.        p.81 

Fig. 4.14: This schematic illustrates the ranges of bubble source depths using the Burton et al. (2007) method 

over an approximation of the magma system at Etna. The tremor source is located (black solid circle) and the 

usual location of tremor at Etna. The grey box at the top of the conduit illustrates where the transition to slug 

based activity could occur.                       p.86 

Fig. 5.1:  The experimental set-up included a vertical tube with a bubble injector attached to the base to simulate 

a range of flow rates. Tube pressure was varied via connection to a vacuum pump at the top of the tube, but was 

kept constant during experiments. Two cameras, a DSLR (Canon EOS 1100D), and a slow motion camera 

(Basler A602f), were aligned to image the rising slugs in the tube. Pressure transducers were placed at the top 

and the base of the tube.                                    p.91 

Fig. 5.2: Example images from each lab experiment demonstrating slug length and overall gas volume fraction 

of the simulated regimes (see Table 1.1 for information on each flow regime).     p.92 

Fig. 5.3: Stills showing the coalescence process for two ascending gas slugs (circled in blue at time 0 and 0.38 

s). As the trailing slug expands it begins to enter the area of influence and the whole of the slug begins to 

accelerate, on entering the slug wake, the nose elongates, ending in coalescence.     p.94 

Fig. 5.4: Example tracks and speeds of a selection of coalescence events (continued in Figs. 5.5 and 5.6). The 

gap length is the distance between the leading slug base and the trailing slug nose. In (a), (b), (d), and (e), slugs 

are rising at a rate faster than the predicted theoretical rise speed, in (c) they are rising at that speed, and in (f) 

below the speed. Rapid oscillations in rise speed,  obvious in (a), (b), (d), and (e) are related to the bursting and 

drain back of liquid from the burst of a slug at the surface affecting the whole magma column. (c) represents 

expected behaviour of coalescing slugs in a normal single slug regime, whilst in (f), the rising bubble has yet to 

transition to a full slug. For a detailed discussion of features see the text at section 5.3.1.    p.97 

Fig. 5.5: A continuation of Fig. 5.4. In (a) the rising slugs are behaving as though they are in a single slug 

system. In (b), (c), and (d), both slugs are rising above the theoretical speed, and demonstrate a generally 

increasing gap plus trailing length before coalescence.  For a detailed discussion of features see the text at 

section 5.3.1.            p.98 

Fig. 5.6: A continuation of Fig. 5.4 and 5.5. Here, all plots show a faster than predicted base rise speed. 

However, a mixture of interaction behaviour, with a non-increasing gap plus trailing length shown in (a) but 

increasing in (b), and (c).  For a detailed discussion of features see the text at section 5.3.1.               p.99 
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Fig. 5.7: Example positional tracks of four sets of coalescing slugs. In (d) the coalescence event demonstrated in 

Fig. 5.6a shows a constant trailing base speed until acceleration and eventual coalescence. In (a), (b), and (c) the 

bulk behaviour of rising slugs is demonstrated.       p.99 

Fig. 5.8: Relationship between base rise speed (Table  5.2) and volume fraction of each lab experiment. Here a 

linear relationship is demonstrated (red line). The black dashed line represents the theoretical rise speed for a 

slug in a single system. Rising bubbles below this have yet to transition to a full slug flow regime.              p.102 

Fig. 5.9: The exponential relationship between slug length and gas volume fraction using averages of slug 

length at burst.                       p.102 

Fig. 5.10: Plot showing the repose time and lengths of slugs (or cap bubbles) at burst for each laboratory 

regime. The data for producing this plot were taken from DSLR videos (see Appendix D for description and 

videos). Each set of experiments is given its own colour code and is associated with a linear trend, with a 

gradient that decreases in regimes with higher gas volume fraction.                 p.103 

Fig. 5.11: The relationship between linear gradient of each laboratory regime and associated gas volume 

fraction, shows a strong and predictable trend.                   p.104 

Fig. 5.12: In this plot each slug has been converted to volume at burst. This reveals a similar repose gap type 

behaviour as described in Chapter 4. Here, the repose gap (black line) has been defined using equation 5.4 in the 

text. Also displayed is the repose transition line (dashed red line). Between the transition and repose gap line, 

slugs may begin to interact with one another. Above the transition line slugs may behave as though they are in a 

single slug environment, at least in so far as rise speed is concerned.                 p.105 

Fig. 5.13: A plot demonstrating the differentiated acoustic pressure trace from six slug bursts during experiment 

Lab 3. Here we see the characteristic N-wave of a volcanic infrasonic pressure wave is evident. Here, the larger 

acoustic signals don’t correspond to the largest volume of bursts.                 p.106 

Fig. 5.14: An attempt at finding a correlation between slug lengths and the acoustic pressure generated by the 

bursting of slugs. Here, there is little relationship evident.                   p.106 

Fig. 5.15: Example base pressure of the experimental tube for three laboratory experiments: Lab 1, 2 and 3. A 

higher variability and oscillation range is evident for the larger volume fractioned experiments. The lower 

pressure at higher volume fraction is associated with the higher proportion of lower density gas within the 

column.                        p.107 

Fig. 5.16: Initial model parameters for each computational experiment listed in Table 5.3. The blue colours 

represent gas, and the red, magma. Models C7, C13, and C19 all produced coalescence.                p.109 

Fig. 5.17: Plot showing the results of the “control” computational run C1. In (a) the position of the slug nose 

and base prior to burst is displayed, while in (b) the speed of the nose and base are displayed alongside the 

predicted theoretical speed of 1.27 m s
-1

. Here the predicted speed is seen to match well with that modelled, as 

the model validation suggests in Chapter 3. Slug burst occurs at the far right hand side of the plot.             p.110 

Fig. 5.18: Stills showing the coalescence process of two ascending gas slugs within volcanic regime C7. Here 

similar features are observed as with Fig. 5.3, slug acceleration increases within the wake area, causing nose 

elongation and eventual coalescence. The tracks for this slug coalescence can be seen in Fig. 5.20.             p.112 

Fig. 5.19: Here, tracks for experiment C2 (left hand side) and C6 (right hand side) are shown. In addition to the 

speed traces for all slugs (c) and (f), in (b) and (e) plots containing identical information to those in the 

laboratory regimes demonstrate the distances between slugs, and their relationship with regards to wake length 

and trailing length. In each computational simulation the gap plus trailing length increases where coalescence 

isn’t observed. The theoretical speed is shown in gray (c, f) for reference.                p.114 

Fig. 5.20: A continuation of Figs. 5.18 and 5.19. Here the first pair of coalescence slugs are analysed. Given that 

both slugs are of identically mass, it takes model initiation of the two slugs within the  interaction length for 

coalescence to occur. Rapid variability of slug rise speeds is caused by the manual tracking process. Here the 

trailing length is seen to increase rapidly into the leading slug, suggesting that the trailing slug is stretched into 

the leading slug. Indeed, the base of the trailing slug (a) seems to accelerate little prior to the point of 

coalescence. The theoretical speed is shown in gray (c) for reference.                 p.115 
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Fig. 5.21: Here, tracks for experiments C9 (left hand column) and C15 (right hand column) are presented. (c), 

(d), and (e) display the rise speeds of the leading, middle and lower slugs respectively for C9 and (h), (i), and (j) 

for C15. The closer the slugs are to one another, the greater the effect of slug expansion on rise speed. This is 

particular clear in (f), where slug expansion appears to push the slug above it at a faster pace. The gap plus 

trailing length in each instance is observed to increase, indicating that the leading slug is indeed rising at a faster 

pace than the trailing slug. The theoretical speed is shown in gray (c, d, e ,h, i, j) for reference.              p.116 

Fig. 5.22: Here, tracks for experiments C13 (left hand column) and C18 (right hand column) are presented. As 

per Fig. 5.21, (c), (d), and (e) refer to the leading, middle and trailing slug speeds, and speeds for the four slugs 

are depicted in (g), (h), (i), and (j). For experiment C13 one coalescence event occurs, the middle slug into the 

upper slug. Following on from this the gap plus trailing length is seen to increase again demonstrating that this 

can increase even when coalescence occurs. C18 again demonstrates this increase in slug rise speed, influenced 

by the slug below. The theoretical speed is shown in gray (c, d, e, g, h, i, j) for reference.               p.117 

Fig. 5.23: Here, burst data pertaining to data collected during Etnean activity at the Bocca Nuova crater 

(described in full in Chapter 4) are presented. All data have been converted to burst volumes. Above the data 

plotted on a normal plot, below the data plotted on a log-log plot. Also added to both plots is the repose gap line 

(equation 5.4) and the repose transition line (equation 5.5). For a magma density of 2600 kg m
3
, viscosity of 

2000 Pa s
-1

 and conduit radius 1.5 m these parameters seem to match well with the observed activity, with the 

exception of a number of bursts less than 1 m
3
 in volume.                   p.118 

Fig. 5.24: Over 34,000 strombolian events from activity on the NEC on the 17
th
 July 2014,  which generated an 

infrasonic pressure pulse, are plotted here. Two areas of interest are identified, the first red line indicates a 

repose gap type feature, while the blue circled area appears to indicate an area which may break this feature. It is 

possible that the red line is related to the repose gap behaviour, while smaller bursts, associated with lower 

acoustic pressures can disrupt this trend. Data courtesy of Andrea Cannata (INGV, Osservatoria Etneo). p.119 

Fig. 5.25: Here, the repose gap and transition equations are applied to data from Kremers et al. (2013) relating 

to strombolian activity from Yasur volcano. Again the criteria seem to hold up well, given parameters for 

magma density of 2600 kg m
3
, viscosity of 1000 Pa s

-1
 and conduit radius of 1.5 m (this is also the dimension 

used to convert length data to volume data). Only one burst may have been influenced by those preceding it, 

while all others can be considered to be “single” bursts.                  p.120 

Fig. 6.1: Reproduced from Chapter 1 to illustrate the flow regimes which drive basaltic volcanic activity. The 

flow regimes highlighted with red text, particularly mist flow, indicate flow regimes with no direct field 

analogue evidence or quantification.                    p.126 

Fig. 6.2: Idealised bubble length model indicating the areas which are defined by the equations 6.1 to 6.6 in the 

text. In (a) a passive or effusive area where bubbles are near to spherical. In (b)  bubbles sized between spherical 

transition and before a bubble becomes a slug. In (c) an area defined using equation 6.4 which indicates the 

burst of slugs in a non-explosive manner – i.e. puffing. In (d) all slugs with lengths above the puffing area in (c) 

will be explosive, while in (e) slug bursts occur so rapidly that they can begin to interact, the rapid strombolian 

area. The repose gap, where no bursts can occur is shown in (f). In (g) and (h) it is assumed that as bubbles get 

smaller they can burst more rapidly.                    p.131 

Fig. 6.3: Critical volume fractions (CVF), for a range of conduit radii, conduit lengths, and gas volume 

fractions. This demonstrates that by increasing the conduit length the CVF for transitioning towards lava 

fountaining decreases, while decreasing the conduit radius achieves the same result.               p.133 

Fig. 6.4: In (a) the gas transition speeds to churn flow are displayed for a range of slug lengths and conduit 

diameters (D). These are calculated using equation 6.12. In (b) the gas at which transition speed to annular flow 

occurs is displayed for a range of magma densities. These speeds were calculated with equation 6.13.      p.134 

Fig. 6.5: Demonstrating the idealised volume fraction model. Here the colours represent the different areas 

which the model defines, similar to the areas in Fig. 6.2. The blue passive and puffing area refers to all single 

bubbles and slugs which do not burst explosively. The yellow area represents all slugs which burst as though 

they are in a single slug regime, and the purple area those in a rapid environment. The orange and pink areas 

show the volume fractions and repose times where activity can be assumed to transition towards Hawaiian lava 

fountaining activity. At the same time the repose gap area reduces allowing individual bubbles or pulses to burst 

more rapidly. Also shown on this plot is a grey shaded area where only non-terrestrial activity could exist on the 

plot.                        p.135 
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Fig. 6.6: The bubble length model applied to data from Stromboli demonstrating that the model works well for 

activity at Stromboli. Data for slug lengths were taken from Tamburello et al. (2012) and Chapter 3.        p.136 

Fig. 6.7: Example bubble length models with two different sets of parameters (a) and (b), where the viscosity is 

higher in (b).                       p.138 

Fig. 6.8:  Example bubble length model for another two sets of basaltic parameters (a) and (b). Here the data are 

demonstrated using a log plot on the y axis.                             p.139 

Fig. 6.9: Example volume fraction model for two sample basaltic magmas. With a small conduit length of ≈ 250 

m the lava fountaining transition (hawaiian activity) occurs at very high volume fractions of > 90 %. For the 

longer conduit of 2,000 m this transition occurs for lower gas volume fraction.                p.140 

Fig. 6.10: Example volume fraction model for another two sets of basaltic degassing parameters. Here the 

repose (y) axis is displayed on a log scale. The wider conduit and lower magma density in (a) demonstrates that 

lava fountaining (hawaiian) occurs for low repose intervals and high gas volume fractions. In (b) the smaller 

conduit radius allows for transition to lava fountaining at rather lower gas volume fractions.              p.141 

Fig. 6.11: The volume fraction model applied to three extra-terrestrial cases: (a) Io, (b) Mars and (c) Venus .

                       p.142 

Fig. 6.12: The relationship between SO2 flux and theoretical vertical displacement for four volcanoes. For 

details see the text in section 6.4.                     p.144 

Fig. 7.1: a) an example model initiated in Ansys Fluent showing a slug rising in a conduit which will eventually 

enter and burst in a lava lake, b) an example model of a lava fountain ejected at 50 m s
-1

, with a gas volume 

fraction of 0.6, and a conduit radius of 5 m, c) water vapour flux calculated 300 m above the surface, with a 

negative flux indicating upward movement of gas and positive flux indicating the downward movement of gas, 

(d) periodicities calculated show a dominant period of ≈ 7 s.                   p.156 
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Table Summary         
Table 3.1: A summary of the degassing regimes identified following on from strombolian explosions. The raw 

data is presented in Fig. 3.3).          p.43 

Table 3.2: A summary of determined explosive and event SO2 masses, with equivalent total gas masses 

calculated using Burton et al. (2007) gas ratios.                     p.45 

Table 3.3: A summary of model validation runs, modelled, and theoretical film and slug base speeds. Italicised 

rows are those simulations which produced daughter bubbles.      p.50 

Table 3.4: A summary of Stromboli specific model runs from S1 – S4, including final results for slug length, 

final exploded mass, and percentage of mass lost into the coda.      p.53 

Table 3.5: A summary of parameters used in the Stromboli specific model runs, selected according to the 

current understanding of the magmatic system at Stromboli: 
a,g 

Vergniolle and Brandeis (1996), Métrich et al., 

(2001); 
b 

Vergniolle et al. (1996, 2007); 
c 

Harris and Stevenson (2007); 
d 

Harris and Stevenson (1997), Donne 

and Ripepe (2012); 
e 
Chouet et al. (1999), 

g
James et al. (2008).      p.54 

Table 5.1: Summary of the laboratory experiments, their set-up parameters, average slug length and average gas 

volume fraction of each regime observed.         p.90 

Table 5.2: A summary of the rise speeds of the bases of the trailing and leading slugs during a number of 

coalescence events. The speeds were calculated during the whole sequence, during coalescence (defined by the 

last <1 s before coalescence), and pre coalescence. All italicised rows refer to coalescence events where the 

leading slug base is travelling at a faster speed than the trailing slug base. *Slug 1 refers to the leading slug and 

slug 2 to the trailing slug, all values are in m s
-1

. Refer to Table 5.1 for experimental conditions, error on these 

values is ± 4 x 10
-4

 m s
-1 

(i.e. length error of ± 0.01 m multiplied by time error of ± 0.04 s).   p.96 

Table 5.3: A summary of slug base speeds calculated for non-coalescing slugs only.               p.100 

Table 5.4: Table summarising the calculated average slug base rise speeds of slugs (see Table 5.3 for all values) 

in each laboratory experiment (calculated using the slow motion camera images).               p.101 

Table 5.5: Summary of computational experiments.                  p.108 

Table 5.6: The average rise speeds of the base of all slugs within the computational simulations. The slugs are 

numbered according to their depth with Slug 1 being the closest to the surface.                p.113 

Table 5.7: A summary of burst data used from Kremers et al. (2013).                 p.121 

Table 6.1: Taken from Table 1 in James et al. (2011), based on the original Table 1 in Suckale et al. (2010b). 

These values show the maximum stable bubble radii for given magma density and viscosity values.           p.130 
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Equation Summary        
 

Eq. 1.1: 𝐼(𝜆) = 𝐼0(𝜆) ∙ 𝑒−𝜎(𝜆)∙𝑁∙𝐿           p.7 

Eq. 1.2: 𝐴 = − log10 [
(

𝐼𝑃𝛼
𝐼𝐵𝛼

)

(
𝐼𝑃𝛽
𝐼𝐵𝛽

)

]           p.9 

Eq. 1.3: 𝐴 = − log10 (
𝐼𝑃𝛼

𝐼𝐵𝛼
)                      p.10 

Eq. 2.1: 𝛹0(𝜂) =  π−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2        p.25 

Eq. 2.2: 𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′𝛹

∗ [(𝑛′ − 𝑛)
𝛿𝑡

𝑠
]𝑁

𝑛′=1        p.25 

Eq. 2.3: 𝑟𝑠(𝑊𝑛𝑖) = 1 − 
6 ∑ 𝑑𝑖

2(𝑊𝑛𝑖)

𝑛(𝑛2−1)
          p.27 

Eq. 2.4: 𝑡𝑑 =  
(2𝐷𝑡)0.5

𝑢
                      p.34 

Eq. 3.1: 𝜆′ = 0.204 + 0.123tanh(2.66 − 1.15 log10 𝑁𝑓)      p.47 

Eq. 3.2: 𝑁𝑓 =   
𝜌𝑚

𝜇
√𝑔(2𝑟𝑐)3         p.47 

Eq. 3.3: 𝐹𝑟 = 0.34 [1 + (
31.08

𝑁𝑓
)

1.45

]

−0.71

         p.47 

Eq. 3.4: 𝑢𝑠𝑙 = 𝐹𝑟√2𝑔𝑟𝑐          p.48 

Eq. 4.1: 𝑁𝑓 =   
𝜌𝑚

𝜇
√𝑔(2𝑟𝑐)3         p.64 

Eq. 4.2: 𝑙𝑤𝑎𝑘𝑒 = 2𝑟𝑐(0.30 + 1.22 × 10−3𝑁𝑓)       p.64 

Eq. 4.3: 𝑙𝑚𝑖𝑛 = 2𝑟𝑐(1.46 + 4.75 × 10−3𝑁𝑓)       p.64 

Eq. 4.4: 𝑃𝑉 = 𝑛𝑅𝑇          p.74 

Eq. 4.5: 𝑉 =  𝜋𝑟2ℎ          p.74 

Eq. 4.6: 
1

2
𝜌𝑚(1 + 𝐴′)𝐿̈ = 𝑃0𝐿0

𝛾
𝐿−𝛾ℎ−1 −  𝜌𝑔 − 𝑃ℎ−1 − 8𝜇𝐿̇𝑟𝑐

−2     p.77 

Eq. 4.7: 𝐴′ =  (
𝑟𝑠𝑙

𝑟𝑐
)

2

          p.77 

Eq. 4.8: 𝑅𝑒𝑏 =  𝑁𝑓𝐹𝑟          p.79 

Eq. 4.9: 𝑢𝑠𝑙𝑠𝑤 = 0.71√𝑔2𝑟𝑠𝑙(𝑆𝐹)(𝐴𝐹)       p.85 

Eq. 5.1: 𝑦 =  0.245𝑥 +  0.102                  p.102 

Eq. 5.2: 𝑦 =  0.112𝑒1.388𝑥                   p.102 
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Eq. 5.3: 𝑦 =  40.99𝑥5 −  74.65𝑥4  +  49.35𝑥3 −  13.99𝑥2  +  1.77𝑥 +  0.056                        p.102 

Eq. 5.4: 𝑅𝑒𝑝𝑚𝑖𝑛 =  
𝐿𝑠+𝐿𝑤𝑎𝑘𝑒

𝑢𝑠
                   p.103 

Eq. 5.5: 𝑅𝑒𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =  
𝐿𝑠+𝐿𝑚𝑖𝑛

𝑢𝑠
                             p.104 

Eq. 6.1: 𝑅𝑒𝑝𝑚𝑖𝑛 =  
𝐿𝑠+𝐿𝑤𝑎𝑘𝑒

𝑢𝑠
                   p.128 

Eq. 6.2: 𝑅𝑒𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =  
𝐿𝑠+𝐿𝑚𝑖𝑛

𝑢𝑠
                            p.128 

Eq. 6.3: 𝑃𝑠𝑙𝑖𝑚
∗ =  

√𝜌𝑔𝐴′𝐿0𝑃0

𝑃𝑠𝑢𝑟𝑓
                   p.128 

Eq. 6.4: 𝑃𝑠𝑙𝑖𝑚
∗ (𝐿0) =  

√𝜌𝑔𝐴′𝐿0𝑃𝑠𝑢𝑟𝑓

𝑃𝑠𝑢𝑟𝑓
                            p.128 

Eq. 6.5: 𝑅𝑒𝑏 =
2𝜌𝑢𝑟𝑏

𝜇
                    p.129 

Eq. 6.6: 𝑢 =  
2(𝜌𝑚𝑎𝑔𝑚𝑎−𝜌𝑔𝑎𝑠)𝑔𝑟𝑏

2

𝜇
                               p.129 

Eq. 6.7: 𝑎𝑐𝑟 = 2√
𝜎

𝑔∆𝜌
                    p.130 

Eq. 6.8: 𝑦 = 0.0096𝑒5.19𝑥                                p.132 

Eq. 6.9: 
𝑙𝑠

1.8
= 0.0096𝑒5.19𝑔𝑣𝑓                   p.132 

Eq. 6.10: 𝑦 =  0.245𝑥 +  0.102                             p.132 

Eq. 6.11: 
𝑢𝑠𝑙

0.1537
 = (0.245gvf +  0.102) × 𝑢𝑡ℎ                             p.132 

Eq. 6.12: 
𝑙𝐸

𝐷
= 40.6 (

𝑈𝑚

√𝑔𝐷
+ 0.22)                               p.134 

Eq. 6.13: 
𝑈𝑔𝑠𝜌𝑔

1
2

[𝜎𝑔(𝜌𝑙−𝜌𝑔)]
1
4

= 3.1                   p.134 

Eq. 6.14: 𝑑𝑡ℎ =  
𝑑𝑟

(cos(𝑘)𝑡−𝑤𝑟)𝛼𝑟                    p.144 

Eq. 6.15: 𝑑𝑡ℎ =  
𝑑𝑟

𝑡𝛼𝑟                    p.144 

Eq. 6.16: 𝑦 = 0.013 ln(𝑥) + 0.001                               p.145 
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“I fear I have tired you: 

but the subject of 

volcanos is so favourite a 

one with me, that it has 

led me on I know not 

how…” 

Sir William Hamilton 

1769
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1. Introduction         

The aim of this chapter is to briefly introduce both the importance of monitoring volcanoes, 

in particular for basalts which are the focus of this thesis, and the types of degassing which 

are prevalent at such volcanoes. UV (Ultra-Violet) camera theory is introduced along with a 

number of previous studies demonstrating the utility of this technology. Finally the other 

theme of the thesis, volcanic conduit fluid dynamical modelling, is introduced, with particular 

reference to laboratory and computational studies.  

1.1.  The importance of volcanic monitoring 

Volcanic eruptions are one of the most spectacular natural events to occur on this planet (Fig. 

1.1.). With a large number of people living on or near to the flanks and at risk from these 

events (approximately 10% of Earth’s population) predicting impending activity is a key 

focus for volcanologists (Peterson, 1986; Tilling & Lipman, 1993; Small and Naumann 

2001).  The major driver of this volcanic activity, ranging from basaltic to rhyolitic, and from 

strombolian to plinian, is gas (Mather, 2015). Monitoring and measuring gaseous emissions is 

therefore a vital part of eruption prediction. Volcanic monitoring of gas emissions can be 

performed in a variety of ways ranging from the use of satellites, which provide global but 

low temporal and spatial resolution of gas emissions from point sources (McCormick et al. 

2014), to manual sampling (Giggenback, 1975; Symonds et al. 1994), and ground based 

remote sensing (Francis et al. 1998; Oppenheimer et al. 1998; Galle et al. 2003; Mori and 

Fig. 1.1: The spectacular eruption of Chaitén, Chile with a lightning sheath 

surrounding the eruption column. (National Geographic, 2008). 
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Burton, 2006; Burton et al. 2007), see Fig. 1.2.  

One of the major success stories with volcanic gas measurements was undoubtedly prior to 

the eruption of Pinatubo on the 15
th
 June 1991, where the successful identification of a rapid 

increase in gas release in the weeks leading up to the eruption, in combination with seismic 

monitoring, led to the successful evacuation which saved thousands of lives (Harlow et al. 

1999). More recently, the recent volcanic activity in Iceland: Eyjafjallajökull, Grímsvötn, and 

Holuhraun (Bárðarbunga), has reiterated the importance of gas emissions to public health 

(Hansell and Oppenheimer, 2004) and aviation (Brooker, 2010; Gudmundsson et al. 2010). In 

particular the sustained basaltic fissure activity at Holuhraun contained echoes of the Laki 

fissure eruptions of 1783-1784, where the emission of large amounts of fluorine, in addition 

to other sulphurous gases (Stevenson et al. 2003; Self et al. 2005) caused widespread famine 

in Iceland (Vasey, 1991; Thordarson and Self, 2003), and potentially affected parts of Europe 

(Budd et al. 2011), including the United Kingdom. These events highlight the importance of 

monitoring volcanic gas emissions as both a forecaster of impending activity (Aiuppa et al. 

2007) and monitoring emissions during events to predict dispersal of volcanic pollutants 

(Delmelle et al. 2002), and hence prevent avoidable deaths.  

Fig. 1.2: Example methods for monitoring volcanic gas emissions. Drawings are overlain onto the view of the 

North-East Crater from the Pizzi Deneri volcano observatory .  
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The obvious and devastating direct effects of volcanic eruptions include those involving 

pyroclastic density currents and lahars. Pyroclastic density currents are the hot clouds of ash, 

gas and rock which collapse from an eruption column and then rapidly move along the 

ground. Lahars occur when ashfall mixes with rainwater, or the rapid melting of snow, to 

create torrents which have the energy to carry large amounts of material and destroy homes.  

Here there are two infamous examples: firstly, the sudden flank collapse and pyroclastic 

density currents associated with the eruption of Mt. St Helens (USA) in 1980 which killed 57 

people, (Bernstein et al. 1986). Secondly, in one of the most deadly recent volcanic episodes, 

when Nevado Del Ruiz (Colombia) erupted, causing pyroclastic density currents which 

mixed with snow and ice at the summit and generated lahars leading to the death of ≈ 23,000 

people in Armero (Pierson et al. 1990; Voight, 1990).  

The specific hazards of volcanic activity vary on a volcano-by-volcano basis. This thesis is 

particularly concerned with those caused as a result of basaltic degassing, which have been 

hitherto under-investigated at the high temporal resolutions necessary to delve into and 

understand the range of activities possible and their respective drivers. The next section 

outlines the most common types of basaltic degassing, and the specific drivers of each style, 

relevant to the content of this thesis.  

1.2.  Types of basaltic degassing 

Basaltic volcanism is manifest in a variety of forms (Fig. 1.3), each driven by a different 

dominant flow regime (Fig. 1.4), with distinctive dominant bubble morphologies (Fig. 1.5). 

Basaltic volcanism can be split into three broad ranges of activity: effusive, passive and 

explosive. Effusive activity is specifically related to the production of lava flows from single 

or multiple vents. It can often be accompanied by minor explosive activity at the vent area. 

Passive activity encompasses the quiescent state of a volcano, involving the release of gas in 

a non-explosive manner from conduits, fumaroles, or lava lakes (Fig. 1.3). Passive degassing 

activity is dominated by the ascent and bursting of small spherical to deformed bubbles (see 

bubbles 1 and 2 in Fig. 1.5) at lower gas volume fractions in the flow (Fig. 1.4). This activity 

can be considered to be driven by a bubbly flow regime (Fig. 1.4), with bubbles that are both 

dependently and independently rising of the magma, which itself could be stagnant, 

downward or upward moving. 
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The transition to explosive activity can be gradual or rapid (Parfitt and Wilson, 1995). As 

bubble size increases, the chances of producing explosive activity increase commensurately 

(James et al. 2009). The physics and fluid dynamics defining the rise speed and how these 

bubbles travel and interact also begin to change (Wallis, 1969). The major factors in defining 

eventual bubble sizes relate to their initial exsolution depth, and their ability to interact during 

ascent (Sparks, 1978). The overwhelming bulk of volcanic gases exsolve at depths of less 

than ≈4 km depth (Wilson, 1980; Gerlach, 1986; Giggenbach, 1996). As they ascend, each 

individual bubble experiences a reduction in pressure allowing the bubble to expand. It is this 

decompression which forces bubble forms and flow regimes to transition (Aloui et al. 1999). 

Following on from a spherical or broadly spherical but deformed or elongated bubble, a 

bubble transitions to a “spherical cap” morphology (cap bubble for short, see bubble 3 in Fig. 

5). A cap bubble rises at a speed which is limited by a falling film of liquid either side of the 

bubble, and hence the conduit width, with the rise speed also dependent on magmatic 

parameters (Viana et al. 2003; Llewellin et al. 2012). In cap form a bubble is unlikely to burst 

explosively (Wallis, 1969; James et al. 2009) but could be observed at the surface through the 

increased speed of gases at the surface, for example the puffing activity often referred to at 

Stromboli (Ripepe et al. 2002; Tamburello et al. 2012), and Mt. Etna (Tamburello et al. 

Fig. 1.3: The range of most common basaltic activities prevalent on the Earth, split into two main sections: 

Passive and Explosive Degassing.  
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2013). A cap bubble can be present in bubbly flow, through to cap and even in slug flow (Fig. 

1.4). Cap bubbles could also be the drivers between the larger but passive bubble bursts at 

lava lakes (Bouche et al. 2010). 

A cap bubble then graduates to a slug morphology, also termed a Taylor bubble. A bubble 

becomes a slug when the falling film around the sides reaches its minimum value and has a 

length equal to or above the diameter of the conduit (Davies and Taylor, 1950, Wallis, 1969). 

It is these slugs that expand rapidly and cause strombolian eruptions (Fig. 1.3) such as those 

at Stromboli. How such large slugs and rising gas masses are formed is still a matter of 

debate, although it seems that both potential formation mechanisms, be it the rise-speed 

dependent model (Wilson, 1980; Parfitt and Wilson, 1995) or foam collapse (Jaupart and 

Vergniolle, 1988; Jaupart and Vergniolle, 1989; Vergniolle and Brandeis, 1994) have merit at 

different volcanoes and for different activity conditions (Vergniolle and Jaupart 1990; Parfitt, 

2004). Slugs are a major focus of this thesis. More in-depth detail on their behaviour is 

contained within chapters 4, 5, and 6. Similarly to a cap bubble, a slug, under certain 

conditions can still burst non-explosively at the surface (James et al. 2009).  

Fig. 1.4: Example flow regimes which can be present in liquids and magmas. Annular and Mist flow are 

highlighted red as there is no current direct proof that these are sustainable in terrestrial volcanism.  
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If gas supply and gas volume fraction begin to increase, the flow regime will begin to 

transition towards churn flow. During churn flow, the normally axisymmetric shapes of gas 

slugs will begin to deform (bubble 5 in Fig. 1.5), breaking down the more predictable 

behaviour of gas slugs (Taitel et al. 1980). As volume fraction begins to increase again, a 

transition to annular flow will occur. It is during this transition that a change towards 

hawaiian lava fountaining will occur . Annular flow is characterised by a liquid film and core 

of gas which can also suspend liquid droplets within (Triplett et al. 1999; Seyfried and 

Freundt, 2000; Lane et al. 2001). Lava fountaining, which can occur from a single vent or 

fissure, involves the coupled ejection of large volumes of magma, which can then go on to 

feed lava flows,  at speeds sufficient to push the fountain hundreds of metres above the vent. 

The final flow regime is mist or dispersed flow (Fig. 1.4). Here the gas phase completely 

disrupts the liquid film and is capable of entraining all of the liquid within the gas phase 

(Barnea, 1986; Triplett et al. 1999).  

Other common forms of basaltic volcanism include vulcanian, typical of volcanoes such as 

Sakurajima (Fig. 1.6), typical Icelandic volcanism which can occur sub or supra-glacially 

(Fig. 1.3), and phreatic explosive volcanism which can occur on interaction with seawater. 

The current preferred method of measuring emissions from volcanoes in general, not only 

those which are basaltic, is the monitoring of SO2, which, not only has a low background 

concentration, but absorbs strongly within the UV spectrum.  

Of all the described degassing styles, passive degassing and strombolian activity have 

received the most focus. The overwhelming majority of such studies have only been 

quantitative in nature, with little consideration of the dynamics of the driving activity style , 

i.e. existing studies on gas emissions tend to list only released amounts of gas without 

considering how that gas reaches the surface. This thesis aims to address this research gap 

Fig. 1.5: Example bubble morphologies in a magma. 1, perfectly 

spherical, 2, deformed bubbles, 3, a spherical cap bubble, 4, a gas slug 

(sometimes referred to as a Taylor bubble), 5 – a deformed slug. 
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through additional observations of basaltic activity and through comparison with 

mathematical and laboratory based models.  

The next section provides an overview of SO2 measurement techniques, including a more in-

depth look at the method used within this thesis, the UV camera.   

 

1.3.  A brief history of SO2 measurement 

Initially, the measurement of SO2 was very limited and involved manual techniques such as 

direct sampling at fumaroles and vents (Symonds et al. 1994). Whilst these methods did 

allow a first determination of SO2 flux (sometimes referred to as emission rate kg s
-1

) there 

were a multitude of associated issues, including time resolution, the potential for 

contamination in transport of samples to the laboratory for analysis and the potential dangers 

or inaccessibility of the sampling area/summit of the volcano  (Tamburello, 2011a).  

In light of these difficulties, the benefits of using remote sensing techniques to measure gases 

became more apparent, including both airborne (i.e. satellites, not discussed here) and ground 

Fig. 1.6: Vulcanian eruption at Sakurajima, Japan.  



8 
  

based measurements. One of the earliest of these techniques was Correlation Spectrometry 

using Correlation Spectrometers (COSPECs; Newcomb and Millán, 1970; Moffat et al. 1971; 

Moffat and Millán 1971; Stoiber et al. 1983). This technique is based upon the solution to the 

Lambert-Beer Law: 

 𝐼(𝜆) = 𝐼0(𝜆) ∙ 𝑒−𝜎(𝜆)∙𝑁∙𝐿  (Eq. 1.1) 

where I(λ) is the light intensity  after passing through the plume (or target area), I0 (λ) is the 

light intensity before passing through the plume, σ(λ) is the absorption cross-section for the 

particular gas of interested (e.g. SO2), N is the number of molecules in the optical path and L 

is the plume width. SO2 was quickly identified as an ideal target gas for these observations 

over the other common plume volatiles e.g., CO2 and H2O, due to its comparatively low 

background concentration and strong absorption features (Tamburello, 2011a). 

COSPEC was then succeeded by Differential Optical Absorption Spectroscopy (DOAS) 

(Platt and Stutz, 2008). DOAS involved the use of smaller and less expensive USB 

spectrometers that were easier to use in a volcanic setting and involved analysis across the 

UV spectrum (McGonigle et al. 2002; Galle et al. 2003; Tamburello, 2011a). There are 

several differing DOAS techniques including: traversing DOAS, scanning DOAS and the 

cylindrical lens DOAS. Traversing DOAS, possibly the least useful of the three, involves 

travelling beneath a plume or area of interest (by car, boat or foot) with a vertically pointing 

USB spectrometer collecting down-welling skylight. An integrated column amount (ICA) can 

then be determined over the length of the traverse by integrating overhead concentrations 

over the plume width. This reading can then be used to determine SO2 fluxes with knowledge 

of the plume transport speed (Tamburello et al. 2011a). Scanning DOAS involves an 

instrument which is in a fixed position; it can be particularly useful for permanent stations 

and offered a marked improvement in time resolution (a measurement every few minutes). 

An excellent example of such an application is the FLAME (FLux Automatic Measurement) 

network which allowed the real-time monitoring and transmission of SO2 flux information at 

Stromboli to be measured by the observatory (Burton et al. 2009; Burton et al. 2015a). 

Finally, cylindrical lens DOAS achieved significant time resolution improvements with 

sampling periods reduced to 1 s (McGonigle et al. 2007). However, this technique was also 

not without its disadvantages, in particular in terms of a complex alignment procedure 

(Tamburello et al. 2011a). This eventually led to the development of the UV camera for the 
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remote sensing of SO2 from volcanoes as a way of improving the time resolution of collected 

data and potentially reducing errors, in a straightforward measurement configuration. 

1.3.1.  The UV Camera 

The UV camera technique was originally based on the use of the ‘off-the-shelf’ Apogee 

instruments. The two most commonly used models are the Apogee Alta U260 (shown in Fig. 

1.7) and the Apogee Alta E6, although other cameras by different manufacturers are now in 

use. The technique was first employed by Mori and Burton (2006) and Bluth et al. (2007) and 

has since been frequently used by others in the study of SO2 flux. There are two main 

techniques for determining flux based on these units. The first technique, which is 

recommended by Kantzas et al. (2010), uses two images from parallel mounted UV cameras 

(or by some authors, a single camera with rotating filters) and compares the images on a pixel 

by pixel basis. The cameras are fitted with bandpass filters, which permit transit of light at 

310 nm and 330 nm, respectively, where SO2 in the plume absorbs/does not absorb down-

welling skylight. This technique allows a very high time resolution, potentially at ≈ 0.5 s (≈ 4 

s when a single camera is used [Mori and Burton, 2006]) and uses the following equation to 

calculate SO2 concentration: 

Fig.1.7: The Apogee Alta U260 

two camera , two filter, set-up. A 

cylindrical lens DOAS is also 

attached to aid with the 

calibration procedure. 
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𝐴 = − log10 [
(

𝐼𝑃𝛼
𝐼𝐵𝛼

)

(
𝐼𝑃𝛽

𝐼𝐵𝛽
)

]  (Eq. 1.2) 

where IP is the image of the plume and IB is the background image, α refers to the filter 

which detects SO2 absorption and β refers to the filter which does not. It is important to note 

here that SO2 absorption occurs in a window between 260-320 nm (Vandaele et al. 1994). 

The filters are usually centred between 300-320 nm for the absorption of SO2 and 320-340 

nm if not. A final SO2 concentration is achieved by calibrating the instruments prior to or 

during acquisition against cells of known SO2 concentration (Kantzas et al. 2010; 

Tamburello, 2011a). Calibration using a co-aligned DOAS instrument is preferred by some 

researchers (Kern et al. 2010a; 2010b). 

Alternatively, the second method is based upon the use of a single filter, solely in the SO2 

absorption band (Bluth et al. 2007). This does not allow for resolution between the 

attenuation of gas and the attenuation of aerosols, which also absorb in the ultraviolet 

(Kantzas 2010; Tamburello, 2011a). Therefore the equation for determining SO2 

concentration becomes: 

 𝐴 = − log10 (
𝐼𝑃𝛼

𝐼𝐵𝛼
)  (Eq. 1.3) 

omitting a direct comparison to a background image. However, whilst this is an intrinsically 

simpler approach, ignoring the aerosol absorption could, in practice, create larger errors. 

Despite the increasing popularity of this camera there are still several challenges faced when 

using this approach. For instance, achieving an ideal location for acquisition can be difficult 

due to the location of the sun and the vignetting issues that this results in: e.g., due to 

inhomogeneous solar illumination of the background sky (Kantzas et al. 2010). The light-

dilution effect, with some recent attempts at quantification (Campion et al. 2015), where light 

intensity is effectively reduced by scattering amongst other light-paths can also induce large 

errors.  In addition, climatic conditions can also play a part; if the plume is not visible due to 

fog or cloud cover then acquisition cannot occur. For a detailed discussion on the UV camera 

technique please see Kantzas et al. (2010). In addition, Tamburello et al. (2011b) have 

devised a user-friendly program, Vulcamera, which enables the use of the two-camera two-

filter set-up in the field with relative ease and subsequent processing SO2 flux data. As a 

result of these developments, the UV camera can now be used to investigate, for the first 
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time, the gas driven dynamics of rapidly occurring volcanic processes such as strombolian 

eruptions. 

1.3.2.  Application of UV cameras to degassing 

The main application of the UV camera to explosive basaltic eruptions, has been to 

strombolian activity due to issues with ash making gas remote sensing impossible in other 

classes of explosion, whose eruption plumes are rather more ash rich (Tamburello, 2011a). 

Dalton et al. (2010) used a ≈ 4 s resolution dataset to quantify the amount of gas released 

during a single strombolian eruption in combination with infrasonic data. This built on earlier 

work by Vergniolle and Brandeis (1996) and Vergniolle et al. (1996) who developed a 

method for assessing gas release using infrasonic measurements. Mori and Burton (2009) 

then used the UV camera to estimate gas mass from single strombolian eruptions at Stromboli 

and discovered that the acoustic method under-estimates the size of gas mass. Gas mass is an 

important feature in understanding degassing. It can unlock details about the exsolution 

source depth and potentially reveal information regarding the shallow plumbing system 

beneath volcanoes, particularly when using a multi-dataset approach.  

In general, there has been a lot of investigation into the mechanisms and the processes 

affecting the explosive aspects of basaltic volcanism. However, a very recent discovery 

concerning passive degassing, which is discussed in Tamburello et al. (2013) and Chapter 2 

highlights the great importance of this rather less spectacular degassing style. In this paper 

the authors propose that a periodic SO2 degassing activity, which is observed on timescales of 

40-250 s at the North-East crater of Mt. Etna, is caused by waves of bubbles which rise 

Fig.1. 8: The view of the North-East Crater plume of 

Mt. Etna form the Pizzi Deneri Volcano Observatory 
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within the conduit and burst at the surface producing the oscillating flux signal captured with 

the UV camera. This short-period degassing is referred to as “puffing” in the literature. 

Tamburello et al. (2013) also noted the presence of a longer period >2000 s flux modulation, 

however, they did not comment further due to the relatively short duration of the dataset. In 

addition a 2000 s variation is mentioned in Nadeau et al. (2011). These authors propose that 

the short-term variation is likely caused by waves in line with an earlier model detailed in 

Manga (1996) and further suggest that the cause may be related to time-dependent changes in 

bubble size and magmatic vesicularity. The process is likely limited to the upper 1 km of the 

conduit due to the lack of correlation with the seismic signal, which is generated at greater 

depth; however the authors do not pursue into this in detail. This work is important as it 

demonstrates that these characteristics may be present at other open-vent volcanoes. Indeed, 

Peters et al. (2014a), Girona et al. (2015), Ilanko et al. (2015a, 2015b), have all identified a 

periodic structure to degassing at Erebus over a ≈ 10 min window in SO2, H2O and gas ratios. 

This cyclic degassing process therefore warrants further research. Aiuppa et al. (2007) further 

signify the importance of studying passive degassing as it may prove useful in eruption 

forecasting. 

Developments such as these have come about because of the high temporal resolution 

capabilities of the UV camera. SO2 flux data can now therefore reveal aspects of basaltic 

degassing in much more detail than possible hitherto. Due to the low time resolution of 

collected SO2 data in the past it was incomparable to seismic data. However, as sampling 

frequencies approached 1 Hz and faster it became possible to compare SO2 flux data to 

similarly high resolution seismic and infrasonic data (McGonigle et al. 2009). There are 

several such examples of such work including Nadeau et al. (2011) at Fuego Volcano 

(Guatemala) who observed a correlation between SO2 emission rates and volcanic tremor 

indicating that the generation of the seismic tremor and the rise and fall of SO2 flux rates 

originate from the same source process. This work confirmed the long-held belief that there is 

a link between a rising gas slug and tremor as is discussed in Chouet et al. (2003). However, 

the mechanism is still highly unconstrained and Nadeau et al. (2011) conjecture that it could 

be caused by the oscillation of bubbles, a resonance in the conduit, the movement of the 

magma or the coalescence of bubbles. The high temporal resolution ability of the UV 

cameras allow the measurement of much more rapid strombolian, on the order of seconds, a 

goal which has yet to be achieved.   
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Due to its ease of access and frequent eruptions, Stromboli has been a strong target for study 

with the UV camera. A recent study by Tamburello et al. (2012) produced an in depth 

summary of both passive and active forms of degassing at Stromboli. The authors managed to 

extract the slug size and relate the size of the VLP (Very-Long Period) seismic signal to the 

amount of SO2 released during an explosive eruption, similarly to McGonigle et al. (2009).  

This was key as it allowed the corroboration of the analysis by Chouet et al. (2003) which 

revealed that the source depth of tremor is at 300 m. However, the analysis by Tamburello et 

al. (2012) did more to highlight the small amount that explosive processes contribute to the 

daily SO2 budget at Stromboli, a mere ≈ 7%. In total, active degassing (explosive events and 

puffing) was calculated to contribute ≈ 23% of SO2 and passive ≈ 77%. This highlights the 

importance of further study into passive degassing and modelling of these processes. Indeed, 

because Stromboli possesses such reliable activity it is an ideal location to monitor and 

collect a large number of observations of strombolian activity. This will then enable this 

thesis to investigate variability and phenomena present within such a database. 

Often the UV camera can be used in combination with other gas measurement or sampling 

equipment. One such instrument is the Multi-GAS analyser, which extra-actively samples gas 

at resolutions of temporal resolutions ≈ 0.5 Hz. These gases include CO2, SO2, and H2O, the 

major constituents of gas within a magma (Shinohara 2005; Aiuppa et al. 2005). By 

combining measurements SO2 flux with spot measurements of gas ratios using the Multi-

GAS analyser, it is possible to estimate total fluxes from a source (e.g. Aiuppa et al. 2008). In 

particular, the UV camera is particularly useful when used in combination with a Multi-GAS 

analyser as the spatial capabilities of the camera can be used to co-locate the two instruments 

(Tamburello et al. 2011a).  

The UV camera has also be used to investigate the degassing of more viscous magmas such 

as those at Santiaguito volcano (Guatemala), where a rheologically stiff lava dome is in place. 

Holland et al. (2011) used the camera to investigate degassing processes during the extrusion 

of the dome which has occurred since 1922. The high time resolution SO2 flux data allowed a 

full assessment of the mode of degassing, which would have been difficult with previous 

methods. This work highlights the utility and adaptability of the camera to a variety of 

situations and further illustrates that volatiles are important in all varieties of volcanic 

settings. 
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1.4.  A brief introduction to modelling basaltic degassing 

Modelling of basaltic degassing is performed in two main ways: Firstly through analogue 

laboratory experiments, and secondly through computational fluid dynamics (CFD). The 

purpose of analogue experiments is to reduce the size of a volcanic system into a manageable 

and controllable environment. These then enable the investigation of scaled volcanic 

phenomena including, of particular importance for this thesis, slug flow (Del Bello et al. 

2012, 2015; Jaupart and Vergniolle, 1988; James et al. 2004, 2006, 2008, 2009; Lane et al. 

2013; Llewellin et al. 2012, 2013, 2014a). CFD provides an excellent way of modelling 

volcanic scale phenomena (Suckale et al. 2010a; 2010b), although, validation of observations 

using laboratory experiments (James et al. 2008), field-based observations, or existing 

mathematical relationships is still needed. 

The majority of analogue experiments are directed at slug flow. Studies by James et al. 

(2008) and Del Bello et al. (2012) seek to provide a way to estimate final lengths of gas slugs 

at burst, along with values for overpressure which are a way of estimating explosivity of an 

event. James et al. (2009) followed on from this, devising a way to predict whether a gas slug 

will burst with or without overpressure. Previous experiments have also endeavoured to 

characterise geophysical signals associated with the ascent and burst of a gas slug (James et 

al. 2004; Lane et al. 2013). A series of more recent studies have focused on the burst 

mechanism of a slug, with a specific focus on Stromboli (Taddeucci et al. 2012; Del Bello et 

al. 2015). In particular, Del Bello et al. (2015) suggest that rheological heterogeneities nearer 

to the surface of the conduit at Stromboli (i.e. a more viscous cap) could act to disrupt and 

alter the way that slugs burst at the surface.  

The studies cited in the last paragraph, to this point, have all concerned small scale laboratory 

experiments over conduits on the order of cms in diameter and several metres in length. 

Llewellin et al. (2012) used a larger scale tube on the order of a metre in diameter and tens of 

metres in length to improve previous estimates on liquid film thicknesses between the conduit 

wall and the gas phase of the bubble (Fulford, 1964; Karapantsios et al. 1989; Lel et al. 2005, 

Zhou et al. 2009). Llewellin et al. (2013; 2014a) are also among the first to begin to 

investigate the effects of multiple slugs in a conduit, as opposed to single slugs, beyond the 

postulations of Seyfried and Freundt (2000). Seyfried and Freundt (2000), in addition to 

James et al. (2004) began to consider the effects of an inclined conduit and heterogeneities in 
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the conduit on the stability and signals generated during slug flow. Witham et al. (2006) take 

this work further, but investigate oscillations in lava lakes.  

Jaupart and Vergniolle (1988) have investigated the formation and collapse of foams, with a 

particular focus on Kilauea. Here, they used a tank (i.e. a magma chamber or storage zone) 

with a tube attached to the top to simulate a conduit. They then allowed the collection of 

bubbles at the top of the tank which led to the formation of a foam, which after a certain 

period collapsed in the conduit to produce a slug. Jaupart and Vergniolle (1989) then 

quantified this process.  

Studies on slug flow using CFD are less commonplace within the volcanic literature. CFD 

operates by solving the Navier-Stokes equations for given liquids, predicting their motion. In 

particular CFD in a basaltic context solves the problem of how a gas would move within a 

magma. James et al. (2008) used 3D models to validate a mathematical relationship for 

predicting the length of volcanic slugs. Suckale et al. (2010b), using their own developed 

CFD model (Suckale et al. (2010a), and fluid dynamical consideration on the stability of 

bubbles (Clift et al. 1978; Grace et al. 1978), suggested minimum viscosity limits for stable 

slug flow (Suckale et al. 2010b; James et al. 2011). Capponi et al. (2014) have introduced 

CFD in an attempt to compare laboratory regime simulations of a rheologically thicker 

viscous cap to a full volcanic scale.  The non-volcanic literature has used CFD to characterise 

the behaviour of coalescing slugs (Araujo et al. 2012, 2013), and characterise important 

features of a slug including its wake (Campos and Guedes de Carvalho, 1988; Nogueira et al. 

2006).  

The have been a large number of modelling studies conducted, particular of the single slugs 

which drive strombolian activity. However, these studies are self-contained and don’t involve 

the use of empirical data for comparison. This thesis will therefore address this by combining, 

in unprecedented detail degassing measurements with modelling studies using CFD and 

existing mathematical models. In addition, work discussing the transitions between different 

styles of activity has been neglected for decades (e.g. Parfitt et al. 1995), this thesis will also 

look to build on this in a basaltic context but bringing in almost completely neglected drivers 

of more explosive styles of degassing such as hawaiian lava fountaining.   
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1.5.  Objectives 

The overall objective of this work is to combine measurements using UV cameras, with 

computational and analogue models of gas flow, to investigate the dynamics of basaltic 

degassing. The main objectives are described below.  

1.5.1. Objective 1 

Investigate trends in passive degassing using UV cameras. Here, the UV camera will be used 

to investigate recently observed trends in passive degassing and potential links to geophysical 

activity. Trends in passive degassing following on from explosive degassing are also 

important and will be investigated in combination with Objective 2.   

1.5.2. Objective 2 

Investigate explosive degassing using UV cameras. To address this objective, UV cameras 

will be used to measure strombolian activity at Mt. Etna and Stromboli. Here, I am 

particularly interested in activity generated by the rising and bursting of volcanic slugs. 

1.5.3. Objective 3 

Model explosive degassing. Here, models of slug driven activity will be developed and 

applied to understand the UV camera data collected for the purpose of addressing Objective 

2. Two methods will be used, laboratory experiments and CFD. Little has been done to 

compare measurements of explosive degassing (as part of Objective 2) with models. This 

thesis will address this issue. 

1.5.4. Objective 4 

Investigate transitions between different styles of activity. There is a large gap in the volcanic 

literature addressing regime transitions between different styles of activity, particularly across 

the whole range of basaltic degassing from passive to hawaiian lava fountaining. This 

objective will draw on the results of investigations into Objective 2 and Objective 3, with the 

aim of developing a model to characterise and categorise basaltic degassing. 
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1.6.  Thesis Structure 

During the course of conducting the research for this thesis a number of the chapters and 

material contained therein have been prepared and submitted to international journals for 

publication. The following descriptions of each chapter outline where material has been 

published and the objectives which are thereby addressed.   

Chapter 2 supports Objective 1. The work in this chapter has been included in three 

publications. The major portion of the work is contained in:  

Pering, T. D. Tamburello, G., McGonigle, A.J.S., Aiuppa, A., Cannata, A., Giudice, G., 

Patanè, D., 2014a.  High time resolution measurements of volcanic carbon dioxide degassing 

on Mt. Etna. Journal of Volcanology and Geothermal Research 270, 115-121, 

doi:10.1016/j.jvolgeores.2013.11.014.  

This publication addressed the measurement of CO2 fluxes during passive degassing by 

combining UV camera measurements of SO2 and a Multi-GAS analyser, this then enabled the 

comparison of these datasets with geophysical data. However, a new technique, based on the 

continuous wavelet transform, was needed to undertake this:    

Pering T.D., Tamburello, G., McGonigle, A.J.S., Hanna, E., Aiuppa, A., 2014b. Correlation 

of oscillatory behaviour in Matlab using wavelets, Computers and Geosciences 70, 206-212, 

doi:10.1016/j.cageo.2014.06.006 

The final portion of this chapter with a contribution from a publication is from the following: 

Tamburello, G., Aiuppa, A., McGonigle, A.J.S., Allard, P., Cannata, A., Giudice, G., Kantzas, 

E.P., Pering, T.D.,2013, Periodic volcanic degassing: The Mount Etna Example, 

Geophysical Research Letters 40 (1-5), doi:10.1002/grl.50924 

This paper described the periodic nature of degassing at Mount Etna, with my work 

specifically on investigating the volcanogenic nature of these links included here.  

Chapter 3 supports Objectives 1, 2 and 3. Both the explosive portion of a strombolian 

explosion from Stromboli and that released passively following an event are investigated and 

then compared to computational models. This work was presented at EGU in 2015: 

http://www.sciencedirect.com/science/article/pii/S0377027313003508
http://www.sciencedirect.com/science/article/pii/S0098300414001484
http://onlinelibrary.wiley.com/doi/10.1002/grl.50924/full
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Pering, T.D., McGonigle, A.J.S., James, M.R., Tamburello, G., Aiuppa, A., 2015a. 

Comparing computational models of slug rise at Stromboli with UV camera measurements of 

SO2 flux. In: EGU General Assembly 2015, Vienna. 

Chapter 4 supports Objectives 2 and 3. This chapter describes measurements of rapid 

strombolian activity from the Bocca Nuova crater of Mt. Etna. Basic models are applied to 

aid the understanding and dynamics of the activity. This work is contained in the following 

publication: 

Pering, T.D. Tamburello, G., McGonigle, A.J.S., Aiuppa, A., James, M.R., Lane, S.J., Sciotto, 

M., Cannata, A., Patanè, D., 2015b. Dynamics of mild strombolian activity on Mt. Etna. 

Journal of Volcanology and Geothermal Research 300, 103-111, 

doi:10.1016/j.volgeores.2014.12.013 

Chapter 5 supports Objectives 3 and 4. By using laboratory experiments and computational 

fluid dynamics rapid strombolian activity, driven by multiple rising slugs, is investigated. 

This builds on observations made in Chapter 4 and is based on work presented at AGU in 

2014: 

Pering, T. D. McGonigle, A. J. S., James, M.R., Lane, S.J., Capponi, A., Tamburello, G., 

Aiuppa, A., 2014c. Observations on Multi-Slug Activity – Implications for Volcanic 

Processes. In: AGU Fall Meeting 2014 San Francisco. 

Chapter 6 supports Objective 4. This final results chapter brings together the discoveries and 

observations in Chapters 4 and 5, with particular reference to unifying the study of the 

differing forms of basaltic degassing based on the rapidity of degassing. This work was 

introduced at AGU in 2014: 

Pering, T. D. McGonigle, A. J. S., James, M.R., Lane, S.J., Capponi, A., Tamburello, G., 

Aiuppa, A., 2014c. Observations on Multi-Slug Activity – Implications for Volcanic 

Processes. In: AGU Fall Meeting 2014 San Francisco 

Chapter 7 concludes the thesis with a discussion on the themes presented in Chapters 2 

through 6 and the important take home messages for future studies advancing the 

combination of measurements of degassing with models. The conclusions of each chapter are 

also reiterated here.  

 

http://www.sciencedirect.com/science/article/pii/S0377027314003874
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2. High temporal resolution measurements 

of  CO2 and SO2 using  ultra-violet 

cameras  
 

In Chapter 2 the UV camera, in combination with a Multi-GAS analyser, was used at Mt. 

Etna for the measurement of SO2 and CO2. This enables, for the first time, comparisons at 

high temporal resolutions of 1 Hz, between SO2, CO2 degassing and geophysical datasets. 

Within these datasets several periodic degassing and geophysical features are identified and 

discussed. This chapter and outlined techniques are based on work already published in three 

journals, including: Pering, T. D. Tamburello, G., McGonigle, A.J.S., Aiuppa, A., Cannata, 

A., Giudice, G., Patanè, D., 2014a,  High time resolution measurements of volcanic carbon 

dioxide degassing on Mt. Etna, Journal of Volcanology and Geothermal Research 270, 115-

121, doi:10.1016/j.jvolgeores.2013.11.014; Pering T.D., Tamburello, G., McGonigle, A.J.S., 

Hanna, E., Aiuppa, A., 2014b, Correlation of oscillatory behaviour in Matlab using wavelets, 

Computers and Geosciences 70, 206-212, doi:10.1016/j.cageo.2014.06.006; and on analysis 

contributed to Tamburello, G., Aiuppa, A., McGonigle, A.J.S., Allard, P., Cannata, A., 

Giudice, G., Kantzas, E.P., Pering, T.D.,2013, Periodic volcanic degassing: The Mount Etna 

Example, Geophysical Research Letters 40 (1-5), doi:10.1002/grl.50924 

2.1.  An introduction to gas measurement at Mt. Etna  

Mt. Etna (37.734°N, 15.004°E) is a strato-volcano located in Sicily, Italy (see Fig. 2.1) and is 

the largest time-averaged contributor to volcanogenic emissions of both SO2 and CO2 in 

Europe (Allard et al. 1991; Gerlach, 1991). The latter results from magmas which are already 

CO2 rich (Spilliaert, et al. 2006), increasing the importance of its detection and measurement. 

Mt. Etna fluctuates between periods of quiescence, where passive degassing dominates, and 

active periods dominated by “paroxysms” associated with lava fountaining and strombolian 

activity (GVP, 2013). There are currently five summit craters which demonstrate open vent 

persistent degassing behaviour: Bocca Nuova (BN), Voragine (VOR), North East Crater 

(NEC), South East Crater (SEC) and the recently formed New South East Crater (NSEC). 

Each of these craters, which have varying rates of emission, exhibit dominant forms of 

activity (e.g. Caltabiano et al. 2004; Aiuppa et al. 2008). 
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CO2 is a vitally important 

volcanogenic species to 

measure as it exsolves at much 

greater depths than other most 

common species (Giggenbach, 

1996). It therefore acts as a 

better measure of magma 

movement at depth, compared 

to the more commonly 

measured SO2, and has greater 

potential for early warning of 

eruptive activity (Aiuppa et al. 

2010). To date, CO2 flux 

determinations at volcanic 

targets globally have been 

limited and are generally 

restricted to lower time 

resolutions on the order of 

minutes to hours, and 

associated with estimates based on ratios only, although contributions have been made by: 

Wardell et al. (2004) for Mount Erebus, Antarctica; Koepenick et al. (1996) for Ol Doinyo 

Lengai, Tanzania; Werner et al. (2006) for White Island, New Zealand; Werner et al. (2012a; 

2012b) for Redoubt, Alaska and Poland et al. (2012) for Kilauea, Hawaii.  A relatively recent 

development is the use of portable gas analysers, called Multi-GAS analysers (see Aiuppa et 

al. 2005; Shinohara, 2005). These allow the measurement of a number of gas species at high 

resolutions of ≈ 0.5 Hz, and have been used successfully on Mt. Etna, particularly for the 

measurement of rapidly altering gas ratios prior to eruptions (Aiuppa et al. 2008; 2010). 

Advancement in capabilities of measuring CO2 fluxes, particularly at high temporal 

resolution on the order of seconds, would represent a significant advancement in volcanic 

remote sensing, allowing, for the first time comparison with contemporaneously acquired 

geophysical data. 

By combining measurements of SO2, using UV cameras, with a Multi-GAS analyser (Aiuppa 

et al., 2005; Shinohara, 2005) it is possible to create a contemporaneous CO2 flux dataset at 

Fig. 2.1: Digital Elevation Model (DEM) of the summit area of 

Mt. Etna courtesy of Alessandro Aiuppa (Palermo University) and 

its location within Sicily and Italy. The black arrow at (a) 

illustrates the plume direction; inset (lower right) shows an 

example SO2 absorption image during acquisition, where (b) 

shows the point of integration for determining the Integrated 

Column Amount (ICA) of SO2, also shown at (c). Reprinted with 

permission from Elsevier.  
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equivalent temporal resolutions to that of the UV camera. The following sections describe the 

application of this technique to the North-East Crater of Mt. Etna and subsequent analysis.   

2.2.  Measurements of SO2 flux and CO2/SO2 ratios at Mt. Etna 

UV cameras were located at the Pizzi Deneri volcanic observatory (37.765763°N, 

15.016640°E), ≈ 2 km from the NEC plume, for the purposes of measuring SO2 emission 

rates from the NEC, which is typically the largest SO2 contributor of all the summit craters 

(Aiuppa et al. 2008). For this campaign we used Apogee Alta U260 cameras. These cameras 

operate with 16 bit, 512 × 512 pixel Kodak-KAF-0261E cooled CCD array detector, UV 

lenses (Pentax B2528) of focal length = 25 mm and a field of view ≈ 24° are placed in front 

of each camera. Following this, 10 nm filters, centred at 310 nm for the absorption of SO2 

and 330 nm for where SO2 doesn’t absorb incident UV radiation, respectively, are placed in 

front of the lenses. Absorption images were captured at a temporal resolution of ≈ 0.5 – 1 Hz, 

using the Vulcamera software developed by Tamburello et al. (2011b). Vulcamera allows the 

user to fully control the UV cameras, including: dark current image acquisition (for 

correction of the natural noise of the CCD array), altering exposure settings (to ensure that 

the CCD array does not become saturated with light), vignetting image capture (to correct for 

the non-uniform distribution of light, as a result of inhomogeneous solar illumination and lens 

shape), and for calibration. Calibration was performed with four quartz cells which contained 

known concentrations of SO2 (100, 200 1000, and 2000 ppm), resulting in a calibration line 

with an R
2
 of > 0.99. When placed in front of each lens this allows the conversion of 

collected absorption images to calibrated values. For full details of the methodology see 

Kantzas et al. (2010). 

Conditions on the measurement day (12
th

 September 2012, between 08:45 and 09:45 GMT) 

were suitable, with a clear and uniformly lit background sky behind the non-grounded plume. 

Work by Lübcke et al. (2013) suggests that the cell calibration technique during measurement 

conditions such as those observed, including a near-transparent plume (i.e. not completely 

condensed) is suitable, without the need for additional DOAS assisted calibration, and is 

subject to low-levels of error (see also Kern et al. 2010a). Recent attempts by Campion et al. 

(2015) to provide estimates of potential error due to radiative transfer (i.e. via the light 

dilution effect), provide a step in the right direction for UV camera measurements. This work 

suggests that at a distance of < 4 km, error related to radiative transfer, during clear 
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conditions, could result in a ≈ 20 % underestimation in SO2 flux calculated. As the camera 

was situated only ≈ 2 km from the source, one can speculate that error could be even lower.  

Following the successful calibration of absorption images (example in Fig. 3), SO2 flux was 

calculated using the Vulcamera code (Tamburello et al. 2011b). This involves integration of 

column amount values along the plume cross-section, in a perpendicular orientation to plume 

travel direction, to determine the integrated column amount (ICA) of SO2 (see Fig. 2.1, line 

[b] in inset calibrated absorption image, also shown is this line with respect to the NEC crater 

at [c]). SO2 flux can then be calculated by multiplying by the plume speed. Plume speed can 

be calculated in a number of ways, including the use of optical flow algorithms (e.g. Peters et 

al. 2015). However, here we use the frequently used cross-correlation technique (McGonigle 

et al. 2005; Williams-Jones et al. 2006), which works by taking two points along the plume 

and calculating two separate ICA time series. By combining knowledge of the distance 

between these two lines, cross-correlation can then produce a plume speed. During the hour 

of acquisition, this rate was relatively constant at 13.4 m s
-1

. The final step in the production 

of an SO2 flux dataset, given the instability of acquisition rate, which varied between ≈ 0.5 – 

1 Hz, required linear interpolation to a uniform 1 Hz dataset.  

Simultaneously, a Multi-GAS analyser was placed in the plume of the NEC crater, ≈ 100 m 

away from the vent, to measure CO2/SO2 ratios (see Fig. 2.1 for location). A Multi-GAS 

analyser is a self-contained unit used to measure a range of volcanogenic gases at high 

resolution, including: H2O, CO2, SO2, H2, CO, and H2S. Here one was specifically interested 

in the measurement of CO2 and SO2 concentration, and their associated ratio. For the 

measurement of CO2 the Muli-GAS uses an infrared sensor (Edinburgh Instruments, Gascard 

II). This sensor has a sensing range of 0 – 3000 ppm, suitable for use in a volcanic 

environment, and an error of ± 2%. The SO2 sensor is an electrochemical sensor (City 

Technology 3ST/F0), with a range of 0 – 200 ppm, similar accuracy of ± 2%. Prior to use in 

the field, the Multi-GAS analyser was calibrated in the lab both over the sensor ranges as 

well as using a mix of CO2 and SO2 to simulate a volcanic plume. During all tests pure 

nitrogen was used as a zero baseline. Given the difference in response times of the two 

sensors (the t90 figure – i.e. the time taken to reach 90 % of actual value), measured error is 

higher at ≈ 15 %. Given the ability of the Multi-GAS analyser to sample at 0.5 Hz, the rapid 

response and ability of the sensors to react to changes in gas concentration is essential (i.e. 

one needs to be sure that observed oscillations in ratios are not a result of differences in 

sensor response time). Fig. 2.2 shows the results of a test using a known concentration of CO2 
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and SO2 pumped into the Multi-GAS inlet at a constant rate. During the first ≈ 70 s of the 

test, constant concentrations of CO2 and SO2 were used, demonstrating an error of ≈ 2 %.  

Gas concentrations of SO2 and CO2 were increased simultaneously to ≈ 30 ppm and ≈ 880 

ppm respectively (again see Fig. 2.2) and then subsequently decreased. This test demonstrates 

that on periods of ≈ 10 s there is a small amount of error (≈ 15 %) associated with the 

differences in sensor response time. This gives confidence in the ability of the Multi-GAS to 

measure rapid changes in CO2/SO2 ratio.          

Readings of SO2 from the Multi-GAS analyser need no correction due to low atmospheric 

background levels; however, CO2 does need to be corrected. By plotting raw CO2 values 

against SO2,the background level of CO2 is taken as the intercept of the regression line with 

the y axis; a level of ≈ 200 ppm. The GPS time-stamped Multi-GAS readings were then 

interpolated to 1 Hz to allow direct comparison and combination with UV SO2 fluxes. 

SO2 flux estimation (i.e. the location of ICA determination) was performed ≈ 180 m 

downwind of Multi-GAS. To temporally synchronise the UV dataset with the Mulit-GAS the 

lag between the two was calculated at ≈ 13 s using the determined plume speed (e.g. the 

different view configuration between the UV camera and Multi-GAS unit needed to be 

Fig. 2.2: The results of a laboratory controlled test of the Multi-GAS analyser (data courtesy of Giancarlo 

Tamburello and Alessandro Aiuppa, Palermo University). Reprinted with permission from Elsevier. 
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corrected for). Indeed, this value is corroborated as a lag of ≈ 13 s is also determined by 

cross-correlating UV SO2 flux with Multi-GAS SO2 readings.   

2.2.1.  Existing techniques for analysing and comparing trends in 

volcanic data 

A number of techniques are used to probe periodic behaviours which are particularly 

prevalent in environmental signals. Amongst the most popular are the Fourier transform (e.g. 

Welch, 1967; Harris, 1978; Oppenheim et al. 1999), and the wavelet transform (e.g. Morlet et 

al. 1982; Daubechies, 1990; Colestock, 1993; Huang et al. 1998; Torrence and Compo, 1998; 

Grinstead et al. 2004). Fourier transforms (also known as power spectral densities [PSDs]) 

probe the frequency characteristics of a signal with no regard to stability of an oscillation 

with time, solely the power (Welch, 1967). Hence, Fourier analysis is valuable for long-lived 

but stable periods. However, a 

spectrogram (Short Fourier Transform) 

does show frequency change with time. 

There is a varying array of wavelet 

analysis techniques, including a discrete 

version. However, of these the 

continuous wavelet transform (CWT) is 

the one which can potentially provide 

more detailed information about the 

frequency characteristics (i.e. 

periodicities) and power of each 

frequency within a signal as a function of time. The wavelet technique works by conjugating 

a mother wavelet with the target signal. During this process the mother wavelet is scaled, 

according to a set of scales defined by the sampling rate of the signal. For example, for a 

signal 1000 s long, at a sampling rate of 1 s, 500 different scales of wavelet are created, equal 

to the theoretical lengths of a periodic oscillation at a scale of 1s, 2s, 3s, etc.. The range of 

scales is set at half the signal length according to the Nyquist criterion (Nyquist, 2002), which 

states that no oscillation longer than half the signal can be reliably detected, purely because 

only one full oscillation could be observed within the signal length. The resultant wavelet 

spectrum produced by the CWT then provides a normalised scale of match between the 

Fig. 2.3: An example mother wavelet, the Morlet wavelet 

(Morlet et al. 1982), generated using the Matlab® 

wavelet toolbox. Reprinted with permission from 

Elsevier. 
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varying scaled mother wavelets with time. Of importance is the style of mother wavelet 

chosen. Here and throughout this work we use the Morlet wavelet (see Fig. 2.3). It is 

necessary to use a wavelet with a shape similar to any expected target oscillation, a criterion 

which the Morlet wavelet meets (other appropriate wavelets include the Gaussian wavelet). 

The Morlet wavelet function is created as follows (Morlet et al. 1982; Grinstead et al. 2004): 

𝛹0(𝜂) =  π−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2   (Eq. 2.1) 

where, 𝛹0(𝜂) is the Morlet wavelet function with associated dimensionless time frequency, 

with  𝜔0 also a dimensionless frequency for the wavelet. Following this the CWT can be 

calculated: 

𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′𝛹

∗ [(𝑛′ − 𝑛)
𝛿𝑡

𝑠
]𝑁

𝑛′=1   (Eq. 2.2) 

where t is the time step, 𝑥𝑛 the target signal, 𝑁 represents the maximum Nyquist defined 

scale, 𝑛 the length of the target signal, ∗ the conjugate, and 𝑊𝑛(𝑠) the scale of the wavelet. 

The described techniques are used to probe the periodic characteristics of a single dataset 

only. Often, when investigating links in datasets, particularly in the climatic sciences (e.g. 

Philander, 1990; Hurrell, 1995; Hurrell et al. 2003; Lockwood, 2012) where climatic 

oscillations such as the North Atlantic Oscillation and El Niño are frequently cited as 

influences on local and regional climates, it is necessary to probe links between two datasets. 

Traditional techniques such as correlation, regression, and t-tests are less successful at 

extracting information on correlation between inherently noisy natural signals. It is for this 

reason that wavelet coherence, which takes advantage of the smoothing associated with the 

wavelet process (i.e. via convolution), is often used (e.g. Grinstead et al. 2004; Cannata et al. 

2013a; 2013b). However, the outputs associated with wavelet coherence are unintuitive and 

hard to interpret as a result. In the following section a new and easy to use technique, based in 

Matlab® is outlined to enable the easy comparison of two noisy datasets, significantly 

expediting the comparison of volcanic datasets. The technique is described in detail in section 

2.2.2 and implemented on collected volcanic datasets from Mt. Etna in section 2.3. 
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Fig. 2.4: In a) the synthetic signals with no lag and sinusoidal oscillations infused with random noise used 

for implementing the “corrplot” technique, b) the resulting corrplot image demonstrating period of 

matching oscillation, and c) and d) which show the PSDS of each separate sinusoidal signal, with dominant 

frequency at ≈ 125 s (0.008 Hz). Reprinted with permission from Elsevier. 

Fig. 2.5: Output from the “corrplot” code: a) the correlation coefficients extracted from the 1:1 line in Fig 2.4b, 

b) the wavelet coefficients extracted at the scale of maximum correlation, and d) those at minimum correlation. 

Reprinted with permission from Elsevier. 
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2.2.2.  A new technique for comparing trends in geophysical datasets 

By correlating the output of the CWT at each scale for two different signals (normalised prior 

to processing) of equal length and sampling rate with the Spearman’s rank correlation 

coefficient (𝑟𝑠; Spearman, 1904; Zar, 1972) a visual representation of correlation in a single 

plot can be produced:  

𝑟𝑠(𝑊𝑛𝑖) = 1 −  
6 ∑ 𝑑𝑖

2(𝑊𝑛𝑖)

𝑛(𝑛2−1)
  (Eq. 2.3) 

 

where 𝑑𝑖
2 is the value associated with the ranked output at each specific CWT scale, and 𝑛 is 

the length of the dataset. A code “Corrplot” has been developed in Matlab® (Pering et al. 

2014b), and is available in Appendix A. An example application of this technique using 

associated Matlab® code on 

synthetic signals is demonstrated 

in Fig. 2.4 and 2.5, which shows 

that on artificially generated 

sinusoidal signals of ≈ 125 s, 

with added random noise, the 

developed technique clearly 

highlights the shared period of 

within the range of 75 – 150 s. 

Reassuringly, no further 

correlations over longer periods 

appear. Fig. 2.6. shows an 

example of perfect oscillatory 

correlation (i.e. essentially identical signals). The code also extracts data along the white 1:1 

line, for example in Fig. 2.4b. It is along this line that one would expect that mutual 

oscillations would best match (i.e. a period of 300 s is unlikely to be related to a period of ~ 

10 s). This is illustrated in Fig. 2.5. To aid with oscillatory identification the CWT scales at 

the points of maximum and minimum correlation are also generated. Similarly, these outputs 

can be used to aid in identification of any potential lags present in the datasets. A further part 

of the tool uses cross-correlation over the range of scales to quantify and identify the power 

 
Fig. 2.6: Perfect oscillatory correlation between two identical 

signals. The white line shows the location of the 1:1 line. 

Reprinted with permission from Elsevier. 
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Fig. 2.7: a) example cosinusoidal and sinusoidal signals (i.e. in antiphase), b) a further output of the 

“corrplot” code which shows the result of cross-correlation of each wavelet coefficient at each scale, this 

enables the identification of lags. Reprinted with permission from Elsevier. 

Fig. 2.8: a) temperature and relative humidity data taken from the University of Sheffield, Department of 

Geography weather station (data courtesy of Edward Hanna, University of Sheffield), in b) the resultant 

“corrplot” output showing strong links on a timescale of >8 days. In c) and d) are the respective wavelet plots for 

the raw data, and in e) and f) the wavelet coherence and cross wavelet spectrum respectively, clearly 

demonstrating that it is easier to identify common periods using the “corrplot” output. Reprinted with permission 

from Elsevier. 
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and stability of lags with time. We demonstrate this on two separate artificially generated 

signals of period 90 s, one a cosinusoid and the other a sinusoid, i.e. in antiphase (Fig. 2.7).    

To demonstrate the ease of identifying oscillatory links between two datasets, we applied the 

code on temperature and relative humidity data from the University of Sheffield, Department 

of Geography weather station (data courtesy of Edward Hanna, University of Sheffield), the 

results are illustrated in Fig. 2.8. Here, we also produced plots of wavelet coherence (Fig. 

2.8e) and the cross wavelet spectrum (Fig. 2.8f). In Fig. 2.8b it is clearly apparent that there 

are strong links on periods of ≈ 200 – 8000 hours (i.e. 8 – 33 days), and at ≈ 24 hours there is 

strong anti-correlation at R
2
 = -0.94 (associated with the diurnal cycle). On interrogation of 

the results of wavelet coherence these links are much more difficult to identify, in contrast to 

the ready visualisation provided by the corrplot code.  

The final demonstration of the developed code is on Multi-GAS data, for CO and H2S, whilst 

the Multi-GAS analyser was placed inside the plume of the North-East Crater. Here, we 

demonstrate links between the two datasets over distinct periods within the range ≈ 300 – 900 

s, although the level of correlation is < 0.4 R
2
, suggesting some links between the datasets 

(Fig. 2.9). The benefit of using this technique on Multi-GAS data is that links can still be 

identified, regardless of the temporal response characteristics of the sensor.  Fig. 2.9b also 

illustrates the results of the corrplot code in 3D, which can give even greater clarity to the 

relative strength between a range of potentially present oscillatory features. 

 

Fig. 2.9: a) Output from the “corrplot” code on H2S and CO data from a Multi-GAS sensor placed within the 

NEC of Mt. Etna, b) the same data but output in 3D – this can occasionally enhance clarity and identification of 

shared periods. Reprinted with permission from Elsevier. 
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2.3.  Results and Analysis  

Fig. 2.10a-d show data from the Multi-GAS analyser during the period of acquisition and 

overlap with collected UV camera data. The background subtracted CO2 v SO2 scatter plot in 

Fig. 2.10a demonstrates a good degree of match, while in Fig. 2.10c CO2 and SO2 show a 

visual degree of match between the gas time series. The exception here is a period 

highlighted by a grey oval in Fig. 2.11a and a grey bar across Fig 2.10c-f, where two large 

spikes in CO2 show a break in the trend. This link between datasets is highlighted further in 

Fig. 2.10: a) scatter plot showing CO2 against SO2 (background corrected) 

collected using the Multi-GAS analyser, the grey oval shows a break in the trend 

caused by spikes in CO2, b) a cropped 3 minute period demonstrating the 

correlation and links between Multi-GAS derived CO2 and SO2, with UV camera 

SO2 flux, c) Multi-GAS CO2 and SO2 during the period of acquisition, similarly in 

d), e) and f), plotted are temporally coincident CO2/SO2 molar ratio, calculated CO2 

flux (through multiplication of SO2 flux with CO2/SO2 mass ratios) and SO2 flux 

respectively. Reprinted with permission from Elsevier. 
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Fig. 2.10b, over a cropped 3 minute period, showing a strong match between peaks and 

troughs with UV camera data (shifted using determined lag of ≈ 13 s). Given the common 

time-stamp between Mutli-GAS derived CO2, SO2, and the UV camera SO2 data, it is 

possible to create an equivalently high temporal resolution and empirical CO2 flux dataset. 

This is achieved by converting the CO2/SO2 molar ratio to a mass ratio (converted using the 

molar masses of CO2 of 44.01 g mol
-1

 and SO2 of 64.066 g mol
-1

) and then directly 

multiplying the new CO2/SO2 mass ratio (Fig. 2.10d) by the temporally aligned UV camera 

SO2 data (Fig. 2.10f), to produce CO2 flux in kg s
-1

. This shows that CO2 flux experiences 

order of magnitude variations between ≈ 0.1 – 12 kg s
-1

 over very short timescales, a similar 

range to the variation observed SO2 flux (≈ 0.1 – 16 kg s
-1

). As discussed, we can assign an 

approximate error of ± 15 % to the calculated CO2 flux, based on error in Multi-GAS sensor 

response times. 

 

Fig. 2.11: Continuous wavelet transforms using a Morlet wavelet (see Fig. 2.3) for: a) CO2/SO2 molar ratio, b) 

CO2 flux, c) SO2 flux, d) seismicity from the EBCN station, and e) infrasound from the EBCN station. 

Alongside each wavelet plot are the PSDs using Welch’s method. Reprinted with permission from Elsevier. 
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To the author’s knowledge, this 

is the first quantitative estimate 

of high temporal resolution CO2 

flux for a volcano to date. 

Previously, high time resolution 

trends in SO2 degassing have 

been identified at a number of 

volcanoes globally: e.g. Erebus 

(Boichu et al. 2010; Ilanko et al. 

2015a), Kilauea  (Poland et al. 

2012), and Fuego (Nadeau et al. 

2011), amongst others. Indeed, 

Tamburello et al. (2013) have 

also identified periodic features 

in SO2 degassing, in particular 

over periods between ≈ 40 – 

1200 s. The capture of CO2/SO2 

ratios, CO2 flux, and SO2 flux 

provides the unique opportunity 

to probe for potential periodic 

links between these series and with contemporaneous geophysical datasets e.g. seismicity and 

infrasound. Geophysical instrumentation were located at the EBCN station (see Fig. 2.1) of 

the Istituto Nazionale de Geofisica e Vulcanologia (INGV)  network (data provided by 

Andrea Cannata, INGV – Osservatorio Etnea) which was selected as the infrasonic sensor 

that was the least affected by wind noise of the instrumental network on the volcano 

(although the signal-to-noise ratio was still relatively high). We performed CWTs on all 

collected gas based and geophysical datasets (see Fig. 2.11), in addition, we performed PSD 

analysis using Welch’s method (Welch, 1967) to identify the dominant peaks in each series. 

The results show that all gaseous datasets manifest non-stationary degassing, a feature shared 

by the geophysical datasets, over periods from ≈ 40 – 512 s. Periods of ≈ 89 s are shared 

between CO2 and SO2, while a similar period of ≈ 85 s  is present within the CO2/SO2 molar 

ratio. At ≈ 340 s there is a matching period between seismicity and SO2.  

Fig. 2.12: Presented are a series of corrplot images (see section 

2.3.2.) to investigate oscillatory links between CO2, SO2, seismicity 

and infrasound. Reprinted with permission from Elsevier. 
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Using the “corrplot” technique (section 2.2.2.) we investigate whether these periods were 

shared between the various datasets (see Fig. 2. 12). Firstly, there are strong links (correlation 

coefficeints > 0.5 on average) between CO2 and SO2 flux, particularly between ≈ 1 – 250 s 

and ≈ 350 – 500 s, with a brief breakdown between these two ranges, i.e. ≈ 250 – 350 s (Fig. 

2.12a). Fig. 2.12d confirms the correlation between seismicity and SO2 flux at ≈ 340 s and 

also hints at the possibility of links at lower levels ≈ 180 s and ≈ 90 s, although these links are 

less prominent with low correlation coefficient values of < 0.5. There are suggestions that 

there may be links between infrasonic and degassing, over periods between ≈ 200 – 400 s. 

Fig. 2.13b shows some intriguing trends between CO2 flux and seismicity, primarily that 

there are links at ≈ 200 – 300 s. However, at ≈ 300 – 400 s this link breaks down and is 

replaced by negative correlation < -0.5. Intriguingly this is also the period range at which 

correlation breaks down between the CO2 and SO2 fluxes. To investigate this link we 

extracted the wavelet coefficients between ≈ 300 – 400 s for CO2, CO2/SO2, and seismicity, 

and integrated over this period range, with the aim of capturing the characteristics of the 

oscillation. Fig. 2.13 shows that the negative correlation is driven by a lag between the CO2 

and seismic datasets of ≈ 100 – 150 s (with CO2 release preceding the seismicity), with 

oscillations most pronounced in the first ≈ 20 minutes of the dataset. Indeed, this is the area 

where coincident peaks are also present in the CO2/SO2 and CO2 flux records (grey shaded 

areas (Fig. 2.11), and where wavelet coefficients also show stronger oscillations (Fig. 2.11). 

By shifting the CO2 flux dataset forward by ≈ 125 s an R
2
 of > 0.9 is achieved. 

Fig. 2.13: a) seismic RMS during the period of acquisition from the EBCN station of the INGV network, b) 

wavelet coefficients extracted between 300 – 400 s and integrated for CO2, CO2/SO2, and seismicity. This 

suggests that the negative correlation observed in Fig. 2.12b is driven by a lag of ≈ 100 – 150 s, with seismicity 

leading CO2. The link is strongest in the grey shaded area, which also happens to coincide with CO2 flux peaks 

observed in Fig. 2.10e. Reprinted with permission from Elsevier. 
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2.4.  Discussion 

The presence of matching periods between CO2/SO2, CO2 and SO2 (i.e. ≈ 85 – 89 s) suggests 

that the oscillations present at this level and above are volcanogenic in nature as atmospheric 

processes (e.g. diffusion, entrainment, and eddy based turbulence or convection) can’t 

modulate oscillations in gas ratios. We rule out possible species and aerosol interaction (e.g. 

the possibility of chemical modification of the plume in transit) due to the extreme proximity 

to the vent (i.e. < 200 m) as a cause for this observation.   However, atmospheric processes 

could modulate periods of all gas species simultaneously. For example turbulent diffusion 

(i.e. a high concentration of gas moving into an area with lower concentration) could smooth 

observed flux signals. We can calculate the upper period limit of turbulent diffusion (𝑡𝑑) 

using Tiesi et al. (2006):  

𝑡𝑑 =  
(2𝐷𝑡)0.5

𝑢
   (Eq. 2.4) 

where 𝑡 is the time taken for the gas, on emission from the magma, to travel to the point of 

measurement, 𝑢 is the plume speed, and D the atmospheric dispersion coefficient (≈ 10
2
 m

2
 s

-

1
). Instead of taking values of plume speed from this measurement campaign we take a range, 

typical for the summit of Mt. Etna ≈ 5 – 15 m s
-1

. In addition, assuming the maximum 

possible travel distance to the point of gas measurement from the magma surface, potentially 

≈ 200 m (personal communication – Alessandro Aiuppa, University of Palermo), this gives 

𝑡𝑑 values of ≈ 4 – 21 s, clearly below observed values.  

Crater geometry can also play a strong role in modulating plume shape as well as periodic gas 

release. The key process related to crater geometry is the turbulent generation of eddies (e.g. 

Woods, 2005), which will be related to the diameter of the NEC, i.e. the constraining 

parameter on where the gas can flow (Pope, 2000; Costa et al. 2005), which is ≈ 100 m. The 

largest eddies will therefore be generated as the plume leaves the crater and will be equal to 

approximately half the crater and plume width (i.e. a form of convective cell), ≈ 50 m. Using 

the same plume speeds, we can estimate the time taken for an eddy of diameter ≈ 50 m to 

rotate around one circumference as a proxy for the maximum period generated. This gives 

estimates of ≈ 10 – 31s, again, this is below observed values. This demonstrates that caution 

needs to be applied when considering periodic links of < 40 s.  

This leaves a number of other potential drivers for periodicity, including: 
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 Magma convection in conduits, magma chambers or storage systems (Koyaguchi et 

al. 1993; Kazahaya et al. 1994; Boichu et al. 2010; Cassidy et al. 2015), varying rates 

of convection, or even steady-state convection could help drive periodicity. 

 Pulsing of magmas into conduits, chambers or storage systems, for example this has 

been invoked at Erebus as a cause for a ≈ 10 minute period in degassing 

(Oppenheimer et al. 2009; Peters et al. 2014a; 2014b). 

 Natural arrangement of rising gas into bubble layers associated with bubble 

coalescence and velocity fields, this has been observed and characterised in basaltic 

lavas (e.g. Manga, 1996; Herd and Pinkerton, 1997). 

 Real changes in gas flux associated with a change in gas supply from depth 

(Kazahaya et al. 2002). 

 Changes in the rheology of a magma (e.g. density and viscosity). In some systems this 

is proven to be a pivotal component of magma flow within conduits related to 

convection (i.e. Kazahaya et al. 1994; Boichu et al. 2010). However, changes could be 

much more local (e.g. associated with crystal growth) and associated with changes in 

heat flux through the magma. Of course these changes can be short or long term. 

 Heterogeneities in plumbing systems, such as conduit wall roughness (Jaupart, 1998), 

discontinuities which could allow the collection of gas (e.g. James et al. 2006; Palma 

et al. 2011) or more specifically tied to the collapse of foams which has also been 

associated with strombolian and Hawaiian type activity (e.g. Jaupart and Vergniolle, 

1988; Vergniolle and Brandeis, 1994; Allard et al. 2005).   

It is likely that some or  all of the above may apply to single volcanic systems, particularly 

where lower viscosity magmas are involved which allow much more dynamic behaviour 

particularly where bubbles are concerned. These are illustrated in Fig. 2.14. Each of the 

above described potential drivers of periodic degassing would likely instigate differing 

timescales of fluctuations, however, an expanded dataset would be needed to characterise and 

develop these ideas further. 

A number of periods within both CO2 and SO2 have been observed from the NEC of Mt. 

Etna, which are above the minimum limits for volcanically generated phenomena. Given the 

greater exsolution depth of CO2 than SO2 (Giggenbach, 1996), the ability to create datasets of 

CO2 flux at high resolution could open up a new avenue for understanding degassing 

associated at open vent volcanoes globally. Indeed, this also enables the possibility of 
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comparison to contemporary geophysical datasets. We observe trong links between SO2 and 

Fig. 2.14: Graphic depicting some of the potential causes for periodicity in volcanic degassing. In a) the periodic 

structure as a result of the natural arrangement of gas into layers (e.g. Manga, 1996), b) the pulsing of  magma in 

batches (e.g. Oppenheimer et al. 2009; Peters et al. 2014a; 2014b), c) convection in the conduit caused by  

stratification or variation in magma density  (e.g. Kazahaya et al. 1994), and d) the collection of gas at conduit 

discontinuities which allows the periodic release of bubbles, akin t the foam collapse mechanism (e.g. Jaupart and 

Vergniolle, 1988).  
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comparison to contemporary geophysical datasets. We observe strong links between SO2 and 

seismicity over periods of ≈ 340 s (also observed over similar timescales by Tamburello et al. 

(2013) and the negative correlation present with CO2 and seismicity at ≈ 340 s, caused by the 

observed lag between datasets (Fig. 2.13). This suggests that the release of CO2 from the vent 

is followed by a consequent peak in seismicity some ≈ 150 – 180 s after release (accounting 

for gas travel time to point of measurement). This process seems to be strongest in the earlier 

portions of our dataset (between 08:50 and 09:00 GMT). Given the coincident peaks in 

CO2/SO2 ratios at the beginning of the dataset, this is suggestive that gas driving these peaks 

was sourced from greater depths (i.e. a pulse of magma or gas formed at a greater depth due 

to a change in heat or pressure allowing the exsolution of CO2 at a greater depth). This would 

result in the magma, which contains the newly exsolved CO2, to reduce in density causing it 

to rise. During the rise of this pulse local pressure fields following the magma could allow for 

the exsolution of SO2 over a similar period, which as SO2 exsolves at a shallow depth (≈ 3/4 

km at Etna: Carroll and Holloway, 1994; Métrich et al., 2004; Métrich and Mandeville, 

2010), may be able to generate a stronger seismic signal than the deeper degassed CO2.  The 

fact that there is a correlation between SO2 and seismicity, but not directly with CO2, 

suggests that the release of CO2 and SO2 could become decoupled and migrate largely 

independent of one another which would back up this hypothesis. Although, it is also 

plausible that the seismicity could precede the gas release if this is related to a convection 

based process. It is possible therefore, that the release of gas from the magma causes a 

readjustment of the magma level, which then generates seismicity. 

During the measurement period, at ≈ 09:10 – 09:15 GMT a NW displacement in tremor 

location, at a depth of ≈ 500 – 1000 m,  occurred (i.e. at the location associated with 

degassing under the NEC – often the main source of seismicity under Mt. Etna – personal 

communication, Giuseppe Di Grazia, INGV). This is followed by several large peaks in 

CO2/SO2 and CO2 flux (after ≈ 500 – 900s), which is within a reasonable travel time for 

bubbles from such depths (e.g. Manga, 1996). This is more consistent with a process based 

on convection or the exsolution of gases and suggests that movement of magma and gas at 

depth is more likely to affect gas release and seismicity than magma level realignment, unless 

the latter is rather dramatic in nature. Again, however, much longer datasets are needed to 

investigate these processes and links in more detail. in particular, to look for changes during 

periods leading up to eruptive episodes. 
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This work also has implications for global volcanic estimates of CO2 release, of particularly 

importance for estimating and comparing to anthropogenic emissions (Burton et al. 2013). 

Given the two order of magnitude variations in CO2 flux (≈ 0.1 – 12 kg s
-1

) on rapid 

timescale of seconds it is conceivable that other estimates at a range of volcanoes could also 

be subject to similar rapid variations.  

2.5.  Concluding Remarks 

Here, we have demonstrated the combined use of a UV camera and Multi-GAS analyser to 

produce a high time resolution CO2 flux dataset. This has identified that rates of CO2 

degassing can fluctuate over two orders of magnitude within seconds.  The high temporal 

resolution has also enabled, for the first time, comparison and analysis with 

contemporaneously acquired SO2, and geophysical datasets, including the use of our newly 

designed technique. Indeed, the intriguing links, including temporal lag, between seismic and 

CO2 periods suggest that future campaigns on Mt. Etna using longer datasets would be 

valuable in improving our understanding of links between degassing and seismicity.  
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3. Measuring and modelling explosive   

degassing at Stromboli       

Chapter 3 presents the results of a combined UV camera measurement and computational 

modelling study focussed on degassing at Stromboli volcano. It demonstrates the value of 

analysing not just the explosive gas mass but that contained within the coda and the 

relationships between these two degassing modes. Daughter bubble production is suggested 

to be responsible for the production of the gas flux coda at Stromboli for the first time, with 

evidence present within the measurements and computational models. This chapter is based 

on the following presentation: Pering, T.D., McGonigle, A.J.S., James, M.R., Tamburello, G., 

Aiuppa, A., 2015a. Comparing computational models of slug rise at Stromboli with UV 

camera measurements of SO2 flux. In: EGU General Assembly 2015, Vienna. 

3.1.  Stromboli Background 

Stromboli, often referred to as the lighthouse of the Mediterranean,  has been dominated for 

centuries by persistent activity associated with frequent explosions (Fig. 3.1) which occur on 

average every ≈ 5 – 10 minutes (Chouet et 

al. 1974, GVP, 2015). These explosions, 

after the name of the island itself, are termed 

as strombolian. Given the explosive 

frequency and ease of access to the summit 

area, Stromboli is one of the most widely 

studied basaltic volcanoes. These studies 

include petrological (e.g. Metrich et al. 

2001), seismic (e.g. Chouet et al. 1999; 

2003), infrasonic (e.g. Ripepe et al. 2002), 

thermal (e.g. Patrick et al. 2007), explosion 

dynamics focused (e.g. Taddeucci et al. 2012), the dynamics of slug generation (e.g. Jaupart 

and Vergniolle, 1988; Wilson, 1980; Parfitt and Wilson, 1995), modelling (e.g. James et al. 

2004; 2006; 2008; Suckale et al. 2010b; Del Bello et al. 2012; 2015) and degassing orientated 

(e.g. McGonigle et al. 2007; 2009; Mori and Burton, 2007; Burton et al. 2007; Tamburello et 

al. 2012). This is by no means an exhaustive list but gives an overview of the importance of 

Fig. 3.1: A strombolian explosion occurring from the a 

summit crater at the summit of Stromboli, photo taken 

by the author.  
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Stromboli as a volcanic target of study. Within this chapter the focus is two-fold, on 

measurements of degassing events using UV cameras and modelling slug flow using 

computational fluid dynamics, all in a bid to understand the dynamics of slug flow and the 

generation of slugs at Stromboli. 

The introduction to this thesis has already provided an overview of the development of the 

UV camera technique; the reader is therefore referred to that chapter for further 

methodolgical information. Previous studies on gas emissions at Stromboli have mostly 

focussed on the explosive aspects (e.g. Mori and Burton, 2006; McGonigle et al. 2009; 

Tamburello et al. 2012). Burton et al. (2007) specifically looked at gas ratios for a range of 

degassing types, while Tamburello et al. (2012) as a result of improvements in UV camera 

technology began to be able to identify gas masses from puffing in addition to characterising 

explosive gas release. Tamburello et al. (2012) were also the first to note the presence of an 

extended gas coda following on from strombolian explosions. This is an aspect which is 

investigated further in this chapter. 

Strombolian events are generally accepted to be caused by the ascent and bursting of a gas 

slug (Chouet et al. 1974; Blackburn et al. 1976), also referred to in the non-volcanic literature 

as Taylor bubbles (e.g. Taha and Cui, 2006). Hence, understanding how these bubbles behave 

within the conduit and how they emit gas when they reach the surface is vital. Strombolian 

events occur from the summit craters at Stromboli, while smaller hornito degassing events 

sometimes referred to as puffing (e.g., Tamburello et al. 2012), occur from smaller hornito 

features on the sides of the main crater. It is important to note here that there are differences 

in the use of the word “puffing” at Stromboli and even globally. Some authors (e.g. 

Taddeucci et al. 2012) refer to puffing as the constant rapid pulsing (every ≈ 0.5 s) of small 

clouds of gas released from smaller vent openings (e.g. hornitos).  Here, however, we refer to 

puffing as events which occur without the ejection of explosive material (e.g. Tamburello et 

al. 2012), which can be accompanied by an infrasonic signal (although are not always so) and 

occur over longer repose periods. These puffing events are also associated with the bursting 

of larger gas bubbles. 
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3.2. UV Camera Measurements 

Data was collected using the UV camera network operated by the Palermo and Firenze 

Universities. The UV camera network allows the calculation of entire crater terrace SO2 

fluxes, which, in turn also allows the calculation of explosive SO2 mass for events occurring 

from individual craters and from a hornito (see Fig. 3.2a for example images of a hornito 

event). For further details on the UV camera procedure and data collection the reader is 

referred to sections 1.3.1, 2.2, and 4.2. Each event is typified by an initial rapid increase in 

SO2 flux, followed by a coda of varying length before returning to background flux levels. 

Fig. 3.2: Here, an example sequence of UV camera SO2 absorption images during a hornito degassing 

event is presented (a) along with associated parameters used for the calculation of flux (b); including SO2 

ICA (c), plume speed determined using optical flow algorithms, the resultant SO2 flux (b), and VLP 

displacement (d). Data and graph provided by Giancarlo Tamburello (Palermo University).  
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Fig. 3.2 illustrates this process for a single hornito event including example SO2 ICA, plume 

speed (calculated using optical flow algorithms – e.g. Horn and Schunk, 1981; Peters et al. 

2015), and VLP (very-long-period) displacement which is often associated with strombolian 

events (Chouet et al. 2003) but only sporadically for hornito events  (data and figure courtesy 

of Giancarlo Tamburello, Palermo University). This process was repeated for 120 

strombolian events and 80 hornito events. 

 

 

Fig. 3.3 shows all of these analysed events. To enable comparison of strombolian and hornito 

events, which are of varying magnitude both intra and inter explosion, the minimum value 

was subtracted (i.e. approximately the background flux level) then all the events’ time series 

were divided by their respective maximum value (usually the initial flux peak). This process 

highlighted a certain array of events which appeared to share similar patterns following the 

initial flux peak associated with the initial bursting of the slug (e.g. see Tamburello et al. 

2012). These have been split up and are illustrated in Fig. 3.3. The dominant styles of post-

explosive degassing are associated with those in Fig. 3.3a and Fig. 3.3d. In Fig. 3.3a events 

are associated with an initial flux peak in magnitude followed by a small secondary peak, not 

exceeding the first flux peak but occurring within ≈ 20 – 30 s of the initial explosion. The 

maximum event time (calculated as the point that flux returns to levels seen prior to the 

explosion) is ≈ 120 s.  The events in Fig. 3.3b have an initial flux peak and then a smooth 

Fig. 3.3: Here, every single measured strombolian and hornito event is displayed within our dataset, after 

subtraction of the minimum value and dividing by the maximum. From (a) through to (e) the typically degassing 

regimes observed have been split and categorised together. In each subplot the event in bold denotes a typical 

event style, although this is by no means a hard and fast rule, while the black bar at the top of each subplot 

represents the maximum observed event time during the observation period, where an event is deemed to cease 

on return of flux to background levels. For a full description of how the events have been characterised, see 

Table 3.1 and the text.  
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coda not exceeding ≈ 90 s in length. The events in Fig. 3.3c are significantly more prominant 

with initial peaks followed by multiple subsequent peaks up to a maximum ≈ 60 s after the 

initial event. The subsequent peaks are occasionally observed (as in the black characteristic 

event of Fig. 3.3c) to be of a larger magnitude (but not necessarily a larger mass). Fig. 3.3d 

events, the second most common class of events, are associated with multiple peaks 

following the initial burst; however, each peak is lower in magnitude than the previous peak 

(i.e. decaying peaks) until they return to background flux levels. Fig. 3.3e events experience 

two peaks following from the initial flux peak. These are of varying magnitude with second 

peaks occurring in the first ≈ 20 – 50 s, and the third peaks occurring between ≈ 50 – 80 s. 

Finally, events in Fig. 3.3f have multiple peaks, up to a total of 4, with the second peaks 

occurring in the first ≈ 30 s and third and fourth peaks occurring between ≈ 50 – 140 s. These 

events are also the longest lived with maximum coda of ≈ 180 s. Table 3.1 summarises the 

selection and characterisation of these degassing patterns following from events. All 

descriptions and duration estimates are relevant to the collected data only. Stromboli is a 

highly dynamic degassing system (Taddeucchi et al. 2012; Tamburello et al. 2012; Burton et 

al. 2007), as such, significant variability in patterns, timescales and magnitude is expected. 

Table 3.1: A summary of the degassing regimes identified following on from strombolian explosions. The raw 

data is presented in Fig. 3.3. 

 

From this data it is then possible to calculate explosion mass and coda mass for each 

strombolian and hornito event. Explosion mass is calculated as per the procedure of 

Tamburello et al. 2012 and Pering et al. (2015b), by integrating underneath the initial flux 

peak. Here, we reasonably assume that the initial flux peak is associated with the impulsive 

Event Type Description Event Time (s) 

Type a An initial flux peak with a small flux peak within ≈ 20 – 30 

s of the initial peak. Coda can experience smaller rapid 

fluctuations.  

30 – 120 s 

Type b A smooth flux decay over 30 – 90 s 30 – 90 s 

Type c 3 or more peaks of a similar size within 60 s of burst, 

superimposed over a coda with length 50 – 120 s 

50 – 120 s 

Type d An initial burst followed by decaying peaks, superimposed 

over a coda with length 30 – 90 s 

30 – 60 s 

Type e An initial burst with a small coda < 30 s, followed by a 

secondary flux peak of varying magnitude after 20 – 60 s, a 

similar small coda and/or a tertiary peak may also be 

present 

60 – 100 s 

Type f An initial burst, followed rapidly by a secondary flux peak 

within 40 s of a similar or greater magnitude, these can be 

followed by tertiary and quaternary peaks between 60 – 140 

s, a small coda < 30 s is present following each peak 

120 – 180 s 



44 
  

burst event when a gas slug arrives at the surface and vigorously bursts, releasing gas rapidly 

towards the point of integration (i.e. the ICA). An event is deemed to have ceased on 

returning to background flux levels, calculated as the flux prior to the initiation of an 

individual event. The coda mass can then be calculated as the explosion mass subtracted from 

the event mass. This process is illustrated for three strombolian events in Fig. 3.4.  

Strombolian explosion SO2 masses ranged from ≈ 8 – 82 kg, with total event SO2 mass 

between ≈ 18 – 225 kg. Hornito explosion SO2 masses ranged ≈ 0.2 – 5.3 kg, with total event 

SO2 mass between ≈ 2 – 19.6 kg. By combining these values with gas ratios (CO2/SO2 and 

Fig. 3.4: Three examples (a, b, and c) of determined explosion and coda 

mass by integrating underneath the initial flux peak to determine the 

explosion mass and integrating beneath the rest of the flux peak until flux 

has returned to background levels seen prior to the explosion (black line). 
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H2O/SO2) determined by Burton et al. (2008) it is possible to approximate the total gas mass 

released from strombolian and hornito events. The results of this process are summarised in 

Table 3.2. This demonstrates the magnitude difference between strombolian and hornito 

events.  

Table 3.2: A summary of determined explosive and event SO2 masses, with equivalent total gas masses 

calculated using the Burton et al. (2007) gas ratios.  

 

Prior to this work the amount of gas released 

passively after an explosion has received 

relatively little focus. Tamburello et al. (2012) 

briefly remark on the length and presence of a 

gas coda. In Fig. 3.5 the range of determined 

coda masses is illustrated, highlighting the range 

of coda for both hornito (Fig. 3.5a) and 

strombolian events (Fig. 3.5b). Again, the 

magnitude difference between style is evident; 

however, some overlap in the upper ranges of 

hornito coda and lower ranges of strombolian 

coda is present. The majority of coda (i.e. 

between the 1
st
 and 3

rd
 quartiles) for hornito coda 

are located between ≈ 96 – 148 kg (median = 125 

kg), and for strombolian coda ≈ 865 – 1,750 kg 

(median = 1,120 kg). A much smaller range of 

coda masses is apparent for hornitos than for 

strombolian events. In percentage terms, the 

majority of gas is contained within the coda for 

hornito events, at ≈ 70 – 84 %, while, for strombolian events this is ≈ 53 – 75 %. 

 Minimum Mean Maximum 

Strombolian Explosion [kg SO2] 8 30 82 

Strombolian Event [kg SO2] 18 87 225 

Strombolian Explosion Total Gas Mass [kg] 181 708 1,949 

Strombolian Event Total Gas Mass [kg] 428 2,072 5,360 

Hornito Explosion [kg SO2] 0.2 1.9 5.3 

Hornito Event [kg SO2] 2 7.5 19.6 

Hornito Explosion Total Gas Mass [kg] 5 46 125 

Hornito Event Total Gas Mass [kg] 47 179 467 

Fig. 3.5: The distribution of total gas masses 

contained in hornito (a) and strombolian events (b). 

The black lines show the minimum, median and 

maximum coda masses respectively. 
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In Fig. 3.6 the potential relationships 

between explosive SO2 mass and 

varying parameters is investigated. Fig. 

3.6a shows a lack of correlation 

between explosive and coda mass for 

all the measured events. There is also 

no clear correlation of this nature for 

either of the event styles (both 

producing R
2
 ≈ 0). Fig. 3.6b shows a 

general relationship (R
2
 = 0.84) for the 

strombolian and hornito events between 

explosive mass and total event mass 

(explosion plus coda), highlighting, that 

as explosion mass increases so does the 

total event mass. Finally, in part (c) of 

Fig. 3.6, explosive mass is compared to 

the coda:explosion mass ratio.  Here the 

hornito ratio shows a strong R
2
 = 0.79, 

demonstrating that as explosion mass 

increases the proportion of gas 

contained within the coda decreases. 

This is a trend which may also be 

present with strombolian ratios, 

however, there are a significant number 

of events with low explosive mass and 

lower coda:explosion mass ratios < 1. 

Overall, the data here show that there 

are clear differences between the 

masses of the explosive and coda 

portions of strombolian and hornito 

events. Within this analysis there 

appears to be little evidence of significant relationships associated with the different event 

categories of Fig. 3.3 (described in Table 3.1), i.e. events seem to be interspersed with each 

other with little clustering.   

Fig. 3.6: The relationship between explosion mass and a) coda 

mass, b) explosion plus coda mass (i.e. event mass), and c) 

coda to explosion mass ratio. No clear relationship is apparent 

in a), as explosion mass increases so does explosion plus coda 

mass in b), while in c) hornito events demonstrate a decreasing 

portion of gas within the coda as explosion mass increases. 

This relationship is clouded with strombolian events. 
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3.3.  Behaviour of bubbles at Stromboli  

To understand and begin to probe possible physical causes of the observed coda it is first 

essential to understand how rising bubbles behave within the conduit at Stromboli. A large 

number of studies, have demonstrated that gas slugs are the parsimonious explanation for the 

cause of strombolian eruptions (e.g. Chouet et al. 1974; Blackburn et al. 1976, Seyfried and 

Freundt, 2000 and references therein). As such, the behaviour of gas slugs has received 

considerable attention (e.g. James et al. 2008; Del Bello et al. 2012, 2015; and references 

therein). Indeed, the behaviour of gas slugs is predictable based on the media in which they 

flow, according to: magma density, conduit radius, and magma viscosity (conduit inclination 

also plays a part). A gas slug rising in a vertical cylinder has a hemispherical nose and a gap 

between the edges of a slug and the cylinder (or conduit) wall which is called the falling film. 

A slug is considered to be a slug when it is at least as long as it can be wide, i.e. around the 

conduit diameter (Wallis, 1969; Clift, et al. 1978). As the slug ascends the base of a slug rises 

at a constant velocity (Viana et al. 2003), while the nose (as it approaches the surface) will 

accelerate, due to depressurisation increasing the volume of the slug prior to burst at the 

surface of the liquid (Seyfried and Freundt, 2000; James et al. 2008). During this process the 

falling film is pulled down the sides of the slug. The falling film thickness can be estimated 

based on the relation of Llewellin et al. (2012): 

𝜆′ = 0.204 + 0.123tanh(2.66 − 1.15 log10 𝑁𝑓)    (Eq. 3.1) 

where 𝑁𝑓 is the dimensionless inverse viscosity, a term which is used to characterise the 

system (Wallis, 1969): 

𝑁𝑓 =   
𝜌𝑚

𝜇
√𝑔(2𝑟𝑐)3.    (Eq. 3.2) 

Here 𝜌𝑚 is the magma density, 𝜇 is magma viscosity, g is the acceleration due to gravity and 

𝑟𝑐 is the conduit radius. 𝑁𝑓 can also be used in predicting the rise speed of the base of a slug, 

here the Froude number (𝐹𝑟) is calculated (Viana et al. 2003; Llewellin et al. 2012): 

𝐹𝑟 = 0.34 [1 + (
31.08

𝑁𝑓
)

1.45

]

−0.71

    (Eq. 3.3) 

which then allows the calculation of the rise speed of the base of the slug, 𝑢𝑠𝑙, as follows: 

𝑢𝑠𝑙 = 𝐹𝑟√2𝑔𝑟𝑐    (Eq. 3.4) 
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Another important feature of a slug is the form of the slug base, termed the wake. Here, 𝑁𝑓 

has been used in a series of studies (e.g. Campos and Guedes de Carvalho, 1988; Noguiera et 

al. 2006) to categorise the form of the slug wake. A slug wake can be completely closed and 

axisymmetric, with little or no interaction with the surrounding medium, or can be open and 

actively turbulent. Noguiera et al. (2006) demonstrated that for 𝑁𝑓 < 500 the wake of a slug is 

closed and interaction decreases as 𝑁𝑓 decreases. However, for an 𝑁𝑓 of > 500 a wake can 

open and become increasingly turbulent. This turbulence, if severe enough, can even involve 

the shearing of small bubbles from the gas slug itself. These bubbles are termed ‘daughter 

bubbles’ and can either be reincorporated into the slug (Campos and Guedes de Carvalho, 

1988) or ejected from the influence of the slug and of the wake to rise as separate trains of 

bubbles (Bouche et al. 2010).  

By using parameters appropriate to Stromboli we can begin to probe how these slugs, 

particularly from a turbulence perspective, may start to behave within the conduit. By using a 

magma density of 2700 kg m
3
 (Vergniolle and Brandeis, 1996; Métrich et al. 2001), a magma 

viscosity range of 200 – 500 Pa s
-1

 (Vergniolle et al. 1996; James et al. 2008), and values for 

conduit radius of 1 – 3 m (Harris and Stevenson, 1997; Donne and Ripepe, 2012), the 𝑁𝑓 

relation gives a broad range of values of 𝑁𝑓 values = 47 – 621. This demonstrates that there 

may well be some turbulence and daughter bubble production within the volcanic regime at 

Stromboli. As such, it is entirely plausible that the gas coda of section 3.2 are caused by the 

production of daughter bubbles from the base of an ascending slug. The possibility of 

daughter bubble production in a volcanic environment has been discussed previously (James 

et al. 2006; Bouche et al. 2010; Llewellin et al. 2014a) and in the next section the importance 

of slug mass loss during bubble ascent will be assessed using computational fluid dynamics 

(CFD) in comparison to the observations of section 3.2. 

3.4.  CFD modelling of slug flow at Stromboli 

Models of volcanic gas slugs were implemented in the commercially available CFD software 

package Ansys Fluent®. To simplify the model and reduce run-time a 2D axisymmetric 

simulation was used, which effectively simulates a small wedge of a vertical cylinder (i.e. the 

volcanic conduit). A small quadrilateral gridded mesh (mapped face meshing) of 0.1 m by 0.1 

m was used (see Fig. 3.8b). Here we use the in-built volume-of-fluid solver within Ansys 

Fluent ®, with the implicit body force option enabled which allows the sharper definition of 
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boundaries between magma and slug gas. The model is pressure-based (as opposed to density 

based) as this allows the full scaling of a model to a volcanic situation involving slug 

expansion and includes thermal effects (which effects the expansion of the slug). All 

equations defining the models, which are based on the solution of the compressible Navier-

Stokes equations are available from the software suppliers website at http://www.ansys.com/, 

where the reader can find further details. The timing scheme was explicit, i.e. the solution of 

the Navier-Stokes equations was performed for a defined future time-step. A fixed time-step 

of 10
-3 

s was used during slug rise and 10
-5

 s when the slug is approaching burst, this is to 

allow the maximum Courant number to remain below 0.25. The setting of the Courant 

number allows the correct solution of the partial differential equations and is based on the 

velocity of every grid-cell within the simulation (Courant et al. 1967). Data was outputted 

from the model at a resolution of 10 Hz. The simulated conduit has a closed base (i.e. no free 

flow of magma or gas) and an open top set at a constant atmospheric pressure of 101,325 Pa. 

In contrast to previous models (e.g. James et al. 2008), three fluids are simulated, these 

include: the magma, dry air for the atmosphere above the magma column, and water vapour 

for the slug. Water vapour is chosen as Burton et al. (2007) demonstrated that 83% of a slugs 

molar mass at Stromboli is indeed water vapour (this is a common feature of most volcanic 

gas slugs). The magma and dry air phases are simulated as incompressible fluids, with water 

vapour the only compressible fluid (i.e. behaving as an ideal gas in accordance with the ideal 

gas law – 𝑃𝑉 = 𝑛𝑅𝑇, where P is pressure, V is volume, n the number of moles, R the 

universal gas constant, and T temperature).  

Ansys Fluent® has been used by Taha and Cui (2006) and Araujo et al. (2012; 2013) to 

simulate slug flow. However, in each instance this was for smaller conduits and markedly 

different fluids. To investigate the applicability of the Ansys Fluent® volume-of-fluid 

method to a volcanic situation a number of validation models were run. These were 

implemented with a conduit radius of 1m, all with single slugs at a magma depth of ≈ 400 m, 

a magma density of 2700 kg m
3
, but with varying magma viscosities (between 50 – 2000 Pa 

s
-1

). This is to simulate a range of 𝑁𝑓 numbers (≈ 12 – 478) and hence a range of slugs with 

differing wakes. All other model parameters are as described in the previous paragraph. For a 

summary of validation model runs (V1 – V27) see Table 3.3. I can then compare the results 

of these validation simulations with theoretical values for film thickness (Llewellin et al. 

2012) and slug base rise speed (Viana et al. 2003; Llewellin et al. 2012). Within the models 

the film thickness was taken as the distance between the conduit wall and the point that the 

http://www.ansys.com/
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density of the material within a cell (on a horizontal transect through the conduit), on filled 

density contour plots, is < 2700 kg m
3
, i.e. transitioning to water vapour and the slug gas. The 

distance between pure magma density and that of pure slug gas is ≈ ± 0.13 m in each model 

simulation; this is therefore taken as model error in film thickness. The in-model slug base 

rise speed is taken at two different model simulation times (10 s apart) and as the distance 

travelled by the base of the slug. With slug base rise speed the error is ≈ ± 0.1 m s
-1

, i.e. this 

is taken to be equal to the time step of the model simulation and the cell size (of 0.1 m). 

Table 3.3: A summary of model validation runs, modelled, and theoretical film and slug base speeds. Italicised 

rows are those simulations which produced daughter bubbles. 

Name Nf Viscosity (Pa s-1) Th. Film (m) Th. Speed (m s-1) M. Film (m) M. Speed (m s-1) 

V1 478 50 0.16 1.49 0.1 1.19 

V2 435 55 0.16 1.48 0.1 1.18 

V3 399 60 0.16 1.48 0.1 1.16 

V4 342 70 0.17 1.47 0.12 1.13 

V5 299 80 0.18 1.47 0.15 1.15 

V6 266 90 0.19 1.46 0.15 1.10 

V7 240 100 0.19 1.45 0.18 1.07 

V8 199 120 0.21 1.44 0.19 1.06 

V9 120 200 0.24 1.37 0.19 1.05 

V10 80 300 0.26 1.28 0.20 0.95 

V11 60 400 0.27 1.19 0.22 0.94 

V12 48 500 0.28 1.11 0.24 0.93 

V13 40 600 0.29 1.03 0.26 0.90 

V14 34 700 0.29 0.97 0.26 0.89 

V15 30 800 0.30 0.90 0.27 0.86 

V16 27 900 0.30 0.85 0.28 0.84 

V17 24 1000 0.30 0.79 0.28 0.80 

V18 22 1100 0.30 0.75 0.28 0.75 

V19 20 1200 0.31 0.71 0.29 0.72 

V20 18 1300 0.31 0.67 0.29 0.67 

V21 17 1400 0.31 0.63 0.29 0.63 

V22 16 1500 0.31 0.60 0.29 0.60 

V23 15 1600 0.31 0.57 0.29 0.58 

V24 14 1700 0.31 0.55 0.29 0.55 

V25 13 1800 0.31 0.52 0.29 0.53 

V26 13 1900 0.31 0.50 0.30 0.50 

V27 12 2000 0.31 0.48 0.30 0.48 
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Fig. 3.7 shows the results of these validation model runs, while Fig. 3.8a gives a snapshot of 

slugs at the same time-step but at differing viscosities. An excellent degree of match is 

demonstrated for CFD modelled slugs at viscosities of ≥ 900 Pa s
-1

, with errors of < 1% or ≈ 

0.01 m s
-1

. At values of < 900 Pa s
-1

 modelled slug speed is slower than the theoretical values, 

with errors of ≈ 2 – 25%, or ≈ 0.03 – 0.38 m s
-1

. This error is non-linear, with a rapid increase 

in modelled speeds at viscosities < 200 Pa s
-1

. A large amount of this disparity is likely a 

result of converging values of cell size, film thickness and simulation time-step. Meanwhile, 

a similar degree of match is seen for film thicknesses but at lower viscosities of ≥ 600 Pa s
-1

. 

The difference between modelled and theoretical film thickness values diverge slightly below 

this. The average difference between modelled and theoretical film thicknesses is ≈ 0.03 m or 

≈ 12%. In a similar manner modelled film thickness is noted to rapidly change at < 200 Pa s
-1

. 

To the author’s knowledge, this is the first open determination and display of the accuracy of 

CFD for simulating volcanic gas slugs in comparison to theoretical values.  

Overall, these results demonstrate the ability to model a volcanic system well at higher 

viscosities with lower 𝑁𝑓 values, with slightly more divergence at higher 𝑁𝑓 values. This is 

potentially caused by the production of daughter bubbles from the base of slugs (which are 

not considered in the theoretical estimates). Daughter bubbles are indeed seen as a common 

feature at 𝑁𝑓 values ≤ 120 Pa s
-1

. It is also important to restate here that while the simulations 

are 2D and axisymmetric the underlying features and physics will be broadly the same as a 

Fig. 3.7: Figure showing the performance of Ansys Fluent® against theoretical values. For details on error bars 

see section 3.3 and for details on calculation of theoretical film thicknesses and rise speed see equations 3.1 to 

3.4 in section 3.3. 
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full 3D simulation, although, a certain amount of model error is likely. An important aspect in 

all volume-of-fluid simulations is the conservation of volume, particularly of the 

incompressible phase, in this case the magma (dry air can be released from the open top of 

the conduit, and the slug gas is compressible). Results show that the volume of the magma is 

conserved to a value of < 1 %, this gives further confidence in our models. Average mass loss 

rate from each validation model run which produced daughter bubbles was also calculated 

(see italicised model runs in Table 3.3), this was then plotted against 𝑁𝑓 (see Fig. 3.9). This 

shows a non-linear relationship between 𝑁𝑓 and mass loss rate worthy of further investigation 

in a lab or CFD setting. 

This validation then allows us to have a degree of confidence in our Stromboli specific model 

runs. In total four Stromboli specific model runs (S1 – S4) were chosen over a range of slug 

masses and two initial slug depths. The first three model runs (S1 – S3) were initiated with an 

initial slug depth of ≈ 300 m, and a range of appropriate slug masses, S1 = 1537 kg, S2 = 

3303 kg, S3 = 5096 kg. This initial depth was chosen as this corresponds to the source of 

Fig. 3.8: In a) a snapshot of slugs from a series of validation model runs showing the production and 

non-production of daughter bubbles. All models images were captured at 12 s after model initiation. In 

b) an example slug from the Stromboli specific model runs with mesh density displayed. 
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VLP as determined by Chouet et al. (1999). The final run (S4) was initiated with a slug depth 

of ≈ 900 m and slug mass = 3515 kg, with the purpose of investigating slug behaviour over a 

longer ascent distance. This information is summarised in Table 3.4. 

Table 3.4: A summary of Stromboli specific model runs from S1 – S4, including final results for slug length, 

final exploded mass, and percentage of mass lost into the coda.  

Name Mass (kg) Depth (m) Final Length (m) Final Mass (kg) % Mass Lost 

S1 1537 300 28.3 477 69 

S2 3303 300 72.8 1576 53 

S3 5096 300 95.7 2932 43 

S4 3515 900 5.0 26 >99 

 

For these Stromboli specific models the following model parameters are used: a magma 

density of 2700 kg m
3
 (Vergniolle and Brandeis, 1996; Métrich et al. 2001), a magma 

viscosity of 300 Pa s
-1

 (Vergniolle et al. 1996), a magma surface tension, σ, of 0.4 N m
2
 

(Seyfried and Freundt, 2000; James et al. 2008), and a conduit radius of 2 m (Harris and 

Stevenson, 1997; Donne and Ripepe, 2012). The magma is set at a temperature of 1000°C, 

with the dry air at 20°C. The slug water vapour is initialised at the same temperature as the 

magma, with a thermal conductivity = 0.0261 W m
-1

 K
-1

 (in-built Ansys Fluent® value) and a 

ratio of specific heats of 1.4 (James et al. 2008). These values are summarised in Table 3.5. 

Fig. 3.9: This plot shows the relationship between Nf and mass lost per second for both validation and Stromboli 

specific model runs. The non-circular coloured points refer to different gradients, which are illustrated and 

annotated in Fig. 3.10. 
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The first observation from all Stromboli runs is that they all demonstrate the production of 

daughter bubbles (see Fig. 3.8b and Appendix B). The overwhelming majority of these 

daughter bubbles, which range in mass between ≈ 0.2 – 14.4 kg (mean ≈ 2.7 kg), are fully 

released from the influence of the slugs, which leads to a subsequent large reduction in the 

mass of each slug. From each model; slug mass, magma surface level, and the position of the 

slug nose and base as a function of time was outputted. Model S4 shows bubble length 

instead of slug base and nose position due to length of the bubble and total distance travelled. 

Fig. 3.10 demonstrates mass loss rates (kg s
-1

) and it quickly becomes clear that the mass loss 

rate is not constant during each slugs ascent. In S1 the slug loses 69 % of its initial mass and 

has three dominant mass loss rates: 13 kg s
-1

, 5.9 kg s-1 and 0.6 kg s
-1

. At some points during 

ascent, the slug dips below the minimum criteria for categorisation as a slug. In S2 the slug 

loses 53 % of its initial mass, but sustains a constant mass loss rate of 11.2 kg s
-1

.  In S3, the 

largest massed of the slugs injected at 300 m, in the initial ≈ 30 s of slug ascent, slug gas is 

lost at 38.9 kg s
-1

 before reverting to 15.4 kg s
-1

 for the remainder of the simulation prior to 

burst, resulting in a loss of 43% of its mass. In these simulations (S1 to S3) more rapid 

variability is seen with S1 and S2 than with S3. S4, initiated from a depth of 900 m, loses 

almost all of its mass (e.g., > 99%). There are also two dominant mass loss rates 13.2 kg s
-1

 

for the first ≈ 200 s of the simulation and 0.1 kg s
-1

 for the remaining ≈ 250 s. This large 

reduction reduces the bubble’s mass to such an extent that it reverts to a more primitive cap 

bubble morphology with very little daughter bubble production (see Fig. 3.10d for 

illustrations). Indeed, at ≈ 200 – 250 s the rising bubble gains mass from previously emitted 

daughter bubbles which have caught up with the rising bubble (see videos of simulations 

described in Appendix B). 

Table 3.5: A summary of parameters used in the Stromboli specific model runs, selected according to the 

current understanding of the magmatic system at Stromboli: 
a,f 

Vergniolle and Brandeis (1996), Métrich et al., 

(2001); 
b 
Vergniolle et al. (1996); 

c 
Harris and Stevenson (2007); 

d 
Harris et al. (1997), Donne and Ripepe 

(2012); 
e 
Chouet et al. (1999), 

f
James et al. (2008). 

Parameter Value 

Magma Density
a 2700 kg m

3
 

Magma Viscosity
b 300 Pa s

-1
 

Magma Temperature
c 1000 °C 

Conduit Radius
d 2 m 

Atmospheric Pressure 101325 Pa 

Initial Slug Depth
e 300 m 

Ratio of Specific Heats
f 1.4 
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Fig. 3.10: These plots show the mass of a slug as a function of time for all Stromboli specific model runs. The trend lines 

with determined mass loss rates are also displayed. For runs S1 – S3 the change in magma surface height, and positions of 

the slug nose and slug base are also displayed. In S4 bubble length is displayed alongside mass. Increased variability is 

evident in S1 and S2 compared to S3, largely associated with the larger mass of the rising slug. In S4 images of a slug 

which eventually transitions to a cap bubble are displayed along with their associated times.  

Fig. 3.11: Example artificial geophysical signals generated during Stromboli specific model run S1. In 

a) a proxy seismic signal showing general pressure increase and peak at burst, with inset differentiated 

pressure pulse. In b) a proxy infrasonic signal with inset differentiated pressure trace showing the 

characteristic N-wave of a volcanic infrasonic pulse.  
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3.4.1. Proxy geophysical signals 

The Ansys Fluent® software package also allows the extraction of geophysical signals 

generated during the ascent of a gas slug. By integrating pressure at a point ≈ 10 – 20 m 

above the magma (at point of burst) in the conduit, at a time resolution equal to the model-

time-step (well above geophysical data collection rates), the passage of an infrasonic pressure 

wave can be detected. As a proxy for seismicity the pressure in the entire magma column is 

summed at each time-step, this takes into account the changes in pressure associated with gas 

flow and movement of the magma. This fits with the general theory that seismicity is caused 

by resonance of the magma-gas mixture as it moves within the conduit (e.g. O’Brien and 

Bean, 2008). By differentiating each signal one can extract a proxy of how this signal would 

appear in the raw geophysical data.  

Fig. 3.11 shows example geophysical signals for the S1 model. In Fig. 3.11a a slow increase 

in pressure within the magma is observed, associated with the increasing length and passage 

of the slug through the magma. This occurs over a similar time period to the VLP observed at 

Stromboli. After the burst (indicated in Fig. 3.11a), a few oscillations appear which are likely 

associated with the readjustment of the magma level and the ascent of trailing daughter 

bubbles. Inset in Fig. 3.11b is the characteristic N-wave shape associated with a volcanic 

infrasonic pulse (Ripepe et al. 2002). Whilst not a focus of the study discussed here, this has 

potential for the future application of models in combining gas flux measurements with both 

geophysical signals as well as models of gas flow with accompanying modelled geophysical 

signals. 

3.5.  Discussion and Implications  

A variety of degassing regimes are identified, as expected for such a dynamic degassing 

environment. However, a degree of repeatability is demonstrated over the various event types 

which leads to a number of possible root causes. There are four main potential drivers of 

variable degassing following a burst event: (1) atmospheric generation, (2) conduit geometry 

heterogeneities, (3) magma rheology heterogeneities, and (4) physically varying flux from the 

conduit (e.g. generated by the slug). Each of these will now be discussed in turn.  

Atmospherically generated flux variations can occur through the entrainment of ambient air 

into the hot rising volcanic gas (Costa et al. 2005; Kaminski et al. 2005), additionally 



57 
  

diffusion, dispersion and turbulent eddy generation can play a role, while crater geometry can 

be key to the latter (Woods, 2005; Tamburello et al. 2013). These will all act to smooth the 

flux signal on exit from the conduit and will affect all the identified degassing regimes. 

A volcanic conduit will rarely be perfectly cylindrical (e.g. Seyfried and Freundt, 2000), 

indeed at Stromboli there is strong evidence for a kinked conduit (Chouet et al. 2008), while 

observations at other volcanoes suggest that conduits can be tapered towards the surface 

(Walker, 1993). Varying conduit wall roughness could also allow the collection and release 

of gas intermittently (Jaupart and Vergniolle, 1988, 1999; Gilbert and Lane, 2008). For 

example these could change the way that a slug behaves within the conduit and even the 

stability of a slug. The opening of the conduit closer to the surface would increase the 

turbulence of the slug wake (i.e., increasing the 𝑁𝑓 number) and could lead to increased 

daughter bubble production. 

Closer to the magma surface, fall-back of ejected pyroclasts and radiative cooling of the 

upper portions of the magma could induce a viscosity contrast, which would have a resultant 

effect on how a slug interacts with and eventually emits gas at the surface (e.g. Capponi et al., 

2014; Gaudin et al. 2014a). One of these effects is the pinching of a gas slug, in effect 

creating two (or perhaps more) separate gas pockets which could emit as distinctly separate 

entities (Del Bello et al. 2015). Indeed, within the flux measurements this is the case with the 

most common events (Type a, from Fig. 3.3) and events with large peaks in quick succession 

following a burst (Types c, d, e, and f from Fig. 3.3). This also fits well with visual 

observations which demonstrate two distinct gas thrust phases (Tadduecci et al. 2012).  

Evidently, a physically varying flux issuing from the magma can be generated via mechanism 

(2) or (3), equally though it is plausible that gas directly generated by the rise of a gas slug 

(i.e. including daughter bubbles) could rise and burst to be observed in the flux records at the 

surface. In particular, the most common event types a and b (from Fig. 3.3), which are also 

the least peaky events, with flux codas of ≈ 30 – 120 s, and similar in length to those reported 

in Tamburello et al. (2012), could be generated by the initial burst of a slug and bubble chain. 

It is possible that pressure variations in the magma caused by the passage of the gas slug 

could allow the exsolution of additional gas from the melt, which could also account for the 

coda observed when the gas reaches the surface. Hypothetically, c, e, and f (from Fig. 3.3), 

which have secondary, tertiary and even quaternary peaks between ≈ 40 – 140 s after initial 

burst could be generated by the bursting of larger daughter bubbles created by coalescence 
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and eventual expansion prior to bursting at the magma surface (see videos described in 

Appendix B) and could even provide a causal mechanism for puffing activity.  

Fig. 3.6, which colour codes the different categories of degassing regimes, doesn’t identify 

any clear separation of different styles of events. This suggests that the degassing patterns 

could be a result of variability or a combination of a number of the discussed drivers. For 

example, hornito events regardless of degassing pattern all lie on the same trend line 

(particularly in Fig. 3.6c).  

Overall, measurements in the field show a relatively tight range for mass loss from slugs with 

≈ 53 – 75% and 70 – 84% of the slugs’ gas lost from strombolian and hornito events 

respectively. In comparison, for models initiated from a depth of ≈ 300 m, this range is ≈ 43 – 

69%; which is a particularly close match with the measured strombolian events. A degree of 

caution with direct comparison is necessary however, due to the simplification of our models 

and the complexity of the system at Stromboli. Furthermore, as previously mentioned the 

shallow portion of the conduit is likely inclined at 40° from the vertical. This will have 

implications for the behaviour of the gas bubble both in rise speed and with the generation of 

daughter bubbles (Clift et al. 1978). A slug rising in an inclined conduit will rise with an 

increased base velocity, with inclined conduits even promoting slug flow (James et al. 2004). 

This will have an as yet unknown effect on the production of daughter bubbles, although if 

this behaviour remains, as is likely, linked to the parameter 𝑁𝑓 then daughter bubble 

production may remain somewhat consistent. Although this study has certainly demonstrated 

the high variability of daughter bubble production rate even with constant magma and 

conduit parameters. A further uncertainty in our models is in the use of the 2D axisymmetric 

environment, a necessity for allowing a quick model solution with manageable data amounts. 

The calculation of mass released from daughter bubbles is therefore the sum of a series of tori 

released from the base of the slug. Whilst, the variations seen between differing regimes will 

be preserved, the estimates for mass loss rate will likely be over-estimates and represent 

upper-limits for potential mass lost. Fig. 3.9 and Fig. 3.10, demonstrate this further 

complexity associated with differing conduit widths and bubble shapes. All this suggests that 

further investigation using more sophisticated 3D models is necessary to enable the full 

characterisation of both daughter bubble loss and the effect of inclined conduits.  

Total gas masses of created daughter bubbles observed within the models ≈ 0.2 – 14.4 kg 

(mean ≈ 2.7 kg) fit relatively well with total measured gas masses of puffing events at 
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Stromboli, estimated at ≈ 3.33 – 10.72 kg (mean of 6.67 kg), using Burton et al. (2007) gas 

ratios and Tamburello et al. (2012) measurements of SO2 mass for individual puffs (0.14 – 

0.45, mean 0.28 kg). The slight disparity between modelled and measured puffing event 

averages could be a result of the inability of the UV camera to measure the smallest events 

(Tamburello et al. 2012). Alternatively the physics and model mesh size could also be 

contributing factors. 

Based on our determined gas coda for hornito and strombolian events and our average gas 

mass loss rate from slugs, ≈ 13.2 kg s
-1

 (this is calculated using the dominant mass loss rate 

seen for medium lengths of slugs – see red triangles of Fig. 3.9). We can estimate the time 

that it would take for a slug to rise to produce the observed coda. Using the 1
st
 and 3

rd
 

interquartile values for total slug mass this gives results of ≈ 130 – 270 m, with a median of ≈ 

190 m, and a maximum of ≈ 740 m (i.e. using the maximum observed coda mass). For 

hornito events this is much shallower at ≈ 15 – 23 m for the 1
st
 and 3

rd
 interquartile, and for 

the maximum hornito coda mass ≈ 60 m. The larger range in observed strombolian rise 

depths is certainly consistent with the variability observed in the coda:explosion mass ratio. 

The clustering of depths at < 300 m implies a possible change in conduit geometry in the 

initiation of daughter bubble production; as this is also around the depth of VLP generation 

(Chouet et al. 1999) this is a reasonable possibility. Fig. 3.6c shows a greater degree of 

hornito trend strength and event repeatability. Given the obvious differences in gas mass (see 

Fig. 3.6) between strombolian and hornito events, this suggests that there is a different 

generation mechanism and/or a shallower source depth for the slugs. The largest coda and 

maximum ascent depth of ≈ 740 m suggests that, if the daughter bubble model is in operation 

throughout the conduit, slug flow can only be sustained above this level, i.e. during our 

measurement period no larger coda were observed. In addition smaller massed gas slugs 

would destroy themselves, as in simulation S4. All of the above data are illustrated in Fig. 

3.12. 

Our models also have other implications, particularly associated with the modelling of gas 

slugs. In the case of the deepest modelled slug, daughter bubble production appears constant 

for the initial ≈ 450 m until the length of the slug has decreased to such an extent (≈ 2 m), that 

it is probably better termed a spherical cap bubble (e.g. Wallis, 1969). At this stage, daughter 

bubble production visually slows (see videos described in Appendix B). This will induce a 

disparity when using single slug models to predict slug length prior to and at burst. For 

example the model of James et al. (2008) predicts a length of ≈ 5 m, contrary to the observed 
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≈ 2 m. These observations, associated with the deepest modelled slug, are not observed to the 

same extent, with those of the shallower counterparts. This suggests that existing single slug 

models (e.g. James et al. 2008; Del Bello et al. 2012) may only be applicable where: viscosity 

and applicable magma parameters (e.g. magma density, conduit radius etc.) are above or 

below certain critical values (i.e. below an appropriate 𝑁𝑓 number); where daughter bubble 

production and full release of these bubbles from the influence of the slug wake does not 

occur, and in the area dominated by the greatest decompressive expansion of the slug length. 

This highlights the importance of considering the volume loss from a rising slug. Using the 

ideal gas law, in combination with the average gas mass loss rate, 13.2 kg s
-1

, we can 

approximate the depth at which volumetric expansion of the slug would begin to dominate 

over daughter bubble loss. We estimate this using three reasonable sized events, appropriate 

Fig. 3.12: A graphic summarising the hypothesis presented for stable slug flow based on the daughter bubble 

model presented in this chapter. The ranges of distance needed to generate strombolian and hornito coda is 

indicated along with approximate VLP source depth.  
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for our measurements: 500 kg, 2,000 kg, and 5,000 kg of gas. This suggests that volumetric 

expansion begins to dominate at ≈ 350 m, ≈ 1,500 m, and > 2000 m for the small, medium, 

and large massed events. However, over these ascent ranges no consideration is given to the 

time period of ascent and release. The model merely demonstrates the point above which 

volumetric expansion would dominate. If a slug of ≈ 5,000 kg rose from a depth of ≈ 2,000 m 

it would lose more than the mass it originally contained, at around 13,200 kg s
-1

 (calculated 

using ascent speed of ≈ 2 m s
-1

). Note then that this is hypothetical and is not meant to 

override the previous results discovered by mass loss, but does serve to illustrate that large 

enough slugs could flow at depth. 

The possibility of daughter bubble production highlights the complexity of the magma system 

at Stromboli and also presents questions about the slug formation mechanism at Stromboli 

(i.e. foam collapse [Vergniolle and Jaupart, 1986] or bubble coalescence [Parfitt, 2004]). It is 

already clear that there are larger centimetre to metre sized bubbles (other than and including 

slugs) contained within the conduit which cause hornito and puffing events. Any slug rising 

in such a mixture will pick up and lose gas mass during ascent. If a rising slug is losing mass 

through daughter bubble production during ascent, initial conduit injection mass will be 

larger than measured at the surface. In short, given the dynamic regular nature of activity, 

pinning slug generation at Stromboli to arise from a single formation mechanism is likely a 

significant over-simplification of the system. 

3.6.  Concluding Remarks  

In this chapter, the value of combining measurements of degassing with computational 

models is clearly demonstrated. Further to this, the key need to investigate trends in passive 

degassing (in this case associated with coda) after an explosive event is identified. Using this 

it is hypothesised that daughter bubbles produced by the rising slugs themselves could be 

implicated in the production of the gas flux coda. The models demonstrate that daughter 

bubble production at Stromboli could be prolific, to the extent that if a slug was to rise from 

depths of > 740 m, slug flow may not be able to sustain itself. Indeed, the attrition of mass 

can even cause reversion to more basic bubble forms such as cap bubbles. The complexity of 

daughter bubble production in a volcanic environment is also demonstrated, where the 

parameter 𝑁𝑓 is clearly not the only control on daughter bubble production. This should lead 
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to more in-depth studies using 3D computational models to understand and characterise this 

behaviour.  

The detailed characterisation of coda and their explosions is the first such study, building on 

the original work of Tamburello et al. (2012). Significantly more information could be 

gleaned from data such as this with combined geophysical analysis. In addition knowledge of 

changes in gas ratios for each individual event (through the use of an FTIR [Fourier 

Transform Infrared Spectrometer]) could unlock information about where the rising gas 

completely decoupled from the melt (e.g. using the technique of Burton et al. [2007]). 

Equally this could demonstrate whether there are any changes in ratio between the initial 

explosion and subsequent coda. Stable ratios during the explosion and coda could indicate 

that the gas is sourced from the same location – i.e. the slug itself. 

This work highlights the need for care when using existing slug models such as James et al. 

(2008) and Del Bello et al. (2012) for predicting overpressures and final slug lengths, 

particularly where the input parameters could be within the daughter bubble producing 

regime. Further work will help to produce a universally applicable combined model.  
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4. Measuring and modelling rapid    

strombolian activity       

Chapter 4 focuses on UV camera measurements during a rare period of Strombolian activity 

at the Bocca Nuova crater on Mt. Etna. The mass of strombolian events from this target is 

estimated for the first time. Basic modelling is applied with a view to understanding more 

about the dynamics of the system and investigating the cause behind an intriguing trend 

observed, whereby larger slugs are followed by longer repose times before the following 

explosion. This chapter is based on the work: Pering, T.D. Tamburello, G., McGonigle, 

A.J.S., Aiuppa, A., James, M.R., Lane, S.J., Sciotto, M., Cannata, A., Patanè, D., 2015b. 

Dynamics of mild strombolian activity on Mt. Etna. Journal of Volcanology and Geothermal 

Research 300, 103-111.  

4.1.  Introduction 

The previous chapter discussed activity related to the bursting of single slugs at Stromboli 

(Fig. 4.1). Here, the focus is on much more rapid strombolian activity occurring on timescales 

of seconds instead of minutes. An important distinction for this chapter is the difference 

between the behaviour of slugs during strombolian activity in a single slug environment (e.g. 

Davies and Taylor, 1950; Wallis; 1969, Clift et al. 1978; James et al. 2008;2009; Llewellin et 

al. 2012; Del Bello et al. 2012; 2015) and those in a multi-slug environment (Seyfried and 

Freundt, 2000; James et al. 2004; Pioli et al. 2012). A slug is considered to be operating in a 

single slug environment when it is travelling at a sufficient distance from the adjacent slugs, 

such that it is not impeded or affected in any way by the progress of neighbouring slugs. 

Defining this distance and exploring inter-slug relationships in much more detail (e.g., 

investigating the potential timing of bursts) is the focus of Chapter 5. Given the inherent 

complexities surrounding slug behaviour in a multi-slug environment, much of our current 

understanding is derived and extrapolated from the single slug literature, particularly in a 

volcanic context (e.g. James et al. 2008; 2009; Llewellin et al. 2012; Del Bello et al. 2012; 

2015). However, a number of fluid dynamical studies, e.g., Pinto and Campos, (1996); Pinto 

et al. (1998, 2001); Krishna et al. (1999) do focus on the interaction between multiple 

bubbles. In particular, these studies identify the most important features of a slug, which are 
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the wake interaction length (e.g., Pinto and Campos, 1996) and the wake length (Campos and 

Guedes de Carvalho, 1988; Noguiera et al. 2006). Fig. 4.1 illustrates these features. 

The wake length is defined using the 𝑁𝑓 

criterion (described fully in Chapter 3, 

with the mathematical definition repeated 

here): 

𝑁𝑓 =   
𝜌𝑚

𝜇
√𝑔(2𝑟𝑐)3.  (Eq. 4.1) 

From this we can use Campos and Guedes 

de Carvalho (1988) to calculate the wake 

length (𝑙𝑤𝑎𝑘𝑒): 

𝑙𝑤𝑎𝑘𝑒 = 2𝑟𝑐(0.30 + 1.22 × 10−3𝑁𝑓).   

(Eq. 4.2) 

We can also use Pinto and Campos (1996) 

to calculate the wake interaction length 

(𝑙𝑚𝑖𝑛): 

𝑙𝑚𝑖𝑛 = 2𝑟𝑐(1.46 + 4.75 × 10−3𝑁𝑓).     

(Eq. 4.3) 

If we consider two slugs rising in a 

conduit, the one closest to the surface 

(termed the leading slug) and a slug behind 

this (termed the trailing slug) the effect of 

the wake length and wake interaction 

length, can be determined (this 

terminology will be used throughout this 

chapter). The wake interaction length is 

longer than the wake length by approximately a factor of 4. As a trailing slug begins to 

volumetrically expand (i.e. due to decompression) it may begin to enter the wake interaction 

length of the leading lsug. Normally a slug will rise with a constant base velocity (e.g. Viana 

et al. 2003), however, on entering the wake interaction length the whole of the trailing slug, 

including the base, will begin to accelerate (see videos described and explained in Appendix 

Fig. 4.1: A diagram of the important features of a 

rising gas slug. Of particular relevance for this 

chapter are the wake interaction length and trailing 

wake length. Point 1 illustrates the basic concept of 

the rise-speed dependent model (Wilson, 1980; Parfitt 

and Wilson, 1995), point 2 the foam collapse model  

(Jaupart and Vergniolle, 1988; Vergniolle and 

Brandeis, 1994), and point 3 the eventual transition to 

slug morphology. Reprinted with permission from 

Elsevier. 



65 
  

C). This process shortens the gap between the trailing and leading slugs and begins the 

coalescence process (Pinto and Campos, 1996). The trailing slug will then undergo a further 

rapid acceleration, leading to complete capture into the base of the leading slug (Pinto et al. 

1998; 2001), thereby ending the coalescence process (see Chapter 5 for further discussion and 

Appendix C for animations of the coalescence process in action).  

Another important factor in driving the behaviour of multiple slugs, in addition to the 

coalescence process, is the overall gas volume fraction of the magma. At higher gas volume 

fractions (i.e. where there are many slugs), it is possible for the bases of slugs to rise at 

velocities far above (up to 6 times) those predicted for single slug systems, even when slugs 

do not fall within one another’s wake interaction length (Krishna et al. 1999). This is 

important when considering travel times of gas slugs from potential source depths.  

Within this chapter the focus is on measurement of rapid slug driven strombolian activity 

observed with UV cameras on Mt. Etna and on application of the above models to understand 

the dynamics of the observed activity.  

4.2.  UV Camera measurements of rapid strombolian activity at Mt. 

Etna 

UV camera theory and the 

experimental configuration have 

already been discussed in depth 

in Chapters 1 and 2. Here, the 

same equipment set-up was used 

at the summit of Mt. Etna during 

a rare period of strombolian 

activity originating from a vent 

in the Bocca Nuova (BN) crater 

(N 37.7503°, E 14.9936°, also 

see Fig. 4.2) on the 27
th

 July 

2012. On this particular day, the 

strombolian activity had been 

occurring from this vent from 

Fig. 4.2: Map of the summit of Mt. Etna including location and 

orientation of the UV camera, Multi-GAS unit, the vent, EBCN 

seismic station and wind direction. For locations of other seismic 

sites used in this study  the reader is referred to the google maps file 

available, see Appendix C. Reprinted with permission from Elsevier. 
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around midnight. Prior to our observation period the activity was more vigorous and more 

frequent, as evidenced in the seismic record (Fig. 4.3d). This vent had been active for the 

majority of July, indeed on the 25
th
 we observed the same vent producing sporadic ash-rich 

plumes. During the measurement period (09:32:58 to 09:59:58 GMT) the activity was rapid 

with explosive events occurring with separation of a few seconds to tens of seconds (the 

measurement resolution was ≈ 1Hz). Each explosion was accompanied by an audible bang 

and the ejection of ductile pyroclasts, which could be seen to glow. There was no visible 

evidence of ash production at the surface of the vent. Prior to our measurements 

(approximately an hour before) there was a small lava flow protruding from the edge of the 

cone built up around the vent (personal communication Sonia Calvari, INGV). This overflow 

was not being fed at time of measurement. This period of activity is described in depth 

through the INGV bulletins (http://www.ct.ingv.it/en/rapporti.html) and Spampinato et al. 

(2015). During the UV camera measurements a Multi-GAS instrument (Aiuppa et al. 2007) 

operated by the Palermo Unviersity was recording gas ratios.  

Calibration of the system required more investigation due to our use of rock as a background 

source of light. The UV camera was located at N 27.7525°, E 14.9950° which was ≈ 250 m 

away from the active vent. This proximity to the vent minimised the light dilution effect; 

indeed the effect can be negligible at these distances (Kern et al. 2010a; 2010b; 2013, 

Campion et al. 2015). In addition, as the only visible source of gas within the crater was the 

vent itself, we can therefore be confident that the measured gas was that from the strombolian 

explosions. However, the basaltic rock face of the BN (see Fig. 4.3a for example background 

rock) might potentially introduce error as it differs from the conventionally applied method of 

using a clear sky background (e.g. Kantzas et al. 2010). All procedures described in Kantzas 

et al. (2010) for the calibration and capture of vignette images were therefore performed over 

a clear basaltic rock background, within the crater, adjacent to the strombolian activity, yet on 

the opposite side to the direction of gas travel (see Fig. 4.3c for illustration). An important 

aspect of calibration is that absorption must be uniform within the image, regardless of where 

within the SO2 gas cells, the absorption value is determined. This angular aspect was 

investigated in an area at the summit of Etna, with negligible SO2. Using four calibration 

cells of 100, 200, 400, and 1600 ppm SO2 (the same cells used during the measurement), it 

was demonstrated that a strongly correlated (R
2
 = 0.99) calibration line was generated 

regardless of where in the image this was determined. The location used for the test 

calibration and the resulting calibration line is shown in Fig. 4.3b. This gives confidence in 

http://www.ct.ingv.it/en/rapporti.html
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our method of calibration. The amount of light reflected from the background rock was 40 % 

of the background sky value (a small strip of skylight is visible in each UV image above the 

horizon), such that a sufficient amount of light was incident on the UV cameras. Furthermore, 

the use of light reflected from rocky surfaces is not uncommon in the planetary sciences to 

investigate surface properties (e.g. Hendrix et al. 2003).  

An example absorption image is displayed in Fig. 4.3c, where the vent degassing is clearly 

visible. Also visible is a ring effect which is evident towards the top right corner of the 

image. This isn’t a result of vignetting but is likely associated with the collection of vent 

gases along the walls of the crater.  

The first process in calculating the masses of individual strombolian explosions was to 

determine when each explosion occurred. This was achieved in two ways: by identifying in 

the UV camera imagery where solid ejecta were visible, and by identifying marked increases 

Fig. 4.3: In a) a visible image showing a typical explosion during our period of observations with ejection of 

limited incandescent material. In b) a test calibration performed at the summit of Mt. Etna where SO2 is known 

to be negligible, this test demonstrated that the linear calibration is possible over a rock background regardless 

of where within the SO2 cell the absorption value is derived (black circle and coloured boxes represent the 

outline of the SO2 cell and points used for the calibration line on the right). In c) an example absorption image 

showing the locations of IVAs for determining slug SO2 mass (IVA1) and for background correction (IVA2 and 

IVA3). Also depicted is ICA1 for determining gas flux and ICA2 to calculate background fluctuations. In d) the 

intense strombolian activity prior to our acquisition period, which is indicated between black lines is 

demonstrated. Reprinted with permission from Elsevier. 
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in gas velocity from the vent. Following this the SO2 mass of each explosion was calculated 

using the technique of Tamburello et al. (2012) which involves integrating within an area of 

the UV camera image to calculate the integrated volume amount (IVA). This is illustrated in 

Fig. 4.3c. The identification of an explosive gas mass appearing from the vent and subsequent 

images showing the transit of this explosive cloud is illustrated in Fig. 4.4. From (a) to (e) in 

Fig. 4.4 the propagation and shape of the explosive cloud is tracked, demonstrating the ability 

to measure the mass of the entire 

explosive event and also 

calculation of the initial velocity 

of each explosive cloud on a 

frame by frame basis. Given the 

relatively high background SO2 

concentration, a correction 

procedure was employed by 

taking two additional IVAs 

(IVA 2 and IVA 3) in the area of 

high background SO2 

concentration similar to that 

behind the explosion masses but 

completely away from potential 

contamination by the explosive 

masses themselves (see Fig 

4.3c). To correct IVA1 (that 

used for the explosions) the 

average of IVA2 and IVA3 was 

subtracted from IVA1. IVA2 

and IVA3 were separated by 

only ≈ 6 %. A supplementary 

video showing the activity in 

visible wavelengths and two 

periods of UV camera imagery 

is described in Appendix C.   

Fig. 4.4: From 1 to 5 at 1 second intervals the explosion and 

wireframes (a – e) of explosive cloud are illustrated. The red arrow 

illustrate the direction of the explosive cloud, with red x’s showing 

where the cloud first appears from the vent. The red box is the 

approximate equivalent of IVA1 in Fig. 4.3c which is used for 

determining explosive SO2 gas mass  Reprinted with permission from 

Elsevier. 
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To enable comparison with seismicity, gas flux time series were also calculated using the 

ICA procedure described in Chapters 1 and 2. The location used to calculate the ICA is 

shown in Fig. 4.3c. The cross-correlation technique was used to determine plume rise speed 

(e.g. McGonigle et al. 2005; Williams-Jones et al. 2006). The plume rise speed was 

determined at a significant distance away from the vent and between explosions, with a result 

of ≈ 5 m s
-1

.  

These data allowed the SO2 mass to be determined for 195 strombolian events. However, to 

be of use for modelling the observed activity the total gas masses need to be estimated. This 

was achieved with a Multi-GAS analyser, which was located on the south-east crater edge of 

the BN crater (N 37.7409°, E 14.9953°), see Fig. 4.2, ≈ 200 m from the vent. During 

acquisition winds were E-SE, with wind speed of 10 – 14 m s
-1

. Due to given the distance 

from the vent to Multi-GAS unit, it was not possible to constrain gas ratios on an explosion 

by explosion basis. We therefore used the time average for the period, with molar gas ratios 

of: CO2/SO2 = 2.8, H2O/SO2 = 8.5, and H2O/CO2 = 3. There was little variation in the ratios 

during acquisition with errors of between 4 – 15 %, the reader is referred to Chapter 2 for 

further discussion on Multi-GAS error quantification. From these data we can infer that the 

proportion of molar mass contained within the slug is as follows: SO2 = 8%, CO2 = 22 %, 

H2O 70 %. We base this on the assumption that the majority of gas released at Etna is via 

these three species (e.g. Aiuppa et al. 2007). These molar ratio values were then be converted 

to mass ratios and multiplied by the determined SO2 slug masses to give a rough estimate of 

the total slug mass. 

Three seismometers belonging to the INGV (Osservatorio Etneo) were used to investigate 

seismicity during and preceding the period of acquisition, these included: EBCN (N 

37.752365°, E 14.986281°), EBEL (N 37.740238°, E 15.008239°), and ETFI (N 37.738195°, 

E 15.000649°). The location of the closest of these is in Fig. 4.2.  Infrasound was also 

measured but on the day of question, the microphones were too polluted by wind noise to 

pick up any signal from the BN crater. Fig. 4.3d demonstrates the more intense strombolian 

activity in the early hours, associated with more intense seismicity, displayed as seismic RMS 

(Root-Mean-Square). During the acquisition period, seismicity waned in tandem with a 

reduction in explosivity of the vents activity. Detailed investigation into potential links 

between seismicity and gas flux was performed by Andrea Cannata and Mariangela Sciotto 

(INGV, Osservatoria Etneo – sezione di Catania), with techniques described fully in Martini 

et al. (2009); Cannata et al. (2013b); and Zuccarello et al. (2013).  
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Fig. 4.5: a) a histogram showing the spread of total gas 

masses, b) a histogram of inter-event durations, c) a scatter 

graph showing a general trend between time after a burst and 

total slug mass, also shaded in grey is the repose gap where 

larger bursts are followed by longer wait times before another 

can occur, d) a graph of time duration before a burst showing 

no such relationship. Reprinted with permission from Elsevier. 

4.3.  Results and analysis 

The strombolian explosions ranged ≈ 

0.1 – 14 kg of SO2 in gas release. 

When applying the determined mass 

ratios, to these values, the range of 

total gas masses becomes ≈ 0.1 – 74 

kg. Using the gas flux record it is 

also possible to calculate the 

combined explosive and passive SO2 

release by integrating over the entire 

gas flux record, with a result of ≈ 

360 kg SO2 passively released 

(calculated by subtracting the ≈ 183 

kg released explosively, from the 

overall value). Combining these 

values demonstrates that the 

dominant mode of degassing from 

the vent was still passive, with a 

ratio of 67:33% passive to explosive. 

Fig. 4.5a shows the distribution of 

these gas masses. There is a distinct 

skew in the data towards smaller 

events between ≈ 0.2 – 20 kg, with > 

150 events in this range. In Fig. 4.5b 

the delay time between events, 

termed here the inter-event duration, 

shows a similar skew towards 

shorter inter-event durations 

between ≈ 1 – 46 s. The dominant 

inter-event duration is ≈ 4 s (the 

modal value), with a median of ≈ 5 

s, demonstrating the rapidity of the 
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activity.  

In Fig. 4.5c and d the relationship between total slug mass and inter-event duration is 

investigated. Here there are two separate plots referring to the inter-event duration after a 

burst before the next one occurs (event onset is determined as the time when the explosive 

gas cloud is first obscured within the vent) and the inter-event duration before a burst (i.e. 

comparing burst masses with delays before, Fig. 4.5d, and after, Fig. 4.5c, each burst). Fig. 

4.5c, illustrates that for the larger bursts there is a relatively long delay before the following 

burst of any magnitude can occur. The smaller mass events have smaller post-explosive inter-

event durations. This is illustrated by the grey shaded area in Fig. 4.5c, which termed 

henceforth the repose gap area. There is also a mild correlation of R
2
 = 0.61, giving a best-fit 

line with equation of 𝑦 = 4.1𝑥0.49. This area is not present within the plot of inter-event 

durations before an event (Fig. 4.5d). 

Fig. 4.6 shows the results of burst vectors, where the base of the arrow (at the edge of the 

vent, see red crosses in Fig. 4.4) denotes where the centre of the cloud is first visible, and the 

arrow tip the direction and distance travelled between two separate UV camera images. A 

dominant orientation of gas release from the vent is apparent in Fig. 4.6. However, a varying 

array of directions is presented. Indeed the supplementary video (see 09:55:33 in video 

described in Appendix C) show that bursts can occur from markedly different directions in 

rapid succession. Fig. 4.7a shows a time series of burst trajectories such that no relationship is 

evident from burst to burst. The average vector angle is ≈ 57° from the vertical (grey line on 

Fig. 4.7a). In Fig. 4.7b the relationship between emission speed and total slug mass shows a 

similar trend to the earlier described repose gap behaviour, such that there were no large slug 

mass - low emission speed events. This is likely linked to the fact that the largest mass slugs 

will experience more expansion and therefore explode with an initial higher velocity. 
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An analysis by Andrea Cannata and Mariangela Sciotto (personal communication) discovered 

that there were no definitive links discovered between any of the analysed data series, 

including gas flux and a varying array of seismic RMS signals which were averaged over 

different windows (from 30 s to 5 minutes, with lags of up to ± 10 mins). Fig. 4.8 shows the 

raw data associated with the acquisition period: in a) frequency characteristics, b) seismic 

RMS, and c) the raw pre-processed seismic signal. From these data, power spectral density 

analysis was performed, using Welch’s method (Welch, 1967), on the seismic (Fig. 4.8d and 

e) and infrasonic (Fig. 4.8f and g) signals from the EBCN and EBEL seismic stations (the 

Fig. 4.6: An illustration of burst vectors for all 195 bursts during the 

period of acquisition. For a plot of this data see Fig. 4.7.  

Fig. 4.7: a) The emission vector for all bursts, plotted in degrees from vertical, with the average vector illustrated. 

In b) the relationship between total slug mass and emission speed shows a similar area without bursts (shaded) as 

the repose gap feature seen in Fig. 4.5c suggesting that larger bursts have a higher minimum emission speeds.  
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.kmz Google Earth file showing these locations is available in Appendix C). Here, one can 

observe the high frequency characteristics at the EBCN seismic station between ≈ 0.5 – 1 Hz. 

Similar frequency behaviour is also presented at EBEL, but there are also some longer period 

oscillations between 50 – 120 s, which are likely related to activity beneath the NEC (see 

Fig. 4.8: a) frequency characteristics of the seismic signal at the EBCN stations, b) RMS, and c) the raw 

unprocessed seismic signal. In d) and e) PSDs showing dominant periods present at the EBCN and EBEL 

stations respectively, with oscillations at 50 – 120 s present at EBEL. In f) and g) for EBCN and EBEL 

the dominant oscillations show that wind noise occludes any potential infrasonic signal.  
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Chapter 2, Tamburello et al. 2013). The infrasonic PSDs demonstrate the dominance of wind 

noise.  

4.4.  Basic modelling of the activity 

In an effort to understand the dynamics of the measured activity, one must first constrain the 

bubble morphology and hence the gas regime in operation. This has been achieved in a 

number of ways. Firstly, using the ideal gas law: 

𝑃𝑉 = 𝑛𝑅𝑇,   (Eq. 4.4) 

where P = pressure, V = volume, n = number of moles (per gas slug),  R = 8.314 J K
-1

 mol
-1

 

(i.e. the universal gas constant), and T = the temperature in Kelvin. At the summit of Mt. Etna 

(≈ 3,350 m) atmospheric pressure is ≈ 69 kPa, while the magma temperature is likely ≈ 

1,273.15 K (e.g., Armienti et al. 2012), which will give a similar temperature just above the 

vent. Given our knowledge of total gas mass and the approximate proportions of CO2, SO2, 

and H2O, the molar mass of each explosion can therefore be calculated, which, when applied 

to the ideal gas law gives gas volume ranges of ≈ 0.4 – 411 m
3
. If we take a conduit radius of 

≈ 1 m (with the assumption that the bubble is almost as wide as this), we can estimate, using 

the equation for the volume of a cylinder: 

𝑉 =  𝜋𝑟2ℎ,   (Eq. 4.5) 

the length of the slugs (e.g., h in equation 4.5), as ≈ 0.1 – 53 m. A bubble can be classified as 

a slug when its length reaches or exceeds approximately the width of the conduit (Davies and 

Taylor, 1950; Wallis, 1969), minus the film thickness, which reaches a minimum value 

during the slug flow regime (Llewellin et al. 2012). For a full discussion of slug behaviour 

see section 4.1. Part of the complexity arising from modelling this activity is the prior non-

existence of any developed model for multiple rising slugs. For the purposes of the remainder 

of this section, I implement the only volcanic slug models available, which apply to slugs 

rising without any neighbour interactions, i.e. single slug models (e.g. James et al. 2008; Del 

Bello et al. 2012).    

This initial basic analysis suggests that some of the explosive events may be being driven by 

slugs bursting at the surface. However, the key parameter conduit radius, is a relative 

unknown. Reliance must be placed upon literature estimates of similar activity (e.g. Seyfried 
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and Freundt, 2000; James et al. 2008). The Del Bello et al. (2012) static pressure model can 

be applied en masse to all of the measured explosive events in an effort to estimate a range of 

conduit and magma parameters. The Del Bello et al. (2012) model allows the calculation of 

burst overpressure with information on gas mass or volume (see above calculation), magma 

viscosity, and conduit radius. Given that each burst was accompanied by an audible bang it is 

reasonable to assume that each explosion had an overpressure. The model output gives 

positive values where overpressure is present and meaningless negative values in the absence 

of overpressure. For a range of magma viscosities between 10 – 5,000 Pa s
-1

 and conduit radii 

0.5 – 5 m the model can estimate the number of bursts that burst with overpressure (see Fig. 

4.9). Fig. 4.9 demonstrates that overpressure is favoured for smaller conduit radii and magma 

viscosities of > 500 Pa s
-1

, although at the smallest conduit radii of 0.5 m lower viscosities of 

100 Pa s
-1

 do also produce a strong percentage of bursts with overpressure (at these lower 

conduit radii gas masses are also more likely to be slugs). Regardless of whether any rising 

gas bubble has a slug morphology the model will provide a reasonable estimate of the 

likelihood of explosivity.  

By considering the morphology of the vent (using visual images of the vent geometry – e.g. 

Fig.4.3a) an upper estimate for conduit radius of ~ 3.5 m is assigned (see Fig. 4.10), based on 

Fig. 4.9: Here the Del Bello et al. (2012) static pressure model is used to estimate values for magma viscosity 

and conduit radius, based on the assumption that all bursting slugs must have some form of overpressure, given 

the audible bang accompanying each burst. The percentage of bursts with overpressure is plotted on the y-axis. 

This plot demonstrates that smaller radii and/or higher magma viscosities expedite overpressure. 
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the inclination of the interior angle of the cone and an  estimate for magma level change. This 

corroborates the Del Bello et al. (2012) analysis.    

A number of previously introduced dimensionless parameters, including 𝑁𝑓 can be used to 

estimate the form of gas slugs (see Chapter 3) and hence turbulence and stability within the 

operating regime. Based on this initial analysis, magma viscosity is taken to range 100 – 1000 

Pa s
-1

, and conduit radii 0.5 – 1.5 m. A magma density of ≈ 2600 kg m
3
 is used, in keeping 

with other literature estimates of basaltic magmas (e.g. James et al. 2008) given limited 

knowledge of magma vesicularity at depth. This gives an 𝑁𝑓 range of ≈ 8 – 423 (see equation 

4.1), with lower values generated by larger viscosities (as is more likely for Etnean magmas – 

e.g. Pinkerton and Norton, 1995; Giordano and Dingwell, 2003). This suggests that there is 

little turbulence within the regime. All current single slug models assume a negligible magma 

velocity (i.e. a stagnant magma column). This will affect the turbulence and interaction of 

individual bubbles and slugs. Given the small amounts of material released (see 

supplementary video and Fig. 4.3a) it is likely that the upward velocity of the magma is low, 

affirming the applicability of the single slug models to some extent.  

To probe the behaviour of the observed activity in greater detail the model of James et al. 

(2008) is used to estimate final slug lengths, and the depth at which rising gas masses 

transition to slug flow.  According to this model, the following allows the calculation of the 

time, position, and length of a slug: 

Fig. 4.10: An approximation of possible maximum conduit geometry based on 

visual images of the vent. Also indicated is the position of the small lava flow 

which had ceased prior to the UV camera acquisition period.  
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1

2
𝜌𝑚(1 + 𝐴′)𝐿̈ = 𝑃0𝐿0

𝛾𝐿−𝛾ℎ−1 −  𝜌𝑔 − 𝑃ℎ−1 − 8𝜇𝐿̇𝑟𝑐
−2,    (Eq. 4.6) 

where 𝜌𝑚 is the density of the magma, 𝐴′ is: 

𝐴′ =  (
𝑟𝑠𝑙

𝑟𝑐
)

2

 ,    (Eq. 4.7) 

and other parameters include: λ the ratio of specific heats using the same value of 1.4 as in 

Chapter 3, L the length of the slug, 𝑃0 is the initial pressure of the slug added to atomspheric 

pressure (≈ 69 kPa). The slug radius is taken as conduit radius minus the film thickness value 

determined using Llewellin et al. (2012), see equation 3.1. The model also requires initial 

estimates for slug base rise speed, which are calculated using equations 3.2 (see also 4.1), 3.3 

and 3.4 (see section 3.3). Estimates for film thickness over the 𝑁𝑓 range 8 – 424 are therefore 

≈ 0.13 to 0.43 m, while slug base rise speed is ≈ 0.24 – 1.82 m s
-1

.  

To estimate potential slug transition depth, single values for the following parameters are 

taken, including: 1 m for conduit radius, 500 Pa s
-1

 for magma visocsity, which gives an 𝑁𝑓 = 

46, film thickness of 0.28 m and slug base rise speeds of 1.1 m s
-1

. The James et al. (2008) 

model (equation 4.6) is initialised at depths known to be greater than the transition depth (i.e. 

through a simple estimate using the ideal gas law), and the point at which the rising gas 

masses reaches lengths equal to the conduit diameter is taken to indicate slug transition. For 

the majority of bursts this occurs at very shallow depths of ≈ 5 m, whilst the largest slug 

could transition at a depth of ≈ 170 m. This leads to final burst lengths of ≈ 3 – 27 m. On 

combining these estimates with the range of slug base rise speeds, rise times could range ≈ 93 

– 708 s from a depth of 170 m. An example of a series of model runs using the model of 

James et al. (2008) is illustrated in Fig. 4.11, showing the potential position and transition 

depths of four of the measured slugs.   
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Using equations 4.2 and 4.3, the wake length and wake interaction length can be calculated 

over the 𝑁𝑓 range 8 – 423 as: ≈ 0.3 – 2.4 m and ≈ 1.5 - 10.4 m respectively. These values are 

particularly important in determining the possibility of coalescence between rising slugs 

(Pinto and Campos, 1996).  This implies that with stability and a lack of turbulence in the 

magma, frequent explosive activity could occur with rising slugs separated by little fluid in 

between bursts. During slug rise the whole of the slug will decompress which will allow the 

slug to expand, increasing the probability of a trailing slug entering the wake ineteraction 

length (see Fig. 4.1 and 4.11) and hence increasing the likelihood of coalescence. With wake 

interaction lengths of ≈ 1.5 – 10.4 m, the base rise speed of slugs ≈ 0.24 – 1.82 m s
-1

, and the 

modal temporal explosion separation of ≈ 4 s, it is possible that rising slugs could be 

separated by as little as ≈ 0.96 – 2.2 m of melt, suggesting that there could be significant 

interaction between slugs, both within slug wakes and wake interaction lengths.  

The estimated slug transition depths of ≤≈ 170 m strongly suggests that rising gas masses 

transition to full slug flow late on during the rise process. This implies that bubbles will be 

rising in a non-slug morphology form for the majority of travel inside the conduit. Section 1.1 

Fig. 4.11: Example output from the James et al. (2008) slug model (equation 4.6). Here, the results of four of 

the largest sequential bursts and their potential separation distances and burst lengths as a function of time are 

plotted. See the main text for further details on calculation. 
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outlines the transitions of bubble forms. The precursor to a slug is the cap bubble (Davies and 

Taylor, 1950; Wallis, 1969; White and Beardmore, 1962). Cap bubbles share many features 

of a slug including: a more variable film thickness, wake and interaction lengths (and hence 

the same coalescence mechanism), and a constant base speed whilst the bubble retains a 

constant shape (Davies and Taylor, 1950; White and Beardmore, 1962; Wallis, 1969; Viana 

et al. 2003). The dimensionless Reynolds bubble number (𝑅𝑒𝑏), which is an approximate 

measure of bubble morphology (Suckale et al. 2010b; James et al. 2011), suggests that, for 

values of 0.3 a bubble will behave as a spherical particle (i.e. stokes law can be applied). 𝑅𝑒𝑏 

can be calculated as follows: 

𝑅𝑒𝑏 =  𝑁𝑓𝐹𝑟.    (Eq. 4.8) 

By applying this equation (see equations 3.2 (also 4.1) and 3.3 for 𝑁𝑓 and Fr) to the collected 

Etnean data for all the bursts, the rising bubbles (assuming no interaction whatsoever) would 

be non-spherical from depths < 3000 m (see Fig. 4.12, for the moment ignoring potential 

source depth – see section 4.4.1.). This has important consequences for the gas flow regime, 

which initiates and drives the activity (James et al. 2013; Vergniolle and Gaudemer, 2015).  

Fig. 4.12: Here the Reynolds bubble number (equation 4.8) is applied to our measured gas masses to 

approximate bubble morphology during rising from depth. The blue line shows results with water mass of the 

slug included and black without, this is done because of the shallow exsolution depth of H2O. 
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4.4.1. Activity Source Depth  

In Burton et al. (2007), a method was detailed to determine the source depth of slug driven 

explosions at Stromboli. Here, a similar method is applied to the explosions detected on Etna. 

Given the knowledge of relative concentrations (discussed below), ratios of slug mass 

(H2O/SO2 ≈ 2.8, H2O/SO2 ≈ 8.5 and H2O/CO2 ≈ 3) and rock composition (SiO2 value of ≈ 49 

wt% [e.g. Métrich and Clocchiatti, 1989]), the VolatileCalc software (Newman and 

Lowenstern, 2002) can be used to calculate: the solubility (the amount of a volatile which can 

be dissolved within a magma at a certain pressure) versus pressure of CO2 (ppm) and H2O in 

wt % (this was also completed in Collins et al. [2009] Fig. 1A), and the degassing pathway 

and saturation pressure of these volatiles. To date there has been only a limited amount of 

work on volatile content of H2O and CO2 in Etnean magmas. According to Corsaro and 

Pompilio (2004) the average H2O content of Etnean magmas ranges between ≈ 0.5 – 1.3 

wt%, whilst Métrich and Rutherford (1998) determined as much as ≈ 2.5 wt% for primitive 

basaltic-hawaiitic magmas. Together, Del Carlo and Pompilio (2004) and Metrich et al. 

(1993), determined a range of ≈ 1– 3 %. Meanwhile, determined CO2 contents range from ≈ 

200 – 1500 ppm, with the upper limit derived from the large sub-plinian eruption of ≈ 3930 

BP (Del Carlo and Pompilio, 2004). In this analysis it was decided to take the more realistic 

ranges for this type of activity: 1 – 2.5 wt % H2O and 200 – 1000 ppm CO2, for the 

determination of degassing path of these volatiles. Due to the nature of the BN activity it was 

also assumed that an open-vent system was operating. The VolatileCalc software (Newman 

and Lowernstern, 2002) computes on this basis the molar volumes of H2O and CO2. The 

point at which the derived ratios match a slug H2O/CO2 ratio of ≈ 3 can be taken as a proxy 

for approximate slug source depth, with results shown in Fig. 4.13. Depending on the volatile 

content, the source depth of slugs could range ≈ 0.5 – 3.3 km. 
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Given a source depth between ≈ 0.5 – 3.3 km, which is a similar range to activity seen at 

Stromboli of ≈ 0.8 – 3.3 km (Burton et al. 2007), information about the shallow magma 

pathway can be inferred and the original source processes could be similar. As with the 

conclusions of Burton et al. (2007), there is no discernible way of differentiating between the 

foam collapse and slug coalescence model for slug formation. This said, potential evidence of 

late coalescence and slug formation in the conduit could give credence to the coalescence 

model for this activity.  As Fig. 4.13 shows, the water content of the basaltic magma is the 

main control on the source depth of the slugs, indicating that the driving magmatic gas in this 

case is likely H2O. The source depth of slugs also fits within the general upper 4 km area of 

the volcano where the majority of exsolution of volatiles from the melt occurs, leading to the 

consequent formation of bubbles, and the shallow storage area which is thought to occupy a 

Fig. 4.13: The results of VolatileCalc (Newman and Lowernstern (2002), showing the source depth based on 

matched ratios and a range of water weight percentages. The dashed lines show the saturation depth and hence 

when water will begin to exsolve from the melt.  
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space between the summit and sea level base (Corsaro and Pompilio, 2004; Alparone et al. 

2004; De Barros et al. 2009; Corsaro et al. 2013).   

4.5.  Discussion and Implications 

4.5.1. Considerations on activity dynamics  

The above modelling considerations have demonstrated that the slugs could rise separated by 

relatively little melt and that interaction between rising gas masses could be commonplace. 

This interaction would likely include the coalescence of bubbles and slugs (Pinto and 

Campos, 1996). This coalescence process will be enhanced as slugs reach the surface as this 

is the region of greatest decompression (James et al. 2008; 2009) and hence an increase in 

slug length will encourage interaction within wake interaction lengths. Estimated 𝑁𝑓 numbers 

suggests that turbulence within the system could be low, i.e. restricted by an increasingly 

closed wake, which reduces turbulent transference of the slug wake to the melt (Campos and 

Guedes de Carvalho, 1988). This would allow rapid and stable slug activity. However, as 

mentioned previously, these are single slug models, applied to the much more complex 

behaviour associated with the ascent of multiple slugs. It is entirely possible that fluid 

disturbance could be extended beyond wake interaction lengths, remaining interaction even 

more likely (e.g. Krishna et al. 1999; Llewellin et al. 2014). The relatively short lengths of 

the modelled Etnean slugs (≈ 3 – 27 m; in comparison to slugs at Stromboli which can be an 

order of magnitude longer [e.g. James et al. 2008; Del Bello et al. 2012]), at burst, imply that 

the transition to slug flow occurs relatively high in the conduit, and hence turbulent 

interaction multi-slug based activity could be limited to the upper ≈ 170 m of the conduit, 

where coalescence would be expedited.   

During multi slug activity it is important to consider the combined volumetric effects of the 

magma and gas mixture as this will effect changes in magma level and the point at which a 

slug bursts at the surface (James et al. 2013; Vergniolle and Gaudemer, 2015). Each 

explosion was accompanied by the visible ejection of material, which suggests that the 

magma level was relatively constant during the acquisition (i.e. only varying by estimated 

slug lengths). At Stromboli a viscous cap at the top of the magma column may impede a slugs 

progress prior to burst (e.g. Capponi et al. 2014; Del Bello et al. 2015). Given the rapid 

activity, it is possible that the magma surface could rupture and accumulate both ejecta fall-
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back and unsteady magma drainage along the conduit walls, which could lead to instability in 

the bursting slugs (e.g. Pering et al. 2014c and Chapter 5). Despite the rapidity of the activity, 

turbulence and instability of the activity seemed to be limited, as all other portents also 

suggest. Fig. 4.4 demonstrated that gas clouds can be emitted in drastically different 

orientations in quick succession (e.g., see also 09:55:33 GMT in video described in Appendix 

C, and Fig. 4.7). It has already been suggested that slugs could be rising within interaction 

lengths, when a slug enters into this area its nose and shape can be deformed and altered 

(Nogueira et al. 2006; Figuera-Espinoza and Fabre, 2011). The propelling of eruptive gas in 

different directions in rapid succession could be evidence of this. Of course there are 

significant caveats to this which include other potential influences including gaseous 

transport effects through the atmosphere (e.g. Woods, 2005; Pope, 2000), conduit inclination 

and general geometrical heterogeneities (James et al. 2004), and as discussed the state of the 

magma surface.  

4.5.2. The Repose Gap 

 

The presence of the repose gap (see Fig. 4.5c) is a unique observation. Indeed, it is possible 

that the trend whereby the largest slugs are followed by longer wait periods, is driven by the 

fluid dynamic processes inherent with multi slug activity e.g., coalescence. During the 

coalescence process the whole of a slug, including the trailing slug base, is accelerated into 

the base of the leading slug. Larger slugs formed by coalescence would therefore leave longer 

fluid lengths behind the newly formed slug and hence a longer repose period prior to the 

onset of the following burst. Equally, larger slugs will be more prone to coalescence such that 

volumetric expansion will encourage interaction with leading slugs (Pinto et al. 1998; 2001). 

Both these processes would not affect any slug ahead of a leading slug which is involved in 

coalescence. This is shown to be the case in Fig. 4.5d. The frequency of observed activity is 

therefore a function of potential interaction between rising slugs and gas masses.  

Fig. 4.6c (emission speed vs. slug size) demonstrates that a similar trend occurs, indicating 

that a slug of a certain mass must be released at a certain minimum speed. This is likely to be 

related to the repose gap and behaviour of multiple slugs. This could also be explained by a 

larger explosion creating a delay (i.e. the slug coalescence explanation) or an alternative third 

mechanism could be implied, whereby larger slug bursts create a bigger drop in magma level 

following the explosion such that subsequent gas from bursts would then take longer to travel 
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to the surface. Although the presence of visible ejecta at the surface consistently throughout 

the acquisition period suggests that this mechanism is improbable and further suggests that 

the magma level was relatively stable and close to the surface (see visible video in Appendix 

C). 

Evidently other processes could be implicated in the formation of the repose gap, including 

the rise speed dependent model of Wilson (1980) and Parfitt and Wilson, (1995). This model 

is also dominated by coalescence and the speed of rising masses, which are volumetrically 

controlled, i.e. a larger volume rises at a faster rate. Fig. 4.12 suggests that this ceases to be 

the case at significant depths and certainly within the interaction area of ≈ 170 m (i.e. 𝑅𝑒𝑏 

numbers are > 0.3). Unless the arrival time of slugs at the surface is determined at depth by 

individual rising bubbles prior to the development of morphologies such as cap bubbles or 

slugs, with rise speeds that are largely dependent on conduit radius, the repose gap is unlikely 

to be caused by this model.  

Finally, the collapsing foam model as discussed in Jaupart and Vergniolle (1988) and 

Vergniolle and Brandeis (1994), could lead to the repose gap. This model suggests that 

bubbles can accumulate at the top of shallow storage areas or at discontinuities within 

conduits, and is often implicated in the formation of slugs (e.g., at Stromboli). The release of 

a larger gas mass from a foam could lead to an increase in the stability of a foam, which 

would increase the delay before another gas mass could be released, hence creating the 

repose gap. However, it is also easy to see that this should also lead to a similar pattern 

appearing before bursts, i.e. larger bursts should also be accompanied by a longer delay 

preceding an event as well as that following, however, this already been demonstrated not to 

be the case (see Fig. 4.5d). In short, whilst the intriguing repose gap observed here is likely 

steeped in complexity, it is continuously suggested that the potential driving mechanism is 

the coalescence of gas slugs.  

4.5.3. Observations on explosive masses 

It is important to note at the beginning of this section that strombolian activity is common at 

Etna as a whole (see GVP, 2013 and INGV bulletins), particularly from the NSEC. Within 

this chapter the focus has been on the somewhat rarer activity at the BN crater, over the 

relatively short observation duration. However, 195 explosions is a sizeable dataset 

particularly given this constituted the first observations of gas mass for strombolian events at 
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Etna (Burton et al. 2015a). Here a somewhat low range of explosive SO2 masses was 

determined between ≈ 0.1 – 14 kg. This is likely associated with the measurements occuring 

during the waning period of activity (e.g. as backed up by seismicity). At Pacaya an 

overlapping range of SO2 masses was observed, 3 – 29 kg (Dalton et al. 2010). At Stromboli 

however, Mori and Burton (2009) determined values of ≈ 15 – 40 kg, while Tamburello et al. 

(2012) suggest values of ≈ 2 – 55 kg, which are somewhat higher than the Etnean values. 

This is likely related to the style of manifest activity, which at Stromboli is associated with 

explosions spaced on the order of minutes (Ripepe et al. 2008), while Etna often exhibits 

more frequent explosions separated by seconds (e.g. GVP, 2013).  This suggests that there 

may be different source mechanisms driving the observed activity. The measured ratio for 

active to passive degassing is 67:33%, lower than the 77:23% and 92-97:8-3% determined by 

Tamburello et al. (2012) and Mori and Burton (2009) respectively for Stromboli. If the 

activity is considered in relation to overall Etnean degassing, the measured activity represents 

< 1% of the total degassing budget of Etna (Burton et al. 2015a). Burton et al. (2007) 

demonstrated that ratios between active and passive degassing can vary significantly. Here, 

out of necessity, average gas ratios were used, the estimate for active to passive degassing at 

the BN is therefore the best possible on the basis of the data available. 

The presence of explosive activity with such low explosive masses (i.e. ≈ 0.2 kg) also raises 

questions about how the explosivity is generated, far beyond considerations of differences in 

atmospheric pressure (i.e. the lower pressure at the summit of Etna, i.e. ≈ 3,350 m, allows 

more expansion compared to targets such as Stromboli, i.e. ≈ 900 m)). If one were to consider 

the activity at Etna, not as the rise and bursting of individual gas slugs, but as the ascent of a 

swarm of gas bubbles this could also explain the mass deficiency of some bursts which eject 

material containing little gas mass. A swarm of gas bubbles has a higher velocity, up to 3-6 

times faster than a single Taylor bubble, and can be determined by Krishna et al. (1999): 

𝑢𝑠𝑙𝑠𝑤 = 0.71√𝑔2𝑟𝑠𝑙(𝑆𝐹)(𝐴𝐹)  (Eq. 4.9) 

where (SF) and (AF) are scaling correction and acceleration factors respectively (see Krishna 

et al. 1999) for Eo >40 (Eo is the Eotvos number, at appropriate levels for volcanic activity – 

e.g. Del Bello et al. 2012). As the bubbles rise, overpressure could be generated in bubbles 

which have not yet fully developed into slug flow. 
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Low gas masses also explain and are potentially linked to the lack of any link between 

seismicity and either gas flux or erupted masses. Fig. 4.14 shows the location of tremor at the 

time of acquisition, which was actually dominated below the NEC. Other studies have 

demonstrated a clear relationship between seismicity and eruptive masses (e.g. McGonigle et 

al. [2009] at Stromboli and Kazahaya et al. [2011] at Asama), the lack of a correlation here is 

again the combined result of explosive frequency and low gas mass, in contrast to Zuccarello 

et al. (2013), who did discover a link. It is likely therefore that the overall strength of the 

activity is related to seismicity, e.g. linked to the resonance of the conduit (O’Brien and Bean, 

2008). Indeed, during the more vigorous activity, seismicity associated with the BN crater 

was higher (see Fig. 4.3d).  

The Burton et al. (2007) source depth model, which identifies where rising gas masses 

decouple from the melt – i.e. the point that they stop incorporating freshly exsolved gasses 

from the melt, suggests a depth range of ≈ 0.5 – 3.3 km. A H2O gas rich magma batch finding 

its way to the surface via the BN crater could be the driver behind the observed strombolian 

activity, with the strombolian activity driven by shallow exsolution. Gas ratio data for 

Fig. 4.14: This schematic illustrates the ranges of bubble source depths using the Burton et al. (2007) method 

over an approximation of the magma system at Etna. The tremor source is located (black solid circle) and the 

usual location of tremor at Etna. The grey box at the top of the conduit illustrates where the transition to slug 

based activity could occur.  
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individual bursts would provide invaluable information. Fig. 4.14 provides this information in 

context at Etna.  

4.6.  Concluding Remarks  

This chapter has illustrated through the use of UV cameras at the BN crater of Mt. Etna, 

relatively low gas masses of explosive activity ≈ 0.2 – 74 kg, compared to other volcanoes. 

These are the first such estimates for light strombolian activity at Mt. Etna. One of the main 

features of the observed activity is the discovery of a repose gap whereby larger explosions 

are followed by longer wait times before another explosion can occur. Amongst the possible 

causes of this feature, the most probable involves the coalescence of rising gas slugs which 

lead to the creation of larger distances in the melt between rising bubbles and hence longer 

delay times before the onset of the following explosion. The next chapter investigates this 

process in more detail.  

This chapter has also highlighted the value in applying single slug models, despite the 

potential inapplicability to multi slug activity, to investigate parameters such as transition 

depths to slug flow, with results suggesting shallow transitions of ≈ ≤ 170 m. In addition by 

estimating wake interaction lengths in combination with slug rise speeds, it was demonstrated 

that slugs could rise in close proximity to one another and could indeed interact and coalesce, 

a process which is likely expedited during slug expansion close to the surface.  
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5. Investigating multi-slug behaviour 

In the previous chapter, measurements of rapid slug driven strombolian activity were 

presented, along with a repose gap feature. This chapter combines laboratory analogue 

analysis of slug flow to probe slug interactions with computational analysis of this behaviour. 

The laboratory analysis reveals that coalescence can occur between rising slugs, even when 

the leading slug base is ascending at a faster velocity than the trailing slug base, an 

observation which has not previously been reported on. A relationship between gas volume 

fraction and slug rise speed is also demonstrated. The analysis also shows that the repose gap 

behaviour can be clearly defined using existing fluid dynamical relations, as successful tested 

using laboratory and field data. This is based on work presented at AGU, 2014: Pering, T. D. 

McGonigle, A. J. S., James, M.R., Lane, S.J., Capponi, A., Tamburello, G., Aiuppa, A., 2014c. 

Observations on Multi-Slug Activity – Implications for Volcanic Processes. In: AGU Fall 

Meeting 2014 San Francisco. The laboratory experiments were conducted at Lancaster 

University using the equipment described in James et al. (2013), Lane et al. (2013), and Del 

Bello et al. (2015). 

5.1.  Introduction 

A large proportion of the material relevant for this chapter has already been introduced in 

Chapters 3 and 4. Here, the focus is on experimental and fluid dynamical studies into rising 

and expanding gas slugs with a view to investigating and observing rapid strombolian 

activity. However, a number of non-volcanic slug based studies do focus on the interaction of 

two bubbles in both stagnant (Pinto and Campos, 1996) and co-current flow (Pinto et al. 

1998, 2001; Serizawa et al. 2002). With only two slugs in a pipe or conduit, given a sufficient 

distance between the two (i.e. beyond the disturbance created by the wake interaction length 

and expansions of the trailing slug) slugs should behave as they would in a single slug system 

(Taitel et al. 1980; Pinto et al. 2001). As additional slugs are added this relationship will 

break down as the trailing slugs begin to exert an influence on those above, hence influencing 

the speed and dynamics of the rising slugs, especially in bulk (Wallis, 1969; Llewellin et al. 

2014).  

In this chapter, the behaviour of multiple rising slugs is investigated utilising a scaled 

laboratory environment in addition to computational fluid dynamics (CFD). Apart from very 
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brief considerations by Seyfried and Freundt (2000), James et al. (2004), and Pioli et al. 

(2012), there has been little consideration of a multi-slug regime in a volcanic setting, an 

issue which this chapter addresses.  

5.2.  Laboratory Set-Up 

To simulate a varied rate of slug flow a bubble injector was installed at the base of an ≈ 1.8 m 

borosilicate glass tube of diameter ≈ 0.025 m (see Fig. 5.1). The bubble injector was 

equipped with a flow rate meter and was set to inject single bubbles of various volumes. The 

tube was kept at a constant pressure (during experiments) via a vacuum pump connected to 

the top of the tube, to allow a range of slug expansions rates to be investigated, in essence 

simulating volcanic slug flow at a variety of depths prior to burst. Mechanical vacuum pump 

oil was chosen as the liquid, which has a density of 862 ± 2 kg m
3
, and a viscosity of 0.162 ± 

0.004 Pa s
-1

. A similar equipment set up was used in Corder (2008), James et al. (2013), Lane 

et al. (2013), and Del Bello et al. (2015). With this equipment set up and fluid parameters, the 

dimensionless parameters were scaled to volcanic levels (see also Lane et al. 2013 

supplementary material for scaling arguments in more detail). An 𝑁𝑓 value of ≈ 66 is well 

within a reasonable volcanic range (see Del Bello et al. 2012). It should be noted here 

however, that there is a large difference in surface tension between lab (0.03 ± 0.002 N m
2
) 

and volcanic environments (between 0.3 – 0.4 N m
2
, e.g. Sparks, 1978), which effects the 

scaling of the experiments. Surface tension will be important in the lab setting, while surface 

tension effects can largely be neglected in a basaltic magma (Seyfried and Freundt, 2000; 

James et al. 2008; Del Bello et al. 2012; Lane et al. 2013).  

A series of experiments were designed to investigate a range of volcanic situations from low 

flow rates with little expansion, to simulate slug flow at depth with low overall gas volume 

fractions, to high flow rates with greater bubble expansion rate to simulate near-surface slug 

flow with high gas volume fractions. These experiments are summarised in Table 5.1. All 

experiments were recorded for ≈ 30 s with a slow motion ≈ 300 fps camera (Basler A602f, 

see Lane et al. 2013; Capponi et al. 2014) and a conventional Digital Single-Lens Reflex 

camera (DSLR, a Canon EOS 1100D) at ≈ 25 fps for a longer duration of ≈ 180 – 360 s. Slow 

motion video was necessary to track the coalescence process of individual bubbles in detail, 

which occurred at such a rapid rate (largely in < 3 s) that it could not be captured in enough 

detail using conventional recording methods. All tracks (of slug features) were made 
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manually using the software package ImageJ® and the plugin MTrackJ 

(http://www.imagescience.org/meijering/software/mtrackj/), this manual tracking process 

leads to a certain amount of rapid variability in slug base and nose positions associated with 

the pixel size. Despite this, this method is preferred over automated processes, which are 

unreliable during bubble coalescence. The tracks and signals were not filtered (e.g., via 

averaging or filtering) to preserve existing information and oscillations which would be 

removed otherwise. The longer duration DSLR data, which has a wider field of view, 

captures the full length of the tube, following the bubbles from injection to burst, which 

enabled the determination of bubble length and burst time with an accuracy of ± 0.01 m and ± 

0.04 s respectively. Additional measurements were made using transducers at the base and 

the top of the tube, which recorded pressure at 1,000 Hz; a displacement transducer was also 

placed at the base. Pressure was measured using Honeywell 163PC01D75 differential 

pressure transducers. 

Table 5.1: Summary of the laboratory experiments, their set-up parameters, average slug length and average gas 

volume fraction of each regime observed.  

Code Av. Flow Rate (cm
3
 s

-1
) Surface Pressure (Pa) Av. Slug Length (mm) Gas VF (%) 

Lab 1 9.38 1 16.98 8 

Lab 2 49.71 1 50.34 27 

Lab 3 174.92 1 208.71 58 

Lab 4 9.38 0.5 23.91 9 

Lab 5 49.71 0.5 56.75 29 

Lab 6  174.92 0.5 223.81 63 

Lab 7 9.38 3 10.46 6 

Lab 8 49.71 3 27.29 18 

Lab 9 174.92 3 115.88 50 

Lab 10 9.38 5 8.27 7 

Lab 11 49.71 5 18 16 

Lab 12 174.92 5 73.47 40 

 

 

 

 

http://www.imagescience.org/meijering/software/mtrackj/
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Fig. 5.1:  The experimental set-up included a vertical tube with a bubble injector attached to the base to 

simulate a range of flow rates. Tube pressure was varied via connection to a vacuum pump at the top of the 

tube, but was kept constant during experiments. Two cameras, a DSLR (Canon EOS 1100D), and a slow 

motion camera (Basler A602f), were aligned to image the rising slugs in the tube. Pressure transducers were 

placed at the top and the base of the tube. 
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5.3.  Lab Results 

Here, the results of the laboratory experiments are presented. Firstly a number of example 

image stills of all bubbles within the column are shown in Fig. 5.2 during the coalescence 

process to illustrate the different flow regimes. This is the first such analysis of its kind, in 

particular in the lab using parameters scaled to match volcanic dimensionless parameters 

(e.g., 𝑁𝑓, see Chapters 3 and 4). Following this, the bulk behaviour of slugs was considered, 

in particular focussing on burst rates, rise speeds, and lengths (and volume) of the slugs with 

a view to investigating the repose gap behaviour of Chapter 4. Finally, data recorded by 

pressure and displacement transducers were analysed and compared to the burst data.   

Fig. 5.2: Example images from each lab experiment demonstrating slug length and overall gas volume 

fraction of the simulated regimes (see Table 1.1 for information on each flow regime). 
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5.3.1. Tracking slug interaction 

Fig. 5.3 shows an example of coalescence within the laboratory regimes. In Figs. 5.4 to 5.7 

the coalescence process of two bubbles was tracked on a frame by frame basis. In each figure 

a number of features are plotted, including: the lengths of the trailing and leading slug, the 

distance between the trailing and leading slug (termed the gap length), the wake interaction 

length (see equation 4.3), the wake length (see equation 4.2), the trailing and leading slug 

base speeds, the predicted slug base speed in a single slug environment according to Viana et 

al. (2003), and the gap length plus the trailing length. Theoretically the latter parameter 

should be constant, until the trailing slug begins to interact with the leading slug, as it is at 

this point, assuming that the whole of the slug including its base begins to accelerate (Pinto 

and Campos, 1996; Kawaji et al. 1997; Pinto et al. 1998), that this gap plus trailing length 

should begin to decline. A summary of information surrounding the plots in Figs. 5.4 to 5.7 is 

given in Table 5.2.    

In all plots there are number of different observations: 

 At lower volume fractions (< ~10 %) the coalescence process occurs as expected, 

with a decreasing gap length plus trailing length, leading to coalescence (see Figs. 

5.4c, 5.5a, 5.5e, and 5.5f). The rise speed of the base of the slugs in these situations is 

close to, or at the predicted value (Viana et al. 2003; Llewellin et al. 2012). 

 At moderate volume fractions (> ~ 10 %) the rise speed of slugs is above predicted 

values a single slug system (Viana et al. 2003; Llewellin et al. 2012) but within the 

Krishna et al. (1999) estimate, see Figs. 5.5b, 5.5c, 5.5d, 5.6b, and 5.6c. This could 

be related to turbulence or a measurable effect of expansion from lower slugs. 

 At still higher volume fractions (> ~ 20 %) the rise speed of slugs reacts to bulk 

changes in fluid movement resulting from the burst of larger slugs at the top of the 

liquid column. This is illustrated in rapid fluctuations in rise speeds (see Figs. 5.4a, 

5.4b, 5.4d, and 5.4e). 

 Slugs begin to interact at the wake interaction length (or within this limit), as 

evidenced by a reduction of the gap length plus trailing length in several figures (see 

Figs 5.4c, 5.5a, 5.5e, 5.5f, 5.6a) within this limit. Rapid capture occurs on entering 

the slug wake (a more rapid acceleration of the trailing slug base into the leading 

slug) in the final ≈ 0.2 s of the coalescence process.  
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 At a relatively constant base speed for both trailing and leading slugs, regardless of 

whether the rise speed is above or at the predicted speed for single slugs the 

coalescence process occurs “normally” (see Figs. 5.4c, 5.5a, 5.5e, and 5.5f), i.e. the 

gap plus trailing length decreases before rapid capture on entering the slug wake. In 

these cases, the slugs are behaving as though they are rising in a stagnant fluid. 

 In certain circumstances the gap plus trailing length actually increases before 

coalescence (see Figs. 5.4a, 5.4b, 5.4d, 5.4e, 5.5b, 5.5c, 5.5d, 5.6b, 5.6c). In these 

cases the base of the leading slug begins to move at a faster speed than the trailing 

slug, however, the length of the trailing slug, begins to increase (i.e. the nose 

accelerates, in tandem with an increase with the leading slug base speed) which 

allows the whole of the trailing slug to be, in essence, stretched into the wake of the 

leading slug resulting in coalescence, (see Fig. 5.7a, 5.7b, 5.7c for an example of the 

tracks). This is a similar observation as that associated with coalescence in a co-

current environment (Pinto et al. 1998), who also show that the leading slug can 

travel at a faster speed than the one below. Here, the results show that coalescence 

can still occur even in these cases, which Pinto et al. (1998) suggest cannot (see 

Table 5.2 for examples).  

Fig. 5.3: Stills showing the coalescence process for two ascending gas slugs (circled in blue at time 0 and 

0.38 s). As the trailing slug expands it begins to enter the area of influence and the whole of the slug begins 

to accelerate, on entering the slug wake, the nose elongates, ending in coalescence.  
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 The coalescence process takes longer in the regimes where expansion is less 

dominant (see Fig. 5.6). Indeed, in some instances, the tube may not be long enough 

to capture the entire coalescence process. In addition, the probability of coalescence 

is increased if the trailing slug has a higher mass/volume than the leading slug, i.e. 

the trailing slug is inserted into the areas of influence by a higher rate of slug 

expansion, making coalescence more likely. 

 During all experiments a foam layer is generated at the air-liquid surface interface, 

however, this is most pronounced in the higher gas volume fraction experiments, of > 

40%. This foam layer has a resultant effect on how the slugs arrive and burst at the 

surface in those experiments (Lab 3, Lab 6, and Lab 9) as in effect, the viscosity of 

the upper portion of the conduit will have been changed (Del Bello et al. 2015). This 

includes the slowing of slugs on entering this layer and hence how they interact. 

Although separation distances between slugs are preserved. These foam layers are 

visible in the videos contained in Appendix D. 
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Table 5.2: A summary of the rise speeds of the bases of the trailing and leading slugs during a number of 

coalescence events. The speeds were calculated during the whole sequence, during coalescence (defined by the 

last < 1 s before coalescence), and pre coalescence. All italicised rows refer to coalescence events where the 

leading slug base is travelling at a faster speed than the trailing slug base. *Slug 1 refers to the leading slug and 

slug 2 to the trailing slug, all values are in m s
-1

. Refer to Table 5.1 for experimental conditions, error on these 

values is ± 4 x 10
-4

 m s
-1 

(i.e. length error of ± 0.01 m multiplied by time error of ± 0.04 s). 

 Pre Coalescence During Coalescence  Whole Sequence 

Experiment Slug 1* Slug 2* Slug 1* Slug 2* Slug 1* Slug 2* 

Lab 1 0.12 0.13 0.13 0.17 0.12 0.14 

Lab 2 0.16 0.16 0.20 0.23 0.18 0.20 

Lab 3 0.25 0.24 0.33 0.31 0.28 0.27 

Lab 3 0.23 0.22 0.31 0.27 0.26 0.24 

Lab 3 0.25 0.24 0.27 0.26 0.26 0.25 

Lab 4 0.13 0.13 0.17 0.15 0.15 0.14 

Lab 5 0.14 0.15 0.14 0.21 0.14 0.18 

Lab 5 0.14 0.15 0.15 0.17 0.14 0.16 

Lab 5 0.14 0.14 0.15 0.16 0.15 0.15 

Lab 6 0.23 0.22 0.43 0.36 0.36 0.31 

Lab 6 0.24 0.23 0.37 0.33 0.28 0.26 

Lab 6 0.24 0.24 0.22 0.22 0.23 0.23 

Lab 6 0.25 0.24 0.27 0.27 0.26 0.26 

Lab 6 0.23 0.23 0.28 0.28 0.25 0.25 

Lab 7 0.12 0.13 0.13 0.15 0.12 0.13 

Lab 8 0.14 0.14 0.14 0.15 0.14 0.15 

Lab 9 0.21 0.22 0.23 0.24 0.22 0.22 

Lab 9 0.22 0.22 0.24 0.23 0.23 0.22 

Lab 9 0.21 0.21 0.24 0.24 0.22 0.22 

Lab 9 0.22 0.21 0.26 0.23 0.24 0.22 

Lab 9 0.21 0.20 0.23 0.23 0.23 0.22 

Lab 9 0.21 0.21 0.22 0.24 0.21 0.22 

Lab 11 0.14 0.14 0.14 0.15 0.14 0.15 

Lab 11 0.14 0.14 0.15 0.15 0.14 0.15 

Lab 12 0.20 0.20 0.23 0.24 0.21 0.21 

Lab 12 0.18 0.20 0.20 0.21 0.19 0.21 

Lab 12 0.20 0.20 0.24 0.24 0.22 0.22 

Lab 12 0.20 0.19 0.23 0.22 0.22 0.21 
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Fig. 5.4: Example tracks and speeds of a selection of coalescence events (continued in Figs. 5.5 and 5.6). The 

gap length is the distance between the leading slug base and the trailing slug nose. In (a), (b), (d), and (e), slugs 

are rising at a rate faster than the predicted theoretical rise speed, in (c) they are rising at that speed, and in (f) 

below the speed. Rapid oscillations in rise speed,  obvious in (a), (b), (d), and (e) are related to the bursting and 

drain back of liquid from the burst of a slug at the surface affecting the whole magma column. (c) represents 

expected behaviour of coalescing slugs in a normal single slug regime, whilst in (f), the rising bubble has yet to 

transition to a full slug. For a detailed discussion of features see the text at section 5.3.1. 
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Fig. 5.5: A continuation of Fig. 5.4. In (a) the rising slugs are behaving as though they are in a single slug 

system. In (b), (c), and (d), both slugs are rising above the theoretical speed, and demonstrate a generally 

increasing gap plus trailing length before coalescence.  For a detailed discussion of features see the text at 

section 5.3.1. 
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Fig. 5. 6: A continuation of Fig. 5.4 and 

5.5. Here, all plots show a faster than 

predicted base rise speed. However, a 

mixture of interaction behaviour, with a 

non-increasing gap plus trailing length 

shown in (a) but increasing in (b), and (c).  

For a detailed discussion of features see 

the text at section 5.3.1. 

Fig. 5. 7: Example positional tracks of four sets of coalescing slugs. In (d) the coalescence event demonstrated 

in Fig. 5.6a shows a constant trailing base speed until acceleration and eventual coalescence. In (a), (b), and (c) 

the bulk behaviour of rising slugs is demonstrated. 
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Table 5.3: A summary of slug base speeds calculated for non-coalescing slugs only. 

Exp # Speed (m s
-1

) Exp # Speed (m s
-1

) Exp # Speed (m s
-1

) Exp # Speed (m s
-1

) 

Lab 1 0.126 Lab 4 0.165 Lab 7 0.126 Lab 10 0.125 

Lab 1 0.126 Lab 4 0.162 Lab 7 0.125 Lab 10 0.122 

Lab 1 0.127 Lab 4 0.159 Lab 7 0.128 Lab 10 0.124 

Lab 1 0.127 Lab 4 0.144 Lab 7 0.125 Lab 10 0.122 

Lab 1 0.127 Lab 4 0.132 Lab 7 0.126 Lab 10 0.120 

Lab 1 0.130 Lab 4 0.126 Lab 7 0.124 Lab 10 0.122 

Lab 1 0.126 Lab 4 0.134 Lab 7 0.126 Lab 10 0.121 

Lab 1 0.123 Lab 4 0.130 Lab 7 0.122 Lab 10 0.126 

Lab 1 0.128 Lab 4 0.127 Lab 7 0.122 Lab 10 0.119 

Lab 1 0.131 Lab 4 0.129 Lab 8 0.145 Lab 11 0.139 

Lab 2 0.161 Lab 5 0.161 Lab 8 0.142 Lab 11 0.140 

Lab 2 0.158 Lab 5 0.152 Lab 8 0.140 Lab 11 0.138 

Lab 2 0.152 Lab 5 0.146 Lab 8 0.137 Lab 11 0.135 

Lab 2 0.147 Lab 5 0.144 Lab 8 0.144 Lab 11 0.135 

Lab 2 0.146 Lab 5 0.161 Lab 8 0.142 Lab 11 0.134 

Lab 2 0.146 Lab 5 0.157 Lab 8 0.145 Lab 11 0.139 

Lab 2 0.142 Lab 5 0.151 Lab 8 0.141 Lab 11 0.138 

Lab 2 0.139 Lab 5 0.149 Lab 8 0.142 Lab 11 0.137 

Lab 2 0.166 Lab 5 0.145 Lab 8 0.147 Lab 11 0.136 

Lab 2 0.153 Lab 5 0.143 Lab 8 0.147 Lab 11 0.141 

Lab 2 0.153 Lab 5 0.143 Lab 8 0.145 Lab 11 0.141 

Lab 2 0.146 Lab 5 0.146 Lab 8 0.141 Lab 11 0.139 

Lab 2 0.145 Lab 5 0.144 Lab 8 0.138 Lab 11 0.136 

Lab 2 0.144 Lab 5 0.142 Lab 8 0.139 Lab 11 0.136 

Lab 2 0.139 Lab 6 0.319 Lab 9 0.264 Lab 12 0.221 

Lab 3 0.283 Lab 6 0.272 Lab 9  0.255 Lab 12 0.215 

Lab 3 0.258 Lab 6 0.250 Lab 9 0.242 Lab 12 0.208 

Lab 3 0.220 Lab 6 0.240 Lab 9 0.229 Lab 12 0.200 

Lab 3 0.215 Lab 6 0.223 Lab 9 0.224 Lab 12 0.194 

Lab 3 0.206 Lab 6 0.324 Lab 9 0.213 Lab 12 0.189 

Lab 3 0.201 Lab 6 0.284 Lab 9 0.207 Lab 12 0.186 

Lab 3 0.298 Lab 6 0.261 Lab 9 0.207 Lab 12 0.217 

Lab 3 0.274 Lab 6 0.239 Lab 9 0.250 Lab 12 0.209 

Lab 3 0.244 Lab 6 0.303 Lab 9 0.228 Lab 12 0.197 

Lab 3 0.230 Lab 6 0.280 Lab 9 0.220 Lab 12 0.192 

Lab 3 0.227 Lab 6 0.262 Lab 9 0.211 Lab 12 0.189 

Lab 3 0.317 Lab 6 0.248 Lab 9 0.208 Lab 12 0.202 

Lab 3 0.292 Lab 6 0.239 Lab 9 0.197 Lab 12 0.201 

Lab 3 0.276 Lab 6 0.258 Lab 9 0.194 Lab 12 0.195 

Lab 3 0.255 Lab 7 0.128 Lab 10 0.122   
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5.3.2. Bulk behaviour of slugs 

The average velocity of slugs in each regime was calculated using the slugs visible in the 

slow motion camera videos (see Table 5.3 for all values, and Appendix D for videos). This 

was then compared to the calculated volume fraction for each laboratory experiment (see 

Table 5.1). Volume fraction was calculated using a series of images stills for each 

experimental regime (in 30 s intervals using DSLR data), by summing the gaseous 

component and hence calculating the proportion of the liquid column occupied by gas. A 

summary of calculated speeds is available in Table 5.4, with the relationship between volume 

fraction and speed displayed in Fig. 5.8.  

Table 5.4: Table summarising the calculated average slug base rise speeds of slugs (see Table 5.3 for all values) 

in each laboratory experiment (calculated using the slow motion camera images).  

Experiment VF (%) Speed (m s
-1

) 

Lab 1 8 0.127 

Lab 2 27 0.149 

Lab 3 58 0.253 

Lab 4 9 0.140 

Lab 5 29 0.148 

Lab 6 63 0.266 

Lab 7 6 0.125 

Lab 8 18 0.142 

Lab 9 50 0.223 

Lab 10 7 0.122 

Lab 11 16 0.137 

Lab 12 40 0.201 

Theory N/A 0.153 

 

Fig. 5.8 shows that there is a general relationship between the overall average gas volume 

fraction and observed rise speeds of the base of slugs, suggesting that the approximate speed 

of a rising slug in a multi-slug regime can be estimated. A number of the experimental 

regimes lie below the predicted line, which relate to experiments with < 20% gas volume 

fraction, and those which have yet to transition to full slug flow. A number of correlative 

relationships can be obtained, the following linear relationship has an R
2
 = 0.9474: 
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𝑦 =  0.245𝑥 +  0.102, (Eq. 5.1) 

the following exponential has an R
2
 = 0.9615:  

𝑦 =  0.112𝑒1.388𝑥, (Eq. 5.2) 

and the following 5
th

 order polynomial has an 

R
2
 = 0.9921:  

𝑦 =  40.99𝑥5 −  74.65𝑥4  +  49.35𝑥3 −

 13.99𝑥2  +  1.77𝑥 +  0.056.  (Eq. 

5.3) 

For each laboratory simulation the average 

slug length (at burst) was also calculated (see 

Table 5.1), indeed when compared with gas 

volume fraction a relationship is similarly identified (see Fig. 5.9). This is largely a result of 

the controlled laboratory conditions, however, this may be of use in estimating average slug 

lengths during rapid activity if slug masses or volumes are known. 

 

Fig. 5.8: Relationship between base rise speed (Table  

5.2) and volume fraction of each lab experiment. Here 

a linear relationship is demonstrated (red line). The 

black dashed line represents the theoretical rise speed 

for a slug in a single system. Rising bubbles below this 

have yet to transition to a full slug flow regime. 

Fig. 5.9: The exponential relationship between slug length and gas 

volume fraction using averages of slug length at burst.  
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5.3.3. Investigating the repose gap behaviour 

Here, the slug lengths and burst times of all bursts within all lab runs observed in the DSLR 

videos are calculated and illustrated. In Fig. 5.10 the slug lengths of all observed slugs are 

plotted against repose time (following a burst before the next occurs, as with the repose gap 

of Chapter 4). The results show a number of linear trends associated with repose time and 

slug length, with the majority possessing R
2
 relationships of > 0.59. The gradients of these 

lines, which do not all go through the origin decrease with increasing volume fraction.  

Using the best fit lines we can compare these gradients with the volume fraction of each 

experiment. This shows a strong relationship of R
2
 = 0.95 with equation y = 17.6x

-0.66
, 

indicating that the gradient increases for smaller gas volume fractions as is evident in Fig. 

5.11.  

In Fig. 5.10, there also appears to be a graduated increase in repose time with slug length. To 

investigate this area in more detail all slug lengths were converted to slug volume, using the 

equation for a volume of a cylinder (𝑉 = 𝜋𝑟2𝑙𝑠, the latter term is slug length). Fig. 5.12 

shows the results of this conversion, with the repose gap clearly visible. Here, the black 

repose gap line is drawn using the following equation: 

𝑅𝑒𝑝𝑚𝑖𝑛 =  
𝐿+𝐿𝑤𝑎𝑘𝑒

𝑢𝑠𝑙
  (Eq. 5.4) 

Fig. 5.10: Plot showing the repose time and lengths of slugs (or cap bubbles) at burst for each laboratory 

regime. The data for producing this plot were taken from DSLR videos (see Appendix D for description and 

videos). Each set of experiments is given its own colour code and is associated with a linear trend, with a 

gradient that decreases in regimes with higher gas volume fraction.  
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where the minimum repose time, 

the 𝑅𝑒𝑝𝑚𝑖𝑛, is equal to the length 

of a slug, 𝐿, added to the length 

of the wake, 𝑙𝑤𝑎𝑘𝑒 (see equation 

4.3), all divided by the predicted 

rise speed of the base of a single 

slug (see equations 3.3. and 3.4). 

In essence, this is a measure of 

the time taken for a trailing slug 

to travel through the length of the 

leading slug and its wake. A 

larger slug will make a larger 

disturbance at the surface with 

falling film and trailing liquid, 

therefore restricting the rise of a trailing slug (e.g. as evidenced in Figs 5.4 and 5.5). This 

process is also related to the amount of time taken for the turbulence contained within the 

liquid to return to background levels (Taitel et al. 1980). The result is a convincing match 

(black line in Fig. 5.12) with the lower slug bursts associated with the limits of burst 

frequency. Additionally, if 𝑙𝑤, is replaced with the wake interaction length, 𝑙𝑚𝑖𝑛 (see equation 

4.2), then any bursts occurring between the repose gap line and the repose transition line (red 

dashed line in Fig. 12) could potentially begin to interact with one another, i.e. the time delay 

between bursts is rapid enough such that the slugs should be separated by a small amount of 

liquid, around the wake interaction length: 

𝑅𝑒𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =  
𝐿+𝐿𝑚𝑖𝑛

𝑢𝑠𝑙
.  (Eq. 5.5) 

All slugs lying above the red dashed line in Fig. 5.12, are more likely to behave as though 

they are in a single slug system.  

Fig. 5.11: The relationship between linear gradient of each 

laboratory regime and associated gas volume fraction, shows a 

strong trend.  
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5.3.4. Proxy Geophysical signals 

Geophysical signals associated with each laboratory regime were also investigated. In each 

case the possibility of correlations with acoustic pressure (see Fig. 5.13 for example acoustic 

traces) and slug volume/length were investigated, but in each case a link between the two was 

elusive. Matching bursts with pressure traces were performed on a temporally coincident 

basis, but, there was not always a coincident acoustic pressure trace for each burst. Fig. 5.14 

shows an example relationship between slug length and pressure, where it can be seen that 

there is no correlation suggesting an underlying complexity to links between acoustic 

pressure and slug mass (e.g. Lane et al. 2013; Matoza et al. 2013). Fig. 5.15 shows example 

traces for three of the lab experiments (Lab 1, 2, and 3), these which show that for regimes 

with elevated flow rates, the associated acoustic oscillations over timescales of seconds 

become larger.  

Fig. 5.12: In this plot each slug has been converted to volume at burst. This reveals a 

similar repose gap type behaviour as described in Chapter 4. Here, the repose gap (black 

line) has been defined using equation 5.4 in the text. Also displayed is the repose 

transition line (dashed red line). Between the transition and repose gap line, slugs may 

begin to interact with one another. Above the transition line slugs may behave as though 

they are in a single slug environment, at least in so far as rise speed is concerned.  
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Fig. 5.13: A plot demonstrating the differentiated acoustic pressure trace from six slug bursts during experiment 

Lab 3. Here we see the characteristic N-wave of a volcanic infrasonic pressure wave is evident. Here, the larger 

acoustic signals don’t correspond to the largest volume of bursts.  

Fig. 5.14: An attempt at finding a correlation between slug lengths 

and the acoustic pressure generated by the bursting of slugs. Here, 

there is little relationship evident.  
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5.4.  CFD Set-Up 

The CFD package Ansys Fluent® with almost the same model parameters as described in 

Chapter 4 were used. The reader is referred to section 3.4 for the full model set-up details. 

Here the differences are magma density, which was set to 2500 kg m
3
, and magma viscosity 

to 1000 Pa s
-1

. A conduit radius and length of 1.5 m and 250 m, were used respectively, with 

each model initialised with 150 m of magma below 100 m of dry air at an atmospheric 

pressure of 101,325 Pa. During model testing, models with low viscosity magmas produced 

low model stability and run time was too long to allow a large number of runs. Hence, higher 

viscosity values were chosen, as appropriate for basaltic magmas (e.g. Shaw et al. 1968; 

Sparks, 1978; Llewellin et al. 2014b). As with Chapter 4, the composition of the volcanic 

slug was set to water vapour. In this chapter, the behaviour of multiple slugs in a volcanic 

setting is of interest. A number of experiments with identical mass slugs added at different 

depths and different separation distances were performed, to probe the interactive behaviour 

of the bubbles. A summary of model runs is available in Table 5.5 with the initial model 

conditions displayed in Fig. 5.16. A number of slugs in a volcanic system from one (as a 

control) to four were simulated at varying separation distances, ranging between 0.8 and 5 the 

wake interaction lengths. The additional slugs were added below the initial slug, to allow 

comparison with the (control) single slug.  

Fig. 5.15: Example base pressure of the experimental tube for three laboratory experiments: Lab 1, 2 and 3. A 

higher variability and oscillation range is evident for the larger volume fractioned experiments. The lower 

pressure at higher volume fraction is associated with the higher proportion of lower density gas within the 

column. 
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Table 5.5: Summary of computational experiments. 

Exp # # of Slugs Slug Separation Distance [m] Coalescence? 

C1 1 N/A   

C2 2 25   

C3 2 20   

C4 2 15   

C5 2 10   

C6 2 5   

C7 2 4 Y 

C8 3 25 
 

C9 3 20 
 

C10 3 15 
 

C11 3 10 
 

C12 3 5 
 

C13 3 4 Y 

C14 4 25 
 

C15 4 20 
 

C16 4 15 
 

C17 4 10 
 

C18 4 5 
 

C19 4 4 Y 
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Fig. 5.16: Initial model parameters for each computational experiment listed in Table 5.5. The blue colours 

represent gas, and the red, magma. Models C7, C13, and C19 all produced coalescence..  
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5.5.  CFD Results and Analysis 

Fig. 5.17 shows, for reference, a single slug rising to the magma surface, expanding and 

bursting. The tracks of the slug clearly show a constant base velocity (apart from the first ≈ 

2.5 s of the simulation, which are associated with bubble equilibration). This is also 

demonstrated in Fig. 5.17b, which shows that the slug base rises at the predicted speed of ≈ 

1.29 m s
-1

. Fig. 5.18 shows stills from simulation C7, where coalescence of two slugs occurs. 

The following Figs 5.19 – 5.22 are associated with the tracks of two to four slugs during a 

coalescence event (Figs. 5.20; 5.22a-e) and those where a coalescence event doesn’t occur 

(Figs. 5.19; 5.21; 5.22f ). A large amount of variability in the data is again associated with the 

manual tracking process, which is preferred due to the dynamic nature of the bubble during 

coalescence events, and the inability of automated computational or other tracking methods 

to differentiate between a single and a newly coalesced bubble.  

Fig. 5.17: Plot showing the results of the “control” computational run C1. In (a) the position of the 

slug nose and base prior to burst is displayed, while in (b) the speed of the nose and base are 

displayed alongside the predicted theoretical speed of 1.27 m s
-1

. Here the predicted speed is seen to 

match well with that modelled, as the model validation suggests in Chapter 3. Slug burst occurs at 

the far right hand side of the plot.  
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The two slug simulations are illustrated in Figs 5.19 and 5.20, while Fig 5.18 shows stills of 

the coalescence process. It is not until the slugs are initiated within the interaction length (≈ 5 

m) that coalescence occurs. With sufficient distance between the two slugs, outside of the 

region of greatest volumetric expansion, both slug bases appear to rise at or very near to the 

theoretical speed (Viana et al. 2003), as is clear in Fig. 5.19a, b, c. As the rising slugs ascend 

in closer proximity to each other, the expansion of the trailing slug begins to have an 

influence on the leading slug, due to an increase in base velocity. This is achieved by giving 

an upward velocity to the magma column, over its stagnant initial conditions. The slug rise 

speed increase is more pronounced closer to the magma surface (see the last 5 s before burst 

in Fig. 5.19d) suggesting that slug coalescence will also be more pronounced, closer to the 

surface, particularly in volcanic regimes.   

In Fig. 5.20 the coalescence process of two volcanic slugs is displayed. In the first three 

seconds of the simulation the model equilibrates (as with all models, see section 3.4). 

Following this there is a period between 3 and 8 s where the distance between the two rising 

slugs reduces slightly. At ≈ 8 s this length continues to reduce but at an increased rate, until 

coalescence occurs. This more rapid increase at ≈ 8 s is accompanied by a rapid increase in 

slug length from ≈ 9 to 11 m, whereas the leading length remains at ≈ 9 m, indicating that this 

rapid increase is a result of the coalescence process and not normal expansion. In effect, the 

trailing slug nose seems to be accelerated (or stretched) into the leading slug (see videos in 

Appendix D), with little acceleration of the slug base until the trailing slug nose has entered 

the leading slug base, where the momentum of the slug nose acceleration is passed on to the 

slug base.  

Fig. 5.21 shows three slugs of identical mass, which don’t coalesce. Again, this shows that 

the closer slugs are to each other and the closer they are to the surface, the greater the effect 

they have on each other. In all cases the distance between the rising slugs noses and bases 

(the gap lengths) remains constant. The coalescence of the two leading slugs in the three slug 

regime (see Fig. 5.22a, and b) follows a similar process to that described in the previous 

paragraph. This also has an effect on the length of the third slug, which oscillates with the 

changes in magma movement as a result of the coalescence event. The gap between the 

newly created slug and the originally third slug then returns to the original gap length 

between the original third slug and the original second slug.  Fig. 5.22f shows an example 
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four slug regime where coalescence doesn’t occur. Here as with the three slug regimes, the 

slugs rise at a slower speed (see Table 5.6 for summary of rise speeds) the further down they 

are in the conduit. Indeed, through the simulations, a significant observation is the rapidity at 

which co-current flow becomes a major influence, or at least the slug behaviour associated 

with it (see Pinto et al. 1998, 2001; Liu et al. 2005).  

 

 

 

 

 

 

Fig. 5.18: Stills showing the coalescence process of two ascending gas slugs within volcanic regime C7. 

Here similar features are observed as with Fig. 5.3, slug acceleration increases within the wake area, 

causing nose elongation and eventual coalescence. The tracks for this slug coalescence can be seen in Fig. 

5.20. 
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Table 5.6: The average rise speeds of the base of all slugs within the computational simulations. The slugs are 

numbered according to their depth with Slug 1 being the closest to the surface.   

Exp # Slug 1 (m s
-1

) Slug 2 (m s
-1

) Slug 3 (m s
-1

) Slug 4 (m s
-1

) 

C1 1.23 N/A N/A N/A 

C2 1.46 1.24 N/A N/A 

C3 1.50 1.24 N/A N/A 

C4 1.55 1.24 N/A N/A 

C5 1.53 1.24 N/A N/A 

C6 1.75 1.24 N/A N/A 

C7 1.42 1.20 N/A N/A 

C8 1.57 1.36 1.24 N/A 

C9 1.65 1.39 1.24 N/A 

C10 1.78 1.44 1.23 N/A 

C11 1.91 1.51 1.23 N/A 

C12 2.20 1.66 1.24 N/A 

C13 1.70 1.47 1.34 N/A 

C14 1.66 1.44 1.33 1.25 

C15 1.76 1.5 1.35 1.23 

C16 1.93 1.59 1.37 1.23 

C17 2.15 1.75 1.46 1.25 

C18 2.63 2.05 1.62 1.26 

C19 1.73 1.74 1.66 1.07 
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Fig. 5.19: Here, tracks for experiment C2 (left hand side) and C6 (right hand side) are shown. In addition to the 

speed traces for all slugs (c) and (f), in (b) and (e) plots containing identical information to those in the 

laboratory regimes demonstrate the distances between slugs, and their relationship with regards to wake length 

and trailing length. In each computational simulation the gap plus trailing length increases where coalescence 

isn’t observed. The theoretical speed is shown in gray (c, f) for reference. 
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Fig. 5.20: A continuation of Figs. 5.18 and 5.19. Here the first pair of coalescence slugs are 

analysed. Given that both slugs are of identically mass, it takes model initiation of the two slugs 

within the  interaction length for coalescence to occur. Rapid variability of slug rise speeds is 

caused by the manual tracking process. Here the trailing length is seen to increase rapidly into the 

leading slug, suggesting that the trailing slug is stretched into the leading slug. Indeed, the base of 

the trailing slug (a) seems to accelerate little prior to the point of coalescence. The theoretical speed 

is shown in gray (c) for reference. 
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Fig. 5.21: Here, tracks for experiments C9 (left hand column) and C15 (right hand column) are presented, (c), 

(d), and (e) display the rise speeds of the leading, middle and lower slugs respectively for C9 and (h), (i), and (j) 

for C15. The closer the slugs are to one another, the greater the effect of slug expansion on rise speed. This is 

particular clear in (f), where slug expansion appears to push the slug above it at a faster pace. The gap plus 

trailing length in each instance is observed to increase, indicating that the leading slug is indeed rising at a faster 

pace than the trailing slug. The theoretical speed is shown in gray (c, d, e ,h, i, j) for reference. 
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Fig. 5.22: Here, tracks for experiments C13 (left hand column) and C18 (right hand column) are presented. As 

per Fig. 5.21, (c), (d), and (e) refer to the leading, middle and trailing slug speeds, and speeds for the four slugs 

are depicted in (g), (h), (i), and (j). For experiment C13 one coalescence event occurs, the middle slug into the 

upper slug. Following on from this the gap plus trailing length is seen to increase again demonstrating that this 

can increase even when coalescence occurs. C18 again demonstrates this increase in slug rise speed, influenced 

by the slug below. The theoretical speed is shown in gray (c, d, e, g, h, i, j) for reference. 
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5.6.  Application of repose theory to Etna Data 

By using equations 5.4 and 5.5 to enable determination of bubble/slug volumes the repose 

gap model can be applied to the collected Etna data during rapid strombolian activity as 

described in Chapter 4. Here, using parameters appropriate for Etnean magma: density = 

2600 kg m
3
, viscosity = 2000 Pa s

-1
, and a conduit radius of 1.5 m, the theoretical repose and 

transition times can be added to the Etna data. Fig. 5.23 shows that the repose gap relation 

also characterises this volcanic situation well. Fig. 5.23b demonstrates that there are six 

bursts which fall below the repose gap boundary. There could be a number of reasons behind 

this: inappropriate magma or conduit parameters, bursts are inappropriately timestamped due 

Fig. 5.23: Here, burst data pertaining to data collected during Etnean activity at the Bocca Nuova 

crater (described in full in Chapter 4) are presented. All data have been converted to burst 

volumes. Above the data plotted on a normal plot, below the data plotted on a log-log plot. Also 

added to both plots is the repose gap line (equation 5.4) and the repose transition line (equation 

5.5). For a magma density of 2600 kg m
3
, viscosity of 2000 Pa s

-1
 and conduit radius 1.5 m these 

parameters seem to match well with the observed activity, with the exception of a number of bursts 

less than 1 m
3
 in volume.  
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to limited temporal resolution of the UV camera and the bursts which are of the lowest 

volumes may not involve slugs. 

Fig. 5.24 shows infrasonic data collected from rapid strombolian activity at the base of the 

NEC on the 17
th

 July 2014. A total of 34,229 events were captured using a seismo-acoustic 

recorder at a distance of ≈ 5 km (data courtesy of Andrea Cannata, INGV - Osservatorio 

Etneo). Given that only one recorder was used for the study it is not possible to convert 

acoustic pressure to bubble volume (e.g. Matoza et al. 2013). However, the relative acoustic 

pressure and hence burst amplitude from each slug burst should be preserved. Highlighted in 

Fig. 5.24 are two areas of importance. The red line highlights a repose gap like feature 

whereby there is a minimum wait time before another burst can occur. This line effectively 

stretches from ≈ 0.2 s, at an acoustic pressure of 10
3
, to ≈ 1 s. Within the blue circle of Fig. 

5.24 there are a number of bursts which would fall below the red line if it was extended. It is 

possible that the bursts which fall within this zone are not full slugs and can burst at an 

increased rapidity, perhaps due to a change in burst regime (James et al. 2009). It is equally 

possible that the rapid nature of the activity could vary the acoustic pressure generated by 

bursts, which would be expected of a single bursting slug (Matoza et al. 2013). 

Fig. 5.24: Over 34,000 strombolian events from activity on the NEC on the 17
th
 July 2014,  which generated an 

infrasonic pressure pulse, are plotted here. Two areas of interest are identified, the first red line indicates a 

repose gap type feature, while the blue circled area appears to indicate an area which may break this feature. It is 

possible that the red line is related to the repose gap behaviour, while smaller bursts, associated with lower 

acoustic pressures can disrupt this trend. Data courtesy of Andrea Cannata (INGV, Osservatoria Etneo). 
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5.7.  Application to Yasur  

There is a significant shortage of field data relating to high frequency volcanic slug bursting, 

specifically with time information attached. One of the exceptions involves data contained 

within Kremers et al. (2013) for strombolian explosions at Mt. Yasur, Vanuatu. The 

explosions at Yasur are also thought to be caused by the rise and bursting of gas slugs (e.g. 

Nabyl et al. 1997; Kremers et al. 2012; Gaudin et al. 2014b). For the purposes of applying the 

repose relations (equations 5.4 and 5.5) to Yasur, slug lengths contained within Kremers et al. 

(2013) Tables 2 and 3 are converted to volume (not all data could be used due to a lack of 

slug length information or events without subsequent time stamps), see Table 5.7 for a 

summary of bursts used. Here, appropriate parameters for the system at Yasur were used to 

convert slugs to volume and for application of equations 5.4 and 5.5: magma density 2600 kg 

m
3
, viscosity 1000 Pa s

-1
, and conduit radius 1.5 m (at the atmospheric standard pressure). 

The results are displayed in Fig. 5.25. All bursts lie above the repose gap line (black line), 

with all but one above the transition line (red dashed line), indicating that most bursting slugs 

have little influence on one another in this case.  

Fig. 5.25: Here, the repose gap and transition equations are applied to data from Kremers et al. (2013) relating 

to strombolian activity from Yasur volcano. Again the criteria seem to hold up well, given parameters for 

magma density of 2600 kg m
3
, viscosity of 1000 Pa s

-1
 and conduit radius of 1.5 m (this is also the dimension 

used to convert length data to volume data). Only one burst may have been influenced by those preceding it, 

while all others can be considered to be “single” bursts.  
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       Table 5.7: A summary of burst data used from Kremers et al. (2013). 

Slug Length (m) Volume (m
3
) Repose (s) 

118.5 15.10 82 

174.9 22.29 29 

138.5 17.65 160 

68.6 8.74 59 

109.7 13.98 73 

149.5 19.05 149 

142.1 18.11 185 

102.6 13.07 380 

83.7 10.67 82 

5.8.  Discussion  

This chapter identified the behaviour of slugs in a volcanic context using laboratory 

analogues and computational models. This work highlights several important differences 

between existing studies into slug coalescence in stagnant flow (e.g. Pinto and Campos, 

1996), primarily that it is possible for the leading slug to travel at a faster speed than the 

trailing slug, confirming an observation in Pinto et al. (1998) for co-current flows. However, 

in these cases Pinto et al. (1998) observe that coalescence does not occur, which is contrary to 

the observations of this chapter, where coalescence is observed on several occasions (see 

Table 5.2 for slug rise speed values), although Pinto et al. (2001) do state that the bubbles 

should interact in some way. This is likely due to the increased importance of slug expansion 

on the observed regimes and has not been explored previously in the literature (Taitel, 1987). 

It is important to note here, that the literature on slug coalescence, which is quite spartan 

(e.g., limited to Pinto and Campos, 1996; Pinto et al. 1998, 2001), focuses only on the 

coalescence of two slugs. Here the focus, particularly in the laboratory regimes, is on the 

significantly more complex behaviour associated with multiple rising slugs in a continuous 

regime. Llewellin et al. (2014a) also identified behaviour associated with multiple slugs, 

however, that study focussed on the formation of much larger slugs via the coalescence 

mechanism also observed in this study. Llewellin et al. (2014a) suggest that coalescence 

could be the cause behind the formation of much larger slugs which can cause very large 

strombolian explosions. The work in this chapter also supports this conclusion.  

The discovery of a relationship between gas volume fraction and slug base rise speed is not 

entirely unexpected. However, the fact that this relationship can be defined is promising (see 

Fig. 5.8), building on the conclusions of Krishna et al. (1999), who suggest that the value 
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could be up to six times the theoretical limit. Within this work, the slug bases rise at no more 

than twice times the theoretical values. Of course, as demonstrated, there will be significant 

fluctuations caused by the burst of larger slugs at the surface and interacting slugs. The 

discovery of a relationship between slug length and volume fraction could also be useful in a 

volcanic setting, providing a way of estimating the length of slugs based on gas emissions. 

Relationships between slug length and flow regime have been identified previously for 

horizontal slug flow (e.g. Barnea and Taitel, 1993; Cook and Behnia, 2000). Significantly 

more work is needed to define these with more accuracy in vertical slug flow.  

A brief investigation into the proxy geophysical signals demonstrated a lack of correlation 

between acoustic pressure generated by slug bursts in the laboratory and slug lengths; the 

rising slug did not always produce an acoustic pressure trace. Lane et al. (2013) demonstrated 

that the burst mechanism of the slug (i.e. how the meniscus behaves) plays a key role in the 

strength of acoustic signals (Matoza et al. 2013; Giancarlo Tamburello, personal 

communication). With the presence of multiple slugs creating a non-stagnant, potentially co-

current liquid, this will effect the way that the bubble overpressurises and bursts (e.g. 

Krueger, 2005; James et al. 2009; Lane et al. 2013). In addition, in a number of the 

experiments a foam layer developed, which effected the way the slugs interacted with the 

liquid-air interface, influencing the results. The increase in base pressure alongside 

increasingly rapid flow regimes is logical given assumptions on gas flow generating 

seismicity, particularly in basaltic systems (O’Brien and Bean, 2008). Indeed, much more 

detailed studies combining seismicity during rapid strombolian activity and gas flux 

measurements, could begin to confirm this relationship, if present.  

The computational work suggests that, with slugs of identical mass, it is incredibly difficult 

for coalescence to occur, unless the models are initialised within the interaction area. In a 

novel observation, the gap between a trailing slugs’ nose and the leading slugs’ base is 

observed to remain constant (see Figs. 5.19 – 5.22). This has significant implications for the 

bulk behaviour of slugs in a column of magma, particularly in the upper regions of a conduit, 

where the slugs rapidly expand, and ascend at much faster rates than those below, perhaps 

approaching the limits on slug rise speed proposed by Krishna et al. (1999). Within the four 

slug regime, at the burst time of the leading slug, slug bases were rising at 1.66 – 2.63 m s
-1

, 

above the theoretical ≈ 1.29 m s
-1

 value. This observation paves the way for further 

experiments, investigating a range of slug masses and potential interactions with each other. 

This also ties in with Llewellin et al. (2014a), who suggest that smaller bubbles, which are 
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not limited by the speed-limit controlled by the conduit width (Viana et al. 2003; Llewellin et 

al. 2012), are the cause behind slug growth to form larger bubbles. If these two phenomena 

are combined, they would expedite the explosivity of the manifest strombolian activity.  

5.8.1.  Repose Gap Discussion  

Unfortunately, given the sparsity of data available for high frequency strombolian activity, 

particularly related to the mass and volume of bubbles there is little possibility to test the 

developed repose gap relation (equations 5.4 and 5.5). However, the relation does appear to 

hold well when tested against laboratory and available field data using estimated magmatic 

and conduit parameters (it also holds for the computational models). From Fig. 5.2 it is clear 

that some of the regimes contain bubbles which have yet to transition to slugs. even in these 

situations the relation holds as the factors which cause coalescence, the wake and interaction 

lengths remain a similar length (Clift et al. 1978).  If this relation can be validated in the field 

using collected data and known magma and conduit parameters then a further degree of 

certainty could be added beyond that of the controlled conditions within a laboratory. 

Notwithstanding this, the repose gap relationship could be a valuable tool when applied to 

rapid basaltic degassing. By observing stable single to multiple slug regimes, it is possible to 

hone estimates of magma viscosity and conduit radius etc., useful for understanding more 

about shallow magma pathways and eruption transitioning.  

The observations within this chapter, particularly those associated with relationships 

discovered in the laboratory regimes, allow a further inference to be made concerning the 

Etnean activity discussed in Chapter 4. There is a lack of a strong correlation between slug 

mass and repose time (see Fig. 5.23a – the non-log-log plot), which is present with a 

relatively constant volume fraction. This suggests that the gas supply into the conduit at Etna 

was highly variable at the time of measurement, playing a key role in both the mass of slugs 

generated, their interactions with one another, and ultimate explosivity at the surface.  

The concepts discovered here could also have value outside of volcanic environments, for 

example, in oil pipelines, and nuclear reactors (when rapid rod cooling is needed), where 

slugging is also a major area of study (e.g. Costigan and Whalley, 1997; Masella et al. 1998; 

and references therein).  
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5.9.  Conclusions  

This chapter covers a range of behaviours some previously identified and others not in 

association with the behaviour of multiple rising slugs in a vertical conduit. In particular, a 

minimum repose period between rising slugs before another eruption can occur has been 

mathematically defined (equations 5.4 and 5.5). When tested against laboratory data the 

relation holds well, with data from Etna (Chapter 4), and Yasur (Kremers et al. 2013) also 

demonstrating some agreement. The discovery of a statistically strong (> 0.94 R
2
) 

relationship between gas volume fraction and slug rise speed, suggests that, with further work 

this can be constrained in more detail.  

A significant gap in the volcanic and fluid dynamical literature concerning the behaviour of 

multiple rising and coalescing slugs has been identified and addressed. This has demonstrated 

that previously developed models for the interaction of two bubbles, specifically where 

coalescence is involved are lacking in important detail, especially in the slug expansion 

regimes which were investigated here. For instance it is reported in this these that, even with 

expansion, volcanic slugs with identical mass will not coalesce and just force the slugs above 

to rise at a faster speed. Additionally, even where a leading slug base is travelling at a faster 

speed than a trailing one, coalescence can still occur. In these instances the nose accelerates 

or stretches into the base of the leading slug.   
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6. Investigating transitions between 

different styles of basaltic degassing 

This Chapter builds on the research detailed in the previous two Chapters. Here, the 

development and application of a unifying theory of basaltic degassing is outlined. The work 

is based on combining the observational results and repose gap model documented in 

Chapters 4 and 5 with additional models within the volcanic and fluid dynamical literature. 

This provides unprecedented insights into fluid dynamics within basaltic systems and could 

provide significant future research potential when combined with additional gas 

measurements. This is based on work presented at AGU, 2014: Pering, T. D. McGonigle, A. 

J. S., James, M.R., Lane, S.J., Capponi, A., Tamburello, G., Aiuppa, A., 2014c. Observations 

on Multi-Slug Activity – Implications for Volcanic Processes. In: AGU Fall Meeting 2014 

San Francisco and currently in preparation: Pering, T.D., McGonigle, A.J.S., In Prep. A 

unifying theory of basaltic degassing.  

6.1.  Introduction 

 

Basaltic volcanism is the most common form of volcanic activity both on Earth and in an 

extra-terrestrial context (Wilson and Head,1981). A key feature of basaltic eruptions, 

compared with more silicic activity, is the emission of low viscosity magmas ranging: 10
1
 – 

10
4
 Pa s

-1
(Shaw et al. 1968). This allows bubbles to travel independently of the melt which is 

an important characteristic of basaltic volcanism (Parfitt, 2004), playing a key role in 

exsolution and bubble expansion (Sparks, 1978), and in eruption style (Parfitt and Wilson, 

1995; Parfitt, 2004). Indeed, of particular interest are the transitions between different styles 

of activity (Jaupart and Vergniolle, 1988; Parfitt and Wilson, 1994; 1995). However, as the 

dates of these publications suggests, there has been little recent consideration of this topic, in 

particular in so far as the full range of explosive and passive styles of activity is concerned. 

During the past decade or so there has been a concerted focus on specific eruptions styles and 

the associated degassing styles. This is particularly evident for strombolian (e.g. Blackburn et 

al. 1974; James et al. 2004, 2008, 2009; Del Bello et al. 2012; 2015; Llewellin et al. 2012, 

2013, 2014a; Taddeucci et al. 2012 and references therein) and hawaiian (also referred to as 

lava fountaining) volcanism (e.g. Parfitt and Wilson, 1995; Elias et al. 1998; Poland et al. 

2008; Carbone et al. 2013).  
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This chapter concerns the development of a model spanning the breadth of basaltic volcanism 

(excluding the rarer and rather distinct mechanism driving basaltic plinian activity). It draws 

on the analysis of the previous two chapters, but also upon diverse literature sources to probe 

the behaviour of bubbles across various flow regimes. Here, Fig. 6.1, reprinted from the 

introduction to this thesis, highlights the various flow regimes which may exist in a basaltic 

magma. In particular, transitions between strombolian activity and lava fountaining are of 

particular interest. This chapter, through the use of theoretically developed models aims to 

shed light on the driver of lava fountaining. It is clear from the sheer volumes of gas vented 

during these events, for example the recent Holuhraun fissure activity released ≈ 370 – 1200 

kg s
-1

 of SO2 (Burton et al. 2015b; Galle et al. 2015), that a highly efficient gas flow regime 

must exist to drive the activity, yet little work has been performed to date to characterise this.  

6.2.  Developing a unifying theory applicable to basaltic degassing 

 

There are two distinct aspects to this theory to enable characterisation of demarcations 

between the range of potential basaltic degassing models. The first component (section 6.2.1) 

Fig. 6.1: Reproduced from Chapter 1 to illustrate the flow regimes which drive basaltic volcanic activity. The 

flow regimes highlighted with red text, particularly mist flow, indicate flow regimes with no direct field 

analogue evidence or quantification.  
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applies the discovered and tested repose gap relationship from Chapter 5, with existing slug 

models and studies into bubble dynamics (e.g. Clift et al. 1978; Campos and Guedes de 

Carvalho, 1988; Viana et al. 2003; Noguiera et al. 2006; James et al. 2009; Suckale et al. 

2010b; James et al. 2011; Llewellin et al. 2012), in a bid to combine magmatic and gaseous 

parameters with a view to predicting the style of activity at certain thresholds. This is applied 

dimensionally, although it can easily be converted to non-dimensional parameters, i.e. with 

the former being particularly relevant on a specific volcano-by-volcano basis and the latter 

useful for comparing across volcanic systems. This first model is specifically related to the 

delay between events (i.e. connected to the repose gap behaviour of Chapter 4 and section 

5.3.3) and the length of slugs or bubbles. This is limited to stable bubbles only and only 

considers sub lava fountaining styles of activity (i.e. passive through to rapid strombolian 

activity).   

The second (section 6.2.2) is specifically related to gas volume fraction, which also builds on 

the behaviour and relationships detailed in Chapter 5. This model uses the gas volume 

fraction relationships in combination with the repose gap, to highlight the style of activity 

likely to dominate in particular regimes, including potential transitioning to hawaiian type 

activity, the pinnacle of common basaltic activities.    

By combining all of these models one can begin to understand how, when and why volcanoes 

transition to different styles of activity, and to understand the fluid dynamics inherent at the 

sub-surface. In the following sections the development (section 6.2.1 and 6.2.2) and 

application of the theory to real systems (section 6.3) is outlined. For the purposes of clarity a 

number of previously listed equations are reprinted here (including symbol definitions). 

However, for a full outline and description, the reader is referred to the original listing of the 

equation. 

6.2.1. Developing a unifying theory applicable to bubble lengths 

 

In this model it is reasonably assumed that as bubble length → ∞ burst frequency must 

increase. This premise is then backed up by our defined criteria. A stagnant or near-stagnant 

magma is also assumed. This initial section is accompanied by an annotated model (Fig. 6.2), 

which clearly outlines the areas discussed, with arbitrary x and y axes. As per section 5.3.3, 
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the repose gap line (𝑅𝑒𝑝𝑚𝑖𝑛) defines an area where, theoretically, no burst should be present. 

This can be directly applied to the combined model: 

𝑅𝑒𝑝𝑚𝑖𝑛 =  
𝐿+𝐿𝑤𝑎𝑘𝑒

𝑢𝑠𝑙
.    (Eq. 6.1) 

In addition the 𝑅𝑒𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 can also be applied:  

𝑅𝑒𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =  
𝐿+𝐿𝑚𝑖𝑛

𝑢𝑠𝑙
.   (Eq. 6.2) 

In these two equations, the 𝐿 parameter can be applied to a set of arbitrary slug lengths to 

obtain both 𝑅𝑒𝑝𝑚𝑖𝑛 and 𝑅𝑒𝑝 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 temporal values. All slugs which lie above the repose 

line but below the transition line will behave as though they are in a multi-slug environment 

(Fig. 6.2e). All slugs above the transition line will behave as though they are in a single slug 

environment (Fig. 6.2c and 6.2d). 

The 𝑃𝑠𝑙𝑖𝑚
∗  value is a dimensional measure of burst vigour, where a value of ≥ 1 equates to a 

vigorous explosive eruption, while values of < 1 correspond to passive degassing (James et 

al. 2009). This can therefore be applied to our model, whereby: 𝐴′ = 1 − (
𝑟𝑠

𝑟𝑐
)2, 𝐿0 is the 

same set of arbitrary slug lengths used in equations 6.1 and 6.2, 𝑃0 is an initial pressure 

condition, and 𝑃𝑠𝑢𝑟𝑓 is atmospheric pressure at the surface. Reprinted in the equations 

original form from James et al. (2009), this can be expressed as:  

𝑃𝑠𝑙𝑖𝑚
∗ =  

√𝜌𝑔𝐴′𝐿0𝑃0

𝑃𝑠𝑢𝑟𝑓
.   (Eq. 6.3) 

However, this equation is not directly applicable to the model developed here. To enable the 

application of 6.3 here I first reasonably assume that 𝑃0 is equal to surface pressure (i.e. the 

model is specifically applicable to the bursting of bubbles at the surface). The important 

parameter under investigation is the ability of 𝑃𝑠𝑙𝑖𝑚
∗  to predict burst vigour, which is 

intuitively related to final gas mass (i.e. not to some initial condition at depth). Equation 6.3 

can be recast, as follows, therefore: 

𝑃𝑠𝑙𝑖𝑚
∗ (𝐿0) =  

√𝜌𝑔𝐴′𝐿0𝑃𝑠𝑢𝑟𝑓

𝑃𝑠𝑢𝑟𝑓
.   (Eq. 6.4) 

The generated data will give a range of values indicating the potential for explosivity. Here, 

the point of interest is where 𝑃𝑠𝑙𝑖𝑚
∗  < 1, indicating non-explosive behaviour. Applying this to 



129 
  

the range of arbitrary bubble/slug lengths which satisfy slug criteria (i.e. those with lengths 

above the width of the conduit) and plotting it against the results of equation 6.2 (the repose 

transition line for defining single slug behaviour), this line will fall on the same trend as the 

single slug line (Fig. 6.2c). Hence, all slugs of these lengths which burst above the line will 

do so without explosions. These slugs will have lower masses and are therefore likely 

associated with puffing events such as those manifested at Stromboli (Ripepe et al. 2002; 

Taddeucci et al. 2012; Tamburello et al. 2012). This area is therefore assigned as 

corresponding to puffing behaviour. The slugs which burst above the transition line with a 

𝑃𝑠𝑙𝑖𝑚
∗  > 1 will be explosive; this area is therefore termed explosive strombolian (Fig. 6.2d). 

Following this there are two further important definitions included in the model: under what 

conditions precisely can a bubble be considered a slug, and when does a bubble behave 

spherically. Clearly in a stagnant magma a perfectly spherical bubble will not produce an 

explosion and will likely be released passively at the surface. Indeed, if a basaltic magma 

cannot efficiently degas, this could lead to lava effusion (Harris et al. 2007), and numerous 

studies of lava show sufficiently small bubble radii for this to be the case (Herd and 

Pinkerton, 1997). Consistently throughout this thesis a bubble is considered to be a slug when 

its length exceeds the diameter of the conduit, up to its minimum film thickness. This is 

applied as a straight line on the model, termed the non-slug line (see Fig. 6.2b). To the right 

of this line a bubble is a slug (and is part of the puffing area – Fig. 6.2b or the rapid 

strombolian area – Fig. 6.2e) and to the left of the line a bubble ceases to be slug. At (g) in 

Fig. 6.2 the frequency that bubbles can bursts in succession will increase. 

A bubble will begin behaving in a spherical manner at 𝑅𝑒𝑏 < 0.3 (the Reynolds bubble 

number). Here, the adapted bubble Reynolds number for non-slug flow is used (James et al. 

2013): 

𝑅𝑒𝑏 =
2𝜌𝑚𝑢𝑏𝑟𝑏

𝜇
   (Eq. 6.5) 

where 𝑟𝑏is the bubble radius which is equal to 𝑙𝑎𝑟𝑏/2 (arbitrary lengths used in all equations), 

and where 𝑢 is the bubble rise speed according to Stokes law: 

𝑢𝑏 =  
2(𝜌𝑚−𝜌𝑔)𝑔𝑟𝑏

2

𝜇
     (Eq. 6.6) 
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where 𝜌𝑚 and 𝜌𝑔 are the magma and gas density respectively. The length at which a bubble 

stops behaving spherical is easily found. This is then applied to the model (see Fig. 6.2a). At 

(h) in Fig. 6.2 the frequency of bubble bursts will increase again.  

The work of Suckale et al. (2010b) suggested that there is a maximum possible bubble radius 

for a given magma viscosity and density (Bellman and Pennington, 1954; Plesset and 

Whipple, 1974; Clift et al. 1978; Grace et al. 1978). These values are reproduced in Table 6.1 

from James et al. (2011). When a bubble exceeds this radius, slug driven activity will cease to 

be possible as can be calculated using:     

𝑎𝑐𝑟 = 2√
𝜎

𝑔∆𝜌
     (Eq. 6.7) 

where 𝑎𝑐𝑟 is the maximum bubble radius. For example, for a magma viscosity of 100 Pa s
-1 

(towards the lower range of basaltic magmas) and a magma density of 2600 kg m
3
, this 

suggests a maximum conduit radius of ≈ 1.3 m (Suckale et al. 2010b; James et al. 2011), 

when taking into account slug film thickness (Llewellin et al. 2012). On increasing the 

magma viscosity, the maximum stable bubble radius increases and hence so does the width of 

a conduit which can carry stable basaltic slug-driven activity. The accompanying code used 

to generate this model is detailed within Appendix E.  

Table 6.1: Taken from Table 1 in James et al. (2011), based on the original Table 1 in Suckale et al. (2010b). 

These values show the maximum stable bubble radii for given magma density and viscosity values. 

 Maximum Bubble Radius 

Magma Viscosity (Pa s
-1

) Density 3500 kg m
3
 Density 2600 kg m

3
 

10 0.11 0.13 

25 0.19 0.23 

50 0.30 0.37 

75 0.39 0.48 

100 0.48 0.58 

250 0.88 1.07 

500 1.39 1.70 

750 1.82 2.22 

1000 2.20 2.70 
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6.2.2. Developing a unifying theory applicable to gas volume fraction 

The concepts described in the last Chapter and section 6.2.1 can now be applied to a model 

which includes gas volume fraction on the x axis instead of bubble length, potentially a more 

accessible parameter for volcanologists to use. This also allows the inclusion of lava 

fountaining activity and transitions towards and away from this. This model draws on 

material from the previous chapter, particularly pertaining to the discovered relationships 

between gas volume fraction, the linear gradient of an idealised multi-slug system, and slug 

length. This model draws on aspects already defined in the previous model, including: the 

repose gap (equation 6.1), the repose transition (equation 6.2), and explosive transition 

(equations 6.3 and 6.4) areas.  

To initialise this model, one additional parameter is required: conduit length. Conduit length 

is needed to allow conversion of the model to gas volume fraction. Given that the model is 

specifically tailored to differing flow regimes, this is ideally the length of the conduit feeding 

the surface (alternatively the exsolution depth of the dominant volatile could be used, e.g. 

Fig. 6.2: Idealised bubble length model indicating the areas which are defined by the equations 

6.1 to 6.6 in the text. In (a) a passive or effusive area where bubbles are near to spherical. In (b)  

bubbles sized between spherical transition and before a bubble becomes a slug. In (c) an area 

defined using equation 6.4 which indicates the burst of slugs in a non-explosive manner – i.e. 

puffing. In (d) all slugs with lengths above the puffing area in (c) will be explosive, while in (e) 

slug bursts occur so rapidly that they can begin to interact, the rapid strombolian area. The 

repose gap, where no bursts can occur is shown in (f). In (g) and (h) it is assumed that as 

bubbles get smaller they can burst more rapidly.  
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Jaupart and Vergniolle [1989]). For example, this allows for the conversion of slug length to 

overall conduit gas volume fraction. Whilst there is a resident gaseous component within the 

melt, here, the focus is only on the decoupled gaseous phase, which is rising independently of 

the magma. This allows the repose gap and explosive transition relations to be converted to 

volume fraction, by dividing slug lengths by the conduit length. The passive and puffing area 

(see Fig. 6.5) is defined as everything below the explosive transition slug length as defined in 

equations 6.3 and 6.4.  Using the relationship between slug length and gas volume fraction 

from section 5.3.2, a series of expected slug lengths based on volume fractions between 0 – 

100 % can be derived. This is achieved by converting the following equation: 

𝑦 = 0.0096𝑒5.19𝑥,    (Eq. 6.8) 

to a slug length based on the conduit length (in the lab) and volume fraction: 

𝐿

1.8
= 0.0096𝑒5.19𝑔𝑣𝑓.    (Eq. 6.9) 

This is the first such suggested relationship based on overall gas volume fraction, instead of 

conduit length for vertical conduits (e.g. Fernandes et al. 1983; Dukler et al. 1985; Taitel et 

al. 1987, van Hout and Shemer, 2001). The slug lengths calculated using equation 6.9 can 

then be converted to volume fraction. These lengths (and equivalent volume fractions) can 

then be used in the repose gap and transition relations (equations 6.1 and 6.2). Fig. 5.8 and 

section 5.3.2 demonstrated that there is a general relationship between the gas volume 

fraction and rise speed of the base of a slug: 

𝑦 =  0.245𝑥 +  0.102,    (Eq. 6.10) 

which can be converted based on the theoretical slug speed (𝑢𝑡ℎ) and the slug base rise speed 

in the lab (0.1537 m s
-1

) to an equation which will apply in a volcanic situation: 

𝑢𝑠𝑙

0.1537
 = (0.245gvf +  0.102) × 𝑢𝑡ℎ.     (Eq. 6.11) 

These speeds are used in equations 6.1 and 6.2 to produce the repose gap and transition lines. 

The next important definition is the transition between rapid strombolian activity and lava 

fountaining.  

The transition will begin to occur around the maximum suggested length of slugs in vertical 

flows, which is suggested to be ≈ 25 times the conduit diameter (Moissis and Griffith, 1962; 

Fitremann, 1977; Fernandes, 1981; Fréhou, 1986; Fabre and Line, 1992). The volume 
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fraction at which this will occur can then be derived based on the slug lengths determined 

with equation 6.9, which will vary with conduit lengths input into the model. Fig. 6.3 shows 

the results of this process for a variety of conduit lengths. It shows that as conduit length 

increases the activity will transition towards lava fountaining at smaller gas volume fractions. 

The same is achieved by decreasing the conduit radius. At these volume fractions, which will 

be termed the critical volume fraction (CVF), the repose time between individual events can 

begin to decrease, with events falling below the repose gap area. This area is illustrated on 

Fig. 6.5 and can be termed as transitional and progressing towards a lava fountaining regime.  

During lava fountaining episodes, which can last from minutes to months (e.g. Allard et al. 

2005; Ganci et al. 2012), the fountain height is not constant (Parfitt et al. 1995) and discrete 

pulses can be observed (e.g. Witt  and Walter, 2015). It is the time delay between the arrival 

of these pulses at the vent exit that is of interest here, i.e. each pulse represents the ascent and 

burst of a discrete but deformed bubble.  

The final transition occurs when the individual pulse events are spaced closely enough to 

permit full lava fountaining activity. This transition represents a flow regime transition to 

churn or annular flow. It is possible to calculate the gas speed at which transition to churn and 

annular flow will occur (Hinze, 1955; Pushkin and Sorokin, 1959; Turner et al. 1969; Taitel 

Fig. 6.3: Critical volume fractions (CVF), for a range of conduit radii, conduit lengths, and gas volume 

fractions. This demonstrates that by increasing the conduit length the CVF for transitioning towards lava 

fountaining decreases, while decreasing the conduit radius achieves the same result.  
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et al. 1980). The following equation taken from Taitel et al. (1980) equation 27, defines the 

transition between slug flow and churn flow: 

𝑙𝐸

𝐷
= 40.6 (

𝑈𝑚

√𝑔𝐷
+ 0.22)     (Eq. 6.12) 

where, 𝑢𝑚 is the combined rise speed of the liquid and gas, which in this case is taken as 

broadly representative of the gas rise speed during lava fountaining (i.e. the gas and magma 

are essentially moving in concert in this regime). 𝑙𝐸 is the entry length of the bubble or slug 

which is taken here to be the length of a bubble at the CVF. Fig. 6.4a shows the example 

churn transition speed for a range of conduit diameters and slug lengths. The following 

equation, also taken from Taitel et al. (1980), equation 32, defines the point of transition to 

annular flow from churn flow, in this case, directly in terms of gas rise speed: 

𝑈𝑔𝑠𝜌𝑔

1
2

[𝜎𝑔(𝜌𝑙−𝜌𝑔)]
1
4

= 3.1      (Eq. 6.13) 

where equation 6.13 is solved for 𝑈𝑔𝑠 the gas rise speed. This equation can be solved for 

different liquid densities (𝜌𝑙), assuming a constant gas density (1.22 kg m
3
) and surface 

tension of 0.4 N m
2
. Fig. 6.4b shows the results for a range of appropriate magma densities. 

The calculated gas rise speeds are then used in equation 6.1 (using the transitional slug length 

and the original wake length together as a proxy for where bubbles may or may not interact) 

to determine the time delay below which activity may transition towards churn or annular 

flow. The final transition to lava fountaining will occur when the repose period between 

Fig. 6.4: In (a) the gas transition speeds to churn flow are displayed for a range of slug lengths and 

conduit diameters (D). These are calculated using equation 6.12. In (b) the gas at which transition speed to 

annular flow occurs is displayed for a range of magma densities. These speeds were calculated with 

equation 6.13.  
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events drops below this threshold. Both equation 6.12 and 6.13 suggest different speeds for 

the transition to lava fountaining. In some instances the churn transition speed is higher than 

the annular transition speed. The lower of the two speeds is used as the transition speed when 

applied to equation 6.1 (the lower speed is chosen, for the moment, given our current lack of 

knowledge surrounding potential flow regime, churn or annular, which drives fountaining). 

Fig. 6.5 shows an idealised and exaggerated model based on the definitions described in this 

section. Also included in this idealised model is a grey shaded area which is labelled as 

improbable terrestrially. In this area, the gas volume fraction would be insensibly high for 

terrestrial eruptions, particularly for lava fountaining. See Appendix E for Excel spreadsheet 

used to generate the gas volume fraction model.   

 

6.3.  Applying the unifying theory to understand basaltic systems 

This section briefly summarises, in graphical form, the results of the models described in 

sections 6.2.1 and 6.2.2, similar to the idealised models displayed in Figs. 6.2 and 6.5. Fig. 

6.6 shows an example bubble length model (section 6.2.1) using appropriate parameters for 

Stromboli (density = 2700 kg m
3
, viscosity = 300 Pa s

-1
, radius = 1.5 m). Also plotted on Fig. 

Fig. 6.5: Demonstrating the idealised volume fraction model. Here the colours represent the different areas 

which the model defines, similar to the areas in Fig. 6.2. The blue passive and puffing area refers to all single 

bubbles and slugs which do not burst explosively. The yellow area represents all slugs which burst as though 

they are in a single slug regime, and the purple area those in a rapid environment. The orange and pink areas 

show the volume fractions and repose times where activity can be assumed to transition towards hawaiian lava 

fountaining activity. At the same time the repose gap area reduces allowing individual bubbles or pulses to burst 

more rapidly. Also shown on this plot is a grey shaded area where only non-terrestrial activity could exist on the 

plot.  
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6.6 are total slug mass values converted to slug length from Tamburello et al. (2012) and 

Chapter 3. Given that the time delay between events is unknown nor is day to day variation in 

this, typical values for activity at Stromboli were used (e.g. Ripepe et al. 2002). The results 

demonstrate that the developed model characterises well the variations between the different 

types of events. For strombolian activity, all of the events defined in Chapter 3 (with 

explosion masses ranging ≈ 428 to 5,360 kg, mean of 2,072 kg) fit well within the explosive 

area, above the repose gap, and also above the rapid strombolian region. For the Tamburello 

et al. (2012) explosion data (massed ≈ 50 to 1,310 kg) the mean and upper values are within 

the explosive area, while the minimum is within the “puffing” area. Hornito events from 

Chapter 3 fall within the puffing area, with the smallest events likely not being of slug form. 

More rapid puffing events which occurred with repose periods of ≈ 0.5 – 2 s (of mass ≈ 0.6 to 

9 kg), here plotted with a repose of ≈ 2 s, and which have been associated with the bursting of 

decimetre sized bubbles (Ripepe and Gordeev, 1999; Tamburello et al. 2012), fit within the 

rapid puffing area. The largest mass events fall within the repose gap area. If the repose is 

reduced to 0.5 s all events are within the repose area, suggesting that the events here may be 

more applicable to different parameters, particularly a smaller conduit radius.  

Fig 6.7 and 6.8 show a further series of example repose plots for the bubble length model 

(section 6.2.1) over a range of basaltic parameters. In Figs. 6.7a and b, a constant conduit 

radius of 0.5 m and magma density of 2600 kg m
3
, are applied with magma viscosities of 100 

Pa s
-1

 (Fig. 6.7a) and 2000 Pa s
-1

 (Fig. 6.7b). With the higher magma viscosities the repose 

Fig. 6.6 The bubble length model applied to data from Stromboli demonstrating that the model works well for 

activity at Stromboli. Data for slug lengths were taken from Tamburello et al. (2012) and Chapter 3.  
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area is larger, with explosive activity with a minimum repose period of ≈ 50 s in comparison 

to ≈ 8 s at the lower viscosity. In essence, in the lower viscosity magma there is a quicker 

transition to explosive activity. Fig. 6.8a shows a low density magma of 900 kg m
3
 (e.g., in 

the region that estimated for Kilauea by Carbone et al. [2013]) estimated a low density 

magma for the lava lake at Kilauea), a mid-range viscosity of 1000 Pa s
-1

, and conduit radius 

of 2 m. Fig. 6.8b shows the same magma viscosity, but with a larger magma density and 

conduit radius of 2600 kg m
3
 and 3 m, respectively. In this case, explosive activity in the 

lower density magma is more difficult to realise without larger slugs of ≈ >50 m in contrast to 

the smaller conduits of Fig. 6.7. By increasing the conduit radius and the magma density, 

explosive activity can begin at bubble lengths of ≈ 30 m, and slug bursting can occur more 

frequently.  

Fig. 6.9 and 6.10 show example model outputs for the volume fraction model of section 

6.2.2. With a small conduit length of 250 m, lava fountain transitioning only occurs with gas 

volume fractions of > 90% (Fig. 6.9a). Increasing the conduit length to 2000 m and 

decreasing the viscosity also decreases the volume fraction at which lava fountain 

transitioning can occur (volume fraction of ≈ 52%). While lava fountaining activity proper 

occurs above volume fractions of 60%, but only at very short periods between waves of ≈ 1 – 

5 s. In Fig. 6.10 the model is presented using a log scale for repose on the y axis. Both of 

these plots have a conduit length of 500 m. A large conduit radius of 3 m and low density of 

900 kg m
3
 mean a much higher gas volume fraction of ≈ 78% is required for transition, with 

fully fledged lava fountaining occurring at maximum repose times of ≈ 8 to 14 s (Fig. 6.10a). 

By decreasing the conduit radius to 0.5 m the transition volume fraction drops to ≈ 43%. In 

addition, for stable single strombolian events, at high gas volume fractions, bursts must occur 

at repose periods of ≈ 75 s at a volume fraction of 50%, and ≈ 500 s for volume fractions of > 

90%.  The areas defining rapid strombolian activity, passive degassing, and puffing are often 

the smallest area of all plots. However, by decreasing the conduit length and conduit radius 

the passive and puffing areas are increased. 

Finally Fig. 6.11 shows the volume fraction model for three planetary scenarios: Io (Fig. 

6.11a), Mars (Fig. 6.11b), and Venus (Fig. 6.11c). It should be noted here that these only 

represent one typical or probable set of example parameters for each planet/moon. For Io 

(Fig. 6.11a) the CVF is around 58%, and with the low associated gravity and atmospheric 

pressure there is a quick transition to explosive activity, which is already known to be a 

strong control on the large observed eruptive plumes (Davies, 2007). The parameters for Io 
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were taken from Davies (2007). For Mars and Venus the CVFs are similar at ≈ 52%, however 

the time period associated with transitions to lava fountaining activity are halved for Venus in 

comparison to Mars.  

 

Fig. 6.7: Example bubble length models with two different sets of parameters (a) and (b), where 

the viscosity is higher in (b).  
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Fig. 6.8:  Example bubble length model for another two sets of basaltic parameters (a) and (b). 

Here the data are demonstrated using a log plot on the y axis.  
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Fig. 6.9: Example volume fraction model for two sample basaltic magmas. With a small conduit length of ≈ 250 

m the lava fountaining transition (hawaiian activity) occurs at very high volume fractions of > 90 %. For the 

longer conduit of 2,000 m this transition occurs for lower gas volume fraction.  
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Fig. 6.10: Example volume fraction model for another two sets of basaltic degassing 

parameters. Here the repose (y) axis is displayed on a log scale. The wider conduit and lower 

magma density in (a) demonstrates that lava fountaining (hawaiian) occurs for low repose 

intervals and high gas volume fractions. In (b) the smaller conduit radius allows for transition to 

lava fountaining at rather lower gas volume fractions.  
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Fig. 6.11: The volume fraction model applied to three extra-terrestrial cases: (a) Io, (b) Mars 

and (c) Venus.  
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6.4.  Investigating links between gas emissions and seismicity 

In Chapter 5, the laboratory proxy geophysical signals suggested that for higher gas content 

within a conduit, there ought to be elevated seismicity. Here, using studies which identify a 

correlation between seismicity and SO2 flux, the possibility of a correlation across multiple 

volcanoes is investigated. Due to the lack of standard measurements of gas emissions and 

seismicity cited in the literature, it was necessary to convert all identified data into 

comparable values, to enable the combination of all information onto a single plot.  

For the purpose of this study, SO2 emissions, were converted to kg s
-1

. Where values were 

quoted in t d
-1 

(tonnes a day) these were converted into the average equivalent emitted per 

second (i.e. by dividing by 86,400). In the study of Palma et al. (2008) only the SO2 data 

from Fig. 15a (those which were collected by Palma et al. [2008]) were used, which 

represented daily averages. In the case of McGonigle et al. (2009), SO2 emission values were 

not corrected as the ejection of gases following the bursting slugs occurred rapidly, on the 

order of ≈1 s.  

Table 6.2: Summary of parameters used in equations 6.11 and 6.12, the overall flux ranges, and references used 

for the study. 

Volcano Radius (m) Vent Distance (m) Flux (kg s
-1

) Reference 

Stromboli 2 500 ≈ 0.2 – 3.2 McGonigle et al. (2009) 

Asama 19 320 ≈ 8 – 430 Kazahaya et al. (2011) 

Villarica 2.7 3900 ≈ 1.4 – 15.6 Palma et al. (2008) 

Santa Ana 3 2000 ≈ 1.6 – 49.8 Olmos et al. (2007) 

 

Likewise, a standard is required for seismic values. This involved the conversion of RSAM 

(Endo and Murray, 1991; Olmos et al. 2007), VLP moment (Kazahaya et al. 2011) and RMS 

values, by reversing the mathematical procedures used in their creation, into a dimensional 

value, namely displacement in m s
-1

. Where values are quoted as VLP moment (e.g. 

Kazahaya et al. 2011) or displacement (e.g. McGonigle et al. 2009), these were converted to 

one second time averaged values by dividing by the width of the original VLP filter.  

Following on from this conversion procedure, datasets were generated for the four at the 

listed volcanoes, with identical and easily comparable parameters, although, in each instance, 

seismic measurements were made at different distances from the source. Any multi volcano 
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correlation between gas emission and displacement, therefore, needs to be corrected for this 

difference. A theoretical correction was applied based on the attenuation of seismic waves, 

whereby the measured displacement, 𝑑𝑟 was scaled up to that theoretically occurring at the 

‘source’ 𝑑𝑡ℎ, which was reasonably assumed to be co-located with the point of gas emission 

from the volcano, according to the following relationship modified from Chapman (2004): 

𝑑𝑡ℎ =  
𝑑𝑟

(cos(𝑘)𝑡−𝑤𝑟𝑠𝑜𝑢𝑟𝑐𝑒)𝛼𝑟𝑠𝑜𝑢𝑟𝑐𝑒
 ,    (Eq. 6.14) 

where t is the time taken for a seismic p-wave travelling at (v) 3000 m s
-1 

to travel from the 

source to receiver, the radius of the source rsource for each volcano (i.e. the conduit width), a 

the absorption coefficient of 0.05 for granite (Lavergne, 1989), k is the wave number, here 

taken to be 0, as the correction concerns theoretical displacement, at the vent, at an event 

time = 0, w is the angular frequency (e.g. 𝑘 × 𝑣), given these values (i.e. cos 0 = 1). One can 

therefore simplify and rewrite as follows: 

𝑑𝑡ℎ =  
𝑑𝑟

𝑡𝛼𝑟.      (Eq. 6.15) 

The following values for 𝑟𝑠𝑜𝑢𝑟𝑐𝑒 were used at each volcano (see also Table 6.2):  

 Villarica – 2.7 m (Witter et al. 2004),  

 Asama – 19 m (Ohwada et al. 2013), taking the lower value of 19 m associated with 

more quiescent activity, 

Fig. 6.12: The relationship between SO2 flux and theoretical vertical displacement for four 

volcanoes. For details see the text in section 6.4. 
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 Stromboli – 2 m (Ripepe et al. 2007), 

 Santa Ana – 3 m (Olmos et al. (2007) 

Fig. 6.12 shows the results of this procedure which demonstrates the following log 

relationship: 

𝑦 = 0.013 ln(𝑥) + 0.001    (Eq. 6.16) 

with an R
2
 = 0.8033. 

6.5.  Discussion 

The potential of using the patterns in gas release to unlock conduit and magma viscosity 

parameters associated with activity is a unique possibility (and vice versa of course). This 

could open up the ability to estimate gas release from explosive activity, based solely on 

intervals between events, potentially assisting in eruption forecasting, and by complementing 

existing approaches (e.g. Voight, 1988; Sparks, 2003; Aiuppa et al. 2007). This builds on the 

models of Parfitt and Wilson, (1995), which investigate basic transitions between styles of 

activity based on bubble rise speed. In this chapter, an effort has been made to combine 

volcanological and fluid dynamical studies on bubble flow and transitions between different 

styles of activity. While the lines drawn on the graph are inherently and necessarily sharp and 

defined, real boundaries will likely be ‘fuzzy’, particularly in a volcanic environment where 

non-Newtonian magmas and significant heterogeneities will be present (Gonnermann and 

Manga, 2003). On a basic level the models suggest that developing “true” rapid slug driven 

activity where slugs begin to influence each other, yet can still rise and burst independently, 

is difficult. It is therefore likely that, by combining high volumes of gas with a rapid release 

rate, lava fountaining is inherently more likely. Additionally, if it is known how much magma 

is released during the activity one can begin to estimate the range of expelled gas volumes 

which would be required to generate the observed activity, creating an estimate of gas release 

without the need for examining the ejected rocks themselves (e.g. Greenland et al. 1985).  

Stromboli probably represents the best target for study of slug flow, as such it is the focus of 

the overwhelming literature on volcanic slug flow (e.g. Ripepe et al. 2002; James et al. 2008, 

2009; Tamburello et al. 2012). This also makes it the ideal target to test the developed 

models. Unfortunately, exact timings between individual bursts are unknown, making the 

estimates included for repose time somewhat crude. This said the repose times applied here, 
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of between ≈ 3 – 10 minutes broadly represent the time-averaged activity at Stromboli 

(Ripepe et al. 2002). Literature estimates for strombolian eruptive masses, and hence volumes 

and approximate slug lengths, are well constrained (e.g. Mori and Burton, 2006; Tamburello 

et al. 2012; this thesis – Chapter 3, although the data collected here were not for sequential 

events – i.e. not all burst times can be reliably constrained). Application of these slug lengths 

with repose estimates fits well with both models presented here, offering a form of validation. 

In addition, estimates of lengths of slugs which generate puffing (e.g. Ripepe and Gordeev, 

1999; Tamburello et al. 2012) also agree well with the model, falling well within the non-

explosive area. This reinforces the stability of the system at Stromboli; e.g., each rising slug, 

according to this model, has little to no impact on the bursts which follow, i.e. fluid 

disturbances will have been damped by the time another slug passes then erupts at the 

surface. This of course assumes that each gas slug that forms erupts at the surface, and that 

slugs don’t destroy themselves on ascent (see Chapter 3). Of course, the bubble length model 

is only directly applicable to stagnant magmas, as is likely or assumed to be the case at 

Stromboli (James et al. 2008) and vertical conduits. However, for magmas with non-

negligible momentum and/or inclined conduits, the fluid dynamics would be modified (Hasan 

and Kabir, 1992; Pinto et al. 1998, 2001; Nogueira et al. 2006). Whilst the developed model 

could be adapted to these changes, the literature body is rather limited in comparison to cases 

of stagnant magmas and zero conduit inclination making data validation of such cases rather 

unfeasible at this stage.  

Strombolian masses for eruptive activity at Etna are more poorly constrained, with the only 

current estimates, being those within this thesis (Chapter 3; Burton et al. 2015a). Validation 

of the repose gap model was performed with relative success in section 5.3.3 (see Fig. 5.10). 

Given the large variety of eruptive styles manifested at Etna: passive (e.g. Aiuppa et al. 2007; 

Tamburello et al. 2013), effusive (e.g. Andronico and Lodato, 2005; Burton et al. 2005), 

single event and high temporal resolution strombolian activity (e.g. this work, Chapter 4, and 

Andronico et al. 2005; Behncke et al. 2014), lava fountains (e.g. Allard et al. 2005), and even 

basaltic plinian (Coltelli et al. 1998), a variety of flow regimes can clearly be implicated in 

their generation. In combination with constant measurements of degassing at the summit of 

Etna, the application of this model could begin to provide warning of an impending change in 

activity style, i.e. a decreasing repose gap between strombolian events, could presage a 

transition to lava fountaining. Indeed, during a so-called Etnean paroxysm, events are seen to 
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be quite cyclic (Bertagnini et al. 1990; Behncke and Neri, 2003; personal communication 

Alessandro Aiuppa, Palermo University).  

What makes volcanoes such as Kilauea more prone to produce lava fountains? Why is 

strombolian activity rare or even non-existent on this target? Much of this will be related to 

the bubble formation mechanism and activity flow regime. Vergniolle and Jaupart (1990) 

propose that a collapsing foam, via the collection of bubbles at the roof of a chamber injects a 

“gas pocket” which resembles a gas slug, which then generates the typical hawaiian lava 

fountaining activity. However, there are a number of problems with the assumption that gas 

pockets or slugs generate lava fountaining activity, which are fluid dynamic in nature, i.e. 

what flow regime (see Fig. 6.1) generates lava fountaining activity? It is clear that compared 

to lava ejection, the volume of gas in this case is clearly dominant, occasionally in excess of 

90% gas. For that gas content in the conduit, at the viscosities suggested by Vergniolle and 

Jaupart (1990) of 30 Pa s
-1

, strombolian activity, could not occur according to the model 

developed in this thesis; this also extends to stable slug flow (see also Suckale et al. 2010b; 

James et al. 2011, 2013). Significant bubble deformation and interaction will therefore occur, 

leading to a further question: given the proposed rapid injection/collapse of foams, what flow 

regime is responsible for lava fountaining at Kilauea? Does the conduit develop a form of 

annular flow or is there a more turbulent churn type flow (see Fig. 6.1)? Unfortunately the 

model developed here cannot differentiate between the two types of flow within the conduit 

clearly, future study into flow regimes using a variety of magma parameters would help 

identify this. This said, the application of this model does open up new avenues for research. 

Toramaru (1988) suggested that waves/instabilities in two-phase churn or transitional annular 

flow could be evidence of these flow regimes in lava fountaining activity. Indeed, recent 

work has identified distinct pulses in lava fountaining, occurring seconds apart at the recent 

Holuhraun lava fountain activity (e.g. Witt and Walter, 2015). If these pulses follow some 

form of fluid dynamic relation (as Toramaru [1988] suggests) then it stands to reason that this 

can be used to predict exact gas volume fraction and magma parameters, which could then be 

applied to constrain the observed activity.  

There are a large number of studies into the size of bubbles at depth (e.g. Sparks, 1978; 

Mangan et al. 1993; Proussevitch and Sahagian, 1988; and references therein) and bubbles 

contained within ejected lava (e.g. Manga, 1996; Herd and Pinkerton, 1997), which are 

largely unrelated to the flow regimes and hence the major gas phase driving explosive 

activity. Kilauea is dominated by lava flows and lava fountaining, but could Kilauea produce 
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strombolian activity? The short answer is yes. However, this would likely involve large bulk 

changes to both conduit geometry, and magma rheology. Stable gas pockets will only begin 

to form at certain viscosities, it is at these values that the rapidity of foam collapse will define 

the type of activity present, be it single strombolian events or a more rapid strombolian 

activity. For example, the rapid injection of a large amount of gas via a collapsing foam is the 

only conceivable way to rapidly increase the volume fraction of gas in the conduit. The 

coalescence mechanism is an obvious way of driving cyclicity in observed activity, with 

generation of larger slugs leading to impulsive events (e.g. Llewellin et al. 2013; 2014a) 

which are unlikely to last hours to weeks.  

The lava lake at Marum Crater (Ambrym Volcano, Vanuatu) is a turbulent environment 

(Carniel et al. 2003; Allard et al. 2009) and the bursting or rise of individual bubbles to the 

surface can be clearly seen here. It is likely here, considering the frequency of bursting events 

(every ≈ 1 – 10 s), well below the typical repose gap boundary (see Figs. 6.7 and 6.8), that a 

form of churn flow is prevalent. In the absence of a sustained jet, annular flow is improbable 

as the cause (Triplett et al. 1999). A more detailed survey of potential sub-surface structures 

and gas release at high time resolution would be needed to unlock more information about the 

flow regime in this instance. For example it would be possible for slug flow to be present at 

depth, where the fluid dynamics allow stability, but as the conduit opens out, instability could 

be generated (Campos and Guedes de Carvalho, 1988; Suckale et al. 2010b) with a transition 

to a more complex flow regime. Marum is in direct contrast to a lava lake such as Erebus 

where viscosities are so high, on the order of ≈ 10
4
 Pa s

-1
 (Moussallam et al. 2013), that any 

form of activity other than single strombolian events would be very rare.  

The easily adaptable nature of the equations in sections 6.1 and 6.2 mean that it is not only 

terrestrial volcanism that could be investigated. For example, the most active body in the 

solar system, other than the Earth, is Io (Davies, 2007). Applying these relationships to 

estimates of activity on Io could identify important aspects about activity pathways in the 

sub-surface and the ability of this moon to produce certain styles of activity. Here, however, 

there is also the possibility of more exotic flow regimes, such as mist flow (see Fig. 6.1), 

which is dominated by the gas phase (Matsui, 1984). 

Section 6.4 suggested that there is a direct relationship between gas release and seismicity 

generated. This information, which corroborates an observation in Chapter 5, that an 

increased gas flow could increase conduit pressure and hence seismicity, could be important 
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in defining the amount of gas present at depth before an eruption has occurred, or while it is 

ongoing. This could be of benefit when combined with the model developed in this chapter, 

as estimates of gas release can enable constraint on slug length which can then be directly 

applied to the models in this chapter. This relationship, however, has only been defined on 

four volcanoes. A significant increase in the number of volcanoes covered is required to 

enable further confidence in the relationship.  

6.6.  Conclusions 

Through the combined use of existing volcanic studies on slug flow in the literature (e.g. 

James et al. 2009, 2013; Suckale et al. 2010b), the work of Chapter 5, fluid dynamical studies 

on flow transitions (e.g. Taitel et al. 1980, Dukler et al. 1985), and characteristics of bubbles 

(e.g. Viana et al. 2003; Llewellin et al. 2012), I have developed a model to characterise 

activity observed based on flow regimes, defined by their respective gas volume fractions, 

slug lengths, and repose times between events. The model demonstrates that certain magma 

parameters are more likely to produce particular eruptive styles, however, the formation 

mechanisms of slugs also remains a key parameter. It is clear that the developed models show 

promise, however, given the sparsity of current available data, validation is far from 

complete. Although, application of the model on targets where data are presently available, 

particularly for Stromboli, does show that the model is applicable in these contexts. Through 

the combination and use of this with model with real time gas emissions estimates, the 

models could be of use for eruption forecasting at volcanoes such as Etna, where activity can 

rapidly cycle between styles.  
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7. Concluding Remarks  

7.1.  Unifying the study of degassing: A brief discussion and conclusions 

The overall aim of this thesis was trifold: to measure basaltic volcanic degassing (both 

passive and explosive), to model computationally, and to model in the lab then process the 

collected data. It is only through this combined approach that one can fully understand the 

inner workings and resultant styles of activity observed at the surface. This has been aided by 

the new found ability to measure gas emissions at temporal resolutions of ≈ 1 Hz appropriate 

to the dynamic nature of explosive basaltic volcanism (Mori and Burton, 2006; Bluth et al. 

2007), and has opened up, for the first time, the ability to compare measured gas emissions 

with laboratory analogue models, and computational fluid dynamical simulations (this thesis). 

This is an essential aspect in understanding the processes driving basaltic activity given the 

inherent difficulties of directly observing sub-surface magma and gas flow, arguably though 

this study could be taken much further with a thorough incorporation of aspects of petrology.    

Prior to this study a large number of UV camera studies, which are valuable in their own 

right, have offered an improvement in our estimation of volcanic degassing budgets of SO2 

(e.g. Tamburello et al. 2011a; McCormick et al. 2013, 2014; Burton et al. 2015a and 

references therein) or CO2 (Allard et al. 1991; Burton et al. 2000; Burton et al. 2013). Some 

papers have gone further and have investigated correlations between SO2 release and 

seismicity (e.g. McGonigle et al. 2009; Kazahaya et al. 2011; Nadeau et al. 2011; this thesis). 

A large body of UV camera literature is still focused on narrowing uncertainty and 

quantifying error (Kantzas et al. 2010 Kern et al. 2010a, 2010b, 2013, 2014; Lübcke e tal. 

2013), again an essential part of providing confidence in the measurements. Necessary 

improvements in plume speed estimation have been made (Peters et al. 2015), as have 

attempts at quantifying light dilution related errors (Campion et al. 2015). However, UV 

cameras are now at the stage where they can be used to begin to answer scientific questions 

concerning impulsive and passive gas release. It is hoped that this thesis goes some way to 

demonstrating this. 

Understanding the fluid dynamics of magma flow in the sub-surface is a key aspect in 

defining the activity which will be prevalent at the surface (Parfitt, 2004), and how 

sustainable this may be (Chapter 3). This furthermore highlights the increased need to 
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consider total gas emissions and not just the release of single species (Pering et al. 2015c). 

Whilst there is substantial focus on SO2 for obvious reasons, it is only by considering all the 

major gas components (SO2, CO2, and H2O) that flow regime behaviour can be properly 

investigated. This unification then allows the application of fluid dynamical theory in an 

attempt to explain (Chapters 3, 4, 5, and 6) phenomena captured in degassing signals.  

Within this thesis, the significant discovery of a relationship which defines the minimum 

repose period which must occur before another event can occur for a given explosion gas 

mass, has unlocked a number of avenues to develop models which seek to characterise a flow 

regime based on delay between events and mass of gas released (Chapter 5 and 6). To the 

authors knowledge this is the first observation of its kind. It is only through laboratory 

analogue analysis in a multi slug regime that this relationship has been validated (Chapter 5) 

and it is only through future research and continued field observations that models of this 

kind (Chapter 6) and others will be able to be further developed (see section 7.2).  

This thesis has endeavoured to provide an insight into basaltic degassing through the analysis 

of four specific objectives: (1) to investigate trends in passive degassing using UV cameras, 

(2) to investigate explosive degassing using UV cameras, (3) to model explosive degassing, 

and (4) to investigate transitions between different styles of activity.  

7.1.1. Chapter Two Conclusions 

This chapter outlined the measurement of contemporaneous SO2 and CO2 datasets at an 

unprecedented temporal resolution of 1 Hz. This was achieved by combining the now 

commonplace UV camera methodology to measure SO2, with a Multi-GAS analyser which 

measures gas ratios, including CO2/SO2. After background subtraction of atmospheric levels 

of CO2, the two datasets can be cross-correlated to determine lag between the Multi-GAS 

location and the point used for SO2 determined in the UV camera data. The CO2/SO2 gas 

ratios can then be directly multiplied by the temporally matched SO2 data to calculate an 

equivalent CO2 flux dataset. This allowed, for the first time, the comparison of CO2 flux with 

geophysical datasets.  

This comparison was completed with traditional analysis techniques, but also with a newly 

designed correlation technique, “Corrplot” written in Matlab®, which combines the 

continuous wavelet transform with Spearman’s Rank Correlation. This allows a much clearer 
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visualisation of the links between contemporaneous datasets, demonstrating intriguing links 

between periodicities of CO2, SO2, and seismicity. The presence of non-stationary periodic 

degassing in CO2 was identified, in addition to those observed already with SO2 and gas 

ratios (e.g. Tamburello et al. 2013; Peters et al. 2014b, Ilanko et al. 2015a).  

7.1.2. Chapter Three Conclusions 

Stromboli, the archetypal volcano for strombolian activity, is the perfect place for measuring 

SO2 flux for a large number of strombolian events. Given the frequency of eruptions and the 

large passive contribution it was chosen as the location for addressing Objectives 1 and 2. 

Tamburello et al. (2012) described the pattern of a single explosion from onset to the end, 

which included a gas coda. In this chapter, 120 strombolian events and 80 hornito events 

were analysed from explosion onset to the coda end. This highlighted six specific 

characteristic styles of degassing following an explosion, and also of the total gas mass 

contained in the explosive and coda components of each event. This demonstrated that the 

overwhelming majority of gas mass for hornito events was contained within the coda (≈ 70 to 

84%) while, for strombolian events the portion of gas contained in the coda ranged ≈ 53 to 

75%. Here, Objective 3 was also addressed with a series of CFD models. These demonstrated 

that there is the potential for the production of daughter bubbles; these involve mass release 

from the base of slugs. A non-linear relationship was discovered between Nf and mass loss 

rate, which indicates that the attrition of mass from slugs in a volcanic situation could be 

more prevalent than previously thought. In particular, at Stromboli this may act to render slug 

flow unsustainable below certain depths. Based on the average mass loss rates discovered and 

total masses of events, this could be at ≈ 740 m. Indeed, the models also showed a similar 

rate of mass loss to the measured strombolian events, with ≈ 43 to 69% of mass contained 

within the coda.  

7.1.3. Chapter Four Conclusions 

This chapter outlined the measurement of SO2 flux during a period of mild high frequency 

strombolian activity from the Bocca Nuova crater of Mt. Etna and addresses Objective 2. 

Measurement conditions were difficult because of high concentrations of gas within the crater 

and the use of background rock as a light reflectance surface. This meant that only ≈ 27 

minutes of data were captured. However, this enabled the first quantification of strombolian 
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eruption masses at Etna (Burton et al. 2015), ranging ≈ 0.1 – 14 kg SO2 and total gas masses 

of ≈ 0.2 – 74 kg, when multiplying SO2 values by ratios measured using a Multi-GAS 

analyser. Through the analysis of time periods between individual bursts and their respective 

masses it was discovered that the largest mass events were followed by longer wait periods, 

which I term repose periods (repose gap behaviour), before another event could occur. This 

was a feature which was not observed with time before a burst. On combination with basic 

mathematical relations, the distances over which interaction between rising slugs may occur 

was calculated. This suggested that, given the modal repose time of ≈ 4 s, the slugs could be 

rising in close enough proximity to coalesce with each other. A number of potential causes 

for the repose gap were considered. Given the potential proximity of slugs it is possible that 

the coalescence mechanism, which causes the acceleration of trailing slugs into leading ones, 

enables the generation of larger gaps behind a slug, leading to longer repose times, and 

generation of slugs of elevated masses.  

7.1.4. Chapter Five Conclusions 

A number of experiments were undertaken in this chapter to investigate the behaviour of 

slugs in a multi-slug regime which drive rapid strombolian activity such as that observed, 

measured and discussed in Chapter 4 with the aim of addressing Objectives 3 and 4.  A series 

of laboratory experiments investigated a range of volume fractions and gas expansion rates. 

These allowed the quantification of the repose gap observed in Etnean data using existing 

relations for the rise speed of a slug, the wake length of a slug, and the length of the slug 

itself. Beyond this, these experiments address a gap in the literature on the behaviour of rising 

slugs in a multiple slug regime. These led to the discovery of a relationship between gas 

volume fraction and slug length and slug base rise speed. In addition it was identified that 

coalescence between two rising slugs can still occur even when the leading slug is travelling 

at a faster speed, a feature which is most likely caused by the expansion related behaviour of 

the observed gas slugs. CFD identified a similar process, demonstrating that the expansion of 

trailing slugs has a marked effect on the rise speed of slug bases.  

7.1.5. Chapter Six Conclusions 

Chapter six represents the beginnings of developing a theory which can help define the flow 

regime transitions between basaltic degassing styles and aims to address Objective 4. This 
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was achieved by building upon the relationships discovered and observed in Chapters 4 and 

5, and lead to the development of two separate models. The first slug length model combines 

the relationships which define the minimum repose time and transition times, and explosive 

transition (James et al. 2009). The second model replaces slug length on the x axis with gas 

volume fraction between 0 – 100%. The slug length model is particularly for slug driven 

activity, where a bursting mass can be assigned a passive, puffing, strombolian explosive, or 

rapid strombolian category. When tested on data collected at Stromboli (Chapter 3) and those 

from the literature (Tamburello et al. 2012) the model performed well.  The second volume 

fraction model adds transitions towards and the occurrence of hawaiian lava fountaining. This 

was achieved by applying relationships for the transition to churn and annular flow contained 

within Taitel et al. (1980), in addition to the existing transitions towards and away from 

passive degassing. Both defined models can be adjusted for a wide set of basaltic parameters, 

for use terrestrially or for planetary applications. This can then allow minimum time delays 

between events to be estimated from gas volume fractions and vice versa, for magma and 

conduit parameters to be estimated from delay times between events. In particular the critical 

volume fraction beyond which slug bursts can occur more frequently can be applied to 

individual systems so we can begin to understand how much gas is needed to drive the 

transition towards lava fountaining. By combining a number of studies which demonstrate a 

relationship between gas emission and seismicity this chapter demonstrated that, on 

normalisation of events to enable comparison on the same plot a log relationship was 

discovered. This suggests that seismicity could be incorporated in future models. The latter 

volume fraction model, could be particularly useful when used in real time along with 

acquisition of gas emission monitoring data, to enable identification of transitions in activity 

style.  

7.2.  Future Goals 

Undeniably, more degassing data needs to be now collected to probe more developed flow 

regimes, but also basaltic degassing styles globally and to investigate time varying behaviour 

at individual volcanoes. In particular, the dynamics associated with degassing at lava lake 

needs to be addressed in more detail. One clear example is Marum, where the vigorousness 

and turbulence of the lava lake surface are likely indicative of a form of churn flow, which 

can only be understood with a full quantification of total gas release. Furthermore, 
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developing a way of measuring gas emissions during lava fountaining would also allow the 

probing of the flow regimes which drive this end member of basaltic degassing.  

The overwhelming majority of models into slug flow in a volcanic environment are 

performed, for reasons of simplicity and validation, on vertical conduits (James et al. 2008; 

Del Bello et al. 2012; 2015; Llewellin et al. 2012, 2013, 2014a), with only a few exceptions, 

which are little more than brief treatments concerning alternate geometries (Seyfried and 

Freundt, 2000; James et al. 2004). In reality, volcanic conduits are rarely uniform (Ferrick et 

al. 1982; Mastin, 2002), are known to be inclined (Chouet et al. 2003), flare (Keating et al. 

2008), produce strombolian activity in lava lakes (example model in Fig 7.1a), and have 

rough walls. In addition, magmas themselves can be non-Newtonian (Shaw, 1969; Dingwell 

and Webb, 1989; Pinkerton and Stevenson, 1992), contain large crystals (e.g. Erebus – 

Moussallam et al. 2015), they can be non-stagnant which effects the way gas flows (Pinto et 

al. 1998, 2001), they can vary in viscosity with depth (Del Bello et al. 2015), and the 

exsolution of gas at different depths can act to alter and drive dominant forms of activity. 

This is a relatively daunting list which when considering that each of these could and do 

occur in a single system, mean the real volcanic systems which are the subject of currently 

developed models are significantly more complex than the models themselves. Nevertheless, 

the effects of these, on the variety of flow regimes, need to be isolated and investigated.  

To date, CFD of lava fountaining activity is notably, to the author’s knowledge, completely 

absent. By beginning to model lava fountaining we could begin to delve into the presently 

very unconstrained flow regime which drives such activity. Fig. 7.1 shows a range of outputs 

that can be produced from a simple CFD model which ejects a coupled magma gas mixture 

(i.e. what happens to one phase affects the other too), at a set speed, gas volume fraction and 

conduit radius. Here, the amount of gas being emitted can be monitored (Fig. 7.1c), and even 

the periodicity of waves which can be seen in the fountain (Fig. 7.1b and d). Even such a 

simple model as this may be able to probe behaviour which has been observed in the field 

(Witt and Walter, 2015) in more detail.  

Finally, at this moment in time the majority of computational models use commercial 

software, at a very high (monetary) cost, and as a result they can only be used by researchers 

with access through institutions. The development of equally capable models could be 

achieved with free-to-use packages such as OpenFoam® (http://www.openfoam.com/) and 

http://www.openfoam.com/
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would facilitate the easier and more commonplace integration of models with existing gas 

based studies.  

  

Fig. 7. 1: a) an example model initiated in Ansys Fluent showing a slug rising in a conduit which will eventually 

enter and burst in a lava lake, b) an example model of a lava fountain ejected at 50 m s
-1

, with a gas volume 

fraction of 0.6, and a conduit radius of 5 m, c) water vapour flux calculated 300 m above the surface, with a 

negative flux indicating upward movement of gas and positive flux indicating the downward movement of gas, 

(d) periodicities calculated show a dominant period of ≈ 7 s.  
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APPENDIX A 

Appendix A includes the “corrplot” code, described in Chapter 2, and is available on the CD 

in the inside cover of this thesis. The code is also reprinted below. The text in green describes 

how to use the code within the Matlab® platform. Please also refer to the associated 

publication: Pering et al. (2014b). 

Beginning of code: 

function [a,b,c] = corrplot( x,y,wavelet,scales,fs ) 
% For determining the correlation between two signals at a range of 
% periodicities 
% Author: Tom D Pering - University of Sheffield 
% You are free to use and alter with acknowledgement 

  
% Input Details 
% Both signals must be the same sampling rate and the same length 
% The signals can be scalars or vectors 
% "x" is signal 1 
% "y" is signal 2 
% "wavelet" is the mother wavelet, example input: 'morl'  
% You can change the mother wavelet, 'gaus8' also works well 
% The in-built Matlab Wavelet Toolbox allows visualisation of different 
% mother wavelets 
% "scales" indicates the maximum range of steps used in the continuous 
% wavelet and is a time component (e.g. seconds, hours etc) 
% transform (the units are in sampling rate) and the 'window' and 'nfft 

used in psd welch analysis 
% An error will show if the maximum "scales" value set is above the Nyquist 
% Criterion e.g. [Nyquist, H., 2002. Certain topics in telegraph 

transmission  
% theory (Reprinted from Transactions of the A. I. E. E., February,  
% pg 617-644, 1928). Proceedings IEEE. 90 (2), 280-305, 
% doi:10.1109/5.989875] 
% fs is the sampling rate of the signal in hertz 

  
% Output Details 
% "a" is a matrix of correlation coefficients as generated by the 
% "corrplot" code 
% "b" is the diagonal of output "a" or the "1:1 best-fit line" 
% "c" is a matrix of cross-correlation coefficients over the range of lags 
% determined by the code 
% A number of plots are also auto-generated, see accompanying paper for 
% full details 

  
if scales>((length(x)/2)) 
    error('Scales above Nyquist limit') 
end 

  
% Wavelet Transform 
cwt1=cwt(x/max(x),1:scales,wavelet); 
cwt2=cwt(y/max(y),1:scales,wavelet); 

  
% Shift the data 
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cwt1=ctranspose(cwt1); 
cwt2=ctranspose(cwt2); 

  
% Correlate the data 
a=corr(cwt1,cwt2,'type','Spearman'); 

  
% Extract the "1:1 best-fit" line 
b=diag(a); 

  
% Extract max and min correlation location 
[max_corr,loc_max_corr]=max(b) 
[min_corr,loc_min_corr]=min(b) 
[M1,N1]=ind2sub(size(b),loc_max_corr); % Need M1 for location of largest 

correlation 
[M2,N2]=ind2sub(size(b),loc_min_corr); % Need M2 for location of smallest  

  
% Individual coefficients at max and min location 
wave_coeff1_max=cwt1(:,M1); % Individual normalised coefficeints 
wave_coeff1_min=cwt1(:,M2); 
wave_coeff2_max=cwt2(:,M1); 
wave_coeff2_min=cwt2(:,M2); 

  
% Power spectral densities 
[b1,freq1]=pwelch(x/max(x),scales,0,scales,fs); 
[b2,freq1]=pwelch(y/max(y),scales,0,scales,fs); 

  
% Xcorr lag plot  
cwt1=ctranspose(cwt1); 
cwt2=ctranspose(cwt2); 
for ls=1:scales; 
    s1=cwt1(ls,:); 
    s2=cwt2(ls,:); 
    maxlags=scales/2; 
    lag_corr=xcorr(s1,s2,maxlags,'coeff'); 
    c(ls,:)=horzcat(lag_corr); 
end 
c=ctranspose(c); 

  
% Plot the data 
figure1=figure; 

  
% Periodicity Correlation Plot 
axes1 = axes('Parent',figure1,'Position',[0.053 0.110 0.459 0.826],... 
    'Layer','top'); 
xlim(axes1,[0.5 scales]); 
ylim(axes1,[0.5 scales]); 
box(axes1,'on'); 
hold(axes1,'all'); 
title('Periodicity Correlation Plot'); 
imagesc(a,'Parent',axes1,'CDataMapping','scaled'); 
xlabel('Scales ''x'''); 
ylabel('Scales ''y'''); 

  
% Welch plot - x data 
axes2 = axes('Parent',figure1,... 
    'Position',[0.645 0.593 0.331 0.341]); 
box(axes2,'on'); 
hold(axes2,'all'); 
title('PSD Signal ''x'''); 
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xlabel('Frequency (Hz)'); 
plot(freq1,b1,'Parent',axes2,... 
    'DisplayName','b1'); 

  
% Welch plot - y data 
axes3 = axes('Parent',figure1,... 
    'Position',[0.645 0.112 0.334 0.341]); 
box(axes3,'on'); 
hold(axes3,'all'); 
title('PSD Signal ''y'''); 
xlabel('Frequency (Hz)'); 
plot(freq1,b2,'Parent',axes3,... 
    'DisplayName','b2 vs freq'); 

  
% Colourbar 
colorbar('peer',axes1,... 
    [0.522 0.108 0.026 0.829]); 

  
% Plot 3d 
figure2=figure; 
axes1 = axes('Parent',figure2,... 
    'Position',[0.094 0.108 0.775 0.815]); 
view(axes1,[-37.5 30]); 
grid(axes1,'on'); 
hold(axes1,'all'); 
surf(a,'Parent',axes1,'LineStyle','none'); 
xlabel('Scales ''x'''); 
ylabel('Scales ''y'''); 
zlabel('Correlation Coefficient'); 
colorbar('peer',axes1,... 
    [0.923 0.112 0.026 0.815]); 

  
% Plot Best-Fit Line and Coefficients; 

  
figure3 = figure('PaperSize',[20.98 29.68]); 
axes1 = axes('Parent',figure3,'Position',[0.098 0.709 0.775 0.216],... 
    'FontSize',12,... 
    'FontName','Times New Roman'); box('on'); hold('all'); 
    %1 
plot(b,'Parent',axes1,'LineWidth',2,'DisplayName','b','Color',[0 0 0]); 
xlabel('Scales ''a''','FontSize',12,'FontName','Times New Roman'); 
ylabel('Correlation - Best Fit Line','FontSize',12,... 
    'FontName','Times New Roman'); 
axes2 = axes('Parent',figure3,'Position',[0.09833 0.4069 0.775 0.2157],... 
    'FontSize',12,... 
    'FontName','Times New Roman'); 
box('on'); hold('all'); 
xlabel('Time [units]','FontSize',12,... 
    'FontName','Times New Roman'); 
ylabel('Wavelet Coefficients','FontSize',12,'FontName','Times New Roman'); 
    %2 
plot1 = plot([wave_coeff1_max 

wave_coeff2_max],'Parent',axes2,'LineWidth',2); 
set(plot1(1),'DisplayName','Max ''cwt1''','Color',[0 0 0]); 
set(plot1(2),'LineStyle','--','Color',[0.502 0.502 0.502],... 
    'DisplayName','Max ''cwt2'''); 
axes3 = axes('Parent',figure3,'Position',[0.09917 0.11 0.775 0.2157],... 
    'FontSize',12,... 
    'FontName','Times New Roman'); 
box('on'); hold('all'); 
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    %3 
plot2 = plot([wave_coeff1_min 

wave_coeff2_min],'Parent',axes3,'LineWidth',2); 
set(plot2(1),'DisplayName','Min ''cwt1''','Color',[0 0 0]); 
set(plot2(2),'LineStyle','--','Color',[0.502 0.502 0.502],... 
    'DisplayName','Min ''cwt2'''); 
xlabel('Time [units]','FontSize',12,... 
    'FontName','Times New Roman'); 
ylabel('Wavelet Coefficients','FontSize',12,'FontName','Times New Roman'); 

  
legend1 = legend(axes2,'show'); 
set(legend1,'Position',[0.8865 0.5572 0.1092 0.06648]); 
legend2 = legend(axes3,'show'); 
set(legend2,'Position',[0.889 0.2585 0.1075 0.06648]); 

  
% Plot xcorr lag plot 
figure4=figure; 
axes1 = axes('Parent',figure4,'YDir','normal',... 
    'Position',[0.131 0.11 0.677 0.815],... 
    'Layer','top',... 
    'FontSize',12,... 
    'FontName','Times New Roman'); 
Xticks=(1:1:scales); Yticks=(-scales/2:1:scales/2); 
xlim(axes1,[0.5 scales]); ylim(axes1,[(-scales/2) (scales/2)]); 
box(axes1,'on'); 
hold(axes1,'all'); 
title('Xcorr Lag Plot'); 
image(Xticks,Yticks,c,'Parent',axes1,'CDataMapping','scaled');  
xlabel('Scales','FontSize',12,'FontName','Times New Roman'); 
ylabel('Lags','FontSize',12,'FontName','Times New Roman'); 
colorbar('peer',axes1,... 
    [0.860 0.108 0.0378 0.816],... 
    'FontSize',12,... 
    'FontName','Times New Roman'); 
end 

 

End of code. 
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APPENDIX B 

Appendix B includes the four CFD videos associated with each model run described in 

Chapter 3. All videos are available on the CD on the inside rear cover of this thesis. Videos 1 

– 4, are labelled Appendix B – Video 1 etc., on the CD. All of the details of each model run 

are in section 3.4 and Table 3.4. All videos show the production of daughter bubbles from the 

base of ascending slugs. 

Video 1 = Model Run S1 

Video 2 = Model Run S2 

Video 3 = Model Run S3 

Video 4 = Model Run S4 
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APPENDIX C 

Appendix C includes the videos described in Chapter 4. All videos are available on the CD 

on the inside rear cover of this thesis. Video 1 (labelled Appendix C – Video 1) shows two 

periods of UV camera absorption data during the period of acquisition. At 09:55:33 in this 

video is evidence of accelerated gas emission in markedly different directions in quick 

succession. 

Video 2 (labelled Appendix C – Video 2) shows visible imagery collected prior to the 

acquisition period.  

Video 3 (labelled Appendix C – Video 3) shows an animation of the slug coalescence 

process. The two slug bases are seen to travel at the same speed, until the trailing slug begins 

to interact with the wake interaction length of the leading slug. At this point the trailing slug 

begins to increase in speed. On entering the wake length of the leading slug the trailing slug 

undergoes a further acceleration until capture and coalescence. 

Also on the CD is a file entitled “Appendix C - Google Earth Placemarks”, which shows all 

of the locations for seismic stations, UV camera, Multi-GAS analyser, and the wind direction 

at the time of measurement. This file is a .kmz file which can be used in Google Earth. 

Videos 1 and 2 are reproduced with the permission of Elsevier.  
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APPENDIX D 

Appendix D includes the videos described in Chapter 5, relating to each laboratory and CFD 

experiment undertaken. Thirty second clips from the DSLR, which overlap with the slow 

motion camera acquisition period are included for each laboratory experiment; Lab 1 through 

to Lab 12 (see Table 5.1 for summary of experiment details), and are labelled as such on the 

CD which is located on the inside rear cover of this thesis.  

Note that the liquid column is vertically orientated and is only displayed horizontally in the 

videos to increase video resolution. Also note the production of a foam layer at the top of the 

liquid column. The surface of the magma column is not visible in a few of the models, due to 

zooming used on DSLR, but was in the slow motion videos.  

Videos, in real time, of all CFD simulations undertaken as part of Chapter 5 are included. 

Further details of these simulations can be found in sections 5.4 and 5.5 (see also Table 5.5) 

and the videos are similarly available on the CD. Note here that the magma column was 

simulated vertically, and is only displayed horizontally here to increase video resolution. In 

all videos, blue colours equate to gas, and red colours equate to magma.  
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APPENDIX E 

Appendix E includes the Excel spreadsheets used to create the bubble length model (section 

6.2.1) and the volume fraction model (section 6.2.2). These are called Appendix E – M1 and 

Appendix E – M2, respectively on the CD which is located on the inside rear cover of this 

thesis. 

All figures included within Chapter 6 have been coloured to make them easier to interpret 

within the thesis. These include Figs. 6.6 to 6.8 for the bubble length model, and Figs. 6.9 to 

6.11 for the volume fraction model. Brief instructions on their use are contained on the 

“Instructions” tab in each excel spreadsheet.  

 

 

 

 


